LPC1765FET100,551 [NXP]

LPC1765FET100 - 256kB flash, 64kB SRAM, USB, TFBGA100 package BGA 100-Pin;
LPC1765FET100,551
型号: LPC1765FET100,551
厂家: NXP    NXP
描述:

LPC1765FET100 - 256kB flash, 64kB SRAM, USB, TFBGA100 package BGA 100-Pin

时钟 PC 微控制器 静态存储器 外围集成电路
文件: 总90页 (文件大小:1287K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LPC1769/68/67/66/65/64/63  
32-bit ARM Cortex-M3 microcontroller; up to 512 kB flash and  
64 kB SRAM with Ethernet, USB 2.0 Host/Device/OTG, CAN  
Rev. 9.7 — 1 May 2017  
Product data sheet  
1. General description  
The LPC1769/68/67/66/65/64/63 are ARM Cortex-M3 based microcontrollers for  
embedded applications featuring a high level of integration and low power consumption.  
The ARM Cortex-M3 is a next generation core that offers system enhancements such as  
enhanced debug features and a higher level of support block integration.  
The LPC1768/67/66/65/64/63 operate at CPU frequencies of up to 100 MHz. The  
LPC1769 operates at CPU frequencies of up to 120 MHz. The ARM Cortex-M3 CPU  
incorporates a 3-stage pipeline and uses a Harvard architecture with separate local  
instruction and data buses as well as a third bus for peripherals. The ARM Cortex-M3  
CPU also includes an internal prefetch unit that supports speculative branching.  
The peripheral complement of the LPC1769/68/67/66/65/64/63 includes up to 512 kB of  
flash memory, up to 64 kB of data memory, Ethernet MAC, USB Device/Host/OTG  
interface, 8-channel general purpose DMA controller, 4 UARTs, 2 CAN channels, 2 SSP  
controllers, SPI interface, 3 I2C-bus interfaces, 2-input plus 2-output I2S-bus interface,  
8-channel 12-bit ADC, 10-bit DAC, motor control PWM, Quadrature Encoder interface,  
four general purpose timers, 6-output general purpose PWM, ultra-low power Real-Time  
Clock (RTC) with separate battery supply, and up to 70 general purpose I/O pins.  
The LPC1769/68/67/66/65/64/63 are pin-compatible to the 100-pin LPC236x  
ARM7-based microcontroller series.  
For additional documentation, see Section 19 “References”.  
2. Features and benefits  
ARM Cortex-M3 processor, running at frequencies of up to 100 MHz  
(LPC1768/67/66/65/64/63) or of up to 120 MHz (LPC1769). A Memory Protection Unit  
(MPU) supporting eight regions is included.  
ARM Cortex-M3 built-in Nested Vectored Interrupt Controller (NVIC).  
Up to 512 kB on-chip flash programming memory. Enhanced flash memory accelerator  
enables high-speed 120 MHz operation with zero wait states.  
In-System Programming (ISP) and In-Application Programming (IAP) via on-chip  
bootloader software.  
On-chip SRAM includes:  
32/16 kB of SRAM on the CPU with local code/data bus for high-performance CPU  
access.  
 
 
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Two/one 16 kB SRAM blocks with separate access paths for higher throughput.  
These SRAM blocks may be used for Ethernet, USB, and DMA memory, as well as  
for general purpose CPU instruction and data storage.  
Eight channel General Purpose DMA controller (GPDMA) on the AHB multilayer  
matrix that can be used with SSP, I2S-bus, UART, Analog-to-Digital and  
Digital-to-Analog converter peripherals, timer match signals, and for  
memory-to-memory transfers.  
Multilayer AHB matrix interconnect provides a separate bus for each AHB master.  
AHB masters include the CPU, General Purpose DMA controller, Ethernet MAC, and  
the USB interface. This interconnect provides communication with no arbitration  
delays.  
Split APB bus allows high throughput with few stalls between the CPU and DMA.  
Serial interfaces:  
Ethernet MAC with RMII interface and dedicated DMA controller. (Not available on  
all parts, see Table 2.)  
USB 2.0 full-speed device/Host/OTG controller with dedicated DMA controller and  
on-chip PHY for device, Host, and OTG functions. (Not available on all parts, see  
Table 2.)  
Four UARTs with fractional baud rate generation, internal FIFO, and DMA support.  
One UART has modem control I/O and RS-485/EIA-485 support, and one UART  
has IrDA support.  
CAN 2.0B controller with two channels. (Not available on all parts, see Table 2.)  
SPI controller with synchronous, serial, full duplex communication and  
programmable data length.  
Two SSP controllers with FIFO and multi-protocol capabilities. The SSP interfaces  
can be used with the GPDMA controller.  
Three enhanced I2C bus interfaces, one with an open-drain output supporting full  
I2C specification and Fast mode plus with data rates of 1 Mbit/s, two with standard  
port pins. Enhancements include multiple address recognition and monitor mode.  
I2S (Inter-IC Sound) interface for digital audio input or output, with fractional rate  
control. The I2S-bus interface can be used with the GPDMA. The I2S-bus interface  
supports 3-wire and 4-wire data transmit and receive as well as master clock  
input/output. (Not available on all parts, see Table 2.)  
Other peripherals:  
70 (100 pin package) General Purpose I/O (GPIO) pins with configurable  
pull-up/down resistors. All GPIOs support a new, configurable open-drain operating  
mode. The GPIO block is accessed through the AHB multilayer bus for fast access  
and located in memory such that it supports Cortex-M3 bit banding and use by the  
General Purpose DMA Controller.  
12-bit Analog-to-Digital Converter (ADC) with input multiplexing among eight pins,  
conversion rates up to 200 kHz, and multiple result registers. The 12-bit ADC can  
be used with the GPDMA controller.  
10-bit Digital-to-Analog Converter (DAC) with dedicated conversion timer and DMA  
support. (Not available on all parts, see Table 2)  
Four general purpose timers/counters, with a total of eight capture inputs and ten  
compare outputs. Each timer block has an external count input. Specific timer  
events can be selected to generate DMA requests.  
One motor control PWM with support for three-phase motor control.  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
2 of 90  
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Quadrature encoder interface that can monitor one external quadrature encoder.  
One standard PWM/timer block with external count input.  
RTC with a separate power domain and dedicated RTC oscillator. The RTC block  
includes 20 bytes of battery-powered backup registers.  
WatchDog Timer (WDT). The WDT can be clocked from the internal RC oscillator,  
the RTC oscillator, or the APB clock.  
ARM Cortex-M3 system tick timer, including an external clock input option.  
Repetitive interrupt timer provides programmable and repeating timed interrupts.  
Each peripheral has its own clock divider for further power savings.  
Standard JTAG debug interface for compatibility with existing tools. Serial Wire Debug  
and Serial Wire Trace Port options. Boundary Scan Description Language (BSDL) is  
not available for this device.  
Emulation trace module enables non-intrusive, high-speed real-time tracing of  
instruction execution.  
Integrated PMU (Power Management Unit) automatically adjusts internal regulators to  
minimize power consumption during Sleep, Deep sleep, Power-down, and Deep  
power-down modes.  
Four reduced power modes: Sleep, Deep-sleep, Power-down, and Deep power-down.  
Single 3.3 V power supply (2.4 V to 3.6 V).  
Four external interrupt inputs configurable as edge/level sensitive. All pins on Port 0  
and Port 2 can be used as edge sensitive interrupt sources.  
Non-maskable Interrupt (NMI) input.  
Clock output function that can reflect the main oscillator clock, IRC clock, RTC clock,  
CPU clock, and the USB clock.  
The Wake-up Interrupt Controller (WIC) allows the CPU to automatically wake up from  
any priority interrupt that can occur while the clocks are stopped in deep sleep,  
Power-down, and Deep power-down modes.  
Processor wake-up from Power-down mode via any interrupt able to operate during  
Power-down mode (includes external interrupts, RTC interrupt, USB activity, Ethernet  
wake-up interrupt, CAN bus activity, Port 0/2 pin interrupt, and NMI).  
Brownout detect with separate threshold for interrupt and forced reset.  
Power-On Reset (POR).  
Crystal oscillator with an operating range of 1 MHz to 25 MHz.  
4 MHz internal RC oscillator trimmed to 1 % accuracy that can optionally be used as a  
system clock.  
PLL allows CPU operation up to the maximum CPU rate without the need for a  
high-frequency crystal. May be run from the main oscillator, the internal RC oscillator,  
or the RTC oscillator.  
USB PLL for added flexibility.  
Code Read Protection (CRP) with different security levels.  
Unique device serial number for identification purposes.  
Available as LQFP100 (14 mm 14 mm 1.4 mm), TFBGA1001 (9 mm 9 mm 0.7  
mm), and WLCSP100 (5.07 5.07 0.53 mm) package.  
1. LPC1768/65 only.  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
3 of 90  
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
3. Applications  
eMetering  
Alarm systems  
White goods  
Motor control  
Lighting  
Industrial networking  
4. Ordering information  
Table 1.  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
LPC1769FBD100  
LPC1768FBD100  
LPC1768FET100  
LPC1768UK  
LQFP100  
LQFP100  
plastic low profile quad flat package; 100 leads; body 14 14 1.4 mm  
plastic low profile quad flat package; 100 leads; body 14 14 1.4 mm  
SOT407-1  
SOT407-1  
TFBGA100 plastic thin fine-pitch ball grid array package; 100 balls; body 9 9 0.7 mm SOT926-1  
WLCSP100 wafer level chip-scale package; 100 balls; 5.07 5.07 0.53 mm  
-
LPC1767FBD100  
LPC1766FBD100  
LPC1765FBD100  
LPC1765FET100  
LPC1764FBD100  
LPC1763FBD100  
LQFP100  
LQFP100  
LQFP100  
plastic low profile quad flat package; 100 leads; body 14 14 1.4 mm  
plastic low profile quad flat package; 100 leads; body 14 14 1.4 mm  
plastic low profile quad flat package; 100 leads; body 14 14 1.4 mm  
SOT407-1  
SOT407-1  
SOT407-1  
TFBGA100 plastic thin fine-pitch ball grid array package; 100 balls; body 9 9 0.7 mm SOT926-1  
LQFP100  
LQFP100  
plastic low profile quad flat package; 100 leads; body 14 14 1.4 mm  
plastic low profile quad flat package; 100 leads; body 14 14 1.4 mm  
SOT407-1  
SOT407-1  
4.1 Ordering options  
Table 2.  
Ordering options  
SRAM in kB  
LPC1769FBD100 LPC1769FBD100,551  
512 32 16 16 64 yes Device/Host/OTG 2 yes yes 70 120  
LPC1768FBD100 LPC1768FBD100/CP32 512 32 16 16 64 yes Device/Host/OTG 2 yes yes 70 100  
LPC1768FET100 LPC1768FET100Z  
LPC1768UK LPC1768UKZ  
512 32 16 16 64 yes Device/Host/OTG 2 yes yes 70 100  
512 32 16 16 64 yes Device/Host/OTG 2 yes yes 70 100  
LPC1767FBD100 LPC1767FBD100,551  
LPC1766FBD100 LPC1766FBD100,551  
512 32 16 16 64 yes no  
no yes yes 70 100  
256 32 16 16 64 yes Device/Host/OTG 2 yes yes 70 100  
LPC1765FBD100 LPC1765FBD100/3271 256 32 16 16 64 no Device/Host/OTG 2 yes yes 70 100  
LPC1765FET100 LPC1765FET100,551  
LPC1764FBD100 LPC1764FBD100,551  
LPC1763FBD100 LPC1763FBD100K  
256 32 16 16 64 no Device/Host/OTG 2 yes yes 70 100  
128 16 16 32 yes Device only no no 70 100  
-
2
256 32 16 16 64 no no  
no yes yes 70 100  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
4 of 90  
 
 
 
 
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
5. Marking  
The LPC176x devices typically have the following top-side marking:  
LPC176xxxx  
xxxxxxx  
xxYYWWR[x]  
The last/second to last letter in the third line (field ‘R’) will identify the device revision. This  
data sheet covers the following revisions of the LPC176x:  
Table 3.  
Device revision table  
Revision identifier (R)  
Revision description  
Initial device revision  
Second device revision  
Third device revision  
‘-’  
‘A’  
‘B’  
Field ‘YY’ states the year the device was manufactured. Field ‘WW’ states the week the  
device was manufactured during that year.  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
5 of 90  
 
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
6. Block diagram  
XTAL1  
debug  
port  
JTAG  
interface  
RMII pins  
USB pins  
USB PHY  
XTAL2  
RESET  
LPC1769/68/67/  
66/65/64/63  
TEST/DEBUG  
INTERFACE  
CLOCK  
GENERATION,  
POWER CONTROL,  
SYSTEM  
CLKOUT  
USB HOST/  
DEVICE/OTG  
CONTROLLER  
ETHERNET  
CONTROLLER  
WITH DMA  
ARM  
CORTEX-M3  
DMA  
CONTROLLER  
FUNCTIONS  
(1)  
(1)  
WITH DMA  
clocks and  
controls  
I-code  
bus  
D-code  
bus  
system  
bus  
master  
master  
master  
slave  
ROM  
slave  
MULTILAYER AHB MATRIX  
SRAM 32/64 kB  
FLASH  
ACCELERATOR  
slave  
slave  
slave  
slave  
AHB TO  
P0 to  
P4  
HIGH-SPEED  
GPIO  
FLASH  
512/256/128 kB  
AHB TO  
APB  
APB  
BRIDGE 0  
BRIDGE 1  
APB slave group 1  
SSP0  
SCK0  
APB slave group 0  
SSP1  
SCK1  
SSEL0  
MISO0  
MOSI0  
SSEL1  
MISO1  
MOSI1  
RXD2/3  
TXD2/3  
UART2/3  
RXD0/TXD0  
8 × UART1  
UART0/1  
3 × I2SRX  
3 × I2STX  
TX_MCLK  
RX_MCLK  
RD1/2  
TD1/2  
(1)  
CAN1/2  
(1)  
I2S  
SCL0/1  
SDA0/1  
I2C0/1  
SPI0  
SCL2  
SDA2  
SCK/SSEL  
MOSI/MISO  
2 × MAT0/1  
I2C2  
RI TIMER  
TIMER2/3  
TIMER 0/1  
WDT  
4 × MAT2  
2 × CAP0/1  
2 × MAT3  
2 × CAP2  
2 × CAP3  
PWM1[7:0]  
PCAP1[1:0]  
EXTERNAL INTERRUPTS  
SYSTEM CONTROL  
EINT[3:0]  
PWM1  
12-bit ADC  
AD0[7:0]  
MCOA[2:0]  
MCOB[2:0]  
MCI[2:0]  
PIN CONNECT  
MOTOR CONTROL PWM  
MCABORT  
P0, P2  
GPIO INTERRUPT CONTROL  
32 kHz  
(1)  
DAC  
AOUT  
RTCX1  
RTCX2  
RTC  
PHA, PHB  
INDEX  
OSCILLATOR  
QUADRATURE ENCODER  
= connected to DMA  
VBAT  
BACKUP REGISTERS  
RTC POWER DOMAIN  
002aad944  
(1) Not available on all parts. See Table 2.  
Fig 1. Block diagram  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
6 of 90  
 
 
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
7. Pinning information  
7.1 Pinning  
76  
50  
LPC176xFBD100  
100  
26  
002aad945  
Fig 2. Pin configuration LQFP100 package  
ball A1  
index area  
LPC1768/65FET100  
1
2
3
4
5
6
7
8
9 10  
A
B
C
D
E
F
G
H
J
K
002aaf723  
Transparent top view  
Fig 3. Pin configuration TFBGA100 package  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
7 of 90  
 
 
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
LPC1768UK  
bump A1  
index area  
1
2
3
4
5
6
7
8
9
10  
A
B
C
D
E
F
G
H
J
K
aaa-009522  
Transparent top view  
Fig 4. Pin configuration WLCSP100 package  
Table 4.  
Pin allocation table TFBGA100  
Pin Symbol  
Row A  
Pin Symbol  
Pin Symbol  
Pin Symbol  
1
5
TDO/SWO  
2
6
P0[3]/RXD0/AD0[6]  
P1[16]/ENET_MDC  
3
7
VDD(3V3)  
4
8
P1[4]/ENET_TX_EN  
P1[10]/ENET_RXD1  
VDD(REG)(3V3)  
P0[4]/I2SRX_CLK/  
RD2/CAP2[0]  
9
P0[7]/I2STX_CLK/  
SCK1/MAT2[1]  
10 P0[9]/I2STX_SDA/  
MOSI1/MAT2[3]  
11  
-
12  
-
Row B  
1
5
TMS/SWDIO  
2
6
RTCK  
3
7
VSS  
VSS  
4
8
P1[1]/ENET_TXD1  
P1[9]/ENET_RXD0  
P1[17]/  
ENET_MDIO  
P0[6]/I2SRX_SDA/  
SSEL1/MAT2[0]  
9
P2[0]/PWM1[1]/TXD1  
10 P2[1]/PWM1[2]/RXD1  
11  
-
12  
-
Row C  
1
5
TCK/SWDCLK  
2
6
TRST  
3
7
TDI  
4
8
P0[2]/TXD0/AD0[7]  
P1[8]/ENET_CRS  
P1[15]/  
ENET_REF_CLK  
P4[28]/RX_MCLK/  
MAT2[0]/TXD3  
P0[8]/I2STX_WS/  
MISO1/MAT2[2]  
9
VSS  
10 VDD(3V3)  
11  
-
12  
-
Row D  
1
5
9
P0[24]/AD0[1]/  
I2SRX_WS/CAP3[1]  
2
6
P0[25]/AD0[2]/  
I2SRX_SDA/TXD3  
3
P0[26]/AD0[3]/  
AOUT/RXD3  
4
n.c.  
P1[0]/ENET_TXD0  
P1[14]/ENET_RX_ER  
7
P0[5]/I2SRX_WS/  
TD2/CAP2[1]  
8
P2[2]/PWM1[3]/  
CTS1/TRACEDATA[3]  
P2[4]/PWM1[5]/  
DSR1/TRACEDATA[1]  
10 P2[5]/PWM1[6]/  
DTR1/TRACEDATA[0]  
11  
-
12  
-
Row E  
1
5
VSSA  
2
6
VDDA  
3
7
VREFP  
4
8
n.c.  
P0[23]/AD0[0]/  
I2SRX_CLK/CAP3[0]  
P4[29]/TX_MCLK/  
MAT2[1]/RXD3  
P2[3]/PWM1[4]/  
DCD1/TRACEDATA[2]  
P2[6]/PCAP1[0]/  
RI1/TRACECLK  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
8 of 90  
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 4.  
Pin allocation table TFBGA100 …continued  
Pin Symbol  
Pin Symbol  
Pin Symbol  
Pin Symbol  
9
P2[7]/RD2/RTS1  
10 P2[8]/TD2/TXD2  
11  
-
12  
-
Row F  
1
5
9
VREFN  
2
6
RTCX1  
3
RESET  
4
P1[31]/SCK1/  
AD0[5]  
P1[21]/MCABORT/  
PWM1[3]/SSEL0  
P0[18]/DCD1/  
MOSI0/MOSI  
7
P2[9]/USB_CONNECT/  
RXD2  
8
P0[16]/RXD1/  
SSEL0/SSEL  
P0[17]/CTS1/  
MISO0/MISO  
10 P0[15]/TXD1/  
SCK0/SCK  
11  
-
12  
-
Row G  
1
5
RTCX2  
2
6
VBAT  
3
7
XTAL2  
VSS  
4
8
P0[30]/USB_D  
P1[25]/MCOA1/  
MAT1[1]  
P1[29]/MCOB2/  
PCAP1[1]/MAT0[1]  
P0[21]/RI1/RD1  
9
P0[20]/DTR1/SCL1  
10 P0[19]/DSR1/SDA1  
11  
-
12  
-
Row H  
1
5
9
P1[30]/VBUS  
AD0[4]  
/
2
6
XTAL1  
3
P3[25]/MAT0[0]/  
PWM1[2]  
4
P1[18]/USB_UP_LED/  
PWM1[1]/CAP1[0]  
P1[24]/MCI2/  
PWM1[5]/MOSI0  
VDD(REG)(3V3)  
7
P0[10]/TXD2/  
SDA2/MAT3[0]  
8
P2[11]/EINT1/  
I2STX_CLK  
VDD(3V3)  
10 P0[22]/RTS1/TD1  
11  
-
12  
-
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
9 of 90  
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 4.  
Pin allocation table TFBGA100 …continued  
Pin Symbol  
Row J  
Pin Symbol  
Pin Symbol  
Pin Symbol  
1
5
9
P0[28]/SCL0/  
USB_SCL  
2
6
P0[27]/SDA0/  
USB_SDA  
3
P0[29]/USB_D+  
4
P1[19]/MCOA0/  
USB_PPWR/  
CAP1[1]  
P1[22]/MCOB0/  
USB_PWRD/  
MAT1[0]  
VSS  
7
P1[28]/MCOA2/  
PCAP1[0]/  
MAT0[0]  
8
P0[1]/TD1/RXD3/SCL1  
P2[13]/EINT3/  
I2STX_SDA  
10 P2[10]/EINT0/NMI  
11  
-
12  
-
Row K  
1
P3[26]/STCLK/  
MAT0[1]/PWM1[3]  
2
6
VDD(3V3)  
3
7
VSS  
4
8
P1[20]/MCI0/  
PWM1[2]/SCK0  
5
P1[23]/MCI1/  
PWM1[4]/MISO0  
P1[26]/MCOB1/  
PWM1[6]/CAP0[0]  
P1[27]/CLKOUT  
/USB_OVRCR/  
CAP0[1]  
P0[0]/RD1/TXD3/SDA1  
9
P0[11]/RXD2/  
SCL2/MAT3[1]  
10 P2[12]/EINT2/  
I2STX_WS  
11  
-
12  
-
7.2 Pin description  
Table 5.  
Symbol  
Pin description  
Pin/ball  
Type  
Description  
P0[0] to P0[31]  
I/O  
Port 0: Port 0 is a 32-bit I/O port with individual direction controls for  
each bit. The operation of port 0 pins depends upon the pin function  
selected via the pin connect block. Pins 12, 13, 14, and 31 of this  
port are not available.  
[1]  
P0[0]/RD1/TXD3/  
SDA1  
46 K8 H10  
I/O  
I
P0[0] — General purpose digital input/output pin.  
RD1 — CAN1 receiver input. (LPC1769/68/66/65/64 only).  
TXD3 — Transmitter output for UART3.  
O
I/O  
SDA1 — I2C1 data input/output. (This is not an I2C-bus compliant  
open-drain pin).  
[1]  
P0[1]/TD1/RXD3/  
SCL1  
47 J8  
H9  
I/O  
O
P0[1] — General purpose digital input/output pin.  
TD1 — CAN1 transmitter output. (LPC1769/68/66/65/64 only).  
RXD3 — Receiver input for UART3.  
I
I/O  
SCL1 — I2C1 clock input/output. (This is not an I2C-bus compliant  
open-drain pin).  
[2]  
[2]  
P0[2]/TXD0/AD0[7] 98 C4 B1  
P0[3]/RXD0/AD0[6] 99 A2 C3  
I/O  
P0[2] — General purpose digital input/output pin.  
TXD0 — Transmitter output for UART0.  
AD0[7] — A/D converter 0, input 7.  
O
I
I/O  
P0[3] — General purpose digital input/output pin.  
RXD0 — Receiver input for UART0.  
I
I
AD0[6] — A/D converter 0, input 6.  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
10 of 90  
 
