LPC11U6X [NXP]

32-bit ARM Cortex-M0 microcontroller; up to 256 KB flash and 36 KB SRAM; 4 KB EEPROM; USB; 12-bit ADC;
LPC11U6X
型号: LPC11U6X
厂家: NXP    NXP
描述:

32-bit ARM Cortex-M0 microcontroller; up to 256 KB flash and 36 KB SRAM; 4 KB EEPROM; USB; 12-bit ADC

可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器 静态存储器
文件: 总97页 (文件大小:3036K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LPC11U6x  
32-bit ARM Cortex-M0+ microcontroller; up to 256 KB flash  
and 36 KB SRAM; 4 KB EEPROM; USB; 12-bit ADC  
Rev. 1.5 — 12 August 2020  
Product data sheet  
1. General description  
The LPC11U6x are an ARM Cortex-M0+ based, low-cost 32-bit MCU family operating at  
CPU frequencies of up to 50 MHz. The LPC11U6x support up to 256 KB of flash memory,  
a 4 KB EEPROM, and 36 KB of SRAM.  
The ARM Cortex-M0+ is an easy-to-use, energy-efficient core using a two-stage pipeline  
and fast single-cycle I/O access.  
The peripheral complement of the LPC11U6x includes a DMA controller, a CRC engine,  
one full-speed USB device controller with XTAL-less low-speed mode, two I2C-bus  
interfaces, up to five USARTs, two SSP interfaces, PWM/timer subsystem with six  
configurable multi-purpose timers, a Real-Time Clock, one 12-bit ADC, temperature  
sensor, function-configurable I/O ports, and up to 80 general-purpose I/O pins.  
For additional documentation related to the LPC11U6x parts, see Section 17  
“References”.  
2. Features and benefits  
System:  
ARM Cortex-M0+ processor (version r0p1), running at frequencies of up to 50 MHz  
with single-cycle multiplier and fast single-cycle I/O port.  
ARM Cortex-M0+ built-in Nested Vectored Interrupt Controller (NVIC).  
AHB Multilayer matrix.  
System tick timer.  
Serial Wire Debug (SWD) and JTAG boundary scan modes supported.  
Micro Trace Buffer (MTB) supported.  
Memory:  
Up to 256 KB on-chip flash programming memory with page erase.  
Up to 32 KB main SRAM.  
Up to two additional SRAM blocks of 2 KB each.  
Up to 4 KB EEPROM.  
ROM API support:  
Boot loader.  
USART drivers.  
I2C drivers.  
USB drivers.  
DMA drivers.  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Power profiles.  
Flash In-Application Programming (IAP) and In-System Programming (ISP).  
32-bit integer division routines.  
Digital peripherals:  
Simple DMA engine with 16 channels and programmable input triggers.  
High-speed GPIO interface connected to the ARM Cortex-M0+ IO bus with up to 80  
General-Purpose I/O (GPIO) pins with configurable pull-up/pull-down resistors,  
programmable open-drain mode, input inverter, and programmable glitch filter and  
digital filter.  
Pin interrupt and pattern match engine using eight selectable GPIO pins.  
Two GPIO group interrupt generators.  
CRC engine.  
Configurable PWM/timer subsystem (two 16-bit and two 32-bit standard  
counter/timers, two State-Configurable Timers (SCTimer/PWM)) that provides:  
Up to four 32-bit and two 16-bit counter/timers or two 32-bit and six 16-bit  
counter/timers.  
Up to 21 match outputs and 16 capture inputs.  
Up to 19 PWM outputs with 6 independent time bases.  
Windowed WatchDog timer (WWDT).  
Real-time Clock (RTC) in the always-on power domain with separate battery supply  
pin and 32 kHz oscillator.  
Analog peripherals:  
One 12-bit ADC with up to 12 input channels with multiple internal and external  
trigger inputs and with sample rates of up to 2 Msamples/s. The ADC supports two  
independent conversion sequences.  
Temperature sensor.  
Serial interfaces:  
Up to five USART interfaces, all with DMA, synchronous mode, and RS-485 mode  
support. Four USARTs use a shared fractional baud generator.  
Two SSP controllers with DMA support.  
Two I2C-bus interfaces. One I2C-bus interface with specialized open-drain pins  
supports I2C Fast-mode plus.  
USB 2.0 full-speed device controller with on-chip PHY. XTAL-less low-speed mode  
supported.  
Clock generation:  
12 MHz internal RC oscillator trimmed to 1 % accuracy for 25 C Tamb +85 C  
that can optionally be used as a system clock.  
On-chip 32 kHz oscillator for RTC.  
Crystal oscillator with an operating range of 1 MHz to 25 MHz. Oscillator pins are  
shared with the GPIO pins.  
Programmable watchdog oscillator with a frequency range of 9.4 kHz to 2.3 MHz.  
PLL allows CPU operation up to the maximum CPU rate without the need for a  
high-frequency crystal.  
A second, dedicated PLL is provided for USB.  
Clock output function with divider that can reflect the crystal oscillator, the main  
clock, the IRC, or the watchdog oscillator.  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
2 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Power control:  
Integrated PMU (Power Management Unit) to minimize power consumption.  
Reduced power modes: Sleep mode, Deep-sleep mode, Power-down mode, and  
Deep power-down mode.  
Wake-up from Deep-sleep and Power-down modes on external pin inputs and  
USART activity.  
Power-On Reset (POR).  
Brownout detect.  
Unique device serial number for identification.  
Single power supply (2.4 V to 3.6 V).  
Separate VBAT supply for RTC.  
Operating temperature range 40 °C to 105 °C.  
Available as LQFP48, LQFP64, and LQFP100 packages.  
3. Applications  
Three-phase e-meter  
Car radio  
GPS tracker  
Medical monitor  
PC peripherals  
Gaming accessories  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
3 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
4. Ordering information  
Table 1.  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
LPC11U66JBD48  
LPC11U67JBD48  
LPC11U67JBD64  
LPC11U67JBD100  
LPC11U68JBD48  
LPC11U68JBD64  
LPC11U68JBD100  
LQFP48  
LQFP48  
LQFP64  
LQFP100  
LQFP48  
LQFP64  
LQFP100  
plastic low profile quad flat package; 48 leads; body 7 7 1.4 mm  
plastic low profile quad flat package; 48 leads; body 7 7 1.4 mm  
plastic low profile quad flat package; 64 leads; body 10 10 1.4 mm  
SOT313-2  
SOT313-2  
SOT314-2  
plastic low profile quad flat package; 100 leads; body 14 14 1.4 mm SOT407-1  
plastic low profile quad flat package; 48 leads; body 7 7 1.4 mm  
plastic low profile quad flat package; 64 leads; body 10 10 1.4 mm  
SOT313-2  
SOT314-2  
plastic low profile quad flat package; 100 leads; body 14 14 1.4 mm SOT407-1  
4.1 Ordering options  
Table 2.  
Ordering options  
Type number  
Flash/ EEPROM/ SRAM/ USB  
I2C SSP Timers 12-bit  
GPIO  
KB  
KB  
KB  
with  
ADC  
PWM  
channels  
LPC11U66JBD48  
LPC11U67JBD48  
LPC11U67JBD64  
64  
4
4
4
4
4
4
4
12  
20  
20  
20  
36  
36  
36  
1
1
1
1
1
1
1
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
N
N
N
Y
N
N
Y
N
N
N
Y
N
N
Y
2
2
2
2
2
2
2
2
2
2
2
2
2
2
6
6
6
6
6
6
6
8
34  
34  
48  
80  
34  
48  
80  
128  
128  
8
10  
12  
8
LPC11U67JBD100 128  
LPC11U68JBD48  
LPC11U68JBD64  
256  
256  
10  
12  
LPC11U68JBD100 256  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
4 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
5. Marking  
n
n
1
1
Terminal 1 index area  
Terminal 1 index area  
aaa-011231  
aaa-011232  
Fig 1. LQFP64/100 package marking  
Fig 2. LQFP48 package marking  
The LPC11U6x devices typically have the following top-side marking for LQFP100  
packages:  
LPC11U6xJBD100  
xxxxxx xx  
xxxyywwxR[x]  
The LPC11U6x devices typically have the following top-side marking for LQFP64  
packages:  
LPC11U6xJ  
xxxxxx xx  
xxxyywwxR[x]  
The LPC11U6x devices typically have the following top-side marking for LQFP48  
packages:  
LPC11U6xJ  
xx xx  
xxxyy  
wwxR[x]  
Field ‘yy’ states the year the device was manufactured. Field ‘ww’ states the week the  
device was manufactured during that year. Field ‘R’ states the chip revision.  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
5 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
6. Block diagram  
LPC11U6x  
PROCESSOR CORE  
SWD TEST/DEBUG  
INTERFACE  
ARM  
CORTEX-M0+  
NVIC  
SYSTICK  
HS GPIO+  
MEMORY  
PORT0/1/2  
256/128/64 KB FLASH  
4 KB EEPROM  
36/20/12 KB SRAM  
ROM  
AHB MULTILAYER  
MATRIX  
PINT/  
PATTERN MATCH  
PINTSEL  
GINT0/1  
AHB/APB BRIDGES  
ANALOG PERIPHERALS  
TEMPERATURE SENSOR  
12-bit ADC0  
TRIGGER MUX  
IOCON  
PWM/TIMER SUBSYSTEM  
n
pads  
SCTIMER0/  
PWM  
DMA  
CT16B0  
CT16B1  
CT32B0  
CT32B1  
DMA TRIGGER  
SCTIMER1/  
PWM  
SERIAL PERIPHERALS  
USART0  
USART1  
USART2  
SSP0  
SSP1  
FM+ I2C0  
I2C1  
FS USB/  
PHY  
(1)  
(1)  
USART3  
USART4  
CLOCK  
GENERATION  
PRECISION  
IRC  
WATCHDOG  
OSCILLATOR  
SYSTEM  
OSCILLATOR  
SYSTEM  
PLL  
USB  
PLL  
ALWAYS-ON POWER DOMAIN  
SYSTEM TIMER  
RTC  
RTC  
GENERAL PURPOSE  
BACKUP REGISTERS  
WWDT  
OSCILLATOR  
SYSTEM/MEMORY CONTROL  
SYSCON IOCON  
PMU  
CRC  
FLASH CTRL  
EEPROM CTRL  
aaa-010773  
Gray-shaded blocks show peripherals that can provide hardware triggers for DMA transfers or have DMA request lines.  
(1) Available on LQFP100 packages only.  
Fig 3. LPC11U6x block diagram  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
6 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
7. Pinning information  
7.1 Pinning  
SWDIO/PIO0_15 37  
PIO0_16/WAKEUP 38  
PIO0_23 39  
24 PIO0_7  
23 PIO0_6  
22 PIO1_24  
21 PIO2_7  
20 USB_DP  
19 USB_DM  
18 PIO1_23  
17 PIO0_21  
16 PIO0_5  
15 PIO0_4  
14 PIO0_3  
13 PIO1_20  
V
40  
41  
DDA  
V
SSA  
PIO0_17 42  
LPC11U6XJBD48  
V
43  
44  
SS  
DD  
V
PIO0_18 45  
PIO0_19 46  
VBAT 47  
RTCXIN 48  
aaa-007794  
Fig 4. LQFP48 pinning  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
7 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
PIO1_13 49  
32 PIO2_15  
31 PIO1_28  
30 PIO0_7  
29 PIO0_6  
28 PIO1_24  
27 PIO2_7  
26 USB_DP  
25 USB_DM  
24 PIO2_6  
23 PIO1_23  
22 PIO0_21  
21 PIO0_5  
20 PIO0_4  
19 PIO0_3  
18 PIO1_20  
17 PIO1_27  
SWDIO/PIIO0_15 50  
PIO0_16/WAKEUP 51  
PIO0_23 52  
V
53  
54  
DDA  
V
SSA  
PIO1_9 55  
PIO0_17 56  
LPC11U6XJBD64  
V
57  
58  
59  
SS  
V
DD  
DD  
V
PIO0_18 60  
PIO0_19 61  
PIO1_0 62  
VBAT 63  
PIO1_19 64  
aaa-007795  
Fig 5. LQFP64 pinning  
76  
50  
LPC11U6XJBD100  
100  
26  
aaa-007796  
Fig 6. LQFP100 pinning  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
8 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
7.2 Pin description  
Table 3.  
Pin description  
Pin functions are selected through the IOCON registers. See Table 2 for availability of USART3 and USART4 pin functions.  
Symbol  
Reset Type Description of pin functions  
state[1]  
[8]  
RESET/PIO0_0  
3
4
8
I; PU  
I
RESET — External reset input with 20 ns glitch filter. A  
LOW-going pulse as short as 50 ns on this pin resets the  
device, causing I/O ports and peripherals to take on their  
default states, and processor execution to begin at address  
0. This pin also serves as the debug select input. LOW  
level selects the JTAG boundary scan. HIGH level selects  
the ARM SWD debug mode.  
In deep power-down mode, this pin must be pulled HIGH  
externally. The RESET pin can be left unconnected or be  
used as a GPIO pin if an external RESET function is not  
needed and Deep power-down mode is not used.  
IO  
IO  
PIO0_0 — General-purpose digital input/output pin.  
[6]  
PIO0_1  
4
5
9
I; PU  
PIO0_1 — General-purpose digital input/output pin. A LOW  
level on this pin during reset starts the ISP command  
handler or the USB device enumeration.  
O
O
O
IO  
IO  
I
CLKOUT — Clockout pin.  
CT32B0_MAT2 — Match output 2 for 32-bit timer 0.  
USB_FTOGGLE — USB 1 ms Start-of-Frame signal.  
PIO0_2 — General-purpose port 0 input/output 2.  
SSP0_SSEL — Slave select for SSP0.  
CT16B0_CAP0 — Capture input 0 for 16-bit timer 0.  
R_0 — Reserved.  
[6]  
[6]  
PIO0_2  
PIO0_3  
11 14 19  
I; PU  
I; PU  
-
14 19 30  
IO  
PIO0_3 — General-purpose digital input/output pin. A LOW  
level on this pin during reset starts the ISP command  
handler. A HIGH level during reset starts the USB device  
enumeration.  
I
USB_VBUS — Monitors the presence of USB bus power.  
R_1 — Reserved.  
-
[7]  
PIO0_4  
PIO0_5  
15 20 31  
IA  
IA  
IO  
PIO0_4 — General-purpose port 0 input/output 4  
(open-drain).  
I2C0_SCL — I2C-bus clock input/output (open-drain).  
High-current sink only if I2C Fast-mode Plus is selected in  
the I/O configuration register.  
IO  
-
R_2 — Reserved.  
[7]  
16 21 32  
IO  
PIO0_5 — General-purpose port 0 input/output 5  
(open-drain).  
IO  
-
I2C0_SDA — I2C-bus data input/output (open-drain).  
High-current sink only if I2C Fast-mode Plus is selected in  
the I/O configuration register.  
R_3 — Reserved.  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
9 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Table 3.  
Pin description  
Pin functions are selected through the IOCON registers. See Table 2 for availability of USART3 and USART4 pin functions.  
Symbol  
Reset Type Description of pin functions  
state[1]  
[6]  
[5]  
PIO0_6  
23 29 44  
I; PU  
IO  
-
PIO0_6 — General-purpose port 0 input/output 6.  
R — Reserved.  
IO  
-
SSP0_SCK — Serial clock for SSP0.  
R_4 — Reserved.  
PIO0_7  
24 30 45  
I; PU  
IO  
PIO0_7 — General-purpose port 0 input/output 7  
(high-current output driver).  
I
U0_CTS — Clear To Send input for USART.  
-
R_5 — Reserved.  
IO  
I2C1_SCL — I2C-bus clock input/output. This pin is not  
open-drain.  
[6]  
[6]  
[6]  
PIO0_8  
26 37 58  
27 38 59  
28 39 60  
I; PU  
I; PU  
I; PU  
IO  
IO  
O
-
PIO0_8 — General-purpose port 0 input/output 8.  
SSP0_MISO — Master In Slave Out for SSP0.  
CT16B0_MAT0 — Match output 0 for 16-bit timer 0.  
R_6 — Reserved.  
PIO0_9  
IO  
IO  
O
-
PIO0_9 — General-purpose port 0 input/output 9.  
SSP0_MOSI — Master Out Slave In for SSP0.  
CT16B0_MAT1 — Match output 1 for 16-bit timer 0.  
R_7 — Reserved.  
SWCLK/PIO0_10  
IO  
SWCLK — Serial Wire Clock. SWCLK is enabled by  
default on this pin. In boundary scan mode: TCK (Test  
Clock).  
IO  
IO  
O
PIO0_10 — General-purpose digital input/output pin.  
SSP0_SCK — Serial clock for SSP0.  
CT16B0_MAT2 — 16-bit timer0 MAT2  
[3]  
TDI/PIO0_11  
30 42 64  
I; PU  
IO  
TDI — Test Data In for JTAG interface. In boundary scan  
mode only.  
IO  
AI  
O
PIO0_11 — General-purpose digital input/output pin.  
ADC_9 — A/D converter, input channel 9.  
CT32B0_MAT3 — Match output 3 for 32-bit timer 0.  
U1_RTS — Request To Send output for USART1.  
O
IO  
U1_SCLK — Serial clock input/output for USART1 in  
synchronous mode.  
[3]  
TMS/PIO0_12  
31 43 66  
I; PU  
IO  
TMS — Test Mode Select for JTAG interface. In boundary  
scan mode only.  
IO  
AI  
I
PIO0_12 — General-purpose digital input/output pin.  
ADC_8 — A/D converter, input channel 8.  
CT32B1_CAP0 — Capture input 0 for 32-bit timer 1.  
U1_CTS — Clear To Send input for USART1.  
I
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
10 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Table 3.  
Pin description  
Pin functions are selected through the IOCON registers. See Table 2 for availability of USART3 and USART4 pin functions.  
Symbol  
Reset Type Description of pin functions  
state[1]  
[3]  
TDO/PIO0_13  
32 45 68  
I; PU  
IO  
TDO — Test Data Out for JTAG interface. In boundary  
scan mode only.  
IO  
AI  
O
I
PIO0_13 — General-purpose digital input/output pin.  
ADC_7 — A/D converter, input channel 7.  
CT32B1_MAT0 — Match output 0 for 32-bit timer 1.  
U1_RXD — Receiver input for USART1.  
[3]  
TRST/PIO0_14  
33 46 69  
I; PU  
IO  
TRST — Test Reset for JTAG interface. In boundary scan  
mode only.  
IO  
AI  
O
PIO0_14 — General-purpose digital input/output pin.  
ADC_6 — A/D converter, input channel 6.  
CT32B1_MAT1 — Match output 1 for 32-bit timer 1.  
U1_TXD — Transmitter output for USART1.  
O
[3]  
SWDIO/PIO0_15  
37 50 81  
I; PU  
IO  
SWDIO — Serial Wire Debug I/O. SWDIO is enabled by  
default on this pin. In boundary scan mode: TMS (Test  
Mode Select).  
IO  
AI  
O
PIO0_15 — General-purpose digital input/output pin.  
ADC_3 — A/D converter, input channel 3.  
CT32B1_MAT2 — Match output 2 for 32-bit timer 1.  
[4]  
PIO0_16/WAKEUP  
38 51 82  
I; PU  
IO  
PIO0_16 — General-purpose digital input/output pin. This  
pin also serves as the Deep power-down mode wake-up  
pin with 20 ns glitch filter. Pull this pin HIGH externally  
before entering Deep power-down mode. Pull this pin LOW  
to exit Deep power-down mode. A LOW-going pulse as  
short as 50 ns wakes up the part.  
AI  
O
-
ADC_2 — A/D converter, input channel 2.  
CT32B1_MAT3 — Match output 3 for 32-bit timer 1.  
R_8 — Reserved.  
[6]  
PIO0_17  
42 56 90  
I; PU  
IO  
O
I
PIO0_17 — General-purpose digital input/output pin.  
U0_RTS — Request To Send output for USART0.  
CT32B0_CAP0 — Capture input 0 for 32-bit timer 0.  
IO  
U0_SCLK — Serial clock input/output for USART0 in  
synchronous mode.  
[6]  
[6]  
PIO0_18  
PIO0_19  
45 60 94  
I; PU  
I; PU  
IO  
I
PIO0_18 — General-purpose digital input/output pin.  
U0_RXD — Receiver input for USART0. Used in UART  
ISP mode.  
O
CT32B0_MAT0 — Match output 0 for 32-bit timer 0.  
PIO0_19 — General-purpose digital input/output pin.  
46 61 95  
IO  
O
U0_TXD — Transmitter output for USART0. Used in UART  
ISP mode.  
O
CT32B0_MAT1 — Match output 1 for 32-bit timer 0.  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
11 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Table 3.  
Pin description  
Pin functions are selected through the IOCON registers. See Table 2 for availability of USART3 and USART4 pin functions.  
Symbol  
PIO0_20  
PIO0_21  
PIO0_22  
Reset Type Description of pin functions  
state[1]  
[6]  
[6]  
[3]  
10 12 17  
17 22 33  
29 40 62  
I; PU  
I; PU  
I; PU  
IO  
I
PIO0_20 — General-purpose digital input/output pin.  
CT16B1_CAP0 — Capture input 0 for 16-bit timer 1.  
U2_RXD — Receiver input for USART2.  
PIO0_21 — General-purpose digital input/output pin.  
CT16B1_MAT0 — Match output 0 for 16-bit timer 1.  
SSP1_MOSI — Master Out Slave In for SSP1.  
PIO0_22 — General-purpose digital input/output pin.  
ADC_11 — A/D converter, input channel 11.  
CT16B1_CAP1 — Capture input 1 for 16-bit timer 1.  
SSP1_MISO — Master In Slave Out for SSP1.  
PIO0_23 — General-purpose digital input/output pin.  
ADC_1 — A/D converter, input channel 1.  
R_9 — Reserved.  
I
IO  
O
IO  
IO  
AI  
I
IO  
IO  
AI  
-
[3]  
PIO0_23  
39 52 83  
I; PU  
I
U0_RI — Ring Indicator input for USART0.  
SSP1_SSEL — Slave select for SSP1.  
IO  
IO  
O
-
[6]  
[6]  
[6]  
[3]  
PIO1_0  
PIO1_1  
PIO1_2  
PIO1_3  
-
-
-
-
62 97  
I; PU  
I; PU  
I; PU  
I; PU  
PIO1_0 — General-purpose digital input/output pin.  
CT32B1_MAT0 — Match output 0 for 32-bit timer 1.  
R_10 — Reserved.  
O
IO  
O
-
U2_TXD — Transmitter output for USART2.  
PIO1_1 — General-purpose digital input/output pin.  
CT32B1_MAT1 — Match output 1 for 32-bit timer 1.  
R_11 — Reserved.  
-
-
-
28  
55  
72  
O
IO  
O
-
U0_DTR — Data Terminal Ready output for USART0.  
PIO1_2 — General-purpose digital input/output pin.  
CT32B1_MAT2 — Match output 2 for 32-bit timer 1.  
R_12 — Reserved.  
I
U1_RXD — Receiver input for USART1.  
PIO1_3 — General-purpose digital input/output pin.  
CT32B1_MAT3 — Match output 3 for 32-bit timer 1.  
R_13 — Reserved.  
IO  
O
-
IO  
AI  
IO  
I
I2C1_SDA — I2C-bus data input/output (not open-drain).  
ADC_5 — A/D converter, input channel 5.  
PIO1_4 — General-purpose digital input/output pin.  
CT32B1_CAP0 — Capture input 0 for 32-bit timer 1.  
R_14 — Reserved.  
[6]  
PIO1_4  
-
-
23  
I; PU  
-
I
U0_DSR — Data Set Ready input for USART0.  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
12 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Table 3.  
Pin description  
Pin functions are selected through the IOCON registers. See Table 2 for availability of USART3 and USART4 pin functions.  
Symbol  
Reset Type Description of pin functions  
state[1]  
[6]  
[6]  
[6]  
[6]  
[3]  
[6]  
PIO1_5  
-
-
-
-
-
-
-
47  
98  
10  
61  
I; PU  
I; PU  
I; PU  
I; PU  
I; PU  
I; PU  
IO  
I
PIO1_5 — General-purpose digital input/output pin.  
CT32B1_CAP1 — Capture input 1 for 32-bit timer 1.  
R_15 — Reserved.  
-
I
U0_DCD — Data Carrier Detect input for USART0.  
PIO1_6 — General-purpose digital input/output pin.  
R_16 — Reserved.  
PIO1_6  
PIO1_7  
PIO1_8  
PIO1_9  
PIO1_10  
-
IO  
-
I
U2_RXD — Receiver input for USART2.  
CT32B0_CAP2 — Capture input 2 for 32-bit timer 0.  
PIO1_7 — General-purpose digital input/output pin.  
R_17 — Reserved.  
I
6
-
IO  
-
I
U2_CTS — Clear To Send input for USART2.  
CT16B1_CAP0 — Capture input 0 for 32-bit timer 1.  
PIO1_8 — General-purpose digital input/output pin.  
R_18 — Reserved.  
I
IO  
-
O
I
U1_TXD — Transmitter output for USART1.  
CT16B0_CAP0 — Capture input 0 for 16-bit timer 0.  
PIO1_9 — General-purpose digital input/output pin.  
U0_CTS — Clear To Send input for USART0.  
CT16B1_MAT1 — Match output 1 for 16-bit timer 1.  
ADC_0 — A/D converter, input channel 0.  
PIO1_10 — General-purpose digital input/output pin.  
U2_RTS — Request To Send output for USART2.  
55 86  
IO  
I
O
I
13 18  
IO  
O
IO  
U2_SCLK — Serial clock input/output for USART2 in  
synchronous mode.  
O
IO  
IO  
O
I
CT16B1_MAT0 — Match output 0 for 16-bit timer 1.  
PIO1_11 — General-purpose digital input/output pin.  
I2C1_SCL — I2C1-bus clock input/output (not open-drain).  
CT16B0_MAT2 — Match output 2 for 16-bit timer 0.  
U0_RI — Ring Indicator input for USART0.  
PIO1_12 — General-purpose digital input/output pin.  
SSP0_MOSI — Master Out Slave In for SSP0.  
CT16B0_MAT1 — Match output 1 for 16-bit timer 0.  
R_21 — Reserved.  
[6]  
[6]  
[6]  
PIO1_11  
PIO1_12  
PIO1_13  
-
-
-
-
65  
89  
I; PU  
I; PU  
I; PU  
IO  
IO  
O
-
36 49 78  
IO  
I
PIO1_13 — General-purpose digital input/output pin.  
U1_CTS — Clear To Send input for USART1.  
SCT0_OUT3 — SCTimer0/PWM output 3.  
R_22 — Reserved.  
O
-
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
13 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Table 3.  
Pin description  
Pin functions are selected through the IOCON registers. See Table 2 for availability of USART3 and USART4 pin functions.  
Symbol  
Reset Type Description of pin functions  
state[1]  
[6]  
[6]  
[6]  
[6]  
[6]  
[6]  
[6]  
[6]  
[3]  
PIO1_14  
-
-
-
-
-
-
-
79  
87  
96  
34  
43  
4
I; PU  
I; PU  
I; PU  
I; PU  
I; PU  
I; PU  
I; PU  
I; PU  
I; PU  
IO  
IO  
O
-
PIO1_14 — General-purpose digital input/output pin.  
I2C1_SDA — I2C1-bus data input/output (not open-drain).  
CT32B1_MAT2 — Match output 2 for 32-bit timer 1.  
R_23 — Reserved.  
PIO1_15  
PIO1_16  
PIO1_17  
PIO1_18  
PIO1_19  
PIO1_20  
PIO1_21  
PIO1_22  
-
IO  
IO  
O
-
PIO1_15 — General-purpose digital input/output pin.  
SSP0_SSEL — Slave select for SSP0.  
CT32B1_MAT3 — Match output 3 for 32-bit timer 1.  
R_24 — Reserved.  
-
IO  
IO  
O
-
PIO1_16 — General-purpose digital input/output pin.  
SSP0_MISO — Master In Slave Out for SSP0.  
CT16B0_MAT0 — Match output 0 for 16-bit timer 0.  
R_25 — Reserved.  
-
IO  
I
PIO1_17 — General-purpose digital input/output pin.  
CT16B0_CAP2 — Capture input 2 for 16-bit timer 0.  
U0_RXD — Receiver input for USART0.  
R_26 — Reserved.  
I
-
-
IO  
I
PIO1_18 — General-purpose digital input/output pin.  
CT16B1_CAP1 — Capture input 1 for 16-bit timer 1.  
U0_TXD — Transmitter output for USART0.  
R_27 — Reserved.  
O
-
64  
IO  
I
PIO1_19 — General-purpose digital input/output pin.  
U2_CTS — Clear To Send input for USART2.  
SCT0_OUT0 — SCTimer0/PWM output 0.  
R_28 — Reserved.  
O
-
13 18 29  
IO  
I
PIO1_20 — General-purpose digital input/output pin.  
U0_DSR — Data Set Ready input for USART0.  
SSP1_SCK — Serial clock for SSP1.  
IO  
O
IO  
I
CT16B0_MAT0 — Match output 0 for 16-bit timer 0.  
PIO1_21 — General-purpose digital input/output pin.  
U0_DCD — Data Carrier Detect input for USART0.  
SSP1_MISO — Master In Slave Out for SSP1.  
CT16B0_CAP2 — Capture input 2 for 16-bit timer 0.  
PIO1_22 — General-purpose digital input/output pin.  
SSP1_MOSI — Master Out Slave In for SSP1.  
CT32B1_CAP1 — Capture input 1 for 32-bit timer 1.  
ADC_4 — A/D converter, input channel 4.  
R_29 — Reserved.  
25 35 56  
IO  
I
-
-
80  
IO  
IO  
I
AI  
-
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
14 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Table 3.  
Pin description  
