LPC11A14FBD48/301 [NXP]

IC 32-BIT, FLASH, 50 MHz, RISC MICROCONTROLLER, PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, PLASTIC, MS-026, SOT313-2, LQFP-48, Microcontroller;
LPC11A14FBD48/301
型号: LPC11A14FBD48/301
厂家: NXP    NXP
描述:

IC 32-BIT, FLASH, 50 MHz, RISC MICROCONTROLLER, PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, PLASTIC, MS-026, SOT313-2, LQFP-48, Microcontroller

微控制器
文件: 总84页 (文件大小:1761K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LPC11Axx  
32-bit ARM Cortex-M0 microcontroller; up to 32 kB flash, 8 kB  
SRAM, 4 kB EEPROM; configurable analog/mixed-signal  
Rev. 4 — 30 October 2012  
Product data sheet  
1. General description  
The LPC11Axx are an ARM Cortex-M0 based, low-cost 32-bit MCU family, designed for  
8/16-bit microcontroller applications, offering performance, low power, simple instruction  
set and memory addressing together with reduced code size compared to existing 8/16-bit  
architectures.  
The LPC11Axx operate at CPU frequencies of up to 50 MHz.  
Analog/mixed-signal subsystems can be configured by software from interconnected  
digital and analog peripherals.  
The digital peripherals on the LPC11Axx include up to 32 kB of flash memory, up to 4 kB  
of EEPROM data memory, up to 8 kB of SRAM data memory, a Fast-mode Plus I2C-bus  
interface, a RS-485/EIA-485 USART, two SSP controllers, four general purpose  
counter/timers, and up to 42 general purpose I/O pins.  
Analog peripherals include a 10-bit ADC, a 10-bit DAC, an analog comparator, a  
temperature sensor, an internal voltage reference, and UnderVoltage LockOut (UVLO)  
protection.  
2. Features and benefits  
System:  
ARM Cortex-M0 processor, running at frequencies of up to 50 MHz.  
ARM Cortex-M0 built-in Nested Vectored Interrupt Controller (NVIC).  
Serial Wire Debug (SWD)  
JTAG boundary scan.  
System tick timer.  
Memory:  
Up to 32 kB on-chip flash program memory.  
Up to 4 kB on-chip EEPROM data memory; byte erasable and byte programmable.  
Up to 8 kB SRAM data memory.  
16 kB boot ROM.  
In-System Programming (ISP) for flash and In-Application Programming (IAP) for  
flash and EEPROM via on-chip bootloader software.  
Includes ROM-based 32-bit integer division and I2C-bus driver routines.  
Digital peripherals:  
Up to 42 General Purpose I/O (GPIO) pins with configurable pull-up/pull-down  
resistors, repeater mode, and open-drain mode.  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Up to 16 pins are configurable with a digital input glitch filter for removing glitches  
with widths of 10 ns or less and two pins are configurable for 50 ns glitch filters.  
GPIO pins can be used as edge and level sensitive interrupt sources.  
High-current source output driver (20 mA) on one pin (PIO0_21).  
High-current sink driver (20 mA) on true open-drain pins (PIO0_2 and PIO0_3).  
Four general purpose counter/timers with a total of up to 16 capture inputs and 14  
match outputs.  
Programmable Windowed WatchDog Timer (WWDT) with a dedicated, internal  
low-power WatchDog Oscillator (WDOsc).  
Analog peripherals:  
10-bit ADC with input multiplexing among 8 pins.  
10-bit DAC with flexible conversion triggering.  
Highly flexible analog comparator with a programmable voltage reference.  
Integrated temperature sensor.  
Internal voltage reference.  
UnderVoltage Lockout (UVLO) protection against power-supply droop below 2.4 V.  
Serial interfaces:  
USART with fractional baud rate generation, internal FIFO, support for  
RS-485/9-bit mode and synchronous mode.  
Two SSP controllers with FIFO and multi-protocol capabilities. Support data rates  
of up to 25 Mbit/s.  
I2C-bus interface supporting the full I2C-bus specification and Fast-mode Plus with  
a data rate of 1 Mbit/s with multiple address recognition and monitor mode.  
Clock generation:  
Crystal Oscillator (SysOsc) with an operating range of 1 MHz to 25 MHz.  
12 MHz internal RC Oscillator (IRC) trimmed to 1% accuracy that can optionally be  
used as a system clock.  
Internal low-power, Low-Frequency Oscillator (LFOsc) with programmable  
frequency output.  
Clock input for external system clock (25 MHz typical).  
PLL allows CPU operation up to the maximum CPU rate with the IRC, the external  
clock, or the SysOsc as clock sources.  
Clock output function with divider that can reflect the SysOsc, the IRC, the main  
clock, or the LFOsc.  
Power control:  
Supports one reduced power mode: The ARM Sleep mode.  
Power profiles residing in boot ROM allowing to optimize performance and  
minimize power consumption for any given application through one simple function  
call.  
Processor wake-up from reduced power mode using any interrupt.  
Power-On Reset (POR).  
Brown-Out Detect (BOD) with two programmable thresholds for interrupt and one  
hardware controlled reset trip point.  
POR and BOD are always enabled for rapid UVLO protection against power supply  
voltage droop below 2.4 V.  
Unique device serial number for identification.  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
2 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Single 3.3 V power supply (2.6 V to 3.6 V).  
Temperature range 40 C to +85 C.  
Available as LQFP48 package, HVQFN33 (7 7) and HVQFN33 (5 5) packages, and  
in a very small WLCSP20 package.  
3. Applications  
Power management  
Gaming equipment  
Motion control  
Industrial control  
Remote monitoring  
Medical instrumentation  
Fire and security  
Point-of-sale  
Test and measurement equipment  
Network appliances and services  
Factory automation  
Sensors  
Precision instrumentation  
HVAC and building control  
4. Ordering information  
Table 1.  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
LPC11A02UK  
LPC11A04UK  
WLCSP20 wafer level chip-size package; 20 bumps; 2.5 2.5 0.6 mm  
WLCSP20 wafer level chip-size package; 20 bumps; 2.5 2.5 0.6 mm  
-
-
LPC11A11FHN33/001 HVQFN33 HVQFN: plastic thermal enhanced very thin quad flat package; no leads; 33 n/a  
terminals; body 7 7 0.85 mm  
LPC11A12FHN33/101 HVQFN33 HVQFN: plastic thermal enhanced very thin quad flat package; no leads; 33 n/a  
terminals; body 7 7 0.85 mm  
LPC11A13FHI33/201 HVQFN33 HVQFN: plastic thermal enhanced very thin quad flat package; no leads; 33 n/a  
terminals; body 5 5 0.85 mm  
LPC11A14FHN33/301 HVQFN33 HVQFN: plastic thermal enhanced very thin quad flat package; no leads; 33 n/a  
terminals; body 7 7 0.85 mm  
LPC11A12FBD48/101 LQFP48  
LPC11A14FBD48/301 LQFP48  
LQFP48: plastic low profile quad flat package; 48 leads; body 7 7   
1.4 mm  
SOT313-2  
SOT313-2  
LQFP48: plastic low profile quad flat package; 48 leads; body 7 7   
1.4 mm  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
3 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
4.1 Ordering options  
Table 2.  
Ordering options  
Type number  
Flash  
SRAM EEPROM  
Package  
LPC11A02UK  
LPC11A04UK  
16 kB 4 kB  
32 kB 8 kB  
2 kB  
4 kB  
512 B  
1 kB  
1 kB  
2 kB  
4 kB  
4 kB  
8
8
8
8
8
8
8
8
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
1
1
1
1
1
1
1
1
18  
18  
28  
28  
42  
28  
28  
42  
WLCSP20  
WLCSP20  
HVQFN33  
HVQFN33  
LQFP48  
LPC11A11FHN33/001 8 kB  
2 kB  
LPC11A12FHN33/101 16 kB 4 kB  
LPC11A12FBD48/101 16 kB 4 kB  
LPC11A13FHI33/201  
24 kB 6 kB  
HVQFN33  
HVQFN33  
LQFP48  
LPC11A14FHN33/301 32 kB 8 kB  
LPC11A14FBD48/301 32 kB 8 kB  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
4 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
5. Block diagram  
SWD  
XTALIN XTALOUT  
RESET  
CLOCK  
LPC11Axx  
(3)  
SysOsc  
GENERATION,  
IRC, LFOSC, WDOSC  
CLKOUT  
TEST/DEBUG  
INTERFACE  
POWER CONTROL,  
CLKIN  
SYSTEM  
BOD  
POR  
FUNCTIONS  
ARM  
CORTEX-M0  
EEPROM  
512 B/  
1/4 kB  
clocks, internal voltage reference,  
and controls  
FLASH  
8/16/24/32 kB  
SRAM  
2/4/6/8 kB  
ROM  
16 kB  
system bus  
slave  
slave  
slave  
slave  
HIGH-SPEED  
AHB-LITE BUS  
GPIO ports  
GPIO  
slave  
AHB TO APB  
BRIDGE  
RXD  
TXD  
AD[7:0]  
ATRG[1:0]  
(4)  
CTS, DCD, DSR, RI  
RTS, DTR  
USART  
10-bit ADC  
SCLK  
TEMPERATURE SENSOR  
CT32B0_MAT[3:0]  
CT32B0_CAP[2:0]  
CT32B1_MAT[3:0]  
CT32B1_CAP[2:0]  
32-bit COUNTER/TIMER 0  
32-bit COUNTER/TIMER 1  
16-bit COUNTER/TIMER 0  
16-bit COUNTER/TIMER 1  
ACMP_I[5:1]  
ACMP_O  
ANALOG COMPARATOR  
10-bit DAC  
VDDCMP  
CT16B0_MAT[3:0]  
CT16B0_CAP[2:0]  
AOUT  
CT16B1_MAT[3:0]  
CT16B1_CAP[2:0]  
(1)  
SCL, SDA  
(2)  
SCL, SDA  
2
I C-BUS  
WINDOWED WATCHDOG  
TIMER  
(2)  
(2)  
SCL, SDA  
SCL, SDA  
IOCONFIG  
SSP0  
PMU  
SCK0, SSEL0,  
MISO0, MOSI0  
SYSTEM CONTROL  
SCK1, SSEL1,  
MISO1, MOSI1  
(3)  
SSP1  
002aaf428  
(1) Open-drain pins.  
(2) Standard I/O pins.  
(3) Not available on WLCSP packages.  
(4) Modem control pins not available on WLCSP packages.  
Fig 1. LPC11Axx block diagram  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
5 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
6. Pinning information  
6.1 Pinning  
1
2
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
PIO0_26  
PIO0_28  
PIO1_1  
TRST/PIO0_9  
TDO/PIO0_8  
TMS/PIO0_7  
TDI/PIO0_6  
PIO1_0  
3
RESET/PIO0_0  
PIO0_1  
4
5
V
SS(IO)  
LPC11A12FBD48/101  
LPC11A14FBD48/301  
6
XTALIN  
7
XTALOUT  
PIO0_14  
8
V
TCK/SWCLK/PIO0_5  
PIO0_4  
DD(IO)  
9
PIO0_24  
PIO0_18  
PIO1_6  
PIO1_9  
10  
11  
12  
PIO0_22  
PIO1_8  
PIO1_7  
002aaf499  
Fig 2. Pin configuration LQFP48 package  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
6 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
terminal 1  
index area  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
PIO0_26  
RESET/PIO0_0  
PIO0_1  
TRST/PIO0_9  
TDO/PIO0_8  
TMS/PIO0_7  
TDI/PIO0_6  
PIO0_14  
XTALIN  
XTALOUT  
V
TCK/SWCLK/PIO0_5  
PIO0_4  
DD(IO)  
PIO0_24  
PIO0_18  
33 V  
SS  
PIO0_22  
002aaf500  
Transparent top view  
Parts: LPC11A11FHN33/001, LPC11A12FHN33/101, LPC11A13FHI33/201,  
LPC11A14FHN33/301  
Fig 3. Pin configuration HVQFN 33 package  
E
D
C
B
A
1
2
3
4
002aaf175  
Parts: LPC11A02UK, LPC11A04UK  
Fig 4. Pin configuration WLCSP20 package  
6.2 Pin description  
All functional pins on the LPC11Axx are mapped to GPIO port 0 and port 1 (see Table 4).  
The port pins are multiplexed to accommodate more than one function (see Table 3).  
The pin function is controlled by the pin’s IOCON register (see the LPC11Axx user  
manual). The standard I/O pad configuration is illustrated in Figure 31 and a detailed pin  
description is given in Table 4.  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
7 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 3.  
Function  
Pin multiplexing  
Type  
LQFP48  
Glitch filter Pin  
HVQFN33  
Pin  
WCSP20  
Ball  
Port  
System clocks, reset, and wake-up  
CLKIN  
I
PIO0_1  
PIO0_12  
PIO0_19  
PIO0_24  
PIO0_1  
PIO0_19  
-
no  
no  
no  
no  
no  
no  
-
4
3
B2  
E1  
-
46  
14  
9
31  
9
7
-
CLKOUT  
O
4
3
B2  
-
14  
6
9
XTALIN  
XTALOUT  
RESET  
I
4
-
(analog)  
O
-
-
7
3
5
2
-
(analog)  
I
PIO0_0  
20 ns[1]  
C1  
Serial Wire Debug (SWD) and JTAG  
TRST  
TCK  
I
PIO0_9  
PIO0_5  
PIO0_6  
PIO0_8  
PIO0_7  
PIO0_2  
PIO0_5  
PIO0_3  
PIO0_10  
10 ns[2]  
10 ns[2]  
10 ns[2]  
no  
10 ns[2]  
50 ns[2]  
10 ns[2]  
50 ns[2]  
10 ns[2]  
35  
29  
32  
34  
33  
15  
29  
16  
38  
24  
19  
21  
23  
22  
10  
19  
11  
25  
D4  
B3  
C3  
C2  
C4  
A1  
B3  
B1  
D3  
I
TDI  
I
TDO  
O
I
TMS  
SWCLK  
I
SWDIO  
I/O  
Analog peripherals (ADC, DAC, comparator)  
ACMP_I1  
ACMP_I2  
ACMP_I3  
ACMP_I4  
ACMP_I5  
ACMP_O  
I
PIO0_27  
PIO0_13  
PIO0_16  
PIO0_17  
PIO0_22  
no  
no  
no  
no  
no  
43  
47  
18  
21  
27  
28  
32  
13  
14  
17  
-
(analog)  
I
D1  
A2  
A3  
-
(analog)  
I
(analog)  
I
(analog)  
I
(analog)  
O
PIO0_2  
PIO0_3  
PIO0_12  
PIO0_21  
PIO0_23  
PIO0_6  
no  
no  
no  
no  
no  
no  
15  
16  
46  
23  
45  
32  
10  
11  
31  
16  
30  
21  
A1  
B1  
E1  
-
(digital)  
-
AD0  
AD1  
I
C3  
(analog)  
I
PIO0_7  
no  
33  
22  
C4  
(analog)  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
8 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 3.  
Pin multiplexing  
Type  
Function  
LQFP48  
Glitch filter Pin  
HVQFN33  
Pin  
WCSP20  
Ball  
Port  
AD2  
AD3  
AD4  
AD5  
AD6  
AD7  
AOUT  
I
PIO0_8  
PIO0_9  
PIO0_10  
PIO0_11  
PIO0_14  
PIO0_15  
PIO0_4  
no  
no  
no  
no  
no  
no  
no  
34  
35  
38  
39  
30  
41  
28  
23  
C2  
(analog)  
I
24  
25  
26  
20  
27  
18  
D4  
D3  
D2  
B4  
E4  
A4  
(analog)  
I
(analog)  
I
(analog)  
I
(analog)  
I
(analog)  
O
(analog)  
ATRG0  
I
I
PIO0_16  
PIO0_17  
PIO0_14  
PIO0_5  
10 ns[2]  
10 ns[2]  
no  
18  
21  
30  
-
13  
14  
20  
-
A2  
A3  
-
ATRG1  
VDDCMP  
I
(analog)  
no  
B3  
I2C-bus interface  
SCL  
SDA  
I/O  
PIO0_2  
50 ns[2]  
no  
10 ns[2]  
15  
46  
18  
9
10  
31  
13  
7
A1  
E1  
A2  
-
PIO0_12  
PIO0_16  
PIO0_24  
PIO0_3  
no  
I/O  
50 ns[2]  
10 ns[2]  
10 ns[2]  
no  
16  
47  
41  
17  
11  
32  
27  
12  
B1  
D1  
E4  
-
PIO0_13  
PIO0_15  
PIO0_25  
SSP0 controller  
MISO0  
I/O  
I/O  
PIO0_6  
PIO0_22  
PIO1_2  
PIO0_4  
PIO0_19  
PIO1_3  
PIO1_7  
PIO0_5  
PIO0_20  
PIO1_0  
PIO0_1  
PIO0_18  
PIO1_1  
10 ns[2]  
10 ns[2]  
no  
32  
27  
37  
28  
14  
48  
25  
29  
22  
31  
4
21  
17  
-
C3  
-
-
MOSI0  
10 ns[2]  
18  
9
A4  
no  
-
no  
-
-
no  
10 ns[2]  
-
-
SCK0  
I/O  
I/O  
19  
15  
-
B3  
no  
-
no  
-
SSEL0  
no  
3
B2  
no  
10  
36  
8
-
-
no  
-
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
9 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 3.  
Function  
Pin multiplexing  
Type  
LQFP48  
Glitch filter Pin  
HVQFN33  
Pin  
WCSP20  
Ball  
Port  
SSP1 controller  
MISO1  
I/O  
I/O  
PIO0_14  
PIO0_26  
PIO1_8  
10 ns[2]  
no  
30  
1
20  
1
-
-
-
-
-
-
-
-
-
-
-
-
-
-
no  
10 ns[2]  
26  
43  
24  
40  
11  
34  
20  
13  
17  
19  
2
MOSI1  
PIO0_27  
PIO0_31  
PIO0_30  
PIO1_6  
28  
-
no  
no  
-
no  
10 ns[2]  
-
SCK1  
I/O  
I/O  
PIO0_8  
23  
-
PIO1_5  
no  
PIO0_29  
PIO0_25  
PIO1_4  
no  
-
SSEL1  
no  
12  
-
no  
PIO0_28  
no  
-
USART  
RXD  
I
PIO0_1  
PIO0_12  
PIO1_4  
PIO1_8  
PIO0_13  
PIO0_15  
PIO0_26  
PIO1_5  
PIO0_11  
PIO0_21  
PIO0_23  
PIO0_9  
PIO0_21  
PIO1_7  
PIO0_10  
PIO0_23  
PIO1_6  
PIO1_9  
PIO1_0  
PIO0_29  
PIO1_2  
PIO0_28  
PIO1_1  
no  
4
3
B2  
no  
46  
19  
26  
47  
41  
1
31  
-
E1  
no  
-
no  
-
-
TXD  
O
no  
32  
27  
1
D1  
no  
E4  
no  
-
no  
10 ns[2]  
20  
39  
23  
45  
35  
23  
25  
38  
45  
11  
12  
31  
13  
37  
2
-
-
SCLK  
CTS  
RTS  
I/O  
I
26  
16  
30  
24  
16  
-
D2  
no  
-
no  
10 ns[2]  
-
D4  
no  
-
no  
-
O
no  
25  
30  
-
D3  
-
no  
no  
-
DCD  
DSR  
DTR  
I
no  
-
-
no  
-
-
I
no  
-
-
no  
-
-
O
no  
-
-
no  
36  
-
-
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
10 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 3.  
Pin multiplexing  
Type  
Function  
LQFP48  
Glitch filter Pin  
HVQFN33  
WCSP20  
Port  
Pin  
Ball  
RI  
I
PIO0_30  
PIO0_31  
PIO1_3  
no  
no  
no  
40  
24  
48  
-
-
-
-
-
-
16-bit counter/timer CT16B0  
CT16B0_CAP0 I  
PIO0_2  
50 ns[2]  
no  
15  
10  
40  
18  
19  
21  
20  
33  
21  
11  
28  
35  
31  
29  
38  
25  
10  
8
A1  
-
PIO0_18  
PIO0_30  
PIO0_16  
PIO1_4  
PIO0_17  
PIO1_5  
PIO0_7  
PIO0_17  
PIO1_6  
PIO0_4  
PIO0_9  
PIO1_0  
PIO0_5  
PIO0_10  
PIO1_7  
no  
10 ns[2]  
-
-
CT16B0_CAP1 I  
CT16B0_CAP2 I  
CT16B0_MAT0 O  
13  
-
A2  
-
no  
10 ns[2]  
no  
14  
-
A3  
-
no  
22  
14  
-
C4  
A3  
-
no  
no  
CT16B0_MAT1 O  
CT16B0_MAT2 O  
no  
18  
24  
-
A4  
D4  
-
no  
no  
no  
19  
25  
-
B3  
D3  
-
no  
no  
16-bit counter/timer CT16B1  
CT16B1_CAP0 I  
PIO0_3  
50 ns[2]  
no  
16  
9
11  
7
-
B1  
PIO0_24  
PIO1_3  
PIO0_18  
PIO0_26  
PIO0_31  
PIO0_27  
PIO1_7  
PIO0_19  
PIO0_25  
PIO1_1  
PIO0_14  
PIO1_2  
PIO1_8  
PIO0_20  
PIO1_2  
PIO1_9  
-
no  
48  
10  
1
-
CT16B1_CAP1 I  
no  
8
1
-
-
no  
-
no  
10 ns[2]  
24  
43  
25  
14  
17  
36  
30  
37  
26  
22  
37  
12  
-
CT16B1_CAP2 I  
CT16B1_MAT0 O  
28  
-
-
no  
-
no  
9
12  
-
-
no  
-
no  
-
CT16B1_MAT1 O  
CT16B1_MAT2 O  
no  
20  
-
B4  
-
no  
no  
-
-
no  
15  
-
-
no  
-
no  
-
-
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
11 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 3.  
Function  
Pin multiplexing  
Type  
LQFP48  
Glitch filter Pin  
HVQFN33  
Pin  
WCSP20  
Ball  
Port  
32-bit counter/timer CT32B0  
CT32B0_CAP0 I  
PIO0_11  
10 ns[2]  
no  
39  
45  
2
26  
30  
-
D2  
-
PIO0_23  
PIO0_28  
PIO0_14  
PIO0_29  
PIO0_15  
PIO0_26  
PIO0_12  
PIO0_30  
PIO0_13  
PIO1_4  
no  
10 ns[2]  
-
CT32B0_CAP1 I  
CT32B0_CAP2 I  
CT32B0_MAT0 O  
CT32B0_MAT1 O  
CT32B0_MAT2 O  
CT32B0_MAT3 O  
30  
13  
41  
1
20  
-
B4  
-
no  
10 ns[2]  
no  
27  
1
E4  
-
no  
46  
40  
47  
19  
4
31  
-
E1  
-
no  
no  
32  
-
D1  
-
no  
PIO0_1  
no  
3
B2  
-
PIO1_5  
no  
20  
32  
11  
-
PIO0_6  
no  
21  
-
C3  
-
PIO1_6  
no  
32-bit counter/timer CT32B1  
CT32B1_CAP0 I  
PIO0_7  
10 ns[2]  
no  
33  
22  
19  
23  
20  
27  
11  
34  
24  
26  
35  
43  
25  
38  
27  
12  
39  
36  
31  
22  
15  
-
C4  
PIO0_20  
PIO1_4  
PIO0_21  
PIO1_5  
PIO0_22  
PIO1_6  
PIO0_8  
PIO0_31  
PIO1_8  
PIO0_9  
PIO0_27  
PIO1_7  
PIO0_10  
PIO0_22  
PIO1_9  
PIO0_11  
PIO1_1  
PIO1_0  
-
no  
-
CT32B1_CAP1 I  
CT32B1_CAP2 I  
CT32B1_MAT0 O  
no  
16  
-
-
no  
10 ns[2]  
-
17  
-
-
no  
-
no  
23  
-
C2  
no  
-
no  
-
-
CT32B1_MAT1 O  
CT32B1_MAT2 O  
CT32B1_MAT3 O  
Supply and ground pins  
no  
24  
28  
-
D4  
no  
-
no  
-
no  
25  
17  
-
D3  
no  
-
no  
-
no  
26  
-
D2  
no  
-
-
no  
-
VDD(IO)  
Supply  
-
-
8
6
E2  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
12 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 3.  
Pin multiplexing  
Type  
Function  
LQFP48  
Glitch filter Pin  
HVQFN33  
WCSP20  
Ball  
E2  
Port  
Pin  
29  
33  
33  
VDD(3V3)  
VSS  
Supply  
Ground  
Ground  
-
-
-
-
44  
42  
5
-
-
E3  
VSS(IO)  
E3  
[1] Always on.  
[2] Programmable on/off. By default, the glitch filter is disabled.  
Table 4 shows all pins in order of their port number. The default function after reset is  
listed first. All port pins PIO0_0 to PIO1_9 have internal pull-up resistors enabled after  
reset with the exception of the true open-drain pins PIO0_2 and PIO0_3.  
Pull-up/pull-down configuration, repeater, and open-drain modes can be programmed  
through the IOCON registers for each of the port pins.  
Table 4.  
Symbol  
LPC11Axx pin description table  
Pin/Ball  
Type Reset Description  
state  
[1]  
[2]  
[3]  
RESET/PIO0_0  
3
2
3
C1  
B2  
I
I; PU RESET — External reset input with fixed 20 ns glitch filter: A  
LOW on this pin resets the device, causing I/O ports and  
peripherals to take on their default states and processor  
execution to begin at address 0.  
I/O  
I/O  
-
PIO0_0 — General purpose digital input/output pin.  
PIO0_1/RXD/CLKOUT/ 4  
CT32B0_MAT2/SSEL0/  
CLKIN  
I; PU PIO0_1 — General purpose digital input/output pin. A LOW  
level on this pin during reset starts the ISP command handler.  
I
-
RXD — Receiver data input for USART.  
CLKOUT — Clock output.  
O
O
I/O  
I
-
-
CT32B0_MAT2 — Match output 2 for 32-bit timer 0.  
SSEL0 — Slave Select for SSP0.  
CLKIN — External clock input.  
-
-
[4][5]  
PIO0_2/SCL/ACMP_O/ 15 10 A1  
TCK/SWCLK/  
CT16B0_CAP0  
I/O  
I; IA  
PIO0_2 — General purpose digital input/output pin.  
High-current sink (20 mA) or standard-current sink (4 mA)  
programmable; true open-drain for all pin functions. Input  
glitch filter (50 ns) capable.  
I/O  
-
SCL — I2C-bus clock (true open-drain) input/output. Input  
glitch filter (50 ns) capable.  
O
I
-
-
ACMP_O — Analog comparator output.  
TCK/SWCLK — Serial Wire Debug Clock (secondary for  
LQFP and HVQFN packages). Input glitch filter (50 ns)  
capable. For the WLCSP20 package only, this pin is  
configured to the SWCLK function by the boot loader after  
reset.  
I
-
CT16B0_CAP0 — Capture input 0 for 16-bit timer 0. Input  
glitch filter (50 ns) capable.  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
13 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 4.  
Symbol  
LPC11Axx pin description table  
Pin/Ball  
Type Reset Description  
state  
[1]  
[4][6]  
PIO0_3/SDA/ACMP_O/ 16 11 B1  
SWDIO/CT16B1_CAP0  
I/O  
I/O  
I; IA  
PIO0_3 — General purpose digital input/output pin.  
High-current sink (20 mA) or standard-current sink (4 mA)  
