LPC1774FBD144 [NXP]

32-bit ARM Cortex-M3 microcontroller; up to 512 kB flash and 96 kB SRAM; USB Device/Host/OTG; 32位ARM Cortex -M3微控制器;高达512 KB的闪存和96 KB的SRAM ; USB设备/主机/ OTG
LPC1774FBD144
型号: LPC1774FBD144
厂家: NXP    NXP
描述:

32-bit ARM Cortex-M3 microcontroller; up to 512 kB flash and 96 kB SRAM; USB Device/Host/OTG
32位ARM Cortex -M3微控制器;高达512 KB的闪存和96 KB的SRAM ; USB设备/主机/ OTG

闪存 微控制器和处理器 外围集成电路 静态存储器 时钟
文件: 总117页 (文件大小:1519K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LPC178x/7x  
32-bit ARM Cortex-M3 microcontroller; up to 512 kB flash and  
96 kB SRAM; USB Device/Host/OTG; Ethernet; LCD; EMC  
Rev. 2 — 27 May 2011  
Objective data sheet  
1. General description  
The LPC178x/7x is an ARM Cortex-M3 based microcontroller for embedded applications  
requiring a high level of integration and low power dissipation.  
The Cortex-M3 is a next generation core that offers better performance than the ARM7 at  
the same clock rate and other system enhancements such as modernized debug features  
and a higher level of support block integration. The Cortex-M3 CPU incorporates a  
3-stage pipeline and has a Harvard architecture with separate local instruction and data  
buses, as well as a third bus with slightly lower performance for peripherals. The  
Cortex-M3 CPU also includes an internal prefetch unit that supports speculative  
branches.  
The LPC178x/7x adds a specialized flash memory accelerator to accomplish optimal  
performance when executing code from flash. The LPC178x/7x is targeted to operate at  
up to 120 MHz CPU frequency.  
The peripheral complement of the LPC178x/7x includes up to 512 kB of flash program  
memory, up to 96 kB of SRAM data memory, up to 4032 byte of EEPROM data memory,  
External Memory controller (EMC), LCD (LPC178x only), Ethernet, USB  
Device/Host/OTG, a General Purpose DMA controller, five UARTs, three SSP controllers,  
three I2C-bus interfaces, one eight-channel, 12-bit ADC, a 10-bit DAC, a Quadrature  
Encoder Interface, four general purpose timers, two general purpose PWMs with six  
outputs each and one motor control PWM, an ultra-low power RTC with separate battery  
supply and event recorder, a windowed watchdog timer, a CRC calculation engine, up to  
165 general purpose I/O pins, and more. The pinout of LPC178x/7x is intended to allow  
pin function compatibility with the LPC24xx and LPC23xx.  
2. Features and benefits  
Functional replacement for LPC23xx and 24xx family devices.  
System:  
ARM Cortex-M3 processor, running at frequencies of up to 120 MHz. A Memory  
Protection Unit (MPU) supporting eight regions is included.  
ARM Cortex-M3 built-in Nested Vectored Interrupt Controller (NVIC).  
Multilayer AHB matrix interconnect provides a separate bus for each AHB master.  
AHB masters include the CPU, and General Purpose DMA controller. This  
interconnect provides communication with no arbitration delays unless two masters  
attempt to access the same slave at the same time.  
Split APB bus allows for higher throughput with fewer stalls between the CPU and  
DMA. A single level of write buffering allows the CPU to continue without waiting for  
completion of APB writes if the APB was not already busy.  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Cortex-M3 system tick timer, including an external clock input option.  
Standard JTAG test/debug interface as well as Serial Wire Debug and Serial  
WireTrace Port options.  
Emulation trace module supports real-time trace.  
Boundary scan for simplified board testing.  
Non-maskable Interrupt (NMI) input.  
Memory:  
512 kB on-chip flash program memory with In-System Programming (ISP) and  
In-Application Programming (IAP) capabilities. The combination of an enhanced  
flash memory accelerator and location of the flash memory on the CPU local  
code/data bus provides high code performance from flash.  
96 kB on-chip SRAM includes:  
64 kB of SRAM on the CPU with local code/data bus for high-performance CPU  
access.  
Two 16 kB SRAM blocks with separate access paths for higher throughput. These  
SRAM blocks may be used for DMA memory as well as for general purpose  
instruction and data storage.  
4032 byte on-chip EEPROM.  
LCD controller, supporting both Super-Twisted Nematic (STN) and Thin-Film  
Transistors (TFT) displays.  
Dedicated DMA controller.  
Selectable display resolution (up to 1024 768 pixels).  
Supports up to 24-bit true-color mode.  
External Memory Controller (EMC) provides support for asynchronous static memory  
devices such as RAM, ROM and flash, as well as dynamic memories such as single  
data rate SDRAM.  
Eight channel General Purpose DMA controller (GPDMA) on the AHB multilayer  
matrix that can be used with the SSP, I2S, UART, CRC engine, Analog-to-Digital and  
Digital-to-Analog converter peripherals, timer match signals, GPIO, and for  
memory-to-memory transfers.  
Serial interfaces:  
Ethernet MAC with MII/RMII interface and associated DMA controller. These  
functions reside on an independent AHB.  
USB 2.0 full-speed dual port device/host/OTG controller with on-chip PHY and  
associated DMA controller.  
Five UARTs with fractional baud rate generation, internal FIFO, DMA support, and  
RS-485/EIA-485 support. One UART (UART1) has full modem control I/O, and one  
UART (USART4) supports IrDA, synchronous mode, and a smart card mode  
conforming to ISO7816-3.  
Three SSP controllers with FIFO and multi-protocol capabilities. The SSP  
interfaces can be used with the GPDMA controller.  
Three enhanced I2C-bus interfaces, one with a true open-drain output supporting  
the full I2C-bus specification and Fast-mode Plus with data rates of 1 Mbit/s, two  
with standard port pins. Enhancements include multiple address recognition and  
monitor mode.  
I2S (Inter-IC Sound) interface for digital audio input or output. It can be used with  
the GPDMA.  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
2 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
CAN controller with two channels.  
Digital peripherals:  
SD/MMC memory card interface.  
Up to 165 General Purpose I/O (GPIO) pins depending on the packaging, with  
configurable pull-up/down resistors, open-drain mode, and repeater mode. All  
GPIOs are located on an AHB bus for fast access and support Cortex-M3  
bit-banding. GPIOs can be accessed by the General Purpose DMA Controller. Any  
pin of ports 0 and 2 can be used to generate an interrupt.  
Two external interrupt inputs configurable as edge/level sensitive. All pins on port 0  
and port 2 can be used as edge sensitive interrupt sources.  
Four general purpose timers/counters, with a total of eight capture inputs and ten  
compare outputs. Each timer block has an external count input. Specific timer  
events can be selected to generate DMA requests.  
Quadrature encoder interface that can monitor one external quadrature encoder.  
Two standard PWM/timer blocks with external count input option.  
One motor control PWM with support for three-phase motor control.  
Real-Time Clock (RTC) with a separate power domain. The RTC is clocked by a  
dedicated RTC oscillator. The RTC block includes 20 bytes of battery-powered  
backup registers, allowing system status to be stored when the rest of the chip is  
powered off. Battery power can be supplied from a standard 3 V lithium button cell.  
The RTC will continue working when the battery voltage drops to as low as 2.1 V.  
An RTC interrupt can wake up the CPU from any reduced power mode.  
Event Recorder that can capture the clock value when an event occurs on any of  
three inputs. The event identification and the time it occurred are stored in  
registers. The Event Recorder is located in the RTC power domain and can  
therefore operate as long as there is RTC power.  
Windowed Watchdog Timer (WWDT). Windowed operation, dedicated internal  
oscillator, watchdog warning interrupt, and safety features.  
CRC Engine block can calculate a CRC on supplied data using one of three  
standard polynomials. The CRC engine can be used in conjunction with the DMA  
controller to generate a CRC without CPU involvement in the data transfer.  
Analog peripherals:  
12-bit Analog-to-Digital Converter (ADC) with input multiplexing among eight pins,  
conversion rates up to 400 kHz, and multiple result registers. The 12-bit ADC can  
be used with the GPDMA controller.  
10-bit Digital-to-Analog Converter (DAC) with dedicated conversion timer and DMA  
support.  
Power control:  
Four reduced power modes: Sleep, Deep-sleep, Power-down, and Deep  
power-down.  
The Wake-up Interrupt Controller (WIC) allows the CPU to automatically wake up  
from any priority interrupt that can occur while the clocks are stopped in  
Deep-sleep, Power-down, and Deep power-down modes.  
Processor wake-up from Power-down mode via any interrupt able to operate  
during Power-down mode (includes external interrupts, RTC interrupt, PORT0/2  
pin interrupt, and NMI).  
Brownout detect with separate threshold for interrupt and forced reset.  
On-chip Power-On Reset (POR).  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
3 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Clock generation:  
Clock output function that can reflect the main oscillator clock, IRC clock, RTC  
clock, CPU clock, USB clock, or the watchdog timer clock.  
On-chip crystal oscillator with an operating range of 1 MHz to 25 MHz.  
12 MHz Internal RC oscillator (IRC) trimmed to 1% accuracy that can optionally be  
used as a system clock.  
An on-chip PLL allows CPU operation up to the maximum CPU rate without the  
need for a high-frequency crystal. May be run from the main oscillator or the  
internal RC oscillator.  
A second, dedicated PLL may be used for USB interface in order to allow added  
flexibility for the Main PLL settings.  
Versatile pin function selection feature allows many possibilities for using on-chip  
peripheral functions.  
Unique device serial number for identification purposes.  
Single 3.3 V power supply (2.4 V to 3.6 V). Temperature range of 40 C to 85 C.  
Available as LQFP208, TFBGA208, TFBGA180, and LQFP144 package.  
3. Applications  
Communications:  
Point-of-sale terminals, web servers, multi-protocol bridges  
Industrial/Medical:  
Automation controllers, application control, robotics control, HVAC, PLC, inverters,  
circuit breakers, medical scanning, security monitoring, motor drive, video intercom  
Consumer/Appliance:  
Audio, MP3 decoders, alarm systems, displays, printers, scanners, small  
appliances, fitness equipment  
Automotive:  
After-market, car alarms, GPS/fleet monitors  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
4 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
4. Ordering information  
Table 1.  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
LPC1788  
LPC1788FBD208  
LPC1788FET208  
LQFP208  
plastic low profile quad flat package; 208 leads; body 28 28 1.4 mm  
SOT459-1  
SOT950-1  
TFBGA208 plastic thin fine-pitch ball grid array package; 208 balls; body  
15 15 0.7 mm  
LPC1788FET180  
LPC1788FBD144  
LPC1787  
TFBGA180 thin fine-pitch ball grid array package; 180 balls; body 12 12 0.8 mm  
SOT570-2  
SOT486-1  
LQFP144  
LQFP208  
LQFP208  
LQFP208  
LQFP208  
plastic low profile quad flat package; 144 leads; body 20 20 1.4 mm  
plastic low profile quad flat package; 208 leads; body 28 28 1.4 mm  
plastic low profile quad flat package; 208 leads; body 28 28 1.4 mm  
plastic low profile quad flat package; 208 leads; body 28 28 1.4 mm  
plastic low profile quad flat package; 208 leads; body 28 28 1.4 mm  
LPC1787FBD208  
LPC1786  
SOT459-1  
SOT459-1  
SOT459-1  
LPC1786FBD208  
LPC1785  
LPC1785FBD208  
LPC1778  
LPC1778FBD208  
LPC1778FET208  
SOT459-1  
SOT950-1  
TFBGA208 plastic thin fine-pitch ball grid array package; 208 balls; body  
15 15 0.7 mm  
LPC1778FET180  
LPC1778FBD144  
LPC1777  
TFBGA180 thin fine-pitch ball grid array package; 180 balls; body 12 12 0.8 mm  
SOT570-2  
SOT486-1  
LQFP144  
LQFP208  
LQFP208  
plastic low profile quad flat package; 144 leads; body 20 20 1.4 mm  
plastic low profile quad flat package; 208 leads; body 28 28 1.4 mm  
plastic low profile quad flat package; 208 leads; body 28 28 1.4 mm  
LPC1777FBD208  
LPC1776  
SOT459-1  
LPC1776FBD208  
LPC1776FET180  
LPC1774  
SOT459-1  
SOT570-2  
TFBGA180 thin fine-pitch ball grid array package; 180 balls; body 12 12 0.8 mm  
LPC1774FBD208  
LPC1774FBD144  
LQFP208  
LQFP144  
plastic low profile quad flat package; 208 leads; body 28 28 1.4 mm  
plastic low profile quad flat package; 144 leads; body 20 20 1.4 mm  
SOT459-1  
SOT486-1  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
5 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 2.  
LPC178x/7x ordering options  
All parts include two CAN channels, three SSP interfaces, three I2C interfaces, one I2S interface, DAC, and an 8-channel  
12-bit ADC.  
Type number  
Flash CPU  
(kB)  
Peripheral Total EEPROM Ethernet USB  
SRAM (byte)  
UART EMC LCD QEI SD/  
[1]  
SRAM SRAM  
MMC  
(kB)  
(kB)  
(kB)  
LPC178x  
LPC1788FBD208/ 512  
LPC1788FET208  
64  
16 2  
96  
4032  
Y
H/O/D  
5
32-bit  
Y
Y
Y
LPC1788FET180 512  
LPC1788FBD144 512  
LPC1787FBD208 512  
LPC1786FBD208 256  
LPC1785FBD208 256  
LPC177x  
64  
64  
64  
64  
64  
16 2  
16 2  
16 2  
16  
96  
96  
96  
80  
80  
4032  
4032  
4032  
4032  
4032  
Y
Y
N
Y
N
H/O/D  
H/O/D  
H/O/D  
H/O/D  
H/O/D  
5
5
5
5
5
16-bit  
8-bit  
Y
Y
Y
Y
Y
Y
Y
Y
Y
N
Y
Y
Y
Y
Y
32-bit  
32-bit  
32-bit  
16  
LPC1778FBD208/ 512  
LPC1778FET208  
64  
16 2  
96  
4032  
Y
H/O/D  
5
32-bit  
N
Y
Y
LPC1778FET180 512  
LPC1778FBD144 512  
LPC1777FBD208 512  
LPC1776FBD208 256  
LPC1776FET180 256  
LPC1774FBD208 128  
LPC1774FBD144 128  
64  
64  
64  
64  
64  
32  
32  
16 2  
16 2  
16 2  
16  
96  
96  
96  
80  
80  
40  
40  
4032  
4032  
4032  
4032  
4032  
2016  
2016  
Y
Y
N
Y
Y
N
N
H/O/D  
H/O/D  
H/O/D  
H/O/D  
H/O/D  
D
5
16-bit  
8-bit  
N
N
N
N
N
N
N
Y
Y
Y
Y
Y
N
N
Y
Y
Y
Y
Y
N
N
5
5
32-bit  
32-bit  
16-bit  
32-bit  
8-bit  
5
16  
5
8
5
4[2]  
8
D
[1] Maximum data bus width of the External Memory Controller (EMC) depends on package size. Smaller widths may be used.  
[2] USART4 not available.  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
6 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
5. Block diagram  
debug  
port  
JTAG  
interface  
LPC178x/7x  
TEST/DEBUG  
INTERFACE  
CLOCK  
GENERATION,  
POWER CONTROL,  
USB  
SYSTEM  
FUNCTIONS  
GPDMA  
ARM  
CORTEX-M3  
(1)  
ETHERNET  
DEVICE/  
CONTROLLER  
(1)  
(1)  
HOST /OTG  
clocks and  
controls  
I-code  
bus  
D-code  
bus  
system  
bus  
master  
master  
master  
slave  
EMC  
slave  
ROM  
slave  
slave  
(1)  
LCD  
MULTILAYER AHB MATRIX  
SRAM  
96/80/40 kB  
slave  
slave  
slave  
slave  
slave  
HIGH-SPEED  
GPIO  
CRC  
FLASH  
AHB TO  
APB  
BRIDGE 0  
AHB TO  
4032 B/  
ACCELERATOR  
APB  
2016 B  
BRIDGE 1  
FLASH  
512/256/128/64 kB  
EEPROM  
APB slave group 0  
SSP1  
APB slave group 1  
SSP0/2  
UART0/1  
UART2/3  
2
I C0/1  
(1)  
USART4  
CAN 0/1  
2
I C2  
TIMER 0/1  
(1)  
SD/MMC  
WINDOWED WDT  
TIMER2/3  
PWM0/1  
(1)  
QUADRATURE ENCODER  
DAC  
12-bit ADC  
PIN CONNECT  
2
I S  
GPIO INTERRUPT CONTROL  
MOTOR CONTROL PWM  
SYSTEM CONTROL  
EVENT RECORDER  
32 kHz  
RTC  
OSCILLATOR  
BACKUP REGISTERS  
RTC POWER DOMAIN  
= connected to GPDMA  
002aaf528  
(1) Not available on all parts. See Table 2.  
Fig 1. Block diagram  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
7 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
6. Pinning information  
6.1 Pinning  
1
156  
LPC178x/7xFBD208  
52  
105  
002aaf518  
Fig 2. Pin configuration (LQFP208)  
ball A1  
index area  
2
4
6
8
10 12 14 16  
9 11 13 15 17  
1
3
5
7
A
B
C
D
E
F
G
H
J
K
L
LPC178x/7x  
M
N
P
R
T
U
002aaf529  
Transparent top view  
Fig 3. Pin configuration (TFBGA208)  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
8 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
ball A1  
index area  
LPC178x/7x  
2 3 4 5 6 7 8 9 10 11 12 13 14  
1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
002aaf519  
Transparent top view  
Fig 4. Pin configuration (TFBGA180)  
1
108  
LPC178x/7x  
36  
73  
002aaf520  
Fig 5. Pin configuration (LQFP144)  
6.2 Pin description  
I/O pins on the LPC178x/7x are 5V tolerant and have input hysteresis unless otherwise  
indicated in the table below. Crystal pins, power pins, and reference voltage pins are not  
5V tolerant. In addition, when pins are selected to be ADC inputs, they are no longer 5V  
tolerant and the input voltage must be limited to the voltage at the ADC positive reference  
pin (VREFP).  
All port pins Pn[m] are multiplexed, and the functions appear in their order defined in the  
FUNC bits of the corresponding IOCON register. Each port pin can support up to eight  
multiplexed functions. IOCON register FUNC values which are reserved are noted as “R”  
in the pin configuration table  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
9 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 3.  
Pin description  
Not all functions are available on all parts. See Table 2 (Ethernet, USB, LCD, QEI, SD/MMC, DAC pins) and Table 7 (EMC  
pins).  
Symbol  
Description  
P0[0] to  
P0[31]  
I/O  
Port 0: Port 0 is a 32-bit I/O port with individual direction  
controls for each bit. The operation of port 0 pins depends upon  
the pin function selected via the pin connect block.  
[3]  
P0[0]  
94  
96  
U15 M10 66  
I;  
PU  
I/O  
I
P0[0] — General purpose digital input/output pin.  
CAN_RD1 — CAN1 receiver input.  
O
U3_TXD — Transmitter output for UART3.  
I2C1_SDA — I2C1 data input/output (this pin does not use a  
specialized I2C pad).  
I/O  
I/O  
I/O  
O
U0_TXD — Transmitter output for UART0.  
P0[1] — General purpose digital input/output pin.  
CAN_TD1 — CAN1 transmitter output.  
U3_RXD — Receiver input for UART3.  
[3]  
P0[1]  
T14 N11 67  
I;  
PU  
I
I/O  
I2C1_SCL — I2C1 clock input/output (this pin does not use a  
specialized I2C pad).  
I
U0_RXD — Receiver input for UART0.  
[3]  
[3]  
[3]  
P0[2]  
P0[3]  
P0[4]  
202 C4  
204 D6  
D5  
A3  
141  
142  
I;  
PU  
I/O  
O
P0[2] — General purpose digital input/output pin.  
U0_TXD — Transmitter output for UART0.  
U3_TXD — Transmitter output for UART3.  
P0[3] — General purpose digital input/output pin.  
U0_RXD — Receiver input for UART0.  
O
I;  
PU  
I/O  
I
I
U3_RXD — Receiver input for UART3.  
168 B12 A11 116  
I;  
PU  
I/O  
I/O  
P0[4] — General purpose digital input/output pin.  
I2S_RX_SCK — I2S Receive clock. It is driven by the master  
and received by the slave. Corresponds to the signal SCK in the  
I2S-bus specification.  
I
CAN_RD2 — CAN2 receiver input.  
T2_CAP0 — Capture input for Timer 2, channel 0.  
R — Function reserved.  
I
-
-
R — Function reserved.  
-
R — Function reserved.  
O
LCD_VD[0] — LCD data.  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
10 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 3.  
Pin description …continued  
Not all functions are available on all parts. See Table 2 (Ethernet, USB, LCD, QEI, SD/MMC, DAC pins) and Table 7 (EMC  
pins).  
Symbol  
Description  
[3]  
P0[5]  
166 C12 B11 115  
I;  
PU  
I/O  
I/O  
P0[5] — General purpose digital input/output pin.  
I2S_RX_WS — I2S Receive word select. It is driven by the  
master and received by the slave. Corresponds to the signal WS  
in the I2S-bus specification.  
O
I
CAN_TD2 — CAN2 transmitter output.  
T2_CAP1 — Capture input for Timer 2, channel 1.  
R — Function reserved.  
-
-
R — Function reserved.  
-
R — Function reserved.  
O
I/O  
I/O  
LCD_VD[1] — LCD data.  
[3]  
P0[6]  
164 D13 D11 113  
I;  
PU  
P0[6] — General purpose digital input/output pin.  
I2S_RX_SDA — I2S Receive data. It is driven by the transmitter  
and read by the receiver. Corresponds to the signal SD in the  
I2S-bus specification.  
I/O  
O
SSP1_SSEL1 — Slave Select for SSP1.  
T2_MAT0 — Match output for Timer 2, channel 0.  
O
U1_RTS — Request to Send output for UART1. Can also be  
configured to be an RS-485/EIA-485 output enable signal for  
UART1.  
-
R — Function reserved.  
-
R — Function reserved.  
O
LCD_VD[8] — LCD data.  
[4]  
P0[7]  
162 C13 B12 112  
I; IA I/O  
I/O  
P0[7] — General purpose digital input/output pin.  
I2S_TX_SCK — I2S transmit clock. It is driven by the master  
and received by the slave. Corresponds to the signal SCK in the  
I2S-bus specification.  
I/O  
O
I
SSP1_SCK — Serial Clock for SSP1.  
T2_MAT1 — Match output for Timer 2, channel 1.  
RTC_EV0 — Event input 0 to Event Monitor/Recorder.  
R — Function reserved.  
-
-
R — Function reserved.  
O
LCD_VD[9] — LCD data.  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
11 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 3.  
Pin description …continued  
Not all functions are available on all parts. See Table 2 (Ethernet, USB, LCD, QEI, SD/MMC, DAC pins) and Table 7 (EMC  
pins).  
Symbol  
Description  
[4]  
[4]  
[3]  
P0[8]  
160 A15 C12 111  
I; IA I/O  
I/O  
P0[8] — General purpose digital input/output pin.  
I2S_TX_WS — I2S Transmit word select. It is driven by the  
master and received by the slave. Corresponds to the signal WS  
in the I2S-bus specification.  
I/O  
SSP1_MISO — Master In Slave Out for SSP1.  
T2_MAT2 — Match output for Timer 2, channel 2.  
RTC_EV1 — Event input 1 to Event Monitor/Recorder.  
R — Function reserved.  
O
I
-
-
O
R — Function reserved.  
LCD_VD[16] — LCD data.  
P0[9]  
158 C14 A13 109  
I; IA I/O  
I/O  
P0[9] — General purpose digital input/output pin.  
I2S_TX_SDA — I2S transmit data. It is driven by the transmitter  
and read by the receiver. Corresponds to the signal SD in the  
I2S-bus specification.  
I/O  
O
I
SSP1_MOSI — Master Out Slave In for SSP1.  
T2_MAT3 — Match output for Timer 2, channel 3.  
RTC_EV2 — Event input 2 to Event Monitor/Recorder.  
R — Function reserved.  
-
-
R — Function reserved.  
O
LCD_VD[17] — LCD data.  
P0[10]  
98  
T15 L10 69  
I;  
PU  
I/O  
O
P0[10] — General purpose digital input/output pin.  
U2_TXD — Transmitter output for UART2.  
I/O  
I2C2_SDA — I2C2 data input/output (this pin does not use a  
specialized I2C pad).  
O
-
T3_MAT0 — Match output for Timer 3, channel 0.  
R — Function reserved.  
-
R — Function reserved.  
-
R — Function reserved.  
O
LCD_VD[5] — LCD data.  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
12 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 3.  
Pin description …continued  
Not all functions are available on all parts. See Table 2 (Ethernet, USB, LCD, QEI, SD/MMC, DAC pins) and Table 7 (EMC  
pins).  
Symbol  
Description  
[3]  
P0[11]  
100 R14 P12 70  
I;  
PU  
I/O  
I
P0[11] — General purpose digital input/output pin.  
U2_RXD — Receiver input for UART2.  
I/O  
I2C2_SCL — I2C2 clock input/output (this pin does not use a  
specialized I2C pad).  
O
-
T3_MAT1 — Match output for Timer 3, channel 1.  
R — Function reserved.  
-
R — Function reserved.  
-
R — Function reserved.  
O
I/O  
O
I/O  
I
LCD_VD[10] — LCD data.  
[5]  
P0[12]  
P0[13]  
41  
45  
R1  
R2  
J4  
J5  
29  
32  
I;  
PU  
P0[12] — General purpose digital input/output pin.  
USB_PPWR2 — Port Power enable signal for USB port 2.  
SSP1_MISO — Master In Slave Out for SSP1.  
ADC0_IN[6] — A/D converter 0, input 6. When configured as an  
ADC input, the digital function of the pin must be disabled.  
[5]  
I;  
PU  
I/O  
O
P0[13] — General purpose digital input/output pin.  
USB_UP_LED2 — USB port 2 GoodLink LED indicator. It is  
LOW when device is configured (non-control endpoints  
enabled). It is HIGH when the device is not configured or during  
global suspend.  
I/O  
I
SSP1_MOSI — Master Out Slave In for SSP1.  
ADC0_IN[7] — A/D converter 0, input 7. When configured as an  
ADC input, the digital function of the pin must be disabled.  
[3]  
P0[14]  
69  
T7  
M5 48  
I;  
PU  
I/O  
O
P0[14] — General purpose digital input/output pin.  
USB_HSTEN2 — Host Enabled status for USB port 2.  
SSP1_SSEL — Slave Select for SSP1.  
I/O  
O
USB_CONNECT2 — SoftConnect control for USB port 2.  
Signal used to switch an external 1.5 kresistor under software  
control. Used with the SoftConnect USB feature.  
[3]  
[3]  
[3]  
P0[15]  
P0[16]  
P0[17]  
128 J16 H13 89  
130 J14 H14 90  
126 K17 J12 87  
I;  
PU  
I/O  
O
P0[15] — General purpose digital input/output pin.  
U1_TXD — Transmitter output for UART1.  
SSP0_SCK — Serial clock for SSP0.  
I/O  
I/O  
I
I;  
PU  
P0 [16] — General purpose digital input/output pin.  
U1_RXD — Receiver input for UART1.  
I/O  
I/O  
I
SSP0_SSEL — Slave Select for SSP0.  
I;  
PU  
P0[17] — General purpose digital input/output pin.  
U1_CTS — Clear to Send input for UART1.  
SSP0_MISO — Master In Slave Out for SSP0.  
I/O  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
13 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 3.  
Pin description …continued  
Not all functions are available on all parts. See Table 2 (Ethernet, USB, LCD, QEI, SD/MMC, DAC pins) and Table 7 (EMC  
pins).  
Symbol  
Description  
[3]  
[3]  
P0[18]  
P0[19]  
124 K15 J13 86  
122 L17 J10 85  
I;  
PU  
I/O  
I
P0[18] — General purpose digital input/output pin.  
U1_DCD — Data Carrier Detect input for UART1.  
SSP0_MOSI — Master Out Slave In for SSP0.  
P0[19] — General purpose digital input/output pin.  
U1_DSR — Data Set Ready input for UART1.  
SD_CLK — Clock output line for SD card interface.  
I/O  
I/O  
I
I;  
PU  
O
I/O  
I2C1_SDA — I2C1 data input/output (this pin does not use a  
specialized I2C pad).  
-
R — Function reserved.  
-
R — Function reserved.  
-
R — Function reserved.  
O
I/O  
O
LCD_VD[13] — LCD data.  
[3]  
P0[20]  
120 M17 K14 83  
I;  
PU  
P0[20] — General purpose digital input/output pin.  
U1_DTR — Data Terminal Ready output for UART1. Can also  
be configured to be an RS-485/EIA-485 output enable signal for  
UART1.  
I/O  
I/O  
SD_CMD — Command line for SD card interface.  
I2C1_SCL — I2C1 clock input/output (this pin does not use a  
specialized I2C pad).  
-
R — Function reserved.  
-
R — Function reserved.  
-
R — Function reserved.  
O
I/O  
I
LCD_VD[14] — LCD data.  
[3]  
P0[21]  
118 M16 K11 82  
I;  
PU  
P0[21] — General purpose digital input/output pin.  
U1_RI — Ring Indicator input for UART1.  
O
SD_PWR — Power Supply Enable for external SD card power  
supply.  
O
I
U4_OE — RS-485/EIA-485 output enable signal for UART4.  
CAN_RD1 — CAN1 receiver input.  
I/O  
U4_SCLK — USART 4 clock input or output in synchronous  
mode.  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
14 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 3.  
Pin description …continued  
Not all functions are available on all parts. See Table 2 (Ethernet, USB, LCD, QEI, SD/MMC, DAC pins) and Table 7 (EMC  
pins).  
Symbol  
Description  
[6]  
P0[22]  
116 N17 L14 80  
I;  
PU  
I/O  
O
P0[22] — General purpose digital input/output pin.  
U1_RTS — Request to Send output for UART1. Can also be  
configured to be an RS-485/EIA-485 output enable signal for  
UART1.  
I/O  
O
SD_DAT[0] — Data line 0 for SD card interface.  
U4_TXD — Transmitter output for USART4 (input/output in  
smart card mode).  
O
I/O  
I
CAN_TD1 — CAN1 transmitter output.  
[5]  
[5]  
[5]  
P0[23]  
P0[24]  
P0[25]  
P0[26]  
18  
16  
14  
H1  
G2  
F1  
F5  
E1  
E4  
13  
11  
10  
I;  
PU  
P0[23] — General purpose digital input/output pin.  
ADC0_IN[0] — A/D converter 0, input 0. When configured as an  
ADC input, the digital function of the pin must be disabled.  
I/O  
I2S_RX_SCK — Receive Clock. It is driven by the master and  
received by the slave. Corresponds to the signal SCK in the  
I2S-bus specification.  
I
T3_CAP0 — Capture input for Timer 3, channel 0.  
P0[24] — General purpose digital input/output pin.  
I;  
PU  
I/O  
I
ADC0_IN[1] — A/D converter 0, input 1. When configured as an  
ADC input, the digital function of the pin must be disabled.  
I/O  
I2S_RX_WS — Receive Word Select. It is driven by the master  
and received by the slave. Corresponds to the signal WS in the  
I2S-bus specification.  
I
T3_CAP1 — Capture input for Timer 3, channel 1.  
P0[25] — General purpose digital input/output pin.  
I;  
PU  
I/O  
I
ADC0_IN[2] — A/D converter 0, input 2. When configured as an  
ADC input, the digital function of the pin must be disabled.  
I/O  
I2S_RX_SDA — Receive data. It is driven by the transmitter  
and read by the receiver. Corresponds to the signal SD in the  
I2S-bus specification.  
O
I/O  
I
U3_TXD — Transmitter output for UART3.  
[7]  
12  
50  
E1  
T1  
D1  
L3  
8
I;  
PU  
P0[26] — General purpose digital input/output pin.  
ADC0_IN[3] — A/D converter 0, input 3. When configured as an  
ADC input, the digital function of the pin must be disabled.  
O
DAC_OUT — D/A converter output. When configured as the  
DAC output, the digital function of the pin must be disabled.  
I
U3_RXD — Receiver input for UART3.  
[8]  
P0[27]  
35  
<tb I/O  
P0[27] — General purpose digital input/output pin.  
d>  
I/O  
I2C0_SDA — I2C0 data input/output. (this pin uses a  
specialized I2C pad).  
I/O  
USB_SDA1 — I2C serial data for communication with an  
external USB transceiver.  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
15 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 3.  
Pin description …continued  
Not all functions are available on all parts. See Table 2 (Ethernet, USB, LCD, QEI, SD/MMC, DAC pins) and Table 7 (EMC  
pins).  
Symbol  
Description  
[8]  
P0[28]  
48  
R3  
M1 34  
<tb I/O  
P0[28] — General purpose digital input/output pin.  
d>  
I/O  
I2C0_SCL — I2C0 clock input/output (this pin uses a  
specialized I2C pad.  
I/O  
USB_SCL1 — I2C serial clock for communication with an  
external USB transceiver.  
[9]  
[9]  
[9]  
P0[29]  
P0[30]  
P0[31]  
61  
62  
51  
U4  
R6  
T2  
K5  
N4  
N1  
42  
43  
36  
<tb I/O  
P0[29] — General purpose digital input/output pin.  
USB_D+1 — USB port 1 bidirectional D+ line.  
EINT0 — External interrupt 0 input.  
d>  
I/O  
I
<tb I/O  
P0[30] — General purpose digital input/output pin.  
USB_D1 — USB port 1 bidirectional Dline.  
EINT1 — External interrupt 1 input.  
d>  
I/O  
I
<tb I/O  
P0[31] — General purpose digital input/output pin.  
USB_D+2 — USB port 2 bidirectional D+ line.  
d>  
I/O  
P1[0] to  
P1[31]  
I/O  
Port 1: Port 1 is a 32 bit I/O port with individual direction  
controls for each bit. The operation of port 1 pins depends upon  
the pin function selected via the pin connect block  
[3]  
P1[0]  
P1[1]  
196 A3  
194 B5  
185 D9  
B5  
A5  
B7  
136  
135  
I;  
PU  
I/O  
O
P1[0] — General purpose digital input/output pin.  
ENET_TXD0 — Ethernet transmit data 0 (RMII/MII interface).  
R — Function reserved.  
-
I
T3_CAP1 — Capture input for Timer 3, channel 1.  
SSP2_SCK — Serial clock for SSP2.  
I/O  
I/O  
O
[3]  
I;  
PU  
P1[1] — General purpose digital input/output pin.  
ENET_TXD1 — Ethernet transmit data 1 (RMII/MII interface).  
R — Function reserved.  
-
O
T3_MAT3 — Match output for Timer 3, channel 3.  
SSP2_MOSI — Master Out Slave In for SSP2.  
P1[2] — General purpose digital input/output pin.  
ENET_TXD2 — Ethernet transmit data 2 (MII interface).  
SD_CLK — Clock output line for SD card interface.  
PWM0[1] — Pulse Width Modulator 0, output 1.  
P1[3] — General purpose digital input/output pin.  
ENET_TXD3 — Ethernet transmit data 3 (MII interface).  
SD_CMD — Command line for SD card interface.  
PWM0[2] — Pulse Width Modulator 0, output 2.  
I/O  
I/O  
O
[3]  
[3]  
P1[2]  
P1[3]  
-
-
I;  
PU  
O
O
177 A10 A9  
I;  
PU  
I/O  
O
I/O  
O
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
16 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 3.  
Pin description …continued  
Not all functions are available on all parts. See Table 2 (Ethernet, USB, LCD, QEI, SD/MMC, DAC pins) and Table 7 (EMC  
pins).  
Symbol  
Description  
[3]  
P1[4]  
192 A5  
C6  
133  
I;  
PU  
I/O  
O
P1[4] — General purpose digital input/output pin.  
ENET_TX_EN — Ethernet transmit data enable (RMII/MII  
interface).  
-
R — Function reserved.  
O
T3_MAT2 — Match output for Timer 3, channel 2.  
SSP2_MISO — Master In Slave Out for SSP2.  
