LPC1311_12 [NXP]

32-bit ARM Cortex-M3 microcontroller; up to 32 kB flash and 8 kB SRAM; USB device; 32位ARM Cortex -M3微控制器;高达32 KB的闪存和8 KB的SRAM ; USB设备
LPC1311_12
型号: LPC1311_12
厂家: NXP    NXP
描述:

32-bit ARM Cortex-M3 microcontroller; up to 32 kB flash and 8 kB SRAM; USB device
32位ARM Cortex -M3微控制器;高达32 KB的闪存和8 KB的SRAM ; USB设备

闪存 微控制器 静态存储器
文件: 总74页 (文件大小:1289K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LPC1311/13/42/43  
32-bit ARM Cortex-M3 microcontroller; up to 32 kB flash and  
8 kB SRAM; USB device  
Rev. 5 — 6 June 2012  
Product data sheet  
1. General description  
The LPC1311/13/42/43 are ARM Cortex-M3 based microcontrollers for embedded  
applications featuring a high level of integration and low power consumption. The ARM  
Cortex-M3 is a next generation core that offers system enhancements such as enhanced  
debug features and a higher level of support block integration.  
The LPC1311/13/42/43 operate at CPU frequencies of up to 72 MHz. The ARM  
Cortex-M3 CPU incorporates a 3-stage pipeline and uses a Harvard architecture with  
separate local instruction and data buses as well as a third bus for peripherals. The ARM  
Cortex-M3 CPU also includes an internal prefetch unit that supports speculative  
branching.  
The peripheral complement of the LPC1311/13/42/43 includes up to 32 kB of flash  
memory, up to 8 kB of data memory, USB Device (LPC1342/43 only), one Fast-mode Plus  
I2C-bus interface, one UART, four general purpose timers, and up to 42 general purpose  
I/O pins.  
Remark: The LPC1311/13/42/43 series consists of the LPC1300 series (parts  
LPC1311/13/42/43) and the LPC1300L series (parts LPC1311/01 and LPC1313/01). The  
LPC1300L series features the following enhancements over the LPC1300 series:  
Power profiles with lower power consumption in Active and Sleep modes.  
Four levels for BOD forced reset.  
Second SSP controller (LPC1313FBD48/01 only).  
Windowed Watchdog Timer (WWDT).  
Internal pull-up resistors pull up pins to full VDD level.  
Programmable pseudo open-drain mode for GPIO pins.  
2. Features and benefits  
ARM Cortex-M3 processor, running at frequencies of up to 72 MHz.  
ARM Cortex-M3 built-in Nested Vectored Interrupt Controller (NVIC).  
32 kB (LPC1343/13)/16 kB (LPC1342)/8 kB (LPC1311) on-chip flash programming  
memory.  
8 kB (LPC1343/13)/4 kB (LPC1342/11) SRAM.  
In-System Programming (ISP) and In-Application Programming (IAP) via on-chip  
bootloader software.  
Selectable boot-up: UART or USB (USB on LPC1342/43 only).  
On LPC1342/43: USB MSC and HID on-chip drivers.  
LPC1311/13/42/43  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Serial interfaces:  
USB 2.0 full-speed device controller with on-chip PHY for device (LPC1342/43  
only).  
UART with fractional baud rate generation, modem, internal FIFO, and  
RS-485/EIA-485 support.  
SSP controller with FIFO and multi-protocol capabilities.  
Additional SSP controller on LPC1313FBD48/01.  
I2C-bus interface supporting full I2C-bus specification and Fast-mode Plus with a  
data rate of 1 Mbit/s with multiple address recognition and monitor mode.  
Other peripherals:  
Up to 42 General Purpose I/O (GPIO) pins with configurable pull-up/pull-down  
resistors.  
Four general purpose counter/timers with a total of four capture inputs and 13  
match outputs.  
Programmable WatchDog Timer (WDT).  
Programmable Windowed Watchdog Timer (WWDT) on LPC1311/01 and  
LPC1313/01.  
System tick timer.  
Serial Wire Debug and Serial Wire Trace port.  
High-current output driver (20 mA) on one pin.  
High-current sink drivers (20 mA) on two I2C-bus pins in Fast-mode Plus.  
Integrated PMU (Power Management Unit) to minimize power consumption during  
Sleep, Deep-sleep, and Deep power-down modes.  
Power profiles residing in boot ROM allowing to optimize performance and minimize  
power consumption for any given application through one simple function call.  
(LPC1300L series, on LPC1311/01 and LPC1313/01 only.)  
Three reduced power modes: Sleep, Deep-sleep, and Deep power-down.  
Single power supply (2.0 V to 3.6 V).  
10-bit ADC with input multiplexing among 8 pins.  
GPIO pins can be used as edge and level sensitive interrupt sources.  
Clock output function with divider that can reflect the system oscillator clock, IRC  
clock, CPU clock, or the watchdog clock.  
Processor wake-up from Deep-sleep mode via a dedicated start logic using up to 40 of  
the functional pins.  
Brownout detect with four separate thresholds for interrupt and one threshold for  
forced reset (four thresholds for forced reset on the LPC1311/01 and LPC1313/01  
parts).  
Power-On Reset (POR).  
Integrated oscillator with an operating range of 1 MHz to 25 MHz.  
12 MHz internal RC oscillator trimmed to 1 % accuracy over the entire temperature  
and voltage range that can optionally be used as a system clock.  
Programmable watchdog oscillator with a frequency range of 7.8 kHz to 1.8 MHz.  
System PLL allows CPU operation up to the maximum CPU rate without the need for a  
high-frequency crystal. May be run from the system oscillator or the internal RC  
oscillator.  
For USB (LPC1342/43), a second, dedicated PLL is provided.  
Code Read Protection (CRP) with different security levels.  
LPC1311_13_42_43  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 5 — 6 June 2012  
2 of 74  
LPC1311/13/42/43  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Unique device serial number for identification.  
Available as 48-pin LQFP package and 33-pin HVQFN package.  
3. Applications  
eMetering  
Lighting  
Alarm systems  
White goods  
4. Ordering information  
Table 1.  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
LPC1311FHN33  
LPC1311FHN33/01  
LPC1313FHN33  
LPC1313FHN33/01  
LPC1313FBD48  
LPC1313FBD48/01  
LPC1342FHN33  
LPC1342FBD48  
LPC1343FHN33  
LPC1343FBD48  
HVQFN33  
HVQFN33: plastic thermal enhanced very thin quad flat package; no  
leads; 33 terminals; body 7 × 7 × 0.85 mm  
n/a  
HVQFN33  
HVQFN33  
HVQFN33  
LQFP48  
HVQFN33: plastic thermal enhanced very thin quad flat package; no  
leads; 33 terminals; body 7 × 7 × 0.85 mm  
n/a  
HVQFN33: plastic thermal enhanced very thin quad flat package; no  
leads; 33 terminals; body 7 × 7 × 0.85 mm  
n/a  
HVQFN33: plastic thermal enhanced very thin quad flat package; no  
leads; 33 terminals; body 7 × 7 × 0.85 mm  
n/a  
LQFP48: plastic low profile quad flat package; 48 leads; body 7 × 7 ×  
1.4 mm  
SOT313-2  
SOT313-2  
n/a  
LQFP48  
LQFP48: plastic low profile quad flat package; 48 leads; body 7 × 7 ×  
1.4 mm  
HVQFN33  
LQFP48  
HVQFN33: plastic thermal enhanced very thin quad flat package; no  
leads; 33 terminals; body 7 × 7 × 0.85 mm  
LQFP48: plastic low profile quad flat package; 48 leads; body 7 × 7 ×  
1.4 mm  
SOT313-2  
n/a  
HVQFN33  
LQFP48  
HVQFN33: plastic thermal enhanced very thin quad flat package; no  
leads; 33 terminals; body 7 × 7 × 0.85 mm  
LQFP48: plastic low profile quad flat package; 48 leads; body 7 × 7 ×  
1.4 mm  
SOT313-2  
4.1 Ordering options  
Table 2.  
Ordering options for LPC1311/13/42/43  
Type number  
Flash  
Total  
SRAM  
USB  
Power  
UART  
I2C/  
SSP ADC  
channels  
Pins Package  
profiles RS-485 Fast+  
LPC1311FHN33  
LPC1311FHN33/01  
LPC1313FHN33  
LPC1313FHN33/01  
LPC1313FBD48  
LPC1313FBD48/01  
8 kB  
4 kB  
4 kB  
8 kB  
8 kB  
8 kB  
8 kB  
-
-
-
-
-
-
no  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
8
33  
33  
33  
33  
48  
48  
HVQFN33  
HVQFN33  
HVQFN33  
HVQFN33  
LQFP48  
8 kB  
yes  
no  
8
8
8
8
8
32 kB  
32 kB  
32 kB  
32 kB  
yes  
no  
yes  
LQFP48  
LPC1311_13_42_43  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 5 — 6 June 2012  
3 of 74  
LPC1311/13/42/43  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 2.  
Ordering options for LPC1311/13/42/43 …continued  
Type number  
Flash  
Total  
SRAM  
USB  
Power  
UART  
I2C/  
SSP ADC  
channels  
Pins Package  
profiles RS-485 Fast+  
LPC1342FHN33  
LPC1342FBD48  
LPC1343FHN33  
LPC1343FBD48  
16 kB  
16 kB  
32 kB  
32 kB  
4 kB  
4 kB  
8 kB  
8 kB  
Device no  
Device no  
Device no  
Device no  
1
1
1
1
1
1
1
1
1
1
1
1
8
33  
48  
33  
48  
HVQFN33  
LQFP48  
8
8
8
HVQFN33  
LQFP48  
LPC1311_13_42_43  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 5 — 6 June 2012  
4 of 74  
LPC1311/13/42/43  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
5. Block diagram  
XTALIN  
XTALOUT  
RESET  
USB pins  
SWD  
LPC1311/13/42/43  
(1)  
USB PHY  
TEST/DEBUG  
INTERFACE  
IRC  
WDO  
POR  
CLOCK  
GENERATION,  
POWER CONTROL,  
SYSTEM  
CLKOUT  
ARM  
CORTEX-M3  
USB DEVICE  
CONTROLLER  
FUNCTIONS  
(1)  
clocks and  
controls  
I-code  
bus  
D-code  
bus  
system  
bus  
slave  
slave  
ROM  
AHB-LITE BUS  
slave  
SRAM  
4/8 kB  
slave  
slave  
slave  
HIGH-SPEED  
GPIO  
GPIO ports  
PIO0/1/2/3  
FLASH  
8/16/32 kB  
AHB TO  
APB  
BRIDGE  
RXD  
TXD  
UART  
AD[7:0]  
10-bit ADC  
SSP0  
(2)  
(2)  
DTR, DSR , CTS,  
(2)  
DCD , RI , RTS  
SCK0,SSEL0  
MISO0, MOSI0  
CT32B0_MAT[3:0]  
CT32B0_CAP0  
32-bit COUNTER/TIMER 0  
32-bit COUNTER/TIMER 1  
16-bit COUNTER/TIMER 0  
16-bit COUNTER/TIMER 1  
SCK1,SSEL1  
MISO1, MOSI0  
(3)  
SSP1  
CT32B1_MAT[3:0]  
CT32B1_CAP0  
SCL  
SDA  
2
I C-BUS  
CT16B0_MAT[2:0]  
CT16B0_CAP0  
(4)  
WDT/WWDT  
CT16B1_MAT[1:0]  
CT16B1_CAP0  
IOCONFIG  
SYSTEM CONTROL  
002aae722  
(1) LPC1342/43 only.  
(2) LQFP48 package only.  
(3) On LPC1313FBD48/01 only.  
(4) Windowed WatchDog Timer (WWDT) on LPC1311/01 and LPC1313/01 only.  
Fig 1. Block diagram  
LPC1311_13_42_43  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 5 — 6 June 2012  
5 of 74  
LPC1311/13/42/43  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
6. Pinning information  
6.1 Pinning  
1
2
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
PIO2_6  
PIO3_0  
PIO2_0/DTR  
RESET/PIO0_0  
R/PIO1_2/AD3/CT32B1_MAT1  
R/PIO1_1/AD2/CT32B1_MAT0  
R/PIO1_0/AD1/CT32B1_CAP0  
R/PIO0_11/AD0/CT32B0_MAT3  
PIO2_11/SCK0  
3
4
PIO0_1/CLKOUT/CT32B0_MAT2/USB_FTOGGLE  
5
V
SS  
6
XTALIN  
LPC1342FBD48  
LPC1343FBD48  
7
XTALOUT  
PIO1_10/AD6/CT16B1_MAT1  
SWCLK/PIO0_10/SCK0/CT16B0_MAT2  
PIO0_9/MOSI0/CT16B0_MAT1/SWO  
PIO0_8/MISO0/CT16B0_MAT0  
PIO2_2/DCD  
8
V
DD  
9
PIO1_8/CT16B1_CAP0  
PIO0_2/SSEL0/CT16B0_CAP0  
PIO2_7  
10  
11  
12  
PIO2_8  
PIO2_10  
002aae505  
Fig 2. LPC1342/43 LQFP48 package  
LPC1311_13_42_43  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 5 — 6 June 2012  
6 of 74  
LPC1311/13/42/43  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
terminal 1  
index area  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
PIO2_0/DTR  
R/PIO1_2/AD3/CT32B1_MAT1  
R/PIO1_1/AD2/CT32B1_MAT0  
R/PIO1_0/AD1/CT32B1_CAP0  
R/PIO0_11/AD0/CT32B0_MAT3  
PIO1_10/AD6/CT16B1_MAT1  
SWCLK/PIO0_10/SCK0/CT16B0_MAT2  
PIO0_9/MOSI0/CT16B0_MAT1/SWO  
PIO0_8/MISO0/CT16B0_MAT0  
RESET/PIO0_0  
PIO0_1/CLKOUT/CT32B0_MAT2/USB_FTOGGLE  
XTALIN  
LPC1342FHN33  
LPC1343FHN33  
XTALOUT  
V
DD  
PIO1_8/CT16B1_CAP0  
33 V  
SS  
PIO0_2/SSEL0/CT16B0_CAP0  
002aae516  
Transparent top view  
Fig 3. LPC1342/43 HVQFN33 package  
LPC1311_13_42_43  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 5 — 6 June 2012  
7 of 74  
LPC1311/13/42/43  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
1
2
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
PIO2_6  
PIO3_0  
(1)  
PIO2_0/DTR/SSEL1  
R/PIO1_2/AD3/CT32B1_MAT1  
R/PIO1_1/AD2/CT32B1_MAT0  
R/PIO1_0/AD1/CT32B1_CAP0  
R/PIO0_11/AD0/CT32B0_MAT3  
PIO2_11/SCK0  
3
RESET/PIO0_0  
4
PIO0_1/CLKOUT/CT32B0_MAT2  
5
V
SS  
LPC1313FBD48  
LPC1313FBD48/01  
6
XTALIN  
7
XTALOUT  
PIO1_10/AD6/CT16B1_MAT1  
SWCLK/PIO0_10/SCK0/CT16B0_MAT2  
PIO0_9/MOSI0/CT16B0_MAT1/SWO  
PIO0_8/MISO0/CT16B0_MAT0  
8
V
DD  
9
PIO1_8/CT16B1_CAP0  
PIO0_2/SSEL0/CT16B0_CAP0  
PIO2_7  
10  
11  
12  
(1)  
PIO2_2/DCD/MISO1  
PIO2_8  
PIO2_10  
002aae513  
(1) SSP1 or UART function on LPC1313FBD48/01 only.  
Fig 4. LPC1313 LQFP48 package  
LPC1311_13_42_43  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 5 — 6 June 2012  
8 of 74  
LPC1311/13/42/43  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
terminal 1  
index area  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
PIO2_0/DTR  
R/PIO1_2/AD3/CT32B1_MAT1  
R/PIO1_1/AD2/CT32B1_MAT0  
R/PIO1_0/AD1/CT32B1_CAP0  
R/PIO0_11/AD0/CT32B0_MAT3  
PIO1_10/AD6/CT16B1_MAT1  
RESET/PIO0_0  
PIO0_1/CLKOUT/CT32B0_MAT2  
LPC1311FHN33  
LPC1311FHN33/01  
LPC1313FHN33  
XTALIN  
XTALOUT  
LPC1313FHN33/01  
V
DD  
SWCLK/PIO0_10/SCK0/CT16B0_MAT2  
PIO0_9/MOSI0/CT16B0_MAT1/SWO  
PIO0_8/MISO0/CT16B0_MAT0  
PIO1_8/CT16B1_CAP0  
33 V  
SS  
PIO0_2/SSEL0/CT16B0_CAP0  
002aae517  
Transparent top view  
Fig 5. LPC1311/13 HVQFN33 package  
LPC1311_13_42_43  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 5 — 6 June 2012  
9 of 74  
LPC1311/13/42/43  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
6.2 Pin description  
Table 3.  
Symbol  
LPC1313/42/43 LQFP48 pin description table  
Pin Start Type Reset Description  
logic  
input  
state  
[1]  
RESET/PIO0_0  
3[2] yes  
I
I; PU RESET — External reset input with 20 ns glitch filter. A LOW-going  
pulse as short as 50 ns on this pin resets the device, causing I/O  
ports and peripherals to take on their default states, and processor  
execution to begin at address 0.  
I/O  
I/O  
-
PIO0_0 — General purpose digital input/output pin with 10 ns glitch  
filter.  
PIO0_1/CLKOUT/  
CT32B0_MAT2/  
USB_FTOGGLE  
4[3] yes  
I; PU PIO0_1 — General purpose digital input/output pin. A LOW level on  
this pin during reset starts the ISP command handler or the USB  
device enumeration (USB on LPC1342/43 only, see description of  
PIO0_3).  
O
O
O
-
-
-
CLKOUT — Clockout pin.  
CT32B0_MAT2 — Match output 2 for 32-bit timer 0.  
USB_FTOGGLE — USB 1 ms Start-of-Frame signal (LPC1342/43  
only).  
PIO0_2/SSEL0/  
CT16B0_CAP0  
10[3] yes  
14[3] yes  
I/O  
I/O  
I
I; PU PIO0_2 — General purpose digital input/output pin.  
-
-
SSEL0 — Slave select for SSP0.  
