LPC11U22FBD48/301 [NXP]

RISC MICROCONTROLLER;
LPC11U22FBD48/301
型号: LPC11U22FBD48/301
厂家: NXP    NXP
描述:

RISC MICROCONTROLLER

文件: 总74页 (文件大小:1810K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LPC11U2x  
32-bit ARM Cortex-M0 microcontroller; up to 32 kB flash; up  
to 10 kB SRAM and 4 kB EEPROM; USB device; USART  
Rev. 2.3 — 27 March 2014  
Product data sheet  
1. General description  
The LPC11U2x are an ARM Cortex-M0 based, low-cost 32-bit MCU family, designed for  
8/16-bit microcontroller applications, offering performance, low power, simple instruction  
set and memory addressing together with reduced code size compared to existing 8/16-bit  
architectures.  
The LPC11U2x operate at CPU frequencies of up to 50 MHz.  
Equipped with a highly flexible and configurable Full-Speed USB 2.0 device controller, the  
LPC11U2x brings unparalleled design flexibility and seamless integration to today’s  
demanding connectivity solutions.  
The peripheral complement of the LPC11U2x includes up to 32 kB of flash memory, up to  
10 kB of SRAM data memory and 4 kB EEPROM, one Fast-mode Plus I2C-bus interface,  
one RS-485/EIA-485 USART with support for synchronous mode and smart card  
interface, two SSP interfaces, four general-purpose counter/timers, a 10-bit ADC  
(Analog-to-Digital Converter), and up to 54 general-purpose I/O pins.  
For additional documentation related to the LPC11U2x parts, see Section 15  
“References”.  
2. Features and benefits  
System:  
ARM Cortex-M0 processor, running at frequencies of up to 50 MHz.  
ARM Cortex-M0 built-in Nested Vectored Interrupt Controller (NVIC).  
Non-Maskable Interrupt (NMI) input selectable from several input sources.  
System tick timer.  
Memory:  
Up to 32 kB on-chip flash program memory.  
Up to 4 kB on-chip EEPROM data memory; byte erasable and byte programmable.  
Up to 10 kB SRAM data memory.  
16 kB boot ROM.  
In-System Programming (ISP) and In-Application Programming (IAP) for flash and  
EEPROM via on-chip bootloader software.  
ROM-based USB drivers. Flash updates via USB supported.  
ROM-based 32-bit integer division routines.  
Debug options:  
LPC11U2x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Standard JTAG (Joint Test Action Group) test interface for BSDL (Boundary Scan  
Description Language).  
Serial Wire Debug.  
Digital peripherals:  
Up to 54 General-Purpose I/O (GPIO) pins with configurable pull-up/pull-down  
resistors, repeater mode, and open-drain mode.  
Up to 8 GPIO pins can be selected as edge and level sensitive interrupt sources.  
Two GPIO grouped interrupt modules enable an interrupt based on a  
programmable pattern of input states of a group of GPIO pins.  
High-current source output driver (20 mA) on one pin.  
High-current sink driver (20 mA) on true open-drain pins.  
Four general-purpose counter/timers with a total of up to 5 capture inputs and 13  
match outputs.  
Programmable Windowed WatchDog Timer (WWDT) with a dedicated, internal  
low-power WatchDog Oscillator (WDO).  
Analog peripherals:  
10-bit ADC with input multiplexing among eight pins.  
Serial interfaces:  
USB 2.0 full-speed device controller.  
USART (Universal Synchronous Asynchronous Receiver/Transmitter) with  
fractional baud rate generation, internal FIFO, a full modem control handshake  
interface, and support for RS-485/9-bit mode and synchronous mode. USART  
supports an asynchronous smart card interface (ISO 7816-3).  
Two SSP (Synchronous Serial Port) controllers with FIFO and multi-protocol  
capabilities.  
I2C-bus interface supporting the full I2C-bus specification and Fast-mode Plus with  
a data rate of up to 1 Mbit/s with multiple address recognition and monitor mode.  
Clock generation:  
Crystal Oscillator with an operating range of 1 MHz to 25 MHz (system oscillator).  
12 MHz high-frequency Internal RC oscillator (IRC) that can optionally be used as  
a system clock.  
Internal low-power, low-frequency WatchDog Oscillator (WDO) with programmable  
frequency output.  
PLL allows CPU operation up to the maximum CPU rate with the system oscillator  
or the IRC as clock sources.  
A second, dedicated PLL is provided for USB.  
Clock output function with divider that can reflect the crystal oscillator, the main  
clock, the IRC, or the watchdog oscillator.  
Power control:  
Integrated PMU (Power Management Unit) to minimize power consumption during  
Sleep, Deep-sleep, Power-down, and Deep power-down modes.  
Power profiles residing in boot ROM provide optimized performance and minimized  
power consumption for any given application through one simple function call.  
Four reduced power modes: Sleep, Deep-sleep, Power-down, and Deep  
power-down.  
Processor wake-up from Deep-sleep and Power-down modes via reset, selectable  
GPIO pins, watchdog interrupt, or USB port activity.  
LPC11U2X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.3 — 27 March 2014  
2 of 74  
LPC11U2x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Processor wake-up from Deep power-down mode using one special function pin.  
Power-On Reset (POR).  
Brownout detect with four separate thresholds for interrupt and forced reset.  
Unique device serial number for identification.  
Single 3.3 V power supply (1.8 V to 3.6 V).  
Temperature range 40 C to +85 C.  
Available as LQFP64, LQFP48, TFBGA48, and HVQFN33 packages.  
3. Applications  
Consumer peripherals  
Handheld scanners  
USB audio devices  
Medical  
Industrial control  
4. Ordering information  
Table 1.  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
SOT313-2  
SOT313-2  
n/a  
LPC11U22FBD48/301 LQFP48  
LPC11U23FBD48/301 LQFP48  
plastic low profile quad flat package; 48 leads; body 7 7 1.4 mm  
plastic low profile quad flat package; 48 leads; body 7 7 1.4 mm  
LPC11U24FHI33/301 HVQFN33 plastic thermal enhanced very thin quad flat package; no leads; 33  
terminals; body 5 5 0.85 mm  
LPC11U24FBD48/301 LQFP48  
plastic low profile quad flat package; 48 leads; body 7 7 1.4 mm  
SOT313-2  
LPC11U24FET48/301 TFBGA48 plastic thin fine-pitch ball grid array package; 48 balls; body 4.5 4.5 SOT1155-2  
0.7 mm  
LPC11U24FHN33/401 HVQFN33 plastic thermal enhanced very thin quad flat package; no leads; 33  
n/a  
terminals; body 7 7 0.85 mm  
LPC11U24FBD48/401 LQFP48  
LPC11U24FBD64/401 LQFP64  
plastic low profile quad flat package; 48 leads; body 7 7 1.4 mm  
SOT313-2  
plastic low profile quad flat package; 64 leads; body 10 10 1.4 mm SOT314-2  
4.1 Ordering options  
Table 2.  
Part ordering options  
Part Number  
Flash EEPROM Main  
USB  
USB I2C-bus SSP ADC  
GPIO Package  
(kB) (kB) SRAM SRAM  
FM+  
channels  
(kB)  
6
(kB)  
2
LPC11U22FBD48/301 16  
LPC11U23FBD48/301 24  
LPC11U24FHI33/301 32  
LPC11U24FBD48/301 32  
LPC11U24FET48/301 32  
LPC11U24FHN33/401 32  
LPC11U24FBD48/401 32  
LPC11U24FBD64/401 32  
1
1
2
2
2
4
4
4
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
8
8
8
8
8
8
8
8
40  
40  
26  
40  
40  
26  
40  
54  
LQFP48  
6
2
LQFP48  
6
2
HVQFN33 (5 5)  
LQFP48  
6
2
6
2
TFBGA48  
HVQFN33 (7 7)  
LQFP48  
8
2
8
2
8
2
LQFP64  
LPC11U2X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.3 — 27 March 2014  
3 of 74  
LPC11U2x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
5. Block diagram  
SWD, JTAG  
XTALIN XTALOUT  
RESET  
LPC11U2x  
SYSTEM OSCILLATOR  
TEST/DEBUG  
INTERFACE  
CLOCK  
GENERATION,  
IRC, WDO  
BOD  
POWER CONTROL,  
SYSTEM  
CLKOUT  
ARM  
FUNCTIONS  
CORTEX-M0  
POR  
PLL0  
USB PLL  
EEPROM  
1/2/4 kB  
FLASH  
SRAM  
ROM  
16 kB  
system bus  
slave  
16/24/32 kB  
8/10 kB  
master  
slave  
slave  
slave  
slave  
USB_DP  
USB_DM  
USB_VBUS  
USB DEVICE  
CONTROLLER  
HIGH-SPEED  
GPIO  
AHB-LITE BUS  
GPIO ports 0/1  
USB_FTOGGLE,  
USB_CONNECT  
slave  
AHB TO APB  
BRIDGE  
RXD  
TXD  
DCD, DSR , RI  
CTS, RTS, DTR  
SCLK  
USART/  
SMARTCARD INTERFACE  
(1)  
(1)  
AD[7:0]  
10-bit ADC  
SCL, SDA  
2
I C-BUS  
CT16B0_MAT[2:0]  
16-bit COUNTER/TIMER 0  
(2)  
CT16B0_CAP[1:0]  
SCK0, SSEL0,  
MISO0, MOSI0  
SSP0  
CT16B1_MAT[1:0]  
16-bit COUNTER/TIMER 1  
32-bit COUNTER/TIMER 0  
(2)  
CT16B1_CAP[1:0]  
SCK1, SSEL1,  
MISO1, MOSI1  
CT32B0_MAT[3:0]  
SSP1  
(2)  
CT32B0_CAP[1:0]  
IOCON  
CT32B1_MAT[3:0]  
32-bit COUNTER/TIMER 1  
(2)  
CT32B1_CAP[1:0]  
SYSTEM CONTROL  
PMU  
WINDOWED WATCHDOG  
TIMER  
GPIO pins  
GPIO INTERRUPTS  
GPIO pins  
GPIO pins  
GPIO GROUP0 INTERRUPTS  
GPIO GROUP1 INTERRUPTS  
002aag333  
(1) Not available on HVQFN33 packages.  
(2) CT32B1_CAP1 available on TFBGA48/LQFP64 packages only. CT16B0_CAP1 and CT16B1_CAP1 available on LQFP64  
packages only. CT32B0_CAP1 available on LQFP48/TFBGA48/LQFP64 packages only.  
Fig 1. Block diagram  
LPC11U2X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.3 — 27 March 2014  
4 of 74  
LPC11U2x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
6. Pinning information  
6.1 Pinning  
terminal 1  
index area  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
PIO1_19/DTR/SSEL1  
TRST/PIO0_14/AD3/CT32B1_MAT1  
TDO/PIO0_13/AD2/CT32B1_MAT0  
TMS/PIO0_12/AD1/CT32B1_CAP0  
TDI/PIO0_11/AD0/CT32B0_MAT3  
PIO0_22/AD6/CT16B1_MAT1/MISO1  
SWCLK/PIO0_10/SCK0/CT16B0_MAT2  
PIO0_9/MOSI0/CT16B0_MAT1  
RESET/PIO0_0  
PIO0_1/CLKOUT/CT32B0_MAT2/USB_FTOGGLE  
XTALIN  
LPC11U24  
XTALOUT  
V
DD  
PIO0_20/CT16B1_CAP0  
33 V  
SS  
PIO0_2/SSEL0/CT16B0_CAP0  
PIO0_8/MISO0/CT16B0_MAT0  
002aag621  
Transparent top view  
Fig 2. Pin configuration (HVQFN33)  
LPC11U2X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.3 — 27 March 2014  
5 of 74  
LPC11U2x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
ball A1  
index area  
LPC11U24FET48/301  
1
2
3
4
5
6
7
8
A
B
C
D
E
F
G
H
002aag623  
Transparent top view  
Fig 3. Pin configuration (TFBGA48)  
LPC11U2X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.3 — 27 March 2014  
6 of 74  
LPC11U2x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
1
2
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
PIO1_25/CT32B0_MAT1  
PIO1_13/DTR/CT16B0_MAT0/TXD  
TRST/PIO0_14/AD3/CT32B1_MAT1  
TDO/PIO0_13/AD2/CT32B1_MAT0  
TMS/PIO0_12/AD1/CT32B1_CAP0  
TDI/PIO0_11/AD0/CT32B0_MAT3  
PIO1_29/SCK0/CT32B0_CAP1  
PIO0_22/AD6/CT16B1_MAT1/MISO1  
SWCLK/PIO0_10/SCK0/CT16B0_MAT2  
PIO0_9/MOSI0/CT16B0_MAT1  
PIO0_8/MISO0/CT16B0_MAT0  
PIO1_21/DCD/MISO1  
PIO1_19/DTR/SSEL1  
RESET/PIO0_0  
3
4
PIO0_1/CLKOUT/CT32B0_MAT2/USB_FTOGGLE  
5
V
SS  
LPC11U22FBD48/301  
LPC11U23FBD48/301  
LPC11U24FBD48/301  
LPC11U24FBD48/401  
6
XTALIN  
7
XTALOUT  
8
V
DD  
9
PIO0_20/CT16B1_CAP0  
PIO0_2/SSEL0/CT16B0_CAP0  
PIO1_26/CT32B0_MAT2/RXD  
PIO1_27/CT32B0_MAT3/TXD  
10  
11  
12  
PIO1_31  
002aag622  
Fig 4. Pin configuration (LQFP48)  
LPC11U2X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.3 — 27 March 2014  
7 of 74  
LPC11U2x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
1
2
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
PIO1_0  
PIO1_25  
V
DD  
PIO1_13  
3
PIO1_19  
TRST/PIO0_14  
TDO/PIO0_13  
TMS/PIO0_12  
PIO1_11  
4
RESET/PIO0_0  
PIO0_1  
5
6
PIO1_7  
7
V
SS  
TDI/PIO0_11  
PIO1_29  
8
XTALIN  
LPC11U24FBD64/401  
9
XTALOUT  
PIO0_22  
10  
11  
12  
13  
14  
15  
16  
V
PIO1_8  
DD  
PIO0_20  
PIO1_10  
PIO0_2  
SWCLK/PIO0_10  
PIO0_9  
PIO0_8  
PIO1_26  
PIO1_27  
PIO1_4  
PIO1_21  
PIO1_2  
V
DD  
002aag624  
See Table 3 for the full pin name.  
Fig 5. Pin configuration (LQFP64)  
LPC11U2X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.3 — 27 March 2014  
8 of 74  
LPC11U2x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
6.2 Pin description  
Table 3 shows all pins and their assigned digital or analog functions in order of the GPIO  
port number. The default function after reset is listed first. All port pins have internal  
pull-up resistors enabled after reset except for the true open-drain pins PIO0_4 and  
PIO0_5.  
Every port pin has a corresponding IOCON register for programming the digital or analog  
function, the pull-up/pull-down configuration, the repeater, and the open-drain modes.  
The USART, counter/timer, and SSP functions are available on more than one port pin.  
Table 3.  
Symbol  
Pin description  
Reset Type Description  
state  
[1]  
[2]  
RESET/PIO0_0  
2
C1  
3
4
I; PU  
I
RESET — External reset input with 20 ns glitch filter.  
A LOW-going pulse as short as 50 ns on this pin  
resets the device, causing I/O ports and peripherals to  
take on their default states, and processor execution  
to begin at address 0. This pin also serves as the  
debug select input. LOW level selects the JTAG  
boundary scan. HIGH level selects the ARM SWD  
debug mode.  
In deep power-down mode, this pin must be pulled  
HIGH externally. The RESET pin can be left  
unconnected or be used as a GPIO pin if an external  
RESET function is not needed and Deep power-down  
mode is not used.  
-
I/O  
I/O  
PIO0_0 — General purpose digital input/output pin.  
[3]  
PIO0_1/CLKOUT/  
CT32B0_MAT2/  
USB_FTOGGLE  
3
C2  
4
5
I; PU  
PIO0_1 — General purpose digital input/output pin. A  
LOW level on this pin during reset starts the ISP  
command handler or the USB device enumeration.  
-
O
CLKOUT — Clockout pin.  
-
O
CT32B0_MAT2 — Match output 2 for 32-bit timer 0.  
USB_FTOGGLE — USB 1 ms Start-of-Frame signal.  
PIO0_2 — General purpose digital input/output pin.  
SSEL0 — Slave select for SSP0.  
-
O
[3]  
[3]  
PIO0_2/SSEL0/  
CT16B0_CAP0  
8
9
F1 10 13  
H2 14 19  
I; PU  
I/O  
I/O  
I
-
-
CT16B0_CAP0 — Capture input 0 for 16-bit timer 0.  
PIO0_3/USB_VBUS  
I; PU  
I/O  
PIO0_3 — General purpose digital input/output pin. A  
LOW level on this pin during reset starts the ISP  
command handler. A HIGH level during reset starts  
the USB device enumeration.  