Pin functions are selected through the IOCON registers. See Table 2 for availability of USART3 and USART4 pin functions.  
Symbol  
Reset Type Description of pin functions  
state[1]  
[6]  
PIO1_23  
18 23 35  
I; PU  
IO  
O
PIO1_23 — General-purpose digital input/output pin.  
CT16B1_MAT1 — Match output 1 for 16-bit timer 1.  
SSP1_SSEL — Slave select for SSP1.  
IO  
O
U2_TXD — Transmitter output for USART2.  
[6]  
[6]  
PIO1_24  
PIO1_25  
22 28 42  
I; PU  
I; PU  
IO  
O
PIO1_24 — General-purpose digital input/output pin.  
CT32B0_MAT0 — Match output 0 for 32-bit timer 0.  
I2C1_SDA — I2C-bus data input/output (not open-drain).  
PIO1_25 — General-purpose digital input/output pin.  
U2_RTS — Request To Send output for USART2.  
IO  
IO  
O
-
-
100  
IO  
U2_SCLK — Serial clock input/output for USART2 in  
synchronous mode.  
I
SCT0_IN0 — SCTimer0/PWM input 0.  
R_30 — Reserved.  
-
[6]  
[6]  
PIO1_26  
PIO1_27  
-
-
15 20  
I; PU  
I; PU  
IO  
O
I
PIO1_26 — General-purpose digital input/output pin.  
CT32B0_MAT2 — Match output 2 for 32-bit timer 0.  
U0_RXD — Receiver input for USART0.  
R_19 — Reserved.  
-
17 22  
IO  
O
O
-
PIO1_27 — General-purpose digital input/output pin.  
CT32B0_MAT3 — Match output 3 for 32-bit timer 0.  
U0_TXD — Transmitter output for USART0.  
R_20 — Reserved.  
IO  
IO  
I
SSP1_SCK — Serial clock for SSP1.  
PIO1_28 — General-purpose digital input/output pin.  
CT32B0_CAP0 — Capture input 0 for 32-bit timer 0.  
[6]  
PIO1_28  
PIO1_29  
-
-
31 46  
I; PU  
I; PU  
IO  
U0_SCLK — Serial clock input/output for USART in  
synchronous mode.  
O
IO  
IO  
I
U0_RTS — Request To Send output for USART0.  
PIO1_29 — General-purpose digital input/output pin.  
SSP0_SCK — Serial clock for SSP0.  
[3]  
41 63  
CT32B0_CAP2 — Capture input 2 for 32-bit timer 0.  
U0_DTR — Data Terminal Ready output for USART0.  
ADC_10 — A/D converter, input channel 10.  
PIO1_30 — General-purpose digital input/output pin.  
I2C1_SCL — I2C1-bus clock input/output (not open-drain).  
SCT0_IN3 — SCTimer0/PWM input 3.  
O
AI  
IO  
IO  
I
[6]  
[5]  
PIO1_30  
PIO1_31  
-
-
44 67  
I; PU  
I; PU  
-
R_31 — Reserved.  
-
48  
IO  
PIO1_31 — General-purpose digital input/output pin  
(high-current output driver).  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
15 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Table 3.  
Pin description  
Pin functions are selected through the IOCON registers. See Table 2 for availability of USART3 and USART4 pin functions.  
Symbol  
Reset Type Description of pin functions  
state[1]  
[10]  
PIO2_0  
6
7
8
9
12  
13  
I; PU  
IO  
AI  
PIO2_0 — General-purpose digital input/output pin.  
XTALIN — Input to the oscillator circuit and internal clock  
generator circuits. Input voltage must not exceed 1.8 V.  
[10]  
[6]  
PIO2_1  
PIO2_2  
I; PU  
I; PU  
IO  
AO  
IO  
O
PIO2_1 — General-purpose digital input/output pin.  
XTALOUT — Output from the oscillator amplifier.  
PIO2_2 — General-purpose digital input/output pin.  
U3_RTS — Request To Send output for USART3.  
12 16 21  
IO  
U3_SCLK — Serial clock input/output for USART3 in  
synchronous mode.  
SCT0_OUT1 — SCTimer0/PWM output 1.  
[6]  
[6]  
[6]  
[6]  
PIO2_3  
PIO2_4  
PIO2_5  
PIO2_6  
-
-
-
36  
41  
I; PU  
I; PU  
I; PU  
I; PU  
IO  
I
PIO2_3 — General-purpose digital input/output pin.  
U3_RXD — Receiver input for USART3.  
O
IO  
O
O
IO  
I
CT32B0_MAT1 — Match output 1 for 32-bit timer 0.  
PIO2_4 — General-purpose digital input/output pin.  
U3_TXD — Transmitter output for USART3.  
CT32B0_MAT2 — Match output 2 for 32-bit timer 0.  
PIO2_5 — General-purpose digital input/output pin.  
U3_CTS — Clear To Send input for USART3.  
SCT0_IN1 — SCTimer0/PWM input 1.  
-
9
-
11 15  
24 37  
I
IO  
O
IO  
PIO2_6 — General-purpose digital input/output pin.  
U1_RTS — Request To Send output for USART1.  
U1_SCLK — Serial clock input/output for USART1 in  
synchronous mode.  
I
SCT0_IN2 — SCTimer0/PWM input 2.  
[6]  
PIO2_7  
21 27 40  
I; PU  
IO  
IO  
I
PIO2_7 — General-purpose digital input/output pin.  
SSP0_SCK — Serial clock for SSP0.  
SCT0_OUT2 — SCTimer0/PWM output 2.  
PIO2_8 — General-purpose digital input/output pin.  
SCT1_IN0 — SCTimer1/PWM input 0.  
[6]  
[6]  
[6]  
PIO2_8  
PIO2_9  
PIO2_10  
-
-
-
-
-
-
2
I; PU  
I; PU  
I; PU  
IO  
I
3
IO  
I
PIO2_9 — General-purpose digital input/output pin.  
SCT1_IN1 — SCTimer1/PWM_IN1  
16  
IO  
O
IO  
PIO2_10 — General-purpose digital input/output pin.  
U4_RTS — Request To Send output for USART4.  
U4_SCLK — Serial clock input/output for USART4 in  
synchronous mode.  
[6]  
[6]  
PIO2_11  
PIO2_12  
-
-
-
-
24  
25  
I; PU  
I; PU  
IO  
I
PIO2_11 — General-purpose digital input/output pin.  
U4_RXD — Receiver input for USART4.  
IO  
O
PIO2_12 — General-purpose digital input/output pin.  
U4_TXD — Transmitter output for USART4.  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
16 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Table 3.  
Pin description  
Pin functions are selected through the IOCON registers. See Table 2 for availability of USART3 and USART4 pin functions.  
Symbol  
Reset Type Description of pin functions  
state[1]  
[6]  
[6]  
[6]  
[6]  
[6]  
[6]  
[6]  
PIO2_13  
PIO2_14  
PIO2_15  
PIO2_16  
PIO2_17  
PIO2_18  
PIO2_19  
-
-
-
-
-
-
-
-
-
26  
27  
I; PU  
I; PU  
I; PU  
I; PU  
I; PU  
I; PU  
I; PU  
IO  
I
PIO2_13 — General-purpose digital input/output pin.  
U4_CTS — Clear To Send input for USART4.  
PIO2_14 — General-purpose digital input/output pin.  
SCT1_IN2 — SCTimer1/PWM input 2.  
IO  
I
32 49  
IO  
I
PIO2_15 — General-purpose digital input/output pin.  
SCT1_IN3 — SCTimer1/PWM input 3.  
-
-
50  
51  
IO  
O
IO  
O
IO  
O
IO  
O
IO  
IO  
IO  
IO  
IO  
-
PIO2_16 — General-purpose digital input/output pin.  
SCT1_OUT0 — SCTimer1/PWM output 0.  
PIO2_17 — General-purpose digital input/output pin.  
SCT1_OUT1 — SCTimer1/PWM output 1.  
33 52  
36 57  
PIO2_18 — General-purpose port 2 input/output 18.  
SCT1_OUT2 — SCTimer1/PWM output 2.  
PIO2_19 — General-purpose port 2 input/output 19.  
SCT1_OUT3 — SCTimer1/PWM output 3.  
[6]  
[6]  
[6]  
[6]  
[6]  
[9]  
PIO2_20  
PIO2_21  
PIO2_22  
PIO2_23  
RSTOUT  
USB_DP  
-
-
-
-
-
-
-
-
-
-
75  
76  
77  
1
I; PU  
I; PU  
I; PU  
I; PU  
IA  
PIO2_20 — General-purpose port 2 input/output 20.  
PIO2_21 — General-purpose port 2 input/output 21.  
PIO2_22 — General-purpose port 2 input/output 22.  
PIO2_23 — General-purpose port 2 input/output 23.  
Internal reset status output.  
88  
20 26 39  
F
USB bidirectional D+ line. Pad includes internal 33 Ω series  
termination resistor.  
[9]  
[2]  
[2]  
USB_DM  
RTCXIN  
19 25 38  
F
-
-
-
USB bidirectional Dline. Pad includes internal 33 Ω series  
termination resistor.  
48  
1
1
2
5
6
RTC oscillator input. This input should be grounded if the  
RTC is not used.  
RTCXOUT  
VREFP  
-
-
-
-
RTC oscillator output.  
34 47 73  
35 48 74  
40 53 84  
ADC positive reference voltage. If the ADC is not used, tie  
VREFP to VDD  
ADC negative voltage reference. If the ADC is not used, tie  
VREFN to VSS  
.
VREFN  
VDDA  
-
-
-
-
.
Analog voltage supply. VDDAshould typically be the same  
voltages as VDD but should be isolated to minimize noise  
and error. VDDA should be tied to VDD if the ADC is not  
used.  
VDD  
44, 58, 92,  
-
-
Supply voltage to the internal regulator and the external  
rail.  
8
10, 14,  
34, 71,  
59 54,  
93  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
17 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Table 3.  
Pin description  
Pin functions are selected through the IOCON registers. See Table 2 for availability of USART3 and USART4 pin functions.  
Symbol  
Reset Type Description of pin functions  
state[1]  
VBAT  
VSSA  
47 63 99  
41 54 85  
-
-
-
-
Battery supply. Supplies power to the RTC. If no battery is  
used, tie VBAT to VDD.  
Analog ground. VSSAshould typically be the same voltage  
as VSS but should be isolated to minimize noise and error.  
VSSA should be tied to VSS if the ADC is not used.  
VSS  
43, 57, 91,  
2, 3, 7,  
-
-
Ground.  
5
7
11,  
53,  
70  
[1] Pin state at reset for default function: I = Input; AI = Analog Input; O = Output; PU = internal pull-up enabled; IA = inactive, no  
pull-up/down enabled;  
F = floating; If the pins are not used, tie floating pins to ground or power to minimize power consumption.  
[2] Special analog pad.  
[3] 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors, configurable hysteresis, and analog input.  
When configured as analog input, digital section of the pad is disabled and the pin is not 5 V tolerant; includes digital, programmable  
filter.  
[4] 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors, configurable hysteresis, and analog input.  
When configured as analog input, digital section of the pad is disabled and the pin is not 5 V tolerant; includes digital input glitch filter.  
WAKEUP pin. The wake-up pin function can be disabled and the pin can be used for other purposes if the RTC is enabled for waking up  
the part from Deep power-down mode.  
[5] 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors and configurable hysteresis; includes  
high-current output driver.  
[6] 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors and configurable hysteresis.  
[7] I2C-bus pin compliant with the I2C-bus specification for I2C standard mode, I2C Fast-mode, and I2C Fast-mode Plus. The pin requires  
an external pull-up to provide output functionality. When power is switched off, this pin is floating and does not disturb the I2C lines.  
Open-drain configuration applies to all functions on this pin.  
[8] 5 V tolerant pad. RESET functionality is not available in Deep power-down mode. Use the WAKEUP pin to reset the chip and wake up  
from Deep power-down mode. An external pull-up resistor is required on this pin for the Deep power-down mode.  
[9] Pad provides USB functions. It is designed in accordance with the USB specification, revision 2.0 (Full-speed and Low-speed mode  
only). This pad is not 5 V tolerant.  
[10] 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors, configurable hysteresis, and analog crystal  
oscillator connections. When configured for the crystal oscillator input/output, digital section of the pad is disabled and the pin is not 5 V  
tolerant; includes digital, programmable filter.  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
18 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
8. Functional description  
8.1 ARM Cortex-M0+ core  
The ARM Cortex-M0+ core runs at an operating frequency of up to 50 MHz using a  
two-stage pipeline. Integrated in the core are the NVIC and Serial Wire Debug with four  
breakpoints and two watchpoints. The ARM Cortex-M0+ core supports a single-cycle I/O  
enabled port for fast GPIO access.  
The core includes a single-cycle multiplier and a system tick timer.  
8.2 AHB multilayer matrix  
The AHB multilayer matrix supports three masters, the M0+ core, the DMA, and the USB.  
All masters can access all slaves (peripherals and memories).  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
19 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
TEST/DEBUG  
INTERFACE  
ARM  
CORTEX-M0+  
USB  
DMA  
masters  
System  
bus  
slaves  
FLASH  
MAIN SRAM0  
SRAM USB  
SRAM1  
ROM  
EEPROM  
SCTIMER0/PWM  
SCTIMER1/PWM  
HS GPIO  
PINT/PATTERN MATCH  
CRC  
USB REGISTERS  
DMA REGISTERS  
AHB-TO-APB  
BRIDGE  
WWDT  
USART0  
CT16B0  
CT16B1  
I2C0  
AHB MULTILAYER MATRIX  
CT32B0 CT32B1  
ADC  
I2C1 RTC  
DMA TRIGMUX  
SYSCON  
PMU  
FLASHCTRL  
SSP0 IOCON  
GROUP0  
USART3  
USART1  
GROUP1  
USART4  
SSP1  
USART2  
= master-slave connection  
aaa-024616  
Fig 7. AHB multilayer matrix  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
20 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
8.3 On-chip flash programming memory  
The LPC11U6x contain up to 256 KB on-chip flash program memory. The flash can be  
programmed using In-System Programming (ISP) or In-Application Programming (IAP)  
via the on-chip bootloader software.  
The flash memory is divided into 24 x 4 KB and 5 x 32 KB sectors. Individual pages of  
256 byte each can be erased using the IAP erase page command.  
8.4 EEPROM  
The LPC11U6x contain 4 KB of on-chip byte-erasable and byte-programmable EEPROM  
data memory. The EEPROM can be programmed using In-Application Programming (IAP)  
via the on-chip bootloader software.  
8.5 SRAM  
The LPC11U6x contain a total of up to 36 KB on-chip static RAM memory. The main  
SRAM block contains either 8 KB, 16 KB, or 32 KB of main SRAM0. Two additional SRAM  
blocks of 2 KB (SRAM1 and USB SRAM) are located in separate areas of the memory  
map. See Figure 8.  
8.6 On-chip ROM  
The on-chip ROM contains the bootloader and the following Application Programming  
Interfaces (APIs):  
In-System Programming (ISP) and In-Application Programming (IAP) support for flash  
including IAP erase page command.  
IAP support for EEPROM  
USB API  
Power profiles for configuring power consumption and PLL settings  
32-bit integer division routines  
APIs to use the following peripherals:  
I2C  
USART0 and USART1/2/3/4  
DMA  
8.7 Memory mapping  
The LPC11U6x incorporates several distinct memory regions, shown in the following  
figures. Figure 8 shows the overall map of the entire address space from the user  
program viewpoint following reset. The interrupt vector area supports address remapping.  
The AHB (Advanced High-performance Bus) peripheral area is 2 MB in size and is divided  
to allow for up to 128 peripherals. The APB (Advanced Peripheral Bus) peripheral area is  
512 KB in size and is divided to allow for up to 32 peripherals. Each peripheral of either  
type is allocated 16 KB of space. This addressing scheme allows simplifying the address  
decoding for each peripheral.  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
21 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
LPC11U6x  
4 GB  
0xFFFF FFFF  
0xE010 0000  
0xE000 0000  
reserved  
private peripheral bus  
reserved  
0xA000 8000  
GPIO PINT  
GPIO  
0xA000 4000  
0xA000 0000  
APB peripherals  
0x4008 0000  
reserved  
0x5001 0000  
0x5000 E000  
0x5000 C000  
30 - 31 reserved  
SCTIMER1/PWM  
SCTIMER0/PWM  
reserved  
0x4007 8000  
USART3  
29  
0x4007 4000  
USART2  
USART1  
28  
27  
0x5000 8000  
0x5000 4000  
0x5000 0000  
0x4007 0000  
0x4006 C000  
DMA  
CRC  
25 - 26 reserved  
GPIO GROUP1 interrupt  
GPIO GROUP0 interrupt  
0x4006 4000  
0x4006 0000  
0x4005 C000  
24  
23  
22  
reserved  
0x4008 4000  
SSP1  
USB  
0x4005 8000  
0x4005 0000  
0x4008 0000  
0x4000 0000  
20 - 21 reserved  
APB peripherals  
1 GB  
USART4  
19  
0x4004 C000  
0x4004 8000  
0x4004 4000  
0x4004 0000  
reserved  
0x2000 4800  
0x2000 4000  
system control (SYSCON)  
IOCON  
18  
17  
16  
2 KB USB SRAM  
reserved  
SSP0  
0x2000 0800  
0x2000 0000  
15 flash/EEPROM controller  
2 KB SRAM1  
reserved  
0x4003 C000  
0x4003 8000  
0.5 GB  
14  
PMU  
0x1FFF 8000  
0x1FFF 0000  
11 - 13 reserved  
0x4002 C000  
0x4002 8000  
32 KB boot ROM  
reserved  
DMA TRIGMUX  
RTC  
10  
9
0x4002 4000  
0x4002 0000  
0x1400 1000  
0x1400 0000  
I2C1  
8
4 KB MTB registers  
reserved  
12-bit ADC  
7
0x4001 C000  
0x4001 8000  
32-bit counter/timer 1  
6
0x1000 8000  
0x1000 4000  
32-bit counter/timer 0  
16-bit counter/timer 1  
16-bit counter/timer 0  
USART0  
32 KB MAIN SRAM0 (LPC11U68)  
16 KB MAIN SRAM0 (LPC11U67)  
8 KB MAIN SRAM0 (LPC11U66)  
5
0x4001 4000  
0x4001 0000  
0x4000 C000  
0x4000 8000  
4
0x1000 2000  
0x1000 0000  
3
2
reserved  
0x0004 0000  
0x0002 0000  
WWDT  
1
0
0x4000 4000  
0x4000 0000  
256 KB on-chip flash (LPC11U68)  
128 KB on-chip flash (LPC11U67)  
I2C0  
0x0000 00C0  
0x0001 0000  
0x0000 0000  
active interrupt vectors  
64 KB on-chip flash (LPC11U66)  
0x0000 0000  
0 GB  
aaa-010775  
Fig 8. LPC11U6x Memory map  
8.8 Nested Vectored Interrupt Controller (NVIC)  
The Nested Vectored Interrupt Controller (NVIC) is part of the Cortex-M0+. The tight  
coupling to the CPU allows for low interrupt latency and efficient processing of late arriving  
interrupts.  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
22 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
8.8.1 Features  
Controls system exceptions and peripheral interrupts.  
In the LPC11U6x, the NVIC supports vectored interrupts for each of the peripherals  
and the eight pin interrupts. The following peripheral interrupts are ORed to contribute  
to one interrupt in the NVIC:  
USART1, USART4  
USART2, USART3  
SCTimer0/PWM, SCTimer1/PWM  
BOD, WWDT  
ADC end-of-sequence A interrupt, threshold crossing interrupt  
ADC end-of-sequence B interrupt, overrun interrupt  
Flash, EEPROM  
Four programmable interrupt priority levels with hardware priority level masking.  
Software interrupt generation.  
8.8.2 Interrupt sources  
Each peripheral device has at least one interrupt line connected to the NVIC but can have  
several interrupt flags. Individual interrupt flags can also represent more than one interrupt  
source.  
8.9 IOCON block  
The IOCON block allows selected pins of the microcontroller to have more than one  
function. Configuration registers control the multiplexers to allow connection between the  
pin and the on-chip peripherals.  
Connect peripherals to the appropriate pins before activating the peripheral and before  
enabling any related interrupt.  
Enabling an analog function disables the digital pad. However, the internal pull-up and  
pull-down resistors as well as the pin hysteresis must be disabled to obtain an accurate  
reading of the analog input.  
8.9.1 Features  
Programmable pin function.  
Programmable pull-up, pull-down, or repeater mode.  
All pins (except PIO0_4 and PIO0_5) are pulled up to 3.3 V (VDD = 3.3 V) if their  
pull-up resistor is enabled.  
Programmable pseudo open-drain mode.  
Programmable (on/off) 10 ns glitch filter on pins PIO0_22, PIO0_23, PIO0_11 to  
PIO0_16, PIO1_3, PIO1_9, PIO1_22, and PIO1_29. The glitch filter is turned on by  
default.  
Programmable hysteresis.  
Programmable input inverter.  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
23 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Digital filter with programmable filter constant on all pins. The minimum filter constant  
is 1/50 MHz = 20 ns.  
8.9.2 Standard I/O pad configuration  
Figure 9 shows the possible pin modes for standard I/O pins with analog input function:  
Digital output driver with configurable open-drain output  
Digital input: Weak pull-up resistor (PMOS device) enabled/disabled  
Digital input: Weak pull-down resistor (NMOS device) enabled/disabled  
Digital input: Repeater mode enabled/disabled  
Digital input: Input digital filter selectable on all pins. In addition, a 10 ns digital glitch  
filter is selectable on pins with analog function.  
Analog input  
V
V
DD  
DD  
open-drain enable  
output enable  
strong  
pull-up  
ESD  
data output  
PIN  
pin configured  
as digital output  
driver  
strong  
pull-down  
ESD  
V
SS  
V
DD  
weak  
pull-up  
pull-up enable  
weak  
pull-down  
repeater mode  
enable  
pull-down enable  
data input  
PROGRAMMABLE  
DIGITAL FILTER  
10 ns GLITCH  
FILTER  
pin configured  
as digital input  
select data  
inverter  
select glitch  
filter  
select analog input  
analog input  
pin configured  
as analog input  
aaa-010776  
Fig 9. Standard I/O pin configuration  
8.10 Fast General-Purpose parallel I/O (GPIO)  
Device pins that are not connected to a specific peripheral function are controlled by the  
GPIO registers. Pins may be dynamically configured as inputs or outputs. Multiple outputs  
can be set or cleared in one write operation.  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
24 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
LPC11U6x use accelerated GPIO functions:  
GPIO registers are on the ARM Cortex M0+ IO bus for fastest possible single-cycle  
I/O timing, allowing GPIO toggling with rates of up to 25 MHz.  
An entire port value can be written in one instruction.  
Mask, set, and clear operations are supported for the entire port.  
8.10.1 Features  
Bit level port registers allow a single instruction to set and clear any number of bits in  
one write operation.  
Direction control of individual bits.  
8.11 Pin interrupt/pattern match engine  
The pin interrupt block configures up to eight pins from all digital pins for providing eight  
external interrupts connected to the NVIC.  
The pattern match engine can be used, in conjunction with software, to create complex  
state machines based on pin inputs.  
Any digital pin except pins PIO2_8 and PIO2_23 can be configured through the SYSCON  
block as input to the pin interrupt or pattern match engine. The registers that control the  
pin interrupt or pattern match engine are on the IO+ bus for fast single-cycle access.  
8.11.1 Features  
Pin interrupts  
Up to eight pins can be selected from all digital pins except pins PIO2_8 and  
PIO2_23 as edge- or level-sensitive interrupt requests. Each request creates a  
separate interrupt in the NVIC.  
Edge-sensitive interrupt pins can interrupt on rising or falling edges or both.  
Level-sensitive interrupt pins can be HIGH- or LOW-active.  
Pin interrupts can wake up the part from sleep mode, deep-sleep mode, and  
power-down mode.  
Pin interrupt pattern match engine  
Up to 8 pins can be selected from all digital pins except pins PIO2_8 and PIO2_23  
to contribute to a boolean expression. The boolean expression consists of  
specified levels and/or transitions on various combinations of these pins.  
Each minterm (product term) comprising the specified boolean expression can  
generate its own, dedicated interrupt request.  
Any occurrence of a pattern match can be programmed to generate an RXEV  
notification to the ARM CPU as well.  
The pattern match engine does not facilitate wake-up.  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
25 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
8.12 GPIO group interrupts  
The GPIO pins can be used in several ways to set pins as inputs or outputs and use the  
inputs as combinations of level and edge sensitive interrupts. For each port/pin connected  
to one of the two the GPIO Grouped Interrupt blocks (GINT0 and GINT1), the GPIO  
grouped interrupt registers determine which pins are enabled to generate interrupts and w  
the active polarities of each of those inputs.  
The GPIO grouped interrupt registers also select whether the interrupt output is level or  
edge triggered and whether it is based on the OR or the AND of all of the enabled inputs.  
When the designated pattern is detected on the selected input pins, the GPIO grouped  
interrupt block generates an interrupt. If the part is in a power-savings mode, it first  
asynchronously wakes up the part prior to asserting the interrupt request. The interrupt  
request line can be cleared by writing a one to the interrupt status bit in the control  
register.  
8.12.1 Features  
Two group interrupts are supported to reflect two distinct interrupt patterns.  
The inputs from any number of digital pins can be enabled to contribute to a combined  
group interrupt.  
The polarity of each input enabled for the group interrupt can be configured HIGH or  
LOW.  
Enabled interrupts can be logically combined through an OR or AND operation.  
The grouped interrupts can wake up the part from sleep, deep-sleep or power-down  
modes.  
8.13 DMA controller  
The DMA controller can access all memories and the USART and SSP peripherals using  
DMA requests. DMA transfers can also be triggered by internal events like the ADC  
interrupts, timer match outputs, the pin interrupts (PINT0 and PINT1) and the SCTimer  
DMA requests.  
8.13.1 Features  
16 channels with 14 channels connected to peripheral request inputs.  
DMA operations can be triggered by on-chip events or two pin interrupts. Each DMA  
channel can select one trigger input from 12 sources.  
Priority is user selectable for each channel.  
Continuous priority arbitration.  
Address cache with two entries.  
Efficient use of data bus.  