CT16B0_CAP0 — Capture input 0 for 16-bit timer 0.  
PIO0_3/USB_VBUS  
I/O  
I; PU PIO0_3 — General purpose digital input/output pin. LPC1342/43  
only: A LOW level on this pin during reset starts the ISP command  
handler, a HIGH level starts the USB device enumeration.  
I
-
USB_VBUS — Monitors the presence of USB bus power  
(LPC1342/43 only).  
PIO0_4/SCL  
PIO0_5/SDA  
15[4] yes  
16[4] yes  
22[3] yes  
I/O  
I/O  
I; IA  
-
PIO0_4 — General purpose digital input/output pin (open-drain).  
SCL — I2C-bus clock input/output (open-drain). High-current sink  
only if I2C Fast-mode Plus is selected in the I/O configuration  
register.  
I/O  
I/O  
I; IA  
-
PIO0_5 — General purpose digital input/output pin (open-drain).  
SDA — I2C-bus data input/output (open-drain). High-current sink  
only if I2C Fast-mode Plus is selected in the I/O configuration  
register.  
PIO0_6/  
USB_CONNECT/  
SCK0  
I/O  
O
I; PU PIO0_6 — General purpose digital input/output pin.  
-
USB_CONNECT — Signal used to switch an external 1.5 kΩ  
resistor under software control. Used with the SoftConnect USB  
feature (LPC1342/43 only).  
I/O  
I/O  
-
SCK0 — Serial clock for SSP0.  
PIO0_7/CTS  
23[3] yes  
27[3] yes  
I; PU PIO0_7 — General purpose digital input/output pin (high-current  
output driver).  
I
-
CTS — Clear To Send input for UART.  
PIO0_8/MISO0/  
CT16B0_MAT0  
I/O  
I/O  
O
I; PU PIO0_8 — General purpose digital input/output pin.  
-
-
MISO0 — Master In Slave Out for SSP0.  
CT16B0_MAT0 — Match output 0 for 16-bit timer 0.  
LPC1311_13_42_43  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 5 — 6 June 2012  
10 of 74  
LPC1311/13/42/43  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 3.  
Symbol  
LPC1313/42/43 LQFP48 pin description table …continued  
Pin Start Type Reset Description  
logic  
input  
state  
[1]  
PIO0_9/MOSI0/  
CT16B0_MAT1/  
SWO  
28[3] yes  
I/O  
I/O  
O
I; PU PIO0_9 — General purpose digital input/output pin.  
-
-
-
MOSI0 — Master Out Slave In for SSP0.  
CT16B0_MAT1 — Match output 1 for 16-bit timer 0.  
SWO — Serial wire trace output.  
O
SWCLK/PIO0_10/  
29[3] yes  
I
I; PU SWCLK — Serial wire clock.  
SCK0/CT16B0_MAT2  
I/O  
I/O  
O
-
-
-
PIO0_10 — General purpose digital input/output pin.  
SCK0 — Serial clock for SSP0.  
CT16B0_MAT2 — Match output 2 for 16-bit timer 0.  
R/PIO0_11/  
32[5] yes  
-
I; PU R — Reserved. Configure for an alternate function in the IOCONFIG  
AD0/CT32B0_MAT3  
block.  
I/O  
I
-
-
-
PIO0_11 — General purpose digital input/output pin.  
AD0 — A/D converter, input 0.  
O
-
CT32B0_MAT3 — Match output 3 for 32-bit timer 0.  
R/PIO1_0/  
AD1/CT32B1_CAP0  
33[5] yes  
34[5] yes  
35[5] yes  
I; PU R — Reserved. Configure for an alternate function in the IOCONFIG  
block.  
I/O  
-
-
-
PIO1_0 — General purpose digital input/output pin.  
AD1 — A/D converter, input 1.  
I
I
-
CT32B1_CAP0 — Capture input 0 for 32-bit timer 1.  
R/PIO1_1/  
AD2/CT32B1_MAT0  
I; PU R — Reserved. Configure for an alternate function in the IOCONFIG  
block.  
I/O  
I
-
-
-
PIO1_1 — General purpose digital input/output pin.  
AD2 — A/D converter, input 2.  
O
-
CT32B1_MAT0 — Match output 0 for 32-bit timer 1.  
R/PIO1_2/  
I; PU R — Reserved. Configure for an alternate function in the IOCONFIG  
AD3/CT32B1_MAT1  
block.  
I/O  
I
-
-
-
PIO1_2 — General purpose digital input/output pin.  
AD3 — A/D converter, input 3.  
O
CT32B1_MAT1 — Match output 1 for 32-bit timer 1.  
SWDIO/PIO1_3/  
AD4/  
CT32B1_MAT2  
39[5] yes  
I/O  
I/O  
I
I; PU SWDIO — Serial wire debug input/output.  
-
-
-
PIO1_3 — General purpose digital input/output pin.  
AD4 — A/D converter, input 4.  
O
CT32B1_MAT2 — Match output 2 for 32-bit timer 1.  
PIO1_4/AD5/  
CT32B1_MAT3/  
WAKEUP  
40[5] yes  
I/O  
I; PU PIO1_4 — General purpose digital input/output pin.  
I
-
-
-
AD5 — A/D converter, input 5.  
O
I
CT32B1_MAT3 — Match output 3 for 32-bit timer 1.  
WAKEUP — Deep power-down mode wake-up pin with 20 ns glitch  
filter. This pin must be pulled HIGH externally to enter Deep  
power-down mode and pulled LOW to exit Deep power-down mode.  
A LOW-going pulse as short as 50 ns wakes up the part.  
LPC1311_13_42_43  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 5 — 6 June 2012  
11 of 74  
LPC1311/13/42/43  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 3.  
Symbol  
LPC1313/42/43 LQFP48 pin description table …continued  
Pin Start Type Reset Description  
logic  
input  
state  
[1]  
PIO1_5/RTS/  
CT32B0_CAP0  
45[3] yes  
I/O  
O
I; PU PIO1_5 — General purpose digital input/output pin.  
-
-
RTS — Request To Send output for UART.  
I
CT32B0_CAP0 — Capture input 0 for 32-bit timer 0.  
PIO1_6/RXD/  
CT32B0_MAT0  
46[3] yes  
47[3] yes  
I/O  
I
I; PU PIO1_6 — General purpose digital input/output pin.  
-
-
RXD — Receiver input for UART.  
O
CT32B0_MAT0 — Match output 0 for 32-bit timer 0.  
PIO1_7/TXD/  
CT32B0_MAT1  
I/O  
O
I; PU PIO1_7 — General purpose digital input/output pin.  
-
-
TXD — Transmitter output for UART.  
O
CT32B0_MAT1 — Match output 1 for 32-bit timer 0.  
PIO1_8/CT16B1_CAP0 9[3] yes  
PIO1_9/CT16B1_MAT0 17[3] yes  
I/O  
I
I; PU PIO1_8 — General purpose digital input/output pin.  
CT16B1_CAP0 — Capture input 0 for 16-bit timer 1.  
I; PU PIO1_9 — General purpose digital input/output pin.  
CT16B1_MAT0 — Match output 0 for 16-bit timer 1.  
I; PU PIO1_10 — General purpose digital input/output pin.  
-
I/O  
O
-
PIO1_10/AD6/  
CT16B1_MAT1  
30[5] yes  
I/O  
I
-
-
AD6 — A/D converter, input 6.  
O
CT16B1_MAT1 — Match output 1 for 16-bit timer 1.  
PIO1_11/AD7  
42[5] yes  
2[3] yes  
I/O  
I
I; PU PIO1_11 — General purpose digital input/output pin.  
AD7 — A/D converter, input 7.  
I; PU PIO2_0 — General purpose digital input/output pin.  
-
PIO2_0/DTR/SSEL1  
I/O  
O
-
-
DTR — Data Terminal Ready output for UART.  
I/O  
I/O  
I
SSEL1 — Slave Select for SSP1 (LPC1313FBD48/01 only).  
PIO2_1/DSR/SCK1  
PIO2_2/DCD/MISO1  
PIO2_3/RI/MOSI1  
PIO2_4  
13[3] yes  
26[3] yes  
38[3] yes  
18[3] yes  
I; PU PIO2_1 — General purpose digital input/output pin.  
-
-
DSR — Data Set Ready input for UART.  
I/O  
I/O  
I
SCK1 — Serial clock for SSP1 (LPC1313FBD48/01 only).  
I; PU PIO2_2 — General purpose digital input/output pin.  
-
-
DCD — Data Carrier Detect input for UART.  
I/O  
I/O  
I
MISO1 — Master In Slave Out for SSP1 (LPC1313FBD48/01 only).  
I; PU PIO2_3 — General purpose digital input/output pin.  
-
-
RI — Ring Indicator input for UART.  
I/O  
I/O  
MOSI1 — Master Out Slave In for SSP1 (LPC1313FBD48/01 only).  
I; PU PIO2_4 — General purpose digital input/output pin (LPC1342/43  
only).  
PIO2_4  
PIO2_5  
19[3] yes  
21[3] yes  
I/O  
I/O  
I; PU PIO2_4 — General purpose digital input/output pin (LPC1313 only).  
I; PU PIO2_5 — General purpose digital input/output pin (LPC1342/43  
only).  
PIO2_5  
PIO2_6  
PIO2_7  
PIO2_8  
PIO2_9  
20[3] yes  
1[3] yes  
11[3] yes  
12[3] yes  
24[3] yes  
I/O  
I/O  
I/O  
I/O  
I/O  
I; PU PIO2_5 — General purpose digital input/output pin (LPC1313 only).  
I; PU PIO2_6 — General purpose digital input/output pin.  
I; PU PIO2_7 — General purpose digital input/output pin.  
I; PU PIO2_8 — General purpose digital input/output pin.  
I; PU PIO2_9 — General purpose digital input/output pin.  
LPC1311_13_42_43  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 5 — 6 June 2012  
12 of 74  
LPC1311/13/42/43  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 3.  
Symbol  
LPC1313/42/43 LQFP48 pin description table …continued  
Pin Start Type Reset Description  
logic  
input  
state  
[1]  
PIO2_10  
25[3] yes  
I/O  
I/O  
I/O  
I/O  
O
I; PU PIO2_10 — General purpose digital input/output pin.  
I; PU PIO2_11 — General purpose digital input/output pin.  
PIO2_11/SCK0  
31[3] yes  
36[3] yes  
-
SCK0 — Serial clock for SSP0.  
PIO3_0/DTR  
PIO3_1/DSR  
PIO3_2/DCD  
PIO3_3/RI  
I; PU PIO3_0 — General purpose digital input/output pin.  
-
DTR — Data Terminal Ready output for UART (LPC1311/01 and  
LPC1313/01 only).  
37[3] yes  
43[3] yes  
48[3] yes  
I/O  
I
I; PU PIO3_1 — General purpose digital input/output pin.  
-
DSR — Data Set Ready input for UART (LPC1311/01 and  
LPC1313/01 only).  
I/O  
I
I; PU PIO3_2 — General purpose digital input/output pin.  
-
DCD — Data Carrier Detect input for UART (LPC1311/01 and  
LPC1313/01 only).  
I/O  
I
I; PU PIO3_3 — General purpose digital input/output pin.  
-
RI — Ring Indicator input for UART (LPC1311/01 and LPC1313/01  
only).  
PIO3_4  
PIO3_5  
USB_DM  
USB_DP  
VDD  
18[3] no  
21[3] no  
19[6] no  
20[6] no  
I/O  
I/O  
I/O  
I/O  
I
I; PU PIO3_4 — General purpose digital input/output pin (LPC1313 only).  
I; PU PIO3_5 — General purpose digital input/output pin (LPC1313 only).  
F
F
-
USB_DM — USB bidirectional Dline (LPC1342/43 only).  
USB_DP — USB bidirectional D+ line (LPC1342/43 only).  
8;  
-
3.3 V supply voltage to the internal regulator, the external rail, and  
the ADC. Also used as the ADC reference voltage.  
44  
XTALIN  
6[7]  
-
I
-
Input to the oscillator circuit and internal clock generator circuits.  
Input voltage must not exceed 1.8 V.  
XTALOUT  
VSS  
7[7]  
-
-
O
I
-
-
Output from the oscillator amplifier.  
Ground.  
5;  
41  
[1] Pin state at reset for default function: I = Input; O = Output; PU = internal pull-up enabled (for VDD = 3.3 V, pin is pulled up to 2.6 V for  
parts LPC1311/13/42/43 and pulled up to 3.3 V for parts LPC1311/01 and LPC1313/01); IA = inactive, no pull-up/down enabled;  
F = floating; floating pins, if not used, should be tied to ground or power to minimize power consumption.  
[2] 5 V tolerant pad. See Figure 37 for pad characteristics. RESET functionality is not available in Deep power-down mode. Use the  
WAKEUP pin to reset the chip and wake up from Deep power-down mode. An external pull-up resistor is required on this pin for the  
Deep power-down mode.  
[3] 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors and configurable hysteresis (see Figure 36).  
[4] I2C-bus pads compliant with the I2C-bus specification for I2C standard mode and I2C Fast-mode Plus.  
[5] 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors, configurable hysteresis, and analog input.  
When configured as a ADC input, digital section of the pad is disabled and the pin is not 5 V tolerant (see Figure 36).  
[6] Pad provides USB functions. It is designed in accordance with the USB specification, revision 2.0 (Full-speed and Low-speed mode  
only). This pad is not 5 V tolerant.  
[7] When the system oscillator is not used, connect XTALIN and XTALOUT as follows: XTALIN can be left floating or can be grounded  
(grounding is preferred to reduce susceptibility to noise). XTALOUT should be left floating.  
LPC1311_13_42_43  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 5 — 6 June 2012  
13 of 74  
LPC1311/13/42/43  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 4.  
Symbol  
LPC1311/13/42/43 HVQFN33 pin description table  
Pin Start Type Reset Description  
logic  
input  
state  
[1]  
RESET/PIO0_0  
2[2] yes  
I
I; PU RESET — External reset input with 20 ns glitch filter. A LOW-going pulse  
as short as 50 ns on this pin resets the device, causing I/O ports and  
peripherals to take on their default states, and processor execution to  
begin at address 0.  
I/O  
I/O  
-
PIO0_0 — General purpose digital input/output pin with 10 ns glitch filter.  
PIO0_1/CLKOUT/  
CT32B0_MAT2/  
USB_FTOGGLE  
3[3] yes  
I; PU PIO0_1 — General purpose digital input/output pin. A LOW level on this  
pin during reset starts the ISP command handler or the USB device  
enumeration (USB on LPC1342/43 only, see description of PIO0_3).  
O
-
-
-
CLKOUT — Clock out pin.  
O
CT32B0_MAT2 — Match output 2 for 32-bit timer 0.  
USB_FTOGGLE — USB 1 ms Start-of-Frame signal (LPC1342/43 only).  
O
PIO0_2/SSEL0/  
CT16B0_CAP0  
8[3] yes  
I/O  
I/O  
I
I; PU PIO0_2 — General purpose digital input/output pin.  
-
-
SSEL0 — Slave select for SSP0.  
CT16B0_CAP0 — Capture input 0 for 16-bit timer 0.  
PIO0_3/  
USB_VBUS  
9[3] yes  
I/O  
I; PU PIO0_3 — General purpose digital input/output pin. LPC1342/43 only: A  
LOW level on this pin during reset starts the ISP command handler, a  
HIGH level starts the USB device enumeration.  
I
-
USB_VBUS — Monitors the presence of USB bus power (LPC1342/43  
only).  
PIO0_4/SCL  
PIO0_5/SDA  
10[4] yes  
11[4] yes  
15[3] yes  
I/O  
I/O  
I; IA  
-
PIO0_4 — General purpose digital input/output pin (open-drain).  
SCL — I2C-bus clock input/output (open-drain). High-current sink only if  
I2C Fast-mode Plus is selected in the I/O configuration register.  
I/O  
I/O  
I; IA  
-
PIO0_5 — General purpose digital input/output pin (open-drain).  
SDA — I2C-bus data input/output (open-drain). High-current sink only if  
I2C Fast-mode Plus is selected in the I/O configuration register.  
PIO0_6/  
USB_CONNECT/  
SCK0  
I/O  
O
I; PU PIO0_6 — General purpose digital input/output pin.  
-
USB_CONNECT — Signal used to switch an external 1.5 kΩ resistor  
under software control. Used with the SoftConnect USB feature  
(LPC1342/43 only).  
I/O  
I/O  
-
SCK0 — Serial clock for SSP0.  
PIO0_7/CTS  
16[3] yes  
17[3] yes  
I; PU PIO0_7 — General purpose digital input/output pin (high-current output  
driver).  
I
-
CTS — Clear To Send input for UART.  
PIO0_8/MISO0/  
CT16B0_MAT0  
I/O  
I/O  
O
I; PU PIO0_8 — General purpose digital input/output pin.  
-
-
MISO0 — Master In Slave Out for SSP0.  
CT16B0_MAT0 — Match output 0 for 16-bit timer 0.  
PIO0_9/MOSI0/  
CT16B0_MAT1/  
SWO  
18[3] yes  
I/O  
I/O  
O
I; PU PIO0_9 — General purpose digital input/output pin.  
-
-
-
MOSI0 — Master Out Slave In for SSP0.  
CT16B0_MAT1 — Match output 1 for 16-bit timer 0.  
SWO — Serial wire trace output.  
O
LPC1311_13_42_43  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 5 — 6 June 2012  
14 of 74  
LPC1311/13/42/43  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 4.  
Symbol  
LPC1311/13/42/43 HVQFN33 pin description table …continued  
Pin Start Type Reset Description  
logic  
input  
state  
[1]  
SWCLK/PIO0_10/  
SCK0/  
CT16B0_MAT2  
19[3] yes  
I
I; PU SWCLK — Serial wire clock.  
I/O  
I/O  
O
-
-
-
-
PIO0_10 — General purpose digital input/output pin.  
SCK0 — Serial clock for SSP0.  
CT16B0_MAT2 — Match output 2 for 16-bit timer 0.  
R/PIO0_11/AD0/  
CT32B0_MAT3  
21[5] yes  
22[5] yes  
23[5] yes  
24[5] yes  
I; PU R — Reserved. Configure for an alternate function in the IOCONFIG  
block.  