P1[5] — General purpose digital input/output pin.  
ENET_TX_ER — Ethernet Transmit Error (MII interface).  
I/O  
I/O  
O
[3]  
P1[5]  
156 A17 B13  
-
I;  
PU  
O
SD_PWR — Power Supply Enable for external SD card power  
supply.  
O
PWM0[3] — Pulse Width Modulator 0, output 3.  
P1[6] — General purpose digital input/output pin.  
ENET_TX_CLK — Ethernet Transmit Clock (MII interface).  
SD_DAT[0] — Data line 0 for SD card interface.  
PWM0[4] — Pulse Width Modulator 0, output 4.  
P1[7] — General purpose digital input/output pin.  
ENET_COL — Ethernet Collision detect (MII interface).  
SD_DAT[1] — Data line 1 for SD card interface.  
PWM0[5] — Pulse Width Modulator 0, output 5.  
P1[8] — General purpose digital input/output pin.  
[3]  
[3]  
[3]  
P1[6]  
P1[7]  
P1[8]  
171 B11 B10  
153 D14 C13  
-
I;  
PU  
I/O  
I
I/O  
O
-
I;  
PU  
I/O  
I
I/O  
O
190 C7  
B6  
132  
I;  
I/O  
I
PU  
ENET_CRS (ENET_CRS_DV) — Ethernet Carrier Sense (MII  
interface) or Ethernet Carrier Sense/Data Valid (RMII interface).  
-
R — Function reserved.  
O
I/O  
I/O  
I
T3_MAT1 — Match output for Timer 3, channel 1.  
SSP2_SSEL — Slave Select for SSP2.  
[3]  
[3]  
P1[9]  
188 A6  
186 C8  
D7  
A7  
131  
129  
I;  
PU  
P1[9] — General purpose digital input/output pin.  
ENET_RXD0 — Ethernet receive data 0 (RMII/MII interface).  
R — Function reserved.  
-
O
I/O  
I
T3_MAT0 — Match output for Timer 3, channel 0.  
P1[10] — General purpose digital input/output pin.  
ENET_RXD1 — Ethernet receive data 1 (RMII/MII interface).  
R — Function reserved.  
P1[10]  
I;  
PU  
-
I
T3_CAP0 — Capture input for Timer 3, channel 0.  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
17 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 3.  
Pin description …continued  
Not all functions are available on all parts. See Table 2 (Ethernet, USB, LCD, QEI, SD/MMC, DAC pins) and Table 7 (EMC  
pins).  
Symbol  
Description  
[3]  
[3]  
P1[11]  
P1[12]  
163 A14 A12  
157 A16 A14  
147 D16 D14  
-
-
I;  
PU  
I/O  
P1[11] — General purpose digital input/output pin.  
ENET_RXD2 — Ethernet Receive Data 2 (MII interface).  
SD_DAT[2] — Data line 2 for SD card interface.  
PWM0[6] — Pulse Width Modulator 0, output 6.  
P1[12] — General purpose digital input/output pin.  
ENET_RXD3 — Ethernet Receive Data (MII interface).  
SD_DAT[3] — Data line 3 for SD card interface.  
PWM0_CAP0 — Capture input for PWM0, channel 0.  
P1[13] — General purpose digital input/output pin.  
ENET_RX_DV — Ethernet Receive Data Valid (MII interface).  
P1[14] — General purpose digital input/output pin.  
ENET_RX_ER — Ethernet receive error (RMII/MII interface).  
R — Function reserved.  
I
I/O  
O
I;  
PU  
I/O  
I
I/O  
I
[3]  
[3]  
P1[13]  
P1[14]  
-
I;  
PU  
I/O  
I
184 A7  
D8  
128  
I;  
PU  
I/O  
I
-
I
T2_CAP0 — Capture input for Timer 2, channel 0.  
P1[15] — General purpose digital input/output pin.  
[3]  
P1[15]  
182 A8  
A8  
126  
I;  
I/O  
I
PU  
ENET_RX_CLK (ENET_REF_CLK) — Ethernet Receive Clock  
(MII interface) or Ethernet Reference Clock (RMII interface).  
-
R — Function reserved.  
I/O  
I2C2_SDA — I2C2 data input/output (this pin does not use a  
specialized I2C pad).  
[3]  
[3]  
[3]  
P1[16]  
P1[17]  
P1[18]  
180 D10 B8  
125  
123  
46  
I;  
PU  
I/O  
O
P1[16] — General purpose digital input/output pin.  
ENET_MDC — Ethernet MIIM clock.  
O
I2S_TX_MCLK — I2S transmit master clock.  
P1[17] — General purpose digital input/output pin.  
ENET_MDIO — Ethernet MIIM data input and output.  
I2S_RX_MCLK — I2S receive master clock.  
P1[18] — General purpose digital input/output pin.  
178 A9  
C9  
L5  
I;  
PU  
I/O  
I/O  
O
66  
P7  
I;  
PU  
I/O  
O
USB_UP_LED1 — USB port 1 GoodLink LED indicator. It is  
LOW when device is configured (non-control endpoints  
enabled). It is HIGH when the device is not configured or during  
global suspend.  
O
I
PWM1[1] — Pulse Width Modulator 1, channel 1 output.  
T1_CAP0 — Capture input for Timer 1, channel 0.  
R — Function reserved.  
-
I/O  
SSP1_MISO — Master In Slave Out for SSP1.  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
18 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 3.  
Pin description …continued  
Not all functions are available on all parts. See Table 2 (Ethernet, USB, LCD, QEI, SD/MMC, DAC pins) and Table 7 (EMC  
pins).  
Symbol  
Description  
[3]  
P1[19]  
68  
U6  
P5  
47  
I;  
PU  
I/O  
O
P1[19] — General purpose digital input/output pin.  
USB_TX_E1 — Transmit Enable signal for USB port 1 (OTG  
transceiver).  
O
USB_PPWR1 — Port Power enable signal for USB port 1.  
T1_CAP1 — Capture input for Timer 1, channel 1.  
MC_0A — Motor control PWM channel 0, output A.  
SSP1_SCK — Serial clock for SSP1.  
I
O
I/O  
O
U2_OE — RS-485/EIA-485 output enable signal for UART2.  
P1[20] — General purpose digital input/output pin.  
[3]  
P1[20]  
P1[21]  
P1[22]  
70  
U7  
K6  
49  
I;  
PU  
I/O  
O
USB_TX_DP1 — D+ transmit data for USB port 1 (OTG  
transceiver).  
O
I
PWM1[2] — Pulse Width Modulator 1, channel 2 output.  
QEI_PHA — Quadrature Encoder Interface PHA input.  
MC_FB0 — Motor control PWM channel 0 feedback input.  
SSP0_SCK — Serial clock for SSP0.  
I
I/O  
O
O
I/O  
O
LCD_VD[6] — LCD data.  
LCD_VD[10] — LCD data.  
[3]  
72  
R8  
N6  
50  
I;  
PU  
P1[21] — General purpose digital input/output pin.  
USB_TX_DM1 — Dtransmit data for USB port 1 (OTG  
transceiver).  
O
I/O  
I
PWM1[3] — Pulse Width Modulator 1, channel 3 output.  
SSP0_SSEL — Slave Select for SSP0.  
MC_ABORT — Motor control PWM, active low fast abort.  
R — Function reserved.  
-
O
O
I/O  
I
LCD_VD[7] — LCD data.  
LCD_VD[11] — LCD data.  
[3]  
74  
U8  
M6 51  
I;  
P1[22] — General purpose digital input/output pin.  
PU  
USB_RCV1 — Differential receive data for USB port 1 (OTG  
transceiver).  
I
USB_PWRD1 — Power Status for USB port 1 (host power  
switch).  
O
T1_MAT0 — Match output for Timer 1, channel 0.  
MC_0B — Motor control PWM channel 0, output B.  
SSP1_MOSI — Master Out Slave In for SSP1.  
LCD_VD[8] — LCD data.  
O
I/O  
O
O
LCD_VD[12] — LCD data.  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
19 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 3.  
Pin description …continued  
Not all functions are available on all parts. See Table 2 (Ethernet, USB, LCD, QEI, SD/MMC, DAC pins) and Table 7 (EMC  
pins).  
Symbol  
Description  
[3]  
[3]  
[3]  
[3]  
P1[23]  
76  
78  
80  
82  
P9  
N7  
53  
54  
56  
57  
I;  
PU  
I/O  
I
P1[23] — General purpose digital input/output pin.  
USB_RX_DP1 — D+ receive data for USB port 1 (OTG  
transceiver).  
O
I
PWM1[4] — Pulse Width Modulator 1, channel 4 output.  
QEI_PHB — Quadrature Encoder Interface PHB input.  
MC_FB1 — Motor control PWM channel 1 feedback input.  
SSP0_MISO — Master In Slave Out for SSP0.  
LCD_VD[9] — LCD data.  
I
I/O  
O
O
I/O  
I
LCD_VD[13] — LCD data.  
P1[24]  
P1[25]  
P1[26]  
T9  
P7  
I;  
PU  
P1[24] — General purpose digital input/output pin.  
USB_RX_DM1 — Dreceive data for USB port 1 (OTG  
transceiver).  
O
I
PWM1[5] — Pulse Width Modulator 1, channel 5 output.  
QEI_IDX — Quadrature Encoder Interface INDEX input.  
MC_FB2 — Motor control PWM channel 2 feedback input.  
SSP0_MOSI — Master Out Slave in for SSP0.  
LCD_VD[10] — LCD data.  
I
I/O  
O
O
I/O  
O
LCD_VD[14] — LCD data.  
T10 L7  
I;  
PU  
P1[25] — General purpose digital input/output pin.  
USB_LS1 — Low Speed status for USB port 1 (OTG  
transceiver).  
O
O
O
O
O
O
I/O  
O
USB_HSTEN1 — Host Enabled status for USB port 1.  
T1_MAT1 — Match output for Timer 1, channel 1.  
MC_1A — Motor control PWM channel 1, output A.  
CLKOUT — Selectable clock output.  
LCD_VD[11] — LCD data.  
LCD_VD[15] — LCD data.  
R10 P8  
I;  
PU  
P1[26] — General purpose digital input/output pin.  
USB_SSPND1 — USB port 1 Bus Suspend status (OTG  
transceiver).  
O
I
PWM1[6] — Pulse Width Modulator 1, channel 6 output.  
T0_CAP0 — Capture input for Timer 0, channel 0.  
MC_1B — Motor control PWM channel 1, output B.  
SSP1_SSEL — Slave Select for SSP1.  
LCD_VD[12] — LCD data.  
O
I/O  
O
O
LCD_VD[20] — LCD data.  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
20 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 3.  
Pin description …continued  
Not all functions are available on all parts. See Table 2 (Ethernet, USB, LCD, QEI, SD/MMC, DAC pins) and Table 7 (EMC  
pins).  
Symbol  
Description  
[3]  
P1[27]  
88  
T12 M9 61  
I;  
PU  
I/O  
I
P1[27] — General purpose digital input/output pin.  
USB_INT1 — USB port 1 OTG transceiver interrupt (OTG  
transceiver).  
I
USB_OVRCR1 — USB port 1 Over-Current status.  
T0_CAP1 — Capture input for Timer 0, channel 1.  
CLKOUT — Selectable clock output.  
I
O
-
R — Function reserved.  
O
O
I/O  
I/O  
I
LCD_VD[13] — LCD data.  
LCD_VD[21] — LCD data.  
[3]  
P1[28]  
90  
T13 P10 63  
I;  
PU  
P1[28] — General purpose digital input/output pin.  
USB_SCL1 — USB port 1 I2C serial clock (OTG transceiver).  
PWM1_CAP0 — Capture input for PWM1, channel 0.  
T0_MAT0 — Match output for Timer 0, channel 0.  
MC_2A — Motor control PWM channel 2, output A.  
SSP0_SSEL — Slave Select for SSP0.  
O
O
I/O  
O
O
I/O  
I/O  
I
LCD_VD[14] — LCD data.  
LCD_VD[22] — LCD data.  
[3]  
P1[29]  
92  
U14 N10 64  
I;  
PU  
P1[29] — General purpose digital input/output pin.  
USB_SDA1 — USB port 1 I2C serial data (OTG transceiver).  
PWM1_CAP1 — Capture input for PWM1, channel 1.  
T0_MAT1 — Match output for Timer 0, channel 0.  
MC_2B — Motor control PWM channel 2, output B.  
O
O
O
U4_TXD — Transmitter output for USART4 (input/output in  
smart card mode).  
O
O
I/O  
I
LCD_VD[15] — LCD data.  
LCD_VD[23] — LCD data.  
[5]  
P1[30]  
42  
P2  
K3  
30  
I;  
PU  
P1[30] — General purpose digital input/output pin.  
USB_PWRD2 — Power Status for USB port 2.  
USB_VBUS — Monitors the presence of USB bus power.  
This signal must be HIGH for USB reset to occur.  
I
I
ADC0_IN[4] — A/D converter 0, input 4. When configured as an  
ADC input, the digital function of the pin must be disabled.  
I/O  
O
I2C0_SDA — I2C0 data input/output (this pin does not use a  
specialized I2C pad.  
U3_OE — RS-485/EIA-485 output enable signal for UART3.  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
21 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 3.  
Pin description …continued  
Not all functions are available on all parts. See Table 2 (Ethernet, USB, LCD, QEI, SD/MMC, DAC pins) and Table 7 (EMC  
pins).  
Symbol  
Description  
[5]  
P1[31]  
40  
P1  
K2  
28  
I;  
PU  
I/O  
P1[31] — General purpose digital input/output pin.  
USB_OVRCR2 — Over-Current status for USB port 2.  
SSP1_SCK — Serial Clock for SSP1.  
I
I/O  
I
ADC0_IN[5] — A/D converter 0, input 5. When configured as an  
ADC input, the digital function of the pin must be disabled.  
I/O  
I/O  
I2C0_SCL — I2C0 clock input/output (this pin does not use a  
specialized I2C pad.  
P2[0] to  
P2[31]  
Port 2: Port 2 is a 32 bit I/O port with individual direction  
controls for each bit. The operation of port 1 pins depends upon  
the pin function selected via the pin connect block.  
[3]  
[3]  
[3]  
P2[0]  
P2[1]  
P2[2]  
154 B17 D12 107  
152 E14 C14 106  
150 D15 E11 105  
I;  
PU  
I/O  
O
O
-
P2[0] — General purpose digital input/output pin.  
PWM1[1] — Pulse Width Modulator 1, channel 1 output.  
U1_TXD — Transmitter output for UART1.  
R — Function reserved.  
-
R — Function reserved.  
-
R — Function reserved.  
-
R — Function reserved.  
O
I/O  
O
I
LCD_PWR — LCD panel power enable.  
P2[1] — General purpose digital input/output pin.  
PWM1[2] — Pulse Width Modulator 1, channel 2 output.  
U1_RXD — Receiver input for UART1.  
R — Function reserved.  
I;  
PU  
-
-
R — Function reserved.  
-
R — Function reserved.  
-
R — Function reserved.  
O
I/O  
O
I
LCD_LE — Line end signal.  
I;  
PU  
P2[2] — General purpose digital input/output pin.  
PWM1[3] — Pulse Width Modulator 1, channel 3 output.  
U1_CTS — Clear to Send input for UART1.  
T2_MAT3 — Match output for Timer 2, channel 3.  
R — Function reserved.  
O
-
O
-
TRACEDATA[3] — Trace data, bit 3.  
R — Function reserved.  
O
LCD_DCLK — LCD panel clock.  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
22 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 3.  
Pin description …continued  
Not all functions are available on all parts. See Table 2 (Ethernet, USB, LCD, QEI, SD/MMC, DAC pins) and Table 7 (EMC  
pins).  
Symbol  
Description  
[3]  
[3]  
[3]  
P2[3]  
144 E16 E13 100  
142 D17 E14 99  
140 F16 F12 97  
I;  
PU  
I/O  
O
I
P2[3] — General purpose digital input/output pin.  
PWM1[4] — Pulse Width Modulator 1, channel 4 output.  
U1_DCD — Data Carrier Detect input for UART1.  
T2_MAT2 — Match output for Timer 2, channel 2.  
R — Function reserved.  
O
-
O
-
TRACEDATA[2] — Trace data, bit 2.  
R — Function reserved.  
O
LCD_FP — Frame pulse (STN). Vertical synchronization pulse  
(TFT).  
P2[4]  
I;  
PU  
I/O  
O
I
P2[4] — General purpose digital input/output pin.  
PWM1[5] — Pulse Width Modulator 1, channel 5 output.  
U1_DSR — Data Set Ready input for UART1.  
T2_MAT1 — Match output for Timer 2, channel 1.  
R — Function reserved.  
O
-
O
-
TRACEDATA[1] — Trace data, bit 1.  
R — Function reserved.  
O
LCD_ENAB_M — STN AC bias drive or TFT data enable  
output.  
P2[5]  
I;  
PU  
I/O  
O
P2[5] — General purpose digital input/output pin.  
PWM1[6] — Pulse Width Modulator 1, channel 6 output.  
O
U1_DTR — Data Terminal Ready output for UART1. Can also  
be configured to be an RS-485/EIA-485 output enable signal for  
UART1.  
O
-
T2_MAT0 — Match output for Timer 2, channel 0.  
R — Function reserved.  
O
-
TRACEDATA[0] — Trace data, bit 0.  
R — Function reserved.  
O
LCD_LP — Line synchronization pulse (STN). Horizontal  
synchronization pulse (TFT).  
[3]  
P2[6]  
138 E17 F13 96  
I;  
PU  
I/O  
I
P2[6] — General purpose digital input/output pin.  
PWM1_CAP0 — Capture input for PWM1, channel 0.  
U1_RI — Ring Indicator input for UART1.  
T2_CAP0 — Capture input for Timer 2, channel 0.  
U2_OE — RS-485/EIA-485 output enable signal for UART2.  
TRACECLK — Trace clock.  
I
I
O
O
O
O
LCD_VD[0] — LCD data.  
LCD_VD[4] — LCD data.  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
23 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 3.  
Pin description …continued  
Not all functions are available on all parts. See Table 2 (Ethernet, USB, LCD, QEI, SD/MMC, DAC pins) and Table 7 (EMC  
pins).  
Symbol  
Description  
[3]  
P2[7]  
136 G16 G11 95  
I;  
PU  
I/O  
I
P2[7] — General purpose digital input/output pin.  
CAN_RD2 — CAN2 receiver input.  
O
U1_RTS — Request to Send output for UART1. Can also be  
configured to be an RS-485/EIA-485 output enable signal for  
UART1.  
-
R — Function reserved.  
-
R — Function reserved.  
-
R — Function reserved.  
O
O
I/O  
O
O
I
LCD_VD[1] — LCD data.  
LCD_VD[5] — LCD data.  
[3]  
P2[8]  
134 H15 G14 93  
I;  
PU  
P2[8] — General purpose digital input/output pin.  
CAN_TD2 — CAN2 transmitter output.  
U2_TXD — Transmitter output for UART2.  
U1_CTS — Clear to Send input for UART1.  
ENET_MDC — Ethernet MIIM clock.  
R — Function reserved.  
O
-
O
O
I/O  
O
LCD_VD[2] — LCD data.  
LCD_VD[6] — LCD data.  
[3]  
P2[9]  
132 H16 H11 92  
I;  
PU  
P2[9] — General purpose digital input/output pin.  
USB_CONNECT1 — USB1 SoftConnect control. Signal used to  
switch an external 1.5 kresistor under the software control.  
Used with the SoftConnect USB feature.  
I
U2_RXD — Receiver input for UART2.  
U4_RXD — Receiver input for USART4.  
ENET_MDIO — Ethernet MIIM data input and output.  
R — Function reserved.  
I
I/O  
-
I
LCD_VD[3] — LCD data.  
I
LCD_VD[7] — LCD data.  
[10]  
P2[10]  
110 N15 M13 76  
I;  
I/O  
P2[10] — General purpose digital input/output pin. This pin  
PU  
includes a 5 ns input glitch filter.  
A LOW on this pin while RESET is LOW forces the on-chip boot  
loader to take over control of the part after a reset and go into  
ISP mode.  
I
I
EINT0 — External interrupt 0 input.  
NMI — Non-maskable interrupt input.  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
24 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 3.  
Pin description …continued  
Not all functions are available on all parts. See Table 2 (Ethernet, USB, LCD, QEI, SD/MMC, DAC pins) and Table 7 (EMC  
pins).  
Symbol  
Description  
[10]  
[10]  
[10]  
[3]  
P2[11]  
108 T17 M12 75  
106 N14 N14 73  
102 T16 M11 71  
I;  
PU  
I/O  
P2[11] — General purpose digital input/output pin. This pin  
includes a 5 ns input glitch filter.  
I
EINT1 — External interrupt 1 input.  
I/O  
I/O  
SD_DAT[1] — Data line 1 for SD card interface.  
I2S_TX_SCK — Transmit Clock. It is driven by the master and  
received by the slave. Corresponds to the signal SCK in the  
I2S-bus specification.  
-
R — Function reserved.  
R — Function reserved.  
R — Function reserved.  
LCD_CLKIN — LCD clock.  
-
-
O
I/O  
P2[12]  
I;  
PU  
P2[12] — General purpose digital input/output pin. This pin  
includes a 5 ns input glitch filter.  
I
EINT2 — External interrupt 2 input.  
I/O  
I/O  
SD_DAT[2] — Data line 2 for SD card interface.  
I2S_TX_WS — Transmit Word Select. It is driven by the master  
and received by the slave. Corresponds to the signal WS in the  
I2S-bus specification.  
O
LCD_VD[4] — LCD data.  
LCD_VD[3] — LCD data.  
LCD_VD[8] — LCD data.  
LCD_VD[18] — LCD data.  
O
O
O
P2[13]  
I;  
PU  
I/O  
P2[13] — General purpose digital input/output pin. This pin  
includes a 5 ns input glitch filter.  
I
EINT3 — External interrupt 3 input.  
I/O  
I/O  
SD_DAT[3] — Data line 3 for SD card interface.  
I2S_TX_SDA — Transmit data. It is driven by the transmitter  
and read by the receiver. Corresponds to the signal SD in the  
I2S-bus specification.  
-
R — Function reserved.  
O
LCD_VD[5] — LCD data.  
O
LCD_VD[9] — LCD data.  
O
LCD_VD[19] — LCD data.  
P2[14]  
91  
R12  
-
-
I;  
PU  
I/O  
O
P2[14] — General purpose digital input/output pin.  
EMC_CS2 — LOW active Chip Select 2 signal.  
I/O  
I2C1_SDA — I2C1 data input/output (this pin does not use a  
specialized I2C pad).  
I
T2_CAP0 — Capture input for Timer 2, channel 0.  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
25 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 3.  
Pin description …continued  
Not all functions are available on all parts. See Table 2 (Ethernet, USB, LCD, QEI, SD/MMC, DAC pins) and Table 7 (EMC  
pins).  
Symbol  
Description  
[3]  
P2[15]  
99  
P13  
-
-
I;  
PU  
I/O  
O
P2[15] — General purpose digital input/output pin.  
EMC_CS3 — LOW active Chip Select 3 signal.  
I/O  
I2C1_SCL — I2C1 clock input/output (this pin does not use a  
specialized I2C pad).  
I
T2_CAP1 — Capture input for Timer 2, channel 1.  
P2[16] — General purpose digital input/output pin.  
EMC_CAS — LOW active SDRAM Column Address Strobe.  
P2[17] — General purpose digital input/output pin.  
EMC_RAS — LOW active SDRAM Row Address Strobe.  
P2[18] — General purpose digital input/output pin.  
EMC_CLK[0] — SDRAM clock 0.  
[3]  
[3]  
[6]  
[6]  
[3]  
[3]  
[3]  
P2[16]  
P2[17]  
P2[18]  
P2[19]  
P2[20]  
P2[21]  
P2[22]  
87  
95  
59  
67  
73  
81  
85  
R11 P9  
-
-
-
-
-
-
-
I;  
PU  
I/O  
O
R13 P11  
I;  
PU  
I/O  
O
U3  
R7  
T8  
P3  
N5  
P6  
I;  
PU  
I/O  
O
I;  
PU  
I/O  
O
P2[19] — General purpose digital input/output pin.  
EMC_CLK[1] — SDRAM clock 1.  
I;  
PU  
I/O  
O
P2[20] — General purpose digital input/output pin.  
EMC_DYCS0 — SDRAM chip select 0.  
U11 N8  
I;  
PU  
I/O  
O
P2[21] — General purpose digital input/output pin.  
EMC_DYCS1 — SDRAM chip select 1.  
U12  
U5  
-
-
I;  
PU  
I/O  
O
P2[22] — General purpose digital input/output pin.  
EMC_DYCS2 — SDRAM chip select 2.  
I/O  
I
SSP0_SCK — Serial clock for SSP0.  
T3_CAP0 — Capture input for Timer 3, channel 0.  
P2[23] — General purpose digital input/output pin.  
EMC_DYCS3 — SDRAM chip select 3.  
[3]  
P2[23]  
64  
-
I;  
PU  
I/O  
O
I/O  
I
SSP0_SSEL — Slave Select for SSP0.  
T3_CAP1 — Capture input for Timer 3, channel 1.  
P2[24] — General purpose digital input/output pin.  
EMC_CKE0 — SDRAM clock enable 0.  
[3]  
[3]  
[3]  
P2[24]  
P2[25]  
P2[26]  
53  
54  
57  
P5  
R4  
T4  
P1  
P2  
-
-
-
-
I;  
PU  
I/O  
O
I;  
PU  
I/O  
O
P2[25] — General purpose digital input/output pin.  
EMC_CKE1 — SDRAM clock enable 1.  
I;  
PU  
I/O  
O
P2[26] — General purpose digital input/output pin.  
EMC_CKE2 — SDRAM clock enable 2.  
I/O  
O
SSP0_MISO — Master In Slave Out for SSP0.  
T3_MAT0 — Match output for Timer 3, channel 0.  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
26 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 3.  
Pin description …continued  
Not all functions are available on all parts. See Table 2 (Ethernet, USB, LCD, QEI, SD/MMC, DAC pins) and Table 7 (EMC  
pins).  
Symbol  
Description  
[3]  
P2[27]  
47  
P3  
-
-
I;  
PU  
I/O  
O
P2[27] — General purpose digital input/output pin.  
EMC_CKE3 — SDRAM clock enable 3.  
I/O  
O
SSP0_MOSI — Master Out Slave In for SSP0.  
T3_MAT1 — Match output for Timer 3, channel 1.  
P2[28] — General purpose digital input/output pin.  
[3]  
[3]  
[3]  
P2[28]  
P2[29]  
P2[30]  
49  
43  
31  
P4  
N3  
L4  
M2  
L1  
-
-
-
-
I;  
PU  
I/O  
O
EMC_DQM0 — Data mask 0 used with SDRAM and static  
devices.  
I;  
PU  
I/O  
O
P2[29] — General purpose digital input/output pin.  
EMC_DQM1 — Data mask 1 used with SDRAM and static  
devices.  
I;  
PU  
I/O  
O
P2[30] — General purpose digital input/output pin.  
EMC_DQM2 — Data mask 2 used with SDRAM and static  
devices.  
I/O  
I2C2_SDA — I2C2 data input/output (this pin does not use a  
specialized I2C pad).  
O
T3_MAT2 — Match output for Timer 3, channel 2.  
P2[31] — General purpose digital input/output pin.  
[3]  
P2[31]  
39  
N2  
-
-
I;  
I/O  
O
PU  
EMC_DQM3 — Data mask 3 used with SDRAM and static  
devices.  
I/O  
I2C2_SCL — I2C2 clock input/output (this pin does not use a  
specialized I2C pad).  
O
T3_MAT3 — Match output for Timer 3, channel 3.  
P3[0] to  
P3[31]  
I/O  
Port 3: Port 3 is a 32-bit I/O port with individual direction  
controls for each bit. The operation of port 3 pins depends upon  
the pin function selected via the pin connect block.  
[3]  
[3]  
[3]  
[3]  
[3]  
[3]  
P3[0]  
P3[1]  
P3[2]  
P3[3]  
P3[4]  
P3[5]  
197 B4  
201 B3  
207 B1  
D6  
E6  
A2  
G5  
D3  
E3  
137  
140  
144  
2
I;  
PU  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
P3[0] — General purpose digital input/output pin.  
EMC_D[0] — External memory data line 0.  
P3[1] — General purpose digital input/output pin.  
EMC_D[1] — External memory data line 1.  
P3[2] — General purpose digital input/output pin.  
EMC_D[2] — External memory data line 2.  
P3[3] — General purpose digital input/output pin.  
EMC_D[3] — External memory data line 3.  
P3[4] — General purpose digital input/output pin.  
EMC_D[4] — External memory data line 4.  
P3[5] — General purpose digital input/output pin.  
EMC_D[5] — External memory data line 5.  
I;  
PU  
I;  
PU  
3
E4  
F2  
G1  
I;  
PU  
13  
17  
9
I;  
PU  
12  
I;  
PU  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
27 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 3.  
Pin description …continued  
Not all functions are available on all parts. See Table 2 (Ethernet, USB, LCD, QEI, SD/MMC, DAC pins) and Table 7 (EMC  
pins).  
Symbol  
Description  
[3]  
[3]  
[3]  
[3]  
[3]  
[3]  
[3]  
[3]  
[3]  
P3[6]  
23  
27  
J1  
L1  
F4  
G3  
A6  
A4  
B3  
B2  
A1  
C1  
F1  
16  
19  
-
I;  
PU  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
P3[6] — General purpose digital input/output pin.  
EMC_D[6] — External memory data line 6.  
P3[7] — General purpose digital input/output pin.  
EMC_D[7] — External memory data line 7.  
P3[8] — General purpose digital input/output pin.  
EMC_D[8] — External memory data line 8.  
P3[9] — General purpose digital input/output pin.  
EMC_D[9] — External memory data line 9.  
P3[10] — General purpose digital input/output pin.  
EMC_D[10] — External memory data line 10.  
P3[11] — General purpose digital input/output pin.  
EMC_D[11] — External memory data line 11.  
P3[12] — General purpose digital input/output pin.  
EMC_D[12] — External memory data line 12.  
P3[13] — General purpose digital input/output pin.  
EMC_D[13] — External memory data line 13.  
P3[14] — General purpose digital input/output pin.  
P3[7]  
I;  
PU  
P3[8]  
191 D8  
199 C5  
205 B2  
208 D5  
I;  
PU  
P3[9]  
-
I;  
PU  
P3[10]  
P3[11]  
P3[12]  
P3[13]  
P3[14]  
-
I;  
PU  
-
I;  
PU  
1
D4  
C1  
H2  
-
I;  
PU  
7
-
I;  
PU  
21  
-
I;  
PU  
EMC_D[14] — External memory data line 14. On POR, this pin  
serves as the BOOT0 pin.  
[3]  
[3]  
P3[15]  
P3[16]  
28  
M1  
G4  
-
-
-
I;  
PU  
I/O  
I/O  
I/O  
I/O  
O
P3[15] — General purpose digital input/output pin.  
EMC_D[15] — External memory data line 15.  
P3[16] — General purpose digital input/output pin.  
EMC_D[16] — External memory data line 16.  
PWM0[1] — Pulse Width Modulator 0, output 1.  
U1_TXD — Transmitter output for UART1.  
P3[17] — General purpose digital input/output pin.  
EMC_D[17] — External memory data line 17.  
PWM0[2] — Pulse Width Modulator 0, output 2.  
U1_RXD — Receiver input for UART1.  
137 F17  
143 F15  
151 C15  
I;  
PU  
O
[3]  
[3]  
P3[17]  
P3[18]  
-
-
-
-
I;  
PU  
I/O  
I/O  
O
I
I;  
PU  
I/O  
I/O  
O
P3[18] — General purpose digital input/output pin.  
EMC_D[18] — External memory data line 18.  
PWM0[3] — Pulse Width Modulator 0, output 3.  
U1_CTS — Clear to Send input for UART1.  
I
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
28 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 3.  
Pin description …continued  
Not all functions are available on all parts. See Table 2 (Ethernet, USB, LCD, QEI, SD/MMC, DAC pins) and Table 7 (EMC  
pins).  
Symbol  
Description  
[3]  
[3]  
[3]  
P3[19]  
P3[20]  
P3[21]  
161 B14  
167 A13  
175 C10  
-
-
-
-
-
-
I;  
PU  
I/O  
I/O  
O
P3[19] — General purpose digital input/output pin.  
EMC_D[19] — External memory data line 19.  
PWM0[4] — Pulse Width Modulator 0, output 4.  
U1_DCD — Data Carrier Detect input for UART1.  
P3[20] — General purpose digital input/output pin.  
EMC_D[20] — External memory data line 20.  
PWM0[5] — Pulse Width Modulator 0, output 5.  
U1_DSR — Data Set Ready input for UART1.  
P3[21] — General purpose digital input/output pin.  
EMC_D[21] — External memory data line 21.  
PWM0[6] — Pulse Width Modulator 0, output 6.  
I
I;  
PU  
I/O  
I/O  
O
I
I;  
PU  
I/O  
I/O  
O
O
U1_DTR — Data Terminal Ready output for UART1. Can also  
be configured to be an RS-485/EIA-485 output enable signal for  
UART1.  
[3]  
[3]  
[3]  
[3]  
[3]  
P3[22]  
P3[23]  
P3[24]  
P3[25]  
P3[26]  
195 C6  
-
-
I;  
PU  
I/O  
I/O  
I
P3[22] — General purpose digital input/output pin.  
EMC_D[22] — External memory data line 22.  
PWM0_CAP0 — Capture input for PWM0, channel 0.  
U1_RI — Ring Indicator input for UART1.  
I
65  
58  
56  
55  
T6  
R5  
U2  
T3  
M4 45  
I;  
PU  
I/O  
I/O  
I
P3[23] — General purpose digital input/output pin.  
EMC_D[23] — External memory data line 23.  
PWM1_CAP0 — Capture input for PWM1, channel 0.  
T0_CAP0 — Capture input for Timer 0, channel 0.  
P3[24] — General purpose digital input/output pin.  
EMC_D[24] — External memory data line 24.  
PWM1[1] — Pulse Width Modulator 1, output 1.  
T0_CAP1 — Capture input for Timer 0, channel 1.  
P3[25] — General purpose digital input/output pin.  
EMC_D[25] — External memory data line 25.  
PWM1[2] — Pulse Width Modulator 1, output 2.  
T0_MAT0 — Match output for Timer 0, channel 0.  
P3[26] — General purpose digital input/output pin.  
EMC_D[26] — External memory data line 26.  
PWM1[3] — Pulse Width Modulator 1, output 3.  
T0_MAT1 — Match output for Timer 0, channel 1.  
STCLK — System tick timer clock input.  
I
N3  
40  
I;  
PU  
I/O  
I/O  
O
I
M3 39  
I;  
PU  
I/O  
I/O  
O
O
K7  
38  
I;  
PU  
I/O  
I/O  
O
O
I
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
29 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 3.  
Pin description …continued  
Not all functions are available on all parts. See Table 2 (Ethernet, USB, LCD, QEI, SD/MMC, DAC pins) and Table 7 (EMC  
pins).  
Symbol  
Description  
[3]  
[3]  
[3]  
[3]  
P3[27]  
P3[28]  
P3[29]  
P3[30]  
203 A1  
-
-
-
-
-
-
-
-
I;  
PU  
I/O  
I/O  
O
P3[27] — General purpose digital input/output pin.  
EMC_D[27] — External memory data line 27.  
PWM1[4] — Pulse Width Modulator 1, output 4.  
T1_CAP0 — Capture input for Timer 1, channel 0.  
P3[28] — General purpose digital input/output pin.  
EMC_D[28] — External memory data line 28.  
PWM1[5] — Pulse Width Modulator 1, output 5.  
T1_CAP1 — Capture input for Timer 1, channel 1.  
P3[29] — General purpose digital input/output pin.  
EMC_D[29] — External memory data line 29.  
PWM1[6] — Pulse Width Modulator 1, output 6.  
T1_MAT0 — Match output for Timer 1, channel 0.  
P3[30] — General purpose digital input/output pin.  
EMC_D[30] — External memory data line 30.  
I
5
D2  
F3  
H3  
I;  
PU  
I/O  
I/O  
O
I
11  
19  
I;  
PU  
I/O  
I/O  
O
O
I;  
PU  
I/O  
I/O  
O
U1_RTS — Request to Send output for UART1. Can also be  
configured to be an RS-485/EIA-485 output enable signal for  
UART1.  
O
T1_MAT1 — Match output for Timer 1, channel 1.  
P3[31] — General purpose digital input/output pin.  
EMC_D[31] — External memory data line 31.  
R — Function reserved.  
[3]  
P3[31]  
25  
J3  
-
-
I;  
I/O  
I/O  
-
PU  
O
T1_MAT2 — Match output for Timer 1, channel 2.  
P4[0] to  
P4[31]  
I/O  
Port 4: Port 4 is a 32-bit I/O port with individual direction  
controls for each bit. The operation of port 4 pins depends upon  
the pin function selected via the pin connect block.  
[3]  
[3]  
[3]  
[3]  
[3]  
[3]  
P4[0]  
P4[1]  
P4[2]  
P4[3]  
P4[4]  
P4[5]  
75  
79  
83  
97  
U9  
L6  
52  
I;  
PU  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
P4[0] — General purpose digital input/output pin.  
EMC_A[0] — External memory address line 0.  
P4[1] — General purpose digital input/output pin.  
EMC_A[1] — External memory address line 1.  
P4[2] — General purpose digital input/output pin.  
EMC_A[2] — External memory address line 2.  
P4[3] — General purpose digital input/output pin.  
EMC_A[3] — External memory address line 3.  
P4[4] — General purpose digital input/output pin.  
EMC_A[4] — External memory address line 4.  
P4[5] — General purpose digital input/output pin.  
EMC_A[5] — External memory address line 5.  
U10 M7 55  
T11 M8 58  
I;  
PU  
I;  
PU  
U16 K9  
68  
I;  
PU  
103 R15 P13 72  
107 R16 H10 74  
I;  
PU  
I;  
PU  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
30 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 3.  
Pin description …continued  
Not all functions are available on all parts. See Table 2 (Ethernet, USB, LCD, QEI, SD/MMC, DAC pins) and Table 7 (EMC  
pins).  
Symbol  
Description  
[3]  
[3]  
[3]  
[3]  
[3]  
[3]  
[3]  
[3]  
[3]  
[3]  
[3]  
[3]  
[3]  
[3]  
[3]  
P4[6]  
113 M14 K10 78  
121 L16 K12 84  
127 J17 J11 88  
131 H17 H12 91  
135 G17 G12 94  
145 F14 F11 101  
149 C16 F10 104  
155 B16 B14 108  
I;  
PU  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
P4[6] — General purpose digital input/output pin.  
EMC_A[6] — External memory address line 6.  
P4[7] — General purpose digital input/output pin.  
EMC_A[7] — External memory address line 7.  
P4[8] — General purpose digital input/output pin.  
EMC_A[8] — External memory address line 8.  
P4[9] — General purpose digital input/output pin.  
EMC_A[9] — External memory address line 9.  
P4[10] — General purpose digital input/output pin.  
EMC_A[10] — External memory address line 10.  
P4[11] — General purpose digital input/output pin.  
EMC_A[11] — External memory address line 11.  
P4[12] — General purpose digital input/output pin.  
EMC_A[12] — External memory address line 12.  
P4[13] — General purpose digital input/output pin.  
EMC_A[13] — External memory address line 13.  
P4[14] — General purpose digital input/output pin.  
EMC_A[14] — External memory address line 14.  
P4[15] — General purpose digital input/output pin.  