Supports single transfers up to 1,024 words.  
Address increment options allow packing and/or unpacking data.  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
26 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
8.14 USB interface  
The Universal Serial Bus (USB) is a 4-wire bus that supports communication between a  
host and one or more (up to 127) peripherals. The host controller allocates the USB  
bandwidth to attached devices through a token-based protocol. The bus supports  
hot-plugging and dynamic configuration of the devices. All transactions are initiated by the  
host controller.  
The USB interface consists of a full-speed device controller with on-chip PHY (PHYsical  
layer) for device functions.  
Remark: Configure the part in default power mode with the power profiles before using  
the USB (see Section 8.25.7.1 “Power profiles”). Do not use the USB when the part runs  
in performance, efficiency, or low-power mode.  
8.14.1 Full-speed USB device controller  
The device controller enables 12 Mbit/s data exchange with a USB Host controller. It  
consists of a register interface, serial interface engine, and endpoint buffer memory. The  
serial interface engine decodes the USB data stream and writes data to the appropriate  
endpoint buffer. The status of a completed USB transfer or error condition is indicated via  
status registers. An interrupt is also generated if enabled.  
8.14.1.1 Features  
Dedicated USB PLL available.  
Fully compliant with USB 2.0 specification (full speed).  
Supports 10 physical (5 logical) endpoints including one control endpoint.  
Single and double buffering supported.  
Each non-control endpoint supports bulk, interrupt, or isochronous endpoint types.  
Supports wake-up from Deep-sleep mode and Power-down mode on USB activity  
and remote wake-up.  
Supports SoftConnect functionality through internal pull-up resistor.  
Internal 33 series termination resistors on USB_DP and USB_DM lines eliminate  
the need for external series resistors.  
Supports Link Power Management (LPM).  
Supports XTAL-less low-speed mode using the 1% accurate IRC as the clock source  
for the USB PLL. For board connection changes in low-speed mode, see Section  
14.3.1 “USB Low-speed operation”.  
8.15 USART0  
Remark: The LPC11U6x contains two distinctive types of UART interfaces: USART0 is  
software-compatible with the USART interface on the LPC11U1x/LPC11U2x/LPC11U3x  
parts. USART1 to USART4 use a different register interface.  
The USART0 includes full modem control, support for synchronous mode, and a smart  
card interface. The RS-485/9-bit mode allows both software address detection and  
automatic address detection using 9-bit mode.  
The USART0 uses a fractional baud rate generator. Standard baud rates such as  
115200 Bd can be achieved with any crystal frequency above 2 MHz.  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
27 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
8.15.1 Features  
Maximum USART0 data bit rate of 3.125 Mbit/s in asynchronous mode and 10 Mbit/s  
in synchronous slave and master mode.  
16 byte receive and transmit FIFOs.  
Register locations conform to 16C550 industry standard.  
Receiver FIFO trigger points at 1 B, 4 B, 8 B, and 14 B.  
Built-in fractional baud rate generator covering wide range of baud rates without a  
need for external crystals of particular values.  
Fractional divider for baud rate control, auto baud capabilities and FIFO control  
mechanism that enables software flow control implementation.  
Support for RS-485/9-bit mode.  
Support for modem control.  
Support for synchronous mode.  
Includes smart card interface.  
DMA support.  
8.16 USART1/2/3/4  
Remark: The LPC11U6x contains two distinctive types of UART interfaces: USART0 is  
software-compatible with the USART interface on the LPC11U1x/LPC11U2x/LPC11U3x  
parts. USART1 to USART4 use a different register interface to achieve the same UART  
functionality except for modem and smart card control.  
Remark: USART3 and USART4 are available only on part LPC11U68JBD100.  
Interrupts generated by the USART1/2/3/4 peripherals can wake up the part from  
Deep-sleep and power-down modes if the USART is in synchronous mode, the 32 kHz  
mode is enabled, or the CTS interrupt is enabled. This wake-up mechanism is not  
available with the USART0 peripheral.  
8.16.1 Features  
Maximum bit rates of 3.125 Mbit/s in asynchronous mode and 10 Mbit/s in  
synchronous mode.  
7, 8, or 9 data bits and 1 or 2 stop bits  
Synchronous mode with master or slave operation. Includes data phase selection and  
continuous clock option.  
Multiprocessor/multidrop (9-bit) mode with software-address compare feature.  
(RS-485 possible with software address detection and transceiver direction control.)  
RS-485 transceiver output enable.  
Autobaud mode for automatic baud rate detection  
Parity generation and checking: odd, even, or none.  
One transmit and one receive data buffer.  
RTS/CTS for hardware signaling for automatic flow control. Software flow control can  
be performed using Delta CTS detect, Transmit Disable control, and any GPIO as an  
RTS output.  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
28 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Received data and status can optionally be read from a single register  
Break generation and detection.  
Receive data is 2 of 3 sample "voting". Status flag set when one sample differs.  
Built-in Baud Rate Generator with auto-baud function.  
A fractional rate divider is shared among all USARTs.  
Interrupts available for Receiver Ready, Transmitter Ready, Receiver Idle, change in  
receiver break detect, Framing error, Parity error, Overrun, Underrun, Delta CTS  
detect, and receiver sample noise detected.  
Loopback mode for testing of data and flow control.  
In synchronous slave mode, wakes up the part from deep-sleep and power-down  
modes.  
Special operating mode allows operation at up to 9600 baud using the 32 kHz RTC  
oscillator as the UART clock. This mode can be used while the device is in  
Deep-sleep or Power-down mode and can wake up the device when a character is  
received.  
USART transmit and receive functions work with the system DMA controller.  
8.17 SSP serial I/O controller (SSP0/1)  
The SSP controllers operate on a SSP, 4-wire SSI, or Microwire bus. The controller can  
interact with multiple masters and slaves on the bus. Only a single master and a single  
slave can communicate on the bus during a given data transfer. The SSP supports full  
duplex transfers, with frames of 4 bit to 16 bit of data flowing from the master to the slave  
and from the slave to the master. In practice, often only one direction carries meaningful  
data.  
8.17.1 Features  
Maximum SSP speed of 25 Mbit/s (master) or 4.17 Mbit/s (slave) (in SSP mode)  
Compatible with Motorola SPI (Serial Peripheral Interface), 4-wire Texas Instruments  
SSI (Serial Synchronous Interface), and National Semiconductor Microwire buses  
Synchronous serial communication  
Master or slave operation  
8-frame FIFOs for both transmit and receive  
4-bit to 16-bit frame  
DMA support  
8.18 I2C-bus serial I/O controller  
The LPC11U6x contain two I2C-bus controllers.  
The I2C-bus is bidirectional for inter-IC control using only two wires: a Serial Clock line  
(SCL) and a Serial Data line (SDA). Each device is recognized by a unique address and  
can operate as either a receiver-only device (e.g., an LCD driver) or a transmitter with the  
capability to both receive and send information (such as memory). Transmitters and/or  
receivers can operate in either master or slave mode, depending on whether the chip has  
to initiate a data transfer or is only addressed. The I2C is a multi-master bus and can be  
controlled by more than one bus master connected to it.  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
29 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
8.18.1 Features  
One I2C-interface (I2C0) is an I2C-bus compliant interface with open-drain pins. The  
I2C-bus interface supports Fast-mode Plus with bit rates up to 1 Mbit/s.  
One I2C-interface (I2C1) uses standard digital pins. The I2C-bus interface supports bit  
rates up to 400 kbit/s.  
Easy to configure as master, slave, or master/slave.  
Programmable clocks allow versatile rate control.  
Bidirectional data transfer between masters and slaves.  
Multi-master bus (no central master).  
Arbitration between simultaneously transmitting masters without corruption of serial  
data on the bus.  
Serial clock synchronization allows devices with different bit rates to communicate via  
one serial bus.  
Serial clock synchronization can be used as a handshake mechanism to suspend and  
resume serial transfer.  
The I2C-bus can be used for test and diagnostic purposes.  
The I2C-bus controller supports multiple address recognition and a bus monitor mode.  
8.19 Timer/PWM subsystem  
Four standard timers and two state configurable timers can be combined to create  
multiple PWM outputs using the match outputs and the match registers for each timer.  
Each timer can create multiple PWM outputs with its own time base.  
Table 4.  
PWM resources  
Peripheral  
PWM  
Pin functions available for PWM  
LQFP100 LQFP64  
Match  
registers  
used  
outputs  
LQFP48  
3
3
3
CT16B0  
CT16B0_MAT0, CT16B0_MAT0, CT16B0_MAT0,  
CT16B0_MAT1, CT16B0_MAT1, CT16B0_MAT1,  
4
CT16B0_MAT2  
CT16B0_MAT2  
CT16B0_MAT2  
2
3
2
3
2
3
CT16B1  
CT32B0  
CT16B1_MAT0, CT16B1_MAT0, CT16B1_MAT0,  
3
4
CT16B1_MAT1  
three of  
CT16B1_MAT1  
three of  
CT16B1_MAT1  
three of  
CT32B0_MAT0, CT32B0_MAT0, CT32B0_MAT0,  
CT32B0_MAT1, CT32B0_MAT1, CT32B0_MAT1,  
CT32B0_MAT2, CT32B0_MAT2, CT32B0_MAT2,  
CT32B0_MAT3  
CT32B0_MAT3  
CT32B0_MAT3  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
30 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Table 4.  
PWM resources …continued  
PWM  
outputs  
Peripheral  
Pin functions available for PWM  
Match  
registers  
used  
LQFP100  
LQFP64  
LQFP48  
3
3
3
CT32B1  
three of  
three of  
three of  
4
CT32B1_MAT0, CT32B1_MAT0, CT32B1_MAT0,  
CT32B1_MAT1, CT32B1_MAT1, CT32B1_MAT1,  
CT32B1_MAT2, CT32B1_MAT2, CT32B1_MAT2,  
CT32B1_MAT3  
CT32B1_MAT3  
CT32B1_MAT3  
4
4
4
2
3
-
SCTIMER0/ SCT0_OUT0,  
SCT0_OUT0,  
SCT0_OUT1,  
SCT0_OUT2,  
SCT0_OUT3  
SCT0_OUT1,  
SCT0_OUT2,  
SCT0_OUT3  
up to 5  
up to 5  
PWM  
SCT0_OUT1,  
SCT0_OUT2,  
SCT0_OUT3  
SCTIMER1/ SCT1_OUT0,  
SCT1_OUT2,  
SCT1_OUT3  
-
PWM  
SCT1_OUT1,  
SCT1_OUT2,  
SCT1_OUT3  
The standard timers and the SCTimers combine to up to eight independent timers. Each  
SCTimer can be configured either as one 32-bit timer or two independently counting 16-bit  
timers which use the same input clock. The following combinations are possible:  
Table 5.  
Timer configurations  
Resources  
32-bit  
16-bit  
Resources  
timers  
timers  
4
CT32B0, CT32B1, SCTimer0/PWM  
as 32-bit timer, SCTimer1/PWM as  
32-bit timer  
2
CT16B0, CT16B1  
2
CT32B0, CT32B1  
6
CT16B0, CT16B1, SCTimer0/PWM  
as two 16-bit timers,  
SCTimer1/PWM as two 16-bit  
timers  
3
CT32B0, CT32B1, SCTimer0/PWM  
as 32-bit timer (or SCTimer1/PWM  
as 32-bit timer)  
4
CT16B0, CT16B1, SCTimer1/PWM  
as two 16-bit timers (or  
SCTimer0/PWM as two 16-bit  
timers)  
8.19.1 State Configurable Timers (SCTimer0/PWM and SCTimer1/PWM)  
The state configurable timer can create timed output signals such as PWM outputs  
triggered by programmable events. Combinations of events can be used to define timer  
states. The SCTimer/PWM can control the timer operations, capture inputs, change  
states, and toggle outputs triggered only by events entirely without CPU intervention.  
If multiple states are not implemented, the SCTimer/PWM simply operates as one 32-bit  
or two 16-bit timers with match, capture, and PWM functions.  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
31 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
8.19.1.1 Features  
Each SCTimer/PWM supports:  
5 match/capture registers.  
6 events.  
8 states.  
4 inputs and 4 outputs.  
Counter/timer features:  
Each SCTimer is configurable as two 16-bit counters or one 32-bit counter.  
Counters can be clocked by the system clock or selected input.  
Configurable as up counters or up-down counters.  
Configurable number of match and capture registers. Up to five match and capture  
registers total.  
Upon match create the following events: interrupt; stop, limit, halt the timer or  
change counting direction; toggle outputs.  
Counter value can be loaded into capture register triggered by a match or  
input/output toggle.  
PWM features:  
Counters can be used with match registers to toggle outputs and create  
time-proportioned PWM signals.  
Up to four single-edge or dual-edge PWM outputs with independent duty cycle and  
common PWM cycle length.  
Event creation features:  
The following conditions define an event: a counter match condition, an input (or  
output) condition such as a rising or falling edge or level, a combination of match  
and/or input/output condition.  
Selected events can limit, halt, start, or stop a counter or change its direction.  
Events trigger state changes, output toggles, interrupts, and DMA transactions.  
Match register 0 can be used as an automatic limit.  
In bidirectional mode, events can be enabled based on the count direction.  
Match events can be held until another qualifying event occurs.  
State control features:  
A state is defined by events that can happen in the state while the counter is  
running.  
A state changes into another state as a result of an event.  
Each event can be assigned to one or more states.  
State variable allows sequencing across multiple counter cycles.  
SCTimer match outputs (ORed with the general-purpose timer match outputs) serve  
as ADC hardware trigger inputs.  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
32 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
8.19.2 General purpose external event counter/timers (CT32B0/1 and CT16B0/1)  
The LPC11U6x includes two 32-bit counter/timers and two 16-bit counter/timers. The  
counter/timer is designed to count cycles of the system derived clock. It can optionally  
generate interrupts or perform other actions at specified timer values, based on four  
match registers. Each counter/timer also includes one capture input to trap the timer value  
when an input signal transitions, optionally generating an interrupt.  
8.19.2.1 Features  
A 32-bit/16-bit timer/counter with a programmable 32-bit/16-bit prescaler.  
Counter or timer operation.  
One capture channel per timer, that can take a snapshot of the timer value when an  
input signal transitions. A capture event may also generate an interrupt.  
Four match registers per timer that allow:  
Continuous operation with optional interrupt generation on match.  
Stop timer on match with optional interrupt generation.  
Reset timer on match with optional interrupt generation.  
Up to four external outputs corresponding to match registers, with the following  
capabilities:  
Set LOW on match.  
Set HIGH on match.  
Toggle on match.  
Do nothing on match.  
The timer and prescaler may be configured to be cleared on a designated capture  
event. This feature permits easy pulse-width measurement by clearing the timer on  
the leading edge of an input pulse and capturing the timer value on the trailing edge.  
PWM output function.  
Match outputs and capture inputs serve as hardware triggers for ADC conversions.  
8.20 System tick timer (SysTick)  
The ARM Cortex-M0+ includes a system tick timer (SYSTICK) that is intended to generate  
a dedicated SYSTICK exception at a fixed time interval (typically 10 ms).  
8.21 Windowed WatchDog Timer (WWDT)  
The purpose of the WWDT is to prevent an unresponsive system state. If software fails to  
update the watchdog within a programmable time window, the watchdog resets the  
microcontroller  
8.21.1 Features  
Internally resets chip if not periodically reloaded during the programmable time-out  
period.  
Optional windowed operation requires reload to occur between a minimum and  
maximum time period, both programmable.  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
33 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Optional warning interrupt can be generated at a programmable time before watchdog  
time-out.  
Software enables the WWDT, but a hardware reset or a watchdog reset/interrupt is  
required to disable the WWDT.  
Incorrect feed sequence causes reset or interrupt, if enabled.  
Flag to indicate watchdog reset.  
Programmable 24-bit timer with internal prescaler.  
Selectable time period from (Tcy(WDCLK) 256 4) to (Tcy(WDCLK) 224 4) in  
multiples of Tcy(WDCLK) 4.  
The WatchDog Clock (WDCLK) source can be selected from the IRC or the dedicated  
watchdog oscillator (WDOsc). The clock source selection provides a wide range of  
potential timing choices of watchdog operation under different power conditions.  
8.22 Real-Time Clock (RTC)  
The RTC resides in a separate always-on voltage domain with battery back-up. The RTC  
uses an independent oscillator, also located in the always-on voltage domain.  
8.22.1 Features  
32-bit, 1 Hz RTC counter and associated match register for alarm generation.  
Separate 16-bit high-resolution/wake-up timer clocked at 1 kHz for 1 ms resolution  
with a more that one minute maximum time-out period.  
RTC alarm and high-resolution/wake-up timer time-out each generate independent  
interrupt requests. Either time-out can wake up the part from any of the low-power  
modes, including Deep power-down.  
8.23 Analog-to-Digital Converter (ADC)  
The ADC supports a resolution of 12 bit and fast conversion rates of up to 2 MSamples/s.  
Sequences of analog-to-digital conversions can be triggered by multiple sources. Possible  
trigger sources are the counter/timer match outputs and capture inputs and the ARM  
TXEV.  
The ADC includes a hardware threshold compare function with zero-crossing detection.  
8.23.1 Features  
12-bit successive approximation analog to digital converter.  
12-bit conversion rate of up to 2 MSamples/s.  
Temperature sensor voltage output selectable as internal voltage source for  
channel 0.  
Two configurable conversion sequences with independent triggers.  
Optional automatic high/low threshold comparison and zero-crossing detection.  
Power-down mode and low-power operating mode.  
Measurement range VREFN to VREFP (typically 3 V; not to exceed VDDA voltage  
level).  
Burst conversion mode for single or multiple inputs.  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
34 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
8.24 Temperature sensor  
The temperature sensor transducer uses an intrinsic pn-junction diode reference and  
outputs a CTAT voltage (Complement To Absolute Temperature). The output voltage  
varies inversely with device temperature with an absolute accuracy of better than ±5 C  
over the full temperature range (40 C to +105 C) for typical samples. The temperature  
sensor is approximately linear with a slight curvature. The output voltage is measured  
over different ranges of temperatures and fit with linear-least-square lines.  
After power-up and after switching the input channels of the ADC, the temperature sensor  
output must be allowed to settle to its stable value before it can be used as an accurate  
ADC input.  
For an accurate measurement of the temperature sensor by the ADC, the ADC must be  
configured in single-channel burst mode. The last value of a nine-conversion (or more)  
burst provides an accurate result.  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
35 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
8.25 Clocking and power control  
8.25.1 Clock generation  
CPU,  
system control,  
PMU  
system clock  
n
SYSTEM CLOCK  
DIVIDER  
memories,  
peripheral clocks  
SYSAHBCLKCTRL  
(AHB clock enable)  
main  
clock  
IRC  
SSP0 PERIPHERAL  
CLOCK DIVIDER  
SSP0  
watchdog oscillator  
USART0 PERIPHERAL  
CLOCK DIVIDER  
USART0  
MAINCLKSEL  
RTC  
(main clock select)  
SSP1 PERIPHERAL  
CLOCK DIVIDER  
oscillator,  
32 kHz  
output  
SSP1  
IRC  
SYSTEM PLL  
system  
oscillator  
USART1  
FRACTIONAL RATE  
GENERATOR  
CLOCK DIVIDER  
FRGCLKDIV  
USART2  
USART3  
USART4  
RTCOSCCTRL  
(RTC osc enable)  
SYSPLLCLKSEL  
(system PLL clock select)  
7
IOCON  
glitch filter  
CLOCK DIVIDER  
IOCONCLKDIV  
IRC  
USB PLL  
system  
oscillator  
USB 48 MHz CLOCK  
DIVIDER  
USB  
USBPLLCLKSEL  
(USB clock select)  
USBCLKSEL  
(USB clock select)  
IRC oscillator  
system oscillator  
watchdog oscillator  
CLKOUT PIN CLOCK  
DIVIDER  
CLKOUT pin  
CLKOUTSEL  
(CLKOUT clock select)  
IRC oscillator  
WDT  
watchdog oscillator  
WDCLKSEL  
(WDT clock select)  
aaa-010817  
Fig 10. Clock generation  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
36 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
8.25.2 Power domains  
The LPC11U6x provide two independent power domains that allow the bulk of the device  
to have power removed while maintaining operation of the RTC and the backup registers.  
The VBAT pin supplies power only to the RTC domain. The RTC requires a minimum of  
power to operate, which can be supplied by an external battery. The device core power  
(VDD) is used to operate the RTC whenever VDD is present. Therefore, there is no power  
drain from the RTC battery when VDD is available and VDD VBAT + 0.3 V.  
LPC11U6x  
to I/O pads  
to core  
VSS  
VDD  
REGULATOR  
to memories,  
peripherals,  
oscillators,  
PLLs  
WAKEUP  
MAIN POWER DOMAIN  
ULTRA LOW-POWER  
REGULATOR  
VBAT  
WAKE-UP  
CONTROL  
BACKUP REGISTERS  
REAL-TIME CLOCK  
RTCXIN  
32 kHz  
OSCILLATOR  
RTCXOUT  
ALWAYS-ON/RTC POWER DOMAIN  
ADC  
TEMP SENSE  
VDDA  
VDD  
ADC POWER DOMAIN  
VSSA  
aaa-010818  
Fig 11. Power distribution  
8.25.3 Integrated oscillators  
The LPC11U6x include the following independent oscillators: the system oscillator, the  
Internal RC oscillator (IRC), the watchdog oscillator, and the 32 kHz RTC oscillator. Each  
oscillator can be used for more than one purpose as required in a particular application.  
Following reset, the LPC11U6x operates from the internal RC oscillator until software  
switches to a different clock source. The IRC allows the system to operate without any  
external crystal and the bootloader code to operate at a known frequency.  
See Figure 10 for an overview of the LPC11U6x clock generation.  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
37 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
8.25.3.1 Internal RC oscillator  
The IRC can be used as the clock source for the WDT, the USB PLL in low-speed USB  
applications, or as the clock that drives the system PLL and then the CPU. The nominal  
IRC frequency is 12 MHz.  
Upon power-up, any chip reset, or wake-up from Deep power-down mode, the LPC11U6x  
use the IRC as the clock source. Software can later switch to one of the other available  
clock sources.  
8.25.3.2 System oscillator  
The system oscillator can be used as the clock source for the CPU, with or without using  
the PLL. Use the system oscillator to provide the clock source to USB.  
The system oscillator operates at frequencies of 1 MHz to 25 MHz. This frequency can be  
boosted to a higher frequency, up to the maximum CPU operating frequency, by the  
system PLL.  
The system oscillator has a wake-up time of approximately 500 μs.  
8.25.3.3 WatchDog oscillator  
The watchdog oscillator can be used as a clock source that directly drives the CPU, the  
watchdog timer, or the CLKOUT pin. The watchdog oscillator nominal frequency is  
programmable between 9.4 kHz and 2.3 MHz. The frequency spread over processing and  
temperature is 40 % (see also Table 14).  
8.25.3.4 RTC oscillator  
The low-power RTC oscillator provides a 1 Hz clock and a 1 kHz clock to the RTC and a  
32 kHz clock output that can be used to obtain the main clock (see Figure 10).  
8.25.4 System PLL and USB PLL  
The LPC11U6x contain a system PLL and a dedicated PLL for generating the 48 MHz  