I/O  
I
-
-
-
PIO0_11 — General purpose digital input/output pin.  
AD0 — A/D converter, input 0.  
O
-
CT32B0_MAT3 — Match output 3 for 32-bit timer 0.  
R/PIO1_0/AD1/  
CT32B1_CAP0  
I; PU R — Reserved. Configure for an alternate function in the IOCONFIG  
block.  
I/O  
-
-
-
PIO1_0 — General purpose digital input/output pin.  
AD1 — A/D converter, input 1.  
I
I
-
CT32B1_CAP0 — Capture input 0 for 32-bit timer 1.  
R/PIO1_1/AD2/  
CT32B1_MAT0  
I; PU R — Reserved. Configure for an alternate function in the IOCONFIG  
block.  
I/O  
I
-
-
-
PIO1_1 — General purpose digital input/output pin.  
AD2 — A/D converter, input 2.  
O
-
CT32B1_MAT0 — Match output 0 for 32-bit timer 1.  
R/PIO1_2/AD3/  
CT32B1_MAT1  
I; PU R — Reserved. Configure for an alternate function in the IOCONFIG  
block.  
I/O  
I
-
-
-
PIO1_2 — General purpose digital input/output pin.  
AD3 — A/D converter, input 3.  
O
I/O  
I/O  
I
CT32B1_MAT1 — Match output 1 for 32-bit timer 1.  
SWDIO/PIO1_3/  
AD4/  
25[5] yes  
I; PU SWDIO — Serial wire debug input/output.  
-
-
-
PIO1_3 — General purpose digital input/output pin.  
AD4 — A/D converter, input 4.  
CT32B1_MAT2  
O
I/O  
I
CT32B1_MAT2 — Match output 2 for 32-bit timer 1.  
PIO1_4/AD5/  
CT32B1_MAT3/  
WAKEUP  
26[5] yes  
I; PU PIO1_4 — General purpose digital input/output pin.  
-
-
-
AD5 — A/D converter, input 5.  
O
I
CT32B1_MAT3 — Match output 3 for 32-bit timer 1.  
WAKEUP — Deep power-down mode wake-up pin with 20 ns glitch filter.  
This pin must be pulled HIGH externally to enter Deep power-down mode  
and pulled LOW to exit Deep power-down mode. A LOW-going pulse as  
short as 50 ns wakes up the part.  
PIO1_5/RTS/  
CT32B0_CAP0  
30[3] yes  
31[3] yes  
I/O  
O
I
I; PU PIO1_5 — General purpose digital input/output pin.  
-
-
RTS — Request To Send output for UART.  
CT32B0_CAP0 — Capture input 0 for 32-bit timer 0.  
PIO1_6/RXD/  
CT32B0_MAT0  
I/O  
I
I; PU PIO1_6 — General purpose digital input/output pin.  
-
-
RXD — Receiver input for UART.  
O
CT32B0_MAT0 — Match output 0 for 32-bit timer 0.  
LPC1311_13_42_43  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 5 — 6 June 2012  
15 of 74  
LPC1311/13/42/43  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 4.  
Symbol  
LPC1311/13/42/43 HVQFN33 pin description table …continued  
Pin Start Type Reset Description  
logic  
input  
state  
[1]  
PIO1_7/TXD/  
CT32B0_MAT1  
32[3] yes  
I/O  
O
I; PU PIO1_7 — General purpose digital input/output pin.  
-
-
TXD — Transmitter output for UART.  
O
CT32B0_MAT1 — Match output 1 for 32-bit timer 0.  
PIO1_8/  
CT16B1_CAP0  
7[3] yes  
12[3] yes  
20[5] yes  
I/O  
I
I; PU PIO1_8 — General purpose digital input/output pin.  
CT16B1_CAP0 — Capture input 0 for 16-bit timer 1.  
I; PU PIO1_9 — General purpose digital input/output pin.  
CT16B1_MAT0 — Match output 0 for 16-bit timer 1.  
I; PU PIO1_10 — General purpose digital input/output pin.  
-
PIO1_9/  
CT16B1_MAT0  
I/O  
O
-
PIO1_10/AD6/  
CT16B1_MAT1  
I/O  
I
-
-
AD6 — A/D converter, input 6.  
O
CT16B1_MAT1 — Match output 1 for 16-bit timer 1.  
PIO1_11/AD7  
PIO2_0/DTR  
27[5] yes  
1[3] yes  
I/O  
I
I; PU PIO1_11 — General purpose digital input/output pin.  
AD7 — A/D converter, input 7.  
I; PU PIO2_0 — General purpose digital input/output pin.  
DTR — Data Terminal Ready output for UART.  
-
I/O  
O
-
PIO3_2  
PIO3_4  
PIO3_5  
USB_DM  
USB_DP  
VDD  
28[3] yes  
13[3] no  
14[3] no  
13[6] no  
14[6] no  
I/O  
I/O  
I/O  
I/O  
I/O  
I
I; PU PIO3_2 — General purpose digital input/output pin.  
I; PU PIO3_4 — General purpose digital input/output pin (LPC1311/13 only).  
I; PU PIO3_5 — General purpose digital input/output pin (LPC1311/13 only).  
F
F
-
USB_DM — USB bidirectional Dline (LPC1342/43 only).  
USB_DP — USB bidirectional D+ line (LPC1342/43 only).  
6;  
-
3.3 V supply voltage to the internal regulator, the external rail, and the  
ADC. Also used as the ADC reference voltage.  
29  
XTALIN  
4[7]  
-
I
-
Input to the oscillator circuit and internal clock generator circuits. Input  
voltage must not exceed 1.8 V.  
XTALOUT  
VSS  
5[7]  
33  
-
-
O
-
-
-
Output from the oscillator amplifier.  
Thermal pad. Connect to ground.  
[1] Pin state at reset for default function: I = Input; O = Output; PU = internal pull-up enabled (for VDD = 3.3 V, pin is pulled up to 2.6 V for  
parts LPC1311/13/42/43 and pulled up to 3.3 V for parts LPC1311/01 and LPC1313/01); IA = inactive, no pull-up/down enabled.  
F = floating; floating pins, if not used, should be tied to ground or power to minimize power consumption.  
[2] 5 V tolerant pad. See Figure 37 for pad characteristics. RESET functionality is not available in Deep power-down mode. Use the  
WAKEUP pin to reset the chip and wake up from Deep power-down mode. An external pull-up resistor is required on this pin for the  
Deep power-down mode.  
[3] 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors and configurable hysteresis (see Figure 36).  
[4] I2C-bus pads compliant with the I2C-bus specification for I2C standard mode and I2C Fast-mode Plus.  
[5] 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors, configurable hysteresis, and analog input.  
When configured as a ADC input, digital section of the pad is disabled, and the pin is not 5 V tolerant (see Figure 36).  
[6] Pad provides USB functions. It is designed in accordance with the USB specification, revision 2.0 (Full-speed and Low-speed mode  
only). This pad is not 5 V tolerant.  
[7] When the system oscillator is not used, connect XTALIN and XTALOUT as follows: XTALIN can be left floating or can be grounded  
(grounding is preferred to reduce susceptibility to noise). XTALOUT should be left floating.  
LPC1311_13_42_43  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 5 — 6 June 2012  
16 of 74  
LPC1311/13/42/43  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
7. Functional description  
7.1 Architectural overview  
The ARM Cortex-M3 includes three AHB-Lite buses: the system bus, the I-code bus, and  
the D-code bus (see Figure 1). The I-code and D-code core buses are faster than the  
system bus and are used similarly to TCM interfaces: one bus dedicated for instruction  
fetch (I-code) and one bus for data access (D-code). The use of two core buses allows for  
simultaneous operations if concurrent operations target different devices.  
7.2 ARM Cortex-M3 processor  
The ARM Cortex-M3 is a general purpose, 32-bit microprocessor, which offers high  
performance and very low power consumption. The ARM Cortex-M3 offers many new  
features, including a Thumb-2 instruction set, low interrupt latency, hardware multiply and  
divide, interruptible/continuable multiple load and store instructions, automatic state save  
and restore for interrupts, tightly integrated interrupt controller, and multiple core buses  
capable of simultaneous accesses.  
Pipeline techniques are employed so that all parts of the processing and memory systems  
can operate continuously. Typically, while one instruction is being executed, its successor  
is being decoded, and a third instruction is being fetched from memory.  
The ARM Cortex-M3 processor is described in detail in the Cortex-M3 Technical  
Reference Manual which is available on the official ARM website.  
7.3 On-chip flash program memory  
The LPC1311/13/42/43 contain 32 kB (LPC1313 and LPC1343), 16 kB (LPC1342), or  
8 kB (LPC1311) of on-chip flash memory.  
7.4 On-chip SRAM  
The LPC1311/13/42/43 contain a total of 8 kB (LPC1343 and LPC1313) or 4 kB (LPC1342  
and LPC1311) on-chip static RAM memory.  
7.5 Memory map  
The LPC1311/13/42/43 incorporate several distinct memory regions. Figure 6 shows the  
overall map of the entire address space from the user program viewpoint following reset.  
The interrupt vector area supports address remapping.  
The AHB peripheral area is 2 MB in size and is divided to allow for up to 128 peripherals.  
The APB peripheral area is 512 kB in size and is divided to allow for up to 32 peripherals.  
Each peripheral of either type is allocated 16 kB of space. This allows simplifying the  
address decoding for each peripheral.  
LPC1311_13_42_43  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 5 — 6 June 2012  
17 of 74  
LPC1311/13/42/43  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
AHB peripherals  
0x5020 0000  
LPC1311/13/42/43  
4 GB  
0xFFFF FFFF  
reserved  
0xE010 0000  
0xE000 0000  
16 - 127 reserved  
0x5004 0000  
private peripheral bus  
GPIO PIO3  
GPIO PIO2  
GPIO PIO1  
GPIO PIO0  
12-15  
8-11  
4-7  
reserved  
0x5003 0000  
0x5002 0000  
0x5020 0000  
0x5000 0000  
AHB peripherals  
0x5001 0000  
0x5000 0000  
0-3  
reserved  
APB peripherals  
23 - 31 reserved  
0x4008 0000  
0x4005 C000  
0x4005 8000  
0x4004 C000  
0x4004 8000  
0x4004 4000  
0x4004 0000  
0x4008 0000  
0x4000 0000  
SSP1 (LPC1313FBD48/01)  
19 - 21 reserved  
system control  
22  
APB peripherals  
1 GB  
18  
17  
IOCONFIG  
SSP0  
reserved  
16  
15  
flash controller  
0x4003 C000  
0x4003 8000  
14  
PMU  
0x2000 0000  
0.5 GB  
10 - 13 reserved  
reserved  
0x4002 8000  
0x4002 4000  
0x4002 0000  
reserved  
9
8
7
6
5
4
3
2
0x1FFF 4000  
0x1FFF 0000  
16 kB boot ROM  
USB (LPC1342/43 only)  
ADC  
0x4001 C000  
0x4001 8000  
32-bit counter/timer 1  
reserved  
32-bit counter/timer 0  
16-bit counter/timer 1  
16-bit counter/timer 0  
UART  
0x4001 4000  
0x4001 0000  
0x4000 C000  
0x4000 8000  
0x1000 2000  
0x1000 1000  
0x1000 0000  
8 kB SRAM (LPC1313/1343)  
4 kB SRAM (LPC1311/1342)  
I-code/D-code  
memory space  
WDT/WWDT  
1
0
0x4000 4000  
0x4000 0000  
reserved  
2
I C-bus  
0x0000 8000  
32 kB on-chip flash (LPC1313/43)  
16 kB on-chip flash (LPC1342)  
8 kB on-chip flash (LPC1311)  
0x0000 4000  
0x0000 2000  
+ 256 words  
active interrupt vectors  
0x0000 0400  
0x0000 0000  
0x0000 0000  
0 GB  
002aae723  
Fig 6. LPC1311/13/42/43 memory map  
7.6 Nested Vectored Interrupt Controller (NVIC)  
The Nested Vectored Interrupt Controller (NVIC) is an integral part of the Cortex-M3. The  
tight coupling to the CPU allows for low interrupt latency and efficient processing of late  
arriving interrupts.  
LPC1311_13_42_43  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 5 — 6 June 2012  
18 of 74  
LPC1311/13/42/43  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
7.6.1 Features  
Controls system exceptions and peripheral interrupts.  
On the LPC1311/13/42/43, the NVIC supports up to 17 vectored interrupts. In  
addition, up to 40 of the individual GPIO inputs are NVIC-vector capable.  
8 programmable interrupt priority levels, with hardware priority level masking  
Relocatable vector table.  
Software interrupt generation.  
7.6.2 Interrupt sources  
Each peripheral device has one interrupt line connected to the NVIC but may have several  
interrupt flags. Individual interrupt flags may also represent more than one interrupt  
source.  
Any GPIO pin (total of up to 42 pins) regardless of the selected function, can be  
programmed to generate an interrupt on a level, or rising edge or falling edge, or both.  
7.7 IOCONFIG block  
The IOCONFIG block allows selected pins of the microcontroller to have more than one  
function. Configuration registers control the multiplexers to allow connection between the  
pin and the on-chip peripherals.  
Peripherals should be connected to the appropriate pins prior to being activated and prior  
to any related interrupt(s) being enabled. Activity of any enabled peripheral function that is  
not mapped to a related pin should be considered undefined.  
7.8 Fast general purpose parallel I/O  
Device pins that are not connected to a specific peripheral function are controlled by the  
GPIO registers. Pins may be dynamically configured as inputs or outputs. Multiple outputs  
can be set or cleared in one write operation.  
LPC1311/13/42/43 use accelerated GPIO functions:  
GPIO block is a dedicated AHB peripheral so that the fastest possible I/O timing can  
be achieved.  
Entire port value can be written in one instruction.  
Additionally, any GPIO pin (total of up to 42 pins) providing a digital function can be  
programmed to generate an interrupt on a level, a rising or falling edge, or both.  
7.8.1 Features  
Bit level port registers allow a single instruction to set or clear any number of bits in  
one write operation.  
Direction control of individual bits.  
All I/O default to inputs with pull-up resistors enabled after reset with the exception of  
the I2C-bus pins PIO0_4 and PIO0_5.  
Pull-up/pull-down resistor configuration can be programmed through the IOCONFIG  
block for each GPIO pin.  
LPC1311_13_42_43  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 5 — 6 June 2012  
19 of 74  
LPC1311/13/42/43  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
On the LPC1311/13/42/43, all GPIO pins (except PIO0_4 and PIO0_5) are pulled up  
to 2.6 V (VDD = 3.3 V) if their pull-up resistor is enabled in the IOCONFIG block.  
On the LPC1311/01 and LPC1313/01, all GPIO pins (except PIO0_4 and PIO0_5) are  
pulled up to 3.3 V (VDD = 3.3 V) if their pull-up resistor is enabled in the IOCONFIG  
block.  
7.9 USB interface (LPC1342/43 only)  
The Universal Serial Bus (USB) is a 4-wire bus that supports communication between a  
host and one or more (up to 127) peripherals. The host controller allocates the USB  
bandwidth to attached devices through a token-based protocol. The bus supports  
hot-plugging and dynamic configuration of the devices. All transactions are initiated by the  
host controller.  
The LPC1342/43 USB interface is a device controller with on-chip PHY for device  
functions.  
7.9.1 Full-speed USB device controller  
The device controller enables 12 Mbit/s data exchange with a USB Host controller. It  
consists of a register interface, serial interface engine, and endpoint buffer memory. The  
serial interface engine decodes the USB data stream and writes data to the appropriate  
endpoint buffer. The status of a completed USB transfer or error condition is indicated via  
status registers. An interrupt is also generated if enabled.  
7.9.1.1 Features  
Dedicated USB PLL available.  
Fully compliant with USB 2.0 specification (full speed).  
Supports 10 physical (5 logical) endpoints with up to 64 bytes buffer RAM per  
endpoint (see Table 5).  
Supports Control, Bulk, Isochronous, and Interrupt endpoints.  
Supports SoftConnect feature.  
Double buffer implementation for Bulk and Isochronous endpoints.  
Table 5.  
Logical  
endpoint endpoint  
USB device endpoint configuration  
Physical  
Endpoint type  
Direction Packet size  
(byte)  
Double buffer  
0
0
1
1
2
2
3
3
4
4
0
1
2
3
4
5
6
7
8
9
Control  
out  
in  
64  
64  
no  
Control  
no  
Interrupt/Bulk  
Interrupt/Bulk  
Interrupt/Bulk  
Interrupt/Bulk  
Interrupt/Bulk  
Interrupt/Bulk  
Isochronous  
Isochronous  
out  
in  
64  
no  
64  
no  
out  
in  
64  
no  
64  
no  
out  
in  
64  
yes  
yes  
yes  
yes  
64  
out  
in  
512  
512  
LPC1311_13_42_43  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 5 — 6 June 2012  
20 of 74  
LPC1311/13/42/43  
NXP Semiconductors  
7.10 UART  
32-bit ARM Cortex-M3 microcontroller  
The LPC1311/13/42/43 contains one UART.  
Support for RS-485/9-bit mode allows both software address detection and automatic  
address detection using 9-bit mode.  
The UART includes a fractional baud rate generator. Standard baud rates such as  
115200 Bd can be achieved with any crystal frequency above 2 MHz.  
7.10.1 Features  
Maximum UART data bit rate of 4.5 MBit/s.  
16-byte receive and transmit FIFOs.  
Register locations conform to 16C550 industry standard.  
Receiver FIFO trigger points at 1 B, 4 B, 8 B, and 14 B.  
Built-in fractional baud rate generator covering wide range of baud rates without a  
need for external crystals of particular values.  
Fractional divider for baud rate control, auto baud capabilities and FIFO control  
mechanism that enables software flow control implementation.  
Support for RS-485/9-bit mode.  
Support for modem control.  
7.11 SSP serial I/O controller  
The LPC1311/13/42/43 contain one SSP controller. An additional SSP controller is  
available on the LPC1313FBD48/01 package.  
The SSP controller is capable of operation on a SSP, 4-wire SSI, or Microwire bus. It can  
interact with multiple masters and slaves on the bus. Only a single master and a single  
slave can communicate on the bus during a given data transfer. The SSP supports full  
duplex transfers, with frames of 4 bits to 16 bits of data flowing from the master to the  
slave and from the slave to the master. In practice, often only one of these data flows  
carries meaningful data.  