-
I
USB_VBUS — Monitors the presence of USB bus  
power.  
[4]  
PIO0_4/SCL  
10 G3 15 20  
I; IA  
-
I/O  
I/O  
PIO0_4 — General purpose digital input/output pin  
(open-drain).  
SCL — I2C-bus clock input/output (open-drain).  
High-current sink only if I2C Fast-mode Plus is  
selected in the I/O configuration register.  
LPC11U2X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.3 — 27 March 2014  
9 of 74  
LPC11U2x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 3.  
Symbol  
Pin description  
Reset Type Description  
state  
[1]  
[4]  
[3]  
PIO0_5/SDA  
11 H3 16 21  
I; IA  
-
I/O  
I/O  
PIO0_5 — General purpose digital input/output pin  
(open-drain).  
SDA — I2C-bus data input/output (open-drain).  
High-current sink only if I2C Fast-mode Plus is  
selected in the I/O configuration register.  
PIO0_6/USB_CONNECT/ 15 H6 22 29  
SCK0  
I; PU  
-
I/O  
O
PIO0_6 — General purpose digital input/output pin.  
USB_CONNECT — Signal used to switch an external  
1.5 kresistor under software control. Used with the  
SoftConnect USB feature.  
-
I/O  
I/O  
SCK0 — Serial clock for SSP0.  
[5]  
[3]  
PIO0_7/CTS  
16 G7 23 30  
17 F8 27 36  
I; PU  
PIO0_7 — General purpose digital input/output pin  
(high-current output driver).  
-
I
CTS — Clear To Send input for USART.  
PIO0_8/MISO0/  
CT16B0_MAT0  
I; PU  
I/O  
I/O  
O
PIO0_8 — General purpose digital input/output pin.  
MISO0 — Master In Slave Out for SSP0.  
-
-
CT16B0_MAT0 — Match output 0 for 16-bit timer 0.  
PIO0_9 — General purpose digital input/output pin.  
MOSI0 — Master Out Slave In for SSP0.  
[3]  
[3]  
PIO0_9/MOSI0/  
CT16B0_MAT1  
18 F7 28 37  
19 E7 29 38  
I; PU  
I/O  
I/O  
O
-
-
CT16B0_MAT1 — Match output 1 for 16-bit timer 0.  
SWCLK/PIO0_10/SCK0/  
CT16B0_MAT2  
I; PU  
I
SWCLK — Serial wire clock and test clock TCK for  
JTAG interface.  
-
I/O  
O
O
I
PIO0_10 — General purpose digital input/output pin.  
SCK0 — Serial clock for SSP0.  
-
-
CT16B0_MAT2 — Match output 2 for 16-bit timer 0.  
TDI — Test Data In for JTAG interface.  
[6]  
[6]  
[6]  
TDI/PIO0_11/AD0/  
CT32B0_MAT3  
21 D8 32 42  
22 C7 33 44  
23 C8 34 45  
I; PU  
-
I/O  
I
PIO0_11 — General purpose digital input/output pin.  
AD0 — A/D converter, input 0.  
-
-
O
I
CT32B0_MAT3 — Match output 3 for 32-bit timer 0.  
TMS — Test Mode Select for JTAG interface.  
PIO_12 — General purpose digital input/output pin.  
AD1 — A/D converter, input 1.  
TMS/PIO0_12/AD1/  
CT32B1_CAP0  
I; PU  
-
I/O  
I
-
-
I
CT32B1_CAP0 — Capture input 0 for 32-bit timer 1.  
TDO — Test Data Out for JTAG interface.  
PIO0_13 — General purpose digital input/output pin.  
AD2 — A/D converter, input 2.  
TDO/PIO0_13/AD2/  
CT32B1_MAT0  
I; PU  
O
I/O  
I
-
-
-
O
CT32B1_MAT0 — Match output 0 for 32-bit timer 1.  
LPC11U2X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.3 — 27 March 2014  
10 of 74  
LPC11U2x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 3.  
Symbol  
Pin description  
Reset Type Description  
state  
[1]  
[6]  
[6]  
[6]  
TRST/PIO0_14/AD3/  
CT32B1_MAT1  
24 B7 35 46  
25 B6 39 52  
26 A6 40 53  
I; PU  
I
TRST — Test Reset for JTAG interface.  
-
I/O  
I
PIO0_14 — General purpose digital input/output pin.  
AD3 — A/D converter, input 3.  
-
-
O
CT32B1_MAT1 — Match output 1 for 32-bit timer 1.  
SWDIO — Serial wire debug input/output.  
PIO0_15 — General purpose digital input/output pin.  
AD4 — A/D converter, input 4.  
SWDIO/PIO0_15/AD4/  
CT32B1_MAT2  
I; PU  
I/O  
I/O  
I
-
-
-
O
CT32B1_MAT2 — Match output 2 for 32-bit timer 1.  
PIO0_16/AD5/  
CT32B1_MAT3/WAKEUP  
I; PU  
I/O  
PIO0_16 — General purpose digital input/output pin.  
In Deep power-down mode, this pin functions as the  
WAKEUP pin with 20 ns glitch filter. Pull this pin HIGH  
externally to enter Deep power-down mode. Pull this  
pin LOW to exit Deep power-down mode. A  
LOW-going pulse as short as 50 ns wakes up the  
part.  
-
I
AD5 — A/D converter, input 5.  
-
O
I/O  
O
I
CT32B1_MAT3 — Match output 3 for 32-bit timer 1.  
PIO0_17 — General purpose digital input/output pin.  
RTS — Request To Send output for USART.  
CT32B0_CAP0 — Capture input 0 for 32-bit timer 0.  
[3]  
PIO0_17/RTS/  
30 A3 45 60  
I; PU  
CT32B0_CAP0/SCLK  
-
-
-
I/O  
SCLK — Serial clock input/output for USART in  
synchronous mode.  
[3]  
[3]  
PIO0_18/RXD/  
CT32B0_MAT0  
31 B3 46 61  
I; PU  
-
I/O  
I
PIO0_18 — General purpose digital input/output pin.  
RXD — Receiver input for USART. Used in UART ISP  
mode.  
-
O
CT32B0_MAT0 — Match output 0 for 32-bit timer 0.  
PIO0_19 — General purpose digital input/output pin.  
PIO0_19/TXD/  
CT32B0_MAT1  
32 B2 47 62  
I; PU  
-
I/O  
O
TXD — Transmitter output for USART. Used in UART  
ISP mode.  
-
O
CT32B0_MAT1 — Match output 1 for 32-bit timer 0.  
PIO0_20 — General purpose digital input/output pin.  
CT16B1_CAP0 — Capture input 0 for 16-bit timer 1.  
PIO0_21 — General purpose digital input/output pin.  
CT16B1_MAT0 — Match output 0 for 16-bit timer 1.  
MOSI1 — Master Out Slave In for SSP1.  
[3]  
[3]  
PIO0_20/CT16B1_CAP0  
7
F2  
9
11  
I; PU  
I/O  
I
-
PIO0_21/CT16B1_MAT0/ 12 G4 17 22  
MOSI1  
I; PU  
I/O  
O
-
-
I/O  
I/O  
I
[6]  
PIO0_22/AD6/  
20 E8 30 40  
I; PU  
PIO0_22 — General purpose digital input/output pin.  
AD6 — A/D converter, input 6.  
CT16B1_MAT1/MISO1  
-
-
-
O
CT16B1_MAT1 — Match output 1 for 16-bit timer 1.  
MISO1 — Master In Slave Out for SSP1.  
I/O  
LPC11U2X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.3 — 27 March 2014  
11 of 74  
LPC11U2x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 3.  
Symbol  
Pin description  
Reset Type Description  
state  
[1]  
[6]  
[3]  
[3]  
[3]  
[3]  
[3]  
[3]  
PIO0_23/AD7  
27 A5 42 56  
I; PU  
I/O  
I
PIO0_23 — General purpose digital input/output pin.  
AD7 — A/D converter, input 7.  
-
PIO1_0/CT32B1_MAT0  
PIO1_1/CT32B1_MAT1  
PIO1_2/CT32B1_MAT2  
PIO1_3/CT32B1_MAT3  
PIO1_4/CT32B1_CAP0  
PIO1_5/CT32B1_CAP1  
-
-
-
-
-
-
-
-
-
-
-
-
-
1
I; PU  
I/O  
O
PIO1_0 — General purpose digital input/output pin.  
CT32B1_MAT0 — Match output 0 for 32-bit timer 1.  
PIO1_1 — General purpose digital input/output pin.  
CT32B1_MAT1 — Match output 1 for 32-bit timer 1.  
PIO1_2 — General purpose digital input/output pin.  
CT32B1_MAT2 — Match output 2 for 32-bit timer 1.  
PIO1_3 — General purpose digital input/output pin.  
CT32B1_MAT3 — Match output 3 for 32-bit timer 1.  
PIO1_4 — General purpose digital input/output pin.  
CT32B1_CAP0 — Capture input 0 for 32-bit timer 1.  
PIO1_5 — General purpose digital input/output pin.  
CT32B1_CAP1 — Capture input 1 for 32-bit timer 1.  
PIO1_6 — General purpose digital input/output pin.  
PIO1_7 — General purpose digital input/output pin.  
PIO1_8 — General purpose digital input/output pin.  
PIO1_9 — General purpose digital input/output pin.  
PIO1_10 — General purpose digital input/output pin.  
PIO1_11 — General purpose digital input/output pin.  
PIO1_12 — General purpose digital input/output pin.  
PIO1_13 — General purpose digital input/output pin.  
DTR — Data Terminal Ready output for USART.  
CT16B0_MAT0 — Match output 0 for 16-bit timer 0.  
TXD — Transmitter output for USART.  
-
-
17  
34  
50  
16  
32  
I; PU  
I/O  
O
-
-
I; PU  
-
I/O  
O
-
I; PU  
-
I/O  
O
-
I; PU  
-
I/O  
I
H8  
I; PU  
-
I/O  
I
[3]  
[3]  
[3]  
[3]  
[3]  
[3]  
[3]  
[3]  
PIO1_6  
PIO1_7  
PIO1_8  
PIO1_9  
PIO1_10  
PIO1_11  
PIO1_12  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
64  
6
I; PU  
I; PU  
I; PU  
I; PU  
I; PU  
I; PU  
I; PU  
I; PU  
-
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
39  
55  
12  
43  
59  
PIO1_13/DTR/  
CT16B0_MAT0/TXD  
B8 36 47  
-
O
-
O
[3]  
[3]  
[3]  
PIO1_14/DSR/  
CT16B0_MAT1/RXD  
-
A8 37 49  
I; PU  
-
I/O  
I
PIO1_14 — General purpose digital input/output pin.  
DSR — Data Set Ready input for USART.  
-
O
CT16B0_MAT1 — Match output 1 for 16-bit timer 0.  
RXD — Receiver input for USART.  
-
I
PIO1_15/DCD/  
CT16B0_MAT2/SCK1  
28 A4 43 57  
I; PU  
I/O  
I
PIO1_15 — General purpose digital input/output pin.  
DCD — Data Carrier Detect input for USART.  
CT16B0_MAT2 — Match output 2 for 16-bit timer 0.  
SCK1 — Serial clock for SSP1.  
-
O
-
I/O  
I/O  
I
PIO1_16/RI/  
CT16B0_CAP0  
-
A2 48 63  
I; PU  
PIO1_16 — General purpose digital input/output pin.  
RI — Ring Indicator input for USART.  
-
-
I
CT16B0_CAP0 — Capture input 0 for 16-bit timer 0.  
LPC11U2X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.3 — 27 March 2014  
12 of 74  
LPC11U2x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 3.  
Symbol  
Pin description  
Reset Type Description  
state  
[1]  
[3]  
[3]  
[3]  
[3]  
[3]  
[3]  
[3]  
PIO1_17/CT16B0_CAP1/  
RXD  
-
-
1
-
-
-
-
-
-
23  
28  
3
I; PU  
I/O  
I
PIO1_17 — General purpose digital input/output pin.  
CT16B0_CAP1 — Capture input 1 for 16-bit timer 0.  
RXD — Receiver input for USART.  
-
-
I
PIO1_18/CT16B1_CAP1/  
TXD  
-
-
I; PU  
I/O  
I
PIO1_18 — General purpose digital input/output pin.  
CT16B1_CAP1 — Capture input 1 for 16-bit timer 1.  
TXD — Transmitter output for USART.  
-
-
O
PIO1_19/DTR/SSEL1  
PIO1_20/DSR/SCK1  
PIO1_21/DCD/MISO1  
PIO1_22/RI/MOSI1  
B1  
2
I; PU  
I/O  
O
PIO1_19 — General purpose digital input/output pin.  
DTR — Data Terminal Ready output for USART.  
SSEL1 — Slave select for SSP1.  
-
-
I/O  
I/O  
I
H1 13 18  
G8 26 35  
A7 38 51  
H4 18 24  
G6 21 27  
I; PU  
PIO1_20 — General purpose digital input/output pin.  
DSR — Data Set Ready input for USART.  
-
-
I/O  
I/O  
I
SCK1 — Serial clock for SSP1.  
I; PU  
PIO1_21 — General purpose digital input/output pin.  
DCD — Data Carrier Detect input for USART.  
MISO1 — Master In Slave Out for SSP1.  
-
-
I/O  
I/O  
I
I; PU  
PIO1_22 — General purpose digital input/output pin.  
RI — Ring Indicator input for USART.  
-
-
I/O  
I/O  
O
MOSI1 — Master Out Slave In for SSP1.  
PIO1_23/CT16B1_MAT1/  
SSEL1  
I; PU  
PIO1_23 — General purpose digital input/output pin.  
CT16B1_MAT1 — Match output 1 for 16-bit timer 1.  
SSEL1 — Slave select for SSP1.  
-
-
I/O  
I/O  
O
[3]  
[3]  
[3]  
PIO1_24/CT32B0_MAT0  
PIO1_25/CT32B0_MAT1  
-
-
-
I; PU  
PIO1_24 — General purpose digital input/output pin.  
CT32B0_MAT0 — Match output 0 for 32-bit timer 0.  
PIO1_25 — General purpose digital input/output pin.  
CT32B0_MAT1 — Match output 1 for 32-bit timer 0.  
PIO1_26 — General purpose digital input/output pin.  
CT32B0_MAT2 — Match output 2 for 32-bit timer 0.  
RXD — Receiver input for USART.  
-
A1  
1
2
I; PU  
I/O  
O
-
PIO1_26/CT32B0_MAT2/  
RXD  
G2 11 14  
G1 12 15  
H7 24 31  
I; PU  
I/O  
O
-
-
I
[3]  
[3]  
PIO1_27/CT32B0_MAT3/  
TXD  
-
-
I; PU  
I/O  
O
PIO1_27 — General purpose digital input/output pin.  
CT32B0_MAT3 — Match output 3 for 32-bit timer 0.  
TXD — Transmitter output for USART.  
-
-
O
PIO1_28/CT32B0_CAP0/  
SCLK  
I; PU  
I/O  
I
PIO1_28 — General purpose digital input/output pin.  
CT32B0_CAP0 — Capture input 0 for 32-bit timer 0.  
-
-
I/O  
SCLK — Serial clock input/output for USART in  
synchronous mode.  
[3]  
PIO1_29/SCK0/  
CT32B0_CAP1  
-
D7 31 41  
I; PU  
I/O  
I/O  
I
PIO1_29 — General purpose digital input/output pin.  
SCK0 — Serial clock for SSP0.  
-
-
CT32B0_CAP1 — Capture input 1 for 32-bit timer 0.  
LPC11U2X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.3 — 27 March 2014  
13 of 74  
LPC11U2x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 3.  
Symbol  
Pin description  
Reset Type Description  
state  
[1]  
[3]  
[7]  
[7]  
[8]  
PIO1_31  
USB_DM  
USB_DP  
XTALIN  
-
-
25  
-
I; PU  
I/O  
PIO1_31 — General purpose digital input/output pin.  
USB_DM — USB bidirectional Dline.  
13 G5 19 25  
14 H5 20 26  
F
F
-
-
-
-
USB_DP — USB bidirectional D+ line.  
4
D1  
6
8
Input to the oscillator circuit and internal clock  
generator circuits. Input voltage must not exceed  
1.8 V.  
[8]  
XTALOUT  
VDD  
5
E1  
7
9
-
-
-
-
Output from the oscillator amplifier.  
6; B4; 8;  
29 E2 44 33;  
10;  
Supply voltage to the internal regulator, the external  
rail, and the ADC. Also used as the ADC reference  
voltage.  
48;  
58  
VSS  
33 B5; 5;  
7;  
-
-
Ground.  
D2 41 54  
[1] Pin state at reset for default function: I = Input; O = Output; PU = internal pull-up enabled; IA = inactive, no pull-up/down enabled;  
F = floating; If the pins are not used, tie floating pins to ground or power to minimize power consumption.  
[2] 5 V tolerant pad. RESET functionality is not available in Deep power-down mode. Use the WAKEUP pin to reset the chip and wake up  
from Deep power-down mode. An external pull-up resistor is required on this pin for the Deep power-down mode. See Figure 32 for the  
reset pad configuration.  