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 5.  
Symbol  
Pin description …continued  
Pin/ball  
Type  
Description  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
P0[4]/  
I2SRX_CLK/  
RD2/CAP2[0]  
81 A8 G2  
I/O  
I/O  
P0[4] — General purpose digital input/output pin.  
I2SRX_CLK — Receive Clock. It is driven by the master and  
received by the slave. Corresponds to the signal SCK in the I2S-bus  
specification. (LPC1769/68/67/66/65/63 only).  
I
RD2 — CAN2 receiver input. (LPC1769/68/66/65/64 only).  
CAP2[0] — Capture input for Timer 2, channel 0.  
P0[5] — General purpose digital input/output pin.  
I
P0[5]/  
I2SRX_WS/  
TD2/CAP2[1]  
80 D7 H1  
79 B8 G3  
78 A9 J1  
77 C8 H2  
76 A10 H3  
48 H7 H8  
I/O  
I/O  
I2SRX_WS — Receive Word Select. It is driven by the master and  
received by the slave. Corresponds to the signal WS in the I2S-bus  
specification. (LPC1769/68/67/66/65/63 only).  
O
TD2 — CAN2 transmitter output. (LPC1769/68/66/65/64 only).  
CAP2[1] — Capture input for Timer 2, channel 1.  
P0[6] — General purpose digital input/output pin.  
I
P0[6]/  
I2SRX_SDA/  
SSEL1/MAT2[0]  
I/O  
I/O  
I2SRX_SDA — Receive data. It is driven by the transmitter and read  
by the receiver. Corresponds to the signal SD in the I2S-bus  
specification. (LPC1769/68/67/66/65/63 only).  
I/O  
O
SSEL1 — Slave Select for SSP1.  
MAT2[0] — Match output for Timer 2, channel 0.  
P0[7] — General purpose digital input/output pin.  
P0[7]/  
I2STX_CLK/  
SCK1/MAT2[1]  
I/O  
I/O  
I2STX_CLK — Transmit Clock. It is driven by the master and  
received by the slave. Corresponds to the signal SCK in the I2S-bus  
specification. (LPC1769/68/67/66/65/63 only).  
I/O  
O
SCK1 — Serial Clock for SSP1.  
MAT2[1] — Match output for Timer 2, channel 1.  
P0[8] — General purpose digital input/output pin.  
P0[8]/  
I2STX_WS/  
MISO1/MAT2[2]  
I/O  
I/O  
I2STX_WS — Transmit Word Select. It is driven by the master and  
received by the slave. Corresponds to the signal WS in the I2S-bus  
specification. (LPC1769/68/67/66/65/63 only).  
I/O  
O
MISO1 — Master In Slave Out for SSP1.  
MAT2[2] — Match output for Timer 2, channel 2.  
P0[9] — General purpose digital input/output pin.  
P0[9]/  
I2STX_SDA/  
MOSI1/MAT2[3]  
I/O  
I/O  
I2STX_SDA — Transmit data. It is driven by the transmitter and  
read by the receiver. Corresponds to the signal SD in the I2S-bus  
specification. (LPC1769/68/67/66/65/63 only).  
I/O  
O
MOSI1 — Master Out Slave In for SSP1.  
MAT2[3] — Match output for Timer 2, channel 3.  
P0[10] — General purpose digital input/output pin.  
TXD2 — Transmitter output for UART2.  
P0[10]/TXD2/  
SDA2/MAT3[0]  
I/O  
O
I/O  
O
SDA2 — I2C2 data input/output (this is not an open-drain pin).  
MAT3[0] — Match output for Timer 3, channel 0.  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
11 of 90  
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 5.  
Symbol  
Pin description …continued  
Pin/ball  
Type  
Description  
[1]  
[1]  
[1]  
[1]  
[1]  
P0[11]/RXD2/  
SCL2/MAT3[1]  
49 K9 J10  
62 F10 H6  
63 F8 J5  
61 F9 K6  
60 F6 J6  
59 G10 K7  
I/O  
I
P0[11] — General purpose digital input/output pin.  
RXD2 — Receiver input for UART2.  
I/O  
O
SCL2 — I2C2 clock input/output (this is not an open-drain pin).  
MAT3[1] — Match output for Timer 3, channel 1.  
P0[15] — General purpose digital input/output pin.  
TXD1 — Transmitter output for UART1.  
SCK0 — Serial clock for SSP0.  
P0[15]/TXD1/  
SCK0/SCK  
I/O  
O
I/O  
I/O  
I/O  
I
SCK — Serial clock for SPI.  
P0[16]/RXD1/  
SSEL0/SSEL  
P0[16] — General purpose digital input/output pin.  
RXD1 — Receiver input for UART1.  
I/O  
I/O  
I/O  
I
SSEL0 — Slave Select for SSP0.  
SSEL — Slave Select for SPI.  
P0[17]/CTS1/  
MISO0/MISO  
P0[17] — General purpose digital input/output pin.  
CTS1 — Clear to Send input for UART1.  
MISO0 — Master In Slave Out for SSP0.  
MISO — Master In Slave Out for SPI.  
I/O  
I/O  
I/O  
I
P0[18]/DCD1/  
MOSI0/MOSI  
P0[18] — General purpose digital input/output pin.  
DCD1 — Data Carrier Detect input for UART1.  
MOSI0 — Master Out Slave In for SSP0.  
MOSI — Master Out Slave In for SPI.  
I/O  
I/O  
I/O  
I
[1]  
[1]  
P0[19]/DSR1/  
SDA1  
P0[19] — General purpose digital input/output pin.  
DSR1 — Data Set Ready input for UART1.  
SDA1 — I2C1 data input/output (this is not an I2C-bus compliant  
open-drain pin).  
I/O  
P0[20]/DTR1/SCL1 58 G9 J7  
I/O  
O
P0[20] — General purpose digital input/output pin.  
DTR1 — Data Terminal Ready output for UART1. Can also be  
configured to be an RS-485/EIA-485 output enable signal.  
I/O  
SCL1 — I2C1 clock input/output (this is not an I2C-bus compliant  
open-drain pin).  
[1]  
[1]  
P0[21]/RI1/RD1  
57 G8 H7  
I/O  
I
P0[21] — General purpose digital input/output pin.  
RI1 — Ring Indicator input for UART1.  
I
RD1 — CAN1 receiver input. (LPC1769/68/66/65/64 only).  
P0[22] — General purpose digital input/output pin.  
P0[22]/RTS1/TD1 56 H10 K8  
I/O  
O
RTS1 — Request to Send output for UART1. Can also be  
configured to be an RS-485/EIA-485 output enable signal.  
O
TD1 — CAN1 transmitter output. (LPC1769/68/66/65/64 only).  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
12 of 90  
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 5.  
Symbol  
Pin description …continued  
Pin/ball  
Type  
Description  
[2]  
[2]  
[2]  
P0[23]/AD0[0]/  
I2SRX_CLK/  
CAP3[0]  
9
8
7
6
E5 D5  
I/O  
I
P0[23] — General purpose digital input/output pin.  
AD0[0] — A/D converter 0, input 0.  
I/O  
I2SRX_CLK — Receive Clock. It is driven by the master and  
received by the slave. Corresponds to the signal SCK in the I2S-bus  
specification. (LPC1769/68/67/66/65/63 only).  
I
CAP3[0] — Capture input for Timer 3, channel 0.  
P0[24] — General purpose digital input/output pin.  
AD0[1] — A/D converter 0, input 1.  
P0[24]/AD0[1]/  
I2SRX_WS/  
CAP3[1]  
D1 B4  
D2 A3  
D3 C5  
I/O  
I
I/O  
I2SRX_WS — Receive Word Select. It is driven by the master and  
received by the slave. Corresponds to the signal WS in the I2S-bus  
specification. (LPC1769/68/67/66/65/63 only).  
I
CAP3[1] — Capture input for Timer 3, channel 1.  
P0[25] — General purpose digital input/output pin.  
AD0[2] — A/D converter 0, input 2.  
P0[25]/AD0[2]/  
I2SRX_SDA/  
TXD3  
I/O  
I
I/O  
I2SRX_SDA — Receive data. It is driven by the transmitter and read  
by the receiver. Corresponds to the signal SD in the I2S-bus  
specification. (LPC1769/68/67/66/65/63 only).  
O
I/O  
I
TXD3 — Transmitter output for UART3.  
P0[26] — General purpose digital input/output pin.  
AD0[3] — A/D converter 0, input 3.  
[3]  
[4]  
P0[26]/AD0[3]/  
AOUT/RXD3  
O
I
AOUT — DAC output (LPC1769/68/67/66/65/63 only).  
RXD3 — Receiver input for UART3.  
P0[27]/SDA0/  
USB_SDA  
25 J2  
24 J1  
29 J3  
C8  
I/O  
P0[27] — General purpose digital input/output pin. Output is  
open-drain.  
SDA0 — I2C0 data input/output. Open-drain output (for I2C-bus  
compliance).  
USB_SDA — USB port I2C serial data (OTG transceiver,  
LPC1769/68/66/65 only).  
I/O  
I/O  
I/O  
I/O  
I/O  
[4]  
P0[28]/SCL0/  
USB_SCL  
B9  
P0[28] — General purpose digital input/output pin. Output is  
open-drain.  
SCL0 — I2C0 clock input/output. Open-drain output (for I2C-bus  
compliance).  
USB_SCL — USB port I2C serial clock (OTG transceiver,  
LPC1769/68/66/65 only).  
[5]  
[5]  
P0[29]/USB_D+  
B10  
I/O  
I/O  
I/O  
I/O  
P0[29] — General purpose digital input/output pin.  
USB_D+ — USB bidirectional D+ line. (LPC1769/68/66/65/64 only).  
P0[30] — General purpose digital input/output pin.  
P0[30]/USB_D  
30 G4 C9  
USB_DUSB bidirectional Dline. (LPC1769/68/66/65/64 only).  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
13 of 90  
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 5.  
Symbol  
Pin description …continued  
Pin/ball  
Type  
Description  
P1[0] to P1[31]  
I/O  
Port 1: Port 1 is a 32-bit I/O port with individual direction controls for  
each bit. The operation of port 1 pins depends upon the pin function  
selected via the pin connect block. Pins 2, 3, 5, 6, 7, 11, 12, and 13  
of this port are not available.  
[1]  
[1]  
[1]  
P1[0]/  
ENET_TXD0  
95 D5 C1  
94 B4 C2  
93 A4 D2  
I/O  
O
P1[0] — General purpose digital input/output pin.  
ENET_TXD0 — Ethernet transmit data 0. (LPC1769/68/67/66/64  
only).  
P1[1]/  
ENET_TXD1  
I/O  
O
P1[1] — General purpose digital input/output pin.  
ENET_TXD1 — Ethernet transmit data 1. (LPC1769/68/67/66/64  
only).  
P1[4]/  
ENET_TX_EN  
I/O  
O
P1[4] — General purpose digital input/output pin.  
ENET_TX_EN — Ethernet transmit data enable.  
(LPC1769/68/67/66/64 only).  
[1]  
[1]  
P1[8]/  
ENET_CRS  
92 C5 D1  
91 B5 D3  
I/O  
P1[8] — General purpose digital input/output pin.  
I
ENET_CRS — Ethernet carrier sense. (LPC1769/68/67/66/64 only).  
P1[9] — General purpose digital input/output pin.  
P1[9]/  
ENET_RXD0  
I/O  
I
ENET_RXD0 — Ethernet receive data. (LPC1769/68/67/66/64  
only).  
[1]  
[1]  
[1]  
P1[10]/  
ENET_RXD1  
90 A5 E3  
89 D6 E2  
88 C6 E1  
I/O  
I
P1[10] — General purpose digital input/output pin.  
ENET_RXD1 — Ethernet receive data. (LPC1769/68/67/66/64  
only).  
P1[14]/  
ENET_RX_ER  
I/O  
I
P1[14] — General purpose digital input/output pin.  
ENET_RX_ER — Ethernet receive error. (LPC1769/68/67/66/64  
only).  
P1[15]/  
ENET_REF_CLK  
I/O  
I
P1[15] — General purpose digital input/output pin.  
ENET_REF_CLK — Ethernet reference clock.  
(LPC1769/68/67/66/64 only).  
[1]  
[1]  
P1[16]/  
ENET_MDC  
87 A6 F3  
86 B6 F2  
I/O  
O
P1[16] — General purpose digital input/output pin.  
ENET_MDC — Ethernet MIIM clock (LPC1769/68/67/66/64 only).  
P1[17] — General purpose digital input/output pin.  
P1[17]/  
ENET_MDIO  
I/O  
I/O  
ENET_MDIO — Ethernet MIIM data input and output.  
(LPC1769/68/67/66/64 only).  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
14 of 90  
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 5.  
Symbol  
Pin description …continued  
Pin/ball  
Type  
Description  
[1]  
P1[18]/  
32 H4 D9  
I/O  
O
P1[18] — General purpose digital input/output pin.  
USB_UP_LED/  
PWM1[1]/  
CAP1[0]  
USB_UP_LED — USB GoodLink LED indicator. It is LOW when the  
device is configured (non-control endpoints enabled), or when the  
host is enabled and has detected a device on the bus. It is HIGH  
when the device is not configured, or when host is enabled and has  
not detected a device on the bus, or during global suspend. It  
transitions between LOW and HIGH (flashes) when the host is  
enabled and detects activity on the bus. (LPC1769/68/66/65/64  
only).  
O
I
PWM1[1] — Pulse Width Modulator 1, channel 1 output.  
CAP1[0] — Capture input for Timer 1, channel 0.  
P1[19] — General purpose digital input/output pin.  
MCOA0 — Motor control PWM channel 0, output A.  
[1]  
P1[19]/MCOA0/  
USB_PPWR/  
CAP1[1]  
33 J4  
C10  
I/O  
O
O
USB_PPWR — Port Power enable signal for USB port.  
(LPC1769/68/66/65 only).  
I
CAP1[1] — Capture input for Timer 1, channel 1.  
P1[20] — General purpose digital input/output pin.  
[1]  
P1[20]/MCI0/  
34 K4 E8  
I/O  
I
PWM1[2]/SCK0  
MCI0 — Motor control PWM channel 0, input. Also Quadrature  
Encoder Interface PHA input.  
O
PWM1[2] — Pulse Width Modulator 1, channel 2 output.  
SCK0 — Serial clock for SSP0.  
I/O  
I/O  
O
[1]  
[1]  
P1[21]/MCABORT/ 35 F5 E9  
PWM1[3]/  
SSEL0  
P1[21] — General purpose digital input/output pin.  
MCABORT — Motor control PWM, LOW-active fast abort.  
PWM1[3] — Pulse Width Modulator 1, channel 3 output.  
SSEL0 — Slave Select for SSP0.  
O
I/O  
I/O  
O
P1[22]/MCOB0/  
USB_PWRD/  
MAT1[0]  
36 J5  
D10  
P1[22] — General purpose digital input/output pin.  
MCOB0 — Motor control PWM channel 0, output B.  
I
USB_PWRD — Power Status for USB port (host power switch,  
LPC1769/68/66/65 only).  
O
I/O  
I
MAT1[0] — Match output for Timer 1, channel 0.  
P1[23] — General purpose digital input/output pin.  
[1]  
P1[23]/MCI1/  
PWM1[4]/MISO0  
37 K5 E7  
MCI1 — Motor control PWM channel 1, input. Also Quadrature  
Encoder Interface PHB input.  
O
PWM1[4] — Pulse Width Modulator 1, channel 4 output.  
MISO0 — Master In Slave Out for SSP0.  
I/O  
I/O  
I
[1]  
P1[24]/MCI2/  
38 H5 F8  
P1[24] — General purpose digital input/output pin.  
PWM1[5]/MOSI0  
MCI2 — Motor control PWM channel 2, input. Also Quadrature  
Encoder Interface INDEX input.  
O
PWM1[5] — Pulse Width Modulator 1, channel 5 output.  
MOSI0 — Master Out Slave in for SSP0.  
I/O  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
15 of 90  
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 5.  
Symbol  
Pin description …continued  
Pin/ball  
Type  
Description  
[1]  
[1]  
P1[25]/MCOA1/  
MAT1[1]  
39 G5 F9  
I/O  
O
O
I/O  
O
O
I
P1[25] — General purpose digital input/output pin.  
MCOA1 — Motor control PWM channel 1, output A.  
MAT1[1] — Match output for Timer 1, channel 1.  
P1[26] — General purpose digital input/output pin.  
MCOB1 — Motor control PWM channel 1, output B.  
PWM1[6] — Pulse Width Modulator 1, channel 6 output.  
CAP0[0] — Capture input for Timer 0, channel 0.  
P1[27] — General purpose digital input/output pin.  
CLKOUT — Clock output pin.  
P1[26]/MCOB1/  
PWM1[6]/CAP0[0]  
40 K6 E10  
[1]  
P1[27]/CLKOUT  
/USB_OVRCR/  
CAP0[1]  
43 K7 G9  
I/O  
O
I
USB_OVRCR — USB port Over-Current status. (LPC1769/68/66/65  
only).  
I
CAP0[1] — Capture input for Timer 0, channel 1.  
P1[28] — General purpose digital input/output pin.  
MCOA2 — Motor control PWM channel 2, output A.  
PCAP1[0] — Capture input for PWM1, channel 0.  
MAT0[0] — Match output for Timer 0, channel 0.  
P1[29] — General purpose digital input/output pin.  
MCOB2 — Motor control PWM channel 2, output B.  
PCAP1[1] — Capture input for PWM1, channel 1.  
MAT0[1] — Match output for Timer 0, channel 1.  
P1[30] — General purpose digital input/output pin.  
[1]  
[1]  
[2]  
P1[28]/MCOA2/  
PCAP1[0]/  
MAT0[0]  
44 J7  
G10  
I/O  
O
I
O
I/O  
O
I
P1[29]/MCOB2/  
PCAP1[1]/  
MAT0[1]  
45 G6 G8  
O
I/O  
I
P1[30]/VBUS  
AD0[4]  
/
21 H1 B8  
VBUS Monitors the presence of USB bus power.  
(LPC1769/68/66/65/64 only).  
Note: This signal must be HIGH for USB reset to occur.  
AD0[4] — A/D converter 0, input 4.  
I
[2]  
P1[31]/SCK1/  
AD0[5]  
20 F4 C7  
I/O  
I/O  
I
P1[31] — General purpose digital input/output pin.  
SCK1 — Serial Clock for SSP1.  
AD0[5] — A/D converter 0, input 5.  
P2[0] to P2[31]  
I/O  
Port 2: Port 2 is a 32-bit I/O port with individual direction controls for  
each bit. The operation of port 2 pins depends upon the pin function  
selected via the pin connect block. Pins 14 through 31 of this port  
are not available.  
[1]  
[1]  
P2[0]/PWM1[1]/  
TXD1  
75 B9 K1  
74 B10 J2  
I/O  
O
P2[0] — General purpose digital input/output pin.  
PWM1[1] — Pulse Width Modulator 1, channel 1 output.  
TXD1 — Transmitter output for UART1.  
O
P2[1]/PWM1[2]/  
RXD1  
I/O  
O
P2[1] — General purpose digital input/output pin.  
PWM1[2] — Pulse Width Modulator 1, channel 2 output.  
RXD1 — Receiver input for UART1.  
I
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
16 of 90  
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 5.  
Symbol  
Pin description …continued  
Pin/ball  
Type  
Description  
[1]  
[1]  
[1]  
[1]  
P2[2]/PWM1[3]/  
CTS1/  
TRACEDATA[3]  
73 D8 K2  
70 E7 K3  
69 D9 J3  
68 D10 H4  
I/O  
O
I
P2[2] — General purpose digital input/output pin.  
PWM1[3] — Pulse Width Modulator 1, channel 3 output.  
CTS1 — Clear to Send input for UART1.  
O
I/O  
O
I
TRACEDATA[3] — Trace data, bit 3.  
P2[3]/PWM1[4]/  
DCD1/  
TRACEDATA[2]  
P2[3] — General purpose digital input/output pin.  
PWM1[4] — Pulse Width Modulator 1, channel 4 output.  
DCD1 — Data Carrier Detect input for UART1.  
TRACEDATA[2] — Trace data, bit 2.  
O
I/O  
O
I
P2[4]/PWM1[5]/  
DSR1/  
TRACEDATA[1]  
P2[4] — General purpose digital input/output pin.  
PWM1[5] — Pulse Width Modulator 1, channel 5 output.  
DSR1 — Data Set Ready input for UART1.  
O
I/O  
O
O
TRACEDATA[1] — Trace data, bit 1.  
P2[5]/PWM1[6]/  
DTR1/  
TRACEDATA[0]  
P2[5] — General purpose digital input/output pin.  
PWM1[6] — Pulse Width Modulator 1, channel 6 output.  
DTR1 — Data Terminal Ready output for UART1. Can also be  
configured to be an RS-485/EIA-485 output enable signal.  
O
I/O  
I
TRACEDATA[0] — Trace data, bit 0.  
[1]  
[1]  
P2[6]/PCAP1[0]/  
RI1/TRACECLK  
67 E8 K4  
P2[6] — General purpose digital input/output pin.  
PCAP1[0] — Capture input for PWM1, channel 0.  
RI1 — Ring Indicator input for UART1.  
I
O
I/O  
I
TRACECLK — Trace Clock.  
P2[7]/RD2/  
RTS1  
66 E9 J4  
P2[7] — General purpose digital input/output pin.  
RD2 — CAN2 receiver input. (LPC1769/68/66/65/64 only).  
O
RTS1 — Request to Send output for UART1. Can also be  
configured to be an RS-485/EIA-485 output enable signal.  
[1]  
[1]  
P2[8]/TD2/  
TXD2  
65 E10 H5  
64 F7 K5  
I/O  
O
P2[8] — General purpose digital input/output pin.  
TD2 — CAN2 transmitter output. (LPC1769/68/66/65/64 only).  
TXD2 — Transmitter output for UART2.  
O
P2[9]/  
USB_CONNECT/  
RXD2  
I/O  
O
P2[9] — General purpose digital input/output pin.  
USB_CONNECT — Signal used to switch an external 1.5 k  
resistor under software control. Used with the SoftConnect USB  
feature. (LPC1769/68/66/65/64 only).  
I
RXD2 — Receiver input for UART2.  
[6]  
P2[10]/EINT0/NMI 53 J10 K9  
I/O  
P2[10] — General purpose digital input/output pin. A LOW level on  
this pin during reset starts the ISP command handler.  
I
I
EINT0 — External interrupt 0 input.  
NMI — Non-maskable interrupt input.  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
17 of 90  
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 5.  
Symbol  
Pin description …continued  
Pin/ball  
Type  
Description  
[6]  
[6]  
[6]  
P2[11]/EINT1/  
I2STX_CLK  
52 H8 J8  
I/O  
I
P2[11] — General purpose digital input/output pin.  
EINT1 — External interrupt 1 input.  
I/O  
I2STX_CLK — Transmit Clock. It is driven by the master and  
received by the slave. Corresponds to the signal SCK in the I2S-bus  
specification. (LPC1769/68/67/66/65/63 only).  
P2[12]/EINT2/  
I2STX_WS  
51 K10 K10  
I/O  
I
P2[12] — General purpose digital input/output pin.  
EINT2 — External interrupt 2 input.  
I/O  
I2STX_WS — Transmit Word Select. It is driven by the master and  
received by the slave. Corresponds to the signal WS in the I2S-bus  
specification. (LPC1769/68/67/66/65/63 only).  
P2[13]/EINT3/  
I2STX_SDA  
50 J9  
J9  
I/O  
I
P2[13] — General purpose digital input/output pin.  
EINT3 — External interrupt 3 input.  
I/O  
I2STX_SDA — Transmit data. It is driven by the transmitter and  
read by the receiver. Corresponds to the signal SD in the I2S-bus  
specification. (LPC1769/68/67/66/65/63 only).  
P3[0] to P3[31]  
I/O  
Port 3: Port 3 is a 32-bit I/O port with individual direction controls for  
each bit. The operation of port 3 pins depends upon the pin function  
selected via the pin connect block. Pins 0 through 24, and 27  
through 31 of this port are not available.  
[1]  
[1]  
P3[25]/MAT0[0]/  
PWM1[2]  
27 H3 D8  
26 K1 A10  
I/O  
O
P3[25] — General purpose digital input/output pin.  
MAT0[0] — Match output for Timer 0, channel 0.  
PWM1[2] — Pulse Width Modulator 1, output 2.  
P3[26] — General purpose digital input/output pin.  
O
P3[26]/STCLK/  
MAT0[1]/PWM1[3]  
I/O  
I
STCLK — System tick timer clock input. The maximum STCLK  
frequency is 1/4 of the ARM processor clock frequency CCLK.  
O
MAT0[1] — Match output for Timer 0, channel 1.  
PWM1[3] — Pulse Width Modulator 1, output 3.  
O
P4[0] to P4[31]  
I/O  
Port 4: Port 4 is a 32-bit I/O port with individual direction controls for  
each bit. The operation of port 4 pins depends upon the pin function  
selected via the pin connect block. Pins 0 through 27, 30, and 31 of  
this port are not available.  
[1]  
P4[28]/RX_MCLK/ 82 C7 G1  
MAT2[0]/TXD3  
I/O  
O
P4[28] — General purpose digital input/output pin.  
RX_MCLK — I2S receive master clock. (LPC1769/68/67/66/65  
only).  
O
MAT2[0] — Match output for Timer 2, channel 0.  
TXD3 — Transmitter output for UART3.  
O
[1]  
P4[29]/TX_MCLK/ 85 E6 F1  
MAT2[1]/RXD3  
I/O  
O
P4[29] — General purpose digital input/output pin.  
TX_MCLK — I2S transmit master clock. (LPC1769/68/67/66/65  
only).  
O
I
MAT2[1] — Match output for Timer 2, channel 1.  
RXD3 — Receiver input for UART3.  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
18 of 90  
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 5.  
Symbol  
Pin description …continued  
Pin/ball  
Type  
Description  
[7]  
TDO/SWO  
1
A1 A1  
O
O
I
TDO — Test Data out for JTAG interface.  
SWO — Serial wire trace output.  
[1][8]  
[1][8]  
TDI  
2
3
C3 C4  
B1 B3  
TDI — Test Data in for JTAG interface.  
TMS — Test Mode Select for JTAG interface.  
SWDIO — Serial wire debug data input/output.  
TRST — Test Reset for JTAG interface.  
TCK — Test Clock for JTAG interface.  
SWDCLK — Serial wire clock.  
TMS/SWDIO  
I
I/O  
I
[1][8]  
[7]  
TRST  
4
5
C2 A2  
C1 D4  
TCK/SWDCLK  
I
I
[7]  
RTCK  
100 B2 B2  
14  
O
O
RTCK — JTAG interface control signal.  
RSTOUT  
-
-
-
RSTOUT — This is a 3.3 V pin. LOW on this pin indicates the  
microcontroller being in Reset state.  
[9]  
RESET  
17 F3 C6  
I
External reset input: A LOW-going pulse as short as 50 ns on this  
pin resets the device, causing I/O ports and peripherals to take on  
their default states, and processor execution to begin at address 0.  
TTL with hysteresis, 5 V tolerant.  
[10][11]  
[10][11]  
[10][11]  
[10]  
XTAL1  
XTAL2  
RTCX1  
RTCX2  
VSS  
22 H2 D7  
23 G3 A9  
16 F2 A7  
18 G1 B7  
I
Input to the oscillator circuit and internal clock generator circuits.  
Output from the oscillator amplifier.  
O
I
Input to the RTC oscillator circuit.  
O
I
Output from the RTC oscillator circuit.  
ground: 0 V reference.  
[10]  
31, B3, E5,  
41, B7, F5,  
55, C9, F6,  
72, G7, G5,  
83, J6, G6,  
97 K3 G7  
[10]  
[10]  
VSSA  
11 E1 B5  
I
I
analog ground: 0 V reference. This should nominally be the same  
voltage as VSS, but should be isolated to minimize noise and error.  
VDD(3V3)  
28, K2, E4,  
54, H9, E6,  
71, C10 F7,  
96 , A3 G4  
3.3 V supply voltage: This is the power supply voltage for the I/O  
ports.  
[10]  
[10]  
VDD(REG)(3V3)  
VDDA  
42, H6, F4,  
84 A7 F10  
I
I
3.3 V voltage regulator supply voltage: This is the supply voltage  
for the on-chip voltage regulator only.  
10 E2 A4  
analog 3.3 V pad supply voltage: This should be nominally the  
same voltage as VDD(3V3) but should be isolated to minimize noise  
and error. This voltage is used to power the ADC and DAC. This pin  
should be tied to 3.3 V if the ADC and DAC are not used.  
[10]  
VREFP  
12 E3 A5  
I
ADC positive reference voltage: This should be nominally the  
same voltage as VDDA but should be isolated to minimize noise and  
error. Level on this pin is used as a reference for ADC and DAC.  
This pin should be tied to 3.3 V if the ADC and DAC are not used.  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
19 of 90  
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 5.  
Symbol  
Pin description …continued  
Pin/ball  
Type  
Description  
VREFN  
15 F1 A6  
19 G2 A8  
I
ADC negative reference voltage: This should be nominally the  
same voltage as VSS but should be isolated to minimize noise and  
error. Level on this pin is used as a reference for ADC and DAC.  
[10][12]  
VBAT  
n.c.  
I
RTC pin power supply: 3.3 V on this pin supplies the power to the  
RTC peripheral.  
13 D4, B6,  
E4 D6  
-
not connected.  
[1] 5 V tolerant pad providing digital I/O functions with TTL levels and hysteresis. This pin is pulled up to a voltage level of 2.3 V to 2.6 V.  
[2] 5 V tolerant pad providing digital I/O functions (with TTL levels and hysteresis) and analog input. When configured as a ADC input,  
digital section of the pad is disabled and the pin is not 5 V tolerant. This pin is pulled up to a voltage level of 2.3 V to 2.6 V.  
[3] 5 V tolerant pad providing digital I/O with TTL levels and hysteresis and analog output function. When configured as the DAC output,  
digital section of the pad is disabled. This pin is pulled up to a voltage level of 2.3 V to 2.6 V.  
[4] Open-drain 5 V tolerant digital I/O pad, compatible with I2C-bus 400 kHz specification. This pad requires an external pull-up to provide  
output functionality. When power is switched off, this pin connected to the I2C-bus is floating and does not disturb the I2C lines.  
Open-drain configuration applies to all functions on this pin.  
[5] Pad provides digital I/O and USB functions. It is designed in accordance with the USB specification, revision 2.0 (Full-speed and  
Low-speed mode only). This pad is not 5 V tolerant.  
[6] 5 V tolerant pad with 10 ns glitch filter providing digital I/O functions with TTL levels and hysteresis. This pin is pulled up to a voltage  
level of 2.3 V to 2.6 V.  
[7] 5 V tolerant pad with TTL levels and hysteresis. Internal pull-up and pull-down resistors disabled.  
[8] 5 V tolerant pad with TTL levels and hysteresis and internal pull-up resistor.  
[9] 5 V tolerant pad with 20 ns glitch filter providing digital I/O function with TTL levels and hysteresis.  
[10] Pad provides special analog functionality. A 32 kHz crystal oscillator must be used with the RTC.  
[11] When the system oscillator is not used, connect XTAL1 and XTAL2 as follows: XTAL1 can be left floating or can be grounded (grounding  
is preferred to reduce susceptibility to noise). XTAL2 should be left floating.  
[12] When the RTC is not used, connect VBAT to VDD(REG)(3V3) and leave RTCX1 floating.  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
20 of 90  
 