EMC_A[15] — External memory address line 15.  
P4[16] — General purpose digital input/output pin.  
EMC_A[16] — External memory address line 16.  
P4[17] — General purpose digital input/output pin.  
EMC_A[17] — External memory address line 17.  
P4[18] — General purpose digital input/output pin.  
EMC_A[18] — External memory address line 18.  
P4[19] — General purpose digital input/output pin.  
EMC_A[19] — External memory address line 19.  
P4[20] — General purpose digital input/output pin.  
EMC_A[20] — External memory address line 20.  
P4[7]  
I;  
PU  
P4[8]/  
P4[9]  
I;  
PU  
I;  
PU  
P4[10]  
P4[11]  
P4[12]  
P4[13]  
P4[14]  
P4[15]  
P4[16]  
P4[17]  
P4[18]  
P4[19]  
P4[20]  
I;  
PU  
I;  
PU  
I;  
PU  
I;  
PU  
159 B15 E8  
110  
I;  
PU  
173 A11 C10 120  
I;  
PU  
101 U17 N12  
104 P14 N13  
105 P15 P14  
111 P16 M14  
-
-
-
-
-
I;  
PU  
I;  
PU  
I;  
PU  
I;  
PU  
109 R17  
-
I;  
PU  
I2C2_SDA — I2C2 data input/output ((this pin does not use a  
specialized I2C pad).  
I/O  
SSP1_SCK — Serial Clock for SSP1.  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
31 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 3.  
Pin description …continued  
Not all functions are available on all parts. See Table 2 (Ethernet, USB, LCD, QEI, SD/MMC, DAC pins) and Table 7 (EMC  
pins).  
Symbol  
Description  
[3]  
P4[21]  
115 M15  
-
-
I;  
PU  
I/O  
I/O  
I/O  
P4[21] — General purpose digital input/output pin.  
EMC_A[21] — External memory address line 21.  
I2C2_SCL — I2C2 clock input/output (this pin does not use a  
specialized I2C pad).  
I/O  
I/O  
I/O  
O
SSP1_SSEL — Slave Select for SSP1.  
[3]  
[3]  
P4[22]  
P4[23]  
123 K14  
129 J15  
-
-
-
-
I;  
PU  
P4[22] — General purpose digital input/output pin.  
EMC_A[22] — External memory address line 22.  
U2_TXD — Transmitter output for UART2.  
SSP1_MISO — Master In Slave Out for SSP1.  
P4[23] — General purpose digital input/output pin.  
EMC_A[23] — External memory address line 23.  
U2_RXD — Receiver input for UART2.  
I/O  
I/O  
I/O  
I
I;  
PU  
I/O  
I/O  
O
SSP1_MOSI — Master Out Slave In for SSP1.  
P4[24] — General purpose digital input/output pin.  
EMC_OE — LOW active Output Enable signal.  
P4[25] — General purpose digital input/output pin.  
EMC_WE — LOW active Write Enable signal.  
P4[26] — General purpose digital input/output pin.  
EMC_BLS0 — LOW active Byte Lane select signal 0.  
P4[27] — General purpose digital input/output pin.  
EMC_BLS1 — LOW active Byte Lane select signal 1.  
P4 [28] — General purpose digital input/output pin.  
EMC_BLS2 — LOW active Byte Lane select signal 2.  
U3_TXD — Transmitter output for UART3.  
T2_MAT0 — Match output for Timer 2, channel 0.  
R — Function reserved.  
[3]  
[3]  
[3]  
[3]  
[3]  
P4[24]  
P4[25]  
P4[26]  
P4[27]  
P4[28]  
183 B8  
179 B9  
C8  
D9  
127  
I;  
PU  
124  
I;  
PU  
I/O  
O
119 L15 K13  
139 G15 F14  
-
-
I;  
PU  
I/O  
O
I;  
PU  
I/O  
O
170 C11 D10 118  
I;  
PU  
I/O  
O
O
O
-
O
LCD_VD[6] — LCD data.  
O
LCD_VD[10] — LCD data.  
O
LCD_VD[2] — LCD data.  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
32 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 3.  
Pin description …continued  
Not all functions are available on all parts. See Table 2 (Ethernet, USB, LCD, QEI, SD/MMC, DAC pins) and Table 7 (EMC  
pins).  
Symbol  
Description  
[3]  
P4[29]  
176 B10 B9  
122  
I;  
PU  
I/O  
O
P4[29] — General purpose digital input/output pin.  
EMC_BLS3 — LOW active Byte Lane select signal 3.  
U3_RXD — Receiver input for UART3.  
I
O
T2_MAT1 — Match output for Timer 2, channel 1.  
I/O  
I2C2_SCL — I2C2 clock input/output (this pin does not use a  
specialized I2C pad).  
O
LCD_VD[7] — LCD data.  
O
LCD_VD[11] — LCD data.  
O
LCD_VD[3] — LCD data.  
[3]  
[3]  
P4[30]  
187 B7  
193 A4  
C7  
E7  
130  
134  
I;  
PU  
I/O  
O
P4[30] — General purpose digital input/output pin.  
EMC_CS0 — LOW active Chip Select 0 signal.  
P4[31] — General purpose digital input/output pin.  
EMC_CS1 — LOW active Chip Select 1 signal.  
P4[31]  
I;  
PU  
I/O  
O
P5[0] to P5[4]  
I/O  
Port 5: Port 5 is a 5-bit I/O port with individual direction controls  
for each bit. The operation of port 5 pins depends upon the pin  
function selected via the pin connect block.  
[3]  
P5[0]  
P5[1]  
P5[2]  
9
F4  
J4  
E5  
H1  
6
I;  
PU  
I/O  
I/O  
I/O  
O
P5[0] — General purpose digital input/output pin.  
EMC_A[24] — External memory address line 24.  
SSP2_MOSI — Master Out Slave In for SSP2.  
T2_MAT2 — Match output for Timer 2, channel 2.  
P5[1] — General purpose digital input/output pin.  
EMC_A[25] — External memory address line 25.  
SSP2_MISO — Master In Slave Out for SSP2.  
T2_MAT3 — Match output for Timer 2, channel 3.  
P5[2] — General purpose digital input/output pin.  
R — Function reserved.  
[3]  
30  
21  
I;  
PU  
I/O  
I/O  
I/O  
O
[11]  
117 L14 L12 81  
<tb I/O  
d>  
-
-
R — Function reserved.  
O
-
T3_MAT2 — Match output for Timer 3, channel 2.  
R — Function reserved.  
I/O  
I2C0_SDA — I2C0 data input/output (this pin uses a specialized  
I2C pad that supports I2C Fast Mode Plus).  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
33 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 3.  
Pin description …continued  
Not all functions are available on all parts. See Table 2 (Ethernet, USB, LCD, QEI, SD/MMC, DAC pins) and Table 7 (EMC  
pins).  
Symbol  
Description  
[11]  
P5[3]  
141 G14 G10 98  
<tb I/O  
P5[3] — General purpose digital input/output pin.  
R — Function reserved.  
d>  
-
-
R — Function reserved.  
-
R — Function reserved.  
I
U4_RXD — Receiver input for USART4.  
I/O  
I2C0_SCL — I2C0 clock input/output (this pin uses a  
specialized I2C pad that supports I2C Fast Mode Plus.  
[3]  
P5[4]  
206 C3  
C4  
B1  
143  
I;  
PU  
I/O  
O
-
P5[4] — General purpose digital input/output pin.  
U0_OE — RS-485/EIA-485 output enable signal for UART0.  
R — Function reserved.  
O
O
T3_MAT3 — Match output for Timer 3, channel 3.  
U4_TXD — Transmitter output for USART4 (input/output in  
smart card mode).  
[3]  
JTAG_TDO  
(SWO)  
2
D3  
1
O
JTAG_TDO (SWO) — Test Data Out for JTAG interface. Also  
used as Serial wire trace output.  
[3]  
[3]  
JTAG_TDI  
4
6
C2  
E3  
C3  
C2  
3
4
I
I
JTAG_TDI — Test Data In for JTAG interface.  
JTAG_TMS  
(SWDIO)  
JTAG_TMS (SWDIO) — Test Mode Select for JTAG interface.  
Also used as Serial wire debug data input/output.  
[3]  
[3]  
JTAG_TRST  
8
D1  
E2  
D4  
D2  
5
7
I
I
JTAG_TRST — Test Reset for JTAG interface.  
JTAG_TCK  
(SWDCLK)  
10  
JTAG_TCK (SWDCLK) — Test Clock for JTAG interface. This  
clock must be slower than 1 /6 of the CPU clock (CCLK) for the  
JTAG interface to operate. Also used as serial wire clock.  
[12]  
RESET  
35  
29  
M2  
K3  
J1  
24  
20  
I
External reset input. A LOW on this pin resets the device,  
causing I/O ports and peripherals to take on their default states,  
and processor execution to begin at address 0. This pin includes  
a 20 ns input glitch filter.  
[3]  
RSTOUT  
H2  
O
Reset status output. A LOW output on this pin indicates that the  
device is in the reset state, for any reason. This reflects the  
RESET input pin and all internal reset sources.  
[13]  
RTC_ALARM 37  
N1  
K2  
L2  
H5  
J2  
26  
23  
25  
37  
27  
O
I
RTC_ALARM — RTC controlled output. This is a 1.8 V pin. It  
goes HIGH when a RTC alarm is generated.  
[14]  
[15]  
RTCX1  
RTCX2  
USB_D2  
VBAT  
34  
36  
52  
38  
Input to the RTC 32 kHz ultra-low power oscillator circuit.  
Output from the RTC 32 kHz ultra-low power oscillator circuit.  
USB_D2 — USB port 2 bidirectional Dline.  
[14]  
[15]  
J3  
O
[9]  
U1  
M3  
N2  
K1  
<tb I/O  
d>  
I
RTC power supply: 3.3 V on this pin supplies power to the  
RTC.  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
34 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 3.  
Pin description …continued  
Not all functions are available on all parts. See Table 2 (Ethernet, USB, LCD, QEI, SD/MMC, DAC pins) and Table 7 (EMC  
pins).  
Symbol  
Description  
VDD(REG)(3V3)  
26, H4, G1, 18,  
86, P11, N9, 60,  
S
S
3.3 V regulator supply voltage: This is the power supply for  
the on-chip voltage regulator that supplies internal logic.  
174 D11 E9  
121  
VDDA  
20 G4 F2  
14  
Analog 3.3 V pad supply voltage: This can be connected to  
the same supply as VDD(3V3) but should be isolated to minimize  
noise and error. This voltage is used to power the ADC and  
DAC. Note: this pin should be tied to 3.3V if the ADC and  
DAC are not used.  
VDD(3V3)  
15, G3, E2, 41,  
60, P6, L4, 62,  
71, P8, K8, 77,  
89, U13, L11, 102,  
112, P17, J14, 114,  
125, K16, E12, 138  
146, C17, E10,  
165, B13, C5  
S
3.3 V supply voltage: This is the power supply voltage for I/O  
other than pins in the VBAT domain.  
181, C9,  
198 D7  
VREFP  
24  
K1  
G2  
17  
S
ADC positive reference voltage: This should be the same  
voltage as VDDA, but should be isolated to minimize noise and  
error. The voltage level on this pin is used as a reference for  
ADC and DAC. Note: this pin should be tied to 3.3V if the  
ADC and DAC are not used.  
VSS  
33, L3,  
H4, 44,  
G
Ground: 0 V reference for digital IO pins.  
63, T5, P4, 65,  
77, R9, L9, 79,  
93, P12, L13, 103,  
114, N16, G13, 117,  
133, H14, D13, 139  
148, E15, C11,  
169, A12, B4  
189, B6,  
200 A2  
VSSREG  
32, D12, H3, 22,  
84, K4, L8, 59,  
172 P10 A10 119  
G
G
Ground: 0 V reference for internal logic.  
VSSA  
22  
J2  
F3  
15  
Analog ground: 0 V power supply and reference for the ADC  
and DAC. This should be the same voltage as VSS, but should  
be isolated to minimize noise and error.  
[14]  
[16]  
XTAL1  
XTAL2  
44  
46  
M4  
N4  
L2  
31  
33  
I
Input to the oscillator circuit and internal clock generator circuits.  
[14]  
[16]  
K4  
O
Output from the oscillator amplifier.  
[1] PU = internal pull-up enabled (for VDD(REG)(3V3) = 3.3 V, pulled up to 3.3 V); IA = inactive, no pull-up/down enabled; F = floating; floating  
pins, if not used, should be tied to ground or power to minimize power consumption.  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
35 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
[2] I = Input; O = Output; G = Ground; S = Supply.  
[3] 5 V tolerant pad providing digital I/O functions with TTL levels and hysteresis.  
[4] <tbd>  
[5] 5 V tolerant pad providing digital I/O functions with TTL levels and hysteresis and analog input. When configured as a ADC input, digital  
section of the pad is disabled.  
[6] <tbd>  
[7] 5 V tolerant pad providing digital I/O with TTL levels and hysteresis and analog output function. When configured as the DAC output,  
digital section of the pad is disabled.  
[8] Open-drain 5 V tolerant digital I/O pad, compatible with I2C-bus 400 kHz specification. It requires an external pull-up to provide output  
functionality. When power is switched off, this pin connected to the I2C-bus is floating and does not disturb the I2C lines. Open-drain  
configuration applies to all functions on this pin.  
[9] Not 5 V tolerant. Pad provides digital I/O and USB functions. It is designed in accordance with the USB specification, revision 2.0  
(Full-speed and Low-speed mode only).  
[10] 5 V tolerant pad with 5 ns glitch filter providing digital I/O functions with TTL levels and hysteresis.  
[11] <tbd>  
[12] 5 V tolerant pad with 20 ns glitch filter providing digital I/O function with TTL levels and hysteresis.  
[13] <tbd>  
[14] Pad provides special analog functionality.  
[15] If the RTC is not used, these pins can be left floating.  
[16] When the main oscillator is not used, connect XTAL1 and XTAL2 as follows: XTAL1 can be left floating or can be grounded (grounding  
is preferred to reduce susceptibility to noise). XTAL2 should be left floating.  
Table 4.  
Pin allocation table TFBGA208  
Not all functions are available on all parts. See Table 2 and Table 7 (EMC pins).  
Ball Symbol  
Row A  
Ball Symbol  
Ball Symbol  
Ball Symbol  
1
P3[27]  
P1[4]  
2
VSS  
3
P1[0]  
P1[14]  
P4[15]  
P0[8]  
-
4
P4[31]  
P1[15]  
VSS  
5
6
P1[9]  
P1[3]  
P1[11]  
-
7
8
9
P1[17]  
P3[20]  
P1[5]  
10  
14  
11  
15  
12  
16  
13  
P1[12]  
-
17  
Row B  
1
P3[2]  
2
P3[10]  
VSS  
3
P3[1]  
P4[30]  
P1[6]  
P4[14]  
-
4
P3[0]  
P4[24]  
P0[4]  
P4[13]  
-
5
P1[1]  
6
7
8
9
P4[25]  
VDD(3V3)  
P2[0]  
10  
14  
P4[29]  
P3[19]  
-
11  
15  
12  
16  
13  
17  
Row C  
1
P3[13]  
P3[9]  
2
JTAG_TDI  
P3[22]  
P3[21]  
P0[9]  
3
P5[4]  
P1[8]  
P4[28]  
P3[18]  
-
4
P0[2]  
P1[10]  
P0[5]  
P4[12]  
-
5
6
7
8
9
VDD(3V3)  
P0[7]  
10  
14  
11  
15  
12  
16  
13  
17  
VDD(3V3  
)
-
Row D  
1
5
JTAG_TRST  
P3[11]  
2
6
P3[28]  
P0[3]  
3
7
JTAG_TDO (SWO)  
VDD(3V3)  
4
8
P3[12]  
P3[8]  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
36 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 4.  
Pin allocation table TFBGA208  
Not all functions are available on all parts. See Table 2 and Table 7 (EMC pins).  
Ball Symbol  
Ball Symbol  
Ball Symbol  
Ball Symbol  
9
P1[2]  
P0[6]  
P2[4]  
10  
14  
P1[16]  
P1[7]  
-
11  
15  
VDD(REG)(3V3)  
12  
16  
VSSREG  
P1[13]  
-
13  
P2[2]  
-
17  
Row E  
1
P0[26]  
2
JTAG_TCK  
(SWDCLK)  
3
JTAG_TMS (SWDIO)  
4
P3[3]  
5
-
6
-
7
-
8
-
9
-
10  
14  
-
11  
15  
-
12  
16  
-
13  
-
P2[1]  
-
VSS  
-
P2[3]  
-
17  
P2[6]  
Row F  
1
P0[25]  
2
P3[4]  
3
P3[29]  
4
P5[0]  
5
-
6
-
7
-
8
-
9
-
10  
14  
-
11  
15  
-
12  
16  
-
13  
-
P4[11]  
-
P3[17]  
-
P2[5]  
-
17  
P3[16]  
Row G  
1
P3[5]  
2
P0[24]  
3
VDD(3V3)  
4
VDDA  
5
-
6
-
7
-
8
-
9
-
10  
14  
-
11  
15  
-
12  
16  
-
13  
-
P5[3]  
-
P4[27]  
-
P2[7]  
-
17  
P4[10]  
Row H  
1
P0[23]  
2
P3[14]  
3
P3[30]  
4
VDD(REG)(3V3)  
5
-
6
-
7
-
8
-
9
-
10  
14  
-
11  
15  
-
12  
16  
-
13  
-
VSS  
-
P2[8]  
-
P2[9]  
-
17  
P4[9]  
Row J  
1
P3[6]  
2
VSSA  
3
P3[31]  
4
P5[1]  
5
-
-
6
-
7
-
8
-
9
10  
14  
-
11  
15  
-
12  
16  
-
13  
P0[16]  
-
P4[23]  
-
P0[15]  
-
17  
P4[8]  
Row K  
1
VREFP  
-
2
RTCX1  
P4[22]  
-
3
RSTOUT  
P0[18]  
-
4
VSSREG  
VDD(3V3)  
-
13  
14  
15  
16  
17  
P0[17]  
Row L  
1
P3[7]  
2
RTCX2  
3
VSS  
4
P2[30]  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
37 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 4.  
Pin allocation table TFBGA208  
Not all functions are available on all parts. See Table 2 and Table 7 (EMC pins).  
Ball Symbol  
Ball Symbol  
Ball Symbol  
Ball Symbol  
5
-
6
-
7
-
8
-
9
-
10  
14  
-
11  
15  
-
12  
16  
-
13  
-
P5[2]  
-
P4[26]  
-
P4[7]  
-
17  
P0[19]  
Row M  
1
P3[15]  
2
RESET  
3
VBAT  
4
XTAL1  
5
-
6
-
7
-
8
-
9
-
10  
14  
-
11  
15  
-
12  
16  
-
13  
-
P4[6]  
-
P4[21]  
-
P0[21]  
-
17  
P0[20]  
Row N  
1
RTC_ALARM  
2
P2[31]  
3
P2[29]  
4
XTAL2  
5
-
6
-
7
-
8
-
9
-
10  
14  
-
11  
15  
-
12  
16  
-
13  
-
P2[12  
-
P2[10]  
-
VSS  
-
17  
P0[22]  
Row P  
1
P1[31]  
P2[24]  
P1[23]  
P2[15]  
VDD(3V3)  
2
P1[30]  
VDD(3V3)  
VSSREG  
P4[17]  
-
3
P2[27]  
P1[18]  
VDD(REG)(3V3)  
P4[18]  
-
4
P2[28]  
VDD(3V3)  
VSS  
5
6
7
8
9
10  
14  
11  
15  
12  
16  
13  
P4[19]  
-
17  
Row R  
1
P0[12]  
P3[24]  
VSS  
2
P0[13]  
P0[30]  
P1[26]  
P0[11]  
-
3
P0[28]  
P2[19]  
P2[16]  
P4[4]  
-
4
P2[25]  
P1[21]  
P2[14]  
P4[5]  
-
5
6
7
8
9
10  
14  
11  
15  
12  
16  
13  
P2[17]  
P4[20]  
17  
Row T  
1
P0[27]  
VSS  
2
P0[31]  
P3[23]  
P1[25]  
P0[1]  
-
3
P3[26]  
P0[14]  
P4[2]  
P0[10]  
-
4
P2[26]  
P2[20]  
P1[27]  
P2[13]  
-
5
6
7
8
9
P1[24]  
P1[28]  
P2[11]  
10  
14  
11  
15  
12  
16  
13  
17  
Row U  
1
USB_D-2  
P2[23]  
2
P3[25]  
P1[19]  
P4[1]  
P1[29]  
-
3
P2[18]  
P1[20]  
P2[21]  
P0[0]  
-
4
P0[29]  
P1[22]  
P2[22]  
P4[3]  
-
5
6
7
8
9
P4[0]  
10  
14  
11  
15  
12  
16  
13  
17  
VDD(3V3)  
P4[16]/EMC_A[16]  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
38 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 5.  
Pin allocation table TFBGA180  
Not all functions are available on all parts. See Table 2 and Table 7 (EMC pins).  
Ball Symbol  
Row A  
Ball Symbol  
Ball Symbol  
Ball Symbol  
5
P1[1]  
P1[3]  
P0[9]  
6
P3[8]  
7
P1[10]  
P0[4]  
-
8
P1[15]  
P1[11]  
-
9
10  
14  
VSSREG  
P1[12]  
11  
12  
13  
Row B  
1
JTAG_TDO_SWO  
P1[0]  
2
P3[11]  
P1[8]  
3
P3[10]  
P1[2]  
P0[5]  
-
4
VSS  
P1[16]  
P0[7]  
-
5
6
7
8
9
P4[29]  
10  
14  
P1[6]  
11  
12  
13  
P1[5]  
P4[13]  
Row C  
1
P3[13]  
VDD(3V3)  
P1[17]  
P1[7]  
2
JTAG_TMS_SWDIO  
3
JTAG_TDI  
4
P5[4]  
P4[24]  
P0[8]  
-
5
6
P1[4]  
P4[15]  
P2[1]  
7
P4[30]  
VSS  
-
8
9
10  
14  
11  
12  
13  
Row D  
1
P0[26]  
P0[2]  
P4[25]  
VSS  
2
JTAG_TCK_SWDCLK  
3
P3[4]  
P1[9]  
P0[6]  
-
4
JTAG_TRST  
5
6
P3[0]  
7
8
P1[14]  
P2[0]  
-
9
10  
14  
P4[28]  
P1[13]  
11  
12  
13  
Row E  
1
P0[24]  
2
VDD(3V3)  
P3[1]  
3
P3[5]  
P4[31]  
P2[2]  
-
4
P0[25]  
P4[14]  
VDD(3V3)  
-
5
P5[0]  
6
7
8
9
VDD(REG)(3V3)  
P2[3]  
10  
14  
VDD(3V3)  
P2[4]  
11  
12  
13  
Row F  
1
P3[14]  
P0[23]  
-
2
VDDA  
-
3
VSSA  
4
P3[6]  
5
6
7
-
8
-
9
10  
14  
P4[12]  
P4[27]  
11  
P4[11]  
-
12  
P2[5]  
-
13  
P2[6]  
Row G  
1
VDD(REG)(3V3)  
2
VREFP  
-
3
P3[7]  
4
P3[15]  
5
P3[3]  
-
6
7
-
8
-
9
10  
14  
P5[3]  
P2[8]  
11  
P2[7]  
-
12  
P4[10]  
-
13  
VSS  
Row H  
1
P5[1]  
2
RSTOUT  
-
3
VSSREG  
4
VSS  
5
RTC_ALARM  
6
7
-
8
-
9
-
10  
14  
P4[5]  
P0[16]  
11  
P2[9]  
-
12  
P4[9]  
-
13  
P0[15]  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
39 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 5.  
Pin allocation table TFBGA180  
Not all functions are available on all parts. See Table 2 and Table 7 (EMC pins).  
Ball Symbol  
Row J  
Ball Symbol  
Ball Symbol  
Ball Symbol  
1
RESET  
P0[13]  
-
2
RTCX1  
-
3
RTCX2  
4
P0[12]  
5
6
7
-
8
-
9
10  
14  
P0[19]  
VDD(3V3)  
11  
P4[8]  
-
12  
P0[17]  
-
13  
P0[18]  
Row K  
1
VBAT  
P0[29]  
P4[3]  
2
P1[31]  
P1[20]  
P4[6]  
3
P1[30]  
P3[26]  
P0[21]  
-
4
XTAL2  
VDD(3V3)  
P4[7]  
-
5
6
7
8
9
10  
14  
11  
12  
13  
P4[26]  
P0[20]  
Row L  
1
P2[29]  
P1[18]  
VSS  
2
XTAL1  
P4[0]  
3
P0[27]  
P1[25]  
VDD(3V3)  
-
4
VDD(3V3)  
VSSREG  
P5[2]  
-
5
6
7
8
9
10  
14  
P0[10]  
P0[22]  
11  
12  
13  
VSS  
Row M  
1
P0[28]  
P0[14]  
P1[27]  
P2[10]  
2
P2[28]  
P1[22]  
P0[0]  
3
P3[25]  
P4[1]  
P2[13]  
-
4
P3[23]  
P4[2]  
P2[11]  
-
5
6
7
8
9
10  
14  
11  
12  
13  
P4[19]  
Row N  
1
P0[31]  
2
USB_D-2  
P1[21]  
3
P3[24]  
P1[23]  
P0[1]  
-
4
P0[30]  
P2[21]  
P4[16]  
-
5
P2[19]  
6
7
8
9
VDD(REG)(3V3)  
P4[17]/EMC_A[17]  
10  
14  
P1[29]  
11  
12  
13  
P2[12]  
Row P  
1
P2[24]  
P1[19]  
P2[16]  
P4[4]  
2
P2[25]  
P2[20]  
P1[28]  
P4[18]  
3
P2[18]  
P1[24]  
P2[17]  
-
4
VSS  
5
6
7
8
P1[26]  
P0[11]  
-
9
10  
14  
11  
12  
13  
7. Functional description  
7.1 Architectural overview  
The ARM Cortex-M3 includes three AHB-Lite buses: the system bus, the I-code bus, and  
the D-code bus. The I-code and D-code core buses are faster than the system bus and  
are used similarly to Tightly Coupled Memory (TCM) interfaces: one bus dedicated for  
instruction fetch (I-code) and one bus for data access (D-code). The use of two core  
buses allows for simultaneous operations if concurrent operations target different devices.  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
40 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
The LPC178x/7x use a multi-layer AHB matrix to connect the ARM Cortex-M3 buses and  
other bus masters to peripherals in a flexible manner that optimizes performance by  
allowing peripherals that are on different slaves ports of the matrix to be accessed  
simultaneously by different bus masters.  
7.2 ARM Cortex-M3 processor  
The ARM Cortex-M3 is a general purpose, 32-bit microprocessor, which offers high  
performance and very low power consumption. The ARM Cortex-M3 offers many new  
features, including a Thumb-2 instruction set, low interrupt latency, hardware multiply and  
divide, interruptable/continuable multiple load and store instructions, automatic state save  
and restore for interrupts, tightly integrated interrupt controller with wake-up interrupt  
controller, and multiple core buses capable of simultaneous accesses.  
Pipeline techniques are employed so that all parts of the processing and memory systems  
can operate continuously. Typically, while one instruction is being executed, its successor  
is being decoded, and a third instruction is being fetched from memory.  
The ARM Cortex-M3 processor is described in detail in the Cortex-M3 Technical  
Reference Manual that can be found on official ARM website.  
7.3 On-chip flash program memory  
The LPC178x/7x contain up to 512 kB of on-chip flash program memory. A new two-port  
flash accelerator maximizes performance for use with the two fast AHB-Lite buses.  
7.4 EEPROM  
The LPC178x/7x contains up to 4032 byte of on-chip byte-erasable and  
byte-programmable EEPROM data memory.  
7.5 On-chip SRAM  
The LPC178x/7x contain a total of up to 96 kB on-chip static RAM data memory. This  
includes the main 64 kB SRAM, accessible by the CPU and DMA controller on a  
higher-speed bus, and up to two additional 16 kB each SRAM blocks situated on a  
separate slave port on the AHB multilayer matrix.  
This architecture allows CPU and DMA accesses to be spread over three separate RAMs  
that can be accessed simultaneously.  
7.6 Memory Protection Unit (MPU)  
The LPC178x/7x have a Memory Protection Unit (MPU) which can be used to improve the  
reliability of an embedded system by protecting critical data within the user application.  
The MPU allows separating processing tasks by disallowing access to each other's data,  
disabling access to memory regions, allowing memory regions to be defined as read-only  
and detecting unexpected memory accesses that could potentially break the system.  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
41 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
The MPU separates the memory into distinct regions and implements protection by  
preventing disallowed accesses. The MPU supports up to eight regions each of which can  
be divided into eight subregions. Accesses to memory locations that are not defined in the  
MPU regions, or not permitted by the region setting, will cause the Memory Management  
Fault exception to take place.  
7.7 Memory map  
Table 6.  
Address range General Use  
0x0000 0000 to On-chip non-volatile 0x0000 0000 - 0x0007 FFFF  
LPC178x/177x memory usage and details  
Address range details and description  
For devices with 512 kB of flash memory.  
For devices with 256 kB of flash memory.  
For devices with 128 kB of flash memory.  
For devices with 64 kB of flash memory.  
For devices with 64 kB of local SRAM.  
For devices with 32 kB of local SRAM.  
For devices with 16 kB of local SRAM.  
8 kB Boot ROM with flash services.  
Peripheral RAM - bank 0 (first 8 kB)  
Peripheral RAM - bank 0 (second 8 kB)  
Peripheral RAM - bank 1 (16 kB)  
0x1FFF FFFF  
memory  
0x0000 0000 - 0x0003 FFFF  
0x0000 0000 - 0x0001 FFFF  
0x0000 0000 - 0x0000 FFFF  
0x1000 0000 - 0x1000 FFFF  
0x1000 0000 - 0x1000 7FFF  
0x1000 0000 - 0x1000 3FFF  
0x1FFF 0000 - 0x1FFF 1FFF  
0x2000 0000 - 0x2000 1FFF  
0x2002 0000 - 0x2000 3FFF  
0x2000 4000 - 0x2000 7FFF  
0x2008 0000 - 0x200B FFFF  
0x4000 0000 - 0x4007 FFFF  
On-chip SRAM  
Boot ROM  
0x2000 0000 to On-chip SRAM  
0x3FFF FFFF  
(typically used for  
peripheral data)  
AHB peripherals  
See Figure 6 for details  
0x4000 0000 to APB Peripherals  
0x7FFF FFFF  
APB0 Peripherals, up to 32 peripheral blocks of  
16 kB each.  
0x4008 0000 - 0x400F FFFF  
APB1 Peripherals, up to 32 peripheral blocks of  
16 kB each.  
0x8000 0000 to Off-chip Memory via Four static memory chip selects:  
0xDFFF FFFF  
the External Memory  
Controller  
0x8000 0000 - 0x83FF FFFF  
0x9000 0000 - 0x93FF FFFF  
0x9800 0000 - 0x9BFF FFFF  
0x9C00 0000 - 0x9FFF FFFF  
Static memory chip select 0 (up to 64 MB)  
Static memory chip select 1 (up to 64 MB)  
Static memory chip select 2 (up to 64 MB)  
Static memory chip select 3 (up to 64 MB)  
Four dynamic memory chip selects:  
0xA000 0000 - 0xAFFF FFFF  
0xB000 0000 - 0xBFFF FFFF  
Dynamic memory chip select 0 (up to 256MB)  
Dynamic memory chip select 1 (up to 256MB)  
0xC000 0000 - 0xCFFF FFFF Dynamic memory chip select 2 (up to 256MB)  
0xD000 0000 - 0xDFFF FFFF Dynamic memory chip select 3 (up to 256MB)  
0xE000 0000 to Cortex-M3 Private  
0xE000 0000 - 0xE00F FFFF  
Cortex-M3 related functions, includes the NVIC  
and System Tick Timer.  
0xE00F FFFF  
Peripheral Bus  
The LPC178x/7x incorporate several distinct memory regions, shown in the following  
figures. Figure 6 shows the overall map of the entire address space from the user  
program viewpoint following reset. The interrupt vector area supports address remapping.  
The AHB peripheral area is 2 MB in size, and is divided to allow for up to 128 peripherals.  
The APB peripheral area is 1 MB in size and is divided to allow for up to 64 peripherals.  
Each peripheral of either type is allocated 16 kB of space. This allows simplifying the  
address decoding for each peripheral.  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
42 of 117  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
APB1 peripherals  
LPC178x/7x  
reserved  
APB0 peripherals  
31 - 24 reserved  
4 GB  
0x4010 0000  
0x400F C000  
0x4008 0000  
0x4006 0000  
0x4005 C000  
0x4004 C000  
0x4004 8000  
0x4004 4000  
0x4004 0000  
0x4003 C000  
0x4003 8000  
0x4003 4000  
0x4003 0000  
0x4002 C000  
0x4002 8000  
0xFFFF FFFF  
0xE010 0000  
31  
system control  
2
30 - 17 reserved  
I C1  
private peripheral bus  
23  
0xE004 0000  
0xE000 0000  
(1)  
16  
15  
14  
13  
12  
11  
10  
9
SD/MMC  
22 - 19 reserved  
CAN2  
reserved  
0x400C 0000  
0x400B C000  
(1)  
QEI  
18  
17  
16  
15  
14  
13  
12  
11  
10  
(1)  
EMC 4 x dynamic chip select  
motor control PWM  
reserved  
CAN1  
0x400B 8000  
0x400B 4000  
0x400B 0000  
0x400A C000  
0x400A 8000  
0x400A 4000  
0x400A 0000  
0x4009 C000  
0x4009 8000  
0x4009 4000  
0x4009 0000  
0x4008 C000  
0x4008 8000  
0x4008 0000  
0xA000 0000  
0x8000 0000  
CAN common  
CAN AF registers  
(1)  
EMC 4 x static chip select  
reserved  
reserved  
SSP2  
CAN AF RAM  
ADC  
0x4400 0000  
0x4200 0000  
2
I S  
peripheral bit-band alias addressing  
reserved  
(1)  
USART4  
SSP1  
2
I C2  
8
0x4010 0000  
pin connect  
GPIO interrupts  
UART3  
UART2  
timer 3  
timer 2  
7
APB1 peripherals  
0x4008 0000  
0x4000 0000  
0x2900 0000  
6
APB0 peripherals  
reserved  
1 GB  
RTC/event recorder  
+ backup registers  
5
9
0x4002 4000  
0x4002 0000  
0x4001 C000  
0x4001 8000  
0x4001 4000  
0x4001 0000  
0x4000 C000  
0x4000 8000  
0x4000 4000  
0x4000 0000  
4
reserved  
reserved  
reserved  
8
7
6
5
4
3
2
0x2800 0000  
0x2400 0000  
3
DAC  
SSP0  
2
I C0  
2
PWM1  
PWM0  
AHB SRAM bit-band alias addressing  
1 - 0 reserved  
0x2200 0000  
reserved  
AHB peripherals  
reserved  
0x200A 0000  
0x2008 0000  
0x2000 8000  
UART1  
UART0  
timer 1  
(1)  
16 kB AHB SRAM1  
timer 0  
1
0
0x2000 4000  
0x2000 0000  
0x1FFF 2000  
(1)  
WWDT  
16 kB AHB SRAM0  
0.5 GB  
AHB peripherals  
0x200A 0000  
reserved  
7
6
5
4
3
EMC registers  
GPIO  
0x2009 C000  
0x2009 8000  
0x2009 4000  
0x2009 0000  
0x2008 C000  
8 kB boot ROM  
0x1FFF 0000  
0x1001 0000  
reserved  
reserved  
CRC engine  
(1)  
I-code/D-code  
memory space  
64 kB local static RAM  
(1)  
USB  
0x1000 0000  
0x0008 0000  
(1)  
LCD  
reserved  
2
1
0x2008 8000  
0x2008 4000  
(1)  
Ethernet  
(1)  
+ 256 words  
512 kB on-chip flash  
0x0000 0400  
0x0000 0000  
0
GPDMA controller  
active interrupt vectors  
0x2008 0000  
0 GB  
002aaf574  
0x0000 0000  
(1) Not available on all parts. See Table 2 and Table 7.  
Fig 6. LPC178x/7x memory map  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
7.8 Nested Vectored Interrupt Controller (NVIC)  
The NVIC is an integral part of the Cortex-M3. The tight coupling to the CPU allows for low  
interrupt latency and efficient processing of late arriving interrupts.  
7.8.1 Features  
Controls system exceptions and peripheral interrupts.  
In the LPC178x/7x, the NVIC supports 41 vectored interrupts.  
32 programmable interrupt priority levels, with hardware priority level masking.  
Relocatable vector table.  
Non-Maskable Interrupt (NMI).  
Software interrupt generation.  
7.8.2 Interrupt sources  
Each peripheral device has one interrupt line connected to the NVIC but may have several  
interrupt flags. Individual interrupt flags may also represent more than one interrupt  
source.  
Any pin on port 0 and port 2 regardless of the selected function can be programmed to  
generate an interrupt on a rising edge, a falling edge, or both.  
7.9 Pin connect block  
The pin connect block allows selected pins of the microcontroller to have more than one  
function. Configuration registers control the multiplexers to allow connection between the  
pin and the on-chip peripherals.  
Peripherals should be connected to the appropriate pins prior to being activated and prior  
to any related interrupt(s) being enabled. Activity of any enabled peripheral function that is  
not mapped to a related pin should be considered undefined.  
Most pins can also be configured as open-drain outputs or to have a pull-up, pull-down, or  
no resistor enabled.  
7.10 External memory controller  
Remark: Supported memory size and type and EMC bus width vary for different parts  
(see Table 2). The EMC pin configuration for each part is shown in Table 7.  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
44 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 7.  
Part  
External memory controller pin configuration  
Data bus pins Address bus  
pins  
Control pins  
SRAM  
SDRAM  
LPC1788FBD208 EMC_D[31:0] EMC_A[25:0]  
LPC1788FET208 EMC_D[31:0] EMC_A[25:0]  
LPC1788FET180 EMC_D[15:0] EMC_A[19:0]  
EMC_BLS[3:0],  
EMC_CS[3:0],  
EMC_OE, EMC_WE  
EMC_RAS, EMC_CAS, EMC_DYCS[3:0],  
EMC_CLK[1:0], EMC_CKE[3:0],  
EMC_DQM[3:0]  
EMC_BLS[3:0],  
EMC_CS[3:0],  
EMC_OE, EMC_WE  
EMC_RAS, EMC_CAS, EMC_DYCS[3:0],  
EMC_CLK[1:0], EMC_CKE[3:0],  
EMC_DQM[3:0]  
EMC_BLS[1:0],  
EMC_CS[1:0],  
EMC_OE, EMC_WE  
EMC_RAS, EMC_CAS, EMC_DYCS[1:0],  
EMC_CLK[1:0], EMC_CKE[1:0],  
EMC_DQM[1:0]  
LPC1788FBD144 EMC_D[7:0]  
EMC_A[15:0]  
EMC_BLS[3:2],  
EMC_CS[1:0],  
not available  
EMC_OE, EMC_WE  
LPC1787FBD208 EMC_D[31:0] EMC_A[25:0]  
LPC1786FBD208 EMC_D[31:0] EMC_A[25:0]  
LPC1785FBD208 EMC_D[31:0] EMC_A[25:0]  
LPC1778FBD208 EMC_D[31:0] EMC_A[25:0]  
LPC1778FET208 EMC_D[31:0] EMC_A[25:0]  
LPC1778FET180 EMC_D[15:0] EMC_A[19:0]  
EMC_BLS[3:0],  
EMC_CS_[3:0],  
EMC_OE, EMC_WE  
EMC_RAS, EMC_CAS, EMC_DYCS[3:0],  
EMC_CLK[1:0], EMC_CKE[3:0],  
EMC_DQM[3:0]  
EMC_BLS[3:0],  
EMC_CS[3:0],  
EMC_OE, EMC_WE  
EMC_RAS, EMC_CAS, EMC_DYCS[3:0],  
EMC_CLK[1:0], EMC_CKE[3:0],  
EMC_DQM[3:0]  
EMC_BLS[3:0],  
EMC_CS[3:0],  
EMC_OE, EMC_WE  
EMC_RAS, EMC_CAS, EMC_DYCS[3:0],  
EMC_CLK[1:0], EMC_CKE[3:0],  
EMC_DQM[3:0]  
EMC_BLS[3:0],  
EMC_CS[3:0],  
EMC_OE, EMC_WE  
EMC_RAS, EMC_CAS, EMC_DYCS[3:0],  
EMC_CLK[1:0], EMC_CKE[3:0],  
EMC_DQM[3:0]  
EMC_BLS[3:0],  
EMC_CS[3:0],  
EMC_OE, EMC_WE  
EMC_RAS, EMC_CAS, EMC_DYCS[3:0],  
EMC_CLK[1:0], EMC_CKE[3:0],  
EMC_DQM[3:0]  
EMC_BLS[1:0],  
EMC_CS[1:0],  
EMC_OE, EMC_WE  
EMC_RAS, EMC_CAS, EMC_DYCS[1:0],  
EMC_CLK[1:0], EMC_CKE[1:0],  
EMC_DQM[1:0]  
LPC1778FBD144 EMC_D[7:0]  
EMC_A[15:0]  
EMC_CS[1:0],  
not available  
EMC_OE, EMC_WE  
LPC1777FBD208 EMC_D[31:0] EMC_A[25:0]  
LPC1776FBD208 EMC_D[31:0] EMC_A[25:0]  
LPC1776FET180 EMC_D[15:0] EMC_A[19:0]  
LPC1774FBD208 EMC_D[31:0] EMC_A[25:0]  
EMC_BLS[3:0],  
EMC_CS[3:0],  
EMC_OE, EMC_WE  
EMC_RAS, EMC_CAS, EMC_DYCS[3:0],  
EMC_CLK[1:0], EMC_CKE[3:0],  
EMC_DQM[3:0]  
EMC_BLS[3:0],  
EMC_CS[3:0],  
EMC_OE, EMC_WE  
EMC_RAS, EMC_CAS, EMC_DYCS[3:0],  
EMC_CLK[1:0], EMC_CKE[3:0],  
EMC_DQM[3:0]  
EMC_BLS[3:0],  
EMC_CS[3:0],  
EMC_OE, EMC_WE  
EMC_RAS, EMC_CAS, EMC_DYCS[1:0],  
EMC_CLK[1:0], EMC_CKE[1:0],  
EMC_DQM[1:0]  
EMC_BLS[3:0],  
EMC_CS[3:0],  
EMC_OE, EMC_WE  
EMC_RAS, EMC_CAS, EMC_DYCS[3:0],  
EMC_CLK[1:0], EMC_CKE[3:0],  
EMC_DQM[3:0]  
LPC1774FBD144 EMC_D[7:0]  
EMC_A[15:0]  
EMC_CS[1:0],  
not available  
