LPC2292_07 [NXP]

16/32-bit ARM microcontrollers; 256 kB ISP/IAP flash with CAN, 10-bit ADC and external memory interface; 16位/ 32位ARM微控制器; 256 kB的ISP / IAP闪存, CAN , 10位ADC和外部存储器接口
LPC2292_07
型号: LPC2292_07
厂家: NXP    NXP
描述:

16/32-bit ARM microcontrollers; 256 kB ISP/IAP flash with CAN, 10-bit ADC and external memory interface
16位/ 32位ARM微控制器; 256 kB的ISP / IAP闪存, CAN , 10位ADC和外部存储器接口

闪存 存储 微控制器
文件: 总54页 (文件大小:274K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LPC2292/2294  
16/32-bit ARM microcontrollers; 256 kB ISP/IAP flash with  
CAN, 10-bit ADC and external memory interface  
Rev. 06 — 10 December 2007  
Product data sheet  
1. General description  
The LPC2292/2294 microcontrollers are based on a 16/32-bit ARM7TDMI-S CPU with  
real-time emulation and embedded trace support, together with 256 kB of embedded  
high-speed flash memory. A 128-bit wide memory interface and a unique accelerator  
architecture enable 32-bit code execution at the maximum clock rate. For critical code size  
applications, the alternative 16-bit Thumb mode reduces code by more than 30 % with  
minimal performance penalty.  
With their 144-pin package, low power consumption, various 32-bit timers, 8-channel  
10-bit ADC, 2/4 (LPC2294) advanced CAN channels, PWM channels and up to nine  
external interrupt pins these microcontrollers are particularly suitable for automotive and  
industrial control applications as well as medical systems and fault-tolerant maintenance  
buses. The number of available fast GPIOs ranges from 76 (with external memory)  
through 112 (single-chip). With a wide range of additional serial communications  
interfaces, they are also suited for communication gateways and protocol converters as  
well as many other general-purpose applications.  
Remark: Throughout the data sheet, the term LPC2292/2294 will apply to devices with  
and without the /00 or /01 suffix. The suffixes /00 and /01 will be used to differentiate from  
other devices only when necessary.  
2. Features  
2.1 Key features brought by LPC2292/2294/01 devices  
I Fast GPIO ports enable port pin toggling up to 3.5 times faster than the original device.  
They also allow for a port pin to be read at any time regardless of its function.  
I Dedicated result registers for ADC(s) reduce interrupt overhead. The ADC pads are  
5 V tolerant when configured for digital I/O function(s).  
I UART0/1 include fractional baud rate generator, auto-bauding capabilities and  
handshake flow-control fully implemented in hardware.  
I Buffered SSP serial controller supporting SPI, 4-wire SSI, and Microwire formats.  
I SPI programmable data length and master mode enhancement.  
I Diversified Code Read Protection (CRP) enables different security levels to be  
implemented. This feature is available in LPC2292/2294/00 devices as well.  
I General purpose timers can operate as external event counters.  
2.2 Key features common for all devices  
I 16/32-bit ARM7TDMI-S microcontroller in a LQFP144 package.  
LPC2292/LPC2294  
NXP Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
I 16 kB on-chip static RAM and 256 kB on-chip flash program memory. 128-bit wide  
interface/accelerator enables high-speed 60 MHz operation.  
I In-System Programming/In-Application Programming (ISP/IAP) via on-chip bootloader  
software. Single flash sector or full chip erase in 400 ms and programming of 256 B in  
1 ms.  
I EmbeddedICE-RT and Embedded Trace interfaces offer real-time debugging with the  
on-chip RealMonitor software as well as high-speed real-time tracing of instruction  
execution.  
I Two/four (LPC2292/2294) interconnected CAN interfaces with advanced acceptance  
filters. Additional serial interfaces include two UARTs (16C550), Fast I2C-bus  
(400 kbit/s) and two SPIs.  
I Eight channel 10-bit ADC with conversion time as low as 2.44 µs.  
I Two 32-bit timers (with four capture and four compare channels), PWM unit (six  
outputs), Real-Time Clock (RTC), and watchdog.  
I Vectored Interrupt Controller (VIC) with configurable priorities and vector addresses.  
I Configurable external memory interface with up to four banks, each up to 16 MB and  
8/16/32-bit data width.  
I Up to 112 general purpose I/O pins (5 V tolerant). Up to nine edge/level sensitive  
external interrupt pins available.  
I 60 MHz maximum CPU clock available from programmable on-chip PLL with settling  
time of 100 µs.  
I On-chip crystal oscillator with an operating range of 1 MHz to 30 MHz.  
I Power saving modes include Idle and Power-down.  
I Processor wake-up from Power-down mode via external interrupt.  
I Individual enable/disable of peripheral functions for power optimization.  
I Dual power supply:  
N CPU operating voltage range of 1.65 V to 1.95 V (1.8 V ± 0.15 V).  
N I/O power supply range of 3.0 V to 3.6 V (3.3 V ± 10 %) with 5 V tolerant I/O pads.  
3. Ordering information  
Table 1.  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
LPC2292FBD144  
LQFP144  
plastic low profile quad flat package;  
SOT486-1  
144 leads; body 20 × 20 × 1.4 mm  
LPC2292FBD144/00  
LPC2292FBD144/01  
LPC2292FET144/00  
LPC2292FET144/01  
LPC2292FET144/G  
LQFP144  
LQFP144  
plastic low profile quad flat package;  
144 leads; body 20 × 20 × 1.4 mm  
SOT486-1  
SOT486-1  
plastic low profile quad flat package;  
144 leads; body 20 × 20 × 1.4 mm  
TFBGA144 plastic thin fine-pitch ball grid array package; SOT569-1  
144 balls; body 12 × 12 × 0.8 mm  
TFBGA144 plastic thin fine-pitch ball grid array package; SOT569-1  
144 balls; body 12 × 12 × 0.8 mm  
TFBGA144 plastic thin fine-pitch ball grid array package; SOT569-1  
144 balls; body 12 × 12 × 0.8 mm  
LPC2292_2294_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 10 December 2007  
2 of 54  
LPC2292/LPC2294  
NXP Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
Table 1.  
Ordering information …continued  
Type number  
Package  
Name  
Description  
Version  
LPC2294HBD144  
LQFP144  
plastic low profile quad flat package;  
SOT486-1  
144 leads; body 20 × 20 × 1.4 mm  
LPC2294HBD144/00  
LPC2294HBD144/01  
LQFP144  
LQFP144  
plastic low profile quad flat package;  
144 leads; body 20 × 20 × 1.4 mm  
SOT486-1  
SOT486-1  
plastic low profile quad flat package;  
144 leads; body 20 × 20 × 1.4 mm  
3.1 Ordering options  
Table 2.  
Ordering options  
Type number  
Flash  
memory  
RAM  
CAN  
Fast GPIO/  
SSP/  
Temperature range  
Enhanced  
UART, ADC,  
Timer  
LPC2292FBD144  
256 kB  
16 kB  
16 kB  
16 kB  
16 kB  
16 kB  
16 kB  
16 kB  
16 kB  
16 kB  
2 channels no  
2 channels no  
2 channels yes  
2 channels no  
2 channels yes  
2 channels no  
4 channels no  
4 channels no  
4 channels yes  
40 °C to +85 °C  
40 °C to +85 °C  
40 °C to +85 °C  
40 °C to +85 °C  
40 °C to +85 °C  
40 °C to +85 °C  
40 °C to +125 °C  
40 °C to +125 °C  
40 °C to +125 °C  
LPC2292FBD144/00 256 kB  
LPC2292FBD144/01 256 kB  
LPC2292FET144/00 256 kB  
LPC2292FET144/01 256 kB  
LPC2292FET144/G 256 kB  
LPC2294HBD144  
256 kB  
LPC2294HBD144/00 256 kB  
LPC2294HBD144/01 256 kB  
LPC2292_2294_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 10 December 2007  
3 of 54  
LPC2292/LPC2294  
NXP Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
4. Block diagram  
(1)  
(1)  
TMS  
(1)  
TDI  
(1)  
XTAL2  
XTAL1 RST  
(1)  
TRST  
TCK  
TDO  
LPC2292  
LPC2294  
TEST/DEBUG  
INTERFACE  
SYSTEM  
FUNCTIONS  
PLL  
ARM7TDMI-S  
HIGH-SPEED  
GPI/O  
112 PINS TOTAL  
system  
clock  
P0, P1,  
P2, P3  
(4)  
VECTORED  
INTERRUPT  
CONTROLLER  
AHB BRIDGE  
AMBA AHB  
(Advanced High-performance Bus)  
ARM7 local bus  
INTERNAL  
SRAM  
INTERNAL  
FLASH  
CONTROLLER  
CONTROLLER  
AHB  
DECODER  
(2)  
16 kB  
SRAM  
256 kB  
FLASH  
CS3 to CS0  
(2)  
AHB TO APB  
BRIDGE  
APB  
DIVIDER  
A23 to A0  
EXTERNAL MEMORY  
CONTROLLER  
(2)  
BLS3 to BLS0  
(2)  
OE, WE  
APB (advanced  
peripheral bus)  
EXTERNAL  
(2)  
D31 to D0  
EINT3 to EINT0  
INTERRUPTS  
SCL  
SDA  
2
I C-BUS SERIAL  
INTERFACE  
4 × CAP0  
4 × CAP1  
4 × MAT0  
4 × MAT1  
CAPTURE/  
COMPARE  
TIMER 0/TIMER 1  
SCK1  
MOSI1  
MISO1  
SSEL1  
(4)  
SPI1/SSP  
SERIAL INTERFACE  
AIN3 to AIN0  
AIN7 to AIN4  
A/D CONVERTER  
SCK0  
SPI0  
MOSI0  
MISO0  
SSEL0  
SERIAL INTERFACE  
P0[30:0]  
P1[31:16], P1[1:0]  
P2[31:0]  
GENERAL  
PURPOSE I/O  
TXD0, TXD1  
RXD0, RXD1  
P3[31:0]  
UART0/UART1  
DSR1, CTS1,  
DCD1, RI1  
PWM6 to PWM1  
PWM0  
TD2, TD1  
RD2, RD1  
TD4, TD3  
CAN  
(3)  
REAL-TIME CLOCK  
SYSTEM CONTROL  
(3)  
RD4, RD3  
WATCHDOG  
TIMER  
002aad184  
(1) When test/debug interface is used, GPIO/other functions sharing these pins are not available.  
(2) Pins shared with GPIO.  
(3) Available in LPC2294 only.  
(4) SSP interface and high-speed GPIO are available on LPC2292/2294/01 only.  
Fig 1. Block diagram  
LPC2292_2294_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 10 December 2007  
4 of 54  
LPC2292/LPC2294  
NXP Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
5. Pinning information  
5.1 Pinning  
1
108  
LPC2292FBD  
LPC2294HBD(1)  
36  
73  
002aad185  
(1) Pin configuration is identical for devices with and without /00 and /01 suffixes.  
Fig 2. LQFP144 pinning  
ball A1  
index area  
LPC2292FET144(1)  
1
2 3 4 5 6 7 8 9 10 11 12 13  
A
B
C
D
E
F
G
H
J
K
L
M
N
002aad191  
Transparent top view  
(1) Pin configuration is identical for devices with and without /00 and /01 suffixes.  
Fig 3. TFBGA144 pinning  
LPC2292_2294_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 10 December 2007  
5 of 54  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Table 3.  
Ball allocation  
Row Column  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
A
P2[22]/  
D22  
VDDA(1V8) P1[28]/  
TDI  
P2[21]/  
D21  
P2[18]/  
D18  
P2[14]/  
D14  
P1[29]/  
TCK  
P2[11]/  
D11  
P2[10]/  
D10  
P2[7]/D7 VDD(3V3)  
VDD(1V8)  
P2[4]/D4  
B
VDD(3V3)  
P1[27]/  
TDO  
XTAL2  
VSSA(PLL) P2[19]/  
D19  
P2[15]/  
D15  
P2[12]/  
D12  
P0[20]/  
MAT1[3]/  
SSEL1/  
EINT3  
VDD(3V3)  
P2[6]/D6 VSS  
P2[3]/D3 VSS  
C
D
E
P0[21]/  
PWM5/  
CAP1[3]  
VSS  
XTAL1  
VSSA  
RESET  
P2[16]/  
D16  
P2[13]/  
D13  
P0[19]/  
P2[9]/D9 P2[5]/D5 P2[2]/D2 P2[1]/D1 VDD(3V3)  
MAT1[2]/  
MOSI1/  
CAP1[2]  
P0[24]/  
TD2  
P1[19]/  
TRACE  
PKT3  
P0[23]/  
RD2  
P0[22]/  
CAP0[0]/ D20  
MAT0[0]  
P2[20]/  
P2[17]/  
D17  
VSS  
P0[18]/  
P2[8]/D8 P1[30]/  
TMS  
VSS  
P1[20]/  
TRACE  
SYNC  
P0[17]/  
CAP1[2]/  
SCK1/  
CAP1[3]/  
MISO1/  
MAT1[3]  
MAT1[2]  
P2[25]/  
D25  
P2[24]/  
D24  
P2[23]  
VSS  
P0[16]/  
EINT0/  
P0[15]/  
RI1/  
P2[0]/D0 P3[30]/  
BLS1  
MAT0[2]/ EINT2  
CAP0[2]  
F
P2[27]/  
D27/  
BOOT1  
P1[18]/  
TRACE  
PKT2  
VDDA(3V3) P2[26]/  
D26/  
P3[31]/  
BLS0  
P1[21]/  
PIPE  
STAT0  
VDD(3V3)  
VSS  
BOOT0  
G
H
P2[29]/  
D29  
P2[28]/  
D28  
P2[30]/  
D30/AIN4 D31/AIN5  
P2[31]/  
P0[14]/  
DCD1/  
EINT1  
P1[0]/CS0 P3[0]/A0 P1[1]/OE  
P0[25]/  
RD1  
TD1  
P0[27]/  
AIN0/  
P1[17]/  
TRACE  
P0[13]/  
DTR1/  
P1[22]/  
PIPE  
P3[2]/A2 P3[1]/A1  
CAP0[1]/ PKT1  
MAT0[1]  
MAT1[1]  
STAT1  
J
P0[28]/  
AIN1/  
CAP0[2]/  
MAT0[2]  
VSS  
P3[29]/  
BLS2/  
AIN6  
P3[28]/  
BLS3/  
AIN7  
P3[3]/A3 P1[23]/  
PIPE  
P0[11]/  
CTS1/  
CAP1[1]  
P0[12]/  
DSR1/  
MAT1[0]  
STAT2  
K
P3[27]/  
WE  
P3[26]/  
CS1  
VDD(3V3)  
P3[22]/  
A22  
P3[20]/  
A20  
P0[1]/  
P3[14]/  
A14  
P1[25]/  
EXTIN0  
P3[11]/  
A11  
VDD(3V3)  
P0[10]/  
RTS1/  
CAP1[0]  
VSS  
P3[4]/A4  
RXD0/  
PWM3/  
EINT0  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Ball allocation …continued  
Table 3.  
Row Column  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
L
P0[29]/  
AIN2/  
CAP0[3]/ EINT3/  
P0[30]/  
AIN3/  
P1[16]/  
TRACE  
PKT0  
P0[0]/  
TXD0/  
PWM1  
P3[19]/  
A19  
P0[2]/  
SCL/  
CAP0[0]  
P3[15]/  
A15  
P0[4]/  
SCK0/  
CAP0[1]  
P3[12]/  
A12  
VSS  
P1[24]/  
TRACE  
CLK  
P0[8]/  
TXD1/  
PWM4  
P0[9]/  
RXD1/  
PWM6/  
EINT3  
MAT0[3]  
CAP0[0]  
M
N
P3[25]/  
CS2  
P3[24]/  
CS3  
VDD(3V3)  
P1[31]/  
TRST  
P3[18]/  
A18  
VDD(3V3)  
P3[16]/  
A16  
P0[3]/  
SDA/  
MAT0[0]/  
EINT1  
P3[13]/  
A13  
P3[9]/A9 P0[7]/  
SSEL0/  
P3[7]/A7 P3[5]/A5  
P3[8]/A8 P3[6]/A6  
PWM2/  
EINT2  
VDD(1V8)  
VSS  
P3[23]/  
A23/  
XCLK  
P3[21]/  
A21  
P3[17]/  
A17  
P1[26]/  
RTCK  
VSS  
VDD(3V3)  
P0[5]/  
MISO0/  
MAT0[1]  
P3[10]/  
A10  
P0[6]/  
MOSI0/  
CAP0[2]  
LPC2292/LPC2294  
NXP Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
5.2 Pin description  
Table 4.  
Symbol  
Pin description  
Pin (LQFP)  
Pin  
(TFBGA)[1]  
Type  
Description  
P0[0] to P0[31]  
I/O  
Port 0: Port 0 is a 32-bit bidirectional I/O port with individual  
direction controls for each bit. The operation of port 0 pins  
depends upon the pin function selected via the Pin Connect  
Block.  
Pins 26 and 31 of port 0 are not available.  
TXD0 — Transmitter output for UART0.  
PWM1 — Pulse Width Modulator output 1.  
RXD0 — Receiver input for UART0.  
P0[0]/TXD0/  
PWM1  
42[2]  
49[4]  
L4[2]  
K6[4]  
O
O
I
P0[1]/RXD0/  
PWM3/EINT0  
O
I
PWM3 — Pulse Width Modulator output 3.  
EINT0 — External interrupt 0 input  
P0[2]/SCL/  
CAP0[0]  
50[5]  
58[5]  
L6[5]  
I/O  
SCL — I2C-bus clock input/output. Open-drain output (for  
I2C-bus compliance).  
I
CAP0[0] — Capture input for Timer 0, channel 0.  
SDA — I2C-bus data input/output. Open-drain output (for  
I2C-bus compliance).  
P0[3]/SDA/  
MAT0[0]/EINT1  
M8[5]  
I/O  
O
I
MAT0[0] — Match output for Timer 0, channel 0.  
EINT1 — External interrupt 1 input.  
P0[4]/SCK0/  
CAP0[1]  
59[2]  
61[2]  
68[2]  
69[4]  
L8[2]  
I/O  
SCK0 — Serial clock for SPI0. SPI clock output from master  
or input to slave.  
I
CAP0[1] — Capture input for Timer 0, channel 1.  
P0[5]/MISO0/  
MAT0[1]  
N9[2]  
I/O  
MISO0 — Master In Slave OUT for SPI0. Data input to SPI  
master or data output from SPI slave.  
O
MAT0[1] — Match output for Timer 0, channel 1.  
P0[6]/MOSI0/  
CAP0[2]  
N11[2]  
M11[4]  
I/O  
MOSI0 — Master Out Slave In for SPI0. Data output from SPI  
master or data input to SPI slave.  
I
I
CAP0[2] — Capture input for Timer 0, channel 2.  
P0[7]/SSEL0/  
PWM2/EINT2  
SSEL0 — Slave Select for SPI0. Selects the SPI interface as  
a slave.  
O
I
PWM2 — Pulse Width Modulator output 2.  
EINT2 — External interrupt 2 input.  
P0[8]/TXD1/  
PWM4  
75[2]  
76[4]  
L12[2]  
L13[4]  
O
O
I
TXD1 — Transmitter output for UART1.  
PWM4 — Pulse Width Modulator output 4.  
RXD1 — Receiver input for UART1.  
P0[9]/RXD1/  
PWM6/EINT3  
O
I
PWM6 — Pulse Width Modulator output 6.  
EINT3 — External interrupt 3 input.  
P0[10]/RTS1/  
CAP1[0]  
78[2]  
83[2]  
K11[2]  
J12[2]  
O
I
RTS1 — Request to Send output for UART1.  
CAP1[0] — Capture input for Timer 1, channel 0.  
