LPC2134FBD64 [NXP]

Single-chip 16/32-bit microcontrollers; 32/64/512 kB ISP/IAP Flash with 10-bit ADC and DAC; 单芯片16位/ 32位微控制器; 32/64/512 KB ISP / IAP闪存与10位ADC和DAC
LPC2134FBD64
型号: LPC2134FBD64
厂家: NXP    NXP
描述:

Single-chip 16/32-bit microcontrollers; 32/64/512 kB ISP/IAP Flash with 10-bit ADC and DAC
单芯片16位/ 32位微控制器; 32/64/512 KB ISP / IAP闪存与10位ADC和DAC

闪存 微控制器
文件: 总41页 (文件大小:182K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LPC2131/2132/2134/2136/2138  
Single-chip 16/32-bit microcontrollers; 32/64/128/256/512 kB  
ISP/IAP Flash with 10-bit ADC and DAC  
Rev. 02 — 15 April 2005  
Preliminary data sheet  
1. General description  
The LPC2131/2132/2134/2136/2138 microcontrollers are based on a 32/16 bit  
ARM7TDMI-S CPU with real-time emulation and embedded trace support, that combines  
the microcontroller with 32 kB, 64 kB, 128 kB, 256 kB and 512 kB of embedded high  
speed Flash memory. A 128-bit wide memory interface and a unique accelerator  
architecture enable 32-bit code execution at maximum clock rate. For critical code size  
applications, the alternative 16-bit Thumb mode reduces code by more than 30 % with  
minimal performance penalty.  
Due to their tiny size and low power consumption, these microcontrollers are ideal for  
applications where miniaturization is a key requirement, such as access control and  
point-of-sale. With a wide range of serial communications interfaces and on-chip SRAM  
options of 8/16/32 kB, they are very well suited for communication gateways and protocol  
converters, soft modems, voice recognition and low end imaging, providing both large  
buffer size and high processing power. Various 32-bit timers, single or dual 10-bit  
8 channel ADC(s), 10-bit DAC, PWM channels and 47 GPIO lines with up to nine edge or  
level sensitive external interrupt pins make these microcontrollers particularly suitable for  
industrial control and medical systems.  
2. Features  
2.1 Key features  
16/32-bit ARM7TDMI-S microcontroller in a tiny LQFP64 package.  
8/16/32 kB of on-chip static RAM and 32/64/128/256/512 kB of on-chip Flash program  
memory. 128 bit wide interface/accelerator enables high speed 60 MHz operation.  
In-System/In-Application Programming (ISP/IAP) via on-chip boot-loader software.  
Single Flash sector or full chip erase in 400 ms and programming of 256 bytes in 1 ms.  
EmbeddedICE RT and Embedded Trace interfaces offer real-time debugging with the  
on-chip RealMonitor software and high speed tracing of instruction execution.  
One (LPC2131/32) or two (LPC2134/36/38) 8 channel 10-bit A/D converters provides  
a total of up to 16 analog inputs, with conversion times as low as 2.44 µs per channel.  
Single 10-bit D/A converter provides variable analog output (LPC2132/34/36/38).  
Two 32-bit timers/external event counters (with four capture and four compare  
channels each), PWM unit (six outputs) and watchdog.  
Low power Real-time clock with independent power and dedicated 32 kHz clock input.  
Multiple serial interfaces including two UARTs (16C550), two Fast I2C-bus (400 kbit/s),  
SPI and SSP with buffering and variable data length capabilities.  
Vectored interrupt controller with configurable priorities and vector addresses.  
LPC2131/2132/2134/2136/2138  
Philips Semiconductors  
Single-chip 16/32-bit microcontrollers  
Up to 47 5 V tolerant general purpose I/O pins in tiny LQFP64 package.  
Up to nine edge or level sensitive external interrupt pins available.  
60 MHz maximum CPU clock available from programmable on-chip PLL with settling  
time of 100 µs.  
On-chip integrated oscillator operates with external crystal in range of 1 MHz to  
30 MHz and with external oscillator up to 50 MHz.  
Power saving modes include Idle and Power-down.  
Individual enable/disable of peripheral functions as well as peripheral clock scaling  
down for additional power optimization.  
Processor wake-up from Power-down mode via external interrupt or BOD.  
Single power supply chip with POR and BOD circuits:  
CPU operating voltage range of 3.0 V to 3.6 V (3.3 V ± 10 %) with 5 V tolerant I/O  
pads.  
3. Ordering information  
Table 1:  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
LPC2131FBD64  
LPC2132FBD64  
LPC2134FBD64  
LPC2136FBD64  
LPC2138FBD64  
LQFP64 plastic low profile quad flat package; 64 leads;  
SOT314-2  
body 10 × 10 × 1.4 mm  
LQFP64 plastic low profile quad flat package; 64 leads;  
SOT314-2  
SOT314-2  
SOT314-2  
SOT314-2  
body 10 × 10 × 1.4 mm  
LQFP64 plastic low profile quad flat package; 64 leads;  
body 10 × 10 × 1.4 mm  
LQFP64 plastic low profile quad flat package; 64 leads;  
body 10 × 10 × 1.4 mm  
LQFP64 plastic low profile quad flat package; 64 leads;  
body 10 × 10 × 1.4 mm  
3.1 Ordering options  
Table 2:  
Ordering options  
Type number  
Flash memory RAM  
ADC  
DAC  
Temperature  
range (°C)  
LPC2131FBD64  
LPC2132FBD64  
LPC2134FBD64  
LPC2136FBD64  
LPC2138FBD64  
32 kB  
8 kB  
1
1
2
2
2
-
40 to +85  
40 to +85  
40 to +85  
40 to +85  
40 to +85  
64 kB  
16 kB  
16 kB  
32 kB  
32 kB  
1
1
1
1
128 kB  
256 kB  
512 kB  
9397 750 14868  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 15 April 2005  
2 of 41  
LPC2131/2132/2134/2136/2138  
Philips Semiconductors  
Single-chip 16/32-bit microcontrollers  
4. Block diagram  
(3)  
(3)  
TMS  
(3)  
TDI  
(3)  
XTAL2  
XTAL1 RST  
(3)  
TRST  
TCK  
TDO  
TEST/DEBUG  
INTERFACE  
LPC2131/2132/2134/2136/2138  
SYSTEM  
FUNCTIONS  
PLL  
ARM7TDMI-S  
system  
clock  
VECTORED  
INTERRUPT  
CONTROLLER  
AHB BRIDGE  
ARM7 local bus  
AMBA AHB  
(Advanced High-performance Bus)  
INTERNAL  
INTERNAL  
SRAM  
FLASH  
CONTROLLER  
CONTROLLER  
AHB  
DECODER  
8/16/32 kB  
SRAM  
32/64/128/  
256/512 kB  
FLASH  
AHB TO VPB  
BRIDGE  
VPB  
DIVIDER  
VPB (VLSI  
peripheral bus)  
SCL0,1  
SDA0,1  
2
EXTERNAL  
INTERRUPTS  
I C SERIAL  
EINT3:0  
INTERFACES 0 AND 1  
8 × CAP0  
SCK0,1  
CAPTURE/  
COMPARE  
TIMER 0/TIMER 1  
MOSI0,1  
MISO0,1  
SSEL0,1  
SPI AND SSP  
SERIAL INTERFACES  
8 × MAT  
AD0.7:0  
A/D CONVERTERS  
TXD0,1  
RXD0,1  
(1)  
0 AND 1  
(1)  
AD1.7:0  
UART0/UART1  
(1)  
(1)  
DSR1 ,CTS1  
,
(1)  
(1)  
RTS1 , DTR1  
(2)  
(2)  
AOUT  
D/A CONVERTER  
(1)  
(1)  
DCD1 ,RI1  
RTXC1  
RTXC2  
REAL TIME CLOCK  
P0.31:0  
GENERAL  
PURPOSE I/O  
V
BAT  
P1.31:16  
WATCHDOG  
TIMER  
PWM6:1  
PWM0  
SYSTEM  
CONTROL  
002aab067  
(1) LPC2134/2136/2138 only.  
(2) LPC2132/2134/2136/2138 only.  
(3) Pins shared with GPIO.  
Fig 1. Block diagram.  
9397 750 14868  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 15 April 2005  
3 of 41  
LPC2131/2132/2134/2136/2138  
Philips Semiconductors  
Single-chip 16/32-bit microcontrollers  
5. Pinning information  
5.1 Pinning  
1
2
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
P0.21/PWM5/CAP1.3  
P0.22/CAP0.0/MAT0.0  
RTXC1  
P1.20/TRACESYNC  
P0.17/CAP1.2/SCK1/MAT1.2  
P0.16/EINT0/MAT0.2/CAP0.2  
P0.15/EINT2  
3
4
P1.19/TRACEPKT3  
RTXC2  
5
P1.21/PIPESTAT0  
6
V
V
V
SS  
DD  
SS  
7
V
DDA  
8
P1.18/TRACEPKT2  
P0.25/AD0.4  
P0.14/EINT1/SDA1  
P1.22/PIPESTAT1  
P0.13/MAT1.1  
LPC2131  
9
10  
11  
12  
13  
14  
15  
16  
P0.26/AD0.5  
P0.27/AD0.0/CAP0.1/MAT0.1  
P1.17/TRACEPKT1  
P0.12/MAT1.0  
P0.11/CAP1.1/SCL1  
P1.23/PIPESTAT2  
P0.10/CAP1.0  
P0.28/AD0.1/CAP0.2/MAT0.2  
P0.29/AD0.2/CAP0.3/MAT0.3  
P0.30/AD0.3/EINT3/CAP0.0  
P1.16/TRACEPKT0  
P0.9/RXD1/PWM6/EINT3  
P0.8/TXD1/PWM4  
002aab068  
Fig 2. LPC2131 pinning.  
9397 750 14868  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 15 April 2005  
4 of 41  
LPC2131/2132/2134/2136/2138  
Philips Semiconductors  
Single-chip 16/32-bit microcontrollers  
1
2
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
P0.21/PWM5/CAP1.3  
P0.22/CAP0.0/MAT0.0  
RTXC1  
P1.20/TRACESYNC  
P0.17/CAP1.2/SCK1/MAT1.2  
P0.16/EINT0/MAT0.2/CAP0.2  
P0.15/EINT2  
3
4
P1.19/TRACEPKT3  
RTXC2  
5
P1.21/PIPESTAT0  
6
V
V
V
SS  
DD  
SS  
7
V
DDA  
8
P1.18/TRACEPKT2  
P0.25/AD0.4/AOUT  
P0.14/EINT1/SDA1  
P1.22/PIPESTAT1  
P0.13/MAT1.1  
LPC2132  
9
10  
11  
12  
13  
14  
15  
16  
P0.26/AD0.5  
P0.27/AD0.0/CAP0.1/MAT0.1  
P1.17/TRACEPKT1  
P0.12/MAT1.0  
P0.11/CAP1.1/SCL1  
P1.23/PIPESTAT2  
P0.10/CAP1.0  
P0.28/AD0.1/CAP0.2/MAT0.2  
P0.29/AD0.2/CAP0.3/MAT0.3  
P0.30/AD0.3/EINT3/CAP0.0  
P1.16/TRACEPKT0  
P0.9/RXD1/PWM6/EINT3  
P0.8/TXD1/PWM4  
002aab406  
Fig 3. LPC2132 pinning.  
9397 750 14868  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 15 April 2005  
5 of 41  
LPC2131/2132/2134/2136/2138  
Philips Semiconductors  
Single-chip 16/32-bit microcontrollers  
1
2
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
P0.21/PWM5/AD1.6/CAP1.3  
P0.22/AD1.7/CAP0.0/MAT0.0  
RTXC1  
P1.20/TRACESYNC  
P0.17/CAP1.2/SCK1/MAT1.2  
P0.16/EINT0/MAT0.2/CAP0.2  
P0.15/RI1/EINT2/AD1.5  
P1.21/PIPESTAT0  
3
4
P1.19/TRACEPKT3  
RTXC2  
5
6
V
V
V
SS  
DD  
SS  
7
V
DDA  
8
P1.18/TRACEPKT2  
P0.25/AD0.4/AOUT  
P0.14/DCD1/EINT1/SDA1  
P1.22/PIPESTAT1  
LPC2134/2136/2138  
9
10  
11  
12  
13  
14  
15  
16  
P0.26/AD0.5  
P0.13/DTR1/MAT1.1/AD1.4  
P0.12/DSR1/MAT1.0/AD1.3  
P0.11/CTS1/CAP1.1/SCL1  
P1.23/PIPESTAT2  
P0.27/AD0.0/CAP0.1/MAT0.1  
P1.17/TRACEPKT1  
P0.28/AD0.1/CAP0.2/MAT0.2  
P0.29/AD0.2/CAP0.3/MAT0.3  
P0.30/AD0.3/EINT3/CAP0.0  
P1.16/TRACEPKT0  
P0.10/RTS1/CAP1.0/AD1.2  
P0.9/RXD1/PWM6/EINT3  
P0.8/TXD1/PWM4/AD1.1  
002aab407  
Fig 4. LPC2134/2136/2138 pinning.  
9397 750 14868  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 15 April 2005  
6 of 41  
LPC2131/2132/2134/2136/2138  
Philips Semiconductors  
Single-chip 16/32-bit microcontrollers  
5.2 Pin description  
Table 3:  
Symbol  
Pin description  
Pin  
Type  
Description  
P0.0 to P0.31  
I/O  
Port 0: Port 0 is a 32-bit I/O port with individual direction controls for each bit.  
Total of 31 pins of the Port 0 can be used as a general purpose bi-directional  
digital I/Os while P0.31 is output only pin. The operation of port 0 pins  
depends upon the pin function selected via the pin connect block.  
Pin P0.24 is not available.  
P0.0/TXD0/  
PWM1  
19[1]  
21[2]  
O
O
I
TXD0 — Transmitter output for UART0.  
PWM1 — Pulse Width Modulator output 1.  
P0.1/RXD0/  
RXD0 — Receiver input for UART0.  
PWM3/EINT0  
O
I
PWM3 — Pulse Width Modulator output 3.  
EINT0 — External interrupt 0 input  
P0.2/SCL0/  
CAP0.0  
22[3]  
26[3]  
I/O  
I
SCL0 — I2C0 clock input/output. Open drain output (for I2C-bus compliance).  
CAP0.0 — Capture input for Timer 0, channel 0.  
SDA0 — I2C0 data input/output. Open drain output (for I2C-bus compliance).  
MAT0.0 — Match output for Timer 0, channel 0.  
EINT1 — External interrupt 1 input.  
P0.3/SDA0/  
MAT0.0/EINT1  
I/O  
O
I
P0.4/SCK0/  
CAP0.1/AD0.6  
27[4]  
I/O  
I
SCK0 — Serial clock for SPI0. SPI clock output from master or input to slave.  
CAP0.1 — Capture input for Timer 0, channel 0.  
I
AD0.6 — A/D converter 0, input 6. This analog input is always connected to  
its pin.  
P0.5/MISO0/  
29[4]  
I/O  
MISO0 — Master In Slave OUT for SPI0. Data input to SPI master or data  
MAT0.1/AD0.7  
output from SPI slave.  
O
I
MAT0.1 — Match output for Timer 0, channel 1.  
AD0.7 — A/D converter 0, input 7. This analog input is always connected to  
its pin.  
P0.6/MOSI0/  
30[4]  
I/O  
MOSI0 — Master Out Slave In for SPI0. Data output from SPI master or data  
CAP0.2/AD1.0  
input to SPI slave.  
I
I
CAP0.2 — Capture input for Timer 0, channel 2.  
AD1.0 — A/D converter 1, input 0. This analog input is always connected to  
its pin. Available in LPC2138 only.  
P0.7/SSEL0/  
PWM2/EINT2  
31[2]  
I
SSEL0 — Slave Select for SPI0. Selects the SPI interface as a slave.  
PWM2 — Pulse Width Modulator output 2.  
EINT2 — External interrupt 2 input.  
O
I
P0.8/TXD1/  
PWM4/AD1.1  
33[4]  
O
O
I
TXD1 — Transmitter output for UART1.  
PWM4 — Pulse Width Modulator output 4.  
AD1.1 — A/D converter 1, input 1. This analog input is always connected to  
its pin. Available in LPC2138 only.  
P0.9/RXD1/  
PWM6/EINT3  
34[2]  
I
RXD1 — Receiver input for UART1.  
PWM6 — Pulse Width Modulator output 6.  
EINT3 — External interrupt 3 input.  
O
I
9397 750 14868  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 15 April 2005  
7 of 41  
LPC2131/2132/2134/2136/2138  
Philips Semiconductors  
Single-chip 16/32-bit microcontrollers  
Table 3:  
Symbol  