EMC_OE, EMC_WE  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
45 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
The LPC178x/7x EMC is an ARM PrimeCell MultiPort Memory Controller peripheral  
offering support for asynchronous static memory devices such as RAM, ROM, and flash.  
In addition, it can be used as an interface with off-chip memory-mapped devices and  
peripherals. The EMC is an Advanced Microcontroller Bus Architecture (AMBA) compliant  
peripheral.  
See Table 6 for EMC memory access.  
7.10.1 Features  
Dynamic memory interface support including single data rate SDRAM.  
Asynchronous static memory device support including RAM, ROM, and flash, with or  
without asynchronous page mode.  
Low transaction latency.  
Read and write buffers to reduce latency and to improve performance.  
8/16/32 data and 16/20/26 address lines wide static memory support.  
16 bit and 32 bit wide chip select SDRAM memory support.  
Static memory features include:  
Asynchronous page mode read  
Programmable Wait States  
Bus turnaround delay  
Output enable and write enable delays  
Extended wait  
Four chip selects for synchronous memory and four chip selects for static memory  
devices.  
Power-saving modes dynamically control EMC_CKE and EMC_CLK outputs to  
SDRAMs.  
Dynamic memory self-refresh mode controlled by software.  
Controller supports 2048 (A0 to A10), 4096 (A0 to A11), and 8192 (A0 to A12) row  
address synchronous memory parts. That is typical 512 MB, 256 MB, and 128 MB  
parts, with 4, 8, 16, or 32 data bits per device.  
Separate reset domains allow the for auto-refresh through a chip reset if desired.  
Note: Synchronous static memory devices (synchronous burst mode) are not supported.  
7.11 General purpose DMA controller  
The GPDMA is an AMBA AHB compliant peripheral allowing selected peripherals to have  
DMA support.  
The GPDMA enables peripheral-to-memory, memory-to-peripheral,  
peripheral-to-peripheral, and memory-to-memory transactions. The source and  
destination areas can each be either a memory region or a peripheral and can be  
accessed through the AHB master. The GPDMA controller allows data transfers between  
the various on-chip SRAM areas and supports the SD/MMC card interface, all SSPs, the  
I2S, all UARTs, the A/D Converter, and the D/A Converter peripherals. DMA can also be  
triggered by selected timer match conditions. Memory-to-memory transfers and transfers  
to or from GPIO are supported.  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
46 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
7.11.1 Features  
Eight DMA channels. Each channel can support an unidirectional transfer.  
16 DMA request lines.  
Single DMA and burst DMA request signals. Each peripheral connected to the DMA  
Controller can assert either a burst DMA request or a single DMA request. The DMA  
burst size is set by programming the DMA Controller.  
Memory-to-memory, memory-to-peripheral, peripheral-to-memory, and  
peripheral-to-peripheral transfers are supported.  
Scatter or gather DMA is supported through the use of linked lists. This means that  
the source and destination areas do not have to occupy contiguous areas of memory.  
Hardware DMA channel priority.  
AHB slave DMA programming interface. The DMA Controller is programmed by  
writing to the DMA control registers over the AHB slave interface.  
One AHB bus master for transferring data. The interface transfers data when a DMA  
request goes active.  
32-bit AHB master bus width.  
Incrementing or non-incrementing addressing for source and destination.  
Programmable DMA burst size. The DMA burst size can be programmed to more  
efficiently transfer data.  
Internal four-word FIFO per channel.  
Supports 8, 16, and 32-bit wide transactions.  
Big-endian and little-endian support. The DMA Controller defaults to little-endian  
mode on reset.  
An interrupt to the processor can be generated on a DMA completion or when a DMA  
error has occurred.  
Raw interrupt status. The DMA error and DMA count raw interrupt status can be read  
prior to masking.  
7.12 CRC engine  
The Cyclic Redundancy Check (CRC) generator with programmable polynomial settings  
supports several CRC standards commonly used. To save system power and bus  
bandwidth, the CRC engine supports DMA transfers.  
7.12.1 Features  
Supports three common polynomials CRC-CCITT, CRC-16, and CRC-32.  
CRC-CCITT: x16 + x12 + x5 + 1  
CRC-16: x16 + x15 + x2 + 1  
CRC-32: x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1  
Bit order reverse and 1’s complement programmable setting for input data and CRC  
sum.  
Programmable seed number setting.  
Supports CPU PIO or DMA back-to-back transfer.  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
47 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Accept any size of data width per write: 8, 16 or 32-bit.  
8-bit write: 1-cycle operation  
16-bit write: 2-cycle operation (8-bit x 2-cycle)  
32-bit write: 4-cycle operation (8-bit x 4-cycle)  
7.13 LCD controller  
Remark: The LCD controller is available on parts LPC1788/87/86/85.  
The LCD controller provides all of the necessary control signals to interface directly to a  
variety of color and monochrome LCD panels. Both STN (single and dual panel) and TFT  
panels can be operated. The display resolution is selectable and can be up to 1024 768  
pixels. Several color modes are provided, up to a 24-bit true-color non-palettized mode.  
An on-chip 512-byte color palette allows reducing bus utilization (i.e. memory size of the  
displayed data) while still supporting a large number of colors.  
The LCD interface includes its own DMA controller to allow it to operate independently of  
the CPU and other system functions. A built-in FIFO acts as a buffer for display data,  
providing flexibility for system timing. Hardware cursor support can further reduce the  
amount of CPU time needed to operate the display.  
7.13.1 Features  
AHB master interface to access frame buffer.  
Setup and control via a separate AHB slave interface.  
Dual 16-deep programmable 64-bit wide FIFOs for buffering incoming display data.  
Supports single and dual-panel monochrome Super Twisted Nematic (STN) displays  
with 4-bit or 8-bit interfaces.  
Supports single and dual-panel color STN displays.  
Supports Thin Film Transistor (TFT) color displays.  
Programmable display resolution including, but not limited to: 320 200, 320 240,  
640 200, 640 240, 640 480, 800 600, and 1024 768.  
Hardware cursor support for single-panel displays.  
15 gray-level monochrome, 3375 color STN, and 32 K color palettized TFT support.  
1, 2, or 4 bits-per-pixel (bpp) palettized displays for monochrome STN.  
1, 2, 4, or 8 bpp palettized color displays for color STN and TFT.  
16 bpp true-color non-palettized, for color STN and TFT.  
24 bpp true-color non-palettized, for color TFT.  
Programmable timing for different display panels.  
256 entry, 16-bit palette RAM, arranged as a 128 32-bit RAM.  
Frame, line, and pixel clock signals.  
AC bias signal for STN, data enable signal for TFT panels.  
Supports little and big-endian, and Windows CE data formats.  
LCD panel clock may be generated from the peripheral clock, or from a clock input  
pin.  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
48 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
7.14 Ethernet  
Remark: The Ethernet block is available on parts LPC1788/86 and LPC1778/76.  
The Ethernet block contains a full featured 10 Mbit/s or 100 Mbit/s Ethernet MAC  
designed to provide optimized performance through the use of DMA hardware  
acceleration. Features include a generous suite of control registers, half or full duplex  
operation, flow control, control frames, hardware acceleration for transmit retry, receive  
packet filtering and wake-up on LAN activity. Automatic frame transmission and reception  
with scatter-gather DMA off-loads many operations from the CPU.  
The Ethernet block and the CPU share the ARM Cortex-M3 D-code and system bus  
through the AHB-multilayer matrix to access the various on-chip SRAM blocks for  
Ethernet data, control, and status information.  
The Ethernet block interfaces between an off-chip Ethernet PHY using the Media  
Independent Interface (MII) or Reduced MII (RMII) protocol and the on-chip Media  
Independent Interface Management (MIIM) serial bus.  
7.14.1 Features  
Ethernet standards support:  
Supports 10 Mbit/s or 100 Mbit/s PHY devices including 10 Base-T, 100 Base-TX,  
100 Base-FX, and 100 Base-T4.  
Fully compliant with IEEE standard 802.3.  
Fully compliant with 802.3x Full Duplex Flow Control and Half Duplex back  
pressure.  
Flexible transmit and receive frame options.  
Virtual Local Area Network (VLAN) frame support.  
Memory management:  
Independent transmit and receive buffers memory mapped to shared SRAM.  
DMA managers with scatter/gather DMA and arrays of frame descriptors.  
Memory traffic optimized by buffering and pre-fetching.  
Enhanced Ethernet features:  
Receive filtering.  
Multicast and broadcast frame support for both transmit and receive.  
Optional automatic Frame Check Sequence (FCS) insertion with Circular  
Redundancy Check (CRC) for transmit.  
Selectable automatic transmit frame padding.  
Over-length frame support for both transmit and receive allows any length frames.  
Promiscuous receive mode.  
Automatic collision back-off and frame retransmission.  
Includes power management by clock switching.  
Wake-on-LAN power management support allows system wake-up: using the  
receive filters or a magic frame detection filter.  
Physical interface:  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
49 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Attachment of external PHY chip through standard MII or RMII interface.  
PHY register access is available via the MIIM interface.  
7.15 USB interface  
Remark: The USB Device/Host/OTG controller is available on parts LPC1788/87/86/85  
and LPC1778/77/76. The USB Device-only controller is available on parts LPC1774.  
The Universal Serial Bus (USB) is a 4-wire bus that supports communication between a  
host and one or more (up to 127) peripherals. The host controller allocates the USB  
bandwidth to attached devices through a token-based protocol. The bus supports hot  
plugging and dynamic configuration of the devices. All transactions are initiated by the  
host controller.  
Details on typical USB interfacing solutions can be found in Section 14.1.  
7.15.1 USB device controller  
The device controller enables 12 Mbit/s data exchange with a USB host controller. It  
consists of a register interface, serial interface engine, endpoint buffer memory, and a  
DMA controller. The serial interface engine decodes the USB data stream and writes data  
to the appropriate endpoint buffer. The status of a completed USB transfer or error  
condition is indicated via status registers. An interrupt is also generated if enabled. When  
enabled, the DMA controller transfers data between the endpoint buffer and the USB  
RAM.  
7.15.1.1 Features  
Fully compliant with USB 2.0 Specification (full speed).  
Supports 32 physical (16 logical) endpoints with a 4 kB endpoint buffer RAM.  
Supports Control, Bulk, Interrupt and Isochronous endpoints.  
Scalable realization of endpoints at run time.  
Endpoint Maximum packet size selection (up to USB maximum specification) by  
software at run time.  
Supports SoftConnect and GoodLink features.  
While USB is in the Suspend mode, the LPC178x/7x can enter one of the reduced  
power modes and wake up on USB activity.  
Supports DMA transfers with all on-chip SRAM blocks on all non-control endpoints.  
Allows dynamic switching between CPU-controlled and DMA modes.  
Double buffer implementation for Bulk and Isochronous endpoints.  
7.15.2 USB host controller  
The host controller enables full- and low-speed data exchange with USB devices attached  
to the bus. It consists of register interface, serial interface engine and DMA controller. The  
register interface complies with the Open Host Controller Interface (OHCI) specification.  
7.15.2.1 Features  
OHCI compliant  
Two downstream ports  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
50 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Supports per-port power switching  
7.15.3 USB OTG controller  
USB OTG is a supplement to the USB 2.0 Specification that augments the capability of  
existing mobile devices and USB peripherals by adding host functionality for connection to  
USB peripherals.  
The OTG Controller integrates the host controller, device controller, and a master-only I2C  
interface to implement OTG dual-role device functionality. The dedicated I2C interface  
controls an external OTG transceiver.  
7.15.3.1 Features  
Fully compliant with On-The-Go supplement to the USB 2.0 Specification, Revision  
1.0a.  
Hardware support for Host Negotiation Protocol (HNP).  
Includes a programmable timer required for HNP and Session Request Protocol  
(SRP).  
Supports any OTG transceiver compliant with the OTG Transceiver Specification  
(CEA-2011), Rev. 1.0.  
7.16 SD/MMC card interface  
Remark: The SD/MMC card interface is available on parts LPC1788/87/86/85 and parts  
LPC1778/77/76.  
The Secure Digital and Multimedia Card Interface (MCI) allows access to external SD  
memory cards. The SD card interface conforms to the SD Multimedia Card Specification  
Version 2.11.  
7.16.1 Features  
The MCI provides all functions specific to the SD/MMC memory card. These include  
the clock generation unit, power management control, and command and data  
transfer.  
Conforms to Multimedia Card Specification v2.11.  
Conforms to Secure Digital Memory Card Physical Layer Specification, v0.96.  
Can be used as a multimedia card bus or a secure digital memory card bus host. The  
SD/MMC can be connected to several multimedia cards or a single secure digital  
memory card.  
DMA supported through the GPDMA controller.  
7.17 Fast general purpose parallel I/O  
Device pins that are not connected to a specific peripheral function are controlled by the  
GPIO registers. Pins may be dynamically configured as inputs or outputs. Separate  
registers allow setting or clearing any number of outputs simultaneously. The value of the  
output register may be read back as well as the current state of the port pins.  
LPC178x/7x use accelerated GPIO functions:  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
51 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
GPIO registers are accessed through the AHB multilayer bus so that the fastest  
possible I/O timing can be achieved.  
Mask registers allow treating sets of port bits as a group, leaving other bits  
unchanged.  
All GPIO registers are byte and half-word addressable.  
Entire port value can be written in one instruction.  
Support for Cortex-M3 bit banding.  
Support for use with the GPDMA controller.  
Additionally, any pin on Port 0 and Port 2 providing a digital function can be programmed  
to generate an interrupt on a rising edge, a falling edge, or both. The edge detection is  
asynchronous, so it may operate when clocks are not present such as during Power-down  
mode. Each enabled interrupt can be used to wake up the chip from Power-down mode.  
7.17.1 Features  
Bit level set and clear registers allow a single instruction to set or clear any number of  
bits in one port.  
Direction control of individual bits.  
All I/O default to inputs after reset.  
Pull-up/pull-down resistor configuration and open-drain configuration can be  
programmed through the pin connect block for each GPIO pin.  
7.18 12-bit ADC  
The LPC178x/7x contain one ADC. It is a single 12-bit successive approximation ADC  
with eight channels and DMA support.  
7.18.1 Features  
12-bit successive approximation ADC.  
Input multiplexing among eight pins.  
Power-down mode.  
Measurement range VSS to VREFP.  
12-bit conversion rate: up to 400 kHz.  
Individual channels can be selected for conversion.  
Burst conversion mode for single or multiple inputs.  
Optional conversion on transition of input pin or Timer Match signal.  
Individual result registers for each ADC channel to reduce interrupt overhead.  
DMA support.  
7.19 10-bit DAC  
The LPC178x/7x contain one DAC. The DAC allows to generate a variable analog output.  
The maximum output value of the DAC is VREFP.  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
52 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
7.19.1 Features  
10-bit DAC  
Resistor string architecture  
Buffered output  
Power-down mode  
Selectable output drive  
Dedicated conversion timer  
DMA support  
7.20 UARTs  
Remark: USART4 is not available on part LPC1774FBD144.  
The LPC178x/7x contain five UARTs. In addition to standard transmit and receive data  
lines, UART1 also provides a full modem control handshake interface and support for  
RS-485/9-bit mode allowing both software address detection and automatic address  
detection using 9-bit mode.  
The UARTs include a fractional baud rate generator. Standard baud rates such as  
115200 Bd can be achieved with any crystal frequency above 2 MHz.  
7.20.1 Features  
Maximum UART data bit rate of 7.5 MBit/s.  
16 B Receive and Transmit FIFOs.  
Register locations conform to 16C550 industry standard.  
Receiver FIFO trigger points at 1 B, 4 B, 8 B, and 14 B.  
Built-in fractional baud rate generator covering wide range of baud rates without a  
need for external crystals of particular values.  
Auto-baud capability.  
Fractional divider for baud rate control, auto baud capabilities and FIFO control  
mechanism that enables software flow control implementation.  
Support for RS-485/9-bit/EIA-485 mode and multiprocessor addressing.  
All UARTs have DMA support for both transmit and receive.  
UART1 equipped with standard modem interface signals. This module also provides  
full support for hardware flow control (auto-CTS/RTS).  
USART4 includes an IrDA mode to support infrared communication.  
USART4 supports synchronous mode and a smart card mode conforming to  
ISO7816-3.  
7.21 SSP serial I/O controller  
The LPC178x/7x contain three SSP controllers. The SSP controller is capable of  
operation on a SPI, 4-wire SSI, or Microwire bus. It can interact with multiple masters and  
slaves on the bus. Only a single master and a single slave can communicate on the bus  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
53 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
during a given data transfer. The SSP supports full duplex transfers, with frames of 4 bits  
to 16 bits of data flowing from the master to the slave and from the slave to the master. In  
practice, often only one of these data flows carries meaningful data.  
7.21.1 Features  
Maximum SSP speed of 60 Mbit/s (master) or 10 Mbit/s (slave)  
Compatible with Motorola SPI, 4-wire Texas Instruments SSI, and National  
Semiconductor Microwire buses  
Synchronous serial communication  
Master or slave operation  
8-frame FIFOs for both transmit and receive  
4-bit to 16-bit frame  
DMA transfers supported by GPDMA  
7.22 I2C-bus serial I/O controllers  
The LPC178x/7x contain three I2C-bus controllers.  
The I2C-bus is bidirectional for inter-IC control using only two wires: a Serial Clock Line  
(SCL) and a Serial Data Line (SDA). Each device is recognized by a unique address and  
can operate as either a receiver-only device (e.g., an LCD driver) or a transmitter with the  
capability to both receive and send information (such as memory). Transmitters and/or  
receivers can operate in either master or slave mode, depending on whether the chip has  
to initiate a data transfer or is only addressed. The I2C is a multi-master bus and can be  
controlled by more than one bus master connected to it.  
7.22.1 Features  
All I2C-bus controllers can use standard GPIO pins with bit rates of up to 400 kbit/s  
(Fast I2C-bus). The I2C0-bus interface uses special open-drain pins with bit rates of  
up to 400 kbit/s.  
The I2C-bus interface supports Fast-mode Plus with bit rates up to 1 Mbit/s for I2C0  
using pins P5[2] and P5[3].  
Easy to configure as master, slave, or master/slave.  
Programmable clocks allow versatile rate control.  
Bidirectional data transfer between masters and slaves.  
Multi-master bus (no central master).  
Arbitration between simultaneously transmitting masters without corruption of serial  
data on the bus.  
Serial clock synchronization allows devices with different bit rates to communicate via  
one serial bus.  
Serial clock synchronization can be used as a handshake mechanism to suspend and  
resume serial transfer.  
The I2C-bus can be used for test and diagnostic purposes.  
Both I2C-bus controllers support multiple address recognition and a bus monitor  
mode.  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
54 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
7.23 I2S-bus serial I/O controllers  
The LPC178x/7x contain one I2S-bus interface. The I2S-bus provides a standard  
communication interface for digital audio applications.  
The I2S-bus specification defines a 3-wire serial bus using one data line, one clock line,  
and one word select signal. The basic I2S connection has one master, which is always the  
master, and one slave. The I2S interface on the LPC178x/7x provides a separate transmit  
and receive channel, each of which can operate as either a master or a slave.  
7.23.1 Features  
The interface has separate input/output channels each of which can operate in master  
or slave mode.  
Capable of handling 8-bit, 16-bit, and 32-bit word sizes.  
Mono and stereo audio data supported.  
The sampling frequency can range from 16 kHz to 48 kHz (16, 22.05, 32, 44.1,  
48) kHz.  
Configurable word select period in master mode (separately for I2S input and output).  
Two 8 word FIFO data buffers are provided, one for transmit and one for receive.  
Generates interrupt requests when buffer levels cross a programmable boundary.  
Two DMA requests, controlled by programmable buffer levels. These are connected  
to the GPDMA block.  
Controls include reset, stop and mute options separately for I2S input and I2S output.  
7.24 CAN controller and acceptance filters  
The LPC178x/7x contain two CAN controllers.  
The Controller Area Network (CAN) is a serial communications protocol which efficiently  
supports distributed real-time control with a very high level of security. Its domain of  
application ranges from high-speed networks to low cost multiplex wiring.  
The CAN block is intended to support multiple CAN buses simultaneously, allowing the  
device to be used as a gateway, switch, or router between two of CAN buses in industrial  
or automotive applications.  
Each CAN controller has a register structure similar to the NXP SJA1000 and the PeliCAN  
Library block, but the 8-bit registers of those devices have been combined in 32-bit words  
to allow simultaneous access in the ARM environment. The main operational difference is  
that the recognition of received Identifiers, known in CAN terminology as Acceptance  
Filtering, has been removed from the CAN controllers and centralized in a global  
Acceptance Filter.  
7.24.1 Features  
Two CAN controllers and buses.  
Data rates to 1 Mbit/s on each bus.  
32-bit register and RAM access.  
Compatible with CAN specification 2.0B, ISO 11898-1.  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
55 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Global Acceptance Filter recognizes 11-bit and 29-bit receive identifiers for all CAN  
buses.  
Acceptance Filter can provide FullCAN-style automatic reception for selected  
Standard Identifiers.  
FullCAN messages can generate interrupts.  
7.25 General purpose 32-bit timers/external event counters  
The LPC178x/7x include four 32-bit timer/counters. The timer/counter is designed to  
count cycles of the system derived clock or an externally-supplied clock. It can optionally  
generate interrupts, generate timed DMA requests, or perform other actions at specified  
timer values, based on four match registers. Each timer/counter also includes two capture  
inputs to trap the timer value when an input signal transitions, optionally generating an  
interrupt.  
7.25.1 Features  
A 32-bit timer/counter with a programmable 32-bit prescaler.  
Counter or timer operation.  
Two 32-bit capture channels per timer, that can take a snapshot of the timer value  
when an input signal transitions. A capture event may also generate an interrupt.  
Four 32-bit match registers that allow:  
Continuous operation with optional interrupt generation on match.  
Stop timer on match with optional interrupt generation.  
Reset timer on match with optional interrupt generation.  
Up to four external outputs corresponding to match registers, with the following  
capabilities:  
Set LOW on match.  
Set HIGH on match.  
Toggle on match.  
Do nothing on match.  
Up to two match registers can be used to generate timed DMA requests.  
7.26 Pulse Width Modulator (PWM)  
The LPC178x/7x contain two PWMs. The PWM is based on the standard Timer block and  
inherits all of its features, although only the PWM function is pinned out on the  
LPC178x/7x. The Timer is designed to count cycles of the system derived clock and  
optionally switch pins, generate interrupts or perform other actions when specified timer  
values occur, based on seven match registers. The PWM function is in addition to these  
features, and is based on match register events.  
The ability to separately control rising and falling edge locations allows the PWM to be  
used for more applications. For instance, multi-phase motor control typically requires  
three non-overlapping PWM outputs with individual control of all three pulse widths and  
positions.  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
56 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Two match registers can be used to provide a single edge controlled PWM output. One  
match register (PWMMR0) controls the PWM cycle rate, by resetting the count upon  
match. The other match register controls the PWM edge position. Additional single edge  
controlled PWM outputs require only one match register each, since the repetition rate is  
the same for all PWM outputs. Multiple single edge controlled PWM outputs will all have a  
rising edge at the beginning of each PWM cycle, when an PWMMR0 match occurs.  
Three match registers can be used to provide a PWM output with both edges controlled.  
Again, the PWMMR0 match register controls the PWM cycle rate. The other match  
registers control the two PWM edge positions. Additional double edge controlled PWM  
outputs require only two match registers each, since the repetition rate is the same for all  
PWM outputs.  
With double edge controlled PWM outputs, specific match registers control the rising and  
falling edge of the output. This allows both positive going PWM pulses (when the rising  
edge occurs prior to the falling edge), and negative going PWM pulses (when the falling  
edge occurs prior to the rising edge).  
7.26.1 Features  
LPC178x/7x has two PWM blocks with Counter or Timer operation (may use the  
peripheral clock or one of the capture inputs as the clock source).  
Seven match registers allow up to 6 single edge controlled or 3 double edge  
controlled PWM outputs, or a mix of both types. The match registers also allow:  
Continuous operation with optional interrupt generation on match.  
Stop timer on match with optional interrupt generation.  
Reset timer on match with optional interrupt generation.  
Supports single edge controlled and/or double edge controlled PWM outputs. Single  
edge controlled PWM outputs all go high at the beginning of each cycle unless the  
output is a constant low. Double edge controlled PWM outputs can have either edge  
occur at any position within a cycle. This allows for both positive going and negative  
going pulses.  
Pulse period and width can be any number of timer counts. This allows complete  
flexibility in the trade-off between resolution and repetition rate. All PWM outputs will  
occur at the same repetition rate.  
Double edge controlled PWM outputs can be programmed to be either positive going  
or negative going pulses.  
Match register updates are synchronized with pulse outputs to prevent generation of  
erroneous pulses. Software must ‘release’ new match values before they can become  
effective.  
May be used as a standard 32-bit timer/counter with a programmable 32-bit prescaler  
if the PWM mode is not enabled.  
7.27 Motor control PWM  
The LPC178x/7x contain one motor control PWM.  
The motor control PWM is a specialized PWM supporting 3-phase motors and other  
combinations. Feedback inputs are provided to automatically sense rotor position and use  
that information to ramp speed up or down. An abort input is also provided that causes the  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
57 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
PWM to immediately release all motor drive outputs. At the same time, the motor control  
PWM is highly configurable for other generalized timing, counting, capture, and compare  
applications.  
The maximum PWM speed is determined by the PWM resolution (n) and the operating  
frequency f: PWM speed = f/2n (see Table 8).  
Table 8.  
PWM speed at operating frequency 120 MHz  
PWM resolution  
PWM speed  
1.875 MHz  
0.468 MHz  
0.117 MHz  
6 bit  
8 bit  
10 bit  
7.28 Quadrature Encoder Interface (QEI)  
Remark: The QEI is available on parts LPC1788/87/86 and LPC1778/77/76  
A quadrature encoder, also known as a 2-channel incremental encoder, converts angular  
displacement into two pulse signals. By monitoring both the number of pulses and the  
relative phase of the two signals, the user can track the position, direction of rotation, and  
velocity. In addition, a third channel, or index signal, can be used to reset the position  
counter. The quadrature encoder interface decodes the digital pulses from a quadrature  
encoder wheel to integrate position over time and determine direction of rotation. In  
addition, the QEI can capture the velocity of the encoder wheel.  
7.28.1 Features  
Tracks encoder position.  
Increments/decrements depending on direction.  
Programmable for 2or 4position counting.  
Velocity capture using built-in timer.  
Velocity compare function with “less than” interrupt.  
Uses 32-bit registers for position and velocity.  
Three position compare registers with interrupts.  
Index counter for revolution counting.  
Index compare register with interrupts.  
Can combine index and position interrupts to produce an interrupt for whole and  
partial revolution displacement.  
Digital filter with programmable delays for encoder input signals.  
Can accept decoded signal inputs (clk and direction).  
Connected to APB.  
7.29 ARM Cortex-M3 system tick timer  
The ARM Cortex-M3 includes a system tick timer (SYSTICK) that is intended to generate  
a dedicated SYSTICK exception at a 10 ms interval. In the LPC178x/7x, this timer can be  
clocked from the internal AHB clock or from a device pin.  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
58 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
7.30 Windowed WatchDog Timer (WWDT)  
The purpose of the watchdog is to reset the controller if software fails to periodically  
service it within a programmable time window.  
7.30.1 Features  
Internally resets chip if not periodically reloaded during the programmable time-out  
period.  
Optional windowed operation requires reload to occur between a minimum and  
maximum time period, both programmable.  
Optional warning interrupt can be generated at a programmable time prior to  
watchdog time-out.  
Enabled by software but requires a hardware reset or a watchdog reset/interrupt to be  
disabled.  
Incorrect feed sequence causes reset or interrupt if enabled.  
Flag to indicate watchdog reset.  
Programmable 24-bit timer with internal prescaler.  
Selectable time period from (Tcy(WDCLK) 256 4) to (Tcy(WDCLK) 224 4) in  
multiples of Tcy(WDCLK) 4.  