USB clock. The system and USB PLLs are identical.  
The PLL accepts an input clock frequency in the range of 10 MHz to 25 MHz. The input  
frequency is multiplied up to a high frequency with a Current Controlled Oscillator (CCO).  
The multiplier can be an integer value from 1 to 32. The CCO operates in the range of  
156 MHz to 320 MHz. To support this frequency range, an additional divider keeps the  
CCO within its frequency range while the PLL is providing the desired output frequency.  
The output divider can be set to divide by 2, 4, 8, or 16 to produce the output clock. The  
PLL output frequency must be lower than 100 MHz. Since the minimum output divider  
value is 2, it is insured that the PLL output has a 50 % duty cycle. The PLL is turned off  
and bypassed following a chip reset. Software can enable the PLL later. The program  
must configure and activate the PLL, wait for the PLL to lock, and then connect to the PLL  
as a clock source. The PLL settling time is 100 s.  
8.25.5 Clock output  
The LPC11U6x feature a clock output function that routes the IRC oscillator, the system  
oscillator, the watchdog oscillator, or the main clock to an output pin.  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
38 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
8.25.6 Wake-up process  
The LPC11U6x begin operation by using the 12 MHz IRC oscillator as the clock source at  
power-up and when awakened from Deep power-down mode. This mechanism allows  
chip operation to resume quickly. If the application uses the main oscillator or the PLL,  
software must enable these components and wait for them to stabilize. Only then can the  
system use the PLL and main oscillator as a clock source.  
8.25.7 Power control  
The LPC11U6x support various power control features. There are four special modes of  
processor power reduction: Sleep mode, Deep-sleep mode, Power-down mode, and  
Deep power-down mode. The CPU clock rate can also be controlled as needed by  
changing clock sources, reconfiguring PLL values, and/or altering the CPU clock divider  
value. This power control mechanism allows a trade-off of power versus processing speed  
based on application requirements. In addition, a register is provided for shutting down the  
clocks to individual on-chip peripherals. This register allows fine-tuning of power  
consumption by eliminating all dynamic power use in any peripherals that are not required  
for the application. Selected peripherals have their own clock divider which provides even  
better power control.  
8.25.7.1 Power profiles  
The power consumption in Active and Sleep modes can be optimized for the application  
through simple calls to the power profile. The power configuration routine configures the  
LPC11U6x for one of the following power modes:  
Default mode corresponding to power configuration after reset.  
CPU performance mode corresponding to optimized processing capability.  
Efficiency mode corresponding to optimized balance of current consumption and CPU  
performance.  
Low-current mode corresponding to lowest power consumption.  
In addition, the power profile includes routines to select the optimal PLL settings for a  
given system clock and PLL input clock.  
Remark: When using the USB, configure the LPC11U6x in Default mode.  
8.25.7.2 Sleep mode  
When Sleep mode is entered, the clock to the core is stopped. Resumption from the Sleep  
mode does not need any special sequence but re-enabling the clock to the ARM core.  
In Sleep mode, execution of instructions is suspended until either a reset or interrupt  
occurs. Peripheral functions continue operation during Sleep mode and can generate  
interrupts to cause the processor to resume execution. Sleep mode eliminates dynamic  
power used by the processor itself, by memory systems and related controllers, and by  
internal buses.  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
39 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
8.25.7.3 Deep-sleep mode  
In Deep-sleep mode, the LPC11U6x core is in Sleep mode and all peripheral clocks and  
all clock sources are off except for the IRC. The IRC output is disabled unless the IRC is  
selected as input to the watchdog timer. In addition, all analog blocks are shut down and  
the flash is in standby mode. In Deep-sleep mode, the application can keep the watchdog  
oscillator and the BOD circuit running for self-timed wake-up and BOD protection.  
The LPC11U6x can wake up from Deep-sleep mode via reset, selected GPIO pins, a  
watchdog timer interrupt, an interrupt generating USB port activity, an RTC interrupt, or  
any interrupts that the USART1 to USART4 interfaces can create in Deep-sleep mode.  
The USART wake-up requires the 32 kHz mode, the synchronous mode, or the CTS  
interrupt to be set up.  
Deep-sleep mode saves power and allows for short wake-up times.  
8.25.7.4 Power-down mode  
In Power-down mode, the LPC11U6x is in Sleep mode and all peripheral clocks and all  
clock sources are off except for watchdog oscillator if selected. In addition, all analog  
blocks and the flash are shut down. In Power-down mode, the application can keep the  
BOD circuit running for BOD protection.  
The LPC11U6x can wake up from Power-down mode via reset, selected GPIO pins, a  
watchdog timer interrupt, an interrupt generating USB port activity, an RTC interrupt, or  
any interrupts that the USART1 to USART4 interfaces can create in Power-down mode.  
The USART wake-up requires the 32 kHz mode, the synchronous mode, or the CTS  
interrupt to be set up.  
Power-down mode reduces power consumption compared to Deep-sleep mode at the  
expense of longer wake-up times.  
8.25.7.5 Deep power-down mode  
In Deep power-down mode, power is shut off to the entire chip except for the WAKEUP  
pin and the always-on RTC power domain. The LPC11U6x can wake up from Deep  
power-down mode via the WAKEUP pin or a wake-up signal generated by the RTC  
interrupt.  
The LPC11U6x can be blocked from entering Deep power-down mode by setting a lock bit  
in the PMU block. Blocking the Deep power-down mode enables the application to keep  
the watchdog timer or the BOD running at all times.  
If the WAKEUP pin is used in the application, an external pull-up resistor is required on  
the WAKEUP pin to hold it HIGH while the part is in deep power-down mode. To wake up  
from deep power-down mode, pull the WAKEUP pin LOW. In addition, pull the RESET pin  
HIGH to prevent it from floating while in Deep power-down mode.  
8.26 System control  
8.26.1 Reset  
Reset has four sources on the LPC11U6x: the RESET pin, the WatchDog reset, power-on  
reset (POR), and the BrownOut Detection (BOD) circuit. The RESET pin is a Schmitt  
trigger input pin. Assertion of chip reset by any source, once the operating voltage attains  
a usable level, starts the IRC and initializes the flash controller.  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
40 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
When the internal Reset is removed, the processor begins executing at address 0, which  
is initially the Reset vector mapped from the boot block. At that point, all of the processor  
and peripheral registers have been initialized to predetermined values. The internal reset  
status is reflected on the RSTOUT pin.  
In Deep power-down mode, an external pull-up resistor is required on the RESET pin.  
The RESET pin is operational in active, sleep, deep-sleep, and power-down modes if the  
RESET function is selected in the IOCON register for pin PIO0_0 (this is the default). A  
LOW-going pulse as short as 50 ns executes the reset and also wakes up the part if in  
sleep, deep-sleep or power-down mode. The RESET pin is not functional in Deep  
power-down mode.  
V
DD  
V
DD  
V
DD  
R
pu  
ESD  
20 ns RC  
GLITCH FILTER  
reset  
PIN  
ESD  
V
SS  
aaa-004613  
Fig 12. RESET pin configuration  
8.26.2 Brownout detection  
The LPC11U6x includes two levels for monitoring the voltage on the VDD pin. If this  
voltage falls below one of the selected levels, the BOD asserts an interrupt signal to the  
NVIC. This signal can be enabled for interrupt in the Interrupt Enable Register in the NVIC  
to cause a CPU interrupt. Alternatively, software can monitor the signal by reading a  
dedicated status register. Two threshold levels can be selected to cause a forced reset of  
the chip.  
8.26.3 Code security (Code Read Protection - CRP)  
CRP provides different levels of security in the system so that access to the on-chip flash  
and use of the Serial Wire Debugger (SWD) and In-System Programming (ISP) can be  
restricted. Programming a specific pattern into a dedicated flash location invokes CRP.  
IAP commands are not affected by the CRP.  
In addition, ISP entry via the PIO0_1 pin can be disabled without enabling CRP. For  
details, see the LPC11Uxx user manual.  
There are three levels of Code Read Protection:  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
41 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
1. CRP1 disables access to the chip via the SWD and allows partial flash update  
(excluding flash sector 0) using a limited set of the ISP commands. This mode is  
useful when CRP is required and flash field updates are needed but all sectors cannot  
be erased.  
2. CRP2 disables access to the chip via the SWD and only allows full flash erase and  
update using a reduced set of the ISP commands.  
3. Running an application with level CRP3 selected, fully disables any access to the chip  
via the SWD pins and the ISP. This mode effectively disables ISP override using  
PIO0_1 pin as well. If necessary, the application must provide a flash update  
mechanism using IAP calls or using a call to the reinvoke ISP command to enable  
flash update via the USART.  
CAUTION  
If level three Code Read Protection (CRP3) is selected, no future factory testing can be  
performed on the device.  
In addition to the three CRP levels, sampling of pin PIO0_1 for valid user code can be  
disabled. For details, see the LPC11U6x user manual.  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
42 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
8.27 Emulation and debugging  
Debug functions are integrated into the ARM Cortex-M0+. Serial wire debug functions are  
supported in addition to a standard JTAG boundary scan. The ARM Cortex-M0+ is  
configured to support up to four breakpoints and two watch points.  
The RESET pin selects between the JTAG boundary scan (RESET = LOW) and the ARM  
SWD debug (RESET = HIGH). The ARM SWD debug port is disabled while the  
LPC11U6x is in reset.  
To perform boundary scan testing, follow these steps:  
1. Erase any user code residing in flash.  
2. Power up the part with the RESET pin pulled HIGH externally.  
3. Wait for at least 250 s.  
4. Pull the RESET pin LOW externally.  
5. Perform boundary scan operations.  
6. Once the boundary scan operations are completed, assert the TRST pin to enable the  
SWD debug mode, and release the RESET pin (pull HIGH).  
Remark: The JTAG interface cannot be used for debug purposes.  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
43 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
9. Limiting values  
Table 6.  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).[1]  
Symbol  
VDD  
Parameter  
Conditions  
Min  
Max  
4.6  
Unit  
V
[2]  
[3][4]  
[5]  
supply voltage  
0.5  
0.5  
0.5  
0.5  
0.5  
VDDA  
Vref  
analog supply voltage  
reference voltage  
battery supply voltage  
input voltage  
4.6  
V
on pin VREFP  
4.6  
V
VBAT  
VI  
4.6  
V
5 V tolerant I/O  
pins; only valid  
when the VDD(IO)  
supply voltage is  
present  
+5.5  
V
on open-drain  
I2C-bus pins  
PIO0_4 and  
PIO0_5  
0.5  
+5.5  
V
USB_DM,  
USB_DP pins  
0.5  
0.5  
V
DD + 0.5  
V
V
[6]  
[7]  
VIA  
analog input voltage  
crystal input voltage  
4.6  
[2]  
[2]  
Vi(xtal)  
pins configured for  
XTALIN and  
XTALOUT  
0.5  
+2.5  
V
Vi(rtcx)  
IDD  
32 kHz oscillator input voltage  
supply current  
0.5  
4.6  
V
per supply pin  
per ground pin  
-
-
-
100  
100  
100  
mA  
mA  
mA  
ISS  
ground current  
Ilatch  
I/O latch-up current  
(0.5 VDD(IO)) < VI  
< (1.5 VDD(IO));  
Tj < 125 C  
[8]  
Tstg  
storage temperature  
65  
+150  
150  
1.5  
C  
C  
W
Tj(max)  
Ptot(pack)  
maximum junction temperature  
total power dissipation (per package)  
-
-
based on package  
heat transfer, not  
device power  
consumption  
[9]  
Vesd  
electrostatic discharge voltage  
human body  
-
3
kV  
model; all pins  
[1] The following applies to the limiting values:  
a) This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive  
static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated  
maximum.  
b) Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to VSS unless  
otherwise noted.  
[2] Maximum/minimum voltage above the maximum operating voltage (see Table 8) and below ground that can be applied for a short time  
(< 10 ms) to a device without leading to irrecoverable failure. Failure includes the loss of reliability and shorter lifetime of the device.  
[3] Applies to all 5 V tolerant I/O pins except true open-drain pins PIO0_4 and PIO0_5.  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
44 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
[4] Including the voltage on outputs in 3-state mode.  
[5] VDD(IO) present or not present. Compliant with the I2C-bus standard. 5.5 V can be applied to this pin when VDD(IO) is powered down.  
[6] An ADC input voltage above 3.6 V can be applied for a short time without leading to immediate, unrecoverable failure. Accumulated  
exposure to elevated voltages at 4.6 V must be less than 106 s total over the lifetime of the device. Applying an elevated voltage to the  
ADC inputs for a long time affects the reliability of the device and reduces its lifetime.  
[7] It is recommended to connect an overvoltage protection diode between the analog input pin and the voltage supply pin.  
[8] Dependent on package type.  
[9] Human body model: equivalent to discharging a 100 pF capacitor through a 1.5 kseries resistor.  
10. Thermal characteristics  
The average chip junction temperature, Tj (C), can be calculated using the following  
equation:  
T j = Tamb + PD Rthj a  
(1)  
Tamb = ambient temperature (C),  
Rth(j-a) = the package junction-to-ambient thermal resistance (C/W)  
PD = sum of internal and I/O power dissipation  
The internal power dissipation is the product of IDD and VDD. The I/O power dissipation of  
the I/O pins is often small and many times can be negligible. However it can be significant  
in some applications.  
Table 7.  
Thermal resistance value (C/W): ±15 %  
Symbol Parameter  
LQFP48  
Conditions  
Typ  
Unit  
ja  
thermal resistance  
junction-to-ambient  
JEDEC (4.5 in 4 in)  
0 m/s  
1 m/s  
67  
58  
53  
C/W  
C/W  
C/W  
2.5 m/s  
8-layer (4.5 in 3 in)  
0 m/s  
100  
79  
C/W  
C/W  
C/W  
C/W  
C/W  
1 m/s  
2.5 m/s  
71  
jc  
jb  
thermal resistance junction-to-case  
thermal resistance junction-to-board  
15  
19  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
45 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Table 7.  
Thermal resistance value (C/W): ±15 %  
Symbol Parameter  
LQFP64  
Conditions  
Typ  
Unit  
ja  
thermal resistance  
junction-to-ambient  
JEDEC (4.5 in 4 in)  
0 m/s  
1 m/s  
58  
51  
47  
C/W  
C/W  
C/W  
2.5 m/s  
8-layer (4.5 in 3 in)  
0 m/s  
81  
66  
60  
18  
23  
C/W  
C/W  
C/W  
C/W  
C/W  
1 m/s  
2.5 m/s  
jc  
thermal resistance junction-to-case  
thermal resistance junction-to-board  
jb  
LQFP100  
ja  
thermal resistance  
junction-to-ambient  
JEDEC (4.5 in 4 in)  
0 m/s  
1 m/s  
49  
44  
41  
C/W  
C/W  
C/W  
2.5 m/s  
8-layer (4.5 in 3 in)  
0 m/s  
66  
55  
51  
18  
24  
C/W  
C/W  
C/W  
C/W  
C/W  
1 m/s  
2.5 m/s  
jc  
jb  
thermal resistance junction-to-case  
thermal resistance junction-to-board  
11. Static characteristics  
Table 8.  
Static characteristics  
Tamb = 40 °C to +105 °C, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ[1] Max  
Unit  
[2]  
VDD  
supply voltage (core  
and external rail)  
2.4  
3.3  
3.6  
V
VDDA  
Vref  
analog supply voltage  
reference voltage  
2.4  
2.4  
2.4  
3.3  
-
3.6  
V
V
V
on pin VREFP  
VDDA  
3.6  
VBAT  
battery supply voltage  
3.3  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
46 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Table 8.  
Static characteristics …continued  
Tamb = 40 °C to +105 °C, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ[1] Max  
Unit  
IDD  
supply current  
Active mode; code  
while(1){}  
executed from flash  
[3][4][5]  
[7][8]  
system clock = 12 MHz; default  
mode; VDD = 3.3 V  
-
-
-
-
2.3  
1.5  
7.8  
6.4  
-
-
-
-
mA  
mA  
mA  
mA  
[3][4][5]  
[7][8]  
system clock = 12 MHz;  
low-current mode; VDD = 3.3 V  
[3][4][7]  
[8][10]  
system clock = 50 MHz; default  
mode; VDD = 3.3 V  
[3][4][7]  
[8][10]  
system clock = 50 MHz;  
low-current mode; VDD = 3.3 V  
IDD  
supply current  
Sleep mode;  
[3][4][5]  
[7][8]  
system clock = 12 MHz; default  
mode; VDD = 3.3 V  
-
-
-
-
-
1.2  
0.8  
3.3  
2.8  
275  
-
mA  
mA  
mA  
mA  
A  
[3][4][5]  
[7][8]  
system clock = 12 MHz;  
low-current mode; VDD = 3.3 V  
-
[3][4][10]  
[7][8]  
system clock = 50 MHz; default  
mode; VDD = 3.3 V  
-
[3][4][10]  
[7][8]  
system clock = 50 MHz;  
low-current mode; VDD = 3.3 V  
-
[3][4][11]  
[3][4][11]  
[3][12]  
IDD  
IDD  
IDD  
supply current  
supply current  
supply current  
Deep-sleep mode;  
DD = 3.3 V;  
350  
V
Tamb = 25 C  
Tamb = 105 C  
-
-
-
640  
22  
A  
A  
Power-down mode;  
DD = 3.3 V  
5
V
Tamb = 25 C  
Tamb = 105 C  
-
-
130  
A  
Deep power-down mode; VDD  
=
3.3 V; VBAT = 0 or VBAT = 3.0 V  
RTC oscillator running  
Tamb = 25 C  
-
-
-
-
1.2  
-
5
14  
-
A  
Tamb = 105 C  
[3][12]  
RTC oscillator input grounded  
550  
0
nA  
-
IBAT  
battery supply current  
battery supply current  
Deep power-down mode; VDD  
=
-
V
DDA = 3.3 V; VBAT = 3.0 V;  
RTC oscillator running  
RTC off  
-
-
-
0
-
-
IBAT  
VDD = VDDA = 0 V; VBAT = 3.0 V  
RTC oscillator running  
1.2  
0.5  
-
A  
nA  
Standard port pins configured as digital pins, RESET; see Figure 13  
IIL  
LOW-level input current VI = 0 V; on-chip pull-up resistor  
disabled  
10  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
47 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Table 8.  
Static characteristics …continued  
Tamb = 40 °C to +105 °C, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ[1] Max  
Unit  
IIH  
HIGH-level input  
current  
VI = VDD; on-chip pull-down  
resistor disabled  
-
0.5  
0.5  
-
10  
10  
5
nA  
IOZ  
VI  
OFF-state output  
current  
VO = 0 V; VO = VDD; on-chip  
pull-up/down resistors disabled  
-
nA  
V
[14]  
[15]  
input voltage  
VDD 2.4 V; 5 V tolerant pins  
0
VDD = 0 V  
0
-
-
-
3.6  
VDD  
-
V
V
V
VO  
output voltage  
output active  
0
VIH  
HIGH-level input  
voltage  
0.7 VDD  
VIL  
LOW-level input voltage  
hysteresis voltage  
-
-
-
0.3 VDD  
V
V
V
Vhys  
VOH  
0.05 VDD  
-
-
HIGH-level output  
voltage  
IOH = 4 mA  
VDD 0.4 -  
VOL  
IOH  
LOW-level output  
voltage  
IOL = 4 mA  
-
-
-
-
-
-
0.4  
-
V
HIGH-level output  
current  
VOH = VDD 0.4 V;  
VOL = 0.4 V  
4
4
-
mA  
mA  
mA  
mA  
IOL  
LOW-level output  
current  
-
[16]  
[16]  
IOHS  
IOLS  
HIGH-level short-circuit VOH = 0 V  
output current  
45  
50  
LOW-level short-circuit VOL = VDD  
output current  
-
Ipd  
Ipu  
pull-down current  
pull-up current  
VI = 5 V  
VI = 0 V;  
10  
50  
150  
A  
A  
10  
50  
85  
2.4 V VDD 3.6 V  
DD < VI < 5 V  
V
0
0
0
A  
High-drive output pins configured as digital pin (PIO0_7 and PIO1_31); see Figure 13  
IIL  
LOW-level input current VI = 0 V; on-chip pull-up resistor  
disabled  
-
0.5  
0.5  
0.5  
-
10  
10  
10  
5
nA  
nA  
nA  
V
IIH  
IOZ  
VI  
HIGH-level input  
current  
VI = VDD; on-chip pull-down  
resistor disabled  
-
OFF-state output  
current  
VO = 0 V; VO = VDD; on-chip  
pull-up/down resistors disabled  
-
[14]  
[15]  
input voltage  
VDD 2.4 V  
0
VDD = 0 V  
0
-
-
-
3.6  
VDD  
-
V
V
V
VO  
output voltage  
output active  
0
VIH  
HIGH-level input  
voltage  
0.7 VDD  
VIL  
LOW-level input voltage  
hysteresis voltage  
-
-
-
0.3 VDD  
-
V
V
Vhys  
0.05 VDD  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
48 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Table 8.  
Static characteristics …continued  
Tamb = 40 °C to +105 °C, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ[1] Max  
Unit  
V
VOH  
HIGH-level output  
voltage  
IOH = 12 mA; 2.4 V VDD 2.5 V  
IOH = 20 mA; 2.5 V VDD 3.6 V  
IOL = 4 mA  
VDD 0.4 -  
VDD 0.4 -  
-
-
V
VOL  
IOH  
LOW-level output  
voltage  
-
-
-
-
-
-
-
0.4  
V
HIGH-level output  
current  
VOH = VDD 0.4 V;  
2.4 V VDD 2.5 V  
12  
20  
4
-
mA  
mA  
mA  
mA  
mA  
VOH = VDD 0.4 V;  
2.5 V VDD 3.6 V  
-
IOL  
LOW-level output  
current  
VOL = 0.4 V  
-
[16]  
[16]  
IOHS  
IOLS  
HIGH-level short-circuit VOH = 0 V  
output current  
-
45  
50  
LOW-level short-circuit VOL = VDD  
output current  
-
[17]  
[17]  
Ipd  
Ipu  
pull-down current  
pull-up current  
VI = 5 V  
10  
10  
0
50  
50  
0
150  
85  
0
A  
A  
A  
VI = 0 V  
VDD < VI < 5 V  
I2C-bus pins (PIO0_4 and PIO0_5); see Figure 13  
VIH  
HIGH-level input  
voltage  
0.7 VDD  
-
-
V
VIL  
LOW-level input voltage  
hysteresis voltage  
-
-
-
-
0.3 VDD  
V
Vhys  
IOL  
0.05 VDD  
3.5  
-
-
V
LOW-level output  
current  
VOL = 0.4 V; I2C-bus pins  
configured as standard mode pins  
mA  
IOL  
LOW-level output  
current  
VOL = 0.4 V; I2C-bus pins  
configured as Fast-mode Plus  
pins  
20  
-
-
mA  
[18]  
[2]  
ILI  
input leakage current  
VI = VDD  
VI = 5 V  
-
-
2
4
A  
A  
10  
22  
USB_DM and USB_DP pins  
VI  
input voltage  
0
-
-
VDD  
-
V
V
VIH  
HIGH-level input  
voltage  
1.5  
VIL  
LOW-level input voltage  
hysteresis voltage  
-
-
-
-
-
1.3  
-
V
V
Ω
V
Vhys  
Zout  
VOH  
0.32  
28  
2.9  
output impedance  
44  
-
HIGH-level output  
voltage  
With 15 kΩ resistor to ground  
VOL  
IOH  
IOL  
LOW-level output  
voltage  
With internal 1.5 kΩ resistor to  
3.6 V pull-up enabled  
-
-
-
-
0.18  
V
[19]  
[19]  
HIGH-level output  
current  
VOH = VDD 0.3 V  
4.8  
5.0  
-
-
mA  
mA  
LOW-level output  
current  
VOL = 0.3 V  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
49 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Table 8.  
Static characteristics …continued  
Tamb = 40 °C to +105 °C, unless otherwise specified.  
Symbol  
Parameter  
LOW-level short-circuit drive LOW; pad connected to  
output current ground  
HIGH-level short-circuit drive HIGH; pad connected to  
Conditions  
Min  
Typ[1] Max  
Unit  
IOLS  
-
-
125  
mA  
IOHS  
-
-
125  
mA  
output current  
ground  
Oscillator pins  
Vi(xtal)  
Vo(xtal)  
Vi(rtcx)  
crystal input voltage  
0.5  
0.5  
0.5  
1.8  
1.8  
-
1.95  
1.95  
3.6  
V
V
V
crystal output voltage  
[20]  
[20]  
32 kHz oscillator input  
voltage  
on pin RTCXIN  
Vo(rtcx)  
32 kHz oscillator output on pin RTCXOUT  
voltage  
0.5  
-
3.6  
V
Pin capacitance  
Cio input/output  
capacitance  
[21]  
[21]  
[21]  
pins with analog and digital  
functions  
I2C-bus pins (PIO0_4 and  
PIO0_5)  
-
-
-
-
-
-
7.1  
2.5  
2.8  
pF  
pF  
pF  
pins with digital functions only  
[1] Typical ratings are not guaranteed. The values listed are for room temperature (25 C), nominal supply voltages.  
[2] For USB operation: 3.0 VVDD 3.6 V.  
[3] Tamb = 25 C.  
[4] IDD measurements were performed with all pins configured as GPIO outputs driven LOW and pull-up resistors disabled.  
[5] IRC enabled; system oscillator disabled; system PLL disabled.  
[6] System oscillator enabled; IRC disabled; system PLL disabled.  
[7] BOD disabled.  
[8] All peripherals disabled in the SYSAHBCLKCTRL register. Peripheral clocks to USART, CLKOUT, and IOCON disabled in system  
configuration block.  
[9] IRC enabled; system oscillator disabled; system PLL enabled.  
[10] IRC disabled; system oscillator enabled; system PLL enabled.  
[11] All oscillators and analog blocks turned off.  
[12] WAKEUP pin pulled HIGH externally.  
