LPC1500 [NXP]

32-bit ARM Cortex-M3 microcontroller; up to 256 kB flash and 36 kB SRAM;
LPC1500
型号: LPC1500
厂家: NXP    NXP
描述:

32-bit ARM Cortex-M3 microcontroller; up to 256 kB flash and 36 kB SRAM

静态存储器
文件: 总99页 (文件大小:1701K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LPC15xx  
32-bit ARM Cortex-M3 microcontroller; up to 256 kB flash and  
36 kB SRAM; FS USB, CAN, RTC, SPI, USART, I2C  
Rev. 1 — 19 February 2014  
Product data sheet  
1. General description  
The LPC15xx are ARM Cortex-M3 based microcontrollers for embedded applications  
featuring a rich peripheral set with very low power consumption. The ARM Cortex-M3 is a  
next generation core that offers system enhancements such as enhanced debug features  
and a higher level of support block integration.  
The LPC15xx operate at CPU frequencies of up to 72 MHz. The ARM Cortex-M3 CPU  
incorporates a 3-stage pipeline and uses a Harvard architecture with separate local  
instruction and data buses as well as a third bus for peripherals. The ARM Cortex-M3  
CPU also includes an internal prefetch unit that supports speculative branching.  
The LPC15xx includes up to 256 kB of flash memory, 32 kB of ROM, a 4 kB EEPROM,  
and up to 36 kB of SRAM. The peripheral compliment includes one full-speed USB 2.0  
device, two SPI interfaces, three USARTs, one Fast-mode Plus I2C-bus interface, one  
C_CAN module, PWM/timer subsystem with four configurable, multi-purpose State  
Configurable Timers (SCTimer/PWM) with input pre-processing unit, a Real-time clock  
module with independent power supply and a dedicated oscillator, two 12-channel/12-bit,  
2 Msamples/s ADCs, one 12-bit, 500 kSamples/s DAC, four voltage comparators with  
internal voltage reference, and a temperature sensor. A DMA engine can service most  
peripherals.  
For additional documentation related to the LPC15xx parts, see Section 17 “References”.  
2. Features and benefits  
System:  
ARM Cortex-M3 processor (version r2p1), running at frequencies of up to 72 MHz.  
ARM Cortex-M3 built-in Nested Vectored Interrupt Controller (NVIC).  
System tick timer.  
Serial Wire Debug (SWD) with four breakpoints and two watchpoints.  
Single-cycle multiplier supported.  
Memory Protection Unit (MPU) included.  
Memory:  
Up to 256 kB on-chip flash programming memory with 256 Byte page write and  
erase.  
Up to 36 kB SRAM.  
4 kB EEPROM.  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
ROM API support:  
Boot loader with boot options from flash or external source via USART, C_CAN, or  
USB  
USB drivers  
ADC drivers  
SPI drivers  
USART drivers  
I2C drivers  
Power profiles and power mode configuration with low-power mode configuration  
option  
DMA drivers  
C_CAN drivers  
Flash In-Application Programming (IAP) and In-System Programming (ISP).  
Digital peripherals:  
Simple DMA engine with 18 channels and 20 programmable input triggers.  
High-speed GPIO interface with up to 76 General-Purpose I/O (GPIO) pins with  
configurable pull-up/pull-down resistors, open-drain mode, input inverter, and  
programmable digital glitch filter.  
GPIO interrupt generation capability with boolean pattern-matching feature on eight  
external inputs.  
Two GPIO grouped port interrupts.  
Switch matrix for flexible configuration of each I/O pin function.  
CRC engine.  
Quadrature Encoder Interface (QEI).  
Configurable PWM/timer/motor control subsystem:  
Up to four 32-bit counter/timers or up to eight 16-bit counter/timers or combinations  
of 16-bit and 32-bit timers.  
Up to 28 match outputs and 22 configurable capture inputs with input multiplexer.  
Up to 28 PWM outputs total.  
Dither engine for improved average resolution of pulse edges.  
Four State Configurable Timers (SCTimers) for highly flexible, event-driven timing  
and PWM applications.  
SCT Input Pre-processor Unit (SCTIPU) for processing timer inputs and immediate  
handling of abort situations.  
Integrated with ADC threshold compare interrupts, temperature sensor, and analog  
comparator outputs for motor control feedback using analog signals.  
Special-application and simple timers:  
24-bit, four-channel, multi-rate timer (MRT) for repetitive interrupt generation at up  
to four programmable, fixed rates.  
Repetitive interrupt timer for general purpose use.  
Windowed Watchdog timer (WWDT).  
High-resolution 32-bit Real-time clock (RTC) with selectable 1 s or 1 ms time  
resolution running in the always-on power domain. RTC can be used for wake-up  
from all low power modes including Deep power-down.  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
2 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Analog peripherals:  
Two 12-bit ADC with up to 12 input channels per ADC and with multiple internal  
and external trigger inputs and sample rates of up to 2 Msamples/s. Each ADC  
supports two independent conversion sequences. ADC conversion clock can be  
the system clock or an asynchronous clock derived from one of the three PLLs.  
One 12-bit DAC.  
Integrated temperature sensor and band gap internal reference voltage.  
Four comparators with external and internal voltage references (ACMP0 to 3).  
Comparator outputs are internally connected to the SCTimer/PWMs and ADCs and  
externally to pins. Each comparator output contains a programmable glitch filter.  
Serial interfaces:  
Three USART interfaces with DMA, RS-485 support, autobaud, and with  
synchronous mode and 32 kHz mode for wake-up from Deep-sleep and  
Power-down modes. The USARTs share a fractional baud-rate generator.  
Two SPI controllers.  
One I2C-bus interface supporting fast mode and Fast-mode Plus with data rates of  
up to 1Mbit/s and with multiple address recognition and monitor mode.  
One C_CAN controller.  
One USB 2.0 full-speed device controller with on-chip PHY.  
Clock generation:  
12 MHz internal RC oscillator trimmed to 1 % accuracy for 25 C Tamb +85 C  
that can optionally be used as a system clock.  
Crystal oscillator with an operating range of 1 MHz to 25 MHz.  
Watchdog oscillator with a frequency range of 503 kHz.  
32 kHz low-power RTC oscillator with 32 kHz, 1 kHz, and 1 Hz outputs.  
System PLL allows CPU operation up to the maximum CPU rate without the need  
for a high-frequency crystal. May be run from the system oscillator or the internal  
RC oscillator.  
Two additional PLLs for generating the USB and SCTimer/PWM clocks.  
Clock output function with divider that can reflect the crystal oscillator, the main  
clock, the IRC, or the watchdog oscillator.  
Power control:  
Integrated PMU (Power Management Unit) to minimize power consumption.  
Reduced power modes: Sleep mode, Deep-sleep mode, Power-down mode, and  
Deep power-down mode.  
APIs provided for optimizing power consumption in active and sleep modes and for  
configuring Deep-sleep, Power-down, and Deep power-down modes.  
Wake-up from Deep-sleep and Power-down modes on activity on USB, USART,  
SPI, and I2C peripherals.  
Wake-up from Sleep, Deep-sleep, Power-down, and Deep power-down modes  
from the RTC alarm or wake-up interrupts.  
Timer-controlled self wake-up from Deep power-down mode using the RTC  
high-resolution/wake-up 1 kHz timer.  
Power-On Reset (POR).  
BrownOut Detect BOD).  
JTAG boundary scan modes supported.  
Unique device serial number for identification.  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
3 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Single power supply 2.4 V to 3.6 V.  
Temperature range 40 °C to +105 °C.  
Available as LQFP100, LQFP64, and LQFP48 packages.  
3. Applications  
Motor control  
Solar inverters  
Motion drives  
Home appliances  
Digital power supplies  
Industrial and medical  
Building and factory automation  
4. Ordering information  
Table 1.  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
LPC1549JBD100  
LPC1549JBD64  
LPC1549JBD48  
LPC1548JBD100  
LPC1548JBD64  
LPC1547JBD64  
LPC1547JBD48  
LPC1519JBD100  
LPC1519JBD64  
LPC1518JBD100  
LPC1518JBD64  
LPC1517JBD64  
LPC1517JBD48  
LQFP100 plastic low profile quad flat package; 100 leads; body 14 14 1.4 mm  
LQFP64 plastic low profile quad flat package; 64 leads; body 10 10 1.4 mm  
LQFP48 plastic low profile quad flat package; 48 leads; body 7 7 1.4 mm  
LQFP100 plastic low profile quad flat package; 100 leads; body 14 14 1.4 mm  
LQFP64 plastic low profile quad flat package; 64 leads; body 10 10 1.4 mm  
LQFP64 plastic low profile quad flat package; 64 leads; body 10 10 1.4 mm  
LQFP48 plastic low profile quad flat package; 48 leads; body 7 7 1.4 mm  
LQFP100 plastic low profile quad flat package; 100 leads; body 14 14 1.4 mm  
LQFP64 plastic low profile quad flat package; 64 leads; body 10 10 1.4 mm  
LQFP100 plastic low profile quad flat package; 100 leads; body 14 14 1.4 mm  
LQFP64 plastic low profile quad flat package; 64 leads; body 10 10 1.4 mm  
LQFP64 plastic low profile quad flat package; 64 leads; body 10 10 1.4 mm  
LQFP48 plastic low profile quad flat package; 48 leads; body 7 7 1.4 mm  
SOT407-1  
SOT314-2  
SOT313-2  
SOT407-1  
SOT314-2  
SOT314-2  
SOT313-2  
SOT407-1  
SOT314-2  
SOT407-1  
SOT314-2  
SOT314-2  
SOT313-2  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
4 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
4.1 Ordering options  
Table 2.  
Ordering options for LPC15xx  
Flash/ EEPROM/ Total  
Type number  
USB USART I2C SPI C_CAN SCTimer/ 12-bit  
DAC GPIO  
kB  
kB  
SRAM/  
kB  
PWM  
ADC0/1  
channels  
LPC1549JBD100 256  
LPC1549JBD64 256  
LPC1549JBD48 256  
LPC1548JBD100 128  
LPC1548JBD64 128  
LPC1547JBD64 64  
LPC1547JBD48 64  
LPC1519JBD100 256  
LPC1519JBD64 256  
LPC1518JBD100 128  
LPC1518JBD64 128  
LPC1517JBD64 64  
LPC1517JBD48 64  
4
4
4
4
4
4
4
4
4
4
4
4
4
36  
36  
36  
20  
20  
12  
12  
36  
36  
20  
20  
12  
12  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
no  
3
3
3
3
3
3
3
3
3
3
3
3
3
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
4
4
4
4
4
4
4
4
4
4
4
4
4
12/12  
12/12  
9/7  
1
1
1
1
1
1
1
1
1
1
1
1
1
76  
44  
30  
76  
44  
44  
30  
78  
46  
78  
46  
46  
32  
12/12  
12/12  
12/12  
9/7  
12/12  
12/12  
12/12  
12/12  
12/12  
9/7  
no  
no  
no  
no  
no  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
5 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
5. Marking  
n
n
1
1
Terminal 1 index area  
Terminal 1 index area  
aaa-011231  
aaa-011232  
Fig 1. LQFP64/100 package marking  
Fig 2. LQFP48 package marking  
The LPC15xx devices typically have the following top-side marking for LQFP100  
packages:  
LPC15xxJxxx  
Xxxxxx xx  
xxxyywwxxx  
The LPC15xx devices typically have the following top-side marking for LQFP64 packages:  
LPC15xxJ  
Xxxxxx xx  
xxxyywwxxx  
The LPC15xx devices typically have the following top-side marking for LQFP48 packages:  
LPC15xxJ  
Xxxxxx  
Xxxyy  
wwxxx  
Field ‘yy’ states the year the device was manufactured. Field ‘ww’ states the week the  
device was manufactured during that year.  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
6 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
6. Block diagram  
LPC15xx  
PROCESSOR CORE  
TEST/DEBUG INTERFACE  
SWD/ETM  
ARM  
CORTEX-M3  
NVIC  
MPU  
SYSTICK  
HS GPIO  
PORT0/1/2  
MEMORY  
256/128/64 kB FLASH  
AHB MULTILAYER  
MATRIX  
4 kB EEPROM  
PINT/  
PATTERN MATCH  
INPUT MUX  
n
pads  
36/20/12 kB SRAM  
32 kB ROM  
GINT0/1  
AHB/APB BRIDGES  
ANALOG PERIPHERALS  
ACMP1  
ACMP2  
ACMP3  
ACMP0/  
TEMPERATURE  
SENSOR  
12-bit ADC0  
TRIGGER MUX  
12-bit ADC1  
TRIGGER MUX  
12-bit DAC  
INPUT MUX  
INPUT MUX  
SWM  
n
pads  
SCTIMER/PWM/MOTOR CONTROL SUBSYSTEM  
DMA TRIGGER  
DMA  
SCTIMER0/ SCTIMER1/ SCTIMER2/ SCTIMER3/  
QEI  
PWM  
PWM  
PWM  
PWM  
SCTIPU  
SERIAL PERIPHERALS  
C_CAN  
USART0  
USART1  
FM+ I2C0  
USART2  
SPI1  
SPI0  
FS USB/  
PHY  
TIMERS  
MRT  
RIT  
WWDT  
RTC  
CLOCK  
GENERATION  
PRECISION  
IRC  
WATCHDOG  
OSCILLATOR  
SYSTEM  
OSCILLATOR  
RTC  
OSCILLATOR  
SYSTEM  
PLL  
USB  
PLL  
SCT  
PLL  
FREQUENCY  
MEASUREMENT  
INPUT MUX  
SYSTEM/MEMORY CONTROL  
SYSCON IOCON  
PMU  
CRC  
FLASH CTRL  
EEPROM CTRL  
aaa-010869  
Grey-shaded blocks show peripherals that can provide hardware triggers for DMA transfers or have DMA request lines.  
Fig 3. LPC15xx Block diagram  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
7 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
7. Pinning information  
7.1 Pinning  
PIO0_22/I2C0_SCL 37  
PIO0_23/I2C0_SDA 38  
24 PIO0_16/ADC1_9  
23 PIO0_15/ADC1_8  
V
39  
40  
41  
42  
22 PIO0_14/ADC1_7/ SCT1_OUT5  
21 PIO0_13/ADC1_6  
DD  
V
V
SS  
SS  
DD  
20 V  
SS  
V
19 PIO0_12/DAC_OUT  
18 PIO0_11/ADC1_3  
LPC1547JBD48  
LPC1549JBD48  
PIO0_24/SCT0_OUT6 43  
PIO0_25/ACMP0_I4 44  
17 V  
16 V  
SSA  
DDA  
PIO0_26/ACMP0_I3/ SCT3_OUT3 45  
PIO0_27/ACMP_I1 46  
15 PIO0_10/ADC1_2  
PIO0_28/ACMP1_I3 47  
14 VREFP_DAC_VDDCMP  
13 PIO0_18/ SCT0_OUT5  
PIO0_29/ACMP2_I3/ SCT2_OUT4 48  
aaa-009352  
Fig 4. LQFP48 pin configuration (with USB)  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
8 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
PIO0_22/I2C0_SCL 37  
PIO0_23/I2C0_SDA 38  
24 PIO0_16/ADC1_9  
23 PIO0_15/ADC1_8  
V
39  
40  
41  
42  
22 PIO0_14/ADC1_7/ SCT1_OUT5  
21 PIO0_13/ADC1_6  
DD  
V
V
SS  
SS  
DD  
20 V  
SS  
V
19 PIO0_12/DAC_OUT  
18 PIO0_11/ADC1_3  
LPC1517JBD48  
PIO0_24/SCT0_OUT6 43  
PIO0_25/ACMP0_I4 44  
17 V  
16 V  
SSA  
DDA  
PIO0_26/ACMP0_I3/ SCT3_OUT3 45  
PIO0_27/ACMP_I1 46  
15 PIO0_10/ADC1_2  
PIO0_28/ACMP1_I3 47  
14 VREFP_DAC_VDDCMP  
13 PIO0_18/ SCT0_OUT5  
PIO0_29/ACMP2_I3/ SCT2_OUT4 48  
aaa-009354  
Fig 5. LQFP48 pin configuration (without USB)  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
9 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
PIO0_22 49  
PIO0_23 50  
PIO1_7 51  
32 PIO0_16  
31 PIO0_15  
30 PIO0_14  
29 PIO0_13  
28 PIO1_3  
V
DD  
52  
PIO1_8 53  
PIO1_9 54  
27 V  
26 V  
SS  
SS  
V
V
55  
56  
57  
SS  
SS  
DD  
LPC1549JBD64  
LPC1548JBD64  
LPC1547JBD64  
25 PIO1_2  
24 PIO0_12  
23 PIO0_11  
V
PIO0_24 58  
PIO1_10 59  
PIO0_25 60  
PIO0_26 61  
PIO0_27 62  
PIO0_28 63  
PIO0_29 64  
22 V  
21 V  
20 V  
DD  
SSA  
DDA  
19 PIO0_10  
18 VREFP_DAC_VDDCMP  
17 PIO0_18  
aaa-009353  
See Table 3 for the full pin name.  
Fig 6. LQFP64 pin configuration (with USB)  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
10 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
PIO0_22 49  
PIO0_23 50  
PIO1_7 51  
32 PIO0_16  
31 PIO0_15  
30 PIO0_14  
29 PIO0_13  
28 PIO1_3  
V
DD  
52  
PIO1_8 53  
PIO1_9 54  
27 V  
26 V  
SS  
SS  
V
V
55  
56  
57  
SS  
SS  
DD  
LPC1519JBD64  
LPC1518JBD64  
LPC1517JBD64  
25 PIO1_2  
24 PIO0_12  
23 PIO0_11  
V
PIO0_24 58  
PIO1_10 59  
PIO0_25 60  
PIO0_26 61  
PIO0_27 62  
PIO0_28 63  
PIO0_29 64  
22 V  
21 V  
20 V  
DD  
SSA  
DDA  
19 PIO0_10  
18 VREFP_DAC_VDDCMP  
17 PIO0_18  
aaa-009376  
Fig 7. LQFP64 pin configuration (without USB)  
76  
50  
LPC1548JBD100  
LPC1518JBD100  
100  
26  
aaa-009351  
Fig 8. LQFP100 pin configuration  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
11 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
7.2 Pin description  
Most pins are configurable for multiple functions, which can be analog or digital. Digital  
inputs can be connected to several peripherals at once, however only one digital output or  
one analog function can be assigned to any on pin. The pin’s connections to internal  
peripheral blocks are configured by the switch matrix (SWM), the input multiplexer (INPUT  
MUX), and the SCT Input Pre-processor Unit (SCTIPU).  
The switch matrix enables certain fixed-pin functions that can only reside on specific pins  
(see Table 3) and assigns all other pin functions (movable functions) to any available pin  
(see Table 4), so that the pinout can be optimized for a given application.  
The input mux provides many choices (pins and internal signals) for selecting the inputs of  
the SCTimer/PWMs and the frequency measure block. Pins that are connected to the  
input mux are listed in Table 5. If a pin is selected in the input mux, it is directly connected  
to the peripheral input without being routed through the switch matrix. Independently of  
being selected in the input mux, the same pin can also be assigned by the switch matrix to  
another peripheral input.  
Four pins can also be connected directly to the SCTIPU and at the same time be inputs to  
the input mux and the switch matrix (see Table 5).  
Table 3.  
Symbol  
Pin description with fixed-pin functions  
Reset Type Description  
state[1]  
[2]  
[2]  
[2]  
[2]  
[2]  
PIO0_0/ADC0_10/  
SCT0_OUT3  
1
2
3
4
5
2
5
6
7
2
I; PU  
I; PU  
I; PU  
I; PU  
I; PU  
IO  
A
PIO0_0 — General purpose port 0 input/output 0.  
ADC0_10 — ADC0 input 10.  
O
SCT0_OUT3 — SCTimer0/PWM output 3.  
PIO0_1 — General purpose port 0 input/output 1.  
ADC0_7 — ADC0 input 7.  
PIO0_1/ADC0_7/  
SCT0_OUT4  
6
IO  
A
O
SCT0_OUT4 — SCTimer0/PWM output 4.  
PIO0_2 — General purpose port 0 input/output 2.  
ADC0_6 — ADC0 input 6.  
PIO0_2/ADC0_6/  
SCT1_OUT3  
8
IO  
O
SCT1_OUT3 — SCTimer1/PWM output 3.  
PIO0_3 — General purpose port 0 input/output 3.  
ADC0_5 — ADC0 input 5.  
PIO0_3/ADC0_5/  
SCT1_OUT4  
10  
IO  
A
O
SCT1_OUT4 — SCTimer1/PWM output 4.  
PIO0_4/ADC0_4  
PIO0_5/ADC0_3  
8
9
13  
14  
IO  
PIO0_4 — General purpose port 0 input/output 4. This is  
the ISP_0 boot pin for the LQFP48 package.  
A
ADC0_4 — ADC0 input 4.  
[2]  
[2]  
6
7
I; PU  
I; PU  
IO  
A
PIO0_5 — General purpose port 0 input/output 5.  
ADC0_3 — ADC0 input 3.  
PIO0_6/ADC0_2/  
SCT2_OUT3  
10 16  
11 17  
IO  
A
PIO0_6 — General purpose port 0 input/output 6.  
ADC0_2 — ADC0 input 2.  
O
IO  
A
SCT2_OUT3 — SCTimer2/PWM output 3.  
PIO0_7 — General purpose port 0 input/output 7.  
ADC0_1 — ADC0 input 1.  
[2]  
PIO0_7/ADC0_1  
8
I; PU  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
12 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 3.  
Symbol  
Pin description with fixed-pin functions  
Reset Type Description  
state[1]  
[2]  
[2]  
PIO0_8/ADC0_0/TDO  
PIO0_9/ADC1_1/TDI  
9
12 19  
I; PU  
I; PU  
IO  
PIO0_8 — General purpose port 0 input/output 8.  
In boundary scan mode: TDO (Test Data Out).  
ADC0_0 — ADC0 input 0.  
A
12 16 24  
IO  
PIO0_9 — General purpose port 0 input/output 9.  
In boundary scan mode: TDI (Test Data In).  
ADC1_1 — ADC1 input 1.  
A
[2]  
[2]  
PIO0_10/ADC1_2  
PIO0_11/ADC1_3  
15 19 28  
18 23 33  
I; PU  
I; PU  
IO  
A
PIO0_10 — General purpose port 0 input/output 10.  
ADC1_2 — ADC1 input 2.  
IO  
PIO0_11 — General purpose port 0 input/output 11.  
On the LQFP64 package, this pin is assigned to  
CAN0_RD in ISP C_CAN mode.  
A
ADC1_3 — ADC1 input 3.  
[3]  
[2]  
PIO0_12/DAC_OUT  
PIO0_13/ADC1_6  
19 24 35  
I; PU  
I; PU  
IO  
PIO0_12 — General purpose port 0 input/output 12. If this  
pin is configured as a digital input, the input voltage level  
must not be higher than VDDA  
.
A
DAC_OUT — DAC analog output.  
21 29 43  
IO  
PIO0_13 — General purpose port 0 input/output 13.  
On the LQFP64 package, this pin is assigned to U0_RXD  
in ISP USART mode.  
On the LQFP48 package, this pin is assigned to  
CAN0_RD in ISP C_CAN mode.  
A
ADC1_6 — ADC1 input 6.  
[2]  
PIO0_14/ADC1_7/  
SCT1_OUT5  
22 30 45  
I; PU  
I; PU  
IO  
PIO0_14 — General purpose port 0 input/output 14.  
On the LQFP48 package, this pin is assigned to U0_RXD  
in ISP USART mode.  
A
ADC1_7 — ADC1 input 7.  
O
IO  
SCT1_OUT5 — SCTimer1/PWM output 5.  
PIO0_15 — General purpose port 0 input/output 15.  
[2]  
PIO0_15/ADC1_8  
PIO0_16/ADC1_9  
23 31 47  
On the LQFP48 package, this pin is assigned to U0_TXD  
in ISP USART mode.  
A
ADC1_8 — ADC1 input 8.  
[2]  
[4]  
24 32 49  
28 39 61  
I; PU  
I; PU  
IO  
PIO0_16 — General purpose port 0 input/output 16.  
On the LQFP48 package, this is the ISP_1 boot pin.  
ADC1_9 — ADC1 input 9.  
A
PIO0_17/WAKEUP/  
TRST  
IO  
PIO0_17 — General purpose port 0 input/output 17. In  
boundary scan mode: TRST (Test Reset).  
This pin triggers a wake-up from Deep power-down mode.  
For wake up from Deep power-down mode via an external  
pin, do not assign any movable function to this pin. Pull  
this pin HIGH externally while in Deep power-down mode.  
Pull this pin LOW to exit Deep power-down mode. A  
LOW-going pulse as short as 50 ns wakes up the part.  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
13 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 3.  
Symbol  
Pin description with fixed-pin functions  
Reset Type Description  
state[1]  
[5]  
PIO0_18/  
13 17 26  
I; PU  
IO  
PIO0_18 — General purpose port 0 input/output 18.  
SCT0_OUT5  
On the LQFP64 package, this pin is assigned to U0_TXD  
in ISP USART mode.  
On the LQFP48 package, this pin is assigned to  
CAN0_TD in ISP C_CAN mode.  
O
I
SCT0_OUT5 — SCTimer0/PWM output 5.  
[5]  
[5]  
SWCLK/  
PIO0_19/TCK  
29 40 63  
I; PU  
I; PU  
SWCLK — Serial Wire Clock. SWCLK is enabled by  
default on this pin.  
In boundary scan mode: TCK (Test Clock).  
IO  
PIO0_19 — General purpose port 0 input/output 19.  
SWDIO/  
33 44 69  
I/O  
SWDIO — Serial Wire Debug I/O. SWDIO is enabled by  
PIO0_20/SCT1_OUT6/  
TMS  
default on this pin.  
In boundary scan mode: TMS (Test Mode Select).  
PIO0_20 — General purpose port 0 input/output 20.  
SCT1_OUT6 — SCTimer1/PWM output 6.  
I/O  
O
I
[6]  
RESET/PIO0_21  
34 45 71  
I; PU  
RESET — External reset input: A LOW-going pulse as  
short as 50 ns on this pin resets the device, causing I/O  
ports and peripherals to take on their default states, and  
processor execution to begin at address 0.  
In deep power-down mode, this pin must be pulled HIGH  
externally. The RESET pin can be left unconnected or be  
used as a GPIO or for any movable function if an external  
RESET function is not needed and the Deep power-down  
mode is not used.  
I/O  
IO  
PIO0_21 — General purpose port 0 input/output 21.  
PIO0_22 — General purpose port 0 input/output 22.  
I2C0_SCL — I2C-bus clock input/output. High-current sink  
if I2C Fast-mode Plus is selected in the I/O configuration  
register.  
[7]  
[7]  
[8]  
PIO0_22/I2C0_SCL  
PIO0_23/I2C0_SDA  
37 49 78  
38 50 79  
43 58 90  
IA  
I/O  
IA  
IO  
PIO0_23 — General purpose port 0 input/output 23.  
I/O  
I2C0_SDA — I2C-bus data input/output. High-current sink  
if I2C Fast-mode Plus is selected in the I/O configuration  
register.  
PIO0_24/SCT0_OUT6  
PIO0_25/ACMP0_I4  
I; PU  
IO  
PIO0_24 — General purpose port 0 input/output 24.  
High-current output driver.  
O
IO  
A
SCT0_OUT6 — SCTimer0/PWM output 6.  
[2]  
[2]  
44 60 93  
45 61 95  
I; PU  
I; PU  
PIO0_25 — General purpose port 0 input/output 25.  
ACMP0_I4 — Analog comparator 0 input 4.  
PIO0_26 — General purpose port 0 input/output 26.  
ACMP0_I3 — Analog comparator 0 input 3.  
SCT3_OUT3 — SCTimer3/PWM output 3.  
PIO0_26/ACMP0_I3/  
SCT3_OUT3  
IO  
A
O
IO  
A
[2]  
PIO0_27/ACMP_I1  
46 62 97  
I; PU  
PIO0_27 — General purpose port 0 input/output 27.  
ACMP_I1 — Analog comparator common input 1.  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
14 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 3.  
Symbol  
Pin description with fixed-pin functions  
Reset Type Description  
state[1]  
[2]  
[2]  
PIO0_28/ACMP1_I3  
47 63 98  
48 64 100  
I; PU  
I; PU  
IO  
A
PIO0_28 — General purpose port 0 input/output 28.  
ACMP1_I3 — Analog comparator 1 input 3.  
PIO0_29 — General purpose port 0 input/output 29.  
ACMP2_I3 — Analog comparator 2 input 3.  
SCT2_OUT4 — SCTimer2/PWM output 4.  
PIO0_30 — General purpose port 0 input/output 30.  
ADC0_11 — ADC0 input 11.  
PIO0_29/ACMP2_I3/  
SCT2_OUT4  
IO  
A
O
[2]  
[2]  
PIO0_30/ADC0_11  
PIO0_31/ADC0_9  
-
-
1
3
1
3
I; PU  
I; PU  
IO  
A
IO  
PIO0_31 — General purpose port 0 input/output 31.  
On the LQFP64 package, this pin is assigned to  
CAN0_TD in ISP C_CAN mode.  
A
ADC0_9 — ADC0 input 9.  
[2]  
[2]  
[2]  
[2]  
[2]  
[2]  
[2]  
[2]  
[2]  
PIO1_0/ADC0_8  
PIO1_1/ADC1_0  
PIO1_2/ADC1_4  
PIO1_3/ADC1_5  
PIO1_4/ADC1_10  
PIO1_5/ADC1_11  
PIO1_6/ACMP_I2  
PIO1_7/ACMP3_I4  
-
-
-
-
-
-
-
-
-
4
5
I; PU  
I; PU  
I; PU  
I; PU  
I; PU  
I; PU  
I; PU  
I; PU  
I; PU  
IO  
A
PIO1_0 — General purpose port 1 input/output 0.  
ADC0_8 — ADC0 input 8.  
15 23  
25 36  
28 41  
33 51  
34 52  
46 73  
51 81  
53 84  
IO  
A
PIO1_1 — General purpose port 1 input/output 1.  
ADC1_0 — ADC1 input 0.  
IO  
A
PIO1_2 — General purpose port 1 input/output 2.  
ADC1_4 — ADC1 input 4.  
IO  
A
PIO1_3 — General purpose port 1 input/output 3.  
ADC1_5 — ADC1 input 5.  
IO  
A
PIO1_4 — General purpose port 1 input/output 4.  
ADC1_10 — ADC1 input 10.  
IO  
A
PIO1_5 — General purpose port 1 input/output 5.  
ADC1_11 — ADC1 input 11.  
IO  
A
PIO1_6 — General purpose port 1 input/output 6.  
ACMP_I2 — Analog comparator common input 2.  
PIO1_7 — General purpose port 1 input/output 7.  
ACMP3_I4 — Analog comparator 3 input 4.  
PIO1_8 — General purpose port 1 input/output 8.  
ACMP3_I3 — Analog comparator 3 input 3.  
SCT3_OUT4 — SCTimer3/PWM output 4.  
PIO1_9 — General purpose port 1 input/output 9.  
On the LQFP64 package, this is the ISP_0 boot pin.  
ACMP2_I4 — Analog comparator 2 input 4.  
PIO1_10 — General purpose port 1 input/output 10.  
ACMP1_I4 — Analog comparator 1 input 4.  
PIO1_11 — General purpose port 1 input/output 11.  
On the LQFP64 package, this is the ISP_1 boot pin.  