The Watchdog Clock (WDCLK) source is a dedicated watchdog oscillator, which is  
always running if the watchdog timer is enabled.  
7.31 RTC and backup registers  
The RTC is a set of counters for measuring time when system power is on, and optionally  
when it is off. The RTC on the LPC178x/7x is designed to have extremely low power  
consumption, i.e. less than 1 A. The RTC will typically run from the main chip power  
supply, conserving battery power while the rest of the device is powered up. When  
operating from a battery, the RTC will continue working down to 2.1 V. Battery power can  
be provided from a standard 3 V lithium button cell.  
An ultra-low power 32 kHz oscillator will provide a 1 Hz clock to the time counting portion  
of the RTC, moving most of the power consumption out of the time counting function.  
The RTC includes a calibration mechanism to allow fine-tuning the count rate in a way  
that will provide less than 1 second per day error when operated at a constant voltage and  
temperature.  
The RTC contains a small set of backup registers (20 bytes) for holding data while the  
main part of the LPC178x/7x is powered off.  
The RTC includes an alarm function that can wake up the LPC178x/7x from all reduced  
power modes with a time resolution of 1 s.  
7.31.1 Features  
Measures the passage of time to maintain a calendar and clock.  
Ultra low power design to support battery powered systems.  
Provides Seconds, Minutes, Hours, Day of Month, Month, Year, Day of Week, and  
Day of Year.  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
59 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Dedicated power supply pin can be connected to a battery or to the main 3.3 V.  
Periodic interrupts can be generated from increments of any field of the time registers.  
Backup registers (20 bytes) powered by VBAT.  
RTC power supply is isolated from the rest of the chip.  
7.32 Event monitor/recorder  
The event monitor/recorder allows recording of tampering events in sealed product  
enclosures. Sensors report any attempt to open the enclosure, or to tamper with the  
device in any other way. The event monitor/recorder stores records of such events when  
the device is powered only by the backup battery.  
7.32.1 Features  
Supports three digital event inputs in the VBAT power domain.  
An event is defined as a level change at the digital event inputs.  
For each event channel, two timestamps mark the first and the last occurrence of an  
event. Each channel also has a dedicated counter tracking the total number of events.  
Timestamp values are taken from the RTC.  
Runs in VBAT power domain, independent of system power supply. The  
event/recorder/monitor can therefore operate in Deep power-down mode.  
Very low power consumption.  
Interrupt available if system is running.  
A qualified event can be used as a wake-up trigger.  
State of event interrupts accessible by software through GPIO.  
7.33 Clocking and power control  
7.33.1 Crystal oscillators  
The LPC178x/7x include four independent oscillators. These are the main oscillator, the  
IRC oscillator, the watchdog oscillator, and the RTC oscillator. Each oscillator can be used  
for more than one purpose as required in a particular application. Any of the three clock  
sources can be chosen by software to drive the main PLL and ultimately the CPU.  
Following reset, the LPC178x/7x will operate from the Internal RC oscillator until switched  
by software. This allows systems to operate without any external crystal and the boot  
loader code to operate at a known frequency.  
See Figure 7 for an overview of the LPC178x/7x clock generation.  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
60 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
LPC178x/7x  
IRC oscillator  
pll_clk  
sysclk  
MAIN PLL0  
ALT PLL1  
main oscillator  
(osc_clk)  
CLKSRCSEL  
(system clock select)  
alt_pll_clk  
sysclk  
pll_clk  
CPU CLOCK  
DIVIDER  
cclk  
CCLKSEL  
(CPU clock select)  
PERIPHERAL  
CLOCK DIVIDER  
pclk  
EMC  
CLOCK DIVIDER  
emc_clk  
sysclk  
pll_clk  
alt_pll_clk  
USB  
CLOCK DIVIDER  
usb_clk  
USBCLKSEL  
(USB clock select)  
002aaf531  
Fig 7. LPC178x/7x clock generation block diagram  
7.33.1.1 Internal RC oscillator  
The IRC may be used as the clock that drives the PLL and subsequently the CPU. The  
nominal IRC frequency is 12 MHz. The IRC is trimmed to 1 % accuracy over the entire  
voltage and temperature range.  
Upon power-up or any chip reset, the LPC178x/7x use the IRC as the clock source.  
Software may later switch to one of the other available clock sources.  
7.33.1.2 Main oscillator  
The main oscillator can be used as the clock source for the CPU, with or without using the  
PLL. The main oscillator also provides the clock source for the alternate PLL1.  
The main oscillator operates at frequencies of 1 MHz to 25 MHz. This frequency can be  
boosted to a higher frequency, up to the maximum CPU operating frequency, by the main  
PLL. The clock selected as the PLL input is PLLCLKIN. The ARM processor clock  
frequency is referred to as CCLK elsewhere in this document. The frequencies of  
PLLCLKIN and CCLK are the same value unless the PLL is active and connected. The  
clock frequency for each peripheral can be selected individually and is referred to as  
PCLK. Refer to Section 7.33.2 for additional information.  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
61 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
7.33.1.3 RTC oscillator  
The RTC oscillator provides a 1 Hz clock to the RTC and a 32 kHz clock output that can  
be output on the CLKOUT pin in order to allow trimming the RTC oscillator without  
interference from a probe.  
7.33.1.4 Watchdog oscillator  
The Watchdog Timer has a dedicated oscillator that provides a 500 kHz clock to the  
Watchdog Timer that is always running if the Watchdog Timer is enabled. The Watchdog  
oscillator clock can be output on the CLKOUT pin in order to allow observe its frequency.  
In order to allow Watchdog Timer operation with minimum power consumption, which can  
be important in reduced power modes, the Watchdog oscillator frequency is not tightly  
controlled. The Watchdog oscillator frequency will vary over temperature and power  
supply within a particular part, and may vary by processing across different parts. This  
variation should be taken into account when determining Watchdog reload values.  
Within a particular part, temperature and power supply variations can produce up to a  
17 % frequency variation. Frequency variation between devices under the same  
operating conditions can be up to 30 %.  
7.33.2 Main PLL (PLL0) and Alternate PLL (Alt PLL, PLL1)  
PLL0 (also called the Main PLL) and PLL1 (also called the Alt PLL) are functionally  
identical, but have somewhat different input possibilities and output connections. These  
possibilities are shown in Figure 7. The Main PLL can receive its input from either the IRC  
or the main oscillator, and can potentially be used to provide the clocks to nearly  
everything on the device. The Alternate PLL receives its input only from the main oscillator  
and is intended to be used as an alternate source of clocking to the USB. The USB has  
timing needs that may not always be filled by the Main PLL.  
Both PLLs are disabled and powered off on reset. If the Alternate PLL is left disabled, the  
USB clock can be supplied by PLL0 if everything is set up to provide 48 MHz to the USB  
clock through that route. The source for each clock must be selected via the CLKSEL  
registers, and can be further reduced by clock dividers as needed.  
PLL0 accepts an input clock frequency from either the IRC or the main oscillator. If only  
the Main PLL is used, then its output frequency must be an integer multiple of all other  
clocks needed in the system. PLL1 takes its input only from the main oscillator, requiring  
an external crystal in the range of 10 to 25 MHz. In each PLL, the Current Controlled  
Oscillator (CCO) operates in the range of 156 MHz to 320 MHz, so there are additional  
dividers to bring the output down to the desired frequencies. The minimum output divider  
value is 2, insuring that the output of the PLLs have a 50 % duty cycle.  
If the USB is used, the possibilities for the CPU clock and other clocks will be limited by  
the requirements that the frequency be precise and very low jitter, and that the PLL0  
output must be a multiple of 48 MHz. Even multiples of 48 MHz that are within the  
operating range of the PLL are 192 MHz and 288 MHz. Also, only the main oscillator in  
conjunction with the PLL can meet the precision and jitter specifications for USB. It is due  
to these limitations that the Alt PLL is provided.  
The alternate PLL accepts an input clock frequency from the main oscillator in the range  
of 10 MHz to 25 MHz only. When used as the USB clock, the input frequency is multiplied  
up to a multiple of 48 MHz (192 MHz or 288 MHz as described above).  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
62 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
7.33.3 Wake-up timer  
The LPC178x/7x begin operation at power-up and when awakened from Power-down  
mode by using the 12 MHz IRC oscillator as the clock source. This allows chip operation  
to resume quickly. If the main oscillator or the PLL is needed by the application, software  
will need to enable these features and wait for them to stabilize before they are used as a  
clock source.  
When the main oscillator is initially activated, the wake-up timer allows software to ensure  
that the main oscillator is fully functional before the processor uses it as a clock source  
and starts to execute instructions. This is important at power on, all types of reset, and  
whenever any of the aforementioned functions are turned off for any reason. Since the  
oscillator and other functions are turned off during Power-down mode, any wake-up of the  
processor from Power-down mode makes use of the wake-up Timer.  
The wake-up timer monitors the crystal oscillator to check whether it is safe to begin code  
execution. When power is applied to the chip, or when some event caused the chip to exit  
Power-down mode, some time is required for the oscillator to produce a signal of sufficient  
amplitude to drive the clock logic. The amount of time depends on many factors, including  
the rate of VDD(3V3) ramp (in the case of power on), the type of crystal and its electrical  
characteristics (if a quartz crystal is used), as well as any other external circuitry (e.g.,  
capacitors), and the characteristics of the oscillator itself under the existing ambient  
conditions.  
7.33.4 Power control  
The LPC178x/7x support a variety of power control features. There are four special  
modes of processor power reduction: Sleep mode, Deep-sleep mode, Power-down mode,  
and Deep power-down mode. The CPU clock rate may also be controlled as needed by  
changing clock sources, reconfiguring PLL values, and/or altering the CPU clock divider  
value. This allows a trade-off of power versus processing speed based on application  
requirements. In addition, the peripheral power control allows shutting down the clocks to  
individual on-chip peripherals, allowing fine tuning of power consumption by eliminating all  
dynamic power use in any peripherals that are not required for the application. Each of the  
peripherals has its own clock divider which provides even better power control.  
Integrated PMU (Power Management Unit) automatically adjust internal regulators to  
minimize power consumption during Sleep, Deep sleep, Power-down, and Deep  
power-down modes.  
The LPC178x/7x also implement a separate power domain to allow turning off power to  
the bulk of the device while maintaining operation of the RTC and a small set of registers  
for storing data during any of the power-down modes.  
7.33.4.1 Sleep mode  
When Sleep mode is entered, the clock to the core is stopped. Resumption from the Sleep  
mode does not need any special sequence other than re-enabling the clock to the ARM  
core.  
In Sleep mode, execution of instructions is suspended until either a Reset or interrupt  
occurs. Peripheral functions continue operation during Sleep mode and may generate  
interrupts to cause the processor to resume execution. Sleep mode eliminates dynamic  
power used by the processor itself, memory systems and related controllers, and internal  
buses.  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
63 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
The DMA controller can continue to work in Sleep mode, and has access to the peripheral  
RAMs and all peripheral registers. The flash memory and the main SRAM are not  
available in Sleep mode, they are disabled in order to save power.  
Wake-up from Sleep mode will occur whenever any enabled interrupt occurs.  
7.33.4.2 Deep-sleep mode  
In Deep-sleep mode, the oscillator is shut down and the chip receives no internal clocks.  
The processor state and registers, peripheral registers, and internal SRAM values are  
preserved throughout Deep-sleep mode and the logic levels of chip pins remain static.  
The output of the IRC is disabled but the IRC is not powered down to allow fast wake-up.  
The RTC oscillator is not stopped because the RTC interrupts may be used as the  
wake-up source. The PLL is automatically turned off and disconnected. The clock divider  
registers are automatically reset to zero.  
The Deep-sleep mode can be terminated and normal operation resumed by either a  
Reset or certain specific interrupts that are able to function without clocks. Since all  
dynamic operation of the chip is suspended, Deep-sleep mode reduces chip power  
consumption to a very low value. Power to the flash memory is left on in Deep-sleep  
mode, allowing a very quick wake-up.  
Wake-up from Deep Sleep mode can initiated by the NMI, External Interrupts EINT0  
through EINT3, GPIO interrupts, the Ethernet Wake-on-LAN interrupt, Brownout Detect,  
an RTC Alarm interrupt, a USB input pin transition (USB activity interrupt), a CAN input  
pin transition, or a Watchdog Timer time-out, when the related interrupt is enabled.  
Wake-up will occur whenever any enabled interrupt occurs.  
On wake-up from Deep-sleep mode, the code execution and peripherals activities will  
resume after 4 cycles expire if the IRC was used before entering Deep-sleep mode. If the  
main external oscillator was used, the code execution will resume when 4096 cycles  
expire. PLL and clock dividers need to be reconfigured accordingly.  
7.33.4.3 Power-down mode  
Power-down mode does everything that Deep-sleep mode does but also turns off the  
power to the IRC oscillator and the flash memory. This saves more power but requires  
waiting for resumption of flash operation before execution of code or data access in the  
flash memory can be accomplished.  
When the chip enters Power-down mode, the IRC, the main oscillator, and all clocks are  
stopped. The RTC remains running if it has been enabled and RTC interrupts may be  
used to wake up the CPU. The flash is forced into Power-down mode. The PLLs are  
automatically turned off and the clock selection multiplexers are set to use the system  
clock sysclk (the reset state). The clock divider control registers are automatically reset to  
zero. If the Watchdog timer is running, it will continue running in Power-down mode.  
On the wake-up of Power-down mode, if the IRC was used before entering Power-down  
mode, it will take IRC 60 s to start-up. After this 4 IRC cycles will expire before the code  
execution can then be resumed if the code was running from SRAM. In the meantime, the  
flash wake-up timer then counts 12 MHz IRC clock cycles to make the 100 s flash  
start-up time. When it times out, access to the flash will be allowed. Users need to  
reconfigure the PLL and clock dividers accordingly.  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
64 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
7.33.4.4 Deep power-down mode  
The Deep power-down mode can only be entered from the RTC block. In Deep  
power-down mode, power is shut off to the entire chip with the exception of the RTC  
module and the RESET pin.  
To optimize power conservation, the user has the additional option of turning off or  
retaining power to the 32 kHz oscillator. It is also possible to use external circuitry to turn  
off power to the on-chip regulator via the VDD(REG)(3V3) pins and/or the I/O power via the  
V
DD(3V3) pins after entering Deep Power-down mode. Power must be restored before  
device operation can be restarted.  
The LPC178x/7x can wake up from Deep power-down mode via the RESET pin or an  
alarm match event of the RTC.  
7.33.4.5 Wake-up Interrupt Controller (WIC)  
The WIC allows the CPU to automatically wake up from any enabled priority interrupt that  
can occur while the clocks are stopped in Deep sleep, Power-down, and Deep  
power-down modes.  
The WIC works in connection with the Nested Vectored Interrupt Controller (NVIC). When  
the CPU enters Deep sleep, Power-down, or Deep power-down mode, the NVIC sends a  
mask of the current interrupt situation to the WIC.This mask includes all of the interrupts  
that are both enabled and of sufficient priority to be serviced immediately. With this  
information, the WIC simply notices when one of the interrupts has occurred and then it  
wakes up the CPU.  
The WIC eliminates the need to periodically wake up the CPU and poll the interrupts  
resulting in additional power savings.  
7.33.5 Peripheral power control  
A power control for peripherals feature allows individual peripherals to be turned off if they  
are not needed in the application, resulting in additional power savings.  
7.33.6 Power domains  
The LPC178x/7x provide two independent power domains that allow the bulk of the  
device to have power removed while maintaining operation of the RTC and the backup  
registers.  
On the LPC178x/7x, I/O pads are powered by the 3.3 V (VDD(3V3)) pins, while the  
V
DD(REG)(3V3) pin powers the on-chip voltage regulator which in turn provides power to the  
CPU and most of the peripherals.  
Depending on the LPC178x/7x application, a design can use two power options to  
manage power consumption.  
The first option assumes that power consumption is not a concern and the design ties the  
V
DD(3V3) and VDD(REG)(3V3) pins together. This approach requires only one 3.3 V power  
supply for both pads, the CPU, and peripherals. While this solution is simple, it does not  
support powering down the I/O pad ring “on the fly” while keeping the CPU and  
peripherals alive.  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
65 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
The second option uses two power supplies; a 3.3 V supply for the I/O pads (VDD(3V3)) and  
a dedicated 3.3 V supply for the CPU (VDD(REG)(3V3)). Having the on-chip voltage regulator  
powered independently from the I/O pad ring enables shutting down of the I/O pad power  
supply “on the fly”, while the CPU and peripherals stay active.  
The VBAT pin supplies power only to the RTC domain. The RTC requires a minimum of  
power to operate, which can be supplied by an external battery. The device core power  
(VDD(REG)(3V3)) is used to operate the RTC whenever VDD(REG)(3V3) is present. Therefore,  
there is no power drain from the RTC battery when VDD(REG)(3V3) is available.  
LPC178x/7x  
V
to I/O pads  
DD(3V3)  
to core  
V
SS  
REGULATOR  
to memories,  
peripherals,  
oscillators,  
PLLs  
V
DD(REG)(3V3)  
MAIN POWER DOMAIN  
ULTRA-LOW  
POWER  
SELECTOR  
POWER  
VBAT  
REGULATOR  
BACKUP REGISTERS  
REAL-TIME CLOCK  
RTCX1  
RTCX2  
32 kHz  
OSCILLATOR  
RTC POWER DOMAIN  
DAC  
ADC  
V
DDA  
VREFP  
V
SSA  
ADC POWER DOMAIN  
002aaf530  
Fig 8. Power distribution  
7.34 System control  
7.34.1 Reset  
Reset has four sources on the LPC178x/7x: the RESET pin, the Watchdog reset,  
Power-On Reset (POR), and the BrownOut Detection (BOD) circuit. The RESET pin is a  
Schmitt trigger input pin. Assertion of chip Reset by any source, once the operating  
voltage attains a usable level, starts the Wake-up timer (see description in  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
66 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Section 7.33.3), causing reset to remain asserted until the external Reset is de-asserted,  
the oscillator is running, a fixed number of clocks have passed, and the flash controller  
has completed its initialization.  
When the internal Reset is removed, the processor begins executing at address 0, which  
is initially the Reset vector mapped from the boot block. At that point, all of the processor  
and peripheral registers have been initialized to predetermined values.  
7.34.2 Brownout detection  
The LPC178x/7x include 2-stage monitoring of the voltage on the VDD(REG)(3V3) pins. If this  
voltage falls below 2.95 V, the BOD asserts an interrupt signal to the Vectored Interrupt  
Controller. This signal can be enabled for interrupt in the Interrupt Enable Register in the  
NVIC in order to cause a CPU interrupt; if not, software can monitor the signal by reading  
a dedicated status register.  
The second stage of low-voltage detection asserts reset to inactivate the LPC178x/7x  
when the voltage on the VDD(REG)(3V3) pins falls below 2.65 V. This reset prevents  
alteration of the flash as operation of the various elements of the chip would otherwise  
become unreliable due to low voltage. The BOD circuit maintains this reset down below  
1 V, at which point the power-on reset circuitry maintains the overall reset.  
Both the 2.95 V and 2.65 V thresholds include some hysteresis. In normal operation, this  
hysteresis allows the 2.95 V detection to reliably interrupt, or a regularly executed event  
loop to sense the condition.  
7.34.3 Code security (Code Read Protection - CRP)  
This feature of the LPC178x/7x allows user to enable different levels of security in the  
system so that access to the on-chip flash and use of the JTAG and ISP can be restricted.  
When needed, CRP is invoked by programming a specific pattern into a dedicated flash  
location. IAP commands are not affected by the CRP.  
There are three levels of the Code Read Protection.  
CRP1 disables access to chip via the JTAG and allows partial flash update (excluding  
flash sector 0) using a limited set of the ISP commands. This mode is useful when CRP is  
required and flash field updates are needed but all sectors can not be erased.  
CRP2 disables access to chip via the JTAG and only allows full flash erase and update  
using a reduced set of the ISP commands.  
Running an application with level CRP3 selected fully disables any access to chip via the  
JTAG pins and the ISP. This mode effectively disables ISP override using P2[10] pin, too.  
It is up to the user’s application to provide (if needed) flash update mechanism using IAP  
calls or call reinvoke ISP command to enable flash update via UART0.  
CAUTION  
If level three Code Read Protection (CRP3) is selected, no future factory testing can be  
performed on the device.  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
67 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
7.34.4 APB interface  
The APB peripherals are split into two separate APB buses in order to distribute the bus  
bandwidth and thereby reducing stalls caused by contention between the CPU and the  
GPDMA controller.  
7.34.5 AHB multilayer matrix  
The LPC178x/7x use an AHB multilayer matrix. This matrix connects the instruction  
(I-code) and data (D-code) CPU buses of the ARM Cortex-M3 to the flash memory, the  
main (32 kB) static RAM, and the Boot ROM. The GPDMA can also access all of these  
memories. Additionally, the matrix connects the CPU system bus and all of the DMA  
controllers to the various peripheral functions.  
7.34.6 External interrupt inputs  
The LPC178x/7x include up to 30 edge sensitive interrupt inputs combined with one level  
sensitive external interrupt input as selectable pin function. The external interrupt input  
can optionally be used to wake up the processor from Power-down mode.  
7.34.7 Memory mapping control  
The Cortex-M3 incorporates a mechanism that allows remapping the interrupt vector table  
to alternate locations in the memory map. This is controlled via the Vector Table Offset  
Register contained in the NVIC.  
The vector table may be located anywhere within the bottom 1 GB of Cortex-M3 address  
space. The vector table must be located on a 128 word (512 byte) boundary because the  
NVIC on the LPC178x/7x is configured for 128 total interrupts.  
7.35 Emulation and debugging  
Debug and trace functions are integrated into the ARM Cortex-M3. Serial wire debug and  
trace functions are supported in addition to a standard JTAG debug and parallel trace  
functions. The ARM Cortex-M3 is configured to support up to eight breakpoints and four  
watch points.  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
68 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
8. Limiting values  
Table 9.  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).[1]  
Symbol  
Parameter  
Conditions  
Min  
2.4  
Max  
3.6  
Unit  
V
VDD(3V3)  
supply voltage (3.3 V)  
external rail  
VDD(REG)(3V3) regulator supply voltage (3.3 V)  
2.4  
3.6  
V
VDDA  
analog 3.3 V pad supply voltage  
input voltage on pin VBAT  
input voltage on pin VREFP  
analog input voltage  
0.5  
0.5  
0.5  
0.5  
+4.6  
+4.6  
+4.6  
+5.1  
V
Vi(VBAT)  
Vi(VREFP)  
VIA  
for the RTC  
V
V
on ADC related  
pins  
V
[2]  
VI  
input voltage  
5 V tolerant I/O  
pins; only valid  
when the VDD(3V3)  
supply voltage is  
present  
0.5  
+5.5  
V
[2][3]  
other I/O pins  
0.5  
VDD(3V3)  
0.5  
+
V
[4]  
[4]  
IDD  
supply current  
per supply pin  
per ground pin  
-
-
-
100  
100  
100  
mA  
mA  
mA  
ISS  
ground current  
I/O latch-up current  
Ilatch  
(0.5VDD(3V3)) < VI  
< (1.5VDD(3V3));  
Tj < 125 C  
[5]  
[6]  
Tstg  
storage temperature  
65  
+150  
1.5  
C  
Ptot(pack)  
total power dissipation (per package)  
based on package  
heat transfer, not  
device power  
-
W
consumption  
VESD  
electrostatic discharge voltage  
human body  
4000  
+4000  
V
model; all pins  
[1] The following applies to the limiting values:  
a) This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive  
static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated  
maximum.  
b) Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to VSS unless  
otherwise noted.  
[2] Including voltage on outputs in 3-state mode.  
[3] Not to exceed 4.6 V.  
[4] The peak current is limited to 25 times the corresponding maximum current.  
[5] Dependent on package type.  
[6] Human body model: equivalent to discharging a 100 pF capacitor through a 1.5 kseries resistor.  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
69 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
9. Thermal characteristics  
9.1 Thermal characteristics  
The average chip junction temperature, TJ (C), can be calculated using the following  
equation:  
TJ = Tamb + PD Rthj a  
(1)  
Tamb = ambient temperature (C),  
Rth(j-a) = the package junction-to-ambient thermal resistance (C/W)  
PD = sum of internal and I/O power dissipation  
The internal power dissipation is the product of IDD and VDD. The I/O power dissipation of  
the I/O pins is often small and many times can be negligible. However it can be significant  
in some applications.  
Table 10. Thermal characteristics  
VDD = 2.4 V to 3.6 V; Tamb = 40 C to +85 C unless otherwise specified;  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Tj(max)  
maximum junction  
temperature  
-
-
125  
C  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
70 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
10. Static characteristics  
Table 11. Static characteristics  
Tamb = 40 C to +85 C, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ[1]  
Max  
Unit  
Supply pins  
VDD(3V3)  
[2]  
[3]  
supply voltage (3.3 V)  
external rail  
2.4  
2.4  
3.3  
3.3  
3.6  
3.6  
V
V
VDD(REG)(3V3)  
regulator supply voltage  
(3.3 V)  
VDDA  
analog 3.3 V pad supply  
voltage  
2.7  
2.1  
2.7  
3.3  
3.3  
3.3  
3.6  
V
V
V
Vi(VBAT)  
input voltage on pin  
VBAT  
3.6  
Vi(VREFP)  
IDD(REG)(3V3)  
input voltage on pin  
VREFP  
VDDA  
regulator supply current active mode; code  
(3.3 V)  
while(1){}  
executed from flash; all  
peripherals disabled  
PCLK = CCLK/4  
[4]  
[4]  
CCLK = 12 MHz; PLL  
disabled  
-
-
7.09  
-
-
mA  
mA  
CCLK = 120 MHz; PLL  
enabled  
51.22  
active mode; code  
while(1){}  
executed from flash; all  
peripherals enabled;  
PCLK = CCLK/4  
[4]  
[4]  
CCLK = 12 MHz; PLL  
disabled  
14  
CCLK = 120 MHz; PLL  
enabled  
100  
mA  
[4][5]  
[4][6]  
[4][6]  
[4]  
Sleep mode  
-
-
-
-
4.86  
370  
56  
-
-
-
-
mA  
A  
A  
A  
Deep sleep mode  
Power-down mode  
Deep power-down mode  
1.3  
IBAT  
battery supply current  
I/O supply current  
Deep power-down mode;  
RTC running  
[7]  
[8]  
VDD(REG)(3V3) present  
-
-
<tbd>  
-
nA  
VDD(REG)(3V3) not  
present  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
-
-
-
-
nA  
nA  
nA  
nA  
[9]  
[9]  
[9]  
IDD(IO)  
Deep sleep mode  
-
-
-
Power-down mode  
Deep power-down mode  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
71 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 11. Static characteristics …continued  
Tamb = 40 C to +85 C, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ[1]  
<tbd>  
<tbd>  
<tbd>  
Max  
Unit  
nA  
[10]  
[10]  
[10]  
IDD(ADC)  
ADC supply current  
Deep sleep mode  
Power-down mode  
Deep power-down mode  
on pin VREFP  
-
-
-
-
-
-
nA  
nA  
II(ADC)  
ADC input current  
[11]  
[11]  
[11]  
Deep sleep mode  
Power-down mode  
-
-
-
<tbd>  
<tbd>  
<tbd>  
-
-
-
nA  
nA  
nA  
Deep power-down  
mode  
Standard port pins, RESET  
IIL  
LOW-level input current VI = 0 V; on-chip pull-up  
resistor disabled  
-
-
0.5  
0.5  
10  
10  
nA  
nA  
IIH  
HIGH-level input  
current  
VI = VDD(3V3); on-chip  
pull-down resistor  
disabled  
IOZ  
OFF-state output  
current  
VO = 0 V; VO = VDD(3V3)  
on-chip pull-up/down  
resistors disabled  
;
-
0.5  
-
10  
nA  
V
[12][13]  
[14]  
VI  
input voltage  
pin configured to provide  
a digital function  
0
5.0  
VO  
output voltage  
output active  
0
-
-
VDD(3V3)  
-
V
V
VIH  
HIGH-level input  
voltage  
0.7VDD(3V3)  
VIL  
LOW-level input voltage  
hysteresis voltage  
-
-
-
-
0.3VDD(3V3)  
V
V
V
Vhys  
VOH  
0.4  
-
-
HIGH-level output  
voltage  
IOH = 4 mA  
VDD(3V3)  
0.4  
VOL  
IOH  
LOW-level output  
voltage  
IOL = 4 mA  
-
-
-
-
-
-
0.4  
-
V
HIGH-level output  
current  
VOH = VDD(3V3) 0.4 V  
VOL = 0.4 V  
4  
4
-
mA  
mA  
mA  
mA  
IOL  
LOW-level output  
current  
-
[15]  
[15]  
IOHS  
IOLS  
HIGH-level short-circuit VOH = 0 V  
output current  
45  
50  
LOW-level short-circuit VOL = VDD(3V3)  
output current  
-
Ipd  
Ipu  
pull-down current  
pull-up current  
VI = 5 V  
10  
15  
0
50  
50  
0
150  
85  
0
A  
A  
A  
VI = 0 V  
VDD(3V3) < VI < 5 V  
I2C-bus pins (P0[27] and P0[28])  
VIH  
HIGH-level input  
voltage  
<tbd>VDD(3  
-
-
-
V
V
V3)  
VIL  
LOW-level input voltage  
-
<tbd>VDD(3  
V3)  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
72 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 11. Static characteristics …continued  
Tamb = 40 C to +85 C, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ[1]  
Max  
Unit  
Vhys  
hysteresis voltage  
-
<tbd>VDD(3  
-
V
V3)  
VOL  
ILI  
LOW-level output  
voltage  
IOLS = 3 mA  
-
-
0.4  
V
[16]  
input leakage current  
VI = VDD(3V3)  
VI = 5 V  
-
-
<tbd>  
<tbd>  
<tbd>  
<tbd>  
A  
A  
USB pins  
IOZ  
OFF-state output  
current  
0 V < VI < 3.3 V  
-
-
10  
A  
VBUS  
VDI  
bus supply voltage  
-
-
-
5.25  
-
V
V
differential input  
(D+) (D)  
0.2  
sensitivity voltage  
VCM  
differential common  
mode voltage range  
includes VDI range  
0.8  
0.8  
-
-
2.5  
2.0  
V
V
Vth(rs)se  
single-ended receiver  
switching threshold  
voltage  
VOL  
LOW-level output  
voltage for  
low-/full-speed  