7.11.1 Features  
Maximum SSP speed of 36 Mbit/s (master) or 6 Mbit/s (slave)  
Compatible with Motorola SPI, 4-wire Texas Instruments SSI, and National  
Semiconductor Microwire buses  
Synchronous serial communication  
Master or slave operation  
8-frame FIFOs for both transmit and receive  
4-bit to 16-bit frame  
7.12 I2C-bus serial I/O controller  
The LPC1311/13/42/43 contain one I2C-bus controller.  
LPC1311_13_42_43  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 5 — 6 June 2012  
21 of 74  
LPC1311/13/42/43  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
The I2C-bus is bidirectional for inter-IC control using only two wires: a Serial Clock Line  
(SCL) and a Serial DAta line (SDA). Each device is recognized by a unique address and  
can operate as either a receiver-only device (e.g., an LCD driver) or a transmitter with the  
capability to both receive and send information (such as memory). Transmitters and/or  
receivers can operate in either master or slave mode, depending on whether the chip has  
to initiate a data transfer or is only addressed. The I2C is a multi-master bus and can be  
controlled by more than one bus master connected to it.  
7.12.1 Features  
The I2C-bus interface is a standard I2C-bus compliant interface with true open-drain  
pins. The I2C-bus interface also supports Fast-mode Plus with bit rates up to 1 Mbit/s.  
Easy to configure as master, slave, or master/slave.  
Programmable clocks allow versatile rate control.  
Bidirectional data transfer between masters and slaves.  
Multi-master bus (no central master).  
Arbitration between simultaneously transmitting masters without corruption of serial  
data on the bus.  
Serial clock synchronization allows devices with different bit rates to communicate via  
one serial bus.  
Serial clock synchronization can be used as a handshake mechanism to suspend and  
resume serial transfer.  
The I2C-bus can be used for test and diagnostic purposes.  
The I2C-bus controller supports multiple address recognition and a bus monitor mode.  
7.13 10-bit ADC  
The LPC1311/13/42/43 contains one ADC. It is a single 10-bit successive approximation  
ADC with eight channels.  
7.13.1 Features  
10-bit successive approximation ADC.  
Input multiplexing among 8 pins.  
Power-down mode.  
Measurement range 0 V to VDD  
.
10-bit conversion time 2.44 μs (up to 400 kSamples/s).  
Burst conversion mode for single or multiple inputs.  
Optional conversion on transition of input pin or timer match signal.  
Individual result registers for each ADC channel to reduce interrupt overhead.  
LPC1311_13_42_43  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 5 — 6 June 2012  
22 of 74  
LPC1311/13/42/43  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
7.14 General purpose external event counter/timers  
The LPC1311/13/42/43 includes two 32-bit counter/timers and two 16-bit counter/timers.  
The counter/timer is designed to count cycles of the system derived clock. It can optionally  
generate interrupts or perform other actions at specified timer values, based on four  
match registers. Each counter/timer also includes one capture input to trap the timer value  
when an input signal transitions, optionally generating an interrupt.  
7.14.1 Features  
A 32-bit/16-bit counter/timer with a programmable 32-bit/16-bit prescaler.  
Counter or timer operation.  
One capture channel per timer, that can take a snapshot of the timer value when an  
input signal transitions. A capture event may also generate an interrupt.  
Four match registers per timer that allow:  
Continuous operation with optional interrupt generation on match.  
Stop timer on match with optional interrupt generation.  
Reset timer on match with optional interrupt generation.  
Up to four external outputs corresponding to match registers, with the following  
capabilities:  
Set LOW on match.  
Set HIGH on match.  
Toggle on match.  
Do nothing on match.  
7.15 System tick timer  
The ARM Cortex-M3 includes a system tick timer (SYSTICK) that is intended to generate  
a dedicated SYSTICK exception at a fixed time interval, normally set to 10 ms.  
7.16 Watchdog timer  
Remark: The standard Watchdog timer is available on parts LPC1311/13/42/43.  
The purpose of the watchdog is to reset the microcontroller within a selectable time  
period. When enabled, the watchdog will generate a system reset if the user program fails  
to ‘feed’ (or reload) the watchdog within a predetermined amount of time.  
7.16.1 Features  
Internally resets chip if not periodically reloaded.  
Debug mode.  
Enabled by software but requires a hardware reset or a watchdog reset/interrupt to be  
disabled.  
Incorrect/incomplete feed sequence causes reset/interrupt if enabled.  
Flag to indicate watchdog reset.  
Programmable 24-bit timer with internal prescaler.  
LPC1311_13_42_43  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 5 — 6 June 2012  
23 of 74  
LPC1311/13/42/43  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Selectable time period from (Tcy(WDCLK) × 256 × 4) to (Tcy(WDCLK) × 224 × 4) in  
multiples of Tcy(WDCLK) × 4.  
The Watchdog Clock (WDCLK) source can be selected from the Internal RC oscillator  
(IRC), the watchdog oscillator, or the main clock. This gives a wide range of potential  
timing choices of watchdog operation under different power reduction conditions. It  
also provides the ability to run the WDT from an entirely internal source that is not  
dependent on an external crystal and its associated components and wiring for  
increased reliability.  
7.17 Windowed WatchDog Timer (WWDT)  
Remark: The windowed watchdog timer is available on parts LPC1311/01 and  
LPC1313/01.  
The purpose of the watchdog is to reset the controller if software fails to periodically  
service it within a programmable time window.  
7.17.1 Features  
Internally resets chip if not periodically reloaded during the programmable time-out  
period.  
Optional windowed operation requires reload to occur between a minimum and  
maximum time period, both programmable.  
Optional warning interrupt can be generated at a programmable time prior to  
watchdog time-out.  
Enabled by software but requires a hardware reset or a watchdog reset/interrupt to be  
disabled.  
Incorrect feed sequence causes reset or interrupt if enabled.  
Flag to indicate watchdog reset.  
Programmable 24-bit timer with internal prescaler.  
Selectable time period from (Tcy(WDCLK) × 256 × 4) to (Tcy(WDCLK) × 224 × 4) in  
multiples of Tcy(WDCLK) × 4.  
The Watchdog Clock (WDCLK) source can be selected from the IRC or the dedicated  
watchdog oscillator (WDO). This gives a wide range of potential timing choices of  
watchdog operation under different power conditions.  
7.18 Clocking and power control  
7.18.1 Integrated oscillators  
The LPC1311/13/42/43 include three independent oscillators. These are the system  
oscillator, the Internal RC oscillator (IRC), and the watchdog oscillator. Each oscillator can  
be used for more than one purpose as required in a particular application.  
Following reset, the LPC1311/13/42/43 will operate from the internal RC oscillator until  
switched by software. This allows systems to operate without any external crystal and the  
bootloader code to operate at a known frequency.  
See Figure 7 for an overview of the LPC1311/13/42/43 clock generation.  
LPC1311_13_42_43  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 5 — 6 June 2012  
24 of 74  
LPC1311/13/42/43  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
AHB clock 0  
(system)  
system clock  
SYSTEM CLOCK  
DIVIDER  
AHB clock 1  
(ROM)  
AHBCLKCTRL  
(AHB clock enable)  
AHB clocks  
2 to 15  
14  
(memories  
and peripherals)  
AHBCLKCTRL  
AHB clock 16  
(IOCONFIG)  
AHBCLKCTRL  
2
SSP0/1 PERIPHERAL  
CLOCK DIVIDER  
SSP0/1  
UART  
IRC oscillator  
main clock  
UART PERIPHERAL  
CLOCK DIVIDER  
watchdog oscillator  
ARM TRACE  
CLOCK DIVIDER  
ARM  
trace clock  
MAINCLKSEL  
(main clock select)  
SYSTICK TIMER  
CLOCK DIVIDER  
SYSTICK  
timer  
IRC oscillator  
SYSTEM PLL  
system oscillator  
IRC oscillator  
WDT CLOCK  
DIVIDER  
WDT  
USB  
SYSPLLCLKSEL  
watchdog oscillator  
(system PLL clock select)  
WDTUEN  
(WDT clock update enable)  
USB PLL  
system oscillator  
USB 48 MHz CLOCK  
DIVIDER  
USBPLLCLKSEL  
(USB clock select)  
USBUEN  
(USB clock update enable)  
IRC oscillator  
system oscillator  
watchdog oscillator  
CLKOUT PIN CLOCK  
DIVIDER  
CLKOUT pin  
CLKOUTUEN  
(CLKOUT update enable)  
002aae859  
The USB clock is available on LPC1342/43 only. SSP1 is available on LPC1313FBD48/01 only.  
Fig 7. LPC1311/13/42/43 clocking generation block diagram  
7.18.1.1 Internal RC oscillator  
The IRC may be used as the clock source for the WDT, and/or as the clock that drives the  
system PLL and subsequently the CPU. The nominal IRC frequency is 12 MHz. The IRC  
is trimmed to 1 % accuracy over the entire voltage and temperature range.  
LPC1311_13_42_43  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 5 — 6 June 2012  
25 of 74  
LPC1311/13/42/43  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Upon power-up, any chip reset, or wake-up from Deep power-down mode, the  
LPC1311/13/42/43 use the IRC as the clock source. Software may later switch to one of  
the other available clock sources.  
7.18.1.2 System oscillator  
The system oscillator can be used as the clock source for the CPU, with or without using  
the PLL. On the LPC1342/43, the system oscillator must be used to provide the clock  
source to USB.  
The system oscillator operates at frequencies of 1 MHz to 25 MHz. This frequency can be  
boosted to a higher frequency, up to the maximum CPU operating frequency, by the  
system PLL.  
7.18.1.3 Watchdog oscillator  
The watchdog oscillator can be used as a clock source that directly drives the CPU, the  
watchdog timer, or the CLKOUT pin. The watchdog oscillator nominal frequency is  
programmable between 7.8 kHz and 1.7 MHz. The frequency spread over processing and  
temperature is 40 % (see also Table 16).  
7.18.2 System PLL and USB PLL  
The LPC1342/43 contain a system PLL and a dedicated PLL for generating the 48 MHz  
USB clock. The LPC131x contain the system PLL only. The system and USB PLLs are  
identical.  
The PLL accepts an input clock frequency in the range of 10 MHz to 25 MHz. The input  
frequency is multiplied up to a high frequency with a Current Controlled Oscillator (CCO).  
The multiplier can be an integer value from 1 to 32. The CCO operates in the range of  
156 MHz to 320 MHz, so there is an additional divider in the loop to keep the CCO within  
its frequency range while the PLL is providing the desired output frequency. The output  
divider may be set to divide by 2, 4, 8, or 16 to produce the output clock. The PLL output  
frequency must be lower than 100 MHz. Since the minimum output divider value is 2, it is  
insured that the PLL output has a 50 % duty cycle. The PLL is turned off and bypassed  
following a chip reset and may be enabled by software. The program must configure and  
activate the PLL, wait for the PLL to lock, and then connect to the PLL as a clock source.  
The PLL settling time is 100 μs.  
7.18.3 Clock output  
The LPC1311/13/42/43 features a clock output function that routes the IRC oscillator, the  
system oscillator, the watchdog oscillator, or the main clock to an output pin.  
7.18.4 Wake-up process  
The LPC1311/13/42/43 begin operation at power-up and when awakened from Deep  
power-down mode by using the 12 MHz IRC oscillator as the clock source. This allows  
chip operation to resume quickly. If the main oscillator or the PLL is needed by the  
application, software will need to enable these features and wait for them to stabilize  
before they are used as a clock source.  
LPC1311_13_42_43  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 5 — 6 June 2012  
26 of 74  
LPC1311/13/42/43  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
7.18.5 Power control  
The LPC1311/13/42/43 support a variety of power control features. There are three  
special modes of processor power reduction: Sleep mode, Deep-sleep mode, and Deep  
power-down mode. The CPU clock rate may also be controlled as needed by changing  
clock sources, reconfiguring PLL values, and/or altering the CPU clock divider value. This  
allows a trade-off of power versus processing speed based on application requirements.  
In addition, a register is provided for shutting down the clocks to individual on-chip  
peripherals, allowing fine tuning of power consumption by eliminating all dynamic power  
use in any peripherals that are not required for the application. Selected peripherals have  
their own clock divider which provides even better power control.  
7.18.5.1 Power profiles (LPC1300L series, LPC1311/01 and LPC1313/01 only)  
The power consumption in Active and Sleep modes can be optimized for the application  
through simple calls to the power profile. The power configuration routine configures the  
LPC1311/01 and the LPC1313/01 for one of the following power modes:  
Default mode corresponding to power configuration after reset.  
CPU performance mode corresponding to optimized processing capability.  
Efficiency mode corresponding to optimized balance of current consumption and CPU  
performance.  
Low-current mode corresponding to lowest power consumption.  
In addition, the power profile includes routines to select the optimal PLL settings for a  
given system clock and PLL input clock.  
7.18.5.2 Sleep mode  
When Sleep mode is entered, the clock to the core is stopped. Resumption from the Sleep  
mode does not need any special sequence but re-enabling the clock to the ARM core.  
In Sleep mode, execution of instructions is suspended until either a reset or interrupt  
occurs. Peripheral functions continue operation during Sleep mode and may generate  
interrupts to cause the processor to resume execution. Sleep mode eliminates dynamic  
power used by the processor itself, memory systems and related controllers, and internal  
buses.  
7.18.5.3 Deep-sleep mode  
In Deep-sleep mode, the chip is in Sleep mode, and in addition all analog blocks are shut  
down. As an exception, the user has the option to keep the watchdog oscillator and the  
BOD circuit running for self-timed wake-up and BOD protection. Deep-sleep mode allows  
for additional power savings.  
Up to 40 pins total can serve as external wake-up pins to the start logic to wake up the  
chip from Deep-sleep mode (see Section 7.19.1).  
Unless the watchdog oscillator is selected to run in Deep-sleep mode, the clock source  
should be switched to IRC before entering Deep-sleep mode, because the IRC can be  
switched on and off glitch-free.  
LPC1311_13_42_43  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 5 — 6 June 2012  
27 of 74  
LPC1311/13/42/43  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
7.18.5.4 Deep power-down mode  
In Deep power-down mode, power is shut off to the entire chip with the exception of the  
WAKEUP pin. The LPC1311/13/42/43 can wake up from Deep power-down mode via the  
WAKEUP pin.  
A LOW-going pulse as short as 50 ns wakes up the part from Deep power-down mode.  
When entering Deep power-down mode, an external pull-up resistor is required on the  
WAKEUP pin to hold it HIGH. The RESET pin must also be held HIGH to prevent it from  
floating while in Deep power-down mode.  
7.19 System control  
7.19.1 Start logic  
The start logic connects external pins to corresponding interrupts in the NVIC. Each pin  
shown in Table 3 and Table 4 as input to the start logic has an individual interrupt in the  
NVIC interrupt vector table. The start logic pins can serve as external interrupt pins when  
the chip is running. In addition, an input signal on the start logic pins can wake up the chip  
from Deep-sleep mode when all clocks are shut down.  
The start logic must be configured in the system configuration block and in the NVIC  
before being used.  
7.19.2 Reset  
Reset has four sources on the LPC1311/13/42/43: the RESET pin, the Watchdog reset,  
power-on reset (POR), and the Brown-Out Detection (BOD) circuit. The RESET pin is a  
Schmitt trigger input pin. Assertion of chip reset by any source, once the operating voltage  
attains a usable level, starts the IRC and initializes the flash controller.  
When the internal reset is removed, the processor begins executing at address 0, which is  
initially the reset vector mapped from the boot block. At that point, all of the processor and  
peripheral registers have been initialized to predetermined values.  
7.19.3 Brownout detection  
The LPC1311/13/42/43 includes four levels for monitoring the voltage on the VDD pin. If  
this voltage falls below one of the four selected levels, the BOD asserts an interrupt signal  
to the NVIC. This signal can be enabled for interrupt in the Interrupt Enable Register in the  
NVIC in order to cause a CPU interrupt; if not, software can monitor the signal by reading  
a dedicated status register. An additional threshold level can be selected to cause a  
forced reset of the chip.  
7.19.4 Code security (Code Read Protection - CRP)  
This feature of the LPC1311/13/42/43 allows user to enable different levels of security in  
the system so that access to the on-chip flash and use of the Serial Wire Debugger (SWD)  
and In-System Programming (ISP) can be restricted. When needed, CRP is invoked by  
programming a specific pattern into a dedicated flash location. In-Application  
Programming (IAP) commands are not affected by the CRP.  
In addition, ISP entry via the PIO0_1 pin can be disabled without enabling CRP (NO_ISP  
mode). For details see the LPC13xx user manual.  
LPC1311_13_42_43  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 5 — 6 June 2012  
28 of 74  
LPC1311/13/42/43  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
There are three levels of Code Read Protection:  
1. CRP1 disables access to chip via the SWD and allows partial flash update (excluding  
flash sector 0) using a limited set of the ISP commands. This mode is useful when  
CRP is required and flash field updates are needed but all sectors can not be erased.  
2. CRP2 disables access to chip via the SWD and only allows full flash erase and  
update using a reduced set of the ISP commands.  
3. Running an application with level CRP3 selected fully disables any access to chip via  
the SWD pins and the ISP. This mode effectively disables ISP override using PIO0_1  
pin, too. It is up to the user’s application to provide (if needed) flash update  
mechanism using IAP calls or call reinvoke ISP command to enable flash update via  
UART.  
CAUTION  
If level three Code Read Protection (CRP3) is selected, no future factory testing can be  
performed on the device.  
7.19.5 Boot loader  
The boot loader controls initial operation after reset and also provides the means to  
program the flash memory. This could be initial programming of a blank device, erasure  
and re-programming of a previously programmed device, or programming of the flash  
memory by the application program in a running system.  
The boot loader code is executed every time the part is reset or powered up. The loader  
can either execute the ISP command handler or the user application code, or, on the  
LPC1342/43, it can program the flash image via an attached MSC device through USB  
(Windows operating system only). A LOW level during reset applied to the PIO0_1 pin is  
considered as an external hardware request to start the ISP command handler or the USB  
device enumeration. The state of PIO0_3 determines whether the UART or USB interface  
will be used (LPC1342/43 only).  