programmable; true open-drain for all pin functions. Input  
glitch filter (50 ns) capable.  
-
SDA — I2C-bus data (true open-drain) input/output. Input  
glitch filter (50 ns) capable.  
O
-
-
ACMP_O — Analog comparator output.  
I/O  
SWDIO — Serial Wire Debug I/O (secondary for LQFP and  
HVQFN packages). Input glitch filter (50 ns) capable. For the  
WLCSP20 package only, this pin is configured to the SWDIO  
function by the boot loader after reset.  
I
-
CT16B1_CAP0 — Capture input 0 for 16-bit timer 1. Input  
glitch filter (50 ns) capable.  
[7]  
PIO0_4/R/AOUT/  
28 18 A4  
I/O  
I; PU PIO0_4 — General purpose digital input/output pin. Input  
CT16B0_MAT1/MOSI0  
glitch filter (10 ns) capable.  
-
-
-
-
-
R — Reserved.  
O
O
I/O  
AOUT — D/A converter output.  
CT16B0_MAT1 — Match output 1 for 16-bit timer 0.  
MOSI0 — Master Out Slave In for SSP0. Input glitch filter  
(10 ns) capable.  
[9]  
TCK/SWCLK/PIO0_5/ 29 19  
R/CT16B0_MAT2/  
SCK0  
-
I
I; PU TCK/SWCLK — Test clock TCK for JTAG interface and  
primary (default) Serial Wire Debug Clock. Input glitch filter (10  
ns) capable.  
I/O  
-
PIO0_5 — General purpose digital input/output pin. Input  
glitch filter (10 ns) capable.  
-
-
-
-
R — Reserved.  
O
I/O  
CT16B0_MAT2 — Match output 2 for 16-bit timer 0.  
SCK0 — Serial clock for SSP0. Input glitch filter (10 ns)  
capable.  
[7][8]  
TCK/SWCLK/PIO0_5/  
VDDCMP/  
CT16B0_MAT2/  
SCK0  
-
-
B3  
I
I; PU TCK/SWCLK — Test clock TCK for JTAG interface and  
secondary Serial Wire Debug ClocK. Use PIO0_2 for the  
default TCK/SWCLK function. Input glitch filter (10 ns)  
capable.  
I/O  
-
PIO0_5 — General purpose digital input/output pin. Input  
glitch filter (10 ns) capable.  
I
-
-
-
VDDCMP — Analog comparator alternate reference voltage.  
CT16B0_MAT2 — Match output 2 for 16-bit timer 0.  
O
I/O  
SCK0 — Serial clock for SSP0. Input glitch filter (10 ns)  
capable.  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
14 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 4.  
Symbol  
LPC11Axx pin description table  
Pin/Ball  
Type Reset Description  
state  
[1]  
[9]  
TDI/PIO0_6/AD0/  
32 21 C3  
I
I; PU TDI — Test Data In for JTAG interface. Input glitch filter (10 ns)  
CT32B0_MAT3/MISO0  
capable.  
I/O  
-
PIO0_6 — General purpose digital input/output pin. Input  
glitch filter (10 ns) capable.  
I
-
-
-
AD0 — A/D converter input 0.  
O
I/O  
CT32B0_MAT3 — Match output 3 for 32-bit timer 0.  
MISO0 — Master In Slave Out for SSP0. Input glitch filter  
(10 ns) capable.  
[9]  
TMS/PIO0_7/AD1/  
CT32B1_CAP0/  
CT16B0_MAT0  
33 22 C4  
I
I; PU TMS — Test Mode Select for JTAG interface. Input glitch filter  
(10 ns) capable.  
I/O  
-
PIO0_7 — General purpose digital input/output pin. Input  
glitch filter (10 ns) capable.  
I
I
-
-
AD1 — A/D converter input 1.  
CT32B1_CAP0 — Capture input 0 for 32-bit timer 1. Input  
glitch filter (10 ns) capable.  
O
-
CT16B0_MAT0 — Match output 2 for 16-bit timer 0.  
[9]  
TDO/PIO0_8/AD2/  
34 23 C2  
O
I; PU TDO — Test Data Out for JTAG interface.  
CT32B1_MAT0/SCK1  
I/O  
-
PIO0_8 — General purpose digital input/output pin. Input  
glitch filter (10 ns) capable.  
I
-
-
-
AD2 — A/D converter input 2.  
O
I/O  
CT32B1_MAT0 — Match output 0 for 32-bit timer 1.  
SCK1 — Serial clock for SSP1. Input glitch filter (10 ns)  
capable.  
[9]  
TRST/PIO0_9/AD3/  
CT32B1_MAT1/  
35 24 D4  
I
I; PU TRST — Test Reset for JTAG interface. Input glitch filter  
(10 ns) capable.  
CT16B0_MAT1/CTS  
I/O  
-
PIO0_9 — General purpose digital input/output pin. Input  
glitch filter (10 ns) capable.  
I
-
-
-
-
AD3 — A/D converter, input 3.  
O
O
I
CT32B1_MAT1 — Match output 1 for 32-bit timer 1.  
CT16B0_MAT1 — Match output 1 for 16-bit timer 0.  
CTS — Clear To Send input for USART. Input glitch filter  
(10 ns) capable.  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
15 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 4.  
Symbol  
LPC11Axx pin description table  
Pin/Ball  
Type Reset Description  
state  
[1]  
[9]  
SWDIO/PIO0_10/AD4/ 38 25 D3  
CT32B1_MAT2/  
CT16B0_MAT2/RTS  
I/O  
I/O  
I; PU SWDIO — Primary (default) Serial Wire Debug I/O for the  
LQFP48 and HVQFN33 packages. For the WLCSP20  
package, use PIO0_3. Input glitch filter (10 ns) capable.  
-
PIO0_10 — General purpose digital input/output pin. Input  
glitch filter (10 ns) capable.  
I
-
-
-
-
AD4 — A/D converter, input 4.  
O
O
O
I/O  
CT32B1_MAT2 — Match output 2 for 32-bit timer 1.  
CT16B0_MAT2 — Match output 2 for 16-bit timer 0.  
RTS — Request To Send output for USART.  
[9]  
PIO0_11/SCLK/  
AD5/CT32B1_MAT3/  
CT32B0_CAP0  
39 26 D2  
I; PU PIO0_11 — General purpose digital input/output pin. Input  
glitch filter (10 ns) capable.  
I/O  
-
SCLK — Serial clock for USART. Input glitch filter (10 ns)  
capable.  
I
-
-
-
AD5 — A/D converter, input 5.  
O
I
CT32B1_MAT3 — Match output 3 for 32-bit timer 1.  
CT32B0_CAP0 — Capture input 0 for 32-bit timer 0. Input  
glitch filter (10 ns) capable.  
[3]  
PIO0_12/RXD/  
ACMP_O/  
CT32B0_MAT0/SCL/  
CLKIN  
46 31 E1  
I/O  
I
I; PU PIO0_12 — General purpose digital input/output pin.  
-
RXD — Receiver data input for USART. This pin is used for  
ISP communication.  
O
-
-
-
ACMP_O — Analog comparator output.  
O
CT32B0_MAT0 — Match output 0 for 32-bit timer 0.  
SCL — I2C-bus clock input/output. This is not an I2C-bus  
I/O  
open-drain pin[10]  
.
I
-
CLKIN — External clock input.  
[9]  
PIO0_13/TXD/  
ACMP_I2/  
47 32 D1  
I/O  
I; PU PIO0_13 — General purpose digital input/output pin. Input  
glitch filter (10 ns) capable.  
CT32B0_MAT1/SDA  
O
-
TXD — Transmitter data output for USART. This pin is used  
for ISP communication.  
I
-
-
-
ACMP_I2 — Analog comparator input 2.  
O
I/O  
CT32B0_MAT1 — Match output 1 for 32-bit timer 0.  
SDA — I2C-bus data input/output. This is not an I2C-bus  
open-drain pin[10]. Input glitch filter (10 ns) capable.  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
16 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 4.  
Symbol  
LPC11Axx pin description table  
Pin/Ball  
Type Reset Description  
state  
[1]  
[7]  
PIO0_14/MISO1/AD6/ 30 20  
CT32B0_CAP1/  
CT16B1_MAT1/  
-
I/O  
I/O  
I; PU PIO0_14 — General purpose digital input/output pin. Input  
glitch filter (10 ns) capable.  
-
MISO1 — Master In Slave Out for SSP1. Input glitch filter  
VDDCMP  
(10 ns) capable.  
I
I
-
-
AD6 — A/D converter, input 6.  
CT32B0_CAP1 — Capture input 1 for 32-bit timer 0. Input  
glitch filter (10 ns) capable.  
O
I
-
-
CT16B1_MAT1 — Match output 1 for 16-bit timer 1.  
VDDCMP — Analog comparator alternate reference voltage.  
[9]  
[9]  
[9]  
PIO0_14/MISO1/AD6/  
CT32B0_CAP1/  
CT16B1_MAT1  
-
-
B4  
I/O  
I; PU PIO0_14 — General purpose digital input/output pin. Input  
glitch filter (10 ns) capable.  
I/O  
-
MISO1 — Master In Slave Out for SSP1. Input glitch filter  
(10 ns) capable.  
I
I
-
-
AD6 — A/D converter, input 6.  
CT32B0_CAP1 — Capture input 1 for 32-bit timer 0. Input  
glitch filter (10 ns) capable.  
O
-
CT16B1_MAT1 — Match output 1 for 16-bit timer 1.  
PIO0_15/TXD/AD7/  
CT32B0_CAP2/SDA  
41 27 E4  
I/O  
I; PU PIO0_15 — General purpose digital input/output pin. Input  
glitch filter (10 ns) capable.  
O
I
-
-
-
TXD — Transmitter data output for USART.  
AD7 — A/D converter, input 7.  
I
CT32B0_CAP2 — Capture input 2 for 32-bit timer 0. Input  
glitch filter (10 ns) capable.  
I/O  
I/O  
I
-
SDA — I2C-bus data input/output. This is not an I2C-bus  
open-drain pin[10]. Input glitch filter (10 ns) capable.  
PIO0_16/  
ATRG0/ACMP_I3/  
CT16B0_CAP1/SCL  
18 13 A2  
I; PU PIO0_16 — General purpose digital input/output pin. Input  
glitch filter (10 ns) capable.  
-
ATRG0 — Conversion trigger 0 for ADC or DAC. Input glitch  
filter (10 ns) capable.  
I
I
-
-
ACMP_I3 — Analog comparator input 3.  
CT16B0_CAP1 — Capture input 1 for 16-bit timer 0. Input  
glitch filter (10 ns) capable.  
I/O  
-
SCL — I2C-bus clock input/output. This is not an I2C-bus  
open-drain pin[10]. Input glitch filter (10 ns) capable.  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
17 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 4.  
Symbol  
LPC11Axx pin description table  
Pin/Ball  
Type Reset Description  
state  
[1]  
[9]  
PIO0_17/  
21 14 A3  
I/O  
I
I; PU PIO0_17 — General purpose digital input/output pin. Input  
ATRG1/ACMP_I4/  
CT16B0_CAP2/  
CT16B0_MAT0  
glitch filter (10 ns) capable.  
-
ATRG1 — Conversion trigger 1 for ADC or DAC. Input glitch  
filter (10 ns) capable.  
I
I
-
-
ACMP_I4 — Analog comparator input 4.  
CT16B0_CAP2 — Capture input 2 for 16-bit timer 0. Input  
glitch filter (10 ns) capable.  
O
I/O  
-
-
CT16B0_MAT0 — Match output 0 for 16-bit timer 0.  
[3]  
[3]  
[3]  
[3]  
PIO0_18/R/SSEL0/  
CT16B0_CAP0/  
CT16B1_CAP1  
10  
14  
8
9
-
-
-
-
I; PU PIO0_18 — General purpose digital input/output pin.  
-
-
-
-
R — Reserved.  
I/O  
I
SSEL0 — Slave Select for SSP0.  
CT16B0_CAP0 — Capture input 0 for 16-bit timer 0.  
CT16B1_CAP1 — Capture input 1 for 16-bit timer 1.  
I
PIO0_19/CLKIN/  
CLKOUT/  
MOSI0/CT16B1_MAT0  
I/O  
I
I; PU PIO0_19 — General purpose digital input/output pin.  
-
-
-
-
CLKIN — External clock input.  
O
I/O  
O
I/O  
-
CLKOUT — Clock output.  
MOSI0 — Master Out Slave In for SSP0.  
CT16B1_MAT0 — Match output 0 for 16-bit timer 1.  
PIO0_20/R/SCK0/  
CT32B1_CAP0/  
CT16B1_MAT2  
22 15  
I; PU PIO0_20 — General purpose digital input/output pin.  
-
-
-
-
R — Reserved.  
I/O  
I
SCK0 — Serial clock for SSP0.  
CT32B1_CAP0 — Capture input 0 for 32-bit timer 1.  
CT16B1_MAT2 — Match output 2 for 16-bit timer 1.  
O
I/O  
PIO0_21/CTS/  
ACMP_O/  
CT32B1_CAP1/SCLK  
23 16  
I; PU PIO0_21 — General purpose digital input/output pin. If  
configured as output, this pin is a high-current source output  
driver (20 mA).  
I
-
-
-
-
CTS — Clear To Send input for USART.  
ACMP_O — Analog comparator output.  
CT32B1_CAP1 — Capture input 1 for 32-bit timer 1.  
SCLK — Serial clock for USART.  
O
I
I/O  
I/O  
[9]  
PIO0_22/MISO0/  
ACMP_I5/  
27 17  
-
I; PU PIO0_22 — General purpose digital input/output pin. Input  
glitch filter (10 ns) capable.  
CT32B1_MAT2/  
CT32B1_CAP2  
I/O  
-
MISO0 — Master In Slave Out for SSP0. Input glitch filter  
(10 ns) capable.  
I
-
-
-
ACMP_I5 — Analog comparator input 5.  
O
I
CT32B1_MAT2 — Match output 2 for 32-bit timer 1.  
CT32B1_CAP2 — Capture input 2 for 32-bit timer 1. Input  
glitch filter (10 ns) capable.  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
18 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 4.  
Symbol  
LPC11Axx pin description table  
Pin/Ball  
Type Reset Description  
state  
[1]  
[3]  
PIO0_23/RTS/  
ACMP_O/  
CT32B0_CAP0/SCLK  
45 30  
-
I/O  
O
I; PU PIO0_23 — General purpose digital input/output pin.  
-
-
-
-
RTS — Request To Send output for USART.  
ACMP_O — Analog comparator output.  
CT32B0_CAP0 — Capture input 0 for 32-bit timer 0.  
SCLK — Serial clock for USART.  
O
I
I/O  
I/O  
I/O  
[3]  
[3]  
[3]  
PIO0_24/SCL/CLKIN/  
CT16B1_CAP0  
9
7
-
-
-
I; PU PIO0_24 — General purpose digital input/output pin.  
-
SCL — I2C-bus clock input/output. This is not an I2C-bus  
open-drain pin[10]  
.
I
-
-
CLKIN — External clock input.  
I
CT16B1_CAP0 — Capture input 0 for 16-bit timer 1.  
PIO0_25/SDA/SSEL1/ 17 12  
CT16B1_MAT0  
I/O  
I/O  
I; PU PIO0_25 — General purpose digital input/output pin.  
-
SDA — I2C-bus data input/output. This is not an I2C-bus  
open-drain pin[10]  
.
I/O  
O
-
-
SSEL1 — Slave Select for SSP1.  
CT16B1_MAT0 — Match output 0 for 16-bit timer 1.  
PIO0_26/TXD/MISO1/  
CT16B1_CAP1/  
CT32B0_CAP2  
1
1
I/O  
O
I; PU PIO0_26 — General purpose digital input/output pin.  
-
-
-
-
TXD — Transmitter data output for USART.  
MISO1 — Master In Slave Out for SSP1.  
I/O  
I
CT16B1_CAP1 — Capture input 1 for 16-bit timer 1.  
CT32B0_CAP2 — Capture input 2 for 32-bit timer 0.  
I
[9]  
PIO0_27/MOSI1/  
ACMP_I1/  
43 28  
-
I/O  
I; PU PIO0_27 — General purpose digital input/output pin. Input  
glitch filter (10 ns) capable.  
CT32B1_MAT1/  
CT16B1_CAP2  
I/O  
-
MOSI1 — Master Out Slave In for SSP1. Input glitch filter  
(10 ns) capable.  
I
-
-
-
ACMP_I1 — Analog comparator input 1.  
O
I
CT32B1_MAT1 — Match output 1 for 32-bit timer 1.  
CT16B1_CAP2 — Capture input 2 for 16-bit timer 1. Input  
glitch filter (10 ns) capable.  
[3]  
[3]  
PIO0_28/DTR/SSEL1/  
CT32B0_CAP0  
2
-
-
-
-
I/O  
O
I; PU PIO0_28 — General purpose digital input/output pin.  
-
-
-
DTR — Data Terminal Ready output for USART.  
SSEL1 — Slave Select for SSP1.  
I/O  
I
CT32B0_CAP0 — Capture input 0 for 32-bit timer 0.  
PIO0_29/DSR/SCK1/  
CT32B0_CAP1  
13  
I/O  
I
I; PU PIO0_29 — General purpose digital input/output pin.  
-
-
-
DSR — Data Set Ready input for USART.  
SCK1 — Serial clock for SSP1.  
I/O  
I
CT32B0_CAP1 — Capture input 1 for 32-bit timer 0.  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
19 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 4.  
Symbol  
LPC11Axx pin description table  
Pin/Ball  
Type Reset Description  
state  
[1]  
[3]  
[3]  
[3]  
[3]  
[3]  
PIO0_30/RI/MOSI1/  
CT32B0_MAT0/  
CT16B0_CAP0  
40  
24  
31  
36  
37  
-
-
-
-
-
-
-
-
-
-
I/O  
I
I; PU PIO0_30 — General purpose digital input/output pin.  
-
-
-
-
RI — Ring Indicator input for USART.  
I/O  
O
I
MOSI1 — Master Out Slave In for SSP1.  
CT32B0_MAT0 — Match output 0 for 32-bit timer 0.  
CT16B0_CAP0 — Capture input 0 for 16-bit timer 0.  
PIO0_31/RI/MOSI1/  
CT32B1_MAT0/  
CT16B1_CAP1  
I/O  
I
I; PU PIO0_31 — General purpose digital input/output pin.  
-
-
-
-
RI — Ring Indicator input for USART.  
I/O  
O
I
MOSI1 — Master Out Slave In for SSP1.  
CT32B1_MAT0 — Match output 0 for 32-bit timer 1.  
CT16B1_CAP1 — Capture input 1 for 16-bit timer 1.  
PIO1_0/DCD/SCK0/  
CT32B1_MAT3/  
CT16B0_MAT1  
I/O  
I
I; PU PIO1_0 — General purpose digital input/output pin.  
-
-
-
-
DCD — Data Carrier Detect input for USART.  
SCK0 — Serial clock for SSP0.  
I/O  
O
O
I/O  
O
I/O  
O
O
I/O  
I
CT32B1_MAT3 — Match output 3 for 32-bit timer 1.  
CT16B0_MAT1 — Match output 1 for 16-bit timer 0.  
PIO1_1/DTR/SSEL0/  
CT32B1_MAT3/  
CT16B1_MAT0  
I; PU PIO1_1 — General purpose digital input/output pin.  
-
-
-
-
DTR — Data Terminal Ready output for USART.  
SSEL0 — Slave Select for SSP0.  
CT32B1_MAT3 — Match output 3 for 32-bit timer 1.  
CT16B1_MAT0 — Match output 0 for 16-bit timer 1.  
PIO1_2/DSR/MISO0/  
CT16B1_MAT2/  
CT16B1_MAT1  
I; PU PIO1_2 — General purpose digital input/output pin.  
-
-
-
-
DSR — Data Set Ready input for USART.  
I/O  
O
O
I/O  
I
MISO0 — Master In Slave Out for SSP0.  
CT16B1_MAT2 — Match output 2 for 16-bit timer 1.  
CT16B1_MAT1 — Match output 1 for 16-bit timer 1.  
[3]  
[3]  
PIO1_3/RI/MOSI0/  
CT16B1_CAP0  
48  
19  
-
-
-
-
I; PU PIO1_3 — General purpose digital input/output pin.  
-
-
-
RI — Ring Indicator input for USART.  
I/O  
I
MOSI0 — Master Out Slave In for SSP0.  
CT16B1_CAP0 — Capture input 0 for 16-bit timer 1.  
PIO1_4/RXD/SSEL1/  
CT32B0_MAT1/  
CT32B1_CAP0/  
CT16B0_CAP1  
I/O  
I
I; PU PIO1_4 — General purpose digital input/output pin.  
-
-
-
-
-
RXD — Receiver data input for USART.  
I/O  
O
I
SSEL1 — Slave Select for SSP1.  
CT32B0_MAT1 — Match output 1 for 32-bit timer 0.  
CT32B1_CAP0 — Capture input 0 for 32-bit timer 1.  
CT16B0_CAP1 — Capture input 1 for 16-bit timer 0.  
I
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
20 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 4.  
Symbol  
LPC11Axx pin description table  
Pin/Ball  
Type Reset Description  
state  
[1]  
[3]  
[3]  
[3]  
PIO1_5/TXD/SCK1/  
CT32B0_MAT2/  
CT32B1_CAP1/  
CT16B0_CAP2  
20  
11  
25  
-
-
-
-
-
-
I/O  
O
I/O  
O
I
I; PU PIO1_5 — General purpose digital input/output pin.  
-
-
-
-
-
TXD — Transmitter data output for USART.  
SCK1 — Serial clock for SSP1.  
CT32B0_MAT2 — Match output 2 for 32-bit timer 0.  
CT32B1_CAP1 — Capture input 1 for 32-bit timer 1.  
CT16B0_CAP2 — Capture input 2 for 16-bit timer 0.  
I
PIO1_6/RTS/MOSI1/  
CT32B0_MAT3/  
CT32B1_CAP2/  
CT16B0_MAT0  
I/O  
O
I/O  
O
I
I; PU PIO1_6 — General purpose digital input/output pin.  
-
-
-
-
-
RTS — Request To Send output for USART.  
MOSI1 — Master Out Slave In for SSP1.  
CT32B0_MAT3 — Match output 3 for 32-bit timer 0.  
CT32B1_CAP2 — Capture input 2 for 32-bit timer 1.  
CT16B0_MAT0 — Match output 0 for 16-bit timer 0.  
O
I/O  
I
PIO1_7/CTS/MOSI0/  
CT32B1_MAT1/  
CT16B0_MAT2/  
CT16B1_CAP2  
I; PU PIO1_7 — General purpose digital input/output pin.  
-
-
-
-
-
CTS — Clear To Send input for USART.  
I/O  
O
O
I
MOSI0 — Master Out Slave In for SSP0.  
CT32B1_MAT1 — Match output 1 for 32-bit timer 1.  
CT16B0_MAT2 — Match output 2 for 16-bit timer 0.  
CT16B1_CAP2 — Capture input 2 for 16-bit timer 1.  
[3]  
PIO1_8/RXD / MISO1/ 26  
CT32B1_MAT0/  
CT16B1_MAT1  
-
-
-
-
I/O  
I
I; PU PIO1_8 — General purpose digital input/output pin.  
-
-
-
-
RXD — Receiver data input for USART.  
I/O  
O
O
I/O  
I
MISO1 — Master In Slave Out for SSP1.  
CT32B1_MAT0 — Match output 0 for 32-bit timer 1.  
CT16B1_MAT1 — Match output 1 for 16-bit timer 1.  
[3]  
PIO1_9/DCD/R/  
CT32B1_MAT2 /  
CT16B1_MAT2  
12  
-
I; PU PIO1_9 — General purpose digital input/output pin.  
-
-
-
-
-
DCD — Data Carrier Detect input for USART.  
R — Reserved.  
-
O
O
-
CT32B1_MAT2 — Match output 2 for 32-bit timer 1.  
CT16B1_MAT2 — Match output 2 for 16-bit timer 1.  
[11]  
[11]  
XTALIN  
6
4
Input to the oscillator circuit and internal clock generator  
circuits. Input voltage must not exceed 1.8 V.  
XTALOUT  
VDD(IO)  
7
8
5
6
-
-
-
-
-
Output from the oscillator amplifier.  
3.3 V input/output supply voltage.  
[12]  
[13]  
E2  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
21 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 4.  
Symbol  
LPC11Axx pin description table  
Pin/Ball  
Type Reset Description  
state  
[1]  
[14]  
VSS(IO)  
5
33 E3  
-
-
-
-
Ground.  
[12]  
[13]  
VDD(3V3)  
44 29 E2  
3.3 V supply voltage to the analog blocks, internal regulator,  
and internal clock generator circuits. Also used as the ADC  
reference voltage.  
[14]  
VSS  
42 33 E3  
-
-
Ground.  
[1] Pin state at reset for default function: I = Input; O = Output; PU = internal pull-up resistor (weak PMOS device) enabled; IA = inactive, no  
pull-up/down enabled.  
[2] See Figure 32 for the reset configuration.  
[3] 5 V tolerant pin providing standard digital I/O functions with configurable modes and configurable hysteresis (Figure 31).  
[4] I2C-bus pins compliant with the I2C-bus specification for I2C standard mode, I2C Fast-mode, and I2C Fast-mode Plus.  
[5] For the SWD function, a pull-up resistor is recommended for the SWCLK pin (WLCSP20 parts only).  
[6] For the SWD function, a pull-up resistor is recommended for the SWDIO pin (WLCSP20 parts only).  
[7] Not a 5 V tolerant pin due to special analog functionality. Pin provides standard digital I/O functions with configurable modes,  
configurable hysteresis, and analog I/O. When configured as an analog I/O, the digital section of the pin is disabled (Figure 31).  
[8] If this pin is configured for its VDDCMP function, it cannot be used for SWCLK when the part is on the board. The bypass filter of the  
power supply filters out the SWCLK clock input signal.  
[9] 5 V tolerant pin providing standard digital I/O functions with configurable modes, configurable hysteresis, and analog I/O. When  
configured as an analog I/O, digital section of the pin is disabled, and the pin is not 5 V tolerant (Figure 31).  
[10] I2C-bus pins are standard digital I/O pins and have limited performance and electrical characteristics compared to the full I2C-bus  
specification. Pins can be configured with an on-chip pull-up resistor (pMOS device) and with open-drain mode. In this mode, typical bit  
rates of up to 100 kbit/s with 20 pF load are supported if the internal pull-ups are enabled. Higher bit rates can be achieved with an  
external resistor.  
[11] When the system oscillator is not used, connect XTALIN and XTALOUT as follows: XTALIN can be left floating or can be grounded  
(grounding is preferred to reduce susceptibility to noise). XTALOUT should be left floating. See Section 12.3 if an external clock is  
connected to the XTALIN pin.  