RL of 1.5 kto 3.6 V  
RL of 15 kto GND  
-
-
-
0.18  
3.5  
V
V
VOH  
HIGH-level output  
voltage (driven) for  
low-/full-speed  
2.8  
Ctrans  
ZDRV  
transceiver capacitance pin to GND  
-
-
-
20  
pF  
[17]  
driver output  
with 33 series resistor;  
steady state drive  
36  
44.1  
impedance for driver  
which is not high-speed  
capable  
Oscillator pins (see Section 14.2)  
Vi(XTAL1)  
Vo(XTAL2)  
Vi(RTCX1)  
Vo(RTCX2)  
input voltage on pin  
XTAL1  
0.5  
0.5  
0.5  
0.5  
1.8  
1.8  
-
1.95  
1.95  
3.6  
V
V
V
V
output voltage on pin  
XTAL2  
input voltage on pin  
RTCX1  
output voltage on pin  
RTCX2  
-
3.6  
[1] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply voltages.  
[2] For USB operation 3.0 V VDD((3V3) 3.6 V. Guaranteed by design.  
[3] The RTC typically fails when Vi(VBAT) drops below 1.6 V.  
[4] VDD(REG)(3V3) = 3.3 V; Tamb = 25 C for all power consumption measurements.  
[5] IRC running at 12 MHz; main oscillator and PLL disabled; PCLK = CCLK/4.  
[6] BOD disabled.  
[7] On pin VBAT; IDD(REG)(3V3) = <tbd>; VDD(REG)(3V3) = 3.3 V; VBAT = 3.3 V; Tamb = 25 C.  
[8] On pin VBAT; VBAT = 3.3 V; Tamb = 25 C.  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
73 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
[9] All internal pull-ups disabled. All pins configured as output and driven LOW. VDD(3V3) = 3.3 V; Tamb = 25 C.  
[10] VDDA = 3.3 V; Tamb = 25 C.  
[11] Vi(VREFP) = 3.3 V; Tamb = 25 C.  
[12] Including voltage on outputs in 3-state mode.  
[13] VDD(3V3) supply voltages must be present.  
[14] 3-state outputs go into 3-state mode in Deep power-down mode.  
[15] Allowed as long as the current limit does not exceed the maximum current allowed by the device.  
[16] To VSS  
.
[17] Includes external resistors of 33   1 % on D+ and D.  
10.1 Power consumption  
001aac984  
X
X
(X)  
X
X
X
X
<tbd>  
X
X
X
X
X
X
X (X)  
Conditions: VDD(Reg)(3V3) = 3.3 V; BOD disabled.  
Fig 9. Deep-sleep mode: Regulator supply current IDD(Reg)(3V3) versus temperature  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
74 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
001aac984  
X
X
X
X
X
X
X
(X)  
<tbd>  
X
X
X
X
X
X (X)  
Conditions: VDD(Reg)(3V3) = 3.3 V; BOD disabled.  
Fig 10. Power-down mode: Regulator supply current IDD(Reg)(3V3) versus temperature  
001aac984  
X
X
(X)  
X
X
<tbd>  
X
X
X
X
X
X
X
X
X (X)  
Conditions: VBAT = 3.3 V; VDD(Reg)(3V3) floating; RTC not running.  
Fig 11. Deep power-down mode: Battery supply current IBAT versus temperature  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
75 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
10.2 Peripheral power consumption  
The supply current per peripheral is measured as the difference in supply current between  
the peripheral block enabled and the peripheral block disabled in the PCONP register. All  
other blocks are disabled and no code is executed. Measured on a typical sample at  
Tamb = 25 C. The peripheral clock was set to PCLK = CCLK/4 with CCLK = 12 MHz,  
48 MHz, and 120 MHz.  
The combined current of several peripherals running at the same time can be less than  
the sum of each individual peripheral current measured separately.  
Table 12. Power consumption for individual analog and digital blocks  
Tamb = 25 C, VDD(REG)(3V3) = <tbd> V. PCLK = CCLK/4.  
Peripheral  
Conditions  
Typical supply current in mA  
12 MHz  
0.01  
0.02  
0.02  
0.01  
0.07  
0.05  
0.06  
0.05  
0.06  
0.07  
0.29  
48 MHz  
0.06  
0.07  
0.07  
0.07  
0.28  
0.19  
0.24  
0.2  
120 MHz  
0.15  
0.16  
0.17  
0.16  
0.67  
0.45  
0.56  
0.47  
0.56  
0.66  
2.74  
Timer0  
Timer1  
Timer2  
Timer3  
Timer0 + Timer1 + Timer2 + Timer3  
UART0  
UART1  
UART2  
UART3  
USART4  
0.23  
0.27  
1.13  
UART0 + UART1 + UART2 + UART3 +  
USART4  
PWM0 + PWM1  
0.08  
0.04  
0.01  
0.01  
0.01  
0.02  
0.03  
0.02  
0.3  
0.31  
0.15  
0.03  
0.03  
0.03  
0.1  
0.75  
0.36  
0.08  
0.1  
Motor control PWM  
I2C0  
I2C1  
I2C2  
0.08  
0.26  
0.26  
0.27  
0.33  
1.7  
I2C0 + I2C1 + I2C2  
SSP0  
0.1  
SSP1  
0.11  
0.31  
1.61  
0.44  
0.4  
DAC  
ADC (12 MHz clock)  
1.51  
0.11  
0.1  
CAN1  
CAN2  
CAN1 + CAN2  
DMA  
1.08  
0.98  
1.44  
10.27  
0.28  
4.16  
9.25  
0.46  
0.15  
1.1  
0.59  
4.27  
0.11  
1.72  
3.84  
0.18  
PCLK = CCLK  
QEI  
0.02  
0.4  
GPIO  
LCD  
0.99  
0.04  
I2S  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
76 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 12. Power consumption for individual analog and digital blocks …continued  
Tamb = 25 C, VDD(REG)(3V3) = <tbd> V. PCLK = CCLK/4.  
Peripheral  
Conditions  
Typical supply current in mA  
12 MHz  
0.82  
48 MHz  
3.17  
120 MHz  
7.63  
EMC  
RTC  
0.01  
0.01  
0.05  
USB + PLL1  
Ethernet  
0.62  
0.97  
1.67  
PCENET bit set 0.54  
2.08  
5.03  
to 1 in the  
PCONP register  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
77 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
10.3 Electrical pin characteristics  
002aaf112  
3.6  
V
OH  
(V)  
T = 85 °C  
25 °C  
40 °C  
3.2  
2.8  
2.4  
2
0
8
16  
24  
I
(mA)  
OH  
Conditions: VDD(REG)(3V3) = VDD(3V3) = 3.3 V; standard port pins.  
Fig 12. Typical HIGH-level output voltage VOH versus HIGH-level output source current  
IOH  
002aaf111  
15  
I
OL  
T = 85 °C  
25 °C  
40 °C  
(mA)  
10  
5
0
0
0.2  
0.4  
0.6  
V
OL  
(V)  
Conditions: VDD(REG)(3V3) = VDD(3V3) = 3.3 V; standard port pins.  
Fig 13. Typical LOW-level output current IOL versus LOW-level output voltage VOL  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
78 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
002aaf108  
+10  
I
pu  
(μA)  
10  
30  
50  
70  
T = 85 °C  
25 °C  
40 °C  
0
1
2
3
4
5
V (V)  
I
Conditions: VDD(REG)(3V3) = VDD(3V3) = 3.3 V; standard port pins.  
Fig 14. Typical pull-up current Ipu versus input voltage VI  
002aaf109  
90  
I
pd  
(μA)  
70  
T = 85 °C  
25 °C  
40 °C  
50  
30  
10  
10  
0
1
2
3
4
5
V (V)  
I
Conditions: VDD(REG)(3V3) = VDD(3V3) = 3.3 V; standard port pins.  
Fig 15. Typical pull-down current Ipd versus input voltage VI  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
79 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
11. Dynamic characteristics  
11.1 Flash memory  
Table 13. Flash characteristics  
Tamb = 40 C to +85 C, unless otherwise specified.  
Symbol  
Nendu  
tret  
Parameter  
endurance  
Conditions  
Min  
Typ  
Max  
Unit  
[1]  
10000 100000 -  
cycles  
years  
years  
ms  
retention time  
powered  
10  
20  
95  
-
-
unpowered  
-
-
ter  
erase time  
sector or multiple  
100  
105  
consecutive sectors  
[2]  
tprog  
programming  
time  
0.95  
1
1.05  
ms  
[1] Number of program/erase cycles.  
[2] Programming times are given for writing 256 bytes from RAM to the flash. Data must be written to the flash  
in blocks of 256 bytes.  
Table 14. EEPROM characteristics  
Tamb = 40 C to +85 C; VDD(REG)(3V3) = 2.7 V to 3.6 V.  
Symbol  
Parameter  
Conditions  
Min  
200  
100000  
10  
Typ  
Max  
Unit  
fclk  
clock frequency  
endurance  
375  
400  
kHz  
Nendu  
tret  
500000  
-
-
-
cycles  
years  
years  
retention time  
powered  
-
-
unpowered  
10  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
80 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
11.2 External memory interface  
Table 15. Dynamic characteristics: Static external memory interface  
CL = 30 pF, Tamb = 40 C to 85 C, VDD(REG)(3V3) = 3.0 V to 3.6 V. Values guaranteed by design.  
Symbol  
Parameter[1]  
Conditions[1]  
Min  
Typ  
Max  
Unit  
Tcy(clk)  
clock cycle time  
12.5  
-
-
ns  
Read cycle parameters[2]  
tCSLAV  
CS LOW to address valid  
time  
RD1  
RD2  
1.4  
2.0  
2.5  
ns  
ns  
tCSLOEL  
CS LOW to OE LOW time  
1.3 + Tcy(clk)  
WAITOEN  
2.0 + Tcy(clk)  
WAITOEN  
2.5 + Tcy(clk)  
WAITOEN  
tCSLBLSL  
tOELOEH  
CS LOW to BLS LOW time RD3; PB = 1  
OE LOW to OE HIGH time RD4  
<tbd>  
<tbd>  
<tbd>  
ns  
ns  
(WAITRD   
(WAITRD   
(WAITRD   
WAITOEN + 1) WAITOEN + 1) WAITOEN + 1)   
Tcy(clk) 1.0  
Tcy(clk) 1.4  
Tcy(clk) 1.6  
[3]  
[4]  
tam  
memory access time  
data input hold time  
RD5  
RD6  
(WAITRD   
(WAITRD   
(WAITRD   
ns  
WAITOEN +1) WAITOEN +1) WAITOEN +1)   
Tcy(clk) 7.2  
Tcy(clk) 10.5  
Tcy(clk) 15.5  
th(D)  
0.1  
0.1  
0.1  
ns  
ns  
ns  
ns  
tCSHBLSH CS HIGH to BLS HIGH time PB = 1  
1.5  
2.3  
3
tCSHOEH  
tOEHANV  
CS HIGH to OE HIGH time  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
OE HIGH to address invalid  
time  
tdeact  
deactivation time  
RD7  
<tbd>  
1.4  
<tbd>  
<tbd>  
ns  
ns  
Write cycle parameters[2]  
tCSLAV  
CS LOW to address valid  
time  
WR1  
2.0  
2.3  
2.5  
2.9  
tCSLDV  
CS LOW to data valid time WR2  
1.5  
ns  
ns  
tCSLWEL  
CS LOW to WE LOW time  
WR3; PB =1  
1.4 + Tcy(clk)  
2.0 + Tcy(clk)  
2.5 + Tcy(clk)   
(1 + WAITWEN) (1 + WAITWEN) (1 + WAITWEN)  
tCSLBLSL  
tWELWEH  
CS LOW to BLS LOW time WR4; PB = 1  
WE LOW to WE HIGH time WR5; PB =1  
3.0  
2.3  
3.0  
ns  
ns  
(WAITWR   
(WAITWR   
(WAITWR   
WAITWEN + 1) WAITWEN + 1) WAITWEN + 1)   
Tcy(clk) 1.0  
Tcy(clk) 1.5  
Tcy(clk) 1.7  
tBLSLBLSH BLS LOW to BLS HIGH time PB = 1  
(WAITWR   
(WAITWR   
(WAITWR   
ns  
WAITWEN + 3) WAITWEN + 3) WAITWEN + 3)   
Tcy(clk) 1.4  
Tcy(clk) 2.0  
Tcy(clk) 2.7  
tWEHDNV  
WE HIGH to data invalid  
time  
WR6; PB =1  
WR7; PB = 1  
PB = 1  
1.2 + Tcy(clk)  
1.8 + Tcy(clk)  
2.1 + Tcy(clk)  
ns  
ns  
ns  
ns  
ns  
ns  
[5]  
tWEHEOW WE HIGH to end of write  
time  
<tbd> + Tcy(clk)  
1.4  
<tbd> + Tcy(clk)  
2.0  
<tbd> + Tcy(clk)  
2.7  
tBLSHDNV BLS HIGH to data invalid  
time  
tWEHANV  
tdeact  
tCSLBLSL  
WE HIGH to address invalid PB = 1  
time  
1 + Tcy(clk)  
<tbd>  
1.5 + Tcy(clk)  
<tbd>  
1.7 + Tcy(clk)  
<tbd>  
deactivation time  
WR8; PB = 0;  
PB = 1  
CS LOW to BLS LOW  
WR9; PB = 0  
<tbd>  
<tbd>  
<tbd>  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
81 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 15. Dynamic characteristics: Static external memory interface …continued  
CL = 30 pF, Tamb = 40 C to 85 C, VDD(REG)(3V3) = 3.0 V to 3.6 V. Values guaranteed by design.  
Symbol  
tBLSLBLSH BLS LOW to BLS HIGH time WR10; PB = 0  
Parameter[1]  
Conditions[1]  
Min  
Typ  
Max  
Unit  
(WAITWR   
(WAITWR   
(WAITWR   
ns  
WAITWEN + 1) WAITWEN + 1) WAITWEN + 1)   
Tcy(clk) + <tbd>  
T
cy(clk) + <tbd>  
Tcy(clk) + <tbd>  
[5]  
tBLSHEOW BLS HIGH to end of write  
time  
WR11; PB = 0  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
<tbd>  
ns  
ns  
tBLSHDNV BLS HIGH to data invalid  
time  
WR12;  
PB = 0  
<tbd>  
[1] Parameters are shown as RDn or WDn in Figure 16 as indicated in the Conditions column.  
[2] Parameters specified for 40 % of VDD(IO) for rising edges and 60 % of VDD(IO) for falling edges.  
[3] Latest of address valid, CS LOW, OE LOW, BS LOW (PB = 1).  
[4] After End Of Read (EOR): Earliest of CS HIGH, OE HIGH, BLSx HIGH (PB = 1), address invalid.  
[5] End Of Write (EOW): Earliest of address invalid, CS HIGH, BLSx HIGH (PB = 1).  
A
RD  
WR  
1
1
CS  
OE  
WR  
8
RD  
2
RD  
4
RD  
7
WR  
WR  
WR  
11  
9
10  
BLSx  
WE  
RD  
5
RD  
5
WR  
2
WR  
12  
RD  
RD  
5
6
D
EOW  
EOR  
002aag214  
Fig 16. External static memory read/write access (PB = 0)  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
82 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
A
RD  
WR  
1
1
CS  
OE  
RD  
WR  
8
2
RD  
4
RD  
WR  
4
RD  
RD  
3
7
7
BLSx  
WE  
WR  
8
WR  
WR  
WR  
7
3
5
RD  
5
RD  
5
RD  
5
WR  
WR  
6
2
RD  
6
RD  
5
D
EOR  
EOW  
002aag215  
Fig 17. External static memory read/write access (PB =1)  
A
CS  
OE  
BLSx  
WE  
RD  
RD  
RD  
RD  
5
5
5
5
D
002aag216  
Fig 18. External static memory burst read cycle  
Table 16. Dynamic characteristics: Dynamic external memory interface, read strategy bits (RD bits) = 00  
CL = 30 pF, Tamb = 40 C to 85 C, VDD(REG)(3V3) = 3.0 V to 3.6 V. All programmable delays EMCDLYCTL are bypassed.  
Values guaranteed by design.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Common to read and write cycles  
td(SV)  
chip select valid delay time  
chip select hold time  
2.9  
1.2  
2.8  
1.3  
2.8  
1.3  
3.6  
4.2  
1.8  
4.2  
1.9  
4.2  
1.9  
5.2  
6.2  
3.3  
6.2  
3.5  
6.2  
3.5  
7.7  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
th(S)  
td(RASV)  
th(RAS)  
td(CASV)  
th(CAS)  
td(WV)  
row address strobe valid delay time  
row address strobe hold time  
column address strobe valid delay time  
column address strobe hold time  
write valid delay time  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
83 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 16. Dynamic characteristics: Dynamic external memory interface, read strategy bits (RD bits) = 00 …continued  
CL = 30 pF, Tamb = 40 C to 85 C, VDD(REG)(3V3) = 3.0 V to 3.6 V. All programmable delays EMCDLYCTL are bypassed.  
Values guaranteed by design.  
Symbol  
th(W)  
Parameter  
Conditions  
Min  
1.6  
-
Typ  
2.4  
-
Max  
4.2  
-
Unit  
ns  
write hold time  
td(GV)  
th(G)  
td(AV)  
th(A)  
output enable valid delay time  
output enable hold time  
address valid delay time  
address hold time  
ns  
-
-
-
ns  
3.4  
1.1  
5.0  
1.7  
7.4  
3.0  
ns  
ns  
Read cycle parameters  
tsu(D) data input set-up time  
th(D) data input hold time  
Write cycle parameters  
td(QV) data output valid delay time  
th(Q) data output hold time  
5.3  
3.7  
3.8  
4.3  
1.5  
5.2  
ns  
ns  
3.9  
0.2  
5.8  
0.6  
8.7  
1.6  
ns  
ns  
[1] The data input set-up time has to be selected with the following margin:  
su(D) + delay time of feedback clock sdram access time board delay time 0.  
t
[2] The data input hold time has to be selected with the following margin:  
h(D) + sdram access time board delay time delay time of feedback clock 0.  
t
Table 17. Dynamic characteristics: Dynamic external memory interface, read strategy bits (RD bits) = 01  
CL = 30 pF, Tamb = 40 C to 85 C, VDD(REG)(3V3) = 3.0 V to 3.6 V. All programmable delays EMCDLYCTL are bypassed.  
Values guaranteed by design.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Common to read and write cycles  
td(SV)  
th(S)  
chip select valid delay time  
chip select hold time  
2.7  
1.0  
2.7  
1.1  
2.7  
1.2  
3.2  
1.6  
-
4.1  
1.6  
4.1  
1.7  
4.1  
1.8  
4.8  
2.3  
-
6.0  
3.1  
6.0  
3.3  
6.1  
3.3  
7.1  
4.2  
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
td(RASV)  
th(RAS)  
td(CASV)  
th(CAS)  
td(WV)  
th(W)  
row address strobe valid delay time  
row address strobe hold time  
column address strobe valid delay time  
column address strobe hold time  
write valid delay time  
write hold time  
td(GV)  
th(G)  
td(AV)  
th(A)  
output enable valid delay time  
output enable hold time  
-
-
-
address valid delay time  
address hold time  
3.3  
1.0  
4.9  
1.6  
7.3  
2.8  
Read cycle parameters  
tsu(D) data input set-up time  
th(D) data input hold time  
Write cycle parameters  
td(QV) data output valid delay time  
th(Q) data output hold time  
5.3  
3.7  
3.8  
4.3  
1.5  
5.2  
ns  
ns  
3.3  
0.2  
4.9  
0.5  
7.3  
1.6  
ns  
ns  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
84 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
[1] The data input set-up time has to be selected with the following margin:  
t
su(D) + delay time of feedback clock sdram access time board delay time 0.  
[2] The data input hold time has to be selected with the following margin:  
t
h(D) + sdram access time - board delay time - delay time of feedback clock 0.  
CLKOUT  
t
t
t
t
d(CS)  
h(CS)  
DYCS  
RAS  
d(RAS)  
h(RAS)  
t
t
h(CAS)  
d(CAS)  
CAS  
WE  
t
t
h(DQM)  
d(DQM)  
DQM  
A
t
t
h(A)  
d(A)  
t
su(D)  
t
h(D)  
D
002aag205  
Fig 19. Dynamic external memory interface signal timing (read access)  
Table 18. Dynamic characteristics: Dynamic external memory interface programmable  
clock delays  
CL = 30 pF, Tamb = 40 C to 85 C, VDD(REG)(3V3) = 3.0 V to 3.6 V.Values guaranteed by design.  
Symbol Parameter Conditions  
Min Typ  
Max  
Unit  
[1]  
[1]  
[1]  
[1]  
[1]  
td delay time Programmable delay block 0  
0.06 0.09  
0.15  
ns  
(CMDDLY or CLKOUTnDLY bit 0 = 1)  
Programmable delay block 1  
(CMDDLY or CLKOUTnDLY bit 1 = 1)  
0.21 0.32  
0.54 0.82  
1.17 1.76  
2.43 3.66  
0.53  
1.34  
2.87  
5.97  
ns  
ns  
ns  
ns  
Programmable delay block 2  
(CMDDLY or CLKOUTnDLY bit 2 = 1)  
Programmable delay block 3  
(CMDDLY or CLKOUTnDLY bit 3 = 1)  
Programmable delay block 4  
(CMDDLY or CLKOUTnDLY bit 4 = 1)  
[1] The programmable delay blocks are controlled by the EMCDLYCTL register in the EMC register block. All  
delay times are incremental delays for each element starting from delay block 0. See the LPC178x/7x user  
manual for details.  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
85 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
11.3 External clock  
Table 19. Dynamic characteristic: external clock  
amb = 40 C to +85 C; VDD(3V3) over specified ranges.[1]  
T
Symbol  
Parameter  
Conditions  
Min  
Typ[2] Max  
Unit  
MHz  
ns  
fosc  
oscillator frequency  
clock cycle time  
clock HIGH time  
clock LOW time  
clock rise time  
clock fall time  
1
-
-
-
-
-
-
25  
Tcy(clk)  
tCHCX  
tCLCX  
tCLCH  
tCHCL  
40  
1000  
Tcy(clk) 0.4  
-
ns  
Tcy(clk) 0.4  
-
ns  
-
-
5
5
ns  
ns  
[1] Parameters are valid over operating temperature range unless otherwise specified.  
[2] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply  
voltages.  
t
CHCX  
t
t
t
CHCL  
CLCX  
CLCH  
T
cy(clk)  
002aaa907  
Fig 20. External clock timing (with an amplitude of at least Vi(RMS) = 200 mV)  
11.4 Internal oscillators  
Table 20. Dynamic characteristic: internal oscillators  
Tamb = 40 C to +85 C; 2.7 V VDD(3V3) 3.6 V.[1]  
Symbol  
Parameter  
Conditions  
Min  
Typ[2] Max  
12 12.12 MHz  
Unit  
fosc(RC)  
internal RC oscillator  
frequency  
-
11.88  
fi(RTC)  
RTC input frequency  
-
-
32.768 -  
kHz  
[1] Parameters are valid over operating temperature range unless otherwise specified.  
[2] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply  
voltages.  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
86 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
001aac984  
X
X
X
X
X
X
X
(X)  
<tbd>  
X
X
X
X
X
X (X)  
Conditions: Frequency values are typical values. 12 MHz 1 % accuracy is guaranteed for  
2.7 V VDD(3V3) 3.6 V and Tamb = 40 C to +85 C. Variations between parts may cause the IRC  
to fall outside the 12 MHz 1 % accuracy specification for voltages below 2.7 V.  
Fig 21. Internal RC oscillator frequency versus temperature  
11.5 I/O pins  
Table 21. Dynamic characteristic: I/O pins[1]  
Tamb = 40 C to +85 C; VDD(3V3) over specified ranges.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
tr  
rise time  
pin configured as  
output  
3.0  
-
5.0  
ns  
tf  
fall time  
pin configured as  
output  
2.5  
-
5.0  
ns  
[1] Applies to standard port pins and RESET pin.  
11.6 SSP interface  
Table 22. Dynamic characteristics: SSP pins in SPI mode  
Tamb = 40 C to 85 C, VDD(REG)(3V3) = 3.0 V to 3.6 V. Values guaranteed by design.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
SSP master  
Tcy(clk)  
[1]  
clock cycle time  
full-duplex  
mode  
30  
30  
25  
25  
-
-
ns  
ns  
when only  
transmitting  
[2]  
[2]  
[2]  
[2]  
tDS  
data set-up time  
data hold time  
in SPI mode  
in SPI mode  
14.8  
2
10.5  
1
-
ns  
ns  
ns  
ns  
tDH  
-
tv(Q)  
data output valid time in SPI mode  
data output hold time in SPI mode  
-
4.0  
0.2  
6.3  
-
th(Q)  
2.4  
SSP slave  
Tcy(PCLK)  
PCLK cycle time  
10  
ns  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
87 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 22. Dynamic characteristics: SSP pins in SPI mode  
Tamb = 40 C to 85 C, VDD(REG)(3V3) = 3.0 V to 3.6 V. Values guaranteed by design.  
Symbol  
Tcy(clk)  
tDS  
Parameter  
Conditions  
Min  
120  
14.8  
2
Typ  
-
Max  
Unit  
ns  
[3]  
clock cycle time  
data set-up time  
data hold time  
-
[3][4]  
[3][4]  
[3][4]  
[3][4]  
in SPI mode  
in SPI mode  
10.5  
1
-
ns  
tDH  
-
ns  
tv(Q)  
data output valid time in SPI mode  
data output hold time in SPI mode  
-
4.0  
0.2  
6.3  
-
ns  
th(Q)  
2.4  
ns  
[1] Tcy(clk) = (SSPCLKDIV (1 + SCR) CPSDVSR) / fmain. 2The clock cycle time derived from the SPI bit rate  
cy(clk) is a function of the main clock frequency fmain, the SSP peripheral clock divider (SSPCLKDIV), the  
T
SSP SCR parameter (specified in the SSP0CR0 register), and the SSP CPSDVSR parameter (specified in  
the SSP clock prescale register).  
[2]  
Tamb = 40 C to 85 C; VDD(REG)(3V3) = 3.0 V to 3.6 V.  
[3] Tcy(clk) = 12 Tcy(PCLK)  
.
[4] Tamb = 25 C; VDD = 3.3 V.  
T
t
t
clk(L)  
cy(clk)  
clk(H)  
SCK (CPOL = 0)  
SCK (CPOL = 1)  
MOSI  
t
t
h(Q)  
v(Q)  
DATA VALID  
DATA VALID  
CPHA = 1  
t
t
DH  
DS  
DATA VALID  
DATA VALID  
MISO  
t
t
h(Q)  
v(Q)  
DATA VALID  
DATA VALID  
t
MOSI  
MISO  
t
CPHA = 0  
DS  
DH  
DATA VALID  
DATA VALID  
002aae829  
Fig 22. SSP master timing in SPI mode  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
88 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
T
t
t
clk(L)  
cy(clk)  
clk(H)  
SCK (CPOL = 0)  
SCK (CPOL = 1)  
t
t
DH  
DS  
MOSI  
MISO  
DATA VALID  
DATA VALID  
t
t
h(Q)  
v(Q)  
CPHA = 1  
DATA VALID  
DATA VALID  
t
t
DH  
DS  
MOSI  
MISO  
DATA VALID  
DATA VALID  
DATA VALID  
t
t
CPHA = 0  
002aae830  
v(Q)  
h(Q)  
DATA VALID  
Fig 23. SSP slave timing in SPI mode  
11.7 I2C-bus  
Table 23. Dynamic characteristic: I2C-bus pins[1]  
Tamb = 40 C to +85 C.[2]  
Symbol  
Parameter  
Conditions  
Min  
Max  
100  
400  
1
Unit  
kHz  
kHz  
MHz  
ns  
fSCL  
SCL clock  
frequency  
Standard-mode  
Fast-mode  
0
0
0
-
Fast-mode Plus  
[4][5][6][7]  
tf  
fall time  
of both SDA and  
SCL signals  
300  
Standard-mode  
Fast-mode  
20 + 0.1 Cb 300  
ns  
ns  
s  
s  
s  
s  
s  
s  
Fast-mode Plus  
Standard-mode  
Fast-mode  
-
120  
tLOW  
LOW period of  
the SCL clock  
4.7  
1.3  
0.5  
4.0  
0.6  
0.26  
-
-
-
-
-
-
Fast-mode Plus  
Standard-mode  
Fast-mode  
tHIGH  
HIGH period of  
the SCL clock  
Fast-mode Plus  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
89 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 23. Dynamic characteristic: I2C-bus pins[1]  
Tamb = 40 C to +85 C.[2]  
Symbol  
Parameter  
Conditions  
Min  
0
Max  
Unit  
s  
[3][4][8]  
tHD;DAT  
data hold time  
Standard-mode  
Fast-mode  
-
-
-
-
-
-
0
s  
Fast-mode Plus  
Standard-mode  
Fast-mode  
0
s  
[9][10]  
tSU;DAT  
data set-up  
time  
250  
100  
50  
ns  
ns  
Fast-mode Plus  
ns  
[1] See the I2C-bus specification UM10204 for details.  
[2] Parameters are valid over operating temperature range unless otherwise specified.  
[3] tHD;DAT is the data hold time that is measured from the falling edge of SCL; applies to data in transmission  
and the acknowledge.  
[4] A device must internally provide a hold time of at least 300 ns for the SDA signal (with respect to the  
VIH(min) of the SCL signal) to bridge the undefined region of the falling edge of SCL.  
[5] Cb = total capacitance of one bus line in pF.  
[6] The maximum tf for the SDA and SCL bus lines is specified at 300 ns. The maximum fall time for the SDA  
output stage tf is specified at 250 ns. This allows series protection resistors to be connected in between the  
SDA and the SCL pins and the SDA/SCL bus lines without exceeding the maximum specified tf.  
[7] In Fast-mode Plus, fall time is specified the same for both output stage and bus timing. If series resistors  
are used, designers should allow for this when considering bus timing.  
[8] The maximum tHD;DAT could be 3.45 s and 0.9 s for Standard-mode and Fast-mode but must be less than  
the maximum of tVD;DAT or tVD;ACK by a transition time (see UM10204). This maximum must only be met if  
the device does not stretch the LOW period (tLOW) of the SCL signal. If the clock stretches the SCL, the  
data must be valid by the set-up time before it releases the clock.  
[9] tSU;DAT is the data set-up time that is measured with respect to the rising edge of SCL; applies to data in  
transmission and the acknowledge.  
[10] A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system but the requirement tSU;DAT  
=
250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period  
of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next  
data bit to the SDA line tr(max) + tSU;DAT = 1000 + 250 = 1250 ns (according to the Standard-mode I2C-bus  
specification) before the SCL line is released. Also the acknowledge timing must meet this set-up time.  
t
t
SU;DAT  
f
70 %  
30 %  
70 %  
30 %  
SDA  
SCL  
t
t
HD;DAT  
VD;DAT  
t
f
t
HIGH  
70 %  
30 %  
70 %  
30 %  
70 %  
30 %  
70 %  
30 %  
t
LOW  
1 / f  
S
SCL  
002aaf425  
Fig 24. I2C-bus pins clock timing  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
90 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
11.8 I2S-bus interface  
Table 24. Dynamic characteristics: I2S-bus interface pins  
amb = 40 C to 85 C, VDD(REG)(3V3) = 3.0 V to 3.6 V. Values guaranteed by design.  
T
Symbol Parameter  
common to input and output  
Conditions  
Min  
Max  
Unit  
[1]  
[1]  
[1]  
tr  
rise time  
-
6.7  
8.0  
-
ns  
ns  
-
tf  
fall time  
-
tWH  
pulse width HIGH  
on pins I2S_TX_SCK and  
I2S_RX_SCK  
25  
[1]  
tWL  
pulse width LOW  
on pins I2S_TX_SCK and  
I2S_RX_SCK  
-
25  
ns  
output  
tv(Q)  
[1]  
data output valid time  
on pin I2S_TX_SDA;  
-
6
ns  
input  
tsu(D)  
th(D)  
[1]  
[1]  
data input set-up time  
data input hold time  
on pin I2S_RX_SDA  
on pin I2S_RX_SDA  
5
2
-
-
ns  
ns  
[1] CCLK = 100 MHz; peripheral clock to the I2S-bus interface PCLK = CCLK / 4. I2S clock cycle time Tcy(clk)  
=
1600 ns, corresponds to the SCK signal in the I2S-bus specification.  
T
t
f
t
r
cy(clk)  
I2S_TX_SCK  
I2S_TX_SDA  
t
t
WL  
WH  
t
v(Q)  
I2S_TX_WS  
002aag202  
t
v(Q)  
Fig 25. I2S-bus timing (transmit)  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
91 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
T
t
f
t
r
cy(clk)  
I2S_RX_SCK  
t
t
WL  
WH  
I2S_RX_SDA  
I2S_RX_WS  
t
t
h(D)  
su(D)  
002aag203  
t
t
su(D)  
su(D)  
Fig 26. I2S-bus timing (receive)  
11.9 USB  
Table 25. Dynamic characteristics of USB pins (full-speed)  
CL = 50 pF; Rpu = 1.5 kon D+ to VDD(3V3); 3.0 V VDD(3V3) 3.6 V.  
Symbol  
Parameter  
rise time  
fall time  
Conditions  
10 % to 90 %  
10 % to 90 %  
tr / tf  
Min  
Typ  
Max  
13.8  
13.7  
109  
Unit  
ns  
tr  
8.5  
7.7  
-
-
-
-
tf  
ns  
tFRFM  
differential rise and fall time  
matching  
%
VCRS  
output signal crossover voltage  
source SE0 interval of EOP  
1.3  
160  
2  
-
-
-
2.0  
175  
+5  
V
tFEOPT  
tFDEOP  
see Figure 27  
ns  
ns  
source jitter for differential transition see Figure 27  
to SE0 transition  
tJR1  
receiver jitter to next transition  
18.5  
9  
-
-
-
+18.5  
ns  
ns  
ns  
tJR2  
receiver jitter for paired transitions  
EOP width at receiver  
10 % to 90 %  
+9  
-
[1]  
[1]  
tEOPR1  
must reject as  
EOP; see  
Figure 27  
40  
tEOPR2  
EOP width at receiver  
must accept as  
EOP; see  
82  
-
-
ns  
Figure 27  
[1] Characterized but not implemented as production test. Guaranteed by design.  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
92 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
t
PERIOD  
crossover point  
extended  
crossover point  
differential  
data lines  
source EOP width: t  
FEOPT  
differential data to  
SE0/EOP skew  
n × t  
+ t  
FDEOP  
PERIOD  
receiver EOP width: t  
, t  
002aab561  
EOPR1 EOPR2  
Fig 27. Differential data-to-EOP transition skew and EOP width  
11.10 Ethernet  
Remark: The Ethernet block is available on parts LPC1788/86 and LPC1778/76.  
Table 26. Dynamic characteristics: Ethernet  
Tamb = 40 C to 85 C, VDD(REG)(3V3) = 3.0 V to 3.6 V. Values guaranteed by design.  
Symbol Parameter  
RMII mode  
Conditions  
Min  
Max  
Unit  
[1]  
fclk  
dclk  
tsu  
clock frequency for ENET_RX_CLK  
clock duty cycle  
-
50  
50  
-
MHz  
%
[1]  
50  
4
[1][2]  
set-up time  
for ENET_TXDn, ENET_TX_EN,  
ns  
ENET_RXDn, ENET_RX_ER,  
ENET_RX_DV  
[1][2]  
th  
hold time  
for ENET_TXDn, ENET_TX_EN,  
ENET_RXDn, ENET_RX_ER,  
ENET_RX_DV  
2
-
ns  
MII mode  
[1]  
fclk  
dclk  
tsu  
clock frequency for ENET_TX_CLK  
clock duty cycle  
-
25  
50  
-
MHz  
%
[1]  
50  
4
[1][2]  
set-up time  
for ENET_TXDn, ENET_TX_EN,  
ns  
ENET_TX_ER  
[1][2]  
th  
hold time  
for ENET_TXDn, ENET_TX_EN,  
ENET_TX_ER  
2
-
ns  
[1]  
fclk  
dclk  
tsu  
clock frequency for ENET_RX_CLK  
clock duty cycle  
-
25  
50  
-
MHz  
%
[1]  
50  
4
[1][2]  
set-up time  
for ENET_RXDn, ENET_RX_ER,  
ns  
ENET_RX_DV  
[1][2]  
th  
hold time  
for ENET_RXDn, ENET_RX_ER,  
ENET_RX_DV  
2
-
ns  
[1] Output drivers can drive a load 25 pF accommodating over 12 inch of PCB trace and the input  
capacitance of the receiving device.  
[2] Timing values are given from the point at which the clock signal waveform crosses 1.4 V to the valid input or  
output level.  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
93 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
ENET_RX_CLK  
ENET_TX_CLK  
t
su  
t
h
ENET_RXD[n]  
ENET_RX_DV  
ENET_RX_ER  
ENET_TXD[n]  
ENET_TX_EN  
ENET_TX_ER  
002aag210  
Fig 28. Ethernet timing  
11.11 LCD  
Remark: The LCD controller is available on parts LPC1788/87/86/85.  
Table 27. Dynamic characteristics: LCD  
Values listed describe design constraints.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Tcy(clk)  
clock cycle time  
for LCD clock  
on pin  
25  
<tbd>  
-
ns  
LCD_DCLK  
001aac984  
X
X
X
X
X
X
X
(X)  
<tbd>  
X
X
X
X
X
X (X)  
Fig 29. LCD timing  
11.12 SD/MMC  
Remark: The SD/MMC card interface is available on parts LPC1788/87/86 and parts  
LPC1778/77/76.  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
94 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 28. Dynamic characteristics: SD/MMC  
amb = 40 C to 85 C, VDD(REG)(3V3) = 3.0 V to 3.6 V. Values guaranteed by design.  
T
Symbol  
Parameter  
Conditions  
Min Max Unit  
fclk  
clock frequency  
on pin SD_CLK; data transfer mode  
on pin SD_CLK; identification mode  
-
25  
25  
-
MHz  
MHz  
ns  
tsu(D)  
th(D)  
td(QV)  
th(Q)  
data input set-up  
time  
on pins SD_CMD, SD_DAT[3:0] as  
inputs  
6
data input hold time on pins SD_CMD, SD_DAT[3:0] as  
inputs  
6
-
ns  
ns  
ns  
data output valid  
delay time  
on pins SD_CMD, SD_DAT[3:0] as  
outputs  
-
23  
-
data output hold  
time  
on pins SD_CMD, SD_DAT[3:0] as  
outputs  
3.5  
T
cy(clk)  
SDIO_SCLK  
t
t
h(Q)  
d(QV)  
SDIO_CMD (O)  
SDIO_D[3:0](O)  
t
t
su(D)  
h(D)  
SDO_CMD (I)  
SDIO_D[3:0] (I)  
002aag204  
Fig 30. SD/MMC timing  
12. ADC electrical characteristics  
Table 29. ADC characteristics  
VDDA = 2.7 V to 3.6 V; Tamb = 25 C.  
Symbol Parameter Conditions  
Min  
Typ  
Max  
Unit  
V
VIA  
Cia  
analog input voltage  
0
-
-
-
VDDA  
analog input  
capacitance  
<tbd>  
pF  
[8]  
Rvsi  
voltage source  
interface resistance  
-
-
-
<tbd>  
-
k  
12-bit resolution; 400 kSamples/sec  
[1][2][3]  
ED  
differential linearity  
error  
1  
LSB  
[1][4]  
[1][5]  
[1][6]  
[1][7]  
EL(adj)  
EO  
integral non-linearity  
offset error  
-
-
-
-
-
6  
4.5  
3
-
LSB  
LSB  
LSB  
LSB  
MHz  
-
EG  
gain error  
-
ET  
absolute error  
ADC clock frequency  
-
<tbd>  
12.4  
fclk(ADC)  
-
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
95 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Table 29. ADC characteristics …continued  
VDDA = 2.7 V to 3.6 V; Tamb = 25 C.  
Symbol Parameter Conditions  
fc(ADC) ADC conversion  
frequency  
8-bit resolution[9]; 1.16 MSamples/sec  
Min  
Typ  
Max  
Unit  
-
-
400  
kHz  
[1][2][3]  
ED  
differential linearity  
error  
-
1  
-
LSB  
[1][4]  
[1][5]  
[1][6]  
[1][7]  
EL(adj)  
EO  
integral non-linearity  
offset error  
-
-
-
-
-
-
1  
1  
1  
-
-
LSB  
LSB  
LSB  
LSB  
MHz  
MHz  
-
EG  
gain error  
-
ET  
absolute error  
ADC clock frequency  
<tbd>  
36  
fclk(ADC)  
fc(ADC)  
-
ADC conversion  
frequency  
-
1.16  
[1] Conditions: VSSA = 0 V, VDDA = 3.3 V.  
[2] The ADC is monotonic, there are no missing codes.  
[3] The differential linearity error (ED) is the difference between the actual step width and the ideal step width.  
