LPC2103 [NXP]

Single-chip 16-bit/32-bit microcontrollers; 8 kB/16 kB/32 kB flash with ISP/IAP, fast ports and 10-bit ADC; 单芯片16位/ 32位微控制器; 8 KB / 16 KB / 32 KB闪存, ISP / IAP ,快速端口和10位ADC
LPC2103
型号: LPC2103
厂家: NXP    NXP
描述:

Single-chip 16-bit/32-bit microcontrollers; 8 kB/16 kB/32 kB flash with ISP/IAP, fast ports and 10-bit ADC
单芯片16位/ 32位微控制器; 8 KB / 16 KB / 32 KB闪存, ISP / IAP ,快速端口和10位ADC

闪存 微控制器
文件: 总32页 (文件大小:161K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LPC2101/2102/2103  
Single-chip 16-bit/32-bit microcontrollers; 8 kB/16 kB/32 kB  
flash with ISP/IAP, fast ports and 10-bit ADC  
Rev. 01 — 18 January 2006  
Preliminary data sheet  
1. General description  
The LPC2101/2102/2103 microcontrollers are based on a 16-bit/32-bit ARM7TDMI-S  
CPU with real-time emulation that combines the microcontroller with 8 kB, 16 kB or 32 kB  
of embedded high-speed flash memory. A 128-bit wide memory interface and a unique  
accelerator architecture enable 32-bit code execution at the maximum clock rate. For  
critical performance in interrupt service routines and DSP algorithms, this increases  
performance up to 30 % over Thumb mode. For critical code size applications, the  
alternative 16-bit Thumb mode reduces code by more than 30 % with minimal  
performance penalty.  
Due to their tiny size and low power consumption, the LPC2101/2102/2103 are ideal for  
applications where miniaturization is a key requirement. A blend of serial communications  
interfaces ranging from multiple UARTs, SPI to SSP and two I2C-buses, combined with  
on-chip SRAM of 2 kB/4 kB/8 kB, make these devices very well suited for communication  
gateways and protocol converters. The superior performance also makes these devices  
suitable for use as math coprocessors. Various 32-bit and 16-bit timers, an improved  
10-bit ADC, PWM features through output match on all timers, and 32 fast GPIO lines with  
up to nine edge or level sensitive external interrupt pins make these microcontrollers  
particularly suitable for industrial control and medical systems.  
2. Features  
2.1 Key features  
16-bit/32-bit ARM7TDMI-S microcontroller in a tiny LQFP48 package.  
2 kB/4 kB/8 kB of on-chip static RAM and 8 kB/16 kB/32 kB of on-chip flash program  
memory. 128-bit wide interface/accelerator enables high-speed 70 MHz operation.  
ISP/IAP via on-chip bootloader software. Single flash sector or full chip erase in  
100 ms and programming of 256 bytes in 1 ms.  
EmbeddedICE RT offers real-time debugging with the on-chip RealMonitor software.  
The 10-bit A/D converter provides eight analog inputs, with conversion times as low as  
2.44 µs per channel and dedicated result registers to minimize interrupt overhead.  
Two 32-bit timers/external event counters with combined seven capture and seven  
compare channels.  
Two 16-bit timers/external event counters with combined three capture and seven  
compare channels.  
Low power Real-Time Clock (RTC) with independent power and dedicated 32 kHz  
clock input.  
Multiple serial interfaces including two UARTs (16C550), two Fast I2C-buses  
(400 kbit/s), SPI and SSP with buffering and variable data length capabilities.  
LPC2101/2102/2103  
Philips Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
Vectored interrupt controller with configurable priorities and vector addresses.  
Up to thirty-two 5 V tolerant fast general purpose I/O pins.  
Up to 13 edge or level sensitive external interrupt pins available.  
70 MHz maximum CPU clock available from programmable on-chip PLL with a  
possible input frequency of 10 MHz to 25 MHz and a settling time of 100 µs.  
On-chip integrated oscillator operates with an external crystal in the range from 1 MHz  
to 25 MHz.  
Power saving modes include Idle mode, Power-down mode with RTC active, and  
Power-down mode.  
Individual enable/disable of peripheral functions as well as peripheral clock scaling for  
additional power optimization.  
Processor wake-up from Power-down mode via external interrupt or RTC.  
3. Ordering information  
Table 1:  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
LPC2101FBD48 LQFP48  
LPC2102FBD48 LQFP48  
LPC2103FBD48 LQFP48  
plastic low profile quad flat package; 48 leads; SOT313-2  
body 7 × 7 × 1.4 mm  
plastic low profile quad flat package; 48 leads; SOT313-2  
body 7 × 7 × 1.4 mm  
plastic low profile quad flat package; 48 leads; SOT313-2  
body 7 × 7 × 1.4 mm  
LPC2103FA44  
PLCC44  
plastic leaded chip carrier; 44 leads  
SOT187-2  
3.1 Ordering options  
Table 2:  
Ordering options  
Type number  
Flash  
RAM  
ADC  
Temperature  
memory  
range (°C)  
LPC2101FBD48  
LPC2102FBD48  
LPC2103FBD48  
LPC2103FA44  
8 kB  
2 kB  
4 kB  
8 kB  
8 kB  
8 inputs  
8 inputs  
8 inputs  
8 inputs  
40 to +85  
40 to +85  
40 to +85  
40 to +85  
16 kB  
32 kB  
32 kB  
LPC2101_02_03_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 18 January 2006  
2 of 32  
LPC2101/2102/2103  
Philips Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
4. Block diagram  
TMS  
TDI  
XTAL2 V  
V
DD(3V3) DD(1V8)  
XTAL1 RST  
V
TRST  
TCK  
TDO  
SS  
LPC2101/2102/2103  
TEST/DEBUG  
INTERFACE  
HIGH SPEED  
GENERAL  
PURPOSE I/O  
SYSTEM  
FUNCTIONS  
PLL  
P0[31:0]  
8 kB  
BOOT ROM  
ARM7TDMI-S  
system  
clock  
AHB BRIDGE  
VECTORED  
INTERRUPT  
CONTROLLER  
ARM7 local bus  
AMBA AHB  
(Advanced High-performance Bus)  
INTERNAL  
SRAM  
CONTROLLER  
MEMORY  
ACCELERATOR  
2 kB/4 kB/  
8 kB SRAM  
8 kB/16 kB/  
32 kB FLASH  
AHB TO APB  
BRIDGE  
APB (ARM  
peripheral bus)  
(1)  
(1)  
SCL0, SCL1  
2
EINT2 to  
EINT0  
I C-BUS SERIAL  
EXTERNAL  
INTERRUPTS  
(1)  
INTERFACES 0 AND 1  
SDA0, SDA1  
(1)  
3 × CAP0  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
4 × CAP1  
3 × CAP2  
3 × MAT0  
4 × MAT1  
3 × MAT2  
4 × MAT3  
(1)  
SCK0, SCK1  
CAPTURE/COMPARE  
EXTERNAL COUNTER  
TIMER 0/TIMER 1/  
(1)  
(1)  
(1)  
SPI AND SSP  
SERIAL INTERFACES  
MOSI0, MOSI1  
MISO0, MISO1  
SSEL0, SSEL1  
TIMER 2/TIMER 3  
(1)  
TXD0, TXD1  
(1)  
RXD0, RXD1  
AD0[7:0]  
ADC  
UART0/UART1  
DSR1, CTS1,  
RTS1, DTR1  
DCD1, RI1  
RTXC1  
RTXC2  
VBAT  
GENERAL  
PURPOSE I/O  
P0[31:0]  
REAL-TIME CLOCK  
SYSTEM CONTROL  
WATCHDOG  
TIMER  
002aab814  
(1) Pins shared with GPIO.  
Fig 1. Block diagram  
LPC2101_02_03_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 18 January 2006  
3 of 32  
LPC2101/2102/2103  
Philips Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
5. Pinning information  
5.1 Pinning  
1
2
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
P0.19/MAT1.2/MISO1  
P0.11/CTS1/CAP1.1/AD0.4  
P0.10/RTS1/CAP1.0/AD0.3  
P0.24/AD0.2  
P0.20/MAT1.3/MOSI1  
P0.21/SSEL1/MAT3.0  
VBAT  
3
4
P0.23/AD0.1  
5
V
P0.22/AD0.0  
DD(1V8)  
6
RST  
V
SSA  
LPC2101/2102/2103  
7
V
P0.9/RXD1/MAT2.2  
P0.8/TXD1/MAT2.1  
P0.7/SSEL0/MAT2.0  
DBGSEL  
SS  
8
P0.27/TRST/CAP2.0  
P0.28/TMS/CAP2.1  
P0.29/TCK/CAP2.2  
X1  
9
10  
11  
12  
RTCK  
X2  
RTXC2  
002aab821  
Fig 2. LQFP48 pin configuration  
LPC2101_02_03_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 18 January 2006  
4 of 32  
LPC2101/2102/2103  
Philips Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
7
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
P0.11/CTS1/CAP1.1/AD0.4  
P0.10/RTS1/CAP1.0/AD0.3  
P0.24/AD0.2  
P0.19/MAT1.2/MISO1  
8
P0.20/MAT1.3/MOSI1  
P0.21/SSEL1/MAT3.0  
9
10  
11  
12  
13  
14  
15  
16  
17  
V
P0.23/AD0.1  
DD(1V8)  
RST  
P0.22/AD0.0  
V
SS  
LPC2101/2102/2103  
V
SSA  
P0.27/TRST/CAP2.0  
P0.28/TMS/CAP2.1  
P0.29/TCK/CAP2.2  
X1  
P0.9/RXD1/MAT2.2  
P0.8/TXD1/MAT2.1  
P0.7/SSEL0/MAT2.0  
DBGSEL  
X2  
RTXC2  
002aab920  
Fig 3. PLCC44 pin configuration  
LPC2101_02_03_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 18 January 2006  
5 of 32  
LPC2101/2102/2103  
Philips Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
5.2 Pin description  
Table 3:  
Symbol  
Pin description  
LQFP48  
PLCC44  
Type  
Description  
P0.0 to P0.31  
I/O  
Port 0: Port 0 is a 32-bit I/O port with individual direction  
controls for each bit. A total of 31 pins of the Port 0 can be  
used as general purpose bidirectional digital I/Os while P0.31  
is an output only pin. The operation of port 0 pins depends  
upon the pin function selected via the pin connect block.  
P0.0/TXD0/  
MAT3.1  
13[1]  
14[2]  
18[3]  
18[1]  
19[2]  
22[3]  
I/O  
O
P0.0 — General purpose Input/output digital pin (GPIO).  
TXD0 — Transmitter output for UART0.  
O
MAT3.1 — PWM output 1 for Timer 3.  
P0.1/RXD0/  
MAT3.2  
I/O  
I
P0.1 — General purpose Input/output digital pin (GPIO).  
RXD0 — Receiver input for UART0.  
O
MAT3.2 — PWM output 2 for Timer 3.  
P0.2/SCL0/  
CAP0.0  
I/O  
I/O  
P0.2 — General purpose Input/output digital pin (GPIO).  
SCL0 — I2C0 clock Input/output. Open-drain output (for  
I2C-bus compliance).  
I
CAP0.0 — Capture input for Timer 0, channel 0.  
P0.3/SDA0/  
MAT0.0  
21[3]  
22[4]  
23[4]  
24[4]  
28[2]  
25[3]  
26[4]  
27[4]  
28[4]  
31[2]  
I/O  
I/O  
P0.3 — General purpose Input/output digital pin (GPIO).  
SDA0 — I2C0 data input/output. Open-drain output (for  
I2C-bus compliance).  
O
MAT0.0 — PWM output for Timer 0, channel 0.  
P0.4/SCK0/  
CAP0.1  
I/O  
I/O  
P0.4 — General purpose Input/output digital pin (GPIO).  
SCK0 — Serial clock for SPI0. SPI clock output from master  
or input to slave.  
I
CAP0.1 — Capture input for Timer 0, channel 1.  
P0.5/MISO0/  
MAT0.1  
I/O  
I/O  
P0.5 — General purpose Input/output digital pin (GPIO).  
MISO0 — Master In Slave OUT for SPI0. Data input to SPI  
master or data output from SPI slave.  
O
MAT0.1 — PWM output for Timer 0, channel 1.  