CTS1 — Clear to Send input for UART1.  
CAP1[1] — Capture input for Timer 1, channel 1.  
P0[11]/CTS1/  
CAP1[1]  
I
I
LPC2292_2294_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 10 December 2007  
8 of 54  
LPC2292/LPC2294  
NXP Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
Table 4.  
Symbol  
Pin description …continued  
Pin (LQFP)  
Pin  
(TFBGA)[1]  
Type  
Description  
P0[12]/DSR1/  
MAT1[0]/RD4  
84[2]  
J13[2]  
H10[2]  
G10[4]  
I
DSR1 — Data Set Ready input for UART1.  
MAT1[0] — Match output for Timer 1, channel 0.  
RD4 — CAN4 receiver input (LPC2294 only).  
DTR1 — Data Terminal Ready output for UART1.  
MAT1[1] — Match output for Timer 1, channel 1.  
TD4 — CAN4 transmitter output (LPC2294 only).  
DCD1 — Data Carrier Detect input for UART1.  
EINT1 — External interrupt 1 input.  
O
I
P0[13]/DTR1/  
MAT1[1]/TD4  
85[2]  
O
O
O
I
P0[14]/DCD1/  
EINT1  
92[4]  
I
Note: LOW on this pin while RESET is LOW forces on-chip  
bootloader to take over control of the part after reset.  
P0[15]/RI1/  
EINT2  
99[4]  
E11[4]  
E10[4]  
I
RI1 — Ring Indicator input for UART1.  
I
EINT2 — External interrupt 2 input.  
P0[16]/EINT0/  
MAT0[2]/  
CAP0[2]  
100[4]  
I
EINT0 — External interrupt 0 input.  
O
MAT0[2] — Match output for Timer 0, channel 2.  
CAP0[2] — Capture input for Timer 0, channel 2.  
CAP1[2] — Capture input for Timer 1, channel 2.  
SCK1 — Serial Clock for SPI1/SSP[3]. SPI clock output from  
master or input to slave.  
I
P0[17]/CAP1[2]/ 101[2]  
SCK1/MAT1[2]  
D13[2]  
D8[2]  
C8[2]  
B8[4]  
I
I/O  
O
I
MAT1[2] — Match output for Timer 1, channel 2.  
CAP1[3] — Capture input for Timer 1, channel 3.  
MISO1 — Master In Slave Out for SPI1/SSP[3]. Data input to  
P0[18]/CAP1[3]/ 121[2]  
MISO1/MAT1[3]  
I/O  
SPI master or data output from SPI slave.  
O
MAT1[3] — Match output for Timer 1, channel 3.  
MAT1[2] — Match output for Timer 1, channel 2.  
MOSI1 — Master Out Slave In for SPI1/SSP[3]. Data output  
P0[19]/MAT1[2]/ 122[2]  
MOSI1/CAP1[2]  
O
I/O  
from SPI master or data input to SPI slave.  
I
CAP1[2] — Capture input for Timer 1, channel 2.  
MAT1[3] — Match output for Timer 1, channel 3.  
SSEL1 — Slave Select for SPI1/SSP[3]. Selects the SPI  
P0[20]/MAT1[3]/ 123[4]  
SSEL1/EINT3  
O
I
interface as a slave.  
I
EINT3 — External interrupt 3 input.  
P0[21]/PWM5/ 4[2]  
RD3/CAP1[3]  
C1[2]  
D4[2]  
O
I
PWM5 — Pulse Width Modulator output 5.  
RD3 — CAN3 receiver input (LPC2294 only).  
CAP1[3] — Capture input for Timer 1, channel 3.  
TD3 — CAN3 transmitter output (LPC2294 only).  
CAP0[0] — Capture input for Timer 0, channel 0.  
MAT0[0] — Match output for Timer 0, channel 0.  
RD2 — CAN2 receiver input.  
I
P0[22]/TD3/  
CAP0[0]/  
MAT0[0]  
5[2]  
O
I
O
I
P0[23]/RD2  
P0[24]/TD2  
P0[25]/RD1  
6[2]  
8[2]  
21[2]  
D3[2]  
D1[2]  
H1[2]  
O
I
TD2 — CAN2 transmitter output.  
RD1 — CAN1 receiver input.  
LPC2292_2294_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 10 December 2007  
9 of 54  
LPC2292/LPC2294  
NXP Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
Table 4.  
Symbol  
Pin description …continued  
Pin (LQFP)  
Pin  
(TFBGA)[1]  
Type  
Description  
P0[27]/AIN0/  
CAP0[1]/  
MAT0[1]  
23[6]  
H3[6]  
J1[6]  
L1[6]  
L2[6]  
I
AIN0 — ADC, input 0. This analog input is always connected  
to its pin.  
I
CAP0[1] — Capture input for Timer 0, channel 1.  
MAT0[1] — Match output for Timer 0, channel 1.  
O
I
P0[28]/AIN1/  
CAP0[2]/  
MAT0[2]  
25[6]  
32[6]  
33[6]  
AIN1 — ADC, input 1. This analog input is always connected  
to its pin.  
I
CAP0[2] — Capture input for Timer 0, channel 2.  
MAT0[2] — Match output for Timer 0, channel 2.  
O
I
P0[29]/AIN2/  
CAP0[3]/  
MAT0[3]  
AIN2 — ADC, input 2. This analog input is always connected  
to its pin.  
I
CAP0[3] — Capture input for Timer 0, Channel 3.  
MAT0[3] — Match output for Timer 0, channel 3.  
O
I
P0[30]/AIN3/  
AIN3 — ADC, input 3. This analog input is always connected  
EINT3/CAP0[0]  
to its pin.  
I
EINT3 — External interrupt 3 input.  
I
CAP0[0] — Capture input for Timer 0, channel 0.  
P1[0] to P1[31]  
I/O  
Port 1: Port 1 is a 32-bit bidirectional I/O port with individual  
direction controls for each bit. The operation of port 1 pins  
depends upon the pin function selected via the Pin Connect  
Block.  
Pins 2 through 15 of port 1 are not available.  
CS0 — LOW-active Chip Select 0 signal.  
P1[0]/CS0  
P1[1]/OE  
91[7]  
G11[7]  
O
(Bank 0 addresses range 0x8000 0000 to 0x80FF FFFF)  
OE — LOW-active Output Enable signal.  
90[7]  
34[7]  
G13[7]  
L3[7]  
O
O
P1[16]/  
TRACEPKT0 — Trace Packet, bit 0. Standard I/O port with  
TRACEPKT0  
internal pull-up.  
P1[17]/  
TRACEPKT1  
24[7]  
15[7]  
7[7]  
H4[7]  
F2[7]  
O
O
O
O
TRACEPKT1 — Trace Packet, bit 1. Standard I/O port with  
internal pull-up.  
P1[18]/  
TRACEPKT2  
TRACEPKT2 — Trace Packet, bit 2. Standard I/O port with  
internal pull-up.  
P1[19]/  
TRACEPKT3  
D2[7]  
D12[7]  
TRACEPKT3 — Trace Packet, bit 3. Standard I/O port with  
internal pull-up.  
P1[20]/  
102[7]  
TRACESYNC — Trace Synchronization. Standard I/O port  
TRACESYNC  
with internal pull-up.  
Note: LOW on this pin while RESET is LOW, enables pins  
P1[25:16] to operate as Trace port after reset.  
P1[21]/  
PIPESTAT0  
95[7]  
86[7]  
82[7]  
70[7]  
F11[7]  
H11[7]  
J11[7]  
L11[7]  
O
O
O
O
PIPESTAT0 — Pipeline Status, bit 0. Standard I/O port with  
internal pull-up.  
P1[22]/  
PIPESTAT1  
PIPESTAT1 — Pipeline Status, bit 1. Standard I/O port with  
internal pull-up.  
P1[23]/  
PIPESTAT2  
PIPESTAT2 — Pipeline Status, bit 2. Standard I/O port with  
internal pull-up.  
P1[24]/  
TRACECLK — Trace Clock. Standard I/O port with internal  
TRACECLK  
pull-up.  
LPC2292_2294_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 10 December 2007  
10 of 54  
LPC2292/LPC2294  
NXP Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
Table 4.  
Symbol  
Pin description …continued  
Pin (LQFP)  
Pin  
(TFBGA)[1]  
Type  
I
Description  
P1[25]/EXTIN0 60[7]  
K8[7]  
N6[7]  
EXTIN0 — External Trigger Input. Standard I/O with internal  
pull-up.  
P1[26]/RTCK  
52[7]  
I/O  
RTCK — Returned Test Clock output. Extra signal added to  
the JTAG port. Assists debugger synchronization when  
processor frequency varies. Bidirectional pin with internal  
pull-up.  
Note: LOW on this pin while RESET is LOW, enables pins  
P1[31:26] to operate as Debug port after reset.  
P1[27]/TDO  
P1[28]/TDI  
P1[29]/TCK  
144[7]  
140[7]  
126[7]  
B2[7]  
A3[7]  
A7[7]  
O
I
TDO — Test Data out for JTAG interface.  
TDI — Test Data in for JTAG interface.  
I
TCK — Test Clock for JTAG interface. This clock must be  
slower than 16 of the CPU clock (CCLK) for the JTAG interface  
to operate.  
P1[30]/TMS  
113[7]  
43[7]  
D10[7]  
M4[7]  
I
TMS — Test Mode Select for JTAG interface.  
TRST — Test Reset for JTAG interface.  
P1[31]/TRST  
P2[0] to P2[31]  
I
I/O  
Port 2 — Port 2 is a 32-bit bidirectional I/O port with individual  
direction controls for each bit. The operation of port 2 pins  
depends upon the pin function selected via the Pin Connect  
Block.  
P2[0]/D0  
98[7]  
E12[7]  
C12[7]  
C11[7]  
B12[7]  
A13[7]  
C10[7]  
B10[7]  
A10[7]  
D9[7]  
C9[7]  
A9[7]  
A8[7]  
B7[7]  
C7[7]  
A6[7]  
B6[7]  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
D0 — External memory data line 0.  
D1 — External memory data line 1.  
D2 — External memory data line 2.  
D3 — External memory data line 3.  
D4 — External memory data line 4.  
D5 — External memory data line 5.  
D6 — External memory data line 6.  
D7 — External memory data line 7.  
D8 — External memory data line 8.  
D9 — External memory data line 9.  
D10 — External memory data line 10.  
D11 — External memory data line 11.  
D12 — External memory data line 12.  
D13 — External memory data line 13.  
D14 — External memory data line 14.  
D15 — External memory data line 15.  
D16 — External memory data line 16.  
D17 — External memory data line 17.  
D18 — External memory data line 18.  
D19 — External memory data line 19.  
D20 — External memory data line 20.  
D21 — External memory data line 21.  
D22 — External memory data line 22.  
D23 — External memory data line 23.  
P2[1]/D1  
105[7]  
106[7]  
108[7]  
109[7]  
114[7]  
115[7]  
116[7]  
117[7]  
118[7]  
120[7]  
124[7]  
125[7]  
127[7]  
129[7]  
130[7]  
131[7]  
132[7]  
133[7]  
134[7]  
136[7]  
137[7]  
1[7]  
P2[2]/D2  
P2[3]/D3  
P2[4]/D4  
P2[5]/D5  
P2[6]/D6  
P2[7]/D7  
P2[8]/D8  
P2[9]/D9  
P2[10]/D10  
P2[11]/D11  
P2[12]/D12  
P2[13]/D13  
P2[14]/D14  
P2[15]/D15  
P2[16]/D16  
P2[17]/D17  
P2[18]/D18  
P2[19]/D19  
P2[20]/D20  
P2[21]/D21  
P2[22]/D22  
P2[23]/D23  
C6[7]  
D6[7]  
A5[7]  
B5[7]  
D5[7]  
A4[7]  
A1[7]  
E3[7]  
10[7]  
LPC2292_2294_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 10 December 2007  
11 of 54  
LPC2292/LPC2294  
NXP Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
Table 4.  
Symbol  
Pin description …continued  
Pin (LQFP)  
Pin  
(TFBGA)[1]  
Type  
Description  
P2[24]/D24  
P2[25]/D25  
11[7]  
12[7]  
13[7]  
E2[7]  
E1[7]  
F4[7]  
I/O  
I/O  
I/O  
I
D24 — External memory data line 24.  
D25 — External memory data line 25.  
D26 — External memory data line 26.  
P2[26]/D26/  
BOOT0  
BOOT0 — While RESET is low, together with BOOT1 controls  
booting and internal operation. Internal pull-up ensures high  
state if pin is left unconnected.  
P2[27]/D27/  
BOOT1  
16[7]  
F1[7]  
I/O  
I
D27 — External memory data line 27.  
BOOT1 — While RESET is low, together with BOOT0 controls  
booting and internal operation. Internal pull-up ensures high  
state if pin is left unconnected.  
BOOT1:0 = 00 selects 8-bit memory on CS0 for boot.  
BOOT1:0 = 01 selects 16-bit memory on CS0 for boot.  
BOOT1:0 = 10 selects 32-bit memory on CS0 for boot.  
BOOT1:0 = 11 selects internal flash memory.  
D28 — External memory data line 28.  
P2[28]/D28  
P2[29]/D29  
17[7]  
18[7]  
19[4]  
G2[7]  
G1[7]  
G3[4]  
I/O  
I/O  
I/O  
I
D29 — External memory data line 29.  
P2[30]/D30/  
AIN4  
D30 — External memory data line 30.  
AIN4 — ADC, input 4. This analog input is always connected  
to its pin.  
P2[31]/D31/  
AIN5  
20[4]  
G4[4]  
I/O  
I
D31 — External memory data line 31.  
AIN5 — ADC, input 5. This analog input is always connected  
to its pin.  
P3[0] to P3[31]  
I/O  
Port 3 — Port 3 is a 32-bit bidirectional I/O port with individual  
direction controls for each bit. The operation of port 3 pins  
depends upon the pin function selected via the Pin Connect  
Block.  
P3[0]/A0  
89[7]  
88[7]  
87[7]  
81[7]  
80[7]  
74[7]  
73[7]  
72[7]  
71[7]  
66[7]  
65[7]  
64[7]  
63[7]  
62[7]  
56[7]  
55[7]  
53[7]  
G12[7]  
H13[7]  
H12[7]  
J10[7]  
K13[7]  
M13[7]  
N13[7]  
M12[7]  
N12[7]  
M10[7]  
N10[7]  
K9[7]  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
A0 — External memory address line 0.  
A1 — External memory address line 1.  
A2 — External memory address line 2.  
A3 — External memory address line 3.  
A4 — External memory address line 4.  
A5 — External memory address line 5.  
A6 — External memory address line 6.  
A7 — External memory address line 7.  
A8 — External memory address line 8.  
A9 — External memory address line 9.  
A10 — External memory address line 10.  
A11 — External memory address line 11.  
A12 — External memory address line 12.  
A13 — External memory address line 13.  
A14 — External memory address line 14.  
A15 — External memory address line 15.  
A16 — External memory address line 16.  
P3[1]/A1  
P3[2]/A2  
P3[3]/A3  
P3[4]/A4  
P3[5]/A5  
P3[6]/A6  
P3[7]/A7  
P3[8]/A8  
P3[9]/A9  
P3[10]/A10  
P3[11]/A11  
P3[12]/A12  
P3[13]/A13  
P3[14]/A14  
P3[15]/A15  
P3[16]/A16  
L9[7]  
M9[7]  
K7[7]  
L7[7]  
M7[7]  
LPC2292_2294_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 10 December 2007  
12 of 54  
LPC2292/LPC2294  
NXP Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
Table 4.  
Symbol  
Pin description …continued  
Pin (LQFP)  
Pin  
(TFBGA)[1]  
Type  
Description  
P3[17]/A17  
P3[18]/A18  
P3[19]/A19  
P3[20]/A20  
P3[21]/A21  
P3[22]/A22  
48[7]  
47[7]  
46[7]  
45[7]  
44[7]  
41[7]  
40[7]  
N5[7]  
M5[7]  
L5[7]  
K5[7]  
N4[7]  
K4[7]  
N3[7]  
O
O
O
O
O
O
I/O  
O
O
A17 — External memory address line 17.  
A18 — External memory address line 18.  
A19 — External memory address line 19.  
A20 — External memory address line 20.  
A21 — External memory address line 21.  
A22 — External memory address line 22.  
A23 — External memory address line 23.  
XCLK — Clock output.  
P3[23]/A23/  
XCLK  
P3[24]/CS3  
P3[25]/CS2  
P3[26]/CS1  
P3[27]/WE  
36[7]  
35[7]  
30[7]  
M2[7]  
M1[7]  
K2[7]  
CS3 — LOW-active Chip Select 3 signal.  
(Bank 3 addresses range 0x8300 0000 to 0x83FF FFFF)  
CS2 — LOW-active Chip Select 2 signal.  
(Bank 2 addresses range 0x8200 0000 to 0x82FF FFFF)  
CS1 — LOW-active Chip Select 1 signal.  
(Bank 1 addresses range 0x8100 0000 to 0x81FF FFFF)  
WE — LOW-active Write enable signal.  
O
O
29[7]  
28[4]  
K1[7]  
J4[4]  
O
O
I
P3[28]/BLS3/  
AIN7  
BLS3 — LOW-active Byte Lane Select signal (Bank 3).  
AIN7 — ADC, input 7. This analog input is always connected  
to its pin.  
P3[29]/BLS2/  
AIN6  
27[6]  
J3[6]  
O
I
BLS2 — LOW-active Byte Lane Select signal (Bank 2).  
AIN6 — ADC, input 6. This analog input is always connected  
to its pin.  
P3[30]/BLS1  
P3[31]/BLS0  
TD1  
97[6]  
96[6]  
22[7]  
135[8]  
E13[6]  
F10[6]  
H2[7]  
O
O
O
I
BLS1 — LOW-active Byte Lane Select signal (Bank 1).  
BLS0 — LOW-active Byte Lane Select signal (Bank 0).  
TD1: CAN1 transmitter output.  
RESET  
C5[8]  
External Reset input: A LOW on this pin resets the device,  
causing I/O ports and peripherals to take on their default  
states, and processor execution to begin at address 0. TTL  
with hysteresis, 5 V tolerant.  
XTAL1  
142[9]  
141[9]  
C3[9]  
B3[9]  
I
Input to the oscillator circuit and internal clock generator  
circuits.  
XTAL2  
VSS  
O
I
Output from the oscillator amplifier.  
3, 9, 26, 38, C2, E4, J2,  
54, 67, 79, N2, N7, L10,  
93, 103, 107, K12, F13,  
Ground: 0 V reference.  
111, 128  
D11, B13,  
B11, D7  
VSSA  
139  
C4  
I
I
I
Analog ground: 0 V reference. This should nominally be the  
same voltage as VSS, but should be isolated to minimize noise  
and error.  
VSSA(PLL)  
138  
B4  
PLL analog ground: 0 V reference. This should nominally be  
the same voltage as VSS, but should be isolated to minimize  
noise and error.  
VDD(1V8)  
37, 110  
N1, A12  
1.8 V core power supply: This is the power supply voltage  
for internal circuitry.  
LPC2292_2294_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 10 December 2007  