[3] 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors and configurable hysteresis (see Figure 31).  
[4] I2C-bus pin compliant with the I2C-bus specification for I2C standard mode, I2C Fast-mode, and I2C Fast-mode Plus. The pin requires an  
external pull-up to provide output functionality. When power is switched off, this pin is floating and does not disturb the I2C lines.  
Open-drain configuration applies to all functions on this pin.  
[5] 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors and configurable hysteresis (see Figure 31);  
includes high-current output driver.  
[6] 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors, configurable hysteresis, and analog input.  
When configured as a ADC input, digital section of the pad is disabled and the pin is not 5 V tolerant (see Figure 31); includes digital  
input glitch filter.  
[7] Pad provides USB functions. It is designed in accordance with the USB specification, revision 2.0 (Full-speed and Low-speed mode  
only). This pad is not 5 V tolerant.  
[8] When the system oscillator is not used, connect XTALIN and XTALOUT as follows: XTALIN can be left floating or can be grounded  
(grounding is preferred to reduce susceptibility to noise). Leave XTALOUT floating.  
7. Functional description  
7.1 On-chip flash programming memory  
The LPC11U2x contain 24 kB or 32 kB on-chip flash program memory. The flash can be  
programmed using In-System Programming (ISP) or In-Application Programming (IAP)  
via the on-chip boot loader software.  
7.2 EEPROM  
The LPC11U2x contain 1 kB, 2 kB, or 4 kB of on-chip byte-erasable and  
byte-programmable EEPROM data memory. The EEPROM can be programmed using  
In-Application Programming (IAP) via the on-chip boot loader software.  
LPC11U2X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.3 — 27 March 2014  
14 of 74  
LPC11U2x  
NXP Semiconductors  
7.3 SRAM  
32-bit ARM Cortex-M0 microcontroller  
The LPC11U2x contain a total of 8 kB or 10 kB on-chip static RAM memory.  
7.4 On-chip ROM  
The on-chip ROM contains the boot loader and the following Application Programming  
Interfaces (APIs):  
In-System Programming (ISP) and In-Application Programming (IAP) support for flash  
IAP support for EEPROM  
USB API  
Power profiles for configuring power consumption and PLL settings  
32-bit integer division routines  
7.5 Memory map  
The LPC11U2x incorporates several distinct memory regions, shown in the following  
figures. Figure 6 shows the overall map of the entire address space from the user  
program viewpoint following reset. The interrupt vector area supports address remapping.  
The AHB (Advanced High-performance Bus) peripheral area is 2 MB in size and is divided  
to allow for up to 128 peripherals. The APB (Advanced Peripheral Bus) peripheral area is  
512 kB in size and is divided to allow for up to 32 peripherals. Each peripheral of either  
type is allocated 16 kB of space. This addressing scheme allows simplifying the address  
decoding for each peripheral.  
LPC11U2X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.3 — 27 March 2014  
15 of 74  
LPC11U2x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
LPC11U2x  
4 GB  
0xFFFF FFFF  
reserved  
0xE010 0000  
0xE000 0000  
private peripheral bus  
reserved  
APB peripherals  
0x4008 0000  
0x5000 4000  
0x5000 0000  
GPIO  
25 - 31 reserved  
0x4006 4000  
GPIO GROUP1 INT  
GPIO GROUP0 INT  
24  
23  
22  
0x4006 0000  
0x4005 C000  
reserved  
0x4008 4000  
SSP1  
USB  
0x4005 8000  
0x4004 C000  
0x4008 0000  
0x4000 0000  
20 - 21 reserved  
APB peripherals  
1 GB  
GPIO interrupts  
19  
0x4004 C000  
0x4004 8000  
0x4004 4000  
0x4004 0000  
reserved  
system control  
IOCON  
18  
17  
16  
0x2000 4800  
SSP0  
2 kB USB RAM  
reserved  
0x2000 4000  
0x2000 0000  
15 flash/EEPROM controller  
0x4003 C000  
0x4003 8000  
0.5 GB  
14  
PMU  
reserved  
10 - 13 reserved  
0x1FFF 4000  
0x1FFF 0000  
0x4002 8000  
0x4002 4000  
0x4002 0000  
16 kB boot ROM  
reserved  
reserved  
9
8
7
6
5
4
3
2
reserved  
ADC  
0x4001 C000  
0x4001 8000  
0x1000 2000  
32-bit counter/timer 1  
8 kB SRAM (LPC11U2x/401)  
6 kB SRAM (LPC11U2x/301)  
32-bit counter/timer 0  
16-bit counter/timer 1  
16-bit counter/timer 0  
USART/SMART CARD  
WWDT  
0x1000 1800  
0x1000 0000  
0x4001 4000  
0x4001 0000  
0x4000 C000  
0x4000 8000  
reserved  
0x0000 8000  
0x0000 6000  
1
0
0x4000 4000  
0x4000 0000  
32 kB on-chip flash (LPC11U24)  
2
I C-bus  
24 kB on-chip flash (LPC11U23)  
16 kB on-chip flash (LPC11U22)  
0x0000 4000  
0x0000 00C0  
active interrupt vectors  
0x0000 0000  
0x0000 0000  
0 GB  
002aag594  
Fig 6. LPC11U2x memory map  
7.6 Nested Vectored Interrupt Controller (NVIC)  
The Nested Vectored Interrupt Controller (NVIC) is part of the Cortex-M0. The tight  
coupling to the CPU allows for low interrupt latency and efficient processing of late arriving  
interrupts.  
7.6.1 Features  
Controls system exceptions and peripheral interrupts.  
In the LPC11U2x, the NVIC supports 24 vectored interrupts.  
LPC11U2X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.3 — 27 March 2014  
16 of 74  
LPC11U2x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Four programmable interrupt priority levels, with hardware priority level masking.  
Software interrupt generation.  
7.6.2 Interrupt sources  
Each peripheral device has one interrupt line connected to the NVIC but can have several  
interrupt flags. Individual interrupt flags can also represent more than one interrupt  
source.  
7.7 IOCON block  
The IOCON block allows selected pins of the microcontroller to have more than one  
function. Configuration registers control the multiplexers to allow connection between the  
pin and the on-chip peripherals.  
Connect peripherals to the appropriate pins before activating the peripheral and before  
enabling any related interrupt. Activity of any enabled peripheral function that is not  
mapped to a related pin is treated as undefined.  
7.7.1 Features  
Programmable pull-up, pull-down, or repeater mode.  
All GPIO pins (except PIO0_4 and PIO0_5) are pulled up to 3.3 V (VDD = 3.3 V) if their  
pull-up resistor is enabled.  
Programmable pseudo open-drain mode.  
Programmable 10 ns glitch filter on pins PIO0_22, PIO0_23, and PIO0_11 to  
PIO0_16. The glitch filter is turned on by default.  
Programmable hysteresis.  
Programmable input inverter.  
7.8 General-Purpose Input/Output GPIO  
The GPIO registers control device pin functions that are not connected to a specific  
peripheral function. Pins can be dynamically configured as inputs or outputs. Multiple  
outputs can be set or cleared in one write operation.  
LPC11U2x use accelerated GPIO functions:  
GPIO registers are a dedicated AHB peripheral so that the fastest possible I/O timing  
can be achieved.  
Entire port value can be written in one instruction.  
Any GPIO pin providing a digital function can be programmed to generate an interrupt on  
a level, a rising or falling edge, or both.  
The GPIO block consists of three parts:  
1. The GPIO ports.  
2. The GPIO pin interrupt block to control eight GPIO pins selected as pin interrupts.  
3. Two GPIO group interrupt blocks to control two combined interrupts from all GPIO  
pins.  
LPC11U2X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.3 — 27 March 2014  
17 of 74  
LPC11U2x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
7.8.1 Features  
GPIO pins can be configured as input or output by software.  
All GPIO pins default to inputs with interrupt disabled at reset.  
Pin registers allow pins to be sensed and set individually.  
Up to eight GPIO pins can be selected from all GPIO pins to create an edge- or  
level-sensitive GPIO interrupt request.  
Any pin or pins in each port can trigger a port interrupt.  
7.9 USB interface  
The Universal Serial Bus (USB) is a 4-wire bus that supports communication between a  
host and one or more (up to 127) peripherals. The host controller allocates the USB  
bandwidth to attached devices through a token-based protocol. The bus supports  
hot-plugging and dynamic configuration of the devices. The host controller initiates all  
transactions.  
The LPC11U2x USB interface consists of a full-speed device controller with on-chip PHY  
(PHYsical layer) for device functions.  
Remark: Configure the LPC11U2x in default power mode with the power profiles before  
using the USB (see Section 7.17.5.1). Do not use the USB with the part in performance,  
efficiency, or low-power mode.  
7.9.1 Full-speed USB device controller  
The device controller enables 12 Mbit/s data exchange with a USB Host controller. It  
consists of a register interface, serial interface engine, and endpoint buffer memory. The  
serial interface engine decodes the USB data stream and writes data to the appropriate  
endpoint buffer. The status of a completed USB transfer or error condition is indicated via  
status registers. If enabled, an interrupt is generated.  
7.9.1.1 Features  
Dedicated USB PLL available.  
Fully compliant with USB 2.0 specification (full speed).  
Supports 10 physical (5 logical) endpoints including one control endpoint.  
Single and double buffering supported.  
Each non-control endpoint supports bulk, interrupt, or isochronous endpoint types.  
Supports wake-up from Deep-sleep mode and Power-down mode on USB activity  
and remote wake-up.  
Supports SoftConnect.  
7.10 USART  
The LPC11U2x contains one USART.  
The USART includes full modem control, support for synchronous mode, and a smart  
card interface. The RS-485/9-bit mode allows both software address detection and  
automatic address detection using 9-bit mode.  
LPC11U2X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.3 — 27 March 2014  
18 of 74  
LPC11U2x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
The USART uses a fractional baud rate generator. Standard baud rates such as  
115200 Bd can be achieved with any crystal frequency above 2 MHz.  
7.10.1 Features  
Maximum USART data bit rate of 3.125 Mbit/s.  
16 byte receive and transmit FIFOs.  
Register locations conform to 16C550 industry standard.  
Receiver FIFO trigger points at 1 B, 4 B, 8 B, and 14 B.  
Built-in fractional baud rate generator covering wide range of baud rates without a  
need for external crystals of particular values.  
Fractional divider for baud rate control, auto baud capabilities and FIFO control  
mechanism that enables software flow control implementation.  
Support for RS-485/9-bit mode.  
Support for modem control.  
Support for synchronous mode.  
Includes smart card interface.  
7.11 SSP serial I/O controller  
The SSP controllers operate on a SSP, 4-wire SSI, or Microwire bus. It can interact with  
multiple masters and slaves on the bus. Only a single master and a single slave can  
communicate on the bus during a given data transfer. The SSP supports full duplex  
transfers, with frames of 4 bit to 16 bit of data flowing from the master to the slave and  
from the slave to the master. In practice, often only one of these data flows carries  
meaningful data.  
7.11.1 Features  
Maximum SSP speed of 25 Mbit/s (master) or 4.17 Mbit/s (slave) (in SSP mode)  
Compatible with Motorola SPI (Serial Peripheral Interface), 4-wire Texas Instruments  
SSI (Serial Synchronous Interface), and National Semiconductor Microwire buses  
Synchronous serial communication  
Master or slave operation  
8-frame FIFOs for both transmit and receive  
4-bit to 16-bit frame  
7.12 I2C-bus serial I/O controller  
The LPC11U2x contain one I2C-bus controller.  
The I2C-bus is bidirectional for inter-IC control using only two wires: a Serial CLock line  
(SCL) and a Serial DAta line (SDA). Each device is recognized by a unique address and  
can operate as either a receiver-only device (e.g., an LCD driver) or a transmitter with the  
capability to both receive and send information (such as memory). Transmitters and/or  
receivers can operate in either master or slave mode, depending on whether the chip has  
to initiate a data transfer or is only addressed. The I2C-bus is a multi-master bus, and  
more than one bus master connected to the interface can be controlled the bus.  
LPC11U2X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.3 — 27 March 2014  
19 of 74  
LPC11U2x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
7.12.1 Features  
The I2C-interface is an I2C-bus compliant interface with open-drain pins. The I2C-bus  
interface supports Fast-mode Plus with bit rates up to 1 Mbit/s.  
Easy to configure as master, slave, or master/slave.  
Programmable clocks allow versatile rate control.  
Bidirectional data transfer between masters and slaves.  
Multi-master bus (no central master).  
Arbitration between simultaneously transmitting masters without corruption of serial  
data on the bus.  
Serial clock synchronization allows devices with different bit rates to communicate via  
one serial bus.  
Serial clock synchronization can be used as a handshake mechanism to suspend and  
resume serial transfer.  
The I2C-bus can be used for test and diagnostic purposes.  
The I2C-bus controller supports multiple address recognition and a bus monitor mode.  
7.13 10-bit ADC  
The LPC11U2x contains one ADC. It is a single 10-bit successive approximation ADC with  
eight channels.  
7.13.1 Features  
10-bit successive approximation ADC.  
Input multiplexing among 8 pins.  
Power-down mode.  
Measurement range 0 V to VDD  
.
10-bit conversion time 2.44 s (up to 400 kSamples/s).  
Burst conversion mode for single or multiple inputs.  
Optional conversion on transition of input pin or timer match signal.  
Individual result registers for each ADC channel to reduce interrupt overhead.  
7.14 General purpose external event counter/timers  
The LPC11U2x includes two 32-bit counter/timers and two 16-bit counter/timers. The  
counter/timer is designed to count cycles of the system derived clock. It can optionally  
generate interrupts or perform other actions at specified timer values, based on four  
match registers. Each counter/timer also includes one capture input to trap the timer value  
when an input signal transitions, optionally generating an interrupt.  
7.14.1 Features  
A 32-bit/16-bit timer/counter with a programmable 32-bit/16-bit prescaler.  
Counter or timer operation.  
One capture channel per timer, that can take a snapshot of the timer value when an  
input signal transitions. A capture event can also generate an interrupt.  
LPC11U2X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.3 — 27 March 2014  
20 of 74  
LPC11U2x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Four match registers per timer that allow:  
Continuous operation with optional interrupt generation on match.  
Stop timer on match with optional interrupt generation.  
Reset timer on match with optional interrupt generation.  
Up to four external outputs corresponding to match registers, with the following  
capabilities:  
Set LOW on match.  
Set HIGH on match.  
Toggle on match.  
Do nothing on match.  
The timer and prescaler can be configured to be cleared on a designated capture  
event. This feature permits easy pulse-width measurement by clearing the timer on  
the leading edge of an input pulse and capturing the timer value on the trailing edge.  
7.15 System tick timer  
The ARM Cortex-M0 includes a system tick timer (SYSTICK) that is intended to generate  
a dedicated SYSTICK exception at a fixed time interval (typically 10 ms).  
7.16 Windowed WatchDog Timer (WWDT)  
The purpose of the WWDT is to prevent an unresponsive system state. If software fails to  
update the watchdog within a programmable time window, the watchdog resets the  
microcontroller  
7.16.1 Features  
Internally resets chip if not periodically reloaded during the programmable time-out  
period.  
Optional windowed operation requires reload to occur between a minimum and  
maximum time period, both programmable.  
Optional warning interrupt can be generated at a programmable time before watchdog  
time-out.  
Software enables the WWDT, but a hardware reset or a watchdog reset/interrupt is  
required to disable the WWDT.  
Incorrect feed sequence causes reset or interrupt, if enabled.  
Flag to indicate watchdog reset.  
Programmable 24-bit timer with internal prescaler.  
Selectable time period from (Tcy(WDCLK) 256 4) to (Tcy(WDCLK) 224 4) in  
multiples of Tcy(WDCLK) 4.  
The Watchdog Clock (WDCLK) source can be selected from the IRC or the dedicated  
watchdog oscillator (WDO). The clock source selection provides a wide range of  
potential timing choices of watchdog operation under different power conditions.  
LPC11U2X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.3 — 27 March 2014  
21 of 74  
LPC11U2x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
7.17 Clocking and power control  
7.17.1 Integrated oscillators  
The LPC11U2x include three independent oscillators: the system oscillator, the Internal  
RC oscillator (IRC), and the watchdog oscillator. Each oscillator can be used for more  
than one purpose as required in a particular application.  
Following reset, the LPC11U2x operates from the internal RC oscillator until software  
switches to a different clock source. The IRC allows the system to operate without any  
external crystal and the bootloader code to operate at a known frequency.  
See Figure 7 for an overview of the LPC11U2x clock generation.  