P0.6/MOSI0/  
CAP0.2  
I/O  
I/O  
P0.6 — General purpose Input/output digital pin (GPIO).  
MOSI0 — Master Out Slave In for SPI0. Data output from SPI  
master or data input to SPI slave.  
I
CAP0.2 — Capture input for Timer 0, channel 2.  
P0.7/SSEL0/  
MAT2.0  
I/O  
I
P0.7 — General purpose Input/output digital pin (GPIO).  
SSEL0 — Slave Select for SPI0. Selects the SPI interface as  
a slave.  
O
MAT2.0 — PWM output for Timer 2, channel 0.  
P0.8 — General purpose Input/output digital pin (GPIO).  
TXD1 — Transmitter output for UART1.  
P0.8/TXD1/  
MAT2.1  
29[4]  
32[4]  
I/O  
O
O
MAT2.1 — PWM output for Timer 2, channel 1.  
P0.9 — General purpose Input/output digital pin (GPIO).  
RXD1 — Receiver input for UART1.  
P0.9/RXD1/  
MAT2.2  
30[2]  
33[2]  
I/O  
I
O
MAT2.2 — PWM output for Timer 2, channel 2.  
LPC2101_02_03_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 18 January 2006  
6 of 32  
LPC2101/2102/2103  
Philips Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
Table 3:  
Symbol  
Pin description …continued  
LQFP48  
PLCC44  
Type  
Description  
P0.10/RTS1/  
CAP1.0/AD0.3  
35[4]  
38[4]  
39[3]  
40[4]  
I/O  
O
I
P0.10 — General purpose Input/output digital pin (GPIO).  
RTS1 — Request to Send output for UART1.  
CAP1.0 — Capture input for Timer 1, channel 0.  
AD0.3 — ADC 0, input 3.  
I
P0.11/CTS1/  
CAP1.1/AD0.4  
36[3]  
I/O  
I
P0.11 — General purpose Input/output digital pin (GPIO).  
CTS1 — Clear to Send input for UART1.  
I
CAP1.1 — Capture input for Timer 1, channel 1.  
AD0.4 — ADC 0, input 4.  
I
P0.12/DSR1/  
MAT1.0/AD0.5  
37[4]  
I/O  
I
P0.12 — General purpose Input/output digital pin (GPIO).  
DSR1 — Data Set Ready input for UART1.  
MAT1.0 — PWM output for Timer 1, channel 0.  
AD0.5 — ADC 0, input 5.  
O
I
P0.13/DTR1/  
MAT1.1  
41[4]  
43[4]  
I/O  
O
O
I/O  
I
P0.13 — General purpose Input/output digital pin (GPIO).  
DTR1 — Data Terminal Ready output for UART1.  
MAT1.1 — PWM output for Timer 1, channel 1.  
P0.14 — General purpose Input/output digital pin (GPIO).  
DCD1 — Data Carrier Detect input for UART1.  
P0.14/DCD1/  
SCK1/EINT1  
44[3]  
2[3]  
I/O  
SCK1 — Serial Clock for SPI1. SPI clock output from master  
or input to slave.  
I
EINT1 — External interrupt 1 input.  
P0.15/RI1/  
EINT2  
45[4]  
3[4]  
4[2]  
5[1]  
I/O  
I
P0.15 — General purpose Input/output digital pin (GPIO).  
RI1 — Ring Indicator input for UART1.  
I
EINT2 — External interrupt 2 input.  
P0.16/EINT0/  
MAT0.2  
46[2]  
I/O  
I
P0.16 — General purpose Input/output digital pin (GPIO).  
EINT0 — External interrupt 0 input.  
O
I/O  
I
MAT0.2 — PWM output for Timer 0, channel 2.  
P0.17 — General purpose Input/output digital pin (GPIO).  
CAP1.2 — Capture input for Timer 1, channel 2.  
P0.17/CAP1.2/ 47[1]  
SCL1  
I/O  
SCL1 — I2C1 clock Input/output. Open-drain output (for  
I2C-bus compliance).  
P0.18/CAP1.3/ 48[1]  
SDA1  
6[1]  
7[1]  
8[2]  
I/O  
I
P0.18 — General purpose Input/output digital pin (GPIO).  
CAP1.3 — Capture input for Timer 1, channel 3.  
SDA1 — I2C1 data Input/output. Open-drain output (for  
I2C-bus compliance).  
I/O  
P0.19/MAT1.2/ 1[1]  
MISO1  
I/O  
O
P0.19 — General purpose Input/output digital pin (GPIO).  
MAT1.2 — PWM output for Timer 1, channel 2.  
I/O  
MISO1 — Master In Slave Out for SSP. Data input to SPI  
master or data output from SSP slave.  
P0.20/MAT1.3/ 2[2]  
MOSI1  
I/O  
O
P0.20 — General purpose Input/output digital pin (GPIO).  
MAT1.3 — PWM output for Timer 1, channel 3.  
I/O  
MOSI1 — Master Out Slave for SSP. Data output from SSP  
master or data input to SSP slave.  
LPC2101_02_03_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 18 January 2006  
7 of 32  
LPC2101/2102/2103  
Philips Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
Table 3:  
Symbol  
Pin description …continued  
LQFP48  
PLCC44  
Type  
I/O  
I
Description  
P0.21/SSEL1/  
MAT3.0  
3[4]  
9[4]  
P0.21 — General purpose Input/output digital pin (GPIO).  
SSEL1 — Slave Select for SPI1. Selects the SPI interface as  
a slave.  
O
I/O  
I
MAT3.0 — PWM output for Timer 3, channel 0.  
P0.22 — General purpose Input/output digital pin (GPIO).  
AD0.0 — ADC 0, input 0.  
P0.22/AD0.0  
P0.23/AD0.1  
P0.24/AD0.2  
P0.25/AD0.6  
P0.26/AD0.7  
32[4]  
33[1]  
34[1]  
38[1]  
39[1]  
8[4]  
35[4]  
36[1]  
37[1]  
41[1]  
n.c.  
I/O  
I
P0.23 — General purpose Input/output digital pin (GPIO).  
AD0.1 — ADC 0, input 1.  
I/O  
I
P0.24 — General purpose Input/output digital pin (GPIO).  
AD0.2 — ADC 0, input 2.  
I/O  
I
P0.25 — General purpose Input/output digital pin (GPIO).  
AD0.6 — ADC 0, input 6.  
I/O  
I
P0.26 — General purpose Input/output digital pin (GPIO).  
AD0.7 — ADC 0, input 7.  
P0.27/TRST/  
CAP2.0  
13[4]  
I/O  
I
P0.27 — General purpose Input/output digital pin (GPIO).  
TRST — Test Reset for JTAG interface.  
I
CAP2.0 — Capture input for Timer 2, channel 0.  
P0.28 — General purpose Input/output digital pin (GPIO).  
TMS — Test Mode Select for JTAG interface.  
CAP2.1 — Capture input for Timer 2, channel 1.  
P0.29 — General purpose Input/output digital pin (GPIO).  
TCK — Test Clock for JTAG interface.  
P0.28/TMS/  
CAP2.1  
9[4]  
14[4]  
15[4]  
20[4]  
21[4]  
I/O  
I
I
P0.29/TCK/  
CAP2.2  
10[4]  
15[4]  
16[4]  
I/O  
I
I
CAP2.2 — Capture input for Timer 2, channel 2.  
P0.30 — General purpose Input/output digital pin (GPIO).  
TDI — Test Data In for JTAG interface.  
P0.30/TDI/  
MAT3.3  
I/O  
I
O
O
O
I
MAT3.3 — PWM output 3 for Timer 3.  
P0.31/TDO  
P0.31 — General purpose output only digital pin (GPIO).  
TDO — Test Data Out for JTAG interface.  
Input to the RTC oscillator circuit.  
RTXC1  
RTXC2  
RTCK  
20[5]  
25[5]  
26[5]  
24[5]  
29[5]  
n.c.  
O
I/O  
Output from the RTC oscillator circuit.  
Returned test clock output: Extra signal added to the JTAG  
port. Assists debugger synchronization when processor  
frequency varies. Bidirectional pin with internal pull-up.  
X1  
11  
16  
I
Input to the oscillator circuit and internal clock generator  
circuits.  
X2  
12  
27  
17  
30  
O
I
Output from the oscillator amplifier.  
DBGSEL  
Debug select: When LOW, the part operates normally. When  
HIGH, debug mode is entered. Input with internal pull-down.  
RST  
6
11  
I
External reset input: A LOW on this pin resets the device,  
causing I/O ports and peripherals to take on their default  
states and processor execution to begin at address 0. TTL  
with hysteresis, 5 V tolerant.  
VSS  
7, 19, 43  
1, 12, 23  
I
Ground: 0 V reference.  
LPC2101_02_03_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 18 January 2006  
8 of 32  
LPC2101/2102/2103  
Philips Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
Table 3:  
Symbol  
VSSA  
Pin description …continued  
LQFP48  
PLCC44  
Type  
Description  
31  
34  
I
Analog ground: 0 V reference. This should be nominally the  
same voltage as VSS but should be isolated to minimize noise  
and error.  
VDDA  
42  
44  
I
Analog 3.3 V power supply: This should be nominally the  
same voltage as VDD(3V3) but should be isolated to minimize  
noise and error. This voltage is used to power the on-chip  
PLL. This pin also provides a voltage reference level for the  
ADC.  
VDD(1V8)  
VDD(3V3)  
VBAT  
5
10  
I
I
I
1.8 V core power supply: This is the power supply voltage for  
internal circuitry.  
17, 40  
4
42  
3.3 V pad power supply: This is the power supply voltage for  
the I/O ports.  
n.c.  
RTC power supply: 3.3 V on this pin supplies the power to  
the RTC.  
[1] 5 V tolerant pad providing digital I/O functions with TTL levels and hysteresis and 10 ns slew rate control.  
[2] 5 V tolerant pad providing digital I/O functions with TTL levels and hysteresis and 10 ns slew rate control. If configured for an input  
function, this pad utilizes built-in glitch filter that blocks pulses shorter than 3 ns.  
[3] Open-drain 5 V tolerant digital I/O I2C-bus 400 kHz specification compatible pad. It requires external pull-up to provide an output  
functionality.  
[4] 5 V tolerant pad providing digital I/O (with TTL levels and hysteresis and 10 ns slew rate control) and analog input function. If configured  
for an input function, this pad utilizes built-in glitch filter that blocks pulses shorter than 3 ns. When configured as an ADC input, digital  
section of the pad is disabled.  
[5] Pad provides special analog functionality.  
LPC2101_02_03_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 18 January 2006  
9 of 32  
LPC2101/2102/2103  
Philips Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
6. Functional description  
6.1 Architectural overview  
The ARM7TDMI-S is a general purpose 32-bit microprocessor, which offers high  
performance and very low power consumption. The ARM architecture is based on  
Reduced Instruction Set Computer (RISC) principles, and the instruction set and related  
decode mechanism are much simpler than those of microprogrammed Complex  
Instruction Set Computers (CISC). This simplicity results in a high instruction throughput  
and impressive real-time interrupt response from a small and cost-effective processor  
core.  
Pipeline techniques are employed so that all parts of the processing and memory systems  
can operate continuously. Typically, while one instruction is being executed, its successor  
is being decoded, and a third instruction is being fetched from memory.  
The ARM7TDMI-S processor also employs a unique architectural strategy known as  
Thumb, which makes it ideally suited to high-volume applications with memory  