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
8. Functional description  
8.1 Architectural overview  
Remark: In the following, the notation LPC17xx refers to all parts:  
LPC1769/68/67/66/65/64/63.  
The ARM Cortex-M3 includes three AHB-Lite buses: the system bus, the I-code bus, and  
the D-code bus (see Figure 1). The I-code and D-code core buses are faster than the  
system bus and are used similarly to TCM interfaces: one bus dedicated for instruction  
fetch (I-code) and one bus for data access (D-code). The use of two core buses allows for  
simultaneous operations if concurrent operations target different devices.  
The LPC17xx use a multi-layer AHB matrix to connect the ARM Cortex-M3 buses and  
other bus masters to peripherals in a flexible manner that optimizes performance by  
allowing peripherals that are on different slaves ports of the matrix to be accessed  
simultaneously by different bus masters.  
8.2 ARM Cortex-M3 processor  
The ARM Cortex-M3 is a general purpose, 32-bit microprocessor, which offers high  
performance and very low power consumption. The ARM Cortex-M3 offers many new  
features, including a Thumb-2 instruction set, low interrupt latency, hardware divide,  
interruptible/continuable multiple load and store instructions, automatic state save and  
restore for interrupts, tightly integrated interrupt controller with wake-up interrupt  
controller, and multiple core buses capable of simultaneous accesses.  
Pipeline techniques are employed so that all parts of the processing and memory systems  
can operate continuously. Typically, while one instruction is being executed, its successor  
is being decoded, and a third instruction is being fetched from memory.  
The ARM Cortex-M3 processor is described in detail in the Cortex-M3 Technical  
Reference Manual that can be found on official ARM website.  
8.3 On-chip flash program memory  
The LPC17xx contain up to 512 kB of on-chip flash memory. A new two-port flash  
accelerator maximizes performance for use with the two fast AHB-Lite buses.  
8.4 On-chip SRAM  
The LPC17xx contain a total of 64 kB on-chip static RAM memory. This includes the main  
32 kB SRAM, accessible by the CPU and DMA controller on a higher-speed bus, and two  
additional 16 kB each SRAM blocks situated on a separate slave port on the AHB  
multilayer matrix.  
This architecture allows CPU and DMA accesses to be spread over three separate RAMs  
that can be accessed simultaneously.  
8.5 Memory Protection Unit (MPU)  
The LPC17xx have a Memory Protection Unit (MPU) which can be used to improve the  
reliability of an embedded system by protecting critical data within the user application.  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
21 of 90  
 
 
 
 
 
 
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
The MPU allows separating processing tasks by disallowing access to each other's data,  
disabling access to memory regions, allowing memory regions to be defined as read-only  
and detecting unexpected memory accesses that could potentially break the system.  
The MPU separates the memory into distinct regions and implements protection by  
preventing disallowed accesses. The MPU supports up to 8 regions each of which can be  
divided into 8 subregions. Accesses to memory locations that are not defined in the MPU  
regions, or not permitted by the region setting, will cause the Memory Management Fault  
exception to take place.  
8.6 Memory map  
The LPC17xx incorporates several distinct memory regions, shown in the following  
figures. Figure 5 shows the overall map of the entire address space from the user  
program viewpoint following reset. The interrupt vector area supports address remapping.  
The AHB peripheral area is 2 MB in size and is divided to allow for up to 128 peripherals.  
The APB peripheral area is 1 MB in size and is divided to allow for up to 64 peripherals.  
Each peripheral of either type is allocated 16 kB of space. This allows simplifying the  
address decoding for each peripheral.  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
22 of 90  
 
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
APB1 peripherals  
LPC1769/68/67/66/65/64/63  
0x4010 0000  
0x400F C000  
0x400C 0000  
0x400B C000  
0x400B 8000  
0x400B 4000  
0x400B 0000  
0x400A C000  
0x400A 8000  
0x400A 4000  
0x400A 0000  
0x4009 C000  
0x4009 8000  
0x4009 4000  
0x4009 0000  
0x4008 C000  
0x4008 8000  
0x4008 0000  
4 GB  
0xFFFF FFFF  
31  
system control  
30 - 16 reserved  
QEI  
reserved  
AHB peripherals  
127- 4 reserved  
(1)  
0x5020 0000  
0x5001 0000  
0xE010 0000  
0xE000 0000  
15  
14  
13  
12  
11  
10  
9
private peripheral bus  
reserved  
motor control PWM  
reserved  
3
2
1
USB controller  
reserved  
0x5000 C000  
0x5000 8000  
0x5020 0000  
0x5000 0000  
repetitive interrupt timer  
reserved  
AHB peripherals  
reserved  
GPDMA controller  
0x5000 4000  
0x5000 0000  
(1)  
I2S  
(1)  
0
Ethernet controller  
0x4400 0000  
0x4200 0000  
reserved  
I2C2  
peripheral bit-band alias addressing  
reserved  
8
APB0 peripherals  
31 - 24 reserved  
0x4008 0000  
0x4006 0000  
0x4005 C000  
0x4004 C000  
0x4004 8000  
UART3  
UART2  
timer 3  
timer 2  
7
0x4010 0000  
0x4008 0000  
0x4000 0000  
6
APB1 peripherals  
APB0 peripherals  
reserved  
I2C1  
23  
5
1 GB  
22 - 19 reserved  
4
(1)  
(1)  
CAN2  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
3
DAC  
0x2400 0000  
0x2200 0000  
(1)  
CAN1  
SSP0  
AHB SRAM bit-band alias addressing  
2
0x4004 4000  
0x4004 0000  
0x4003 C000  
(1)  
1 - 0 reserved  
CAN common  
reserved  
GPIO  
(1)  
0x200A 0000  
0x2009 C000  
CAN AF registers  
(1)  
CAN AF RAM  
ADC  
0x4003 8000  
0x4003 4000  
0x4003 0000  
0x4002 C000  
reserved  
0x2008 4000  
0x2008 0000  
0x2007 C000  
16 kB AHB SRAM1 (LPC1769/8/7/6/5)  
16 kB AHB SRAM0  
SSP1  
pin connect  
0.5 GB  
GPIO interrupts  
reserved  
0x4002 8000  
0x4002 4000  
0x4002 0000  
0x1FFF 2000  
0x1FFF 0000  
0x1000 8000  
0x1000 4000  
0x1000 0000  
RTC + backup registers  
8 kB boot ROM  
SPI  
I2C0  
8
reserved  
7
0x4001 C000  
0x4001 8000  
32 kB local SRAM (LPC1769/8/7/6/5/3)  
PWM1  
reserved  
UART1  
UART0  
timer 1  
timer 0  
6
I-code/D-code  
memory space  
16 kB local SRAM (LPC1764)  
5
0x4001 4000  
0x4001 0000  
0x4000 C000  
0x4000 8000  
0x4000 4000  
4
reserved  
0x0008 0000  
0x0004 0000  
3
512 kB on-chip flash (LPC1769/8/7)  
256 kB on-chip flash (LPC1766/65/63)  
2
+ 256 words  
0x0000 0400  
0x0000 0000  
1
0x0002 0000  
active interrupt vectors  
(1) Not available on all parts. See Table 2.  
Fig 5. LPC17xx memory map  
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
8.7 Nested Vectored Interrupt Controller (NVIC)  
The NVIC is an integral part of the Cortex-M3. The tight coupling to the CPU allows for low  
interrupt latency and efficient processing of late arriving interrupts.  
8.7.1 Features  
Controls system exceptions and peripheral interrupts  
In the LPC17xx, the NVIC supports 33 vectored interrupts  
32 programmable interrupt priority levels, with hardware priority level masking  
Relocatable vector table  
Non-Maskable Interrupt (NMI)  
Software interrupt generation  
8.7.2 Interrupt sources  
Each peripheral device has one interrupt line connected to the NVIC but may have several  
interrupt flags. Individual interrupt flags may also represent more than one interrupt  
source.  
Any pin on Port 0 and Port 2 (total of 42 pins) regardless of the selected function, can be  
programmed to generate an interrupt on a rising edge, a falling edge, or both.  
8.8 Pin connect block  
The pin connect block allows selected pins of the microcontroller to have more than one  
function. Configuration registers control the multiplexers to allow connection between the  
pin and the on-chip peripherals.  
Peripherals should be connected to the appropriate pins prior to being activated and prior  
to any related interrupt(s) being enabled. Activity of any enabled peripheral function that is  
not mapped to a related pin should be considered undefined.  
Most pins can also be configured as open-drain outputs or to have a pull-up, pull-down, or  
no resistor enabled.  
8.9 General purpose DMA controller  
The GPDMA is an AMBA AHB compliant peripheral allowing selected peripherals to have  
DMA support.  
The GPDMA enables peripheral-to-memory, memory-to-peripheral,  
peripheral-to-peripheral, and memory-to-memory transactions. The source and  
destination areas can each be either a memory region or a peripheral, and can be  
accessed through the AHB master. The GPDMA controller allows data transfers between  
the USB and Ethernet controllers and the various on-chip SRAM areas. The supported  
APB peripherals are SSP0/1, all UARTs, the I2S-bus interface, the ADC, and the DAC.  
Two match signals for each timer can be used to trigger DMA transfers.  
Remark: The Ethernet controller is available on parts LPC1769/68/67/66/64. The USB  
controller is available on parts LPC1769/68/66/65/64. The I2S-bus interface is available on  
parts LPC1769/68/67/66/65. The DAC is available on parts LPC1769/68/67/66/65/63.  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
24 of 90  
 
 
 
 
 
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
8.9.1 Features  
Eight DMA channels. Each channel can support an unidirectional transfer.  
16 DMA request lines.  
Single DMA and burst DMA request signals. Each peripheral connected to the DMA  
Controller can assert either a burst DMA request or a single DMA request. The DMA  
burst size is set by programming the DMA Controller.  
Memory-to-memory, memory-to-peripheral, peripheral-to-memory, and  
peripheral-to-peripheral transfers are supported.  
Scatter or gather DMA is supported through the use of linked lists. This means that  
the source and destination areas do not have to occupy contiguous areas of memory.  
Hardware DMA channel priority.  
AHB slave DMA programming interface. The DMA Controller is programmed by  
writing to the DMA control registers over the AHB slave interface.  
One AHB bus master for transferring data. The interface transfers data when a DMA  
request goes active.  
32-bit AHB master bus width.  
Incrementing or non-incrementing addressing for source and destination.  
Programmable DMA burst size. The DMA burst size can be programmed to more  
efficiently transfer data.  
Internal four-word FIFO per channel.  
Supports 8, 16, and 32-bit wide transactions.  
Big-endian and little-endian support. The DMA Controller defaults to little-endian  
mode on reset.  
An interrupt to the processor can be generated on a DMA completion or when a DMA  
error has occurred.  
Raw interrupt status. The DMA error and DMA count raw interrupt status can be read  
prior to masking.  
8.10 Fast general purpose parallel I/O  
Device pins that are not connected to a specific peripheral function are controlled by the  
GPIO registers. Pins may be dynamically configured as inputs or outputs. Separate  
registers allow setting or clearing any number of outputs simultaneously. The value of the  
output register may be read back as well as the current state of the port pins.  
LPC17xx use accelerated GPIO functions:  
GPIO registers are accessed through the AHB multilayer bus so that the fastest  
possible I/O timing can be achieved.  
Mask registers allow treating sets of port bits as a group, leaving other bits  
unchanged.  
All GPIO registers are byte and half-word addressable.  
Entire port value can be written in one instruction.  
Support for Cortex-M3 bit banding.  
Support for use with the GPDMA controller.  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
25 of 90  
 
 
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Additionally, any pin on Port 0 and Port 2 (total of 42 pins) providing a digital function can  
be programmed to generate an interrupt on a rising edge, a falling edge, or both. The  
edge detection is asynchronous, so it may operate when clocks are not present such as  
during Power-down mode. Each enabled interrupt can be used to wake up the chip from  
Power-down mode.  
8.10.1 Features  
Bit level set and clear registers allow a single instruction to set or clear any number of  
bits in one port.  
Direction control of individual bits.  
All I/O default to inputs after reset.  
Pull-up/pull-down resistor configuration and open-drain configuration can be  
programmed through the pin connect block for each GPIO pin.  
8.11 Ethernet  
Remark: The Ethernet controller is available on parts LPC1769/68/67/66/64. The  
Ethernet block supports bus clock rates of up to 100 MHz (LPC1768/67/66/64) or 120  
MHz (LPC1769). See Table 2.  
The Ethernet block contains a full featured 10 Mbit/s or 100 Mbit/s Ethernet MAC  
designed to provide optimized performance through the use of DMA hardware  
acceleration. Features include a generous suite of control registers, half or full duplex  
operation, flow control, control frames, hardware acceleration for transmit retry, receive  
packet filtering and wake-up on LAN activity. Automatic frame transmission and reception  
with scatter-gather DMA off-loads many operations from the CPU.  
The Ethernet block and the CPU share the ARM Cortex-M3 D-code and system bus  
through the AHB-multilayer matrix to access the various on-chip SRAM blocks for  
Ethernet data, control, and status information.  
The Ethernet block interfaces between an off-chip Ethernet PHY using the Reduced MII  
(RMII) protocol and the on-chip Media Independent Interface Management (MIIM) serial  
bus.  
8.11.1 Features  
Ethernet standards support:  
Supports 10 Mbit/s or 100 Mbit/s PHY devices including 10 Base-T, 100 Base-TX,  
100 Base-FX, and 100 Base-T4.  
Fully compliant with IEEE standard 802.3.  
Fully compliant with 802.3x full duplex flow control and half duplex back pressure.  
Flexible transmit and receive frame options.  
Virtual Local Area Network (VLAN) frame support.  
Memory management:  
Independent transmit and receive buffers memory mapped to shared SRAM.  
DMA managers with scatter/gather DMA and arrays of frame descriptors.  
Memory traffic optimized by buffering and pre-fetching.  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
26 of 90  
 
 
 