LPC11U2X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.3 — 27 March 2014  
22 of 74  
LPC11U2x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
CPU, system control,  
PMU  
system clock  
n
SYSTEM CLOCK  
DIVIDER  
memories,  
peripheral clocks  
SYSAHBCLKCTRLn  
(AHB clock enable)  
IRC oscillator  
main clock  
SSP0 PERIPHERAL  
CLOCK DIVIDER  
SSP0  
UART  
SSP1  
watchdog oscillator  
USART PERIPHERAL  
CLOCK DIVIDER  
MAINCLKSEL  
(main clock select)  
SSP1 PERIPHERAL  
CLOCK DIVIDER  
IRC oscillator  
SYSTEM PLL  
system oscillator  
SYSPLLCLKSEL  
(system PLL clock select)  
USB PLL  
system oscillator  
USB 48 MHz CLOCK  
DIVIDER  
USB  
USBPLLCLKSEL  
(USB clock select)  
USBUEN  
(USB clock update enable)  
IRC oscillator  
system oscillator  
watchdog oscillator  
CLKOUT PIN CLOCK  
DIVIDER  
CLKOUT pin  
CLKOUTUEN  
(CLKOUT update enable)  
IRC oscillator  
WDT  
watchdog oscillator  
WDCLKSEL  
(WDT clock select)  
002aaf892  
Fig 7. LPC11U2x clocking generation block diagram  
7.17.1.1 Internal RC oscillator  
The IRC can be used as the clock source for the WDT, and/or as the clock that drives the  
system PLL and then the CPU. The nominal IRC frequency is 12 MHz.  
Upon power-up, any chip reset, or wake-up from Deep power-down mode, the LPC11U2x  
use the IRC as the clock source. Software can later switch to one of the other available  
clock sources.  
LPC11U2X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.3 — 27 March 2014  
23 of 74  
LPC11U2x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
7.17.1.2 System oscillator  
The system oscillator can be used as the clock source for the CPU, with or without using  
the PLL. On the LPC11U2x, use the system oscillator to provide the clock source to USB.  
The system oscillator operates at frequencies of 1 MHz to 25 MHz. This frequency can be  
boosted to a higher frequency, up to the maximum CPU operating frequency, by the  
system PLL.  
7.17.1.3 Watchdog oscillator  
The watchdog oscillator can be used as a clock source that directly drives the CPU, the  
watchdog timer, or the CLKOUT pin. The watchdog oscillator nominal frequency is  
programmable between 7.8 kHz and 1.7 MHz. The frequency spread over processing and  
temperature is 40 % (see also Table 13).  
7.17.2 System PLL and USB PLL  
The LPC11U2x contain a system PLL and a dedicated PLL for generating the 48 MHz  
USB clock. The system and USB PLLs are identical.  
The PLL accepts an input clock frequency in the range of 10 MHz to 25 MHz. The input  
frequency is multiplied up to a high frequency with a Current Controlled Oscillator (CCO).  
The multiplier can be an integer value from 1 to 32. The CCO operates in the range of  
156 MHz to 320 MHz. To support this frequency range, an additional divider keeps the  
CCO within its frequency range while the PLL is providing the desired output frequency.  
The output divider can be set to divide by 2, 4, 8, or 16 to produce the output clock. The  
PLL output frequency must be lower than 100 MHz. Since the minimum output divider  
value is 2, it is insured that the PLL output has a 50 % duty cycle. The PLL is turned off  
and bypassed following a chip reset. Software can enable the PLL later. The program  
must configure and activate the PLL, wait for the PLL to lock, and then connect to the PLL  
as a clock source. The PLL settling time is 100 s.  
7.17.3 Clock output  
The LPC11U2x feature a clock output function that routes the IRC oscillator, the system  
oscillator, the watchdog oscillator, or the main clock to an output pin.  
7.17.4 Wake-up process  
The LPC11U2x begin operation by using the 12 MHz IRC oscillator as the clock source at  
power-up and when awakened from Deep power-down mode. This mechanism allows  
chip operation to resume quickly. If the application uses the main oscillator or the PLL,  
software must enable these components and wait for them to stabilize. Only then can the  
system use the PLL and main oscillator as a clock source.  
7.17.5 Power control  
The LPC11U2x support various power control features. There are four special modes of  
processor power reduction: Sleep mode, Deep-sleep mode, Power-down mode, and  
Deep power-down mode. The CPU clock rate can also be controlled as needed by  
changing clock sources, reconfiguring PLL values, and/or altering the CPU clock divider  
value. This power control mechanism allows a trade-off of power versus processing speed  
based on application requirements. In addition, a register is provided for shutting down the  
clocks to individual on-chip peripherals. This register allows fine-tuning of power  
LPC11U2X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.3 — 27 March 2014  
24 of 74  
LPC11U2x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
consumption by eliminating all dynamic power use in any peripherals that are not required  
for the application. Selected peripherals have their own clock divider which provides even  
better power control.  
7.17.5.1 Power profiles  
The power consumption in Active and Sleep modes can be optimized for the application  
through simple calls to the power profile. The power configuration routine configures the  
LPC11U2x for one of the following power modes:  
Default mode corresponding to power configuration after reset.  
CPU performance mode corresponding to optimized processing capability.  
Efficiency mode corresponding to optimized balance of current consumption and CPU  
performance.  
Low-current mode corresponding to lowest power consumption.  
In addition, the power profile includes routines to select the optimal PLL settings for a  
given system clock and PLL input clock.  
Remark: When using the USB, configure the LPC11U2x in Default mode.  
7.17.5.2 Sleep mode  
When Sleep mode is entered, the clock to the core is stopped. Resumption from the Sleep  
mode does not need any special sequence but re-enabling the clock to the ARM core.  
In Sleep mode, execution of instructions is suspended until either a reset or interrupt  
occurs. Peripheral functions continue operation during Sleep mode and can generate  
interrupts to cause the processor to resume execution. Sleep mode eliminates dynamic  
power used by the processor itself, by memory systems and related controllers, and by  
internal buses.  
7.17.5.3 Deep-sleep mode  
In Deep-sleep mode, the LPC11U2x is in Sleep-mode and all peripheral clocks and all  
clock sources are off except for the IRC. The IRC output is disabled unless the IRC is  
selected as input to the watchdog timer. In addition all analog blocks are shut down and  
the flash is in stand-by mode. In Deep-sleep mode, the application can keep the watchdog  
oscillator and the BOD circuit running for self-timed wake-up and BOD protection.  
The LPC11U2x can wake up from Deep-sleep mode via reset, selected GPIO pins, a  
watchdog timer interrupt, or an interrupt generating USB port activity.  
Deep-sleep mode saves power and allows for short wake-up times.  
7.17.5.4 Power-down mode  
In Power-down mode, the LPC11U2x is in Sleep-mode and all peripheral clocks and all  
clock sources are off except for watchdog oscillator if selected. In addition all analog  
blocks and the flash are shut down. In Power-down mode, the application can keep the  
BOD circuit running for BOD protection.  
The LPC11U2x can wake up from Power-down mode via reset, selected GPIO pins, a  
watchdog timer interrupt, or an interrupt generating USB port activity.  
LPC11U2X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.3 — 27 March 2014  
25 of 74  
LPC11U2x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Power-down mode reduces power consumption compared to Deep-sleep mode at the  
expense of longer wake-up times.  
7.17.5.5 Deep power-down mode  
In Deep power-down mode, power is shut off to the entire chip except for the WAKEUP  
pin. The LPC11U2x can wake up from Deep power-down mode via the WAKEUP pin.  
The LPC11U2x can be prevented from entering Deep power-down mode by setting a lock  
bit in the PMU block. Locking out Deep power-down mode enables the application to keep  
the watchdog timer or the BOD running at all times.  
When entering Deep power-down mode, an external pull-up resistor is required on the  
WAKEUP pin to hold it HIGH. Pull the RESET pin HIGH to prevent it from floating while in  
Deep power-down mode.  
7.17.6 System control  
7.17.6.1 Reset  
Reset has four sources on the LPC11U2x: the RESET pin, the Watchdog reset, power-on  
reset (POR), and the BrownOut Detection (BOD) circuit. The RESET pin is a Schmitt  
trigger input pin. Assertion of chip reset by any source, once the operating voltage attains  
a usable level, starts the IRC and initializes the flash controller.  
A LOW-going pulse as short as 50 ns resets the part.  
When the internal Reset is removed, the processor begins executing at address 0, which  
is initially the Reset vector mapped from the boot block. At that point, all of the processor  
and peripheral registers have been initialized to predetermined values.  
In Deep power-down mode, an external pull-up resistor is required on the RESET pin.  
7.17.6.2 Brownout detection  
The LPC11U2x includes four levels for monitoring the voltage on the VDD pin. If this  
voltage falls below one of the four selected levels, the BOD asserts an interrupt signal to  
the NVIC. This signal can be enabled for interrupt in the Interrupt Enable Register in the  
NVIC to cause a CPU interrupt. Alternatively, software can monitor the signal by reading a  
dedicated status register. Four additional threshold levels can be selected to cause a  
forced reset of the chip.  
7.17.6.3 Code security (Code Read Protection - CRP)  
CRP provides different levels of security in the system so that access to the on-chip flash  
and use of the Serial Wire Debugger (SWD) and In-System Programming (ISP) can be  
restricted. Programming a specific pattern into a dedicated flash location invokes CRP.  
IAP commands are not affected by the CRP.  
In addition, ISP entry via the PIO0_1 pin can be disabled without enabling CRP. For  
details, see the LPC11Uxx user manual.  
There are three levels of Code Read Protection:  
LPC11U2X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.3 — 27 March 2014  
26 of 74  
LPC11U2x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
1. CRP1 disables access to the chip via the SWD and allows partial flash update  
(excluding flash sector 0) using a limited set of the ISP commands. This mode is  
useful when CRP is required and flash field updates are needed but all sectors cannot  
be erased.  
2. CRP2 disables access to the chip via the SWD and only allows full flash erase and  
update using a reduced set of the ISP commands.  
3. Running an application with level CRP3 selected, fully disables any access to the chip  
via the SWD pins and the ISP. This mode effectively disables ISP override using  
PIO0_1 pin as well. If necessary, the application must provide a flash update  
mechanism using IAP calls or using a call to the reinvoke ISP command to enable  
flash update via the USART.  
CAUTION  
If level three Code Read Protection (CRP3) is selected, no future factory testing can be  
performed on the device.  
In addition to the three CRP levels, sampling of pin PIO0_1 for valid user code can be  
disabled. For details, see the LPC11Uxx user manual.  
7.17.6.4 APB interface  
The APB peripherals are located on one APB bus.  
7.17.6.5 AHBLite  
The AHBLite connects the CPU bus of the ARM Cortex-M0 to the flash memory, the main  
static RAM, and the ROM.  
7.17.6.6 External interrupt inputs  
All GPIO pins can be level or edge sensitive interrupt inputs.  
LPC11U2X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.3 — 27 March 2014  
27 of 74  
LPC11U2x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
7.18 Emulation and debugging  
Debug functions are integrated into the ARM Cortex-M0. Serial wire debug functions are  
supported in addition to a standard JTAG boundary scan. The ARM Cortex-M0 is  
configured to support up to four breakpoints and two watch points.  
The RESET pin selects between the JTAG boundary scan (RESET = LOW) and the ARM  
SWD debug (RESET = HIGH). The ARM SWD debug port is disabled while the  
LPC11U2x is in reset.  
To perform boundary scan testing, follow these steps:  
1. Erase any user code residing in flash.  
2. Power up the part with the RESET pin pulled HIGH externally.  
3. Wait for at least 250 s.  
4. Pull the RESET pin LOW externally.  
5. Perform boundary scan operations.  
6. Once the boundary scan operations are completed, assert the TRST pin to enable the  
SWD debug mode, and release the RESET pin (pull HIGH).  
Remark: The JTAG interface cannot be used for debug purposes.  
LPC11U2X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.3 — 27 March 2014  
28 of 74  
LPC11U2x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
8. Limiting values  
Table 4.  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).[1]  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
[2]  
VDD  
supply voltage (core and  
external rail)  
0.5  
+4.6  
V
[5][2]  
VI  
input voltage  
5 V tolerant digital I/O pins;  
VDD 1.8 V  
0.5  
+5.5  
V
V
VDD = 0 V  
0.5  
0.5  
+3.6  
+5.5  
[2][4]  
5 V tolerant open-drain pins  
PIO0_4 and PIO0_5  
[2]  
[3]  
VIA  
analog input voltage  
pin configured as analog input  
0.5  
4.6  
V
IDD  
supply current  
per supply pin  
-
-
-
100  
100  
100  
mA  
mA  
mA  
ISS  
ground current  
I/O latch-up current  
per ground pin  
(0.5VDD) < VI < (1.5VDD);  
Tj < 125 C  
Ilatch  
[6]  
Tstg  
storage temperature  
non-operating  
65  
+150  
150  
C  
C  
Tj(max)  
maximum junction  
temperature  
-
Ptot(pack)  
total power dissipation (per  
package)  
based on package heat  
transfer, not device power  
consumption  
-
-
1.5  
W
V
[7]  
VESD  
electrostatic discharge  
voltage  
human body model; all pins  
+6500  
[1] The following applies to the limiting values:  
a) This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive  
static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated  
maximum.  
b) Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to VSS unless  
otherwise noted.  
c) The limiting values are stress ratings only. Operating the part at these values is not recommended, and proper operation is not  
guaranteed. The conditions for functional operation are specified in Table 5.  
[2] Maximum/minimum voltage above the maximum operating voltage (see Table 5) and below ground that can be applied for a short time  
(< 10 ms) to a device without leading to irrecoverable failure. Failure includes the loss of reliability and shorter lifetime of the device.  
[3] See Table 6 for maximum operating voltage.  
[4] VDD present or not present. Compliant with the I2C-bus standard. 5.5 V can be applied to this pin when VDD is powered down.  
[5] Including voltage on outputs in 3-state mode.  
[6] The maximum non-operating storage temperature is different than the temperature for required shelf life which should be determined  
based on required shelf lifetime. Please refer to the JEDEC spec (J-STD-033B.1) for further details.  
[7] Human body model: equivalent to discharging a 100 pF capacitor through a 1.5 kseries resistor.  
LPC11U2X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.3 — 27 March 2014  
29 of 74  
LPC11U2x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
9. Static characteristics  
Table 5.  
Static characteristics  
Tamb = 40 C to +85 C, unless otherwise specified.  
Symbol Parameter  
Conditions  
Min  
Typ[1]  
Max  
Unit  
[2]  
VDD  
supply voltage (core  
and external rail)  
1.8  
3.3  
3.6  
V
IDD  
supply current  
Active mode; VDD = 3.3 V;  
Tamb = 25 C; code  
while(1){}  
executed from flash;  
system clock = 12 MHz  
[3][4][5]  
[6][7][8]  
-
-
-
2
7
1
-
-
-
mA  
mA  
mA  
[4][5][6]  
[7][8][9]  
system clock = 50 MHz  
[3][4][5]  
[6][7][8]  
Sleep mode;  
VDD = 3.3 V; Tamb = 25 C;  
system clock = 12 MHz  
[4][7]  
Deep-sleep mode; VDD = 3.3 V;  
Tamb = 25 C  
-
-
-
360  
2
-
-
-
A  
A  
nA  
Power-down mode; VDD = 3.3 V;  
Tamb = 25 C  
[10]  
Deep power-down mode;  
220  
VDD = 3.3 V; Tamb = 25 C  
Standard port pins, RESET  
IIL  
LOW-level input current VI = 0 V; on-chip pull-up resistor  
disabled  
-
0.5  
0.5  
0.5  
-
10  
10  
10  
5.0  
nA  
nA  
nA  
V
IIH  
IOZ  
VI  
HIGH-level input  
current  
VI = VDD; on-chip pull-down resistor  
disabled  
-
OFF-state output  
current  
VO = 0 V; VO = VDD; on-chip  
pull-up/down resistors disabled  
-
[11][12]  
[13]  
input voltage  
pin configured to provide a digital  
function  
0
VO  
output voltage  
output active  
0
-
-
VDD  
-
V
V
VIH  
HIGH-level input  
voltage  
0.7VDD  
VIL  
LOW-level input voltage  
hysteresis voltage  
-
-
0.3VDD  
V
Vhys  
VOH  
-
0.4  
-
V
HIGH-level output  
voltage  
2.0 V VDD 3.6 V; IOH = 4 mA  
1.8 V VDD < 2.0 V; IOH = 3 mA  
2.0 V VDD 3.6 V; IOL = 4 mA  
1.8 V VDD < 2.0 V; IOL = 3 mA  
VOH = VDD 0.4 V;  
VDD 0.4  
-
-
-
-
-
-
V
VDD 0.4  
-
V
VOL  
LOW-level output  
voltage  
-
0.4  
0.4  
-
V
-
V
IOH  
HIGH-level output  
current  
4  
mA  
2.0 V VDD 3.6 V  
1.8 V VDD < 2.0 V  
3  
-
-
mA  
LPC11U2X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.3 — 27 March 2014  
30 of 74  
LPC11U2x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 5.  
Static characteristics …continued  
Tamb = 40 C to +85 C, unless otherwise specified.  