PIO1_12 — General purpose port 1 input/output 12.  
PIO1_13 — General purpose port 1 input/output 13.  
IO  
A
PIO1_8/ACMP3_I3/  
SCT3_OUT4  
IO  
A
O
[2]  
PIO1_9/ACMP2_I4  
-
54 85  
I; PU  
IO  
A
[2]  
[5]  
PIO1_10/ACMP1_I4  
PIO1_11  
-
-
59 91  
38 58  
I; PU  
I; PU  
IO  
A
IO  
[5]  
[5]  
PIO1_12  
PIO1_13  
-
-
-
-
9
I; PU  
I; PU  
IO  
IO  
11  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
15 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 3.  
Symbol  
Pin description with fixed-pin functions  
Reset Type Description  
state[1]  
[5]  
PIO1_14/SCT0_OUT7  
-
-
12  
I; PU  
IO  
O
PIO1_14 — General purpose port 1 input/output 14.  
SCT0_OUT7 — SCTimer0/PWM output 7.  
[5]  
[5]  
[5]  
PIO1_15  
-
-
-
-
-
-
15  
18  
20  
I; PU  
I; PU  
I; PU  
IO  
IO  
IO  
O
PIO1_15 — General purpose port 1 input/output 15.  
PIO1_16 — General purpose port 1 input/output 16.  
PIO1_17 — General purpose port 1 input/output 17.  
SCT1_OUT7 — SCTimer1/PWM output 7.  
PIO1_16  
PIO1_17/SCT1_OUT7  
[5]  
[5]  
[5]  
PIO1_18  
-
-
-
-
-
-
25  
29  
34  
I; PU  
I; PU  
I; PU  
IO  
IO  
IO  
O
PIO1_18 — General purpose port 1 input/output 18.  
PIO1_19 — General purpose port 1 input/output 19.  
PIO1_20 — General purpose port 1 input/output 20.  
SCT2_OUT5 — SCTimer2/PWM output 5.  
PIO1_19  
PIO1_20/SCT2_OUT5  
[5]  
[5]  
[5]  
[5]  
PIO1_21  
-
-
-
-
-
-
-
-
37  
38  
42  
44  
I; PU  
I; PU  
I; PU  
I; PU  
IO  
IO  
IO  
IO  
O
PIO1_21 — General purpose port 1 input/output 21.  
PIO1_22 — General purpose port 1 input/output 22.  
PIO1_23 — General purpose port 1 input/output 23.  
PIO1_24 — General purpose port 1 input/output 24.  
SCT3_OUT5 — SCTimer3/PWM output 5.  
PIO1_22  
PIO1_23  
PIO1_24/SCT3_OUT5  
[5]  
[5]  
[5]  
[5]  
[5]  
[5]  
[5]  
[5]  
[5]  
[5]  
[5]  
[5]  
PIO1_25  
PIO1_26  
PIO1_27  
PIO1_28  
PIO1_29  
PIO1_30  
PIO1_31  
PIO2_0  
PIO2_1  
PIO2_2  
PIO2_3  
PIO2_4  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
46  
48  
50  
55  
56  
59  
60  
62  
64  
72  
76  
77  
I; PU  
I; PU  
I; PU  
I; PU  
I; PU  
I; PU  
I; PU  
I; PU  
I; PU  
I; PU  
I; PU  
I; PU  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
PIO1_25 — General purpose port 1 input/output 25.  
PIO1_26 — General purpose port 1 input/output 26.  
PIO1_27 — General purpose port 1 input/output 27.  
PIO1_28 — General purpose port 1 input/output 28.  
PIO1_29 — General purpose port 1 input/output 29.  
PIO1_30 — General purpose port 1 input/output 30.  
PIO1_31 — General purpose port 1 input/output 31.  
PIO2_0 — General purpose port 2 input/output 0.  
PIO2_1 — General purpose port 2 input/output 1.  
PIO2_2 — General purpose port 2 input/output 2.  
PIO2_3 — General purpose port 2 input/output 3.  
PIO2_4 — General purpose port 2 input/output 4.  
On the LQFP100 package, this is the ISP_1 boot pin.  
PIO2_5 — General purpose port 2 input/output 5.  
On the LQFP100 package, this is the ISP_0 boot pin.  
PIO2_6 — General purpose port 2 input/output 6.  
[5]  
[5]  
PIO2_5  
PIO2_6  
-
-
-
-
80  
82  
I; PU  
I; PU  
IO  
IO  
On the LQFP100 package, this pin is assigned to U0_TXD  
in ISP USART mode.  
[5]  
[5]  
PIO2_7  
PIO2_8  
-
-
-
-
86  
92  
I; PU  
I; PU  
IO  
IO  
PIO2_7 — General purpose port 2 input/output 7.  
On the LQFP100 package, this pin is assigned to  
U0_RXD in ISP USART mode.  
PIO2_8 — General purpose port 2 input/output 8.  
On the LQFP100 package, this pin is assigned to  
CAN0_TD in ISP C_CAN mode.  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
16 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 3.  
Symbol  
Pin description with fixed-pin functions  
Reset Type Description  
state[1]  
[5]  
PIO2_9  
-
-
94  
I; PU  
IO  
PIO2_9 — General purpose port 2 input/output 9.  
On the LQFP100 package, this pin is assigned to  
CAN0_RD in ISP C_CAN mode.  
[5]  
[5]  
[5]  
PIO2_10  
PIO2_11  
PIO2_12  
-
-
-
-
96  
99  
I; PU  
I; PU  
I; PU  
IO  
IO  
IO  
PIO2_10 — General purpose port 2 input/output 10.  
PIO2_11 — General purpose port 2 input/output 11.  
35 47 74  
36 48 75  
35 47 74  
36 48 75  
31 42 66  
PIO2_12 — General purpose port 2 input/output 12. On  
parts LPC1519/17/18 only.  
[5]  
PIO2_13  
USB_DP  
USB_DM  
RTCXIN  
I; PU  
IO  
IO  
IO  
PIO2_13 — General purpose port 2 input/output 13. On  
parts LPC1519/17/18 only.  
[10]  
[10]  
[9]  
-
-
-
USB bidirectional D+ line. Pad includes internal 33  
series termination resistor. On parts LPC1549/48/47 only.  
USB bidirectional Dline. Pad includes internal 33 Ω  
series termination resistor. On parts LPC1549/48/47 only.  
RTC oscillator input. This input should be grounded if the  
RTC is not used.  
[9]  
[9]  
RTCXOUT  
XTALIN  
32 43 67  
26 36 54  
-
-
RTC oscillator output.  
Input to the oscillator circuit and internal clock generator  
circuits. Input voltage must not exceed 1.8 V.  
[9]  
XTALOUT  
VBAT  
25 35 53  
30 41 65  
-
-
Output from the oscillator amplifier.  
Battery supply voltage. If no battery is used, tie VBAT to  
VDD or to ground.  
VDDA  
16 20 30  
-
-
Analog supply voltage. VDD and the analog reference  
voltages VREFP_ADC and VREFP_DAC_VDDCMP must  
not exceed the voltage level on VDDA. VDDAshould typically  
be the same voltages as VDD but should be isolated to  
minimize noise and error. VDDA should be tied to VDD if the  
ADC is not used.  
VDD  
39, 22, 4,  
27, 52, 32,  
42 37, 70,  
57 83,  
57,  
3.3 V supply voltage (2.4 V to 3.6 V). The voltage level on  
VDD must be equal or lower than the analog supply  
voltage VDDA  
.
89  
[9]  
VREFP_DAC_VDDCMP 14 18 27  
-
-
DAC positive reference voltage and analog comparator  
reference voltage. The voltage level on  
VREFP_DAC_VDDCMP must be equal to or lower than  
the voltage applied to VDDA  
ADC and DAC negative voltage reference. If the ADC is  
not used, tie VREFN to VSS  
.
VREFN  
11 14 22  
.
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
17 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 3.  
Symbol  
Pin description with fixed-pin functions  
Reset Type Description  
state[1]  
VREFP_ADC  
10 13 21  
-
ADC positive reference voltage. The voltage level on  
VREFP_ADC must be equal to or lower than the voltage  
applied to VDDA. If the ADC is not used, tie VREFP_ADC  
to VDD  
.
VSSA  
17 21 31  
-
-
Analog ground. VSSAshould typically be the same voltage  
as VSS but should be isolated to minimize noise and error.  
VSSA should be tied to VSS if the ADC is not used.  
VSS  
41, 56, 88,  
20, 26, 7,  
40 27, 39,  
55 40,  
68,  
Ground.  
87  
[1] Pin state at reset for default function: I = Input; O = Output; PU = internal pull-up enabled; IA = inactive, no pull-up/down enabled;  
F = floating; If the pins are not used, tie floating pins to ground or power to minimize power consumption.  
[2] 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors, configurable hysteresis, and analog input.  
When configured as analog input, digital section of the pad is disabled and the pin is not 5 V tolerant. This pin includes a 10 ns on/off  
glitch filter. By default, the glitch filter is turned on.  
[3] This pin is not 5 V tolerant due to special analog functionality. When configured for a digital function, this pin is 3 V tolerant and provides  
standard digital I/O functions with configurable internal pull-up and pull-down resistors and hysteresis. When configured for DAC_OUT,  
the digital section of the pin is disabled and this pin is a 3 V tolerant analog output. This pin includes a 10 ns on/off glitch filter. By default,  
the glitch filter is turned on.  
[4] 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors, and configurable hysteresis. This pin  
includes a 10 ns on/off glitch filter. By default, the glitch filter is turned on. This pin is powered in deep power-down mode and can wake  
up the part.  
[5] 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors and configurable hysteresis.  
[6] 5 V tolerant pad. RESET functionality is not available in Deep power-down mode. Use the WAKEUP pin to reset the chip and wake up  
from Deep power-down mode. An external pull-up resistor is required on this pin for the Deep power-down mode.  
[7] I2C-bus pins compliant with the I2C-bus specification for I2C standard mode, I2C Fast-mode, and I2C Fast-mode Plus.  
[8] 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors and configurable hysteresis; includes  
high-current output driver.  
[9] Special analog pin.  
[10] Pad provides USB functions. It is designed in accordance with the USB specification, revision 2.0 (Full-speed and Low-speed mode  
only). This pad is not 5 V tolerant.  
Table 4.  
Movable functions  
Function name  
U0_TXD  
Type  
Description  
O
I
Transmitter output for USART0.  
Receiver input for USART0.  
U0_RXD  
U0_RTS  
O
I
Request To Send output for USART0.  
Clear To Send input for USART0.  
Serial clock input/output for USART0 in synchronous mode.  
Transmitter output for USART1.  
Receiver input for USART1.  
U0_CTS  
U0_SCLK  
U1_TXD  
I/O  
O
I
U1_RXD  
U1_RTS  
O
Request To Send output for USART1.  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
18 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 4.  
Movable functions …continued  
Function name  
U1_CTS  
Type  
I
Description  
Clear To Send input for USART1.  
Serial clock input/output for USART1 in synchronous mode.  
Transmitter output for USART2.  
Receiver input for USART2.  
Serial clock input/output for USART1 in synchronous mode.  
Serial clock for SPI0.  
U1_SCLK  
I/O  
O
U2_TXD  
U2_RXD  
I
U2_SCLK  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
SPI0_SCK  
SPI0_MOSI  
SPI0_MISO  
SPI0_SSEL0  
SPI0_SSEL1  
SPI0_SSEL2  
SPI0_SSEL3  
SPI1_SCK  
Master Out Slave In for SPI0.  
Master In Slave Out for SPI0.  
Slave select 0 for SPI0.  
Slave select 1 for SPI0.  
Slave select 2 for SPI0.  
Slave select 3 for SPI0.  
Serial clock for SPI1.  
SPI1_MOSI  
SPI1_MISO  
SPI1_SSEL0  
SPI1_SSEL1  
CAN0_TD  
Master Out Slave In for SPI1.  
Master In Slave Out for SPI1.  
Slave select 0 for SPI1.  
Slave select 1 for SPI1.  
CAN0 transmit.  
CAN0_RD  
I
CAN0 receive.  
USB_VBUS  
SCT0_OUT0  
SCT0_OUT1  
SCT0_OUT2  
SCT1_OUT0  
SCT1_OUT1  
SCT1_OUT2  
SCT2_OUT0  
SCT2_OUT1  
SCT2_OUT2  
SCT3_OUT0  
SCT3_OUT1  
SCT3_OUT2  
SCT_ABORT0  
SCT_ABORT1  
ADC0_PINTRIG0  
ADC0_PINTRIG1  
ADC1_PINTRIG0  
ADC1_PINTRIG1  
DAC_PINTRIG  
DAC_SHUTOFF  
ACMP0_O  
I
USB VBUS.  
O
SCTimer0/PWM output 0.  
SCTimer0/PWM output 1.  
SCTimer0/PWM output 2.  
SCTimer1/PWM output 0.  
SCTimer1/PWM output 1.  
SCTimer1/PWM output 2.  
SCTimer2/PWM output 0.  
SCTimer2/PWM output 1.  
SCTimer2/PWM output 2.  
SCTimer3/PWM output 0.  
SCTimer3/PWM output 1.  
SCTimer3/PWM output 2.  
SCT abort 0.  
O
O
O
O
O
O
O
O
O
O
O
I
I
SCT abort 1.  
I
ADC0 external pin trigger input 0.  
ADC0 external pin trigger input 1.  
ADC1 external pin trigger input 0.  
ADC1 external pin trigger input 1.  
DAC external pin trigger input.  
DAC shut-off external input.  
Analog comparator 0 output.  
I
I
I
I
I
O
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
19 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 4.  
Movable functions …continued  
Function name  
ACMP1_O  
Type  
O
Description  
Analog comparator 1 output.  
Analog comparator 2 output.  
Analog comparator 3 output.  
Clock output.  
ACMP2_O  
O
ACMP3_O  
O
CLKOUT  
O
ROSC  
O
Analog comparator ring oscillator output.  
Analog comparator ring oscillator reset.  
ROSC_RESET  
USB_FTOGGLE  
I
O
USB frame toggle. Do not assign this function to a pin until a USB  
device is connected and the first SOF interrupt has been received  
by the device.  
QEI_PHA  
QEI_PHB  
QEI_IDX  
I
QEI phase A input.  
I
QEI phase B input.  
I
QEI index input.  
GPIO_INT_BMAT  
SWO  
O
O
Output of the pattern match engine.  
Serial wire output.  
Table 5.  
Symbol  
Pins connected to the INPUT MUX and SCT IPU  
Description  
PIO0_2/ADC0_6/SCT1_OUT3  
PIO0_3/ADC0_5/SCT1_OUT4  
PIO0_4/ADC0_4  
3
4
5
6
8
6
8
SCT0 input mux  
7
10 SCT0 input mux  
13 SCT2 input mux  
14 FREQMEAS  
8
PIO0_5/ADC0_3  
9
PIO0_7/ADC0_1  
11  
17 SCT3 input mux  
PIO0_14/ADC1_7/SCT1_OUT5  
PIO0_15/ADC1_8  
22 30 45 SCTIPU input SAMPLE_IN_A0  
23 31 47 SCT1 input mux  
24 32 49 SCT1 input mux  
28 39 61 SCT0 input mux  
29 40 63 FREQMEAS  
PIO0_16/ADC1_9  
PIO0_17/WAKEUP/TRST  
SWCLK/PIO0_19/TCK  
RESET/PIO0_21  
34 45 71 SCT1 input mux  
44 60 93 SCTIPU input SAMPLE_IN_A1  
46 62 97 SCT2 input mux  
PIO0_25/ACMP0_I4  
PIO0_27/ACMP_I1  
PIO0_30/ADC0_11  
-
1
1
FREQMEAS  
SCT0 input mux  
SCT1 input mux  
PIO0_31/ADC0_9  
PIO1_4/ADC1_10  
PIO1_5/ADC1_11  
PIO1_6/ACMP_I2  
PIO1_7/ACMP3_I4  
PIO1_11  
-
-
-
-
-
-
3
3
33 51 SCT1 input mux  
34 52 SCT1 input mux  
46 73 SCT0 input mux  
51 81 SCT0 input mux  
38 58 SCT3 input mux  
SCTIPU input SAMPLE_IN_A2  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
20 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 5.  
Pins connected to the INPUT MUX and SCT IPU  
Symbol  
Description  
PIO1_12  
PIO1_13  
PIO1_15  
PIO1_16  
PIO1_18  
PIO1_19  
PIO1_21  
PIO1_22  
PIO1_26  
PIO1_27  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
9
SCT0 input mux  
SCT0 input mux  
11  
12 SCT1 input mux  
18 SCT1 input mux  
25 SCT2 input mux  
29 SCT2 input mux  
37 SCT3 input mux  
38 SCT3 input mux  
48 SCTIPU input SAMPLE_IN_A3  
50 FREQMEAS  
8. Functional description  
8.1 ARM Cortex-M3 processor  
The ARM Cortex-M3 is a general purpose, 32-bit microprocessor, which offers high  
performance and very low power consumption. The ARM Cortex-M3 offers many new  
features, including a Thumb-2 instruction set, low interrupt latency, hardware division,  
hardware single-cycle multiply, interruptible/continuable multiple load and store  
instructions, automatic state save and restore for interrupts, tightly integrated interrupt  
controller, and multiple core buses capable of simultaneous accesses.  
Pipeline techniques are employed so that all parts of the processing and memory systems  
can operate continuously. Typically, while one instruction is being executed, its successor  
is being decoded, and a third instruction is being fetched from memory.  
The ARM Cortex-M3 processor is described in detail in the Cortex-M3 Technical  
Reference Manual, which is available on the official ARM website.  
8.2 Memory Protection Unit (MPU)  
The LPC15xx have a Memory Protection Unit (MPU) which can be used to improve the  
reliability of an embedded system by protecting critical data within the user application.  
The MPU allows separating processing tasks by disallowing access to each other's data,  
disabling access to memory regions, allowing memory regions to be defined as read-only  
and detecting unexpected memory accesses that could potentially break the system.  
The MPU separates the memory into distinct regions and implements protection by  
preventing disallowed accesses. The MPU supports up to eight regions each of which can  
be divided into eight subregions. Accesses to memory locations that are not defined in the  
MPU regions, or not permitted by the region setting, will cause the Memory Management  
Fault exception to take place.  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
21 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
8.3 On-chip flash programming memory  
The LPC15xx contain up to 256 kB on-chip flash program memory. The flash can be  
programmed using In-System Programming (ISP) or In-Application Programming (IAP)  
via the on-chip boot loader software. Flash updates via USB are supported as well.  
The flash memory is divided into 4 kB sectors with each sector consisting of 16 pages.  
Individual pages of 256 byte each can be erased using the IAP erase page command.  
8.3.1 ISP pin configuration  
The LPC15xx supports ISP via the USART0, C_CAN, or USB interfaces. The ISP mode is  
determined by the state of two pins (ISP_0 and ISP_1) at boot time:  
Table 6.  
ISP modes  
ISP_0  
Boot mode  
No ISP  
ISP_1  
Description  
HIGH  
HIGH  
ISP bypassed. Part attempts to boot  
from flash. If the user code in flash is  
not valid, then enters ISP via USB.  
C_CAN  
USB  
HIGH  
LOW  
LOW  
LOW  
HIGH  
LOW  
Part enters ISP via C_CAN.  
Part enters ISP via USB.  
Part enters ISP via USART0.  
USART0  
The ISP pin assignment is different for each package, so that the fewest functions  
possible are blocked. No more than four pins must be set aside for entering ISP in any  
ISP mode. The boot code assigns two ISP pins for each package, which are probed when  
the part boots to determine whether or not to enter ISP mode. Once the ISP mode has  
been determined, the boot loader configures the necessary serial pins for each package.  
Pins which are not configured by the boot loader for the selected boot mode (for example  
CAN0_RD and CAN0_TD in USART mode) can be assigned to any function through the  
switch matrix.  
Table 7.  
Boot pin  
ISP_0  
Pin assignments for ISP modes  
LQFP48  
PIO0_4  
PIO0_16  
LQFP64  
PIO1_9  
PIO1_11  
LQFP100  
PIO2_5  
PIO2_4  
ISP_1  
USART mode  
U0_TXD  
PIO0_15  
PIO0_14  
PIO0_18  
PIO0_13  
PIO2_6  
PIO2_7  
U0_RXD  
C_CAN mode  
CAN0_TD  
PIO0_18  
PIO0_13  
PIO0_31  
PIO0_11  
PIO2_8  
PIO2_9  
CAN0_RD  
USB mode  
USB_VBUS (same as ISP_1)  
PIO0_16  
PIO1_11  
PIO2_4  
8.4 EEPROM  
The LPC15xx contain 4 kB of on-chip byte-erasable and byte-programmable EEPROM  
data memory. The EEPROM can be programmed using In-Application Programming (IAP)  
via the on-chip boot loader software.  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
22 of 99  
LPC15xx  
NXP Semiconductors  
8.5 SRAM  
32-bit ARM Cortex-M3 microcontroller  
The LPC15xx contain a total 36 kB, 20 kB or 12 kB of contiguous, on-chip static RAM  
memory. For each SRAM configuration, the SRAM is divided into three blocks: 2 x 16 kB +  
4 kB for 36 kB SRAM, 2 x 8 kB + 4 kB for 20 kB SRAM, and 2 x 4 kB + 4 kB for 12 kB  
SRAM. The bottom 16 kB, 8 kB, or 4 kB are enabled by the bootloader and cannot be  
disabled. The next two SRAM blocks in each configuration can be disabled or enabled  
individually in the SYSCON block to save power.  
Table 8.  
LPC15xx SRAM configurations  
SRAM0  
SRAM1  
SRAM2  
LPC1549/19 (total SRAM = 36 kB)  
address range  
0x0200 0000 to  
0x0200 3FFF  
0x0200 4000 to  
0x0200 7FFF  
0x0200 8000 to  
0x0200 8FFF  
size  
16 kB  
16 kB  
4 kB  
control  
default  
cannot be disabled  
enabled  
disable/enable  
enabled  
disable/enable  
enabled  
LPC1548/18 (total SRAM = 20 kB)  
address range  
0x0200 0000 to  
0x0200 1FFF  
0x0200 2000 to  
0x0200 3FFF  
0x0200 4000 to  
0x0200 4FFF  
size  
8 kB  
8 kB  
4 kB  
control  
default  
cannot be disabled  
enabled  
disable/enable  
enabled  
disable/enable  
enabled  
LPC1547/17 (total SRAM = 12 kB)  
address range  
0x0200 0000 to  
0x0200 0FFF  
0x0200 1000 to  
0x0200 1FFF  
0x0200 2000 to  
0x0200 2FFF  
size  
4 kB  
4 kB  
4 kB  
control  
default  
cannot be disabled  
enabled  
disable/enable  
enabled  
disable/enable  
enabled  
8.6 On-chip ROM  
The on-chip ROM contains the boot loader and the following Application Programming  
Interfaces (APIs):  
In-System Programming (ISP) and In-Application Programming (IAP) support for flash  
including IAP erase page command.  
IAP support for EEPROM.  
Flash updates via USB and C_CAN supported.  
USB API (HID, CDC, and MSC drivers).  
DMA, I2C, USART, SPI, and C_CAN drivers.  
Power profiles for configuring power consumption and PLL settings.  
Power mode configuration for configuring deep-sleep, power-down, and deep  
power-down modes.  
ADC drivers for analog-to-digital conversion and ADC calibration.  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
23 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
8.7 AHB multilayer matrix  
TEST/DEBUG  
INTERFACE  
ARM  
CORTEX-M3  
USB  
DMA  
masters  
System  
bus  
I-code D-code  
bus  
bus  
slaves  
FLASH  
SRAM0  
SRAM1  
SRAM2  
ROM  
EEPROM  
HS GPIO  
SCTIMER0/PWM  
SCTIMER1/PWM  
SCTIMER2/PWM  
SCTIMER3/PWM  
CRC  
AHB-TO-APB  
BRIDGE0  
DAC  
ACMP  
INPUT MUX  
RTC  
ADC0  
WWDT  
SWM  
PMU  
USART1 USART2  
SPI0  
SPI1  
I2C0  
QEI  
SYSCON  
AHB-TO-APB  
BRIDGE1  
AHB MULTILAYER MATRIX  
PINT  
GINT1  
GINT0  
ADC1  
MRT  
SCTIPU  
USART2  
RIT  
FLASH CTRL  
C_CAN  
IOCON  
EEPROM CTRL  
= master-slave connection  
aaa-010870  
Fig 9. AHB multilayer matrix  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
24 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
8.8 Memory map  
APB peripherals  
0x400F 0000  
EEPROM CTRL  
0x400F C000  
IOCON  
31  
30  
29  
28  
27  
26  
25:17  
16  
15  
14  
13  
12  
11  
10  
9
0x400F 8000  
reserved  
0x400F 4000  
C_CAN  
LPC15xx  
0x400F 0000  
reserved  
4 GB  
0xFFFF FFFF  
0x400E C000  
reserved  
reserved  
0x400E 8000  
0xE010 0000  
0xE000 0000  
reserved  
USART2  
flash ctrl FMC  
SCTIPU  
RIT  
0x400C 4000  
0x400C 0000  
0x400B C000  
0x400B 8000  
0x400B 4000  
0x400B 0000  
0x400A C000  
0x400A 8000  
0x400A 4000  
0x400A 0000  
0x4008 4000  
private peripheral bus  
reserved  
0x400F 0000  
APB peripherals 1  
APB peripherals 0  
0x4008 0000  
0x4000 0000  
reserved  
GINT1  
reserved  
GINT0  
0x1C02 8000  
0x1C02 4000  
PINT  
SCTimer3/PWM  
SCTimer2/PWM  
MRT  
8
reserved  
ADC1  
0x1C02 0000  
0x1C01 C000  
0x1C01 8000  
7:1  
0
SCTimer1/PWM  
SCTimer0/PWM  
reserved  
0x4008 0000  
0x4008 0000  
31:30  
29  
reserved  
SYSCON  
reserved  
QEI  
0x4007 8000  
0x4007 4000  
0x4005 C000  
0x4005 8000  
0x4005 4000  
0x4005 0000  
0x4004 C000  
0x4004 8000  
0x4004 4000  
0x4004 0000  
0x4003 C000  
0x4003 8000  
0x4003 0000  
0x4002 C000  
0x4002 8000  
0x4001 C000  
0x4001 8000  
0x4001 4000  
0x4000 C000  
0x4000 8000  
0x4000 4000  
0x4000 0000  
0x1C01 4000  
0x1C01 0000  
28:23  
22  
CRC  
USB  
reserved  
DMA  
reserved  
I2C0  
21  
0x1C00 C000  
0x1C00 8000  
20  
SPI1  
19  
0x1C00 4000  
0x1C00 0000  
GPIO  
SPI0  
18  
reserved  
USART1  
USART0  
PMU  
17  
0x1000 0000  
16  
reserved  
4 kB EEPROM  
reserved  
0x0320 1000  
0x0320 0000  
15  
switch matrix SWM  
reserved  
WWDT  
14  
0x0300 8000  
0x0300 0000  
13:12  
11  
32 kB boot ROM  
RTC  
10  
reserved  
reserved  
reserved  
INPUT MUX  
reserved  
9:7  
6
0x0200 9000  
0x0200 5000  
0x0200 3000  
0x0200 0000  
36 kB SRAM (LPC1549/19)  
20 kB SRAM (LPC1548/18)  
12 kB SRAM (LPC1547/17)  
5
4:3  
analog comparators ACMP  
2
1
0
DAC  
reserved  
ADC0  
0x0004 0000  
256 kB flash  
0x0000 00C0  
active interrupt vectors  
0x0000 0000  
0x0000 0000  
0 GB  
aaa-010871  
See Section 8.5 “SRAM” for SRAM configuration.  
Fig 10. Memory map  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
25 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
8.9 Nested Vectored Interrupt controller (NVIC)  
The Nested Vectored Interrupt Controller (NVIC) is part of the Cortex-M3. The tight  
coupling to the CPU allows for low interrupt latency and efficient processing of late arriving  
interrupts.  
8.9.1 Features  
Nested Vectored Interrupt Controller that is an integral part of the ARM Cortex-M3.  
Tightly coupled interrupt controller provides low interrupt latency.  
Controls system exceptions and peripheral interrupts.  
The NVIC supports 47 vectored interrupts.  
Eight programmable interrupt priority levels with hardware priority level masking.  
Software interrupt generation using the ARM exceptions SVCall and PendSV.  
Support for NMI.  
ARM Cortex-M3 Vector table offset register VTOR implemented.  
8.9.2 Interrupt sources  
Typically, each peripheral device has one interrupt line connected to the NVIC but can  
have several interrupt flags. Individual interrupt flags can also represent more than one  
interrupt source.  
8.10 IOCON block  
The IOCON block configures the electrical properties of the pins such as pull-up and  
pull-down resistors, hysteresis, open-drain modes and input filters.  
Remark: The pin function and whether the pin operates in digital or analog mode are  
entirely under the control of the switch matrix.  
Enabling an analog function through the switch matrix disables the digital pad. However,  
the internal pull-up and pull-down resistors as well as the pin hysteresis must be disabled  
to obtain an accurate reading of the analog input.  
8.10.1 Features  
Programmable pull-up, pull-down, or repeater mode.  
All pins (except PIO0_22 and PIO0_23) are pulled up to 3.3 V (VDD = 3.3 V) if their  
pull-up resistor is enabled.  
Programmable pseudo open-drain mode.  
Programmable (on/off) 10 ns glitch filter on 36 pins (PIO0_0 to PIO0_17, PIO0_25 to  
PIO0_31, PIO1_0 to PIO1_10). The glitch filter is turned on by default.  
Programmable hysteresis.  
Programmable input inverter.  
Digital filter with programmable filter constant on all pins.  
8.10.2 Standard I/O pad configuration  
Figure 11 shows the possible pin modes for standard I/O pins with analog input function:  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
26 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Digital output driver with configurable open-drain output  
Digital input: Weak pull-up resistor (PMOS device) enabled/disabled  
Digital input: Weak pull-down resistor (NMOS device) enabled/disabled  
Digital input: Repeater mode enabled/disabled  
Digital input: Input digital filter configurable on all pins  
Digital input: Input glitch filter enabled/disabled on select pins  