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Enhanced Ethernet features:  
Receive filtering.  
Multicast and broadcast frame support for both transmit and receive.  
Optional automatic Frame Check Sequence (FCS) insertion with Cyclic  
Redundancy Check (CRC) for transmit.  
Selectable automatic transmit frame padding.  
Over-length frame support for both transmit and receive allows any length frames.  
Promiscuous receive mode.  
Automatic collision back-off and frame retransmission.  
Includes power management by clock switching.  
Wake-on-LAN power management support allows system wake-up: using the  
receive filters or a magic frame detection filter.  
Physical interface:  
Attachment of external PHY chip through standard RMII interface.  
PHY register access is available via the MIIM interface.  
8.12 USB interface  
Remark: The USB controller is available as device/Host/OTG controller on parts  
LPC1769/68/66/65 and as device-only controller on part LPC1764.  
The Universal Serial Bus (USB) is a 4-wire bus that supports communication between a  
host and one or more (up to 127) peripherals. The host controller allocates the USB  
bandwidth to attached devices through a token-based protocol. The bus supports hot  
plugging and dynamic configuration of the devices. All transactions are initiated by the  
host controller.  
The USB interface includes a device, Host, and OTG controller with on-chip PHY for  
device and Host functions. The OTG switching protocol is supported through the use of an  
external controller. Details on typical USB interfacing solutions can be found in  
Section 15.1.  
8.12.1 USB device controller  
The device controller enables 12 Mbit/s data exchange with a USB Host controller. It  
consists of a register interface, serial interface engine, endpoint buffer memory, and a  
DMA controller. The serial interface engine decodes the USB data stream and writes data  
to the appropriate endpoint buffer. The status of a completed USB transfer or error  
condition is indicated via status registers. An interrupt is also generated if enabled. When  
enabled, the DMA controller transfers data between the endpoint buffer and the on-chip  
SRAM.  
8.12.1.1 Features  
Fully compliant with USB 2.0 specification (full speed).  
Supports 32 physical (16 logical) endpoints with a 4 kB endpoint buffer RAM.  
Supports Control, Bulk, Interrupt and Isochronous endpoints.  
Scalable realization of endpoints at run time.  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
27 of 90  
 
 
 
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Endpoint Maximum packet size selection (up to USB maximum specification) by  
software at run time.  
Supports SoftConnect and GoodLink features.  
While USB is in the Suspend mode, the part can enter one of the reduced power  
modes and wake up on USB activity.  
Supports DMA transfers with all on-chip SRAM blocks on all non-control endpoints.  
Allows dynamic switching between CPU-controlled slave and DMA modes.  
Double buffer implementation for Bulk and Isochronous endpoints.  
8.12.2 USB host controller  
The host controller enables full- and low-speed data exchange with USB devices attached  
to the bus. It consists of a register interface, a serial interface engine, and a DMA  
controller. The register interface complies with the OHCI specification.  
8.12.2.1 Features  
OHCI compliant.  
One downstream port.  
Supports port power switching.  
8.12.3 USB OTG controller  
USB OTG is a supplement to the USB 2.0 specification that augments the capability of  
existing mobile devices and USB peripherals by adding host functionality for connection to  
USB peripherals.  
The OTG Controller integrates the host controller, device controller, and a master-only  
I2C-bus interface to implement OTG dual-role device functionality. The dedicated I2C-bus  
interface controls an external OTG transceiver.  
8.12.3.1 Features  
Fully compliant with On-The-Go supplement to the USB 2.0 Specification, Revision  
1.0a.  
Hardware support for Host Negotiation Protocol (HNP).  
Includes a programmable timer required for HNP and Session Request Protocol  
(SRP).  
Supports any OTG transceiver compliant with the OTG Transceiver Specification  
(CEA-2011), Rev. 1.0.  
8.13 CAN controller and acceptance filters  
Remark: The CAN controllers are available on parts LPC1769/68/66/65/64. See Table 2.  
The Controller Area Network (CAN) is a serial communications protocol which efficiently  
supports distributed real-time control with a very high level of security. Its domain of  
application ranges from high-speed networks to low cost multiplex wiring.  
The CAN block is intended to support multiple CAN buses simultaneously, allowing the  
device to be used as a gateway, switch, or router among a number of CAN buses in  
industrial or automotive applications.  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
28 of 90  
 
 
 
 
 
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
8.13.1 Features  
Two CAN controllers and buses.  
Data rates to 1 Mbit/s on each bus.  
32-bit register and RAM access.  
Compatible with CAN specification 2.0B, ISO 11898-1.  
Global Acceptance Filter recognizes standard (11-bit) and extended-frame (29-bit)  
receive identifiers for all CAN buses.  
Acceptance Filter can provide FullCAN-style automatic reception for selected  
Standard Identifiers.  
FullCAN messages can generate interrupts.  
8.14 12-bit ADC  
The LPC17xx contain a single 12-bit successive approximation ADC with eight channels  
and DMA support.  
8.14.1 Features  
12-bit successive approximation ADC.  
Input multiplexing among 8 pins.  
Power-down mode.  
Measurement range VREFN to VREFP.  
12-bit conversion rate: 200 kHz.  
Individual channels can be selected for conversion.  
Burst conversion mode for single or multiple inputs.  
Optional conversion on transition of input pin or Timer Match signal.  
Individual result registers for each ADC channel to reduce interrupt overhead.  
DMA support.  
8.15 10-bit DAC  
The DAC allows to generate a variable analog output. The maximum output value of the  
DAC is VREFP.  
Remark: The DAC is available on parts LPC1769/68/67/66/65/63. See Table 2.  
8.15.1 Features  
10-bit DAC  
Resistor string architecture  
Buffered output  
Power-down mode  
Selectable output drive  
Dedicated conversion timer  
DMA support  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
29 of 90  
 
 
 
 
 
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
8.16 UARTs  
32-bit ARM Cortex-M3 microcontroller  
The LPC17xx each contain four UARTs. In addition to standard transmit and receive data  
lines, UART1 also provides a full modem control handshake interface and support for  
RS-485/9-bit mode allowing both software address detection and automatic address  
detection using 9-bit mode.  
The UARTs include a fractional baud rate generator. Standard baud rates such as  
115200 Bd can be achieved with any crystal frequency above 2 MHz.  
8.16.1 Features  
Maximum UART data bit rate of 6.25 Mbit/s.  
16 B Receive and Transmit FIFOs.  
Register locations conform to 16C550 industry standard.  
Receiver FIFO trigger points at 1 B, 4 B, 8 B, and 14 B.  
Built-in fractional baud rate generator covering wide range of baud rates without a  
need for external crystals of particular values.  
Auto baud capabilities and FIFO control mechanism that enables software flow  
control implementation.  
UART1 equipped with standard modem interface signals. This module also provides  
full support for hardware flow control (auto-CTS/RTS).  
Support for RS-485/9-bit/EIA-485 mode (UART1).  
UART3 includes an IrDA mode to support infrared communication.  
All UARTs have DMA support.  
8.17 SPI serial I/O controller  
The LPC17xx contain one SPI controller. SPI is a full duplex serial interface designed to  
handle multiple masters and slaves connected to a given bus. Only a single master and a  
single slave can communicate on the interface during a given data transfer. During a data  
transfer the master always sends 8 bits to 16 bits of data to the slave, and the slave  
always sends 8 bits to 16 bits of data to the master.  
8.17.1 Features  
Maximum SPI data bit rate of 12.5 Mbit/s  
Compliant with SPI specification  
Synchronous, serial, full duplex communication  
Combined SPI master and slave  
Maximum data bit rate of one eighth of the input clock rate  
8 bits to 16 bits per transfer  
8.18 SSP serial I/O controller  
The LPC17xx contain two SSP controllers. The SSP controller is capable of operation on  
a SPI, 4-wire SSI, or Microwire bus. It can interact with multiple masters and slaves on the  
bus. Only a single master and a single slave can communicate on the bus during a given  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
30 of 90  
 
 
 
 
 
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
data transfer. The SSP supports full duplex transfers, with frames of 4 bits to 16 bits of  
data flowing from the master to the slave and from the slave to the master. In practice,  
often only one of these data flows carries meaningful data.  
8.18.1 Features  
Maximum SSP speed of 33 Mbit/s (master) or 8 Mbit/s (slave)  
Compatible with Motorola SPI, 4-wire Texas Instruments SSI, and National  
Semiconductor Microwire buses  
Synchronous serial communication  
Master or slave operation  
8-frame FIFOs for both transmit and receive  
4-bit to 16-bit frame  
DMA transfers supported by GPDMA  
8.19 I2C-bus serial I/O controllers  
The LPC17xx each contain three I2C-bus controllers.  
The I2C-bus is bidirectional for inter-IC control using only two wires: a Serial Clock line  
(SCL) and a Serial DAta line (SDA). Each device is recognized by a unique address and  
can operate as either a receiver-only device (e.g., an LCD driver) or a transmitter with the  
capability to both receive and send information (such as memory). Transmitters and/or  
receivers can operate in either master or slave mode, depending on whether the chip has  
to initiate a data transfer or is only addressed. The I2C is a multi-master bus and can be  
controlled by more than one bus master connected to it.  
8.19.1 Features  
I2C0 is a standard I2C compliant bus interface with open-drain pins. I2C0 also  
supports Fast mode plus with bit rates up to 1 Mbit/s.  
I2C1 and I2C2 use standard I/O pins with bit rates of up to 400 kbit/s (Fast I2C-bus).  
Easy to configure as master, slave, or master/slave.  
Programmable clocks allow versatile rate control.  
Bidirectional data transfer between masters and slaves.  
Multi-master bus (no central master).  
Arbitration between simultaneously transmitting masters without corruption of serial  
data on the bus.  
Serial clock synchronization allows devices with different bit rates to communicate via  
one serial bus.  
Serial clock synchronization can be used as a handshake mechanism to suspend and  
resume serial transfer.  
The I2C-bus can be used for test and diagnostic purposes.  
All I2C-bus controllers support multiple address recognition and a bus monitor mode.  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
31 of 90  
 
 
 
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
8.20 I2S-bus serial I/O controllers  
Remark: The I2S-bus interface is available on parts LPC1769/68/67/66/65/63. See  
Table 2.  
The I2S-bus provides a standard communication interface for digital audio applications.  
The I2S-bus specification defines a 3-wire serial bus using one data line, one clock line,  
and one word select signal. The basic I2S-bus connection has one master, which is  
always the master, and one slave. The I2S-bus interface provides a separate transmit and  
receive channel, each of which can operate as either a master or a slave.  
8.20.1 Features  
The interface has separate input/output channels each of which can operate in master  
or slave mode.  
Capable of handling 8-bit, 16-bit, and 32-bit word sizes.  
Mono and stereo audio data supported.  
The sampling frequency can range from 16 kHz to 96 kHz (16, 22.05, 32, 44.1, 48,  
96) kHz.  
Support for an audio master clock.  
Configurable word select period in master mode (separately for I2S-bus input and  
output).  
Two 8-word FIFO data buffers are provided, one for transmit and one for receive.  
Generates interrupt requests when buffer levels cross a programmable boundary.  
Two DMA requests, controlled by programmable buffer levels. These are connected  
to the GPDMA block.  
Controls include reset, stop and mute options separately for I2S-bus input and I2S-bus  
output.  
8.21 General purpose 32-bit timers/external event counters  
The LPC17xx include four 32-bit timer/counters. The timer/counter is designed to count  
cycles of the system derived clock or an externally-supplied clock. It can optionally  
generate interrupts, generate timed DMA requests, or perform other actions at specified  
timer values, based on four match registers. Each timer/counter also includes two capture  
inputs to trap the timer value when an input signal transitions, optionally generating an  
interrupt.  
8.21.1 Features  
A 32-bit timer/counter with a programmable 32-bit prescaler.  
Counter or timer operation.  
Two 32-bit capture channels per timer, that can take a snapshot of the timer value  
when an input signal transitions. A capture event may also generate an interrupt.  
Four 32-bit match registers that allow:  
Continuous operation with optional interrupt generation on match.  
Stop timer on match with optional interrupt generation.  
Reset timer on match with optional interrupt generation.  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
32 of 90  
 
 
 
 
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Up to four external outputs corresponding to match registers, with the following  
capabilities:  
Set LOW on match.  
Set HIGH on match.  
Toggle on match.  
Do nothing on match.  
Up to two match registers can be used to generate timed DMA requests.  
8.22 Pulse width modulator  
The PWM is based on the standard Timer block and inherits all of its features, although  
only the PWM function is pinned out on the LPC17xx. The Timer is designed to count  
cycles of the system derived clock and optionally switch pins, generate interrupts or  
perform other actions when specified timer values occur, based on seven match registers.  
The PWM function is in addition to these features, and is based on match register events.  
The ability to separately control rising and falling edge locations allows the PWM to be  
used for more applications. For instance, multi-phase motor control typically requires  
three non-overlapping PWM outputs with individual control of all three pulse widths and  
positions.  
Two match registers can be used to provide a single edge controlled PWM output. One  
match register (PWMMR0) controls the PWM cycle rate, by resetting the count upon  
match. The other match register controls the PWM edge position. Additional single edge  
controlled PWM outputs require only one match register each, since the repetition rate is  
the same for all PWM outputs. Multiple single edge controlled PWM outputs will all have a  
rising edge at the beginning of each PWM cycle, when an PWMMR0 match occurs.  
Three match registers can be used to provide a PWM output with both edges controlled.  
Again, the PWMMR0 match register controls the PWM cycle rate. The other match  
registers control the two PWM edge positions. Additional double edge controlled PWM  
outputs require only two match registers each, since the repetition rate is the same for all  
PWM outputs.  
With double edge controlled PWM outputs, specific match registers control the rising and  
falling edge of the output. This allows both positive going PWM pulses (when the rising  
edge occurs prior to the falling edge), and negative going PWM pulses (when the falling  
edge occurs prior to the rising edge).  
8.22.1 Features  
One PWM block with Counter or Timer operation (may use the peripheral clock or one  
of the capture inputs as the clock source).  
Seven match registers allow up to 6 single edge controlled or 3 double edge  
controlled PWM outputs, or a mix of both types. The match registers also allow:  
Continuous operation with optional interrupt generation on match.  
Stop timer on match with optional interrupt generation.  
Reset timer on match with optional interrupt generation.  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
33 of 90  
 
 
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Supports single edge controlled and/or double edge controlled PWM outputs. Single  
edge controlled PWM outputs all go high at the beginning of each cycle unless the  
output is a constant low. Double edge controlled PWM outputs can have either edge  
occur at any position within a cycle. This allows for both positive going and negative  
going pulses.  
Pulse period and width can be any number of timer counts. This allows complete  
flexibility in the trade-off between resolution and repetition rate. All PWM outputs will  
occur at the same repetition rate.  
Double edge controlled PWM outputs can be programmed to be either positive going  
or negative going pulses.  
Match register updates are synchronized with pulse outputs to prevent generation of  
erroneous pulses. Software must ‘release’ new match values before they can become  
effective.  
May be used as a standard 32-bit timer/counter with a programmable 32-bit prescaler  
if the PWM mode is not enabled.  
8.23 Motor control PWM  
The motor control PWM is a specialized PWM supporting 3-phase motors and other  
combinations. Feedback inputs are provided to automatically sense rotor position and use  
that information to ramp speed up or down. An abort input is also provided that causes the  
PWM to immediately release all motor drive outputs. At the same time, the motor control  
PWM is highly configurable for other generalized timing, counting, capture, and compare  
applications.  
8.24 Quadrature Encoder Interface (QEI)  
A quadrature encoder, also known as a 2-channel incremental encoder, converts angular  
displacement into two pulse signals. By monitoring both the number of pulses and the  
relative phase of the two signals, the user can track the position, direction of rotation, and  
velocity. In addition, a third channel, or index signal, can be used to reset the position  
counter. The quadrature encoder interface decodes the digital pulses from a quadrature  
encoder wheel to integrate position over time and determine direction of rotation. In  
addition, the QEI can capture the velocity of the encoder wheel.  
8.24.1 Features  
Tracks encoder position.  
Increments/decrements depending on direction.  
Programmable for 2or 4position counting.  
Velocity capture using built-in timer.  
Velocity compare function with “less than” interrupt.  
Uses 32-bit registers for position and velocity.  
Three position compare registers with interrupts.  
Index counter for revolution counting.  
Index compare register with interrupts.  
Can combine index and position interrupts to produce an interrupt for whole and  
partial revolution displacement.  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
34 of 90  
 
 
 
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Digital filter with programmable delays for encoder input signals.  
Can accept decoded signal inputs (clk and direction).  
Connected to APB.  
8.25 Repetitive Interrupt (RI) timer  
The repetitive interrupt timer provides a free-running 32-bit counter which is compared to  
a selectable value, generating an interrupt when a match occurs. Any bits of the  
timer/compare can be masked such that they do not contribute to the match detection.  
The repetitive interrupt timer can be used to create an interrupt that repeats at  
predetermined intervals.  
8.25.1 Features  
32-bit counter running from PCLK. Counter can be free-running or be reset by a  
generated interrupt.  
32-bit compare value.  
32-bit compare mask. An interrupt is generated when the counter value equals the  
compare value, after masking. This allows for combinations not possible with a simple  
compare.  
8.26 ARM Cortex-M3 system tick timer  
The ARM Cortex-M3 includes a system tick timer (SYSTICK) that is intended to generate  
a dedicated SYSTICK exception at a 10 ms interval. In the LPC17xx, this timer can be  
clocked from the internal AHB clock or from a device pin.  
8.27 Watchdog timer  
The purpose of the watchdog is to reset the microcontroller within a reasonable amount of  
time if it enters an erroneous state. When enabled, the watchdog will generate a system  
reset if the user program fails to ‘feed’ (or reload) the watchdog within a predetermined  
amount of time.  
8.27.1 Features  
Internally resets chip if not periodically reloaded.  
Debug mode.  
Enabled by software but requires a hardware reset or a watchdog reset/interrupt to be  
disabled.  
Incorrect/Incomplete feed sequence causes reset/interrupt if enabled.  
Flag to indicate watchdog reset.  
Programmable 32-bit timer with internal prescaler.  
Selectable time period from (Tcy(WDCLK) 256 4) to (Tcy(WDCLK) 232 4) in  
multiples of Tcy(WDCLK) 4.  
The Watchdog Clock (WDCLK) source can be selected from the Internal RC (IRC)  
oscillator, the RTC oscillator, or the APB peripheral clock. This gives a wide range of  
potential timing choices of Watchdog operation under different power reduction  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
35 of 90  
 
 
 
 
 
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
conditions. It also provides the ability to run the WDT from an entirely internal source  
that is not dependent on an external crystal and its associated components and wiring  
for increased reliability.  
Includes lock/safe feature.  
8.28 RTC and backup registers  
The RTC is a set of counters for measuring time when system power is on, and optionally  
when it is off. The RTC on the LPC17xx is designed to have extremely low power  
consumption, i.e. less than 1 A. The RTC will typically run from the main chip power  
supply, conserving battery power while the rest of the device is powered up. When  
operating from a battery, the RTC will continue working down to 2.1 V. Battery power can  
be provided from a standard 3 V Lithium button cell.  
An ultra-low power 32 kHz oscillator will provide a 1 Hz clock to the time counting portion  
of the RTC, moving most of the power consumption out of the time counting function.  
The RTC includes a calibration mechanism to allow fine-tuning the count rate in a way  
that will provide less than 1 second per day error when operated at a constant voltage and  
temperature. A clock output function (see Section 8.29.4) makes measuring the oscillator  
rate easy and accurate.  
The RTC contains a small set of backup registers (20 bytes) for holding data while the  
main part of the LPC17xx is powered off.  
The RTC includes an alarm function that can wake up the LPC17xx from all reduced  
power modes with a time resolution of 1 s.  
8.28.1 Features  
Measures the passage of time to maintain a calendar and clock.  
Ultra low power design to support battery powered systems.  
Provides Seconds, Minutes, Hours, Day of Month, Month, Year, Day of Week, and  
Day of Year.  
Dedicated power supply pin can be connected to a battery or to the main 3.3 V.  
Periodic interrupts can be generated from increments of any field of the time registers.  
Backup registers (20 bytes) powered by VBAT.  
RTC power supply is isolated from the rest of the chip.  
8.29 Clocking and power control  
8.29.1 Crystal oscillators  
The LPC17xx include three independent oscillators. These are the main oscillator, the IRC  
oscillator, and the RTC oscillator. Each oscillator can be used for more than one purpose  
as required in a particular application. Any of the three clock sources can be chosen by  
software to drive the main PLL and ultimately the CPU.  
Following reset, the LPC17xx will operate from the Internal RC oscillator until switched by  
software. This allows systems to operate without any external crystal and the bootloader  
code to operate at a known frequency.  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
36 of 90  
 
 
 
 
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
See Figure 6 for an overview of the LPC17xx clock generation.  
LPC17xx  
usbclk  
(48 MHz)  
USB PLL  
USB  
CLOCK  
DIVIDER  
MAIN  
OSCILLATOR  
USB BLOCK  
MAIN PLL  
pllclk  
USB clock config  
(USBCLKCFG)  
USB PLL enable  
cclk  
CPU  
CLOCK  
DIVIDER  
system  
clock  
select  
ARM  
CORTEX-M3  
main PLL enable  
ETHERNET  
BLOCK  
(CLKSRCSEL)  
CPU clock config  
(CCLKCFG)  
INTERNAL  
RC  
OSCILLATOR  
DMA  
GPIO  
NVIC  
WATCHDOG  
TIMER  
CCLK/8  
CCLK/6  
CCLK/4  
CCLK/2  
CCLK  
32 kHz  
PERIPHERAL  
CLOCK  
GENERATOR  
pclk  
WDT  
APB peripherals  
RTC  
rtclk = 1Hz  
OSCILLATOR  
REAL-TIME  
CLOCK  
002aad947  
Fig 6. LPC17xx clocking generation block diagram  
8.29.1.1 Internal RC oscillator  
The IRC may be used as the clock source for the WDT, and/or as the clock that drives the  
PLL and subsequently the CPU. The nominal IRC frequency is 4 MHz. The IRC is  
trimmed to 1 % accuracy over the entire voltage and temperature range.  
Upon power-up or any chip reset, the LPC17xx use the IRC as the clock source. Software  
may later switch to one of the other available clock sources.  
8.29.1.2 Main oscillator  
The main oscillator can be used as the clock source for the CPU, with or without using the  
PLL. The main oscillator also provides the clock source for the dedicated USB PLL.  
The main oscillator operates at frequencies of 1 MHz to 25 MHz. This frequency can be  
boosted to a higher frequency, up to the maximum CPU operating frequency, by the main  
PLL. The clock selected as the PLL input is PLLCLKIN. The ARM processor clock  
frequency is referred to as CCLK elsewhere in this document. The frequencies of  
PLLCLKIN and CCLK are the same value unless the PLL is active and connected. The  
clock frequency for each peripheral can be selected individually and is referred to as  
PCLK. Refer to Section 8.29.2 for additional information.  
8.29.1.3 RTC oscillator  
The RTC oscillator can be used as the clock source for the RTC block, the main PLL,  
and/or the CPU.  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
37 of 90  
 
 
 