13 of 54  
LPC2292/LPC2294  
NXP Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
Table 4.  
Symbol  
Pin description …continued  
Pin (LQFP)  
Pin  
(TFBGA)[1]  
Type  
Description  
VDDA(1V8)  
143  
A2  
I
Analog 1.8 V core power supply: This is the power supply  
voltage for internal circuitry. This should be nominally the  
same voltage as VDD(1V8) but should be isolated to minimize  
noise and error.  
VDD(3V3)  
2, 31, 39, 51, B1, K3, M3,  
57, 77, 94, M6, N8, K10,  
104, 112, 119 F12, C13,  
A11, B9  
I
I
3.3 V pad power supply: This is the power supply voltage for  
the I/O ports.  
VDDA(3V3)  
14  
F3  
Analog 3.3 V pad power supply: This should be nominally  
the same voltage as VDD(3V3) but should be isolated to  
minimize noise and error.  
[1] LPC2294 only.  
[2] 5 V tolerant pad providing digital I/O functions with TTL levels and hysteresis and 10 ns slew rate control.  
[3] SSP interface available on LPC2292/2294/01 only.  
[4] 5 V tolerant pad providing digital I/O functions with TTL levels and hysteresis and 10 ns slew rate control. If configured for an input  
function, this pad utilizes built-in glitch filter that blocks pulses shorter than 3 ns.  
[5] Open drain 5 V tolerant digital I/O I2C-bus 400 kHz specification compatible pad. It requires external pull-up to provide an output  
functionality.  
[6] 5 V tolerant pad providing digital I/O (with TTL levels and hysteresis and 10 ns slew rate control) and analog input function. If configured  
for a digital input function, this pad utilizes built-in glitch filter that blocks pulses shorter than 3 ns. When configured as an ADC input,  
digital section of the pad is disabled.  
[7] 5 V tolerant pad with built-in pull-up resistor providing digital I/O functions with TTL levels and hysteresis and 10 ns slew rate control.  
The pull-up resistor’s value ranges from 60 kto 300 k.  
[8] 5 V tolerant pad providing digital input (with TTL levels and hysteresis) function only.  
[9] Pad provides special analog functionality.  
LPC2292_2294_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 10 December 2007  
14 of 54  
LPC2292/LPC2294  
NXP Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
6. Functional description  
6.1 Architectural overview  
The ARM7TDMI-S is a general purpose 32-bit microprocessor, which offers high  
performance and very low power consumption. The ARM architecture is based on RISC  
principles, and the instruction set and related decode mechanism are much simpler than  
those of microprogrammed CISC. This simplicity results in a high instruction throughput  
and impressive real-time interrupt response from a small and cost-effective processor  
core.  
Pipeline techniques are employed so that all parts of the processing and memory systems  
can operate continuously. Typically, while one instruction is being executed, its successor  
is being decoded, and a third instruction is being fetched from memory.  
The ARM7TDMI-S processor also employs a unique architectural strategy known as  
Thumb, which makes it ideally suited to high-volume applications with memory  
restrictions, or applications where code density is an issue.  
The key idea behind Thumb is that of a super-reduced instruction set. Essentially, the  
ARM7TDMI-S processor has two instruction sets:  
The standard 32-bit ARM set  
A 16-bit Thumb set  
The Thumb set’s 16-bit instruction length allows it to approach twice the density of  
standard ARM code while retaining most of the ARM’s performance advantage over a  
traditional 16-bit processor using 16-bit registers. This is possible because Thumb code  
operates on the same 32-bit register set as ARM code.  
Thumb code is able to provide up to 65 % of the code size of ARM, and 160 % of the  
performance of an equivalent ARM processor connected to a 16-bit memory system.  
6.2 On-chip flash program memory  
The LPC2292/2294 incorporate a 256 kB flash memory system respectively. This memory  
may be used for both code and data storage. Programming of the flash memory may be  
accomplished in several ways. It may be programmed In System via the serial port. The  
application program may also erase and/or program the flash while the application is  
running, allowing a great degree of flexibility for data storage field firmware upgrades, etc.  
When the on-chip bootloader is used, 248 kB of flash memory is available for user code.  
The LPC2292/2294 flash memory provides a minimum of 100000 erase/write cycles and  
20 years of data retention.  
On-chip bootloader (as of revision 1.60) provides Code Read Protection (CRP) for the  
LPC2292/2294 on-chip flash memory. When the CRP is enabled, the JTAG debug port,  
external memory boot and ISP commands accessing either the on-chip RAM or flash  
memory are disabled. However, the ISP flash erase command can be executed at any  
time (no matter whether the CRP is on or off). Removal of CRP is achieved by erasure of  
full on-chip user flash. With the CRP off, full access to the chip via the JTAG and/or ISP is  
restored.  
LPC2292_2294_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 10 December 2007  
15 of 54  
LPC2292/LPC2294  
NXP Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
6.3 On-chip SRAM  
On-chip SRAM may be used for code and/or data storage. The SRAM may be accessed  
as 8-bit, 16-bit, and 32-bit. The LPC2292/2294 provide 16 kB of SRAM.  
6.4 Memory map  
The LPC2292/2294 memory maps incorporate several distinct regions, as shown in  
Figure 4.  
In addition, the CPU interrupt vectors may be re-mapped to allow them to reside in either  
flash memory (the default) or on-chip static RAM. This is described in Section 6.19  
“System control”.  
4.0 GB  
3.75 GB  
3.5 GB  
0xFFFF FFFF  
AHB PERIPHERALS  
APB PERIPHERALS  
0xF000 0000  
0xEFFF FFFF  
0xE000 0000  
0xDFFF FFFF  
0xC000 0000  
3.0 GB  
RESERVED ADDRESS SPACE  
0x8000 0000  
0x7FFF FFFF  
2.0 GB  
BOOT BLOCK (RE-MAPPED FROM  
ON-CHIP FLASH MEMORY)  
0x7FFF E000  
0x7FFF DFFF  
RESERVED ADDRESS SPACE  
16 kB ON-CHIP STATIC RAM  
0x4000 4000  
0x4000 3FFF  
0x4000 0000  
0x3FFF FFFF  
1.0 GB  
RESERVED ADDRESS SPACE  
0x0004 0000  
0x0003 FFFF  
256 kB ON-CHIP FLASH MEMORY  
0x0000 0000  
0.0 GB  
002aaa754  
Fig 4. LPC2292/2294 memory map  
LPC2292_2294_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 10 December 2007  
16 of 54  
LPC2292/LPC2294  
NXP Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
6.5 Interrupt controller  
The VIC accepts all of the interrupt request inputs and categorizes them as Fast Interrupt  
Request (FIQ), vectored Interrupt Request (IRQ), and non-vectored IRQ as defined by  
programmable settings. The programmable assignment scheme means that priorities of  
interrupts from the various peripherals can be dynamically assigned and adjusted.  
FIQ has the highest priority. If more than one request is assigned to FIQ, the VIC  
combines the requests to produce the FIQ signal to the ARM processor. The fastest  
possible FIQ latency is achieved when only one request is classified as FIQ, because then  
the FIQ service routine can simply start dealing with that device. But if more than one  
request is assigned to the FIQ class, the FIQ service routine can read a word from the VIC  
that identifies which FIQ source(s) is (are) requesting an interrupt.  
Vectored IRQs have the middle priority. Sixteen of the interrupt requests can be assigned  
to this category. Any of the interrupt requests can be assigned to any of the 16 vectored  
IRQ slots, among which slot 0 has the highest priority and slot 15 has the lowest.  
Non-vectored IRQs have the lowest priority.  
The VIC combines the requests from all the vectored and non-vectored IRQs to produce  
the IRQ signal to the ARM processor. The IRQ service routine can start by reading a  
register from the VIC and jumping there. If any of the vectored IRQs are requesting, the  
VIC provides the address of the highest-priority requesting IRQs service routine,  
otherwise it provides the address of a default routine that is shared by all the non-vectored  
IRQs. The default routine can read another VIC register to see what IRQs are active.  
6.5.1 Interrupt sources  
Table 5 lists the interrupt sources for each peripheral function. Each peripheral device has  
one interrupt line connected to the VIC, but may have several internal interrupt flags.  
Individual interrupt flags may also represent more than one interrupt source.  
Table 5.  
Block  
Interrupt sources  
Flag(s)  
VIC channel #  
WDT  
Watchdog Interrupt (WDINT)  
0
1
2
3
4
-
Reserved for software interrupts only  
EmbeddedICE, DbgCommRx  
ARM Core  
ARM Core  
Timer 0  
EmbeddedICE, DbgCommTx  
Match 0 to 3 (MR0, MR1, MR2, MR3)  
Capture 0 to 3 (CR0, CR1, CR2, CR3)  
Match 0 to 3 (MR0, MR1, MR2, MR3)  
Capture 0 to 3 (CR0, CR1, CR2, CR3)  
RX Line Status (RLS)  
Timer 1  
UART0  
5
6
Transmit Holding Register Empty (THRE)  
RX Data Available (RDA)  
Character Time-out Indicator (CTI)  
LPC2292_2294_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 10 December 2007  
17 of 54  
LPC2292/LPC2294  
NXP Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
Table 5.  
Interrupt sources …continued  
Block  
Flag(s)  
VIC channel #  
UART1  
RX Line Status (RLS)  
7
Transmit Holding Register empty (THRE)  
RX Data Available (RDA)  
Character Time-out Indicator (CTI)  
Modem Status Interrupt (MSI)  
Match 0 to 6 (MR0, MR1, MR2, MR3, MR4, MR5, MR6)  
SI (state change)  
PWM0  
I2C  
8
9
SPI0  
SPIF, MODF  
10  
SPI1 and SSP[1] SPIF, MODF and TXRIS, RXRIS, RTRIS, RORRIS  
11  
PLL  
PLL Lock (PLOCK)  
12  
RTC  
RTCCIF (Counter Increment), RTCALF (Alarm)  
13  
System Control External Interrupt 0 (EINT0)  
External Interrupt 1 (EINT1)  
14  
15  
External Interrupt 2 (EINT2)  
16  
External Interrupt 3 (EINT3)  
17  
ADC  
CAN  
ADC  
18  
1 ORed CAN Acceptance Filter  
CAN1 (TX int, RX int)  
19  
20, 21  
22, 23  
24, 25  
26, 27  
CAN2 (TX int, RX int)  
CAN3 (TX int, RX int) - LPC2294 only  
CAN4 (TX int, RX int) - LPC2294 only  
[1] SSP interface available on LPC2292/2294/01 only.  
6.6 Pin connect block  
The pin connect block allows selected pins of the microcontroller to have more than one  
function. Configuration registers control the multiplexers to allow connection between the  
pin and the on chip peripherals. Peripherals should be connected to the appropriate pins  
prior to being activated, and prior to any related interrupt(s) being enabled. Activity of any  
enabled peripheral function that is not mapped to a related pin should be considered  
undefined.  
6.7 External memory controller  
The external Static Memory Controller is a module which provides an interface between  
the system bus and external (off-chip) memory devices. It provides support for up to four  
independently configurable memory banks (16 MB each with byte lane enable control)  
simultaneously. Each memory bank is capable of supporting SRAM, ROM, flash EPROM,  
burst ROM memory, or some external I/O devices.  
Each memory bank may be 8-bit, 16-bit, or 32-bit wide.  
LPC2292_2294_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 10 December 2007  
18 of 54  
LPC2292/LPC2294  
NXP Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
6.8 General purpose parallel I/O (GPIO) and Fast I/O  
Device pins that are not connected to a specific peripheral function are controlled by the  
parallel I/O registers. Pins may be dynamically configured as inputs or outputs. Separate  
registers allow setting or clearing any number of outputs simultaneously. The value of the  
output register may be read back, as well as the current state of the port pins.  
6.8.1 Features  
Bit-level set and clear registers allow a single instruction set or clear of any number of  
bits in one port.  
Direction control of individual bits.  
Separate control of output set and clear.  
All I/O default to inputs after reset.  
6.8.2 Features added with the Fast GPIO set of registers available on  
LPC2292/2294/01 only  
Fast GPIO registers are relocated to the ARM local bus for the fastest possible I/O  
timing, enabling port pin toggling up to 3.5 times faster than earlier LPC2000 devices.  
Mask registers allow treating sets of port bits as a group, leaving other bits  
unchanged.  
All Fast GPIO registers are byte addressable.  
Entire port value can be written in one instruction.  
Ports are accessible via either the legacy group of registers (GPIOs) or the group of  
registers providing accelerated port access (Fast GPIOs).  
6.9 10-bit ADC  
The LPC2292/2294 each contain a single 10-bit successive approximation ADC with four  
multiplexed channels.  
6.9.1 Features  
Measurement range of 0 V to 3 V.  
Capable of performing more than 400000 10-bit samples per second.  
Burst conversion mode for single or multiple inputs.  
Optional conversion on transition on input pin or Timer Match signal.  
6.9.2 ADC features available in LPC2292/2294/01 only  
Every analog input has a dedicated result register to reduce interrupt overhead.  
Every analog input can generate an interrupt once the conversion is completed.  
The ADC pads are 5 V tolerant when configured for digital I/O function(s).  
LPC2292_2294_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 10 December 2007  
19 of 54  
LPC2292/LPC2294  
NXP Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
6.10 CAN controllers and acceptance filter  
The LPC2292/2294 each contain two/four CAN controllers. The CAN is a serial  
communications protocol which efficiently supports distributed real-time control with a  
very high level of security. Its domain of application ranges from high-speed networks to  
low cost multiplex wiring.  
6.10.1 Features  
Data rates up to 1 Mbit/s on each bus.  
32-bit register and RAM access.  
Compatible with CAN specification 2.0B, ISO 11898-1.  
Global Acceptance Filter recognizes 11-bit and 29-bit RX identifiers for all CAN buses.  
Acceptance Filter can provide FullCAN-style automatic reception for selected  
Standard identifiers.  
6.11 UARTs  
The LPC2292/2294 each contain two UARTs. In addition to standard transmit and receive  
data lines, the UART1 also provides a full modem control handshake interface.  
6.11.1 Features  
16 B Receive and Transmit FIFOs.  
Register locations conform to 16C550 industry standard.  
Receiver FIFO trigger points at 1 B, 4 B, 8 B, and 14 B  
Built-in fractional baud rate generator covering wide range of baud rates without a  
need for external crystals of particular values.  
Transmission FIFO control enables implementation of software (XON/XOFF) flow  
control on both UARTs.  