Analog input  
V
V
DD  
DD  
open-drain enable  
output enable  
strong  
pull-up  
ESD  
data output  
PIN  
pin configured  
as digital output  
driver  
strong  
pull-down  
ESD  
V
SS  
V
DD  
weak  
pull-up  
pull-up enable  
weak  
pull-down  
repeater mode  
enable  
pull-down enable  
data input  
PROGRAMMABLE  
DIGITAL FILTER  
10 ns GLITCH  
FILTER  
pin configured  
as digital input  
select data  
inverter  
select glitch  
filter  
select analog input  
analog input  
pin configured  
as analog input  
aaa-010776  
Fig 11. Standard I/O pin configuration  
8.11 Switch Matrix (SWM)  
The switch matrix controls the function of each digital or mixed analog/digital pin in a  
highly flexible way by allowing to connect many functions like the USART, SPI, SCT, and  
I2C functions to any pin that is not power or ground. These functions are called movable  
functions and are listed in Table 4.  
Functions that need specialized pads like the ADC or analog comparator inputs can be  
enabled or disabled through the switch matrix. These functions are called fixed-pin  
functions and cannot move to other pins. The fixed-pin functions are listed in Table 3. If a  
fixed-pin function is disabled, any other movable function can be assigned to this pin.  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
27 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
8.12 Fast General-Purpose parallel I/O (GPIO)  
Device pins that are not connected to a specific peripheral function through the switch  
matrix are controlled by the GPIO registers. Pins may be dynamically configured as inputs  
or outputs. Multiple outputs can be set or cleared in one write operation.  
LPC15xx use accelerated GPIO functions.  
An entire port value can be written in one instruction.  
Mask, set, and clear operations are supported for the entire port.  
8.12.1 Features  
Bit level port registers allow a single instruction to set and clear any number of bits in  
one write operation.  
Direction control of individual bits.  
8.13 Pin interrupt/pattern match engine (PINT)  
The pin interrupt block configures up to eight pins from the digital pins on ports 1 and 2 for  
providing eight external interrupts connected to the NVIC. The input mux block is used to  
select the pins.  
The pattern match engine can be used, in conjunction with software, to create complex  
state machines based on pin inputs.  
Any digital pin on ports 0 and 1 can be configured through the SYSCON block as input to  
the pin interrupt or pattern match engine. The registers that control the pin interrupt or  
pattern match engine are located on the IO+ bus for fast single-cycle access.  
8.13.1 Features  
Pin interrupts  
Up to eight pins can be selected from all digital pins on ports 0 and 1 as edge- or  
level-sensitive interrupt requests. Each request creates a separate interrupt in the  
NVIC.  
Edge-sensitive interrupt pins can interrupt on rising or falling edges or both.  
Level-sensitive interrupt pins can be HIGH- or LOW-active.  
Pin interrupts can wake up the part from sleep mode, deep-sleep mode, and  
power-down mode.  
Pin interrupt pattern match engine  
Up to 8 pins can be selected from all digital pins on ports 0 and 1 to contribute to a  
boolean expression. The boolean expression consists of specified levels and/or  
transitions on various combinations of these pins.  
Each minterm (product term) comprising the specified boolean expression can  
generate its own, dedicated interrupt request.  
Any occurrence of a pattern match can be programmed to also generate an RXEV  
notification to the ARM CPU.  
The pattern match engine does not facilitate wake-up.  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
28 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
8.14 GPIO group interrupts (GINT0/1)  
The GPIO pins can be used in several ways to set pins as inputs or outputs and use the  
inputs as combinations of level and edge sensitive interrupts. For each port/pin connected  
to one of the two the GPIO Grouped Interrupt blocks (GINT0 and GINT1), the GPIO  
grouped interrupt registers determine which pins are enabled to generate interrupts and  
what the active polarities of each of those inputs are.  
The GPIO grouped interrupt registers also select whether the interrupt output will be level  
or edge triggered and whether it will be based on the OR or the AND of all of the enabled  
inputs.  
When the designated pattern is detected on the selected input pins, the GPIO grouped  
interrupt block generates an interrupt. If the part is in a power-savings mode, it first  
asynchronously wakes the part up prior to asserting the interrupt request. The interrupt  
request line can be cleared by writing a one to the interrupt status bit in the control  
register.  
8.14.1 Features  
Two group interrupts are supported to reflect two distinct interrupt patterns.  
The inputs from any number of digital pins can be enabled to contribute to a combined  
group interrupt.  
The polarity of each input enabled for the group interrupt can be configured HIGH or  
LOW.  
Enabled interrupts can be logically combined through an OR or AND operation.  
The grouped interrupts can wake up the part from sleep, deep-sleep or power-down  
modes.  
8.15 DMA controller  
The DMA controller can access all memories and the USART, SPI, I2C, and DAC  
peripherals using DMA requests. DMA transfers can also be triggered by internal events  
like the ADC interrupts, the SCT DMA request signals, or the analog comparator outputs.  
8.15.1 Features  
18 channels with 14 channels connected to peripheral request inputs.  
DMA operations can be triggered by on-chip events. Each DMA channel can select  
one trigger input from 24 sources through the input mux.  
Priority is user selectable for each channel.  
Continuous priority arbitration.  
Address cache with four entries.  
Efficient use of data bus.  
Supports single transfers up to 1,024 words.  
Address increment options allow packing and/or unpacking data.  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
29 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
8.16 Input multiplexing (Input mux)  
The input mux allows to select from multiple external and internal sources for the SCT  
inputs, DMA trigger inputs, and the frequency measure block. The input mux is  
implemented as a register interface with one source selection register for each input. The  
input mux can for example connect SCT outputs, the ADC interrupts, or the comparator  
outputs to the SCT inputs and thus enables the SCT to use a large variety of events to  
control the timing operation.  
The ADCs and analog comparators also support input multiplexing using source selection  
registers as part of their configuration registers.  
8.17 USB interface  
Remark: The USB interface is available on parts LPC1549/48/47 only.  
The Universal Serial Bus (USB) is a 4-wire bus that supports communication between a  
host and one or more (up to 127) peripherals. The host controller allocates the USB  
bandwidth to attached devices through a token-based protocol. The bus supports  
hot-plugging and dynamic configuration of the devices. All transactions are initiated by the  
host controller.  
The USB interface consists of a full-speed device controller with on-chip PHY (PHYsical  
layer) for device functions.  
Remark: Configure the part in default power mode with the power profiles before using  
the USB (see Section 8.40.1). Do not use the USB when the part runs in performance,  
efficiency, or low-power mode.  
8.17.1 Full-speed USB device controller  
The device controller enables 12 Mbit/s data exchange with a USB Host controller. It  
consists of a register interface, serial interface engine, and endpoint buffer memory. The  
serial interface engine decodes the USB data stream and writes data to the appropriate  
endpoint buffer. The status of a completed USB transfer or error condition is indicated via  
status registers. An interrupt is also generated if enabled.  
8.17.1.1 Features  
Dedicated USB PLL available.  
Fully compliant with USB 2.0 specification (full speed).  
Supports 10 physical (5 logical) endpoints including one control endpoint.  
Single and double buffering supported.  
Each non-control endpoint supports bulk, interrupt, or isochronous endpoint types.  
Supports wake-up from Deep-sleep mode and Power-down mode on USB activity  
and remote wake-up.  
Supports SoftConnect functionality through internal pull-up resistor.  
Internal 33 series termination resistors on USB_DP and USB_DM lines eliminate  
the need for external series resistors.  
Supports Link Power Management (LPM).  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
30 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
8.18 USART0/1/2  
Remark: All USART functions are movable functions and are assigned to pins through  
the switch matrix. Do not connect USART functions to the open-drain pins PIO0_22 and  
PIO0_23.  
Interrupts generated by the USART peripherals can wake up the part from Deep-sleep  
and power-down modes if the USART is in synchronous mode, the 32 kHz mode is  
enabled, or the CTS interrupt is enabled.  
8.18.1 Features  
Maximum bit rates of 4.5 Mbit/s in asynchronous mode, 15 Mbit/s in synchronous  
mode master mode, and 18 Mbit/s in synchronous slave mode.  
7, 8, or 9 data bits and 1 or 2 stop bits.  
Synchronous mode with master or slave operation. Includes data phase selection and  
continuous clock option.  
Multiprocessor/multidrop (9-bit) mode with software address compare.  
RS-485 transceiver output enable.  
Autobaud mode for automatic baud rate detection  
Parity generation and checking: odd, even, or none.  
Software selectable oversampling from 5 to 16 clocks in asynchronous mode.  
One transmit and one receive data buffer.  
RTS/CTS for hardware signaling for automatic flow control. Software flow control can  
be performed using Delta CTS detect, Transmit Disable control, and any GPIO as an  
RTS output.  
Received data and status can optionally be read from a single register  
Break generation and detection.  
Receive data is 2 of 3 sample "voting". Status flag set when one sample differs.  
Built-in Baud Rate Generator with auto-baud function.  
A fractional rate divider is shared among all USARTs.  
Interrupts available for Receiver Ready, Transmitter Ready, Receiver Idle, change in  
receiver break detect, Framing error, Parity error, Overrun, Underrun, Delta CTS  
detect, and receiver sample noise detected.  
Loopback mode for testing of data and flow control.  
In synchronous slave mode, wakes up the part from deep-sleep and power-down  
modes.  
Special operating mode allows operation at up to 9600 baud using the 32 kHz RTC  
oscillator as the UART clock. This mode can be used while the device is in  
Deep-sleep or Power-down mode and can wake-up the device when a character is  
received.  
USART transmit and receive functions work with the system DMA controller.  
8.19 SPI0/1  
All SPI functions are movable functions and are assigned to pins through the switch  
matrix. Do not connect SPI functions to the open-drain pins PIO0_22 and PIO0_23.  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
31 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
8.19.1 Features  
Maximum data rates of 17 Mbit/s in master mode and slave mode for SPI functions  
connected to all digital pins except PIO0_22 and PIO0_23.  
Data transmits of 1 to 16 bits supported directly. Larger frames supported by software.  
Master and slave operation.  
Data can be transmitted to a slave without the need to read incoming data. This can  
be useful while setting up an SPI memory.  
Control information can optionally be written along with data. This allows very  
versatile operation, including “any length” frames.  
Up to four Slave Select input/outputs with selectable polarity and flexible usage.  
Supports DMA transfers: SPIn transmit and receive functions work with the system  
DMA controller.  
Remark: Texas Instruments SSI and National Microwire modes are not supported.  
8.20 I2C-bus interface  
The I2C-bus is bidirectional for inter-IC control using only two wires: a serial clock line  
(SCL) and a serial data line (SDA). Each device is recognized by a unique address and  
can operate as either a receiver-only device (e.g., an LCD driver) or a transmitter with the  
capability to both receive and send information (such as memory). Transmitters and/or  
receivers can operate in either master or slave mode, depending on whether the chip has  
to initiate a data transfer or is only addressed. The I2C is a multi-master bus and can be  
controlled by more than one bus master connected to it.  
The I2C-bus functions are fixed-pin functions and must be enabled through the switch  
matrix on the open-drain pins PIO0_22 and PIO0_23.  
8.20.1 Features  
Supports standard and fast mode with data rates of up to 400 kbit/s.  
Supports Fast-mode Plus with bit rates up to 1 Mbit/s.  
Fail-safe operation: When the power to an I2C-bus device is switched off, the SDA  
and SCL pins connected to the I2C-bus are floating and do not disturb the bus.  
Independent Master, Slave, and Monitor functions.  
Supports both Multi-master and Multi-master with Slave functions.  
Multiple I2C slave addresses supported in hardware.  
One slave address can be selectively qualified with a bit mask or an address range in  
order to respond to multiple I2C bus addresses.  
10-bit addressing supported with software assist.  
Supports SMBus.  
Supported by on-chip ROM API.  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
32 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
8.21 C_CAN  
Controller Area Network (CAN) is the definition of a high performance communication  
protocol for serial data communication. The C_CAN controller is designed to provide a full  
implementation of the CAN protocol according to the CAN Specification Version 2.0B. The  
C_CAN controller can build powerful local networks with low-cost multiplex wiring by  
supporting distributed real-time control with a high level of reliability.  
The C_CAN functions are movable functions and are assigned to pins through the switch  
matrix. Do not connect C_CAN functions to the open-drain pins PIO0_22 and PIO0_23.  
8.21.1 Features  
Conforms to protocol version 2.0 parts A and B.  
Supports bit rate of up to 1 Mbit/s.  
Supports 32 Message Objects.  
Each Message Object has its own identifier mask.  
Provides programmable FIFO mode (concatenation of Message Objects).  
Provides maskable interrupts.  
Supports Disabled Automatic Retransmission (DAR) mode for time-triggered CAN  
applications.  
Provides programmable loop-back mode for self-test operation.  
8.22 PWM/timer/motor control subsystem  
The SCTimer/PWMs (State Configurable Timer/Pulse Width Modulators) and the analog  
peripherals support multiple ways of interconnecting their inputs and outputs and of  
interfacing to the pins and the DMA controller. Using the highly flexible and programmable  
connection scheme makes it easy to configure various subsystems for motor control and  
complex timing and tracking applications. Specifically, the inputs to the SCTs and the  
trigger inputs of the ADCs and DMA are selected through the input mux which offers a  
choice of many possible sources for each input or trigger. SCT outputs are assigned to  
pins through the switch matrix allowing for many pinout solutions.  
8.22.1 SCtimer/PWM subsystem  
The SCTimer/PWMs can be configured to build a PWM controller with multiple outputs by  
programming the MATCH and MATCHRELOAD registers to control the base frequency  
and the duty cycle of each SCTimer/PWM output. More complex waveforms that span  
multiple counter cycles or change behavior across or within counter cycles can be  
generated using the state capability built into the SCTimer/PWMs.  
Combining the PWM functions with the analog functions, the PWM output can react to  
control signals like comparator outputs or the ADC interrupts. The SCT IPU adds  
emergency shut-down functions and pre-processing of controlling events. For an overview  
of the PWM subsystem, see Figure 12 “PWM-Analog subsystem”.  
For high-speed PWM functionality, use only outputs that are fixed-pin functions to  
minimize pin-to-pin differences in output skew. See also Table 22 “SCT output dynamic  
characteristics”. This reduces the number of PWM outputs to five for each large SCT.  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
33 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
digital signal from/to pins  
analog signal from/to pins  
analog peripheral  
digital peripheral  
digital signal internal  
analog signal internal  
ADC0/ADC1  
4
SCT0/1/2/3  
8 x PWM OUT  
SCT0  
MATCH/  
TIMER0  
TIMER1  
TIMER2  
TIMER3  
OUTPUTS  
MATCHRELOAD  
8 x PWM OUT  
6 x PWM OUT  
SCT1  
OUTPUTS  
MATCH/  
MATCHRELOAD  
VDDA DIVIDER  
TEMP SENSOR  
SCT2  
OUTPUTS  
MATCH/  
MATCHRELOAD  
VOLTAGE  
REFERENCE  
SCT IPU  
6 x PWM OUT  
SCT3  
OUTPUTS  
MATCH/  
MATCHRELOAD  
ACMP0  
ACMP1  
ACMP2  
ACMP3  
aaa-010873  
Fig 12. PWM-Analog subsystem  
8.22.2 Timer controlled subsystem  
The timers, the analog components, and the DMA can be configured to form a subsystem  
that can run independently of the main processor under the control of the SCTs and any  
events that are generated by the A/D converters, the comparators, the SCT output  
themselves, or the external pins. A/D conversions can be triggered by the timer outputs,  
the comparator outputs or by events from external pins. Data can be transferred from the  
ADCs to memory using the DMA controller, and the DMA transfers can be triggered by the  
ADCs, the comparator outputs, or by the timer outputs.  
For an overview of the subsystem, see Figure 13 “Subsystem with timers, switch matrix,  
DMA, and analog components”.  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
34 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
DMA  
digital signal from/to pins  
analog signal from/to pins  
analog peripheral  
digital peripheral  
digital signal internal  
analog signal internal  
4
ADC0/ADC1  
NVIC  
TIMER0 (SCT0)  
VDDA DIVIDER  
TEMP SENSOR  
TIMER1 (SCT1)  
TIMER2 (SCT2)  
TIMER3 (SCT3)  
VOLTAGE  
REFERENCE  
SCT IPU  
ACMP0  
ACMP1  
ACMP2  
ACMP3  
DAC_SHUTOFF  
DAC  
aaa-010874  
Fig 13. Subsystem with timers, switch matrix, DMA, and analog components  
8.22.3 SCTimer/PWM in the large configuration (SCT0/1)  
Remark: For applications that require exact timing of the SCT outputs (for example  
PWM), assign the outputs only to fixed-pin functions to ensure that the output skew is  
nearly the same for all outputs.  
8.22.3.1 Features  
The following feature list summarizes the configuration for the two large SCTs. Each large  
SCT has a companion small SCT (see Section 8.22.4) with fewer inputs and outputs and  
a reduced feature set.  
Each SCT supports:  
16 match/capture registers  
16 events  
16 states  
Match register 0 to 5 support a fractional component for the dither engine  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
35 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
8 inputs and 10 outputs  
DMA support  
Counter/timer features:  
Configurable as two 16-bit counters or one 32-bit counter.  
Counters clocked by system clock or selected input.  
Configurable as up counters or up-down counters.  
Configurable number of match and capture registers. Up to 16 match and capture  
registers total.  
Upon match create the following events: stop, halt, limit counter or change counter  
direction; toggle outputs; create an interrupt; change the state.  
Counter value can be loaded into capture register triggered by match or  
input/output toggle.  
PWM features:  
Counters can be used in conjunction with match registers to toggle outputs and  
create time-proportioned PWM signals.  
Up to eight single-edge or dual-edge controlled PWM outputs with up to eight  
independent duty cycles when configured as 32-bit timers.  
Event creation features:  
The following conditions define an event: a counter match condition, an input (or  
output) condition such as an rising or falling edge or level, a combination of match  
and/or input/output condition.  
Events can only have an effect while the counter is running.  
Selected events can limit, halt, start, or stop a counter or change its direction.  
Events trigger state changes, output toggles, interrupts, and DMA transactions.  
Match register 0 can be used as an automatic limit.  
In bi-directional mode, events can be enabled based on the count direction.  
Match events can be held until another qualifying event occurs.  
State control features:  
A state is defined by the set of events that are allowed to happen in the state.  
A state changes into another state as result of an event.  
Each event can be assigned to one or more states.  
State variable allows sequencing across multiple counter cycles.  
Dither engine.  
Integrated with an input pre-processing unit (SCTIPU) to combine or delay input  
events.  
Inputs and outputs on the SCTimer0/PWM and SCTimer1/PWM are configured as follows:  
8 inputs  
7 inputs. Each input except input 7 can select one of 23 sources from an input  
multiplexer.  
One input connected directly to the SCT PLL for a high-speed dedicated clock  
input.  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
36 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
10 outputs (some outputs are connected to multiple locations)  
Three outputs connected to external pins through the switch matrix as movable  
functions.  
Five outputs connected to external pins through the switch matrix as fixed-pin  
functions.  
Two outputs connected to the SCTIPU to sample or latch input events.  
One output connected to the other large SCT  
Four outputs connected to one small SCT  
Two outputs connected to each ADC trigger input  
8.22.4 State-Configurable Timers in the small configuration (SCT2/3)  
Remark: For applications that require exact timing of the SCT outputs (for example  
PWM), assign the outputs only to fixed-pin functions to ensure that the output skew is  
nearly the same for all outputs.  
8.22.4.1 Features  
The following feature list summarizes the configuration for the two small SCTs. Each small  
SCT has a companion large SCT (see Section 8.22.3) with more inputs and outputs and a  
dither engine.  
Each SCT supports:  
8 match/capture registers  
10 events  
10 states  
3 inputs and 6 outputs  
DMA support  
Counter/timer features:  
Configurable as two 16-bit counters or one 32-bit counter.  
Counters clocked by bus clock or selected input.  
Up counters or up-down counters.  
Configurable number of match and capture registers. Up to 16 match and capture  
registers total.  
Upon match create the following events: interrupt, stop, limit timer or change  
direction; toggle outputs; change state.  
Counter value can be loaded into capture register triggered by match or  
input/output toggle.  
PWM features:  
Counters can be used in conjunction with match registers to toggle outputs and  
create time-proportioned PWM signals.  
Up to six single-edge or dual-edge controlled PWM outputs with independent duty  
cycles if configured as 32-bit timers.  
Event creation features:  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
37 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
The following conditions define an event: a counter match condition, an input (or  
output) condition, a combination of a match and/or and input/output condition in a  
specified state.  
Selected events can limit, halt, start, or stop a counter.  
Events control state changes, outputs, interrupts, and DMA requests.  
Match register 0 can be used as an automatic limit.  
In bi-directional mode, events can be enabled based on the count direction.  
Match events can be held until another qualifying event occurs.  
State control features:  
A state is defined by events that can take place in the state while the counter is  
running.  
A state changes into another state as result of an event.  
Each event can be assigned to one or more states.  
State variable allows sequencing across multiple counter cycles.  
Integrated with an input pre-processing unit (SCTIPU) to combine or delay input  
events.  
Inputs and outputs on the SCTimer2/PWM and SCTimer3/PWM are configured as follows:  
3 inputs. Each input selects one of 21 sources from a pin multiplexer.  
6 outputs (some outputs are connected to multiple locations)  
Three outputs connected to external pins through the switch matrix as movable  
functions.  
Three outputs connected to external pins through the switch matrix as fixed-pin  
functions.  
Two outputs connected to the SCT IPU to sample or latch input events.  
Four outputs connected to the accompanying large SCT  
Two outputs connected to each ADC trigger input  
8.22.5 SCT Input processing unit (SCTIPU)  
The SCTIPU allows to block or propagate signals to inputs of the SCT under the control of  
an SCT output. Using the SCTIPU in this way, allows signals to be blocked from entering  
the SCT inputs for a certain amount of time, for example while they are known to be  
invalid.  
In addition, the SCTIPU can generate a common signal from several combined input  