 
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
8.29.2 Main PLL (PLL0)  
The PLL0 accepts an input clock frequency in the range of 32 kHz to 25 MHz. The input  
frequency is multiplied up to a high frequency, then divided down to provide the actual  
clock used by the CPU and/or the USB block.  
The PLL0 input, in the range of 32 kHz to 25 MHz, may initially be divided down by a  
value ‘N’, which may be in the range of 1 to 256. This input division provides a wide range  
of output frequencies from the same input frequency.  
Following the PLL0 input divider is the PLL0 multiplier. This can multiply the input divider  
output through the use of a Current Controlled Oscillator (CCO) by a value ‘M’, in the  
range of 1 through 32768. The resulting frequency must be in the range of 275 MHz to  
550 MHz. The multiplier works by dividing the CCO output by the value of M, then using a  
phase-frequency detector to compare the divided CCO output to the multiplier input. The  
error value is used to adjust the CCO frequency.  
The PLL0 is turned off and bypassed following a chip Reset and by entering Power-down  
mode. PLL0 is enabled by software only. The program must configure and activate the  
PLL0, wait for the PLL0 to lock, and then connect to the PLL0 as a clock source.  
8.29.3 USB PLL (PLL1)  
The LPC17xx contain a second, dedicated USB PLL1 to provide clocking for the USB  
interface.  
The PLL1 receives its clock input from the main oscillator only and provides a fixed  
48 MHz clock to the USB block only. The PLL1 is disabled and powered off on reset. If the  
PLL1 is left disabled, the USB clock will be supplied by the 48 MHz clock from the main  
PLL0.  
The PLL1 accepts an input clock frequency in the range of 10 MHz to 25 MHz only. The  
input frequency is multiplied up the range of 48 MHz for the USB clock using a Current  
Controlled Oscillators (CCO). It is insured that the PLL1 output has a 50 % duty cycle.  
8.29.4 RTC clock output  
The LPC17xx feature a clock output function intended for synchronizing with external  
devices and for use during system development to allow checking the internal clocks  
CCLK, IRC clock, main crystal, RTC clock, and USB clock in the outside world. The RTC  
clock output allows tuning the RTC frequency without probing the pin, which would distort  
the results.  
8.29.5 Wake-up timer  
The LPC17xx begin operation at power-up and when awakened from Power-down mode  
by using the 4 MHz IRC oscillator as the clock source. This allows chip operation to  
resume quickly. If the main oscillator or the PLL is needed by the application, software will  
need to enable these features and wait for them to stabilize before they are used as a  
clock source.  
When the main oscillator is initially activated, the wake-up timer allows software to ensure  
that the main oscillator is fully functional before the processor uses it as a clock source  
and starts to execute instructions. This is important at power on, all types of Reset, and  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
38 of 90  
 
 
 
 
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
whenever any of the aforementioned functions are turned off for any reason. Since the  
oscillator and other functions are turned off during Power-down mode, any wake-up of the  
processor from Power-down mode makes use of the wake-up timer.  
The Wake-up Timer monitors the crystal oscillator to check whether it is safe to begin  
code execution. When power is applied to the chip, or when some event caused the chip  
to exit Power-down mode, some time is required for the oscillator to produce a signal of  
sufficient amplitude to drive the clock logic. The amount of time depends on many factors,  
including the rate of VDD(3V3) ramp (in the case of power on), the type of crystal and its  
electrical characteristics (if a quartz crystal is used), as well as any other external circuitry  
(e.g., capacitors), and the characteristics of the oscillator itself under the existing ambient  
conditions.  
8.29.6 Power control  
The LPC17xx support a variety of power control features. There are four special modes of  
processor power reduction: Sleep mode, Deep-sleep mode, Power-down mode, and  
Deep power-down mode. The CPU clock rate may also be controlled as needed by  
changing clock sources, reconfiguring PLL values, and/or altering the CPU clock divider  
value. This allows a trade-off of power versus processing speed based on application  
requirements. In addition, Peripheral Power Control allows shutting down the clocks to  
individual on-chip peripherals, allowing fine tuning of power consumption by eliminating all  
dynamic power use in any peripherals that are not required for the application. Each of the  
peripherals has its own clock divider which provides even better power control.  
Integrated PMU (Power Management Unit) automatically adjust internal regulators to  
minimize power consumption during Sleep, Deep sleep, Power-down, and Deep  
power-down modes.  
The LPC17xx also implement a separate power domain to allow turning off power to the  
bulk of the device while maintaining operation of the RTC and a small set of registers for  
storing data during any of the power-down modes.  
8.29.6.1 Sleep mode  
When Sleep mode is entered, the clock to the core is stopped. Resumption from the Sleep  
mode does not need any special sequence but re-enabling the clock to the ARM core.  
In Sleep mode, execution of instructions is suspended until either a Reset or interrupt  
occurs. Peripheral functions continue operation during Sleep mode and may generate  
interrupts to cause the processor to resume execution. Sleep mode eliminates dynamic  
power used by the processor itself, memory systems and related controllers, and internal  
buses.  
8.29.6.2 Deep-sleep mode  
In Deep-sleep mode, the oscillator is shut down and the chip receives no internal clocks.  
The processor state and registers, peripheral registers, and internal SRAM values are  
preserved throughout Deep-sleep mode and the logic levels of chip pins remain static.  
The output of the IRC is disabled but the IRC is not powered down for a fast wake-up later.  
The RTC oscillator is not stopped because the RTC interrupts may be used as the  
wake-up source. The PLL is automatically turned off and disconnected. The CCLK and  
USB clock dividers automatically get reset to zero.  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
39 of 90  
 
 
 
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
The Deep-sleep mode can be terminated and normal operation resumed by either a  
Reset or certain specific interrupts that are able to function without clocks. Since all  
dynamic operation of the chip is suspended, Deep-sleep mode reduces chip power  
consumption to a very low value. Power to the flash memory is left on in Deep-sleep  
mode, allowing a very quick wake-up.  
On wake-up from Deep-sleep mode, the code execution and peripherals activities will  
resume after 4 cycles expire if the IRC was used before entering Deep-sleep mode. If the  
main external oscillator was used, the code execution will resume when 4096 cycles  
expire. PLL and clock dividers need to be reconfigured accordingly.  
8.29.6.3 Power-down mode  
Power-down mode does everything that Deep-sleep mode does, but also turns off the  
power to the IRC oscillator and the flash memory. This saves more power but requires  
waiting for resumption of flash operation before execution of code or data access in the  
flash memory can be accomplished.  
On the wake-up of Power-down mode, if the IRC was used before entering Power-down  
mode, it will take IRC 60 s to start-up. After this 4 IRC cycles will expire before the code  
execution can then be resumed if the code was running from SRAM. In the meantime, the  
flash wake-up timer then counts 4 MHz IRC clock cycles to make the 100 s flash start-up  
time. When it times out, access to the flash will be allowed. Users need to reconfigure the  
PLL and clock dividers accordingly.  
8.29.6.4 Deep power-down mode  
The Deep power-down mode can only be entered from the RTC block. In Deep  
power-down mode, power is shut off to the entire chip with the exception of the RTC  
module and the RESET pin.  
The LPC17xx can wake up from Deep power-down mode via the RESET pin or an alarm  
match event of the RTC.  
8.29.6.5 Wake-up interrupt controller  
The Wake-up Interrupt Controller (WIC) allows the CPU to automatically wake up from  
any enabled priority interrupt that can occur while the clocks are stopped in Deep sleep,  
Power-down, and Deep power-down modes.  
The WIC works in connection with the Nested Vectored Interrupt Controller (NVIC). When  
the CPU enters Deep sleep, Power-down, or Deep power-down mode, the NVIC sends a  
mask of the current interrupt situation to the WIC.This mask includes all of the interrupts  
that are both enabled and of sufficient priority to be serviced immediately. With this  
information, the WIC simply notices when one of the interrupts has occurred and then it  
wakes up the CPU.  
The WIC eliminates the need to periodically wake up the CPU and poll the interrupts  
resulting in additional power savings.  
8.29.7 Peripheral power control  
A Power Control for Peripherals feature allows individual peripherals to be turned off if  
they are not needed in the application, resulting in additional power savings.  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
40 of 90  
 
 
 
 
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
8.29.8 Power domains  
The LPC17xx provide two independent power domains that allow the bulk of the device to  
have power removed while maintaining operation of the RTC and the backup Registers.  
On the LPC17xx, I/O pads are powered by the 3.3 V (VDD(3V3)) pins, while the  
V
DD(REG)(3V3) pin powers the on-chip voltage regulator which in turn provides power to the  
CPU and most of the peripherals.  
Depending on the LPC17xx application, a design can use two power options to manage  
power consumption.  
The first option assumes that power consumption is not a concern and the design ties the  
V
DD(3V3) and VDD(REG)(3V3) pins together. This approach requires only one 3.3 V power  
supply for both pads, the CPU, and peripherals. While this solution is simple, it does not  
support powering down the I/O pad ring “on the fly” while keeping the CPU and  
peripherals alive.  
The second option uses two power supplies; a 3.3 V supply for the I/O pads (VDD(3V3)) and  
a dedicated 3.3 V supply for the CPU (VDD(REG)(3V3)). Having the on-chip voltage regulator  
powered independently from the I/O pad ring enables shutting down of the I/O pad power  
supply “on the fly”, while the CPU and peripherals stay active.  
The VBAT pin supplies power only to the RTC domain. The RTC requires a minimum of  
power to operate, which can be supplied by an external battery. The device core power  
(VDD(REG)(3V3)) is used to operate the RTC whenever VDD(REG)(3V3) is present. Therefore,  
there is no power drain from the RTC battery when VDD(REG)(3V3) is available.  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
41 of 90  
 
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
LPC17xx  
V
to I/O pads  
DD(3V3)  
to core  
V
SS  
REGULATOR  
to memories,  
peripherals,  
oscillators,  
PLLs  
V
DD(REG)(3V3)  
MAIN POWER DOMAIN  
ULTRA LOW-POWER  
REGULATOR  
POWER  
SELECTOR  
VBAT  
BACKUP REGISTERS  
REAL-TIME CLOCK  
RTCX1  
RTCX2  
32 kHz  
OSCILLATOR  
RTC POWER DOMAIN  
DAC  
ADC  
V
DDA  
VREFP  
VREFN  
V
SSA  
ADC POWER DOMAIN  
002aad978  
Fig 7. Power distribution  
8.30 System control  
8.30.1 Reset  
Reset has four sources on the LPC17xx: the RESET pin, the Watchdog reset, power-on  
reset (POR), and the BrownOut Detection (BOD) circuit. The RESET pin is a Schmitt  
trigger input pin. Assertion of chip Reset by any source, once the operating voltage attains  
a usable level, causes the RSTOUT pin to go LOW and starts the wake-up timer (see  
description in Section 8.29.5). The wake-up timer ensures that reset remains asserted  
until the external Reset is de-asserted, the oscillator is running, a fixed number of clocks  
have passed, and the flash controller has completed its initialization. Once reset is  
de-asserted, or, in case of a BOD-triggered reset, once the voltage rises above the BOD  
threshold, the RSTOUT pin goes HIGH.  
When the internal Reset is removed, the processor begins executing at address 0, which  
is initially the Reset vector mapped from the Boot Block. At that point, all of the processor  
and peripheral registers have been initialized to predetermined values.  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
42 of 90  
 
 
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
8.30.2 Brownout detection  
The LPC17xx include 2-stage monitoring of the voltage on the VDD(REG)(3V3) pins. If this  
voltage falls below 2.2 V, the BOD asserts an interrupt signal to the Vectored Interrupt  
Controller. This signal can be enabled for interrupt in the Interrupt Enable Register in the  
NVIC in order to cause a CPU interrupt; if not, software can monitor the signal by reading  
a dedicated status register.  
The second stage of low-voltage detection asserts reset to inactivate the LPC17xx when  
the voltage on the VDD(REG)(3V3) pins falls below 1.85 V. This reset prevents alteration of  
the flash as operation of the various elements of the chip would otherwise become  
unreliable due to low voltage. The BOD circuit maintains this reset down below 1 V, at  
which point the power-on reset circuitry maintains the overall reset.  
Both the 2.2 V and 1.85 V thresholds include some hysteresis. In normal operation, this  
hysteresis allows the 2.2 V detection to reliably interrupt, or a regularly executed event  
loop to sense the condition.  
8.30.3 Code security (Code Read Protection - CRP)  
This feature of the LPC17xx allows user to enable different levels of security in the system  
so that access to the on-chip flash and use of the JTAG and ISP can be restricted. When  
needed, CRP is invoked by programming a specific pattern into a dedicated flash location.  
IAP commands are not affected by the CRP.  
There are three levels of the Code Read Protection.  
CRP1 disables access to chip via the JTAG and allows partial flash update (excluding  
flash sector 0) using a limited set of the ISP commands. This mode is useful when CRP is  
required and flash field updates are needed but all sectors can not be erased.  
CRP2 disables access to chip via the JTAG and only allows full flash erase and update  
using a reduced set of the ISP commands.  
Running an application with level CRP3 selected fully disables any access to chip via the  
JTAG pins and the ISP. This mode effectively disables ISP override using P2[10] pin, too.  
It is up to the user’s application to provide (if needed) flash update mechanism using IAP  
calls or call reinvoke ISP command to enable flash update via UART0.  
CAUTION  
If level three Code Read Protection (CRP3) is selected, no future factory testing can be  
performed on the device.  
8.30.4 APB interface  
The APB peripherals are split into two separate APB buses in order to distribute the bus  
bandwidth and thereby reducing stalls caused by contention between the CPU and the  
GPDMA controller.  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
43 of 90  
 
 
 
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
8.30.5 AHB multilayer matrix  
The LPC17xx use an AHB multilayer matrix. This matrix connects the instruction (I-code)  
and data (D-code) CPU buses of the ARM Cortex-M3 to the flash memory, the main  
(32 kB) static RAM, and the Boot ROM. The GPDMA can also access all of these  
memories. The peripheral DMA controllers, Ethernet, and USB can access all SRAM  
blocks. Additionally, the matrix connects the CPU system bus and all of the DMA  
controllers to the various peripheral functions.  
8.30.6 External interrupt inputs  
The LPC17xx include up to 46 edge sensitive interrupt inputs combined with up to four  
level sensitive external interrupt inputs as selectable pin functions. The external interrupt  
inputs can optionally be used to wake up the processor from Power-down mode.  
8.30.7 Memory mapping control  
The Cortex-M3 incorporates a mechanism that allows remapping the interrupt vector table  
to alternate locations in the memory map. This is controlled via the Vector Table Offset  
Register contained in the NVIC.  
The vector table may be located anywhere within the bottom 1 GB of Cortex-M3 address  
space. The vector table must be located on a 128 word (512 byte) boundary because the  
NVIC on the LPC17xx is configured for 128 total interrupts.  
8.31 Emulation and debugging  
Debug and trace functions are integrated into the ARM Cortex-M3. Serial wire debug and  
trace functions are supported in addition to a standard JTAG debug and parallel trace  
functions. The ARM Cortex-M3 is configured to support up to eight breakpoints and four  
watch points.  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
44 of 90  
 
 
 
 
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
9. Limiting values  
Table 6.  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).[1]  
Symbol  
Parameter  
Conditions  
Min  
0.5  
0.5  
0.5  
Max  
+4.6  
+4.6  
+4.6  
Unit  
V
[2]  
[2]  
[2]  
VDD(3V3)  
supply voltage (3.3 V)  
external rail  
VDD(REG)(3V3) regulator supply voltage (3.3 V)  
V
VDDA  
analog 3.3 V pad supply  
voltage  
V
[2]  
[2]  
Vi(VBAT)  
Vi(VREFP)  
VIA  
input voltage on pin VBAT  
input voltage on pin VREFP  
analog input voltage  
input voltage  
for the RTC  
0.5  
0.5  
0.5  
0.5  
+4.6  
+4.6  
+5.1  
+5.5  
V
V
V
VI  
[2][3]  
[2][4]  
on ADC related pins  
VI  
5 V tolerant digital I/O pins;  
VDD 2.4 V  
VDD = 0 V  
0.5  
0.5  
+3.6  
+5.5  
[2][5]  
5 V tolerant open-drain pins  
PIO0_27 and PIO0_28  
IDD  
supply current  
per supply pin  
per ground pin  
-
-
-
100  
100  
100  
mA  
mA  
mA  
ISS  
ground current  
I/O latch-up current  
Ilatch  
(0.5VDD(3V3)) < VI <  
(1.5VDD(3V3)); Tj < 125 C  
[6]  
[7]  
Tstg  
storage temperature  
65  
+150  
150  
1.5  
C  
C  
W
Tj(max)  
Ptot(pack)  
maximum junction temperature  
total power dissipation (per  
package)  
based on package heat  
transfer, not device power  
consumption  
-
VESD  
electrostatic discharge voltage human body model; all pins  
4000  
+4000  
V
[1] The following applies to the limiting values:  
a) This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive  
static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated  
maximum.  
b) Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to VSS unless  
otherwise noted.  
c) The limiting values are stress ratings only. Operating the part at these values is not recommended, and proper operation is not  
guaranteed. The conditions for functional operation are specified in Table 8.  
[2] Maximum/minimum voltage above the maximum operating voltage (see Table 8) and below ground that can be applied for a short time  
(< 10 ms) to a device without leading to irrecoverable failure. Failure includes the loss of reliability and shorter lifetime of the device.  
[3] See Table 19 for maximum operating voltage.  
[4] Including voltage on outputs in 3-state mode.  
[5] VDD present or not present. Compliant with the I2C-bus standard. 5.5 V can be applied to this pin when VDD is powered down.  
[6] The maximum non-operating storage temperature is different than the temperature for required shelf life which should be determined  
based on required shelf lifetime. Please refer to the JEDEC spec (J-STD-033B.1) for further details.  
[7] Human body model: equivalent to discharging a 100 pF capacitor through a 1.5 kseries resistor.  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
45 of 90  
 
 
 
 
 
 
 
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
10. Thermal characteristics  
The average chip junction temperature, Tj (C), can be calculated using the following  
equation:  
Tj = Tamb + PD Rthj a  
(1)  
Tamb = ambient temperature (C)  
Rth(j-a) = the package junction-to-ambient thermal resistance (C/W)  
PD = sum of internal and I/O power dissipation  
The internal power dissipation is the product of IDD and VDD. The I/O power dissipation of  
the I/O pins is often small and many times can be negligible. However it can be significant  
in some applications.  
Table 7.  
Thermal resistance (15 %)  
Symbol Parameter  
Conditions  
Max/Min  
Unit  
LQFP100  
Rth(j-a)  
thermal resistance from  
junction to ambient  
JEDEC (4.5 in 4 in); still air  
38.01  
C/W  
C/W  
C/W  
Single-layer (4.5 in 3 in); still air 55.09  
Rth(j-c)  
thermal resistance from  
junction to case  
9.065  
TFBGA100  
Rth(j-a) thermal resistance from  
JEDEC (4.5 in 4 in); still air  
55.2  
C/W  
C/W  
C/W  
junction to ambient  
Single-layer (4.5 in 3 in); still air 45.6  
Rth(j-c)  
thermal resistance from  
junction to case  
9.5  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
46 of 90  
 
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
11. Static characteristics  
Table 8.  
Static characteristics  
Tamb = 40 C to +85 C, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ[1]  
Max  
Unit  
Supply pins  
VDD(3V3)  
[2]  
supply voltage (3.3 V)  
external rail  
2.4  
2.4  
3.3  
3.3  
3.6  
3.6  
V
V
VDD(REG)(3V3)  
regulator supply voltage  
(3.3 V)  
[3][4]  
[5]  
VDDA  
analog 3.3 V pad supply  
voltage  
2.5  
2.1  
2.5  
3.3  
3.3  
3.3  
3.6  
V
V
V
Vi(VBAT)  
input voltage on pin  
VBAT  
3.6  
[3]  
Vi(VREFP)  
IDD(REG)(3V3)  
input voltage on pin  
VREFP  
VDDA  
regulator supply current active mode; code  
(3.3 V)  
while(1){}  
executed from flash; all  
peripherals disabled;  
PCLK = CCLK  
8
[6][7]  
[6][7]  
[6][8]  
[6][8]  
CCLK = 12 MHz; PLL  
disabled  
-
-
-
-
7
-
-
-
-
mA  
mA  
mA  
mA  
CCLK = 100 MHz; PLL  
enabled  
42  
50  
67  
CCLK = 100 MHz; PLL  
enabled (LPC1769)  
CCLK = 120 MHz; PLL  
enabled (LPC1769)  
[6][9]  
[6][10]  
[6][10]  
[11]  
sleep mode  
-
-
-
-
2
-
-
-
-
mA  
A  
A  
nA  
deep sleep mode  
power-down mode  
240  
31  
deep power-down mode;  
RTC running  
630  
IBAT  
battery supply current  
I/O supply current  
deep power-down mode;  
RTC running  
[12]  
[13]  
VDD(REG)(3V3) present  
-
-
530  
-
nA  
VDD(REG)(3V3) not  
present  
1.1  
40  
40  
10  
-
-
-
-
A  
nA  
nA  
nA  
[14][15]  
[14][15]  
[14]  
IDD(IO)  
deep sleep mode  
-
-
-
power-down mode  
deep power-down mode  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
47 of 90  
 
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 8.  
Static characteristics …continued  
Tamb = 40 C to +85 C, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
active mode;  
ADC powered  
Min  
Typ[1]  
Max  
Unit  
[16][17]  
[16][18]  
IDD(ADC)  
ADC supply current  
-
1.95  
-
mA  
ADC in Power-down  
mode  
-
<0.2  
-
A  
[16]  
[16]  
[16]  
deep sleep mode  
power-down mode  
deep power-down mode  
on pin VREFP  
-
-
-
38  
38  
24  
-
-
-
nA  
nA  
nA  
II(ADC)  
ADC input current  
[19]  
[19]  
[19]  
deep sleep mode  
power-down mode  
-
-
-
100  
100  
100  
-
-
-
nA  
nA  
nA  
deep power-down  
mode  
Standard port pins, RESET, RTCK  
IIL  
LOW-level input current VI = 0 V; on-chip pull-up  
resistor disabled  
-
-
0.5  
0.5  
10  
10  
nA  
nA  
IIH  
HIGH-level input  
current  
VI = VDD(3V3); on-chip  
pull-down resistor  
disabled  
IOZ  
OFF-state output  
current  
VO = 0 V; VO = VDD(3V3)  
on-chip pull-up/down  
resistors disabled  
;
-
0.5  
-
10  
nA  
V
[20][21]  
[22]  
VI  
input voltage  
pin configured to provide  
a digital function  
0
5.0  
VO  
output voltage  
output active  
0
-
-
VDD(3V3)  
-
V
V
VIH  
HIGH-level input  
voltage  
0.7VDD(3V3)  
VIL  
LOW-level input voltage  
hysteresis voltage  
-
-
-
-
0.3VDD(3V3)  
V
V
V
Vhys  
VOH  
0.4  
-
-
HIGH-level output  
voltage  
IOH = 4 mA  
VDD(3V3)  
0.4  
VOL  
IOH  
LOW-level output  
voltage  
IOL = 4 mA  
-
-
-
-
-
-
0.4  
-
V
HIGH-level output  
current  
VOH = VDD(3V3) 0.4 V  
VOL = 0.4 V  
4  
4
-
mA  
mA  
mA  
mA  
IOL  
LOW-level output  
current  
-
[23]  
[23]  
IOHS  
IOLS  
HIGH-level short-circuit VOH = 0 V  
output current  
45  
50  
LOW-level short-circuit VOL = VDD(3V3)  
output current  
-
Ipd  
Ipu  
pull-down current  
pull-up current  
VI = 5 V  
10  
15  
0
50  
50  
0
150  
85  
0
A  
A  
A  
VI = 0 V  
VDD(3V3) < VI < 5 V  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
48 of 90  
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 8.  
Static characteristics …continued  
Tamb = 40 C to +85 C, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ[1]  
Max  
Unit  
I2C-bus pins (P0[27] and P0[28])  
VIH  
HIGH-level input  
voltage  
0.7VDD(3V3)  
-
-
-
V
VIL  
LOW-level input voltage  
hysteresis voltage  
-
-
0.3VDD(3V3)  
-
V
V
Vhys  
0.05   
VDD(3V3)  
VOL  
ILI  
LOW-level output  
voltage  
IOLS = 3 mA  
-
-
0.4  
V
[24]  
input leakage current  
VI = VDD(3V3)  
VI = 5 V  
-
-
2
4
A  
A  
10  
22  
Oscillator pins  
Vi(XTAL1)  
input voltage on pin  
XTAL1  
0.5  
0.5  
0.5  
0.5  
1.8  
1.8  
-
1.95  
1.95  
3.6  
V
V
V
V
Vo(XTAL2)  
Vi(RTCX1)  
Vo(RTCX2)  
output voltage on pin  
XTAL2  
input voltage on pin  
RTCX1  
output voltage on pin  
RTCX2  
-
3.6  
USB pins (LPC1769/68/66/65/64 only)  
[2]  
IOZ  
OFF-state output  
current  
0 V < VI < 3.3 V  
-
-
10  
A  
[2]  
[2]  
VBUS  
VDI  
bus supply voltage  
-
-
-
5.25  
-
V
V
differential input  
(D+) (D)  
0.2  
sensitivity voltage  
[2]  
[2]  
VCM  
differential common  
mode voltage range  
includes VDI range  
0.8  
0.8  
-
-
2.5  
2.0  
V
V
Vth(rs)se  
single-ended receiver  
switching threshold  
voltage  
[2]  
[2]  
VOL  
LOW-level output  
voltage for  
low-/full-speed  
RL of 1.5 kto 3.6 V  
RL of 15 kto GND  
-
-
-
0.18  
3.5  
V
V
VOH  
HIGH-level output  
voltage (driven) for  
low-/full-speed  
2.8  
[2]  
Ctrans  
ZDRV  
transceiver capacitance pin to GND  
-
-
-
20  
pF  
[2][25]  
driver output  
with 33 series resistor;  
steady state drive  
36  
44.1  
impedance for driver  
which is not high-speed  
capable  
[1] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply voltages.  
[2] For USB operation 3.0 V VDD((3V3) 3.6 V. Guaranteed by design.  
[3] VDDA and VREFP should be tied to VDD(3V3) if the ADC and DAC are not used.  
[4]  
VDDA for DAC specs are from 2.7 V to 3.6 V.  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
49 of 90  
 