Pin description …continued  
Pin  
Type  
Description  
P0.10/RTS1/  
CAP1.0/AD1.2  
35[4]  
O
I
RTS1 — Request to Send output for UART1. Available in LPC2138 only.  
CAP1.0 — Capture input for Timer 1, channel 0.  
I
AD1.2 — A/D converter 1, input 2. This analog input is always connected to  
its pin. Available in LPC2138 only.  
P0.11/CTS1/  
CAP1.1/SCL1  
37[3]  
I
CTS1 — Clear to Send input for UART1. Available in LPC2138 only.  
I
CAP1.1 — Capture input for Timer 1, channel 1.  
I/O  
SCL1 — I2C1 clock input/output. Open drain output (for I2C-bus compliance)  
DSR1 — Data Set Ready input for UART1. Available in LPC2138 only.  
MAT1.0 — Match output for Timer 1, channel 0.  
P0.12/DSR1/  
38[4]  
I
MAT1.0/AD1.3  
O
I
AD1.3 — A/D converter input 3. This analog input is always connected to its  
pin. Available in LPC2138 only.  
P0.13/DTR1/  
MAT1.1/AD1.4  
39[4]  
O
O
I
DTR1 — Data Terminal Ready output for UART1. Available in LPC2138 only.  
MAT1.1 — Match output for Timer 1, channel 1.  
AD1.4 — A/D converter input 4. This analog input is always connected to its  
pin. Available in LPC2138 only.  
P0.14/DCD1/  
EINT1/SDA1  
41[3]  
I
DCD1 — Data Carrier Detect input for UART1. Available in LPC2138 only.  
I
EINT1 — External interrupt 1 input.  
I/O  
SDA1 — I2C1 data input/output. Open drain output (for I2C-bus compliance)  
RI1 — Ring Indicator input for UART1. Available in LPC2138 only.  
EINT2 — External interrupt 2 input.  
P0.15/RI1/  
45[4]  
I
I
I
EINT2/AD1.5  
AD1.5 — A/D converter 1, input 5. This analog input is always connected to  
its pin. Available in LPC2138 only.  
P0.16/EINT0/  
46[2]  
I
EINT0 — External interrupt 0 input.  
MAT0.2/CAP0.2  
O
I
MAT0.2 — Match output for Timer 0, channel 2.  
CAP0.2 — Capture input for Timer 0, channel 2.  
CAP1.2 — Capture input for Timer 1, channel 2.  
SCK1 — Serial Clock for SSP. Clock output from master or input to slave.  
MAT1.2 — Match output for Timer 1, channel 2.  
CAP1.3 — Capture input for Timer 1, channel 3.  
P0.17/CAP1.2/ 47[1]  
SCK1/MAT1.2  
I
I/O  
O
I
P0.18/CAP1.3/ 53[1]  
MISO1/MAT1.3  
I/O  
MISO1 — Master In Slave Out for SSP. Data input to SPI master or data  
output from SSP slave.  
O
MAT1.3 — Match output for Timer 1, channel 3.  
MAT1.2 — Match output for Timer 1, channel 2.  
P0.19/MAT1.2/ 54[1]  
MOSI1/CAP1.2  
O
I/O  
MOSI1 — Master Out Slave In for SSP. Data output from SSP master or data  
input to SSP slave.  
I
CAP1.2 — Capture input for Timer 1, channel 2.  
MAT1.3 — Match output for Timer 1, channel 3.  
SSEL1 — Slave Select for SSP. Selects the SSP interface as a slave.  
EINT3 — External interrupt 3 input.  
P0.20/MAT1.3/ 55[2]  
SSEL1/EINT3  
O
I
I
P0.21/PWM5/  
AD1.6/CAP1.3  
1[4]  
O
I
PWM5 — Pulse Width Modulator output 5.  
AD1.6 — A/D converter 1, input 6. This analog input is always connected to  
its pin. Available in LPC2138 only.  
I
CAP1.3 — Capture input for Timer 1, channel 3.  
9397 750 14868  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 15 April 2005  
8 of 41  
LPC2131/2132/2134/2136/2138  
Philips Semiconductors  
Single-chip 16/32-bit microcontrollers  
Table 3:  
Symbol  
Pin description …continued  
Pin  
Type  
Description  
P0.22/AD1.7/  
2[4]  
I
AD1.7 — A/D converter 1, input 7. This analog input is always connected to  
CAP0.0/MAT0.0  
its pin. Available in LPC2138 only.  
I
CAP0.0 — Capture input for Timer 0, channel 0.  
MAT0.0 — Match output for Timer 0, channel 0.  
General purpose digital input/output pin.  
O
I/O  
I
P0.23  
58[1]  
9[5]  
P0.25/AD0.4/  
AOUT  
AD0.4 — A/D converter 0, input 4. This analog input is always connected to  
its pin.  
O
I
AOUT — D/A converter output. Available in LPC2132 and LPC2138 only.  
P0.26/AD0.5  
10[4]  
11[4]  
AD0.5 — A/D converter 0, input 5. This analog input is always connected to  
its pin.  
P0.27/AD0.0/  
I
AD0.0 — A/D converter 0, input 0. This analog input is always connected to  
CAP0.1/MAT0.1  
its pin.  
I
CAP0.1 — Capture input for Timer 0, channel 1.  
MAT0.1 — Match output for Timer 0, channel 1.  
O
I
P0.28/AD0.1/  
CAP0.2/MAT0.2  
13[4]  
14[4]  
15[4]  
17[6]  
AD0.1 — A/D converter 0, input 1. This analog input is always connected to  
its pin.  
I
CAP0.2 — Capture input for Timer 0, channel 2.  
MAT0.2 — Match output for Timer 0, channel 2.  
O
I
P0.29/AD0.2/  
CAP0.3/MAT0.3  
AD0.2 — A/D converter 0, input 2. This analog input is always connected to  
its pin.  
I
CAP0.3 — Capture input for Timer 0, Channel 3.  
MAT0.3 — Match output for Timer 0, channel 3.  
O
I
P0.30/AD0.3/  
EINT3/CAP0.0  
AD0.3 — A/D converter 0, input 3. This analog input is always connected to  
its pin.  
I
EINT3 — External interrupt 3 input.  
I
CAP0.0 — Capture input for Timer 0, channel 0.  
General purpose digital output only pin.  
P0.31  
O
Important: This pin MUST NOT be externally pulled LOW when RESET pin  
is LOW or the JTAG port will be disabled.  
P1.0 to P1.31  
I/O  
Port 1: Port 1 is a 32-bit bi-directional I/O port with individual direction  
controls for each bit. The operation of port 1 pins depends upon the pin  
function selected via the pin connect block. Pins 0 through 15 of port 1 are not  
available.  
P1.16/  
TRACEPKT0  
16[6]  
12[6]  
8[6]  
O
O
O
O
O
TRACEPKT0 — Trace Packet, bit 0. Standard I/O port with internal pull-up.  
TRACEPKT1 — Trace Packet, bit 1. Standard I/O port with internal pull-up.  
TRACEPKT2 — Trace Packet, bit 2. Standard I/O port with internal pull-up.  
TRACEPKT3 — Trace Packet, bit 3. Standard I/O port with internal pull-up.  
P1.17/  
TRACEPKT1  
P1.18/  
TRACEPKT2  
P1.19/  
TRACEPKT3  
4[6]  
P1.20/  
TRACESYNC  
48[6]  
TRACESYNC — Trace Synchronization. Standard I/O port with internal  
pull-up. LOW on TRACESYNC while RESET is LOW enables pins P1.25:16  
to operate as Trace port after reset.  
P1.21/  
44[6]  
O
PIPESTAT0 — Pipeline Status, bit 0. Standard I/O port with internal pull-up.  
PIPESTAT0  
9397 750 14868  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 15 April 2005  
9 of 41  
LPC2131/2132/2134/2136/2138  
Philips Semiconductors  
Single-chip 16/32-bit microcontrollers  
Table 3:  
Symbol  
Pin description …continued  
Pin  
Type  
Description  
P1.22/  
PIPESTAT1  
40[6]  
O
PIPESTAT1 — Pipeline Status, bit 1. Standard I/O port with internal pull-up.  
PIPESTAT2 — Pipeline Status, bit 2. Standard I/O port with internal pull-up.  
TRACECLK — Trace Clock. Standard I/O port with internal pull-up.  
EXTIN0 — External Trigger Input. Standard I/O with internal pull-up.  
P1.23/  
PIPESTAT2  
36[6]  
32[6]  
O
O
P1.24/  
TRACECLK  
P1.25/EXTIN0 28[6]  
I
P1.26/RTCK  
24[6]  
I/O  
RTCK — Returned Test Clock output. Extra signal added to the JTAG port.  
Assists debugger synchronization when processor frequency varies.  
Bi-directional pin with internal pull-up. LOW on RTCK while RESET is LOW  
enables pins P1.31:26 to operate as Debug port after reset.  
P1.27/TDO  
P1.28/TDI  
P1.29/TCK  
P1.30/TMS  
P1.31/TRST  
RESET  
64[6]  
60[6]  
56[6]  
52[6]  
20[6]  
57[7]  
O
I
TDO — Test Data out for JTAG interface.  
TDI — Test Data in for JTAG interface.  
TCK — Test Clock for JTAG interface.  
TMS — Test Mode Select for JTAG interface.  
TRST — Test Reset for JTAG interface.  
I
I
I
I
External reset input: A LOW on this pin resets the device, causing I/O ports  
and peripherals to take on their default states, and processor execution to  
begin at address 0. TTL with hysteresis, 5 V tolerant.  
XTAL1  
XTAL2  
RTXC1  
RTXC2  
VSS  
62[8]  
61[8]  
3[8]  
I
Input to the oscillator circuit and internal clock generator circuits.  
Output from the oscillator amplifier.  
O
I
Input to the RTC oscillator circuit.  
5[8]  
O
I
Output from the RTC oscillator circuit.  
Ground: 0 V reference.  
6, 18, 25, 42,  
50  
VSSA  
VDD  
59  
I
I
I
Analog ground: 0 V reference. This should nominally be the same voltage  
as VSS, but should be isolated to minimize noise and error.  
23, 43, 51  
7
3.3 V power supply: This is the power supply voltage for the core and I/O  
ports.  
VDDA  
Analog 3.3 V power supply: This should be nominally the same voltage as  
VDD but should be isolated to minimize noise and error. This voltage is used  
to power the on-chip PLL.  
VREF  
63  
49  
I
I
A/D converter reference: This should be nominally the same voltage as VDD  
but should be isolated to minimize noise and error. Level on this pin is used as  
a reference for A/D and D/A convertor(s).  
VBAT  
RTC power supply: 3.3 V on this pin supplies the power to the RTC.  
[1] 5 V tolerant pad providing digital I/O functions with TTL levels and hysteresis and 10 ns slew rate control.  
[2] 5 V tolerant pad providing digital I/O functions with TTL levels and hysteresis and 10 ns slew rate control. If configured for an input  
function, this pad utilizes built-in glitch filter that blocks pulses shorter than 3 ns.  
[3] Open drain 5 V tolerant digital I/O I2C-bus 400 kHz specification compatible pad. It requires external pull-up to provide an output  
functionality.  
[4] 5 V tolerant pad providing digital I/O (with TTL levels and hysteresis and 10 ns slew rate control) and analog input function. If configured  
for an input function, this pad utilizes built-in glitch filter that blocks pulses shorter than 3 ns. When configured as an ADC input, digital  
section of the pad is disabled.  
[5] 5 V tolerant pad providing digital I/O (with TTL levels and hysteresis and 10 ns slew rate control) and analog output function. When  
configured as the DAC output, digital section of the pad is disabled.  
9397 750 14868  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 15 April 2005  
10 of 41  
LPC2131/2132/2134/2136/2138  
Philips Semiconductors  
Single-chip 16/32-bit microcontrollers  
[6] 5 V tolerant pad with built-in pull-up resistor providing digital I/O functions with TTL levels and hysteresis and 10 ns slew rate control.  
The pull-up resistor’s value ranges from 60 kto 300 k.  
[7] 5 V tolerant pad providing digital input (with TTL levels and hysteresis) function only.  
[8] Pad provides special analog functionality.  
9397 750 14868  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 15 April 2005  
11 of 41  
LPC2131/2132/2134/2136/2138  
Philips Semiconductors  
Single-chip 16/32-bit microcontrollers  
6. Functional description  
6.1 Architectural overview  
The ARM7TDMI-S is a general purpose 32-bit microprocessor, which offers high  
performance and very low power consumption. The ARM architecture is based on  
Reduced Instruction Set Computer (RISC) principles, and the instruction set and related  
decode mechanism are much simpler than those of microprogrammed Complex  
Instruction Set Computers. This simplicity results in a high instruction throughput and  
impressive real-time interrupt response from a small and cost-effective processor core.  
Pipeline techniques are employed so that all parts of the processing and memory systems  
can operate continuously. Typically, while one instruction is being executed, its successor  
is being decoded, and a third instruction is being fetched from memory.  
The ARM7TDMI-S processor also employs a unique architectural strategy known as  
Thumb, which makes it ideally suited to high-volume applications with memory  
restrictions, or applications where code density is an issue.  
The key idea behind Thumb is that of a super-reduced instruction set. Essentially, the  
ARM7TDMI-S processor has two instruction sets:  
The standard 32-bit ARM set.  
A 16-bit Thumb set.  
The Thumb set’s 16-bit instruction length allows it to approach twice the density of  
standard ARM code while retaining most of the ARM’s performance advantage over a  
traditional 16-bit processor using 16-bit registers. This is possible because Thumb code  
operates on the same 32-bit register set as ARM code.  
Thumb code is able to provide up to 65 % of the code size of ARM, and 160 % of the  
performance of an equivalent ARM processor connected to a 16-bit memory system.  
6.2 On-Chip Flash program memory  
The LPC2131/2132/2134/2136/2138 incorporate a 32 kB, 64 kB, 128 kB, 256 kB and  
512 kB Flash memory system respectively. This memory may be used for both code and  
data storage. Programming of the Flash memory may be accomplished in several ways. It  