7.19.6 APB interface  
The APB peripherals are located on one APB bus.  
7.19.7 AHB-Lite  
The AHB-Lite connects the instruction (I-code) and data (D-code) CPU buses of the ARM  
Cortex-M3 to the flash memory, the main static RAM, and the boot ROM.  
7.19.8 External interrupt inputs  
All GPIO pins can be level or edge sensitive interrupt inputs. In addition, start logic inputs  
serve as external interrupts (see Section 7.19.1).  
7.19.9 Memory mapping control  
The Cortex-M3 incorporates a mechanism that allows remapping the interrupt vector table  
to alternate locations in the memory map. This is controlled via the Vector Table Offset  
Register contained in the NVIC.  
LPC1311_13_42_43  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 5 — 6 June 2012  
29 of 74  
LPC1311/13/42/43  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
The vector table may be located anywhere within the bottom 1 GB of Cortex-M3 address  
space. The vector table must be located on a 256 word boundary.  
7.20 Emulation and debugging  
Debug functions are integrated into the ARM Cortex-M3. Serial wire debug is supported.  
LPC1311_13_42_43  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 5 — 6 June 2012  
30 of 74  
LPC1311/13/42/43  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
8. Limiting values  
Table 6.  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).[1]  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
VDD  
supply voltage (core and  
external rail)  
2.0  
3.6  
V
[2]  
VI  
input voltage  
5 V tolerant I/O pins; only valid  
when the VDD supply voltage is  
present  
0.5  
+5.5  
V
IDD  
supply current  
per supply pin  
-
-
-
100  
100  
100  
mA  
mA  
mA  
ISS  
ground current  
I/O latch-up current  
per ground pin  
(0.5VDD) < VI < (1.5VDD);  
Tj < 125 °C  
Ilatch  
[3]  
[4]  
Tstg  
storage temperature  
non-operating  
65  
+150  
150  
1.5  
°C  
°C  
W
Tj(max)  
Ptot(pack)  
maximum junction temperature  
-
-
total power dissipation (per  
package)  
based on package heat transfer, not  
device power consumption  
VESD  
electrostatic discharge voltage human body model; all pins  
6500  
+6500  
V
[1] The following applies to the limiting values:  
a) This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive  
static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated  
maximum.  
b) Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to VSS unless  
otherwise noted.  
[2] Including voltage on outputs in 3-state mode.  
[3] The maximum non-operating storage temperature is different than the temperature for required shelf life which should be determined  
based on required shelf lifetime. Please refer to the JEDEC specification J-STD-033B.1 for further details.  
[4] Human body model: equivalent to discharging a 100 pF capacitor through a 1.5 kΩ series resistor.  
LPC1311_13_42_43  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 5 — 6 June 2012  
31 of 74  
LPC1311/13/42/43  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
9. Static characteristics  
Table 7.  
Static characteristics  
T
amb = 40 °C to +85 °C, unless otherwise specified.  
Symbol Parameter Conditions  
Min  
Typ[1]  
Max  
Unit  
[2]  
VDD  
supply voltage (core  
and external rail)  
2.0  
3.3  
3.6  
V
LPC1300 series (LPC1311/13/42/43) power consumption  
IDD  
supply current  
Active mode; VDD = 3.3 V;  
Tamb = 25 °C; code  
while(1){}  
executed from flash;  
system clock = 12 MHz  
[3][4][5]  
[6][7]  
-
-
-
4
-
-
-
mA  
mA  
mA  
[4][5][6]  
[8][7]  
system clock = 72 MHz  
17  
2
[3][4][5]  
[6][7]  
Sleep mode;  
VDD = 3.3 V; Tamb = 25 °C;  
system clock = 12 MHz  
[4][9][7]  
[10]  
Deep-sleep mode; VDD = 3.3 V;  
Tamb = 25 °C  
-
-
30  
-
-
μA  
Deep power-down mode;  
220  
nA  
VDD = 3.3 V; Tamb = 25 °C  
LPC1300L series (LPC1311/01, LPC1313/01) power consumption in low-current mode[11]  
IDD  
supply current  
Active mode; VDD = 3.3 V;  
Tamb = 25 °C; code  
while(1){}  
executed from flash;  
system clock = 12 MHz  
[3][4][5]  
[6][7]  
-
-
-
2
-
-
-
mA  
mA  
mA  
[4][5][6]  
[8][7]  
system clock = 72 MHz  
13  
1
[3][4][5]  
[6][7]  
Sleep mode;  
VDD = 3.3 V; Tamb = 25 °C;  
system clock = 12 MHz  
[4][9][7]  
[10]  
Deep-sleep mode; VDD = 3.3 V;  
Tamb = 25 °C  
-
-
2
-
-
μA  
Deep power-down mode;  
220  
nA  
VDD = 3.3 V; Tamb = 25 °C  
Standard port pins and RESET pin; see Figure 21, Figure 22, Figure 23, Figure 24  
IIL  
LOW-level input current VI = 0 V; on-chip pull-up resistor  
disabled  
-
0.5  
0.5  
0.5  
-
10  
10  
10  
5.0  
nA  
nA  
nA  
V
IIH  
IOZ  
VI  
HIGH-level input  
current  
VI = VDD; on-chip pull-down resistor  
disabled  
-
OFF-state output  
current  
VO = 0 V; VO = VDD; on-chip  
pull-up/down resistors disabled  
-
[12][13]  
[14]  
input voltage  
pin configured to provide a digital  
function  
0
LPC1311_13_42_43  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 5 — 6 June 2012  
32 of 74  
LPC1311/13/42/43  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 7.  
Static characteristics …continued  
Tamb = 40 °C to +85 °C, unless otherwise specified.  
Symbol Parameter  
Conditions  
Min  
0
Typ[1]  
Max  
VDD  
-
Unit  
V
VO  
output voltage  
output active  
-
-
VIH  
HIGH-level input  
voltage  
0.7VDD  
V
VIL  
LOW-level input voltage  
hysteresis voltage  
-
-
-
-
-
-
-
-
0.3VDD  
V
Vhys  
VOH  
0.4  
-
V
HIGH-level output  
voltage  
2.5 V VDD 3.6 V; IOH = 4 mA  
2.0 V VDD < 2.5 V; IOH = 3 mA  
2.5 V VDD 3.6 V; IOL = 4 mA  
2.0 V VDD < 2.5 V; IOL = 3 mA  
2.5 VVDD 3.6 V;  
VDD 0.4  
-
V
VDD 0.4  
-
V
VOL  
LOW-level output  
voltage  
-
0.4  
0.4  
-
V
-
V
IOH  
HIGH-level output  
current  
4  
mA  
VOH = VDD 0.4 V  
2.0 V VDD < 2.5 V;  
VOH = VDD 0.4 V  
3  
-
-
mA  
IOL  
LOW-level output  
current  
2.5 V VDD 3.6 V; VOL = 0.4 V  
2.0 V VDD < 2.5 V; VOL = 0.4 V  
4
3
-
-
-
-
-
mA  
mA  
mA  
-
[15]  
[15]  
IOHS  
IOLS  
HIGH-level short-circuit VOH = 0 V  
output current  
45  
LOW-level short-circuit VOL = VDD  
output current  
-
-
50  
mA  
Ipd  
Ipu  
pull-down current  
pull-up current  
VI = 5 V  
10  
15  
0
50  
50  
0
150  
85  
0
μA  
μA  
μA  
VI = 0 V  
VDD < VI < 5 V  
High-drive output pin (PIO0_7); see Figure 19 and Figure 21  
IIL  
LOW-level input current VI = 0 V; on-chip pull-up resistor  
disabled  
-
0.5  
0.5  
0.5  
-
10  
10  
10  
5.0  
nA  
nA  
nA  
V
IIH  
IOZ  
VI  
HIGH-level input  
current  
VI = VDD; on-chip pull-down resistor  
disabled  
-
OFF-state output  
current  
VO = 0 V; VO = VDD; on-chip  
pull-up/down resistors disabled  
-
[12][13]  
[14]  
input voltage  
pin configured to provide a digital  
function  
0
VO  
output voltage  
output active  
0
-
-
VDD  
-
V
V
VIH  
HIGH-level input  
voltage  
0.7VDD  
VIL  
LOW-level input voltage  
hysteresis voltage  
-
-
-
-
-
-
-
0.3VDD  
V
V
V
V
V
V
Vhys  
VOH  
0.4  
-
HIGH-level output  
voltage  
2.5 V VDD 3.6 V; IOH = 20 mA  
2.0 V VDD < 2.5 V; IOH = 12 mA  
2.5 V VDD 3.6 V; IOL = 4 mA  
2.0 V VDD < 2.5 V; IOL = 3 mA  
VDD 0.4  
-
VDD 0.4  
-
VOL  
LOW-level output  
voltage  
-
-
0.4  
0.4  
LPC1311_13_42_43  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 5 — 6 June 2012  
33 of 74  
LPC1311/13/42/43  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 7.  
Static characteristics …continued  
Tamb = 40 °C to +85 °C, unless otherwise specified.  
Symbol Parameter  
Conditions  
Min  
Typ[1]  
Max  
Unit  
IOH HIGH-level output  
2.5 V VDD 3.6 V;  
VOH = VDD 0.4 V  
20  
-
-
mA  
current  
2.0 V VDD < 2.5 V;  
12  
-
-
mA  
V
OH = VDD 0.4 V;  
IOL  
LOW-level output  
current  
2.5 V VDD 3.6 V; VOL = 0.4 V  
2.0 V VDD < 2.5 V; VOL = 0.4 V  
VI = 5 V  
4
-
-
mA  
mA  
μA  
μA  
μA  
3
-
-
Ipd  
Ipu  
pull-down current  
pull-up current  
10  
15  
0
50  
50  
0
150  
85  
0
VI = 0 V  
VDD < VI < 5 V  
I2C-bus pins (PIO0_4 and PIO0_5); see Figure 20  
VIH  
HIGH-level input  
voltage  
0.7VDD  
-
-
V
VIL  
LOW-level input voltage  
hysteresis voltage  
-
-
-
0.3VDD  
-
V
V
Vhys  
IOL  
0.05VDD  
LOW-level output  
current  
VOL = 0.4 V; I2C-bus pins configured  
as standard mode pins  
2.5 V VDD 3.6 V  
2.0 V VDD < 2.5 V  
3.5  
3.0  
-
-
-
-
mA  
mA  
IOL  
LOW-level output  
current  
VOL = 0.4 V; I2C-bus pins configured  
as Fast-mode Plus pins  
2.5 V VDD 3.6 V  
2.0 V VDD < 2.5 V  
VI = VDD  
20  
16  
-
-
-
mA  
-
-
[16]  
ILI  
input leakage current  
2
10  
4
22  
μA  
μA  
VI = 5 V  
-
Oscillator pins  
Vi(xtal) crystal input voltage  
Vo(xtal) crystal output voltage  
USB pins (LPC1342/43 only)  
0.5  
0.5  
+1.8  
+1.8  
+1.95  
+1.95  
V
V
[17]  
IOZ  
OFF-state output  
current  
0 V < VI < 3.3 V  
-
-
10  
μA  
[17]  
[17]  
VBUS  
VDI  
bus supply voltage  
-
-
-
5.25  
-
V
V
differential input  
sensitivity voltage  
|(D+) (D)|  
0.2  
[17]  
[17]  
VCM  
differential common  
mode voltage range  
includes VDI range  
0.8  
0.8  
-
-
2.5  
2.0  
V
V
Vth(rs)se single-ended receiver  
switching threshold  
voltage  
[17]  
VOL  
LOW-level output  
voltage  
for low-/full-speed;  
RL of 1.5 kΩ to 3.6 V  
-
-
0.18  
V
LPC1311_13_42_43  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 5 — 6 June 2012  
34 of 74  
LPC1311/13/42/43  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 7.  
Static characteristics …continued  
Tamb = 40 °C to +85 °C, unless otherwise specified.  
Symbol Parameter  
Conditions  
Min  
Typ[1]  
Max  
Unit  
[17]  
VOH  
HIGH-level output  
voltage  
driven; for low-/full-speed;  
RL of 15 kΩ to GND  
2.8  
-
3.5  
V
[17]  
Ctrans  
ZDRV  
transceiver capacitance pin to GND  
-
-
-
20  
pF  
[18][17]  
driver output  
with 33 Ω series resistor; steady state  
drive  
36  
44.1  
Ω
impedance for driver  
which is not high-speed  
capable  
[1] Typical ratings are not guaranteed. The values listed are at room temperature (25 °C), nominal supply voltages.  
[2] For LPC1342 and LPC1343 only: For USB operation 3.0 V VDD 3.6 V. Guaranteed by design.  
[3] IRC enabled; system oscillator disabled; system PLL disabled.  
[4]  
IDD measurements were performed with all pins configured as GPIO outputs driven LOW and pull-up resistors disabled.  
[5] BOD disabled.  
[6] All peripherals disabled in the SYSAHBCLKCTRL register. Peripheral clocks to UART, SSP, trace clock, and SysTick timer disabled in  
the syscon block.  
[7] For LPC1342/43: USB_DP and USB_DM pulled LOW externally.  
[8] IRC disabled; system oscillator enabled; system PLL enabled.  
[9] All oscillators and analog blocks turned off in the PDSLEEPCFG register; PDSLEEPCFG = 0x0000 0FFF.  
[10] WAKEUP pin pulled HIGH externally. An external pull-up resistor is required on the RESET pin for the Deep power-down mode.  
[11] Low-current mode PWR_LOW_CURRENT selected when running the set_power routine in the power profiles.  
[12] Including voltage on outputs in 3-state mode.  
[13] VDD supply voltage must be present.  
[14] 3-state outputs go into 3-state mode in Deep power-down mode.  
[15] Allowed as long as the current limit does not exceed the maximum current allowed by the device.  
[16] To VSS  
.
[17] 3.0 V VDD 3.6 V.  
[18] Includes external resistors of 33 Ω 1 % on USB_DP and USB_DM.  
Table 8.  
ADC static characteristics  
Tamb = 40 °C to +85 °C unless otherwise specified; ADC frequency 4.5 MHz, VDD = 2.5 V to 3.6 V.  
Symbol  
VIA  
Parameter  
Conditions  
Min  
Typ  
Max  
VDD  
1
Unit  
V
analog input voltage  
analog input capacitance  
differential linearity error  
integral non-linearity  
offset error  
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Cia  
pF  
[1][2]  
[3]  
ED  
1
LSB  
LSB  
LSB  
%
EL(adj)  
EO  
1.5  
3.5  
0.6  
4
[4]  
[5]  
EG  
gain error  
[6]  
ET  
absolute error  
LSB  
kΩ  
Rvsi  
voltage source interface  
resistance  
40  
[7][8]  
Ri  
input resistance  
-
-
2.5  
MΩ  
[1] The ADC is monotonic, there are no missing codes.  
[2] The differential linearity error (ED) is the difference between the actual step width and the ideal step width. See Figure 8.  
LPC1311_13_42_43  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 5 — 6 June 2012  
35 of 74  
LPC1311/13/42/43  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
[3] The integral non-linearity (EL(adj)) is the peak difference between the center of the steps of the actual and the ideal transfer curve after  
appropriate adjustment of gain and offset errors. See Figure 8.  
[4] The offset error (EO) is the absolute difference between the straight line which fits the actual curve and the straight line which fits the  
ideal curve. See Figure 8.  
[5] The gain error (EG) is the relative difference in percent between the straight line fitting the actual transfer curve after removing offset  
error, and the straight line which fits the ideal transfer curve. See Figure 8.  
[6] The absolute error (ET) is the maximum difference between the center of the steps of the actual transfer curve of the non-calibrated  
ADC and the ideal transfer curve. See Figure 8.  
[7] Tamb = 25 °C; maximum sampling frequency fs = 400 kSamples/s and analog input capacitance Cia = 1 pF.  
[8] Input resistance Ri depends on the sampling frequency fs: Ri = 1 / (fs × Cia).  
LPC1311_13_42_43  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 5 — 6 June 2012  
36 of 74  
LPC1311/13/42/43  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
offset  
error  
gain  
error  
E
E
O
G
1023  
1022  
1021  
1020  
1019  
1018  
(2)  
7
code  
out  
(1)  
6
5
4
3
2
1
0
(5)  
(4)  
(3)  
1 LSB  
(ideal)  
1018 1019 1020 1021 1022 1023 1024  
1
2
3
4
5
6
7
V
(LSB  
)
ideal  
IA  
offset error  
E
O
V
V  
SS  
DD  
1 LSB =  
1024  
002aaf426  
(1) Example of an actual transfer curve.  
(2) The ideal transfer curve.  
(3) Differential linearity error (ED).  
(4) Integral non-linearity (EL(adj)).  
(5) Center of a step of the actual transfer curve.  
Fig 8. ADC characteristics  
LPC1311_13_42_43  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 5 — 6 June 2012  
37 of 74  
LPC1311/13/42/43  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
9.1 BOD static characteristics for LPC1300 series  
Remark: Applies to parts LPC1311/13/42/43 and all their packages.  
Table 9.  
BOD static characteristics[1]  
Tamb = 25 °C.  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Vth  
threshold voltage interrupt level 0  
assertion  
-
-
1.69  
1.84  
-
-
V
V
de-assertion  
interrupt level 1  
assertion  
-
-
2.29  
2.44  
-
-
V
V
de-assertion  
interrupt level 2  
assertion  
-
-
2.59  
2.74  
-
-
V
V
de-assertion  
interrupt level 3  
assertion  
-
-
2.87  
2.98  
-
-
V
V
de-assertion  
reset level 0  
assertion  
-
-
1.49  
1.64  
-
-
V
V
de-assertion  
[1] Interrupt levels are selected by writing the level value to the BOD control register BODCTRL, see LPC13xx  
user manual.  
LPC1311_13_42_43  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 5 — 6 June 2012  
38 of 74  
LPC1311/13/42/43  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
9.2 BOD static characteristics for LPC1300L series (LPC1311/01 and  
LPC1313/01)  
Remark: Applies to parts LPC1311/01 and LPC1313/01 and all packages.  