sources that can be selected on all SCT inputs. Such a mechanism can be useful to  
create an abort signal that stops all timers.  
8.22.5.1 Features  
The SCTIPU pre-processes inputs to the State-Configurable Timers (SCT).  
Four outputs created from a selection of input transitions. Each output can be used as  
abort input to the SCTs or for any other application which requires a collection of  
multiple SCT inputs to trigger an identical SCT response.  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
38 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Four registers to indicate which specific input sources caused the abort input to the  
SCTs.  
Four additional outputs which can be sampled at certain times and latched at others  
before being routed to SCT inputs.  
Nine abort inputs. Any combination of the abort inputs can trigger the dedicated abort  
input of each SCT.  
8.23 Quadrature Encoder Interface (QEI)  
A quadrature encoder, also known as a 2-channel incremental encoder, converts angular  
displacement into two pulse signals. By monitoring both the number of pulses and the  
relative phase of the two signals, the user code can track the position, direction of rotation,  
and velocity. In addition, a third channel, or index signal, can be used to reset the position  
counter. The quadrature encoder interface decodes the digital pulses from a quadrature  
encoder wheel to integrate position over time and determine direction of rotation. In  
addition, the QEI can capture the velocity of the encoder wheel.  
8.23.1 Features  
Tracks encoder position.  
Increments/decrements depending on direction.  
Programmable for 2or 4position counting.  
Velocity capture using built-in timer.  
Velocity compare function with “less than” interrupt.  
Uses 32-bit registers for position and velocity.  
Three position-compare registers with interrupts.  
Index counter for revolution counting.  
Index compare register with interrupts.  
Can combine index and position interrupts to produce an interrupt for whole and  
partial revolution displacement.  
Digital filter with programmable delays for encoder input signals.  
Can accept decoded signal inputs (clock and direction).  
8.24 Analog-to-Digital Converter (ADC)  
The ADC supports a resolution of 12 bit and fast conversion rates of up to 2 Msamples/s.  
Sequences of analog-to-digital conversions can be triggered by multiple sources. Possible  
trigger sources are internal connections to other on-chip peripherals such as the SCT and  
analog comparator outputs, external pins, and the ARM TXEV interrupt.  
The ADC supports a variable clocking scheme with clocking synchronous to the system  
clock or independent, asynchronous clocking for high-speed conversions.  
The ADC includes a hardware threshold compare function with zero-crossing detection.  
The threshold crossing interrupt is connected internally to the SCT inputs for tight timing  
control between the ADC and the SCTs.  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
39 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
8.24.1 Features  
12-bit successive approximation analog-to-digital converter.  
12-bit conversion rate of 2 MHz.  
Input multiplexing among 12 pins and up to 4 internal sources.  
Internal sources are the temperature sensor voltage, internal reference voltage, core  
voltage regulator output, and VDDA/2.  
Two configurable conversion sequences with independent triggers.  
Optional automatic high/low threshold comparison and zero-crossing detection.  
Power-down mode and low-power operating mode.  
Measurement range VREFN to VREFP (typically 3 V; not to exceed VDDA voltage  
level).  
Burst conversion mode for single or multiple inputs.  
Synchronous or asynchronous operation. Asynchronous operation maximizes  
flexibility in choosing the ADC clock frequency, Synchronous mode minimizes trigger  
latency and can eliminate uncertainty and jitter in response to a trigger.  
8.25 Digital-to-Analog Converter (DAC)  
The DAC supports a resolution of 12 bits. Conversions can be triggered by an external pin  
input or an internal timer.  
The DAC includes an optional automatic hardware shut-off feature which forces the DAC  
output voltage to zero while a HIGH level on the external DAC_SHUTOFF pin is detected.  
8.25.1 Features  
12-bit digital-to-analog converter.  
Supports DMA.  
Internal timer or pin external trigger for staged, jitter-free DAC  
conversion sequencing.  
Automatic hardware shut-off triggered by an external pin.  
8.26 Analog comparator (ACMP)  
The LPC15xx include four analog comparators with seven selectable inputs each for each  
positive or negative input channel. Two analog inputs are common to all four comparators.  
Internal voltage inputs include a voltage ladder reference with selectable voltage supply  
source, the temperature sensor or the internal voltage reference.  
The analog inputs to the comparators are fixed-pin functions and must be enabled through  
the switch matrix.  
The outputs of each analog comparator are internally connected to the ADC trigger inputs  
and to the SCT inputs, so that the result of a voltage comparison can trigger a timer  
operation or an analog-to-digital conversion.  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
40 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
8.26.1 Features  
Seven selectable inputs. Fully configurable on either the positive side or the negative  
input channel.  
32-stage voltage ladder internal reference for selectable voltages on each  
comparator; configurable on either positive or negative comparator input.  
Voltage ladder source voltage is selectable from an external pin or the 3.3 V analog  
voltage supply.  
0.9 V internal band gap reference voltage selectable as either positive or negative  
input on each comparator.  
Temperature sensor voltage selectable as either positive or negative input on each  
comparator.  
Voltage ladder can be separately powered down for applications only requiring the  
comparator function.  
Individual comparator outputs can be connected internally to the SCT and ADC trigger  
inputs or the external pins.  
Separate interrupt for each comparator.  
Pin filter included on each comparator output.  
Three propagation delay values are programmable to optimize between speed and  
power consumption.  
Relaxation oscillator circuitry output for a 555 style timer operation using comparator  
blocks 0 and 1.  
8.27 Temperature sensor  
The temperature sensor transducer uses an intrinsic pn-junction diode reference and  
outputs a CTAT voltage (Complement To Absolute Temperature). The output voltage  
varies inversely with device temperature with an absolute accuracy of better than ±5 C  
over the full temperature range (40 C to +105 C). The temperature sensor is only  
approximately linear with a slight curvature. The output voltage is measured over different  
ranges of temperatures and fit with linear-least-square lines.  
After power-up, the temperature sensor output must be allowed to settle to its stable value  
before it can be used as an accurate ADC input.  
For an accurate measurement of the temperature sensor by the ADC, the ADC must be  
configured in single-channel burst mode. The last value of a nine-conversion (or more)  
burst provides an accurate result.  
8.28 Internal voltage reference  
The internal voltage reference is an accurate 0.9 V and is the output of a low voltage band  
gap circuit. A typical value at Tamb = 25 C is 0.905 V. The internal voltage reference can  
be used in the following applications:  
When the supply voltage VDD is known accurately, the internal voltage reference can  
be used to reduce the offset error EO of the ADC code output. The ADC error  
correction then increases the accuracy of temperature sensor voltage output  
measurements.  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
41 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
When the ADC is accurately calibrated, the internal voltage reference can be used to  
measure the power supply voltage. This requires calibration by recording the ADC  
code of the internal voltage reference at different power supply levels yielding a  
different ADC code value for each supply voltage level. In a particular application, the  
internal voltage reference can be measured and the actual power supply voltage can  
be determined from the stored calibration values. The calibration values can be stored  
in the EEPROM for easy access.  
After power-up, the internal voltage reference must be allowed to settle to its stable value  
before it can be used as an ADC reference voltage input.  
For an accurate measurement of the internal voltage reference by the ADC, the ADC must  
be configured in single-channel burst mode. The last value of a nine-conversion (or more)  
burst provides an accurate result.  
8.29 Multi-Rate Timer (MRT)  
The Multi-Rate Timer (MRT) provides a repetitive interrupt timer with four channels. Each  
channel can be programmed with an independent time interval, and each channel  
operates independently from the other channels.  
8.29.1 Features  
24-bit interrupt timer  
Four channels independently counting down from individually set values  
Repeat and one-shot interrupt modes  
8.30 Windowed WatchDog Timer (WWDT)  
The watchdog timer resets the controller if software fails to periodically service it within a  
programmable time window.  
8.30.1 Features  
Internally resets chip if not periodically reloaded during the programmable time-out  
period.  
Optional windowed operation requires reload to occur between a minimum and  
maximum time period, both programmable.  
Optional warning interrupt can be generated at a programmable time prior to  
watchdog time-out.  
Enabled by software but requires a hardware reset or a watchdog reset/interrupt to be  
disabled.  
Incorrect feed sequence causes reset or interrupt if enabled.  
Flag to indicate watchdog reset.  
Programmable 24-bit timer with internal prescaler.  
Selectable time period from (Tcy(WDCLK) 256 4) to (Tcy(WDCLK) 224 4) in  
multiples of Tcy(WDCLK) 4.  
The WWDT is clocked by the dedicated watchdog oscillator (WDOsc) running at a  
fixed frequency.  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
42 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
8.31 Repetitive Interrupt (RI) timer  
The repetitive interrupt timer provides a free-running 48-bit counter which is compared to  
a selectable value, generating an interrupt when a match occurs. Any bits of the  
timer/compare can be masked such that they do not contribute to the match detection.  
The repetitive interrupt timer can be used to create an interrupt that repeats at  
predetermined intervals.  
8.31.1 Features  
48-bit counter running from the main clock. Counter can be free-running or can be  
reset when an RIT interrupt is generated.  
48-bit compare value.  
48-bit compare mask. An interrupt is generated when the counter value equals the  
compare value, after masking. This allows for combinations not possible with a simple  
compare.  
8.32 System tick timer  
The ARM Cortex-M3 includes a system tick timer (SYSTICK) that is intended to generate  
a dedicated SYSTICK exception at a fixed time interval (typically 10 ms).  
8.33 Real-Time Clock (RTC)  
The RTC resides in a separate, always-on voltage domain with battery back-up. The RTC  
uses an independent 32 kHz oscillator, also located in the always-on voltage domain.  
8.33.1 Features  
32-bit, 1 Hz RTC counter and associated match register for alarm generation.  
Separate 16-bit high-resolution/wake-up timer clocked at 1 kHz for 1 ms resolution  
with a more that one minute maximum time-out period.  
RTC alarm and high-resolution/wake-up timer time-out each generate independent  
interrupt requests. Either time-out can wake up the part from any of the low power  
modes, including Deep power-down.  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
43 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
8.34 Clock generation  
IRC  
system oscillator  
watchdog oscillator  
CPU, system control,  
PMU  
MAINCLKSELA  
(main clock select A)  
system clock  
n
SYSTEM CLOCK  
DIVIDER  
main clock  
memories,  
peripheral clocks  
RTC oscillator  
SYSAHBCLKCTRLn  
(AHB clock enable)  
32 kHz  
MAINCLKSELB  
(main clock select B)  
ARM core  
SYSTICK  
SYSTICK PERIPHERAL  
CLOCK DIVIDER  
IRC  
SYSTEM PLL  
system oscillator  
USART PERIPHERAL  
CLOCK DIVIDER  
FRACTIONAL RATE  
GENERATOR  
USART[n:0]  
SYSPLLCLKSEL  
(system PLL clock select)  
IOCONCLKDIV  
CLOCK DIVIDER  
IOCON digital  
glitch filter  
ARM TRACE CLOCK  
CLOCK DIVIDER  
ARM trace  
USB  
IRC  
system oscillator  
USB 48 MHz CLOCK  
DIVIDER  
IRC  
system oscillator  
USB PLL  
SCT PLL  
USBPLLCLKSEL  
(USB PLL clock select)  
USBCLKSEL  
(USB clock select)  
IRC  
SCT  
ADC  
system oscillator  
IRC  
SCTPLLCLKSEL  
(SCT PLL clock select)  
ASYNC ADC CLOCK  
DIVIDER  
ADCASYNCCLKSEL  
(clock select)  
IRC  
system oscillator  
watchdog oscillator  
CLKOUTSELA  
(CLKOUT clock select A)  
CLKOUT PIN CLOCK  
DIVIDER  
CLKOUT pin  
RTC oscillator 32 kHz  
CLKOUTSELB  
(CLKOUT clock select B)  
watchdog oscillator  
WWDT  
aaa-010875  
Fig 14. Clock generation  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
44 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
8.35 Power domains  
The LPC15xx provide two independent power domains that allow the bulk of the device to  
have power removed while maintaining operation of the RTC and the backup Registers.  
The VBAT pin supplies power only to the RTC domain. The RTC requires a minimum of  
power to operate, which can be supplied by an external battery. The device core power  
(VDD) is used to operate the RTC whenever VDD is present. Therefore, there is no power  
drain from the RTC battery when VDD is and VDD >= VBAT + 0.3 V.  
LPC15xx  
to I/O pads  
to core  
VSS  
VDD  
REGULATOR  
to memories,  
peripherals,  
oscillators,  
PLLs  
WAKEUP  
MAIN POWER DOMAIN  
ULTRA LOW-POWER  
REGULATOR  
VBAT  
WAKE-UP  
CONTROL  
BACKUP REGISTERS  
REAL-TIME CLOCK  
RTCXIN  
32 kHz  
OSCILLATOR  
RTCXOUT  
ALWAYS-ON/RTC POWER DOMAIN  
ADC  
TEMP SENSE  
INTERNAL  
VDDA  
VDD  
VOLTAGE REF  
ACMP  
DAC  
ADC POWER DOMAIN  
VSSA  
aaa-010876  
Fig 15. Power distribution  
8.36 Integrated oscillators  
The LPC15xx include the following independent oscillators: the system oscillator, the  
Internal RC oscillator (IRC), the watchdog oscillator, and the 32 kHz RTC oscillator. Each  
oscillator can be used for multiple purposes.  
Following reset, the LPC15xx operates from the internal RC oscillator until software  
switches to a different clock source. The IRC allows the system to operate without any  
external crystal and the bootloader code to operate at a known frequency.  
See Figure 14 for an overview of the LPC15xx clock generation.  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
45 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
8.36.1 Internal RC oscillator  
The IRC can be used as the clock that drives the system PLL and then the CPU. In  
addition, the IRC can be selected as input to various clock dividers and as the clock  
source for the USB PLL and the SCT PLL (see Figure 14). The nominal IRC frequency is  
12 MHz.  
Upon power-up, any chip reset, or wake-up from Deep power-down mode, the LPC15xx  
use the IRC as the clock source. Software can later switch to one of the other available  
clock sources.  
8.36.2 System oscillator  
The system oscillator can be used as a stable and accurate clock source for the CPU, with  
or without using the PLL. For USB applications, use the system oscillator to provide the  
clock source to USB PLL.  
The system oscillator operates at frequencies of 1 MHz to 25 MHz. This frequency can be  
boosted to a higher frequency, up to the maximum CPU operating frequency, by the  
system PLL.  
The system oscillator has a wake-up time of approximately 500 μs.  
8.36.3 Watchdog oscillator  
The low-power watchdog oscillator can be used as a clock source that directly drives the  
CPU, the watchdog timer, or the CLKOUT pin. The watchdog oscillator nominal frequency  
is fixed at 503 kHz. The frequency spread over processing and temperature is 40 %.  
8.36.4 RTC oscillator  
The low-power RTC oscillator provides a 1 Hz clock and a 1 kHz clock to the RTC and a  
32 kHz clock output that can be used to obtain the main clock (see Figure 14).The 32 kHz  
oscillator output can be observed on the CLKOUT pin to allow trimming the RTC oscillator  
without interference from a probe.  
8.37 System PLL, USB PLL, and SCT PLL  
The LPC15xx contain a three identical PLLs for generating the system clock, the 48 MHz  
USB clock, and an asynchronous clock for the ADCs and SCTs. The system PLL is used  
to create the main clock. The SCT and USB PLLs create dedicated clocks for the  
asynchronous ADC, the asynchronous SCT clock input, and the USB.  
Remark: The USB PLL is available on parts LPC1549/48/47 only.  
The PLL accepts an input clock frequency in the range of 10 MHz to 25 MHz. The input  
frequency is multiplied up to a high frequency with a Current Controlled Oscillator (CCO).  
The multiplier can be an integer value from 1 to 32. The CCO operates in the range of  
156 MHz to 320 MHz. To support this frequency range, an additional divider keeps the  
CCO within its frequency range while the PLL is providing the desired output frequency.  
The output divider can be set to divide by 2, 4, 8, or 16 to produce the output clock. The  
PLL output frequency must be lower than 100 MHz. Since the minimum output divider  
value is 2, it is insured that the PLL output has a 50 % duty cycle. The PLL is turned off  
and bypassed following a chip reset. Software can enable the PLL later. The program  
must configure and activate the PLL, wait for the PLL to lock, and then connect to the PLL  
as a clock source. The PLL settling time is 100 s.  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
46 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
8.38 Clock output  
The LPC15xx feature a clock output function that routes the internal oscillator outputs, the  
PLL outputs, or the main clock an output pin where they can be observed directly.  
8.39 Wake-up process  
The LPC15xx begin operation by using the 12 MHz IRC oscillator as the clock source at  
power-up and when awakened from Deep power-down mode. This mechanism allows  
chip operation to resume quickly. If the application uses the system oscillator or the PLL,  
software must enable these components and wait for them to stabilize. Only then can the  
system use the PLL and system oscillator as a clock source.  
8.40 Power control  
The LPC15xx support various power control features. There are four special modes of  
processor power reduction: Sleep mode, Deep-sleep mode, Power-down mode, and  
Deep power-down mode. The CPU clock rate can also be controlled as needed by  
changing clock sources, reconfiguring PLL values, and/or altering the CPU clock divider  
value. This power control mechanism allows a trade-off of power versus processing speed  
based on application requirements. In addition, a register is provided for shutting down the  
clocks to individual on-chip peripherals. This register allows fine-tuning of power  
consumption by eliminating all dynamic power use in any peripherals that are not required  
for the application. Selected peripherals have their own clock divider which provides  
additional power control.  
8.40.1 Power profiles  
The power consumption in Active and Sleep modes can be optimized for the application  
through simple calls to the power profile. The power configuration routine configures the  
LPC15xx for one of the following power modes:  
Default mode corresponding to power configuration after reset.  
CPU performance mode corresponding to optimized processing capability.  
Efficiency mode corresponding to optimized balance of current consumption and CPU  
performance.  
Low-current mode corresponding to lowest power consumption.  
In addition, the power profile includes routines to select the optimal PLL settings for a  
given system clock and PLL input clock and to easily set the configuration options for  
Deep-sleep and power-down modes.  
Remark: When using the USB, configure the LPC15xx in Default mode.  
8.40.2 Sleep mode  
When Sleep mode is entered, the clock to the core is stopped. Resumption from the Sleep  
mode does not need any special sequence but re-enabling the clock to the ARM core.  
In Sleep mode, execution of instructions is suspended until either a reset or interrupt  
occurs. Peripheral functions continue operation during Sleep mode and can generate  
interrupts to cause the processor to resume execution. Sleep mode eliminates dynamic  
power used by the processor itself, by memory systems and related controllers, and by  
internal buses.  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
47 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
8.40.3 Deep-sleep mode  
In Deep-sleep mode, the LPC15xx is in Sleep-mode and all peripheral clocks and all clock  
sources are off except for the IRC. The IRC output is disabled unless the IRC is selected  
as input to the watchdog timer. In addition all analog blocks are shut down and the flash is  
in stand-by mode. In Deep-sleep mode, the application can keep the watchdog oscillator  
and the BOD circuit running for self-timed wake-up and BOD protection.  
The LPC15xx can wake up from Deep-sleep mode via reset, selected GPIO pins, a  
watchdog timer interrupt, an interrupt generating USB port activity, an RTC interrupt, or  
any interrupts that the USART, SPI, or I2C interfaces can create in Deep-sleep mode. The  
USART wake-up requires the 32 kHz mode, the synchronous mode, or the CTS interrupt  
to be set up.  
Deep-sleep mode saves power and allows for short wake-up times.  
8.40.4 Power-down mode  
In Power-down mode, the LPC15xx is in Sleep-mode and all peripheral clocks and all  
clock sources are off except for watchdog oscillator if selected. In addition all analog  
blocks and the flash are shut down. In Power-down mode, the application can keep the  
BOD circuit running for BOD protection.  
The LPC15xx can wake up from Power-down mode via reset, selected GPIO pins, a  
watchdog timer interrupt, an interrupt generating USB port activity, an RTC interrupt, or  
any interrupts that the USART, SPI, or I2C interfaces can create in Power-down mode.  
The USART wake-up requires the 32 kHz mode, the synchronous mode, or the CTS  
interrupt to be set up.  
Power-down mode reduces power consumption compared to Deep-sleep mode at the  
expense of longer wake-up times.  
8.40.5 Deep power-down mode  
In Deep power-down mode, power is shut off to the entire chip except for the WAKEUP  
pin and the always-on RTC power-domain. The LPC15xx can wake up from Deep  
power-down mode via the WAKEUP pin or a wake-up signal generated by the RTC  
interrupt.  
The LPC15xx can be blocked from entering Deep power-down mode by setting a lock bit  
in the PMU block. Blocking the Deep power-down mode enables the application to keep  
the watchdog timer or the BOD running at all times.  
If the WAKEUP pin is used in the application, an external pull-up resistor is required on  
the WAKEUP pin to hold it HIGH while the part is in deep power-down mode. Pulling the  
WAKEUP pin LOW wakes up the part from deep power-down mode. In addition, pull the  
RESET pin HIGH to prevent it from floating while in Deep power-down mode.  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
48 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
8.41 System control  
8.41.1 Reset  
Reset has four sources on the LPC15xx: the RESET pin, the Watchdog reset, power-on  
reset (POR), and the BrownOut Detection (BOD) circuit. The RESET pin is a Schmitt  
trigger input pin. Assertion of chip reset by any source, once the operating voltage attains  
a usable level, starts the IRC and initializes the flash controller.  
When the internal Reset is removed, the processor begins executing at address 0, which  
is initially the Reset vector mapped from the boot block. At that point, all of the processor  
and peripheral registers have been initialized to predetermined values.  
In Deep power-down mode, an external pull-up resistor is required on the RESET pin.  
The RESET pin is operational in active, sleep, deep-sleep, and power-down modes if the  
RESET function is selected through the switch matrix for pin PIO0_21 (this is the default).  
A LOW-going pulse as short as 50 ns executes the reset and thereby wakes up the part to  
its active state. The RESET pin is not functional in Deep power-down mode and must be  
pulled HIGH externally while the part is in Deep power-down mode.  
9
''  
9
''  
9
''  
5
SX  
(6'  
ꢀꢁꢂQVꢂ5&  
*/,7&+ꢂ),/7(5  
UHVHW  
3,1  
(6'  
9
66  
DDDꢀꢁꢁꢂꢃꢄꢅ  
Fig 16. RESET pin configuration  
8.41.2 Brownout detection  
The LPC15xx includes brown-out detection (BOD) with two levels for monitoring the  
voltage on the VDD pin. If this voltage falls below one of two selected levels, the BOD  
asserts an interrupt signal to the NVIC. This signal can be enabled for interrupt in the  
Interrupt Enable Register in the NVIC to cause a CPU interrupt. Alternatively, software can  
monitor the signal by reading a dedicated status register. Two threshold levels can be  