[12] If separate supplies are used for VDD(3V3) and VDD(IO), ensure that the power supply pins are filtered for noise with respect to their  
corresponding grounds VSS and VSS(IO) (LQFP48 package). Using separate filtered supplies reduces the noise to the analog blocks (see  
also Section 12.1).  
[13] If separate supplies are used for VDD(3V3) and VDD(IO), ensure that the voltage difference between both supplies is smaller than or equal  
to 0.5 V.  
[14] Thermal pad (HVQFN33 pin package). Connect to ground.  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
22 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
7. Functional description  
7.1 ARM Cortex-M0 processor  
The ARM Cortex-M0 is a general purpose, 32-bit microprocessor, which offers high  
performance and very low power consumption.  
7.2 On-chip flash program memory  
The LPC11Axx contain up to 32 kB of on-chip flash program memory.  
7.3 On-chip EEPROM data memory  
The LPC11Axx contain up to 4 kB of on-chip EEPROM data memory.  
Remark: The top 64 bytes of the 4 kB EEPROM memory are reserved and cannot be  
written to. The entire EEPROM is writable for smaller EEPROM sizes.  
7.4 On-chip SRAM  
The LPC11Axx contain a total of 8 kB, 4 kB, or 2 kB on-chip static RAM data memory.  
7.5 On-chip ROM  
The on-chip ROM contains the boot loader and the following Application Programming  
Interfaces (API):  
In-System Programming (ISP) and In-Application Programming (IAP) support for flash  
programming  
Power profiles for configuring power consumption and PLL settings  
32-bit integer division routines  
I2C-bus driver routines  
7.6 Memory map  
The LPC11Axx incorporates several distinct memory regions, shown in the following  
figures. Figure 5 shows the overall map of the entire address space from the user  
program viewpoint following reset. The interrupt vector area supports address remapping.  
The AHB peripheral area is 2 MB in size, and is divided to allow for up to 128 peripherals.  
The APB peripheral area is 512 kB in size and is divided to allow for up to 32 peripherals.  
Each peripheral of either type is allocated 16 kB of space. This allows simplifying the  
address decoding for each peripheral.  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
23 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
LPC11Axx  
4 GB  
0xFFFF FFFF  
reserved  
0xE010 0000  
0xE000 0000  
private peripheral bus  
reserved  
APB peripherals  
0x4008 0000  
0x5004 0000  
0x5000 0000  
GPIO  
25 - 31 reserved  
24  
23  
GPIO GROUP1 INT  
GPIO GROUP0 INT  
SSP1  
reserved  
0x4005 C000  
0x4005 8000  
22  
21  
0x4008 0000  
0x4000 0000  
reserved  
reserved  
0x4005 4000  
0x4005 0000  
APB peripherals  
reserved  
1 GB  
20  
19  
GPIO interrupts  
0x4004 C000  
0x4004 8000  
system control  
IOCONFIG  
SSP0  
18  
17  
16  
0x4004 4000  
0x4004 0000  
0x4003 C000  
0x4003 8000  
0x2000 0000  
0.5 GB  
15 flash/EEPROM controller  
reserved  
14  
reserved  
0x1FFF 4000  
0x1FFF 0000  
16 kB boot ROM  
11 - 13 reserved  
0x4002 C000  
analog comparator  
DAC  
10  
0x4002 8000  
0x4002 4000  
0x4002 0000  
reserved  
9
8
7
6
5
4
3
2
reserved  
0x1000 2000  
8 kB SRAM (LPC11A1x/301, LPC11A04)  
ADC  
0x4001 C000  
0x4001 8000  
0x1000 1800  
0x1000 1000  
0x1000 0800  
0x1000 0000  
32-bit counter/timer 1  
6 kB SRAM (LPC11A1x/201)  
4 kB SRAM (LPC11Ax/101, LPC11A02))  
2 kB SRAM (LPC11Ax/001)  
32-bit counter/timer 0  
16-bit counter/timer 1  
16-bit counter/timer 0  
USART  
0x4001 4000  
0x4001 0000  
0x4000 C000  
0x4000 8000  
reserved  
0x0000 8000  
0x0000 6000  
0x0000 4000  
0x0000 2000  
WWDT  
1
0
0x4000 4000  
0x4000 0000  
32 kB on-chip flash (LPC11A14, LPC11A04)  
24 kB on-chip flash (LPC11A13)  
2
I C-bus  
16 kB on-chip flash (LPC11A12, LPC11A02)  
0x0000 00C0  
active interrupt vectors  
0x0000 0000  
8 kB on-chip flash (LPC11A11)  
0x0000 0000  
0 GB  
002aaf429  
Fig 5. LPC11Axx memory map  
7.7 Nested Vectored Interrupt Controller (NVIC)  
The Nested Vectored Interrupt Controller (NVIC) is an integral part of the Cortex-M0. The  
tight coupling to the CPU allows for low interrupt latency and efficient processing of late  
arriving interrupts.  
7.7.1 Features  
Controls system exceptions and peripheral interrupts.  
In the LPC11Axx, the NVIC supports 32 vectored interrupts including up to 8 inputs to  
the start logic from the individual GPIO pins.  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
24 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Four programmable interrupt priority levels with hardware priority level masking.  
Software interrupt generation.  
7.7.2 Interrupt sources  
Each peripheral device has one interrupt line connected to the NVIC but may have several  
interrupt flags. Individual interrupt flags may also represent more than one interrupt  
source.  
Up to eight GPIO pins, regardless of the selected function, can be programmed to  
generate an interrupt on a level, or rising edge or falling edge, or both. The interrupt  
generating GPIOs can be selected from the GPIO pins with a configurable input glitch  
filter.  
7.8 IOCON block  
The IOCON block allows selected pins of the microcontroller to have more than one  
function. Configuration registers control the multiplexers to allow connection between the  
pin and the on-chip peripherals.  
Peripherals should be connected to the appropriate pins prior to being activated and prior  
to any related interrupt(s) being enabled. Activity of any enabled peripheral function that is  
not mapped to a related pin should be considered undefined.  
Up to 16 pins can be configured with a digital input glitch filter for removing voltage  
glitches with widths of 10 ns or less (see Table 3 and Table 4), two pins (PIO0_2 and  
PIO0_3) can be configured with a 50 ns digital input glitch filter.  
7.9 Fast general purpose parallel I/O  
Device pins that are not connected to a specific peripheral function are controlled by the  
GPIO registers. Pins may be dynamically configured as inputs or outputs. Multiple outputs  
can be set or cleared in one write operation.  
LPC11Axx use accelerated GPIO functions:  
GPIO registers are a dedicated AHB peripheral so that the fastest possible I/O timing  
can be achieved.  
An entire port value can be written in one instruction.  
Additionally, any GPIO pin (total of up to 42 pins) providing a digital function can be  
programmed to generate an interrupt on a level, a rising or falling edge, or both.  
7.9.1 Features  
Bit level port registers allow a single instruction to set and clear any number of bits in  
one write operation.  
Direction control of individual bits.  
All I/O default to inputs with internal pull-up resistors enabled after reset - except for  
the I2C-bus true open-drain pins PIO0_2 and PIO0_3.  
Pull-up/pull-down configuration, repeater, and open-drain modes can be programmed  
through the IOCON block for each GPIO pin (see Figure 31 and Figure 32 for  
functional diagrams).  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
25 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Control of the digital output slew rate allowing to switch more outputs simultaneously  
without degrading the power/ground distribution of the device.  
7.10 USART  
The LPC11Axx contains one USART.  
Support for RS-485/9-bit mode allows both software address detection and automatic  
address detection using 9-bit mode.  
The USART includes a fractional baud rate generator. Standard baud rates such as  
115200 Bd can be achieved with any crystal frequency above 2 MHz.  
7.10.1 Features  
Maximum USART data bit rate of 3.125 MBit/s.  
16-byte Receive and Transmit FIFOs.  
Register locations conform to 16C550 industry standard.  
Receiver FIFO trigger points at 1 B, 4 B, 8 B, and 14 B.  
Built-in fractional baud rate generator covering wide range of baud rates without a  
need for external crystals of particular values.  
FIFO control mechanism that enables software flow control implementation.  
Support for RS-485/9-bit mode.  
Supports a full modem control handshake interface.  
Support for synchronous mode.  
7.11 SSP serial I/O controller  
The LPC11Axx contain two SSP controllers.  
The SSP controller is capable of operation on a SPI, 4-wire SSI, or Microwire bus. It can  
interact with multiple masters and slaves on the bus. Only a single master and a single  
slave can communicate on the bus during a given data transfer. The SSP supports full  
duplex transfers, with frames of 4 bits to 16 bits of data flowing from the master to the  
slave and from the slave to the master. In practice, often only one of these data flows  
carries meaningful data.  
7.11.1 Features  
Maximum SSP speed of 25 Mbit/s (master) or 4.17 Mbit/s (slave) (in SPI mode)  
Compatible with Motorola SPI, 4-wire Texas Instruments SSI, and National  
Semiconductor Microwire buses  
Synchronous serial communication  
Master or slave operation  
8-frame FIFOs for both transmit and receive  
4-bit to 16-bit frame  
7.12 I2C-bus serial I/O controller  
The LPC11Axx contains one I2C-bus controller.  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
26 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
The I2C-bus is bidirectional for inter-IC control using only two wires: a serial clock line  
(SCL) and a serial data line (SDA). Each device is recognized by a unique address and  
can operate as either a receiver-only device (e.g., an LCD driver) or a transmitter with the  
capability to both receive and send information (such as memory). Transmitters and/or  
receivers can operate in either master or slave mode, depending on whether the chip has  
to initiate a data transfer or is only addressed. The I2C is a multi-master bus and can be  
controlled by more than one bus master connected to it.  
Remark: On the WLCSP package, the bootloader configures the open-drain pins  
(PIO0_2 and PIO0_3) for the Serial Wire Debug (SWD) function.  
7.12.1 Features  
The I2C-interface is a standard I2C-bus compliant interface with open-drain pins  
(PIO0_2 and PIO0_3). The I2C-bus interface also supports Fast-mode Plus with bit  
rates up to 1 Mbit/s. For the I2C-bus specification, see UM10204.  
The true open-drain pins PIO0_2 and PIO0_3 can be configured with a 50 ns digital  
input glitch filter.  
If the true open-drain pins are used for other purposes, a limited-performance I2C-bus  
interface can be configured from a choice of six GPIO pins configured in open-drain  
mode and with a pull-up resistor. In this mode, typical bit rates of up to 100 kbit/s with  
20 pF load are supported if the internal pull-ups are enabled. Higher bit rates can be  
achieved with an external resistor.  
Fail-safe operation: When the power to an I2C-bus device is switched off, the SDA  
and SCL pins connected to the I2C-bus are floating and do not disturb the bus.  
Easy to configure as master, slave, or master/slave.  
ROM-based I2C-bus driver routines to easily create applications.  
Programmable clocks allow versatile rate control.  
Bidirectional data transfer between masters and slaves.  
Multi-master bus (no central master).  
Arbitration between simultaneously transmitting masters without corruption of serial  
data on the bus.  
Serial clock synchronization allows devices with different bit rates to communicate via  
one serial bus.  
Serial clock synchronization can be used as a handshake mechanism to suspend and  
resume serial transfer.  
The I2C-bus can be used for test and diagnostic purposes.  
The I2C-bus controller supports multiple address recognition and a bus monitor mode.  
7.13 Configurable analog/mixed-signal subsystems  
Multiple analog/mixed-signal subsystems can be configured by software from  
interconnected digital and analog peripherals. See Figure 6.  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
27 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
CONFIGURABLE ANALOG/MIXED-SIGNAL SUBSYSTEM  
AD[7:0]  
10-bit ADC  
ATRG[1:0]  
TRIG  
TEMPERATURE  
SENSOR  
32-bit TIMER  
CAP MAT  
0.9 V VOLTAGE  
REFERENCE  
16-bit TIMER  
CAP MAT  
10-bit  
DAC  
TRIG  
AOUT  
VDD(3V3)  
VDDCMP  
VOLTAGE  
DIVIDER REF  
ANALOG  
COMPARATOR  
ACMP_O  
ACMP_I[5:1]  
INTERRUPT  
CONTROLLER  
EDGE DETECT  
ARM  
CORTEX-M0  
analog  
digital  
SIGNAL LEGEND:  
aaa-003042  
Fig 6. Configurable analog/mixed signal subsystem  
7.14 10-bit ADC  
The LPC11Axx contains one ADC. It is a single 10-bit successive approximation ADC with  
eight channels.  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
28 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
TEMPERATURE  
SENSOR  
to  
10-bit ADC  
comparator  
INPUT  
MUX  
SENSOR  
AD7  
to  
IOCONFIG  
comparator  
INTERNAL  
VOLTAGE REFERENCE  
AD6  
ADC  
IOCONFIG  
IOCONFIG  
AD5  
AD0  
ADC control  
register  
IOCONFIG  
aaa-003043  
Fig 7. ADC block diagram  
7.14.1 Features  
10-bit successive approximation ADC.  
Input multiplexing among 8 pins.  
Power-down mode.  
Measurement range 0 V to VDD(3V3)  
.
10-bit conversion time 2.44 s (up to 400 kSamples/s).  
Burst conversion mode for single or multiple inputs.  
Optional conversion on transition of input pins ATRG0 or ATRG1, timer match signal,  
or comparator output. (Input signals must be held for a minimum of three system clock  
periods). Also see Section 12.2.  
Individual result registers for each ADC channel to reduce interrupt overhead.  
7.15 Internal voltage reference  
The internal voltage reference is an accurate 0.9 V and is the output of a low voltage band  
gap circuit. A typical value at Tamb = 25 C is 0.903 V and varies typically only 3 mV over  
the 0 C to 85 C temperature range (see Table 21 and Figure 27). The internal voltage  
reference can be used in the following applications:  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
29 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
When the supply voltage VDD(3V3) is known accurately, the internal voltage reference  
can be used to reduce the offset error EO of the ADC code output. The ADC error  
correction then increases the accuracy of temperature sensor voltage output  
measurements.  
When the ADC is accurately calibrated, the internal voltage reference can be used to  
measure the power supply voltage. This requires calibration by recording the ADC  
code of the internal voltage reference at different power supply levels yielding a  
different ADC code value for each supply voltage level. In a particular application, the  
internal voltage reference can be measured and the actual power supply voltage can  
be determined from the stored calibration values. The calibration values can be stored  
in the EEPROM for easy access.  
After power-up and after switching the input channels of the ADC or the comparator, the  
internal voltage reference must be allowed to settle to its stable value before it can be  
used as an ADC reference voltage input. Settling times are given in Table 21.  
For an accurate measurement of the internal voltage reference by the ADC, the ADC must  
be configured in single-channel burst mode. The last value of a nine-conversion (or more)  
burst provides an accurate result.  
7.16 Temperature sensor  
The temperature sensor transducer uses an intrinsic pn-junction diode reference and  
outputs a CTAT voltage (Complement To Absolute Temperature). The output voltage  
varies inversely with device temperature with an absolute accuracy of better than 3 C  
over the full temperature range (40 C to +85 C). The temperature sensor is only  
approximately linear with a slight curvature. The output voltage is measured over different  
ranges of temperatures and fit with linear-least-square lines. See Table 23 and Figure 28.  
For a voltage to temperature conversion, the temperature for a given voltage is calculated  
using the parameters of the linear-least-square line (see Table 23).  
After power-up and after switching the input channels of the ADC or the comparator, the  
temperature sensor output must be allowed to settle to its stable value before it can be  
used as an accurate ADC input. Settling times are given in Table 22.  
For an accurate measurement of the temperature sensor by the ADC, the ADC must be  
configured in single-channel burst mode. The last value of a nine-conversion (or more)  
burst provides an accurate result.  
7.17 10-bit DAC  
The DAC allows generation of a variable, rail-to-rail analog output.  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
30 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
APB REGISTERS  
10  
INPUT  
REGISTER  
10  
DAC  
AOUT  
D/A  
CONVERTER  
CONTROL  
AND DATA  
REGISTER  
aaa-003044  
Fig 8. DAC block diagram  
7.17.1 Features  
10-bit DAC.  
Resistor string architecture.  
Buffered output.  
Power-down mode.  
Conversion speed controlled via a programmable bias current.  
Optional output update modes:  
write operations to the DAC register.  
a transition of pins ATRG0 or ATRG1. Input signals must be held for a minimum of  
three system clock periods.  
a timer match signal.  
a comparator output signal held for a minimum of two system clock periods.  
Holds output value during Sleep mode if the DAC is not powered down.  
7.18 Analog comparator  
The analog comparator with selectable hysteresis can compare voltage levels on external  
pins and internal voltages. See Table 24.  
After power-up and after switching the input channels of the comparator, the output of the  
voltage ladder must be allowed to settle to its stable value before it can be used as a  
comparator reference input. Settling times are given in Table 25.  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
31 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
COMPARATOR ANALOG BLOCK  
COMPARATOR DIGITAL BLOCK  
V
DD  
VDDCMP  
to ADC and DAC  
5
32  
comparator  
level  
sync  
edge detect  
comparator  
edge  
internal  
voltage  
reference  
temperature  
sensor  
5
ACMPI[5:1]  
aaa-003045  
Fig 9. Comparator block diagram  
7.18.1 Features  
Selectable 0 mV, 10 mV (5 mV), and 20 mV (10 mV), 40 mV (20 mV) input  
hysteresis.  
Five selectable external voltages; fully configurable on either positive or negative  
input channel.  
Internal voltage reference from band gap and temperature sensor selectable on either  
positive or negative input channel.  
32-stage voltage ladder with the internal reference voltage selectable on either the  
positive or the negative input channel. See Table 24 to Table 26.  
Voltage ladder source voltage is selectable from an external pin or the main 3.3 V  
supply voltage rail.  
Voltage ladder can be separately powered down for applications only requiring the  
comparator function.  
Interrupt output is connected to NVIC.  
Comparator level output is connected to output pin ACMP_O.  
Comparator output is internally connected to the ADC and DAC and can be used to  
trigger a conversion.  
The comparator output is also connected internally to capture channel 3 on each of  
the 32-bit and 16-bit counter/timers.  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
32 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
7.19 General purpose external event counter/timers  
The LPC11Axx includes two 32-bit counter/timers and two 16-bit counter/timers. The  
counter/timer is designed to count cycles of the system derived clock. It can optionally  
generate interrupts or perform other actions at specified timer values, based on four  
match registers. Each counter/timer also includes four capture inputs to trap the timer  
value when an input signal transitions, optionally generating an interrupt.  
7.19.1 Features  
A 32-bit/16-bit timer/counter with a programmable 32-bit/16-bit prescaler.  
Counter or timer operation.  
Four capture channels per timer, that can take a snapshot of the timer value when an  
input signal transitions. A capture event may also generate an interrupt. Up to three  
capture channels are pinned out. One channel is internally connected to the  
comparator output ACMP_O.  
Four match registers per timer that allow:  
Continuous operation with optional interrupt generation on match.  
Stop timer on match with optional interrupt generation.  
Reset timer on match with optional interrupt generation.  
Up to four external outputs corresponding to match registers, with the following  
capabilities:  
Set LOW on match.  
Set HIGH on match.  