may be programmed In System via the serial port. The application program may also  
erase and/or program the Flash while the application is running, allowing a great degree  
of flexibility for data storage field firmware upgrades, etc. When the  
LPC2131/2132/2134/2136/2138 on-chip bootloader is used, 32/64/128/256/500 kB of  
Flash memory is available for user code.  
The LPC2131/2132/2134/2136/2138 Flash memory provides a minimum of 100,000  
erase/write cycles and 20 years of data-retention.  
6.3 On-Chip static RAM  
On-Chip static RAM may be used for code and/or data storage. The SRAM may be  
accessed as 8-bits, 16-bits, and 32-bits. The LPC2131/2132/2134/2136/2138 provide  
8/16/32 kB of static RAM.  
9397 750 14868  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 15 April 2005  
12 of 41  
LPC2131/2132/2134/2136/2138  
Philips Semiconductors  
Single-chip 16/32-bit microcontrollers  
6.4 Memory map  
The LPC2131/2132/2134/2136/2138 memory map incorporates several distinct regions,  
as shown in Figure 5.  
In addition, the CPU interrupt vectors may be re-mapped to allow them to reside in either  
Flash memory (the default) or on-chip static RAM. This is described in Section 6.21  
“System control”.  
4.0 GB  
0xFFFF FFFF  
AHB PERIPHERALS  
0xF000 0000  
0xE000 0000  
3.75 GB  
3.5 GB  
VPB PERIPHERALS  
0xC000 0000  
3.0 GB  
RESERVED ADDRESS SPACE  
0x8000 0000  
2.0 GB  
BOOT BLOCK (RE-MAPPED FROM  
ON-CHIP FLASH MEMORY  
RESERVED ADDRESS SPACE  
0x4001 8000  
0x4000 7FFF  
TOTAL OF 32 kB ON-CHIP STATIC RAM (LPC2136/38)  
TOTAL OF 16 kB ON-CHIP STATIC RAM (LPC2132/34)  
TOTAL OF 8 kB ON-CHIP STATIC RAM (LPC2131)  
RESERVED ADDRESS SPACE  
0x4000 4000  
0x4000 3FFF  
0x4000 2000  
0x4000 1FFF  
1.0 GB  
0x4000 0000  
0x0008 0000  
0x0007 FFFF  
TOTAL OF 512 kB ON-CHIP NON-VOLATILE MEMORY  
(LPC2138)  
0x0004 0000  
0x0003 FFFF  
TOTAL OF 256 kB ON-CHIP NON-VOLATILE MEMORY  
(LPC2136)  
0x0002 0000  
0x0001 FFFF  
TOTAL OF 128 kB ON-CHIP NON-VOLATILE MEMORY  
(LPC2134)  
0x0001 0000  
0x0000 FFFF  
TOTAL OF 64 kB ON-CHIP NON-VOLATILE MEMORY  
(LPC2132)  
0x0000 8000  
0x0000 7FFF  
TOTAL OF 32 kB ON-CHIP NON-VOLATILE MEMORY  
(LPC2131)  
0x0000 0000  
0.0 GB  
002aab069  
Fig 5. LPC2131/2132/2134/2136/2138 memory map.  
6.5 Interrupt controller  
The VIC accepts all of the interrupt request inputs and categorizes them as FIQ, vectored  
IRQ, and non-vectored IRQ as defined by programmable settings. The programmable  
assignment scheme means that priorities of interrupts from the various peripherals can be  
dynamically assigned and adjusted.  
9397 750 14868  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 15 April 2005  
13 of 41  
LPC2131/2132/2134/2136/2138  
Philips Semiconductors  
Single-chip 16/32-bit microcontrollers  
Fast Interrupt reQuest (FIQ) has the highest priority. If more than one request is assigned  
to FIQ, the VIC combines the requests to produce the FIQ signal to the ARM processor.  
The fastest possible FIQ latency is achieved when only one request is classified as FIQ,  
because then the FIQ service routine can simply start dealing with that device. But if more  
than one request is assigned to the FIQ class, the FIQ service routine can read a word  
from the VIC that identifies which FIQ source(s) is (are) requesting an interrupt.  
Vectored IRQs have the middle priority. Sixteen of the interrupt requests can be assigned  
to this category. Any of the interrupt requests can be assigned to any of the 16 vectored  
IRQ slots, among which slot 0 has the highest priority and slot 15 has the lowest.  
Non-vectored IRQs have the lowest priority.  
The VIC combines the requests from all the vectored and non-vectored IRQs to produce  
the IRQ signal to the ARM processor. The IRQ service routine can start by reading a  
register from the VIC and jumping there. If any of the vectored IRQs are requesting, the  
VIC provides the address of the highest-priority requesting IRQs service routine,  
otherwise it provides the address of a default routine that is shared by all the non-vectored  
IRQs. The default routine can read another VIC register to see what IRQs are active.  
6.5.1 Interrupt sources  
Table 4 lists the interrupt sources for each peripheral function. Each peripheral device has  
one interrupt line connected to the Vectored Interrupt Controller, but may have several  
internal interrupt flags. Individual interrupt flags may also represent more than one  
interrupt source.  
Table 4:  
Block  
Interrupt sources  
Flag(s)  
VIC channel #  
WDT  
Watchdog Interrupt (WDINT)  
0
1
2
3
4
-
Reserved for software interrupts only  
Embedded ICE, DbgCommRX  
Embedded ICE, DbgCommTX  
Match 0 to 3 (MR0, MR1, MR2, MR3)  
Capture 0 to 3 (CR0, CR1, CR2, CR3)  
Match 0 to 3 (MR0, MR1, MR2, MR3)  
Capture 0 to 3 (CR0, CR1, CR2, CR3)  
RX Line Status (RLS)  
ARM Core  
ARM Core  
TIMER0  
TIMER1  
UART0  
5
6
Transmit Holding Register empty (THRE)  
RX Data Available (RDA)  
Character Time-out Indicator (CTI)  
RX Line Status (RLS)  
UART1  
7
Transmit Holding Register empty (THRE)  
RX Data Available (RDA)  
Character Time-out Indicator (CTI)  
Modem Status Interrupt (MSI) (Available in  
LPC2134/2136/2138 only)  
PWM0  
I2C0  
Match 0 to 6 (MR0, MR1, MR2, MR3, MR4, MR5, MR6)  
Capture 0 to 3 (CR0, CR1, CR2, CR3)  
SI (state change)  
8
9
9397 750 14868  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 15 April 2005  
14 of 41  
LPC2131/2132/2134/2136/2138  
Philips Semiconductors  
Single-chip 16/32-bit microcontrollers  
Table 4:  
Block  
SPI0  
Interrupt sources …continued  
Flag(s)  
VIC channel #  
SPIF, MODF  
10  
11  
SSP  
TX FIFO at least half empty (TXRIS)  
RX FIFO at least half full (RXRIS)  
Receive Timeout (RTRIS)  
Receive Overrun (RORRIS)  
PLL Lock (PLOCK)  
PLL  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
RTC  
RTCCIF (Counter Increment), RTCALF (Alarm)  
System Control External Interrupt 0 (EINT0)  
External Interrupt 1 (EINT1)  
External Interrupt 2 (EINT2)  
External Interrupt 3 (EINT3)  
A/D Converter 0  
AD0  
I2C1  
BOD  
AD1  
SI (state change)  
Brown Out Detect  
A/D Converter 1 (Available in LPC2134/2136/2138 only)  
6.6 Pin connect block  
The pin connect block allows selected pins of the microcontroller to have more than one  
function. Configuration registers control the multiplexers to allow connection between the  
pin and the on chip peripherals. Peripherals should be connected to the appropriate pins  
prior to being activated, and prior to any related interrupt(s) being enabled. Activity of any  
enabled peripheral function that is not mapped to a related pin should be considered  
undefined.  
The Pin Control Module contains three registers as shown in Table 5.  
Table 5:  
Pin control module registers  
Address  
Name  
Description  
Access  
0xE002C000  
0xE002C004  
0xE002C014  
PINSEL0  
PINSEL1  
PINSEL2  
Pin function select register 0  
Pin function select register 1  
Pin function select register 2  
Read/Write  
Read/Write  
Read/Write  
9397 750 14868  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 15 April 2005  
15 of 41  
LPC2131/2132/2134/2136/2138  
Philips Semiconductors  
Single-chip 16/32-bit microcontrollers  
6.7 Pin function select register 0 (PINSEL0 - 0xE002C000)  
The PINSEL0 register controls the functions of the pins as per the settings listed in  
Table 6. The direction control bit in the IODIR register is effective only when the GPIO  
function is selected for a pin. For other functions, direction is controlled automatically.  
Settings other than those shown in Table 6 are reserved, and should not be used.  
Table 6:  
Pin function select register 0 (PINSEL0 - 0xE002C000)  
PINSEL0  
Pin name  
Value  
Function  
Value after  
reset  
1:0  
P0.0  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
GPIO Port 0.0  
TXD (UART0)  
PWM1  
0
0
0
0
0
0
0
Reserved  
3:2  
P0.1  
P0.2  
P0.3  
P0.4  
P0.5  
P0.6  
GPIO Port 0.1  
RXD (UART0)  
PWM3  
EINT0  
5:4  
GPIO Port 0.2  
SCL0 (I2C0)  
Capture 0.0 (Timer 0)  
Reserved  
7:6  
GPIO Port 0.3  
SDA0 (I2C0)  
Match 0.0 (Timer 0)  
EINT1  
9:8  
GPIO Port 0.4  
SCK0 (SPI0)  
Capture 0.1 (Timer 0)  
AD0.6  
11:10  
13:12  
GPIO Port 0.5  
MISO0 (SPI0)  
Match 0.1 (Timer 0)  
AD0.7  
GPIO Port 0.6  
MOSI0 (SPI0)  
Capture 0.2 (Timer 0)  
Reserved (LPC2131/32)  
AD1.0 (LPC2134/2136/2138)  
15:14  
P0.7  
0
0
1
1
0
1
0
1
GPIO Port 0.7  
SSEL0 (SPI0)  
PWM2  
0
EINT2  
9397 750 14868  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 15 April 2005  
16 of 41  
LPC2131/2132/2134/2136/2138  
Philips Semiconductors  
Single-chip 16/32-bit microcontrollers  
Table 6:  
Pin function select register 0 (PINSEL0 - 0xE002C000) …continued  
PINSEL0  
Pin name  
Value  
Function  
Value after  
reset  
17:16  
P0.8  
0
0
1
1
0
1
0
1
GPIO Port 0.8  
TXD UART1  
PWM4  
0
Reserved (LPC2131/32)  
AD1.1 (LPC2134/36/38)  
19:18  
21:20  
P0.9  
0
0
1
1
0
0
0
1
0
1
0
1
GPIO Port 0.9  
RXD (UART1)  
PWM6  
0
0
EINT3  
P0.10  
GPIO Port 0.10  
Reserved (LPC2131/32)  
RTS (UART1) (LPC2134/36/38)  
1
1
0
1
Capture 1.0 (Timer 1)  
Reserved (LPC2131/32)  
AD1.2 (LPC2134/36/38)  
23:22  
25:24  
P0.11  
P0.12  
0
0
0
1
GPIO Port 0.11  
0
0
Reserved (LPC2131/32)  
CTS (UART1) (LPC2134/36/38)  
1
1
0
0
0
1
0
1
Capture 1.1 (Timer 1)  
SCL1 (I2C1)  
GPIO Port 0.12  
Reserved (LPC2131/32)  
DSR (UART1) (LPC2134/36/38)  
1
1
0
1
Match 1.0 (Timer 1)  
Reserved (LPC2131/32)  
AD1.3 (LPC2134/36/38)  
27:26  
P0.13  
0
0
0
1
GPIO Port 0.13  
0
Reserved (LPC2131/32)  
DTR (UART1) (LPC2134/36/38)  
1
1
0
1
Match 1.1 (Timer 1)  
Reserved (LPC2131/32)  
AD1.4 (LPC2138)  
29:28  
31:30  
P0.14  
P0.15  
0
0
0
1
GPIO Port 0.14  
0
0
Reserved (LPC2131/32)  
DCD (UART1) (LPC2134/36/38)  
1
1
0
0
0
1
0
1
EINT1  
SDA1 (I2C1)  
GPIO Port 0.15  
Reserved (LPC2131/32)  
RI (UART1) (LPC2134/36/38)  
1
1
0
1
EINT2  
Reserved (LPC2131/32)  
AD1.5 (LPC2134/36/38)  
9397 750 14868  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 15 April 2005  
17 of 41  
LPC2131/2132/2134/2136/2138  
Philips Semiconductors  
Single-chip 16/32-bit microcontrollers  
6.8 Pin function select register 1 (PINSEL1 - 0xE002C004)  
The PINSEL1 register controls the functions of the pins as per the settings listed in  
Table 7. The direction control bit in the IODIR register is effective only when the GPIO  
function is selected for a pin. For other functions direction is controlled automatically.  
Settings other than those shown in Table 7 are reserved, and should not be used.  
Table 7:  
PINSEL1  
1:0  
Pin function select register 1 (PINSEL1 - 0xE002C004)  
Pin Name Value  
Function  
Value after reset  
P0.16  
P0.17  
P0.18  
P0.19  
P0.20  
P0.21  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
GPIO Port 0.16  
EINT0  
0
Match 0.2 (Timer 0)  
Capture 0.2 (Timer 0)  
GPIO Port 0.17  
Capture 1.2 (Timer 1)  
SCK (SSP)  
3:2  
0
0
0
0
0
Match 1.2 (Timer 1)  
GPIO Port 0.18  
Capture 1.3 (Timer 1)  
MISO (SSP)  
5:4  
Match 1.3 (Timer 1)  
GPIO Port 0.19  
Match 1.2 (Timer 1)  
MOSI (SSP)  
7:6  
Capture 1.2 (Timer 1)  
GPIO Port 0.20  
Match 1.3 (Timer 1)  
SSEL (SSP)  
9:8  
EINT3  
11:10  
GPIO Port 0.21  
PWM5  
Reserved (LPC2131/32)  
AD1.6 (LPC2134/36/38)  
1
0
0
1
0
1
Capture 1.3 (Timer 1)  
GPIO Port 0.22  
13:12  
15:14  
P0.22  
P0.23  
0
0
Reserved (LPC2131/32)  
AD1.7 (LPC2134/36/38)  
1
1
0
0
1
1
0
1
0
1
0
1
Capture 0.0 (Timer 0)  
Match 0.0 (Timer 0)  
GPIO Port 0.23  
Reserved  
Reserved  
Reserved  
9397 750 14868  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 15 April 2005  
18 of 41  
LPC2131/2132/2134/2136/2138  
Philips Semiconductors  
Single-chip 16/32-bit microcontrollers  
Table 7:  
PINSEL1  
17:16  
Pin function select register 1 (PINSEL1 - 0xE002C004) …continued  
Pin Name Value  
Function  
Reserved  
Reserved  
Reserved  
Reserved  
GPIO Port 0.25  
AD0.4  
Value after reset  
P0.24  
0
0
1
1
0
0
1
0
1
0
1
0
1
0
0
19:18  
P0.25  
0
Reserved (LPC2131)  
AOUT (DAC) (LPC2132/34/36/38)  
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Reserved  
21:20  
23:22  
25:24  
27:26  
29:28  
31:30  
P0.26  
P0.27  
P0.28  
P0.29  
P0.30  
P0.31  
GPIO Port 0.26  
AD0.5  
0
0
0
0
0
0
Reserved  
Reserved  
GPIO Port 0.27  
AD0.0  
Capture 0.1 (Timer 0)  
Match 0.1 (Timer 0)  
GPIO Port 0.28  