restrictions, or applications where code density is an issue.  
The key idea behind Thumb is that of a super-reduced instruction set. Essentially, the  
ARM7TDMI-S processor has two instruction sets:  
The standard 32-bit ARM set.  
A 16-bit Thumb set.  
The Thumb set’s 16-bit instruction length allows it to approach twice the density of  
standard ARM code while retaining most of the ARM’s performance advantage over a  
traditional 16-bit processor using 16-bit registers. This is possible because Thumb code  
operates on the same 32-bit register set as ARM code.  
Thumb code is able to provide up to 65 % of the code size of ARM, and 160 % of the  
performance of an equivalent ARM processor connected to a 16-bit memory system.  
The particular flash implementation in the LPC2101/2102/2103 allows for full speed  
execution also in ARM mode. It is recommended to program performance critical and  
short code sections in ARM mode. The impact on the overall code size will be minimal but  
the speed can be increased by 30 % over Thumb mode.  
6.2 On-chip flash program memory  
The LPC2101/2102/2103 incorporate a 8 kB, 16 kB or 32 kB flash memory system  
respectively. This memory may be used for both code and data storage. Programming of  
the flash memory may be accomplished in several ways. It may be programmed In  
System via the serial port. The application program may also erase and/or program the  
flash while the application is running, allowing a great degree of flexibility for data storage  
field firmware upgrades, etc. The entire flash memory is available for user code as the  
bootloader resides in a separate memory.  
The LPC2101/2102/2103 flash memory provides a minimum of 100,000 erase/write  
cycles and 20 years of data-retention memory.  
LPC2101_02_03_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 18 January 2006  
10 of 32  
LPC2101/2102/2103  
Philips Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
6.3 On-chip static RAM  
On-chip static RAM may be used for code and/or data storage. The SRAM may be  
accessed as 8-bits, 16-bits, and 32-bits. The LPC2101/2102/2103 provide 2 kB, 4 kB or  
8 kB of static RAM.  
6.4 Memory map  
The LPC2101/2102/2103 memory map incorporates several distinct regions, as shown in  
Figure 4.  
In addition, the CPU interrupt vectors may be re-mapped to allow them to reside in either  
flash memory (the default) or on-chip static RAM. This is described in Section 6.17  
“System control”.  
4.0 GB  
0xFFFF FFFF  
AHB PERIPHERALS  
0xF000 0000  
0xE000 0000  
3.75 GB  
3.5 GB  
APB PERIPHERALS  
0xC000 0000  
3.0 GB  
RESERVED ADDRESS SPACE  
0x8000 0000  
0x7FFF FFFF  
2.0 GB  
BOOT BLOCK  
0x7FFF E000  
0x7FFF DFFF  
RESERVED ADDRESS SPACE  
0x4000 2000  
0x4000 1FFF  
8 kB ON-CHIP STATIC RAM (LPC2103)  
0x4000 1000  
0x4000 0FFF  
4 kB ON-CHIP STATIC RAM (LPC2102)  
2 kB ON-CHIP STATIC RAM (LPC2101)  
RESERVED ADDRESS SPACE  
0x4000 0800  
0x4000 07FF  
0x4000 0000  
1.0 GB  
0x0000 8000  
0x0000 7FFF  
32 kB ON-CHIP NON-VOLATILE MEMORY  
(LPC2103)  
0x0000 4000  
0x0000 3FFF  
16 kB ON-CHIP NON-VOLATILE MEMORY  
(LPC2102)  
0x0000 2000  
0x0000 1FFF  
8 kB ON-CHIP NON-VOLATILE MEMORY  
(LPC2101)  
0x0000 0000  
0.0 GB  
002aab822  
Fig 4. LPC2101/2102/2103 memory map  
LPC2101_02_03_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 18 January 2006  
11 of 32  
LPC2101/2102/2103  
Philips Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
6.5 Interrupt controller  
The VIC accepts all of the interrupt request inputs and categorizes them as FIQ, vectored  
IRQ, and non-vectored IRQ as defined by programmable settings. The programmable  
assignment scheme means that priorities of interrupts from the various peripherals can be  
dynamically assigned and adjusted.  
FIQ has the highest priority. If more than one request is assigned to FIQ, the VIC  
combines the requests to produce the FIQ signal to the ARM processor. The fastest  
possible FIQ latency is achieved when only one request is classified as FIQ, because then  
the FIQ service routine does not need to branch into the interrupt service routine but can  
run from the interrupt vector location. If more than one request is assigned to the FIQ  
class, the FIQ service routine will read a word from the VIC that identifies which FIQ  
source(s) is (are) requesting an interrupt.  
Vectored IRQs have the middle priority. Sixteen of the interrupt requests can be assigned  
to this category. Any of the interrupt requests can be assigned to any of the 16 vectored  
IRQ slots, among which slot 0 has the highest priority and slot 15 has the lowest.  
Non-vectored IRQs have the lowest priority.  
The VIC combines the requests from all the vectored and non-vectored IRQs to produce  
the IRQ signal to the ARM processor. The IRQ service routine can start by reading a  
register from the VIC and jumping there. If any of the vectored IRQs are pending, the VIC  
provides the address of the highest-priority requesting IRQs service routine, otherwise it  
provides the address of a default routine that is shared by all the non-vectored IRQs. The  
default routine can read another VIC register to see what IRQs are active.  
6.5.1 Interrupt sources  
Each peripheral device has one interrupt line connected to the Vectored Interrupt  
Controller, but may have several internal interrupt flags. Individual interrupt flags may also  
represent more than one interrupt source.  
6.6 Pin connect block  
The pin connect block allows selected pins of the microcontroller to have more than one  
function. Configuration registers control the multiplexers to allow connection between the  
pin and the on chip peripherals. Peripherals should be connected to the appropriate pins  
prior to being activated, and prior to any related interrupt(s) being enabled. Activity of any  
enabled peripheral function that is not mapped to a related pin should be considered  
undefined.  
The Pin Control Module with its pin select registers defines the functionality of the  
microcontroller in a given hardware environment.  
After reset all pins of Port 0 are configured as input with the following exceptions: If debug  
is enabled, the JTAG pins will assume their JTAG functionality. The pins associated with  
the I2C0 interface are open-drain.  
LPC2101_02_03_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 18 January 2006  
12 of 32  
LPC2101/2102/2103  
Philips Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
6.7 Fast general purpose parallel I/O  
Device pins that are not connected to a specific peripheral function are controlled by the  
GPIO registers. Pins may be dynamically configured as inputs or outputs. Separate  
registers allow setting or clearing any number of outputs simultaneously. The value of the  
output register may be read back, as well as the current state of the port pins.  
LPC2101/2102/2103 introduce accelerated GPIO functions over prior LPC2000 devices:  
GPIO registers are relocated to the ARM local bus for the fastest possible I/O timing.  
Mask registers allow treating sets of port bits as a group, leaving other bits  
unchanged.  
All GPIO registers are byte addressable.  
Entire port value can be written in one instruction.  
6.7.1 Features  
Bit-level set and clear registers allow a single instruction set or clear of any number of  
bits in one port.  
Direction control of individual bits.  
Separate control of output set and clear.  
All I/O default to inputs after reset.  
6.8 10-bit A/D converter  
The LPC2101/2102/2103 contain one analog to digital converter. It is a single 10-bit  
successive approximation analog to digital converter with eight channels.  
6.8.1 Features  
Measurement range of 0 V to 3.3 V.  
Each converter capable of performing more than 400,000 10-bit samples per second.  
Burst conversion mode for single or multiple inputs.  
Optional conversion on transition on input pin or Timer Match signal.  
Every analog input has a dedicated result register to reduce interrupt overhead.  
6.9 UARTs  
The LPC2101/2102/2103 each contain two UARTs. In addition to standard transmit and  
receive data lines, UART1 also provides a full modem control handshake interface.  
Compared to previous LPC2000 microcontrollers, UARTs in LPC2101/2102/2103 include  
a fractional baud rate generator for both UARTs. Standard baud rates such as 115200 can  
be achieved with any crystal frequency above 2 MHz.  
6.9.1 Features  
16 byte Receive and Transmit FIFOs.  
Register locations conform to ‘550 industry standard.  
Receiver FIFO trigger points at 1, 4, 8, and 14 bytes  
LPC2101_02_03_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 18 January 2006  
13 of 32  
LPC2101/2102/2103  
Philips Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
Built-in fractional baud rate generator covering wide range of baud rates without a  
need for external crystals of particular values.  
Transmission FIFO control enables implementation of software (XON/XOFF) flow  
control on both UARTs.  
UART1 is equipped with standard modem interface signals. This module also  
provides full support for hardware flow control (auto-CTS/RTS).  
6.10 I2C-bus serial I/O controllers  
The LPC2101/2102/2103 each contain two I2C-bus controllers.  
The I2C-bus is bidirectional, for inter-IC control using only two wires: a Serial Clock Line  
(SCL), and a Serial Data Line (SDA). Each device is recognized by a unique address and  
can operate as either a receiver-only device (e.g., LCD driver) or a transmitter with the  
capability to both receive and send information such as serial memory. Transmitters  