Symbol Parameter  
Conditions  
Min  
Typ[1]  
Max  
Unit  
IOL  
LOW-level output  
current  
VOL = 0.4 V  
4
-
-
mA  
2.0 V VDD 3.6 V  
1.8 V VDD < 2.0 V  
3
-
-
-
-
mA  
mA  
[14]  
[14]  
IOHS  
IOLS  
HIGH-level short-circuit VOH = 0 V  
output current  
45  
LOW-level short-circuit VOL = VDD  
output current  
-
-
50  
mA  
Ipd  
Ipu  
pull-down current  
pull-up current  
VI = 5 V  
VI = 0 V;  
10  
50  
150  
A  
A  
15  
50  
85  
2.0 V VDD 3.6 V  
1.8 V VDD < 2.0 V  
10  
50  
85  
A  
A  
VDD < VI < 5 V  
0
0
0
High-drive output pin (PIO0_7)  
IIL  
LOW-level input current VI = 0 V; on-chip pull-up resistor  
disabled  
-
0.5  
0.5  
0.5  
-
10  
10  
10  
5.0  
nA  
nA  
nA  
V
IIH  
IOZ  
VI  
HIGH-level input  
current  
VI = VDD; on-chip pull-down resistor  
disabled  
-
OFF-state output  
current  
VO = 0 V; VO = VDD; on-chip  
pull-up/down resistors disabled  
-
[11][12]  
[13]  
input voltage  
pin configured to provide a digital  
function  
0
VO  
output voltage  
output active  
0
-
-
VDD  
-
V
V
VIH  
HIGH-level input  
voltage  
0.7VDD  
VIL  
LOW-level input voltage  
hysteresis voltage  
-
-
-
-
-
-
-
-
0.3VDD  
V
Vhys  
VOH  
0.4  
-
V
HIGH-level output  
voltage  
2.5 V VDD 3.6 V; IOH = 20 mA  
1.8 V VDD < 2.5 V; IOH = 12 mA  
2.0 V VDD 3.6 V; IOL = 4 mA  
1.8 V VDD < 2.0 V; IOL = 3 mA  
VDD 0.4  
-
V
VDD 0.4  
-
V
VOL  
LOW-level output  
voltage  
-
0.4  
0.4  
-
V
-
V
IOH  
HIGH-level output  
current  
VOH = VDD 0.4 V;  
2.5 V VDD 3.6 V  
20  
mA  
1.8 V VDD < 2.5 V  
VOL = 0.4 V  
12  
4
-
-
-
-
mA  
mA  
IOL  
LOW-level output  
current  
2.0 V VDD 3.6 V  
1.8 V VDD < 2.0 V  
3
-
-
-
-
mA  
mA  
[14]  
IOLS  
LOW-level short-circuit VOL = VDD  
output current  
50  
Ipd  
Ipu  
pull-down current  
pull-up current  
VI = 5 V  
VI = 0 V  
10  
50  
150  
A  
A  
15  
50  
85  
2.0 V VDD 3.6 V  
1.8 V VDD < 2.0 V  
10  
50  
85  
A  
A  
VDD < VI < 5 V  
0
0
0
LPC11U2X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.3 — 27 March 2014  
31 of 74  
LPC11U2x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 5.  
Static characteristics …continued  
Tamb = 40 C to +85 C, unless otherwise specified.  
Symbol Parameter  
Conditions  
Min  
Typ[1]  
Max  
Unit  
I2C-bus pins (PIO0_4 and PIO0_5)  
VIH  
HIGH-level input  
voltage  
0.7VDD  
-
-
V
VIL  
LOW-level input voltage  
hysteresis voltage  
-
-
0.3VDD  
V
Vhys  
IOL  
-
0.05VDD  
-
-
-
V
LOW-level output  
current  
VOL = 0.4 V; I2C-bus pins configured  
as standard mode pins  
3.5  
mA  
2.0 V VDD 3.6 V  
1.8 V VDD < 2.0 V  
VOL = 0.4 V; I2C-bus pins configured  
as Fast-mode Plus pins  
3
-
-
-
-
IOL  
LOW-level output  
current  
20  
mA  
2.0 V VDD 3.6 V  
1.8 V VDD < 2.0 V  
VI = VDD  
16  
-
-
-
[15]  
ILI  
input leakage current  
2
4
A  
A  
VI = 5 V  
-
10  
22  
Oscillator pins  
Vi(xtal)  
crystal input voltage  
0.5  
0.5  
1.8  
1.8  
1.95  
1.95  
V
V
Vo(xtal)  
USB pins  
IOZ  
crystal output voltage  
[2]  
OFF-state output  
current  
0 V < VI < 3.3 V  
-
-
10  
A  
[2]  
[2]  
VBUS  
VDI  
bus supply voltage  
-
-
-
5.25  
-
V
V
differential input  
(D+) (D)  
0.2  
sensitivity voltage  
[2]  
[2]  
VCM  
differential common  
mode voltage range  
includes VDI range  
0.8  
0.8  
-
-
2.5  
2.0  
V
V
Vth(rs)se single-ended receiver  
switching threshold  
voltage  
[2]  
[2]  
VOL  
LOW-level output  
voltage  
for low-/full-speed;  
RL of 1.5 kto 3.6 V  
-
-
-
0.18  
3.5  
V
V
VOH  
HIGH-level output  
voltage  
driven; for low-/full-speed;  
RL of 15 kto GND  
2.8  
[2]  
Ctrans  
ZDRV  
transceiver capacitance pin to GND  
-
-
-
20  
pF  
[16][2]  
driver output  
with 33 series resistor; steady state  
drive  
36  
44.1  
impedance for driver  
which is not high-speed  
capable  
LPC11U2X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.3 — 27 March 2014  
32 of 74  
LPC11U2x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 5.  
Static characteristics …continued  
Tamb = 40 C to +85 C, unless otherwise specified.  
Symbol Parameter  
Pin capacitance  
Conditions  
Min  
Typ[1]  
Max  
Unit  
Cio  
input/output  
capacitance  
pins configured for analog function  
I2C-bus pins (PIO0_4 and PIO0_5)  
pins configured as GPIO  
-
-
-
-
-
-
7.1  
2.5  
2.8  
pF  
pF  
pF  
[1] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply voltages.  
[2] For USB operation 3.0 V VDD 3.6 V. Guaranteed by design.  
[3] IRC enabled; system oscillator disabled; system PLL disabled.  
[4]  
IDD measurements were performed with all pins configured as GPIO outputs driven LOW and pull-up resistors disabled.  
[5] BOD disabled.  
[6] All peripherals disabled in the AHBCLKCTRL register. Peripheral clocks to USART, SSP0/1 disabled in the SYSCON block.  
[7] USB_DP and USB_DM pulled LOW externally.  
[8] Low-current mode PWR_LOW_CURRENT selected when running the set_power routine in the power profiles.  
[9] IRC disabled; system oscillator enabled; system PLL enabled.  
[10] WAKEUP pin pulled HIGH externally. An external pull-up resistor is required on the RESET pin for the Deep power-down mode.  
[11] Including voltage on outputs in 3-state mode.  
[12] VDD supply voltage must be present.  
[13] 3-state outputs go into 3-state mode in Deep power-down mode.  
[14] Allowed as long as the current limit does not exceed the maximum current allowed by the device.  
[15] To VSS  
.
[16] Includes external resistors of 33   1 % on USB_DP and USB_DM.  
LPC11U2X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.3 — 27 March 2014  
33 of 74  
LPC11U2x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 6.  
ADC static characteristics  
Tamb = 40 C to +85 C unless otherwise specified; ADC frequency 4.5 MHz, VDD = 2.5 V to 3.6 V.  
Symbol  
VIA  
Parameter  
Conditions  
Min  
Typ  
Max  
VDD  
1
Unit  
V
analog input voltage  
analog input capacitance  
differential linearity error  
integral non-linearity  
offset error  
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Cia  
pF  
[1][2]  
[3]  
ED  
1  
LSB  
LSB  
LSB  
%
EL(adj)  
EO  
1.5  
3.5  
0.6  
4  
[4]  
[5]  
EG  
gain error  
[6]  
ET  
absolute error  
LSB  
k  
Rvsi  
voltage source interface  
resistance  
40  
[7][8]  
Ri  
input resistance  
-
-
2.5  
M  
[1] The ADC is monotonic, there are no missing codes.  
[2] The differential linearity error (ED) is the difference between the actual step width and the ideal step width. See Figure 8.  
[3] The integral non-linearity (EL(adj)) is the peak difference between the center of the steps of the actual and the ideal transfer curve after  
appropriate adjustment of gain and offset errors. See Figure 8.  
[4] The offset error (EO) is the absolute difference between the straight line which fits the actual curve and the straight line which fits the  
ideal curve. See Figure 8.  
[5] The gain error (EG) is the relative difference in percent between the straight line fitting the actual transfer curve after removing offset  
error, and the straight line which fits the ideal transfer curve. See Figure 8.  
[6] The absolute error (ET) is the maximum difference between the center of the steps of the actual transfer curve of the non-calibrated  
ADC and the ideal transfer curve. See Figure 8.  
[7] Tamb = 25 C; maximum sampling frequency fs = 400 kSamples/s and analog input capacitance Cia = 1 pF.  
[8] Input resistance Ri depends on the sampling frequency fs: Ri = 1 / (fs Cia).  
LPC11U2X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.3 — 27 March 2014  
34 of 74  
LPC11U2x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
offset  
error  
gain  
error  
E
E
O
G
1023  
1022  
1021  
1020  
1019  
1018  
(2)  
7
code  
out  
(1)  
6
5
4
3
2
1
0
(5)  
(4)  
(3)  
1 LSB  
(ideal)  
1018 1019 1020 1021 1022 1023 1024  
1
2
3
4
5
6
7
V
(LSB  
)
ideal  
IA  
offset error  
E
O
V
V  
SS  
DD  
1 LSB =  
1024  
002aaf426  
(1) Example of an actual transfer curve.  
(2) The ideal transfer curve.  
(3) Differential linearity error (ED).  
(4) Integral non-linearity (EL(adj)).  
(5) Center of a step of the actual transfer curve.  
Fig 8. ADC characteristics  
LPC11U2X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.3 — 27 March 2014  
35 of 74  
LPC11U2x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
9.1 BOD static characteristics  
Table 7.  
BOD static characteristics[1]  
Tamb = 25 C.  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Vth  
threshold voltage interrupt level 1  
assertion  
-
-
2.22  
2.35  
-
-
V
V
de-assertion  
interrupt level 2  
assertion  
-
-
2.52  
2.66  
-
-
V
V
de-assertion  
interrupt level 3  
assertion  
-
-
2.80  
2.90  
-
-
V
V
de-assertion  
reset level 0  
assertion  
-
-
1.46  
1.63  
-
-
V
V
de-assertion  
reset level 1  
assertion  
-
-
2.06  
2.15  
-
-
V
V
de-assertion  
reset level 2  
assertion  
-
-
2.35  
2.43  
-
-
V
V
de-assertion  
reset level 3  
assertion  
-
-
2.63  
2.71  
-
-
V
V
de-assertion  
[1] Interrupt levels are selected by writing the level value to the BOD control register BODCTRL, see the  
LPC11Uxx user manual.  
9.2 Power consumption  
Power measurements in Active, Sleep, and Deep-sleep modes were performed under the  
following conditions (see the LPC11Uxx user manual):  
Configure all pins as GPIO with pull-up resistor disabled in the IOCON block.  
Configure GPIO pins as outputs using the GPIOnDIR registers.  
Write 0 to all GPIOnDATA registers to drive the outputs LOW.  
LPC11U2X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.3 — 27 March 2014  
36 of 74  
LPC11U2x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
002aag749  
9
6
3
0
(2)  
48 MHz  
I
DD  
(mA)  
(2)  
36 MHz  
(2)  
24 MHz  
(1)  
12 MHz  
1.8  
2.4  
3.0  
3.6  
V
(V)  
DD  
Conditions: Tamb = 25 C; Active mode entered executing code while(1){} from flash;  
internal pull-up resistors disabled; BOD disabled; all peripherals disabled in the  
SYSAHBCLKCTRL register; all peripheral clocks disabled; low-current mode; USB_DP and  
USB_DM pulled LOW externally.  
(1) System oscillator and system PLL disabled; IRC enabled.  
(2) System oscillator and system PLL enabled; IRC disabled.  
Fig 9. Typical supply current versus regulator supply voltage VDD in active mode  
002aag750  
9
(2)  
48 MHz  
36 MHz  
I
DD  
(mA)  
6
3
0
(2)  
(2)  
(1)  
24 MHz  
12 MHz  
-40  
-15  
10  
35  
60  
85  
temperature (°C)  
Conditions: VDD = 3.3 V; Active mode entered executing code while(1){} from flash; internal  
pull-up resistors disabled; BOD disabled; all peripherals disabled in the SYSAHBCLKCTRL  
register; all peripheral clocks disabled; low-current mode; USB_DP and USB_DM pulled LOW  
externally.  
(1) System oscillator and system PLL disabled; IRC enabled.  
(2) System oscillator and system PLL enabled; IRC disabled.  
Fig 10. Typical supply current versus temperature in Active mode  
LPC11U2X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.3 — 27 March 2014  
37 of 74  
LPC11U2x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
002aag751  
4
3
2
1
0
I
DD  
(mA)  
(2)  
48 MHz  
(2)  
36 MHz  
(2)  
24 MHz  
(1)  
12 MHz  
-40  
-15  
10  
35  
60  
85  
temperature (°C)  
Conditions: VDD = 3.3 V; Sleep mode entered from flash; internal pull-up resistors disabled; BOD  
disabled; all peripherals disabled in the SYSAHBCLKCTRL register; all peripheral clocks disabled;  
low-current mode; USB_DP and USB_DM pulled LOW externally.  
(1) System oscillator and system PLL disabled; IRC enabled.  
(2) System oscillator and system PLL enabled; IRC disabled.  
Fig 11. Typical supply current versus temperature in Sleep mode  
002aag745  
385  
I
DD  
(μA)  
375  
V
V
= 3.6 V  
= 3.3 V  
DD  
DD  
365  
355  
345  
V
V
= 2.0 V  
= 1.8 V  
DD  
DD  
-40  
-15  
10  
35  
60  
85  
temperature (°C)  
Conditions: BOD disabled; all oscillators and analog blocks turned off in the PDSLEEPCFG  
register; USB_DP and USB_DM pulled LOW externally.  
Fig 12. Typical supply current versus temperature in Deep-sleep mode  
LPC11U2X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.3 — 27 March 2014  
38 of 74  
LPC11U2x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
002aag746  
20  
I
DD  
V
= 3.6 V, 3.3 V  
DD  
(μA)  
V
= 2.0 V  
= 1.8 V  
DD  
V
DD  
15  
10  
5
0
-40  
-15  
10  
35  
60  
85  
temperature (°C)  
Conditions: BOD disabled; all oscillators and analog blocks turned off in the PDSLEEPCFG  
register; USB_DP and USB_DM pulled LOW externally.  
Fig 13. Typical supply current versus temperature in Power-down mode  
002aag747  
0.8  
I
DD  
V
DD  
V
DD  
V
DD  
V
DD  
= 3.6 V  
= 3.3 V  
= 2.0 V  
= 1.8 V  
(μA)  
0.6  
0.4  
0.2  
0
-40  
-15  
10  
35  
60  
85  
temperature (°C)  
Fig 14. Typical supply current versus temperature in Deep power-down mode  
9.3 Peripheral power consumption  
The supply current per peripheral is measured as the difference in supply current between  
the peripheral block enabled and the peripheral block disabled in the SYSAHBCLKCFG  
and PDRUNCFG (for analog blocks) registers. All other blocks are disabled in both  
registers and no code is executed. Measured on a typical sample at Tamb = 25 C. Unless  
noted otherwise, the system oscillator and PLL are running in both measurements.  
The supply currents are shown for system clock frequencies of 12 MHz and 48 MHz.  
LPC11U2X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.3 — 27 March 2014  
39 of 74  
LPC11U2x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 8.  
Power consumption for individual analog and digital blocks  
Peripheral  
Typical supply current in  
mA  
Notes  
n/a  
12 MHz 48 MHz  
IRC  
0.27  
-
-
-
-
-
-
System oscillator running; PLL off; independent  
of main clock frequency.  
System oscillator 0.22  
at 12 MHz  
IRC running; PLL off; independent of main clock  
frequency.  
Watchdog  
oscillator at  
500 kHz/2  
0.004  
System oscillator running; PLL off; independent  
of main clock frequency.  
BOD  
0.051  
-
-
Independent of main clock frequency.  
Main PLL  
ADC  
-
-
-
0.21  
0.08  
0.12  
-
-
-
0.29  
0.47  
CLKOUT  
Main clock divided by 4 in the CLKOUTDIV  
register.  
CT16B0  
CT16B1  
CT32B0  
CT32B1  
GPIO  
-
-
-
-
-
0.02  
0.02  
0.02  
0.02  
0.23  
0.06  
0.06  
0.07  
0.06  
0.88  
-
-
-
-
GPIO pins configured as outputs and set to  
LOW. Direction and pin state are maintained if  
the GPIO is disabled in the SYSAHBCLKCFG  
register.  