selected to cause a forced reset of the chip.  
8.41.3 Code security (Code Read Protection - CRP)  
CRP provides different levels of security in the system so that access to the on-chip flash  
and use of the Serial Wire Debugger (SWD) and In-System Programming (ISP) can be  
restricted. Programming a specific pattern into a dedicated flash location invokes CRP.  
IAP commands are not affected by the CRP.  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
49 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
In addition, ISP entry the external pins can be disabled without enabling CRP. For details,  
see the LPC15xx user manual.  
There are three levels of Code Read Protection:  
1. CRP1 disables access to the chip via the SWD and allows partial flash update  
(excluding flash sector 0) using a limited set of the ISP commands. This mode is  
useful when CRP is required and flash field updates are needed but all sectors cannot  
be erased.  
2. CRP2 disables access to the chip via the SWD and only allows full flash erase and  
update using a reduced set of the ISP commands.  
3. Running an application with level CRP3 selected, fully disables any access to the chip  
via the SWD pins and the ISP. This mode effectively disables ISP override using ISP  
pin as well. If necessary, the application must provide a flash update mechanism  
using IAP calls or using a call to the reinvoke ISP command to enable flash update via  
the USART.  
CAUTION  
If level three Code Read Protection (CRP3) is selected, no future factory testing can be  
performed on the device.  
In addition to the three CRP levels, sampling of the ISP pins for valid user code can be  
disabled. For details, see the LPC15xx user manual.  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
50 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
8.42 Emulation and debugging  
Debug functions are integrated into the ARM Cortex-M3. Serial wire debug functions are  
supported in addition to a standard JTAG boundary scan. The ARM Cortex-M3 is  
configured to support up to four breakpoints and two watch points.  
The RESET pin selects between the JTAG boundary scan (RESET = LOW) and the ARM  
SWD debug (RESET = HIGH). The ARM SWD debug port is disabled while the LPC15xx  
is in reset.  
To perform boundary scan testing, follow these steps:  
1. Erase any user code residing in flash.  
2. Power up the part with the RESET pin pulled HIGH externally.  
3. Wait for at least 250 s.  
4. Pull the RESET pin LOW externally.  
5. Perform boundary scan operations.  
6. Once the boundary scan operations are completed, assert the TRST pin to enable the  
SWD debug mode, and release the RESET pin (pull HIGH).  
Remark: The JTAG interface cannot be used for debug purposes.  
9. Limiting values  
Table 9.  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).[1]  
Symbol Parameter  
Conditions  
Min  
Max  
VDDA  
+4.6  
VDDA  
VDDA  
+4.6  
+5.5  
Unit  
V
[2]  
VDD  
VDDA  
Vref  
supply voltage (3.3 V)  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
analog supply voltage  
reference voltage  
V
on pin VREFP_DAC_VDDCMP  
on pin VREFP_ADC  
V
V
VBAT  
VI  
battery supply voltage  
input voltage  
V
[3][4]  
5 V tolerant I/O pins; only valid  
when the VDD(IO) supply voltage  
is present  
V
[5]  
[6]  
on I2C open-drain pins  
PIO0_22, PIO0_23  
0.5  
0.5  
+5.5  
V
V
3 V tolerant I/O pin without  
over-voltage protection. Applies  
to PIO0_12.  
VDDA  
USB_DM, USB_DP pins  
0.5  
0.5  
VDD + 0.5  
+4.6  
V
V
[7][8]  
[9]  
VIA  
analog input voltage  
[2]  
[2]  
Vi(xtal)  
Vi(rtcx)  
IDD  
crystal input voltage  
32 kHz oscillator input voltage  
supply current  
0.5  
+2.5  
+4.6  
100  
100  
V
0.5  
V
per supply pin  
per ground pin  
-
-
mA  
mA  
ISS  
ground current  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
51 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 9.  
Limiting values …continued  
In accordance with the Absolute Maximum Rating System (IEC 60134).[1]  
Symbol Parameter  
Conditions  
Min  
Max  
Unit  
Ilatch  
I/O latch-up current  
(0.5VDD(IO)) < VI < (1.5VDD(IO));  
Tj < 125 C  
-
100  
mA  
[10]  
[11]  
Tstg  
storage temperature  
65  
+150  
150  
1.5  
C  
C  
W
Tj(max)  
maximum junction temperature  
-
-
Ptot(pack) total power dissipation (per  
package)  
based on package heat  
transfer, not device power  
consumption  
Vesd  
electrostatic discharge voltage  
human body model; all pins  
-
5
kV  
[1] The following applies to the limiting values:  
a) This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive  
static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated  
maximum.  
b) Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to VSS unless  
otherwise noted.  
[2] Maximum/minimum voltage above the maximum operating voltage (see Table 11) and below ground that can be applied for a short time  
(< 10 ms) to a device without leading to irrecoverable failure. Failure includes the loss of reliability and shorter lifetime of the device.  
[3] Applies to all 5 V tolerant I/O pins except true open-drain pins PIO0_22 and PIO0_23 and except the 3 V tolerant pin PIO0_12.  
[4] Including the voltage on outputs in 3-state mode.  
[5] VDD(IO) present or not present. Compliant with the I2C-bus standard. 5.5 V can be applied to this pin when VDD(IO) is powered down.  
[6] Applies to 3 V tolerant pins PIO0_12.  
[7] An ADC input voltage above 3.6 V can be applied for a short time without leading to immediate, unrecoverable failure. Accumulated  
exposure to elevated voltages at 4.6 V must be less than 106 s total over the lifetime of the device. Applying an elevated voltage to the  
ADC inputs for a long time affects the reliability of the device and reduces its lifetime.  
[8] If the comparator is configured with the common mode input VIC = VDD, the other comparator input can be up to 0.2 V above or below  
VDD without affecting the hysteresis range of the comparator function.  
[9] It is recommended to connect an overvoltage protection diode between the analog input pin and the voltage supply pin.  
[10] Dependent on package type.  
[11] Human body model: equivalent to discharging a 100 pF capacitor through a 1.5 kseries resistor.  
10. Thermal characteristics  
The average chip junction temperature, Tj (C), can be calculated using the following  
equation:  
Tj = Tamb + PD Rthj a  
(1)  
Tamb = ambient temperature (C),  
Rth(j-a) = the package junction-to-ambient thermal resistance (C/W)  
PD = sum of internal and I/O power dissipation  
The internal power dissipation is the product of IDD and VDD. The I/O power dissipation of  
the I/O pins is often small and many times can be negligible. However it can be significant  
in some applications.  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
52 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 10. Thermal resistance value (C/W): ±15 %  
Symbol  
Parameter  
Conditions  
Typ  
Unit  
LQFP48  
ja  
thermal resistance  
junction-to-ambient  
JEDEC (4.5 in 4 in)  
0 m/s  
1 m/s  
64  
55  
50  
C/W  
C/W  
C/W  
2.5 m/s  
8-layer (4.5 in 3 in)  
0 m/s  
96  
76  
67  
13  
C/W  
C/W  
C/W  
C/W  
1 m/s  
2.5 m/s  
jc  
jb  
thermal resistance  
junction-to-case  
thermal resistance  
junction-to-board  
16  
C/W  
LQFP64  
ja  
thermal resistance  
junction-to-ambient  
JEDEC (4.5 in 4 in)  
0 m/s  
1 m/s  
51  
45  
41  
C/W  
C/W  
C/W  
2.5 m/s  
8-layer (4.5 in 3 in)  
0 m/s  
75  
60  
54  
13  
C/W  
C/W  
C/W  
C/W  
1 m/s  
2.5 m/s  
jc  
jb  
thermal resistance  
junction-to-case  
thermal resistance  
junction-to-board  
17  
C/W  
LQFP100  
ja  
thermal resistance  
junction-to-ambient  
JEDEC (4.5 in 4 in)  
0 m/s  
1 m/s  
42  
37  
34  
C/W  
C/W  
C/W  
2.5 m/s  
8-layer (4.5 in 3 in)  
0 m/s  
59  
48  
44  
12  
C/W  
C/W  
C/W  
C/W  
1 m/s  
2.5 m/s  
jc  
jb  
thermal resistance  
junction-to-case  
thermal resistance  
junction-to-board  
17  
C/W  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
53 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
11. Static characteristics  
Table 11. Static characteristics  
Tamb = 40 C to +105 C, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ[1]  
Max  
Unit  
[2]  
VDD  
supply voltage (core  
and external rail)  
2.4  
3.3  
VDDA  
V
VDDA  
Vref  
analog supply voltage  
reference voltage  
2.4  
2.4  
2.7  
2.4  
3.3  
-
3.6  
V
V
V
V
on pin VREFP_DAC_VDDCMP  
on pin VREFP_ADC  
VDDA  
VDDA  
3.6  
-
VBAT  
IDD  
battery supply voltage  
supply current  
3.3  
Active mode; code  
while(1){}  
executed from flash;  
[3][4][5]  
[7][8]  
system clock = 12 MHz; default  
mode; VDD = 3.3 V  
-
-
-
-
4.3  
2.7  
19.3  
18  
-
-
-
-
mA  
mA  
mA  
mA  
[3][4][5]  
[7][8]  
system clock = 12 MHz;  
low-current mode; VDD = 3.3 V  
[3][4][7]  
[8][10]  
system clock = 72 MHz; default  
mode; VDD = 3.3 V  
[3][4][7]  
[8][10]  
system clock = 72 MHz;  
low-current mode; VDD = 3.3 V  
Sleep mode;  
[3][4][5]  
[7][8]  
system clock = 12 MHz; default  
mode; VDD = 3.3 V  
-
-
-
-
-
2.1  
1.5  
8.0  
7.3  
-
-
-
-
mA  
mA  
mA  
mA  
[3][4][5]  
[7][8]  
system clock = 12 MHz;  
low-current mode; VDD = 3.3 V  
[3][4][10]  
[7][8]  
system clock = 72 MHz; default  
mode; VDD = 3.3 V  
[3][4][10]  
[7][8]  
system clock = 72 MHz;  
low-current mode; VDD = 3.3 V  
[3][4][11]  
IDD  
IDD  
IDD  
supply current  
supply current  
supply current  
Deep-sleep mode;  
V
DD = 3.3 V;  
Tamb = 25 C  
Tamb = 105 C  
310  
-
380  
620  
A  
A  
-
-
[3][4][11]  
Power-down mode;  
VDD = 3.3 V  
T
amb = 25 C  
3.8  
-
8
A  
A  
Tamb = 105 C  
-
163  
[3][12][13]  
Deep power-down mode; VDD  
=
3.3 V; VBAT = 0 or VBAT = 3.0 V  
RTC oscillator running  
T
amb = 25 C  
-
-
-
1.1  
-
1.3[14] A  
Tamb = 105 C  
15  
-
A  
[3][12]  
RTC oscillator input grounded;  
560  
nA  
Tamb = 25 C  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
54 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 11. Static characteristics …continued  
Tamb = 40 C to +105 C, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ[1]  
Max  
Unit  
nA  
[13]  
[13]  
IBAT  
battery supply current  
Deep power-down mode; VDD  
VDDA = 3.3 V; VBAT = 3.0 V  
=
0
1
-
-
VDD and VDDA tied to ground;  
VBAT = 3.0 V  
A  
Standard port pins configured as digital pins, RESET; see Figure 17  
IIL  
LOW-level input current VI = 0 V; on-chip pull-up resistor  
disabled  
-
0.5  
0.5  
0.5  
-
10[14]  
10[14]  
10[14]  
5
nA  
nA  
nA  
V
IIH  
IOZ  
VI  
HIGH-level input  
current  
VI = VDD; on-chip pull-down  
resistor disabled  
-
OFF-state output  
current  
VO = 0 V; VO = VDD; on-chip  
pull-up/down resistors disabled  
-
[16]  
[18]  
input voltage  
VDD 2.4 V; 5 V tolerant pins  
0
0
except PIO0_12  
VDD 2.4 V; on 3 V tolerant pin  
-
VDDA  
PIO0_12  
VDD = 0 V  
0
-
-
-
3.6  
VDD  
-
V
V
V
VO  
output voltage  
output active  
0
VIH  
HIGH-level input  
voltage  
0.7VDD  
VIL  
LOW-level input voltage  
hysteresis voltage  
-
-
-
-
0.3VDD  
V
V
V
V
Vhys  
2.4 V <= VDD < 3.0 V  
3.0 V <= VDD <= 3.6 V  
IOH = 4 mA  
0.30  
0.35  
-
-
-
VOH  
VOL  
IOH  
HIGH-level output  
voltage  
VDD 0.4 -  
LOW-level output  
voltage  
IOL = 4 mA  
-
-
-
-
-
-
0.4  
-
V
HIGH-level output  
current  
VOH = VDD 0.4 V  
VOL = 0.4 V  
4
4
-
mA  
mA  
mA  
mA  
IOL  
LOW-level output  
current  
-
[19]  
[19]  
IOHS  
IOLS  
HIGH-level short-circuit VOH = 0 V  
output current  
-45  
50  
LOW-level short-circuit VOL = VDD  
output current  
-
Ipd  
Ipu  
pull-down current  
pull-up current  
VI = 5 V  
10  
10  
0
50  
50  
0
150  
85  
0
A  
A  
A  
VI = 0 V;  
VDD < VI < 5 V  
High-drive output pin configured as digital pin (PIO0_24); see Figure 17  
IIL  
LOW-level input current VI = 0 V; on-chip pull-up resistor  
disabled  
-
-
-
0.5  
0.5  
0.5  
10[14]  
10[14]  
10[14]  
nA  
nA  
nA  
IIH  
IOZ  
HIGH-level input  
current  
VI = VDD; on-chip pull-down  
resistor disabled  
OFF-state output  
current  
VO = 0 V; VO = VDD; on-chip  
pull-up/down resistors disabled  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
55 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 11. Static characteristics …continued  
Tamb = 40 C to +105 C, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ[1]  
Max  
Unit  
[16]  
[18]  
VI  
input voltage  
VDD 2.4 V  
0
-
5.0  
V
VDD = 0 V  
0
-
-
-
3.6  
VDD  
-
V
V
V
VO  
output voltage  
output active  
0
VIH  
HIGH-level input  
voltage  
0.7VDD  
VIL  
LOW-level input voltage  
hysteresis voltage  
-
-
-
-
0.3VDD  
V
V
V
V
Vhys  
2.4 V <= VDD < 3.0 V  
3.0 V <= VDD <= 3.6 V  
0.30  
0.35  
-
-
-
VOH  
HIGH-level output  
voltage  
IOH = 20 mA; 2.7 V <= VDD  
3.6 V  
<
<
VDD 0.4 -  
I
OH = 12 mA; 2.4 V <= VDD  
VDD 0.4 -  
-
V
2.7 V  
VOL  
IOH  
LOW-level output  
voltage  
IOL = 4 mA  
-
-
-
-
-
-
0.4  
V
HIGH-level output  
current  
VOH = VDD 0.4 V; 2.7 V <= VDD  
< 3.6 V  
20  
12  
4
-
mA  
mA  
mA  
mA  
VOH = VDD 0.4 V; 2.4 V <= VDD  
-
< 2.7 V  
IOL  
LOW-level output  
current  
VOL = 0.4 V  
-
[19]  
IOLS  
LOW-level short-circuit VOL = VDD  
output current  
-
50  
[20]  
[20]  
Ipd  
Ipu  
pull-down current  
pull-up current  
VI = 5 V  
10  
10  
0
50  
50  
0
150  
85  
0
A  
A  
A  
VI = 0 V  
VDD < VI < 5 V  
I2C-bus pins (PIO0_22 and PIO0_23); see Figure 17  
VIH  
HIGH-level input  
voltage  
0.7VDD  
-
-
V
VIL  
LOW-level input voltage  
hysteresis voltage  
-
-
0.3VDD  
V
Vhys  
IOL  
-
0.05VDD  
-
-
-
V
LOW-level output  
current  
VOL = 0.4 V; I2C-bus pins  
configured as standard mode pins  
3.5  
mA  
IOL  
LOW-level output  
current  
VOL = 0.4 V; I2C-bus pins  
configured as Fast-mode Plus  
pins; 2.7 V <= VDD < 3.6 V  
VOL = 0.4 V; I2C-bus pins  
configured as Fast-mode Plus  
pins; 2.4 V <= VDD < 2.7 V  
20  
16  
-
-
-
-
mA  
mA  
[21]  
[2]  
ILI  
input leakage current  
VI = VDD  
VI = 5 V  
-
-
2
4
A  
A  
10  
22  
USB_DM and USB_DP pins  
VI  
input voltage  
0
-
VDD  
V
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
56 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 11. Static characteristics …continued  
Tamb = 40 C to +105 C, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ[1]  
Max  
Unit  
VIH  
HIGH-level input  
voltage  
1.8  
-
-
V
VIL  
LOW-level input voltage  
hysteresis voltage  
-
-
-
-
-
1.0  
-
V
V
V
Vhys  
Zout  
VOH  
0.32  
28  
2.9  
output impedance  
44  
-
HIGH-level output  
voltage  
VOL  
IOH  
LOW-level output  
voltage  
-
-
-
-
-
-
0.18  
-
V
[22]  
[22]  
HIGH-level output  
current  
VOH = VDD 0.3 V  
4.8  
5.0  
-
mA  
mA  
mA  
mA  
IOL  
LOW-level output  
current  
VOL = 0.3 V  
-
IOLS  
LOW-level short-circuit drive LOW; pad connected to  
output current ground  
125  
125  
IOHS  
HIGH-level short-circuit drive HIGH; pad connected to  
-
output current  
ground  
Oscillator pins  
Vi(xtal)  
Vo(xtal)  
Vi(rtcx)  
crystal input voltage  
on pin XTALIN  
on pin XTALOUT  
on pin RTCXIN  
0.5  
0.5  
0.5  
1.8  
1.8  
-
1.95  
1.95  
3.6  
V
V
V
crystal output voltage  
[23]  
[23]  
32 kHz oscillator input  
voltage  
Vo(rtcx)  
32 kHz oscillator output on pin RTCXOUT  
voltage  
0.5  
-
3.6  
V
Pin capacitance  
Cio input/output  
capacitance  
[24]  
[24]  
[24]  
pins with analog and digital  
functions  
I2C-bus pins (PIO0_22 and  
PIO0_23)  
-
-
-
-
-
-
7.1  
2.5  
2.8  
pF  
pF  
pF  
pins with digital functions only  
[1] Typical ratings are not guaranteed. The values listed are for room temperature (25 C), nominal supply voltages.  
[2] For USB operation: 3.0 VVDD 3.6 V.  
[3] Tamb = 25 C.  
[4]  
IDD measurements were performed with all pins configured as GPIO outputs driven LOW and pull-up resistors disabled.  
[5] IRC enabled; system oscillator disabled; system PLL disabled.  
[6] System oscillator enabled; IRC disabled; system PLL disabled.  
[7] BOD disabled.  
[8] All peripherals disabled in the SYSAHBCLKCTRL0/1 registers. Peripheral clocks to USART, CLKOUT, and IOCON disabled in system  
configuration block.  
[9] IRC enabled; system oscillator disabled; system PLL enabled.  
[10] IRC disabled; system oscillator enabled; system PLL enabled.  
[11] All oscillators and analog blocks turned off: Use API power_mode_configure() with mode parameter set to DEEP_SLEEP or  
POWER_DOWN and peripheral parameter set to 0xFF.  
[12] WAKEUP pin pulled HIGH externally.  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
57 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
[13] RTC running or not running.  
[14] Characterized on samples. Not tested in production.  
[15] Low-current mode PWR_LOW_CURRENT selected when running the set_power routine in the power profiles.  
[16] Including voltage on outputs in tri-state mode.  
[17] VDD supply voltage must be present.  
[18] Tri-state outputs go into tri-state mode in Deep power-down mode.  
[19] Allowed as long as the current limit does not exceed the maximum current allowed by the device.  
[20] Pull-up and pull-down currents are measured across the weak internal pull-up/pull-down resistors. See Figure 17.  
[21] To VSS  
.
[22] The parameter values specified are simulated and absolute values.  
[23] The input voltage of the RTC oscillator is limited as follows: Vi(rtcx), Vo(rtcx) < max(VBAT, VDD).  
[24] Including bonding pad capacitance.  
V
DD  
I
I
OL  
pd  
+
-
pin PIO0_n  
pin PIO0_n  
A
I
I
OH  
pu  
-
+
A
aaa-010819  
Fig 17. Pin input/output current measurement  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
58 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
11.1 Power consumption  
Power measurements in Active, Sleep, and Deep-sleep modes were performed under the  
following conditions:  
Configure all pins as GPIO with pull-up resistor disabled in the IOCON block.  
Configure GPIO pins as outputs using the GPIO DIR register.  
Write 1 to the GPIO CLR register to drive the outputs LOW.  
aaa-011384  
20  
I
DD  
72 MHz  
60 MHz  
(mA)  
16  
12  
8
48 MHz  
36 MHz  
24 MHz  
4
12 MHz  
6 MHz  
1 MHz  
0
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
V
(V)  
DD  
Conditions: Tamb = 25 C; active mode entered executing code while(1){} from flash; all  
peripherals disabled in the SYSAHBCLKCTRL0/1 registers; all peripheral clocks disabled; internal  
pull-up resistors disabled; BOD disabled; low-current mode.  
1 MHz - 6 MHz: IRC enabled; PLL disabled.  
12 MHz: IRC enabled; PLL disabled.  
24 MHz to 72 MHz: IRC enabled; PLL enabled.  
Fig 18. Active mode: Typical supply current IDD versus supply voltage VDD  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
59 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
aaa-011385  
20  
16  
12  
8
I
DD  
72 MHz  
60 MHz  
(mA)  
48 MHz  
36 MHz  
24 MHz  
12 MHz  
4
6 MHz  
1 MHz  
0
-40  
-10  
20  
50  
80  
110  
temperature (°C)  
Conditions: VDD = 3.3 V; active mode entered executing code while(1){} from flash; all  
peripherals disabled in the SYSAHBCLKCTRL0/1 registers; all peripheral clocks disabled; internal  
pull-up resistors disabled; BOD disabled; low-current mode.  
1 MHz - 6 MHz: IRC enabled; PLL disabled.  
12 MHz: IRC enabled; PLL disabled.  
24 MHz to 72 MHz: IRC enabled; PLL enabled.  
Fig 19. Active mode: Typical supply current IDD versus temperature  
aaa-011386  
8
I
DD  
72 MHz  
60 MHz  
(mA)  
6
4
2
0
48 MHz  
36 MHz  
24 MHz  
12 MHz  
6 MHz  
1 MHz  
-40  
-10  
20  
50  
80  
temperature (°C)  
110  
Conditions: VDD = 3.3 V; sleep mode entered from flash; all peripherals disabled in the  
SYSAHBCLKCTRL0/1 registers; all peripheral clocks disabled; internal pull-up resistors disabled;  
BOD disabled; low-current mode.  
1 MHz - 6 MHz: IRC enabled; PLL disabled.  
12 MHz: IRC enabled; PLL disabled.  
24 MHz to 72 MHz: IRC enabled; PLL enabled.  
Fig 20. Sleep mode: Typical supply current IDD versus temperature for different system  
clock frequencies  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
60 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
aaa-011234  
400  
I
DD  
(μA)  
380  
3.6 V  
3.3 V  
3.0 V  
2.7 V  
2.4 V  
360  
340  
320  
300  
280  
-40  
-10  
20  
50  
80  
110  
temperature (°C)  
Conditions: BOD disabled; all oscillators and analog blocks disabled. Use API  
power_mode_configure() with mode parameter set to DEEP_SLEEP and peripheral parameter set  
to 0xFF.  
Fig 21. Deep-sleep mode: Typical supply current IDD versus temperature for different  
supply voltages VDD  
aaa-011235  
80  
I
DD  
(μA)  
60  
40  
20  
0
-40  
-10  
20  
50  
80  
110  
temperature (°C)  
Conditions: BOD disabled; all oscillators and analog blocks disabled; VDD = 2.4 V to 3.6 V. Use API  
power_mode_configure() with mode parameter set to POWER_DOWN and peripheral parameter  
set to 0xFF.  
Fig 22. Power-down mode: Typical supply current IDD versus temperature for different  
supply voltages VDD  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
61 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
aaa-011236  
4
3
2
1
0
I
DD  
(μA)  
3.6 V  
3.3 V  
2.4 V  
-40  
-10  
20  
50  
80  
110  
temperature (°C)  
VBAT = 0 V.  
Fig 23. Deep power-down mode: Typical supply current IDD versus temperature for  
different supply voltages VDD  
aaa-011333  
4
I
BAT  
(μA)  
3
2
1
0
-40  
-10  
20  
50  
80  
110  
temperature (°C)  
VBAT = 3.3 V; VDD floating.  
Fig 24. Deep power-down mode: Typical battery supply current IBAT versus temperature  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
62 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
11.2 CoreMark data  
aaa-011746  
2.65  
CM score  
2.6  
2.55  
2.5  
cpu  
2.45  
2.4  
efficiency  
default/low current  
2.35  
0
12  
24  
36  
48  
60  
72  
system clock frequency (MHz)  
Conditions: VDD = 3.3 V; active mode; all peripherals except one UART and the SCT disabled in  
the SYSAHBCLKCTRL0/1 register; internal pull-up resistors enabled; BOD disabled. Measured  
with Keil uVision v.4.73.0.0, C compiler v.5.03.0.76.  
Fig 25. CoreMark score  
aaa-011747  
30  
25  
20  
15  
10  
5
I
DD  
(mA)  
default  
cpu  
efficiency  
low-current  
0
0
12  
24  
36  
48  
60  
72  
system clock frequency (MHz)  
Conditions: VDD = 3.3 V; Tamb = 25 C; active mode; all peripherals except one UART and the SCT  
disabled in the SYSAHBCLKCTRL0/1 registers; system clock derived from the IRC; system  
oscillator disabled; internal pull-up resistors enabled; BOD disabled. Measured with Keil uVision  
v.4.73.0.0, C compiler v.5.03.0.76.  
Fig 26. Active mode: CoreMark power consumption IDD  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
63 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
11.3 Peripheral power consumption  
The supply current per peripheral is measured as the difference in supply current between  
the peripheral block enabled and the peripheral block disabled in the SYSAHBCLKCFG  
and PDRUNCFG (for analog blocks) registers. All other blocks are disabled in both  
registers and no code accessing the peripheral is executed. Measured on a typical  
sample at Tamb = 25 C. Unless noted otherwise, the system oscillator and PLL are  
running in both measurements.  
The supply currents are shown for system clock frequencies of 12 MHz and 72 MHz.  
Table 12. Power consumption for individual analog and digital blocks  
Peripheral  
Typical supply current in mA  
Notes  
n/a  
12 MHz  
72 MHz  
IRC  
0.008  
-
-
System oscillator running; PLL off; independent  
of main clock frequency.  
System oscillator at 12 MHz  
Watchdog oscillator  
0.220  
0.002  
-
-
-
-
IRC running; PLL off; independent of main clock  
frequency.  
System oscillator running; PLL off; independent  
of main clock frequency.  
BOD  
0.045  
-
-
-
-
Independent of main clock frequency.  
-
Main PLL  
USB PLL  
SCT PLL  
CLKOUT  
0.085  
0.100  
0.110  
0.005  
-
0.01  
Main clock divided by 4 in the CLKOUTDIV  
register.  
ROM  
-
-
0.015  
0.55  
0.02  
0.60  
-
GPIO + pin interrupt/pattern  
match  
GPIO pins configured as outputs and set to  
LOW. Direction and pin state are maintained if  
the GPIO is disabled in the SYSAHBCLKCFG  
register.  
SWM  
-
0.04  
0.05  
0.06  
0.18  
0.19  
0.13  
0.16  
0.02  
0.01  
0.03  
0.01  
0.29  
0.30  
0.40  
1.10  
1.10  
0.70  
0.90  
0.1  
-
INPUT MUX  
IOCON  
-
-
-
-
-
-
-
-
-
-
SCTimer0/PWM  
SCTimer1/PWM  
SCTimer2/PWM  
SCTimer3/PWM  
SCT IPU  
RTC  
-
-
-
0.05  
0.10  
0.10  
-
-
MRT  
WWDT  
Main clock selected as clock source for the  
WDT.  
RIT  
0.07  
0.12  
0.02  
0.03  
0.01  
0.20  
0.80  
0.12  
0.3  
QEI  
I2C0  
SPI0  
SPI1  
-
-
-
-
-
-
0.28  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
64 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 12. Power consumption for individual analog and digital blocks …continued  
Peripheral  
Typical supply current in mA  
Notes  
n/a  
12 MHz  
0.02  
0.02  
0.02  
0.50  
0.10  
0.01  
0.05  
0.04  
0.03  
0.03  
72 MHz  
0.15  
0.16  
0.15  
3.00  
0.50  
0.03  
0.33  
0.33  
0.03  
0.04  
USART0  
-
-
-
-
-
-
-
-
-
-
-
-
-
USART1  
USART2  
C_CAN  
USB  
Comparator ACMP0/1/2/3  
ADC0  
-
-
-
ADC1  
temperature sensor  
internal voltage reference/band  
gap  
DAC  
DMA  
CRC  
-
-
-
0.02  
0.36  
0.01  
0.09  
1.5  
-
-
0.08  
11.4 Electrical pin characteristics  
aaa-011257  
3.3  
V
OHH  
(V)  
3.2  
3.1  
3
-40 °C  
25 °C  
90 °C  
105 °C  
2.9  
2.8  
2.7  
0
10  
20  
30  
40  
50  
I
(mA)  
OH  
Conditions: VDD = 3.3 V; on pin PIO0_24.  
Fig 27. High-drive output: Typical HIGH-level output voltage VOH versus HIGH-level  