AD0.1  
Capture 0.2 (Timer 0)  
Match 0.2 (Timer 0)  
GPIO Port 0.29  
AD0.2  
Capture 0.3 (Timer 0)  
Match 0.3 (Timer 0)  
GPIO Port 0.30  
AD0.3  
EINT3  
Capture 0.0 (Timer 0)  
GPIO Port  
Reserved  
Reserved  
Reserved  
6.9 Pin function select register 2 (PINSEL2 - 0xE002C014)  
The PINSEL2 register controls the functions of the pins as per the settings listed in  
Table 8. The direction control bit in the IODIR register is effective only when the GPIO  
function is selected for a pin. For other functions direction is controlled automatically.  
Settings other than those shown in Table 8 are reserved, and should not be used.  
9397 750 14868  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 15 April 2005  
19 of 41  
LPC2131/2132/2134/2136/2138  
Philips Semiconductors  
Single-chip 16/32-bit microcontrollers  
Table 8:  
Pin function select register 2 (PINSEL2 - 0xE002C014)  
PINSEL2 bits  
Description  
Reset value  
1:0  
2
Reserved  
-
When 0, pins P1.31:26 are GPIO pins. When 1,  
P1.31:26 are used as Debug port.  
0
3
When 0, pins P1.25:16 are used as GPIO pins. When 1,  
P1.25:16 are used as Trace port.  
0
-
31:30  
Reserved  
6.10 General purpose parallel I/O  
Device pins that are not connected to a specific peripheral function are controlled by the  
GPIO registers. Pins may be dynamically configured as inputs or outputs. Separate  
registers allow setting or clearing any number of outputs simultaneously. The value of the  
output register may be read back, as well as the current state of the port pins.  
6.10.1 Features  
Direction control of individual bits.  
Separate control of output set and clear.  
All I/O default to inputs after reset.  
6.11 10-bit A/D converter  
The LPC2131/32 contain one and the LPC2134/2136/2138 contains two analog to digital  
converters. These converters are single 10-bit successive approximation analog to digital  
converters with eight multiplexed channels.  
6.11.1 Features  
Measurement range of 0 V to 3.3 V.  
Each converter capable of performing more than 400,000 10-bit samples per second.  
Burst conversion mode for single or multiple inputs.  
Optional conversion on transition on input pin or Timer Match signal.  
Global Start command for both converters (LPC2134/2136/2138 only).  
6.12 10-bit D/A converter  
This peripheral is available in the LPC2132/2134/2136/2138 only. The D/A converter  
enables the LPC2132/2134/2136/2138 to generate variable analog output.  
6.12.1 Features  
10 bit digital to analog converter.  
Buffered output.  
Power-down mode available.  
Selectable speed versus power.  
9397 750 14868  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 15 April 2005  
20 of 41  
LPC2131/2132/2134/2136/2138  
Philips Semiconductors  
6.13 UARTs  
Single-chip 16/32-bit microcontrollers  
The LPC2131/2132/2134/2136/2138 each contain two UARTs. In addition to standard  
transmit and receive data lines, the LPC2134/2136/2138 UART1 also provides a full  
modem control handshake interface.  
6.13.1 Features  
16 byte Receive and Transmit FIFOs.  
Register locations conform to ‘550 industry standard.  
Receiver FIFO trigger points at 1, 4, 8, and 14 bytes  
Built-in baud rate generator.  
Standard modem interface signals included on UART1. (LPC2134/2136/2138 only)  
The LPC2131/2132/2134/2136/2138 transmission FIFO control enables  
implementation of software (XON/XOFF) flow control on both UARTs and hardware  
(CTS/RTS) flow control on the LPC2134/2136/2138 UART1 only.  
6.14 I2C-bus serial I/O controller  
The LPC2131/2132/2134/2136/2138 each contain two I2C-bus controllers.  
The I2C-bus is bi-directional, for inter-IC control using only two wires: a serial clock line  
(SCL), and a serial data line (SDA). Each device is recognized by a unique address and  
can operate as either a receiver-only device (e.g., an LCD driver or a transmitter with the  
capability to both receive and send information (such as memory)). Transmitters and/or  
receivers can operate in either master or slave mode, depending on whether the chip has  
to initiate a data transfer or is only addressed. The I2C-bus is a multi-master bus, it can be  
controlled by more than one bus master connected to it.  
The I2C-bus implemented in LPC2131/2132/2134/2136/2138 supports bit rates up to  
400 kbit/s (Fast I2C).  
6.14.1 Features  
Standard I2C compliant bus interface.  
Easy to configure as Master, Slave, or Master/Slave.  
Programmable clocks allow versatile rate control.  
Bidirectional data transfer between masters and slaves.  
Multi-master bus (no central master).  
Arbitration between simultaneously transmitting masters without corruption of serial  
data on the bus.  
Serial clock synchronization allows devices with different bit rates to communicate via  
one serial bus.  
Serial clock synchronization can be used as a handshake mechanism to suspend and  
resume serial transfer.  
The I2C-bus may be used for test and diagnostic purposes.  
9397 750 14868  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 15 April 2005  
21 of 41  
LPC2131/2132/2134/2136/2138  
Philips Semiconductors  
Single-chip 16/32-bit microcontrollers  
6.15 SPI serial I/O controller  
The LPC2131/2132/2134/2136/2138 each contain one SPI controller. The SPI is a full  
duplex serial interface, designed to be able to handle multiple masters and slaves  
connected to a given bus. Only a single master and a single slave can communicate on  
the interface during a given data transfer. During a data transfer the master always sends  
a byte of data to the slave, and the slave always sends a byte of data to the master.  
6.15.1 Features  
Compliant with Serial Peripheral Interface (SPI) specification.  
Synchronous, Serial, Full Duplex, Communication.  
Combined SPI master and slave.  
Maximum data bit rate of one eighth of the input clock rate.  
6.16 SSP serial I/O controller  
The LPC2131/2132/2134/2136/2138 each contain one Serial Synchronous Port controller  
(SSP). The SSP controller is capable of operation on a SPI, 4-wire SSI, or Microwire bus.  
It can interact with multiple masters and slaves on the bus. However, only a single master  
and a single slave can communicate on the bus during a given data transfer. The SSP  
supports full duplex transfers, with frames of 4 bits to 16 bits of data flowing from the  
master to the slave and from the slave to the master. Often only one of these data flows  
carries meaningful data.  
6.16.1 Features  
Compatible with Motorola SPI, 4-wire TI SSI and National Semiconductor Microwire  
buses.  
Synchronous Serial Communication.  
Master or slave operation.  
8-frame FIFOs for both transmit and receive.  
Four bits to 16 bits per frame.  
6.17 General purpose timers/external event counters  
The Timer/Counter is designed to count cycles of the peripheral clock (PCLK) or an  
externally supplied clock, and optionally generate interrupts or perform other actions at  
specified timer values, based on four match registers. It also includes four capture inputs  
to trap the timer value when an input signal transitions, optionally generating an interrupt.  
Multiple pins can be selected to perform a single capture or match function, providing an  
application with ‘or’ and ‘and’, as well as ‘broadcast’ functions among them.  
At any given time only one of peripheral’s capture inputs can be selected as an external  
event signal source, i.e., timer’s clock. The rate of external events that can be successfully  
counted is limited to PCLK/2. In this configuration, unused capture lines can be selected  
as regular timer capture inputs.  
6.17.1 Features  
A 32-bit Timer/Counter with a programmable 32-bit Prescaler.  
9397 750 14868  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 15 April 2005  
22 of 41  
LPC2131/2132/2134/2136/2138  
Philips Semiconductors  
Single-chip 16/32-bit microcontrollers  
External Event Counter or timer operation.  
Four 32-bit capture channels per timer/counter that can take a snapshot of the timer  
value when an input signal transitions. A capture event may also optionally generate  
an interrupt.  
Four 32-bit match registers that allow:  
Continuous operation with optional interrupt generation on match.  
Stop timer on match with optional interrupt generation.  
Reset timer on match with optional interrupt generation.  
Four external outputs per timer/counter corresponding to match registers, with the  
following capabilities:  
Set LOW on match.  
Set HIGH on match.  
Toggle on match.  
Do nothing on match.  
6.18 Watchdog timer  
The purpose of the watchdog is to reset the microcontroller within a reasonable amount of  
time if it enters an erroneous state. When enabled, the watchdog will generate a system  
reset if the user program fails to ‘feed’ (or reload) the watchdog within a predetermined  
amount of time.  
6.18.1 Features  
Internally resets chip if not periodically reloaded.  
Debug mode.  
Enabled by software but requires a hardware reset or a watchdog reset/interrupt to be  
disabled.  
Incorrect/Incomplete feed sequence causes reset/interrupt if enabled.  
Flag to indicate watchdog reset.  
Programmable 32-bit timer with internal pre-scaler.  
Selectable time period from (TPCLK × 256 × 4) to (TPCLK × 232 × 4) in multiples of  
T
PCLK × 4.  
6.19 Real-time clock  
The Real-Time Clock (RTC) is designed to provide a set of counters to measure time  
when normal or idle operating mode is selected. The RTC has been designed to use little  
power, making it suitable for battery powered systems where the CPU is not running  
continuously (Idle mode).  
6.19.1 Features  
Measures the passage of time to maintain a calendar and clock.  
Ultra-low power design to support battery powered systems.  
9397 750 14868  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 15 April 2005  
23 of 41  
LPC2131/2132/2134/2136/2138  
Philips Semiconductors  
Single-chip 16/32-bit microcontrollers  
Provides Seconds, Minutes, Hours, Day of Month, Month, Year, Day of Week, and Day  
of Year.  
Can use either the RTC dedicated 32 kHz oscillator input or clock derived from the  
external crystal/oscillator input at XTAL1. Programmable Reference Clock Divider  
allows fine adjustment of the RTC.  
Dedicated power supply pin can be connected to a battery or the main 3.3 V.  
6.20 Pulse width modulator  
The PWM is based on the standard Timer block and inherits all of its features, although  
only the PWM function is pinned out on the LPC2131/2132/2134/2136/2138. The Timer is  
designed to count cycles of the peripheral clock (PCLK) and optionally generate interrupts  
or perform other actions when specified timer values occur, based on seven match  
registers. The PWM function is also based on match register events.  
The ability to separately control rising and falling edge locations allows the PWM to be  
used for more applications. For instance, multi-phase motor control typically requires three  
non-overlapping PWM outputs with individual control of all three pulse widths and  
positions.  
Two match registers can be used to provide a single edge controlled PWM output. One  
match register (MR0) controls the PWM cycle rate, by resetting the count upon match.  
The other match register controls the PWM edge position. Additional single edge  
controlled PWM outputs require only one match register each, since the repetition rate is  
the same for all PWM outputs. Multiple single edge controlled PWM outputs will all have a  
rising edge at the beginning of each PWM cycle, when an MR0 match occurs.  
Three match registers can be used to provide a PWM output with both edges controlled.  
Again, the MR0 match register controls the PWM cycle rate. The other match registers  
control the two PWM edge positions. Additional double edge controlled PWM outputs  
require only two match registers each, since the repetition rate is the same for all PWM  
outputs.  
With double edge controlled PWM outputs, specific match registers control the rising and  
falling edge of the output. This allows both positive going PWM pulses (when the rising  
edge occurs prior to the falling edge), and negative going PWM pulses (when the falling  
edge occurs prior to the rising edge).  
6.20.1 Features  