IOCONFIG  
I2C  
-
-
-
-
-
-
-
0.03  
0.04  
0.04  
0.12  
0.12  
0.22  
0.02  
0.10  
0.13  
0.15  
0.45  
0.45  
0.82  
0.06  
-
-
-
-
-
-
ROM  
SPI0  
SPI1  
UART  
WWDT  
Main clock selected as clock source for the  
WDT.  
USB  
-
-
1.2  
-
LPC11U2X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.3 — 27 March 2014  
40 of 74  
LPC11U2x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
9.4 Electrical pin characteristics  
002aae990  
3.6  
V
(V)  
OH  
T = 85 °C  
25 °C  
40 °C  
3.2  
2.8  
2.4  
2
0
10  
20  
30  
40  
50  
60  
I
(mA)  
OH  
Conditions: VDD = 3.3 V; on pin PIO0_7.  
Fig 15. High-drive output: Typical HIGH-level output voltage VOH versus HIGH-level  
output current IOH  
.
002aaf019  
60  
I
T = 85 °C  
25 °C  
40 °C  
OL  
(mA)  
40  
20  
0
0
0.2  
0.4  
0.6  
V
(V)  
OL  
Conditions: VDD = 3.3 V; on pins PIO0_4 and PIO0_5.  
Fig 16. I2C-bus pins (high current sink): Typical LOW-level output current IOL versus  
LOW-level output voltage VOL  
LPC11U2X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.3 — 27 March 2014  
41 of 74  
LPC11U2x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
002aae991  
15  
I
OL  
T = 85 °C  
25 °C  
40 °C  
(mA)  
10  
5
0
0
0.2  
0.4  
0.6  
V
(V)  
OL  
Conditions: VDD = 3.3 V; standard port pins and PIO0_7.  
Fig 17. Typical LOW-level output current IOL versus LOW-level output voltage VOL  
002aae992  
3.6  
V
OH  
(V)  
T = 85 °C  
25 °C  
40 °C  
3.2  
2.8  
2.4  
2
0
8
16  
24  
I
(mA)  
OH  
Conditions: VDD = 3.3 V; standard port pins.  
Fig 18. Typical HIGH-level output voltage VOH versus HIGH-level output source current  
IOH  
LPC11U2X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.3 — 27 March 2014  
42 of 74  
LPC11U2x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
002aae988  
10  
I
pu  
(μA)  
10  
30  
50  
70  
T = 85 °C  
25 °C  
40 °C  
0
1
2
3
4
5
V (V)  
I
Conditions: VDD = 3.3 V; standard port pins.  
Fig 19. Typical pull-up current Ipu versus input voltage VI  
002aae989  
80  
T = 85 °C  
I
pd  
25 °C  
(μA)  
40 °C  
60  
40  
20  
0
0
1
2
3
4
5
V (V)  
I
Conditions: VDD = 3.3 V; standard port pins.  
Fig 20. Typical pull-down current Ipd versus input voltage VI  
LPC11U2X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.3 — 27 March 2014  
43 of 74  
LPC11U2x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
10. Dynamic characteristics  
10.1 Flash memory  
Table 9.  
Flash characteristics  
Tamb = 40 C to +85 C, unless otherwise specified.  
Symbol  
Nendu  
tret  
Parameter  
endurance  
Conditions  
Min  
Typ  
Max  
Unit  
[1]  
10000 100000  
-
cycles  
years  
years  
ms  
retention time  
powered  
10  
20  
95  
-
-
unpowered  
-
-
ter  
erase time  
sector or multiple  
100  
105  
consecutive sectors  
[2]  
tprog  
programming time  
0.95  
1
1.05  
ms  
[1] Number of program/erase cycles.  
[2] Programming times are given for writing 256 bytes from RAM to the flash. Data must be written to the flash  
in blocks of 256 bytes.  
Table 10. EEPROM characteristics  
Tamb = 40 C to +85 C; VDD = 2.7 V to 3.6 V. Based on JEDEC NVM qualification. Failure rate <  
10 ppm for parts as specified below.  
Symbol  
Nendu  
tret  
Parameter  
endurance  
Conditions  
Min  
100000  
100  
150  
-
Typ  
Max  
Unit  
1000000  
200  
-
-
-
-
cycles  
years  
years  
ms  
retention time  
powered  
unpowered  
64 bytes  
300  
tprog  
programming  
time  
2.9  
10.2 External clock  
Table 11. Dynamic characteristic: external clock  
Tamb = 40 C to +85 C; VDD over specified ranges.[1]  
Symbol Parameter Conditions  
Min  
Typ[2] Max  
Unit  
MHz  
ns  
fosc  
oscillator frequency  
1
-
-
-
-
-
-
25  
Tcy(clk)  
tCHCX  
tCLCX  
tCLCH  
tCHCL  
clock cycle time  
clock HIGH time  
clock LOW time  
clock rise time  
clock fall time  
40  
1000  
Tcy(clk) 0.4  
-
ns  
Tcy(clk) 0.4  
-
ns  
-
-
5
5
ns  
ns  
[1] Parameters are valid over operating temperature range unless otherwise specified.  
[2] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply  
voltages.  
LPC11U2X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.3 — 27 March 2014  
44 of 74  
LPC11U2x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
t
CHCX  
t
t
t
CHCL  
CLCX  
CLCH  
T
cy(clk)  
002aaa907  
Fig 21. External clock timing (with an amplitude of at least Vi(RMS) = 200 mV)  
10.3 Internal oscillators  
Table 12. Dynamic characteristics: IRC  
amb = 40 C to +85 C; 2.7 V VDD 3.6 V[1].  
T
Symbol  
fosc(RC)  
Parameter  
Conditions  
Min  
Typ[2]  
Max  
Unit  
internal RC oscillator  
frequency  
-
11.88  
12  
12.12  
MHz  
[1] Parameters are valid over operating temperature range unless otherwise specified.  
[2] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply  
voltages.  
002aaf403  
12.15  
f
(MHz)  
VDD = 3.6 V  
3.3 V  
3.0 V  
2.7 V  
12.05  
2.4 V  
2.0 V  
11.95  
11.85  
40  
15  
10  
35  
60  
85  
temperature (°C)  
Conditions: Frequency values are typical values. 12 MHz 1 % accuracy is guaranteed for  
2.7 V VDD 3.6 V and Tamb = 40 C to +85 C. Variations between parts may cause the IRC to  
fall outside the 12 MHz 1 % accuracy specification for voltages below 2.7 V.  
Fig 22. Internal RC oscillator frequency versus temperature  
Table 13. Dynamic characteristics: Watchdog oscillator  
Symbol  
Parameter  
Conditions  
Min Typ[1] Max Unit  
[2][3]  
[2][3]  
fosc(int)  
internal oscillator DIVSEL = 0x1F, FREQSEL = 0x1  
-
7.8  
-
kHz  
frequency  
in the WDTOSCCTRL register;  
DIVSEL = 0x00, FREQSEL = 0xF  
in the WDTOSCCTRL register  
-
1700  
-
kHz  
[1] Typical ratings are not guaranteed. The values listed are at nominal supply voltages.  
All information provided in this document is subject to legal disclaimers.  
LPC11U2X  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.3 — 27 March 2014  
45 of 74  
LPC11U2x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
[2] The typical frequency spread over processing and temperature (Tamb = 40 C to +85 C) is 40 %.  
[3] See the LPC11Uxx user manual.  
10.4 I/O pins  
Table 14. Dynamic characteristics: I/O pins[1]  
Tamb = 40 C to +85 C; 3.0 V VDD 3.6 V.  
Symbol Parameter Conditions  
Min  
3.0  
2.5  
Typ  
Max  
5.0  
Unit  
ns  
tr  
tf  
rise time  
fall time  
pin configured as output  
pin configured as output  
-
-
5.0  
ns  
[1] Applies to standard port pins and RESET pin.  
10.5 I2C-bus  
Table 15. Dynamic characteristic: I2C-bus pins[1]  
Tamb = 40 C to +85 C.[2]  
Symbol  
Parameter  
Conditions  
Min  
Max  
100  
400  
1
Unit  
fSCL  
SCL clock  
frequency  
Standard-mode  
Fast-mode  
0
0
0
-
kHz  
kHz  
MHz  
ns  
Fast-mode Plus  
[3][4][5][6]  
tf  
fall time  
of both SDA and SCL  
signals  
300  
Standard-mode  
Fast-mode  
20 + 0.1 Cb  
300  
ns  
ns  
s  
s  
s  
s  
s  
s  
s  
s  
s  
ns  
ns  
ns  
Fast-mode Plus  
Standard-mode  
Fast-mode  
-
120  
tLOW  
LOW period of the  
SCL clock  
4.7  
1.3  
0.5  
4.0  
0.6  
0.26  
0
-
-
-
-
-
-
-
-
-
-
-
-
Fast-mode Plus  
Standard-mode  
Fast-mode  
tHIGH  
HIGH period of the  
SCL clock  
Fast-mode Plus  
Standard-mode  
Fast-mode  
[3][7][8]  
[9][10]  
tHD;DAT  
data hold time  
0
Fast-mode Plus  
Standard-mode  
Fast-mode  
0
tSU;DAT  
data set-up time  
250  
100  
50  
Fast-mode Plus  
[1] See the I2C-bus specification UM10204 for details.  
[2] Parameters are valid over operating temperature range unless otherwise specified.  
[3] A device must internally provide a hold time of at least 300 ns for the SDA signal (with respect to the VIH(min) of the SCL signal) to  
bridge the undefined region of the falling edge of SCL.  
[4] Cb = total capacitance of one bus line in pF.  
[5] The maximum tf for the SDA and SCL bus lines is specified at 300 ns. The maximum fall time for the SDA output stage tf is specified at  
250 ns. This allows series protection resistors to be connected in between the SDA and the SCL pins and the SDA/SCL bus lines  
without exceeding the maximum specified tf.  
[6] In Fast-mode Plus, fall time is specified the same for both output stage and bus timing. If series resistors are used, designers should  
allow for this when considering bus timing.  
LPC11U2X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.3 — 27 March 2014  
46 of 74  
LPC11U2x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
[7] The maximum tHD;DAT could be 3.45 s and 0.9 s for Standard-mode and Fast-mode but must be less than the maximum of tVD;DAT or  
tVD;ACK by a transition time (see UM10204). This maximum must only be met if the device does not stretch the LOW period (tLOW) of the  
SCL signal. If the clock stretches the SCL, the data must be valid by the set-up time before it releases the clock.  
[8] tHD;DAT is the data hold time that is measured from the falling edge of SCL; applies to data in transmission and the acknowledge.  
[9] tSU;DAT is the data set-up time that is measured with respect to the rising edge of SCL; applies to data in transmission and the  
acknowledge.  
[10] A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system but the requirement tSU;DAT = 250 ns must then be met.  
This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the  
LOW period of the SCL signal, it must output the next data bit to the SDA line tr(max) + tSU;DAT = 1000 + 250 = 1250 ns (according to the  
Standard-mode I2C-bus specification) before the SCL line is released. Also the acknowledge timing must meet this set-up time.  
t
f
t
SU;DAT  
70 %  
30 %  
70 %  
30 %  
SDA  
SCL  
t
t
HD;DAT  
VD;DAT  
t
f
t
HIGH  
70 %  
30 %  
70 %  
30 %  
70 %  
30 %  
70 %  
30 %  
t
LOW  
1 / f  
S
SCL  
002aaf425  
Fig 23. I2C-bus pins clock timing  
LPC11U2X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.3 — 27 March 2014  
47 of 74  
LPC11U2x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
10.6 SSP interface  
Table 16. Dynamic characteristics of SPI pins in SPI mode  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
SPI master (in SPI mode)  
[1]  
[1]  
[2]  
Tcy(clk)  
clock cycle time  
data set-up time  
full-duplex mode  
when only transmitting  
in SPI mode  
50  
40  
15  
-
-
-
-
ns  
ns  
ns  
tDS  
2.4 V VDD 3.6 V  
2.0 V VDD < 2.4 V  
1.8 V VDD < 2.0 V  
in SPI mode  
[2]  
[2]  
[2]  
[2]  
[2]  
20  
24  
0
ns  
ns  
ns  
ns  
ns  
-
-
-
-
-
tDH  
data hold time  
-
tv(Q)  
th(Q)  
data output valid time in SPI mode  
data output hold time in SPI mode  
-
10  
-
0
SPI slave (in SPI mode)  
Tcy(PCLK) PCLK cycle time  
20  
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
[3][4]  
[3][4]  
[3][4]  
[3][4]  
tDS  
data set-up time  
data hold time  
in SPI mode  
in SPI mode  
0
-
tDH  
3 Tcy(PCLK) + 4  
-
tv(Q)  
th(Q)  
data output valid time in SPI mode  
data output hold time in SPI mode  
-
-
3 Tcy(PCLK) + 11  
2 Tcy(PCLK) + 5  
[1] Tcy(clk) = (SSPCLKDIV (1 + SCR) CPSDVSR) / fmain. The clock cycle time derived from the SPI bit rate Tcy(clk) is a function of the  
main clock frequency fmain, the SPI peripheral clock divider (SSPCLKDIV), the SPI SCR parameter (specified in the SSP0CR0 register),  
and the SPI CPSDVSR parameter (specified in the SPI clock prescale register).  
[2]  
[3] Tcy(clk) = 12 Tcy(PCLK)  
[4] Tamb = 25 C; for normal voltage supply range: VDD = 3.3 V.  
Tamb = 40 C to 85 C.  
.
LPC11U2X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.3 — 27 March 2014  
48 of 74  
LPC11U2x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
T
cy(clk)  
SCK (CPOL = 0)  
SCK (CPOL = 1)  
MOSI  
t
t
h(Q)  
v(Q)  
DATA VALID  
DATA VALID  
CPHA = 1  
t
t
DH  
DS  
DATA VALID  
DATA VALID  
MISO  
t
t
h(Q)  
v(Q)  
DATA VALID  
DATA VALID  
t
MOSI  
MISO  
t
CPHA = 0  
DS  
DH  
DATA VALID  
DATA VALID  
002aae829  
Fig 24. SSP master timing in SPI mode  
LPC11U2X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.3 — 27 March 2014  
49 of 74  
LPC11U2x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
T
cy(clk)  
SCK (CPOL = 0)  
SCK (CPOL = 1)  
t
t
DH  
DS  
MOSI  
MISO  
DATA VALID  
DATA VALID  
t
t
h(Q)  
v(Q)  
CPHA = 1  
DATA VALID  
DATA VALID  
t
t
DH  
DS  
MOSI  
MISO  
DATA VALID  
DATA VALID  
DATA VALID  
t
t
h(Q)  
CPHA = 0  
v(Q)  
DATA VALID  
002aae830  
Fig 25. SSP slave timing in SPI mode  
LPC11U2X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.3 — 27 March 2014  
50 of 74  
LPC11U2x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
10.7 USB interface  
Table 17. Dynamic characteristics: USB pins (full-speed)  
CL = 50 pF; Rpu = 1.5 kon D+ to VDD; 3.0 V VDD 3.6 V.  
Symbol  
Parameter  
rise time  
fall time  
Conditions  
10 % to 90 %  
10 % to 90 %  
tr / tf  
Min  
8.5  
7.7  
-
Typ  
Max  
13.8  
13.7  
109  
Unit  
ns  
tr  
-
-
-
tf  
ns  
tFRFM  
differential rise and fall time  
matching  
%
VCRS  
output signal crossover voltage  
source SE0 interval of EOP  
1.3  
160  
2  
-
-
-
2.0  
175  
+5  
V
tFEOPT  
tFDEOP  
see Figure 26  
ns  
ns  
source jitter for differential transition see Figure 26  
to SE0 transition  
tJR1  
receiver jitter to next transition  
18.5  
9  
-
-
-
+18.5  
ns  
ns  
ns  
tJR2  
receiver jitter for paired transitions  
EOP width at receiver  
10 % to 90 %  
+9  
-
[1]  
tEOPR  
must accept as  
EOP; see  
82  
Figure 26  
[1] Characterized but not implemented as production test. Guaranteed by design.  
T
PERIOD  
crossover point  
extended  
crossover point  
differential  
data lines  
source EOP width: t  
FEOPT  
differential data to  
SE0/EOP skew  
PERIOD FDEOP  
n
T
+ t  
receiver EOP width: t  
EOPR  
aaa-009330  
Fig 26. Differential data-to-EOP transition skew and EOP width  
LPC11U2X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.3 — 27 March 2014  
51 of 74  
LPC11U2x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
11. Application information  
11.1 Suggested USB interface solutions  
The USB device can be connected to the USB as self-powered device (see Figure 27) or  
bus-powered device (see Figure 28).  