Toggle on match.  
Do nothing on match.  
7.20 System tick timer  
The ARM Cortex-M0 includes a system tick timer (SYSTICK) that is intended to generate  
a dedicated SYSTICK exception at a fixed time interval (typically 10 ms).  
7.21 Windowed WatchDog Timer (WWDT)  
The purpose of the watchdog is to reset the controller if software fails to periodically  
service it within a programmable time window.  
7.21.1 Features  
Internally resets chip if not periodically reloaded during the programmable time-out  
period.  
Optional windowed operation requires reload to occur between a minimum and  
maximum time period, both programmable.  
Optional warning interrupt can be generated at a programmable time prior to  
watchdog time-out.  
Enabled by software but requires a hardware reset or a watchdog reset/interrupt to be  
disabled.  
Incorrect feed sequence causes reset or interrupt if enabled.  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
33 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Flag to indicate watchdog reset.  
Programmable 24-bit timer with internal prescaler.  
Selectable time period from (Tcy(WDCLK) 256 4) to (Tcy(WDCLK) 224 4) in  
multiples of Tcy(WDCLK) 4.  
The Watchdog Clock (WDCLK) source can be selected from the internal RC oscillator  
(IRC), or the dedicated watchdog oscillator (WDOsc). This gives a wide range of  
potential timing choices of watchdog operation under different power conditions.  
7.22 Clocking and power control  
7.22.1 Crystal and internal oscillators  
The LPC11Axx include four independent oscillators.  
1. The crystal oscillator (SysOsc) operating at frequencies between 1 MHz and 25 MHz.  
2. The internal RC Oscillator (IRC) with a fixed frequency of 12 MHz, trimmed to 1%  
accuracy.  
3. The internal low-power, Low-Frequency Oscillator (LFOsc) with a programmable  
nominal frequency between 9.4 kHz and 2.3 MHz with 40% accuracy.  
4. The dedicated Watchdog Oscillator (WDOsc) with a programmable nominal  
frequency between 9.4 kHz and 2.3 MHz with 40% accuracy.  
Each oscillator, except the WDOsc, can be used for more than one purpose as required in  
a particular application.  
Following reset, the LPC11Axx will operate from the IRC until switched by software. This  
allows systems to operate without any external crystal and the bootloader code to operate  
at a known frequency.  
See Figure 10 for an overview of the LPC11Axx clock generation.  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
34 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
system  
system clock  
SYSTEM CLOCK  
DIVIDER  
18  
memories  
and peripherals  
SYSCLKCTRL[1:18]  
SSP0 PERIPHERAL  
CLOCK DIVIDER  
SSP0  
IRC  
main clock  
USART PERIPHERAL  
CLOCK DIVIDER  
USART  
SSP1  
LFOsc  
SSP1 PERIPHERAL  
CLOCK DIVIDER  
MAINCLKSEL  
(main clock select)  
IRC  
SysOsc  
CLKIN  
IRC  
SysOsc  
LFOsc  
SYSTEM PLL  
CLKOUT PIN CLOCK  
DIVIDER  
CLKOUT pin  
SYSPLLCLKSEL  
(system PLL clock select)  
CLKOUTUEN  
(CLKOUT update enable)  
IRC  
WWDT CLOCK  
DIVIDER  
WWDT  
WDOsc  
WDCLKSEL  
002aaf430  
Fig 10. LPC11Axx clock generation block diagram  
7.22.1.1 Internal RC Oscillator (IRC)  
The IRC may be used as the clock source for the WWDT, and/or as the clock that drives  
the PLL and subsequently the CPU. The nominal IRC frequency is 12 MHz. The IRC is  
trimmed to 1 % accuracy over the entire voltage and temperature range.  
The IRC can be used as a clock source for the CPU with or without using the PLL. The  
IRC frequency can be boosted to a higher frequency, up to the maximum CPU operating  
frequency, by the system PLL.  
Upon power-up or any chip reset, the LPC11Axx use the IRC as the clock source.  
Software may later switch to one of the other available clock sources.  
7.22.1.2 Crystal Oscillator (SysOsc)  
The crystal oscillator can be used as the clock source for the CPU, with or without using  
the PLL.  
The SysOsc operates at frequencies of 1 MHz to 25 MHz. This frequency can be boosted  
to a higher frequency, up to the maximum CPU operating frequency, by the system PLL.  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
35 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
7.22.1.3 Internal Low-Frequency Oscillator (LFOsc) and Watchdog Oscillator (WDOsc)  
The LFOsc and the WDOsc are identical internal oscillators. The nominal frequency is  
programmable between 9.4 kHz and 2.3 MHz. The frequency spread over silicon process  
variations is 40%.  
The WDOsc is a dedicated oscillator for the windowed WWDT.  
The LFOsc can be used as a clock source that directly drives the CPU or the CLKOUT  
pin.  
7.22.2 Clock input  
A 3.3 V external clock source (25 MHz typical) can be supplied on the selected CLKIN pin  
or a 1.8 V external clock source can be supplied on the XTALIN pin (see Section 12.3).  
7.22.3 System PLL  
The PLL accepts an input clock frequency in the range of 10 MHz to 25 MHz. The input  
frequency is multiplied up to a high frequency with a Current Controlled Oscillator (CCO).  
The multiplier can be an integer value from 1 to 32. The CCO operates in the range of  
156 MHz to 320 MHz, so there is an additional divider in the loop to keep the CCO within  
its frequency range while the PLL is providing the desired output frequency. The output  
divider may be set to divide by 2, 4, 8, or 16 to produce the output clock. Since the  
minimum output divider value is 2, it is insured that the PLL output has a 50 % duty cycle.  
The PLL is turned off and bypassed following a chip reset and may be enabled by  
software. The program must configure and activate the PLL, wait for the PLL to lock, and  
then connect to the PLL as a clock source. The PLL settling time is 100 s.  
7.22.4 Clock output  
The LPC11Axx features a clock output function that routes the IRC, the SysOsc, the  
LFOsc, or the main clock to an output pin.  
7.22.5 Wake-up process  
The LPC11Axx begin operation at power-up by using the IRC as the clock source. This  
allows chip operation to resume quickly. If the SysOsc, the external clock source, or the  
PLL is needed by the application, software will need to enable these features and wait for  
them to stabilize before they are used as a clock source.  
7.22.6 Power control  
The LPC11Axx supports the ARM Cortex-M0 Sleep mode. The CPU clock rate may also  
be controlled as needed by changing clock sources, reconfiguring PLL values, and/or  
altering the CPU clock divider value. This allows a trade-off of power versus processing  
speed based on application requirements. In addition, a register is provided for shutting  
down the clocks to individual on-chip peripherals, allowing fine tuning of power  
consumption by eliminating all dynamic power use in any peripherals that are not required  
for the application. Selected peripherals have their own clock divider which provides even  
better power control.  
7.22.6.1 Sleep mode  
When Sleep mode is entered, the clock to the core is stopped. Resumption from the Sleep  
mode does not need any special sequence but re-enabling the clock to the ARM core.  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
36 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
In Sleep mode, execution of instructions is suspended until either a reset or interrupt  
occurs. Peripheral functions continue operation during Sleep mode and may generate  
interrupts to cause the processor to resume execution. Sleep mode eliminates dynamic  
power used by the processor itself, memory systems and related controllers, and internal  
buses.  
7.22.6.2 Power profiles  
The power consumption in Active and Sleep modes can be optimized for the application  
through simple calls to the power profile. The power configuration routine configures the  
LPC11Axx for one of the following power modes:  
Default mode corresponding to power configuration after reset.  
CPU performance mode corresponding to optimized processing capability.  
Efficiency mode corresponding to optimized balance of current consumption and CPU  
performance.  
Low-current mode corresponding to lowest power consumption.  
In addition, the power profile includes routines to select the optimal PLL settings for a  
given system clock and PLL input clock.  
7.23 System control  
7.23.1 UnderVoltage LockOut (UVLO) protection  
The BOD and POR circuits remain enabled at all times to provide UVLO protection from  
an unexpected power supply droop below a typical threshold level of 2.4 V (see also the  
LPC11Axx user manual). UVLO protection means that the LPC11Axx is held in reset  
whenever the supply voltage falls below 2.4 V.  
See also Section 10.1 “Power supply fluctuations”, Section 12.7 “UVLO protection and  
reset timer circuit”, and Section 12.8 “Guidelines for selecting a power supply filter for  
UVLO protection”.  
7.23.2 Reset  
Reset has several sources on the LPC11Axx: the RESET pin, the Watchdog reset,  
power-on reset (POR), the ARM SYSRESETREQ software request, and the Brown-Out  
Detection (BOD) circuit. After the BOD and the POR resets are released, the internal reset  
timer counts for 100 μs until the internal reset is removed.  
Assertion of chip reset by any source (after the operating voltage attains a usable level)  
starts the IRC and initializes the flash memory controller.  
When the internal Reset is removed, the processor begins executing at address 0, which  
is initially the Reset vector mapped from the boot block. At that point, all of the processor  
and peripheral registers have been initialized to predetermined values.  
Writing to a special function register allows the software to reset the following peripherals:  
the I2C-bus interface, the USART, both SSP controllers, the four counter/timers, the  
comparator, the ADC, and the DAC.  
The RESET pin is a Schmitt trigger input pin and uses a special pad. See Figure 32.  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
37 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
7.23.3 Brown-out detection  
The LPC11Axx include two programmable levels for monitoring the voltage on the  
DD(3V3) pin. If this voltage falls below the selected level, the BOD asserts an interrupt  
V
signal to the NVIC. This signal can be enabled for interrupt in the Interrupt Enable  
Register in the NVIC in order to cause a CPU interrupt; alternatively, software can monitor  
the signal by reading a dedicated status register. In addition, the BOD circuit supports one  
hardware controlled voltage level for triggering a chip reset.  
7.23.4 Code security (Code Read Protection - CRP)  
This feature of the LPC11Axx allows user to enable different levels of security in the  
system so that access to the on-chip flash and use of the Serial Wire Debugger (SWD)  
and In-System-Programming (ISP) can be restricted. When needed, CRP is invoked by  
programming a specific pattern into a dedicated flash location. IAP commands are not  
affected by the CRP.  
In addition, ISP entry via the PIO0_1 pin can be disabled without enabling CRP. For  
details see the LPC11Axx user manual.  
There are three levels of Code Read Protection:  
1. CRP1 disables access to the chip via the SWD and allows partial flash update  
(excluding flash sector 0) using a limited set of the ISP commands. This mode is  
useful when CRP is required and flash field updates are needed but all sectors can  
not be erased.  
2. CRP2 disables access to the chip via the SWD and only allows full flash erase and  
update using a reduced set of the ISP commands.  
3. Running an application with level CRP3 selected fully disables any access to the chip  
via the SWD pins and the ISP. This mode effectively disables ISP override using  
PIO0_1 pin, too. It is up to the user’s application to provide (if needed) flash update  
mechanism using IAP calls or call reinvoke ISP command to enable flash update via  
the USART.  
CAUTION  
If level three Code Read Protection (CRP3) is selected, no future factory testing can be  
performed on the device.  
In addition to the three CRP levels, sampling of pin PIO0_1 for valid user code can be  
disabled. For details see the LPC11Axx user manual.  
7.23.5 APB interface  
The APB peripherals are located on one APB bus.  
7.23.6 AHBLite  
The AHBLite connects the CPU bus of the ARM Cortex-M0 to the flash memory, the main  
static RAM, and the Boot ROM.  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
38 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
7.23.7 External interrupt inputs  
All GPIO pins can be level or edge sensitive interrupt inputs.  
7.24 Emulation and debugging  
Debug functions are integrated into the ARM Cortex-M0. JTAG and Serial Wire Debug  
(SWD) with four breakpoints and two watchpoints are supported.  
The RESET pin selects between the JTAG boundary scan (RESET = LOW) and the ARM  
SWD debug (RESET = HIGH). The ARM SWD debug port is disabled while the  
LPC11Axx is in reset.  
To perform boundary scan testing, follow these steps:  
1. Erase any user code residing in flash.  
2. Power up the part with the RESET pin pulled HIGH externally.  
3. Wait for at least 250 s.  
4. Pull the RESET pin LOW externally.  
5. Perform boundary scan operations.  
6. Once the boundary scan operations are completed, assert the TRST pin to enable the  
SWD debug mode and release the RESET pin (pull HIGH).  
Remark: The JTAG interface cannot be used for debug purposes.  
On the WLCSP package, the TCK signal is shared with the VDDCMP input on pin  
PIO0_5. To perform a boundary scan on a blank device, make sure that the PIO0_5 pin is  
not filtered on the board. The bypass filter usually added to the comparator voltage  
reference input (VDDCMP) filters out the SWCLK/TCK input signal.  
For SWD debug, an alternative TCK/SWCLK clock pin is available on pin PIO0_2. This is  
the default function after booting for the WLCSP package.  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
39 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
8. Limiting values  
Table 5.  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).[1]  
Symbol  
VDD(3V3)  
VDD(IO)  
VI  
Parameter  
Conditions  
Min  
0.5  
0.5  
0.5  
Max  
4.6  
Unit  
V
[2]  
[2]  
supply voltage (3.3 V)  
input/output supply voltage  
input voltage  
4.6  
V
[3][4]  
5 V tolerant I/O  
pins; only valid  
when the VDD(IO)  
supply voltage is  
present  
+5.5  
V
[5]  
[6]  
on pins PIO0_2  
and PIO0_3  
0.5  
0.5  
+5.5  
+3.6  
V
V
3 V tolerant I/O  
pins without  
over-voltage  
protection  
[7][8]  
[9]  
VIA  
analog input voltage  
0.5 V  
4.6  
V
[2]  
Vi(xtal)  
IDD  
crystal input voltage  
supply current  
0.5  
+2.5  
100  
100  
100  
V
per supply pin  
per ground pin  
-
-
-
mA  
mA  
mA  
ISS  
ground current  
Ilatch  
I/O latch-up current  
(0.5VDD(IO)) < VI <  
(1.5VDD(IO));  
Tj < 125 C  
[10]  
Tstg  
storage temperature  
65  
+150  
150  
1.5  
C  
C  
W
Tj(max)  
Ptot(pack)  
maximum junction temperature  
total power dissipation (per package)  
-
-
based on package  
heat transfer, not  
device power  
consumption  
[11]  
[12]  
Vesd  
Vtrig  
electrostatic discharge voltage  
trigger voltage  
human body  
model; all pins  
6.5  
+6.5  
-
kV  
V
for LVTSCR based  
ESD pin protection;  
8.2  
1 ns to 10 ns rise  
time  
10 ns rise time  
8.5  
-
V
[1] The following applies to the limiting values:  
a) This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive  
static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated  
maximum.  
b) Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to VSS unless  
otherwise noted.  
[2] Maximum/minimum voltage above the maximum operating voltage (see Table 6) and below ground that can be applied for a short time  
(< 10 ms) to a device without leading to irrecoverable failure. Failure includes the loss of reliability and shorter lifetime of the device.  
[3] Applies to all 5 V tolerant I/O pins except true open-drain pins PIO0_2 and PIO0_3 and except the 3 V tolerant pins PIO0_4 and  
PIO0_14 (LQFP and HVQFN packages) or PIO0_5 (WLCSP package).  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
40 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
[4] Including the voltage on outputs in 3-state mode.  
[5]  
V
DD(IO) present or not present. Compliant with the I2C-bus standard. 5.5 V can be applied to this pin when VDD(IO) is powered down.  
[6] Applies to 3 V tolerant pins PIO0_4 and PIO0_14 (LQFP and HVQFN packages) or PIO0_5 (WLCSP package).  
[7] An ADC input voltage above 3.6 V can be applied for a short time without leading to immediate, unrecoverable failure. Accumulated  
exposure to elevated voltages at 4.6 V must be less than 106 s total over the lifetime of the device. Applying an elevated voltage to the  
ADC inputs for a long time affects the reliability of the device and reduces its lifetime.  
[8] If the comparator is configured with the common mode input VIC = VDD, the other comparator input can be up to 0.2 V above or below  
VDD without affecting the hysteresis range of the comparator function.  
[9] It is recommended to connect an overvoltage protection diode between the analog input pin and the voltage supply pin.  
[10] Dependent on package type.  
[11] Human body model: equivalent to discharging a 100 pF capacitor through a 1.5 kseries resistor.  
[12] Not characterized.  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
41 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
9. Static characteristics  
Table 6.  
Static characteristics  
Tamb = 40 C to +85 C, unless otherwise specified.  
Symbol  
VDD(3V3)  
VDD(IO)  
Parameter  
Conditions  
Min  
2.6  
2.6  
Typ[1]  
3.3  
Max  
3.6  
Unit  
V
supply voltage (3.3 V)  
input/output supply  
voltage  
3.3  
3.6  
V
IDD  
supply current  
Active mode; code  
while(1){}  
executed from flash;  
VDD(3V3) = VDD(IO) = 3.3 V;  
low-current mode (see  
Section 7.22.6.2)  
[2][4][5]  
[2][6][5]  
systemclock = 12 MHz;  
all peripherals disabled  
-
-
3
8
-
-
mA  
mA  
systemclock = 48 MHz;  
all peripherals disabled  
Sleep mode;  
system clock = 12 MHz;  
VDD(3V3) = VDD(IO) = 3.3 V;  
low-current mode (see  
Section 7.22.6.2)  
[2][4][5]  
[2][4][5]  
all peripherals disabled;  
12 MHz  
-
-
2
5
-
-
mA  
mA  
all peripherals disabled;  
48 MHz  
Standard port pins, RESET  
IIL  
LOW-level input current VI = 0 V; on-chip pull-up  
resistor disabled  
-
-
0.5  
0.5  
1000  
1000  
nA  
nA  
IIH  
HIGH-level input  
current  
VI = VDD(IO); on-chip  
pull-down resistor  
disabled  
IOZ  
OFF-state output  
current  
VO = 0 V; VO = VDD(IO)  
on-chip pull-up/down  
resistors disabled  
;
-
0.5  
-
1000  
5.0  
nA  
V
[7][8]  
[7][8]  
VI  
input voltage  
pin configured to provide  
a digital function  
0
5 V tolerant pins  
3 V tolerant pins:  
VDD(IO)  
PIO0_4 and PIO0_14  
(LQFP and HVQFN  
packages) or PIO0_5  
(HVQFN package)  
VO  
output voltage  
output active  
0
-
-
VDD(IO)  
-
V
V
VIH  
HIGH-level input  
voltage  
0.7VDD(IO)  
VIL  
LOW-level input voltage  
hysteresis voltage  
-
-
-
0.3VDD(IO)  
-
V
V
Vhys  
3.0 V VDD(IO) 3.6 V  
0.4  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
42 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 6.  
Static characteristics …continued  
Tamb = 40 C to +85 C, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ[1]  
Max  
Unit  
VOH  
HIGH-level output  
voltage  
2.6 V VDD(IO) 3.6 V;  
IOH = 4 mA  
0.85VDD(IO)  
-
-
V
VOL  
IOH  
LOW-level output  
voltage  
2.6 V VDD(IO) 3.6 V;  
-
-
-
0.15VDD(IO)  
-
V
I
OL = 4 mA  
HIGH-level output  
current  
VOH = VDD(IO) 0.4 V;  
2.6 V VDD(IO) 3.6 V  
VOL = 0.4 V  
4  
mA  
IOL  
LOW-level output  
current  
4
-
-
mA  
2.6 V VDD(IO) 3.6 V  
[9]  
[9]  
IOHS  
IOLS  
HIGH-level short-circuit VOH = 0 V  
output current  
-
-
-
-
45  
mA  
mA  
LOW-level short-circuit VOL = VDD(IO)  
output current  
50  
[10]  
Ipd  
Ipu  
pull-down current  
pull-up current  
VI = 5 V  
VI = 0 V;  
10  
50  
150  
A  
A  
15  
50  
85  
2.6 V VDD(IO) 3.6 V  
VDD(IO) < VI < 5 V  
0
0
0
A  
High-drive output pin (PIO0_21)  
IIL  
LOW-level input current VI = 0 V; on-chip pull-up  
resistor disabled  
-
-
0.5  
0.5  
10  
10  
nA  
nA  
IIH  
HIGH-level input  
current  
VI = VDD(IO); on-chip  
pull-down resistor  
disabled  
IOZ  
OFF-state output  
current  
VO = 0 V; VO = VDD(IO)  
on-chip pull-up/down  
resistors disabled  
;
-
0.5  