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
[5] The RTC typically fails when Vi(VBAT) drops below 1.6 V.  
[6] VDD(REG)(3V3) = 3.3 V; Tamb = 25 C for all power consumption measurements.  
[7] Applies to LPC1768/67/66/65/64/63.  
[8] Applies to LPC1769 only.  
[9] IRC running at 4 MHz; main oscillator and PLL disabled; PCLK = CCLK8.  
[10] BOD disabled.  
[11] On pin VDD(REG)(3V3). IBAT = 530 nA. VDD(REG)(3V3) = 3.0 V; VBAT = 3.0 V; Tamb = 25 C.  
[12] On pin VBAT; IDD(REG)(3V3) = 630 nA; VDD(REG)(3V3) = 3.0 V; VBAT = 3.0 V; Tamb = 25 C.  
[13] On pin VBAT; VBAT = 3.0 V; Tamb = 25 C.  
[14] All internal pull-ups disabled. All pins configured as output and driven LOW. VDD(3V3) = 3.3 V; Tamb = 25 C.  
[15] TCK/SWDCLK pin needs to be externally pulled LOW.  
[16] On pin VDDA; VDDA = 3.3 V; Tamb = 25 C. The ADC is powered if the PDN bit in the AD0CR register is set to 1 and in Power-down mode  
of the PDN bit is set to 0.  
[17] The ADC is powered if the PDN bit in the AD0CR register is set to 1. See LPC17xx user manual UM10360_1.  
[18] The ADC is in Power-down mode if the PDN bit in the AD0CR register is set to 0. See LPC17xx user manual UM10360_1.  
[19] Vi(VREFP) = 3.3 V; Tamb = 25 C.  
[20] Including voltage on outputs in 3-state mode.  
[21] VDD(3V3) supply voltages must be present.  
[22] 3-state outputs go into 3-state mode in Deep power-down mode.  
[23] Allowed as long as the current limit does not exceed the maximum current allowed by the device.  
[24] To VSS  
.
[25] Includes external resistors of 33   1 % on D+ and D.  
11.1 Power consumption  
002aaf568  
400  
I
DD(Reg)(3V3)  
(μA)  
350  
300  
250  
3.6 V  
3.3 V  
2.4 V  
200  
40  
15  
10  
35  
60  
85  
temperature (°C)  
Conditions: BOD disabled.  
Fig 8. Deep-sleep mode: typical regulator supply current IDD(Reg)(3V3) versus  
temperature  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
50 of 90  
 
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
002aaf569  
120  
I
DD(Reg)(3V3)  
(μA)  
80  
40  
3.6 V  
3.3 V  
2.4 V  
0
40  
15  
10  
35  
60  
85  
temperature (°C)  
Conditions: BOD disabled.  
Fig 9. Power-down mode: Typical regulator supply current IDD(Reg)(3V3) versus  
temperature  
002aag119  
1.8  
V
= 3.6 V  
3.3 V  
3.0 V  
2.4 V  
I
i(VBAT)  
BAT)  
(μA)  
1.4  
1.0  
0.6  
-40  
-15  
10  
35  
60  
85  
temperature (°C)  
Conditions: VDD(REG)(3V3) floating; RTC running.  
Fig 10. Deep power-down mode: Typical battery supply current IBAT versus temperature  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
51 of 90  
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
002aag120  
2.0  
I
/I  
DD(REG)(3V3) BAT  
(µA)  
I
DD(REG)(3V3)  
1.6  
1.2  
0.8  
0.4  
I
BAT  
0
-40  
-15  
10  
35  
60  
85  
temperature (°C)  
Conditions: VBAT = 3.0 V; VDD(REG)(3V3) = 3.0 V; RTC running.  
Fig 11. Deep power-down mode: Typical regulator supply current IDD(REG)(3V3) and battery  
supply current IBAT versus temperature  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
52 of 90  
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
11.2 Peripheral power consumption  
The supply current per peripheral is measured as the difference in supply current between  
the peripheral block enabled and the peripheral block disabled in the PCONP register. All  
other blocks are disabled and no code is executed. Measured on a typical sample at  
Tamb = 25 C. The peripheral clock PCLK = CCLK/4.  
Table 9.  
Power consumption for individual analog and digital blocks  
Peripheral  
Conditions  
Typical supply current in mA; Notes  
CCLK =  
12 MHz  
0.03  
48 MHz  
0.11  
100 MHz  
0.23  
Timer  
UART  
PWM  
Average current per timer  
Average current per UART  
0.07  
0.26  
0.53  
0.05  
0.20  
0.41  
Motor control  
PWM  
0.05  
0.21  
0.42  
I2C  
0.02  
0.02  
0.04  
2.12  
0.08  
0.06  
0.16  
2.09  
0.16  
0.13  
0.32  
2.07  
Average current per I2C  
SPI  
SSP1  
ADC  
PCLK = 12 MHz for CCLK = 12 MHz  
and 48 MHz; PCLK = 12.5 MHz for  
CCLK = 100 MHz  
CAN  
PCLK = CCLK/6  
PCLK = CCLK/6  
0.13  
0.22  
0.49  
0.85  
1.00  
1.73  
Average current per CAN  
CAN0, CAN1,  
acceptance filter  
Both CAN blocks and  
acceptance filter[1]  
DMA  
PCLK = CCLK  
1.33  
0.05  
0.33  
0.09  
0.94  
5.10  
0.20  
1.27  
0.34  
1.32  
1.87  
10.36  
0.41  
2.58  
0.70  
1.94  
3.79  
QEI  
GPIO  
I2S  
USB and PLL1  
Ethernet  
Ethernet block enabled in the PCONP 0.49  
register; Ethernet not connected.  
Ethernet  
connected  
Ethernet initialized, connected to  
network, and running web server  
example.  
-
-
5.19  
[1] The combined current of several peripherals running at the same time can be less than the sum of each individual peripheral current  
measured separately.  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
53 of 90  
 
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
11.3 Electrical pin characteristics  
002aaf112  
3.6  
V
OH  
(V)  
T = 85 °C  
25 °C  
40 °C  
3.2  
2.8  
2.4  
2.0  
0
8
16  
24  
I
(mA)  
OH  
Conditions: VDD(REG)(3V3) = VDD(3V3) = 3.3 V; standard port pins.  
Fig 12. Typical HIGH-level output voltage VOH versus HIGH-level output source current  
IOH  
002aaf111  
15  
I
OL  
T = 85 °C  
25 °C  
40 °C  
(mA)  
10  
5
0
0
0.2  
0.4  
0.6  
V
(V)  
OL  
Conditions: VDD(REG)(3V3) = VDD(3V3) = 3.3 V; standard port pins.  
Fig 13. Typical LOW-level output current IOL versus LOW-level output voltage VOL  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
54 of 90  
 
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
002aaf108  
10  
I
pu  
(μA)  
10  
30  
50  
70  
T = 85 °C  
25 °C  
40 °C  
0
1
2
3
4
5
V (V)  
I
Conditions: VDD(REG)(3V3) = VDD(3V3) = 3.3 V; standard port pins.  
Fig 14. Typical pull-up current Ipu versus input voltage VI  
002aaf109  
90  
I
pd  
(μA)  
70  
T = 85 °C  
25 °C  
40 °C  
50  
30  
10  
10  
0
1
2
3
4
5
V (V)  
I
Conditions: VDD(REG)(3V3) = VDD(3V3) = 3.3 V; standard port pins.  
Fig 15. Typical pull-down current Ipd versus input voltage VI  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
55 of 90  
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
12. Dynamic characteristics  
12.1 Flash memory  
Table 10. Flash characteristics  
Tamb = 40 C to +85 C, unless otherwise specified.  
Symbol  
Nendu  
tret  
Parameter  
endurance  
Conditions  
Min  
10000  
10  
Typ  
Max  
Unit  
[1]  
100000  
-
cycles  
years  
years  
ms  
retention time  
powered  
-
-
unpowered  
20  
-
-
ter  
erase time  
sector or multiple  
95  
100  
105  
consecutive sectors  
[2]  
tprog  
programming time  
0.95  
1
1.05  
ms  
[1] Number of program/erase cycles.  
[2] Programming times are given for writing 256 bytes from RAM to the flash. Data must be written to the flash in blocks of 256 bytes.  
12.2 External clock  
Table 11. Dynamic characteristic: external clock  
Tamb = 40 C to +85 C; VDD(3V3) over specified ranges.[1]  
Symbol  
fosc  
Parameter  
Conditions  
Min  
Typ[2]  
Max  
Unit  
MHz  
ns  
oscillator frequency  
clock cycle time  
clock HIGH time  
clock LOW time  
clock rise time  
clock fall time  
1
-
-
-
-
-
-
25  
Tcy(clk)  
tCHCX  
tCLCX  
tCLCH  
tCHCL  
40  
1000  
Tcy(clk) 0.4  
-
ns  
Tcy(clk) 0.4  
-
ns  
-
-
5
5
ns  
ns  
[1] Parameters are valid over operating temperature range unless otherwise specified.  
[2] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply voltages.  
t
CHCX  
t
t
t
CHCL  
CLCX  
CLCH  
T
cy(clk)  
002aaa907  
Fig 16. External clock timing (with an amplitude of at least Vi(RMS) = 200 mV)  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
56 of 90  
 
 
 
 
 
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
12.3 Internal oscillators  
Table 12. Dynamic characteristic: internal oscillators  
amb = 40 C to +85 C; 2.7 V VDD(REG)(3V3) 3.6 V.[1]  
T
Symbol  
fosc(RC)  
fi(RTC)  
Parameter  
Conditions  
Min  
3.96  
-
Typ[2]  
4.02  
Max  
4.04  
-
Unit  
MHz  
kHz  
internal RC oscillator frequency  
RTC input frequency  
-
-
32.768  
[1] Parameters are valid over operating temperature range unless otherwise specified.  
[2] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply voltages.  
002aaf107  
4.036  
f
osc(RC)  
(MHz)  
4.032  
4.028  
4.024  
4.020  
4.016  
V
= 3.6 V  
3.3 V  
3.0 V  
2.7 V  
2.4 V  
DD(REG)(3V3)  
-40  
-15  
10  
35  
60  
85  
temperature (°C)  
Conditions: Frequency values are typical values. 4 MHz 1 % accuracy is guaranteed for  
2.7 V VDD(REG)(3V3) 3.6 V and Tamb = 40 C to +85 C. Variations between parts may cause  
the IRC to fall outside the 4 MHz 1 % accuracy specification for voltages below 2.7 V.  
Fig 17. Internal RC oscillator frequency versus temperature  
12.4 I/O pins  
Table 13. Dynamic characteristic: I/O pins[1]  
Tamb = 40 C to +85 C; VDD(3V3) over specified ranges.  
Symbol  
Parameter  
rise time  
fall time  
Conditions  
Min  
3.0  
2.5  
Typ  
Max  
5.0  
Unit  
ns  
tr  
tf  
pin configured as output  
pin configured as output  
-
-
5.0  
ns  
[1] Applies to standard I/O pins.  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
57 of 90  
 
 
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
12.5 I2C-bus  
Table 14. Dynamic characteristic: I2C-bus pins[1]  
Tamb = 40 C to +85 C.[2]  
Symbol  
Parameter  
Conditions  
Min  
Max  
100  
400  
1
Unit  
kHz  
kHz  
MHz  
ns  
fSCL  
SCL clock  
frequency  
Standard-mode  
Fast-mode  
0
0
0
-
Fast-mode Plus  
[3][4][5][6]  
tf  
fall time  
of both SDA and  
SCL signals  
300  
Standard-mode  
Fast-mode  
20 + 0.1 Cb 300  
ns  
ns  
s  
s  
s  
s  
s  
s  
s  
s  
s  
ns  
ns  
ns  
Fast-mode Plus  
Standard-mode  
Fast-mode  
-
120  
tLOW  
LOW period of  
the SCL clock  
4.7  
1.3  
0.5  
4.0  
0.6  
0.26  
0
-
-
-
-
-
-
-
-
-
-
-
-
Fast-mode Plus  
Standard-mode  
Fast-mode  
tHIGH  
HIGH period of  
the SCL clock  
Fast-mode Plus  
Standard-mode  
Fast-mode  
[3][7][8]  
[9][10]  
tHD;DAT  
data hold time  
0
Fast-mode Plus  
Standard-mode  
Fast-mode  
0
tSU;DAT  
data set-up  
time  
250  
100  
50  
Fast-mode Plus  
[1] See the I2C-bus specification UM10204 for details.  
[2] Parameters are valid over operating temperature range unless otherwise specified.  
[3] A device must internally provide a hold time of at least 300 ns for the SDA signal (with respect to the  
VIH(min) of the SCL signal) to bridge the undefined region of the falling edge of SCL.  
[4] Cb = total capacitance of one bus line in pF.  
[5] The maximum tf for the SDA and SCL bus lines is specified at 300 ns. The maximum fall time for the SDA  
output stage tf is specified at 250 ns. This allows series protection resistors to be connected in between the  
SDA and the SCL pins and the SDA/SCL bus lines without exceeding the maximum specified tf.  
[6] In Fast-mode Plus, fall time is specified the same for both output stage and bus timing. If series resistors  
are used, designers should allow for this when considering bus timing.  
[7] tHD;DAT is the data hold time that is measured from the falling edge of SCL; applies to data in transmission  
and the acknowledge.  
[8] The maximum tHD;DAT could be 3.45 s and 0.9 s for Standard-mode and Fast-mode but must be less than  
the maximum of tVD;DAT or tVD;ACK by a transition time (see the I2C-bus specification UM10204). This  
maximum must only be met if the device does not stretch the LOW period (tLOW) of the SCL signal. If the  
clock stretches the SCL, the data must be valid by the set-up time before it releases the clock.  
[9] tSU;DAT is the data set-up time that is measured with respect to the rising edge of SCL; applies to data in  
transmission and the acknowledge.  
[10] A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system but the requirement tSU;DAT  
=
250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period  
of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next  
data bit to the SDA line tr(max) + tSU;DAT = 1000 + 250 = 1250 ns (according to the Standard-mode I2C-bus  
specification) before the SCL line is released. Also the acknowledge timing must meet this set-up time.  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
58 of 90  
 
 
 
 
 
 
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
t
t
SU;DAT  
f
70 %  
30 %  
70 %  
30 %  
SDA  
SCL  
t
t
HD;DAT  
VD;DAT  
t
f
t
HIGH  
70 %  
30 %  
70 %  
30 %  
70 %  
30 %  
70 %  
30 %  
t
LOW  
1 / f  
S
SCL  
002aaf425  
Fig 18. I2C-bus pins clock timing  
12.6 I2S-bus interface  
Remark: The I2S-bus interface is available on parts LPC1769/68/67/66/65/63. See  
Table 2.  
Table 15. Dynamic characteristics: I2S-bus interface pins  
Tamb = 40 C to +85 C.  
Symbol Parameter  
common to input and output  
Conditions  
Min  
Typ  
Max  
Unit  
[1]  
[1]  
[1]  
tr  
rise time  
-
-
-
-
35  
35  
-
ns  
ns  
-
tf  
fall time  
-
tWH  
pulse width HIGH  
on pins I2STX_CLK and  
I2SRX_CLK  
0.495 Tcy(clk)  
[1]  
tWL  
pulse width LOW  
on pins I2STX_CLK and  
I2SRX_CLK  
-
-
0.505 Tcy(clk) ns  
output  
[1]  
[1]  
tv(Q)  
data output valid time  
on pin I2STX_SDA  
on pin I2STX_WS  
-
-
-
-
30  
30  
ns  
ns  
input  
tsu(D)  
th(D)  
[1]  
[1]  
data input set-up time  
data input hold time  
on pin I2SRX_SDA  
on pin I2SRX_SDA  
3.5  
4.0  
-
-
-
-
ns  
ns  
[1] CCLK = 20 MHz; peripheral clock to the I2S-bus interface PCLK = CCLK4; I2S clock cycle time Tcy(clk) = 1600 ns, corresponds to the SCK  
signal in the I2S-bus specification.  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
59 of 90  
 
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
T
t
t
r
cy(clk)  
f
I2STX_CLK  
t
t
WL  
WH  
I2STX_SDA  
I2STX_WS  
t
v(Q)  
002aad992  
t
v(Q)  
Fig 19. I2S-bus timing (output)  
T
t
t
r
cy(clk)  
f
I2SRX_CLK  
t
t
WL  
WH  
I2SRX_SDA  
I2SRX_WS  
t
t
h(D)  
su(D)  
002aae159  
t
t
su(D)  
su(D)  
Fig 20. I2S-bus timing (input)  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
60 of 90  
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
12.7 SSP interface  
The maximum SSP speed is 33 Mbit/s in master mode or 8 Mbit/s in slave mode. In slave  
mode, the maximum SSP clock rate must be 1/12 of the SSP PCLK clock rate.  
Table 16. Dynamic characteristics: SSP pins in SPI mode  
CL = 30 pF for all SSP pins; Tamb = 40 C to 85 C; VDD(3V3) = 3.3 V to 3.6 V; input slew = 1 ns;  
sampled at 10 % and 90 % of the signal level. Values guaranteed by design.  
Symbol  
SSP master  
tDS  
Parameter  
Conditions  
Min  
Max  
Unit  
data set-up time  
in SPI mode  
in SPI mode  
in SPI mode  
in SPI mode  
16.1  
-
ns  
ns  
ns  
ns  
tDH  
data hold time  
0
-
-
tv(Q)  
data output valid time  
data output hold time  
2.5  
-
th(Q)  
0
SSP slave  
tDS  
data set-up time  
in SPI mode  
in SPI mode  
in SPI mode  
in SPI mode  
16.1  
-
ns  
ns  
ns  
ns  
tDH  
data hold time  
0
-
-
tv(Q)  
data output valid time  
data output hold time  
3*Tcy(PCLK) + 2.5  
-
th(Q)  
0
T
cy(clk)  
SCK (CPOL = 0)  
SCK (CPOL = 1)  
MOSI  
t
t
h(Q)  
v(Q)  
DATA VALID  
DATA VALID  
CPHA = 1  
t
t
DH  
DS  
DATA VALID  
DATA VALID  
MISO  
t
t
h(Q)  
v(Q)  
DATA VALID  
DATA VALID  
t
MOSI  
MISO  
t
CPHA = 0  
DS  
DH  
DATA VALID  
DATA VALID  
002aae829  
Fig 21. SSP master timing in SPI mode  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
61 of 90  
 
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
T
cy(clk)  
SCK (CPOL = 0)  
SCK (CPOL = 1)  
t
t
DH  
DS  
MOSI  
MISO  
DATA VALID  
DATA VALID  
t
t
h(Q)  
v(Q)  
CPHA = 1  
DATA VALID  
DATA VALID  
t
t
DH  
DS  
MOSI  
MISO  
DATA VALID  
DATA VALID  
DATA VALID  
t
t
h(Q)  
CPHA = 0  
v(Q)  
DATA VALID  
002aae830  
Fig 22. SSP slave timing in SPI mode  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
62 of 90  
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
12.8 USB interface  
Remark: The USB controller is available as a device/Host/OTG controller on parts  
LPC1769/68/66/65 and as device-only controller on part LPC1764.  
Table 17. Dynamic characteristics: USB pins (full-speed)  
CL = 50 pF; Rpu = 1.5 kon D+ to VDD(3V3); 3.0 V VDD(3V3) 3.6 V.  
Symbol  
Parameter  
rise time  
fall time  
Conditions  
10 % to 90 %  
10 % to 90 %  
tr / tf  
Min  
8.5  
7.7  
-
Typ  
Max  
13.8  
13.7  
109  
Unit  
ns  
tr  
-
-
-
tf  
ns  
tFRFM  
differential rise and fall time  
matching  
%
VCRS  
output signal crossover voltage  
source SE0 interval of EOP  
1.3  
160  
2  
-
-
-
2.0  
175  
+5  
V
tFEOPT  
tFDEOP  
see Figure 23  
ns  
ns  
source jitter for differential transition see Figure 23  
to SE0 transition  
tJR1  
receiver jitter to next transition  
18.5  
9  
-
-
-
+18.5  
ns  
ns  
ns  
tJR2  
receiver jitter for paired transitions  
EOP width at receiver  
10 % to 90 %  
+9  
-
[1]  
[1]  
tEOPR1  
must reject as  
EOP; see  
Figure 23  
40  
tEOPR2  
EOP width at receiver  
must accept as  
EOP; see  
82  
-
-
ns  
Figure 23  
[1] Characterized but not implemented as production test. Guaranteed by design.  
T
PERIOD  
crossover point  
extended  
crossover point  
differential  
data lines  
source EOP width: t  
FEOPT  
differential data to  
SE0/EOP skew  
n × T  
+ t  
PERIOD  
FDEOP  
receiver EOP width: t  
, t  
EOPR1 EOPR2  
002aab561  
Fig 23. Differential data-to-EOP transition skew and EOP width  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
63 of 90  
 
 
 