On the LPC11U2x, the PIO0_3/USB_VBUS pin is 5 V tolerant only when VDD is applied  
and at operating voltage level. Therefore, if the USB_VBUS function is connected to the  
USB connector and the device is self-powered, the USB_VBUS pin must be protected for  
situations when VDD = 0 V.  
If VDD is always at operating level while VBUS = 5 V, the USB_VBUS pin can be  
connected directly to the VBUS pin on the USB connector.  
For systems where VDD can be 0 V and VBUS is directly applied to the VBUS pin,  
precautions must be taken to reduce the voltage to below 3.6 V, which is the maximum  
allowable voltage on the USB_VBUS pin in this case.  
One method is to use a voltage divider to connect the USB_VBUS pin to the VBUS on the  
USB connector. The voltage divider ratio should be such that the USB_VBUS pin will be  
greater than 0.7VDD to indicate a logic HIGH while below the 3.6 V allowable maximum  
voltage.  
For the following operating conditions  
VBUSmax = 5.25 V  
VDD = 3.6 V,  
the voltage divider should provide a reduction of 3.6 V/5.25 V or ~0.686 V.  
V
DD  
USB_CONNECT  
soft-connect switch  
R1  
1.5 kΩ  
LPC1xxx  
R2  
R3  
USB_VBUS  
R
= 33 Ω  
= 33 Ω  
S
S
USB-B  
connector  
USB_DP  
USB_DM  
R
V
SS  
aaa-010178  
Fig 27. USB interface on a self-powered device where USB_VBUS = 5 V  
LPC11U2X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.3 — 27 March 2014  
52 of 74  
LPC11U2x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
For a bus-powered device, the VBUS signal does not need to be connected to the  
USB_VBUS pin (see Figure 28). The USB_CONNECT function can additionally be  
connected as shown in Figure 27 to prevent the USB from timing out when there is a  
significant delay between power-up and handling USB traffic.  
V
DD  
REGULATOR  
LPC1xxx  
R1  
1.5 kΩ  
VBUS  
USB-B  
connector  
R
R
= 33 Ω  
= 33 Ω  
S
USB_DP  
USB_DM  
S
V
SS  
aaa-010179  
Fig 28. USB interface on a bus-powered device  
Remark: When a bus-powered circuit as shown in Figure 28 is used, configure the  
PIO0_3/USB_VBUS pin for GPIO (PIO0_3) in the IOCON block to ensure that the  
USB_CONNECT signal can still be controlled by software. For details on the soft-connect  
feature, see the LPC11U2x user manual (Ref. 1).  
Remark: When a self-powered circuit is used without connecting VBUS, configure the  
PIO0_3/USB_VBUS pin for GPIO (PIO0_3) and provide software that can detect the host  
presence through some other mechanism before enabling USB_CONNECT and the  
soft-connect feature. Enabling the soft-connect without host presence will lead to USB  
compliance failure.  
11.2 XTAL input  
The input voltage to the on-chip oscillators is limited to 1.8 V. If the oscillator is driven by a  
clock in slave mode, it is recommended that the input be coupled through a capacitor with  
Ci = 100 pF. To limit the input voltage to the specified range, choose an additional  
capacitor to ground Cg which attenuates the input voltage by a factor Ci/(Ci + Cg). In slave  
mode, a minimum of 200 mV (RMS) is needed.  
LPC11U2X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.3 — 27 March 2014  
53 of 74  
LPC11U2x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
LPC1xxx  
XTALIN  
C
i
C
g
100 pF  
002aae788  
Fig 29. Slave mode operation of the on-chip oscillator  
In slave mode, couple the input clock signal with a capacitor of 100 pF (Figure 29), with an  
amplitude between 200 mV (RMS) and 1000 mV (RMS). This signal corresponds to a  
square wave signal with a signal swing of between 280 mV and 1.4 V. The XTALOUT pin  
in this configuration can be left unconnected.  
External components and models used in oscillation mode are shown in Figure 30 and in  
Table 18 and Table 19. Since the feedback resistance is integrated on chip, only a crystal  
and the capacitances CX1 and CX2 need to be connected externally in case of  
fundamental mode oscillation (L, CL and RS represent the fundamental frequency).  
Capacitance CP in Figure 30 represents the parallel package capacitance and must not be  
larger than 7 pF. Parameters FOSC, CL, RS and CP are supplied by the crystal  
manufacturer.  
LPC1xxx  
L
XTALIN  
XTALOUT  
C
L
C
P
=
XTAL  
R
S
C
X2  
C
X1  
002aaf424  
Fig 30. Oscillator modes and models: oscillation mode of operation and external crystal  
model used for CX1/CX2 evaluation  
LPC11U2X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.3 — 27 March 2014  
54 of 74  
LPC11U2x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 18. Recommended values for CX1/CX2 in oscillation mode (crystal and external  
components parameters) low frequency mode  
Fundamental oscillation Crystal load  
Maximum crystal  
External load  
frequency FOSC  
capacitance CL  
series resistance RS  
capacitors CX1, CX2  
1 MHz to 5 MHz  
10 pF  
< 300   
< 300   
< 300   
< 300   
< 200   
< 100   
< 160   
< 60   
18 pF, 18 pF  
39 pF, 39 pF  
57 pF, 57 pF  
18 pF, 18 pF  
39 pF, 39 pF  
57 pF, 57 pF  
18 pF, 18 pF  
39 pF, 39 pF  
18 pF, 18 pF  
20 pF  
30 pF  
5 MHz to 10 MHz  
10 pF  
20 pF  
30 pF  
10 MHz to 15 MHz  
15 MHz to 20 MHz  
10 pF  
20 pF  
10 pF  
< 80   
Table 19. Recommended values for CX1/CX2 in oscillation mode (crystal and external  
components parameters) high frequency mode  
Fundamental oscillation Crystal load  
Maximum crystal  
External load  
frequency FOSC  
capacitance CL  
series resistance RS  
capacitors CX1, CX2  
15 MHz to 20 MHz  
10 pF  
< 180   
< 100   
< 160   
< 80   
18 pF, 18 pF  
39 pF, 39 pF  
18 pF, 18 pF  
39 pF, 39 pF  
20 pF  
20 MHz to 25 MHz  
10 pF  
20 pF  
11.3 XTAL Printed-Circuit Board (PCB) layout guidelines  
Follow these guidelines for PCB layout:  
Connect the crystal on the PCB as close as possible to the oscillator input and output  
pins of the chip.  
Take care that the load capacitors Cx1, Cx2, and Cx3 in case of third overtone crystal  
use have a common ground plane.  
Connect the external components to the ground plain.  
To keep parasitics and the noise coupled in via the PCB as small as possible, keep  
loops as small as possible.  
Choose smaller values of Cx1 and Cx2 if parasitics of the PCB layout increase.  
LPC11U2X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.3 — 27 March 2014  
55 of 74  
LPC11U2x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
11.4 Standard I/O pad configuration  
Figure 31 shows the possible pin modes for standard I/O pins with analog input function:  
Digital output driver  
Digital input: Pull-up enabled/disabled  
Digital input: Pull-down enabled/disabled  
Digital input: Repeater mode enabled/disabled  
Analog input  
V
DD  
ESD  
output enable  
pin configured  
as digital output  
driver  
output  
PIN  
ESD  
V
V
DD  
SS  
weak  
pull-up  
pull-up enable  
weak  
pull-down  
repeater mode  
enable  
pin configured  
as digital input  
pull-down enable  
data input  
select analog input  
pin configured  
as analog input  
analog input  
002aaf304  
Fig 31. Standard I/O pad configuration  
LPC11U2X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.3 — 27 March 2014  
56 of 74  
LPC11U2x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
11.5 Reset pad configuration  
V
DD  
V
DD  
V
DD  
R
pu  
ESD  
20 ns RC  
GLITCH FILTER  
reset  
PIN  
ESD  
V
SS  
002aaf274  
Fig 32. Reset pad configuration  
11.6 ADC effective input impedance  
A simplified diagram of the ADC input channels can be used to determine the effective  
input impedance seen from an external voltage source. See Figure 33.  
ADC Block  
Source  
R
R
R
mux  
sw  
s
ADC  
COMPARATOR  
<2 kΩ  
<1.3 kΩ  
R
in  
C
ia  
V
C
EXT  
io  
V
SS  
002aah615  
Fig 33. ADC input channel  
The effective input impedance, Rin, seen by the external voltage source, VEXT, is the  
parallel impedance of ((1/fs x Cia) + Rmux + Rsw) and (1/fs x Cio), and can be calculated  
using Equation 1 with  
fs = sampling frequency  
Cia = ADC analog input capacitance  
Rmux = analog mux resistance  
Rsw = switch resistance  
Cio = pin capacitance  
1
1
  
-----------------  
Rin  
=
+ Rmux + R  
(1)  
-----------------  
sw  
fs Cio  
fs Cia  
LPC11U2X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.3 — 27 March 2014  
57 of 74  
LPC11U2x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Under nominal operating condition VDD = 3.3 V and with the maximum sampling  
frequency fs = 400 kHz, the parameters assume the following values:  
Cia = 1 pF (max)  
Rmux = 2 k(max)  
Rsw = 1.3 k(max)  
Cio = 7.1 pF (max)  
The effective input impedance with these parameters is Rin = 308 k.  
11.7 ADC usage notes  
The following guidelines show how to increase the performance of the ADC in a noisy  
environment beyond the ADC specifications listed in Table 6:  
The ADC input trace must be short and as close as possible to the LPC11U2x chip.  
Shield The ADC input traces from fast switching digital signals and noisy power  
supply lines.  
The ADC and the digital core share the same power supply. Therefore, filter the power  
supply line adequately.  
To improve the ADC performance in a noisy environment, put the device in Sleep  
mode during the ADC conversion.  
LPC11U2X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.3 — 27 March 2014  
58 of 74  
LPC11U2x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
12. Package outline  
HVQFN33: plastic thermal enhanced very thin quad flat package; no leads;  
33 terminals; body 7 x 7 x 0.85 mm  
D
B
A
terminal 1  
index area  
E
A
A
1
c
detail X  
e
1
C
v
C
C
A
B
e
b
y
1
y
w
C
9
16  
L
8
17  
e
E
e
2
h
33  
1
24  
X
terminal 1  
index area  
32  
25  
0
D
h
2.5  
scale  
5 mm  
v
Dimensions  
Unit  
(1)  
(1)  
(1)  
A
A
b
c
D
D
E
E
e
e
1
e
2
L
w
y
y
1
1
h
h
max 1.00 0.05 0.35  
mm nom 0.85 0.02 0.28 0.2 7.0 4.70 7.0 4.70 0.65 4.55 4.55 0.60 0.1 0.05 0.08 0.1  
min 0.80 0.00 0.23 6.9 4.55 6.9 4.55 0.45  
7.1 4.85 7.1 4.85  
0.75  
Note  
1. Plastic or metal protrusions of 0.075 mm maximum per side are not included.  
hvqfn33_po  
References  
Outline  
version  
European  
projection  
Issue date  
IEC  
JEDEC  
JEITA  
- - -  
09-03-17  
09-03-23  
Fig 34. Package outline HVQFN33 (7 x 7 x 0.85 mm)  
LPC11U2X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.3 — 27 March 2014  
59 of 74  
LPC11U2x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
HVQFN33: plastic thermal enhanced very thin quad flat package; no leads;  
32 terminals; body 5 x 5 x 0.85 mm  
D
B
A
terminal 1  
index area  
A
A
1
E
c
detail X  
C
e
1
y
y
v
w
C
C
A
B
C
1
e
1/2 e  
b
9
16  
L
17  
8
e
e
E
h
2
1/2 e  
24  
1
terminal 1  
index area  
32  
25  
X
D
h
0
2.5  
scale  
5 mm  
Dimensions (mm are the original dimensions)  
(1)  
(1)  
(1)  
(1)  
Unit  
A
A
1
b
c
D
D
E
E
e
e
e
L
v
w
y
y
1
h
h
1
2
max  
0.05 0.30  
5.1 3.75 5.1 3.75  
0.5  
mm nom 0.85  
min  
0.2  
0.5 3.5 3.5  
0.1 0.05 0.05 0.1  
0.00 0.18  
4.9 3.45 4.9 3.45  
0.3  
Note  
1. Plastic or metal protrusions of 0.075 mm maximum per side are not included.  
hvqfn33f_po  
References  
Outline  
version  
European  
projection  
Issue date  
IEC  
JEDEC  
JEITA  
11-10-11  
11-10-17  
MO-220  
Fig 35. Package outline HVQFN33 (5 x 5 x 0.85 mm)  
LPC11U2X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.3 — 27 March 2014  
60 of 74  
LPC11U2x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
LQFP48: plastic low profile quad flat package; 48 leads; body 7 x 7 x 1.4 mm  
SOT313-2  
c
y
X
36  
25  
A
E
37  
24  
Z
E
e
H
E
A
2
A
(A )  
3
A
1
w M  
p
θ
pin 1 index  
b
L
p
L
13  
48  
detail X  
1
12  
Z
v M  
D
A
e
w M  
b
p
D
B
H
v
M
B
D
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
D
H
L
L
v
w
y
Z
Z
E
θ
1
2
3
p
E
p
D
max.  
7o  
0o  
0.20 1.45  
0.05 1.35  
0.27 0.18 7.1  
0.17 0.12 6.9  
7.1  
6.9  
9.15 9.15  
8.85 8.85  
0.75  
0.45  
0.95 0.95  
0.55 0.55  
1.6  
mm  
0.25  
0.5  
1
0.2 0.12 0.1  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
00-01-19  
03-02-25  
SOT313-2  
136E05  
MS-026  
Fig 36. Package outline LQFP48 (SOT313-2)  
LPC11U2X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.3 — 27 March 2014  
61 of 74  
LPC11U2x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
LQFP64: plastic low profile quad flat package; 64 leads; body 10 x 10 x 1.4 mm  
SOT314-2  
y
X
A
48  
33  
Z
49  
32  
E
e
H
A
E
2
E
A
(A )  
3
A
1
w M  
p
θ
b
L
p
pin 1 index  
L
64  
17  
detail X  
1
16  
Z
v
M
A
D
e
w M  
b
p
D
B
H
v
M
B
D
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
D
H
L
L
v
w
y
Z
Z
E
θ
1
2
3
p
E
p
D
max.  