output current IOH  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
65 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
aaa-011258  
50  
40  
30  
20  
10  
0
I
OLH  
(mA)  
-40 °C  
25 °C  
90 °C  
105 °C  
0
0.1  
0.2  
0.3  
0.4  
0.5  
V
OL  
(V)  
Conditions: VDD = 3.3 V; on pins PIO0_22 and PIO0_23.  
Fig 28. I2C-bus pins (high current sink): Typical LOW-level output current IOL versus  
LOW-level output voltage VOL  
aaa-011263  
10  
V
OLL  
(V)  
8
6
4
2
0
-40 °C  
25 °C  
90 °C  
105 °C  
0
0.1  
0.2  
0.3  
0.4  
0.5  
I
(mA)  
OL  
Conditions: VDD = 3.3 V; standard port pins and high-drive pin PIO0_24.  
Fig 29. Typical LOW-level output current IOL versus LOW-level output voltage VOL  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
66 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
aaa-011276  
3.3  
I
OHH  
(mA)  
-40 °C  
25 °C  
90 °C  
105 °C  
3.1  
2.9  
2.7  
0
3
6
9
12  
V
OH  
(V)  
Conditions: VDD = 3.3 V; standard port pins.  
Fig 30. Typical HIGH-level output voltage VOH versus HIGH-level output source current  
IOH  
aaa-011277  
0
I
pddu  
(μA)  
-20  
105 °C  
90 °C  
25 °C  
-40 °C  
-40  
-60  
-80  
0
1
2
3
4
5
V (V)  
I
Conditions: VDD = 3.3 V; standard port pins.  
Fig 31. Typical pull-up current Ipu versus input voltage VI  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
67 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
aaa-011278  
80  
60  
40  
20  
0
I
pu  
(μA)  
-40 °C  
25 °C  
90 °C  
105 °C  
0
1
2
3
4
5
V (V)  
I
Conditions: VDD = 3.3 V; standard port pins.  
Fig 32. Typical pull-down current Ipd versus input voltage VI  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
68 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
12. Dynamic characteristics  
12.1 Flash/EEPROM memory  
Table 13. Flash characteristics  
amb = 40 C to +105 C. Based on JEDEC NVM qualification. Failure rate < 10 ppm for parts as  
specified below.  
T
Symbol  
Nendu  
tret  
Parameter  
Conditions  
Min  
10000  
10  
Typ  
100000  
20  
Max  
Unit  
[1]  
endurance  
-
cycles  
years  
years  
ms  
retention time  
powered  
-
not powered  
20  
40  
-
ter  
erase time  
page or multiple  
consecutivepages,  
sector or multiple  
consecutive  
95  
100  
105  
sectors  
[2]  
tprog  
programming  
time  
0.95  
1
1.05  
ms  
[1] Number of program/erase cycles.  
[2] Programming times are given for writing 256 bytes to the flash. Tamb <= +85 C. Flash programming with  
IAP calls (see LPC15xx user manual).  
Table 14. EEPROM characteristics  
Tamb = 40 C to +85 C; VDD = 2.7 V to 3.6 V. Based on JEDEC NVM qualification. Failure rate <  
10 ppm for parts as specified below.  
Symbol  
Nendu  
tret  
Parameter  
endurance  
Conditions  
Min  
100000  
100  
150  
-
Typ  
Max  
Unit  
1000000  
200  
-
-
-
-
cycles  
years  
years  
ms  
retention time  
powered  
not powered  
64 bytes  
300  
tprog  
programming  
time  
2.9  
12.2 External clock for the oscillator in slave mode  
Remark: The input voltage on the XTALIN and XTALOUT pins must be 1.95 V (see  
Table 11). For connecting the oscillator to the XTAL pins, also see Section 14.2.  
Table 15. Dynamic characteristic: external clock (XTALIN input)  
T
amb = 40 C to +105 C; VDD over specified ranges.[1]  
Symbol  
Parameter  
Conditions  
Min  
Typ[2]  
Max  
Unit  
MHz  
ns  
fosc  
oscillator frequency  
clock cycle time  
clock HIGH time  
clock LOW time  
clock rise time  
clock fall time  
1
-
-
-
-
-
-
25  
Tcy(clk)  
tCHCX  
tCLCX  
tCLCH  
tCHCL  
40  
1000  
Tcy(clk) 0.4  
-
ns  
Tcy(clk) 0.4  
-
ns  
-
-
5
5
ns  
ns  
[1] Parameters are valid over operating temperature range unless otherwise specified.  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
69 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
[2] Typical ratings are not guaranteed. The values listed are for room temperature (25 C), nominal supply  
voltages.  
W
&+&;  
W
W
W
&/&+  
&+&/  
&/&;  
7
F\ꢃFONꢄ  
DDDꢀꢁꢁꢂꢃꢂꢆ  
Fig 33. External clock timing (with an amplitude of at least Vi(RMS) = 200 mV)  
12.3 Internal oscillators  
Table 16. Dynamic characteristics: IRC  
Tamb = 40 C to +105 C; 2.7 V VDD 3.6 V[1]  
.
Symbol Parameter  
Conditions  
Min  
Typ[2] Max  
Unit  
MHz  
MHz  
fosc(RC)  
internal RC  
25 C Tamb +85 C 12 - 1%  
40 C Tamb < 25 C 12 - 2%  
12  
12  
12 + 1 %  
12 + 1 %  
oscillator frequency  
85 C < Tamb 105 C 12 - 1.5 % 12  
12 + 1.5 % MHz  
[1] Parameters are valid over operating temperature range unless otherwise specified.  
[2] Typical ratings are not guaranteed. The values listed are for room temperature (25 C), nominal supply  
voltages.  
aaa-011233  
12.15  
f
osc(RC)  
3.6 V  
3.3 V  
3.0 V  
2.7 V  
(MHz)  
12.1  
12.05  
12  
11.95  
11.9  
11.85  
-40  
-10  
20  
50  
80  
110  
temperature (°C)  
Conditions: Frequency values are typical values. 12 MHz 1 % accuracy is guaranteed for  
2.7 V VDD 3.6 V and Tamb = 25 C to +85 C. Variations between parts may cause the IRC to  
fall outside the 12 MHz 1 % accuracy specification for voltages below 2.7 V.  
Fig 34. Typical Internal RC oscillator frequency versus temperature  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
70 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 17. Dynamic characteristics: Watchdog oscillator  
Symbol  
fosc(int)  
Parameter  
Conditions  
Min  
Typ[1]  
Max  
Unit  
[2]  
internal oscillator  
frequency  
-
-
503  
-
kHz  
[1] Typical ratings are not guaranteed. The values listed are at nominal supply voltages.  
[2] The typical frequency spread over processing and temperature (Tamb = 40 C to +105 C) is 40 %.  
12.4 I/O pins  
Table 18. Dynamic characteristics: I/O pins[1]  
Tamb = 40 C to +105 C; 3.0 V VDD 3.6 V.  
Symbol Parameter Conditions  
Min  
3.0  
2.5  
Typ  
Max  
5.0  
Unit  
ns  
tr  
tf  
rise time  
fall time  
pin configured as output  
pin configured as output  
-
-
5.0  
ns  
[1] Applies to standard port pins and RESET pin.  
12.5 I2C-bus  
Table 19. Dynamic characteristic: I2C-bus pins[1]  
Tamb = 40 C to +105 C; values guaranteed by design.[2]  
Symbol  
Parameter  
Conditions  
Standard-mode  
Fast-mode  
Min  
Max  
Unit  
kHz  
kHz  
MHz  
fSCL  
SCL clock  
frequency  
0
0
0
100  
400  
1
Fast-mode Plus; on  
pins PIO0_22 and  
PIO0_23  
[4][5][6][7]  
tf  
fall time  
of both SDA and  
SCL signals  
-
300  
ns  
Standard-mode  
Fast-mode  
20 + 0.1 Cb 300  
ns  
ns  
Fast-mode Plus;  
on pins PIO0_22  
and PIO0_23  
-
120  
tLOW  
LOW period of  
the SCL clock  
Standard-mode  
Fast-mode  
4.7  
1.3  
-
-
-
s  
s  
s  
Fast-mode Plus; on 0.5  
pins PIO0_22 and  
PIO0_23  
tHIGH  
HIGH period of  
the SCL clock  
Standard-mode  
Fast-mode  
4.0  
0.6  
-
-
-
s  
s  
s  
Fast-mode Plus; on 0.26  
pins PIO0_22 and  
PIO0_23  
[3][4][8]  
tHD;DAT  
data hold time  
Standard-mode  
Fast-mode  
0
0
0
-
-
-
s  
s  
s  
Fast-mode Plus; on  
pins PIO0_22 and  
PIO0_23  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
71 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 19. Dynamic characteristic: I2C-bus pins[1]  
Tamb = 40 C to +105 C; values guaranteed by design.[2]  
Symbol  
Parameter  
Conditions  
Standard-mode  
Fast-mode  
Min  
250  
100  
Max  
Unit  
ns  
[9][10]  
tSU;DAT  
data set-up  
time  
-
-
-
ns  
Fast-mode Plus; on 50  
pins PIO0_22 and  
PIO0_23  
ns  
[1] See the I2C-bus specification UM10204 for details.  
[2] Parameters are valid over operating temperature range unless otherwise specified.  
[3]  
tHD;DAT is the data hold time that is measured from the falling edge of SCL; applies to data in transmission  
and the acknowledge.  
[4] A device must internally provide a hold time of at least 300 ns for the SDA signal (with respect to the  
VIH(min) of the SCL signal) to bridge the undefined region of the falling edge of SCL.  
[5] Cb = total capacitance of one bus line in pF.  
[6] The maximum tf for the SDA and SCL bus lines is specified at 300 ns. The maximum fall time for the SDA  
output stage tf is specified at 250 ns. This allows series protection resistors to be connected in between the  
SDA and the SCL pins and the SDA/SCL bus lines without exceeding the maximum specified tf.  
[7] In Fast-mode Plus, fall time is specified the same for both output stage and bus timing. If series resistors  
are used, designers should allow for this when considering bus timing.  
[8] The maximum tHD;DAT could be 3.45 s and 0.9 s for Standard-mode and Fast-mode but must be less than  
the maximum of tVD;DAT or tVD;ACK by a transition time (see UM10204). This maximum must only be met if  
the device does not stretch the LOW period (tLOW) of the SCL signal. If the clock stretches the SCL, the  
data must be valid by the set-up time before it releases the clock.  
[9] tSU;DAT is the data set-up time that is measured with respect to the rising edge of SCL; applies to data in  
transmission and the acknowledge.  
[10] A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system but the requirement  
tSU;DAT = 250 ns must then be met. This will automatically be the case if the device does not stretch the  
LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must  
output the next data bit to the SDA line tr(max) + tSU;DAT = 1000 + 250 = 1250 ns (according to the  
Standard-mode I2C-bus specification) before the SCL line is released. Also the acknowledge timing must  
meet this set-up time.  
W
I
W
68ꢈ'$7  
ꢅꢁꢂꢆ  
ꢇꢁꢂꢆ  
ꢅꢁꢂꢆ  
ꢇꢁꢂꢆ  
6'$  
6&/  
W
W
+'ꢈ'$7  
9'ꢈ'$7  
W
I
W
+,*+  
ꢅꢁꢂꢆ  
ꢇꢁꢂꢆ  
ꢅꢁꢂꢆ  
ꢇꢁꢂꢆ  
ꢅꢁꢂꢆ  
ꢇꢁꢂꢆ  
ꢅꢁꢂꢆ  
ꢇꢁꢂꢆ  
W
/2:  
ꢉꢂꢊꢂI  
6
6&/  
DDDꢀꢁꢁꢂꢃꢂꢅ  
Fig 35. I2C-bus pins clock timing  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
72 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
12.6 SPI interfaces  
The maximum data bit rate is 17 Mbit/s in master mode and in slave mode.  
Remark: SPI functions can be assigned to all digital pins. The characteristics are valid for  
all digital pins except the open-drain pins PIO0_22 and PIO0_23.  
Table 20. SPI dynamic characteristics  
Tamb = 40 C to 105 C; 2.4 V <= VDD <= 3.6 V; CL = 10 pF; input slew = 1 ns. Simulated  
parameters sampled at the 50 % level of the rising or falling edge; values guaranteed by design.  
Symbol  
SPI master  
tDS  
Parameter  
Min  
Max  
Unit  
data set-up time  
30  
0
-
ns  
ns  
ns  
ns  
tDH  
data hold time  
-
tv(Q)  
data output valid time  
data output hold time  
-
4
-
th(Q)  
2
SPI slave  
tDS  
data set-up time  
6
-
ns  
ns  
ns  
ns  
tDH  
data hold time  
0
-
tv(Q)  
data output valid time  
data output hold time  
-
29  
-
th(Q)  
12  
7
F\ꢃFONꢄ  
6&.ꢂꢃ&32/ꢂ ꢂꢁꢄ  
6&.ꢂꢃ&32/ꢂ ꢂꢉꢄ  
026,  
W
W
Kꢃ4ꢄ  
Yꢃ4ꢄ  
'$7$ꢂ9$/,'  
'$7$ꢂ9$/,'  
&3+$ꢂ ꢂꢉ  
W
W
'+  
'6  
'$7$ꢂ9$/,'  
'$7$ꢂ9$/,'  
0,62  
W
W
Kꢃ4ꢄ  
Yꢃ4ꢄ  
'$7$ꢂ9$/,'  
'$7$ꢂ9$/,'  
W
026,  
0,62  
W
&3+$ꢂ ꢂꢁ  
'6  
'+  
'$7$ꢂ9$/,'  
'$7$ꢂ9$/,'  
DDDꢀꢁꢁꢂꢃꢂꢂ  
Tcy(clk) = CCLK/DIVVAL with CCLK = system clock frequency. DIVVAL is the SPI clock divider. See  
the LPC15xx User manual UM10736.  
Fig 36. SPI master timing  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
73 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
7
F\ꢃFONꢄ  
6&.ꢂꢃ&32/ꢂ ꢂꢁꢄ  
6&.ꢂꢃ&32/ꢂ ꢂꢉꢄ  
W
W
'+  
'6  
026,  
0,62  
'$7$ꢂ9$/,'  
'$7$ꢂ9$/,'  
W
W
Kꢃ4ꢄ  
Yꢃ4ꢄ  
&3+$ꢂ ꢂꢉ  
'$7$ꢂ9$/,'  
'$7$ꢂ9$/,'  
W
W
'+  
'6  
026,  
0,62  
'$7$ꢂ9$/,'  
'$7$ꢂ9$/,'  
'$7$ꢂ9$/,'  
W
W
Kꢃ4ꢄ  
&3+$ꢂ ꢂꢁ  
Yꢃ4ꢄ  
'$7$ꢂ9$/,'  
DDDꢀꢁꢁꢂꢃꢂꢇ  
Fig 37. SPI slave timing  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
74 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
12.7 USART interface  
The maximum USART bit rate is 15 Mbit/s in synchronous mode master mode and  
18 Mbit/s in synchronous slave mode.  
Remark: USART functions can be assigned to all digital pins. The characteristics are valid  
for all digital pins except the open-drain pins PIO0_22 and PIO0_23.  
Table 21. USART dynamic characteristics  
Tamb = 40 C to 105 C; 2.4 V <= VDD <= 3.6 V; CL = 10 pF; input slew = 10 ns. Simulated  
parameters sampled at the 50 % level of the falling or rising edge; values guaranteed by design.  
Symbol  
Parameter  
Min  
Max  
Unit  
USART master (in synchronous mode)  
tsu(D)  
th(D)  
tv(Q)  
th(Q)  
data input set-up time  
data input hold time  
data output valid time  
data output hold time  
33  
0
-
ns  
ns  
ns  
ns  
-
-
7
-
2
USART slave (in synchronous mode)  
tsu(D)  
th(D)  
tv(Q)  
th(Q)  
data input set-up time  
data input hold time  
data output valid time  
data output hold time  
13  
0
-
ns  
ns  
ns  
ns  
-
-
28  
-
12  
7
F\ꢃFONꢄ  
8QB6&/.ꢂꢃ&/.32/ꢂ ꢂꢁꢄ  
8QB6&/.ꢂꢃ&/.32/ꢂ ꢂꢉꢄ  
7;'  
W
W
Kꢃ4ꢄ  
Yꢃ4ꢄ  
67$57  
%,7ꢁ  
%,7ꢉ  
W
W
VXꢃ'ꢄ Kꢃ'ꢄ  
%,7ꢉ  
67$57  
%,7ꢁ  
5;'  
DDDꢀꢁꢁꢈꢁꢁꢄ  
In master mode, Tcy(clk) = U_PCLK/BRGVAL. See the LPC15xx User manual UM10736.  
Fig 38. USART timing  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
75 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
12.8 SCT output timing  
Table 22. SCT output dynamic characteristics  
Tamb = 40 C to 105 C; 2.4 V <= VDD <= 3.6 V Cl = 10 pF. Simulated skew (over process, voltage,  
and temperature) of any two SCT fixed-pin output signals; sampled at the 50 % level of the falling or  
rising edge; values guaranteed by design.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
ns  
tsk(o)  
output skew time  
SCTimer0/PWM  
SCTimer1/PWM  
SCTimer2/PWM  
SCTimer3/PWM  
-
-
-
-
-
-
-
-
4
3
1
2
ns  
ns  
ns  
13. Characteristics of analog peripherals  
Table 23. BOD static characteristics[1]  
Tamb = 25 C.  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Vth  
threshold voltage interrupt level 2  
assertion  
-
-
2.55  
2.69  
-
-
V
V
de-assertion  
interrupt level 3  
assertion  
-
-
2.83  
2.96  
-
-
V
V
de-assertion  
reset level 2  
assertion  
-
-
2.34  
2.49  
-
-
V
V
de-assertion  
reset level 3  
assertion  
-
-
2.64  
2.79  
-
-
V
V
de-assertion  
[1] Interrupt levels are selected by writing the level value to the BOD control register BODCTRL, see the  
LPC15xx user manual.  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
76 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 24. 12-bit ADC static characteristics  
Tamb = 40 C to +105 C; VDD = 2.4 V to 3.6 V; VREFP = VDDA; VSSA = 0; VREFN = VSSA  
.
Symbol Parameter  
Conditions  
Min  
Max  
VDDA  
0.32  
Unit  
[1]  
VIA  
Cia  
analog input voltage  
0
-
V
analog input  
capacitance  
pF  
fclk(ADC) ADC clock frequency  
VDDA 2.7 V  
VDDA 2.4 V  
VDDA 2.7 V  
VDDA 2.4 V  
50  
25  
2
MHz  
MHz  
fs  
sampling frequency  
-
-
-
Msamples/s  
Msamples/s  
LSB  
1
[2]  
ED  
differential linearity  
error  
+/- 2  
[3]  
[4]  
[5]  
EL(adj)  
EO  
integral non-linearity  
offset error  
-
-
-
+/- 2  
LSB  
LSB  
%
+/- 3  
Verr(fs)  
full-scale error voltage 2 Msamples/s  
1 Msamples/s  
+/- 0.12  
+/- 0.07  
-
%
[6][7]  
Zi  
input impedance  
fs = 2 Msamples/s  
0.1  
M  
[1] The input resistance of ADC channel 0 is higher than for all other channels.  
[2] The differential linearity error (ED) is the difference between the actual step width and the ideal step width.  
See Figure 40.  
[3] The integral non-linearity (EL(adj)) is the peak difference between the center of the steps of the actual and  
the ideal transfer curve after appropriate adjustment of gain and offset errors. See Figure 40.  
[4] The offset error (EO) is the absolute difference between the straight line which fits the actual curve and the  
straight line which fits the ideal curve. See Figure 40.  
[5] The full-scale error voltage or gain error (EG) is the difference between the straight line fitting the actual  
transfer curve after removing offset error, and the straight line which fits the ideal transfer curve. See  
Figure 40.  
[6] Tamb = 25 C; maximum sampling frequency fs = 2 Msamples/s and analog input capacitance Cia = 0.1 pF.  
[7] Input impedance Zi is inversely proportional to the sampling frequency and the total input capacity including  
Cia and Cio: Zi 1 / (fs Ci). See Table 11 for Cio.  
ADC  
R
= 0.25 kΩ...2.5 kΩ  
1
ADCn_0  
C
io  
R
= 5 Ω...25 Ω  
sw  
ADCn_[1:11]  
DAC  
C
DAC  
C
io  
C
ia  
aaa-011748  
Fig 39. ADC input impedance  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
77 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
offset  
error  
O
gain  
error  
E
E
G
4095  
4094  
4093  
4092  
4091  
4090  
(2)  
7
code  
out  
(1)  
6
5
4
3
2
1
0
(5)  
(4)  
(3)  
1 LSB  
(ideal)  
4090 4091 4092 4093 4094 4095 4096  
1
2
3
4
5
6
7
V
IA  
(LSB  
)
ideal  
offset error  
E
O
VREFP - V  
4096  
SS  
1 LSB =  
002aaf436  
(1) Example of an actual transfer curve.  
(2) The ideal transfer curve.  
(3) Differential linearity error (ED).  
(4) Integral non-linearity (EL(adj)).  
(5) Center of a step of the actual transfer curve.  
Fig 40. 12-bit ADC characteristics  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
78 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 25. DAC static and dynamic characteristics  
VDDA = 2.4 V to 3.6 V; Tamb = 40 C to +105 C unless otherwise specified; CL = 100 pF;  
RL = 10 k..  
Symbol Parameter  
Conditions  
Min Typ Max  
Unit  
[1]  
fc(DAC)  
DAC conversion  
-
-
500  
kSamples/s  
frequency  
RO  
ts  
output resistance  
settling time  
-
-
-
300  
-
-
2.5  
s  
ED  
differential  
+/-0.4  
LSB  
linearity error  
EL(adj)  
EO  
integral  
non-linearity  
-
-
+/-3  
LSB  
offset error  
VDDA = 3.3 V  
VDDA = 2.4 V  
-
-
-
-
-
-
-
-
+/-9  
LSB  
LSB  
%
+/-8  
EG  
VO  
gain error  
+/- 0.1  
output voltage  
Output voltage range  
with less than 1 LSB  
deviation; with  
VDDA - 0.3  
V
minimum RL  
connected to ground  
or power supply  
[1] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply  
voltages.  
LPCxxxx  
DVM  
DAC  
R
L
10 kΩ  
aaa-011964  
Fig 41. DAC test circuit  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
79 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 26. Internal voltage reference static and dynamic characteristics  
Symbol Parameter  
Conditions  
output voltage Tamb = 40 C to +105 C  
Tamb = 25 C  
Min  
Typ  
Max  
Unit  
mV  
mV  
s  
[1]  
VO  
875  
-
925  
905  
-
ts(pu)  
power-up  
to 99% of VO  
-
125  
settling time  
[1] Maximum and minimum values are measured on samples from the corners of the process matrix lot.  
[2] Settling time applies to switching between comparator and ADC channels.  
aaa-011179  
920  
Voltage  
(V)  
915  
910  
905  
900  
895  
890  
-40  
-10  
20  
50  
80  
110  
temperature (°C)  
VDDA = 3.3 V; averaged over process corners  
Fig 42. Average internal voltage reference output voltage  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
80 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 27. Temperature sensor static and dynamic characteristics  
VDDA = 2.4 V to 3.6 V  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
[1]  
DTsen  
sensor  
Tamb = 40 C to +105 C  
-
-
5
C  
temperature  
accuracy  
EL  
linearity error  
Tamb = 40 C to +105 C  
-
-
-
5
C  
s  
[2][3]  
ts(pu)  
power-up  
settling time  
to 99% of temperature  
sensor output value  
81  
110  
[1] Absolute temperature accuracy.  
[2] Typical values are derived from nominal simulation (VDDA = 3.3 V; Tamb = 27 C; nominal process models).  
Maximum values are derived from worst case simulation (VDDA = 2.6 V; Tamb = 105 C; slow process  
models).  
[3] Internal voltage reference must be powered before the temperature sensor can be turned on.  
[4] Settling time applies to switching between comparator and ADC channels.  
Table 28. Temperature sensor Linear-Least-Square (LLS) fit parameters  
VDDA = 2.4 V to 3.6 V  
Fit parameter  
LLS slope  
Range  
Min  
Typ  
-2.29  
577.3  
-
Max  
Unit  
mV/C  
mV  
[1]  
[1]  
[2]  
Tamb = 40 C to +105 C  
Tamb = 40 C to +105 C  
-
-
LLS intercept at 0 C  
Value at 30 C  
-
-
502  
514  
mV  
[1] Measured over matrix samples.  
[2] Measured for samples over process corners.  
aaa-011334  
800  
V
O
(mV)  
LLS fit  
600  
400  
200  
0
mMeasured temperature sensor output  
-40  
-10  
20  
50  
80  
110  
temperature (°C)  
VDDA = 3.3 V; measured on matrix samples.  
Fig 43. LLS fit of the temperature sensor output voltage  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
81 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 29. Comparator characteristics  
VDDA = 3.0 V. DLY = 0x0 in the analog comparator CTRL register for shortest propagation delay setting. See the LPC15xx  
user manual UM10736.  
Symbol Parameter  
Static characteristics  
Conditions  
Min Typ  
Max  
Unit  
IDD  
supply current  
VP > VM  
VM > VP  
-
48  
-
A  
A  
V
-
38  
-
VIC  
common-mode input voltage  
output voltage variation  
offset voltage  
0
0
-
-
VDDA  
DVO  
Voffset  
-
VDD  
V
VIC = 0.1 V  
VIC = 1.5 V  
VIC = 2.9 V  
+/- 3  
+/- 3  
+/- 6  
-
-
-
mV  
mV  
mV  
-
-
Dynamic characteristics  
tstartup  
tPD  
start-up time  
nominal process  
-
4.5  
6
s  
propagation delay  
HIGH to LOW; VDDA = 3.0 V;  
VIC = 0.1 V; 50 mV overdrive input  
VIC = 0.1 V; rail-to-rail input  
VIC = 1.5 V; 50 mV overdrive input  
VIC = 1.5 V; rail-to-rail input  
VIC = 2.9 V; 50 mV overdrive input  
VIC = 2.9 V; rail-to-rail input  
LOW to HIGH; VDDA = 3.0 V;  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
-
-
-
-
-
-
86  
196  
68  
64  
86  
48  
130  
250  
110  
90  
ns  
ns  
ns  
ns  
ns  
ns  
130  
80  
tPD  
propagation delay  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
[2]  
V
IC = 0.1 V; 50 mV overdrive input  
-
-
-
-
-
-
98  
24  
88  
68  
84  
98  
130  
40  
ns  
ns  
ns  
ns  
ns  
ns  
VIC = 0.1 V; rail-to-rail input  
VIC = 1.5 V; 50 mV overdrive input  
VIC = 1.5 V; rail-to-rail input  
130  
120  
110  
180  
VIC = 2.9 V; 50 mV overdrive input  
VIC = 2.9 V; rail-to-rail input  
Vhys  
Vhys  
Rlad  
hysteresis voltage  
hysteresis voltage  
ladder resistance  
positive hysteresis; VDDA = 3.0 V;  
VIC = 1.5 V; settings:  
5 mV  
3
-
-
-
8
mV  
mV  
mV  
10 mV  
8
13  
25  
15 mV  
17  
[1][2]  
negative hysteresis; VDDA = 3.0 V;  
IC = 1.5 V; settings:  
V
5 mV  
3
-
9
mV  
mV  
mV  
M  
10 mV  
8
-
18  
27  
-
15 mV  
18  
-
-
-
1
[1] CL = 10 pF; results from measurements on silicon samples over process corners and over the full temperature range Tamb = -40 C to  
+105 C.  
[2] Input hysteresis is relative to the reference input channel and is software programmable.  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
82 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 30. Comparator voltage ladder dynamic characteristics  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
ts(pu)  
power-up settling  
time  
to 99% of voltage  
ladder output  
value  
-
-
30  
s  
ts(sw)  
switching settling  
time  
to 99% of voltage  
ladder output  
value  
-
-
20  
s  
Table 31. Comparator voltage ladder reference static characteristics  
VDD(3V3) = 3.3 V; Tamb = -40 C to + 105C; external or internal reference.  
Symbol  
Parameter  
Conditions  
Min  
-
Typ  
Max[1]  
3
Unit  
mV  
%
[2]  
EV(O)  
output voltage error  
decimal code = 00  
decimal code = 08  
decimal code = 16  
decimal code = 24  
decimal code = 30  
decimal code = 31  
0
0
0
0
0
0
-1.5  
-1.5  
-1.5  
-1.5  
-1.5  
+1.5  
+1.5  
+1.5  
+1.5  
+1.5  
%
%
%
%
[1] Measured over a polyresistor matrix lot with a 2 kHz input signal and overdrive < 100 V.  
[2] All peripherals except comparator, temperature sensor, and IRC turned off.  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
83 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
14. Application information  
14.1 Suggested USB interface solutions  
The USB device can be connected to the USB as self-powered device (see Figure 44) or  
bus-powered device (see Figure 45).  
On the LPC15xx, the PIO0_3/USB_VBUS pin is 5 V tolerant only when VDD is applied and  
at operating voltage level. Therefore, if the USB_VBUS function is connected to the USB  
connector and the device is self-powered, the USB_VBUS pin must be protected for  
situations when VDD = 0 V.  
If VDD is always greater than 0 V while VBUS = 5 V, the USB_VBUS pin can be connected  
directly to the VBUS pin on the USB connector.  
For systems where VDD can be 0 V and VBUS is directly applied to the VBUS pin,  
precautions must be taken to reduce the voltage to below 3.6 V, which is the maximum  
allowable voltage on the USB_VBUS pin in this case.  
One method is to use a voltage divider to connect the USB_VBUS pin to the VBUS on the  
USB connector. The voltage divider ratio should be such that the USB_VBUS pin will be  
greater than 0.7VDD to indicate a logic HIGH while below the 3.6 V allowable maximum  
voltage.  
For the following operating conditions  
VBUSmax = 5.25 V  
VDD = 3.6 V,  
the voltage divider should provide a reduction of 3.6 V/5.25 V or ~0.686 V.  
LPC1xxx  
V
DD  
R2  
R3  
USB_CONNECT  
USB  
R1  
1.5 kΩ  
USB_VBUS  
R
S
= 33 Ω  
= 33 Ω  
USB-B  
connector  
USB_DP  
USB_DM  
R
S
V
SS  
aaa-010820  
Fig 44. USB interface on a self-powered device where USB_VBUS = 5 V  
For a bus-powered device, the VBUS signal does not need to be connected to the  
USB_VBUS pin (see Figure 45). The USB_CONNECT function can additionally be  
enabled internally by setting the DCON bit in the DEVCMDSTAT register to prevent the  
USB from timing out when there is a significant delay between power-up and handling  
USB traffic. External circuitry is not required for the USB_CONNECT functionality.  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