Seven match registers allow up to six single edge controlled or three double edge  
controlled PWM outputs, or a mix of both types.  
The match registers also allow:  
Continuous operation with optional interrupt generation on match.  
Stop timer on match with optional interrupt generation.  
Reset timer on match with optional interrupt generation.  
9397 750 14868  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 15 April 2005  
24 of 41  
LPC2131/2132/2134/2136/2138  
Philips Semiconductors  
Single-chip 16/32-bit microcontrollers  
Supports single edge controlled and/or double edge controlled PWM outputs. Single  
edge controlled PWM outputs all go HIGH at the beginning of each cycle unless the  
output is a constant LOW. Double edge controlled PWM outputs can have either edge  
occur at any position within a cycle. This allows for both positive going and negative  
going pulses.  
Pulse period and width can be any number of timer counts. This allows complete  
flexibility in the trade-off between resolution and repetition rate. All PWM outputs will  
occur at the same repetition rate.  
Double edge controlled PWM outputs can be programmed to be either positive going  
or negative going pulses.  
Match register updates are synchronized with pulse outputs to prevent generation of  
erroneous pulses. Software must ‘release’ new match values before they can become  
effective.  
May be used as a standard timer if the PWM mode is not enabled.  
A 32-bit Timer/Counter with a programmable 32-bit Prescaler.  
6.21 System control  
6.21.1 Crystal oscillator  
On-chip integrated oscillator operates with external crystal in range of 1 MHz to 30 MHz  
and with external oscillator up to 50 MHz. The oscillator output frequency is called fosc and  
the ARM processor clock frequency is referred to as CCLK for purposes of rate equations,  
etc. fosc and CCLK are the same value unless the PLL is running and connected. Refer to  
Section 6.21.2 “PLLfor additional information.  
6.21.2 PLL  
The PLL accepts an input clock frequency in the range of 10 MHz to 25 MHz. The input  
frequency is multiplied up into the range of 10 MHz to 60 MHz with a Current Controlled  
Oscillator (CCO). The multiplier can be an integer value from 1 to 32 (in practice, the  
multiplier value cannot be higher than 6 on this family of microcontrollers due to the upper  
frequency limit of the CPU). The CCO operates in the range of 156 MHz to 320 MHz, so  
there is an additional divider in the loop to keep the CCO within its frequency range while  
the PLL is providing the desired output frequency. The output divider may be set to divide  
by 2, 4, 8, or 16 to produce the output clock. Since the minimum output divider value is 2,  
it is insured that the PLL output has a 50 % duty cycle.The PLL is turned off and bypassed  
following a chip reset and may be enabled by software. The program must configure and  
activate the PLL, wait for the PLL to Lock, then connect to the PLL as a clock source. The  
PLL settling time is 100 µs.  
6.21.3 Reset and wake-up timer  
Reset has two sources on the LPC2131/2132/2134/2136/2138: the RESET pin and  
watchdog reset. The RESET pin is a Schmitt trigger input pin with an additional glitch filter.  
Assertion of chip reset by any source starts the wake-up timer (see wake-up timer  
description below), causing the internal chip reset to remain asserted until the external  
reset is de-asserted, the oscillator is running, a fixed number of clocks have passed, and  
the on-chip Flash controller has completed its initialization.  
9397 750 14868  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 15 April 2005  
25 of 41  
LPC2131/2132/2134/2136/2138  
Philips Semiconductors  
Single-chip 16/32-bit microcontrollers  
When the internal reset is removed, the processor begins executing at address 0, which is  
the reset vector. At that point, all of the processor and peripheral registers have been  
initialized to predetermined values.  
The wake-up timer ensures that the oscillator and other analog functions required for chip  
operation are fully functional before the processor is allowed to execute instructions. This  
is important at power on, all types of reset, and whenever any of the aforementioned  
functions are turned off for any reason. Since the oscillator and other functions are turned  
off during Power-down mode, any wake-up of the processor from Power-down mode  
makes use of the wake-up timer.  
The wake-up timer monitors the crystal oscillator as the means of checking whether it is  
safe to begin code execution. When power is applied to the chip, or some event caused  
the chip to exit Power-down mode, some time is required for the oscillator to produce a  
signal of sufficient amplitude to drive the clock logic. The amount of time depends on  
many factors, including the rate of VDD ramp (in the case of power on), the type of crystal  
and its electrical characteristics (if a quartz crystal is used), as well as any other external  
circuitry (e.g. capacitors), and the characteristics of the oscillator itself under the existing  
ambient conditions.  
6.21.4 Brown-out detector  
The LPC2131/2132/2134/2136/2138 include 2-stage monitoring of the voltage on the VDD  
pins. If this voltage falls below 2.9 V, the BOD asserts an interrupt signal to the Vectored  
Interrupt Controller. This signal can be enabled for interrupt; if not, software can monitor  
the signal by reading dedicated register.  
The second stage of low-voltage detection asserts reset to inactivate the  
LPC2131/2132/2134/2136/2138 when the voltage on the VDD pins falls below 2.6 V. This  
reset prevents alteration of the Flash as operation of the various elements of the chip  
would otherwise become unreliable due to low voltage. The BOD circuit maintains this  
reset down below 1 V, at which point the POR circuitry maintains the overall reset.  
Both the 2.9 V and 2.6 V thresholds include some hysteresis. In normal operation, this  
hysteresis allows the 2.9 V detection to reliably interrupt, or a regularly-executed event  
loop to sense the condition.  
6.21.5 Code security  
This feature of the LPC2131/2132/2134/2136/2138 allow an application to control whether  
it can be debugged or protected from observation.  
If after reset on-chip boot-loader detects a valid checksum in Flash and reads  
0x87654321 from address 0x1FC in Flash, debugging will be disabled and thus the code  
in Flash will be protected from observation. Once debugging is disabled, it can be enabled  
only by performing a full chip erase using the ISP.  
6.21.6 External interrupt inputs  
The LPC2131/2132/2134/2136/2138 include up to nine edge or level sensitive External  
Interrupt Inputs as selectable pin functions. When the pins are combined, external events  
can be processed as four independent interrupt signals. The External Interrupt Inputs can  
optionally be used to wake up the processor from Power-down mode.  
9397 750 14868  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 15 April 2005  
26 of 41  
LPC2131/2132/2134/2136/2138  
Philips Semiconductors  
Single-chip 16/32-bit microcontrollers  
6.21.7 Memory Mapping Control  
The Memory Mapping Control alters the mapping of the interrupt vectors that appear  
beginning at address 0x00000000. Vectors may be mapped to the bottom of the on-chip  
Flash memory, or to the on-chip static RAM. This allows code running in different memory  
spaces to have control of the interrupts.  
6.21.8 Power Control  
The LPC2131/2132/2134/2136/2138 support two reduced power modes: Idle mode and  
Power-down mode.  
In Idle mode, execution of instructions is suspended until either a reset or interrupt occurs.  
Peripheral functions continue operation during Idle mode and may generate interrupts to  
cause the processor to resume execution. Idle mode eliminates power used by the  
processor itself, memory systems and related controllers, and internal buses.  
In Power-down mode, the oscillator is shut down and the chip receives no internal clocks.  
The processor state and registers, peripheral registers, and internal SRAM values are  
preserved throughout Power-down mode and the logic levels of chip output pins remain  
static. The Power-down mode can be terminated and normal operation resumed by either  
a reset or certain specific interrupts that are able to function without clocks. Since all  
dynamic operation of the chip is suspended, Power-down mode reduces chip power  
consumption to nearly zero.  
Selecting an external 32 kHz clock instead of the PCLK as a clock-source for the on-chip  
RTC will enable the microcontroller to have the RTC active during Power-down mode.  
Power-down current is increased with RTC active. However, it is significantly lower than in  
Idle mode.  
A Power Control for Peripherals feature allows individual peripherals to be turned off if  
they are not needed in the application, resulting in additional power savings.  
6.21.9 VPB bus  
The VPB divider determines the relationship between the processor clock (CCLK) and the  
clock used by peripheral devices (PCLK). The VPB divider serves two purposes. The first  
is to provide peripherals with the desired PCLK via VPB bus so that they can operate at  
the speed chosen for the ARM processor. In order to achieve this, the VPB bus may be  
slowed down to 12 to 14 of the processor clock rate. Because the VPB bus must work  
properly at power-up (and its timing cannot be altered if it does not work since the VPB  
divider control registers reside on the VPB bus), the default condition at reset is for the  
VPB bus to run at 14 of the processor clock rate. The second purpose of the VPB divider  
is to allow power savings when an application does not require any peripherals to run at  
the full processor rate. Because the VPB divider is connected to the PLL output, the PLL  
remains active (if it was running) during Idle mode.  
6.22 Emulation and debugging  
The LPC2131/2132/2134/2136/2138 support emulation and debugging via a JTAG serial  
port. A trace port allows tracing program execution. Debugging and trace functions are  
multiplexed only with GPIOs on Port 1. This means that all communication, timer and  
interface peripherals residing on Port 0 are available during the development and  
debugging phase as they are when the application is run in the embedded system itself.  
9397 750 14868  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 15 April 2005  
27 of 41  
LPC2131/2132/2134/2136/2138  
Philips Semiconductors  
Single-chip 16/32-bit microcontrollers  
6.22.1 EmbeddedICE  
Standard ARM EmbeddedICE logic provides on-chip debug support. The debugging of  
the target system requires a host computer running the debugger software and an  
EmbeddedICE protocol convertor. EmbeddedICE protocol convertor converts the Remote  
Debug Protocol commands to the JTAG data needed to access the ARM core.  
The ARM core has a Debug Communication Channel function built-in. The debug  
communication channel allows a program running on the target to communicate with the  
host debugger or another separate host without stopping the program flow or even  
entering the debug state. The debug communication channel is accessed as a  
co-processor 14 by the program running on the ARM7TDMI-S core. The debug  
communication channel allows the JTAG port to be used for sending and receiving data  
without affecting the normal program flow. The debug communication channel data and  
control registers are mapped in to addresses in the EmbeddedICE logic.  
6.22.2 Embedded trace  
Since the LPC2131/2132/2134/2136/2138 have significant amounts of on-chip memory, it  
is not possible to determine how the processor core is operating simply by observing the  
external pins. The Embedded Trace Macrocell provides real-time trace capability for  
deeply embedded processor cores. It outputs information about processor execution to  
the trace port.  
The ETM is connected directly to the ARM core and not to the main AMBA system bus. It  
compresses the trace information and exports it through a narrow trace port. An external  
trace port analyzer must capture the trace information under software debugger control.  
Instruction trace (or PC trace) shows the flow of execution of the processor and provides a  