Table 10. BOD static characteristics[1]  
Tamb = 25 °C.  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Vth  
threshold voltage interrupt level 0  
assertion  
-
-
1.65  
1.80  
-
-
V
V
de-assertion  
interrupt level 1  
assertion  
-
-
2.22  
2.35  
-
-
V
V
de-assertion  
interrupt level 2  
assertion  
-
-
2.52  
2.66  
-
-
V
V
de-assertion  
interrupt level 3  
assertion  
-
-
2.80  
2.90  
-
-
V
V
de-assertion  
reset level 0  
assertion  
-
-
1.46  
1.63  
-
-
V
V
de-assertion  
reset level 1  
assertion  
-
-
2.06  
2.15  
-
-
V
V
de-assertion  
reset level 2  
assertion  
-
-
2.35  
2.43  
-
-
V
V
de-assertion  
reset level 3  
assertion  
-
-
2.63  
2.71  
-
-
V
V
de-assertion  
[1] Interrupt levels are selected by writing the level value to the BOD control register BODCTRL, see LPC13xx  
user manual.  
9.3 Power consumption for LPC1300 series  
Remark: Applies to parts LPC1311/13/42/43 and all their packages.  
Power measurements in Active, Sleep, and Deep-sleep modes were performed under the  
following conditions (see LPC13xx user manual):  
Configure all pins as GPIO with pull-up resistor disabled in the IOCONFIG block.  
Configure GPIO pins as outputs using the GPIOnDIR registers.  
Write 0 to all GPIOnDATA registers to drive the outputs LOW.  
LPC1311_13_42_43  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 5 — 6 June 2012  
39 of 74  
LPC1311/13/42/43  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
002aae993  
18  
I
72 MHz  
DD  
(mA)  
15  
12  
9
48 MHz  
36 MHz  
24 MHz  
12 MHz  
6
3
2.0  
2.4  
2.8  
3.2  
3.6  
V
(V)  
DD  
Conditions: Tamb = 25 °C; Active mode entered executing code while(1){} from flash;  
internal pull-up resistors disabled; system oscillator and system PLL enabled; IRC, BOD disabled;  
all peripherals disabled in the SYSAHBCLKCTRL register (SYSAHBCLKCTRL = 0x1F); all  
peripheral clocks disabled; USB_DP and USB_DM pulled LOW externally (LPC1342/43).  
Fig 9. Typical supply current versus regulator supply voltage VDD in Active mode  
(LPC1311/13/42/43)  
002aae994  
18  
I
DD  
72 MHz  
(mA)  
15  
48 MHz  
36 MHz  
24 MHz  
12  
9
6
12 MHz  
3
40  
15  
10  
35  
60  
85  
temperature (°C)  
Conditions: VDD = 3.3 V; Active mode entered executing code while(1){} from flash; internal  
pull-up resistors disabled; system oscillator and system PLL enabled; IRC, BOD disabled; all  
peripherals disabled in the SYSAHBCLKCTRL register (SYSAHBCLKCTRL = 0x1F); all peripheral  
clocks disabled; USB_DP and USB_DM pulled LOW externally (LPC1342/43).  
Fig 10. Typical supply current versus temperature in Active mode (LPC1311/13/42/43)  
LPC1311_13_42_43  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 5 — 6 June 2012  
40 of 74  
LPC1311/13/42/43  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
002aae995  
10  
72 MHz  
I
DD  
(mA)  
8
6
4
2
0
48 MHz  
36 MHz  
24 MHz  
12 MHz  
40  
15  
10  
35  
60  
85  
temperature (°C)  
Conditions: VDD = 3.3 V; Sleep mode entered from flash; internal pull-up resistors disabled; system  
oscillator and system PLL enabled; IRC, BOD disabled; all peripherals disabled in the  
SYSAHBCLKCTRL register (SYSAHBCLKCTRL = 0x1F); all peripheral clocks disabled; USB_DP  
and USB_DM pulled LOW externally (LPC1342/43).  
Fig 11. Typical supply current versus temperature in Sleep mode (LPC1311/13/42/43)  
002aae998  
80  
I
DD  
(μA)  
60  
V
= 3.6 V  
3.3 V  
DD  
2.0 V  
40  
20  
0
40  
15  
10  
35  
60  
85  
temperature (°C)  
Conditions: BOD disabled; all oscillators and analog blocks turned off in the PDSLEEPCFG  
register; PDSLEEPCFG = 0x0000 0FFF; USB_DP and USB_DM pulled LOW externally  
(LPC1342/43).  
Fig 12. Typical supply current versus temperature in Deep-sleep mode (analog blocks  
disabled; LPC1311/13/42/43)  
LPC1311_13_42_43  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 5 — 6 June 2012  
41 of 74  
LPC1311/13/42/43  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
002aae996  
1.2  
I
DD  
(μA)  
0.6  
VDD = 3.6 V  
3.3 V  
2.0 V  
0.4  
0
40  
15  
10  
35  
60  
85  
temperature (°C)  
Fig 13. Typical supply current versus temperature in Deep power-down mode  
(LPC1311/13/42/43)  
9.4 Power consumption for LPC1300L series (LPC1311/01 and  
LPC1313/01)  
Remark: Applies to parts LPC1311/01 and LPC1313/01 and all their packages.  
Power measurements in Active, Sleep, and Deep-sleep modes were performed under the  
following conditions (see LPC13xx user manual):  
Configure all pins as GPIO with pull-up resistor disabled in the IOCONFIG block.  
Configure GPIO pins as outputs using the GPIOnDIR registers.  
Write 0 to all GPIOnDATA registers to drive the outputs LOW.  
LPC1311_13_42_43  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 5 — 6 June 2012  
42 of 74  
LPC1311/13/42/43  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
002aag235  
16  
I
DD  
(mA)  
72 MHz  
48 MHz  
12  
8
4
0
36 MHz  
24 MHz  
12 MHz  
2.0  
2.4  
2.8  
3.2  
3.6  
V
(V)  
DD  
Conditions: Tamb = 25 °C; Active mode entered executing code while(1){} from flash;  
internal pull-up resistors disabled; system oscillator and system PLL enabled; IRC, BOD disabled;  
all peripherals disabled in the SYSAHBCLKCTRL register (SYSAHBCLKCTRL = 0x1F); all  
peripheral clocks disabled; low-current mode.  
Fig 14. Typical supply current versus regulator supply voltage VDD in Active mode  
(LPC1311/01 and LPC1313/01)  
002aag236  
16  
I
DD  
(mA)  
72 MHz  
12  
48 MHz  
36 MHz  
24 MHz  
12 MHz  
8
4
0
˗40  
˗15  
10  
35  
60  
85  
temperature (°C)  
Conditions: VDD = 3.3 V; Active mode entered executing code while(1){} from flash; internal  
pull-up resistors disabled; system oscillator and system PLL enabled; IRC, BOD disabled; all  
peripherals disabled in the SYSAHBCLKCTRL register (SYSAHBCLKCTRL = 0x1F); all peripheral  
clocks disabled; low-current mode.  
Fig 15. Typical supply current versus temperature in Active mode (LPC1311/01 and  
LPC1313/01)  
LPC1311_13_42_43  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 5 — 6 June 2012  
43 of 74  
LPC1311/13/42/43  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
002aag237  
8
6
4
2
0
72 MHz  
I
DD  
(mA)  
48 MHz  
36 MHz  
24 MHz  
12 MHz  
˗40  
˗15  
10  
35  
60  
85  
temperature (°C)  
Conditions: VDD = 3.3 V; Sleep mode entered from flash; internal pull-up resistors disabled; system  
oscillator and system PLL enabled; IRC, BOD disabled; all peripherals disabled in the  
SYSAHBCLKCTRL register (SYSAHBCLKCTRL = 0x1F); all peripheral clocks disabled;  
low-current mode.  
Fig 16. Typical supply current versus temperature in Sleep mode (LPC1311/01 and  
LPC1313/01)  
002aag238  
8
I
DD  
(μA)  
6
4
2
0
VDD = 2.0 V  
3.3 V  
3.6 V  
˗40  
˗15  
10  
35  
60  
85  
temperature (°C)  
Conditions: BOD disabled; all oscillators and analog blocks turned off in the PDSLEEPCFG  
register; PDSLEEPCFG = 0x0000 0FFF.  
Fig 17. Typical supply current versus temperature in Deep-sleep mode (analog blocks  
disabled, LPC1311/01 and LPC1313/01)  
LPC1311_13_42_43  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 5 — 6 June 2012  
44 of 74  
LPC1311/13/42/43  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
002aag239  
0.6  
I
DD  
(µA)  
VDD = 3.6 V  
3.3 V  
0.4  
2.0 V  
0.2  
0
˗40  
˗15  
10  
35  
60  
85  
temperature (°C)  
Fig 18. Typical supply current versus temperature in Deep power-down mode  
(LPC1311/01 and LPC1313/01)  
9.5 Peripheral power consumption  
The supply current per peripheral is measured as the difference in supply current between  
the peripheral block enabled and the peripheral block disabled in the SYSAHBCLKCFG or  
PDRUNCFG (for analog blocks) registers. All other blocks are disabled in both registers  
and no code is executed. Measured on a typical sample at Tamb = 25 °C. Unless noted  
otherwise, the system oscillator and PLL are running in both measurements.  
The supply currents are shown for system clock frequencies of 12 MHz, 48 MHz, and  
72 MHz.  
Table 11. Power consumption for individual analog and digital blocks  
Peripheral  
Typical supply current in mA  
Notes  
n/a  
12 MHz 48 MHz 72 MHz  
IRC  
0.23  
-
-
-
-
-
-
-
-
-
System oscillator running; PLL off; independent of main clock  
frequency.  
System oscillator 0.23  
at 12 MHz  
IRC running; PLL off; independent of main clock frequency.  
Watchdog  
oscillator at  
500 kHz/2  
0.002  
System oscillator running; PLL off; independent of main clock  
frequency.  
BOD  
0.045  
-
-
-
Independent of main clock frequency.  
Main or USB PLL  
ADC  
-
-
-
-
-
-
-
0.26  
0.07  
0.14  
0.01  
0.01  
0.01  
0.01  
0.34  
0.25  
0.56  
0.05  
0.04  
0.05  
0.04  
0.48  
0.37  
0.82  
0.08  
0.06  
0.07  
0.06  
-
-
CLKOUT  
CT16B0  
CT16B1  
CT32B0  
CT32B1  
Main clock divided by 4 in the CLKOUTDIV register.  
-
-
-
-
LPC1311_13_42_43  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 5 — 6 June 2012  
45 of 74  
LPC1311/13/42/43  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 11. Power consumption for individual analog and digital blocks …continued  
Peripheral  
Typical supply current in mA  
Notes  
n/a  
12 MHz 48 MHz 72 MHz  
GPIO  
-
0.21  
0.80  
1.17  
GPIO pins configured as outputs and set to LOW. Direction  
and pin state are maintained if the GPIO is disabled in the  
SYSAHBCLKCFG register.  
IOCONFIG  
I2C  
-
-
-
-
-
-
-
-
0.00  
0.03  
0.04  
0.11  
0.11  
0.20  
0.01  
-
0.02  
0.12  
0.15  
0.41  
0.41  
0.76  
0.05  
3.91  
0.02  
0.17  
0.22  
0.60  
0.60  
1.11  
0.08  
-
-
-
ROM  
-
SSP0  
SSP1  
UART  
WDT  
-
On LPC1313FBD48/01 only.  
-
Main clock selected as clock source for the WDT.  
USB  
Main clock selected as clock source for the USB. USB_DP  
and USB_DM pulled LOW externally.  
USB  
-
1.84  
4.19  
5.71  
Dedicated USB PLL selected as clock source for the USB.  
USB_DP and USB_DM pulled LOW externally.  
9.6 Electrical pin characteristics  
002aae990  
3.6  
V
(V)  
OH  
T = 85 °C  
25 °C  
40 °C  
3.2  
2.8  
2.4  
2
0
10  
20  
30  
40  
50  
60  
I
(mA)  
OH  
Conditions: VDD = 3.3 V; on pin PIO0_7.  
Fig 19. High-drive output: Typical HIGH-level output voltage VOH versus HIGH-level  
output current IOH  
.
LPC1311_13_42_43  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 5 — 6 June 2012  
46 of 74  
LPC1311/13/42/43  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
002aaf019  
60  
I
T = 85 °C  
25 °C  
40 °C  
OL  
(mA)  
40  
20  
0
0
0.2  
0.4  
0.6  
V
(V)  
OL  
Conditions: VDD = 3.3 V; on pins PIO0_4 and PIO0_5.  
Fig 20. I2C-bus pins (high current sink): Typical LOW-level output current IOL versus  
LOW-level output voltage VOL  
002aae991  
15  
I
OL  
T = 85 °C  
25 °C  
40 °C  
(mA)  
10  
5
0
0
0.2  
0.4  
0.6  
V
(V)  
OL  
Conditions: VDD = 3.3 V; standard port pins and PIO0_7.  
Fig 21. Typical LOW-level output current IOL versus LOW-level output voltage VOL  
LPC1311_13_42_43  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 5 — 6 June 2012  
47 of 74  
LPC1311/13/42/43  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
002aae992  
3.6  
V
OH  
(V)  
T = 85 °C  
25 °C  
40 °C  
3.2  
2.8  
2.4  
2
0
8
16  
24  
I
(mA)  
OH  
Conditions: VDD = 3.3 V; standard port pins.  
Fig 22. Typical HIGH-level output voltage VOH versus HIGH-level output source current  
IOH  
002aae988  
10  
I
pu  
(μA)  
10  
30  
50  
70  
T = 85 °C  
25 °C  
40 °C  
0
1
2
3
4
5
V (V)  
I
Conditions: VDD = 3.3 V; standard port pins.  
Fig 23. Typical pull-up current Ipu versus input voltage Vi  
LPC1311_13_42_43  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 5 — 6 June 2012  
48 of 74  
LPC1311/13/42/43  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
002aae989  
80  
T = 85 °C  
25 °C  
40 °C  
I
pd  
(μA)  
60  
40  
20  
0
0
1
2
3
4
5
V (V)  
I
Conditions: VDD = 3.3 V; standard port pins.  
Fig 24. Typical pull-down current Ipd versus input voltage Vi  
LPC1311_13_42_43  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 5 — 6 June 2012  
49 of 74  
LPC1311/13/42/43  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
10. Dynamic characteristics  
10.1 Power-up ramp conditions  
Table 12. Power-up characteristics  
amb = 40 °C to +85 °C.  
T
Symbol Parameter  
Conditions  
Min  
0
Typ  
Max  
500  
-
Unit  
ms  
μs  
[1]  
tr  
rise time  
at t = t1: 0 < VI 400 mV  
-
-
-
[1][2]  
twait  
VI  
wait time  
12  
0
input voltage  
at t = t1 on pin VDD  
400  
mV  
[1] See Figure 25.  
[2] The wait time specifies the time the power supply must be at levels below 400 mV before ramping up.  
t
r
V
DD  
400 mV  
0
t
wait  
t = t  
1
002aag001  
Condition: 0 < VI 400 mV at start of power-up (t = t1)  
Fig 25. Power-up ramp  
10.2 Flash memory  
Table 13. Flash characteristics  
Tamb = 40 °C to +85 °C, unless otherwise specified.  
Symbol  
Nendu  
tret  
Parameter  
endurance  
Conditions  
Min  
Typ  
Max  
Unit  
[1]  
10000  
10  
100000  
-
cycles  
years  
years  
ms  
retention time  
powered  
-
-
unpowered  
20  
-
-
ter  
erase time  
sector or multiple  
95  
100  
105  
consecutive sectors  
[2]  
tprog  
programming time  
0.95  
1
1.05  
ms  
[1] Number of program/erase cycles.  
[2] Programming times are given for writing 256 bytes from RAM to the flash. Data must be written to the flash in blocks of 256 bytes.  
LPC1311_13_42_43  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 5 — 6 June 2012  
50 of 74  
LPC1311/13/42/43  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
10.3 External clock  
Table 14. Dynamic characteristic: external clock  
Tamb = 40 °C to +85 °C; VDD over specified ranges.[1]  
Symbol  
fosc  
Parameter  
Conditions  
Min  
Typ[2]  
Max  
Unit  
MHz  
ns  
oscillator frequency  
clock cycle time  
clock HIGH time  
clock LOW time  
clock rise time  
clock fall time  
1
-
-
-
-
-
-
25  
Tcy(clk)  
tCHCX  
tCLCX  
tCLCH  
tCHCL  
40  
1000  
Tcy(clk) × 0.4  
-
ns  
Tcy(clk) × 0.4  
-
ns  
-
-
5
5
ns  
ns  
[1] Parameters are valid over operating temperature range unless otherwise specified.  
[2] Typical ratings are not guaranteed. The values listed are at room temperature (25 °C), nominal supply voltages.  
t
CHCX  
t
t
t
CHCL  
CLCX  
CLCH  
T
cy(clk)  
002aaa907  
Fig 26. External clock timing (with an amplitude of at least Vi(RMS) = 200 mV)  
LPC1311_13_42_43  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 5 — 6 June 2012  
51 of 74  
LPC1311/13/42/43  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
10.4 Internal oscillators  
Table 15. Dynamic characteristics: IRC  
Tamb = 40 °C to +85 °C; 2.7 V VDD 3.6 V[1].  
Symbol  
Parameter  
Conditions  
Min  
Typ[2]  
Max  
Unit  
fosc(RC)  
internal RC oscillator frequency  
-
11.88  
12  
12.12  
MHz  
[1] Parameters are valid over operating temperature range unless otherwise specified.  
[2] Typical ratings are not guaranteed. The values listed are at room temperature (25 °C), nominal supply voltages.  
002aae987  
12.15  
V
= 3.6 V  
3.3 V  
3.0 V  
2.7 V  
2.4 V  
2.0 V  
DD  
f
(MHz)  
12.05  
11.95  
11.85  
40  
15  
10  
35  
60  
85  
temperature (°C)  
Conditions: Frequency values are typical values. 12 MHz 1 % accuracy is guaranteed for  
2.7 V VDD 3.6 V and Tamb = 40 °C to +85 °C. Variations between parts may cause the IRC to  
fall outside the 12 MHz 1 % accuracy specification for voltages below 2.7 V.  