-
10  
nA  
V
[7][8]  
VI  
input voltage  
pin configured to provide  
a digital function  
0
5.0  
VO  
output voltage  
output active  
0
-
-
VDD(IO)  
-
V
V
VIH  
HIGH-level input  
voltage  
0.7VDD(IO)  
VIL  
LOW-level input voltage  
hysteresis voltage  
-
-
-
-
0.3VDD(IO)  
V
V
V
Vhys  
VOH  
0.4  
-
-
HIGH-level output  
voltage  
2.6 V VDD(IO) 3.6 V;  
IOH = 20 mA  
VDD(IO)  
0.4  
2.6 V VDD(IO) 2.5 V;  
VDD(IO)  
0.4  
-
-
-
V
V
I
OH = 12 mA  
VOL  
LOW-level output  
voltage  
2.6 V VDD(IO) 3.6 V;  
IOL = 4 mA  
-
0.4  
IOH  
HIGH-level output  
current  
VOH = VDD(IO) 0.4 V;  
2.6 V VDD(IO) 3.6 V  
VOL = 0.4 V  
20  
4
-
-
-
-
mA  
mA  
IOL  
LOW-level output  
current  
2.6 V VDD(IO) 3.6 V  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
43 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 6.  
Static characteristics …continued  
Tamb = 40 C to +85 C, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ[1]  
Max  
Unit  
[9]  
[9]  
IOHS  
HIGH-level short-circuit VOH = 0 V  
output current  
-
-
160  
mA  
IOLS  
LOW-level short-circuit VOL = VDD(IO)  
output current  
-
-
50  
mA  
Ipd  
Ipu  
pull-down current  
pull-up current  
VI = 5 V  
VI = 0 V  
10  
50  
150  
A  
A  
15  
50  
85  
2.6 V VDD(IO) 3.6 V  
VDD(IO) < VI < 5 V  
0
0
-
0
-
A  
I2C-bus pins (PIO0_2 and PIO0_3)  
VIH  
HIGH-level input  
voltage  
0.7VDD(IO)  
V
VIL  
LOW-level input voltage  
hysteresis voltage  
-
-
0.3VDD(IO)  
V
Vhys  
IOL  
-
0.05VDD(IO)  
-
-
-
V
LOW-level output  
current  
VOL = 0.4 V; I2C-bus pins  
configured as standard  
mode pins  
4
mA  
2.6 V VDD(IO) 3.6 V  
IOL  
LOW-level output  
current  
VOL = 0.4 V; I2C-bus pins  
configured as high-current  
sink pins  
20  
-
-
mA  
2.6 V VDD(IO) 3.6 V  
VI = VDD(IO)  
[11]  
ILI  
input leakage current  
-
-
2
4
A  
A  
VI = 5 V  
10  
22  
Oscillator pins  
Vi(xtal)  
crystal input voltage  
crystal output voltage  
0.5  
0.5  
1.8  
1.8  
1.95  
1.95  
V
V
Vo(xtal)  
[1] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply voltages.  
[2] Tamb = 25 C.  
[3]  
IDD measurements were performed with all pins configured as GPIO outputs driven LOW and pull-up resistors disabled.  
[4] IRC enabled; SysOsc disabled; system PLL disabled.  
[5] All digital peripherals disabled in the SYSCLKCTRL register except ROM, RAM, and flash. Peripheral clocks to USART and SSP0/1  
disabled in system configuration block. Analog peripherals disabled in the PDRUNCFG register except flash memory.  
[6] IRC disabled; SysOsc enabled; system PLL enabled.  
[7] Including voltage on outputs in 3-state mode.  
[8] All supply voltages must be present.  
[9] Allowed as long as the current limit does not exceed the maximum current allowed by the device.  
[10] Does not apply to 3 V tolerant pins PIO0_4 and PIO0_14 (LQFP and HVQFN packages) or PIO0_5 (HVQFN package).  
[11] To VSS  
.
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
44 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
9.1 Power consumption  
Power measurements in Active and Sleep modes were performed under the following  
conditions (see LPC11Axx user manual):  
Configure all pins as GPIO with pull-up resistor disabled in the IOCON block.  
Configure GPIO pins as outputs using the GPIOnDIR registers.  
Write 0 to all GPIO DIR registers to drive the outputs LOW.  
002aah184  
8
I
DD  
(2)  
(2)  
48 MHz  
36 MHz  
(mA)  
6.4  
4.8  
3.2  
1.6  
0
(2)  
(1)  
24 MHz  
12 MHz  
-40  
-15  
10  
35  
60  
85  
temperature (°C)  
Conditions: VDD(3V3) = 3.3 V; active mode entered executing code while(1){} from flash; all  
peripherals disabled in the SYSAHBCLKCTRL register; all peripheral clocks disabled; all analog  
peripherals disabled in the PDRUNCFG register; low-current mode (see Section 7.22.6.2).  
(1) SysOsc and system PLL disabled; IRC enabled.  
(2) SysOsc and system PLL enabled; IRC disabled.  
Fig 11. Active mode: Typical supply current IDD versus temperature for different system  
clock frequencies (all peripherals disabled)  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
45 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
002aah185  
8
I
DD  
(2)  
(2)  
48 MHz  
36 MHz  
(mA)  
6.4  
4.8  
3.2  
1.6  
0
(2)  
(1)  
24 MHz  
12 MHz  
2.7  
3
3.3  
3.6  
V
(V)  
DD(3V3)  
Conditions: Tamb = 25 °C; active mode entered executing code while(1){} from flash; all peripherals  
disabled in the SYSAHBCLKCTRL register; all peripheral clocks disabled; all analog peripherals  
disabled in the PDRUNCFG register; low-current mode (see Section 7.22.6.2).  
(1) SysOsc and system PLL disabled; IRC enabled.  
(2) SysOsc and system PLL enabled; IRC disabled.  
Fig 12. Active mode: Typical supply current IDD versus core voltage VDD(3V3) for different  
system clock frequencies (all peripherals disabled)  
002aah186  
8
I
DD  
(mA)  
6.4  
(2)  
(2)  
4.8  
3.2  
1.6  
0
48 MHz  
36 MHz  
(2)  
(1)  
24 MHz  
12 MHz  
-40  
-15  
10  
35  
60  
85  
temperature (°C)  
Conditions: VDD(3V3) = 3.3 V; sleep mode entered from flash; all peripherals disabled in the  
SYSAHBCLKCTRL register and PDRUNCFG register; all peripheral clocks disabled; BOD  
disabled; low-current mode (see Section 7.22.6.2).  
(1) SysOsc and system PLL disabled; IRC enabled.  
(2) SysOsc and system PLL enabled; IRC disabled.  
Fig 13. Sleep mode: Typical supply current IDDversus temperature for different system  
clock frequencies (all peripherals disabled)  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
46 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
9.2 Peripheral power consumption  
The supply current per peripheral is measured as the difference in supply current between  
the peripheral block enabled and the peripheral block disabled in the SYSAHBCLKCFG  
and PDRUNCFG (for analog blocks) registers. All other blocks are disabled in both  
registers and no code is executed. Measured on a typical sample at Tamb = 25 C.  
Table 7.  
Power consumption for individual analog and digital blocks  
Peripheral  
Typical supply  
current in mA  
12 MHz[1]  
Average A/MHz  
Analog peripherals  
BOD  
0.05  
0.14  
0.40  
0.26  
0.01  
0.01  
-
-
-
-
-
-
BOD, comparator  
BOD, comparator, ADC, DAC, temperature sensor  
DAC  
ADC  
Temperature sensor, ADC  
Digital peripherals  
USART  
0.15  
0.02  
0.02  
0.02  
0.02  
12  
2
I2C  
16-bit counter/timer 0/1  
32-bit counter/timer 0/1  
WWDT  
2
2
2
[1] IRC on; PLL off.  
9.3 Electrical pin characteristics  
002aae990  
3.6  
V
(V)  
OH  
T = 85 °C  
25 °C  
40 °C  
3.2  
2.8  
2.4  
2
0
10  
20  
30  
40  
50  
60  
I
(mA)  
OH  
Conditions: VDD(IO) = 3.3 V; on pin PIO0_21.  
Fig 14. High-current source output driver: Typical HIGH-level output voltage VOH versus  
HIGH-level output current IOH  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
47 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
002aaf019  
60  
I
T = 85 °C  
25 °C  
40 °C  
OL  
(mA)  
40  
20  
0
0
0.2  
0.4  
0.6  
V
(V)  
OL  
Conditions: VDD(IO) = 3.3 V; on pins PIO0_2 and PIO0_3.  
Fig 15. High-current sink pins: Typical LOW-level output current IOL versus LOW-level  
output voltage VOL  
002aae991  
15  
I
OL  
T = 85 °C  
25 °C  
40 °C  
(mA)  
10  
5
0
0
0.2  
0.4  
0.6  
V
(V)  
OL  
Conditions: VDD(IO) = 3.3 V; standard port pins and PIO0_21.  
Fig 16. Typical LOW-level output current IOL versus LOW-level output voltage VOL  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
48 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
002aae992  
3.6  
V
OH  
(V)  
T = 85 °C  
25 °C  
40 °C  
3.2  
2.8  
2.4  
2
0
8
16  
24  
I
(mA)  
OH  
Conditions: VDD(IO) = 3.3 V; standard port pins.  
Fig 17. Typical HIGH-level output voltage VOH versus HIGH-level output source current  
IOH  
002aae988  
10  
I
pu  
(μA)  
10  
30  
50  
70  
T = 85 °C  
25 °C  
40 °C  
0
1
2
3
4
5
V (V)  
I
Conditions: VDD(IO) = 3.3 V; standard port pins.  
Fig 18. Typical pull-up current Ipu versus input voltage VI  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
49 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
002aae989  
80  
T = 85 °C  
25 °C  
40 °C  
I
pd  
(μA)  
60  
40  
20  
0
0
1
2
3
4
5
V (V)  
I
Conditions: VDD(IO) = 3.3 V; standard port pins.  
Fig 19. Typical pull-down current Ipd versus input voltage VI  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
50 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
10. Dynamic characteristics  
10.1 Power supply fluctuations  
If the input voltage (VDD(3V3)) to the internal regulator fluctuates, the LPC11Axx is held in  
reset during a brown-out condition as long as the UVLO circuit is operating. The settling  
times of the BOD and POR circuits, which constitute the UVLO, determine the minimum  
time the supply level must remain in the shallow or deep brown-out condition to ensure  
that the internal reset is asserted properly.  
See also Section 7.23.1, Section 12.7, and Section 12.8.  
Table 8.  
Symbol Parameter  
ts settling time power droop:  
from active level to shallow  
UVLO circuits settling characteristics  
Conditions  
Min  
Typ Max Unit  
5
-
-
s  
brown-out level  
(0.9 V VDD(3V3) 2.4 V)  
from active level to deep brown-out  
level (0 < VDD(3V3) < 0.9 V)  
12  
-
-
s  
supply  
voltage  
V
DD(3V3)  
cold  
start-up  
brown-out  
shallow  
brown-out  
deep  
External  
power supply  
BOD trip point  
(typical)  
2.4 V  
> 5 μs  
POR trip point  
(typical)  
0.9 V  
0 V  
> 12 μs  
internal reset  
time  
002aah326  
Fig 20. UVLO timing  
10.2 Flash/EEPROM memory  
Table 9.  
Flash characteristics  
Tamb = 40 C to +85 C. Based on JEDEC NVM qualification. Failure rate < 10 ppm for parts as  
specified below.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
[2][1]  
Nendu  
endurance  
10000  
100000  
-
cycles  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
51 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 9.  
Flash characteristics  
Tamb = 40 C to +85 C. Based on JEDEC NVM qualification. Failure rate < 10 ppm for parts as  
specified below.  
Symbol  
Parameter  
Conditions  
powered  
Min  
10  
Typ  
20  
Max  
Unit  
years  
years  
ms  
[2]  
[2]  
[2]  
tret  
retention time  
-
unpowered  
20  
40  
-
ter  
erase time  
sector or multiple  
consecutive  
sectors  
95  
100  
105  
[2][3]  
tprog  
programming  
time  
0.95  
1
1.05  
ms  
[1] Number of program/erase cycles.  
[2] Min and max values are valid for Tamb = 40 C to +85 C only.  
[3] Programming times are given for writing 256 bytes to the flash. Tamb < +85 C. Data must be written to the  
flash in blocks of 256 bytes. Flash programming is accomplished via IAP calls (see LPC11Axx user  
manual). Execution time of IAP calls depends on the system clock and is typically between 1.5 and 2 ms  
per 256 bytes.  
Table 10. EEPROM characteristics  
Tamb = 55 C to +125 C; VDD(3V3) = 2.7 V to 3.6 V. Based on JEDEC NVM qualification. Failure  
rate < 10 ppm for parts as specified below.  
Symbol  
Nendu  
tret  
Parameter  
endurance  
Conditions  
Min  
100000  
100  
150  
-
Typ  
Max  
Unit  
[1]  
[1]  
[1]  
[2]  
1000000  
200  
-
-
-
-
cycles  
years  
years  
ms  
retention time  
powered  
unpowered  
64 bytes  
300  
tprog  
programming  
time  
1.1  
[1] Min and max values are valid for Tamb = 40 C to +85 C only.  
[2] Tamb < +85 C.  
10.3 External clock for oscillator in slave mode  
Remark: The input voltage on the XTALIN pin must be 1.95 V (see Table 6). For  
connecting the oscillator to the XTALIN/XTALOUT pins also see Section 12.3.  
Table 11. Dynamic characteristic: external clock (XTALIN or CLKIN pin)  
Tamb = 40 C to +85 C; VDD(3V3) over specified ranges.[1]  
Symbol  
fosc  
Parameter  
Conditions  
Min  
Typ[2]  
Max  
Unit  
MHz  
ns  
oscillator frequency  
clock cycle time  
clock HIGH time  
clock LOW time  
clock rise time  
clock fall time  
1
-
-
-
-
-
-
25  
Tcy(clk)  
tCHCX  
tCLCX  
tCLCH  
tCHCL  
40  
1000  
Tcy(clk) 0.4  
-
ns  
Tcy(clk) 0.4  
-
ns  
-
-
5
5
ns  
ns  
[1] Parameters are valid over operating temperature range unless otherwise specified.  
[2] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply  
voltages.  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
52 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
t
CHCX  
t
t
t
CHCL  
CLCX  
CLCH  
T
cy(clk)  
002aaa907  
Fig 21. External clock timing (with an amplitude of at least Vi(RMS) = 200 mV)  
10.4 Internal oscillators  
Table 12. Dynamic characteristic: IRC  
amb = 40 C to +85 C; 2.7 V VDD(3V3) 3.6 V.[1]  
T
Symbol Parameter Conditions  
fosc(RC) internal RC oscillator frequency -  
Min  
Typ[2]  
Max  
Unit  
11.88  
12  
12.12  
MHz  
[1] Parameters are valid over operating temperature range unless otherwise specified.  
[2] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply  
voltages.  
002aah011  
12.15  
f
(MHz)  
VDD = 3.6 V  
3.3 V  
3.0 V  
12.05  
2.7 V  
11.95  
11.85  
-40  
-15  
10  
35  
60  
85  
temperature (°C)  
Conditions: Frequency values are typical values. 12 MHz 1% accuracy is guaranteed for  
2.7 V VDD(3V3) 3.6 V and Tamb = 40 C to +85 C. Variations between parts may cause the  
IRC to fall outside the 12 MHz 1% accuracy specification for voltages below 2.7 V.  
Fig 22. Internal IRC frequency vs. temperature  
Table 13. Dynamic characteristics: WDOsc and LFOsc  
Symbol Parameter  
Conditions  
Min Typ[1]  
Max Unit  
[2][3]  
[2][3]  
fosc internal oscillator DIVSEL = 0x1F, FREQSEL = 0x1  
-
9.4  
-
kHz  
frequency  
in the WDTOSCCTRL register;  
DIVSEL = 0x00, FREQSEL = 0xF  
in the WDTOSCCTRL register  
-
2300  
-
kHz  
[1] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply  
voltages.  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
53 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
[2] The typical frequency spread over processing and temperature (Tamb = 40 C to +85 C) is 40%.  
[3] See the LPC11Axx user manual.  
10.5 I/O pins  
Table 14. Dynamic characteristic: digital I/O pins[1]  
Tamb = 40 C to +85 C; 3.0 V VDD(IO) 3.6 V; load capacitor = 30 pF.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
tr  
rise time  
pin  
configured as  
output  
[2][3]  
[2][3]  
[2][4]  
[2][3]  
SSO = 1  
SSO = 6  
SSO = 16  
2.5  
2.5  
3.0  
-
-
-
5.0  
4.5  
5.0  
ns  
ns  
ns  
tf  
fall time  
pin  
configured as  
output  
SSO = 1  
SSO = 6  
SSO = 16  
2.0  
2.0  
2.5  
-
-
-
4.5  
4.5  
5.0  
ns  
ns  
ns  
[2][3]  
[2][4]  
[1] Applies to standard port pins and RESET pin. Simulated results.  
[2] SSO indicates maximum number of simultaneously switching digital output pins. The pins are optimized for  
half of the maximum SSO.  
[3] Set SLEW bit in the IOCON register to 1.  
[4] Set SLEW bit in the IOCON register to 0.  
10.6 I2C-bus  
Remark: All I2C modes (Standard-mode, Fast-mode, Fast-mode Plus) can be configured  
for the true open-drain pins PIO0_2 and PIO0_3. If the limited-performance I2C-bus pins  
are used (I2C-bus functions on standard I/O pins), only Standard-mode with internal  
pull-up enabled or Fast-mode with external pull-up resistor are supported.  
Table 15. Dynamic characteristic: I2C-bus pins[1]  
Tamb = 40 C to +85 C.[2]  
Symbol  
Parameter  
Conditions  
Min  
Max  
100  
400  
1
Unit  
kHz  
kHz  
MHz  
ns  
fSCL  
SCL clock  
frequency  
Standard-mode  
Fast-mode  
0
0
0
-
Fast-mode Plus  
[4][5][6][7]  
tf  
fall time  
of both SDA and  
SCL signals  
300  
Standard-mode  
Fast-mode  
20 + 0.1 Cb 300  
ns  
ns  
s  
s  
s  
Fast-mode Plus  
Standard-mode  
Fast-mode  
-
120  
tLOW  
LOW period of  
the SCL clock  
4.7  
1.3  
0.5  
-
-
-
Fast-mode Plus  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
54 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 15. Dynamic characteristic: I2C-bus pins[1]  
Tamb = 40 C to +85 C.[2]  
Symbol  
Parameter  
Conditions  
Min  
4.0  
0.6  
0.26  
0
Max  
Unit  
s  
s  
s  
s  
s  
s  
ns  
ns  
ns  
tHIGH  
HIGH period of  
the SCL clock  
Standard-mode  
Fast-mode  
-
-
-
-
-
-
-
-
-
Fast-mode Plus  
Standard-mode  
Fast-mode  
[3][4][8]  
[9][10]  
tHD;DAT  
data hold time  
0
Fast-mode Plus  
Standard-mode  
Fast-mode  
0
tSU;DAT  
data set-up  
time  
250  
100  
50  
Fast-mode Plus  
[1] See the I2C-bus specification UM10204 for details.  
[2] Parameters are valid over operating temperature range unless otherwise specified.  
[3] tHD;DAT is the data hold time that is measured from the falling edge of SCL; applies to data in transmission  
and the acknowledge.  
[4] A device must internally provide a hold time of at least 300 ns for the SDA signal (with respect to the  
VIH(min) of the SCL signal) to bridge the undefined region of the falling edge of SCL.  
[5] Cb = total capacitance of one bus line in pF.  
[6] The maximum tf for the SDA and SCL bus lines is specified at 300 ns. The maximum fall time for the SDA  
output stage tf is specified at 250 ns. This allows series protection resistors to be connected in between the  
SDA and the SCL pins and the SDA/SCL bus lines without exceeding the maximum specified tf.  
[7] In Fast-mode Plus, fall time is specified the same for both output stage and bus timing. If series resistors  
are used, designers should allow for this when considering bus timing.  
[8] The maximum tHD;DAT could be 3.45 s and 0.9 s for Standard-mode and Fast-mode but must be less than  
the maximum of tVD;DAT or tVD;ACK by a transition time (see UM10204). This maximum must only be met if  
the device does not stretch the LOW period (tLOW) of the SCL signal. If the clock stretches the SCL, the  
data must be valid by the set-up time before it releases the clock.  
[9] tSU;DAT is the data set-up time that is measured with respect to the rising edge of SCL; applies to data in  
transmission and the acknowledge.  
[10] A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system but the requirement tSU;DAT  
=
250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period  
of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next  
data bit to the SDA line tr(max) + tSU;DAT = 1000 + 250 = 1250 ns (according to the Standard-mode I2C-bus  
specification) before the SCL line is released. Also the acknowledge timing must meet this set-up time.  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
55 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
t
t
SU;DAT  
f
70 %  
30 %  
70 %  
30 %  
SDA  
SCL  
t
t
HD;DAT  
VD;DAT  
t
f
t
HIGH  
70 %  
30 %  
70 %  
30 %  
70 %  
30 %  
70 %  
30 %  
t
LOW  
1 / f  
S
SCL  
002aaf425  
Fig 23. I2C-bus pins clock timing  
10.7 SSP interfaces  
Table 16. Dynamic characteristics of SSP pins in SPI mode  
2.6 V <= VDD(3V3) = VDD(IO) <= 3.6 V.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
SPI master (in SPI mode)  
[1]  
Tcy(clk)  
clock cycle time  
data set-up time  
full-duplex mode  
when only transmitting  
in SPI mode  
50  
40  
15  
-
-
-
-
ns  
ns  
ns  
[1][1]  
[1][2]  
tDS  
[1][2]  
[1][2]  
[1][2]  
tDH  
data hold time  
in SPI mode  
0
-
-
-
-
-
ns  
ns  
ns  
tv(Q)  
th(Q)  
data output valid time in SPI mode  
data output hold time in SPI mode  
10  
-
0
SPI slave (in SPI mode)  
Tcy(PCLK) PCLK cycle time  
20  
0
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
[3][4]  
[3][4]  
[3][4]  
[3][4]  
tDS  
data set-up time  
data hold time  
in SPI mode  
in SPI mode  
-
tDH  
3 Tcy(PCLK) + 4  
-
tv(Q)  
th(Q)  
data output valid time in SPI mode  
data output hold time in SPI mode  
-
-
3 Tcy(PCLK) + 11  
2 Tcy(PCLK) + 5  
[1] Tcy(clk) = (SSPCLKDIV (1 + SCR) CPSDVSR) / fmain. The clock cycle time derived from the SPI bit rate Tcy(clk) is a function of the  
main clock frequency fmain, the SPI peripheral clock divider (SSPCLKDIV), the SPI SCR parameter (specified in the SSP0CR0 register),  
and the SPI CPSDVSR parameter (specified in the SPI clock prescale register).  
[2] Tamb = 40 C to 85 C.  
[3]  
Tcy(clk) = 12 Tcy(PCLK).  
[4] Tamb = 25 C; for normal voltage supply range: VDD(io) = vdd(3v3) = 3.3 V.  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
56 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
T
t
t
clk(L)  
cy(clk)  
clk(H)  
SCK (CPOL = 0)  
SCK (CPOL = 1)  
MOSI  
t
t
h(Q)  
v(Q)  
DATA VALID  
DATA VALID  
CPHA = 1  
t
t
DH  
DS  
DATA VALID  
DATA VALID  
MISO  
t
t
h(Q)  
v(Q)  
DATA VALID  
DATA VALID  
t
MOSI  
MISO  
t
CPHA = 0  
DS  
DH  
DATA VALID  
DATA VALID  
002aae829  