list of all the instructions that were executed. Instruction trace is significantly compressed  
by only broadcasting branch addresses as well as a set of status signals that indicate the  
pipeline status on a cycle by cycle basis. Trace information generation can be controlled  
by selecting the trigger resource. Trigger resources include address comparators,  
counters and sequencers. Since trace information is compressed the software debugger  
requires a static image of the code being executed. Self-modifying code can not be traced  
because of this restriction.  
6.22.3 RealMonitor  
RealMonitor is a configurable software module, developed by ARM Inc., which enables  
real time debug. It is a lightweight debug monitor that runs in the background while users  
debug their foreground application. It communicates with the host using the DCC, which is  
present in the EmbeddedICE logic. The LPC2131/2132/2134/2136/2138 contain a  
specific configuration of RealMonitor software programmed into the on-chip Flash  
memory.  
9397 750 14868  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 15 April 2005  
28 of 41  
LPC2131/2132/2134/2136/2138  
Philips Semiconductors  
Single-chip 16/32-bit microcontrollers  
7. Limiting values  
Table 9:  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134). [1]  
Symbol  
VDD  
VDDA  
VBAT  
VREF  
VIA  
Parameter  
Conditions  
Min  
Max  
+3.6  
4.6  
Unit  
V
supply voltage, core and external rail  
analog 3.3 V pad supply voltage  
RTC power supply voltage  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
V
4.6  
V
A/D converter reference voltage  
analog input voltage on A/D related pins  
DC input voltage, 5 V tolerant I/O pins  
DC input voltage, other I/O pins  
4.6  
V
5.1  
V
[2] [3]  
[2]  
VI  
6.0  
V
VI  
VDD  
+
V
0.5[4]  
100[5]  
100[5]  
125  
IDD  
DC supply current per supply pin  
DC ground current per ground pin  
storage temperature[6]  
-
mA  
mA  
°C  
ISS  
-
Tstg  
40  
Ptot(pack)  
total power dissipation  
based on package  
heat transfer, not  
device power  
-
1.5  
W
consumption  
[1] The following applies to the Limiting values:  
a) Stresses above those listed under Limiting values may cause permanent damage to the device. This is a stress rating only and  
functional operation of the device at these or any conditions other than those described in Section 8 “Static characteristics”and  
Section 9 “Dynamic characteristics” of this specification is not implied.  
b) This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive  
static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated maximum.  
c) Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to VSS unless  
otherwise noted.  
[2] Including voltage on outputs in 3-state mode.  
[3] Only valid when the VDD supply voltage is present.  
[4] Not to exceed 4.6 V.  
[5] The peak current is limited to 25 times the corresponding maximum current.  
[6] Dependent on package type.  
9397 750 14868  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 15 April 2005  
29 of 41  
LPC2131/2132/2134/2136/2138  
Philips Semiconductors  
Single-chip 16/32-bit microcontrollers  
8. Static characteristics  
Table 10: DC characteristics  
Ta = 40 °C to +85 °C for commercial applications, unless otherwise specified.  
Symbol Parameter  
Conditions  
Min  
Typ [1]  
Max  
Unit  
VDD  
supply voltage, core and  
3.0  
3.3  
3.6  
V
external rail  
VDDA  
analog 3.3 V pad supply  
voltage  
2.5  
3.3  
3.6  
V
VBAT  
VREF  
RTC supply voltage  
2.0[2]  
3.0  
3.3  
3.3  
3.6  
3.6  
V
V
A/D converter reference  
voltage  
Standard port pins, RESET, RTCK  
IIL  
LOW-state input current  
HIGH-state input current  
VI = 0 V; no pull-up  
-
-
-
-
-
-
3
3
3
µA  
µA  
µA  
IIH  
IOZ  
VI = VDD; no-pull-down  
3-state output leakage  
current  
VO = 0 V, VO = VDD; no  
pull-up/down  
Ilatch  
I/O latch-up current  
(0.5 VDD) < V < (1.5 VDD  
)
-
-
-
100  
5.5  
mA  
V
Tj < 125 °C  
[3] [4] [5]  
VI  
input voltage  
pin configured to provide a  
digital function  
0
VO  
output voltage  
output active  
0
-
VDD  
V
VIH  
VIL  
HIGH-state input voltage  
LOW-state input voltage  
hysteresis voltage  
HIGH-state output voltage[6] IOH = 4 mA  
LOW-state output voltage [6] IOL = 4 mA  
HIGH-state output current[6] VOH = VDD 0.4 V  
LOW-state output current[6] VOL = 0.4 V  
2.0  
-
-
V
-
-
-
0.8  
V
Vhys  
VOH  
VOL  
IOH  
IOL  
0.4  
-
V
VDD 0.4  
-
-
-
-
-
-
V
-
0.4  
-
V
4  
4
-
mA  
mA  
mA  
-
IOHS  
HIGH-state short circuit  
current[7]  
VOH = 0 V  
45  
IOLS  
LOW-state short circuit  
current[7]  
VOL = VDDA  
-
-
50  
mA  
Ipd  
Ipu  
pull-down current  
VI = 5 V [8]  
10  
15  
0
50  
50  
0
150  
85  
0
µA  
µA  
µA  
pull-up current (applies to  
P1.16 to P1.25)  
VI = 0 V  
VDD < VI < 5 V [8]  
IDD  
active mode supply current VDD = 3.3 V, Ta = 25 °C,  
code  
while(1){}  
executed from FLASH, no  
active peripherals  
CCLK = 10 MHz  
-
-
10  
40  
-
-
mA  
mA  
CCLK = 60 MHz  
(other parameters as above)  
Power-down mode  
VDD = 3.3 V, Ta = +25 °C,  
VDD = 3.3 V, Ta = +85 °C  
-
-
60  
-
µA  
µA  
<tbd>  
500  
9397 750 14868  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 15 April 2005  
30 of 41  
LPC2131/2132/2134/2136/2138  
Philips Semiconductors  
Single-chip 16/32-bit microcontrollers  
Table 10: DC characteristics …continued  
Ta = 40 °C to +85 °C for commercial applications, unless otherwise specified.  
Symbol Parameter  
Conditions  
Min  
Typ [1]  
Max  
Unit  
IBAT Power-down mode VBAT  
RTC clock = 32 kHz  
(from RTXC pins),  
Ta = +25 °C  
supply current  
VDD = 3.0 V, VBAT = 2.5 V  
VDD = 3.0 V, VBAT = 3.0 V  
VDD = 3.3 V, VBAT = 3.3 V  
VDD = 3.6 V, VBAT = 3.6 V  
-
-
-
-
14  
16  
18  
20  
-
-
-
-
µA  
µA  
µA  
µA  
active mode VBAT supply  
current  
CCLK = 60 MHz,  
PCLK = 15 MHz,  
PCLK enabled to RTCK,  
RTC clock = 32 kHz  
(from RTXC pins),  
Ta = +25 °C  
VDD = 3.0 V, VBAT = 3.0 V  
VDD = 3.3 V, VBAT = 3.3 V  
VDD = 3.6 V, VBAT = 3.6 V  
-
-
-
78  
80  
82  
-
-
-
µA  
µA  
µA  
active mode VBAT supply  
current optimized for low  
battery consumption  
PCLK disabled to RTCK in  
the PCONP register,  
RTC clock = 32 kHz  
(from RTXC pins),  
Ta = +25 °C, VBAT = 3.3 V  
CCLK = 6 MHz  
CCLK = 25 MHz  
CCLK = 50 MHz  
CCLK = 60 MHz  
-
-
-
-
21  
23  
27  
30  
-
-
-
-
µA  
µA  
µA  
µA  
I2C-bus pins  
VIH  
VIL  
Vhys  
VOL  
ILI  
HIGH-state input voltage[9] Vtol is from 4.5 V to 5.5 V  
0.7Vtol  
-
-
V
LOW-state input voltage [9]  
Vtol is from 4.5 V to 5.5 V  
-
-
-
-
-
-
0.3Vtol  
V
hysteresis voltage  
Vtol is from 4.5 V to 5.5 V  
0.5Vtol  
-
V
LOW-state output voltage [6] IOLS = 3 mA  
input leakage current to VSS VI = VDD  
VI = 5 V  
-
0.4  
4
V
2
µA  
µA  
10  
22  
Oscillator pins  
VXTAL1 XTAL1 input voltages  
VXTAL2 XTAL2 output voltages  
VRTXC1 RTXC1 input voltages  
VRTXC2 RTXC2 output voltages  
0
0
0
0
-
-
-
-
1.8  
1.8  
1.8  
1.8  
V
V
V
V
[1] Typical ratings are not guaranteed. The values listed are at room temperature (+25 ˚C), nominal supply voltages.  
[2] The RTC typically fails when VBAT drops below 1.6 V.  
[3] Including voltage on outputs in 3-state mode.  
[4] VDD supply voltages must be present.  
[5] 3-state outputs go into 3-state mode when VDD is grounded.  
[6] Accounts for 100 mV voltage drop in all supply lines.  
9397 750 14868  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 15 April 2005  
31 of 41  
LPC2131/2132/2134/2136/2138  
Philips Semiconductors  
Single-chip 16/32-bit microcontrollers  
[7] Only allowed for a short time period.  
[8] Minimum condition for VI = 4.5 V, maximum condition for VI = 5.5 V.  
[9] The input threshold voltage of I2C-bus pins meets the I2C-bus specification, so an input voltage below 1.5 V will be recognized as a logic  
0 while an input voltage above 3.0 V will be recognized as a logic 1.  
Table 11: A/D converter DC electrical characteristics  
VDDA = 2.5 V to 3.6 V; Ta = 40 °C to +85 °C unless otherwise specified. A/D converter frequency 4.5 MHz.  
Symbol  
VIA  
Parameter  
Conditions  
Min  
Typ  
Max  
VDDA  
1
Unit  
V
analog input voltage  
0
-
-
Ciss  
analog input  
capacitance  
pF  
[1] [2]  
[3]  
ED  
differential  
non-linearity  
-
±1  
LSB  
[1] [4]  
[1] [5]  
[1] [6]  
[1] [7]  
EL(adj)  
EO  
integral non-linearity  
offset error  
-
-
-
-
±2  
LSB  
LSB  
%
±3  
EG  
gain error  
±0.5  
±4  
ET  
absolute error  
LSB  
[1] Conditions: VSSA = 0 V, VDDA = 3.3 V.  
[2] The A/D is monotonic, there are no missing codes.  
[3] The differential non-linearity (ED) is the difference between the actual step width and the ideal step width. See Figure 6.  
[4] The integral no-linearity (EL(adj)) is the peak difference between the center of the steps of the actual and the ideal transfer curve after  
appropriate adjustment of gain and offset errors. See Figure 6.  
[5] The offset error (EO) is the absolute difference between the straight line which fits the actual curve and the straight line which fits the  
ideal curve. See Figure 6.  
[6] The gain error (EG) is the relative difference in percent between the straight line fitting the actual transfer curve after removing offset  
error, and the straight line which fits the ideal transfer curve. See Figure 6.  
[7] The absolute voltage error (ET) is the maximum difference between the center of the steps of the actual transfer curve of the  
non-calibrated A/D and the ideal transfer curve. See Figure 6.  
9397 750 14868  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 15 April 2005  
32 of 41  
LPC2131/2132/2134/2136/2138  
Philips Semiconductors  
Single-chip 16/32-bit microcontrollers  
gain  
error  
offset  
error  
E
E
O
G
1023  
1022  
1021  
1020  
1019  
1018  
(2)  
7
code  
out  
(1)  
6
5
4
3
2
1
0
(5)  
(4)  
(3)  
1 LSB  
(ideal)  
1018 1019 1020 1021 1022 1023 1024  
1
2
3
4
5
6
7
V
IA  
(LSB  
)
ideal  
V
V  
SSA  
DDA  
1 LSB =  
offset  
error  
1024  
002aab136  
E
O
(1) Example of an actual transfer curve.  
(2) The ideal transfer curve.  
(3) Differential non-linearity (ED).  
(4) Integral non-linearity (EL(adj)).  
(5) Center of a step of the actual transfer curve.  
Fig 6. A/D conversion characteristics.  
9397 750 14868  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 15 April 2005  
33 of 41  
LPC2131/2132/2134/2136/2138  
Philips Semiconductors  
Single-chip 16/32-bit microcontrollers  
9. Dynamic characteristics  
Table 12: AC characteristics  
Ta = 0 °C to +70 °C for commercial applications, 40 °C to +85 °C for industrial applications, VDD over specified ranges [1]  
Symbol  
External clock  
fosc  
Parameter  
Conditions  
Min  
Typ [1]  
Max  
Unit  
oscillator frequency  
oscillator clock period  
clock HIGH time  
clock LOW time  
clock rise time  
10  
40  
-
-
-
-
-
-
25  
100  
-
MHz  
ns  
Tclk  
tCHCX  
T
T
-
clk × 0.4  
ns  
tCLCX  
clk × 0.4  
-
ns  
tCLCH  
5
ns  
tCHCL  
clock fall time  
-
5
ns  
Port pins (except P0.2 and P0.3)  
tr(O)  
tf(O)  
output rise time  
-
-
10  
10  
-
-
ns  
ns  
output fall time  
I2C-bus pins (P0.2 and P0.3)  
tof output fall time  
VIH to VIL  
20 + 0.1 ×  
Cb  
-
-
ns  
[2]  
[1] Parameters are valid over operating temperature range unless otherwise specified.  
[2] Bus capacitance Cb in pF, from 10 pF to 400 pF.  
9397 750 14868  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 15 April 2005  
34 of 41  
LPC2131/2132/2134/2136/2138  
Philips Semiconductors  
9.1 Timing  
Single-chip 16/32-bit microcontrollers  
V
DD  
0.5 V  
0.2V  
+ 0.9  
DD  
0.2V  
0.1 V  
DD  
0.45 V  
t
CHCX  
t
t
CHCL  
t
CLCH  
CLCX  
T
clk  
002aab137  
Fig 7. External clock timing.  
9.2 LPC2138 power consumption measurements  
002aab404  
40  
(1)  
(2)  
(3)  
(4)  
(5)  
I
current  
(mA)  
DD  
30  
20  
10  
0
0
10  
20  
30  
40  
50  
60  
frequency (MHz)  
Test conditions: code executed from Flash; all peripherals are enabled in PCONP register; PCLK = CCLK/4.  
(1) 3.6 VDD at 60 °C (max)  
(2) 3.6 VDD at 140 °C  
(3) 3.6 VDD at 25 °C  
(4) 3.3 VDD at 25 °C (typical)  
(5) 3.3 VDD at 95 °C (typical)  
Fig 8. IDD active measured at different frequencies (CCLK) and temperatures.  
9397 750 14868  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 15 April 2005  
35 of 41  
LPC2131/2132/2134/2136/2138  