84 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
LPC1xxx  
V
DD  
REGULATOR  
USB_CONNECT  
USB  
R1  
1.5 kΩ  
VBUS  
R
R
= 33 Ω  
= 33 Ω  
USB-B  
connector  
S
S
USB_DP  
USB_DM  
V
SS  
aaa-010821  
Fig 45. USB interface on a bus-powered device  
Remark: When a bus-powered circuit as shown in Figure 45 is used or, for a self-powered  
device, when the VBUS pin is not connected, configure the PIO0_3/USB_VBUS pin for  
GPIO (PIO0_3) in the IOCON block. This ties the VBUS signal HIGH internally.  
14.1.1 USB Low-speed operation  
The USB device controller can be used in low-speed mode supporting 1.5 Mbit/s data  
exchange with a USB host controller.  
Remark: To operate in low-speed mode, change the board connections as follows:  
1. Connect USB_DP to the D- pin of the connector.  
2. Connect USB_DM to the D+ pin of the connector.  
External 10 resistors are recommended in low-speed mode to reduce over-shoots and  
accommodate for 5 m cable length required for USB-IF testing.  
14.2 XTAL input and crystal oscillator component selection  
The input voltage to the on-chip oscillators is limited to 1.8 V. If the oscillator is driven by a  
clock in slave mode, it is recommended that the input be coupled through a capacitor with  
Ci = 100 pF. To limit the input voltage to the specified range, choose an additional  
capacitor to ground Cg which attenuates the input voltage by a factor Ci/(Ci + Cg). In slave  
mode, a minimum of 200 mV(RMS) is needed.  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
85 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
LPC1xxx  
XTALIN  
C
i
C
g
100 pF  
002aae788  
Fig 46. Slave mode operation of the on-chip oscillator  
In slave mode the input clock signal should be coupled by means of a capacitor of 100 pF  
(Figure 46), with an amplitude between 200 mV (RMS) and 1000 mV (RMS). This  
corresponds to a square wave signal with a signal swing of between 280 mV and 1.4 V.  
The XTALOUT pin in this configuration can be left unconnected.  
External components and models used in oscillation mode are shown in Figure 47 and in  
Table 32 and Table 33. Since the feedback resistance is integrated on chip, only a crystal  
and the capacitances CX1 and CX2 need to be connected externally in case of  
fundamental mode oscillation (the fundamental frequency is represented by L, CL and  
RS). Capacitance CP in Figure 47 represents the parallel package capacitance and should  
not be larger than 7 pF. Parameters FOSC, CL, RS and CP are supplied by the crystal  
manufacturer (see Table 32).  
LPC1xxx  
L
XTALIN  
XTALOUT  
C
L
C
P
=
XTAL  
R
S
C
X2  
C
X1  
002aaf424  
Fig 47. Oscillator modes and models: oscillation mode of operation and external crystal  
model used for CX1/CX2 evaluation  
Table 32. Recommended values for CX1/CX2 in oscillation mode (crystal and external  
components parameters) low frequency mode  
Fundamental oscillation Crystal load  
Maximum crystal  
External load  
frequency FOSC  
capacitance CL  
series resistance RS  
capacitors CX1, CX2  
1 MHz to 5 MHz  
10 pF  
< 300   
< 300   
< 300   
18 pF, 18 pF  
39 pF, 39 pF  
57 pF, 57 pF  
20 pF  
30 pF  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
86 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 32. Recommended values for CX1/CX2 in oscillation mode (crystal and external  
components parameters) low frequency mode  
Fundamental oscillation Crystal load  
Maximum crystal  
External load  
frequency FOSC  
capacitance CL  
series resistance RS  
capacitors CX1, CX2  
5 MHz to 10 MHz  
10 pF  
< 300   
< 200   
< 100   
< 160   
< 60   
18 pF, 18 pF  
39 pF, 39 pF  
57 pF, 57 pF  
18 pF, 18 pF  
39 pF, 39 pF  
18 pF, 18 pF  
20 pF  
30 pF  
10 MHz to 15 MHz  
15 MHz to 20 MHz  
10 pF  
20 pF  
10 pF  
< 80   
Table 33. Recommended values for CX1/CX2 in oscillation mode (crystal and external  
components parameters) high frequency mode  
Fundamental oscillation Crystal load  
Maximum crystal  
External load  
frequency FOSC  
capacitance CL  
series resistance RS  
capacitors CX1, CX2  
15 MHz to 20 MHz  
10 pF  
< 180   
< 100   
< 160   
< 80   
18 pF, 18 pF  
39 pF, 39 pF  
18 pF, 18 pF  
39 pF, 39 pF  
20 pF  
20 MHz to 25 MHz  
10 pF  
20 pF  
14.3 XTAL Printed-Circuit Board (PCB) layout guidelines  
The crystal should be connected on the PCB as close as possible to the oscillator input  
and output pins of the chip. Take care that the load capacitors Cx1, Cx2, and Cx3 in case of  
third overtone crystal usage have a common ground plane. The external components  
must also be connected to the ground plane. Loops must be made as small as possible in  
order to keep the noise coupled in via the PCB as small as possible. Also parasitics  
should stay as small as possible. Smaller values of Cx1 and Cx2 should be chosen  
according to the increase in parasitics of the PCB layout.  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
87 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
14.4 RTC oscillator component selection  
The 32 kHz crystal must be connected to the part via the RTCXIN and RTCXOUT pins as  
shown in Figure 48. If the RTC is not used, the RTCXIN pin can be grounded.  
LPC1xxx  
L
RTCXIN  
RTCXOUT  
C
C
P
=
L
XTAL  
R
S
C
C
X2  
X1  
aaa-010822  
Fig 48. RTC oscillator components  
Select Cx1 and Cx2 based on the external 32 kHz crystal used in the application  
circuitry.The pad capacitance CP of the RTCXIN and RTCXOUT pad is 3 pF. If the external  
crystal’s load capacitance is CL, the optimal Cx1 and Cx2 can be selected as:  
Cx1 = Cx2 = 2 x CL – CP  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
88 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
15. Package outline  
LQFP48: plastic low profile quad flat package; 48 leads; body 7 x 7 x 1.4 mm  
SOT313-2  
c
y
X
36  
25  
A
E
37  
24  
Z
E
e
H
E
A
2
A
(A )  
3
A
1
w M  
p
θ
pin 1 index  
b
L
p
L
13  
48  
detail X  
1
12  
Z
v M  
D
A
e
w M  
b
p
D
B
H
v
M
B
D
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
D
H
L
L
v
w
y
Z
Z
E
θ
1
2
3
p
E
p
D
max.  
7o  
0o  
0.20 1.45  
0.05 1.35  
0.27 0.18 7.1  
0.17 0.12 6.9  
7.1  
6.9  
9.15 9.15  
8.85 8.85  
0.75  
0.45  
0.95 0.95  
0.55 0.55  
1.6  
mm  
0.25  
0.5  
1
0.2 0.12 0.1  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
00-01-19  
03-02-25  
SOT313-2  
136E05  
MS-026  
Fig 49. Package outline LQFP48 (SOT313-2)  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
89 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
LQFP64: plastic low profile quad flat package; 64 leads; body 10 x 10 x 1.4 mm  
SOT314-2  
y
X
A
48  
33  
Z
49  
32  
E
e
H
A
E
2
E
A
(A )  
3
A
1
w M  
p
θ
b
L
p
pin 1 index  
L
64  
17  
detail X  
1
16  
Z
v
M
A
D
e
w M  
b
p
D
B
H
v
M
B
D
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
D
H
L
L
v
w
y
Z
Z
E
θ
1
2
3
p
E
p
D
max.  
7o  
0o  
0.20 1.45  
0.05 1.35  
0.27 0.18 10.1 10.1  
0.17 0.12 9.9 9.9  
12.15 12.15  
11.85 11.85  
0.75  
0.45  
1.45 1.45  
1.05 1.05  
1.6  
mm  
0.25  
0.5  
1
0.2 0.12 0.1  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
00-01-19  
03-02-25  
SOT314-2  
136E10  
MS-026  
Fig 50. Package outline LQFP64 (SOT314-2)  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
90 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
LQFP100: plastic low profile quad flat package; 100 leads; body 14 x 14 x 1.4 mm  
SOT407-1  
y
X
A
51  
75  
50  
26  
(1)  
76  
Z
E
e
H
A
E
2
E
A
(A )  
3
A
1
w M  
p
θ
b
L
p
pin 1 index  
L
detail X  
100  
1
25  
Z
D
v
M
A
B
e
w M  
b
p
D
B
H
v
M
5
D
0
10 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
D
H
L
L
p
v
w
y
Z
Z
θ
1
2
3
p
E
D
E
max.  
7o  
0o  
0.15 1.45  
0.05 1.35  
0.27 0.20 14.1 14.1  
0.17 0.09 13.9 13.9  
16.25 16.25  
15.75 15.75  
0.75  
0.45  
1.15 1.15  
0.85 0.85  
mm  
1.6  
0.25  
0.5  
1
0.2 0.08 0.08  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
00-02-01  
03-02-20  
SOT407-1  
136E20  
MS-026  
Fig 51. Package outline LQFP100 (SOT407-1)  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
91 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
16. Soldering  
Footprint information for reflow soldering of LQFP48 package  
SOT313-2  
Hx  
Gx  
(0.125)  
P2  
P1  
Hy Gy  
By  
Ay  
C
D2 (8×)  
D1  
Bx  
Ax  
Generic footprint pattern  
Refer to the package outline drawing for actual layout  
solder land  
occupied area  
DIMENSIONS in mm  
P1 P2 Ax  
Ay  
Bx  
By  
C
D1  
D2  
Gx  
Gy  
Hx  
Hy  
0.500 0.560 10.350 10.350 7.350 7.350 1.500 0.280 0.500 7.500 7.500 10.650 10.650  
sot313-2_fr  
Fig 52. Reflow soldering for the LQFP48 package  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
92 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Footprint information for reflow soldering of LQFP64 package  
SOT314-2  
Hx  
Gx  
(0.125)  
P2  
P1  
Hy Gy  
By  
Ay  
C
D2 (8×)  
D1  
Bx  
Ax  
Generic footprint pattern  
Refer to the package outline drawing for actual layout  
solder land  
occupied area  
DIMENSIONS in mm  
P1 P2 Ax  
Ay  
Bx  
By  
C
D1  
D2  
Gx  
Gy  
Hx  
Hy  
0.500 0.560 13.300 13.300 10.300 10.300 1.500 0.280 0.400 10.500 10.500 13.550 13.550  
sot314-2_fr  
Fig 53. Reflow soldering for the LQFP64 package  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
93 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Footprint information for reflow soldering of LQFP100 package  
SOT407-1  
Hx  
Gx  
(0.125)  
P2  
P1  
Hy Gy  
By  
Ay  
C
D2 (8×)  
D1  
Bx  
Ax  
Generic footprint pattern  
Refer to the package outline drawing for actual layout  
solder land  
occupied area  
DIMENSIONS in mm  
P1 P2 Ax  
Ay  
Bx  
By  
C
D1  
D2  
Gx  
Gy  
Hx  
Hy  
0.500 0.560 17.300 17.300 14.300 14.300 1.500 0.280 0.400 14.500 14.500 17.550 17.550  
sot407-1  
Fig 54. Reflow soldering for the LQFP100 package  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
94 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
17. References  
[1] LPC15xx User manual UM10736:  
http://www.nxp.com/documents/user_manual/UM10736.pdf  
[2] LPC15xx Errata sheet:  
http://www.nxp.com/documents/errata_sheet/ES_LPC15XX.pdf  
18. Revision history  
Table 34. Revision history  
Document ID  
Release date  
20140219  
Data sheet status  
Change notice  
Supersedes  
LPC15XX v.1  
Product data sheet  
-
-
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
95 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
19. Legal information  
19.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
Suitability for use — NXP Semiconductors products are not designed,  
19.2 Definitions  
authorized or warranted to be suitable for use in life support, life-critical or  
safety-critical systems or equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
to result in personal injury, death or severe property or environmental  
damage. NXP Semiconductors and its suppliers accept no liability for  
inclusion and/or use of NXP Semiconductors products in such equipment or  
applications and therefore such inclusion and/or use is at the customer’s own  
risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Customers are responsible for the design and operation of their applications  
and products using NXP Semiconductors products, and NXP Semiconductors  
accepts no liability for any assistance with applications or customer product  
design. It is customer’s sole responsibility to determine whether the NXP  
Semiconductors product is suitable and fit for the customer’s applications and  
products planned, as well as for the planned application and use of  
customer’s third party customer(s). Customers should provide appropriate  
design and operating safeguards to minimize the risks associated with their  
applications and products.  
Product specification — The information and data provided in a Product  
data sheet shall define the specification of the product as agreed between  
NXP Semiconductors and its customer, unless NXP Semiconductors and  
customer have explicitly agreed otherwise in writing. In no event however,  
shall an agreement be valid in which the NXP Semiconductors product is  
deemed to offer functions and qualities beyond those described in the  
Product data sheet.  
NXP Semiconductors does not accept any liability related to any default,  
damage, costs or problem which is based on any weakness or default in the  
customer’s applications or products, or the application or use by customer’s  
third party customer(s). Customer is responsible for doing all necessary  
testing for the customer’s applications and products using NXP  
Semiconductors products in order to avoid a default of the applications and  
the products or of the application or use by customer’s third party  
customer(s). NXP does not accept any liability in this respect.  
19.3 Disclaimers  
Limited warranty and liability — Information in this document is believed to  
be accurate and reliable. However, NXP Semiconductors does not give any  
representations or warranties, expressed or implied, as to the accuracy or  
completeness of such information and shall have no liability for the  
consequences of use of such information. NXP Semiconductors takes no  
responsibility for the content in this document if provided by an information  
source outside of NXP Semiconductors.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) will cause permanent  
damage to the device. Limiting values are stress ratings only and (proper)  
operation of the device at these or any other conditions above those given in  
the Recommended operating conditions section (if present) or the  
Characteristics sections of this document is not warranted. Constant or  
repeated exposure to limiting values will permanently and irreversibly affect  
the quality and reliability of the device.  
In no event shall NXP Semiconductors be liable for any indirect, incidental,  
punitive, special or consequential damages (including - without limitation - lost  
profits, lost savings, business interruption, costs related to the removal or  
replacement of any products or rework charges) whether or not such  
damages are based on tort (including negligence), warranty, breach of  
contract or any other legal theory.  
Terms and conditions of commercial sale — NXP Semiconductors  
products are sold subject to the general terms and conditions of commercial  
sale, as published at http://www.nxp.com/profile/terms, unless otherwise  
agreed in a valid written individual agreement. In case an individual  
agreement is concluded only the terms and conditions of the respective  
agreement shall apply. NXP Semiconductors hereby expressly objects to  
applying the customer’s general terms and conditions with regard to the  
purchase of NXP Semiconductors products by customer.  
Notwithstanding any damages that customer might incur for any reason  
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards  
customer for the products described herein shall be limited in accordance  
with the Terms and conditions of commercial sale of NXP Semiconductors.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
No offer to sell or license — Nothing in this document may be interpreted or  
construed as an offer to sell products that is open for acceptance or the grant,  
conveyance or implication of any license under any copyrights, patents or  
other industrial or intellectual property rights.  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
96 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from competent authorities.  
whenever customer uses the product for automotive applications beyond  
NXP Semiconductors’ specifications such use shall be solely at customer’s  
own risk, and (c) customer fully indemnifies NXP Semiconductors for any  
liability, damages or failed product claims resulting from customer design and  
use of the product for automotive applications beyond NXP Semiconductors’  
standard warranty and NXP Semiconductors’ product specifications.  
Non-automotive qualified products — Unless this data sheet expressly  
states that this specific NXP Semiconductors product is automotive qualified,  
the product is not suitable for automotive use. It is neither qualified nor tested  
in accordance with automotive testing or application requirements. NXP  
Semiconductors accepts no liability for inclusion and/or use of  
19.4 Trademarks  
non-automotive qualified products in automotive equipment or applications.  
In the event that customer uses the product for design-in and use in  
automotive applications to automotive specifications and standards, customer  
(a) shall use the product without NXP Semiconductors’ warranty of the  
product for such automotive applications, use and specifications, and (b)  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
I2C-bus — logo is a trademark of NXP B.V.  
20. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
97 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
21. Contents  
1
General description. . . . . . . . . . . . . . . . . . . . . . 1  
8.21.1  
8.22  
8.22.1  
8.22.2  
8.22.3  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
PWM/timer/motor control subsystem. . . . . . . 33  
SCtimer/PWM subsystem . . . . . . . . . . . . . . . 33  
Timer controlled subsystem . . . . . . . . . . . . . . 34  
SCTimer/PWM in the large configuration  
2
Features and benefits . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Ordering information. . . . . . . . . . . . . . . . . . . . . 4  
Ordering options. . . . . . . . . . . . . . . . . . . . . . . . 5  
Marking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
3
4
4.1  
5
(SCT0/1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
8.22.3.1 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
8.22.4  
6
State-Configurable Timers in the small  
configuration (SCT2/3). . . . . . . . . . . . . . . . . . 37  
7
7.1  
7.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 8  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . 12  
8.22.4.1 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
8.22.5 SCT Input processing unit (SCTIPU). . . . . . . 38  
8.22.5.1 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
8
8.1  
8.2  
8.3  
8.3.1  
8.4  
8.5  
8.6  
8.7  
Functional description . . . . . . . . . . . . . . . . . . 21  
ARM Cortex-M3 processor . . . . . . . . . . . . . . . 21  
Memory Protection Unit (MPU). . . . . . . . . . . . 21  
On-chip flash programming memory . . . . . . . 22  
ISP pin configuration . . . . . . . . . . . . . . . . . . . 22  
EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
On-chip ROM . . . . . . . . . . . . . . . . . . . . . . . . . 23  
AHB multilayer matrix . . . . . . . . . . . . . . . . . . . 24  
Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Nested Vectored Interrupt controller (NVIC). . 26  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Interrupt sources. . . . . . . . . . . . . . . . . . . . . . . 26  
IOCON block . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Standard I/O pad configuration. . . . . . . . . . . . 26  
Switch Matrix (SWM) . . . . . . . . . . . . . . . . . . . 27  
Fast General-Purpose parallel I/O (GPIO) . . . 28  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Pin interrupt/pattern match engine (PINT) . . . 28  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
GPIO group interrupts (GINT0/1) . . . . . . . . . . 29  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
DMA controller . . . . . . . . . . . . . . . . . . . . . . . . 29  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Input multiplexing (Input mux) . . . . . . . . . . . . 30  
USB interface . . . . . . . . . . . . . . . . . . . . . . . . 30  
Full-speed USB device controller . . . . . . . . . . 30  
8.23  
8.23.1  
8.24  
8.24.1  
8.25  
8.25.1  
8.26  
8.26.1  
8.27  
8.28  
8.29  
8.29.1  
8.30  
8.30.1  
8.31  
8.31.1  
8.32  
8.33  
8.33.1  
8.34  
Quadrature Encoder Interface (QEI) . . . . . . . 39  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Analog-to-Digital Converter (ADC). . . . . . . . . 39  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Digital-to-Analog Converter (DAC). . . . . . . . . 40  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Analog comparator (ACMP). . . . . . . . . . . . . . 40  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Temperature sensor. . . . . . . . . . . . . . . . . . . . 41  
Internal voltage reference . . . . . . . . . . . . . . . 41  
Multi-Rate Timer (MRT) . . . . . . . . . . . . . . . . . 42  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Windowed WatchDog Timer (WWDT) . . . . . . 42  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Repetitive Interrupt (RI) timer. . . . . . . . . . . . . 43  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
System tick timer . . . . . . . . . . . . . . . . . . . . . . 43  
Real-Time Clock (RTC) . . . . . . . . . . . . . . . . . 43  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Clock generation . . . . . . . . . . . . . . . . . . . . . . 44  
Power domains . . . . . . . . . . . . . . . . . . . . . . . 45  
Integrated oscillators . . . . . . . . . . . . . . . . . . . 45  
Internal RC oscillator . . . . . . . . . . . . . . . . . . . 46  
System oscillator . . . . . . . . . . . . . . . . . . . . . . 46  
Watchdog oscillator . . . . . . . . . . . . . . . . . . . . 46  
RTC oscillator . . . . . . . . . . . . . . . . . . . . . . . . 46  
System PLL, USB PLL, and SCT PLL . . . . . . 46  
Clock output. . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Wake-up process . . . . . . . . . . . . . . . . . . . . . . 47  
Power control. . . . . . . . . . . . . . . . . . . . . . . . . 47  
Power profiles . . . . . . . . . . . . . . . . . . . . . . . . 47  
Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Deep-sleep mode. . . . . . . . . . . . . . . . . . . . . . 48  
Power-down mode. . . . . . . . . . . . . . . . . . . . . 48  
Deep power-down mode . . . . . . . . . . . . . . . . 48  
System control . . . . . . . . . . . . . . . . . . . . . . . . 49  
8.8  
8.9  
8.9.1  
8.9.2  
8.10  
8.10.1  
8.10.2  
8.11  
8.12  
8.12.1  
8.13  
8.13.1  
8.14  
8.14.1  
8.15  
8.15.1  
8.16  
8.17  
8.17.1  
8.35  
8.36  
8.36.1  
8.36.2  
8.36.3  
8.36.4  
8.37  
8.38  
8.39  
8.40  
8.40.1  
8.40.2  
8.40.3  
8.40.4  
8.40.5  
8.41  
8.17.1.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
8.18  
8.18.1  
8.19  
8.19.1  
8.20  
USART0/1/2 . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
SPI0/1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
I2C-bus interface . . . . . . . . . . . . . . . . . . . . . . 32  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
C_CAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
8.20.1  
8.21  
continued >>  
LPC15XX  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2014. All rights reserved.  
Product data sheet  
Rev. 1 — 19 February 2014  
98 of 99  
LPC15xx  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
8.41.1  
8.41.2  
8.41.3  
8.42  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Brownout detection. . . . . . . . . . . . . . . . . . . . . 49  
Code security (Code Read Protection - CRP) 49  
Emulation and debugging. . . . . . . . . . . . . . . . 51  
9
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 51  
Thermal characteristics . . . . . . . . . . . . . . . . . 52  
10  
11  
Static characteristics. . . . . . . . . . . . . . . . . . . . 54  
Power consumption . . . . . . . . . . . . . . . . . . . . 59  
CoreMark data . . . . . . . . . . . . . . . . . . . . . . . . 63  
Peripheral power consumption. . . . . . . . . . . . 64  
Electrical pin characteristics . . . . . . . . . . . . . . 65  
11.1  
11.2  
11.3  
11.4  
12  
Dynamic characteristics . . . . . . . . . . . . . . . . . 69  
Flash/EEPROM memory . . . . . . . . . . . . . . . . 69  
External clock for the oscillator in slave mode 69  
Internal oscillators. . . . . . . . . . . . . . . . . . . . . . 70  
I/O pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
I2C-bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
SPI interfaces . . . . . . . . . . . . . . . . . . . . . . . . . 73  
USART interface. . . . . . . . . . . . . . . . . . . . . . . 75  
SCT output timing. . . . . . . . . . . . . . . . . . . . . . 76  
12.1  
12.2  
12.3  
12.4  
12.5  
12.6  
12.7  
12.8  
13  
Characteristics of analog peripherals . . . . . . 76  
14  
Application information. . . . . . . . . . . . . . . . . . 84  
Suggested USB interface solutions . . . . . . . . 84  
USB Low-speed operation . . . . . . . . . . . . . . . 85  
XTAL input and crystal oscillator component  
selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
XTAL Printed-Circuit Board (PCB) layout  
14.1  
14.1.1  
14.2  
14.3  
guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
RTC oscillator component selection . . . . . . . . 88  
14.4  
15  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 89  
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 95  
16  
17  
18  
19  
Legal information. . . . . . . . . . . . . . . . . . . . . . . 96  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 96  
Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
19.1  
19.2  
19.3  
19.4  
20  
21  
Contact information. . . . . . . . . . . . . . . . . . . . . 97  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2014.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 19 February 2014  
Document identifier: LPC15XX  