[13] Low-current mode PWR_LOW_CURRENT selected when running the set_power routine in the power profiles.  
[14] Including voltage on outputs in tri-state mode.  
[15] Tri-state outputs go into tri-state mode in Deep power-down mode.  
[16] Allowed as long as the current limit does not exceed the maximum current allowed by the device.  
[17] Pull-up and pull-down currents are measured across the weak internal pull-up/pull-down resistors. See Figure 13.  
[18] To VSS  
.
[19] The parameter values specified are simulated and absolute values.  
[20] The input voltage of the RTC oscillator is limited as follows: Vi(rtcx), Vo(rtcx) < max(VBAT, VDD).  
[21] Including bonding pad capacitance.  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
50 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
V
DD  
I
I
OL  
pd  
+
-
pin PIO0_n  
pin PIO0_n  
A
I
OH  
Ipu  
-
+
A
aaa-010819  
Fig 13. Pin input/output current measurement  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
51 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
11.1 Power consumption  
Power measurements in Active, Sleep, and Deep-sleep modes were performed under the  
following conditions:  
Configure all pins as GPIO with pull-up resistor disabled in the IOCON block.  
Configure GPIO pins as outputs using the GPIO DIR register.  
Write 1 to the GPIO CLR register to drive the outputs LOW.  
aaa-010026  
8
I
DD  
(mA)  
48 MHz  
36 MHz  
6
4
2
0
24 MHz  
12 MHz  
6 MHz  
1 MHz  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
V
(V)  
DD  
Conditions: Tamb = 25 C; active mode entered executing code while(1){} from flash; all  
peripherals disabled in the SYSAHBCLKCTRL register (SYSAHBCLKCTRL = 0x1F), all peripheral  
clocks disabled; internal pull-up resistors disabled; BOD disabled; low-current mode.  
1 MHz to 6 MHz: IRC enabled; PLL disabled.  
12 MHz: IRC enabled; PLL disabled.  
24 MHz to 50 MHz: IRC disabled; PLL enabled; sysosc enabled.  
Fig 14. Active mode: Typical supply current IDD versus supply voltage VDD  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
52 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
aaa-010027  
8
6
4
2
0
I
DD  
(mA)  
48 MHz  
36 MHz  
24 MHz  
12 MHz  
6 MHz  
1 MHz  
-40  
-10  
20  
50  
80  
110  
temperature (°C)  
Conditions: VDD = 3.3 V; active mode entered executing code while(1){} from flash; all  
peripherals disabled in the SYSAHBCLKCTRL register (SYSAHBCLKCTRL = 0x1F; all peripheral  
clocks disabled; internal pull-up resistors disabled; BOD disabled; low-current mode.  
1 MHz to 6 MHz: IRC enabled; PLL disabled.  
12 MHz: IRC enabled; PLL disabled.  
24 MHz to 50 MHz: IRC disabled; PLL enabled; sysosc enabled.  
Fig 15. Active mode: Typical supply current IDD versus temperature  
aaa-010028  
4
1 MHz  
(mA)  
48 MHz  
3
36 MHz  
2
24 MHz  
12 MHz  
1
6 MHz  
1 MHz  
0
-40  
-10  
20  
50  
80  
110  
(°C)  
Conditions: VDD = 3.3 V; sleep mode entered from flash; all peripherals disabled in the  
SYSAHBCLKCTRL register (SYSAHBCLKCTRL = 0x1F) all peripheral clocks disabled; internal  
pull-up resistors disabled; BOD disabled; low-current mode.  
1 MHz to 6 MHz: IRC enabled; PLL disabled.  
12 MHz: IRC enabled; PLL disabled.  
24 MHz to 48 MHz: IRC disabled; PLL enabled; sysosc enabled.  
Fig 16. Sleep mode: Typical supply current IDD versus temperature for different system  
clock frequencies  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
53 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
aaa-009418  
360  
I
DD  
(μA)  
330  
3.6 VV  
3.3 VV  
3.0 VV  
2.7 VV  
2.4 VV  
300  
270  
-40  
-10  
20  
50  
80  
110  
T (°C)  
Conditions: BOD disabled; all oscillators and analog blocks disabled  
Fig 17. Deep-sleep mode: Typical supply current IDD versus temperature for different  
supply voltages VDD  
aaa-009419  
80  
I
DD  
(μA)  
60  
40  
20  
0
-40  
-10  
20  
50  
80  
110  
T (°C)  
Conditions: BOD disabled; all oscillators and analog blocks disabled; VDD = 2.4 V to 3.6 V.  
Fig 18. Power-down mode: Typical supply current IDD versus temperature for different  
supply voltages VDD  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
54 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
aaa-009427  
4
3
2
1
0
I
DD  
(μA)  
3.6 VV  
3.3 VV  
3.0 VV  
2.7 VV  
2.4 VV  
-40  
-10  
20  
50  
80  
110  
T (°C)  
Conditions: RTC running; VBAT = 0 V  
Fig 19. Deep power-down mode: Typical supply current IDD versus temperature for  
different supply voltages VDD  
aaa-009428  
2
I
BAT  
(μA)  
1.5  
1
0.5  
0
-40  
-10  
20  
50  
80  
110  
T (°C)  
Conditions: RTC not running; VBAT = 3.0 V; VDD floating.  
Fig 20. Deep power-down mode: Typical battery supply current IBAT versus temperature  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
55 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
11.2 CoreMark data  
aaa-011173  
aaa-011174  
2.5  
CM  
2.5  
CM  
(((itteeraations/s)/MHz))  
2.25  
(((iterations/s)/MHz))  
2.25  
cpu performance  
cpu perfoorrmance  
efficiency  
default/llow-current  
efficiency  
2
1.75  
1.5  
default/low-current  
2
1.75  
1.5  
1.25  
1
1.25  
1
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
system clock frequency (MHz)  
system clock frequency (MHz)  
Measured with Keil uVision v.4.72.  
Measured with Keil uVision v.4.60.  
Conditions: Conditions: VDD = 3.3 V; active mode; all peripherals except one UART and the SCTimer disabled in the  
SYSAHBCLKCTRL register; internal pull-up resistors enabled; BOD disabled.  
Fig 21. CoreMark score for different power mode settings of the power profiles  
aaa-011175  
aaa-011176  
15  
15  
I
I
DD  
(mA)  
DD  
(mA)  
12.5  
10  
7.5  
5
12.5  
10  
7.5  
5
cpu performance  
default  
default  
cpu perfoorrmancee  
efficiency  
efficiency  
low-current  
low-current  
2.5  
0
2.5  
0
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
system clock frequency (MHz)  
system clock frequency (MHz)  
Measured with Keil uVision v.4.72.  
Measured with Keil uVision v.4.60.  
Conditions: Conditions: VDD = 3.3 V; active mode; all peripherals except one UART and the SCTimer/PWM disabled in the  
SYSAHBCLKCTRL register; internal pull-up resistors enabled; BOD disabled.  
Fig 22. Active mode: CoreMark power consumption IDD for different power mode settings of the power profiles  
The CoreMark scores serve as a guideline to select the best power mode for a given  
application. To find the most suitable power mode, run the application in mode and  
compare power consumption and performance.  
Remark: Applications using the USB can only run in default mode.  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
56 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
The power profiles optimize the chip performance for power consumption or core  
efficiency by controlling the flash access and core power. As shown in Figure 21 and  
Figure 22, different power modes result in different CoreMark scores reflecting the  
trade-off of efficiency and power consumption. In CPU and efficiency modes, the power  
profiles aim to keep the core efficiency at a maximum for the given system frequency.  
Depending on optimal flash access parameters that change with frequency, the CoreMark  
score and also the power consumption change. Since the compiled code for CoreMark  
testing runs out of flash memory, the CoreMark score depends on the compiler version.  
11.3 Peripheral power consumption  
The supply current per peripheral is measured as the difference in supply current between  
the peripheral block enabled and the peripheral block disabled in the SYSAHBCLKCFG  
and PDRUNCFG (for analog blocks) registers. All other blocks are disabled in both  
registers and no code accessing the peripheral is executed except for the ADC. Measured  
on a typical sample at Tamb = 25 C. Unless noted otherwise, the system oscillator and  
PLL are running in both measurements.  
The supply currents are shown for system clock frequencies of 12 MHz and 48 MHz.  
Table 9.  
Power consumption for individual analog and digital blocks  
Peripheral  
Typical supply current in mA  
Notes  
n/a  
12 MHz  
48 MHz  
IRC  
0.24  
-
-
System oscillator running; PLL off; independent  
of main clock frequency.  
System oscillator at 12 MHz  
0.28  
0
-
-
-
-
IRC running; PLL off; independent of main clock  
frequency.  
WatchDog oscillator at  
600 kHz/2  
System oscillator running; PLL off; independent  
of main clock frequency.  
BOD  
0.05  
-
-
Independent of main clock frequency.  
System PLL  
USB PLL  
CLKOUT  
ROM  
0.25  
-
-
-
0.37  
-
-
-
-
-
-
-
-
-
-
0.25  
0.09  
0.17  
0.13  
0.15  
0.14  
0.18  
0.89  
0.37  
0.66  
0.52  
0.59  
0.56  
0.69  
System PLL is source of CLKOUT.  
-
-
-
-
-
FLASHREG  
FLASHARRAY  
SRAM1  
USB SRAM  
GPIO + pin interrupt/pattern  
match  
GPIO pins configured as outputs and set to  
LOW. Direction and pin state are maintained if  
the GPIO is disabled in the SYSAHBCLKCFG  
register.  
IOCON  
-
-
0.08  
0.29  
0.30  
1.1  
-
-
SCTimer0/PWM +  
SCTimer1/PWM  
CT16B0  
CT16B1  
CT32B0  
CT32B1  
-
-
-
-
0.05  
0.04  
0.04  
0.03  
0.17  
0.16  
0.13  
0.13  
-
-
-
-
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
57 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Table 9.  
Power consumption for individual analog and digital blocks …continued  
Typical supply current in mA Notes  
Peripheral  
n/a  
12 MHz  
0.02  
48 MHz  
0.10  
RTC  
-
-
-
WWDT  
0.05  
0.17  
Main clock selected as clock source for the  
WDT.  
I2C0  
-
-
-
-
-
-
-
-
-
0.05  
0.05  
0.15  
0.15  
0.31  
0.12  
0.13  
0.21  
0.43  
0.22  
0.18  
0.59  
0.58  
1.19  
0.50  
0.49  
0.81  
0.72  
-
-
-
-
-
-
-
-
I2C1  
SSP0  
SSP1  
USART0  
USART1  
USART2  
USART3 + USART4  
USB  
Register interface disabled in  
SYSAHBCLKCTRL.  
USB PHY  
ADC0  
0.54  
-
-
-
2.15  
2.68  
Register interface disabled in  
SYSAHBCLKCTRL and analog block disabled  
in PDRUNCFG registers. Power consumption  
measured while the ADC is sampling a single  
channel with an ADC clock of 12 MHz or  
48 MHz.  
Temperature sensor  
0.18  
-
-
-
-
-
DMA  
CRC  
-
-
0.28  
0.04  
1.1  
0.14  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
58 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
11.4 Electrical pin characteristics  
aaa-009384  
aaa-009385  
2.4  
OH  
3.3  
V
OH  
(V)  
V
(V)  
2.3  
2.2  
2.1  
2
3.2  
3.1  
3
2.4 V/-4400°CC  
3.3 VV//--4400 °CC  
3.3 VV//2255 °CC  
3.3 VV//9900 °CC  
3.3 VV//110055 °CC  
2.4 V/25 °CC  
2.4 V/ 90 °CC  
2.4 V/ 105 °CC  
2.9  
2.8  
2.7  
1.9  
1.8  
0
10  
20  
30  
OH  
40  
0
10  
20  
30  
40  
50  
I
(mA)  
I
(mA)  
OH  
Conditions: VDD = 2.4 V; ON pin PIO0_7 and PIO1_31.  
Conditions: VDD = 3.3 V; ON pin PIO0_7 and PIO1_31.  
Fig 23. High-drive output: Typical HIGH-level output voltage VOH versus HIGH-level output current IOH  
aaa-009382  
aaa-009383  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
2.4 V/-40 °CCC  
2.4 V/25 °CC  
2.4 V/90 °CC  
2.4 V/105 °CC  
3.3 VV//--4400 °CC  
3.3 VV//2255 °CC  
3.3 VV//9900 °CC  
3.3 VV//110055 °CC  
I
I
OL  
(mA)  
OL  
(mA)  
0
0.1  
0.2  
0.3  
0.4  
0.5  
(V)  
0.6  
0
0.1  
0.2  
0.3  
0.4  
0.5  
(V)  
0.6  
V
V
OL  
OL  
Conditions: VDD = 2.4 V; on pins PIO0_4 and PIO0_5.  
Conditions: VDD = 3.3 V; on pins PIO0_4 and PIO0_5.  
Fig 24. I2C-bus pins (high current sink): Typical LOW-level output current IOL versus LOW-level output voltage  
VOL  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
59 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
aaa-009386  
aaa-009387  
10  
15  
12  
9
I
I
OL  
(mA)  
OL  
(mA)  
8
6
4
2
0
2.4 V/-40 °CCC  
2.4 V/25 °CCC  
2.4 V/90 °CCC  
2.4 V/105 °CC  
3.3 VV//--4400 °CCC  
3.3 VV//2255 °CCC  
3.3 VV//9900 °CCC  
3.3 VV//110055 °CC  
6
3
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
(V)  
0.6  
0
0.1  
0.2  
0.3  
0.4  
0.5  
(V)  
0.6  
V
V
OL  
OL  
Conditions: VDD = 2.4 V; standard port pins and  
high-drive pins PIO0_7 and PIO1_31.  
Conditions: VDD = 3.3 V; standard port pins and  
high-drive pins PIO0_7 and PIO1_31.  
Fig 25. Typical LOW-level output current IOL versus LOW-level output voltage VOL  
aaa-009388  
aaa-009397  
2.4  
OH  
3.3  
V
OH  
(V)  
V
(V)  
2.3  
2.2  
2.1  
2
3.2  
3.1  
3
2.4 V/-40 °CCC  
2.4 V/25 °CC  
2.4 V/ 90 °CC  
2.4 V/ 105 °CCC  
3.3 VV//--4400 °CC  
3.3 VV//2255 °CC  
3.3 VV//9900 °CC  
3.3 VV//110055 °CC  
2.9  
2.8  
2.7  
1.9  
1.8  
0
2
4
6
8
10  
0
3
6
9
12  
15  
I
(mA)  
I
(mA)  
OH  
OH  
Conditions: VDD = 2.4 V; standard port pins.  
Conditions: VDD = 3.3 V; standard port pins.  
Fig 26. Typical HIGH-level output voltage VOH versus HIGH-level output source current IOH  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
60 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
aaa-009398  
aaa-009399  
0
0
I
I
PU  
(μA)  
PU  
(μA)  
-7  
-13  
-26  
-39  
-52  
-65  
-14  
-21  
-28  
-35  
3.3 VV//110055 °CC  
3.3 VV//9900 °CC  
3.3 VV//2255 °CC  
3.3 VV//--4400 °CC  
2.4 V/105 °CC  
2.4 V/90 °CC  
2.4 V/25 °CC  
2.4 V/-40 °CCC  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
0
1
2
3
4
5
V (V)  
V (V)  
I
I
Conditions: VDD = 2.4 V; standard port pins.  
Conditions: VDD = 3.3 V; standard port pins.  
Fig 27. Typical pull-up current IPU versus input voltage VI  
aaa-009416  
aaa-009417  
50  
65  
I
I
PD  
(μA)  
PD  
(μA)  
40  
30  
20  
10  
0
52  
39  
26  
13  
0
2.4 V/-40 °CC  
2.4 V/25 °CC  
2.4 V/90 °CC  
2.4 V/105 °CC  
3.3 VV//--4400 °CC  
3.3 VV//2255 °CC  
3.3 VV//9900 °CC  
3.3 VV//110055 °CC  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
0
1
2
3
4
5
V (V)  
V (V)  
I
I
Conditions: VDD = 2.4 V; standard port pins.  
Conditions: VDD = 3.3 V; standard port pins.  
Fig 28. Typical pull-down current IPD versus input voltage VI  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
61 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
12. Dynamic characteristics  
12.1 Flash/EEPROM memory  
Table 10. Flash characteristics  
Tamb = 40 °C to +105 °C. Based on JEDEC NVM qualification. Failure rate < 10 ppm for parts as  
specified below.  
Symbol  
Nendu  
tret  
Parameter  
endurance  
Conditions  
Min  
10000  
10  
Typ  
100000  
20  
Max  
Unit  
[1]  
-
cycles  
years  
years  
ms  
retention time  
powered  
-
unpowered  
20  
40  
-
ter  
erase time  
page or multiple  
consecutivepages,  
sector or multiple  
consecutive  
95  
100  
105  
sectors  
[2]  
tprog  
programming  
time  
0.95  
1
1.05  
ms  
[1] Number of program/erase cycles.  
[2] Programming times are given for writing 256 bytes to the flash. Tamb <= +85 C. Flash programming with  
IAP calls (see LPC11U6x user manual).  
Table 11. EEPROM characteristics  
Tamb = 40 °C to +85 °C; VDD = 2.7 V to 3.6 V. Based on JEDEC NVM qualification. Failure rate <  
10 ppm for parts as specified below.  
Symbol  
Nendu  
tret  
Parameter  
endurance  
Conditions  
Min  
100000  
100  
150  
-
Typ  
Max  
Unit  
1000000  
200  
-
-
-
-
cycles  
years  
years  
ms  
retention time  
powered  
unpowered  
64 bytes  
300  
tprog  
programming  
time  
2.9  
12.2 External clock for the oscillator in slave mode  
Remark: The input voltage on the XTAL1/2 pins must be 1.95 V (see Table 8). For  
connecting the oscillator to the XTAL pins, also see Section 14.4.  
Table 12. Dynamic characteristic: external clock (XTALIN input)  
Tamb = 40 °C to +105 °C; VDD over specified ranges.[1]  
Symbol  
fosc  
Parameter  
Conditions  
Min  
Typ[2]  
Max  
Unit  
MHz  
ns  
oscillator frequency  
clock cycle time  
clock HIGH time  
clock LOW time  
clock rise time  
clock fall time  
1
-
-
-
-
-
-
25  
Tcy(clk)  
tCHCX  
tCLCX  
tCLCH  
tCHCL  
40  
1000  
Tcy(clk) 0.4  
-
ns  
Tcy(clk) 0.4  
-
ns  
-
-
5
5
ns  
ns  
[1] Parameters are valid over operating temperature range unless otherwise specified.  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
62 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
[2] Typical ratings are not guaranteed. The values listed are for room temperature (25 C), nominal supply  
voltages.  
t
CHCX  
t
t
t
CLCH  
CHCL  
CLCX  
T
cy(clk)  
aaa-004648  
Fig 29. External clock timing (with an amplitude of at least Vi(RMS) = 200 mV)  
12.3 Internal oscillators  
Table 13. Dynamic characteristics: IRC  
Tamb = 40 °C to +105 °C; 2.7 V VDD 3.6 V[1].  
Symbol Parameter  
Conditions  
Min  
Typ[2] Max  
Unit  
MHz  
MHz  
fosc(RC)  
internal RC  
25 C Tamb +85 C 12 - 1%  
40 C Tamb < 25 C 12 - 2%  
12  
12  
12 + 1 %  
12 + 1 %  
oscillator frequency  
85 C < Tamb 105 C 12 - 1.5 % 12  
12 + 1.5 % MHz  
[1] Parameters are valid over operating temperature range unless otherwise specified.  
[2] Typical ratings are not guaranteed. The values listed are for room temperature (25 C), nominal supply  
voltages.  
aaa-010023  
12.15  
f
3.6 VV  
(MHz)  
3.3 VV  
3.0 VV  
2.7 VV  
12.08  
12  
11.93  
11.85  
-40  
-10  
20  
50  
80  
temperature (°C)  
110  
Conditions: Frequency values are typical values. 12 MHz 1 % accuracy is guaranteed for  
2.7 V VDD 3.6 V and Tamb = 25 C to +85 C. Variations between parts may cause the IRC to  
fall outside the 12 MHz 1 % accuracy specification for voltages below 2.7 V.  
Fig 30. Typical Internal RC oscillator frequency versus temperature  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
63 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Table 14. Dynamic characteristics: WatchDog oscillator  
Symbol Parameter  
Conditions  
Min Typ[1] Max Unit  
[2][3]  
[2][3]  
fosc(int)  
internal oscillator DIVSEL = 0x1F, FREQSEL = 0x1  
-
9.4  
-
kHz  
frequency  
in the WDTOSCCTRL register;  
DIVSEL = 0x00, FREQSEL = 0xF  
in the WDTOSCCTRL register  
-
2300  
-
kHz  
[1] Typical ratings are not guaranteed. The values listed are at nominal supply voltages.  
[2] The typical frequency spread over processing and temperature (Tamb = 40 C to +105 C) is 40 %.  
[3] See the LPC11U6x user manual.  
12.4 I/O pins  
Table 15. Dynamic characteristics: I/O pins[1]  
Tamb = 40 °C to +105 °C; 3.0 V VDD 3.6 V.  
Symbol Parameter Conditions  
Min  
3.0  
2.5  
Typ  
Max  
5.0  
Unit  
ns  
tr  
tf  
rise time  
fall time  
pin configured as output  
pin configured as output  
-
-
5.0  
ns  
[1] Applies to standard port pins and RESET pin.  
12.5 I2C-bus  
Table 16. Dynamic characteristic: I2C-bus pins[1]  
Tamb = 40 °C to +105 °C.[2]  
Symbol  
Parameter  
Conditions  
Standard-mode  
Fast-mode  
Min  
Max  
Unit  
kHz  
kHz  
MHz  
fSCL  
SCL clock  
frequency  
0
0
0
100  
400  
1
Fast-mode Plus; on  
pins PIO0_4 and  
PIO0_5  
[4][5][6][7]  
tf  
fall time  
of both SDA and  
SCL signals  
-
300  
ns  
Standard-mode  
Fast-mode  
20 + 0.1 Cb 300  
ns  
ns  
Fast-mode Plus;  
on pins PIO0_4  
and PIO0_5  
-
120  
tLOW  
LOW period of  
the SCL clock  
Standard-mode  
Fast-mode  
4.7  
1.3  
-
-
-
s  
s  
s  
Fast-mode Plus; on 0.5  
pins PIO0_4 and  
PIO0_5  
tHIGH  
HIGH period of  
the SCL clock  
Standard-mode  
Fast-mode  
4.0  
0.6  
-
-
-
s  
s  
s  
Fast-mode Plus; on 0.26  
pins PIO0_4 and  
PIO0_5  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
64 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Table 16. Dynamic characteristic: I2C-bus pins[1] …continued  
Tamb = 40 °C to +105 °C.[2]  
Symbol  
Parameter  
Conditions  
Standard-mode  
Fast-mode  
Min  
0
Max  
Unit  
s  
[3][4][8]  
tHD;DAT  
data hold time  
-
-
-
0
s  
Fast-mode Plus; on  
pins PIO0_4 and  
PIO0_5  
0
s  
[9][10]  
tSU;DAT  
data set-up  
time  
Standard-mode  
Fast-mode  
250  
100  
-
-
-
ns  
ns  
ns  
Fast-mode Plus; on 50  
pins PIO0_4 and  
PIO0_5  
[1] See the I2C-bus specification UM10204 for details.  
[2] Parameters are valid over operating temperature range unless otherwise specified.  
[3] tHD;DAT is the data hold time that is measured from the falling edge of SCL; applies to data in transmission  
and the acknowledge.  
[4] A device must internally provide a hold time of at least 300 ns for the SDA signal (with respect to the  
VIH(min) of the SCL signal) to bridge the undefined region of the falling edge of SCL.  
[5] Cb = total capacitance of one bus line in pF.  
[6] The maximum tf for the SDA and SCL bus lines is specified at 300 ns. The maximum fall time for the SDA  
output stage tf is specified at 250 ns. This allows series protection resistors to be connected in between the  
SDA and the SCL pins and the SDA/SCL bus lines without exceeding the maximum specified tf.  
[7] In Fast-mode Plus, fall time is specified the same for both output stage and bus timing. If series resistors  
are used, designers should allow for this when considering bus timing.  
[8] The maximum tHD;DAT could be 3.45 s and 0.9 s for Standard-mode and Fast-mode but must be less than  
the maximum of tVD;DAT or tVD;ACK by a transition time (see UM10204). This maximum must only be met if  
the device does not stretch the LOW period (tLOW) of the SCL signal. If the clock stretches the SCL, the  
data must be valid by the set-up time before it releases the clock.  
[9] tSU;DAT is the data set-up time that is measured with respect to the rising edge of SCL; applies to data in  
transmission and the acknowledge.  
[10] A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system but the requirement  
tSU;DAT = 250 ns must then be met. This will automatically be the case if the device does not stretch the  
LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must  
output the next data bit to the SDA line tr(max) + tSU;DAT = 1000 + 250 = 1250 ns (according to the  
Standard-mode I2C-bus specification) before the SCL line is released. Also the acknowledge timing must  
meet this set-up time.  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
65 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
t
f
t
SU;DAT  
70 %  
30 %  
70 %  
30 %  
SDA  
SCL  
t
t
HD;DAT  
VD;DAT  
t
f
t
HIGH  
70 %  
30 %  
70 %  
30 %  
70 %  
30 %  
70 %  
30 %  
t
LOW  
1 / f  
S
SCL  
aaa-004643  
Fig 31. I2C-bus pins clock timing  
12.6 SSP interface  
Table 17. Dynamic characteristics of SPI pins in SPI mode  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
SPI master (in SPI mode)  
[1]  
[1]  
[2]  
[2]  
[2]  
[2]  
Tcy(clk)  
clock cycle time  
full-duplex mode  
when only transmitting  
in SPI mode  
50  
40  
15  
0
-
-
ns  
ns  
ns  
ns  
ns  
ns  
tDS  
data set-up time  
data hold time  
-
-
-
-
-
tDH  
in SPI mode  
-
tv(Q)  
th(Q)  
data output valid time in SPI mode  
data output hold time in SPI mode  
-
10  
-
0
SPI slave (in SPI mode)  
Tcy(PCLK) PCLK cycle time  
20  
0
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
[3][4]  
[3][4]  
[3][4]  
[3][4]  
tDS  
data set-up time  
data hold time  
in SPI mode  
in SPI mode  
-
tDH  
3 Tcy(PCLK) + 4  
-
tv(Q)  
th(Q)  
data output valid time in SPI mode  
data output hold time in SPI mode  
-
-
3 Tcy(PCLK) + 11  
2 Tcy(PCLK) + 5  
[1] Tcy(clk) = (SSPCLKDIV (1 + SCR) CPSDVSR) / fmain. The clock cycle time derived from the SPI bit rate Tcy(clk) is a function of the  
main clock frequency fmain, the SPI peripheral clock divider (SSPCLKDIV), the SPI SCR parameter (specified in the SSP0CR0 register),  
and the SPI CPSDVSR parameter (specified in the SPI clock prescale register).  
[2] Tamb = 40 C to 105 C; 2.4 V VDD 3.6 V.  
[3] Tcy(clk) = 12 Tcy(PCLK)  
.
[4] Tamb = 25 C; for normal voltage supply range: VDD = 3.3 V.  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
66 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
T
cy(clk)  
SCK (CPOL = 0)  
SCK (CPOL = 1)  
MOSI  
t
t
h(Q)  
v(Q)  
DATA VALID  
DATA VALID  
CPHA = 1  
t
t
DH  
DS  
DATA VALID  
DATA VALID  
MISO  
t
t
h(Q)  
v(Q)  
DATA VALID  
DATA VALID  
t
MOSI  
MISO  
t
CPHA = 0  
DS  
DH  
DATA VALID  
DATA VALID  
002aae829  
Fig 32. SSP master timing in SPI mode  
T
cy(clk)  
SCK (CPOL = 0)  
SCK (CPOL = 1)  
t
t
DH  
DS  
MOSI  
MISO  
DATA VALID  
DATA VALID  
t
t
h(Q)  
v(Q)  
CPHA = 1  
DATA VALID  
DATA VALID  
t
t
DH  
DS  
MOSI  
MISO  
DATA VALID  
DATA VALID  
DATA VALID  
t
t
h(Q)  
CPHA = 0  
v(Q)  
DATA VALID  
002aae830  
Fig 33. SSP slave timing in SPI mode  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
67 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
12.7 USART interface  
The maximum USART bit rate for all USARTs is 3.125 Mbit/s in asynchronous mode and  