and/or receivers can operate in either master or slave mode, depending on whether the  
chip has to initiate a data transfer or is only addressed. The I2C-bus is a multi-master bus,  
it can be controlled by more than one bus master connected to it.  
The I2C-bus implemented in LPC2101/2102/2103 supports bit rates up to 400 kbit/s (Fast  
I2C).  
6.10.1 Features  
Compliant with standard I2C-bus interface.  
Easy to configure as Master, Slave, or Master/Slave.  
Programmable clocks allow versatile rate control.  
Bidirectional data transfer between masters and slaves.  
Multi-master bus (no central master).  
Arbitration between simultaneously transmitting masters without corruption of serial  
data on the bus.  
Serial clock synchronization allows devices with different bit rates to communicate via  
one serial bus.  
Serial clock synchronization can be used as a handshake mechanism to suspend and  
resume serial transfer.  
The I2C-bus can also be used for test and diagnostic purposes.  
6.11 SPI serial I/O controller  
The LPC2101/2102/2103 each contain one SPI controller. The SPI is a full duplex serial  
interface, designed to handle multiple masters and slaves connected to a given bus. Only  
a single master and a single slave can communicate on the interface during a given data  
transfer. During a data transfer the master always sends 8 bits to 16 bits of data to the  
slave, and the slave always sends 8 bits to 16 bits of data to the master.  
6.11.1 Features  
Compliant with SPI specification.  
Synchronous, Serial, Full Duplex, Communication.  
LPC2101_02_03_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 18 January 2006  
14 of 32  
LPC2101/2102/2103  
Philips Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
Combined SPI master and slave.  
Maximum data bit rate of one eighth of the input clock rate.  
6.12 SSP serial I/O controller  
The LPC2101/2102/2103 each contain one SSP. The SSP controller is capable of  
operation on a SPI, 4-wire SSI, or Microwire bus. It can interact with multiple masters and  
slaves on the bus. However, only a single master and a single slave can communicate on  
the bus during a given data transfer. The SSP supports full duplex transfers, with data  
frames of 4 bits to 16 bits flowing from the master to the slave and from the slave to the  
master. Often only one of these data streams carries meaningful data.  
6.12.1 Features  
Compatible with Motorola SPI, 4-wire TI’s SSI and National Semiconductor’s  
Microwire buses.  
Synchronous Serial Communication.  
Master or slave operation.  
8-frame FIFOs for both transmit and receive.  
Four bits to 16 bits per frame.  
6.13 General purpose 32-bit timers/external event counters  
The Timer/Counter is designed to count cycles of the peripheral clock (PCLK) or an  
externally supplied clock and optionally generate interrupts or perform other actions at  
specified timer values, based on four match registers. It also includes four capture inputs  
to trap the timer value when an input signal transitions, optionally generating an interrupt.  
Multiple pins can be selected to perform a single capture or match function, providing an  
application with ‘or’ and ‘and’, as well as ‘broadcast’ functions among them.  
The LPC2101/2102/2103 can count external events on one of the capture inputs if the  
minimum external pulse is equal or longer than a period of the PCLK. In this configuration,  
unused capture lines can be selected as regular timer capture inputs or used as external  
interrupts.  
6.13.1 Features  
A 32-bit timer/counter with a programmable 32-bit prescaler.  
External event counter or timer operation.  
Four 32-bit capture channels per timer/counter that can take a snapshot of the timer  
value when an input signal transitions. A capture event may also optionally generate  
an interrupt.  
Four 32-bit match registers that allow:  
Continuous operation with optional interrupt generation on match.  
Stop timer on match with optional interrupt generation.  
Reset timer on match with optional interrupt generation.  
Four external outputs per timer/counter corresponding to match registers, with the  
following capabilities:  
Set LOW on match.  
LPC2101_02_03_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 18 January 2006  
15 of 32  
LPC2101/2102/2103  
Philips Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
Set HIGH on match.  
Toggle on match.  
Do nothing on match.  
6.14 General purpose 16-bit timers/external event counters  
The Timer/Counter is designed to count cycles of the peripheral clock (PCLK) or an  
externally supplied clock and optionally generate interrupts or perform other actions at  
specified timer values, based on four match registers. It also includes three capture inputs  
to trap the timer value when an input signal transitions, optionally generating an interrupt.  
Multiple pins can be selected to perform a single capture or match function, providing an  
application with ‘or’ and ‘and’, as well as ‘broadcast’ functions among them.  
The LPC2101/2102/2103 can count external events on one of the capture inputs if the  
minimum external pulse is equal or longer than a period of the PCLK. In this configuration,  
unused capture lines can be selected as regular timer capture inputs or used as external  
interrupts.  
6.14.1 Features  
Two 16-bit timer/counters with a programmable 16-bit prescaler.  
External event counter or timer operation.  
Three 16-bit capture channels that can take a snapshot of the timer value when an  
input signal transitions. A capture event may also optionally generate an interrupt.  
Four 16-bit match registers that allow:  
Continuous operation with optional interrupt generation on match.  
Stop timer on match with optional interrupt generation.  
Reset timer on match with optional interrupt generation.  
Four external outputs per timer/counter corresponding to match registers, with the  
following capabilities:  
Set LOW on match.  
Set HIGH on match.  
Toggle on match.  
Do nothing on match.  
6.15 Watchdog timer  
The purpose of the watchdog is to reset the microcontroller within a reasonable amount of  
time if it enters an erroneous state. When enabled, the watchdog will generate a system  
reset if the user program fails to ‘feed’ (or reload) the watchdog within a predetermined  
amount of time.  
6.15.1 Features  
Internally resets chip if not periodically reloaded.  
Debug mode.  
Enabled by software but requires a hardware reset or a watchdog reset/interrupt to be  
disabled.  
LPC2101_02_03_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 18 January 2006  
16 of 32  
LPC2101/2102/2103  
Philips Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
Incorrect/Incomplete feed sequence causes reset/interrupt if enabled.  
Flag to indicate watchdog reset.  
Programmable 32-bit timer with internal pre-scaler.  
Selectable time period from (TPCLK × 256 × 4) to (TPCLK × 232 × 4) in multiples of  
T
PCLK × 4.  
6.16 Real-time clock  
The Real-Time Clock (RTC) is designed to provide a set of counters to measure time  
when normal or idle operating mode is selected. The RTC has been designed to use little  
power, making it suitable for battery powered systems where the CPU is not running  
continuously (Idle mode).  
6.16.1 Features  
Measures the passage of time to maintain a calendar and clock.  
Ultra-low power design to support battery powered systems.  
Provides Seconds, Minutes, Hours, Day of Month, Month, Year, Day of Week, and Day  
of Year.  
Can use either the RTC dedicated 32 kHz oscillator input or clock derived from the  
external crystal/oscillator input at XTAL1. Programmable Reference Clock Divider  
allows fine adjustment of the RTC.  
Dedicated power supply pin can be connected to a battery or the main 3.3 V.  
6.17 System control  
6.17.1 Crystal oscillator  
On-chip integrated oscillator operates with external crystal in range of 1 MHz to 25 MHz.  
The oscillator output frequency is called fosc and the ARM processor clock frequency is  
referred to as CCLK for purposes of rate equations, etc. fosc and CCLK are the same value  
unless the PLL is running and connected. Refer to Section 6.17.2 “PLLfor additional  
information.  
6.17.2 PLL  
The PLL accepts an input clock frequency in the range of 10 MHz to 25 MHz. The input  
frequency is multiplied up into the range of 10 MHz to 70 MHz with a Current Controlled  
Oscillator (CCO). The multiplier can be an integer value from 1 to 32 (in practice, the  
multiplier value cannot be higher than 6 on this family of microcontrollers due to the upper  
frequency limit of the CPU). The CCO operates in the range of 156 MHz to 320 MHz, so  
there is an additional divider in the loop to keep the CCO within its frequency range while  
the PLL is providing the desired output frequency. The output divider may be set to divide  
by 2, 4, 8, or 16 to produce the output clock. Since the minimum output divider value is 2,  
it is insured that the PLL output has a 50 % duty cycle. The PLL is turned off and  
bypassed following a chip reset and may be enabled by software. The program must  
configure and activate the PLL, wait for the PLL to Lock, then connect to the PLL as a  
clock source. The PLL settling time is 100 µs.  
LPC2101_02_03_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 18 January 2006  
17 of 32  
LPC2101/2102/2103  
Philips Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
6.17.3 Reset and wake-up timer  
Reset has two sources on the LPC2101/2102/2103: the RESET pin and watchdog reset.  