Philips Semiconductors  
Single-chip 16/32-bit microcontrollers  
002aab403  
15  
I
current  
DD  
(mA)  
(1)  
(2)  
(3)  
(4)  
(5)  
10  
5
0
0
10  
20  
30  
40  
50  
60  
frequency (MHz)  
Test conditions: Idle mode entered executing code from Flash; all peripherals are enabled in PCONP register;  
PCLK = CCLK/4.  
(1) 3.6 VDD at 140 °C (max)  
(2) 3.6 VDD at 60 °C  
(3) 3.6 VDD at 25 °C  
(4) 3.3 VDD at 25 °C (typical)  
(5) 3.3 VDD at 95 °C (typical)  
Fig 9. IDD idle measured at different frequencies (CCLK) and temperatures.  
002aab405  
500  
I
current  
(uA)  
(1)  
(2)  
(3)  
(4)  
DD  
400  
300  
200  
100  
0
-60  
-20  
20  
60  
100  
140  
temp (C)  
Test conditions: Power-down mode entered executing code from Flash; all peripherals are enabled in PCONP register.  
(1) 3.6 VDD  
(2) 3.3 VDD (max)  
(3) 3.0 VDD  
(4) 3.3 VDD (typical)  
Fig 10. IDD power-down measured at different temperatures.  
9397 750 14868  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 15 April 2005  
36 of 41  
LPC2131/2132/2134/2136/2138  
Philips Semiconductors  
Single-chip 16/32-bit microcontrollers  
10. Package outline  
LQFP64: plastic low profile quad flat package; 64 leads; body 10 x 10 x 1.4 mm  
SOT314-2  
y
X
A
48  
33  
Z
49  
32  
E
e
H
A
E
2
E
A
(A )  
3
A
1
w M  
p
θ
b
L
p
pin 1 index  
L
64  
17  
detail X  
1
16  
Z
v
M
A
D
e
w M  
b
p
D
B
H
v
M
B
D
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
H
L
L
v
w
y
Z
Z
E
θ
1
2
3
p
D
E
p
D
max.  
7o  
0o  
0.20 1.45  
0.05 1.35  
0.27 0.18 10.1 10.1  
0.17 0.12 9.9 9.9  
12.15 12.15  
11.85 11.85  
0.75  
0.45  
1.45 1.45  
1.05 1.05  
1.6  
mm  
0.25  
0.5  
1
0.2 0.12 0.1  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
00-01-19  
03-02-25  
SOT314-2  
136E10  
MS-026  
Fig 11. Package outline SOT314-2 (LQFP64).  
9397 750 14868  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 15 April 2005  
37 of 41  
LPC2131/2132/2134/2136/2138  
Philips Semiconductors  
Single-chip 16/32-bit microcontrollers  
11. Abbreviations  
Table 13: Acronym list  
Acronym  
ADC  
Description  
Analog-to-Digital Converter  
Brown-Out Detection  
BOD  
CPU  
Central Processing Unit  
Digital-to-Analog Converter  
Debug Communications Channel  
First In, First Out  
DAC  
DCC  
FIFO  
GPIO  
PLL  
General Purpose Input/Output  
Phase-Locked Loop  
POR  
PWM  
RAM  
SRAM  
UART  
VIC  
Power-On Reset  
Pulse Width Modulator  
Random Access Memory  
Static Random Access Memory  
Universal Asynchronous Receiver/Transmitter  
Vector Interrupt Controller  
VLSI Peripheral Bus  
VPB  
9397 750 14868  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 15 April 2005  
38 of 41  
LPC2131/2132/2134/2136/2138  
Philips Semiconductors  
Single-chip 16/32-bit microcontrollers  
12. Revision history  
Table 14: Revision history  
Document ID  
Release  
date  
Data sheet status Change  
notice  
Doc. number  
Supersedes  
LPC2131_32_34_36_38_2 20050415  
Preliminary data  
sheet  
-
9397 750 14868 LPC2131_2132_2138_1  
Modifications:  
Added new devices LPC2134 and LPC2136.  
LPC2131_2132_2138_1  
20041118  
Preliminary data  
sheet  
-
9397 750 14008  
-
9397 750 14868  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 15 April 2005  
39 of 41  
LPC2131/2132/2134/2136/2138  
Philips Semiconductors  
Single-chip 16/32-bit microcontrollers  
13. Data sheet status  
Level Data sheet status[1] Product status[2] [3]  
Definition  
I
Objective data  
Development  
This data sheet contains data from the objective specification for product development. Philips  
Semiconductors reserves the right to change the specification in any manner without notice.  
II  
Preliminary data  
Qualification  
This data sheet contains data from the preliminary specification. Supplementary data will be published  
at a later date. Philips Semiconductors reserves the right to change the specification without notice, in  
order to improve the design and supply the best possible product.  
III  
Product data  
Production  
This data sheet contains data from the product specification. Philips Semiconductors reserves the  
right to make changes at any time in order to improve the design, manufacturing and supply. Relevant  
changes will be communicated via a Customer Product/Process Change Notification (CPCN).  
[1]  
[2]  
Please consult the most recently issued data sheet before initiating or completing a design.  
The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at  
URL http://www.semiconductors.philips.com.  
[3]  
For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.  
customers using or selling these products for use in such applications do so  
at their own risk and agree to fully indemnify Philips Semiconductors for any  
damages resulting from such application.  
14. Definitions  
Short-form specification The data in a short-form specification is  
extracted from a full data sheet with the same type number and title. For  
detailed information see the relevant data sheet or data handbook.  
Right to make changes — Philips Semiconductors reserves the right to  
make changes in the products - including circuits, standard cells, and/or  
software - described or contained herein in order to improve design and/or  
performance. When the product is in full production (status ‘Production’),  
relevant changes will be communicated via a Customer Product/Process  
Change Notification (CPCN). Philips Semiconductors assumes no  
responsibility or liability for the use of any of these products, conveys no  
license or title under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that these products are  
free from patent, copyright, or mask work right infringement, unless otherwise  
specified.  
Limiting values definition Limiting values given are in accordance with  
the Absolute Maximum Rating System (IEC 60134). Stress above one or  
more of the limiting values may cause permanent damage to the device.  
These are stress ratings only and operation of the device at these or at any  
other conditions above those given in the Characteristics sections of the  
specification is not implied. Exposure to limiting values for extended periods  
may affect device reliability.  
Application information Applications that are described herein for any  
of these products are for illustrative purposes only. Philips Semiconductors  
make no representation or warranty that such applications will be suitable for  
the specified use without further testing or modification.  
16. Trademarks  
Notice — All referenced brands, product names, service names and  
15. Disclaimers  
trademarks are the property of their respective owners.  
Life support — These products are not designed for use in life support  
appliances, devices, or systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips Semiconductors  
17. Contact information  
For additional information, please visit: http://www.semiconductors.philips.com  
For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com  
9397 750 14868  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 15 April 2005  
40 of 41  
LPC2131/2132/2134/2136/2138  
Philips Semiconductors  
Single-chip 16/32-bit microcontrollers  
18. Contents  
1
General description . . . . . . . . . . . . . . . . . . . . . . 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Key features . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Ordering options. . . . . . . . . . . . . . . . . . . . . . . . 2  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
6.21.1  
6.21.2  
6.21.3  
6.21.4  
6.21.5  
6.21.6  
6.21.7  
6.21.8  
6.21.9  
6.22  
Crystal oscillator. . . . . . . . . . . . . . . . . . . . . . . 25  
PLL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Reset and wake-up timer . . . . . . . . . . . . . . . . 25  
Brown-out detector. . . . . . . . . . . . . . . . . . . . . 26  
Code security . . . . . . . . . . . . . . . . . . . . . . . . . 26  
External interrupt inputs. . . . . . . . . . . . . . . . . 26  
Memory Mapping Control. . . . . . . . . . . . . . . . 27  
Power Control. . . . . . . . . . . . . . . . . . . . . . . . . 27  
VPB bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Emulation and debugging. . . . . . . . . . . . . . . . 27  
EmbeddedICE . . . . . . . . . . . . . . . . . . . . . . . . 28  
Embedded trace. . . . . . . . . . . . . . . . . . . . . . . 28  
RealMonitor . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
2
2.1  
3
3.1  
4
5
5.1  
5.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 4  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 7  
6.22.1  
6.22.2  
6.22.3  
6
Functional description . . . . . . . . . . . . . . . . . . 12  
Architectural overview. . . . . . . . . . . . . . . . . . . 12  
On-Chip Flash program memory . . . . . . . . . . 12  
On-Chip static RAM . . . . . . . . . . . . . . . . . . . . 12  
Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Interrupt controller . . . . . . . . . . . . . . . . . . . . . 13  
Interrupt sources. . . . . . . . . . . . . . . . . . . . . . . 14  
Pin connect block . . . . . . . . . . . . . . . . . . . . . . 15  
Pin function select register 0 (PINSEL0 -  
6.1  
6.2  
6.3  
6.4  
6.5  
6.5.1  
6.6  
6.7  
7
8
Limiting values . . . . . . . . . . . . . . . . . . . . . . . . 29  
Static characteristics . . . . . . . . . . . . . . . . . . . 30  
9
9.1  
9.2  
Dynamic characteristics. . . . . . . . . . . . . . . . . 34  
Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
LPC2138 power consumption measurements 35  
10  
11  
12  
13  
14  
15  
16  
17  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 37  
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Revision history . . . . . . . . . . . . . . . . . . . . . . . 39  
Data sheet status. . . . . . . . . . . . . . . . . . . . . . . 40  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Contact information . . . . . . . . . . . . . . . . . . . . 40  
0xE002C000) . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Pin function select register 1 (PINSEL1 -  
0xE002C004) . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Pin function select register 2 (PINSEL2 -  
6.8  
6.9  
0xE002C014) . . . . . . . . . . . . . . . . . . . . . . . . . 19  
General purpose parallel I/O. . . . . . . . . . . . . . 20  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
10-bit A/D converter . . . . . . . . . . . . . . . . . . . . 20  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
10-bit D/A converter . . . . . . . . . . . . . . . . . . . . 20  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
UARTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
I2C-bus serial I/O controller . . . . . . . . . . . . . . 21  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
SPI serial I/O controller. . . . . . . . . . . . . . . . . . 22  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
SSP serial I/O controller . . . . . . . . . . . . . . . . . 22  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
General purpose timers/external event  
6.10  
6.10.1  
6.11  
6.11.1  
6.12  
6.12.1  
6.13  
6.13.1  
6.14  
6.14.1  
6.15  
6.15.1  
6.16  
6.16.1  
6.17  
counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Watchdog timer. . . . . . . . . . . . . . . . . . . . . . . . 23  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Real-time clock . . . . . . . . . . . . . . . . . . . . . . . . 23  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Pulse width modulator . . . . . . . . . . . . . . . . . . 24  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
System control . . . . . . . . . . . . . . . . . . . . . . . . 25  
6.17.1  
6.18  
6.18.1  
6.19  
6.19.1  
6.20  
6.20.1  
6.21  
© Koninklijke Philips Electronics N.V. 2005  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior  
written consent of the copyright owner. The information presented in this document does  
not form part of any quotation or contract, is believed to be accurate and reliable and may  
be changed without notice. No liability will be accepted by the publisher for any  
consequence of its use. Publication thereof does not convey nor imply any license under  
patent- or other industrial or intellectual property rights.  
Date of release: 15 April 2005  
Document number: 9397 750 14868  
Published in the Netherlands  