UART1 is equipped with standard modem interface signals. This module also  
provides full support for hardware flow control (auto-CTS/RTS).  
6.11.2 UART features available in LPC2292/2294/01 only  
Compared to previous LPC2000 microcontrollers, UARTs in LPC2292/2294/01 introduce  
a fractional baud rate generator for both UARTs, enabling these microcontrollers to  
achieve standard baud rates such as 115200 Bd with any crystal frequency above 2 MHz.  
In addition, auto-CTS/RTS flow-control functions are fully implemented in hardware.  
Fractional baud rate generator enables standard baud rates such as 115200 Bd to be  
achieved with any crystal frequency above 2 MHz.  
Auto-bauding.  
Auto-CTS/RTS flow-control fully implemented in hardware.  
6.12 I2C-bus serial I/O controller  
The I2C-bus is bidirectional, for inter-IC control using only two wires: a serial clock line  
(SCL), and a serial data line (SDA). Each device is recognized by a unique address and  
can operate as either a receiver-only device (e.g., an LCD driver or a transmitter with the  
capability to both receive and send information (such as memory). Transmitters and/or  
© NXP B.V. 2007. All rights reserved.  
LPC2292_2294_6  
Product data sheet  
Rev. 06 — 10 December 2007  
20 of 54  
LPC2292/LPC2294  
NXP Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
receivers can operate in either master or slave mode, depending on whether the chip has  
to initiate a data transfer or is only addressed. The I2C-bus is a multi-master bus, it can be  
controlled by more than one bus master connected to it.  
The I2C-bus implemented in LPC2292/2294 supports bit rate up to 400 kbit/s (Fast  
I2C-bus).  
6.12.1 Features  
Compliant with standard I2C-bus interface.  
Easy to configure as master, slave, or master/slave.  
Programmable clocks allow versatile rate control.  
Bidirectional data transfer between masters and slaves.  
Multi-master bus (no central master).  
Arbitration between simultaneously transmitting masters without corruption of serial  
data on the bus.  
Serial clock synchronization allows devices with different bit rates to communicate via  
one serial bus.  
Serial clock synchronization can be used as a handshake mechanism to suspend and  
resume serial transfer.  
The I2C-bus may be used for test and diagnostic purposes.  
6.13 SPI serial I/O controller  
The LPC2292/2294 each contain two SPIs. The SPI is a full duplex serial interface,  
designed to be able to handle multiple masters and slaves connected to a given bus. Only  
a single master and a single slave can communicate on the interface during a given data  
transfer. During a data transfer the master always sends a byte of data to the slave, and  
the slave always sends a byte of data to the master.  
6.13.1 Features  
Compliant with Serial Peripheral Interface (SPI) specification.  
Synchronous, Serial, Full Duplex communication.  
Combined SPI master and slave.  
Maximum data bit rate of 18 of the input clock rate.  
6.13.2 Features available in LPC2292/2294/01 only  
Eight to 16 bits per frame.  
When the SPI interface is used in Master mode, the SSELn pin is not needed (can be  
used for a different function).  
LPC2292_2294_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 10 December 2007  
21 of 54  
LPC2292/LPC2294  
NXP Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
6.14 SSP controller (LPC2292/94/01 only)  
The SSP is a controller capable of operation on a SPI, 4-wire SSI, or Microwire bus. It can  
interact with multiple masters and slaves on the bus. Only a single master and a single  
slave can communicate on the bus during a given data transfer. Data transfers are in  
principle full duplex, with frames of four to 16 bits of data flowing from the master to the  
slave and from the slave to the master.  
While the SSP and SPI1 peripherals share the same physical pins, it is not possible to  
have both of these two peripherals active at the same time. Application can switch on the  
fly from SPI1 to SSP and back.  
6.14.1 Features  
Compatible with Motorola’s SPI, Texas Instrument’s 4-wire SSI, and National  
Semiconductor’s Microwire buses.  
Synchronous serial communication.  
Master or slave operation.  
8-frame FIFOs for both transmit and receive.  
Four to 16 bits per frame.  
6.15 General purpose timers  
The Timer/Counter is designed to count cycles of the peripheral clock (PCLK) or an  
externally supplied clock and optionally generate interrupts or perform other actions at  
specified timer values, based on four match registers. It also includes four capture inputs  
to trap the timer value when an input signal transitions, optionally generating an interrupt.  
Multiple pins can be selected to perform a single capture or match function, providing an  
application with ‘or’ and ‘and’, as well as ‘broadcast’ functions among them.  
6.15.1 Features  
A 32-bit Timer/Counter with a programmable 32-bit Prescaler.  
Timer or external event counter operation  
Four 32-bit capture channels per timer that can take a snapshot of the timer value  
when an input signal transitions. A capture event may also optionally generate an  
interrupt.  
Four 32-bit match registers that allow:  
Continuous operation with optional interrupt generation on match.  
Stop timer on match with optional interrupt generation.  
Reset timer on match with optional interrupt generation.  
Four external outputs per timer corresponding to match registers, with the following  
capabilities:  
Set LOW on match.  
Set HIGH on match.  
Toggle on match.  
Do nothing on match.  
LPC2292_2294_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 10 December 2007  
22 of 54  
LPC2292/LPC2294  
NXP Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
6.15.2 Features available in LPC2292/2294/01 only  
The LPC2292/2294/01 can count external events on one of the capture inputs if the  
external pulse lasts at least one half of the period of the PCLK. In this configuration,  
unused capture lines can be selected as regular timer capture inputs, or used as external  
interrupts.  
Timer can count cycles of either the peripheral clock (PCLK) or an externally supplied  
clock.  
When counting cycles of an externally supplied clock, only one of the timer’s capture  
inputs can be selected as the timer’s clock. The rate of such a clock is limited to  
PCLK / 4. Duration of HIGH/LOW levels on the selected CAP input cannot be shorter  
than 1 / (2PCLK).  
6.16 Watchdog timer  
The purpose of the watchdog is to reset the microcontroller within a reasonable amount of  
time if it enters an erroneous state. When enabled, the watchdog will generate a system  
reset if the user program fails to ‘feed’ (or reload) the watchdog within a predetermined  
amount of time.  
6.16.1 Features  
Internally resets chip if not periodically reloaded.  
Debug mode.  
Enabled by software but requires a hardware reset or a watchdog reset/interrupt to be  
disabled.  
Incorrect/incomplete feed sequence causes reset/interrupt if enabled.  
Flag to indicate watchdog reset.  
Programmable 32-bit timer with internal prescaler.  
Selectable time period from (Tcy(PCLK) × 256 × 4) to (Tcy(PCLK) × 232 × 4) in multiples of  
T
cy(PCLK) × 4.  
6.17 Real-time clock  
The Real-Time Clock (RTC) is designed to provide a set of counters to measure time  
when normal or idle operating mode is selected. The RTC has been designed to use little  
power, making it suitable for battery powered systems where the CPU is not running  
continuously (Idle mode).  
6.17.1 Features  
Measures the passage of time to maintain a calendar and clock.  
Ultra-low power design to support battery powered systems.  
Provides Seconds, Minutes, Hours, Day of Month, Month, Year, Day of Week, and Day  
of Year.  
Programmable Reference Clock Divider allows adjustment of the RTC to match  
various crystal frequencies.  
LPC2292_2294_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 10 December 2007  
23 of 54  
LPC2292/LPC2294  
NXP Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
6.18 Pulse width modulator  
The PWM is based on the standard Timer block and inherits all of its features, although  
only the PWM function is pinned out on the LPC2292/2294. The Timer is designed to  
count cycles of the peripheral clock (PCLK) and optionally generate interrupts or perform  
other actions when specified timer values occur, based on seven match registers. The  
PWM function is also based on match register events.  
The ability to separately control rising and falling edge locations allows the PWM to be  
used for more applications. For instance, multi-phase motor control typically requires three  
non-overlapping PWM outputs with individual control of all three pulse widths and  
positions.  
Two match registers can be used to provide a single edge controlled PWM output. One  
match register (MR0) controls the PWM cycle rate, by resetting the count upon match.  
The other match register controls the PWM edge position. Additional single edge  
controlled PWM outputs require only one match register each, since the repetition rate is  
the same for all PWM outputs. Multiple single edge controlled PWM outputs will all have a  
rising edge at the beginning of each PWM cycle, when an MR0 match occurs.  
Three match registers can be used to provide a PWM output with both edges controlled.  
Again, the MR0 match register controls the PWM cycle rate. The other match registers  
control the two PWM edge positions. Additional double edge controlled PWM outputs  
require only two match registers each, since the repetition rate is the same for all PWM  
outputs.  
With double edge controlled PWM outputs, specific match registers control the rising and  
falling edge of the output. This allows both positive going PWM pulses (when the rising  
edge occurs prior to the falling edge), and negative going PWM pulses (when the falling  
edge occurs prior to the rising edge).  
6.18.1 Features  
Seven match registers allow up to six single edge controlled or three double edge  
controlled PWM outputs, or a mix of both types.  
The match registers also allow:  
Continuous operation with optional interrupt generation on match.  
Stop timer on match with optional interrupt generation.  
Reset timer on match with optional interrupt generation.  
Supports single edge controlled and/or double edge controlled PWM outputs. Single  
edge controlled PWM outputs all go HIGH at the beginning of each cycle unless the  
output is a constant LOW. Double edge controlled PWM outputs can have either edge  
occur at any position within a cycle. This allows for both positive going and negative  
going pulses.  
Pulse period and width can be any number of timer counts. This allows complete  
flexibility in the trade-off between resolution and repetition rate. All PWM outputs will  
occur at the same repetition rate.  
Double edge controlled PWM outputs can be programmed to be either positive going  
or negative going pulses.  
LPC2292_2294_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 10 December 2007  
24 of 54  
LPC2292/LPC2294  
NXP Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
Match register updates are synchronized with pulse outputs to prevent generation of  
erroneous pulses. Software must ‘release’ new match values before they can become  
effective.  
May be used as a standard timer if the PWM mode is not enabled.  
A 32-bit Timer/Counter with a programmable 32-bit prescaler.  
6.19 System control  
6.19.1 Crystal oscillator  
The oscillator supports crystals in the range of 1 MHz to 30 MHz. The oscillator output  
frequency is called fosc and the ARM processor clock frequency is referred to as CCLK for  
purposes of rate equations, etc. fosc and CCLK are the same value unless the PLL is  
running and connected. Refer to Section 6.19.2 “PLLfor additional information.  
6.19.2 PLL  
The PLL accepts an input clock frequency in the range of 10 MHz to 25 MHz. The input  
frequency is multiplied up into the range of 10 MHz to 60 MHz with a Current Controlled  
Oscillator (CCO). The multiplier can be an integer value from 1 to 32 (in practice, the  
multiplier value cannot be higher than 6 on this family of microcontrollers due to the upper  
frequency limit of the CPU). The CCO operates in the range of 156 MHz to 320 MHz, so  
there is an additional divider in the loop to keep the CCO within its frequency range while  
the PLL is providing the desired output frequency. The output divider may be set to divide  
by 2, 4, 8, or 16 to produce the output clock. Since the minimum output divider value is 2,  
it is insured that the PLL output has a 50 % duty cycle.The PLL is turned off and bypassed  
following a chip reset and may be enabled by software. The program must configure and  
activate the PLL, wait for the PLL to Lock, then connect to the PLL as a clock source. The  
PLL settling time is 100 µs.  
6.19.3 Reset and wake-up timer  
Reset has two sources on the LPC2292/2294: the RESET pin and watchdog reset. The  
RESET pin is a Schmitt trigger input pin with an additional glitch filter. Assertion of chip  
reset by any source starts the Wake-up Timer (see Wake-up Timer description below),  
causing the internal chip reset to remain asserted until the external reset is de-asserted,  
the oscillator is running, a fixed number of clocks have passed, and the on-chip flash  
controller has completed its initialization.  
When the internal reset is removed, the processor begins executing at address 0, which is  
the reset vector. At that point, all of the processor and peripheral registers have been  
initialized to predetermined values.  
The Wake-up Timer ensures that the oscillator and other analog functions required for  
chip operation are fully functional before the processor is allowed to execute instructions.  
This is important at power-on, all types of reset, and whenever any of the aforementioned  
functions are turned off for any reason. Since the oscillator and other functions are turned  
off during Power-down mode, any wake-up of the processor from Power-down mode  
makes use of the Wake-up Timer.  
LPC2292_2294_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 10 December 2007  
25 of 54  
LPC2292/LPC2294  
NXP Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
The Wake-up Timer monitors the crystal oscillator as the means of checking whether it is  
safe to begin code execution. When power is applied to the chip, or some event caused  
the chip to exit Power-down mode, some time is required for the oscillator to produce a  
signal of sufficient amplitude to drive the clock logic. The amount of time depends on  