The RESET pin is a Schmitt trigger input pin with an additional glitch filter. Assertion of  
chip reset by any source starts the wake-up timer (see wake-up timer description below),  
causing the internal chip reset to remain asserted until the external reset is de-asserted,  
the oscillator is running, a fixed number of clocks have passed, and the on-chip flash  
controller has completed its initialization.  
When the internal reset is removed, the processor begins executing at address 0, which is  
the reset vector. At that point, all of the processor and peripheral registers have been  
initialized to predetermined reset values.  
The wake-up timer ensures that the oscillator and other analog functions required for chip  
operation are fully functional before the processor is allowed to execute instructions. This  
is important at power on, all types of reset, and whenever any of the aforementioned  
functions are turned off for any reason. Since the oscillator and other functions are turned  
off during Power-down mode, any wake-up of the processor from Power-down mode  
makes use of the wake-up timer.  
The wake-up timer monitors the crystal oscillator as the means of checking whether it is  
safe to begin code execution. When power is applied to the chip, or some event caused  
the chip to exit Power-down mode, some time is required for the oscillator to produce a  
signal of sufficient amplitude to drive the clock logic. The amount of time depends on  
many factors, including the rate of VDD ramp (in the case of power on), the type of crystal  
and its electrical characteristics (if a quartz crystal is used), as well as any other external  
circuitry (e.g., capacitors), and the characteristics of the oscillator itself under the existing  
ambient conditions.  
6.17.4 Code security  
This feature of the LPC2101/2102/2103 allow an application to control whether it can be  
debugged or protected from observation.  
If after reset on-chip bootloader detects a valid checksum in flash and reads 0x8765 4321  
from address 0x1FC in flash, debugging will be disabled and thus the code in flash will be  
protected from observation. Once debugging is disabled, it can only be enabled by  
performing a full chip erase using the ISP.  
6.17.5 External interrupt inputs  
The LPC2101/2102/2103 include up to three edge or level sensitive External Interrupt  
Inputs as selectable pin functions. When the pins are combined, external events can be  
processed as three independent interrupt signals. The External Interrupt Inputs can  
optionally be used to wake-up the processor from Power-down mode.  
Additionally all 10 capture input pins can also be used as external interrupts without the  
option to wake the device up from Power-down mode.  
6.17.6 Memory mapping control  
The Memory Mapping Control alters the mapping of the interrupt vectors that appear  
beginning at address 0x0000 0000. Vectors may be mapped to the bottom of the on-chip  
flash memory, or to the on-chip static RAM. This allows code running in different memory  
spaces to have control of the interrupts.  
LPC2101_02_03_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 18 January 2006  
18 of 32  
LPC2101/2102/2103  
Philips Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
6.17.7 Power control  
The LPC2101/2102/2103 supports two reduced power modes: Idle mode and  
Power-down mode.  
In Idle mode, execution of instructions is suspended until either a reset or interrupt occurs.  
Peripheral functions continue operation during Idle mode and may generate interrupts to  
cause the processor to resume execution. Idle mode eliminates power used by the  
processor itself, memory systems and related controllers, and internal buses.  
In Power-down mode, the oscillator is shut down and the chip receives no internal clocks.  
The processor state and registers, peripheral registers, and internal SRAM values are  
preserved throughout Power-down mode and the logic levels of chip output pins remain  
static. The Power-down mode can be terminated and normal operation resumed by either  
a reset or certain specific interrupts that are able to function without clocks. Since all  
dynamic operation of the chip is suspended, Power-down mode reduces chip power  
consumption to nearly zero.  
Selecting an external 32 kHz clock instead of the PCLK as a clock-source for the on-chip  
RTC will enable the microcontroller to have the RTC active during Power-down mode.  
Power-down current is increased with RTC active. However, it is significantly lower than in  
Idle mode.  
A Power Control for Peripherals feature allows individual peripherals to be turned off if  
they are not needed in the application, resulting in additional power savings during active  
and Idle mode.  
6.17.8 APB bus  
The APB divider determines the relationship between the processor clock (CCLK) and the  
clock used by peripheral devices (PCLK). The APB divider serves two purposes. The first  
is to provide peripherals with the desired PCLK via APB bus so that they can operate at  
the speed chosen for the ARM processor. In order to achieve this, the APB bus may be  
slowed down to 12 to 14 of the processor clock rate. Because the APB bus must work  
properly at power-up (and its timing cannot be altered if it does not work since the APB  
divider control registers reside on the APB bus), the default condition at reset is for the  
APB bus to run at 14 of the processor clock rate. The second purpose of the APB divider  
is to allow power savings when an application does not require any peripherals to run at  
the full processor rate. Because the APB divider is connected to the PLL output, the PLL  
remains active (if it was running) during Idle mode.  
6.18 Emulation and debugging  
The LPC2101/2102/2103 support emulation and debugging via a JTAG serial port.  
6.18.1 EmbeddedICE  
Standard ARM EmbeddedICE logic provides on-chip debug support. The debugging of  
the target system requires a host computer running the debugger software and an  
EmbeddedICE protocol convertor. EmbeddedICE protocol convertor converts the Remote  
Debug Protocol commands to the JTAG data needed to access the ARM core.  
The ARM core has a Debug Communication Channel function built-in. The debug  
communication channel allows a program running on the target to communicate with the  
host debugger or another separate host without stopping the program flow or even  
LPC2101_02_03_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 18 January 2006  
19 of 32  
LPC2101/2102/2103  
Philips Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
entering the debug state. The debug communication channel is accessed as a  
co-processor 14 by the program running on the ARM7TDMI-S core. The debug  
communication channel allows the JTAG port to be used for sending and receiving data  
without affecting the normal program flow. The debug communication channel data and  
control registers are mapped in to addresses in the EmbeddedICE logic.  
6.18.2 RealMonitor  
RealMonitor is a configurable software module, developed by ARM Inc., which enables  
real time debug. It is a lightweight debug monitor that runs in the background while users  
debug their foreground application. It communicates with the host using the DCC, which is  
present in the EmbeddedICE logic. The LPC2101/2102/2103 contain a specific  
configuration of RealMonitor software programmed into the on-chip boot ROM memory.  
LPC2101_02_03_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 18 January 2006  
20 of 32  
LPC2101/2102/2103  
Philips Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
7. Limiting values  
Table 4:  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134). [1]  
Symbol  
VDD(1V8)  
VDD(3V3)  
VDDA  
Parameter  
Conditions  
Min  
Max  
+2.5  
+3.6  
4.6  
Unit  
V
[2]  
[3]  
supply voltage (1.8 V)  
supply voltage (3.3 V)  
analog 3.3 V pad supply voltage  
input voltage on pin VBAT  
analog input voltage  
input voltage  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
V
V
Vi(VBAT)  
VIA  
for the RTC  
4.6  
V
[4]  
5.1  
V
[5] [6]  
VI  
5 V tolerant I/O  
pins  
6.0  
V
[5]  
[8]  
other I/O pins  
0.5  
VDD + 0.5[7]  
100[9]  
100[9]  
125  
V
IDD  
supply current  
-
mA  
mA  
°C  
W
[10]  
[11]  
ISS  
ground current  
-
Tstg  
storage temperature  
total power dissipation (per package)  
40  
Ptot(pack)  
based on package  
heat transfer, not  
device power  
-
1.5  
consumption  
[1] The following applies to the Limiting values:  
a) This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive  
static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated maximum.  
b) Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to VSS unless  
otherwise noted.  
[2] Core and internal rail.  
[3] External rail.  
[4] On ADC related pins.  
[5] Including voltage on outputs in 3-state mode.  
[6] Only valid when the VDD(3V3) supply voltage is present.  
[7] Not to exceed 4.6 V.  
[8] Per supply pin.  
[9] The peak current is limited to 25 times the corresponding maximum current.  
[10] Per ground pin.  
[11] Dependent on package type.  
LPC2101_02_03_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 18 January 2006  
21 of 32  
LPC2101/2102/2103  
Philips Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
8. Static characteristics  
Table 5:  
Static characteristics  
Ta = 40 °C to +85 °C for commercial applications, unless otherwise specified.  
Symbol Parameter  
Conditions  
Min  
1.65  
3.0  
Typ [1]  
1.8  
Max  
1.95  
3.6  
Unit  
V
[2]  
[3]  
VDD(1V8) supply voltage (1.8 V)  
VDD(3V3) supply voltage (3.3 V)  