7o  
0o  
0.20 1.45  
0.05 1.35  
0.27 0.18 10.1 10.1  
0.17 0.12 9.9 9.9  
12.15 12.15  
11.85 11.85  
0.75  
0.45  
1.45 1.45  
1.05 1.05  
1.6  
mm  
0.25  
0.5  
1
0.2 0.12 0.1  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
00-01-19  
03-02-25  
SOT314-2  
136E10  
MS-026  
Fig 37. Package outline LQFP64 (SOT314-2)  
LPC11U2X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.3 — 27 March 2014  
62 of 74  
LPC11U2x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
TFBGA48: plastic thin fine-pitch ball grid array package; 48 balls; body 4.5 x 4.5 x 0.7 mm  
SOT1155-2  
D
B
A
ball A1  
index area  
A
2
E
A
A
1
detail X  
e
1
C
Ø v  
Ø w  
C
C
A
B
e
1/2 e  
b
y
1
y
C
H
e
G
F
E
D
C
B
A
e
2
1/2 e  
ball A1  
index area  
solder mask open area  
not for solder ball  
1
2
3
4
5
6
7
8
X
0
5 mm  
scale  
Dimensions  
Unit  
A
A
1
A
2
b
D
E
e
e
1
e
2
v
w
y
y
1
max 1.10 0.30 0.80 0.35 4.6 4.6  
mm nom 0.95 0.25 0.70 0.30 4.5 4.5 0.5 3.5 3.5 0.15 0.05 0.08 0.1  
min 0.85 0.20 0.65 0.25 4.4 4.4  
sot1155-2_po  
References  
Outline  
version  
European  
projection  
Issue date  
IEC  
JEDEC  
- - -  
JEITA  
13-06-17  
13-06-19  
SOT1155-2  
Fig 38. Package outline TFBGA48 (SOT1155-2)  
LPC11U2X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.3 — 27 March 2014  
63 of 74  
LPC11U2x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
13. Soldering  
Footprint information for reflow soldering of HVQFN33 package  
Hx  
Gx  
see detail X  
P
nSPx  
Ay  
By  
SLy  
Hy Gy  
nSPy  
C
D
SLx  
Bx  
Ax  
0.60  
0.30  
solder land  
solder paste  
occupied area  
detail X  
Dimensions in mm  
P
Ax  
Ay  
Bx  
By  
C
D
Gx  
Gy  
Hx  
Hy  
6.2  
SLx  
SLy  
nSPx nSPy  
0.5  
5.95  
5.95  
4.25  
4.25  
0.85  
0.27  
5.25  
5.25  
6.2  
3.75  
3.75  
3
3
11-11-15  
11-11-20  
Issue date  
002aag766  
Fig 39. Reflow soldering for the HVQFN33 (5x5) package  
LPC11U2X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.3 — 27 March 2014  
64 of 74  
LPC11U2x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Footprint information for reflow soldering of HVQFN33 package  
OID = 8.20 OA  
PID = 7.25 PA+OA  
OwDtot = 5.10 OA  
evia = 4.25  
0.20 SR  
chamfer (4×)  
W = 0.30 CU  
e = 0.65  
SPD = 1.00 SP  
0.45 DM  
GapD = 0.70 SP  
evia = 2.40  
B-side  
SDhtot = 2.70 SP  
Solder resist  
covered via  
4.55 SR  
DHS = 4.85 CU  
LbD = 5.80 CU  
LaD = 7.95 CU  
0.30 PH  
0.60 SR cover  
0.60 CU  
(A-side fully covered)  
number of vias: 20  
solder land  
solder land plus solder paste  
solder paste deposit  
occupied area  
solder resist  
Remark:  
Stencil thickness: 0.125 mm  
Dimensions in mm  
001aao134  
Fig 40. Reflow soldering for the HVQFN33 (7x7) package  
LPC11U2X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.3 — 27 March 2014  
65 of 74  
LPC11U2x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Footprint information for reflow soldering of LQFP48 package  
SOT313-2  
Hx  
Gx  
(0.125)  
P2  
P1  
Hy Gy  
By  
Ay  
C
D2 (8×)  
D1  
Bx  
Ax  
Generic footprint pattern  
Refer to the package outline drawing for actual layout  
solder land  
occupied area  
DIMENSIONS in mm  
P1 P2 Ax  
Ay  
Bx  
By  
C
D1  
D2  
Gx  
Gy  
Hx  
Hy  
0.500 0.560 10.350 10.350 7.350 7.350 1.500 0.280 0.500 7.500 7.500 10.650 10.650  
sot313-2_fr  
Fig 41. Reflow soldering for the LQFP48 package  
LPC11U2X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.3 — 27 March 2014  
66 of 74  
LPC11U2x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Footprint information for reflow soldering of TFBGA48 package  
SOT1155-2  
Hx  
P
P
Hy  
see detail X  
solder land  
solder paste deposit  
solder land plus solder paste  
SL  
occupied area  
solder resist  
SP  
SR  
detail X  
DIMENSIONS in mm  
P
SL  
SP  
SR  
Hx  
Hy  
0.50  
0.225 0.275 0.325  
4.75  
4.75  
sot1155-2_fr  
Fig 42. Reflow soldering for the TFBGA48 package  
LPC11U2X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.3 — 27 March 2014  
67 of 74  
LPC11U2x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Footprint information for reflow soldering of LQFP64 package  
SOT314-2  
Hx  
Gx  
(0.125)  
P2  
P1  
Hy Gy  
By  
Ay  
C
D2 (8×)  
D1  
Bx  
Ax  
Generic footprint pattern  
Refer to the package outline drawing for actual layout  
solder land  
occupied area  
DIMENSIONS in mm  
P1 P2 Ax  
Ay  
Bx  
By  
C
D1  
D2  
Gx  
Gy  
Hx  
Hy  
0.500 0.560 13.300 13.300 10.300 10.300 1.500 0.280 0.400 10.500 10.500 13.550 13.550  
sot314-2_fr  
Fig 43. Reflow soldering for the LQFP64 package  
LPC11U2X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.3 — 27 March 2014  
68 of 74  
LPC11U2x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
14. Abbreviations  
Table 20. Abbreviations  
Acronym  
A/D  
Description  
Analog-to-Digital  
ADC  
AHB  
APB  
Analog-to-Digital Converter  
Advanced High-performance Bus  
Advanced Peripheral Bus  
BrownOut Detection  
BOD  
GPIO  
JTAG  
PLL  
General Purpose Input/Output  
Joint Test Action Group  
Phase-Locked Loop  
RC  
Resistor-Capacitor  
SPI  
Serial Peripheral Interface  
Serial Synchronous Interface  
Synchronous Serial Port  
Test Access Port  
SSI  
SSP  
TAP  
USART  
Universal Synchronous Asynchronous Receiver/Transmitter  
15. References  
[1] LPC11U2x User manual UM10462:  
http://www.nxp.com/documents/user_manual/UM10462.pdf  
[2] LPC11U2x Errata sheet:  
http://www.nxp.com/documents/errata_sheet/ES_LPC11U2X.pdf  
LPC11U2X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.3 — 27 March 2014  
69 of 74  
LPC11U2x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
16. Revision history  
Table 21. Revision history  
Document ID  
Release date  
20140327  
Data sheet status  
Change notice  
Supersedes  
LPC11U2x v.2.3  
Product data sheet  
-
LPC11U2X v.2.2  
Part LPC11U22FBD48/301 added.  
20140311 Product data sheet  
LPC11U2X v.2.2  
Modifications:  
-
LPC11U2X v.2.1  
Updated Section 11.1 “Suggested USB interface solutions” for clarity.  
Open-drain I2C-bus and RESET pin descriptions updated for clarity. See Table 3.  
LPC11U2X v.2.1  
Modifications:  
20130917  
Product data sheet  
-
LPC11U2X v.2  
Number of CAP and MAT functions for timers updated in Figure 1.  
Table 3: Added “5 V tolerant pad” to RESET/PIO0_0 table note.  
Table 7: Removed BOD interrupt level 0.  
Added Section 11.6 “ADC effective input impedance”.  
Programmable glitch filter is enabled by default. See Section 7.7.1.  
Table 5 “Static characteristics” added Pin capacitance section.  
Updated Section 11.1 “Suggested USB interface solutions”.  
Table 4 “Limiting values”:  
Updated VDD min and max.  
Updated VI conditions.  
Table 10 “EEPROM characteristics”:  
Removed fclk and ter; the user does not have control over these parameters.  
Changed the tprog from 1.1 ms to 2.9 ms; the EEPROM IAP always does an erase and  
program, thus the total program time is ter + tprog  
.
Changed title of Figure 29 from “USB interface on a self-powered device” to “USB interface  
with soft-connect”.  
Section 10.7 “USB interface” added. Parameter tEOPR1 and tEOPR2 renamed to tEOPR  
.
LPC11U2X v.2  
Modifications:  
20120113 Product data sheet LPC11U2X v.1  
-
Use of USB with power profiles specified (Section 7.17.5.1).  
Power consumption data added in Section 9.2.  
SSP dynamic characteristics added (Table 16).  
IRC dynamic characteristics added (Table 12).  
Data sheet status changed to Product data sheet.  
LPC11U2X v.1  
20111129  
Preliminary data sheet  
-
-
LPC11U2X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.3 — 27 March 2014  
70 of 74  
LPC11U2x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
17. Legal information  
17.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
Suitability for use — NXP Semiconductors products are not designed,  
17.2 Definitions  
authorized or warranted to be suitable for use in life support, life-critical or  
safety-critical systems or equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
to result in personal injury, death or severe property or environmental  
damage. NXP Semiconductors and its suppliers accept no liability for  
inclusion and/or use of NXP Semiconductors products in such equipment or  
applications and therefore such inclusion and/or use is at the customer’s own  
risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Customers are responsible for the design and operation of their applications  
and products using NXP Semiconductors products, and NXP Semiconductors  
accepts no liability for any assistance with applications or customer product  
design. It is customer’s sole responsibility to determine whether the NXP  
Semiconductors product is suitable and fit for the customer’s applications and  
products planned, as well as for the planned application and use of  
customer’s third party customer(s). Customers should provide appropriate  
design and operating safeguards to minimize the risks associated with their  
applications and products.  
Product specification — The information and data provided in a Product  
data sheet shall define the specification of the product as agreed between  
NXP Semiconductors and its customer, unless NXP Semiconductors and  
customer have explicitly agreed otherwise in writing. In no event however,  
shall an agreement be valid in which the NXP Semiconductors product is  
deemed to offer functions and qualities beyond those described in the  
Product data sheet.  
NXP Semiconductors does not accept any liability related to any default,  
damage, costs or problem which is based on any weakness or default in the  
customer’s applications or products, or the application or use by customer’s  
third party customer(s). Customer is responsible for doing all necessary  
testing for the customer’s applications and products using NXP  
Semiconductors products in order to avoid a default of the applications and  
the products or of the application or use by customer’s third party  
customer(s). NXP does not accept any liability in this respect.  
17.3 Disclaimers  
Limited warranty and liability — Information in this document is believed to  
be accurate and reliable. However, NXP Semiconductors does not give any  
representations or warranties, expressed or implied, as to the accuracy or  
completeness of such information and shall have no liability for the  
consequences of use of such information. NXP Semiconductors takes no  
responsibility for the content in this document if provided by an information  
source outside of NXP Semiconductors.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) will cause permanent  
damage to the device. Limiting values are stress ratings only and (proper)  
operation of the device at these or any other conditions above those given in  
the Recommended operating conditions section (if present) or the  
Characteristics sections of this document is not warranted. Constant or  
repeated exposure to limiting values will permanently and irreversibly affect  
the quality and reliability of the device.  
In no event shall NXP Semiconductors be liable for any indirect, incidental,  
punitive, special or consequential damages (including - without limitation - lost  
profits, lost savings, business interruption, costs related to the removal or  
replacement of any products or rework charges) whether or not such  
damages are based on tort (including negligence), warranty, breach of  
contract or any other legal theory.  
Terms and conditions of commercial sale — NXP Semiconductors  
products are sold subject to the general terms and conditions of commercial  
sale, as published at http://www.nxp.com/profile/terms, unless otherwise  
agreed in a valid written individual agreement. In case an individual  
agreement is concluded only the terms and conditions of the respective  
agreement shall apply. NXP Semiconductors hereby expressly objects to  
applying the customer’s general terms and conditions with regard to the  
purchase of NXP Semiconductors products by customer.  
Notwithstanding any damages that customer might incur for any reason  
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards  
customer for the products described herein shall be limited in accordance  
with the Terms and conditions of commercial sale of NXP Semiconductors.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
No offer to sell or license — Nothing in this document may be interpreted or  
construed as an offer to sell products that is open for acceptance or the grant,  
conveyance or implication of any license under any copyrights, patents or  
other industrial or intellectual property rights.  
LPC11U2X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.3 — 27 March 2014  
71 of 74  
LPC11U2x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from competent authorities.  
whenever customer uses the product for automotive applications beyond  
NXP Semiconductors’ specifications such use shall be solely at customer’s  
own risk, and (c) customer fully indemnifies NXP Semiconductors for any  
liability, damages or failed product claims resulting from customer design and  
use of the product for automotive applications beyond NXP Semiconductors’  
standard warranty and NXP Semiconductors’ product specifications.  
Non-automotive qualified products — Unless this data sheet expressly  
states that this specific NXP Semiconductors product is automotive qualified,  
the product is not suitable for automotive use. It is neither qualified nor tested  
in accordance with automotive testing or application requirements. NXP  
Semiconductors accepts no liability for inclusion and/or use of  
17.4 Trademarks  
non-automotive qualified products in automotive equipment or applications.  
In the event that customer uses the product for design-in and use in  
automotive applications to automotive specifications and standards, customer  
(a) shall use the product without NXP Semiconductors’ warranty of the  
product for such automotive applications, use and specifications, and (b)  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
I2C-bus — logo is a trademark of NXP Semiconductors N.V.  
18. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
LPC11U2X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.3 — 27 March 2014  
72 of 74  
LPC11U2x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
19. Contents  
1
General description. . . . . . . . . . . . . . . . . . . . . . 1  
7.17.5  
Power control. . . . . . . . . . . . . . . . . . . . . . . . . 24  
7.17.5.1 Power profiles . . . . . . . . . . . . . . . . . . . . . . . . 25  
7.17.5.2 Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
7.17.5.3 Deep-sleep mode. . . . . . . . . . . . . . . . . . . . . . 25  
7.17.5.4 Power-down mode. . . . . . . . . . . . . . . . . . . . . 25  
7.17.5.5 Deep power-down mode . . . . . . . . . . . . . . . . 26  
2
Features and benefits . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Ordering information. . . . . . . . . . . . . . . . . . . . . 3  
Ordering options. . . . . . . . . . . . . . . . . . . . . . . . 3  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
3
4
4.1  
5
7.17.6  
System control . . . . . . . . . . . . . . . . . . . . . . . . 26  
6
6.1  
6.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 5  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 9  
7.17.6.1 Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
7.17.6.2 Brownout detection . . . . . . . . . . . . . . . . . . . . 26  
7.17.6.3 Code security (Code Read Protection - CRP) 26  
7.17.6.4 APB interface. . . . . . . . . . . . . . . . . . . . . . . . . 27  
7.17.6.5 AHBLite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
7.17.6.6 External interrupt inputs. . . . . . . . . . . . . . . . . 27  
7
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
7.6.1  
7.6.2  
7.7  
7.7.1  
7.8  
Functional description . . . . . . . . . . . . . . . . . . 14  
On-chip flash programming memory . . . . . . . 14  
EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
On-chip ROM . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Nested Vectored Interrupt Controller (NVIC) . 16  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Interrupt sources. . . . . . . . . . . . . . . . . . . . . . . 17  
IOCON block . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
General-Purpose Input/Output GPIO . . . . . . . 17  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
USB interface . . . . . . . . . . . . . . . . . . . . . . . . 18  
Full-speed USB device controller . . . . . . . . . . 18  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
USART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
SSP serial I/O controller . . . . . . . . . . . . . . . . . 19  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
I2C-bus serial I/O controller . . . . . . . . . . . . . . 19  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
10-bit ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
General purpose external event  
7.18  
Emulation and debugging . . . . . . . . . . . . . . . 28  
8
Limiting values . . . . . . . . . . . . . . . . . . . . . . . . 29  
9
Static characteristics . . . . . . . . . . . . . . . . . . . 30  
BOD static characteristics . . . . . . . . . . . . . . . 36  
Power consumption . . . . . . . . . . . . . . . . . . . 36  
Peripheral power consumption . . . . . . . . . . . 39  
Electrical pin characteristics. . . . . . . . . . . . . . 41  
9.1  
9.2  
9.3  
9.4  
10  
Dynamic characteristics. . . . . . . . . . . . . . . . . 44  
Flash memory . . . . . . . . . . . . . . . . . . . . . . . . 44  
External clock. . . . . . . . . . . . . . . . . . . . . . . . . 44  
Internal oscillators . . . . . . . . . . . . . . . . . . . . . 45  
I/O pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
I2C-bus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
SSP interface. . . . . . . . . . . . . . . . . . . . . . . . . 48  
USB interface . . . . . . . . . . . . . . . . . . . . . . . . 51  
10.1  
10.2  
10.3  
10.4  
10.5  
10.6  
10.7  
7.8.1  
7.9  
7.9.1  
7.9.1.1  
7.10  
7.10.1  
7.11  
7.11.1  
7.12  
7.12.1  
7.13  
7.13.1  
7.14  
11  
Application information . . . . . . . . . . . . . . . . . 52  
Suggested USB interface solutions . . . . . . . . 52  
XTAL input . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
XTAL Printed-Circuit Board (PCB) layout  
11.1  
11.2  
11.3  
guidelines. . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Standard I/O pad configuration . . . . . . . . . . . 56  
Reset pad configuration. . . . . . . . . . . . . . . . . 57  
ADC effective input impedance . . . . . . . . . . . 57  
ADC usage notes. . . . . . . . . . . . . . . . . . . . . . 58  
11.4  
11.5  
11.6  
11.7  
counter/timers. . . . . . . . . . . . . . . . . . . . . . . . . 20  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
System tick timer . . . . . . . . . . . . . . . . . . . . . . 21  
Windowed WatchDog Timer (WWDT) . . . . . . 21  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Clocking and power control . . . . . . . . . . . . . . 22  
Integrated oscillators . . . . . . . . . . . . . . . . . . . 22  
7.14.1  
7.15  
7.16  
7.16.1  
7.17  
7.17.1  
12  
13  
14  
15  
16  
Package outline. . . . . . . . . . . . . . . . . . . . . . . . 59  
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . 69  
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Revision history . . . . . . . . . . . . . . . . . . . . . . . 70  
7.17.1.1 Internal RC oscillator . . . . . . . . . . . . . . . . . . . 23  
7.17.1.2 System oscillator . . . . . . . . . . . . . . . . . . . . . . 24  
7.17.1.3 Watchdog oscillator . . . . . . . . . . . . . . . . . . . . 24  
7.17.2  
7.17.3  
7.17.4  
17  
Legal information . . . . . . . . . . . . . . . . . . . . . . 71  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 71  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
17.1  
17.2  
17.3  
System PLL and USB PLL . . . . . . . . . . . . . . . 24  
Clock output . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Wake-up process . . . . . . . . . . . . . . . . . . . . . . 24  
continued >>  
LPC11U2X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 2.3 — 27 March 2014  
73 of 74  
LPC11U2x  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
17.4  
18  
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Contact information. . . . . . . . . . . . . . . . . . . . . 72  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
19  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2014.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 27 March 2014  
Document identifier: LPC11U2X  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 216
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 216
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 216
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 216
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 216
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 216
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 216
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 216
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 216
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 216
-
VISHAY