many factors, including the rate of VDD ramp (in the case of power-on), the type of crystal  
and its electrical characteristics (if a quartz crystal is used), as well as any other external  
circuitry (e.g. capacitors), and the characteristics of the oscillator itself under the existing  
ambient conditions.  
6.19.4 Code security (Code Read Protection - CRP)  
This feature of the LPC2292/2294/01 allows the user to enable different levels of security  
in the system so that access to the on-chip flash and use of the JTAG and ISP can be  
restricted. When needed, CRP is invoked by programming a specific pattern into a  
dedicated flash location. IAP commands are not affected by the CRP.  
There are three levels of the Code Read Protection.  
CRP1 disables access to chip via the JTAG and allows partial flash update (excluding  
flash sector 0) using a limited set of the ISP commands. This mode is useful when CRP is  
required and flash field updates are needed but all sectors can not be erased.  
CRP2 disables access to chip via the JTAG and only allows full flash erase and update  
using a reduced set of the ISP commands.  
Running an application with level CRP3 selected fully disables any access to chip via the  
JTAG pins and the ISP. This mode effectively disables ISP override using P0[14] pin, too. It  
is up to the user’s application to provide (if needed) flash update mechanism using IAP  
calls or call reinvoke ISP command to enable flash update via UART0.  
CAUTION  
If level three Code Read Protection (CRP3) is selected, no future factory testing can be  
performed on the device.  
Remark: Devices without a /00 or /01 in the name have only a security level equivalent to  
CRP2 available.  
6.19.5 External interrupt inputs  
The LPC2292/2294 include up to nine edge or level sensitive External Interrupt Inputs as  
selectable pin functions. When the pins are combined, external events can be processed  
as four independent interrupt signals. The External Interrupt Inputs can optionally be used  
to wake up the processor from Power-down mode.  
6.19.6 Memory mapping control  
The Memory Mapping Control alters the mapping of the interrupt vectors that appear  
beginning at address 0x0000 0000. Vectors may be mapped to the bottom of the on-chip  
flash memory, or to the on-chip static RAM. This allows code running in different memory  
spaces to have control of the interrupts.  
LPC2292_2294_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 10 December 2007  
26 of 54  
LPC2292/LPC2294  
NXP Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
6.19.7 Power control  
The LPC2292/2294 support two reduced power modes: Idle mode and Power-down  
mode. In Idle mode, execution of instructions is suspended until either a reset or interrupt  
occurs. Peripheral functions continue operation during Idle mode and may generate  
interrupts to cause the processor to resume execution. Idle mode eliminates power used  
by the processor itself, memory systems and related controllers, and internal buses.  
In Power-down mode, the oscillator is shut down, and the chip receives no internal clocks.  
The processor state and registers, peripheral registers, and internal SRAM values are  
preserved throughout Power-down mode, and the logic levels of chip output pins remain  
static. The Power-down mode can be terminated and normal operation resumed by either  
a reset or certain specific interrupts that are able to function without clocks. Since all  
dynamic operation of the chip is suspended, Power-down mode reduces chip power  
consumption to nearly zero.  
A Power Control for Peripherals feature allows individual peripherals to be turned off if  
they are not needed in the application, resulting in additional power savings.  
6.19.8 APB bus  
The APB divider determines the relationship between the processor clock (CCLK) and the  
clock used by peripheral devices (PCLK). The APB divider serves two purposes. The first  
is to provide peripherals with the desired PCLK via APB bus so that they can operate at  
the speed chosen for the ARM processor. In order to achieve this, the APB bus may be  
slowed down to 12 to 14 of the processor clock rate. Because the APB bus must work  
properly at power-up (and its timing cannot be altered if it does not work since the APB  
divider control registers reside on the APB bus), the default condition at reset is for the  
APB bus to run at 14 of the processor clock rate. The second purpose of the APB divider  
is to allow power savings when an application does not require any peripherals to run at  
the full processor rate. Because the APB divider is connected to the PLL output, the PLL  
remains active (if it was running) during Idle mode.  
6.20 Emulation and debugging  
The LPC2292/2294 support emulation and debugging via a JTAG serial port. A trace port  
allows tracing program execution. Debugging and trace functions are multiplexed only with  
GPIOs on Port 1. This means that all communication, timer and interface peripherals  
residing on Port 0 are available during the development and debugging phase as they are  
when the application is run in the embedded system itself.  
6.20.1 EmbeddedICE  
Standard ARM EmbeddedICE logic provides on-chip debug support. The debugging of  
the target system requires a host computer running the debugger software and an  
EmbeddedICE protocol converter. EmbeddedICE protocol converter converts the remote  
debug protocol commands to the JTAG data needed to access the ARM core.  
The ARM core has a Debug Communication Channel function built-in. The debug  
communication channel allows a program running on the target to communicate with the  
host debugger or another separate host without stopping the program flow or even  
entering the debug state. The debug communication channel is accessed as a  
co-processor 14 by the program running on the ARM7TDMI-S core. The debug  
LPC2292_2294_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 10 December 2007  
27 of 54  
LPC2292/LPC2294  
NXP Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
communication channel allows the JTAG port to be used for sending and receiving data  
without affecting the normal program flow. The debug communication channel data and  
control registers are mapped in to addresses in the EmbeddedICE logic.  
The JTAG clock (TCK) must be slower than 16 of the CPU clock (CCLK) for the JTAG  
interface to operate.  
6.20.2 Embedded trace  
Since the LPC2292/2294 have significant amounts of on-chip memory, it is not possible to  
determine how the processor core is operating simply by observing the external pins. The  
Embedded Trace Macrocell (ETM) provides real-time trace capability for deeply  
embedded processor cores. It outputs information about processor execution to the trace  
port.  
The ETM is connected directly to the ARM core and not to the main AMBA system bus. It  
compresses the trace information and exports it through a narrow trace port. An external  
trace port analyzer must capture the trace information under software debugger control.  
Instruction trace (or PC trace) shows the flow of execution of the processor and provides a  
list of all the instructions that were executed. Instruction trace is significantly compressed  
by only broadcasting branch addresses as well as a set of status signals that indicate the  
pipeline status on a cycle by cycle basis. Trace information generation can be controlled  
by selecting the trigger resource. Trigger resources include address comparators,  
counters and sequencers. Since trace information is compressed the software debugger  
requires a static image of the code being executed. Self-modifying code cannot be traced  
because of this restriction.  
6.20.3 RealMonitor  
RealMonitor is a configurable software module, developed by ARM Inc., which enables  
real-time debug. It is a lightweight debug monitor that runs in the background while users  
debug their foreground application. It communicates with the host using the Debug  
Communications Channel (DCC), which is present in the EmbeddedICE logic. The  
LPC2292/2294 contain a specific configuration of RealMonitor software programmed into  
the on-chip flash memory.  
LPC2292_2294_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 10 December 2007  
28 of 54  
LPC2292/LPC2294  
NXP Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
7. Limiting values  
Table 6.  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).[1]  
Symbol  
VDD(1V8)  
VDD(3V3)  
VDDA(3V3)  
VIA  
Parameter  
Conditions  
Min  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
-
Max  
Unit  
V
[2]  
[3]  
supply voltage (1.8 V)  
supply voltage (3.3 V)  
analog supply voltage (3.3 V)  
analog input voltage  
input voltage  
+2.5  
+3.6  
V
+4.6  
V
+5.1  
V
[4][5]  
[4][6]  
[7][8]  
[8][9]  
VI  
5 V tolerant I/O pins  
other I/O pins  
+6.0  
V
VDD(3V3) + 0.5  
100  
V
IDD  
supply current  
mA  
mA  
°C  
°C  
W
ISS  
ground current  
-
100  
Tj  
junction temperature  
storage temperature  
-
150  
[10]  
[11]  
Tstg  
Ptot(pack)  
65  
-
+150  
1.5  
total power dissipation (per  
package)  
based on package heat  
transfer, not device  
power consumption  
Vesd  
electrostatic discharge voltage human body model  
all pins  
2000  
+2000  
V
[1] The following applies to Table 6:  
a) This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive  
static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated maximum.  
b) Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to VSS unless  
otherwise noted.  
[2] Internal rail.  
[3] External rail.  
[4] Including voltage on outputs in 3-state mode.  
[5] Only valid when the VDD(3V3) supply voltage is present.  
[6] Not to exceed 4.6 V.  
[7] Per supply pin.  
[8] The peak current is limited to 25 times the corresponding maximum current.  
[9] Per ground pin.  
[10] Dependent on package type.  
[11] Human body model: equivalent to discharging a 100 pF capacitor through a 1.5 kseries resistor.  
LPC2292_2294_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 10 December 2007  
29 of 54  
LPC2292/LPC2294  
NXP Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
8. Static characteristics  
Table 7.  
Static characteristics  
Tamb = 40 °C to +125 °C, unless otherwise specified.  
Symbol Parameter  
Conditions  
Min  
1.65  
3.0  
Typ[1]  
1.8  
Max  
1.95  
3.6  
Unit  
V
[2]  
[3]  
VDD(1V8) supply voltage (1.8 V)  
VDD(3V3) supply voltage (3.3 V)  
3.3  
V
VDDA(3V3) analog supply voltage  
(3.3 V)  
2.5  
3.3  
3.6  
V
Standard port pins, RESET, RTCK  
IIL  
LOW-level input current  
HIGH-level input current  
OFF-state output current  
VI = 0 V; no pull-up  
-
-
-
-
-
-
3
3
3
µA  
µA  
µA  
IIH  
IOZ  
VI = VDD(3V3); no pull-down  
VO = 0 V, VO = VDD(3V3)  
;
no pull-up/down  
Ilatch  
VI  
I/O latch-up current  
input voltage  
(0.5VDD(3V3)) < VI <  
(1.5VDD(3V3)); Tj < 125 °C  
100  
0
-
-
-
mA  
V
[4][5]  
[6]  
5.5  
VO  
output voltage  
output active  
0
-
VDD(3V3)  
V
VIH  
VIL  
HIGH-level input voltage  
LOW-level input voltage  
hysteresis voltage  
2.0  
-
-
V
-
-
-
0.8  
V
Vhys  
VOH  
VOL  
IOH  
IOL  
0.4  
-
V
[7]  
[7]  
[7]  
[7]  
[8]  
HIGH-level output voltage  
LOW-level output voltage  
HIGH-level output current  
LOW-level output current  
IOH = 4 mA  
IOL = 4 mA  
V
-
DD(3V3) 0.4 -  
-
V
-
-
-
-
0.4  
-
V
VOH = VDD(3V3) 0.4 V  
VOL = 0.4 V  
4  
4
-
mA  
mA  
mA  
-
IOHS  
HIGH-level short-circuit  
output current  
VOH = 0 V  
45  
[8]  
IOLS  
LOW-level short-circuit  
output current  
VOL = VDD(3V3)  
-
-
50  
mA  
[9]  
[10]  
[9]  
Ipd  
Ipu  
pull-down current  
pull-up current  
VI = 5 V  
10  
15  
0
50  
50  
0
150  
85  
0
µA  
µA  
µA  
VI = 0 V  
VDD(3V3) < VI < 5 V  
Power consumption LPC2292, LPC2292/00, LPC2294, LPC2294/00  
IDD(act)  
active mode supply current VDD(1V8) = 1.8 V;  
CCLK = 60 MHz;  
-
50  
-
mA  
T
amb = 25 °C; code  
while(1){}  
executed from flash; all  
peripherals enabled via  
PCONP[11] register but not  
configured to run  
LPC2292_2294_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 10 December 2007  
30 of 54  
LPC2292/LPC2294  
NXP Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
Table 7.  
Static characteristics …continued  
Tamb = 40 °C to +125 °C, unless otherwise specified.  
Symbol Parameter  
IDD(pd) Power-down mode supply  
current  
Conditions  
Min  
Typ[1]  
Max  
Unit  
VDD(1V8) = 1.8 V;  
-
10  
-
µA  
T
amb = 25 °C  
VDD(1V8) = 1.8 V;  
amb = 85 °C  
VDD(1V8) = 1.8 V;  
amb = 125 °C  
Power consumption LPC2292/01 and LPC2294/01  
-
-
110  
300  
500  
µA  
µA  
T
1000  
T
IDD(act)  
active mode supply current VDD(1V8) = 1.8 V;  
CCLK = 60 MHz;  
-
45  
-
mA  
T
amb = 25 °C; code  
while(1){}  
executed from flash; all  
peripherals enabled via  
PCONP[11] register but not  
configured to run  
IDD(idle)  
Idle mode supply current  
VDD(1V8) = 1.8 V;  
CCLK = 60 MHz;  
-
11.5  
-
mA  
T
amb = 25 °C;  
executed from flash; all  
peripherals enabled via  
PCONP[11] register but not  
configured to run  
IDD(pd)  
Power-down mode supply  
current  
VDD(1V8) = 1.8 V;  
-
-
-
10  
-
-
µA  
µA  
µA  
T
amb = 25 °C  
VDD(1V8) = 1.8 V;  
amb = 85 °C  
VDD(1V8) = 1.8 V;  
amb = 125 °C  
180  
430  
T
-
T
I2C-bus pins  
VIH  
VIL  
Vhys  
VOL  
ILI  
HIGH-level input voltage  
0.7VDD(3V3)  
-
-
V
LOW-level input voltage  
hysteresis voltage  
-
-
-
-
-
-
0.3VDD(3V3)  
V
0.5VDD(3V3)  
-
V
[7]  
LOW-level output voltage  
input leakage current  
IOLS = 3 mA  
VI = VDD(3V3)  
VI = 5 V  
-
0.4  
4
V
[12]  
2
µA  
µA  
10  
22  
Oscillator pins  
Vi(XTAL1)  
input voltage on pin XTAL1  
0
0
-
-
1.8  
1.8  
V
V
Vo(XTAL2) output voltage on pin  
XTAL2  
[1] Typical ratings are not guaranteed. The values listed are at room temperature (+25 °C), nominal supply voltages.  
[2] Internal rail.  
[3] External rail.  
[4] Including voltage on outputs in 3-state mode.  
[5] VDD(3V3) supply voltages must be present.  
[6] 3-state outputs go into 3-state mode when VDD(3V3) is grounded.  
LPC2292_2294_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 10 December 2007  
31 of 54  
LPC2292/LPC2294  
NXP Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
[7] Accounts for 100 mV voltage drop in all supply lines.  
[8] Only allowed for a short time period.  
[9] Minimum condition for VI = 4.5 V, maximum condition for VI = 5.5 V.  
[10] Applies to P1[25:16].  
[11] See the LPC2119/2129/2194/2292/2294 User Manual.  
[12] To VSS  
.
LPC2292_2294_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 10 December 2007  
32 of 54  
LPC2292/LPC2294  
NXP Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