3.3  
V
VDDA  
analog 3.3 V pad supply  
voltage  
3.0  
3.3  
3.6  
V
Vi(VBAT)  
input voltage on pin VBAT  
2.0[4]  
3.3  
3.6  
V
Standard port pins, RESET, RTCK  
IIL  
LOW-state input current  
HIGH-state input current  
OFF-state output current  
VI = 0 V; no pull-up  
-
-
-
-
-
-
3
3
3
µA  
µA  
µA  
IIH  
IOZ  
VI = VDD(3V3); no pull-down  
VO = 0 V, VO = VDD(3V3); no  
pull-up/down  
Ilatch  
I/O latch-up current  
input voltage  
(0.5VDD(3V3)) < V <  
-
-
-
100  
5.5  
mA  
V
(1.5VDD(3V3)  
)
Tj < 125 °C  
[5] [6]  
[7]  
VI  
pin configured to provide a  
digital function  
0
VO  
output voltage  
output active  
0
-
VDD(3V3)  
V
V
V
V
V
VIH  
VIL  
HIGH-state input voltage  
LOW-state input voltage  
hysteresis voltage  
2.0  
-
-
-
-
-
0.8  
Vhys  
VOH  
0.4  
-
-
-
[8]  
HIGH-state output voltage IOH = 4 mA  
VDD(3V3)  
0.4  
[8]  
[8]  
[8]  
[9]  
VOL  
IOH  
LOW-state output voltage IOL = 4 mA  
HIGH-state output current VOH = VDD(3V3) 0.4 V  
LOW-state output current VOL = 0.4 V  
-
-
-
-
-
0.4  
-
V
4  
4
-
mA  
mA  
mA  
IOL  
-
IOHS  
HIGH-state short-circuit  
output current  
VOH = 0 V  
45  
[9]  
IOLS  
LOW-state short-circuit  
output current  
VOL = VDDA  
-
-
50  
mA  
Ipd  
Ipu  
pull-down current  
pull-up current  
VI = 5 V[10]  
10  
15  
0
50  
50  
0
150  
85  
0
µA  
µA  
µA  
[11]  
VI = 0 V  
VDD(3V3) < VI < 5 V[10]  
IDD(act)  
active mode supply  
current  
VDD(1V8) = 1.8 V, Ta = 25 °C,  
code  
while(1){}  
executed from flash, no active  
peripherals  
CCLK = 10 MHz  
<tbd>  
<tbd>  
7
<tbd>  
<tbd>  
mA  
mA  
CCLK = 70 MHz  
41  
(other parameters as above)  
IDD(pd)  
Power-down mode supply VDD(1V8) = 1.8 V, Ta = +25 °C  
<tbd>  
<tbd>  
7
<tbd>  
<tbd>  
µA  
µA  
current  
VDD(1V8) = 1.8 V, Ta = +85 °C  
<tbd>  
LPC2101_02_03_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 18 January 2006  
22 of 32  
LPC2101/2102/2103  
Philips Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
Table 5:  
Static characteristics …continued  
Ta = 40 °C to +85 °C for commercial applications, unless otherwise specified.  
Symbol Parameter Conditions  
Min  
Typ [1]  
Max  
Unit  
IBATpd  
Power-down mode battery RTC clock = 32 kHz  
supply current [12]  
(from RTXC pins), Ta = +25 °C  
VDD(1V8) = 1.8 V, VBAT = 2.5 V  
VDD(1V8) = 1.8 V, VBAT = 3.0 V  
-
-
7
8
<tbd>  
<tbd>  
µA  
µA  
IBATact  
active mode battery  
supply current [12]  
CCLK = 70 MHz,  
PCLK = 17.5 MHz,  
PCLK enabled to RTCK,  
RTC clock = 32 kHz  
(from RTXC pins), Ta = +25 °C  
VDD(1V8) = 1.8 V, VBAT = 3.0 V  
<tbd>  
<tbd>  
<tbd>  
µA  
I2C-bus pins  
VIH  
VIL  
Vhys  
VOL  
ILI  
HIGH-state input voltage  
0.7VDD(3V3)  
-
-
V
LOW-state input voltage  
hysteresis voltage  
-
-
-
-
-
-
0.3VDD(3V3)  
V
0.5VDD(3V3)  
-
V
[8]  
LOW-state output voltage IOLS = 3 mA  
input leakage current[13]  
-
0.4  
4
V
VI = VDD(3V3)  
VI = 5 V  
2
µA  
µA  
10  
22  
Oscillator pins  
Vi(XTAL1) input voltage on pin XTAL1  
0
0
-
-
1.8  
1.8  
V
V
Vo(XTAL2) output voltage on pin  
XTAL2  
Vi(RTXC1) input voltage on pin  
RTXC1  
0
0
-
-
1.8  
1.8  
V
V
Vo(RTXC2) output voltage on pin  
RTXC2  
[1] Typical ratings are not guaranteed. The values listed are at room temperature (+25 ˚C), nominal supply voltages.  
[2] Core and internal rail.  
[3] External rail.  
[4] The RTC typically fails when VBAT drops below 1.6 V.  
[5] Including voltage on outputs in 3-state mode.  
[6] VDD(3V3) supply voltages must be present.  
[7] 3-state outputs go into 3-state mode when VDD(3V3) is grounded.  
[8] Accounts for 100 mV voltage drop in all supply lines.  
[9] Only allowed for a short time period.  
[10] Minimum condition for VI = 4.5 V, maximum condition for VI = 5.5 V.  
[11] Applies to P1.25:16.  
[12] On pin VBAT.  
[13] To VSS  
.
LPC2101_02_03_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 18 January 2006  
23 of 32  
LPC2101/2102/2103  
Philips Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
Table 6:  
ADC static characteristics  
VDDA = 2.5 V to 3.6 V; Ta = 40 °C to +85 °C unless otherwise specified. ADC frequency 4.5 MHz.  
Symbol  
VIA  
Parameter  
Conditions  
Min  
Typ  
Max  
VDDA  
1
Unit  
V
analog input voltage  
analog input capacitance  
differential linearity error  
integral non-linearity  
offset error  
0
-
-
-
-
-
-
-
-
-
-
-
-
-
Cia  
pF  
[1] [2] [3]  
[1] [4]  
ED  
±1  
LSB  
LSB  
LSB  
%
EL(adj)  
EO  
±2  
[1] [5]  
±3  
[1] [6]  
EG  
gain error  
±0.5  
±4  
[1] [7]  
ET  
absolute error  
LSB  
[1] Conditions: VSSA = 0 V, VDDA = 3.3 V.  
[2] The A/D is monotonic, there are no missing codes.  
[3] The differential linearity error (ED) is the difference between the actual step width and the ideal step width. See Figure 5.  
[4] The integral non-linearity (EL(adj)) is the peak difference between the center of the steps of the actual and the ideal transfer curve after  
appropriate adjustment of gain and offset errors. See Figure 5.  
[5] The offset error (EO) is the absolute difference between the straight line which fits the actual curve and the straight line which fits the  
ideal curve. See Figure 5.  
[6] The gain error (EG) is the relative difference in percent between the straight line fitting the actual transfer curve after removing offset  
error, and the straight line which fits the ideal transfer curve. See Figure 5.  
[7] The absolute error (ET) is the maximum difference between the center of the steps of the actual transfer curve of the non-calibrated A/D  
and the ideal transfer curve. See Figure 5.  
LPC2101_02_03_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 18 January 2006  
24 of 32  
LPC2101/2102/2103  
Philips Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
offset  
error  
gain  
error  
E
E
O
G
1023  
1022  
1021  
1020  
1019  
1018  
(2)  
7
code  
out  
(1)  
6
5
4
3
2
1
0
(5)  
(4)  
(3)  
1 LSB  
(ideal)  
1018 1019 1020 1021 1022 1023 1024  
1
2
3
4
5
6
7
V
IA  
(LSB  
)
ideal  
offset error  
E
O
V
V  
DDA SSA  
1 LSB =  
1024  
002aac046  
(1) Example of an actual transfer curve.  
(2) The ideal transfer curve.  
(3) Differential linearity error (ED).  
(4) Integral non-linearity (EL(adj)).  
(5) Center of a step of the actual transfer curve.  
Fig 5. A/D conversion characteristics  
LPC2101_02_03_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 18 January 2006  
25 of 32  
LPC2101/2102/2103  
Philips Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
9. Dynamic characteristics  
Table 7:  
Dynamic characteristics  
Ta = 0 °C to +70 °C for commercial applications, 40 °C to +85 °C for industrial applications, VDD(1V8), VDD(3V3) over specified  
ranges [1]  
Symbol  
External clock  
fosc  
Parameter  
Conditions  
Min  
Typ [2]  
Max  
Unit  
oscillator frequency  
clock cycle time  
clock HIGH time  
clock LOW time  
clock rise time  
10  
40  
-
-
-
-
-
-
25  
100  
-
MHz  
ns  
Tcy(clk)  
tCHCX  
T
T
-
cy(clk) × 0.4  
cy(clk) × 0.4  
ns  
tCLCX  
-
ns  
tCLCH  
5
ns  
tCHCL  
clock fall time  
-
5
ns  
Port pins (except P0.2 and P0.3)  
tr(o)  
tf(o)  
output rise time  
-
-
10  
10  
-
-
ns  
ns  
output fall time  
I2C-bus pins (P0.2 and P0.3)  
[3]  
tf(o) output fall time  
VIH to VIL  
20 + 0.1 × Cb  
-
-
ns  
[1] Parameters are valid over operating temperature range unless otherwise specified.  
[2] Typical ratings are not guaranteed. The values listed are at room temperature (+25 ˚C), nominal supply voltages.  
[3] Bus capacitance Cb in pF, from 10 pF to 400 pF.  
LPC2101_02_03_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 18 January 2006  
26 of 32  
LPC2101/2102/2103  
Philips Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
10. Package outline  
LQFP48: plastic low profile quad flat package; 48 leads; body 7 x 7 x 1.4 mm  
SOT313-2  
c
y
X
36  
25  
A
E
37  
24  
Z
E
e
H
E
A
2
A
(A )  
3
A
1
w M  
p
θ
pin 1 index  
b
L
p
L
13  
48  
detail X  
1
12  
Z
v M  
D
A
e
w M  
b
p
D
B
H
v
M
B
D
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
D
H
L
L
v
w
y
Z
Z
E
θ
1
2
3
p
E
p
D
max.  
7o  
0o  
0.20 1.45  
0.05 1.35  
0.27 0.18 7.1  
0.17 0.12 6.9  
7.1  
6.9  
9.15 9.15  
8.85 8.85  
0.75  
0.45  
0.95 0.95  
0.55 0.55  
1.6  
mm  
0.25  
0.5  
1
0.2 0.12 0.1  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
00-01-19  
03-02-25  
SOT313-2  
136E05  
MS-026  
Fig 6. Package outline SOT313-2 (LQFP48)  
LPC2101_02_03_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 18 January 2006  
27 of 32  
LPC2101/2102/2103  
Philips Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
PLCC44: plastic leaded chip carrier; 44 leads  
SOT187-2  
e
e
D
E
y
X
A
39  
29  
b
p
Z
E
28  
40  
b
1
w
M
44  
1
H
E
E
pin 1 index  
A
A
1
A
4
e
(A )  
3
6
18  
β
L
p
k
detail X  
7
17  
v
M
A
e
Z
D
D
B
H
v
M
B
D
0
5
10 mm  
scale  
DIMENSIONS (mm dimensions are derived from the original inch dimensions)  
(1)  
(1)  
A
A
Z
Z
E
4
1
(1)  
(1)  
D
UNIT  
mm  
A
A
b
D
E
e
e
e
H
H
k
L
p
v
w
y
β
b
3
1
D
E
D
E
p
max.  
min.  
max. max.  
4.57  
4.19  
0.81 16.66 16.66  
0.66 16.51 16.51  
16.00 16.00 17.65 17.65 1.22 1.44  
14.99 14.99 17.40 17.40 1.07 1.02  
0.53  
0.33  
0.51 0.25 3.05  
0.02 0.01 0.12  
1.27  
0.05  
0.18 0.18  
0.1  
2.16 2.16  
o
45  
0.180  
0.165  
0.032 0.656 0.656  
0.026 0.650 0.650  
0.63 0.63 0.695 0.695 0.048 0.057  
0.59 0.59 0.685 0.685 0.042 0.040  
0.021  
0.013  
inches  
0.007 0.007 0.004 0.085 0.085  
Note  
1. Plastic or metal protrusions of 0.25 mm (0.01 inch) maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
99-12-27  
01-11-14  
SOT187-2  
112E10  
MS-018  
EDR-7319  
Fig 7. Package outline SOT187-2 (PLCC44)  