Pin names SCK, MISO, and MOSI refer to pins for both SSP peripherals, SSP0 and SSP1.  
Fig 24. SSP master timing in SPI mode  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
57 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
T
t
t
clk(L)  
cy(clk)  
clk(H)  
SCK (CPOL = 0)  
SCK (CPOL = 1)  
t
t
DH  
DS  
MOSI  
MISO  
DATA VALID  
DATA VALID  
t
t
h(Q)  
v(Q)  
CPHA = 1  
DATA VALID  
DATA VALID  
t
t
DH  
DS  
MOSI  
MISO  
DATA VALID  
DATA VALID  
DATA VALID  
t
t
h(Q)  
CPHA = 0  
v(Q)  
DATA VALID  
002aae830  
Pin names SCK, MISO, and MOSI refer to pins for both SSP peripherals, SSP0 and SSP1.  
Fig 25. SSP slave timing in SPI mode  
11. Characteristics of analog peripherals  
Table 17. BOD static characteristics[1]  
Tamb = 25 C.  
Symbol Parameter  
Vth threshold voltage  
Conditions  
Min  
Typ  
Max  
Unit  
interrupt level 2  
assertion  
-
-
2.52  
2.66  
-
-
V
V
de-assertion  
interrupt level 3  
assertion  
-
-
2.80  
2.90  
-
-
V
V
de-assertion  
[1] Interrupt levels are selected by writing the level value to the BOD control register BODCTRL, see  
LPC11Axx user manual.  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
58 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 18. ADC static characteristics  
Tamb = 40 C to +85 C unless otherwise specified; ADC frequency 4.5 MHz, VDD(3V3) = 2.7 V to  
3.6 V; VSS = 0 V.  
Symbol  
VIA  
Parameter  
Conditions  
Min Typ Max  
Unit  
V
analog input voltage  
analog input capacitance  
differential linearity error  
integral non-linearity  
offset error  
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
VDD(3V3)  
4
Cia  
pF  
[1][2]  
[3]  
ED  
1  
LSB  
LSB  
mV  
mV  
LSB  
M  
EL(adj)  
EO  
1.5  
20  
20  
4  
[4]  
[5]  
Verr(FS)  
ET  
full-scale error voltage  
absolute error  
[6]  
[7][8]  
Ri  
input resistance  
2.5  
[1] The ADC is monotonic, there are no missing codes.  
[2] The differential linearity error (ED) is the difference between the actual step width and the ideal step width.  
See Figure 26.  
[3] The integral non-linearity (EL(adj)) is the peak difference between the center of the steps of the actual and  
the ideal transfer curve after appropriate adjustment of gain and offset errors. See Figure 26.  
[4] The offset error (EO) is the absolute difference between the straight line which fits the actual curve and the  
straight line which fits the ideal curve. See Figure 26.  
[5] The full-scale error voltage or gain error (EG) is the difference between the straight line fitting the actual  
transfer curve after removing offset error, and the straight line which fits the ideal transfer curve. See  
Figure 26.  
[6] The absolute error (ET) is the maximum difference between the center of the steps of the actual transfer  
curve of the non-calibrated ADC and the ideal transfer curve. See Figure 26.  
[7] Tamb = 25 C; maximum sampling frequency fs = 400 kSamples/s and analog input capacitance Cia = 1pF.  
[8] Input resistance Ri depends on the sampling frequency fs: Ri = 1 / (fs Cia).  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
59 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 19. DAC static and dynamic characteristics  
VDD(3V3) = 2.7 V to 3.6 V; Tamb = 40 C to +85 C unless otherwise specified  
Symbol Parameter  
Conditions  
Min  
Typ Max  
Unit  
ED  
differential  
-
-
1  
LSB  
linearity error  
EL(adj)  
integral  
-
-
1.5  
LSB  
non-linearity  
EO  
offset error  
-
-
-
20  
20  
200  
-
mV  
mV  
pF  
EG  
gain error  
-
CL  
load capacitance  
load resistance  
output resistance  
-
-
RL  
1
-
-
k  
[1]  
RO  
< 40  
0.4  
fc(DAC)  
DAC conversion  
frequency  
-
1
1
MHz  
ts  
settling time  
-
-
-
s  
VO  
output voltage  
Output voltage range with  
less than 1 LSB deviation;  
with minimum RL  
0.3  
VDD(3V3)  
0.3  
V
connected to ground or  
power supply  
with minimum RL  
connected to ground or  
power supply  
0.175  
-
VDD(3V3)  
0.175  
V
[1] Measured on typical samples.  
Table 20. DAC sampling frequency range and power consumption  
Bias bit  
Maximum current  
700 A  
DAC sampling frequency range  
0 MHz to 1 MHz  
0
1
350 A  
0 MHz to 400 kHz  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
60 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
offset  
error  
O
gain  
error  
E
E
G
1023  
1022  
1021  
1020  
1019  
1018  
(2)  
7
code  
out  
(1)  
6
5
4
3
2
1
0
(5)  
(4)  
(3)  
1 LSB  
(ideal)  
1018 1019 1020 1021 1022 1023 1024  
1
2
3
4
5
6
7
V
IA  
(LSB  
)
ideal  
offset error  
E
O
V
- V  
DD(3V3) SS  
1024  
1 LSB =  
002aah327  
(1) Example of an actual transfer curve.  
(2) The ideal transfer curve.  
(3) Differential linearity error (ED).  
(4) Integral non-linearity (EL(adj)).  
(5) Center of a step of the actual transfer curve.  
Fig 26. ADC characteristics  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
61 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 21. Internal voltage reference static and dynamic characteristics  
Symbol Parameter  
Conditions  
output voltage Tamb = 40 C to +85 C  
Tamb = 70 C to 85 C  
Tamb = 50 C  
Min  
Typ  
Max  
Unit  
V
[1]  
[2]  
[2]  
[3]  
[2]  
[2]  
[2]  
[3]  
VO  
0.855 0.900  
0.945  
-
-
0.906  
0.905  
-
V
-
V
Tamb = 25 C  
0.893 0.903  
0.913  
V
Tamb = 0 C  
-
-
-
-
0.902  
0.899  
0.896  
155  
-
V
Tamb = 20 C  
-
V
Tamb = 40 C  
-
V
ts(pu)  
ts(sw)  
power-up  
settling time  
to 99% of VO  
195  
s  
[3]  
[4]  
switching  
to 99% of VO  
-
50  
75  
s  
settling time  
[1] Characterized through simulation.  
[2] Characterized on a typical silicon sample.  
[3] Typical values are derived from nominal simulation (VDD(3V3) = 3.3 V; Tamb = 27 C; nominal process  
models). Maximum values are derived from worst case simulation (VDD(3V3) = 2.6 V; Tamb = 85 C; slow  
process models).  
[4] Settling time applies to switching between comparator and ADC channels.  
002aag063  
910  
V
O
(mV)  
905  
900  
895  
890  
-40  
-15  
10  
35  
60  
85  
temperature (°C)  
VDD(3V3) = 3.3 V  
Fig 27. Typical internal voltage reference output voltage  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
62 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 22. Temperature sensor static and dynamic characteristics  
VDD(3V3) = 2.6 V to 3.6 V  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
[1]  
DTsen  
sensor  
Tamb = 40 C to +85 C  
-
-
3  
C  
temperature  
accuracy  
EL  
linearity error  
Tamb = 40 C to +85 C  
-
-
-
1.1  
C  
s  
[2]  
ts(pu)  
power-up  
settling time  
to 99% of temperature  
sensor output value  
81  
85  
[2][3]  
ts(sw)  
switching  
settling time  
to 99% of temperature  
sensor output value  
-
1.5  
2
s  
[1] Absolute temperature accuracy.  
[2] Typical values are derived from nominal simulation (VDD(3V3) = 3.3 V; Tamb = 27 C; nominal process  
models). Maximum values are derived from worst case simulation (VDD(3V3) = 2.6 V; Tamb = 85 C; slow  
process models).  
[3] Settling time applies to switching between comparator and ADC channels.  
Table 23. Temperature sensor Linear-Least-Square (LLS) fit parameters  
VDD(3V3) = 2.6 V to 3.6 V  
Fit parameter  
Range  
Min  
Typ  
Max  
Unit  
LLS slope  
Tamb = 0 C to 85 C  
Tamb = 40 C to +85 C  
Tamb = 0 C to 85 C  
Tamb = 40 C to +85C  
-
-
-
-
2.36  
2.36  
577  
-
-
-
-
mV/C  
mV/C  
mV  
LLS intercept  
576  
mV  
002aag064  
800  
V
O
(mV)  
600  
400  
200  
y = -2.366x + 578.34  
2
R
= 0.9995  
-40  
-15  
10  
35  
60  
85  
temperature (°C)  
VDD(3V3) = 3.3 V; measured on a typical silicon sample.  
Fig 28. Typical LLS fit of the temperature sensor output voltage  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
63 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 24. Comparator characteristics  
VDD(3V3)= 3.0 V and Tamb = 25 C unless noted otherwise.  
Symbol Parameter  
Static characteristics  
Conditions  
Min Typ  
Max  
Unit  
IDD  
supply current  
-
55  
-
A  
V
VIC  
common-mode input voltage  
output voltage variation  
offset voltage  
0
0
-
-
VDD(3V3)  
DVO  
Voffset  
-
VDD(3V3)  
V
VIC = 0.1 V  
VIC = 1.5 V  
VIC = 2.8 V  
4 to +4.2  
2  
-
-
mV  
mV  
mV  
-
-
2.5  
Dynamic characteristics  
tstartup  
tPD  
start-up time  
nominal process  
-
-
4
-
s  
propagation delay  
HIGH to LOW; VDD(3V3) = 3.0 V;  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
V
IC = 0.1 V; 50 mV overdrive input  
IC = 0.1 V; rail-to-rail input  
129  
210  
112  
127  
151  
57  
140  
250  
130  
160  
170  
70  
ns  
ns  
ns  
ns  
ns  
ns  
V
-
-
-
-
-
-
VIC = 1.5 V; 50 mV overdrive input  
VIC = 1.5 V; rail-to-rail input  
VIC = 2.9 V; 50 mV overdrive input  
VIC = 2.9 V; rail-to-rail input  
tPD  
propagation delay  
LOW to HIGH; VDD(3V3) = 3.0 V;  
VIC = 0.1 V; 50 mV overdrive input  
VIC = 0.1 V; rail-to-rail input  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
[2]  
232  
240  
60  
ns  
ns  
ns  
ns  
ns  
ns  
mV  
-
-
-
-
-
-
58  
VIC = 1.5 V; 50 mV overdrive input  
VIC = 1.5 V; rail-to-rail input  
210  
230  
200  
190  
550  
-
178  
VIC = 2.9 V; 50 mV overdrive input  
VIC = 2.9 V; rail-to-rail input  
166  
333  
Vhys  
Vhys  
Rlad  
hysteresis voltage  
hysteresis voltage  
ladder resistance  
positive hysteresis; VDD(3V3) = 3.0 V;  
VIC = 1.5 V  
5, 10, 20  
[2]  
negative hysteresis; VDD(3V3) = 3.0 V;  
VIC = 1.5 V  
-
-
5, 10, 20  
1.034  
-
-
mV  
-
M  
[1] CL = 10 pF; results from measurements on silicon samples over process corners and over the full temperature range Tamb = -40 C to  
+85 C.  
[2] Input hysteresis is relative to the reference input channel and is software programmable.  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
64 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 25. Comparator voltage ladder dynamic characteristics  
Symbol Parameter  
Conditions  
Min Typ  
Max  
Unit  
[1]  
ts(pu)  
power-up settling  
time  
to 99% of voltage  
ladder output  
value  
-
-
30  
s  
[1]  
[2]  
ts(sw)  
switching settling  
time  
to 99% of voltage  
ladder output  
value  
-
-
15  
s  
[1] Maximum values are derived from worst case simulation (VDD(3V3) = 2.6 V; Tamb = 85 C; slow process  
models).  
[2] Settling time applies to switching between comparator and ADC channels.  
Table 26. Comparator voltage ladder reference static characteristics  
VDD(3V3) = 3.3 V; Tamb = -40 C to + 85C.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max[1]  
Unit  
EV(O)  
output voltage error  
Internal VDD(3V3) supply  
decimal code = 00  
decimal code = 08  
decimal code = 16  
decimal code = 24  
decimal code = 30  
decimal code = 31  
[2]  
-
-
-
-
-
-
0
0
%
%
%
%
%
%
0
0.4  
0.2  
0.2  
0.1  
0.1  
0.2  
0.2  
0.1  
0.1  
EV(O)  
output voltage error  
External VDDCMP  
supply  
decimal code = 00  
decimal code = 08  
decimal code = 16  
decimal code = 24  
decimal code = 30  
decimal code = 31  
-
-
-
-
-
-
0
0
%
%
%
%
%
%
0.1  
0.2  
0.2  
0.2  
0.1  
0.5  
0.4  
0.3  
0.2  
0.1  
[1] Measured over a polyresistor matrix lot with a 2 kHz input signal and overdrive < 100 V.  
[2] All peripherals except comparator, temperature sensor, and IRC turned off.  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
65 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
12. Application information  
12.1 ADC usage notes  
The following guidelines show how to increase the performance of the ADC in a noisy  
environment beyond the ADC specifications listed in Table 18:  
The ADC input trace must be short and as close as possible to the LPC11Axx chip.  
The ADC input traces must be shielded from fast switching digital signals and noisy  
power supply lines.  
Because the ADC and the digital core share the same power supply, the power supply  
line must be adequately filtered.  
To improve the ADC performance in a very noisy environment, put the device in Sleep  
mode during the ADC conversion.  
12.2 Use of ADC input trigger signals  
For applications that use trigger signals to start conversions and require a precise sample  
frequency, ensure that the period of the trigger signal is an integral multiple of the period  
of the ADC clock.  
12.3 XTAL input  
The input voltage to the on-chip oscillators is limited to 1.8 V. If the oscillator is driven by a  
clock in slave mode, it is recommended that the input be coupled through a capacitor with  
Ci = 100 pF. To limit the input voltage to the specified range, choose an additional  
capacitor to ground Cg which attenuates the input voltage by a factor Ci/(Ci + Cg). In slave  
mode, a minimum of 200 mV(RMS) is needed.  
LPC1xxx  
XTALIN  
C
i
C
g
100 pF  
002aae788  
Fig 29. Slave mode operation of the on-chip oscillator  
In slave mode the input clock signal should be coupled by means of a capacitor of 100 pF  
(Figure 29), with an amplitude between 200 mV (RMS) and 1000 mV (RMS). This  
corresponds to a square wave signal with a signal swing of between 280 mV and 1.4 V.  
The XTALOUT pin in this configuration can be left unconnected.  
External components and models used in oscillation mode are shown in Figure 30 and in  
Table 27 and Table 28. Since the feedback resistance is integrated on chip, only a crystal  
and the capacitances CX1 and CX2 need to be connected externally in case of  
fundamental mode oscillation (the fundamental frequency is represented by L, CL and  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
66 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
RS). Capacitance CP in Figure 30 represents the parallel package capacitance and should  
not be larger than 7 pF. Parameters FOSC, CL, RS and CP are supplied by the crystal  
manufacturer (see Table 27).  
LPC1xxx  
L
XTALIN  
XTALOUT  
C
L
C
P
=
XTAL  
R
S
C
X2  
C
X1  
002aaf424  
Fig 30. Oscillator modes and models: oscillation mode of operation and external crystal  
model used for CX1/CX2 evaluation  
Table 27. Recommended values for CX1/CX2 in oscillation mode (crystal and external  
components parameters) low frequency mode  
Fundamental oscillation Crystal load  
Maximum crystal  
External load  
frequency FOSC  
capacitance CL  
series resistance RS  
capacitors CX1, CX2  
1 MHz - 5 MHz  
10 pF  
< 300   
< 300   
< 300   
< 300   
< 200   
< 100   
< 160   
< 60   
18 pF, 18 pF  
39 pF, 39 pF  
57 pF, 57 pF  
18 pF, 18 pF  
39 pF, 39 pF  
57 pF, 57 pF  
18 pF, 18 pF  
39 pF, 39 pF  
18 pF, 18 pF  
20 pF  
30 pF  
5 MHz - 10 MHz  
10 pF  
20 pF  
30 pF  
10 MHz - 15 MHz  
15 MHz - 20 MHz  
10 pF  
20 pF  
10 pF  
< 80   
Table 28. Recommended values for CX1/CX2 in oscillation mode (crystal and external  
components parameters) high frequency mode  
Fundamental oscillation Crystal load  
Maximum crystal  
External load  
frequency FOSC  
capacitance CL  
series resistance RS  
capacitors CX1, CX2  
15 MHz - 20 MHz  
10 pF  
< 180   
< 100   
< 160   
< 80   
18 pF, 18 pF  
39 pF, 39 pF  
18 pF, 18 pF  
39 pF, 39 pF  
20 pF  
20 MHz - 25 MHz  
10 pF  
20 pF  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
67 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
12.4 XTAL Printed Circuit Board (PCB) layout guidelines  
The crystal should be connected on the PCB as close as possible to the oscillator input  
and output pins of the chip. Take care that the load capacitors Cx1,Cx2, and Cx3 in case of  
third overtone crystal usage have a common ground plane. The external components  
must also be connected to the ground plain. Loops must be made as small as possible in  
order to keep the noise coupled in via the PCB as small as possible. Also parasitics  
should stay as small as possible. Values of Cx1 and Cx2 should be chosen smaller  
accordingly to the increase in parasitics of the PCB layout.  
12.5 Standard I/O pad configuration  
Figure 31 shows the possible pin modes for standard I/O pins with analog input function:  
Digital output driver with configurable open-drain output  
Digital input: Weak pull-up resistor (PMOS device) enabled/disabled  
Digital input: Weak pull-down resistor (NMOS device) enabled/disabled  
Digital input: Repeater mode enabled/disabled  
Digital input: Input glitch filter selectable on 17 pins.  
Analog input  
V
DD  
V
DD  
open-drain enable  
output enable  
data output  
strong  
pull-up  
ESD  
pin configured  
as digital output  
driver  
PIN  
strong  
pull-down  
ESD  
V
SS  
V
DD  
weak  
pull-up  
pull-up enable  
weak  
pull-down  
repeater mode  
enable  
pin configured  
as digital input  
pull-down enable  
data input  
10 ns RC  
GLITCH FILTER  
select data  
inverter  
select glitch  
filter  
select analog input  
pin configured  
as analog input  
analog input  
002aaf695  
Fig 31. Standard I/O pad configuration  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
68 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
12.6 Reset pad configuration  
V
DD  
V
DD  
V
DD  
R
pu  
ESD  
20 ns RC  
GLITCH FILTER  
reset  
PIN  
ESD  
V
SS  
002aaf274  
Fig 32. Reset pad configuration  
12.7 UVLO protection and reset timer circuit  
V
INTERNAL  
REGULATOR  
V
INT  
1.8 V  
EXT  
3.3 V  
V
EXT  
V
INT  
OR  
UVLO  
BOD  
analog reset  
internal reset  
OR  
POR  
V
REF  
V
INT  
100 μs RESET  
TIMER  
POR  
002aah324  
Fig 33. Functional diagram of the UVLO protection and reset timer circuit  
12.8 Guidelines for selecting a power supply filter for UVLO protection  
For the UVLO circuits to hold the part in reset during shallow and deep brown-out  
conditions, you must filter the power supply line to allow for the BOD and POR circuits to  
settle when short voltage drops occur (see Section 10.1 “Power supply fluctuations”).  
Select the capacitance of the decoupling/bypass capacitor according to the following  
guidelines:  
C >> IDD ts/VDD(3V3) with  
VDD(3V3) 100 mV for the voltage drop below the BOD or POR trip points.  
IDD 3 mA with the IRC running and PLL/SysOsc off (see Figure 12).  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
69 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
ts = 5 s for shallow brown-out (see Table 8).  
ts = 12 s for deep brown-out (see Table 8).  
With these parameters, the decoupling/bypass capacitor to add to the supply line is:  
C 0.15 F for shallow brown-out  
C >> 0.36 F for deep brown-out  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
70 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
13. Package outline  
LQFP48: plastic low profile quad flat package; 48 leads; body 7 x 7 x 1.4 mm  
SOT313-2  
c
y
X
36  
25  
A
E
37  
24  
Z
E
e
H
E
A
2
A
(A )  
3
A
1
w M  
p
θ
pin 1 index  
b
L
p
L
13  
48  
detail X  
1
12  
Z
v M  
D
A
e
w M  
b
p
D
B
H
v
M
B
D
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
D
H
L
L
v
w
y
Z
Z
E
θ
1
2
3
p
E
p
D
max.  
7o  
0o  
0.20 1.45  
0.05 1.35  
0.27 0.18 7.1  
0.17 0.12 6.9  
7.1  
6.9  
9.15 9.15  
8.85 8.85  
0.75  
0.45  
0.95 0.95  
0.55 0.55  
1.6  
mm  
0.25  
0.5  
1
0.2 0.12 0.1  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
00-01-19  
03-02-25  
SOT313-2  
136E05  
MS-026  
Fig 34. Package outline LQFP48  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
71 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
HVQFN33: plastic thermal enhanced very thin quad flat package; no leads;  
33 terminals; body 7 x 7 x 0.85 mm  
D
B
A
terminal 1  
index area  
E
A
A
1
c
detail X  
e
1
C
v
C
C
A
B
e
b
y
1
y
w
C
9
16  
L
8
17  
e
E
e
2
h
33  
1
24  
X
terminal 1  
index area  
32  
25  
0
D
h
2.5  
scale  
5 mm  
v
Dimensions  
Unit  
(1)  
(1)  
(1)  
A
A
b
c
D
D
E
E
e
e
1
e
2
L
w
y
y
1
1
h
h
max 1.00 0.05 0.35  
mm nom 0.85 0.02 0.28 0.2 7.0 4.70 7.0 4.70 0.65 4.55 4.55 0.60 0.1 0.05 0.08 0.1  
min 0.80 0.00 0.23 6.9 4.55 6.9 4.55 0.45  
7.1 4.85 7.1 4.85  
0.75  
Note  
1. Plastic or metal protrusions of 0.075 mm maximum per side are not included.  
hvqfn33_po  
References  
Outline  
version  
European  
projection  
Issue date  
IEC  
JEDEC  
JEITA  
- - -  
09-03-17  
09-03-23  
Fig 35. Package outline HVQFN33 (7x7)  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
72 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
HVQFN33: plastic thermal enhanced very thin quad flat package; no leads;  
32 terminals; body 5 x 5 x 0.85 mm  
D
B
A
terminal 1  
index area  
A
A
1
E
c
detail X  
C
e
1
y
y
v
w
C
C
A
B
C
1
e
1/2 e  
b
9
16  
L
17  
8
e
e
E
h
2
1/2 e  
24  
1
terminal 1  
index area  
32  
25  
X
D
h
0
2.5  
scale  
5 mm  
Dimensions (mm are the original dimensions)  
(1)  
(1)  
(1)  
(1)  
Unit  
A
A
1
b
c
D
D
E
E
h
e
e
e
L