Table 8.  
ADC static characteristics  
VDDA = 2.5 V to 3.6 V; Tamb = 40 °C to +125 °C unless otherwise specified. ADC frequency 4.5 MHz.  
Symbol  
VIA  
Parameter  
Conditions  
Min  
Typ  
Max  
VDDA  
1
Unit  
V
analog input voltage  
0
-
-
-
Cia  
analog input  
capacitance  
pF  
ED  
differential linearity  
error  
-
-
±1  
LSB  
[1][2][3]  
[1][4]  
[1][5]  
[1][6]  
[1][7]  
EL(adj)  
EO  
integral non-linearity  
offset error  
-
-
-
-
-
-
-
-
±2  
LSB  
LSB  
%
±3  
EG  
gain error  
±0.5  
±4  
ET  
absolute error  
LSB  
[1] Conditions: VSSA = 0 V, VDDA = 3.3 V.  
[2] The ADC is monotonic, there are no missing codes.  
[3] The differential linearity error (ED) is the difference between the actual step width and the ideal step width. See Figure 5.  
[4] The integral non-linearity (EL(adj)) is the peak difference between the center of the steps of the actual and the ideal transfer curve after  
appropriate adjustment of gain and offset errors. See Figure 5.  
[5] The offset error (EO) is the absolute difference between the straight line which fits the actual curve and the straight line which fits the  
ideal curve. See Figure 5.  
[6] The gain error (EG) is the relative difference in percent between the straight line fitting the actual transfer curve after removing offset  
error, and the straight line which fits the ideal transfer curve. See Figure 5.  
[7] The absolute voltage error (ET) is the maximum difference between the center of the steps of the actual transfer curve of the  
non-calibrated ADC and the ideal transfer curve. See Figure 5.  
LPC2292_2294_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 10 December 2007  
33 of 54  
LPC2292/LPC2294  
NXP Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
gain  
error  
offset  
error  
E
E
O
G
1023  
1022  
1021  
1020  
1019  
1018  
(2)  
7
code  
out  
(1)  
6
5
4
3
2
1
0
(5)  
(4)  
(3)  
1 LSB  
(ideal)  
1018 1019 1020 1021 1022 1023 1024  
1
2
3
4
5
6
7
V
IA  
(LSB  
)
ideal  
V
V  
SSA  
DDA  
1 LSB =  
offset  
error  
1024  
002aaa668  
E
O
(1) Example of an actual transfer curve.  
(2) The ideal transfer curve.  
(3) Differential linearity error (ED).  
(4) Integral non-linearity (EL(adj)).  
(5) Center of a step of the actual transfer curve.  
Fig 5. ADC characteristics  
LPC2292_2294_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 10 December 2007  
34 of 54  
LPC2292/LPC2294  
NXP Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
8.1 Power consumption measurements for LPC2292/01 and LPC2294/01  
The power consumption measurements represent typical values for the given conditions.  
The peripherals were enabled through the PCONP register, but for these measurements,  
the peripherals were not configured to run. Peripherals were disabled through the PCONP  
register. For a description of the PCONP register bits, refer to the  
LPC2119/2129/2194/2292/2294 User Manual.  
002aad102  
50  
I
DD(act)  
(mA)  
40  
30  
20  
10  
0
all peripherals enabled  
all peripherals disabled  
12  
20  
28  
36  
44  
52  
60  
frequency (MHz)  
Test conditions: Active mode entered executing code from on-chip flash; PCLK = CCLK4;  
Tamb = 25 °C; core voltage 1.8 V.  
Fig 6. Typical LPC2292/01 IDD(act) measured at different frequencies  
002aad103  
50  
60 MHz  
I
DD(act)  
(mA)  
48 MHz  
40  
30  
20  
10  
0
12 MHz  
1.65  
1.80  
1.95  
voltage (V)  
Test conditions: Active mode entered executing code from on-chip flash; PCLK = CCLK4;  
Tamb = 25 °C; core voltage 1.8 V; all peripherals enabled but not active.  
Fig 7. Typical LPC2292/01 IDD(act) measured at different voltages  
LPC2292_2294_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 10 December 2007  
35 of 54  
LPC2292/LPC2294  
NXP Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
002aad104  
45  
60 MHz  
I
DD(act)  
(mA)  
48 MHz  
35  
25  
15  
5
12 MHz  
-40  
-15  
10  
35  
60  
85  
temperature (°C)  
Test conditions: Active mode entered executing code on-chip flash; PCLK = CCLK4;  
core voltage 1.8 V; all peripherals disabled.  
Fig 8. Typical LPC2292/01 IDD(act) measured at different temperatures  
002aad105  
10.0  
I
DD(idle)  
(mA)  
8.0  
6.0  
4.0  
2.0  
0.0  
all peripherals enabled  
all peripherals disabled  
12  
20  
28  
36  
44  
52  
60  
frequency (MHz)  
Test conditions: Idle mode entered executing code from on-chip flash; PCLK = CCLK4;  
Tamb = 25 °C; core voltage 1.8 V.  
Fig 9. Typical LPC2292/01 IDD(idle) measured at different frequencies  
LPC2292_2294_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 10 December 2007  
36 of 54  
LPC2292/LPC2294  
NXP Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
002aad106  
10.0  
I
DD(idle)  
(mA)  
60 MHz  
48 MHz  
8.0  
6.0  
4.0  
2.0  
12 MHz  
1.65  
1.80  
1.95  
voltage (V)  
Test conditions: Idle mode entered executing code from on-chip flash; PCLK = CCLK4;  
Tamb = 25 °C; core voltage 1.8 V; all peripherals enabled but not active.  
Fig 10. Typical LPC2292/01 IDD(idle) measured at different voltages  
002aad107  
6.0  
I
DD(idle)  
(mA)  
5.0  
4.0  
3.0  
2.0  
1.0  
60 MHz  
48 MHz  
12 MHz  
-40  
-15  
10  
35  
60  
85  
temperature (°C)  
Test conditions: Idle mode entered executing code from on-chip flash; PCLK = CCLK4;  
Core voltage 1.8 V; all peripherals disabled.  
Fig 11. Typical LPC2292/01 IDD(idle) measured at different temperatures  
LPC2292_2294_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 10 December 2007  
37 of 54  
LPC2292/LPC2294  
NXP Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
002aad108  
200  
I
DD(pd)  
(µA)  
1.95 V  
1.8 V  
160  
120  
80  
1.65 V  
40  
0
-40  
-15  
10  
35  
60  
85  
temperature (°C)  
Test conditions: Power-down mode entered executing code from on-chip flash.  
Fig 12. Typical LPC2292/01 core power-down current IDD(pd) measured at different temperatures  
002aad109  
50.0  
I
DD(act)  
(mA)  
all peripherals enabled  
all peripherals disabled  
40.0  
30.0  
20.0  
10.0  
0.0  
12  
20  
28  
36  
44  
52  
60  
frequency (MHz)  
Test conditions: Active mode entered executing code from on-chip flash; PCLK = CCLK4;  
Tamb = 25 °C; core voltage 1.8 V.  
Fig 13. Typical LPC2294/01 IDD(act) measured at different frequencies  
LPC2292_2294_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 10 December 2007  
38 of 54  
LPC2292/LPC2294  
NXP Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
002aad110  
55.0  
I
DD(act)  
(mA)  
60 MHz  
48 MHz  
45.0  
35.0  
25.0  
15.0  
5.0  
12 MHz  
1.65  
1.80  
1.95  
voltage (V)  
Test conditions: Active mode entered executing code from on-chip flash; PCLK = CCLK4;  
Tamb = 25 °C; core voltage 1.8 V; all peripherals enabled but not active.  
Fig 14. Typical LPC2294/01 IDD(act) measured at different voltages  
002aad111  
45.0  
60 MHz  
I
DD(act)  
(mA)  
48 MHz  
35.0  
25.0  
15.0  
5.0  
12 MHz  
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
95  
110  
temperature (°C)  
125  
Test conditions: Active mode entered executing code from on-chip flash; PCLK = CCLK4;  
core voltage 1.8 V; all peripherals disabled.  
Fig 15. Typical LPC2294/01 IDD(act) measured at different temperatures  
LPC2292_2294_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 10 December 2007  
39 of 54  
LPC2292/LPC2294  
NXP Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
002aad112  
15.0  
I
DD(idle)  
(mA)  
10.0  
5.0  
all peripherals enabled  
all peripherals disabled  
0.0  
12  
20  
28  
36  
44  
52  
60  
frequency (MHz)  
Test conditions: Idle mode entered executing code from on-chip flash; PCLK = CCLK4;  
Tamb = 25 °C; core voltage 1.8 V.  
Fig 16. Typical LPC2294/01 IDD(idle) measured at different frequencies  
002aad113  
15.0  
I
DD(idle)  
(mA)  
60 MHz  
48 MHz  
10.0  
5.0  
12 MHz  
0.0  
1.65  
1.80  
1.95  
voltage (V)  
Test conditions: Idle mode entered executing code from on-chip flash; PCLK = CCLK4;  
Tamb = 25 °C; core voltage 1.8 V; all peripherals enabled but not active.  
Fig 17. Typical LPC2294/01 IDD(idle) measured at different voltages  
LPC2292_2294_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 10 December 2007  
40 of 54  
LPC2292/LPC2294  
NXP Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
002aad114  
6.50  
I
DD(idle)  
(mA)  
60 MHz  
5.50  
48 MHz  
4.50  
3.50  
2.50  
1.50  
0.50  
12 MHz  
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
95  
110  
125  
temperature (°C)  
Test conditions: Idle mode entered executing code from on-chip flash; PCLK = CCLK4;  
core voltage 1.8 V; all peripherals disabled.  
Fig 18. Typical LPC2294/01 IDD(idle) measured at different temperatures  
002aad115  
500  
I
DD(pd)  
(µA)  
1.95 V  
1.8 V  
400  
300  
200  
100  
0
1.65 V  
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
95  
110  
125  
temperature (°C)  
Test conditions: Power-down mode entered executing code from on-chip flash.  
Fig 19. Typical LPC2294/01 core power-down current IDD(pd) measured at different temperatures  
LPC2292_2294_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 10 December 2007  
41 of 54  
LPC2292/LPC2294  
NXP Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
002aad116  
45.0  
I
DD(act)  
(mA)  
60 MHz  
48 MHz  
35.0  
25.0  
15.0  
5.0  
12 MHz  
1.65  
1.80  
1.95  
voltage (V)  
Test conditions: Active mode entered executing code from on-chip flash; PCLK = CCLK4;  
Temp = 25 °C; core voltage 1.8 V; all peripherals disabled.  
Fig 20. Typical LPC2292/01 and LPC2294/01 IDD(act) measured at different voltages  
002aad117  
10.0  
I
DD(idle)  
(mA)  
60 MHz  
48 MHz  
5.0  
12 MHz  
0.0  
1.65  
1.80  
1.95  
voltage (V)  
Test conditions: Idle mode entered executing code from on-chip flash; PCLK = CCLK4;  
Temp = 25 °C; core voltage 1.8 V; all peripherals disabled.  
Fig 21. Typical LPC2292/01 and LPC2294/01 IDD(idle) measured at different voltages  
Table 9.  
Typical LPC2292/01 peripheral power consumption in active mode  
Core voltage 1.8 V; Tamb = 25 °C; all measurements in µA; PCLK = CCLK4; all peripherals enabled.  
Peripheral  
Timer0  
CCLK = 12 MHz  
CCLK = 48 MHz  
CCLK = 60 MHz  
43  
141  
150  
320  
351  
184  
180  
398  
421  
Timer1  
46  
UART0  
UART1  
98  
103  
LPC2292_2294_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 10 December 2007  
42 of 54  
LPC2292/LPC2294  
NXP Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
Table 9.  
Typical LPC2292/01 peripheral power consumption in active mode …continued  
Core voltage 1.8 V; Tamb = 25 °C; all measurements in µA; PCLK = CCLK4; all peripherals enabled.  
Peripheral  
PWM0  
I2C-bus  
SPI0/1  
RTC  
CCLK = 12 MHz  
CCLK = 48 MHz  
CCLK = 60 MHz  
103  
9
341  
37  
407  
53  
6
27  
29  
16  
306  
33  
229  
55  
78  
PCEMC  
ADC  
994  
128  
771  
1205  
167  
914  
CAN1/2  
Table 10. Typical LPC2294/01 peripheral power consumption in active mode  
Core voltage 1.8 V; Tamb = 25 °C; all measurements in µA; PCLK = CCLK4; all peripherals enabled.  
Peripheral  
Timer0  
Timer1  
UART0  
UART1  
PWM0  
CCLK = 12 MHz  
CCLK = 48 MHz  
CCLK = 60 MHz  
43  
46  
98  
103  
103  
9
141  
150  
320  
351  
341  
37  
184  
180  
398  
421  
407  
53  
I2C-bus  
SPI0/1  
6
27  
29  
RTC  
16  
306  
33  
230  
55  
78  
PCEMC  
ADC  
994  
128  
769  
1205  
167  
912  
CAN1/2/3/4  
9. Dynamic characteristics  
Table 11. Dynamic characteristics  
Tamb = 40 °C to +125 °C; VDD(1V8), VDD(3V3) over specified ranges.[1]  
Symbol  
External clock  
fosc  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
oscillator frequency  
supplied by an external  
oscillator (signal generator)  
1
1
-
-
50  
30  
MHz  
MHz  
external clock frequency  
supplied by an external  
crystal oscillator  
external clock frequency if  
on-chip PLL is used  
10  
10  
-
-
25  
25  
MHz  
MHz  
external clock frequency if  
on-chip bootloader is used  
for initial code download  
Tcy(clk)  
tCHCX  
tCLCX  
clock cycle time  
clock HIGH time  
clock LOW time  
20  
-
-
-
1000  
ns  
ns  
ns  
Tcy(clk) × 0.4  
cy(clk) × 0.4  
-
-
T
LPC2292_2294_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 10 December 2007  
43 of 54  
LPC2292/LPC2294  
NXP Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
Table 11. Dynamic characteristics …continued  
Tamb = 40 °C to +125 °C; VDD(1V8), VDD(3V3) over specified ranges.[1]  
Symbol  
tCLCH  
Parameter  
Conditions  
Min  
Typ  
Max  
5
Unit  
ns  
clock rise time  
clock fall time  
-
-
-
-
tCHCL  
5
ns  
Port pins (except P0[2] and P0[3])  
tr  
tf  
rise time  
-
-
10  
10  
-
-
ns  
ns  
fall time  
I2C-bus pins (P0[2] and P0[3])  
[2]  
tf fall time  
VIH to VIL  
20 + 0.1 × Cb  
-
-
ns  
[1] Parameters are valid over operating temperature range unless otherwise specified.  
[2] Bus capacitance Cb in pF, from 10 pF to 400 pF.  
LPC2292_2294_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 10 December 2007  
44 of 54  
LPC2292/LPC2294  
NXP Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
Table 12. External memory interface dynamic characteristics  
CL = 25 pF, Tamb = 40 °C  
Symbol  
Parameter  
Conditions  
Min  
Typ Max  
Unit  
Common to read and write cycles  
tCHAV  
XCLK HIGH to address valid  
time  
-
-
10  
ns  
tCHCSL  
tCHCSH  
XCLK HIGH to CS LOW time  
-
-
-
-
10  
10  
ns  
ns  
XCLK HIGH to CS HIGH  
time  
tCHANV  
XCLK HIGH to address  
invalid time  
-
-
10  
ns  
Read cycle parameters  
tCSLAV CS LOW to address valid  
[1]  
[1]  
5  
5  
5  
-
-
+10  
+10  
ns  
ns  
time  
tOELAV  
OE LOW to address valid  
time  
tCSLOEL  
tam  
CS LOW to OE LOW time  
memory access time  
-
-
+5  
-
ns  
ns  
[2][3]  
[2][3]  
[2][4]  
[5]  
(Tcy(CCLK) × (2 + WST1)) +  
(20)  
tam(ibr)  
tam(sbr)  
memory access time (initial  
burst-ROM)  
(Tcy(CCLK) × (2 + WST1)) +  
(20)  
-
-
-
-
ns  
ns  
memory access time  
Tcy(CCLK) + (20)  
(subsequent burst-ROM)  
th(D)  
data hold time  
0
-
-
-
-
ns  
ns  
ns  
tCSHOEH  
tOEHANV  
CS HIGH to OE HIGH time  
5  
5  
+5  
+5  
OE HIGH to address invalid  
time  
tCHOEL  
tCHOEH  
XCLK HIGH to OE LOW time  
5  
5  
-
-
+5  
+5  
ns  
ns  
XCLK HIGH to OE HIGH  
time  
Write cycle parameters  
[1]  
tAVCSL  
address valid to CS LOW  
T
cy(CCLK) 10  
-
-
ns  
time  
tCSLDV  
CS LOW to data valid time  
CS LOW to WE LOW time  
CS LOW to BLS LOW time  
WE LOW to data valid time  
CS LOW to data valid time  
WE LOW to WE HIGH time  
5  
5  
5  
5  
5  
-
-
-
-
-
-
+5  
+5  
+5  
+5  
+5  
ns  
ns  
ns  
ns  
ns  
ns  
tCSLWEL  
tCSLBLSL  
tWELDV  
tCSLDV  
[2]  
[2]  
[2]  
tWELWEH  
T
T
T
cy(CCLK) × (1 + WST2) 5  
cy(CCLK) × (1 + WST2) 5  
cy(CCLK) 5  
T
cy(CCLK) × (1 +  
WST2) + 5  
tBLSLBLSH BLS LOW to BLS HIGH time  
-
-
Tcy(CCLK)  
(1 + WST2) + 5  
×
ns  
ns  