相关型号:

LPC150CTP

VERTICAL CLIPLITE 4MM LITEPIPE
VCC

LPC1517JBD48

32-bit ARM Cortex-M3 microcontroller; up to 256 kB flash and 36 kB SRAM
NXP

LPC1517JBD48,551

RISC Microcontroller, 32-Bit, FLASH, CMOS, PQFP48
NXP

LPC1517JBD64

32-bit ARM Cortex-M3 microcontroller; up to 256 kB flash and 36 kB SRAM
NXP

LPC1518JBD100

32-bit ARM Cortex-M3 microcontroller; up to 256 kB flash and 36 kB SRAM
NXP

LPC1518JBD100,551

RISC Microcontroller, 32-Bit, FLASH, CMOS, PQFP100
NXP

LPC1518JBD64

32-bit ARM Cortex-M3 microcontroller; up to 256 kB flash and 36 kB SRAM
NXP

LPC1519JBD100

32-bit ARM Cortex-M3 microcontroller; up to 256 kB flash and 36 kB SRAM
NXP

LPC1519JBD64

32-bit ARM Cortex-M3 microcontroller; up to 256 kB flash and 36 kB SRAM
NXP

LPC1519JBD64,551

RISC Microcontroller, 32-Bit, FLASH, CMOS, PQFP64
NXP

LPC1519JBD64E

LPC1519JBD64 - Motion Control 32-bit Microcontroller based on ARM Cortex-M3 QFP 64-Pin
NXP

LPC152CTP

VERTICAL CLIPLITE 4MM LITEPIPE
VCC