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
12.9 SPI  
32-bit ARM Cortex-M3 microcontroller  
Table 18. Dynamic characteristics of SPI pins  
amb = 40 C to +85 C.  
T
Symbol  
Parameter  
Min  
Typ Max  
Unit  
ns  
Tcy(PCLK)  
TSPICYC  
tSPICLKH  
tSPICLKL  
SPI master  
tSPIDSU  
tSPIDH  
PCLK cycle time  
SPI cycle time  
10  
-
-
-
-
-
-
-
[1]  
79.6  
ns  
SPICLK HIGH time  
SPICLK LOW time  
0.485 TSPICYC  
ns  
0.515 TSPICYC ns  
[2]  
[2]  
[2]  
[2]  
SPI data set-up time  
0
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
SPI data hold time  
2 Tcy(PCLK) 5  
2 Tcy(PCLK) + 30  
2 Tcy(PCLK) + 5  
tSPIQV  
SPI data output valid time  
SPI output data hold time  
tSPIOH  
SPI slave  
tSPIDSU  
tSPIDH  
[2]  
[2]  
[2]  
[2]  
SPI data set-up time  
0
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
SPI data hold time  
2 Tcy(PCLK) + 5  
2 Tcy(PCLK) + 35  
2 Tcy(PCLK) + 15  
tSPIQV  
SPI data output valid time  
SPI output data hold time  
tSPIOH  
[1] TSPICYC = (Tcy(PCLK) n) 0.5 %, n is the SPI clock divider value (n 8); PCLK is derived from the  
processor clock CCLK.  
[2] Timing parameters are measured with respect to the 50 % edge of the clock SCK and the 10 % (90 %)  
edge of the data signal (MOSI or MISO).  
T
t
SPICLKH  
t
SPICYC  
SPICLKL  
SCK (CPOL = 0)  
SCK (CPOL = 1)  
MOSI  
t
t
SPIOH  
SPIQV  
DATA VALID  
DATA VALID  
t
t
SPIDH  
SPIDSU  
MISO  
DATA VALID  
DATA VALID  
002aad986  
Fig 24. SPI master timing (CPHA = 1)  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
64 of 90  
 
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
T
t
SPICLKH  
t
SPICYC  
SPICLKL  
SCK (CPOL = 0)  
SCK (CPOL = 1)  
MOSI  
t
t
SPIOH  
SPIQV  
DATA VALID  
DATA VALID  
t
t
SPIDH  
SPIDSU  
DATA VALID  
DATA VALID  
MISO  
002aad987  
Fig 25. SPI master timing (CPHA = 0)  
T
t
SPICLKH  
t
SPICYC  
SPICLKL  
SCK (CPOL = 0)  
SCK (CPOL = 1)  
t
t
SPIDH  
SPIDSU  
MOSI  
MISO  
DATA VALID  
DATA VALID  
DATA VALID  
t
t
SPIOH  
SPIQV  
DATA VALID  
002aad988  
Fig 26. SPI slave timing (CPHA = 1)  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
65 of 90  
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
T
t
SPICLKH  
t
SPICYC  
SPICLKL  
SCK (CPOL = 0)  
SCK (CPOL = 1)  
t
t
SPIDH  
SPIDSU  
MOSI  
MISO  
DATA VALID  
DATA VALID  
DATA VALID  
t
t
SPIOH  
SPIQV  
DATA VALID  
002aad989  
Fig 27. SPI slave timing (CPHA = 0)  
13. ADC electrical characteristics  
Table 19. ADC characteristics (full resolution)  
VDDA = 2.5 V to 3.6 V; Tamb = 40 C to +85 C unless otherwise specified; ADC frequency 13 MHz; 12-bit resolution.[1]  
Symbol  
VIA  
Parameter  
Conditions  
Min  
Typ  
Max  
VDDA  
15  
Unit  
V
analog input voltage  
analog input capacitance  
differential linearity error  
integral non-linearity  
offset error  
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Cia  
pF  
[2][3]  
[4]  
ED  
1  
LSB  
LSB  
LSB  
%
EL(adj)  
EO  
3  
[5][6]  
[7]  
2  
EG  
gain error  
0.5  
4
[8]  
ET  
absolute error  
LSB  
k  
[9]  
Rvsi  
voltage source interface  
resistance  
7.5  
fclk(ADC)  
fc(ADC)  
ADC clock frequency  
-
-
-
-
13  
MHz  
kHz  
[10]  
ADC conversion frequency  
200  
[1] VDDA and VREFP should be tied to VDD(3V3) if the ADC and DAC are not used.  
[2] The ADC is monotonic, there are no missing codes.  
[3] The differential linearity error (ED) is the difference between the actual step width and the ideal step width. See Figure 28.  
[4] The integral non-linearity (EL(adj)) is the peak difference between the center of the steps of the actual and the ideal transfer curve after  
appropriate adjustment of gain and offset errors. See Figure 28.  
[5] The offset error (EO) is the absolute difference between the straight line which fits the actual curve and the straight line which fits the  
ideal curve. See Figure 28.  
[6] ADCOFFS value (bits 7:4) = 2 in the ADTRM register. See LPC17xx user manual UM10360.  
[7] The gain error (EG) is the relative difference in percent between the straight line fitting the actual transfer curve after removing offset  
error, and the straight line which fits the ideal transfer curve. See Figure 28.  
[8] The absolute error (ET) is the maximum difference between the center of the steps of the actual transfer curve of the non-calibrated  
ADC and the ideal transfer curve. See Figure 28.  
[9] See Figure 29.  
[10] The conversion frequency corresponds to the number of samples per second.  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
66 of 90  
 
 
 
 
 
 
 
 
 
 
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 20. ADC characteristics (lower resolution)  
T
amb = 40 C to +85 C unless otherwise specified; 12-bit ADC used as 10-bit resolution ADC.[1]  
Symbol Parameter  
Conditions  
Min  
Typ  
1  
1.5  
2  
2  
-
Max  
-
Unit  
LSB  
LSB  
LSB  
LSB  
MHz  
MHz  
kHz  
[2][3]  
[4]  
ED  
differential linearity error  
integral non-linearity  
offset error  
-
-
-
-
-
-
-
-
EL(adj)  
EO  
-
[5]  
-
[6]  
EG  
gain error  
-
fclk(ADC) ADC clock frequency  
3.0 V VDDA 3.6 V  
2.7 V VDDA < 3.0 V  
33  
25  
500  
400  
-
[7]  
[7]  
fc(ADC)  
ADC conversion frequency 3 V VDDA 3.6 V  
2.7 V VDDA < 3.0 V  
-
-
kHz  
[1] VDDA and VREFP should be tied to VDD(3V3) if the ADC and DAC are not used.  
[2] The ADC is monotonic, there are no missing codes.  
[3] The differential linearity error (ED) is the difference between the actual step width and the ideal step width. See Figure 28.  
[4] The integral non-linearity (EL(adj)) is the peak difference between the center of the steps of the actual and the ideal transfer curve after  
appropriate adjustment of gain and offset errors. See Figure 28.  
[5] The offset error (EO) is the absolute difference between the straight line which fits the actual curve and the straight line which fits the  
ideal curve. See Figure 28.  
[6] The gain error (EG) is the relative difference in percent between the straight line fitting the actual transfer curve after removing offset  
error, and the straight line which fits the ideal transfer curve. See Figure 28.  
[7] The conversion frequency corresponds to the number of samples per second.  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
67 of 90  
 
 
 
 
 
 
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
offset  
error  
gain  
error  
E
O
E
G
4095  
4094  
4093  
4092  
4091  
4090  
(2)  
7
code  
out  
(1)  
6
5
4
3
2
1
0
(5)  
(4)  
(3)  
1 LSB  
(ideal)  
4090 4091 4092 4093 4094 4095 4096  
1
2
3
4
5
6
7
V
(LSB  
)
ideal  
IA  
offset error  
E
O
VREFP VREFN  
1 LSB =  
4096  
002aad948  
(1) Example of an actual transfer curve.  
(2) The ideal transfer curve.  
(3) Differential linearity error (ED).  
(4) Integral non-linearity (EL(adj)).  
(5) Center of a step of the actual transfer curve.  
Fig 28. 12-bit ADC characteristics  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
68 of 90  
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
LPC17xx  
R
R
i2  
100 Ω - 600 Ω  
i1  
2 kΩ - 5.2 kΩ  
C3  
2.2 pF  
ADC  
COMPARATOR  
BLOCK  
AD0[n]  
C1  
750 fF  
C2  
65 fF  
C
R
ia  
vsi  
V
V
SS  
EXT  
002aaf197  
The values of resistor components Ri1 and Ri2 vary with temperature and input voltage and are  
process-dependent (see Table 21).  
Parasitic resistance and capacitance from the pad are not included in this figure.  
Fig 29. ADC interface to pins AD0[n]  
Table 21. ADC interface components  
Component  
Range  
Description  
Ri1  
2 kto 5.2 k  
Switch-on resistance for channel selection switch. Varies with  
temperature, input voltage, and process.  
Ri2  
100 to 600   
Switch-on resistance for the comparator input switch. Varies  
with temperature, input voltage, and process.  
C1  
C2  
C3  
750 fF  
65 fF  
Parasitic capacitance from the ADC block level.  
Parasitic capacitance from the ADC block level.  
Sampling capacitor.  
2.2 pF  
14. DAC electrical characteristics  
Remark: The DAC is available on parts LPC1769/68/67/66/65/63. See Table 2.  
Table 22. DAC electrical characteristics  
VDDA = 2.7 V to 3.6 V; Tamb = 40 C to +85 C unless otherwise specified  
Symbol  
ED  
Parameter  
Conditions  
Min  
Typ  
1  
Max  
Unit  
LSB  
LSB  
%
differential linearity error  
integral non-linearity  
offset error  
-
-
-
-
-
-
-
-
EL(adj)  
EO  
1.5  
0.6  
0.6  
200  
-
-
EG  
gain error  
-
%
CL  
load capacitance  
load resistance  
-
pF  
RL  
1
k  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
69 of 90  
 
 
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
15. Application information  
15.1 Suggested USB interface solutions  
Remark: The USB controller is available as a device/Host/OTG controller on parts  
LPC1769/68/66/65 and as device-only controller on part LPC1764.  
If the LPC1769/68/67/66/65/64/63 VDD is always greater than 0 V while VBUS = 5 V, the  
V
BUS pin can be connected directly to the VBUS pin on the USB connector.  
This applies to bus powered devices where the USB cable supplies the system power. For  
systems where VDD can be 0 V and VBUS is directly applied to the VBUS pin, precautions  
must be taken to reduce the voltage to below 3.6 V.  
V
DD(3V3)  
R2  
LPC17xx  
R1  
1.5 kΩ  
USB_UP_LED  
V
BUS  
USB-B  
connector  
R
R
= 33 Ω  
= 33 Ω  
S
USB_D+  
S
USB_D−  
V
SS  
002aad940  
Fig 30. USB interface on a bus-powered device  
The maximum allowable voltage on the VBUS pin is 3.6 V. One method is to use a voltage  
divider to connect the VBUS pin to the VBUS on the USB connector.  
The voltage divider ratio should be such that the VBUS pin will be greater than 0.7VDD to  
indicate a logic HIGH while below the 3.6 V allowable maximum voltage.  
Use the following operating conditions:  
VBUSmax = 5.25 V  
V
DD = 3.6 V  
The voltage divider would need to provide a reduction of 3.6 V/5.25 V or ~0.686 V.  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
70 of 90  
 
 
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
V
DD  
R2  
R2  
LPC17xx  
R1  
1.5 kΩ  
R3  
USB_UP_LED  
V
BUS  
USB-B  
connector  
R
R
= 33 Ω  
= 33 Ω  
S
S
USB_D+  
USB_D-  
V
SS  
aaa-008962  
Fig 31. USB interface on a bus-powered device where VBUS = 5 V, VDD not present  
V
DD(3V3)  
USB_UP_LED  
USB_CONNECT  
LPC17xx  
SoftConnect switch  
R1  
1.5 kΩ  
V
BUS  
R
R
= 33 Ω  
= 33 Ω  
S
USB-B  
connector  
USB_D+  
S
USB_D−  
V
SS  
002aad939  
Fig 32. USB interface with soft-connect  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
71 of 90  
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
V
DD  
VBUS  
ID  
RSTOUT  
RESET_N  
ADR/PSW  
OE_N/INT_N  
SPEED  
33 Ω  
33 Ω  
DP  
V
DD  
Mini-AB  
connector  
DM  
ISP1302  
SUSPEND  
LPC17xx  
V
SS  
SCL  
SDA  
USB_SCL  
USB_SDA  
INT_N  
EINTn  
USB_D+  
USB_D−  
USB_UP_LED  
002aad941  
V
DD  
Fig 33. USB OTG port configuration  
V
DD  
USB_UP_LED  
V
SS  
33 Ω  
33 Ω  
D+  
USB_D+  
USB_D−  
D−  
USB-A  
connector  
15 kΩ  
15 kΩ  
LPC17xx  
V
DD  
V
USB_PWRD  
USB_OVRCR  
BUS  
USB_PPWR  
FLAGA  
OUTA  
ENA  
IN  
5 V  
LM3526-L  
002aad942  
Fig 34. USB host port configuration  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
72 of 90  
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
V
DD  
USB_UP_LED  
V
DD  
USB_CONNECT  
LPC17xx  
V
SS  
33 Ω  
33 Ω  
USB_D+  
D+  
USB-B  
connector  
D−  
USB_D−  
V
BUS  
V
BUS  
002aad943  
Fig 35. USB device port configuration  
15.2 Crystal oscillator XTAL input and component selection  
The input voltage to the on-chip oscillators is limited to 1.8 V. If the oscillator is driven by a  
clock in slave mode, it is recommended that the input be coupled through a capacitor with  
Ci = 100 pF. To limit the input voltage to the specified range, choose an additional  
capacitor to ground Cg which attenuates the input voltage by a factor Ci/(Ci + Cg). In slave  
mode, a minimum of 200 mV(RMS) is needed.  
LPC1xxx  
XTAL1  
C
i
C
g
100 pF  
002aae835  
Fig 36. Slave mode operation of the on-chip oscillator  
In slave mode the input clock signal should be coupled by means of a capacitor of 100 pF  
(Figure 36), with an amplitude between 200 mV(RMS) and 1000 mV(RMS). This  
corresponds to a square wave signal with a signal swing of between 280 mV and 1.4 V.  
The XTALOUT pin in this configuration can be left unconnected.  
External components and models used in oscillation mode are shown in Figure 37 and in  
Table 23 and Table 24. Since the feedback resistance is integrated on chip, only a crystal  
and the capacitances CX1 and CX2 need to be connected externally in case of  
fundamental mode oscillation (the fundamental frequency is represented by L, CL and  
RS). Capacitance CP in Figure 37 represents the parallel package capacitance and should  
not be larger than 7 pF. Parameters FOSC, CL, RS and CP are supplied by the crystal  
manufacturer.  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
73 of 90  
 
 
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
LPC1xxx  
L
XTALIN  
XTALOUT  
C
L
C
P
=
XTAL  
R
S
C
X2  
C
X1  
002aaf424  
Fig 37. Oscillator modes and models: oscillation mode of operation and external crystal  
model used for CX1/CX2 evaluation  
Table 23. Recommended values for CX1/CX2 in oscillation mode (crystal and external  
components parameters): low frequency mode  
Fundamental oscillation Crystal load  
Maximum crystal  
External load  
frequency FOSC  
capacitance CL  
series resistance RS  
capacitors CX1/CX2  
1 MHz to 5 MHz  
10 pF  
< 300   
< 300   
< 300   
< 300   
< 200   
< 100   
< 160   
< 60   
18 pF, 18 pF  
39 pF, 39 pF  
57 pF, 57 pF  
18 pF, 18 pF  
39 pF, 39 pF  
57 pF, 57 pF  
18 pF, 18 pF  
39 pF, 39 pF  
18 pF, 18 pF  
20 pF  
30 pF  
5 MHz to 10 MHz  
10 pF  
20 pF  
30 pF  
10 MHz to 15 MHz  
15 MHz to 20 MHz  
10 pF  
20 pF  
10 pF  
< 80   
Table 24. Recommended values for CX1/CX2 in oscillation mode (crystal and external  
components parameters): high frequency mode  
Fundamental oscillation Crystal load  
Maximum crystal  
External load  
frequency FOSC  
capacitance CL  
series resistance RS  
capacitors CX1, CX2  
15 MHz to 20 MHz  
10 pF  
< 180   
< 100   
< 160   
< 80   
18 pF, 18 pF  
39 pF, 39 pF  
18 pF, 18 pF  
39 pF, 39 pF  
20 pF  
20 MHz to 25 MHz  
10 pF  
20 pF  
15.3 XTAL and RTCX Printed Circuit Board (PCB) layout guidelines  
The crystal should be connected on the PCB as close as possible to the oscillator input  
and output pins of the chip. Take care that the load capacitors Cx1, Cx2, and Cx3 in case of  
third overtone crystal usage have a common ground plane. The external components  
must also be connected to the ground plain. Loops must be made as small as possible in  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
74 of 90  
 
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
order to keep the noise coupled in via the PCB as small as possible. Also parasitics  
should stay as small as possible. Values of Cx1 and Cx2 should be chosen smaller  
accordingly to the increase in parasitics of the PCB layout.  
15.4 Standard I/O pin configuration  
Figure 38 shows the possible pin modes for standard I/O pins with analog input function:  
Digital output driver: Open-drain mode enabled/disabled  
Digital input: Pull-up enabled/disabled  
Digital input: Pull-down enabled/disabled  
Digital input: Repeater mode enabled/disabled  
Analog input  
The default configuration for standard I/O pins is input with pull-up enabled. The weak  
MOS devices provide a drive capability equivalent to pull-up and pull-down resistors.  
V
V
DD  
DD  
open-drain enable  
output enable  
data output  
strong  
pull-up  
ESD  
pin configured  
as digital output  
driver  
PIN  
strong  
pull-down  
ESD  
V
SS  
V
DD  
weak  
pull-up  
pull-up enable  
weak  
pull-down  
repeater mode  
enable  
pin configured  
as digital input  
pull-down enable  
data input  
select analog input  
pin configured  
as analog input  
analog input  
002aaf272  
Fig 38. Standard I/O pin configuration with analog input  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
75 of 90  
 
 
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
15.5 Reset pin configuration  
V
DD  
V
DD  
V
DD  
R
pu  
ESD  
20 ns RC  
GLITCH FILTER  
reset  
PIN  
ESD  
V
SS  
002aaf274  
Fig 39. Reset pin configuration  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
76 of 90  
 
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
15.6 ElectroMagnetic Compatibility (EMC)  
Radiated emission measurements according to the IEC61967-2 standard using the  
TEM-cell method are shown for part LPC1768.  
Table 25. ElectroMagnetic Compatibility (EMC) for part LPC1768 (TEM-cell method)  
VDD = 3.3 V; Tamb = 25 C.  
Parameter  
Frequency band  
System clock =  
Unit  
12 MHz 24 MHz 48 MHz 72 MHz 100 MHz  
Input clock: IRC (4 MHz)  
maximum  
peak level  
150 kHz to 30 MHz 7  
6  
+5  
+4  
O
4  
7  
7  
+9  
+19  
L
dBV  
dBV  
dBV  
-
30 MHz to 150 MHz +1  
+11  
+11  
N
+16  
+12  
M
150 MHz to 1 GHz 2  
IEC level[1]  
-
O
Input clock: crystal oscillator (12 MHz)  
maximum  
peak level  
150 kHz to 30 MHz 5  
30 MHz to 150 MHz 1  
150 MHz to 1 GHz 1  
4  
+5  
+6  
O
4  
7  
8  
+7  
+16  
M
dBV  
dBV  
dBV  
-
+10  
+11  
N
+15  
+10  
M
IEC level[1]  
-
O
[1] IEC levels refer to Appendix D in the IEC61967-2 Specification.  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
77 of 90  
 
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
16. Package outline  
LQFP100: plastic low profile quad flat package; 100 leads; body 14 x 14 x 1.4 mm  
SOT407-1  
y
X
A
51  
75  
50  
26  
(1)  
76  
Z
E
e
H
A
E
2
E
A
(A )  
3
A
1
w M  
p
θ
b
L
p
pin 1 index  
L
detail X  
100  
1
25  
Z
D
v
M
A
B
e
w M  
b
p
D
B
H
v
M
5
D
0
10 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
D
H
L
L
p
v
w
y
Z
Z
θ
1
2
3
p
E
D
E
max.  
7o  
0o  
0.15 1.45  
0.05 1.35  
0.27 0.20 14.1 14.1  
0.17 0.09 13.9 13.9  
16.25 16.25  
15.75 15.75  
0.75  
0.45  
1.15 1.15  
0.85 0.85  
mm  
1.6  
0.25  
0.5  
1
0.2 0.08 0.08  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
00-02-01  
03-02-20  
SOT407-1  
136E20  
MS-026  
Fig 40. Package outline SOT407-1 (LQFP100)  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
78 of 90  
 
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
TFBGA100: plastic thin fine-pitch ball grid array package; 100 balls; body 9 x 9 x 0.7 mm  
SOT926-1  
D
B
A
ball A1  
index area  
A
2
E
A
A
1
detail X  
e
1
C
M
v  
w  
C
C
A
B
b
e
1/2 e  
y
1
y
M
C
K
J
H
G
F
e
e
2
E
D
C
B
A
1/2 e  
ball A1  
index area  
1
2
3
4
5
6
7
8
9
10  
X
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
UNIT  
A
1
A
2
b
D
E
e
e
1
e
2
v
w
y
y
1
max  
0.4  
0.3  
0.8  
0.65  
0.5  
0.4  
9.1  
8.9  
9.1  
8.9  
mm  
1.2  
0.8  
7.2  
7.2  
0.15 0.05 0.08  
0.1  
REFERENCES  
OUTLINE  
VERSION  
EUROPEAN  
PROJECTION  
ISSUE DATE  
IEC  
- - -  
JEDEC  
JEITA  
05-12-09  
05-12-22  
SOT926-1  
- - -  
- - -  
Fig 41. Package outline SOT926-1 (TFBGA100)  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
79 of 90  
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Fig 42. Package outline SOT1450-2 LPC1768UK (WLCSP100)  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
80 of 90  
 
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
17. Soldering  
Footprint information for reflow soldering of LQFP100 package  
SOT407-1  
Hx  
Gx  
(0.125)  
P2  
P1  
Hy Gy  
By  
Ay  
C
D2 (8×)  
D1  
Bx  
Ax  
Generic footprint pattern  
Refer to the package outline drawing for actual layout  
solder land  
occupied area  
DIMENSIONS in mm  
P1 P2 Ax  
Ay  
Bx  
By  
C
D1  
D2  
Gx  
Gy  
Hx  
Hy  
0.500 0.560 17.300 17.300 14.300 14.300 1.500 0.280 0.400 14.500 14.500 17.550 17.550  
sot407-1  
Fig 43. Reflow soldering for the LQFP100 package  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
81 of 90  
 