tWEHANV  
tWEHDNV  
WE HIGH to address invalid  
time  
Tcy(CCLK) + 5  
[2]  
[2]  
WE HIGH to data invalid time  
(2 × Tcy(CCLK)) 5  
Tcy(CCLK) 5  
-
-
(2 × Tcy(CCLK)) + 5 ns  
Tcy(CCLK) + 5 ns  
tBLSHANV BLS HIGH to address invalid  
time  
LPC2292_2294_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 10 December 2007  
45 of 54  
LPC2292/LPC2294  
NXP Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
Table 12. External memory interface dynamic characteristics …continued  
CL = 25 pF, Tamb = 40 °C  
Symbol  
Parameter  
Conditions  
Min  
Typ Max  
Unit  
[2]  
tBLSHDNV BLS HIGH to data invalid  
time  
(2 × Tcy(CCLK)) 5  
-
-
-
-
-
-
-
(2 × Tcy(CCLK)) + 5 ns  
tCHDV  
XCLK HIGH to data valid  
time  
-
-
-
-
-
-
10  
10  
10  
10  
10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
tCHWEL  
tCHBLSL  
tCHWEH  
tCHBLSH  
tCHDNV  
XCLK HIGH to WE LOW  
time  
XCLK HIGH to BLS LOW  
time  
XCLK HIGH to WE HIGH  
time  
XCLK HIGH to BLS HIGH  
time  
XCLK HIGH to data invalid  
time  
[1] Except on initial access, in which case the address is set up Tcy(CCLK) earlier.  
[2] Tcy(CCLK) = 1CCLK  
.
[3] Latest of address valid, CS LOW, OE LOW to data valid.  
[4] Address valid to data valid.  
[5] Earliest of CS HIGH, OE HIGH, address change to data invalid.  
Table 13. Standard read access specifications  
Access cycle  
Max frequency  
WST[1] setting  
Memory access time requirement  
WST 0; round up to  
integer  
standard read  
2 + WST1  
RAM + 20 ns  
t
RAM + 20 ns  
tRAM tcy(CCLK) × (2 + WST1) 20 ns  
f MAX  
f MAX  
f MAX  
f MAX  
--------------------------------  
WST1 ≥  
WST2 ≥  
2  
--------------------------------  
tcy(CCLK)  
t
standard write  
1 + WST2  
t
WRITE tCYC + 5  
tWRITE tcy(CCLK) × (1 + WST2) 5 ns  
tINIT tcy(CCLK) × (2 + WST1) 20 ns  
---------------------------------  
-------------------------------------------  
t
WRITE + 5 ns  
tcy(CCLK)  
burst read - initial  
burst read - subsequent 3×  
2 + WST1  
tINIT + 20 ns  
-------------------------------  
WST1 ≥  
2  
-------------------------------  
tINIT + 20 ns  
tcy(CCLK)  
N/A  
1
t
ROM tcy(CCLK) 20 ns  
--------------------------------  
tROM + 20 ns  
[1] See the LPC2119/2129/2194/2292/2294 User Manual for a description of the WSTn bits.  
LPC2292_2294_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 10 December 2007  
46 of 54  
LPC2292/LPC2294  
NXP Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
9.1 Timing  
XCLK  
t
t
CSHOEH  
CSLAV  
CS  
addr  
data  
t
t
h(D)  
am  
t
CSLOEL  
t
t
OEHANV  
OELAV  
OE  
t
t
CHOEH  
CHOEL  
002aaa749  
Fig 22. External memory read access  
XCLK  
CS  
t
CSLDV  
t
AVCSL  
t
WELWEH  
t
CSLWEL  
t
BLSLBLSH  
BLS/WE  
t
WEHANV  
t
t
WELDV  
CSLBLSL  
t
BLSHANV  
addr  
data  
t
t
WEHDNV  
BLSHDNV  
t
CSLDV  
OE  
002aaa750  
Fig 23. External memory write access  
LPC2292_2294_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 10 December 2007  
47 of 54  
LPC2292/LPC2294  
NXP Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
V
DD  
0.5 V  
0.2V  
+ 0.9 V  
DD  
0.2V  
0.1 V  
DD  
0.45 V  
t
CHCX  
t
t
t
CHCL  
CLCX  
CLCH  
T
cy(clk)  
002aaa907  
Fig 24. External clock timing  
LPC2292_2294_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 10 December 2007  
48 of 54  
LPC2292/LPC2294  
NXP Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
10. Package outline  
LQFP144: plastic low profile quad flat package; 144 leads; body 20 x 20 x 1.4 mm  
SOT486-1  
y
X
A
108  
109  
73  
72  
Z
E
e
H
A
E
2
A
E
(A )  
3
A
1
θ
w M  
p
L
p
b
L
pin 1 index  
detail X  
37  
144  
1
36  
v M  
Z
A
w M  
D
b
p
e
D
B
H
v M  
B
D
0
5
10 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
D
H
L
L
v
w
y
Z
Z
E
θ
1
2
3
p
E
p
D
max.  
7o  
0o  
0.15 1.45  
0.05 1.35  
0.27 0.20 20.1 20.1  
0.17 0.09 19.9 19.9  
22.15 22.15  
21.85 21.85  
0.75  
0.45  
1.4  
1.1  
1.4  
1.1  
mm  
1.6  
0.25  
1
0.2 0.08 0.08  
0.5  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
00-03-14  
03-02-20  
SOT486-1  
136E23  
MS-026  
Fig 25. Package outline SOT486-1 (LQFP144)  
LPC2292_2294_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 10 December 2007  
49 of 54  
LPC2292/LPC2294  
NXP Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
TFBGA144: plastic thin fine-pitch ball grid array package; 144 balls; body 12 x 12 x 0.8 mm  
SOT569-1  
B
D
A
D
1
ball A1  
index area  
A
2
A
E
E
A
1
1
detail X  
C
e
1
y
y
v M  
C
C
A B  
C
1
b
e
w M  
N
M
L
e
K
J
H
G
F
e
2
E
D
C
B
A
ball A1  
index area  
1
2
3
4
5
6
7
8
9 10111213  
shape  
X
optional (4×)  
0
5
10 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
UNIT  
A
A
b
E
e
e
e
2
y
D
D
E
v
w
y
1
1
2
1
1
1
max.  
0.36 0.84 0.53 12.2 11.9 12.2 11.9  
0.24 0.74 0.43 11.8 11.7 11.8 11.7  
mm  
1.2  
0.1  
0.1  
0.8  
9.6  
9.6  
0.15 0.08  
REFERENCES  
JEDEC JEITA  
OUTLINE  
VERSION  
EUROPEAN  
PROJECTION  
ISSUE DATE  
IEC  
03-07-09  
05-09-14  
SOT569-1  
MO-216  
Fig 26. Package outline SOT569-1 (TFBGA144)  
LPC2292_2294_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 10 December 2007  
50 of 54  
LPC2292/LPC2294  
NXP Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
11. Abbreviations  
Table 14. Acronym list  
Acronym  
ADC  
AMBA  
APB  
Description  
Analog-to-Digital Converter  
Advanced Microcontroller Bus Architecture  
Advanced Peripheral Bus  
Controller Area Network  
CAN  
CISC  
FIFO  
GPIO  
I/O  
Complex Instruction Set Computer  
First In, First Out  
General Purpose Input/Output  
Input/Output  
JTAG  
PLL  
Joint Test Action Group  
Phase-Locked Loop  
PWM  
RISC  
SPI  
Pulse Width Modulator  
Reduced Instruction Set Computer  
Serial Peripheral Interface  
Static Random Access Memory  
Synchronous Serial Interface  
Synchronous Serial Port  
SRAM  
SSI  
SSP  
TTL  
Transistor-Transistor Logic  
Universal Asynchronous Receiver/Transmitter  
UART  
LPC2292_2294_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 10 December 2007  
51 of 54  
LPC2292/LPC2294  
NXP Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
12. Revision history  
Table 15. Revision history  
Document ID  
LPC2292_2294_6  
Modifications:  
Release date  
20071210  
Data sheet status  
Change notice  
Supersedes  
Product data sheet  
-
LPC2292_2294_5  
Type number LPC2292FBD144/01 has been added.  
Type number LPC2292FET144/01 has been added.  
Type number LPC2294HBD144/01 has been added.  
Details introduced with /01 devices on new peripherals/features (Fast I/O Ports, SSP, CRP)  
and enhancements to existing ones (UART0/1, Timers, ADC, and SPI) added.  
Power consumption measurements for LPC2292/2294/01 added.  
Description of JTAG pin TCK has been updated.  
LPC2292_2294_5  
LPC2292_2294_4  
LPC2292_2294_3  
LPC2292_2294-02  
20070215  
20060711  
20051101  
20041223  
Product data sheet  
Product data sheet  
Product data sheet  
Product data  
-
-
-
-
LPC2292_2294_4  
LPC2292_2294_3  
LPC2292_2294-02  
LPC2292_2294-01  
LPC2292_2294_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 10 December 2007  
52 of 54  
LPC2292/LPC2294  
NXP Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
13. Legal information  
13.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
to result in personal injury, death or severe property or environmental  
13.2 Definitions  
damage. NXP Semiconductors accepts no liability for inclusion and/or use of  
NXP Semiconductors products in such equipment or applications and  
therefore such inclusion and/or use is at the customer’s own risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) may cause permanent  
damage to the device. Limiting values are stress ratings only and operation of  
the device at these or any other conditions above those given in the  
Characteristics sections of this document is not implied. Exposure to limiting  
values for extended periods may affect device reliability.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Terms and conditions of sale — NXP Semiconductors products are sold  
subject to the general terms and conditions of commercial sale, as published  
at http://www.nxp.com/profile/terms, including those pertaining to warranty,  
intellectual property rights infringement and limitation of liability, unless  
explicitly otherwise agreed to in writing by NXP Semiconductors. In case of  
any inconsistency or conflict between information in this document and such  
terms and conditions, the latter will prevail.  
13.3 Disclaimers  
General — Information in this document is believed to be accurate and  
reliable. However, NXP Semiconductors does not give any representations or  
warranties, expressed or implied, as to the accuracy or completeness of such  
information and shall have no liability for the consequences of use of such  
information.  
No offer to sell or license — Nothing in this document may be interpreted  
or construed as an offer to sell products that is open for acceptance or the  
grant, conveyance or implication of any license under any copyrights, patents  
or other industrial or intellectual property rights.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
13.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
Suitability for use — NXP Semiconductors products are not designed,  
authorized or warranted to be suitable for use in medical, military, aircraft,  
space or life support equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
I2C-bus — logo is a trademark of NXP B.V.  
14. Contact information  
For additional information, please visit: http://www.nxp.com  
For sales office addresses, send an email to: salesaddresses@nxp.com  
LPC2292_2294_6  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 06 — 10 December 2007  
53 of 54  
LPC2292/LPC2294  
NXP Semiconductors  
16/32-bit ARM microcontrollers with external memory interface  
15. Contents  
1
General description . . . . . . . . . . . . . . . . . . . . . . 1  
6.17  
6.17.1  
6.18  
6.18.1  
6.19  
6.19.1  
6.19.2  
6.19.3  
6.19.4  
6.19.5  
6.19.6  
6.19.7  
6.19.8  
6.20  
Real-time clock. . . . . . . . . . . . . . . . . . . . . . . . 23  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Pulse width modulator . . . . . . . . . . . . . . . . . . 24  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
System control . . . . . . . . . . . . . . . . . . . . . . . . 25  
Crystal oscillator. . . . . . . . . . . . . . . . . . . . . . . 25  
PLL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Reset and wake-up timer . . . . . . . . . . . . . . . . 25  
Code security (Code Read Protection - CRP) 26  
External interrupt inputs. . . . . . . . . . . . . . . . . 26  
Memory mapping control . . . . . . . . . . . . . . . . 26  
Power control . . . . . . . . . . . . . . . . . . . . . . . . . 27  
APB bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Emulation and debugging. . . . . . . . . . . . . . . . 27  
EmbeddedICE . . . . . . . . . . . . . . . . . . . . . . . . 27  
Embedded trace. . . . . . . . . . . . . . . . . . . . . . . 28  
RealMonitor . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
2
2.1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Key features brought by LPC2292/2294/01  
devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Key features common for all devices . . . . . . . . 1  
2.2  
3
3.1  
4
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Ordering options. . . . . . . . . . . . . . . . . . . . . . . . 3  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
5
5.1  
5.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 5  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 8  
6
Functional description . . . . . . . . . . . . . . . . . . 15  
Architectural overview. . . . . . . . . . . . . . . . . . . 15  
On-chip flash program memory . . . . . . . . . . . 15  
On-chip SRAM . . . . . . . . . . . . . . . . . . . . . . . . 16  
Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Interrupt controller . . . . . . . . . . . . . . . . . . . . . 17  
Interrupt sources. . . . . . . . . . . . . . . . . . . . . . . 17  
Pin connect block . . . . . . . . . . . . . . . . . . . . . . 18  
External memory controller. . . . . . . . . . . . . . . 18  
General purpose parallel I/O (GPIO) and  
Fast I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Features added with the Fast GPIO set of  
registers available on LPC2292/2294/01 only 19  
10-bit ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
ADC features available in LPC2292/2294/01  
only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
CAN controllers and acceptance filter . . . . . . 20  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
UARTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
UART features available in LPC2292/2294/01  
only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
I2C-bus serial I/O controller . . . . . . . . . . . . . . 20  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
SPI serial I/O controller. . . . . . . . . . . . . . . . . . 21  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Features available in LPC2292/2294/01 only . 21  
SSP controller (LPC2292/94/01 only). . . . . . . 22  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
General purpose timers . . . . . . . . . . . . . . . . . 22  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Features available in LPC2292/2294/01 only . 23  
Watchdog timer. . . . . . . . . . . . . . . . . . . . . . . . 23  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
6.1  
6.2  
6.3  
6.4  
6.5  
6.5.1  
6.6  
6.7  
6.8  
6.20.1  
6.20.2  
6.20.3  
7
Limiting values . . . . . . . . . . . . . . . . . . . . . . . . 29  
8
8.1  
Static characteristics . . . . . . . . . . . . . . . . . . . 30  
Power consumption measurements for  
LPC2292/01 and LPC2294/01 . . . . . . . . . . . . 35  
9
Dynamic characteristics. . . . . . . . . . . . . . . . . 43  
Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 49  
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Revision history . . . . . . . . . . . . . . . . . . . . . . . 52  
9.1  
10  
11  
12  
6.8.1  
6.8.2  
6.9  
6.9.1  
6.9.2  
13  
Legal information . . . . . . . . . . . . . . . . . . . . . . 53  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 53  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
13.1  
13.2  
13.3  
13.4  
6.10  
6.10.1  
6.11  
6.11.1  
6.11.2  
14  
15  
Contact information . . . . . . . . . . . . . . . . . . . . 53  
Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
6.12  
6.12.1  
6.13  
6.13.1  
6.13.2  
6.14  
6.14.1  
6.15  
6.15.1  
6.15.2  
6.16  
6.16.1  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2007.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 10 December 2007  
Document identifier: LPC2292_2294_6  