LPC2101_02_03_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 18 January 2006  
28 of 32  
LPC2101/2102/2103  
Philips Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
11. Abbreviations  
Table 8:  
Acronym  
ADC  
APB  
Acronym list  
Description  
Analog-to-Digital Converter  
Advanced Peripheral Bus  
DCC  
DSP  
FIFO  
FIQ  
Debug Communications Channel  
Digital Signal Processor  
First In, First Out  
Fast Interrupt Request  
GPIO  
IAP  
General Purpose Input/Output  
In-Application Programming  
Interrupt Request  
IRQ  
ISP  
In-System Programming  
Phase-Locked Loop  
PLL  
PWM  
SPI  
Pulse Width Modulator  
Serial Peripheral Interface  
Static Random Access Memory  
Serial Synchronous Port  
Universal Asynchronous Receiver/Transmitter  
Vectored Interrupt Controller  
SRAM  
SSP  
UART  
VIC  
LPC2101_02_03_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 18 January 2006  
29 of 32  
LPC2101/2102/2103  
Philips Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
12. Revision history  
Table 9:  
Revision history  
Document ID  
Release  
date  
Data sheet status Change Doc. number  
Supersedes  
notice  
LPC2101_2102_2103_1  
20060118  
Preliminary data  
sheet  
-
-
-
LPC2101_02_03_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 18 January 2006  
30 of 32  
LPC2101/2102/2103  
Philips Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
13. Data sheet status  
Level Data sheet status[1] Product status[2] [3]  
Definition  
I
Objective data  
Development  
This data sheet contains data from the objective specification for product development. Philips  
Semiconductors reserves the right to change the specification in any manner without notice.  
II  
Preliminary data  
Qualification  
This data sheet contains data from the preliminary specification. Supplementary data will be published  
at a later date. Philips Semiconductors reserves the right to change the specification without notice, in  
order to improve the design and supply the best possible product.  
III  
Product data  
Production  
This data sheet contains data from the product specification. Philips Semiconductors reserves the  
right to make changes at any time in order to improve the design, manufacturing and supply. Relevant  
changes will be communicated via a Customer Product/Process Change Notification (CPCN).  
[1]  
[2]  
Please consult the most recently issued data sheet before initiating or completing a design.  
The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at  
URL http://www.semiconductors.philips.com.  
[3]  
For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.  
customers using or selling these products for use in such applications do so  
at their own risk and agree to fully indemnify Philips Semiconductors for any  
damages resulting from such application.  
14. Definitions  
Short-form specification The data in a short-form specification is  
extracted from a full data sheet with the same type number and title. For  
detailed information see the relevant data sheet or data handbook.  
Right to make changes — Philips Semiconductors reserves the right to  
make changes in the products - including circuits, standard cells, and/or  
software - described or contained herein in order to improve design and/or  
performance. When the product is in full production (status ‘Production’),  
relevant changes will be communicated via a Customer Product/Process  
Change Notification (CPCN). Philips Semiconductors assumes no  
responsibility or liability for the use of any of these products, conveys no  
license or title under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that these products are  
free from patent, copyright, or mask work right infringement, unless otherwise  
specified.  
Limiting values definition Limiting values given are in accordance with  
the Absolute Maximum Rating System (IEC 60134). Stress above one or  
more of the limiting values may cause permanent damage to the device.  
These are stress ratings only and operation of the device at these or at any  
other conditions above those given in the Characteristics sections of the  
specification is not implied. Exposure to limiting values for extended periods  
may affect device reliability.  
Application information Applications that are described herein for any  
of these products are for illustrative purposes only. Philips Semiconductors  
makes no representation or warranty that such applications will be suitable for  
the specified use without further testing or modification.  
16. Trademarks  
Notice — All referenced brands, product names, service names and  
trademarks are the property of their respective owners.  
I2C-bus — logo is a trademark of Koninklijke Philips Electronics N.V.  
15. Disclaimers  
Life support — These products are not designed for use in life support  
appliances, devices, or systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips Semiconductors  
17. Contact information  
For additional information, please visit: http://www.semiconductors.philips.com  
For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com  
LPC2101_02_03_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 18 January 2006  
31 of 32  
LPC2101/2102/2103  
Philips Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
18. Contents  
1
General description . . . . . . . . . . . . . . . . . . . . . . 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Key features . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Ordering options. . . . . . . . . . . . . . . . . . . . . . . . 2  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
6.17.8  
6.18  
6.18.1  
6.18.2  
APB bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Emulation and debugging. . . . . . . . . . . . . . . . 19  
EmbeddedICE . . . . . . . . . . . . . . . . . . . . . . . . 19  
RealMonitor . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
2
2.1  
3
3.1  
4
7
Limiting values . . . . . . . . . . . . . . . . . . . . . . . . 21  
Static characteristics . . . . . . . . . . . . . . . . . . . 22  
Dynamic characteristics. . . . . . . . . . . . . . . . . 26  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 27  
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Revision history . . . . . . . . . . . . . . . . . . . . . . . 30  
Data sheet status. . . . . . . . . . . . . . . . . . . . . . . 31  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Contact information . . . . . . . . . . . . . . . . . . . . 31  
8
9
5
5.1  
5.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 4  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 6  
10  
11  
12  
13  
14  
15  
16  
17  
6
6.1  
6.2  
6.3  
6.4  
6.5  
6.5.1  
6.6  
6.7  
6.7.1  
6.8  
6.8.1  
6.9  
6.9.1  
6.10  
6.10.1  
6.11  
6.11.1  
6.12  
6.12.1  
6.13  
Functional description . . . . . . . . . . . . . . . . . . 10  
Architectural overview. . . . . . . . . . . . . . . . . . . 10  
On-chip flash program memory . . . . . . . . . . . 10  
On-chip static RAM. . . . . . . . . . . . . . . . . . . . . 11  
Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Interrupt controller . . . . . . . . . . . . . . . . . . . . . 12  
Interrupt sources. . . . . . . . . . . . . . . . . . . . . . . 12  
Pin connect block . . . . . . . . . . . . . . . . . . . . . . 12  
Fast general purpose parallel I/O . . . . . . . . . . 13  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
10-bit A/D converter . . . . . . . . . . . . . . . . . . . . 13  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
UARTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
I2C-bus serial I/O controllers. . . . . . . . . . . . . . 14  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
SPI serial I/O controller. . . . . . . . . . . . . . . . . . 14  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
SSP serial I/O controller . . . . . . . . . . . . . . . . . 15  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
General purpose 32-bit timers/external event  
counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
General purpose 16-bit timers/external event  
counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Watchdog timer. . . . . . . . . . . . . . . . . . . . . . . . 16  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Real-time clock . . . . . . . . . . . . . . . . . . . . . . . . 17  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
System control . . . . . . . . . . . . . . . . . . . . . . . . 17  
Crystal oscillator . . . . . . . . . . . . . . . . . . . . . . . 17  
PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Reset and wake-up timer . . . . . . . . . . . . . . . . 18  
Code security . . . . . . . . . . . . . . . . . . . . . . . . . 18  
External interrupt inputs . . . . . . . . . . . . . . . . . 18  
Memory mapping control . . . . . . . . . . . . . . . . 18  
Power control . . . . . . . . . . . . . . . . . . . . . . . . . 19  
6.13.1  
6.14  
6.14.1  
6.15  
6.15.1  
6.16  
6.16.1  
6.17  
6.17.1  
6.17.2  
6.17.3  
6.17.4  
6.17.5  
6.17.6  
6.17.7  
© Koninklijke Philips Electronics N.V. 2006  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior  
written consent of the copyright owner. The information presented in this document does  
not form part of any quotation or contract, is believed to be accurate and reliable and may  
be changed without notice. No liability will be accepted by the publisher for any  
consequence of its use. Publication thereof does not convey nor imply any license under  
patent- or other industrial or intellectual property rights.  
Date of release: 18 January 2006  
Document number: LPC2101_02_03_1  
Published in the Netherlands  