v
w
y
y
1
h
1
2
max  
0.05 0.30  
5.1 3.75 5.1 3.75  
0.5  
mm nom 0.85  
min  
0.2  
0.5 3.5 3.5  
0.1 0.05 0.05 0.1  
0.00 0.18  
4.9 3.45 4.9 3.45  
0.3  
Note  
1. Plastic or metal protrusions of 0.075 mm maximum per side are not included.  
hvqfn33f_po  
References  
Outline  
version  
European  
projection  
Issue date  
IEC  
JEDEC  
JEITA  
11-10-11  
11-10-17  
MO-220  
Fig 36. Package outline HVQFN33 (5x5)  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
73 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
WLCSP20: wafer level chip-size package; 20 bumps; 2.5 x 2.5 x 0.6 mm  
LPC11AxxUK  
D
B
A
E
ball A1  
index area  
A
2
A
A
1
detail X  
C
e
1
Ø v  
Ø w  
C
C
A
B
e
y
1
y
b
C
E
D
C
B
A
e
e
2
ball A1  
index area  
1
2
3
4
X
0
e
0.5  
1 mm  
y
scale  
Dimensions (mm are the original dimensions)  
Unit  
A
A
1
A
2
b
D
E
e
e
1
v
w
2
max 0.65 0.27 0.38 0.35 2.60 2.60  
mm nom 0.60 0.24 0.36 0.32 2.55 2.55 0.5 1.5 2.0 0.15 0.05 0.05  
0.55 0.21 0.34 0.29 2.50 2.50  
min  
wlcsp20_lpc11axxuk_po  
Issue date  
References  
Outline  
version  
European  
projection  
IEC  
JEDEC  
JEITA  
12-03-26  
LPC11AxxUK  
Fig 37. Package outline (WLCSP20)  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
74 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
14. Soldering  
Footprint information for reflow soldering of LQFP48 package  
SOT313-2  
Hx  
Gx  
(0.125)  
P2  
P1  
Hy Gy  
By  
Ay  
C
D2 (8×)  
D1  
Bx  
Ax  
Generic footprint pattern  
Refer to the package outline drawing for actual layout  
solder land  
occupied area  
DIMENSIONS in mm  
P1 P2 Ax  
Ay  
Bx  
By  
C
D1  
D2  
Gx  
Gy  
Hx  
Hy  
0.500 0.560 10.350 10.350 7.350 7.350 1.500 0.280 0.500 7.500 7.500 10.650 10.650  
sot313-2_fr  
Fig 38. Reflow soldering of the LQFP48 package  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
75 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Footprint information for reflow soldering of HVQFN33 package  
OID = 8.20 OA  
PID = 7.25 PA+OA  
OwDtot = 5.10 OA  
evia = 4.25  
0.20 SR  
chamfer (4×)  
W = 0.30 CU  
e = 0.65  
SPD = 1.00 SP  
0.45 DM  
GapD = 0.70 SP  
evia = 2.40  
B-side  
SDhtot = 2.70 SP  
Solder resist  
covered via  
4.55 SR  
DHS = 4.85 CU  
LbD = 5.80 CU  
LaD = 7.95 CU  
0.30 PH  
0.60 SR cover  
0.60 CU  
(A-side fully covered)  
number of vias: 20  
solder land  
solder land plus solder paste  
solder paste deposit  
occupied area  
solder resist  
Remark:  
Stencil thickness: 0.125 mm  
Dimensions in mm  
001aao134  
Fig 39. Reflow soldering of the HVQFN33(7x7) package  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
76 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Footprint information for reflow soldering of HVQFN33 package  
Hx  
Gx  
see detail X  
P
nSPx  
Ay  
By  
SLy  
Hy Gy  
nSPy  
C
D
SLx  
Bx  
Ax  
0.60  
0.30  
solder land  
solder paste  
occupied area  
detail X  
Dimensions in mm  
P
Ax  
Ay  
Bx  
By  
C
D
Gx  
Gy  
Hx  
Hy  
6.2  
SLx  
SLy  
nSPx nSPy  
0.5  
5.95  
5.95  
4.25  
4.25  
0.85  
0.27  
5.25  
5.25  
6.2  
3.75  
3.75  
3
3
11-11-15  
11-11-20  
Issue date  
002aag766  
Fig 40. Reflow soldering of the HVQFN33(5x5) package  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
77 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
15. Abbreviations  
Table 29. Abbreviations  
Acronym  
ADC  
Description  
Analog-to-Digital Converter  
Advanced High-performance Bus  
AHB  
AMBA  
APB  
Advanced Microcontroller Bus Architecture  
Advanced Peripheral Bus  
BOD  
Brown-Out Detection  
GPIO  
I2C  
General Purpose Input/Output  
Inter Integrated Circuit  
JEDEC  
LVTSCR  
NVM  
Joint Electron Devices Engineering Council  
Low-Voltage Triggered Silicon-Controlled Rectifier  
Non-Volatile Memory  
PLL  
Phase-Locked Loop  
SPI  
Serial Peripheral Interface  
SSI  
Serial Synchronous Interface  
Transistor-Transistor Logic  
TTL  
USART  
UVLO  
Universal Synchronous/Asynchronous Receiver/Transmitter  
Under-Voltage LockOut  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
78 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
16. Revision history  
Table 30. Revision history  
Document ID  
Release date  
Data sheet status  
Change notice Supersedes  
LPC11AXX v.4  
20121030  
Product data sheet  
-
LPC11AXX v.3  
Parameter tPD corrected in Table 25.  
Editorial updates.  
Maximum and minimum values for VDD and VDD(IO) updated in Table 5 “Limiting  
values”.  
Limiting values for parameter VI added for open-drain pins PIO0_2 and PIO0_3 in  
Table 5 “Limiting values”.  
Table 26 “Comparator voltage ladder reference static characteristics” updated.  
Parameters ts(pu) and ts(sw) added to Table 21 “Internal voltage reference static and  
dynamic characteristics”.  
Parameters VIA and Vtrig and Vi(xtal) added to Table 5.  
LPC11AXX v.3  
20120907  
Product data sheet  
-
LPC11AXX v.2.1  
Section 10.1 abbreviated for clarity.  
UVLO description including description of cold start-up behavior moved to the  
LPC11Axx user manual.  
Table “Slew rate for the internal regulator power-up from ground” removed. This  
specification is included in the cold start-up description in the LPC11Axx user manual.  
Details regarding boundary scan added to Section 7.24 “Emulation and debugging”.  
Figure 33 “Functional diagram of the UVLO protection and reset timer circuit” updated  
to include the reset timer circuit.  
Section 12.8 “Guidelines for selecting a power supply filter for UVLO protection”  
added.  
Section 7.23.2 updated to include internal reset timer.  
Parameter tPD corrected in Table 24.  
Parameter EV(O) corrected in Table 26.  
LPC11AXX v.2.1  
20120704  
Product data sheet  
-
LPC11AXX v.2  
Data sheet status changed to Product.  
Changed Table note [2] in Table 24.  
Changed Table note [1] in Table 8.  
Added Table note [1] in Table 9.  
Moved DTsen and EL values from typ to max in Table 22.  
Corrected Vesd in Table 5.  
Added Table note [5] and Table note [6] to Table 4.  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
79 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 30. Revision history …continued  
Document ID  
Release date  
20120625  
Data sheet status  
Change notice Supersedes  
LPC11AXX v.2  
Preliminary data sheet -  
LPC11AXX v.1  
Data sheet status changed to Preliminary.  
Parameter fclk removed from Table 11.  
ter removed in Table 11.  
Writable EEPROM size specified in Section 7.3.  
Section 10.3 “UVLO reset behavior” added.  
Power consumption data updated for active mode and sleep mode (see Figure 11 to  
Figure 13).  
Power consumption data for active and sleep modes with all peripherals enabled  
removed in Table 6 and Section 9.1.  
Parameters ts(pu) and ts(sw) removed from Section 7.15.  
Parameter tPD updated in Table 25.  
SSP dynamic characteristics added in Table 17.  
WDOsc and LFOsc max and min frequency values updated throughout the data sheet.  
Section 12.7 “UVLO protection circuit” added.  
Typical values for parameters ED, EL(adj), EO, EG, and CL in Table 20 “DAC static and  
dynamic characteristics” changed to maximum values.  
Parameter VO corrected for condition Tamb = 40 C to +85 C in Table 22.  
LPC11AXX v.1  
20120322  
Objective data sheet  
-
-
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
80 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
17. Legal information  
17.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
Suitability for use — NXP Semiconductors products are not designed,  
17.2 Definitions  
authorized or warranted to be suitable for use in life support, life-critical or  
safety-critical systems or equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
to result in personal injury, death or severe property or environmental  
damage. NXP Semiconductors and its suppliers accept no liability for  
inclusion and/or use of NXP Semiconductors products in such equipment or  
applications and therefore such inclusion and/or use is at the customer’s own  
risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Customers are responsible for the design and operation of their applications  
and products using NXP Semiconductors products, and NXP Semiconductors  
accepts no liability for any assistance with applications or customer product  
design. It is customer’s sole responsibility to determine whether the NXP  
Semiconductors product is suitable and fit for the customer’s applications and  
products planned, as well as for the planned application and use of  
customer’s third party customer(s). Customers should provide appropriate  
design and operating safeguards to minimize the risks associated with their  
applications and products.  
Product specification — The information and data provided in a Product  
data sheet shall define the specification of the product as agreed between  
NXP Semiconductors and its customer, unless NXP Semiconductors and  
customer have explicitly agreed otherwise in writing. In no event however,  
shall an agreement be valid in which the NXP Semiconductors product is  
deemed to offer functions and qualities beyond those described in the  
Product data sheet.  
NXP Semiconductors does not accept any liability related to any default,  
damage, costs or problem which is based on any weakness or default in the  
customer’s applications or products, or the application or use by customer’s  
third party customer(s). Customer is responsible for doing all necessary  
testing for the customer’s applications and products using NXP  
Semiconductors products in order to avoid a default of the applications and  
the products or of the application or use by customer’s third party  
customer(s). NXP does not accept any liability in this respect.  
17.3 Disclaimers  
Limited warranty and liability — Information in this document is believed to  
be accurate and reliable. However, NXP Semiconductors does not give any  
representations or warranties, expressed or implied, as to the accuracy or  
completeness of such information and shall have no liability for the  
consequences of use of such information. NXP Semiconductors takes no  
responsibility for the content in this document if provided by an information  
source outside of NXP Semiconductors.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) will cause permanent  
damage to the device. Limiting values are stress ratings only and (proper)  
operation of the device at these or any other conditions above those given in  
the Recommended operating conditions section (if present) or the  
Characteristics sections of this document is not warranted. Constant or  
repeated exposure to limiting values will permanently and irreversibly affect  
the quality and reliability of the device.  
In no event shall NXP Semiconductors be liable for any indirect, incidental,  
punitive, special or consequential damages (including - without limitation - lost  
profits, lost savings, business interruption, costs related to the removal or  
replacement of any products or rework charges) whether or not such  
damages are based on tort (including negligence), warranty, breach of  
contract or any other legal theory.  
Terms and conditions of commercial sale — NXP Semiconductors  
products are sold subject to the general terms and conditions of commercial  
sale, as published at http://www.nxp.com/profile/terms, unless otherwise  
agreed in a valid written individual agreement. In case an individual  
agreement is concluded only the terms and conditions of the respective  
agreement shall apply. NXP Semiconductors hereby expressly objects to  
applying the customer’s general terms and conditions with regard to the  
purchase of NXP Semiconductors products by customer.  
Notwithstanding any damages that customer might incur for any reason  
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards  
customer for the products described herein shall be limited in accordance  
with the Terms and conditions of commercial sale of NXP Semiconductors.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
No offer to sell or license — Nothing in this document may be interpreted or  
construed as an offer to sell products that is open for acceptance or the grant,  
conveyance or implication of any license under any copyrights, patents or  
other industrial or intellectual property rights.  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
81 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from competent authorities.  
whenever customer uses the product for automotive applications beyond  
NXP Semiconductors’ specifications such use shall be solely at customer’s  
own risk, and (c) customer fully indemnifies NXP Semiconductors for any  
liability, damages or failed product claims resulting from customer design and  
use of the product for automotive applications beyond NXP Semiconductors’  
standard warranty and NXP Semiconductors’ product specifications.  
Non-automotive qualified products — Unless this data sheet expressly  
states that this specific NXP Semiconductors product is automotive qualified,  
the product is not suitable for automotive use. It is neither qualified nor tested  
in accordance with automotive testing or application requirements. NXP  
Semiconductors accepts no liability for inclusion and/or use of  
17.4 Trademarks  
non-automotive qualified products in automotive equipment or applications.  
In the event that customer uses the product for design-in and use in  
automotive applications to automotive specifications and standards, customer  
(a) shall use the product without NXP Semiconductors’ warranty of the  
product for such automotive applications, use and specifications, and (b)  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
I2C-bus — logo is a trademark of NXP B.V.  
18. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
82 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
19. Contents  
1
General description. . . . . . . . . . . . . . . . . . . . . . 1  
7.22.1.2 Crystal Oscillator (SysOsc) . . . . . . . . . . . . . . 35  
7.22.1.3 Internal Low-Frequency Oscillator (LFOsc)  
and Watchdog Oscillator (WDOsc) . . . . . . . . 36  
2
Features and benefits . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Ordering information. . . . . . . . . . . . . . . . . . . . . 3  
Ordering options. . . . . . . . . . . . . . . . . . . . . . . . 4  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
3
7.22.2  
7.22.3  
7.22.4  
7.22.5  
7.22.6  
Clock input . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
System PLL . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Clock output. . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Wake-up process . . . . . . . . . . . . . . . . . . . . . . 36  
Power control. . . . . . . . . . . . . . . . . . . . . . . . . 36  
4
4.1  
5
6
6.1  
6.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 6  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 7  
7.22.6.1 Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
7.22.6.2 Power profiles . . . . . . . . . . . . . . . . . . . . . . . . 37  
7.23  
System control . . . . . . . . . . . . . . . . . . . . . . . . 37  
UnderVoltage LockOut (UVLO) protection. . . 37  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Brown-out detection. . . . . . . . . . . . . . . . . . . . 38  
Code security (Code Read Protection - CRP) 38  
APB interface. . . . . . . . . . . . . . . . . . . . . . . . . 38  
AHBLite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
External interrupt inputs. . . . . . . . . . . . . . . . . 39  
Emulation and debugging . . . . . . . . . . . . . . . 39  
7
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
7.7  
Functional description . . . . . . . . . . . . . . . . . . 23  
ARM Cortex-M0 processor . . . . . . . . . . . . . . . 23  
On-chip flash program memory . . . . . . . . . . . 23  
On-chip EEPROM data memory. . . . . . . . . . . 23  
On-chip SRAM . . . . . . . . . . . . . . . . . . . . . . . . 23  
On-chip ROM . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Nested Vectored Interrupt Controller (NVIC) . 24  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Interrupt sources. . . . . . . . . . . . . . . . . . . . . . . 25  
IOCON block . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Fast general purpose parallel I/O . . . . . . . . . . 25  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
USART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
SSP serial I/O controller . . . . . . . . . . . . . . . . . 26  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
I2C-bus serial I/O controller . . . . . . . . . . . . . . 26  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Configurable analog/mixed-signal  
subsystems. . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
10-bit ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Internal voltage reference. . . . . . . . . . . . . . . . 29  
Temperature sensor . . . . . . . . . . . . . . . . . . . . 30  
10-bit DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Analog comparator . . . . . . . . . . . . . . . . . . . . . 31  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
General purpose external event  
7.23.1  
7.23.2  
7.23.3  
7.23.4  
7.23.5  
7.23.6  
7.23.7  
7.24  
7.7.1  
7.7.2  
7.8  
8
Limiting values . . . . . . . . . . . . . . . . . . . . . . . . 40  
9
Static characteristics . . . . . . . . . . . . . . . . . . . 42  
Power consumption . . . . . . . . . . . . . . . . . . . 45  
Peripheral power consumption . . . . . . . . . . . 47  
Electrical pin characteristics. . . . . . . . . . . . . . 47  
7.9  
9.1  
9.2  
9.3  
7.9.1  
7.10  
7.10.1  
7.11  
7.11.1  
7.12  
7.12.1  
7.13  
10  
Dynamic characteristics. . . . . . . . . . . . . . . . . 51  
Power supply fluctuations . . . . . . . . . . . . . . . 51  
Flash/EEPROM memory . . . . . . . . . . . . . . . . 51  
External clock for oscillator in slave mode. . . 52  
Internal oscillators . . . . . . . . . . . . . . . . . . . . . 53  
I/O pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
I2C-bus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
SSP interfaces . . . . . . . . . . . . . . . . . . . . . . . . 56  
10.1  
10.2  
10.3  
10.4  
10.5  
10.6  
10.7  
7.14  
7.14.1  
7.15  
7.16  
7.17  
7.17.1  
7.18  
7.18.1  
7.19  
11  
Characteristics of analog peripherals. . . . . . 58  
12  
Application information . . . . . . . . . . . . . . . . . 66  
ADC usage notes. . . . . . . . . . . . . . . . . . . . . . 66  
Use of ADC input trigger signals . . . . . . . . . . 66  
XTAL input . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
XTAL Printed Circuit Board (PCB) layout  
guidelines. . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Standard I/O pad configuration . . . . . . . . . . . 68  
Reset pad configuration. . . . . . . . . . . . . . . . . 69  
UVLO protection and reset timer circuit. . . . . 69  
Guidelines for selecting a power supply filter  
for UVLO protection . . . . . . . . . . . . . . . . . . . . 69  
12.1  
12.2  
12.3  
12.4  
12.5  
12.6  
12.7  
12.8  
counter/timers. . . . . . . . . . . . . . . . . . . . . . . . . 33  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
System tick timer . . . . . . . . . . . . . . . . . . . . . . 33  
Windowed WatchDog Timer (WWDT) . . . . . . 33  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Clocking and power control . . . . . . . . . . . . . . 34  
Crystal and internal oscillators . . . . . . . . . . . . 34  
7.19.1  
7.20  
7.21  
7.21.1  
7.22  
7.22.1  
13  
14  
Package outline. . . . . . . . . . . . . . . . . . . . . . . . 71  
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
7.22.1.1 Internal RC Oscillator (IRC) . . . . . . . . . . . . . . 35  
continued >>  
LPC11AXX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 30 October 2012  
83 of 84  
LPC11Axx  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
15  
16  
Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 79  
17  
Legal information. . . . . . . . . . . . . . . . . . . . . . . 81  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 81  
Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
17.1  
17.2  
17.3  
17.4  
18  
19  
Contact information. . . . . . . . . . . . . . . . . . . . . 82  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2012.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 30 October 2012  
Document identifier: LPC11AXX  