10 Mbit/s in synchronous slave and master mode.  
Table 18. USART dynamic characteristics USART0  
Tamb = 40 °C to 105 °C; 2.4 V <= VDD <= 3.6 V; CL = 10 pF. Simulated parameters sampled at the  
50 % level of the falling or rising edge; values guaranteed by design.  
Symbol  
Parameter  
Min  
Max  
Unit  
[1]  
Tcy(clk)  
clock cycle time  
100  
-
ns  
USART master (in synchronous mode)  
tsu(D)  
th(D)  
tv(Q)  
th(Q)  
data input set-up time  
data input hold time  
data output valid time  
data output hold time  
44  
0
-
ns  
ns  
ns  
ns  
-
-
10  
-
0
USART slave (in synchronous mode)  
tsu(D)  
th(D)  
tv(Q)  
th(Q)  
data input set-up time  
data input hold time  
data output valid time  
data output hold time  
5
-
ns  
ns  
ns  
ns  
20  
-
-
40  
-
25  
[1] Tcy(clk) = (main clock cycle time)/(UARTCLKDIV x 2 x (256 x DLM + DLL)). See the LPC11U6x User  
manual UM10732.  
Table 19. USART dynamic characteristics USART1/2/3/4  
Tamb = 40 °C to 105 °C; 2.4 V <= VDD <= 3.6 V; CL = 10 pF. Simulated parameters sampled at the  
50 % level of the falling or rising edge; values guaranteed by design.  
Symbol  
Parameter  
Min  
Max  
Unit  
[1]  
Tcy(clk)  
clock cycle time  
100  
-
ns  
USART master (in synchronous mode)  
tsu(D)  
th(D)  
tv(Q)  
th(Q)  
data input set-up time  
data input hold time  
data output valid time  
data output hold time  
44  
0
-
ns  
ns  
ns  
ns  
-
-
10  
-
0
USART slave (in synchronous mode)  
tsu(D)  
th(D)  
tv(Q)  
th(Q)  
data input set-up time  
data input hold time  
data output valid time  
data output hold time  
5
-
ns  
ns  
ns  
ns  
0
-
-
40  
-
20  
[1] Tcy(clk) = U_PCLK/BRGVAL. See the LPC11U6x User manual UM10732.  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
68 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
T
cy(clk)  
Un_SCLK (CLKPOL = 0)  
Un_SCLK (CLKPOL = 1)  
TXD  
t
t
h(Q)  
v(Q)  
START  
BIT0  
BIT1  
t
t
su(D) h(D)  
BIT1  
START  
BIT0  
RXD  
aaa-007001  
Fig 34. USART timing  
12.8 SCTimer/PWM output timing  
Table 20. SCTimer/PWM output dynamic characteristics  
Tamb = 40 °C to 105 °C; 2.4 V <= VDD <= 3.6 V. Simulated skew (over process, voltage, and  
temperature) between any two SCT outputs; sampled at the 50 % level of the falling or rising edge;  
values guaranteed by design.  
Symbol  
Parameter  
Min  
< 1  
< 1  
Max  
Unit  
SCTimer0/PWM  
tsk(o)  
output skew time  
output skew time  
2
ns  
SCTimer1/PWM  
tsk(o)  
2
ns  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
69 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
13. Characteristics of analog peripherals  
Table 21. BOD static characteristics[1]  
Tamb = 25 °C.  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Vth  
threshold voltage interrupt level 2  
assertion  
-
-
2.54  
2.68  
-
-
V
V
de-assertion  
interrupt level 3  
assertion  
-
-
2.82  
2.93  
-
-
V
V
de-assertion  
reset level 2  
assertion  
-
-
2.34  
2.49  
-
-
V
V
de-assertion  
reset level 3  
assertion  
-
-
2.62  
2.77  
-
-
V
V
de-assertion  
[1] Interrupt and reset levels are selected by writing the level value to the BOD control register BODCTRL, see  
the LPC11U6x user manual. Interrupt levels 0 and 1 are reserved.  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
70 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Table 22. 12-bit ADC static characteristics  
Tamb = 40 °C to +105 °C; VDD = 2.4 V to 3.6 V; VREFP = VDDA; VSSA = 0; VREFN = VSSA. ADC  
calibrated at T = 25 °C.  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
VDDA  
0.32  
Unit  
[1]  
[2]  
[3]  
VIA  
Cia  
analog input  
voltage  
0
-
-
-
V
analog input  
capacitance  
pF  
fclk(ADC) ADC clock  
frequency  
VDDA 2.7 V  
VDDA 2.4 V  
VDDA 2.7 V  
VDDA 2.4 V  
50  
25  
2
MHz  
MHz  
fs  
sampling  
frequency  
-
-
-
-
-
-
Msamples/s  
Msamples/s  
LSB  
1
[4]  
[5]  
ED  
differential  
2.5  
linearity error  
EL(adj)  
integral  
-
-
2.5  
LSB  
non-linearity  
[6]  
[7]  
EO  
offset error  
-
-
-
-
4.5  
0.5  
LSB  
%
Verr(FS) full-scale error  
voltage  
[8][9]  
Zi  
input  
fs = 2 Msamples/s  
0.1  
-
-
M  
impedance  
[1] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply  
voltages.  
[2] The input resistance of ADC channel 0 is higher than for all other channels.  
[3] Cia represents the external capacitance on the analog input channel for sampling speeds of 2 Msamples/s.  
[4] The differential linearity error (ED) is the difference between the actual step width and the ideal step width.  
See Figure 35.  
[5] The integral non-linearity (EL(adj)) is the peak difference between the center of the steps of the actual and  
the ideal transfer curve after appropriate adjustment of gain and offset errors. See Figure 35.  
[6] The offset error (EO) is the absolute difference between the straight line which fits the actual curve and the  
straight line which fits the ideal curve. See Figure 35.  
[7] The full-scale error voltage or gain error (EG) is the difference between the straight-line fitting the actual  
transfer curve after removing offset error, and the straight line which fits the ideal transfer curve. See  
Figure 35.  
[8] Tamb = 25 C; maximum sampling frequency fs = 2 Msamples/s and analog input capacitance Cia = 0.32 pF.  
[9] Input impedance Zi is inversely proportional to the sampling frequency and the total input capacity including  
Cia: Zi 1 / (fs Ci). See Table 8 for Cio.  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
71 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
offset  
error  
O
gain  
error  
E
E
G
4095  
4094  
4093  
4092  
4091  
4090  
(2)  
7
code  
out  
(1)  
6
5
4
3
2
1
0
(5)  
(4)  
(3)  
1 LSB  
(ideal)  
4090 4091 4092 4093 4094 4095 4096  
1
2
3
4
5
6
7
V
IA  
(LSB  
)
ideal  
offset error  
E
O
VREFP - V  
4096  
SS  
1 LSB =  
002aaf436  
(1) Example of an actual transfer curve.  
(2) The ideal transfer curve.  
(3) Differential linearity error (ED).  
(4) Integral non-linearity (EL(adj)).  
(5) Center of a step of the actual transfer curve.  
Fig 35. 12-bit ADC characteristics  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
72 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
ADC  
R
= 0.25 kΩ...2.5 kΩ  
1
ADCn_0  
C
io  
R
= 5 Ω...25 Ω  
sw  
ADCn_[1:11]  
DAC  
C
DAC  
C
io  
C
ia  
aaa-011748  
Fig 36. ADC input impedance  
Table 23. Temperature sensor static and dynamic characteristics  
VDDA = 2.4 V to 3.6 V  
Symbol  
Parameter  
Conditions  
amb = 40 C to +105 C  
Min  
Typ  
Max  
Unit  
[1]  
[2]  
DTsen  
sensor  
temperature  
accuracy  
T
-
5  
-
C  
EL  
linearity error  
Tamb = 40 C to +105 C  
-
-
4  
-
-
C  
s  
ts(pu)  
power-up  
settling time  
to 99% of temperature  
sensor output value  
14  
[1] Absolute temperature accuracy.  
[2] Typical values are derived from nominal simulation (VDDA = 3.3 V; Tamb = 27 C; nominal process models).  
Table 24. Temperature sensor Linear-Least-Square (LLS) fit parameters  
VDDA = 2.4 V to 3.6 V  
Fit parameter  
LLS slope  
Range  
Min  
Typ  
Max  
Unit  
mV/C  
mV  
Tamb = 40 C to +105 C  
Tamb = 40 C to +105C  
-
-
-2.36  
606  
-
-
LLS intercept  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
73 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
aaa-009429  
800  
V
O
(mV)  
600  
400  
200  
0
-40  
-10  
20  
50  
80  
110  
temperature (°C)  
VDDA = 3.3 V; measured on a typical silicon sample.  
Fig 37. Typical LLS fit of the temperature sensor output voltage  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
74 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
14. Application information  
14.1 ADC usage notes  
The following guidelines show how to increase the performance of the ADC in a noisy  
environment beyond the ADC specifications listed in Table 22:  
The ADC input trace must be short and as close as possible to the LPC11U6x chip.  
The ADC input traces must be shielded from fast switching digital signals and noisy  
power supply lines.  
If the ADC and the digital core share a power supply, the power supply line must be  
adequately filtered.  
To improve the ADC performance in a very noisy environment, put the device in Sleep  
mode during the ADC conversion.  
14.2 Typical wake-up times  
Table 25. Typical wake-up times  
VDD = 3.3 V; Tamb = 25 °C  
Power modes  
Wake-up time  
2.6 s  
Sleep mode (12 MHz)[1][2]  
Deep-sleep mode[1][3]  
Power-down mode[1][3]  
Deep Power-down mode[4]  
4.4 s  
86.8 s  
276 s  
[1] The wake-up time measured is the time between when a GPIO input pin is triggered to wake up the device  
from the low-power modes and from when a GPIO output pin is set in the interrupt service routine (ISR)  
wake-up handler.  
[2] IRC enabled, all peripherals off.  
[3] WatchDog oscillator disabled, Brown-Out Detect (BOD) disabled.  
[4] Wake-up from deep power-down causes the part to go through entire reset process. The wake-up time  
measured is the time between when a wake-up pin is triggered to wake up the device from the low-power  
modes and when a GPIO output pin is set in the reset handler.  
14.3 Suggested USB interface solutions  
The USB device can be connected to the USB as self-powered device (see Figure 38) or  
bus-powered device (see Figure 39).  
On the LPC11U6x, the PIO0_3/USB_VBUS pin is 5 V tolerant only when VDD is applied  
and at operating voltage level. Therefore, if the USB_VBUS function is connected to the  
USB connector and the device is self-powered, the USB_VBUS pin must be protected for  
situations when VDD = 0 V.  
If VDD is always at operating level while VBUS = 5 V, the USB_VBUS pin can be  
connected directly to the VBUS pin on the USB connector.  
For systems where VDD can be 0 V and VBUS is directly applied to the VBUS pin,  
precautions must be taken to reduce the voltage to below 3.6 V, which is the maximum  
allowable voltage on the USB_VBUS pin in this case.  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
75 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
One method is to use a voltage divider to connect the USB_VBUS pin to the VBUS on the  
USB connector. The voltage divider ratio should be such that the USB_VBUS pin is  
greater than 0.7 VDD to indicate a logic HIGH while below the 3.6 V allowable maximum  
voltage.  
For the following operating conditions  
VBUSmax = 5.25 V  
VDD = 3.6 V,  
the voltage divider should provide a reduction of 3.6 V/5.25 V or ~0.686 V.  
LPC1xxx  
V
DD  
R2  
R3  
USB_CONNECT  
USB  
R1  
1.5 kΩ  
USB_VBUS  
D+  
D-  
R
S
= 33 Ω  
= 33 Ω  
USB-B  
connector  
USB_DP  
USB_DM  
R
S
V
SS  
aaa-010820  
Fig 38. USB interface on a self-powered device where USB_VBUS = 5 V  
The USB_CONNECT function can be enabled internally by setting the DCON bit in the  
DEVCMDSTAT register to prevent the USB from timing out when there is a significant  
delay between power-up and handling USB traffic. External circuitry is not required for the  
USB_CONNECT functionality.  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
76 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
LPC1xxx  
V
DD  
REGULATOR  
USB_CONNECT  
USB  
(1)  
(2)  
USB_VBUS  
USB_VBUS  
R1  
1.5 kΩ  
VBUS  
D+  
D-  
R
R
= 33 Ω  
= 33 Ω  
USB-B  
connector  
S
S
USB_DP  
USB_DM  
V
SS  
aaa-010821  
Two options exist for connecting VBUS to the USB_VBUS pin:  
(1) Connect the regulator output to USB_VBUS. In this case, the USB_VBUS signal is HIGH whenever the part is powered.  
(2) Connect the VBUS signal directly from the connector to the USB_VBUS pin. In this case, 5 V are applied to the USB_VBUS pin  
while the regulator is ramping up to supply VDD. Since the PIO0_3/USB_VBUS pin is only 5 V tolerant when VDD is at operating  
level, this connection can degrade the performance of the part over its lifetime. Simulation shows that lifetime is reduced to  
15 years at Tamb = 45 °C and 8 years at Tamb = 55 °C assuming that USB_VBUS = 5 V is applied continuously while VDD = 0 V.  
Fig 39. USB interface on a bus-powered device  
Remark: When a self-powered circuit is used without connecting VBUS, configure the  
PIO0_3/USB_VBUS pin for GPIO (PIO0_3) and provide software that can detect the host  
presence through some other mechanism before enabling USB_CONNECT and the  
SoftConnect feature. Enabling the SoftConnect without host presence leads to USB  
compliance failure.  
14.3.1 USB Low-speed operation  
The USB device controller can be used in low-speed mode supporting 1.5 Mbit/s data  
exchange with a USB host controller.  
Remark: To operate in low-speed mode, change the board connections as follows:  
1. Connect USB_DP to the D- pin of the connector.  
2. Connect USB_DM to the D+ pin of the connector.  
Use the IRC as clock source for the USB PLL to generate 48 MHz, then set the USB clock  
divider USBCLKDIV to 8 for a 6 MHz USB clock (see Figure 10 “Clock generation”).  
External 10 Ω resistors are recommended in low-speed mode to reduce over-shoots and  
accommodate for 5 m cable length required for USB-IF testing.  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
77 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
SYSCON  
12 MHz  
IRC  
USB PLL  
48 MHz  
USBCLKDIV  
/8  
USB main clock  
V
DD  
= 6 MHz  
USB_CONNECT  
USB  
R1  
1.5 kΩ  
USB_VBUS  
USB_DP  
R
R
= 10 Ω  
= 10 Ω  
R
S
= 33 Ω  
= 33 Ω  
S
S
D+  
D-  
USB-B  
connector  
R
S
USB_DM  
V
SS  
aaa-011021  
Fig 40. USB interface for low-speed, XTAL-less operation  
14.4 XTAL input and crystal oscillator component selection  
The input voltage to the on-chip oscillators is limited to 1.8 V. If the oscillator is driven by a  
clock in slave mode, it is recommended that the input be coupled through a capacitor with  
Ci = 100 pF. To limit the input voltage to the specified range, choose an additional  
capacitor to ground Cg which attenuates the input voltage by a factor Ci/(Ci + Cg). In slave  
mode, a minimum of 200 mV(RMS) is needed.  
LPC1xxx  
XTALIN  
C
i
C
g
100 pF  
002aae788  
Fig 41. Slave mode operation of the on-chip oscillator  
In slave mode the input clock signal should be coupled through a capacitor of 100 pF  
(Figure 41), with an amplitude between 200 mV (RMS) and 1000 mV (RMS). This  
corresponds to a square wave signal with a signal swing of between 280 mV and 1.4 V.  
The XTALOUT pin in this configuration can be left unconnected.  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
78 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
External components and models used in oscillation mode are shown in Figure 42 and in  
Table 26 and Table 27. Since the feedback resistance is integrated on chip, only a crystal  
and the capacitances CX1 and CX2 must be connected externally in case of fundamental  
mode oscillation (the fundamental frequency is represented by L, CL and RS).  
Capacitance CP in Figure 42 represents the parallel package capacitance and should not  
be larger than 7 pF. Parameters FOSC, CL, RS and CP are supplied by the crystal  
manufacturer (see Table 26).  
LPC1xxx  
L
XTALIN  
XTALOUT  
C
L
C
P
=
XTAL  
R
S
C
X2  
C
X1  
002aaf424  
Fig 42. Oscillator modes and models: oscillation mode of operation and external crystal  
model used for CX1/CX2 evaluation  
Table 26. Recommended values for CX1/CX2 in oscillation mode (crystal and external  
components parameters) low frequency mode  
Fundamental oscillation Crystal load  
Maximum crystal  
External load  
frequency FOSC  
capacitance CL  
series resistance RS  
capacitors CX1, CX2  
1 MHz to 5 MHz  
10 pF  
< 300   
< 300   
< 300   
< 300   
< 200   
< 100   
< 160   
< 60   
18 pF, 18 pF  
39 pF, 39 pF  
57 pF, 57 pF  
18 pF, 18 pF  
39 pF, 39 pF  
57 pF, 57 pF  
18 pF, 18 pF  
39 pF, 39 pF  
18 pF, 18 pF  
20 pF  
30 pF  
5 MHz to 10 MHz  
10 pF  
20 pF  
30 pF  
10 MHz to 15 MHz  
15 MHz to 20 MHz  
10 pF  
20 pF  
10 pF  
< 80   
Table 27. Recommended values for CX1/CX2 in oscillation mode (crystal and external  
components parameters) high frequency mode  
Fundamental oscillation Crystal load  
Maximum crystal  
External load  
frequency FOSC  
capacitance CL  
series resistance RS  
capacitors CX1, CX2  
15 MHz to 20 MHz  
10 pF  
< 180   
< 100   
< 160   
< 80   
18 pF, 18 pF  
39 pF, 39 pF  
18 pF, 18 pF  
39 pF, 39 pF  
20 pF  
20 MHz to 25 MHz  
10 pF  
20 pF  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
79 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
14.5 XTAL Printed-Circuit Board (PCB) layout guidelines  
The crystal should be connected on the PCB as close as possible to the oscillator input  
and output pins of the chip. Take care that the load capacitors Cx1, Cx2, and Cx3 in case of  
third overtone crystal usage have a common ground plane. The external components  
must also be connected to the ground plane. Loops must be made as small as possible to  
keep the noise coupled in via the PCB as small as possible. Also parasitics should stay as  
small as possible. Smaller values of Cx1 and Cx2 should be chosen according to the  
increase in parasitics of the PCB layout.  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
80 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
14.6 RTC oscillator component selection  
The 32 kHz crystal must be connected to the part via the RTCXIN and RTCXOUT pins as  
shown in Figure 43. If the RTC is not used, the RTCXIN pin can be grounded.  
LPC1xxx  
L
RTCXIN  
RTCXOUT  
C
R
C
P
=
L
XTAL  
S
C
C
X2  
X1  
aaa-010822  
Fig 43. RTC oscillator components  
Select Cx1 and Cx2 based on the external 32 kHz crystal used in the application circuitry.  
The pad capacitance CP of the RTCXIN and RTCXOUT pad is 3 pF. If the load  
capacitance of the external crystal is CL, the optimal Cx1 and Cx2 can be selected as:  
Cx1 = Cx2 = 2 x CL – CP  
To achieve the best performance and accurate frequency, it is recommended to use Cx1  
= Cx2 = 24 pF and CL = 12 pF.  
Please note the actual board layout and placement of external components influences the  
optimal values of external load capacitors. Therefore, it is recommended to fine tune the  
values of external load capacitors on the hardware board to get the accurate clock  
frequency. For fine tuning, measure the clock on the CLOCKOUT pin and optimize the  
values of external load capacitors for minimum frequency deviation.  
14.7 Connecting power, clocks, and debug functions  
Figure 44 shows the basic board connections used to power the LPC11U6x, connect the  
external crystal and the 32 kHz oscillator for the RTC, and provide debug capabilities via  
the serial wire port.  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
81 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
3.3 V  
SWD connector  
Note 6  
3.3 V  
~10 kΩ - 100 kΩ  
SWDIO/PIO0_15  
SWCLK/PIO0_10  
1
2
4
3
5
7
~10 kΩ - 100 kΩ  
PIO2_0/XTALIN  
n.c.  
n.c.  
6
8
C1  
Note 1  
n.c.  
DGND  
C2  
PIO2_1/XTALOUT  
RESET/PIO0_0  
DGND  
9
10  
RTCXIN  
C3  
C4  
Note 2  
DGND  
V
SS  
RTCXOUT  
DGND  
DGND  
Note 3  
3.3 V  
V
(2 to 5 pins)  
DD  
V
SSA  
0.1 μF  
0.01 μF  
LPC11U6x  
AGND  
PIO0_1  
DGND  
DGND  
Note 4  
3.3 V  
V
DDA  
ISP select pins  
Note 7  
PIO0_3  
ADC_0  
0.1 μF  
10 μF  
Note 4  
3.3 V  
VREFP  
0.1 μF  
10 μF  
0.1 μF  
VREFN  
AGND  
AGND  
Note 5  
3.3 V  
VBAT  
0.1 μF  
AGND  
DGND  
DGND  
aaa-013306  
(1) See Section 14.4 “XTAL input and crystal oscillator component selection” for the values of C1 and C2.  
(2) See Section 14.6 “RTC oscillator component selection” for the values of C3 and C4.  
(3) Position the decoupling capacitors of 0.1 μF and 0.01 μF as close as possible to the VDD pin. Add one set of decoupling  
capacitors to each VDD pin.  
(4) Position the decoupling capacitors of 0.1 μF as close as possible to the VREFN and VDDA pins. The 10 μF bypass capacitor  
filters the power line. Tie VDDA and VREFP to VDD if the ADC is not used. Tie VREFN to VSS if ADC is not used.  
(5) Position the decoupling capacitor of 0.1 μF as close as possible to the VBAT pin. Tie VBAT to VDD if not used.  
(6) Uses the ARM 10-pin interface for SWD.  
(7) When measuring signals of low frequency, use a low-pass filter to remove noise and to improve ADC performance. Also see  
Ref. 3.  
Fig 44. Power, clock, and debug connections  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
82 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
14.8 Termination of unused pins  
Table 28 shows how to terminate pins that are not used in the application. In many cases,  
unused pins may should be connected externally or configured correctly by software to  
minimize the overall power consumption of the part.  
Unused pins with GPIO function should be configured as outputs set to LOW with their  
internal pull-up disabled. To configure a GPIO pin as output and drive it LOW, select the  
GPIO function in the IOCON register, select output in the GPIO DIR register, and write a 0  
to the GPIO PORT register for that pin. Disable the pull-up in the pin’s IOCON register.  
In addition, it is recommended to configure all GPIO pins that are not bonded out on  
smaller packages as outputs driven LOW with their internal pull-up disabled.  
Table 28. Termination of unused pins  
Pin  
Default Recommended termination of unused pins  
state[1]  
RESET/PIO0_0  
I; PU  
In an application that does not use the RESET pin or its GPIO function, the  
termination of this pin depends on whether Deep power-down mode is used:  
Deep power-down used: Connect an external pull-up resistor and keep pin in  
default state (input, pull-up enabled) during all other power modes.  
Deep power-down not used and no external pull-up connected: can be left  
unconnected if internal pull-up is disabled and pin is driven LOW and  
configured as output by software.  
all PIOn_m (not  
open-drain)  
I; PU  
Can be left unconnected if driven LOW and configured as GPIO output with pull-up  
disabled by software.  
PIOn_m (I2C open-drain)  
RSTOUT  
IA  
Can be left unconnected if driven LOW and configured as GPIO output by software.  
IA; O  
Can be left unconnected. Not configurable by software.  
USB_DP/USB_DM  
RTCXIN  
F
-
Can be left unconnected. When the USP PHY is disabled, the pins are LOW.  
Connect to ground. When grounded, the RTC oscillator is disabled.  
RTCXOUT  
VREFP  
-
Can be left unconnected.  
Tie to VDD.  
-
VREFN  
-
Tie to VSS.  
VDDA  
-
Tie to VDD.  
VBAT  
-
Tie to VDD if no external battery connected.  
Tie to VSS.  
VSSA  
-
[1] I = Input, O = Output, IA = Inactive (no pull-up/pull-down enabled), F = floating, PU = Pull-Up.  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
83 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
14.9 Pin states in different power modes  
Table 29. Pin states in different power modes  
Pin Active Sleep  
Deep-sleep/Power- Deep power-down  
down  
PIOn_m pins (not As configured in the IOCON[1]. Default: internal pull-up  
I2C) enabled.  
Floating.  
PIO0_4, PIO0_5 As configured in the IOCON[1].  
Floating.  
(open-drain  
I2C-bus pins)  
RESET  
Reset function enabled. Default: input, internal pull-up  
enabled.  
Reset function disabled; floating; if the part  
is in deep power-down mode, the RESET  
pin needs an external pull-up to reduce  
power consumption.  
PIO0_16/  
WAKEUP  
As configured in the IOCON[1]. WAKEUP function inactive. Wake-up function enabled; can be disabled  
by software.  
[1] Default and programmed pin states are retained in sleep, deep-sleep, and power-down modes.  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
84 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
14.10 ElectroMagnetic Compatibility (EMC)  
Radiated emission measurements according to the IEC61967-2 standard using the  
TEM-cell method are shown for part LPC11U68JBD100.  
Table 30. ElectroMagnetic Compatibility (EMC) for part LPC11U68 (TEM-cell method)  
VDD = 3.3 V; Tamb = 25 °C.  
Parameter  
Frequency band  
System  
clock =  
Unit  
12 MHz  
24 MHz  
36 MHz  
48 MHz  
Input clock: IRC (12 MHz)  
maximum  
peak level  
1 MHz to 30 MHz  
-5  
-1  
-1  
O
-5  
0
-5  
-5  
dBV  
dBV  
dBV  
-
30 MHz to 150 MHz  
+4  
+4  
O
+4  
+4  
O
150 MHz to 1 GHz  
-
0
IEC level[1]  
O
Input clock: crystal oscillator (12 MHz)  
maximum  
peak level  
1 MHz to 30 MHz  
30 MHz to 150 MHz  
150 MHz to 1 GHz  
-
-2  
-1  
-2  
O
  