相关型号:

LPC2103FA44

Single-chip 16-bit/32-bit microcontrollers; 8 kB/16 kB/32 kB flash with ISP/IAP, fast ports and 10-bit ADC
NXP

LPC2103FBD48

Single-chip 16-bit/32-bit microcontrollers; 8 kB/16 kB/32 kB flash with ISP/IAP, fast ports and 10-bit ADC
NXP

LPC2103FBD48,151

LPC2101/02/03 - Single-chip 16-bit/32-bit microcontrollers; 8 kB/16 kB/32 kB flash with ISP/IAP, fast ports and 10-bit ADC QFP 48-Pin
NXP

LPC2103FBD48-S

Single-chip 16-bit/32-bit microcontrollers; 8 kB/16 kB/32 kB flash with ISP/IAP, fast ports and 10-bit ADC - ADCs: 8-ch/10-bit ; Category: ARM7TDMI-S (TM) Core ; Clock type: N/A ; External interrupt: 14 ; Function: 16/32-bit uController ; I/O pins: 32 ; Memory size: 32K kBits; Memory type: FLASH ; Number of pins: 48 ; Operating frequency: 0 ~ 60 MHz; Operating temperature: -40 ~ +85 Cel; Power supply: 1.8V (CPU)3.3V (I/O) ; PWMs: N/A ; RAM: 8192 bytes; Reset active: Low ; Serial interface: 2xUART2xI2C2xSPI ; Series: LPC2100 family ; Special features: 0 WS Exec. from int. FlashJTAG ; System fre
NXP

LPC2103FBD48.151

Single-chip 16-bit/32-bit microcontrollers; 8 kB/16 kB/32 kB flash with ISP/IAP, fast ports and 10-bit ADC
NXP

LPC2103FBD48/CP325

IC,MICROCONTROLLER,32-BIT,ARM7 CPU,QFP,48PIN,PLASTIC
NXP

LPC2103FHN48

Single-chip 16-bit/32-bit microcontrollers; 8 kB/16 kB/32 kB flash with ISP/IAP, fast ports and 10-bit ADC
NXP

LPC2103FHN48H

Single-chip 16-bit/32-bit microcontrollers; 8 kB/16 kB/32 kB flash with ISP/IAP, fast ports and 10-bit ADC
NXP

LPC2104

Single-chip 32-bit microcontrollers; 128 kB ISP/IAP Flash with 64 kB/32 kB/16 kB RAM
NXP

LPC2104/01

NXP Microcontrollers Selection Guide
NXP

LPC2104BBD48

Single-chip 32-bit microcontrollers; 128 kB ISP/IAP Flash with 64 kB/32 kB/16 kB RAM
NXP

LPC2104FBD48

Single-chip 32-bit microcontrollers; 128 kB ISP/IAP flash with 16/32/64 kB RAM
NXP