相关型号:

LPC11Axx

NXP Microcontrollers Selection Guide
NXP

LPC11C00

NXP 50-MHz, 32-bit Cortex-M0? MCUs
NXP

LPC11C12

32-bit ARM Cortex-M0 microcontroller; 16/32 kB flash, 8 kB SRAM; C_CAN
NXP

LPC11C122FBD48-301

NXP 50-MHz, 32-bit Cortex-M0? MCUs
NXP

LPC11C12FB301

32-bit ARM Cortex-M0 microcontroller; 16/32 kB flash, 8 kB SRAM C_CAN
NXP

LPC11C12FBD48

32-bit ARM Cortex-M0 microcontroller; 16/32 kB flash, 8 kB SRAM C_CAN
NXP

LPC11C12FBD48-301

NXP 50-MHz, 32-bit Cortex-M0? MCUs
NXP

LPC11C12FBD48/301

32-bit ARM Cortex-M0 microcontroller; 16/32 kB flash, 8 kB SRAM; C_CAN
NXP

LPC11C14

NXP Microcontrollers Selection Guide
NXP

LPC11C14FB301

32-bit ARM Cortex-M0 microcontroller; 16/32 kB flash, 8 kB SRAM C_CAN
NXP

LPC11C14FBD48

32-bit ARM Cortex-M0 microcontroller; 16/32 kB flash, 8 kB SRAM C_CAN
NXP

LPC11C14FBD48,151

LPC11C14FBD48
NXP