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Footprint information for reflow soldering of TFBGA100 package  
SOT926-1  
Hx  
P
P
Hy  
see detail X  
Generic footprint pattern  
Refer to the package outline drawing for actual layout  
solder land  
solder paste deposit  
solder land plus solder paste  
SL  
SP  
SR  
occupied area  
solder resist  
detail X  
DIMENSIONS in mm  
P
SL  
SP  
SR  
Hx  
Hy  
0.80  
0.330 0.400 0.480 9.400 9.400  
sot926-1_fr  
Fig 44. Reflow soldering of the TFBGA100 package  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
82 of 90  
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
18. Abbreviations  
Table 26. Abbreviations  
Acronym  
ADC  
AHB  
AMBA  
APB  
BOD  
CAN  
DAC  
DMA  
EOP  
GPIO  
IRC  
Description  
Analog-to-Digital Converter  
Advanced High-performance Bus  
Advanced Microcontroller Bus Architecture  
Advanced Peripheral Bus  
BrownOut Detection  
Controller Area Network  
Digital-to-Analog Converter  
Direct Memory Access  
End Of Packet  
General Purpose Input/Output  
Internal RC  
IrDA  
JTAG  
MAC  
MIIM  
OHCI  
OTG  
PHY  
PLL  
Infrared Data Association  
Joint Test Action Group  
Media Access Control  
Media Independent Interface Management  
Open Host Controller Interface  
On-The-Go  
Physical Layer  
Phase-Locked Loop  
PWM  
RIT  
Pulse Width Modulator  
Repetitive Interrupt Timer  
Reduced Media Independent Interface  
Single Ended Zero  
RMII  
SE0  
SPI  
Serial Peripheral Interface  
Serial Synchronous Interface  
Synchronous Serial Port  
Tightly Coupled Memory  
Transistor-Transistor Logic  
Universal Asynchronous Receiver/Transmitter  
Universal Serial Bus  
SSI  
SSP  
TCM  
TTL  
UART  
USB  
19. References  
[1] LPC176x/5x User manual UM10360:  
http://www.nxp.com/documents/user_manual/UM10360.pdf  
[2] LPC176x Errata sheet:  
http://www.nxp.com/documents/errata_sheet/ES_LPC176X.pdf  
[3] Technical note ADC design guidelines:  
http://www.nxp.com/documents/technical_note/TN00009.pdf  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
83 of 90  
 
 
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
20. Revision history  
Table 27. Revision history  
Document ID  
Release Data sheet status  
date  
Change  
notice  
Supersedes  
LPC1769_68_67_66_65_64_63 v.9.7 20170501 Product data sheet  
-
LPC1769_68_67_66_65_64 v.9.6  
Modifications:  
Updated Table 2 “Ordering options”: WLCSP100 with body size 100 balls, 5.07  
x 5.07 x 0.53mm; was 5.074 x 5.074 x 0.6mm.  
Updated Figure 42 “Package outline SOT1450-2 LPC1768UK (WLCSP100)”.  
LPC1769_68_67_66_65_64_63 v.9.6 20150818 Product data sheet  
-
LPC1769_68_67_66_65_64 v.9.5  
Modifications:  
Changed max value of tv(Q) (data output valid time) in SPI mode to 3*Tcy(PCLK)  
+
2.5 ns. See Table 16 “Dynamic characteristics: SSP pins in SPI mode”.  
Updated Section 2 “Features and benefits”: Added Boundary scan Description  
Language (BSDL) is not available for this device.  
Updated Figure 5 “LPC17xx memory map”: APB0 slot 7 (0x4001C000) was  
"reserved" and changed it to I2C0.  
Changed pins for VDD(REG)(3V3) from F4 and F0 to F4 and F10. See Table 5 “Pin  
description”.  
Removed footnote 1: “5 V tolerant pad providing digital I/O functions with TTL  
levels and hysteresis. This pin is pulled up to a voltage level of 2.3 V to 2.6 V”  
from TDO/SWO, TCK/SWDCLK, and RTCK, pins. See Table 5 “Pin description”.  
Added a column for GPIO pins and device order part number to the ordering  
options table. See Table 2 “Ordering options”.  
LPC1769_68_67_66_65_64_63 v.9.5 <tbd>  
Product data sheet  
-
LPC1769_68_67_66_65_64 v.9.4  
Modifications:  
SSP timing diagram updated. SSP timing parameters tv(Q), th(Q), tDS, and tDH  
added. See Section 12.7 “SSP interface”.  
Parameter Tj(max) added in Table 6 “Limiting values”.  
SSP maximum bit rate in master mode corrected to 33 Mbit/s.  
LPC1769_68_67_66_65_64_63 v.9.4 20140404 Product data sheet  
-
LPC1769_68_67_66_65_64 v.9.3  
Modifications: Added LPC1768UK.  
Table 5 “Pin description”: Changed RX_MCLK and TX_MCLK type from INPUT  
to OUTPUT.  
LPC1769_68_67_66_65_64_63 v.9.3 20140108 Product data sheet  
-
LPC1769_68_67_66_65_64 v.9.2  
Modifications:  
Table 7 “Thermal resistance (±15 %)”:  
Added TFBGA100.  
Added 15 % to table title.  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
84 of 90  
 
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 27. Revision history …continued  
Document ID  
Release Data sheet status  
date  
Change  
notice  
Supersedes  
LPC1769_68_67_66_65_64_63 v.9.2 20131021 Product data sheet  
Modifications:  
-
LPC1769_68_67_66_65_64 v.9.1  
Table 8 “Static characteristics”:  
Added Table note 3 “VDDA and VREFP should be tied to VDD(3V3) if the  
ADC and DAC are not used.”  
Added Table note 4 “VDDA for DAC specs are from 2.7 V to 3.6 V.”  
VDDA/VREFP spec changed from 2.7 V to 2.5 V.  
Table 19 “ADC characteristics (full resolution)”:  
Added Table note 1 “VDDA and VREFP should be tied to VDD(3V3) if the  
ADC and DAC are not used.”  
VDDA changed from 2.7 V to 2.5 V.  
Table 20 “ADC characteristics (lower resolution)”: Added Table note 1 “VDDA  
and VREFP should be tied to VDD(3V3) if the ADC and DAC are not used.”  
LPC1769_68_67_66_65_64_63 v.9.1 20130916 Product data sheet  
-
LPC1769_68_67_66_65_64 v.9  
Modifications:  
Added Table 7 “Thermal resistance”.  
Table 6 “Limiting values”:  
Updated min/max values for VDD(3V3) and VDD(REG)(3V3).  
Updated conditions for VI.  
Updated table notes.  
Table 8 “Static characteristics”: Added Table note 15 “TCK/SWDCLK pin needs  
to be externally pulled LOW.”  
Updated Section 15.1 “Suggested USB interface solutions”.  
Added Section 5 “Marking”.  
Changed title of Figure 31 from “USB interface on a self-powered device” to  
“USB interface with soft-connect”.  
LPC1769_68_67_66_65_64_63 v.9  
Modifications:  
20120810 Product data sheet  
-
LPC1769_68_67_66_65_64 v.8  
Remove table note “The peak current is limited to 25 times the corresponding  
maximum current.” from Table 5 “Limiting values”.  
Change VDD(3V3) to VDD(REG)(3V3) in Section 11.3 “Internal oscillators”.  
Glitch filter constant changed to 10 ns in Table note 6 in Table 4.  
Description of RESET function updated in Table 4.  
Pull-up value added for GPIO pins in Table 4.  
Pin configuration diagram for LQFP100 package corrected (Figure 2).  
LPC1769_68_67_66_65_64_63 v.8  
Modifications:  
20111114 Product data sheet  
-
LPC1769_68_67_66_65_64 v.7  
Pin description of USB_UP_LED pin updated in Table 4.  
Ri1 and Ri2 labels in Figure 27 updated.  
Part LPC1765FET100 added.  
Table note 10 updated in Table 4.  
Table note 1 updated in Table 12.  
Pin description of STCLK pin updated in Table 4.  
Electromagnetic compatibility data added in Section 14.6.  
Section 16 added.  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
85 of 90  
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 27. Revision history …continued  
Document ID  
Release Data sheet status  
date  
Change  
notice  
Supersedes  
LPC1769_68_67_66_65_64_63 v.7  
Modifications:  
20110405 Product data sheet  
-
LPC1769_68_67_66_65_64 v.6  
Pin description of pins P0[29] and P0[30] updated in Table note 5 of Table 4.  
Pins are not 5 V tolerant.  
Typical value for Parameter Nendu added in Table 9.  
Parameter Vhys for I2C bus pins: typical value corrected Vhys = 0.05VDD(3V3) in  
Table 7.  
Condition 3.0 V VDD(3V3) 3.6 V added in Table 16.  
Typical values for parameters IDD(REG)(3V3) and IBAT with condition Deep  
power-down mode corrected in Table 7 and Table note 9, Table note 10, and  
Table note 11 updated.  
For Deep power-down mode, Figure 9 updated and Figure 10 added.  
LPC1769_68_67_66_65_64_63 v.6  
Modifications:  
20100825 Product data sheet  
-
LPC1769_68_67_66_65_64 v.5  
Part LPC1768TFBGA added.  
Section 7.30.2; BOD level corrected.  
Added Section 10.2.  
LPC1769_68_67_66_65_64_63 v.5  
LPC1769_68_67_66_65_64 v.4  
LPC1768_67_66_65_64 v.3  
LPC1768_66_65_64 v.2  
20100716 Product data sheet  
20100201 Product data sheet  
20091119 Product data sheet  
-
-
-
LPC1769_68_67_66_65_64 v.4  
LPC1768_67_66_65_64 v.3  
LPC1768_66_65_64 v.2  
LPC1768_66_65_64 v.1  
-
20090211 Objective data sheet -  
20090115 Objective data sheet -  
LPC1768_66_65_64 v.1  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
86 of 90  
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
21. Legal information  
21.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
Suitability for use — NXP Semiconductors products are not designed,  
21.2 Definitions  
authorized or warranted to be suitable for use in life support, life-critical or  
safety-critical systems or equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
to result in personal injury, death or severe property or environmental  
damage. NXP Semiconductors and its suppliers accept no liability for  
inclusion and/or use of NXP Semiconductors products in such equipment or  
applications and therefore such inclusion and/or use is at the customer’s own  
risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Customers are responsible for the design and operation of their applications  
and products using NXP Semiconductors products, and NXP Semiconductors  
accepts no liability for any assistance with applications or customer product  
design. It is customer’s sole responsibility to determine whether the NXP  
Semiconductors product is suitable and fit for the customer’s applications and  
products planned, as well as for the planned application and use of  
customer’s third party customer(s). Customers should provide appropriate  
design and operating safeguards to minimize the risks associated with their  
applications and products.  
Product specification — The information and data provided in a Product  
data sheet shall define the specification of the product as agreed between  
NXP Semiconductors and its customer, unless NXP Semiconductors and  
customer have explicitly agreed otherwise in writing. In no event however,  
shall an agreement be valid in which the NXP Semiconductors product is  
deemed to offer functions and qualities beyond those described in the  
Product data sheet.  
NXP Semiconductors does not accept any liability related to any default,  
damage, costs or problem which is based on any weakness or default in the  
customer’s applications or products, or the application or use by customer’s  
third party customer(s). Customer is responsible for doing all necessary  
testing for the customer’s applications and products using NXP  
Semiconductors products in order to avoid a default of the applications and  
the products or of the application or use by customer’s third party  
customer(s). NXP does not accept any liability in this respect.  
21.3 Disclaimers  
Limited warranty and liability — Information in this document is believed to  
be accurate and reliable. However, NXP Semiconductors does not give any  
representations or warranties, expressed or implied, as to the accuracy or  
completeness of such information and shall have no liability for the  
consequences of use of such information. NXP Semiconductors takes no  
responsibility for the content in this document if provided by an information  
source outside of NXP Semiconductors.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) will cause permanent  
damage to the device. Limiting values are stress ratings only and (proper)  
operation of the device at these or any other conditions above those given in  
the Recommended operating conditions section (if present) or the  
Characteristics sections of this document is not warranted. Constant or  
repeated exposure to limiting values will permanently and irreversibly affect  
the quality and reliability of the device.  
In no event shall NXP Semiconductors be liable for any indirect, incidental,  
punitive, special or consequential damages (including - without limitation - lost  
profits, lost savings, business interruption, costs related to the removal or  
replacement of any products or rework charges) whether or not such  
damages are based on tort (including negligence), warranty, breach of  
contract or any other legal theory.  
Terms and conditions of commercial sale — NXP Semiconductors  
products are sold subject to the general terms and conditions of commercial  
sale, as published at http://www.nxp.com/profile/terms, unless otherwise  
agreed in a valid written individual agreement. In case an individual  
agreement is concluded only the terms and conditions of the respective  
agreement shall apply. NXP Semiconductors hereby expressly objects to  
applying the customer’s general terms and conditions with regard to the  
purchase of NXP Semiconductors products by customer.  
Notwithstanding any damages that customer might incur for any reason  
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards  
customer for the products described herein shall be limited in accordance  
with the Terms and conditions of commercial sale of NXP Semiconductors.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
No offer to sell or license — Nothing in this document may be interpreted or  
construed as an offer to sell products that is open for acceptance or the grant,  
conveyance or implication of any license under any copyrights, patents or  
other industrial or intellectual property rights.  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
87 of 90  
 
 
 
 
 
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from competent authorities.  
NXP Semiconductors’ specifications such use shall be solely at customer’s  
own risk, and (c) customer fully indemnifies NXP Semiconductors for any  
liability, damages or failed product claims resulting from customer design and  
use of the product for automotive applications beyond NXP Semiconductors’  
standard warranty and NXP Semiconductors’ product specifications.  
Non-automotive qualified products — Unless this data sheet expressly  
states that this specific NXP Semiconductors product is automotive qualified,  
the product is not suitable for automotive use. It is neither qualified nor tested  
in accordance with automotive testing or application requirements. NXP  
Semiconductors accepts no liability for inclusion and/or use of  
21.4 Trademarks  
non-automotive qualified products in automotive equipment or applications.  
In the event that customer uses the product for design-in and use in  
automotive applications to automotive specifications and standards, customer  
(a) shall use the product without NXP Semiconductors’ warranty of the  
product for such automotive applications, use and specifications, and (b)  
whenever customer uses the product for automotive applications beyond  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
I2C-bus — logo is a trademark of NXP B.V.  
22. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
88 of 90  
 
 
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
23. Contents  
1
General description. . . . . . . . . . . . . . . . . . . . . . 1  
8.19  
8.19.1  
8.20  
8.20.1  
8.21  
I2C-bus serial I/O controllers . . . . . . . . . . . . . 31  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
I2S-bus serial I/O controllers . . . . . . . . . . . . . 32  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
General purpose 32-bit timers/external event  
counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Pulse width modulator . . . . . . . . . . . . . . . . . . 33  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Motor control PWM . . . . . . . . . . . . . . . . . . . . 34  
Quadrature Encoder Interface (QEI) . . . . . . . 34  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Repetitive Interrupt (RI) timer. . . . . . . . . . . . . 35  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
ARM Cortex-M3 system tick timer . . . . . . . . . 35  
Watchdog timer . . . . . . . . . . . . . . . . . . . . . . . 35  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
RTC and backup registers . . . . . . . . . . . . . . . 36  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Clocking and power control . . . . . . . . . . . . . . 36  
Crystal oscillators. . . . . . . . . . . . . . . . . . . . . . 36  
2
Features and benefits . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Ordering information. . . . . . . . . . . . . . . . . . . . . 4  
Ordering options. . . . . . . . . . . . . . . . . . . . . . . . 4  
Marking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
3
4
4.1  
5
8.21.1  
8.22  
8.22.1  
8.23  
8.24  
8.24.1  
8.25  
8.25.1  
8.26  
8.27  
8.27.1  
8.28  
8.28.1  
8.29  
6
7
7.1  
7.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 7  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . 10  
8
8.1  
8.2  
8.3  
8.4  
8.5  
8.6  
8.7  
Functional description . . . . . . . . . . . . . . . . . . 21  
Architectural overview . . . . . . . . . . . . . . . . . . 21  
ARM Cortex-M3 processor . . . . . . . . . . . . . . . 21  
On-chip flash program memory . . . . . . . . . . . 21  
On-chip SRAM . . . . . . . . . . . . . . . . . . . . . . . . 21  
Memory Protection Unit (MPU). . . . . . . . . . . . 21  
Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Nested Vectored Interrupt Controller (NVIC) . 24  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Interrupt sources. . . . . . . . . . . . . . . . . . . . . . . 24  
Pin connect block . . . . . . . . . . . . . . . . . . . . . . 24  
General purpose DMA controller . . . . . . . . . . 24  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Fast general purpose parallel I/O . . . . . . . . . . 25  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Ethernet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
USB interface . . . . . . . . . . . . . . . . . . . . . . . . 27  
USB device controller. . . . . . . . . . . . . . . . . . . 27  
8.7.1  
8.7.2  
8.8  
8.29.1  
8.29.1.1 Internal RC oscillator . . . . . . . . . . . . . . . . . . . 37  
8.29.1.2 Main oscillator . . . . . . . . . . . . . . . . . . . . . . . . 37  
8.29.1.3 RTC oscillator . . . . . . . . . . . . . . . . . . . . . . . . 37  
8.29.2  
8.29.3  
8.29.4  
8.29.5  
8.29.6  
8.29.6.1 Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
8.29.6.2 Deep-sleep mode. . . . . . . . . . . . . . . . . . . . . . 39  
8.29.6.3 Power-down mode. . . . . . . . . . . . . . . . . . . . . 40  
8.29.6.4 Deep power-down mode . . . . . . . . . . . . . . . . 40  
8.29.6.5 Wake-up interrupt controller . . . . . . . . . . . . . 40  
8.29.7  
8.29.8  
8.30  
8.30.1  
8.30.2  
8.30.3  
8.30.4  
8.30.5  
8.30.6  
8.30.7  
8.31  
8.9  
8.9.1  
8.10  
8.10.1  
8.11  
8.11.1  
8.12  
8.12.1  
Main PLL (PLL0) . . . . . . . . . . . . . . . . . . . . . . 38  
USB PLL (PLL1) . . . . . . . . . . . . . . . . . . . . . . 38  
RTC clock output . . . . . . . . . . . . . . . . . . . . . . 38  
Wake-up timer . . . . . . . . . . . . . . . . . . . . . . . . 38  
Power control. . . . . . . . . . . . . . . . . . . . . . . . . 39  
8.12.1.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
8.12.2 USB host controller . . . . . . . . . . . . . . . . . . . . 28  
8.12.2.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
8.12.3 USB OTG controller . . . . . . . . . . . . . . . . . . . . 28  
8.12.3.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
8.13  
8.13.1  
8.14  
8.14.1  
8.15  
8.15.1  
8.16  
8.16.1  
8.17  
8.17.1  
8.18  
Peripheral power control . . . . . . . . . . . . . . . . 40  
Power domains . . . . . . . . . . . . . . . . . . . . . . . 41  
System control . . . . . . . . . . . . . . . . . . . . . . . . 42  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Brownout detection . . . . . . . . . . . . . . . . . . . . 43  
Code security (Code Read Protection - CRP) 43  
APB interface. . . . . . . . . . . . . . . . . . . . . . . . . 43  
AHB multilayer matrix . . . . . . . . . . . . . . . . . . 44  
External interrupt inputs. . . . . . . . . . . . . . . . . 44  
Memory mapping control . . . . . . . . . . . . . . . . 44  
Emulation and debugging . . . . . . . . . . . . . . . 44  
CAN controller and acceptance filters . . . . . . 28  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
12-bit ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
10-bit DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
UARTs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
SPI serial I/O controller. . . . . . . . . . . . . . . . . . 30  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
SSP serial I/O controller . . . . . . . . . . . . . . . . . 30  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
9
Limiting values . . . . . . . . . . . . . . . . . . . . . . . . 45  
Thermal characteristics . . . . . . . . . . . . . . . . . 46  
10  
8.18.1  
continued >>  
LPC1769_68_67_66_65_64_63  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2017. All rights reserved.  
Product data sheet  
Rev. 9.7 — 1 May 2017  
89 of 90  
 
LPC1769/68/67/66/65/64/63  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
11  
Static characteristics. . . . . . . . . . . . . . . . . . . . 47  
11.1  
11.2  
11.3  
Power consumption . . . . . . . . . . . . . . . . . . . . 50  
Peripheral power consumption. . . . . . . . . . . . 53  
Electrical pin characteristics . . . . . . . . . . . . . . 54  
12  
Dynamic characteristics . . . . . . . . . . . . . . . . . 56  
Flash memory. . . . . . . . . . . . . . . . . . . . . . . . . 56  
External clock . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Internal oscillators. . . . . . . . . . . . . . . . . . . . . . 57  
I/O pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
I2C-bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
I2S-bus interface . . . . . . . . . . . . . . . . . . . . . . 59  
SSP interface . . . . . . . . . . . . . . . . . . . . . . . . . 61  
USB interface . . . . . . . . . . . . . . . . . . . . . . . . 63  
SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
12.1  
12.2  
12.3  
12.4  
12.5  
12.6  
12.7  
12.8  
12.9  
13  
14  
ADC electrical characteristics . . . . . . . . . . . . 66  
DAC electrical characteristics . . . . . . . . . . . . 69  
15  
15.1  
15.2  
Application information. . . . . . . . . . . . . . . . . . 70  
Suggested USB interface solutions . . . . . . . . 70  
Crystal oscillator XTAL input and component  
selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
XTAL and RTCX Printed Circuit Board (PCB)  
layout guidelines. . . . . . . . . . . . . . . . . . . . . . . 74  
Standard I/O pin configuration . . . . . . . . . . . . 75  
Reset pin configuration. . . . . . . . . . . . . . . . . . 76  
ElectroMagnetic Compatibility (EMC). . . . . . . 77  
15.3  
15.4  
15.5  
15.6  
16  
17  
18  
19  
20  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 78  
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . 83  
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 84  
21  
Legal information. . . . . . . . . . . . . . . . . . . . . . . 87  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 87  
Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
21.1  
21.2  
21.3  
21.4  
22  
23  
Contact information. . . . . . . . . . . . . . . . . . . . . 88  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP Semiconductors N.V. 2017.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 1 May 2017  
Document identifier: LPC1769_68_67_66_65_64_63  

相关型号:

LPC1766

32-bit ARM Cortex-M3 microcontroller up to 512 kB flash and 64 kB SRAM with Ethernet, USB 2.0 Host/Device/OTG, CAN
NXP

LPC1766FBD100

LPC17xx User manual
NXP

LPC1766FBD100,551

LPC1766FBD100 - 256kB flash, 64kB SRAM, Ethernet, USB, LQFP100 package QFP 100-Pin
NXP

LPC1766FBD100K

RISC Microcontroller
NXP

LPC1767

32-bit ARM Cortex-M3 microcontroller; up to 512 kB flash and 64 kB SRAM with Ethernet, USB 2.0 Host/Device/OTG, CAN
NXP

LPC1767FBD100

LPC17xx User manual
NXP

LPC1768

32-bit ARM Cortex-M3 microcontroller up to 512 kB flash and 64 kB SRAM with Ethernet, USB 2.0 Host/Device/OTG, CAN
NXP

LPC1768FBD100

LPC17xx User manual
NXP

LPC1768FBD100,551

LPC1768FBD100 - 512kB flash, 64kB SRAM, Ethernet, USB, LQFP100 package QFP 100-Pin
NXP

LPC1768FBD100551

32-bit ARM Cortex-M3 microcontroller; up to 512 kB flash and 64 kB SRAM with Ethernet, USB 2.0 Host/Device/OTG, CAN
NXP

LPC1768FBD100K

RISC Microcontroller
NXP

LPC1768FET100

32-bit ARM Cortex-M3 microcontroller; up to 512 kB flash and 64 kB SRAM with Ethernet
NXP