相关型号:

LPC2294

16/32-bit ARM microcontrollers 256 kB ISP/IAP Flash with CAN, 10-bit ADC and external memory interface
NXP

LPC2294HBD144

16/32-bit ARM microcontrollers; 256 kB ISP/IAP flash with CAN, 10-bit ADC and external memory interface
NXP

LPC2294HBD144/00

16/32-bit ARM microcontrollers; 256 kB ISP/IAP flash with CAN, 10-bit ADC and external memory interface
NXP

LPC2294HBD144/00,5

LPC2294HBD144
NXP

LPC2294HBD144/01

16/32-bit ARM microcontrollers; 256 kB ISP/IAP flash with CAN, 10-bit ADC and external memory interface
NXP

LPC2294HBD144/01,5

LPC2292/2294 - 16/32-bit ARM microcontrollers; 256 kB ISP/IAP flash with CAN, 10-bit ADC and external memory interface QFP 144-Pin
NXP

LPC2294JBD144

16/32-bit ARM microcontrollers 256 kB ISP/IAP Flash with CAN, 10-bit ADC and external memory interface
NXP

LPC2294JBD144,551

LPC2294JBD144
NXP

LPC2361

Single-chip 16-bit/32-bit MCU; up to 128 kB flash with ISP/IAP, Ethernet, USB 2.0 device/host/OTG, CAN, and 10-bit ADC/DAC
NXP

LPC2361FBD100

Single-chip 16-bit/32-bit MCU; up to 128 kB flash with ISP/IAP, Ethernet, USB 2.0 device/host/OTG, CAN, and 10-bit ADC/DAC
NXP

LPC2361FBD100,551

LPC2361/2362 - Single-chip 16-bit/32-bit MCU; up to 128 kB flash with ISP/IAP, Ethernet, USB 2.0 device/host/OTG, CAN, and 10-bit ADC/DAC QFP 100-Pin
NXP

LPC2361FBD100-S

IC,MICROCONTROLLER,32-BIT,ARM7 CPU,QFP,100PIN,PLASTIC
NXP