See Figure 31.  
[4] The integral non-linearity (EL(adj)) is the peak difference between the center of the steps of the actual and  
the ideal transfer curve after appropriate adjustment of gain and offset errors. See Figure 31.  
[5] The offset error (EO) is the absolute difference between the straight line which fits the actual curve and the  
straight line which fits the ideal curve. See Figure 31.  
[6] The gain error (EG) is the relative difference in percent between the straight line fitting the actual transfer  
curve after removing offset error, and the straight line which fits the ideal transfer curve. See Figure 31.  
[7] The absolute error (ET) is the maximum difference between the center of the steps of the actual transfer  
curve of the non-calibrated ADC and the ideal transfer curve. See Figure 31.  
[8] See Figure 32.  
[9] 8-bit resolution is achieved by ignoring the lower four bits of the ADC conversion result.  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
96 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
offset  
error  
O
gain  
error  
E
E
G
4095  
4094  
4093  
4092  
4091  
4090  
(2)  
7
code  
out  
(1)  
6
5
4
3
2
1
0
(5)  
(4)  
(3)  
1 LSB  
(ideal)  
4090 4091 4092 4093 4094 4095 4096  
1
2
3
4
5
6
7
V
IA  
(LSB  
)
ideal  
offset error  
E
O
VREFP - V  
4096  
SS  
1 LSB =  
002aaf436  
(1) Example of an actual transfer curve.  
(2) The ideal transfer curve.  
(3) Differential linearity error (ED).  
(4) Integral non-linearity (EL(adj)).  
(5) Center of a step of the actual transfer curve.  
Fig 31. 12-bit ADC characteristics  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
97 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
LPC17xx  
C3  
R
R
i1  
2 kΩ - 5.2 kΩ  
i2  
100 Ω - 600 Ω  
2.2 pF  
ADC  
COMPARATOR  
BLOCK  
AD0[n]  
C1  
750 fF  
C2  
C
ia  
R
65 fF  
vsi  
V
SS  
V
EXT  
002aaf197  
The values of resistor components Ri1 and Ri2 vary with temperature and input voltage and are  
process-dependent.  
Fig 32. ADC interface to pins ADC0_IN[n]  
Table 30. ADC interface components  
Component  
Range  
Description  
Ri1  
2 kto 5.2 k  
Switch-on resistance for channel selection switch. Varies with  
temperature, input voltage, and process.  
Ri2  
100 to 600   
Switch-on resistance for the comparator input switch. Varies  
with temperature, input voltage, and process.  
C1  
C2  
C3  
750 fF  
65 fF  
Parasitic capacitance from the ADC block level.  
Parasitic capacitance from the ADC block level.  
Sampling capacitor.  
2.2 pF  
13. DAC electrical characteristics  
Table 31. DAC electrical characteristics  
VDDA = 2.7 V to 3.6 V; Tamb = 40 C to +85 C unless otherwise specified  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
ED  
differential linearity  
-
1  
-
LSB  
error  
EL(adj)  
EO  
integral non-linearity  
offset error  
-
1.5  
0.6  
0.6  
200  
-
-
-
-
-
-
LSB  
%
-
EG  
gain error  
-
%
CL  
load capacitance  
load resistance  
-
pF  
k  
RL  
1
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
98 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
14. Application information  
14.1 Suggested USB interface solutions  
Remark: The USB controller is available as a device/Host/OTG controller on parts  
LPC1788/87/86/85 and LPC1778/77/76 and as device-only controller on parts LPC1774.  
V
DD(3V3)  
USB_UP_LED  
USB_CONNECT  
LPC17xx  
SoftConnect switch  
R1  
1.5 kΩ  
V
BUS  
R
R
= 33 Ω  
= 33 Ω  
S
USB-B  
connector  
USB_D+  
S
USB_D−  
V
SS  
002aad939  
Fig 33. USB interface on a self-powered device  
V
DD(3V3)  
R2  
LPC17xx  
R1  
1.5 kΩ  
USB_UP_LED  
V
BUS  
USB-B  
connector  
R
R
= 33 Ω  
= 33 Ω  
S
USB_D+  
S
USB_D−  
V
SS  
002aad940  
Fig 34. USB interface on a bus-powered device  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
99 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
V
DD  
VBUS  
ID  
RSTOUT  
RESET_N  
ADR/PSW  
OE_N/INT_N  
SPEED  
33 Ω  
DP  
V
DD  
Mini-AB  
33 Ω  
connector  
DM  
ISP1302  
SUSPEND  
LPC17xx  
V
SS  
SCL  
SDA  
USB_SCL  
USB_SDA  
INT_N  
EINTn  
USB_D+  
USB_D−  
USB_UP_LED  
002aad941  
V
DD  
Fig 35. USB OTG port configuration  
V
DD  
USB_UP_LED  
V
SS  
33 Ω  
33 Ω  
D+  
USB_D+  
USB_D−  
D−  
USB-A  
connector  
15 kΩ  
15 kΩ  
LPC17xx  
V
DD  
V
BUS  
USB_PWRD  
USB_OVRCR  
USB_PPWR  
FLAGA  
OUTA  
ENA  
IN  
5 V  
LM3526-L  
002aad942  
Fig 36. USB host port configuration  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
100 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
V
DD  
USB_UP_LED  
V
DD  
USB_CONNECT  
LPC17xx  
V
SS  
33 Ω  
33 Ω  
USB_D+  
D+  
USB-B  
connector  
D−  
USB_D−  
V
BUS  
V
BUS  
002aad943  
Fig 37. USB device port configuration  
14.2 Crystal oscillator XTAL input and component selection  
The input voltage to the on-chip oscillators is limited to 1.8 V. If the oscillator is driven by a  
clock in slave mode, it is recommended that the input be coupled through a capacitor with  
Ci = 100 pF. To limit the input voltage to the specified range, choose an additional  
capacitor to ground Cg which attenuates the input voltage by a factor Ci/(Ci + Cg). In slave  
mode, a minimum of 200 mV(RMS) is needed.  
LPC1xxx  
XTAL1  
C
i
C
g
100 pF  
002aae835  
Fig 38. Slave mode operation of the on-chip oscillator  
In slave mode the input clock signal should be coupled by means of a capacitor of 100 pF  
(Figure 38), with an amplitude between 200 mV(RMS) and 1000 mV(RMS). This  
corresponds to a square wave signal with a signal swing of between 280 mV and 1.4 V.  
The XTALOUT pin in this configuration can be left unconnected.  
External components and models used in oscillation mode are shown in Figure 39 and in  
Table 32 and Table 33. Since the feedback resistance is integrated on chip, only a crystal  
and the capacitances CX1 and CX2 need to be connected externally in case of  
fundamental mode oscillation (the fundamental frequency is represented by L, CL and  
RS). Capacitance CP in Figure 39 represents the parallel package capacitance and should  
not be larger than 7 pF. Parameters FOSC, CL, RS and CP are supplied by the crystal  
manufacturer.  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
101 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
LPC1xxx  
L
XTALIN  
XTALOUT  
C
R
C
P
=
L
XTAL  
S
C
C
X2  
X1  
002aaf424  
Fig 39. Oscillator modes and models: oscillation mode of operation and external crystal  
model used for CX1/CX2 evaluation  
Table 32. Recommended values for CX1/CX2 in oscillation mode (crystal and external  
components parameters): low frequency mode  
Fundamental oscillation Crystal load  
Maximum crystal  
External load  
frequency FOSC  
capacitance CL  
series resistance RS  
capacitors CX1/CX2  
1 MHz - 5 MHz  
10 pF  
< 300   
< 300   
< 300   
< 300   
< 200   
< 100   
< 160   
< 60   
18 pF, 18 pF  
39 pF, 39 pF  
57 pF, 57 pF  
18 pF, 18 pF  
39 pF, 39 pF  
57 pF, 57 pF  
18 pF, 18 pF  
39 pF, 39 pF  
18 pF, 18 pF  
20 pF  
30 pF  
5 MHz - 10 MHz  
10 pF  
20 pF  
30 pF  
10 MHz - 15 MHz  
15 MHz - 20 MHz  
10 pF  
20 pF  
10 pF  
< 80   
Table 33. Recommended values for CX1/CX2 in oscillation mode (crystal and external  
components parameters): high frequency mode  
Fundamental oscillation Crystal load  
Maximum crystal  
series resistance RS  
External load  
capacitors CX1,  
CX2  
frequency FOSC  
capacitance CL  
15 MHz - 20 MHz  
10 pF  
< 180   
< 100   
< 160   
< 80   
18 pF, 18 pF  
39 pF, 39 pF  
18 pF, 18 pF  
39 pF, 39 pF  
20 pF  
20 MHz - 25 MHz  
10 pF  
20 pF  
14.3 XTAL Printed-Circuit Board (PCB) layout guidelines  
The crystal should be connected on the PCB as close as possible to the oscillator input  
and output pins of the chip. Take care that the load capacitors Cx1, Cx2, and Cx3 in case of  
third overtone crystal usage have a common ground plane. The external components  
must also be connected to the ground plain. Loops must be made as small as possible in  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
102 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
order to keep the noise coupled in via the PCB as small as possible. Also parasitics  
should stay as small as possible. Values of Cx1 and Cx2 should be chosen smaller  
accordingly to the increase in parasitics of the PCB layout.  
14.4 Standard I/O pin configuration  
Figure 40 shows the possible pin modes for standard I/O pins with analog input function:  
Digital output driver: Open-drain mode enabled/disabled  
Digital input: Pull-up enabled/disabled  
Digital input: Pull-down enabled/disabled  
Digital input: Repeater mode enabled/disabled  
Analog input  
The default configuration for standard I/O pins is input with pull-up enabled. The weak  
MOS devices provide a drive capability equivalent to pull-up and pull-down resistors.  
V
DD  
V
DD  
open-drain enable  
output enable  
data output  
strong  
pull-up  
ESD  
pin configured  
as digital output  
driver  
PIN  
strong  
pull-down  
ESD  
V
SS  
V
DD  
weak  
pull-up  
pull-up enable  
weak  
pull-down  
repeater mode  
enable  
pin configured  
as digital input  
pull-down enable  
data input  
select analog input  
pin configured  
as analog input  
analog input  
002aaf272  
Fig 40. Standard I/O pin configuration with analog input  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
103 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
14.5 Reset pin configuration  
V
DD  
V
DD  
V
DD  
R
pu  
ESD  
20 ns RC  
GLITCH FILTER  
reset  
PIN  
ESD  
V
SS  
002aaf274  
Fig 41. Reset pin configuration  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
104 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
15. Package outline  
LQFP208; plastic low profile quad flat package; 208 leads; body 28 x 28 x 1.4 mm  
SOT459-1  
y
X
A
105  
104  
156  
157  
Z
E
e
H
E
E
(A )  
3
A
2
A
A
1
w M  
p
θ
L
L
b
p
detail X  
pin 1 index  
53  
208  
1
52  
v
M
B
A
Z
w M  
D
b
p
e
D
B
H
v
M
D
0
5
10 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
D
H
L
L
v
w
y
Z
Z
E
θ
1
2
3
p
E
p
D
max.  
7o  
0o  
0.15 1.45  
0.05 1.35  
0.27 0.20 28.1 28.1  
0.17 0.09 27.9 27.9  
30.15 30.15  
29.85 29.85  
0.75  
0.45  
1.43 1.43  
1.08 1.08  
mm  
1.6  
0.25  
1
0.12 0.08 0.08  
0.5  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
JEDEC JEITA  
OUTLINE  
VERSION  
EUROPEAN  
PROJECTION  
ISSUE DATE  
IEC  
00-02-06  
03-02-20  
SOT459-1  
136E30  
MS-026  
Fig 42. LQFP208 package  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
105 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
TFBGA208: plastic thin fine-pitch ball grid array package; 208 balls; body 15 x 15 x 0.7 mm  
SOT950-1  
D
B
A
ball A1  
index area  
A
2
E
A
A
1
detail X  
e
1
C
M
v  
w  
C A  
C
B
b
e
y
1
y
M
C
U
T
P
R
N
M
K
H
e
L
J
e
2
G
F
E
D
B
C
A
ball A1  
index area  
1
3
5
7
9
11 13 15 17  
10 12 14 16  
2
4
6
8
X
0
5
10 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
UNIT  
A
1
A
2
b
D
E
e
e
e
2
v
w
y
y
1
1
max  
0.4  
0.3  
0.8  
0.6  
0.5  
0.4  
15.1 15.1  
14.9 14.9  
mm  
1.2  
0.8  
12.8 12.8 0.15 0.08 0.12  
0.1  
REFERENCES  
JEDEC JEITA  
OUTLINE  
VERSION  
EUROPEAN  
PROJECTION  
ISSUE DATE  
IEC  
06-06-01  
06-06-14  
SOT950-1  
- - -  
Fig 43. TFBGA208 package  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
106 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
TFBGA180: thin fine-pitch ball grid array package; 180 balls; body 12 x 12 x 0.8 mm  
SOT570-2  
D
A
B
ball A1  
index area  
A
2
A
E
A
1
detail X  
C
y
e
1
y
v M  
w M  
C
C
A B  
1 C  
b
e
1/2 e  
P
N
M
L
e
K
J
H
G
F
e
2
1/2 e  
E
D
C
B
A
ball A1  
index area  
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
X
0
5
10 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
A
A
2
b
e
UNIT  
D
E
e
1
e
2
v
w
y
y
1
1
max.  
0.35 0.85  
0.25 0.75  
0.5  
0.4  
12.2 12.2  
11.8 11.8  
mm  
1.2  
10.4 10.4  
0.12  
0.1  
0.8  
0.15 0.08  
REFERENCES  
JEDEC JEITA  
OUTLINE  
VERSION  
EUROPEAN  
PROJECTION  
ISSUE DATE  
IEC  
03-03-03  
06-03-14  
SOT570-2  
Fig 44. TFBGA180 package  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
107 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
LQFP144: plastic low profile quad flat package; 144 leads; body 20 x 20 x 1.4 mm  
SOT486-1  
y
X
A
108  
109  
73  
72  
Z
E
e
H
A
E
2
A
E
(A )  
3
A
1
θ
w M  
p
L
p
b
L
pin 1 index  
detail X  
37  
144  
1
36  
v
M
A
Z
w M  
D
b
p
e
D
B
H
v
M
B
D
0
5
10 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
D
H
L
L
v
w
y
Z
Z
E
θ
1
2
3
p
E
p
D
max.  
7o  
0o  
0.15 1.45  
0.05 1.35  
0.27 0.20 20.1 20.1  
0.17 0.09 19.9 19.9  
22.15 22.15  
21.85 21.85  
0.75  
0.45  
1.4  
1.1  
1.4  
1.1  
mm  
1.6  
0.25  
1
0.2 0.08 0.08  
0.5  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
JEDEC JEITA  
OUTLINE  
VERSION  
EUROPEAN  
PROJECTION  
ISSUE DATE  
IEC  
00-03-14  
03-02-20  
SOT486-1  
136E23  
MS-026  
Fig 45. LQFP144 package  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
108 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
16. Soldering  
Footprint information for reflow soldering of LQFP208 package  
SOT459-1  
Hx  
Gx  
(0.125)  
P2  
P1  
Hy Gy  
By  
Ay  
C
D2 (8×)  
D1  
Bx  
Ax  
Generic footprint pattern  
Refer to the package outline drawing for actual layout  
solder land  
occupied area  
DIMENSIONS in mm  
P1 P2 Ax  
Ay  
Bx  
By  
C
D1  
D2  
Gx  
Gy  
Hx  
Hy  
0.500 0.560 31.300 31.300 28.300 28.300 1.500 0.280 0.400 28.500 28.500 31.550 31.550  
sot459-1_fr  
Fig 46. Reflow soldering of the LQFP208 package  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
109 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Footprint information for reflow soldering of TFBGA180 package  
SOT570-2  
Hx  
P
P
Hy  
see detail X  
Generic footprint pattern  
Refer to the package outline drawing for actual layout  
solder land  
solder paste deposit  
solder land plus solder paste  
SL  
SP  
SR  
occupied area  
solder resist  
detail X  
DIMENSIONS in mm  
P
SL  
SP  
SR  
Hx  
Hy  
0.80  
0.400 0.400 0.550 12.575 12.575  
sot570-2_fr  
Fig 47. Reflow soldering of the TFBGA180 package  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
110 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Footprint information for reflow soldering of LQFP144 package  
SOT486-1  
Hx  
Gx  
(0.125)  
P2  
P1  
Hy Gy  
By  
Ay  
C
D2 (8×)  
D1  
Bx  
Ax  
Generic footprint pattern  
Refer to the package outline drawing for actual layout  
solder land  
occupied area  
DIMENSIONS in mm  
P1 P2 Ax  
Ay  
Bx  
By  
C
D1  
D2  
Gx  
Gy  
Hx  
Hy  
0.500 0.560 23.300 23.300 20.300 20.300 1.500 0.280 0.400 20.500 20.500 23.550 23.550  
sot486-1_fr  
Fig 48. Reflow soldering of the LQFP144 package  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
111 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
17. Abbreviations  
Table 34. Abbreviations  
Acronym  
ADC  
AHB  
AMBA  
APB  
BOD  
CAN  
DAC  
DCC  
DMA  
DSP  
EOP  
ETM  
GPIO  
GPS  
HVAC  
IRC  
Description  
Analog-to-Digital Converter  
Advanced High-performance Bus  
Advanced Microcontroller Bus Architecture  
Advanced Peripheral Bus  
BrownOut Detection  
Controller Area Network  
Digital-to-Analog Converter  
Debug Communication Channel  
Direct Memory Access  
Digital Signal Processing  
End Of Packet  
Embedded Trace Macrocell  
General Purpose Input/Output  
Global Positioning System  
Heating, Venting, and Air Conditioning  
Internal RC  
IrDA  
JTAG  
MAC  
MIIM  
OHCI  
OTG  
PHY  
PLC  
Infrared Data Association  
Joint Test Action Group  
Media Access Control  
Media Independent Interface Management  
Open Host Controller Interface  
On-The-Go  
Physical Layer  
Programmable Logic controller  
Phase-Locked Loop  
PLL  
PWM  
RIT  
Pulse Width Modulator  
Repetitive Interrupt Timer  
Reduced Media Independent Interface  
Single Ended Zero  
RMII  
SE0  
SPI  
Serial Peripheral Interface  
Serial Synchronous Interface  
Synchronous Serial Port  
Tightly Coupled Memory  
Transistor-Transistor Logic  
Universal Asynchronous Receiver/Transmitter  
Universal Serial Bus  
SSI  
SSP  
TCM  
TTL  
UART  
USB  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
112 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
18. Revision history  
Table 35. Revision history  
Document ID  
LPC178X_7X v.2  
Modifications:  
Release date  
20110527  
Data sheet status  
Change notice  
Supersedes  
Objective data sheet  
-
-
Symbol names in Table 3 to Table 5 abbreviated.  
Reserved functions added in Table 3.  
Added function LCD_VD[5] to pin P0[10].  
Added function LCD_VD[10] to pin P0[11].  
Added function LCD_VD[13] to pin P0[19].  
Added function LCD_VD[14] to pin P0[20].  
Added function U4_SCLK to pin P0[21].  
Added function SSP2_MOSI to pin P5[0].  
Added function SSP2_MISO to pin P5[1].  
Added EMC dynamic characteristics.  
LPC178X_7X v.1  
20110524  
Objective data sheet  
-
-
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
113 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
19. Legal information  
19.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
malfunction of an NXP Semiconductors product can reasonably be expected  
19.2 Definitions  
to result in personal injury, death or severe property or environmental  
damage. NXP Semiconductors accepts no liability for inclusion and/or use of  
NXP Semiconductors products in such equipment or applications and  
therefore such inclusion and/or use is at the customer’s own risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Customers are responsible for the design and operation of their applications  
and products using NXP Semiconductors products, and NXP Semiconductors  
accepts no liability for any assistance with applications or customer product  
design. It is customer’s sole responsibility to determine whether the NXP  
Semiconductors product is suitable and fit for the customer’s applications and  
products planned, as well as for the planned application and use of  
customer’s third party customer(s). Customers should provide appropriate  
design and operating safeguards to minimize the risks associated with their  
applications and products.  
Product specification — The information and data provided in a Product  
data sheet shall define the specification of the product as agreed between  
NXP Semiconductors and its customer, unless NXP Semiconductors and  
customer have explicitly agreed otherwise in writing. In no event however,  
shall an agreement be valid in which the NXP Semiconductors product is  
deemed to offer functions and qualities beyond those described in the  
Product data sheet.  
NXP Semiconductors does not accept any liability related to any default,  
damage, costs or problem which is based on any weakness or default in the  
customer’s applications or products, or the application or use by customer’s  
third party customer(s). Customer is responsible for doing all necessary  
testing for the customer’s applications and products using NXP  
Semiconductors products in order to avoid a default of the applications and  
the products or of the application or use by customer’s third party  
customer(s). NXP does not accept any liability in this respect.  
19.3 Disclaimers  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) will cause permanent  
damage to the device. Limiting values are stress ratings only and (proper)  
operation of the device at these or any other conditions above those given in  
the Recommended operating conditions section (if present) or the  
Characteristics sections of this document is not warranted. Constant or  
repeated exposure to limiting values will permanently and irreversibly affect  
the quality and reliability of the device.  
Limited warranty and liability — Information in this document is believed to  
be accurate and reliable. However, NXP Semiconductors does not give any  
representations or warranties, expressed or implied, as to the accuracy or  
completeness of such information and shall have no liability for the  
consequences of use of such information.  
In no event shall NXP Semiconductors be liable for any indirect, incidental,  
punitive, special or consequential damages (including - without limitation - lost  
profits, lost savings, business interruption, costs related to the removal or  
replacement of any products or rework charges) whether or not such  
damages are based on tort (including negligence), warranty, breach of  
contract or any other legal theory.  
Terms and conditions of commercial sale — NXP Semiconductors  
products are sold subject to the general terms and conditions of commercial  
sale, as published at http://www.nxp.com/profile/terms, unless otherwise  
agreed in a valid written individual agreement. In case an individual  
agreement is concluded only the terms and conditions of the respective  
agreement shall apply. NXP Semiconductors hereby expressly objects to  
applying the customer’s general terms and conditions with regard to the  
purchase of NXP Semiconductors products by customer.  
Notwithstanding any damages that customer might incur for any reason  
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards  
customer for the products described herein shall be limited in accordance  
with the Terms and conditions of commercial sale of NXP Semiconductors.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
No offer to sell or license — Nothing in this document may be interpreted or  
construed as an offer to sell products that is open for acceptance or the grant,  
conveyance or implication of any license under any copyrights, patents or  
other industrial or intellectual property rights.  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from national authorities.  
Suitability for use — NXP Semiconductors products are not designed,  
authorized or warranted to be suitable for use in life support, life-critical or  
safety-critical systems or equipment, nor in applications where failure or  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
114 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
Non-automotive qualified products — Unless this data sheet expressly  
states that this specific NXP Semiconductors product is automotive qualified,  
the product is not suitable for automotive use. It is neither qualified nor tested  
in accordance with automotive testing or application requirements. NXP  
Semiconductors accepts no liability for inclusion and/or use of  
own risk, and (c) customer fully indemnifies NXP Semiconductors for any  
liability, damages or failed product claims resulting from customer design and  
use of the product for automotive applications beyond NXP Semiconductors’  
standard warranty and NXP Semiconductors’ product specifications.  
non-automotive qualified products in automotive equipment or applications.  
19.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
In the event that customer uses the product for design-in and use in  
automotive applications to automotive specifications and standards, customer  
(a) shall use the product without NXP Semiconductors’ warranty of the  
product for such automotive applications, use and specifications, and (b)  
whenever customer uses the product for automotive applications beyond  
NXP Semiconductors’ specifications such use shall be solely at customer’s  
I2C-bus — logo is a trademark of NXP B.V.  
20. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
115 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
21. Contents  
1
2
3
4
5
General description. . . . . . . . . . . . . . . . . . . . . . 1  
7.21  
7.21.1  
7.22  
7.22.1  
7.23  
7.23.1  
7.24  
SSP serial I/O controller. . . . . . . . . . . . . . . . . 53  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
I2C-bus serial I/O controllers . . . . . . . . . . . . . 54  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
I2S-bus serial I/O controllers . . . . . . . . . . . . . 55  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
CAN controller and acceptance filters . . . . . . 55  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
General purpose 32-bit timers/external event  
counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Pulse Width Modulator (PWM). . . . . . . . . . . . 56  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Motor control PWM . . . . . . . . . . . . . . . . . . . . 57  
Quadrature Encoder Interface (QEI) . . . . . . . 58  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
ARM Cortex-M3 system tick timer . . . . . . . . . 58  
Windowed WatchDog Timer (WWDT) . . . . . . 59  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
RTC and backup registers . . . . . . . . . . . . . . . 59  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Event monitor/recorder . . . . . . . . . . . . . . . . . 60  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Clocking and power control . . . . . . . . . . . . . . 60  
Crystal oscillators. . . . . . . . . . . . . . . . . . . . . . 60  
Features and benefits . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Ordering information. . . . . . . . . . . . . . . . . . . . . 5  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
6
6.1  
6.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 8  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 9  
7.24.1  
7.25  
7
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
7.7  
Functional description . . . . . . . . . . . . . . . . . . 40  
Architectural overview . . . . . . . . . . . . . . . . . . 40  
ARM Cortex-M3 processor . . . . . . . . . . . . . . . 41  
On-chip flash program memory . . . . . . . . . . . 41  
EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
On-chip SRAM . . . . . . . . . . . . . . . . . . . . . . . . 41  
Memory Protection Unit (MPU). . . . . . . . . . . . 41  
Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Nested Vectored Interrupt Controller (NVIC) . 44  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Interrupt sources. . . . . . . . . . . . . . . . . . . . . . . 44  
Pin connect block . . . . . . . . . . . . . . . . . . . . . . 44  
External memory controller. . . . . . . . . . . . . . . 44  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
General purpose DMA controller . . . . . . . . . . 46  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
CRC engine . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
LCD controller. . . . . . . . . . . . . . . . . . . . . . . . . 48  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Ethernet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
USB interface . . . . . . . . . . . . . . . . . . . . . . . . . 50  
USB device controller. . . . . . . . . . . . . . . . . . . 50  
7.25.1  
7.26  
7.26.1  
7.27  
7.28  
7.28.1  
7.29  
7.30  
7.30.1  
7.31  
7.31.1  
7.32  
7.32.1  
7.33  
7.8  
7.8.1  
7.8.2  
7.9  
7.10  
7.10.1  
7.11  
7.11.1  
7.12  
7.12.1  
7.13  
7.13.1  
7.14  
7.14.1  
7.15  
7.15.1  
7.33.1  
7.33.1.1 Internal RC oscillator . . . . . . . . . . . . . . . . . . . 61  
7.33.1.2 Main oscillator . . . . . . . . . . . . . . . . . . . . . . . . 61  
7.33.1.3 RTC oscillator . . . . . . . . . . . . . . . . . . . . . . . . 62  
7.33.1.4 Watchdog oscillator . . . . . . . . . . . . . . . . . . . . 62  
7.33.2  
Main PLL (PLL0) and Alternate PLL (Alt PLL,  
PLL1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Wake-up timer . . . . . . . . . . . . . . . . . . . . . . . . 63  
Power control. . . . . . . . . . . . . . . . . . . . . . . . . 63  
7.33.3  
7.33.4  
7.33.4.1 Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
7.33.4.2 Deep-sleep mode. . . . . . . . . . . . . . . . . . . . . . 64  
7.33.4.3 Power-down mode. . . . . . . . . . . . . . . . . . . . . 64  
7.33.4.4 Deep power-down mode . . . . . . . . . . . . . . . . 65  
7.33.4.5 Wake-up Interrupt Controller (WIC) . . . . . . . . 65  
7.15.1.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
7.15.2 USB host controller. . . . . . . . . . . . . . . . . . . . . 50  
7.15.2.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
7.15.3 USB OTG controller . . . . . . . . . . . . . . . . . . . . 51  
7.15.3.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
7.33.5  
7.33.6  
7.34  
Peripheral power control . . . . . . . . . . . . . . . . 65  
Power domains . . . . . . . . . . . . . . . . . . . . . . . 65  
System control . . . . . . . . . . . . . . . . . . . . . . . . 66  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Brownout detection . . . . . . . . . . . . . . . . . . . . 67  
Code security (Code Read Protection - CRP) 67  
APB interface. . . . . . . . . . . . . . . . . . . . . . . . . 68  
AHB multilayer matrix . . . . . . . . . . . . . . . . . . 68  
External interrupt inputs. . . . . . . . . . . . . . . . . 68  
Memory mapping control . . . . . . . . . . . . . . . . 68  
7.16  
SD/MMC card interface . . . . . . . . . . . . . . . . . 51  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Fast general purpose parallel I/O . . . . . . . . . . 51  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
12-bit ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
10-bit DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
UARTs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
7.16.1  
7.17  
7.17.1  
7.18  
7.34.1  
7.34.2  
7.34.3  
7.34.4  
7.34.5  
7.34.6  
7.34.7  
7.18.1  
7.19  
7.19.1  
7.20  
7.20.1  
continued >>  
LPC178X_7X  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Objective data sheet  
Rev. 2 — 27 May 2011  
116 of 117  
LPC178x/7x  
NXP Semiconductors  
32-bit ARM Cortex-M3 microcontroller  
7.35  
8
Emulation and debugging. . . . . . . . . . . . . . . . 68  
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 69  
Thermal characteristics . . . . . . . . . . . . . . . . . 70  
Thermal characteristics. . . . . . . . . . . . . . . . . . 70  
9
9.1  
10  
Static characteristics. . . . . . . . . . . . . . . . . . . . 71  
Power consumption . . . . . . . . . . . . . . . . . . . . 74  
Peripheral power consumption. . . . . . . . . . . . 76  
Electrical pin characteristics . . . . . . . . . . . . . . 78  
10.1  
10.2  
10.3  
11  
Dynamic characteristics . . . . . . . . . . . . . . . . . 80  
Flash memory. . . . . . . . . . . . . . . . . . . . . . . . . 80  
External memory interface . . . . . . . . . . . . . . . 81  
External clock . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Internal oscillators. . . . . . . . . . . . . . . . . . . . . . 86  
I/O pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
SSP interface . . . . . . . . . . . . . . . . . . . . . . . . . 87  
I2C-bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
I2S-bus interface. . . . . . . . . . . . . . . . . . . . . . . 91  
USB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Ethernet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
LCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
SD/MMC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
11.1  
11.2  
11.3  
11.4  
11.5  
11.6  
11.7  
11.8  
11.9  
11.10  
11.11  
11.12  
12  
13  
ADC electrical characteristics . . . . . . . . . . . . 95  
DAC electrical characteristics . . . . . . . . . . . . 98  
14  
14.1  
14.2  
Application information. . . . . . . . . . . . . . . . . . 99  
Suggested USB interface solutions . . . . . . . . 99  
Crystal oscillator XTAL input and component  
selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
XTAL Printed-Circuit Board (PCB) layout  
14.3  
guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Standard I/O pin configuration . . . . . . . . . . . 103  
Reset pin configuration. . . . . . . . . . . . . . . . . 104  
14.4  
14.5  
15  
16  
17  
18  
Package outline . . . . . . . . . . . . . . . . . . . . . . . 105  
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . 112  
Revision history. . . . . . . . . . . . . . . . . . . . . . . 113  
19  
Legal information. . . . . . . . . . . . . . . . . . . . . . 114  
Data sheet status . . . . . . . . . . . . . . . . . . . . . 114  
Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . 115  
19.1  
19.2  
19.3  
19.4  
20  
21  
Contact information. . . . . . . . . . . . . . . . . . . . 115  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2011.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 27 May 2011  
Document identifier: LPC178X_7X  