0
-4  
-5  
dBV  
dBV  
dBV  
-
+3  
+2  
O
+3  
+5  
O
0
IEC level[1]  
O
[1] IEC levels refer to Appendix D in the IEC61967-2 Specification.  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
85 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
15. Package outline  
LQFP48: plastic low profile quad flat package; 48 leads; body 7 x 7 x 1.4 mm  
SOT313-2  
c
y
X
36  
25  
A
E
37  
24  
Z
E
e
H
E
A
2
A
(A )  
3
A
1
w
p
M
pin 1 index  
b
L
p
L
13  
48  
detail X  
1
12  
Z
v
M
M
D
A
e
w
M
b
p
D
B
H
v
B
D
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
D
H
L
L
v
w
y
Z
Z
E
1
2
3
p
E
p
D
max.  
7o  
0o  
0.20 1.45  
0.05 1.35  
0.27 0.18 7.1  
0.17 0.12 6.9  
7.1  
6.9  
9.15 9.15  
8.85 8.85  
0.75  
0.45  
0.95 0.95  
0.55 0.55  
1.6  
mm  
0.25  
0.5  
1
0.2 0.12 0.1  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
00-01-19  
03-02-25  
SOT313-2  
136E05  
MS-026  
Fig 45. Package outline LQFP48 (SOT313-2)  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
86 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
LQFP64: plastic low profile quad flat package; 64 leads; body 10 x 10 x 1.4 mm  
SOT314-2  
y
X
A
48  
33  
Z
49  
32  
E
e
H
A
E
2
E
A
(A )  
3
A
1
w M  
p
b
L
p
pin 1 index  
L
64  
17  
detail X  
1
16  
Z
v
M
A
D
e
w M  
b
p
D
B
H
v
M
B
D
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
H
L
L
v
w
y
Z
Z
E
1
2
3
p
D
E
p
D
max.  
7o  
0o  
0.20 1.45  
0.05 1.35  
0.27 0.18 10.1 10.1  
0.17 0.12 9.9 9.9  
12.15 12.15  
11.85 11.85  
0.75  
0.45  
1.45 1.45  
1.05 1.05  
1.6  
mm  
0.25  
0.5  
1
0.2 0.12 0.1  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
00-01-19  
03-02-25  
SOT314-2  
136E10  
MS-026  
Fig 46. Package outline LQFP64 (SOT314-2)  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
87 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
LQFP100: plastic low profile quad flat package; 100 leads; body 14 x 14 x 1.4 mm  
SOT407-1  
y
X
A
51  
75  
50  
26  
(1)  
76  
Z
E
e
H
A
E
2
E
A
(A )  
3
A
1
w M  
p
b
L
p
pin 1 index  
L
detail X  
100  
1
25  
Z
D
v
M
A
B
e
w M  
b
p
D
B
H
v
M
5
D
0
10 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
D
H
L
L
v
w
y
Z
Z
1
2
3
p
E
p
D
E
max.  
7o  
0o  
0.15 1.45  
0.05 1.35  
0.27 0.20 14.1 14.1  
0.17 0.09 13.9 13.9  
16.25 16.25  
15.75 15.75  
0.75  
0.45  
1.15 1.15  
0.85 0.85  
mm  
1.6  
0.25  
0.5  
1
0.2 0.08 0.08  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
00-02-01  
03-02-20  
SOT407-1  
136E20  
MS-026  
Fig 47. Package outline LQFP100 (SOT407-1)  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
88 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
16. Soldering  
Footprint information for reflow soldering of LQFP48 package  
SOT313-2  
Hx  
Gx  
(0.125)  
P2  
P1  
Hy Gy  
By  
Ay  
C
D2 (8 )  
D1  
Bx  
Ax  
Generic footprint pattern  
Refer to the package outline drawing for actual layout  
solder land  
occupied area  
DIMENSIONS in mm  
P1 P2 Ax  
Ay  
Bx  
By  
C
D1  
D2  
Gx  
Gy  
Hx  
Hy  
0.500 0.560 10.350 10.350 7.350 7.350 1.500 0.280 0.500 7.500 7.500 10.650 10.650  
sot313-2_fr  
Fig 48. Reflow soldering for the LQFP48 package  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
89 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Footprint information for reflow soldering of LQFP64 package  
SOT314-2  
Hx  
Gx  
(0.125)  
P2  
P1  
Hy Gy  
By  
Ay  
C
D2 (8 )  
D1  
Bx  
Ax  
Generic footprint pattern  
Refer to the package outline drawing for actual layout  
solder land  
occupied area  
DIMENSIONS in mm  
P1 P2 Ax  
Ay  
Bx  
By  
C
D1  
D2  
Gx  
Gy  
Hx  
Hy  
0.500 0.560 13.300 13.300 10.300 10.300 1.500 0.280 0.400 10.500 10.500 13.550 13.550  
sot314-2_fr  
Fig 49. Reflow soldering for the LQFP64 package  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
90 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Footprint information for reflow soldering of LQFP100 package  
SOT407-1  
Hx  
Gx  
(0.125)  
P2  
P1  
Hy Gy  
By  
Ay  
C
D2 (8 )  
D1  
Bx  
Ax  
Generic footprint pattern  
Refer to the package outline drawing for actual layout  
solder land  
occupied area  
DIMENSIONS in mm  
P1 P2 Ax  
Ay  
Bx  
By  
C
D1  
D2  
Gx  
Gy  
Hx  
Hy  
0.500 0.560 17.300 17.300 14.300 14.300 1.500 0.280 0.400 14.500 14.500 17.550 17.550  
sot407-1  
Fig 50. Reflow soldering for the LQFP100 package  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
91 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
17. References  
[1] LPC11U6x User manual UM10732:  
http://www.nxp.com/documents/user_manual/UM10732.pdf  
[2] LPC11U6x Errata sheet:  
http://www.nxp.com/documents/errata_sheet/ES_LPC11U6X.pdf  
[3] Technical note ADC design guidelines:  
http://www.nxp.com/documents/technical_note/TN00009.pdf  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
92 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
18. Revision history  
Table 31. Revision history  
Document ID  
Release date  
Data sheet status  
Change notice Supersedes  
LPC11U6x v.1.5  
20200812  
Product data sheet  
-
LPC11U6x v.1.4  
Modifications:  
Updated Section 14.5 “RTC oscillator component selection” with minor wording  
alteration.  
LPC11U6x v.1.4  
Modifications:  
20200724  
Product data sheet  
-
LPC11U6x v.1.3  
Updated Section 14.6 “RTC oscillator component selection” with frequency  
recommendation.  
LPC11U6x v.1.3  
Modifications:  
20160906  
Product data sheet  
-
LPC11U6x v.1.2  
Section 14.10 “ElectroMagnetic Compatibility (EMC)” added.  
Replaced CT16B0_CAP1 with CT16B0_CAP2 for pin PI01_21. See Table 3 “Pin  
description”.  
Replaced CT32B0_CAP1 with CT32B0_CAP2 for pin PIO1_6 and pin PIO1_29. See  
Table 3 “Pin description”.  
Updated Figure 7 “AHB multilayer matrix”: HS GPIO connects with M0+ Core, not with  
DMA or USB.  
LPC11U6x v.1.2  
Modifications:  
20140526  
Product data sheet  
-
LPC11U6x v.1.1  
Part marking updated with revision indicator.  
Changed recommendation for VBAT connection if unused: Tie to VDD. See Table 3  
“Pin description”.  
Section 14.7 “Connecting power, clocks, and debug functions” added.  
Section 14.9 “Pin states in different power modes” added.  
Remark added about using the regulator in the USB bus-powered set-up. See Section  
14.3 “Suggested USB interface solutions”.  
Figure 39 “USB interface on a bus-powered device” changed to show USB_VBUS  
connection to part.  
Parts added: LPC11U67JBD100, LPC11U67JBD64, LPC11U66JBD48.  
LPC11U6x v.1.1  
Modifications:  
20140312  
Product data sheet  
-
LPC11U6x v.1  
Parameter RI renamed to ZI (input impedance) in Table 22.  
Description of the internal USB_CONNECT function clarified in Section 14.3  
“Suggested USB interface solutions”. The USB_CONNECT function can be set  
internally by software and does not require external circuitry.  
Parameter Cia corrected in Table 22 “12-bit ADC static characteristics”.  
Figure 36 “ADC input impedance” added.  
Parameter pin capacitance added in Table 8.  
Pin description for VBAT updated: If no battery is used, tie VBAT to VDD or to ground.  
See Table 3.  
Pin description for RESET/PIO0_0 updated: In deep power-down mode, this pin must  
be pulled HIGH externally. The RESET pin can be left unconnected or be used as a  
GPIO pin if an external RESET function is not needed. See Table 3.  
Pin functions TMS, TDI, TDO, and TRST changed to default function in Table 3.  
Pin description table updated for clarity (VBAT, I2C-bus pins, WAKEUP pin).  
Section 14.1 “ADC usage notes” added.  
Use of USB_CONNECT signal explained when VBUS is not connected. See  
Section 14.3.  
LPC11U6x v.1  
20140117  
Product data sheet  
-
-
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
93 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
19. Legal information  
19.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
Suitability for use — NXP Semiconductors products are not designed,  
19.2 Definitions  
authorized or warranted to be suitable for use in life support, life-critical or  
safety-critical systems or equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
to result in personal injury, death or severe property or environmental  
damage. NXP Semiconductors and its suppliers accept no liability for  
inclusion and/or use of NXP Semiconductors products in such equipment or  
applications and therefore such inclusion and/or use is at the customer’s own  
risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Customers are responsible for the design and operation of their applications  
and products using NXP Semiconductors products, and NXP Semiconductors  
accepts no liability for any assistance with applications or customer product  
design. It is customer’s sole responsibility to determine whether the NXP  
Semiconductors product is suitable and fit for the customer’s applications and  
products planned, as well as for the planned application and use of  
customer’s third party customer(s). Customers should provide appropriate  
design and operating safeguards to minimize the risks associated with their  
applications and products.  
Product specification — The information and data provided in a Product  
data sheet shall define the specification of the product as agreed between  
NXP Semiconductors and its customer, unless NXP Semiconductors and  
customer have explicitly agreed otherwise in writing. In no event however,  
shall an agreement be valid in which the NXP Semiconductors product is  
deemed to offer functions and qualities beyond those described in the  
Product data sheet.  
NXP Semiconductors does not accept any liability related to any default,  
damage, costs or problem which is based on any weakness or default in the  
customer’s applications or products, or the application or use by customer’s  
third party customer(s). Customer is responsible for doing all necessary  
testing for the customer’s applications and products using NXP  
Semiconductors products in order to avoid a default of the applications and  
the products or of the application or use by customer’s third party  
customer(s). NXP does not accept any liability in this respect.  
19.3 Disclaimers  
Limited warranty and liability — Information in this document is believed to  
be accurate and reliable. However, NXP Semiconductors does not give any  
representations or warranties, expressed or implied, as to the accuracy or  
completeness of such information and shall have no liability for the  
consequences of use of such information. NXP Semiconductors takes no  
responsibility for the content in this document if provided by an information  
source outside of NXP Semiconductors.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) will cause permanent  
damage to the device. Limiting values are stress ratings only and (proper)  
operation of the device at these or any other conditions above those given in  
the Recommended operating conditions section (if present) or the  
Characteristics sections of this document is not warranted. Constant or  
repeated exposure to limiting values will permanently and irreversibly affect  
the quality and reliability of the device.  
In no event shall NXP Semiconductors be liable for any indirect, incidental,  
punitive, special or consequential damages (including - without limitation - lost  
profits, lost savings, business interruption, costs related to the removal or  
replacement of any products or rework charges) whether or not such  
damages are based on tort (including negligence), warranty, breach of  
contract or any other legal theory.  
Terms and conditions of commercial sale — NXP Semiconductors  
products are sold subject to the general terms and conditions of commercial  
sale, as published at http://www.nxp.com/profile/terms, unless otherwise  
agreed in a valid written individual agreement. In case an individual  
agreement is concluded only the terms and conditions of the respective  
agreement shall apply. NXP Semiconductors hereby expressly objects to  
applying the customer’s general terms and conditions with regard to the  
purchase of NXP Semiconductors products by customer.  
Notwithstanding any damages that customer might incur for any reason  
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards  
customer for the products described herein shall be limited in accordance  
with the Terms and conditions of commercial sale of NXP Semiconductors.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
No offer to sell or license — Nothing in this document may be interpreted or  
construed as an offer to sell products that is open for acceptance or the grant,  
conveyance or implication of any license under any copyrights, patents or  
other industrial or intellectual property rights.  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
94 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from competent authorities.  
whenever customer uses the product for automotive applications beyond  
NXP Semiconductors’ specifications such use shall be solely at customer’s  
own risk, and (c) customer fully indemnifies NXP Semiconductors for any  
liability, damages or failed product claims resulting from customer design and  
use of the product for automotive applications beyond NXP Semiconductors’  
standard warranty and NXP Semiconductors’ product specifications.  
Non-automotive qualified products — Unless this data sheet expressly  
states that this specific NXP Semiconductors product is automotive qualified,  
the product is not suitable for automotive use. It is neither qualified nor tested  
in accordance with automotive testing or application requirements. NXP  
Semiconductors accepts no liability for inclusion and/or use of  
19.4 Trademarks  
non-automotive qualified products in automotive equipment or applications.  
In the event that customer uses the product for design-in and use in  
automotive applications to automotive specifications and standards, customer  
(a) shall use the product without NXP Semiconductors’ warranty of the  
product for such automotive applications, use and specifications, and (b)  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
I2C-bus — logo is a trademark of NXP Semiconductors N.V.  
20. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
95 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
21. Contents  
1
General description . . . . . . . . . . . . . . . . . . . . . . 1  
8.19.1.1 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
8.19.2  
General purpose external event counter/timers  
(CT32B0/1 and CT16B0/1) . . . . . . . . . . . . . . 33  
2
Features and benefits . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Ordering information. . . . . . . . . . . . . . . . . . . . . 4  
Ordering options . . . . . . . . . . . . . . . . . . . . . . . . 4  
Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
3
8.19.2.1 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
8.20  
8.21  
8.21.1  
8.22  
8.22.1  
8.23  
8.23.1  
8.24  
4
4.1  
5
System tick timer (SysTick) . . . . . . . . . . . . . . 33  
Windowed WatchDog Timer (WWDT) . . . . . . 33  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Real-Time Clock (RTC) . . . . . . . . . . . . . . . . . 34  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Analog-to-Digital Converter (ADC). . . . . . . . . 34  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Temperature sensor . . . . . . . . . . . . . . . . . . . . 35  
Clocking and power control . . . . . . . . . . . . . . 36  
Clock generation . . . . . . . . . . . . . . . . . . . . . . 36  
Power domains . . . . . . . . . . . . . . . . . . . . . . . 37  
Integrated oscillators . . . . . . . . . . . . . . . . . . . 37  
6
7
7.1  
7.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 7  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 9  
8
8.1  
8.2  
8.3  
8.4  
8.5  
8.6  
8.7  
Functional description . . . . . . . . . . . . . . . . . . 19  
ARM Cortex-M0+ core . . . . . . . . . . . . . . . . . . 19  
AHB multilayer matrix . . . . . . . . . . . . . . . . . . . 19  
On-chip flash programming memory . . . . . . . 21  
EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
On-chip ROM . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Memory mapping . . . . . . . . . . . . . . . . . . . . . . 21  
Nested Vectored Interrupt Controller (NVIC) . 22  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Interrupt sources. . . . . . . . . . . . . . . . . . . . . . . 23  
IOCON block. . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Standard I/O pad configuration. . . . . . . . . . . . 24  
Fast General-Purpose parallel I/O (GPIO) . . . 24  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Pin interrupt/pattern match engine . . . . . . . . . 25  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
GPIO group interrupts. . . . . . . . . . . . . . . . . . . 26  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
DMA controller . . . . . . . . . . . . . . . . . . . . . . . . 26  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
USB interface . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Full-speed USB device controller . . . . . . . . . . 27  
8.25  
8.25.1  
8.25.2  
8.25.3  
8.25.3.1 Internal RC oscillator . . . . . . . . . . . . . . . . . . . 38  
8.25.3.2 System oscillator . . . . . . . . . . . . . . . . . . . . . . 38  
8.25.3.3 WatchDog oscillator . . . . . . . . . . . . . . . . . . . . 38  
8.25.3.4 RTC oscillator. . . . . . . . . . . . . . . . . . . . . . . . . 38  
8.25.4  
8.25.5  
8.25.6  
8.25.7  
8.25.7.1 Power profiles . . . . . . . . . . . . . . . . . . . . . . . . 39  
8.25.7.2 Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
8.25.7.3 Deep-sleep mode. . . . . . . . . . . . . . . . . . . . . . 40  
8.25.7.4 Power-down mode . . . . . . . . . . . . . . . . . . . . . 40  
8.25.7.5 Deep power-down mode . . . . . . . . . . . . . . . . 40  
8.8  
System PLL and USB PLL . . . . . . . . . . . . . . . 38  
Clock output . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Wake-up process . . . . . . . . . . . . . . . . . . . . . . 39  
Power control . . . . . . . . . . . . . . . . . . . . . . . . . 39  
8.8.1  
8.8.2  
8.9  
8.9.1  
8.9.2  
8.10  
8.10.1  
8.11  
8.11.1  
8.12  
8.12.1  
8.13  
8.13.1  
8.14  
8.14.1  
8.26  
System control . . . . . . . . . . . . . . . . . . . . . . . . 40  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Brownout detection . . . . . . . . . . . . . . . . . . . . 41  
Code security (Code Read Protection - CRP) 41  
Emulation and debugging . . . . . . . . . . . . . . . 43  
8.26.1  
8.26.2  
8.26.3  
8.27  
9
Limiting values . . . . . . . . . . . . . . . . . . . . . . . . 44  
Thermal characteristics . . . . . . . . . . . . . . . . . 45  
10  
8.14.1.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
8.15  
8.15.1  
8.16  
8.16.1  
8.17  
8.17.1  
8.18  
8.18.1  
8.19  
8.19.1  
USART0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
USART1/2/3/4. . . . . . . . . . . . . . . . . . . . . . . . . 28  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
SSP serial I/O controller (SSP0/1) . . . . . . . . . 29  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
I2C-bus serial I/O controller . . . . . . . . . . . . . . 29  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Timer/PWM subsystem. . . . . . . . . . . . . . . . . . 30  
State Configurable Timers (SCTimer0/PWM and  
SCTimer1/PWM). . . . . . . . . . . . . . . . . . . . . . . 31  
11  
Static characteristics . . . . . . . . . . . . . . . . . . . 46  
Power consumption . . . . . . . . . . . . . . . . . . . . 52  
CoreMark data . . . . . . . . . . . . . . . . . . . . . . . . 56  
Peripheral power consumption. . . . . . . . . . . . 57  
Electrical pin characteristics. . . . . . . . . . . . . . 59  
11.1  
11.2  
11.3  
11.4  
12  
Dynamic characteristics. . . . . . . . . . . . . . . . . 62  
Flash/EEPROM memory . . . . . . . . . . . . . . . . 62  
External clock for the oscillator in slave mode 62  
Internal oscillators . . . . . . . . . . . . . . . . . . . . . 63  
I/O pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
I2C-bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
12.1  
12.2  
12.3  
12.4  
12.5  
continued >>  
LPC11U6x  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2020. All rights reserved.  
Product data sheet  
Rev. 1.5 — 12 August 2020  
96 of 97  
LPC11U6x  
NXP Semiconductors  
32-bit ARM Cortex-M0+ microcontroller  
12.6  
12.7  
12.8  
SSP interface . . . . . . . . . . . . . . . . . . . . . . . . . 66  
USART interface. . . . . . . . . . . . . . . . . . . . . . . 68  
SCTimer/PWM output timing . . . . . . . . . . . . . 69  
13  
Characteristics of analog peripherals . . . . . . 70  
14  
Application information. . . . . . . . . . . . . . . . . . 75  
ADC usage notes . . . . . . . . . . . . . . . . . . . . . . 75  
Typical wake-up times . . . . . . . . . . . . . . . . . . 75  
Suggested USB interface solutions . . . . . . . . 75  
USB Low-speed operation . . . . . . . . . . . . . . . 77  
XTAL input and crystal oscillator component  
selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
XTAL Printed-Circuit Board (PCB) layout  
14.1  
14.2  
14.3  
14.3.1  
14.4  
14.5  
guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
RTC oscillator component selection . . . . . . . . 81  
Connecting power, clocks, and debug functions. .  
81  
14.6  
14.7  
14.8  
14.9  
14.10  
Termination of unused pins. . . . . . . . . . . . . . . 83  
Pin states in different power modes . . . . . . . . 84  
ElectroMagnetic Compatibility (EMC). . . . . . . 85  
15  
16  
17  
18  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 86  
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 93  
19  
Legal information. . . . . . . . . . . . . . . . . . . . . . . 94  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 94  
Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
19.1  
19.2  
19.3  
19.4  
20  
21  
Contact information. . . . . . . . . . . . . . . . . . . . . 95  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP Semiconductors N.V. 2020.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 12 August 2020  
Document identifier: LPC11U6x  