相关型号:

LPC2134FBD64,151

LPC2131/32/34/36/38 - Single-chip 16/32-bit microcontrollers; 32/64/128/256/512 kB ISP/IAP flash with 10-bit ADC and DAC QFP 64-Pin
NXP

LPC2134FBD64/01

Single-chip 16/32-bit microcontrollers; 32/64/128/256/512 kB ISP/IAP flash with 10-bit ADC and DAC
NXP

LPC2134FBD64/01/S

IC 32-BIT, FLASH, 60 MHz, RISC MICROCONTROLLER, PQFP64, 10 X 10 MM, 1.40 MM HEIGHT, ROHS COMPLIANT, PLASTIC, MS-026, SOT314-2, LQFP-64, Microcontroller
NXP

LPC2136

Single-chip 16/32-bit microcontrollers; 32/64/128/256/512 kB ISP/IAP flash with 10-bit ADC and DAC
NXP

LPC2136-01

ARM7-based microcontrollers with two 10-bit ADCs and 10-bit DAC
NXP

LPC2136/01

NXP Microcontrollers Selection Guide
NXP

LPC2136FBD64

Single-chip 16/32-bit microcontrollers; 32/64/512 kB ISP/IAP Flash with 10-bit ADC and DAC
NXP

LPC2136FBD64,151

LPC2131/32/34/36/38 - Single-chip 16/32-bit microcontrollers; 32/64/128/256/512 kB ISP/IAP flash with 10-bit ADC and DAC QFP 64-Pin
NXP
NXP

LPC2136FBD64/01

IC 32-BIT, FLASH, 60 MHz, RISC MICROCONTROLLER, PQFP64, 10 X 10 MM, 1.40 MM HEIGHT, ROHS COMPLIANT, PLASTIC, MS-026, SOT314-2, LQFP-64, Microcontroller
NXP

LPC2136FBD64/01,15

LPC2131/32/34/36/38 - Single-chip 16/32-bit microcontrollers; 32/64/128/256/512 kB ISP/IAP flash with 10-bit ADC and DAC QFP 64-Pin
NXP

LPC2136FBD64/01EL

RISC Microcontroller, 32-Bit, FLASH, ARM7 CPU, 60MHz, CMOS, PQFP64
NXP