相关型号:

LPC1774FBD144,551

LPC1774FBD144 - 128kB flash, 40kB SRAM, USB, LQFP144 package QFP 144-Pin
NXP

LPC1774FBD208

32-bit ARM Cortex-M3 microcontroller; up to 512 kB flash and 96 kB SRAM; USB Device/Host/OTG
NXP

LPC1774FBD208,551

LPC1774FBD208 - 128kB flash, 40kB SRAM, USB, LQFP208 package QFP 208-Pin
NXP

LPC1776

32-bit ARM Cortex-M3 microcontroller; up to 512 kB flash and 96 kB SRAM; USB Device/Host/OTG
NXP

LPC1776FBD208

32-bit ARM Cortex-M3 microcontroller; up to 512 kB flash and 96 kB SRAM; USB Device/Host/OTG
NXP

LPC1776FBD208,551

LPC1776FBD208 - 256kB flash, 80kB SRAM, Ethernet, USB, LQFP208 package QFP 208-Pin
NXP

LPC1776FET180

32-bit ARM Cortex-M3 microcontroller; up to 512 kB flash and 96 kB SRAM; USB Device/Host/OTG
NXP

LPC1777

32-bit ARM Cortex-M3 microcontroller; up to 512 kB flash and 96 kB SRAM; USB Device/Host/OTG
NXP

LPC1777FBD208

32-bit ARM Cortex-M3 microcontroller; up to 512 kB flash and 96 kB SRAM; USB Device/Host/OTG
NXP

LPC1777FBD208,551

LPC1777FBD208 - 512kB flash, 96kB SRAM, USB, LQFP208 package QFP 208-Pin
NXP

LPC1778

32-bit ARM Cortex-M3 microcontroller; up to 512 kB flash and 96 kB SRAM; USB Device/Host/OTG
NXP

LPC1778FBD144

32-bit ARM Cortex-M3 microcontroller; up to 512 kB flash and 96 kB SRAM; USB Device/Host/OTG
NXP