相关型号:

LPC11UXX

NXP LPC microcontrollers
NXP

LPC11XX

NXP LPC microcontrollers
NXP

LPC11XXLV

NXP LPC microcontrollers
NXP

LPC11XXLVUK

32-bit ARM Cortex-M0 MCU; up to 32 kB flash, 8 kB SRAM; 8-bit ADC
NXP

LPC1200

Up to 128 KB Flash and configurable peripherals for industrial control
NXP

LPC12065

Surface Mount Power Chip Inductors
KOA

LPC12065101K

General Purpose Inductor, 100uH, 10%, 1 Element, Ferrite-Core, SMD,
KOA

LPC12065150K

General Purpose Inductor, 15uH, 10%, 1 Element, Ferrite-Core, SMD,
KOA

LPC12065151K

General Purpose Inductor, 150uH, 10%, 1 Element, Ferrite-Core, SMD,
KOA

LPC12065152K

General Purpose Inductor, 1500uH, 10%, 1 Element, Ferrite-Core, SMD,
KOA

LPC120651R0M

General Purpose Inductor, 1uH, 20%, 1 Element, Ferrite-Core, SMD,
KOA

LPC120651R0N

General Purpose Inductor, 1uH, 30%, 1 Element, Ferrite-Core, SMD,
KOA