Fig 27. Internal RC oscillator frequency f versus temperature  
Table 16. Dynamic characteristics: Watchdog oscillator  
Symbol Parameter  
fosc(int) internal oscillator frequency  
Conditions  
Min Typ[1]  
Max Unit  
[2][3]  
[2][3]  
DIVSEL = 0x1F, FREQSEL = 0x1 in the  
WDTOSCCTRL register;  
-
7.8  
-
kHz  
DIVSEL = 0x00, FREQSEL = 0xF in the  
WDTOSCCTRL register  
-
1700  
-
kHz  
[1] Typical ratings are not guaranteed. The values listed are at nominal supply voltages.  
[2] The typical frequency spread over processing and temperature (Tamb = 40 °C to +85 °C) is 40 %.  
[3] See the LPC13xx user manual.  
LPC1311_13_42_43  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 5 — 6 June 2012  
52 of 74  
LPC1311/13/42/43  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
10.5 I/O pins  
Table 17. Dynamic characteristics: I/O pins[1]  
Tamb = 40 °C to +85 °C; 3.0 V VDD 3.6 V.  
Symbol  
Parameter  
rise time  
fall time  
Conditions  
Min  
3.0  
2.5  
Typ  
Max  
5.0  
Unit  
ns  
tr  
tf  
pin configured as output  
pin configured as output  
-
-
5.0  
ns  
[1] Applies to standard port pins and RESET pin.  
10.6 I2C-bus  
Table 18. Dynamic characteristic: I2C-bus pins[1]  
Tamb = 40 °C to +85 °C.[2]  
Symbol  
Parameter  
Conditions  
Min  
Max  
100  
400  
1
Unit  
fSCL  
SCL clock  
frequency  
Standard-mode  
Fast-mode  
0
0
0
-
kHz  
kHz  
MHz  
ns  
Fast-mode Plus  
[4][5][6][7]  
tf  
fall time  
of both SDA and SCL  
signals  
300  
Standard-mode  
Fast-mode  
20 + 0.1 × Cb  
300  
ns  
ns  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
ns  
ns  
ns  
Fast-mode Plus  
Standard-mode  
Fast-mode  
-
120  
tLOW  
LOW period of the  
SCL clock  
4.7  
1.3  
0.5  
4.0  
0.6  
0.26  
0
-
-
-
-
-
-
-
-
-
-
-
-
Fast-mode Plus  
Standard-mode  
Fast-mode  
tHIGH  
HIGH period of the  
SCL clock  
Fast-mode Plus  
Standard-mode  
Fast-mode  
[3][4][8]  
[9][10]  
tHD;DAT  
data hold time  
0
Fast-mode Plus  
Standard-mode  
Fast-mode  
0
tSU;DAT  
data set-up time  
250  
100  
50  
Fast-mode Plus  
[1] See the I2C-bus specification UM10204 for details.  
[2] Parameters are valid over operating temperature range unless otherwise specified.  
[3] tHD;DAT is the data hold time that is measured from the falling edge of SCL; applies to data in transmission and the acknowledge.  
[4] A device must internally provide a hold time of at least 300 ns for the SDA signal (with respect to the VIH(min) of the SCL signal) to  
bridge the undefined region of the falling edge of SCL.  
[5] Cb = total capacitance of one bus line in pF.  
[6] The maximum tf for the SDA and SCL bus lines is specified at 300 ns. The maximum fall time for the SDA output stage tf is specified at  
250 ns. This allows series protection resistors to be connected in between the SDA and the SCL pins and the SDA/SCL bus lines  
without exceeding the maximum specified tf.  
[7] In Fast-mode Plus, fall time is specified the same for both output stage and bus timing. If series resistors are used, designers should  
allow for this when considering bus timing.  
LPC1311_13_42_43  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 5 — 6 June 2012  
53 of 74  
LPC1311/13/42/43  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
[8] The maximum tHD;DAT could be 3.45 μs and 0.9 μs for Standard-mode and Fast-mode but must be less than the maximum of tVD;DAT or  
tVD;ACK by a transition time (see UM10204). This maximum must only be met if the device does not stretch the LOW period (tLOW) of the  
SCL signal. If the clock stretches the SCL, the data must be valid by the set-up time before it releases the clock.  
[9] tSU;DAT is the data set-up time that is measured with respect to the rising edge of SCL; applies to data in transmission and the  
acknowledge.  
[10] A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system but the requirement tSU;DAT = 250 ns must then be met.  
This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the  
LOW period of the SCL signal, it must output the next data bit to the SDA line tr(max) + tSU;DAT = 1000 + 250 = 1250 ns (according to the  
Standard-mode I2C-bus specification) before the SCL line is released. Also the acknowledge timing must meet this set-up time.  
t
t
SU;DAT  
f
70 %  
30 %  
70 %  
30 %  
SDA  
SCL  
t
t
HD;DAT  
VD;DAT  
t
f
t
HIGH  
70 %  
30 %  
70 %  
30 %  
70 %  
30 %  
70 %  
30 %  
t
LOW  
1 / f  
S
SCL  
002aaf425  
Fig 28. I2C-bus pins clock timing  
LPC1311_13_42_43  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 5 — 6 June 2012  
54 of 74  
LPC1311/13/42/43  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
10.7 SSP0/1 interface  
Remark: The SSP1 interface is available on the LPC1313FBD48/01 only.  
Table 19. Dynamic characteristics: SSP pins in SPI mode  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
SSP master  
Tcy(clk)  
[1]  
[1]  
[2]  
clock cycle time  
data set-up time  
full-duplex mode  
when only transmitting  
in SPI mode;  
40  
-
-
-
ns  
ns  
ns  
27.8  
15  
tDS  
2.4 V VDD 3.6 V  
2.0 V VDD < 2.4 V  
in SPI mode  
[2]  
[2]  
[2]  
[2]  
20  
0
-
ns  
ns  
ns  
ns  
tDH  
data hold time  
-
tv(Q)  
data output valid time  
data output hold time  
in SPI mode  
-
10  
-
th(Q)  
in SPI mode  
0
SSP slave  
Tcy(PCLK)  
tDS  
PCLK cycle time  
data set-up time  
13.9  
-
ns  
ns  
ns  
ns  
ns  
[3][4]  
[3][4]  
[3][4]  
[3][4]  
in SPI mode  
in SPI mode  
in SPI mode  
in SPI mode  
0
-
tDH  
data hold time  
3 × Tcy(PCLK) + 4  
-
tv(Q)  
data output valid time  
data output hold time  
-
-
3 × Tcy(PCLK) + 11  
2 × Tcy(PCLK) + 5  
th(Q)  
[1] Tcy(clk) = (SSPCLKDIV × (1 + SCR) × CPSDVSR) / fmain. The clock cycle time derived from the SPI bit rate Tcy(clk) is a function of the  
main clock frequency fmain, the SSP peripheral clock divider (SSPCLKDIV), the SSP SCR parameter (specified in the SSP0CR0  
register), and the SSP CPSDVSR parameter (specified in the SSP clock prescale register).  
[2] Tamb = 40 °C to +85 °C.  
[3]  
Tcy(clk) = 12 × Tcy(PCLK).  
[4] Tamb = 25 °C; VDD = 3.3 V.  
LPC1311_13_42_43  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 5 — 6 June 2012  
55 of 74  
LPC1311/13/42/43  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
T
t
t
clk(L)  
cy(clk)  
clk(H)  
SCK (CPOL = 0)  
SCK (CPOL = 1)  
MOSI  
t
t
h(Q)  
v(Q)  
DATA VALID  
DATA VALID  
CPHA = 1  
t
t
DH  
DS  
DATA VALID  
DATA VALID  
MISO  
t
t
h(Q)  
v(Q)  
DATA VALID  
DATA VALID  
t
MOSI  
MISO  
t
CPHA = 0  
DS  
DH  
DATA VALID  
DATA VALID  
002aae829  
Fig 29. SSP master timing in SPI mode  
LPC1311_13_42_43  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 5 — 6 June 2012  
56 of 74  
LPC1311/13/42/43  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
T
t
t
clk(L)  
cy(clk)  
clk(H)  
SCK (CPOL = 0)  
SCK (CPOL = 1)  
t
t
DH  
DS  
MOSI  
MISO  
DATA VALID  
DATA VALID  
t
t
h(Q)  
v(Q)  
CPHA = 1  
DATA VALID  
DATA VALID  
t
t
DH  
DS  
MOSI  
MISO  
DATA VALID  
DATA VALID  
DATA VALID  
t
t
h(Q)  
CPHA = 0  
v(Q)  
DATA VALID  
002aae830  
Fig 30. SSP slave timing in SPI mode  
LPC1311_13_42_43  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 5 — 6 June 2012  
57 of 74  
LPC1311/13/42/43  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
10.8 USB interface (LPC1342/43 only)  
Table 20. Dynamic characteristics: USB pins (full-speed)  
CL = 50 pF; Rpu = 1.5 kΩ on D+ to VDD, unless otherwise specified. 3.0 V VDD 3.6 V  
Symbol  
Parameter  
rise time  
fall time  
Conditions  
10 % to 90 %  
10 % to 90 %  
tr / tf  
Min  
8.5  
7.7  
-
Typ  
Max  
13.8  
13.7  
109  
Unit  
ns  
tr  
-
-
-
tf  
ns  
tFRFM  
differential rise and fall time  
matching  
%
VCRS  
output signal crossover voltage  
source SE0 interval of EOP  
1.3  
160  
2  
-
-
-
2.0  
175  
+5  
V
tFEOPT  
tFDEOP  
see Figure 31  
ns  
ns  
source jitter for differential transition see Figure 31  
to SE0 transition  
tJR1  
receiver jitter to next transition  
18.5  
9  
-
-
-
+18.5  
ns  
ns  
ns  
tJR2  
receiver jitter for paired transitions  
EOP width at receiver  
10 % to 90 %  
+9  
-
[1]  
[1]  
tEOPR1  
must reject as  
EOP; see  
Figure 31  
40  
tEOPR2  
EOP width at receiver  
must accept as  
EOP; see  
82  
-
-
ns  
Figure 31  
[1] Characterized but not implemented as production test. Guaranteed by design.  
T
PERIOD  
crossover point  
extended  
crossover point  
differential  
data lines  
source EOP width: t  
FEOPT  
differential data to  
SE0/EOP skew  
n × T  
+ t  
PERIOD  
FDEOP  
receiver EOP width: t  
, t  
EOPR1 EOPR2  
002aab561  
Fig 31. Differential data-to-EOP transition skew and EOP width  
LPC1311_13_42_43  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 5 — 6 June 2012  
58 of 74  
LPC1311/13/42/43  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
11. Application information  
11.1 Suggested USB interface solutions (LPC1342/43 only)  
V
DD  
USB_CONNECT  
LPC134x  
soft-connect switch  
R1  
1.5 kΩ  
USB_VBUS  
R
= 33 Ω  
= 33 Ω  
S
S
USB-B  
connector  
USB_DP  
USB_DM  
R
V
SS  
002aae608  
Fig 32. LPC1342/43 USB interface on a self-powered device  
V
DD  
LPC134x  
R1  
1.5 kΩ  
USB_VBUS  
USB-B  
connector  
R
= 33 Ω  
= 33 Ω  
S
USB_DP  
R
S
USB_DM  
V
SS  
002aae609  
Fig 33. LPC1342/43 USB interface on a bus-powered device  
11.2 XTAL input  
The input voltage to the on-chip oscillators is limited to 1.8 V. If the oscillator is driven by a  
clock in slave mode, it is recommended that the input be coupled through a capacitor with  
Ci = 100 pF. To limit the input voltage to the specified range, choose an additional  
capacitor to ground Cg which attenuates the input voltage by a factor Ci/(Ci + Cg). In slave  
mode, a minimum of 200 mV(RMS) is needed.  
LPC1311_13_42_43  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 5 — 6 June 2012  
59 of 74  
LPC1311/13/42/43  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
LPC1xxx  
XTALIN  
C
i
C
g
100 pF  
002aae788  
Fig 34. Slave mode operation of the on-chip oscillator  
In slave mode the input clock signal should be coupled by means of a capacitor of 100 pF  
(Figure 34), with an amplitude between 200 mV(RMS) and 1000 mV(RMS). This  
corresponds to a square wave signal with a signal swing of between 280 mV and 1.4 V.  
The XTALOUT pin in this configuration can be left unconnected.  
External components and models used in oscillation mode are shown in Figure 35 and in  
Table 21 and Table 22. Since the feedback resistance is integrated on chip, only a crystal  
and the capacitances CX1 and CX2 need to be connected externally in case of  
fundamental mode oscillation (the fundamental frequency is represented by L, CL and  
RS). Capacitance CP in Figure 35 represents the parallel package capacitance and should  
not be larger than 7 pF. Parameters FOSC, CL, RS and CP are supplied by the crystal  
manufacturer.  
LPC1xxx  
L
XTALIN  
XTALOUT  
C
L
C
P
=
XTAL  
R
S
C
X2  
C
X1  
002aaf424  
Fig 35. Oscillator modes and models: oscillation mode of operation and external crystal  
model used for CX1/CX2 evaluation  
LPC1311_13_42_43  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 5 — 6 June 2012  
60 of 74  
LPC1311/13/42/43  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 21. Recommended values for CX1/CX2 in oscillation mode (crystal and external  
components parameters) low frequency mode  
Fundamental oscillation Crystal load  
Maximum crystal  
External load  
frequency FOSC  
capacitance CL  
series resistance RS  
capacitors CX1, CX2  
1 MHz - 5 MHz  
10 pF  
< 300 Ω  
< 300 Ω  
< 300 Ω  
< 300 Ω  
< 200 Ω  
< 100 Ω  
< 160 Ω  
< 60 Ω  
18 pF, 18 pF  
39 pF, 39 pF  
57 pF, 57 pF  
18 pF, 18 pF  
39 pF, 39 pF  
57 pF, 57 pF  
18 pF, 18 pF  
39 pF, 39 pF  
18 pF, 18 pF  
20 pF  
30 pF  
5 MHz - 10 MHz  
10 pF  
20 pF  
30 pF  
10 MHz - 15 MHz  
15 MHz - 20 MHz  
10 pF  
20 pF  
10 pF  
< 80 Ω  
Table 22. Recommended values for CX1/CX2 in oscillation mode (crystal and external  
components parameters) high frequency mode  
Fundamental oscillation Crystal load  
Maximum crystal  
External load  
frequency FOSC  
capacitance CL  
series resistance RS  
capacitors CX1, CX2  
15 MHz - 20 MHz  
10 pF  
< 180 Ω  
< 100 Ω  
< 160 Ω  
< 80 Ω  
18 pF, 18 pF  
39 pF, 39 pF  
18 pF, 18 pF  
39 pF, 39 pF  
20 pF  
20 MHz - 25 MHz  
10 pF  
20 pF  
11.3 XTAL Printed-Circuit Board (PCB) layout guidelines  
The crystal should be connected on the PCB as close as possible to the oscillator input  
and output pins of the chip. Take care that the load capacitors Cx1, Cx2, and Cx3 in case of  
third overtone crystal usage have a common ground plane. The external components  
must also be connected to the ground plain. Loops must be made as small as possible in  
order to keep the noise coupled in via the PCB as small as possible. Also parasitics  
should stay as small as possible. Values of Cx1 and Cx2 should be chosen smaller  
accordingly to the increase in parasitics of the PCB layout.  
LPC1311_13_42_43  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 5 — 6 June 2012  
61 of 74  
LPC1311/13/42/43  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
11.4 Standard I/O pad configuration  
Figure 36 shows the possible pin modes for standard I/O pins with analog input function:  
Digital output driver  
Digital input: Pull-up enabled/disabled  
Digital input: Pull-down enabled/disabled  
Digital input: Repeater mode enabled/disabled  
Analog input  
V
DD  
ESD  
output enable  
pin configured  
as digital output  
driver  
output  
PIN  
ESD  
V
DD  
V
SS  
weak  
pull-up  
pull-up enable  
weak  
pull-down  
repeater mode  
enable  
pin configured  
as digital input  
pull-down enable  
data input  
select analog input  
pin configured  
as analog input  
analog input  
002aaf304  
Fig 36. Standard I/O pad configuration  
LPC1311_13_42_43  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 5 — 6 June 2012  
62 of 74  
LPC1311/13/42/43  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
11.5 Reset pad configuration  
V
DD  
V
DD  
V
DD  
R
pu  
ESD  
20 ns RC  
GLITCH FILTER  
reset  
PIN  
ESD  
V
SS  
002aaf274  
Fig 37. Reset pad configuration  
11.6 ADC usage notes  
The following guidelines show how to increase the performance of the ADC in a noisy  
environment beyond the ADC specifications listed in Table 8:  
The ADC input trace must be short and as close as possible to the LPC1311/13/42/43  
chip.  
The ADC input traces must be shielded from fast switching digital signals and noisy  
power supply lines.  
Because the ADC and the digital core share the same power supply, the power supply  
line must be adequately filtered.  
To improve the ADC performance in a very noisy environment, put the device in Sleep  
mode during the ADC conversion.  
LPC1311_13_42_43  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 5 — 6 June 2012  
63 of 74  
LPC1311/13/42/43  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
11.7 ElectroMagnetic Compatibility (EMC)  
Radiated emission measurements according to the IEC61967-2 standard using the  
TEM-cell method are shown for the LPC1343FBD48 in Table 23.  
Table 23. ElectroMagnetic Compatibility (EMC) for part LPC1343FBD48 (TEM-cell method)  
VDD = 3.3 V; Tamb = 25 °C.  
Parameter  
Frequency band  
System clock =  
Unit  
12 MHz  
24 MHz  
48 MHz  
72 MHz  
Input clock: IRC (12 MHz)  
maximum  
peak level  
150 kHz - 30 MHz  
6  
5  
7  
7  
dBμV  
30 MHz - 150 MHz  
1  
+3  
O
+3  
+7  
N
+9  
+15  
M
+13  
+19  
L
dBμV  
dBμV  
-
150 MHz - 1 GHz  
-
IEC level[1]  
Input clock: crystal oscillator (12 MHz)  
maximum  
peak level  
150 kHz - 30 MHz  
-5  
5  
7  
7  
dBμV  
30 MHz - 150 MHz  
0
+4  
+8  
N
+9  
+15  
M
+13  
+20  
L
dBμV  
dBμV  
-
150 MHz - 1 GHz  
-
3
IEC level[1]  
O
[1] IEC levels refer to Appendix D in the IEC61967-2 Specification.  
LPC1311_13_42_43  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 5 — 6 June 2012  
64 of 74  
LPC1311/13/42/43  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
12. Package outline  
LQFP48: plastic low profile quad flat package; 48 leads; body 7 x 7 x 1.4 mm  
SOT313-2  
c
y
X
36  
25  
A
E
37  
24  
Z
E
e
H
E
A
2
A
(A )  
3
A
1
w M  
p
θ
pin 1 index  
b
L
p
L
13  
48  
detail X  
1
12  
Z
v M  
D
A
e
w M  
b
p
D
B
H
v
M
B
D
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
D
H
L
L
v
w
y
Z
Z
E
θ
1
2
3
p
E
p
D
max.  
7o  
0o  
0.20 1.45  
0.05 1.35  
0.27 0.18 7.1  
0.17 0.12 6.9  
7.1  
6.9  
9.15 9.15  
8.85 8.85  
0.75  
0.45  
0.95 0.95  
0.55 0.55  
1.6  
mm  
0.25  
0.5  
1
0.2 0.12 0.1  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
00-01-19  
03-02-25  
SOT313-2  
136E05  
MS-026  
Fig 38. Package outline SOT313-2 (LQFP48)  
LPC1311_13_42_43  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 5 — 6 June 2012  
65 of 74  
LPC1311/13/42/43  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
HVQFN33: plastic thermal enhanced very thin quad flat package; no leads;  
33 terminals; body 7 x 7 x 0.85 mm  
D
B
A
terminal 1  
index area  
E
A
A
1
c
detail X  
e
1
C
v
C
C
A
B
e
b
y
1
y
w
C
9
16  
L
8
17  
e
E
e
2
h
33  
1
24  
X
terminal 1  
index area  
32  
25  
0
D
h
2.5  
scale  
5 mm  
v
Dimensions  
Unit  
(1)  
(1)  
(1)  
A
A
b
c
D
D
E
E
e
e
1
e
2
L
w
y
y
1
1
h
h
max 1.00 0.05 0.35  
mm nom 0.85 0.02 0.28 0.2 7.0 4.70 7.0 4.70 0.65 4.55 4.55 0.60 0.1 0.05 0.08 0.1  
min 0.80 0.00 0.23 6.9 4.55 6.9 4.55 0.45  
7.1 4.85 7.1 4.85  
0.75  
Note  
1. Plastic or metal protrusions of 0.075 mm maximum per side are not included.  
hvqfn33_po  
References  
Outline  
version  
European  
projection  
Issue date  
IEC  
JEDEC  
JEITA  
- - -  
09-03-17  
09-03-23  
Fig 39. Package outline (HVQFN33)  
LPC1311_13_42_43  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 5 — 6 June 2012  
66 of 74  
LPC1311/13/42/43  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
13. Soldering  
Footprint information for reflow soldering of LQFP48 package  
SOT313-2  
Hx  
Gx  
(0.125)  
P2  
P1  
Hy Gy  
By  
Ay  
C
D2 (8×)  
D1  
Bx  
Ax  
Generic footprint pattern  
Refer to the package outline drawing for actual layout  
solder land  
occupied area  
DIMENSIONS in mm  
P1 P2 Ax  
Ay  
Bx  
By  
C
D1  
D2  
Gx  
Gy  
Hx  
Hy  
0.500 0.560 10.350 10.350 7.350 7.350 1.500 0.280 0.500 7.500 7.500 10.650 10.650  
sot313-2_fr  
Fig 40. Reflow soldering of the LQFP48 package  
LPC1311_13_42_43  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 5 — 6 June 2012  
67 of 74  
LPC1311/13/42/43  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Footprint information for reflow soldering of HVQFN33 package  
OID = 8.20 OA  
PID = 7.25 PA+OA  
OwDtot = 5.10 OA  
evia = 4.25  
0.20 SR  
chamfer (4×)  
W = 0.30 CU  
e = 0.65  
SPD = 1.00 SP  
0.45 DM  
GapD = 0.70 SP  
evia = 2.40  
B-side  
SDhtot = 2.70 SP  
Solder resist  
covered via  
4.55 SR  
DHS = 4.85 CU  
LbD = 5.80 CU  
LaD = 7.95 CU  
0.30 PH  
0.60 SR cover  
0.60 CU  
(A-side fully covered)  
number of vias: 20  
solder land  
solder land plus solder paste  
solder paste deposit  
occupied area  
solder resist  
Remark:  
Stencil thickness: 0.125 mm  
Dimensions in mm  
001aao134  
Fig 41. Reflow soldering of the HVQFN33 package  
LPC1311_13_42_43  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 5 — 6 June 2012  
68 of 74  
LPC1311/13/42/43  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
14. Abbreviations  
Table 24. Abbreviations  
Acronym  
A/D  
Description  
Analog-to-Digital  
ADC  
AHB  
AMBA  
APB  
BOD  
EOP  
ETM  
FIFO  
GPIO  
HID  
Analog-to-Digital Converter  
Advanced High-performance Bus  
Advanced Microcontroller Bus Architecture  
Advanced Peripheral Bus  
BrownOut Detection  
End Of Packet  
Embedded Trace Macrocell  
First-In, First-Out  
General Purpose Input/Output  
Human Interface Device  
Input/Output  
I/O  
LSB  
Least Significant Bit  
MSC  
PHY  
PLL  
Mass Storage Class  
Physical Layer  
Phase-Locked Loop  
SE0  
Single Ended Zero  
SPI  
Serial Peripheral Interface  
Serial Synchronous Interface  
Synchronous Serial Port  
Start-of-Frame  
SSI  
SSP  
SoF  
TCM  
TTL  
Tightly-Coupled Memory  
Transistor-Transistor Logic  
Universal Asynchronous Receiver/Transmitter  
Universal Serial Bus  
UART  
USB  
LPC1311_13_42_43  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 5 — 6 June 2012  
69 of 74  
LPC1311/13/42/43  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
15. Revision history  
Table 25. Revision history  
Document ID  
Release date  
Data sheet status  
Change notice Supersedes  
LPC1311_13_42_43 v.5  
Modifications:  
20120606  
Product data sheet  
-
LPC1311_13_42_43 v.4  
Parameters VOL, VOH, IOL, IOH updated for voltage range 2.0 V VDD < 2.5 V in  
Table 7.  
Condition “The peak current is limited to 25 times the corresponding maximum  
current.” removed from parameters IDD and ISS in Table 6.  
LPC1311_13_42_43 v.4  
LPC1311_13_42_43 v.3  
LPC1311_13_42_43 v.2  
LPC1311_13_42_43 v.1  
20110620  
Product data sheet  
Product data sheet  
Product data sheet  
Product data sheet  
-
-
-
-
LPC1311_13_42_43 v.3  
LPC1311_13_42_43 v.2  
LPC1311_13_42_43 v.1  
-
20100810  
20100506  
20091211  
LPC1311_13_42_43  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 5 — 6 June 2012  
70 of 74  
LPC1311/13/42/43  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
16. Legal information  
16.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
Suitability for use — NXP Semiconductors products are not designed,  
16.2 Definitions  
authorized or warranted to be suitable for use in life support, life-critical or  
safety-critical systems or equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
to result in personal injury, death or severe property or environmental  
damage. NXP Semiconductors and its suppliers accept no liability for  
inclusion and/or use of NXP Semiconductors products in such equipment or  
applications and therefore such inclusion and/or use is at the customer’s own  
risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Customers are responsible for the design and operation of their applications  
and products using NXP Semiconductors products, and NXP Semiconductors  
accepts no liability for any assistance with applications or customer product  
design. It is customer’s sole responsibility to determine whether the NXP  
Semiconductors product is suitable and fit for the customer’s applications and  
products planned, as well as for the planned application and use of  
customer’s third party customer(s). Customers should provide appropriate  
design and operating safeguards to minimize the risks associated with their  
applications and products.  
Product specification — The information and data provided in a Product  
data sheet shall define the specification of the product as agreed between  
NXP Semiconductors and its customer, unless NXP Semiconductors and  
customer have explicitly agreed otherwise in writing. In no event however,  
shall an agreement be valid in which the NXP Semiconductors product is  
deemed to offer functions and qualities beyond those described in the  
Product data sheet.  
NXP Semiconductors does not accept any liability related to any default,  
damage, costs or problem which is based on any weakness or default in the  
customer’s applications or products, or the application or use by customer’s  
third party customer(s). Customer is responsible for doing all necessary  
testing for the customer’s applications and products using NXP  
Semiconductors products in order to avoid a default of the applications and  
the products or of the application or use by customer’s third party  
customer(s). NXP does not accept any liability in this respect.  
16.3 Disclaimers  
Limited warranty and liability — Information in this document is believed to  
be accurate and reliable. However, NXP Semiconductors does not give any  
representations or warranties, expressed or implied, as to the accuracy or  
completeness of such information and shall have no liability for the  
consequences of use of such information. NXP Semiconductors takes no  
responsibility for the content in this document if provided by an information  
source outside of NXP Semiconductors.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) will cause permanent  
damage to the device. Limiting values are stress ratings only and (proper)  
operation of the device at these or any other conditions above those given in  
the Recommended operating conditions section (if present) or the  
Characteristics sections of this document is not warranted. Constant or  
repeated exposure to limiting values will permanently and irreversibly affect  
the quality and reliability of the device.  
In no event shall NXP Semiconductors be liable for any indirect, incidental,  
punitive, special or consequential damages (including - without limitation - lost  
profits, lost savings, business interruption, costs related to the removal or  
replacement of any products or rework charges) whether or not such  
damages are based on tort (including negligence), warranty, breach of  
contract or any other legal theory.  
Terms and conditions of commercial sale — NXP Semiconductors  
products are sold subject to the general terms and conditions of commercial  
sale, as published at http://www.nxp.com/profile/terms, unless otherwise  
agreed in a valid written individual agreement. In case an individual  
agreement is concluded only the terms and conditions of the respective  
agreement shall apply. NXP Semiconductors hereby expressly objects to  
applying the customer’s general terms and conditions with regard to the  
purchase of NXP Semiconductors products by customer.  
Notwithstanding any damages that customer might incur for any reason  
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards  
customer for the products described herein shall be limited in accordance  
with the Terms and conditions of commercial sale of NXP Semiconductors.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
No offer to sell or license — Nothing in this document may be interpreted or  
construed as an offer to sell products that is open for acceptance or the grant,  
conveyance or implication of any license under any copyrights, patents or  
other industrial or intellectual property rights.  
LPC1311_13_42_43  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 5 — 6 June 2012  
71 of 74  
LPC1311/13/42/43  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from competent authorities.  
whenever customer uses the product for automotive applications beyond  
NXP Semiconductors’ specifications such use shall be solely at customer’s  
own risk, and (c) customer fully indemnifies NXP Semiconductors for any  
liability, damages or failed product claims resulting from customer design and  
use of the product for automotive applications beyond NXP Semiconductors’  
standard warranty and NXP Semiconductors’ product specifications.  
Non-automotive qualified products — Unless this data sheet expressly  
states that this specific NXP Semiconductors product is automotive qualified,  
the product is not suitable for automotive use. It is neither qualified nor tested  
in accordance with automotive testing or application requirements. NXP  
Semiconductors accepts no liability for inclusion and/or use of  
16.4 Trademarks  
non-automotive qualified products in automotive equipment or applications.  
In the event that customer uses the product for design-in and use in  
automotive applications to automotive specifications and standards, customer  
(a) shall use the product without NXP Semiconductors’ warranty of the  
product for such automotive applications, use and specifications, and (b)  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
I2C-bus — logo is a trademark of NXP B.V.  
17. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
LPC1311_13_42_43  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 5 — 6 June 2012  
72 of 74  
LPC1311/13/42/43  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
18. Contents  
1
General description . . . . . . . . . . . . . . . . . . . . . . 1  
7.18.4  
7.18.5  
Wake-up process . . . . . . . . . . . . . . . . . . . . . . 26  
Power control. . . . . . . . . . . . . . . . . . . . . . . . . 27  
2
Features and benefits . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Ordering information. . . . . . . . . . . . . . . . . . . . . 3  
Ordering options. . . . . . . . . . . . . . . . . . . . . . . . 3  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
7.18.5.1 Power profiles (LPC1300L series,  
3
LPC1311/01 and LPC1313/01 only) . . . . . . . 27  
4
4.1  
5
7.18.5.2 Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
7.18.5.3 Deep-sleep mode. . . . . . . . . . . . . . . . . . . . . . 27  
7.18.5.4 Deep power-down mode . . . . . . . . . . . . . . . . 28  
6
6.1  
6.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 6  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . 10  
7.19  
System control . . . . . . . . . . . . . . . . . . . . . . . . 28  
Start logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Brownout detection . . . . . . . . . . . . . . . . . . . . 28  
Code security (Code Read Protection - CRP) 28  
Boot loader. . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
APB interface. . . . . . . . . . . . . . . . . . . . . . . . . 29  
AHB-Lite . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
External interrupt inputs. . . . . . . . . . . . . . . . . 29  
Memory mapping control . . . . . . . . . . . . . . . . 29  
Emulation and debugging . . . . . . . . . . . . . . . 30  
7.19.1  
7.19.2  
7.19.3  
7.19.4  
7.19.5  
7.19.6  
7.19.7  
7.19.8  
7.19.9  
7.20  
7
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
7.6.1  
7.6.2  
7.7  
7.8  
7.8.1  
7.9  
7.9.1  
7.9.1.1  
7.10  
7.10.1  
7.11  
7.11.1  
7.12  
7.12.1  
7.13  
7.13.1  
7.14  
Functional description . . . . . . . . . . . . . . . . . . 17  
Architectural overview . . . . . . . . . . . . . . . . . . 17  
ARM Cortex-M3 processor . . . . . . . . . . . . . . . 17  
On-chip flash program memory . . . . . . . . . . . 17  
On-chip SRAM . . . . . . . . . . . . . . . . . . . . . . . . 17  
Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Nested Vectored Interrupt Controller (NVIC) . 18  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Interrupt sources. . . . . . . . . . . . . . . . . . . . . . . 19  
IOCONFIG block . . . . . . . . . . . . . . . . . . . . . . 19  
Fast general purpose parallel I/O . . . . . . . . . . 19  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
USB interface (LPC1342/43 only) . . . . . . . . . 20  
Full-speed USB device controller . . . . . . . . . . 20  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
UART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
SSP serial I/O controller . . . . . . . . . . . . . . . . . 21  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
I2C-bus serial I/O controller . . . . . . . . . . . . . . 21  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
10-bit ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
General purpose external event  
8
Limiting values . . . . . . . . . . . . . . . . . . . . . . . . 31  
9
9.1  
9.2  
Static characteristics . . . . . . . . . . . . . . . . . . . 32  
BOD static characteristics for LPC1300 series 38  
BOD static characteristics for LPC1300L series  
(LPC1311/01 and LPC1313/01). . . . . . . . . . . 39  
Power consumption for LPC1300 series . . . . 39  
Power consumption for LPC1300L series  
(LPC1311/01 and LPC1313/01). . . . . . . . . . . 42  
Peripheral power consumption . . . . . . . . . . . 45  
Electrical pin characteristics. . . . . . . . . . . . . . 46  
9.3  
9.4  
9.5  
9.6  
10  
Dynamic characteristics. . . . . . . . . . . . . . . . . 50  
Power-up ramp conditions . . . . . . . . . . . . . . . 50  
Flash memory . . . . . . . . . . . . . . . . . . . . . . . . 50  
External clock. . . . . . . . . . . . . . . . . . . . . . . . . 51  
Internal oscillators . . . . . . . . . . . . . . . . . . . . . 52  
I/O pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
I2C-bus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
SSP0/1 interface . . . . . . . . . . . . . . . . . . . . . . 55  
USB interface (LPC1342/43 only) . . . . . . . . . 58  
10.1  
10.2  
10.3  
10.4  
10.5  
10.6  
10.7  
10.8  
counter/timers. . . . . . . . . . . . . . . . . . . . . . . . . 23  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
System tick timer . . . . . . . . . . . . . . . . . . . . . . 23  
Watchdog timer. . . . . . . . . . . . . . . . . . . . . . . . 23  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Windowed WatchDog Timer (WWDT) . . . . . . 24  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Clocking and power control . . . . . . . . . . . . . . 24  
Integrated oscillators . . . . . . . . . . . . . . . . . . . 24  
7.14.1  
7.15  
7.16  
7.16.1  
7.17  
7.17.1  
7.18  
11  
11.1  
Application information . . . . . . . . . . . . . . . . . 59  
Suggested USB interface solutions  
(LPC1342/43 only). . . . . . . . . . . . . . . . . . . . . 59  
XTAL input . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
XTAL Printed-Circuit Board (PCB) layout  
guidelines. . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Standard I/O pad configuration . . . . . . . . . . . 62  
Reset pad configuration. . . . . . . . . . . . . . . . . 63  
ADC usage notes. . . . . . . . . . . . . . . . . . . . . . 63  
ElectroMagnetic Compatibility (EMC) . . . . . . 64  
11.2  
11.3  
7.18.1  
7.18.1.1 Internal RC oscillator . . . . . . . . . . . . . . . . . . . 25  
7.18.1.2 System oscillator . . . . . . . . . . . . . . . . . . . . . . 26  
7.18.1.3 Watchdog oscillator . . . . . . . . . . . . . . . . . . . . 26  
7.18.2  
7.18.3  
11.4  
11.5  
11.6  
11.7  
System PLL and USB PLL . . . . . . . . . . . . . . . 26  
Clock output . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
continued >>  
LPC1311_13_42_43  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 5 — 6 June 2012  
73 of 74  
LPC1311/13/42/43  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
12  
13  
14  
15  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 65  
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 70  
16  
Legal information. . . . . . . . . . . . . . . . . . . . . . . 71  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 71  
Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
16.1  
16.2  
16.3  
16.4  
17  
18  
Contact information. . . . . . . . . . . . . . . . . . . . . 72  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2012.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 6 June 2012  
Document identifier: LPC1311_13_42_43  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY