LPC2919FBD144/01/ [NXP]

32-BIT, FLASH, RISC MICROCONTROLLER, PQFP144, 20 X 20 MM, 1.40 MM HEIGHT, PLASTIC, MS-026, SOT486-1, LQFP-144;
LPC2919FBD144/01/
型号: LPC2919FBD144/01/
厂家: NXP    NXP
描述:

32-BIT, FLASH, RISC MICROCONTROLLER, PQFP144, 20 X 20 MM, 1.40 MM HEIGHT, PLASTIC, MS-026, SOT486-1, LQFP-144

微控制器
文件: 总86页 (文件大小:393K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LPC2917/2919/01  
ARM9 microcontroller with CAN and LIN  
Rev. 02 — 17 June 2009  
Preliminary data sheet  
1. General description  
The LPC2917/2919/01 combine an ARM968E-S CPU core with two integrated TCM  
blocks operating at frequencies of up to 125 MHz, CAN and LIN, 56 kB SRAM, up to  
768 kB flash memory, external memory interface, two 10-bit ADCs, and multiple serial and  
parallel interfaces in a single chip targeted at consumer, industrial, medical, and  
communication markets. To optimize system power consumption, the LPC2917/2919/01  
has a very flexible Clock Generation Unit (CGU) that provides dynamic clock gating and  
scaling.  
2. Features  
I ARM968E-S processor running at frequencies of up to 125 MHz maximum.  
I Multi-layer AHB system bus at 125 MHz with three separate layers.  
I On-chip memory:  
N Two Tightly Coupled Memories (TCM), 16 kB Instruction TCM (ITCM), 16 kB Data  
TCM (DTCM).  
N Two separate internal Static RAM (SRAM) instances; 32 kB SRAM and 16 kB  
SRAM.  
N 8 kB ETB SRAM also available for code execution and data.  
N Up to 768 kB high-speed flash-program memory.  
N 16 kB true EEPROM, byte-erasable and programmable.  
I Dual-master, eight-channel GPDMA controller on the AHB multi-layer matrix which can  
be used with the SPI interfaces and the UARTs, as well as for memory-to-memory  
transfers including the TCM memories.  
I External Static Memory Controller (SMC) with eight memory banks; up to 32-bit data  
bus; up to 24-bit address bus.  
I Serial interfaces:  
N Two-channel CAN controller supporting FullCAN and extensive message filtering  
N Two LIN master controllers with full hardware support for LIN communication. The  
LIN interface can be configured as UART to provide two additional UART  
interfaces.  
N Two 550 UARTs with 16-byte Tx and Rx FIFO depths, DMA support, and  
RS485/EIA-485 (9 bit) support.  
N Three full-duplex Q-SPIs with four slave-select lines; 16 bits wide; 8 locations deep;  
Tx FIFO and Rx FIFO.  
N Two I2C-bus interfaces.  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
I Other peripherals:  
N Two 10-bit ADCs, 8 channels each, with 3.3 V measurement range and conversion  
times as low as 2.44 µs per channel. Each channel provides a compare function to  
minimize interrupts.  
N Multiple trigger-start option for all ADCs: timer, PWM, other ADC, and external  
signal input.  
N Four 32-bit timers each containing four capture-and-compare registers linked to  
I/Os.  
N Four six-channel PWMs (Pulse-Width Modulators) with capture and trap  
functionality.  
N Two dedicated 32-bit timers to schedule and synchronize PWM and ADC.  
N Quadrature encoder interface that can monitor one external quadrature encoder.  
N 32-bit watchdog with timer change protection, running on safe clock.  
I Up to 108 general-purpose I/O pins with programmable pull-up, pull-down, or bus  
keeper.  
I Vectored Interrupt Controller (VIC) with 16 priority levels.  
I Up to 19 level-sensitive external interrupt pins, including CAN and LIN wake-up  
features.  
I Configurable clock-out pin for driving external system clocks.  
I Processor wake-up from power-down via external interrupt pins; CAN or LIN activity.  
I Flexible Reset Generator Unit (RGU) able to control resets of individual modules.  
I Flexible Clock-Generation Unit (CGU0) able to control clock frequency of individual  
modules:  
N On-chip very low-power ring oscillator; fixed frequency of 0.4 MHz; always on to  
provide a Safe_Clock source for system monitoring.  
N On-chip crystal oscillator with a recommended operating range from 10 MHz to  
25 MHz. PLL input range 10 MHz to 25 MHz.  
N On-chip PLL allows CPU operation up to a maximum CPU rate of 125 MHz.  
N Generation of up to 11 base clocks.  
N Seven fractional dividers.  
I Second CGU (CGU1) with its own PLL generates a configurable clock output.  
I Highly configurable system Power Management Unit (PMU):  
N clock control of individual modules.  
N allows minimization of system operating power consumption in any configuration.  
I Standard ARM test and debug interface with real-time in-circuit emulator.  
I Boundary-scan test supported.  
I ETM/ETB debug functions with 8 kB of dedicated SRAM also accessible for  
application code and data storage.  
I Dual power supply:  
N CPU operating voltage: 1.8 V ± 5 %.  
N I/O operating voltage: 2.7 V to 3.6 V; inputs tolerant up to 5.5 V.  
I 144-pin LQFP package.  
I
40 °C to +85 °C ambient operating temperature range.  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
2 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
3. Ordering information  
Table 1.  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
LPC2917FBD144/01 LQFP144 plastic low profile quad flat package; 144 leads; body 20 × 20 × 1.4 mm  
LPC2919FBD144/01 LQFP144 plastic low profile quad flat package; 144 leads; body 20 × 20 × 1.4 mm  
SOT486-1  
SOT486-1  
3.1 Ordering options  
Table 2.  
Part options  
Type number  
Flash memory SRAM  
SMC  
LIN 2.0  
CAN  
Package  
LPC2917FBD144/01  
LPC2919FBD144/01  
512 kB  
768 kB  
56 kB + 2 × 16 kB TCM 32-bit  
56 kB + 2 × 16 kB TCM 32-bit  
2
2
2
2
LQFP144  
LQFP144  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
3 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
4. Block diagram  
JTAG  
interface  
TEST/DEBUG  
INTERFACE  
LPC2917/01  
LPC2919/01  
ITCM  
16 kB  
DTCM  
16 kB  
8 kB SRAM  
ARM968E-S  
1 × master  
2 × slave  
master  
master  
slave  
VECTORED  
INTERRUPT  
CONTROLLER  
AHB TO DTL  
GPDMA CONTROLLER  
GPDMA REGISTERS  
BRIDGE  
slave  
slave  
slave  
CLOCK  
GENERATION  
UNIT CGU0/1  
AHB TO DTL  
BRIDGE  
EXTERNAL STATIC  
MEMORY CONTROLLER  
RESET  
GENERATION  
UNIT  
slave  
slave  
EMBEDDED SRAM 16 kB  
EMBEDDED SRAM 32 kB  
POWER  
MANAGEMENT  
UNIT  
slave  
slave  
EMBEDDED FLASH  
512/768 kB  
16 kB  
EEPROM  
slave  
AHB  
AHB TO APB  
BRIDGE  
TIMER0/1 MTMR  
PWM0/1/2/3  
MULTI  
LAYER  
MATRIX  
AHB TO APB  
BRIDGE  
SYSTEM CONTROL  
EVENT ROUTER  
CHIP FEATURE ID  
3.3 V ADC1/2  
slave  
QUADRATURE  
ENCODER  
AHB TO APB  
BRIDGE  
GENERAL PURPOSE I/O  
PORTS 0/1/2/3  
slave  
AHB TO APB  
BRIDGE  
CAN0/1  
TIMER 0/1/2/3  
SPI0/1/2  
GLOBAL  
ACCEPTANCE  
FILTER  
RS485 UART0/1  
WDT  
LIN0/1  
2
I C0/1  
002aad959  
Grey-shaded blocks represent peripherals and memory regions accessible by the GPDMA.  
Fig 1. LPC2917/2919/01 block diagram  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
4 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
5. Pinning information  
5.1 Pinning  
1
108  
LPC2917FBD144/01  
LPC2919FBD144/01  
36  
73  
002aae265  
Fig 2. Pin configuration for SOT486-1 (LQFP144)  
5.2 Pin description  
5.2.1 General description  
The LPC2917/2919/01 has up to four ports: two of 32 pins each, one of 28 pins and one of  
16 pins. The pin to which each function is assigned is controlled by the SFSP registers in  
the SCU. The functions combined on each port pin are shown in the pin description tables  
in this section.  
5.2.2 LQFP144 pin assignment  
Table 3.  
LQFP144 pin assignment  
Pin name  
Pin  
Description  
Default function  
IEEE 1149.1 test data out  
GPIO 2, pin 21  
Function 1  
Function 2  
Function 3  
TDO  
1[1]  
2[1]  
P2[21]/SDI2/  
PCAP2[1]/D19  
SPI2 SDI  
PWM2 CAP1  
CAN1 TXD  
EXTBUS D19  
SPI2 SCS0  
P0[24]/TXD1/  
3[1]  
GPIO 0, pin 24  
UART1 TXD  
TXDC1/SCS2[0  
]
P0[25]/RXD1/  
RXDC1/SDO2  
4[1]  
5[1]  
6[1]  
GPIO 0, pin 25  
UART1 RXD  
CAN1 RXD  
SPI2 SDO  
P0[26]/TXD1/  
SDI2  
GPIO 0, pin 26  
-
-
-
-
UART1 TXD  
UART1 RXD  
TIMER0 CAP0  
TIMER0 CAP1  
SPI2 SDI  
P0[27]/RXD1/  
SCK2  
P0[28]/CAP0[0]/ 7[1]  
MAT0[0]  
P0[29]/CAP0[1]/ 8[1]  
MAT0[1]  
GPIO 0, pin 27  
SPI2 SCK  
GPIO 0, pin 28  
TIMER0 MAT0  
TIMER0 MAT1  
GPIO 0, pin 29  
VDD(IO)  
9
3.3 V power supply for I/O  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
5 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
Table 3.  
LQFP144 pin assignment …continued  
Pin name  
Pin  
Description  
Default function  
GPIO 2, pin 22  
Function 1  
Function 2  
Function 3  
P2[22]/SCK2/  
PCAP2[2]/D20  
10[1]  
SPI2 SCK  
PWM2 CAP2  
EXTBUS D20  
P2[23]/SCS1[0]/ 11[1]  
PCAP3[0]/D21  
P3[6]/SCS0[3]/ 12[1]  
PMAT1[0]/  
GPIO 2, pin 23  
GPIO 3, pin 6  
SPI1 SCS0  
SPI0 SCS3  
PWM3 CAP0  
PWM1 MAT0  
EXTBUS D21  
LIN1/UART TXD  
TXDL1  
P3[7]/SCS2[1]/ 13[1]  
PMAT1[1]/  
GPIO 3, pin 7  
SPI2 SCS1  
PWM1 MAT1  
LIN1/UART RXD  
RXDL1  
P0[30]/CAP0[2]/ 14[1]  
MAT0[2]  
P0[31]/CAP0[3]/ 15[1]  
MAT0[3]  
P2[24]/SCS1[1]/ 16[1]  
PCAP3[1]/D22  
P2[25]/SCS1[2]/ 17[1]  
PCAP3[2]/D23  
GPIO 0, pin 30  
GPIO 0, pin 31  
GPIO 2, pin 24  
GPIO 2, pin 25  
-
TIMER0 CAP2  
TIMER0 CAP3  
PWM3 CAP1  
PWM3 CAP2  
TIMER0 MAT2  
TIMER0 MAT3  
EXTBUS D22  
EXTBUS D23  
-
SPI1 SCS1  
SPI1 SCS2  
VDD(CORE)  
18  
19  
1.8 V power supply for digital core  
ground for digital core  
VSS(CORE)  
P1[31]/CAP0[1]/ 20[1]  
MAT0[1]/EI5  
GPIO 1, pin 31  
TIMER0 CAP1  
TIMER0 MAT1  
EXTINT5  
VSS(IO)  
P1[30]/CAP0[0]/ 22[1]  
MAT0[0]/EI4  
21  
ground for I/O  
GPIO 1, pin 30  
TIMER0 CAP0  
SPI2 SCS0  
TIMER0 MAT0  
PWM1 MAT2  
PWM1 MAT3  
PWM TRAP0  
EXTINT4  
P3[8]/SCS2[0]/ 23[1]  
PMAT1[2]  
P3[9]/SDO2/PM 24[1]  
AT1[3]  
P1[29]/CAP1[0]/ 25[1]  
TRAP0/  
GPIO 3, pin 8  
GPIO 3, pin 9  
GPIO 1, pin 29  
-
SPI2 SDO  
-
TIMER1 CAP0  
PWM3 MAT5  
PMAT3[5]  
P1[28]/CAP1[1]/ 26[1]  
TRAP1/  
GPIO 1, pin 28  
TIMER1 CAP1, ADC1 PWM TRAP1  
EXT START  
PWM3 MAT4  
PMAT3[4]  
P2[26]/CAP0[2]/ 27[1]  
MAT0[2]/EI6  
P2[27]/CAP0[3]/ 28[1]  
MAT0[3]/EI7  
P1[27]/CAP1[2]/ 29[1]  
TRAP2/  
GPIO 2, pin 26  
GPIO 2, pin 27  
GPIO 1, pin 27  
TIMER0 CAP2  
TIMER0 CAP3  
TIMER0 MAT2  
TIMER0 MAT3  
EXTINT6  
EXTINT7  
TIMER1 CAP2, ADC2 PWM TRAP2  
EXT START  
PWM3 MAT3  
PMAT3[3]  
P1[26]/  
30[1]  
GPIO 1, pin 26  
PWM2 MAT0  
PWM TRAP3  
PWM3 MAT2  
PMAT2[0]/  
TRAP3/  
PMAT3[2]  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
6 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
Table 3.  
LQFP144 pin assignment …continued  
Pin name  
Pin  
Description  
Default function  
3.3 V power supply for I/O  
GPIO 1, pin 25  
Function 1  
Function 2  
Function 3  
VDD(IO)  
31  
32[1]  
P1[25]/  
PWM1 MAT0  
-
PWM3 MAT1  
PMAT1[0]/  
PMAT3[1]  
P1[24]/  
33[1]  
GPIO 1, pin 24  
PWM0 MAT0  
-
PWM3 MAT0  
PMAT0[0]/  
PMAT3[0]  
P1[23]/  
RXD0/CS5  
34[1]  
35[1]  
GPIO 1, pin 23  
GPIO 1, pin 22  
UART0 RXD  
UART0 TXD  
-
-
EXTBUS CS5  
EXTBUS CS4  
P1[22]/TXD0/  
CS4  
TMS  
36[1]  
37[1]  
IEEE 1149.1 test mode select, pulled up internally  
IEEE 1149.1 test clock  
TCK  
P1[21]/CAP3[3]/ 38[1]  
CAP1[3]/D7  
P1[20]/CAP3[2]/ 39[1]  
SCS0[1]/D6  
P1[19]/CAP3[1]/ 40[1]  
SCS0[2]/D5  
P1[18]/CAP3[0]/ 41[1]  
SDO0/D4  
GPIO 1, pin 21  
GPIO 1, pin 20  
GPIO 1, pin 19  
GPIO 1, pin 18  
GPIO 1, pin 17  
TIMER3 CAP3  
TIMER3 CAP2  
TIMER3 CAP1  
TIMER3 CAP0  
TIMER2 CAP3  
TIMER1 CAP3,  
MSCSS PAUSE  
EXTBUS D7  
EXTBUS D6  
EXTBUS D5  
EXTBUS D4  
EXTBUS D3  
SPI0 SCS1  
SPI0 SCS2  
SPI0 SDO  
SPI0 SDI  
P1[17]/CAP2[3]/ 42[1]  
SDI0/D3  
VSS(IO)  
P1[16]/CAP2[2]/ 44[1]  
SCK0/D2  
43  
ground for I/O  
GPIO 1, pin 16  
TIMER2 CAP2  
TIMER2 MAT0  
TIMER2 MAT1  
SPI2 SDI  
SPI0 SCK  
EXTBUS D2  
EXTBUS D8  
EXTBUS D9  
-
P2[0]/MAT2[0]/ 45[1]  
TRAP3/D8  
P2[1]/MAT2[1]/ 46[1]  
TRAP2/D9  
GPIO 2, pin 0  
GPIO 2, pin 1  
GPIO 3, pin 10  
GPIO 3, pin 11  
GPIO 1, pin 15  
GPIO 1, pin 14  
GPIO 1, pin 13  
GPIO 1, pin 12  
PWM TRAP3  
PWM TRAP2  
PWM1 MAT4  
PWM1 MAT5  
SPI0 SCS0  
SPI0 SCS3  
I2C1 SCL  
P3[10]/SDI2/  
PMAT1[4]  
47[1]  
P3[11]/SCK2/  
PMAT1[5]  
48[1]  
SPI2 SCK  
-
P1[15]/CAP2[1]/ 49[1]  
SCS0[0]/D1  
P1[14]/CAP2[0]/ 50[1]  
SCS0[3]/D0  
TIMER2 CAP1  
TIMER2 CAP0  
EXTINT3  
EXTBUS D1  
EXTBUS D0  
EXTBUS WE  
EXTBUS OE  
P1[13]/SCL1/  
EI3/WE  
51[1]  
52[1]  
53  
P1[12]/SDA1/  
EI2/OE  
EXTINT2  
I2C1 SDA  
VDD(IO)  
3.3 V power supply for I/O  
GPIO 2, pin 2  
P2[2]/MAT2[2]/ 54[1]  
TRAP1/D10  
TIMER2 MAT2  
PWM TRAP1  
EXTBUS D10  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
7 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
Table 3.  
LQFP144 pin assignment …continued  
Pin name  
Pin  
Description  
Default function  
GPIO 2, pin 3  
Function 1  
Function 2  
Function 3  
P2[3]/MAT2[3]/ 55[1]  
TRAP0/D11  
TIMER2 MAT3  
PWM TRAP0  
EXTBUS D11  
P1[11]/SCK1/  
SCL0/CS3  
56[1]  
GPIO 1, pin 11  
SPI1 SCK  
SPI1 SDI  
I2C0 SCL  
I2C0 SDA  
EXTINT4  
EXTBUS CS3  
P1[10]/SDI1/  
SDA0/CS2  
P3[12]/SCS1[0]/ 58[1]  
EI4  
57[1]  
GPIO 1, pin 10  
EXTBUS CS2  
-
GPIO 3, pin 12  
SPI1 SCS0  
VSS(CORE)  
VDD(CORE)  
59  
ground for digital core  
60  
1.8 V power supply for digital core  
P3[13]/SDO1/  
EI5/IDX0  
P2[4]/MAT1[0]/ 62[1]  
EI0/D12  
P2[5]/MAT1[1]/ 63[1]  
EI1/D13  
61[1]  
GPIO 3, pin 13  
GPIO 2, pin 4  
GPIO 2, pin 5  
GPIO 1, pin 9  
SPI1 SDO  
EXTINT5  
QEI0 IDX  
TIMER1 MAT0  
TIMER1 MAT1  
SPI1 SDO  
EXTINT0  
EXTBUS D12  
EXTBUS D13  
EXTBUS CS1  
EXTINT1  
P1[9]/SDO1/  
RXDL1/CS1  
64[1]  
LIN1/UART RXD  
VSS(IO)  
P1[8]/SCS1[0]/ 66[1]  
TXDL1/CS0  
65  
ground for I/O  
GPIO 1, pin 8  
SPI1 SCS0  
SPI1 SCS3  
SPI1 SCS2  
TIMER1 MAT2  
SPI1 SCS1  
SPI2 SCS2  
LIN1/UART TXD  
UART1 RXD  
UART1 TXD  
EXTINT2  
EXTBUS CS0  
EXTBUS A7  
EXTBUS A6  
EXTBUS D14  
EXTBUS A5  
EXTBUS A4  
P1[7]/SCS1[3]/ 67[1]  
RXD1/A7  
P1[6]/SCS1[2]/ 68[1]  
TXD1/A6  
P2[6]/MAT1[2]/ 69[1]  
EI2/D14  
P1[5]/SCS1[1]/ 70[1]  
PMAT3[5]/A5  
GPIO 1, pin 7  
GPIO 1, pin 6  
GPIO 2, pin 6  
GPIO 1, pin 5  
GPIO 1, pin 4  
PWM3 MAT5  
PWM3 MAT4  
P1[4]/SCS2[2]/ 71[1]  
PMAT3[4]/A4  
TRST  
72[1]  
73[1]  
74  
75[2]  
76[2]  
77  
IEEE 1149.1 test reset NOT; active LOW; pulled up internally  
asynchronous device reset; active LOW; pulled up internally  
ground for oscillator  
RST  
VSS(OSC)  
XOUT_OSC  
XIN_OSC  
VDD(OSC)  
VSS(PLL)  
crystal out for oscillator  
crystal in for oscillator  
1.8 V supply for oscillator  
78  
ground for PLL  
P2[7]/MAT1[3]/ 79[1]  
EI3/D15  
GPIO 2, pin 7  
GPIO 3, pin 14  
GPIO 3, pin 15  
TIMER1 MAT3  
SPI1 SDI  
EXTINT3  
EXTINT6  
EXTINT7  
EXTBUS D15  
CAN0 TXD  
CAN0 RXD  
P3[14]/SDI1/  
EI6/TXDC0  
80[1]  
P3[15]/SCK1/  
EI7/RXDC0  
81[1]  
SPI1 SCK  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
8 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
Table 3.  
LQFP144 pin assignment …continued  
Pin name  
Pin  
Description  
Default function  
3.3 V power supply for I/O  
GPIO 2, pin 8  
Function 1  
Function 2  
Function 3  
VDD(IO)  
82  
83[1]  
P2[8]/  
CLK_OUT  
PWM0 MAT0  
SPI0 SCS2  
CLK_OUT/  
PMAT0[0]/  
SCS0[2]  
P2[9]/PMAT0[1]/ 84[1]  
SCS0[1]  
P1[3]/SCS2[1]/ 85[1]  
PMAT3[3]/A3  
P1[2]/SCS2[3]/ 86[1]  
PMAT3[2]/A2  
GPIO 2, pin 9  
-
PWM0 MAT1  
PWM3 MAT3  
PWM3 MAT2  
PWM3 MAT1  
SPI0 SCS1  
EXTBUS A3  
EXTBUS A2  
EXTBUS A1  
GPIO 1, pin 3  
SPI2 SCS1  
SPI2 SCS3  
EXTINT1  
GPIO 1, pin 2  
P1[1]/EI1/  
87[1]  
GPIO 1, pin 1  
PMAT3[1]/A1  
VSS(CORE)  
VDD(CORE)  
88  
ground for digital core  
89  
1.8 V power supply for digital core  
P1[0]/EI0/  
PMAT3[0]/A0  
90[1]  
GPIO 1, pin 0  
EXTINT0  
PWM3 MAT0  
PWM0 MAT2  
EXTBUS A0  
SPI0 SCS0  
P2[10]/  
91[1]  
GPIO 2, pin 10  
-
PMAT0[2]/  
SCS0[0]  
P2[11]/  
PMAT0[3]/SCK0  
92[1]  
93[1]  
GPIO 2, pin 11  
GPIO 0, pin 0  
-
PWM0 MAT3  
CAN0 TXD  
SPI0 SCK  
P0[0]/PHB0/  
TXDC0/D24  
QEI0 PHB  
EXTBUS D24  
VSS(IO)  
94  
95[1]  
ground for I/O  
GPIO 0, pin 1  
P0[1]/PHA0/  
RXDC0/D25  
QEI 0 PHA  
CLK_OUT  
CAN0 RXD  
EXTBUS D25  
EXTBUS D26  
P0[2]/  
96[1]  
GPIO 0, pin 2  
PWM0 MAT0  
CLK_OUT/  
PMAT0[0]/D26  
P0[3]/PMAT0[1]/ 97[1]  
D27  
P3[0]/PMAT2[0]/ 98[1]  
CS6  
P3[1]/PMAT2[1]/ 99[1]  
CS7  
GPIO 0, pin 3  
GPIO 3, pin 0  
GPIO 3, pin 1  
-
-
-
-
-
PWM0 MAT1  
PWM2 MAT0  
PWM2 MAT1  
PWM0 MAT4  
PWM0 MAT5  
EXTBUS D27  
EXTBUS CS6  
EXTBUS CS7  
SPI0 SDI  
P2[12]/  
100[1] GPIO 2, pin 12  
PMAT0[4]/SDI0  
P2[13]/  
101[1] GPIO 2, pin 13  
SPI0 SDO  
PMAT0[5]/  
SDO0  
P0[4]/PMAT0[2]/ 102[1] GPIO 0, pin 4  
D28  
P0[5]/PMAT0[3]/ 103[1] GPIO 0, pin 5  
D29  
-
-
PWM0 MAT2  
PWM0 MAT3  
EXTBUS D28  
EXTBUS D29  
VDD(IO)  
104  
3.3 V power supply for I/O  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
9 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
Table 3.  
LQFP144 pin assignment …continued  
Pin name  
Pin  
Description  
Default function  
Function 1  
Function 2  
Function 3  
P0[6]/  
105[1] GPIO 0, pin 6  
-
PWM0 MAT4  
EXTBUS D30  
PMAT0[4]/D30  
P0[7]/  
106[1] GPIO 0, pin 7  
-
PWM0 MAT5  
EXTBUS D31  
PMAT0[5]/D31  
VDDA(ADC3V3)  
JTAGSEL  
107  
3.3 V power supply for ADC  
108[1] TAP controller select input; LOW-level selects the ARM debug mode; HIGH-level selects  
boundary scan; pulled up internally.  
n.c.  
109  
not connected to a function, must be tied to 3.3 V power supply for ADC VDDA(ADC3V3)  
.
VREFP  
VREFN  
110[2] HIGH reference for ADC  
111[2] LOW reference for ADC  
P0[8]/IN1[0]/TX 112[3] GPIO 0, pin 8  
DL0/A20  
ADC1 IN0  
ADC1 IN1  
ADC1 IN2  
ADC1 IN3  
I2C1 SDA  
I2C1 SCL  
TIMER3 MAT0  
LIN0/UART TXD  
LIN0/UART RXD  
PWM1 MAT0  
PWM1 MAT1  
PWM0 CAP0  
PWM0 CAP1  
PWM2 MAT2  
EXTBUS A20  
EXTBUS A21  
EXTBUS A8  
EXTBUS A9  
EXTBUS BLS0  
EXTBUS BLS1  
-
P0[9]/IN1[1]/  
RXDL0/A21  
113[3] GPIO 0, pin 9  
114[3] GPIO 0, pin 10  
115[3] GPIO 0, pin 11  
116[1] GPIO 2, pin 14  
117[1] GPIO 2, pin 15  
P0[10]/IN1[2]/  
PMAT1[0]/A8  
P0[11]/IN1[3]/  
PMAT1[1]/A9  
P2[14]/SDA1/  
PCAP0[0]/BLS0  
P2[15]/SCL1/  
PCAP0[1]/BLS1  
P3[2]/MAT3[0]/ 118[1] GPIO 3, pin 2  
PMAT2[2]  
VSS(IO)  
119  
ground for I/O  
P3[3]/MAT3[1]/ 120[1] GPIO 3, pin 3  
PMAT2[3]  
TIMER3 MAT1  
ADC1 IN4  
ADC1 IN5  
ADC1 IN6  
ADC1 IN7  
ADC2 IN0  
ADC2 IN1  
PWM2 MAT3  
PWM1 MAT2  
PWM1 MAT3  
PWM1 MAT4  
PWM1 MAT5  
UART0 TXD  
UART0 RXD  
-
P0[12]/IN1[4]/  
PMAT1[2]/A10  
121[3] GPIO 0, pin 12  
122[3] GPIO 0, pin 13  
123[3] GPIO 0, pin 14  
124[3] GPIO 0, pin 15  
125[3] GPIO 0, pin 16  
126[3] GPIO 0, pin 17  
EXTBUS A10  
EXTBUS A11  
EXTBUS A12  
EXTBUS A13  
EXTBUS A22  
EXTBUS A23  
P0[13]/IN1[5]/  
PMAT1[3]/A11  
P0[14]/IN1[6]/  
PMAT1[4]/A12  
P0[15]/IN1[7]/  
PMAT1[5]/A13  
P0[16]IN2[0]/  
TXD0/A22  
P0[17]/IN2[1]/  
RXD0/A23  
VDD(CORE)  
VSS(CORE)  
127  
128  
1.8 V power supply for digital core  
ground for digital core  
P2[16]/TXD1/  
PCAP0[2]/BLS2  
129[1] GPIO 2, pin 16  
UART1 TXD  
PWM0 CAP2  
PWM1 CAP0  
EXTBUS BLS2  
EXTBUS BLS3  
P2[17]/RXD1/  
130[1] GPIO 2, pin 17  
UART1 RXD  
PCAP1[0]/BLS3  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
10 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
Table 3.  
LQFP144 pin assignment …continued  
Pin name  
Pin  
Description  
Default function  
Function 1  
Function 2  
Function 3  
VDD(IO)  
131  
3.3 V power supply for I/O  
P0[18]/IN2[2]/  
PMAT2[0]/A14  
132[3] GPIO 0, pin 18  
ADC2 IN2  
PWM2 MAT0  
PWM2 MAT1  
PWM2 MAT4  
EXTBUS A14  
EXTBUS A15  
CAN1 TXD  
P0[19]/IN2[3]/  
PMAT2[1]/A15  
P3[4]/MAT3[2]/ 134[1] GPIO 3, pin 4  
133[3] GPIO 0, pin 19  
ADC2 IN3  
TIMER3 MAT2  
PMAT2[4]/  
TXDC1  
P3[5]/MAT3[3]/ 135[1] GPIO 3, pin 5  
TIMER3 MAT3  
PWM2 MAT5  
CAN1 RXD  
PMAT2[5]/  
RXDC1  
P2[18]/SCS2[1]/ 136[1] GPIO 2, pin 18  
PCAP1[1]/D16  
P2[19]/SCS2[0]/ 137[1] GPIO 2, pin 19  
PCAP1[2]/D17  
SPI2 SCS1  
SPI2 SCS0  
ADC2 IN4  
ADC2 IN5  
ADC2 IN6  
PWM1 CAP1  
PWM1 CAP2  
PWM2 MAT2  
PWM2 MAT3  
PWM2 MAT4  
EXTBUS D16  
EXTBUS D17  
EXTBUS A16  
EXTBUS A17  
EXTBUS A18  
P0[20]/IN2[4]/  
PMAT2[2]/A16  
138[3] GPIO 0, pin 20  
139[3] GPIO 0, pin 21  
140[3] GPIO 0, pin 22  
P0[21]/IN2[5]/  
PMAT2[3]/A17  
P0[22]/IN2[6]/  
PMAT2[4]/A18  
VSS(IO)  
141  
ground for I/O  
P0[23]/IN2[7]/  
PMAT2[5]/A19  
142[3] GPIO 0, pin 23  
ADC2 IN7  
SPI2 SDO  
PWM2 MAT5  
PWM2 CAP0  
EXTBUS A19  
EXTBUS D18  
P2[20]/  
143[1] GPIO 2, pin 20  
PCAP2[0]/D18  
TDI  
144[1] IEEE 1149.1 data in, pulled up internally  
[1] Bidirectional pad; analog port; plain input; 3-state output; slew rate control; 5V tolerant; TTL with hysteresis; programmable pull-up /  
pull-down / repeater.  
[2] Analog pad; analog I/O  
[3] Analog pad.  
6. Functional description  
6.1 Architectural overview  
The LPC2917/2919/01 consists of:  
An ARM968E-S processor with real-time emulation support  
An AMBA multi-layer Advanced High-performance Bus (AHB) for interfacing to the  
on-chip memory controllers  
Two DTL buses (an universal NXP interface) for interfacing to the interrupt controller  
and the Power, Clock and Reset Control cluster (also called subsystem).  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
11 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
Three ARM Peripheral Buses (APB - a compatible superset of ARM's AMBA  
advanced peripheral bus) for connection to on-chip peripherals clustered in  
subsystems.  
One ARM Peripheral Bus for event router and system control.  
The LPC2917/2919/01 configures the ARM968E-S processor in little-endian byte order.  
All peripherals run at their own clock frequency to optimize the total system power  
consumption. The AHB2APB bridge used in the subsystems contains a write-ahead buffer  
one transaction deep. This implies that when the ARM968E-S issues a buffered write  
action to a register located on the APB side of the bridge, it continues even though the  
actual write may not yet have taken place. Completion of a second write to the same  
subsystem will not be executed until the first write is finished.  
6.2 ARM968E-S processor  
The ARM968E-S is a general purpose 32-bit RISC processor, which offers high  
performance and very low power consumption. The ARM architecture is based on  
Reduced Instruction Set Computer (RISC) principles, and the instruction set and related  
decode mechanism are much simpler than those of microprogrammed Complex  
Instruction Set Computers (CISC). This simplicity results in a high instruction throughput  
and impressive real-time interrupt response from a small and cost-effective controller  
core.  
Amongst the most compelling features of the ARM968E-S are:  
Separate directly connected instruction and data Tightly Coupled Memory (TCM)  
interfaces  
Write buffers for the AHB and TCM buses  
Enhanced 16 × 32 multiplier capable of single-cycle MAC operations and 16-bit fixed-  
point DSP instructions to accelerate signal-processing algorithms and applications.  
Pipeline techniques are employed so that all parts of the processing and memory systems  
can operate continuously. The ARM968E-S is based on the ARMv5TE five-stage pipeline  
architecture. Typically, in a three-stage pipeline architecture, while one instruction is being  
executed its successor is being decoded and a third instruction is being fetched from  
memory. In the five-stage pipeline additional stages are added for memory access and  
write-back cycles.  
The ARM968E-S processor also employs a unique architectural strategy known as  
THUMB, which makes it ideally suited to high-volume applications with memory  
restrictions or to applications where code density is an issue.  
The key idea behind THUMB is that of a super-reduced instruction set. Essentially, the  
ARM968E-S processor has two instruction sets:  
Standard 32-bit ARMv5TE set  
16-bit THUMB set  
The THUMB set's 16-bit instruction length allows it to approach twice the density of  
standard ARM code while retaining most of the ARM's performance advantage over a  
traditional 16-bit controller using 16-bit registers. This is possible because THUMB code  
operates on the same 32-bit register set as ARM code.  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
12 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
THUMB code can provide up to 65 % of the code size of ARM, and 160 % of the  
performance of an equivalent ARM controller connected to a 16-bit memory system.  
The ARM968E-S processor is described in detail in the ARM968E-S data sheet Ref. 2.  
6.3 On-chip flash memory system  
The LPC2917/2919/01 includes a 512 kB or 768 kB flash memory system. This memory  
can be used for both code and data storage. Programming of the flash memory can be  
accomplished via the flash memory controller or JTAG.  
The flash controller also supports a 16 kB, byte-accessible on-chip EEPROM integrated  
on the LPC2917/2919/01.  
6.4 On-chip static RAM  
In addition to the two 16 kB TCMs the LPC2917/2919/01 includes two static RAM  
memories: one of 32 kB and one of 16 kB. Both may be used for code and/or data  
storage.  
In addition, 8 kB SRAM for the ETB can be used as static memory for code and data  
storage. However, DMA access to this memory region is not supported.  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
13 of 86  
xxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx x xxxxxxxxxxxxxx xxxxxxxxxx xxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxx  
xxxxx xxxxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxx xxxxxxx xxxxxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx xxxxxxxxxxxxxx xxxxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxx xxxxx x x  
LPC2917/2919/01  
4 GB  
0xFFFF FFFF  
0xFFFF 8000  
0xE00A 0000  
PCR/VIC control  
0xFFFF FFFF  
0xFFFF F000  
reserved  
LIN1  
VIC  
reserved  
CGU1  
PMU  
0xE008 B000  
0xE008 A000  
0xE008 9000  
reserved  
0xF080 0000  
0xF000 0000  
PCR/VIC  
subsystem  
0xFFFF C000  
0xFFFF B000  
DMA interface to TCM  
reserved  
LIN0  
peripherals #4  
networking  
subsystem  
CAN common regs  
CAN AF regs  
CAN ID LUT  
reserved  
I2C1  
0xE018 3000  
0xE018 2000  
0xE018 0000  
0xE014 0000  
0xE008 8000  
0xE008 7000  
0xFFFF A000  
ETB control  
8 kB ETB SRAM  
DMA controller  
RGU  
0xFFFF 9000  
0xFFFF 8000  
CGU0  
0xE008 6000  
0xE008 4000  
0xE008 3000  
0xE008 2000  
reserved  
reserved  
0xE00E 0000  
0xE00C A000  
0xE00C 9000  
0xE00C 8000  
0xE010 0000  
reserved  
I2C0  
0xE00E 0000  
quadrature encoder  
CAN1  
peripheral subsystem #6  
reserved  
0xE008 1000  
0xE008 0000  
PWM3  
PWM2  
0xE00C 0000  
0xE00A 0000  
0xE008 0000  
CAN0  
0xE00C 7000  
0xE00C 6000  
0xE00C 5000  
peripherals #6  
MSCSS  
subsystem  
PWM1  
0xE006 0000  
0xE004 E000  
0xE004 D000  
0xE004 C000  
peripheral subsystem #4  
reserved  
GPIO3  
PWM0  
reserved  
ADC2  
0xE006 0000  
0xE004 0000  
0xE00C 4000  
0xE00C 3000  
peripheral subsystem #2  
GPIO2  
GPIO1  
GPIO0  
ADC1  
reserved  
peripheral subsystem #0  
reserved  
reserved  
MSCSS timer1  
MSCSS timer0  
0xE004 B000  
0xE00C 2000  
0xE002 0000  
0xE000 0000  
0xE004 A000  
0xE004 9000  
0xE004 8000  
0xE00C 1000  
0xE00C 0000  
SPI2  
SPI1  
peripherals #2  
peripheral  
0x8000 C000  
remappable to  
shadow area  
16 kB AHB SRAM  
32 kB AHB SRAM  
reserved  
subsystem  
0x8000 8000  
0x8000 0000  
SPI0  
0xE004 7000  
0xE004 6000  
0x2020 4000  
0x2020 0000  
UART1  
UART0  
TIMER3  
TIMER2  
TIMER1  
TIMER0  
WDT  
flash controller  
reserved  
2 GB  
flash  
memory  
0xE004 5000  
0xE004 4000  
0xE004 3000  
0xE004 2000  
0x6000 4000  
0x6000 0000  
SMA controller  
0x200C 0000  
0x2008 0000  
0x2000 0000  
768 kB on-chip flash  
512 kB on-chip flash  
external static memory banks 7 to 2  
0x4300 0000  
0x4200 0000  
0x4100 0000  
16 MB external static memory bank 1  
reserved  
0xE004 1000  
0xE004 0000  
0x2000 0000  
no physical  
memory  
16 MB external static memory bank 0  
0x0080 0000  
1 GB  
0x4000 0000  
0x2020 4000  
0xE002 0000  
ITCM/DTCM  
memory  
reserved  
reserved  
peripherals #0  
general  
reserved  
event router  
SCU  
0x0040 4000  
0x0040 0000  
0xE000 2000  
0xE000 2000  
16 kB DTCM  
subsystem  
on-chip flash  
0xE000 1000  
0xE000 0000  
reserved  
0x2000 0000  
0x0000 0000  
CFID  
0x0000 4000  
0x0000 0000  
512 MB shadow area  
ITCM/DTCM  
16 kB ITCM  
002aad963  
0 GB  
Fig 3. LPC2917/2919/01 memory map  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
6.6 Reset, debug, test, and power description  
6.6.1 Reset and power-up behavior  
The LPC2917/2919/01 contains external reset input and internal power-up reset circuits.  
This ensures that a reset is extended internally until the oscillators and flash have reached  
a stable state. See Section 8 for trip levels of the internal power-up reset circuit1. See  
Section 9 for characteristics of the several start-up and initialization times. Table 4 shows  
the reset pin.  
Table 4.  
Symbol  
RST  
Reset pin  
Direction  
IN  
Description  
external reset input, active LOW; pulled up internally  
At activation of the RST pin the JTAGSEL pin is sensed as logic LOW. If this is the case  
the LPC2917/2919/01 is assumed to be connected to debug hardware, and internal  
circuits re-program the source for the BASE_SYS_CLK to be the crystal oscillator instead  
of the Low-Power Ring Oscillator (LP_OSC). This is required because the clock rate when  
running at LP_OSC speed is too low for the external debugging environment.  
6.6.2 Reset strategy  
The LPC2917/2919/01 contains a central module, the Reset Generator Unit (RGU) in the  
Power, Clock and Reset Subsystem (PCRSS), which controls all internal reset signals  
towards the peripheral modules. The RGU provides individual reset control as well as the  
monitoring functions needed for tracing a reset back to source.  
6.6.3 IEEE 1149.1 interface pins (JTAG boundary-scan test)  
The LPC2917/2919/01 contains boundary-scan test logic according to IEEE 1149.1, also  
referred to in this document as Joint Test Action Group (JTAG). The boundary-scan test  
pins can be used to connect a debugger probe for the embedded ARM processor. Pin  
JTAGSEL selects between boundary-scan mode and debug mode. Table 5 shows the  
boundary- scan test pins.  
Table 5.  
Symbol  
JTAGSEL  
IEEE 1149.1 boundary-scan test and debug interface  
Description  
TAP controller select input. LOW level selects ARM debug mode and HIGH level  
selects boundary scan and flash programming; pulled up internally  
TRST  
TMS  
TDI  
test reset input; pulled up internally (active LOW)  
test mode select input; pulled up internally  
test data input, pulled up internally  
test data output  
TDO  
TCK  
test clock input  
1. Only for 1.8 V power sources  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
15 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
6.6.3.1 ETM/ETB  
The ETM provides real-time trace capability for deeply embedded processor cores. It  
outputs information about processor execution to a trace buffer. A software debugger  
allows configuration of the ETM using a JTAG interface and displays the trace information  
that has been captured in a format that a user can easily understand. The ETB stores  
trace data produced by the ETM.  
The ETM/ETB module has the following features:  
Closely tracks the instructions that the ARM core is executing.  
On-chip trace data storage (ETB).  
All registers are programmed through JTAG interface.  
Does not consume power when trace is not being used.  
THUMB/Java instruction set support.  
6.6.4 Power supply pins  
Table 6 shows the power supply pins.  
Table 6.  
Symbol  
VDD(CORE)  
VSS(CORE)  
VDD(IO)  
Power supply pins  
Description  
digital core supply 1.8 V  
digital core ground (digital core, ADC1/2)  
I/O pins supply 3.3 V  
I/O pins ground  
VSS(IO)  
VDD(OSC)  
VSS(OSC)  
VDDA(ADC3V3)  
VSS(PLL)  
oscillator and PLL supply  
oscillator ground  
ADC1 and ADC2 3.3 V supply  
PLL ground  
6.7 Clocking strategy  
6.7.1 Clock architecture  
The LPC2917/2919/01 contains several different internal clock areas. Peripherals like  
Timers, SPI, UART, CAN and LIN have their own individual clock sources called base  
clocks. All base clocks are generated by the Clock Generator Unit (CGU0). They may be  
unrelated in frequency and phase and can have different clock sources within the CGU.  
The system clock for the CPU and AHB Bus infrastructure has its own base clock. This  
means most peripherals are clocked independently from the system clock. See Figure 4  
for an overview of the clock areas within the device.  
Within each clock area there may be multiple branch clocks, which offers very flexible  
control for power-management purposes. All branch clocks are outputs of the Power  
Management Unit (PMU) and can be controlled independently. Branch clocks derived  
from the same base clock are synchronous in frequency and phase. See Section 6.15 for  
more details of clock and power control within the device.  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
16 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
Two of the base clocks generated by the CGU0 are used as input into a second, dedicated  
CGU (CGU1). The CGU1 uses its own PLL and fractional divider to generate the base  
clock for an independent clock output.  
BA SE_ICLK0_CLK  
BASE_SYS_CLK  
BASE_OUT_CLK  
CLOCK  
OUT  
BASE_ICLK1_CLK  
branch  
clock  
CPU  
AHB MULTILAYER MATRIX  
AHB TO APB BRIDGES  
VIC  
CGU1  
BASE_IVNSS_CLK  
networking subsystem  
CAN0/1  
GPDMA  
branch  
clocks  
FLASH/SRAM/SMC  
GLOBAL  
ACCEPTANCE  
FILTER  
branch  
clocks  
general subsytem  
LIN0/1  
I2C0/1  
SYSTEM CONTROL  
EVENT ROUTER  
CFID  
BASE_PCR_CLK  
peripheral subsystem  
GPIO0/1/2/3  
power control subsystem  
branch  
clock  
RESET/CLOCK  
GENERATION AND  
POWER  
MANAGEMENT  
BASE_TMR_CLK  
BASE_SPI_CLK  
BASE_MSCSS_CLK  
TIMER 0/1/2/3  
SPI0/1/2  
UART0/1  
WDT  
modulation and sampling  
control subsystem  
T_CLK  
BASE_UAR  
TIMER0/1 MTMR  
PWM0/1/2/3  
QEI  
BASE_SAFE_CLK  
branch  
clocks  
BASE_ADC_CLK  
ADC1/2  
branch  
clocks  
CGU0  
002aad962  
Fig 4. LPC2917/2919/01 block diagram, overview of clock areas  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
17 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
6.7.2 Base clock and branch clock relationship  
Table 7 and Table 8 contain an overview of all the base blocks in the LPC2917/2919/01  
and their derived branch clocks. In relevant cases more detailed information can be found  
in the specific subsystem description. Some branch clocks have special protection since  
they clock vital system parts of the device and should (for example) not be switched off.  
See Section 6.15.5 for more details of how to control the individual branch clocks.  
Table 7.  
CGU0 generated base clock and branch clock overview  
Base clock  
Branch clock name  
Parts of the device clocked  
Remark  
by this branch clock  
[1]  
BASE_SAFE_CLK  
BASE_SYS_CLK  
CLK_SAFE  
watchdog timer  
CLK_SYS_CPU  
CLK_SYS_SYS  
CLK_SYS_PCRSS  
CLK_SYS_FMC  
CLK_SYS_RAM0  
ARM968E-S and TCMs  
AHB bus infrastructure  
AHB side of bridge in PCRSS  
Flash-Memory Controller  
Embedded SRAM Controller 0  
(32 kB)  
CLK_SYS_RAM1  
CLK_SYS_SMC  
Embedded SRAM Controller 1  
(16 kB)  
External Static-Memory  
Controller  
CLK_SYS_GESS  
CLK_SYS_VIC  
General Subsystem  
Vectored Interrupt Controller  
Peripheral Subsystem  
GPIO bank 0  
[2] [4]  
CLK_SYS_PESS  
CLK_SYS_GPIO0  
CLK_SYS_GPIO1  
CLK_SYS_GPIO2  
CLK_SYS_GPIO3  
CLK_SYS_IVNSS_A  
CLK_SYS_MSCSS_A  
CLK_SYS_DMA  
GPIO bank 1  
GPIO bank 2  
GPIO bank 3  
AHB side of bridge of IVNSS  
AHB side of bridge of MSCSS  
GPDMA  
[1] [3]  
BASE_PCR_CLK  
CLK_PCR_SLOW  
PCRSS, CGU, RGU and PMU  
logic clock  
,
BASE_IVNSS_CLK  
CLK_IVNSS_APB  
APB side of the IVNSS  
CLK_IVNSS_CANCA  
CAN controller Acceptance  
Filter  
CLK_IVNSS_CANC0  
CLK_IVNSS_CANC1  
CLK_IVNSS_I2C0  
CLK_IVNSS_I2C1  
CLK_IVNSS_LIN0  
CLK_IVNSS_LIN1  
CAN channel 0  
CAN channel 1  
I2C0  
I2C1  
LIN channel 0  
LIN channel 1  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
18 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
Table 7.  
CGU0 generated base clock and branch clock overview …continued  
Base clock  
Branch clock name  
Parts of the device clocked  
by this branch clock  
Remark  
BASE_MSCSS_CLK  
CLK_MSCSS_APB  
APB side of the MSCSS  
Timer 0 in the MSCSS  
Timer 1 in the MSCSS  
PWM 0  
CLK_MSCSS_MTMR0  
CLK_MSCSS_MTMR1  
CLK_MSCSS_PWM0  
CLK_MSCSS_PWM1  
CLK_MSCSS_PWM2  
CLK_MSCSS_PWM3  
PWM 1  
PWM 2  
PWM 3  
CLK_MSCSS_ADC1_APB APB side of ADC 1  
CLK_MSCSS_ADC2_APB APB side of ADC 2  
CLK_MSCSS_QEI  
CLK_UART0  
CLK_UART1  
-
Quadrature encoder  
BASE_UART_CLK  
UART 0 interface clock  
UART 1 interface clock  
CGU1 input clock  
BASE_ICLK0_CLK  
BASE_SPI_CLK  
CLK_SPI0  
CLK_SPI1  
CLK_SPI2  
CLK_TMR0  
CLK_TMR1  
CLK_TMR2  
CLK_TMR3  
CLK_ADC1  
SPI 0 interface clock  
SPI 1 interface clock  
SPI 2 interface clock  
BASE_TMR_CLK  
BASE_ADC_CLK  
Timer 0 clock for counter part  
Timer 1 clock for counter part  
Timer 2 clock for counter part  
Timer 3 clock for counter part  
Control of ADC 1, capture  
sample result  
CLK_ADC2  
Control of ADC 2, capture  
sample result  
reserved  
-
-
-
BASE_ICLK1_CLK  
CGU1 input clock  
[1] This clock is always on (cannot be switched off for system safety reasons)  
[2] In the peripheral subsystem parts of the Timers, watchdog timer, SPI and UART have their own clock  
source. See Section 6.12 for details.  
[3] In the Power Clock and Reset Control subsystem parts of the CGU, RGU, and PMU have their own clock  
source. See Section 6.15 for details.  
[4] The clock should remain activated when system wake-up on timer or UART is required.  
Table 8.  
CGU1 base clock and branch clock overview  
Base clock  
Branch clock name  
Parts of the device clocked by this  
branch clock  
BASE_OUT_CLK  
CLK_OUT_CLK  
clockout pin  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
19 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
6.8 Flash memory controller  
The flash memory has a 128-bit wide data interface and the flash controller offers two  
128-bit buffer lines to improve system performance. The flash has to be programmed  
initially via JTAG. In-system programming must be supported by the bootloader.  
In-application programming is possible. Flash memory contents can be protected by  
disabling JTAG access. Suspension of burning or erasing is not supported.  
The Flash Memory Controller (FMC) interfaces to the embedded flash memory for two  
tasks:  
Memory data transfer  
Memory configuration via triggering, programming, and erasing  
The key features are:  
Programming by CPU via AHB  
Programming by external programmer via JTAG  
JTAG access protection  
Burn-finished and erase-finished interrupt  
6.8.1 Functional description  
After reset, flash initialization is started, which takes tinit time (see Section 9). During this  
initialization, flash access is not possible and AHB transfers to flash are stalled, blocking  
the AHB bus.  
During flash initialization, the index sector is read to identify the status of the JTAG access  
protection and sector security. If JTAG access protection is active, the flash is not  
accessible via JTAG. In this case, ARM debug facilities are disabled and flash-memory  
contents cannot be read. If sector security is active, only the unsecured sections can be  
read.  
Flash can be read synchronously or asynchronously to the system clock. In synchronous  
operation, the flash goes into standby after returning the read data. Started reads cannot  
be stopped, and speculative reading and dual buffering are therefore not supported.  
With asynchronous reading, transfer of the address to the flash and of read data from the  
flash is done asynchronously, giving the fastest possible response time. Started reads can  
be stopped, so speculative reading and dual buffering are supported.  
Buffering is offered because the flash has a 128-bit wide data interface while the AHB  
interface has only 32 bits. With buffering a buffer line holds the complete 128-bit flash  
word, from which four words can be read. Without buffering every AHB data port read  
starts a flash read. A flash read is a slow process compared to the minimum AHB cycle  
time, so with buffering the average read time is reduced. This can improve system  
performance.  
With single buffering, the most recently read flash word remains available until the next  
flash read. When an AHB data-port read transfer requires data from the same flash word  
as the previous read transfer, no new flash read is done and the read data is given without  
wait cycles.  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
20 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
When an AHB data port read transfer requires data from a different flash word to that  
involved in the previous read transfer, a new flash read is done and wait states are given  
until the new read data is available.  
With dual buffering, a secondary buffer line is used, the output of the flash being  
considered as the primary buffer. On a primary buffer, hit data can be copied to the  
secondary buffer line, which allows the flash to start a speculative read of the next flash  
word.  
Both buffer lines are invalidated after:  
Initialization  
Configuration-register access  
Data-latch reading  
Index-sector reading  
The modes of operation are listed in Table 9.  
Table 9.  
Flash read modes  
Synchronous timing  
No buffer line  
for single (non-linear) reads; one flash-word read per word read  
Single buffer line  
default mode of operation; most recently read flash word is kept until  
another flash word is required  
Asynchronous timing  
No buffer line  
one flash-word read per word read  
Single buffer line  
most recently read flash word is kept until another flash word is  
required  
Dual buffer line, single  
speculative  
on a buffer miss a flash read is done, followed by at most one  
speculative read; optimized for execution of code with small loops  
(less than eight words) from flash  
Dual buffer line, always  
speculative  
most recently used flash word is copied into second buffer line; next  
flash-word read is started; highest performance for linear reads  
6.8.2 Pin description  
The flash memory controller has no external pins. However, the flash can be programmed  
via the JTAG pins, see Section 6.6.3.  
6.8.3 Clock description  
The flash memory controller is clocked by CLK_SYS_FMC, see Section 6.7.2.  
6.8.4 Flash layout  
The ARM processor can program the flash for ISP (In-System Programming) and IAP (In-  
Application Programming). Note that the flash always has to be programmed by ‘flash  
words’ of 128 bits (four 32-bit AHB bus words, hence 16 bytes).  
The flash memory is organized into eight ‘small’ sectors of 8 kB each and up to 11 ‘large’  
sectors of 64 kB each. The number of large sectors depends on the device type. A sector  
must be erased before data can be written to it. The flash memory also has sector-wise  
protection. Writing occurs per page which consists of 4096 bits (32 flash words). A small  
sector contains 16 pages; a large sector contains 128 pages.  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
21 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
Table 10 gives an overview of the flash-sector base addresses.  
Table 10. Flash sector overview  
Sector number  
Sector size (kB)  
Sector base address  
0x2000 0000  
0x2000 2000  
0x2000 4000  
0x2000 6000  
0x2000 8000  
0x2000 A000  
0x2000 C000  
0x2000 E000  
0x2001 0000  
0x2002 0000  
0x2003 0000  
0x2004 0000  
0x2005 0000  
0x2006 0000  
0x2007 0000  
0x2008 0000  
0x2009 0000  
0x200A 0000  
0x200B 0000  
11  
12  
13  
14  
15  
16  
17  
18  
0
8
8
8
8
8
8
8
8
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
1
2
3
4
5
6
7[1]  
8[1]  
9[1]  
10[1]  
[1] Availability of sector 15 to sector 18 depends on device type, see Section 3 “Ordering information”.  
The index sector is a special sector in which the JTAG access protection and sector  
security are located. The address space becomes visible by setting the FS_ISS bit and  
overlaps the regular flash sector’s address space.  
Note that the index sector cannot be erased, and that access to it has to be performed via  
code outside the flash.  
6.8.5 Flash bridge wait-states  
To eliminate the delay associated with synchronizing flash-read data, a predefined  
number of wait-states must be programmed. These depend on flash-memory response  
time and system clock period. The minimum wait-states value can be calculated with the  
following formulas:  
Synchronous reading:  
t
WST > acc(clk) 1  
(1)  
(2)  
------------------  
tt  
tclk(sys)  
Asynchronous reading:  
t
WST > acc(addr) 1  
---------------------  
ttclk(sys)  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
22 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
Remark: If the programmed number of wait-states is more than three, flash-data reading  
cannot be performed at full speed (i.e. with zero wait-states at the AHB bus) if speculative  
reading is active.  
6.8.6 EEPROM  
EEPROM is a non-volatile memory mostly used for storing relatively small amounts of  
data, for example for storing settings. It contains one 16 kB memory block and is  
byte-programmable and byte-erasable.  
The EEPROM can be accessed only through the flash controller.  
6.9 External static memory controller  
The LPC2917/2919/01 contains an external Static Memory Controller (SMC) which  
provides an interface for external (off-chip) memory devices.  
Key features are:  
Supports static memory-mapped devices including RAM, ROM, flash, burst ROM and  
external I/O devices.  
Asynchronous page-mode read operation in non-clocked memory subsystems.  
Asynchronous burst-mode read access to burst-mode ROM devices.  
Independent configuration for up to eight banks, each up to 16 MB.  
Programmable bus-turnaround (idle) cycles (one to 16).  
Programmable read and write wait states (up to 32), for static RAM devices.  
Programmable initial and subsequent burst-read wait state for burst-ROM devices.  
Programmable write protection.  
Programmable burst-mode operation.  
Programmable external data width: 8 bits, 16 bits or 32 bits.  
Programmable read-byte lane enable control.  
6.9.1 Description  
The SMC simultaneously supports up to eight independently configurable memory banks.  
Each memory bank can be 8 bits, 16 bits or 32 bits wide and is capable of supporting  
SRAM, ROM, burst-ROM memory, or external I/O devices.  
A separate chip select output is available for each bank. The chip select lines are  
configurable to be active HIGH or LOW. Memory-bank selection is controlled by memory  
addressing. Table 11 shows how the 32-bit system address is mapped to the external bus  
memory base addresses, chip selects, and bank internal addresses.  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
23 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
Table 11. External memory-bank address bit description  
32-bit  
Symbol  
Description  
system  
address bit  
field  
31 to 29  
BA[2:0]  
external static-memory base address (three most significant bits);  
the base address can be found in the memory map; see Ref. 1. This  
field contains ‘010’ when addressing an external memory bank.  
28 to 26  
25 and 24  
23 to 0  
CS[2:0]  
-
chip select address space for eight memory banks; see Ref. 1.  
always ‘00’; other values are ‘mirrors’ of the 16 MB bank address.  
16 MB memory banks address space  
A[23:0]  
Table 12. External static-memory controller banks  
CS[2:0]  
000  
Bank  
bank 0  
bank 1  
bank 2  
bank 3  
bank 4  
bank 5  
bank 6  
bank 7  
001  
010  
011  
100  
101  
110  
111  
6.9.2 Pin description  
The external static-memory controller module in the LPC2917/2919/01 has the following  
pins, which are combined with other functions on the port pins of the LPC2917/2919/01.  
Table 13 shows the external memory controller pins.  
Table 13. External memory controller pins  
Symbol  
Direction  
OUT  
Description  
EXTBUS CSx  
EXTBUS BLSy  
EXTBUS WE  
EXTBUS OE  
memory-bank x select, x runs from 0 to 7  
byte-lane select input y, y runs from 0 to 3  
write enable (active LOW)  
output enable (active LOW)  
address bus  
OUT  
OUT  
OUT  
EXTBUS A[23:0] OUT  
EXTBUS D[31:0] IN/OUT  
data bus  
6.9.3 Clock description  
The External Static-Memory Controller is clocked by CLK_SYS_SMC, see Section 6.7.2.  
6.9.4 External memory timing diagrams  
A timing diagram for reading from external memory is shown in Figure 5. The relationship  
between the wait-state settings is indicated with arrows.  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
24 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
CLK(SYS)  
CS  
OE  
A
D
WST1  
WSTOEN  
002aae704  
WSTOEN = 3, WST1 = 6  
Fig 5. Reading from external memory  
A timing diagram for writing to external memory is shown In Figure 6. The relationship  
between wait-state settings is indicated with arrows.  
CLK(SYS)  
CS  
(1)  
WE/BLS  
BLS  
A
D
WST2  
WSTWEN  
002aae705  
WSTWEN = 3, WST2 = 7  
(1) BLS has the same timing as WE in configurations that use the byte lane enable signals to connect  
to write enable (8 bit devices).  
Fig 6. Writing to external memory  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
25 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
Usage of the idle/turn-around time (IDCY) is demonstrated In Figure 7. Extra wait states  
are added between a read and a write cycle in the same external memory device.  
CLK(SYS)  
CS  
WE  
OE  
A
D
WST1  
WST2  
WSTWEN  
IDCY  
WSTOEN  
002aae706  
WSTOEN = 2, WSTWEN = 4, WST1 = 6, WST2 = 4, IDCY = 5  
Fig 7. Reading/writing external memory  
Address pins on the device are shared with other functions. When connecting external  
memories, check that the I/O pin is programmed for the correct function. Control of these  
settings is handled by the SCU.  
6.10 DMA controller  
The DMA controller allows peripheral-to memory, memory-to-peripheral,  
peripheral-to-peripheral, and memory-to-memory transactions. Each DMA stream  
provides unidirectional serial DMA transfers for a single source and destination. For  
example, a bidirectional port requires one stream for transmit and one for receives. The  
source and destination areas can each be either a memory region or a peripheral, and  
can be accessed through the same AHB master or one area by each master.  
The DMA controls eight DMA channels with hardware prioritization. The DMA controller  
interfaces to the system via two AHB bus masters, each with a full 32-bit data bus width.  
DMA operations may be set up for 8-bit, 16-bit, and 32-bit data widths, and can be either  
big-endian or little-endian. Incrementing or non-incrementing addressing for source and  
destination are supported, as well as programmable DMA burst size. Scatter or gather  
DMA is supported through the use of linked lists. This means that the source and  
destination areas do not have to occupy contiguous areas of memory.  
6.10.1 DMA support for peripherals  
The GPDMA supports the following peripherals: SPI0/1/2 and UART0/1. The GPDMA can  
access both embedded SRAM blocks (16 kB and 32 kB), both TCMs, external static  
memory, and flash memory.  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
26 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
6.10.2 Clock description  
The DMA controller is clocked by CLK_SYS_DMA derived from BASE_SYS_CLK, see  
Section 6.7.2.  
6.11 General subsystem  
6.11.1 General subsystem clock description  
The general subsystem is clocked by CLK_SYS_GESS, see Section 6.7.2.  
6.11.2 Chip and feature identification  
The Chip/Feature ID (CFID) module contains registers which show and control the  
functionality of the chip. It contains an ID to identify the silicon and also registers  
containing information about the features enabled or disabled on the chip.  
The key features are:  
Identification of product  
Identification of features enabled  
The CFID has no external pins.  
6.11.3 System Control Unit (SCU)  
The system control unit contains system-related functions.The key feature is configuration  
of the I/O port-pins multiplexer. It defines the function of each I/O pin of the  
LPC2917/2919/01. The I/O pin configuration should be consistent with peripheral function  
usage.  
The SCU has no external pins.  
6.11.4 Event router  
The event router provides bus-controlled routing of input events to the vectored interrupt  
controller for use as interrupt or wake-up signals.  
Key features:  
Up to 19 level-sensitive external interrupt pins, including the receive pins of SPI, CAN,  
LIN, and UART, as well as the I2C-bus SCL pins plus three internal event sources.  
Input events can be used as interrupt source either directly or latched  
(edge-detected).  
Direct events disappear when the event becomes inactive.  
Latched events remain active until they are explicitly cleared.  
Programmable input level and edge polarity.  
Event detection maskable.  
Event detection is fully asynchronous, so no clock is required.  
The event router allows the event source to be defined, its polarity and activation type to  
be selected and the interrupt to be masked or enabled. The event router can be used to  
start a clock on an external event.  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
27 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
The vectored interrupt-controller inputs are active HIGH.  
6.11.4.1 Pin description  
The event router module in the LPC2917/2919/01 is connected to the pins listed below.  
The pins are combined with other functions on the port pins of the LPC2917/2919/01.  
Table 14 shows the pins connected to the event router, and also the corresponding bit  
position in the event-router registers and the default polarity.  
Table 14. Event-router pin connections  
Symbol  
EXTINT 7 - 0  
CAN0 RXD  
CAN1 RXD  
I2C0_SCL  
I2C1_SCL  
LIN0 RXD  
LIN1 RXD  
SPI0 SDI  
SPI1 SDI  
SPI2 SDI  
UART0 RXD  
UART1 RXD  
-
Direction  
Description  
Default polarity  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
na  
na  
na  
external interrupt input 7 - 0  
CAN0 receive data input wake-up  
CAN1 receive data input wake-up  
I2C0 SCL clock input  
1
0
0
0
0
0
0
0
0
0
0
0
1
1
1
I2C1 SCL clock input  
LIN0 receive data input wake-up  
LIN1 receive data input wake-up  
SPI0 receive data input  
SPI1 receive data input  
SPI2 receive data input  
UART0 receive data input  
UART1 receive data input  
CAN interrupt (internal)  
VIC FIQ (internal)  
-
-
VIC IRQ (internal)  
6.12 Peripheral subsystem  
6.12.1 Peripheral subsystem clock description  
The peripheral subsystem is clocked by a number of different clocks:  
CLK_SYS_PESS  
CLK_UART0/1  
CLK_SPI0/1/2  
CLK_TMR0/1/2/3  
CLK_SAFE see Section 6.7.2  
6.12.2 Watchdog timer  
The purpose of the watchdog timer is to reset the ARM9 processor within a reasonable  
amount of time if the processor enters an error state. The watchdog generates a system  
reset if the user program fails to trigger it correctly within a predetermined amount of time.  
Key features:  
Internal chip reset if not periodically triggered  
Timer counter register runs on always-on safe clock  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
28 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
Optional interrupt generation on watchdog time-out  
Debug mode with disabling of reset  
Watchdog control register change-protected with key  
Programmable 32-bit watchdog timer period with programmable 32-bit prescaler.  
6.12.2.1 Functional description  
The watchdog timer consists of a 32-bit counter with a 32-bit prescaler.  
The watchdog should be programmed with a time-out value and then periodically  
restarted. When the watchdog times out, it generates a reset through the RGU.  
To generate watchdog interrupts in watchdog debug mode the interrupt has to be enabled  
via the interrupt enable register. A watchdog-overflow interrupt can be cleared by writing  
to the clear-interrupt register.  
Another way to prevent resets during debug mode is via the Pause feature of the  
watchdog timer. The watchdog is stalled when the ARM9 is in debug mode and the  
PAUSE_ENABLE bit in the watchdog timer control register is set.  
The Watchdog Reset output is fed to the Reset Generator Unit (RGU). The RGU contains  
a reset source register to identify the reset source when the device has gone through a  
reset. See Section 6.15.4.  
6.12.2.2 Clock description  
The watchdog timer is clocked by two different clocks; CLK_SYS_PESS and CLK_SAFE,  
see Section 6.7.2. The register interface towards the system bus is clocked by  
CLK_SYS_PESS. The timer and prescale counters are clocked by CLK_SAFE which is  
always on.  
6.12.3 Timer  
The LPC2917/2919/01 contains six identical timers: four in the peripheral subsystem and  
two in the Modulation and Sampling Control SubSystem (MSCSS) located at different  
peripheral base addresses. This section describes the four timers in the peripheral  
subsystem. Each timer has four capture inputs and/or match outputs. Connection to  
device pins depends on the configuration programmed into the port function-select  
registers. The two timers located in the MSCSS have no external capture or match pins,  
but the memory map is identical, see Section 6.14.6. One of these timers has an external  
input for a pause function.  
The key features are:  
32-bit timer/counter with programmable 32-bit prescaler  
Up to four 32-bit capture channels per timer. These take a snapshot of the timer value  
when an external signal connected to the TIMERx CAPn input changes state. A  
capture event may also optionally generate an interrupt  
Four 32-bit match registers per timer that allow:  
Continuous operation with optional interrupt generation on match  
Stop timer on match with optional interrupt generation  
Reset timer on match with optional interrupt generation  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
29 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
Up to four external outputs per timer corresponding to match registers, with the  
following capabilities:  
Set LOW on match  
Set HIGH on match  
Toggle on match  
Do nothing on match  
Pause input pin (MSCSS timers only)  
The timers are designed to count cycles of the clock and optionally generate interrupts or  
perform other actions at specified timer values, based on four match registers. They also  
include capture inputs to trap the timer value when an input signal changes state,  
optionally generating an interrupt. The core function of the timers consists of a 32 bit  
prescale counter triggering the 32 bit timer counter. Both counters run on clock  
CLK_TMRx (x runs from 0 to 3) and all time references are related to the period of this  
clock. Note that each timer has its individual clock source within the Peripheral  
SubSystem. In the Modulation and Sampling SubSystem each timer also has its own  
individual clock source. See section Section 6.15.5 for information on generation of these  
clocks.  
6.12.3.1 Pin description  
The four timers in the peripheral subsystem of the LPC2917/2919/01 have the pins  
described below. The two timers in the modulation and sampling subsystem have no  
external pins except for the pause pin on MSCSS timer 1. See Section 6.14.6 for a  
description of these timers and their associated pins. The timer pins are combined with  
other functions on the port pins of the LPC2917/2919/01, see Section 6.11.3. Table  
Table 15 shows the timer pins (x runs from 0 to 3).  
Table 15. Timer pins  
Symbol  
Pin name  
Direction  
IN  
Description  
TIMERx CAP[0] CAPx[0]  
TIMERx CAP[1] CAPx[1]  
TIMERx CAP[2] CAPx[2]  
TIMERx CAP[3] CAPx[3]  
TIMERx MAT[0] MATx[0]  
TIMERx MAT[1] MATx[1]  
TIMERx MAT[2] MATx[2]  
TIMERx MAT[3] MATx[3]  
TIMER x capture input 0  
TIMER x capture input 1  
TIMER x capture input 2  
TIMER x capture input 3  
TIMER x match output 0  
TIMER x match output 1  
TIMER x match output 2  
TIMER x match output 3  
IN  
IN  
IN  
OUT  
OUT  
OUT  
OUT  
6.12.3.2 Clock description  
The timer modules are clocked by two different clocks; CLK_SYS_PESS and CLK_TMRx  
(x = 0-3), see Section 6.7.2. Note that each timer has its own CLK_TMRx branch clock for  
power management. The frequency of all these clocks is identical as they are derived from  
the same base clock BASE_CLK_TMR. The register interface towards the system bus is  
clocked by CLK_SYS_PESS. The timer and prescale counters are clocked by  
CLK_TMRx.  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
30 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
6.12.4 UARTs  
ARM9 microcontroller with CAN and LIN  
The LPC2917/2919/01 contains two identical UARTs located at different peripheral base  
addresses. The key features are:  
16-byte receive and transmit FIFOs.  
Register locations conform to 550 industry standard.  
Receiver FIFO trigger points at 1 byte, 4 bytes, 8 bytes and 14 bytes.  
Built-in baud rate generator.  
Support for RS-485/9-bit mode allows both software address detection and automatic  
address detection using 9-bit mode.  
The UART is commonly used to implement a serial interface such as RS232. The  
LPC2917/2919/01 contains two industry-standard 550 UARTs with 16-byte transmit and  
receive FIFOs, but they can also be put into 450 mode without FIFOs.  
6.12.4.1 Pin description  
The UART pins are combined with other functions on the port pins of the  
LPC2917/2919/01. Table 16 shows the UART pins (x runs from 0 to 1).  
Table 16. UART pins  
Symbol  
Pin name  
Direction  
OUT  
Description  
UARTx TXD TXDx  
UARTx RXD RXDx  
UART channel x transmit data output  
UART channel x receive data input  
IN  
6.12.4.2 Clock description  
The UART modules are clocked by two different clocks; CLK_SYS_PESS and  
CLK_UARTx (x = 0-1), see Section 6.7.2. Note that each UART has its own CLK_UARTx  
branch clock for power management. The frequency of all CLK_UARTx clocks is identical  
since they are derived from the same base clock BASE_CLK_UART. The register  
interface towards the system bus is clocked by CLK_SYS_PESS. The baud generator is  
clocked by the CLK_UARTx.  
6.12.5 Serial peripheral interface (SPI)  
The LPC2917/2919/01 contains three Serial Peripheral Interface modules (SPIs) to allow  
synchronous serial communication with slave or master peripherals.  
The key features are:  
Master or slave operation  
Each SPI supports up to four slaves in sequential multi-slave operation  
Supports timer-triggered operation  
Programmable clock bit rate and prescale based on SPI source clock  
(BASE_SPI_CLK), independent of system clock  
Separate transmit and receive FIFO memory buffers; 16 bits wide, 32 locations deep  
Programmable choice of interface operation: Motorola SPI or Texas Instruments  
Synchronous Serial Interfaces  
Programmable data-frame size from 4 to 16 bits  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
31 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
Independent masking of transmit FIFO, receive FIFO and receive overrun interrupts  
Serial clock-rate master mode: fserial_clk fclk(SPI)/2  
Serial clock-rate slave mode: fserial_clk = fclk(SPI)/4  
Internal loopback test mode  
The SPI module can operate in:  
Master mode:  
Normal transmission mode  
Sequential slave mode  
Slave mode  
6.12.5.1 Functional description  
The SPI module is a master or slave interface for synchronous serial communication with  
peripheral devices that have either Motorola SPI or Texas Instruments Synchronous Serial  
Interfaces.  
The SPI module performs serial-to-parallel conversion on data received from a peripheral  
device. The transmit and receive paths are buffered with FIFO memories (16 bits wide ×  
32 words deep). Serial data is transmitted on pins SDOx and received on pins SDIx.  
The SPI module includes a programmable bit-rate clock divider and prescaler to generate  
the SPI serial clock from the input clock CLK_SPIx.  
The SPI module’s operating mode, frame format, and word size are programmed through  
the SLVn_SETTINGS registers.  
A single combined interrupt request SPI_INTREQ output is asserted if any of the  
interrupts are asserted and unmasked.  
Depending on the operating mode selected, the SPI SCS outputs operate as an  
active-HIGH frame synchronization output for Texas Instruments synchronous serial  
frame format or an active LOW chip select for SPI.  
Each data frame is between four and 16 bits long, depending on the size of words  
programmed, and is transmitted starting with the MSB.  
6.12.5.2 Pin description  
The SPI pins are combined with other functions on the port pins of the LPC2917/2919/01,  
see Section 6.11.3. Table 17 shows the SPI pins (x runs from 0 to 2; y runs from 0 to 3).  
Table 17. SPI pins  
Symbol  
Pin name  
SCSx[y]  
SCKx  
Direction  
IN/OUT  
IN/OUT  
IN  
Description  
SPIx SCSy  
SPIx SCK  
SPIx SDI  
SPIx SDO  
SPIx chip select[1][2]  
SPIx clock[1]  
SDIx  
SPIx data input  
SPIx data output  
SDOx  
OUT  
[1] Direction of SPIx SCS and SPIx SCK pins depends on master or slave mode. These pins are output in  
master mode, input in slave mode.  
[2] In slave mode there is only one chip select input pin, SPIx SCS0. The other chip selects have no function in  
slave mode.  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
32 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
6.12.5.3 Clock description  
The SPI modules are clocked by two different clocks; CLK_SYS_PESS and CLK_SPIx  
(x = 0, 1, 2), see Section 6.7.2. Note that each SPI has its own CLK_SPIx branch clock for  
power management. The frequency of all clocks CLK_SPIx is identical as they are derived  
from the same base clock BASE_CLK_SPI. The register interface towards the system bus  
is clocked by CLK_SYS_PESS. The serial-clock rate divisor is clocked by CLK_SPIx.  
The SPI clock frequency can be controlled by the CGU. In master mode the SPI clock  
frequency (CLK_SPIx) must be set to at least twice the SPI serial clock rate on the  
interface. In slave mode CLK_SPIx must be set to four times the SPI serial clock rate on  
the interface.  
6.12.6 General-purpose I/O  
The LPC2917/2919/01 contains four general-purpose I/O ports located at different  
peripheral base addresses. All I/O pins are bidirectional, and the direction can be  
programmed individually. The I/O pad behavior depends on the configuration programmed  
in the port function-select registers.  
The key features are:  
General-purpose parallel inputs and outputs  
Direction control of individual bits  
Synchronized input sampling for stable input-data values  
All I/O defaults to input at reset to avoid any possible bus conflicts  
6.12.6.1 Functional description  
The general-purpose I/O provides individual control over each bidirectional port pin. There  
are two registers to control I/O direction and output level. The inputs are synchronized to  
achieve stable read-levels.  
To generate an open-drain output, set the bit in the output register to the desired value.  
Use the direction register to control the signal. When set to output, the output driver  
actively drives the value on the output: when set to input the signal floats and can be  
pulled up internally or externally.  
6.12.6.2 Pin description  
The five GPIO ports in the LPC2917/2919/01 have the pins listed below. The GPIO pins  
are combined with other functions on the port pins of the LPC2917/2919/01. Table 18  
shows the GPIO pins.  
Table 18. GPIO pins  
Symbol  
Pin name  
Direction  
IN/OUT  
IN/OUT  
IN/OUT  
IN/OUT  
Description  
GPIO0 pin[31:0] P0[31:0]  
GPIO1 pin[31:0] P1[31:0]  
GPIO2 pin[27:0] P2[27:0]  
GPIO3 pin[15:0] P3[15:0]  
GPIO port x pins 31 to 0  
GPIO port x pins 31 to 0  
GPIO port x pins 27 to 0  
GPIO port x pins 15 to 0  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
33 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
6.12.6.3 Clock description  
The GPIO modules are clocked by several clocks, all of which are derived from  
BASE_SYS_CLK; CLK_SYS_PESS and CLK_SYS_GPIOx (x = 0, 1, 2, 3), see  
Section 6.7.2. Note that each GPIO has its own CLK__SYS_GPIOx branch clock for  
power management. The frequency of all clocks CLK_SYS_GPIOx is identical to  
CLK_SYS_PESS since they are derived from the same base clock BASE_SYS_CLK.  
6.13 Networking subsystem  
6.13.1 CAN gateway  
Controller Area Network (CAN) is the definition of a high-performance communication  
protocol for serial data communication. The two CAN controllers in the LPC2917/2919/01  
provide a full implementation of the CAN protocol according to the CAN specification  
version 2.0B. The gateway concept is fully scalable with the number of CAN controllers,  
and always operates together with a separate powerful and flexible hardware acceptance  
filter.  
The key features are:  
Supports 11-bit as well as 29-bit identifiers  
Double receive buffer and triple transmit buffer  
Programmable error-warning limit and error counters with read/write access  
Arbitration-lost capture and error-code capture with detailed bit position  
Single-shot transmission (i.e. no re-transmission)  
Listen-only mode (no acknowledge; no active error flags)  
Reception of ‘own’ messages (self-reception request)  
FullCAN mode for message reception  
6.13.1.1 Global acceptance filter  
The global acceptance filter provides look-up of received identifiers - called acceptance  
filtering in CAN terminology - for all the CAN controllers. It includes a CAN ID look-up table  
memory, in which software maintains one to five sections of identifiers. The CAN ID  
look-up table memory is 2 kB large (512 words, each of 32 bits). It can contain up to 1024  
standard frame identifiers or 512 extended frame identifiers or a mixture of both types. It is  
also possible to define identifier groups for standard and extended message formats.  
6.13.1.2 Pin description  
The two CAN controllers in the LPC2917/2919/01 have the pins listed below. The CAN  
pins are combined with other functions on the port pins of the LPC2917/2919/01. Table 19  
shows the CAN pins (x runs from 0 to 1).  
Table 19. CAN pins  
Symbol  
Pin name  
TXDC0/1  
RXDC0/1  
Direction  
OUT  
Description  
CANx TXD  
CANx RXD  
CAN channel x transmit data output  
CAN channel x receive data input  
IN  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
34 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
6.13.2 LIN  
ARM9 microcontroller with CAN and LIN  
The LPC2917/2919/01 contain two LIN 2.0 master controllers. These can be used as  
dedicated LIN 2.0 master controllers with additional support for sync break generation and  
with hardware implementation of the LIN protocol according to spec 2.0.  
Remark: Both LIN channels can be also configured as UART channels.  
The key features are:  
Complete LIN 2.0 message handling and transfer  
One interrupt per LIN message  
Slave response time-out detection  
Programmable sync-break length  
Automatic sync-field and sync-break generation  
Programmable inter-byte space  
Hardware or software parity generation  
Automatic checksum generation  
Fault confinement  
Fractional baud rate generator  
6.13.2.1 Pin description  
The two LIN 2.0 master controllers in the LPC2917/2919/01 have the pins listed below.  
The LIN pins are combined with other functions on the port pins of the LPC2917/2919/01.  
Table 20 shows the LIN pins. For more information see Ref. 1 subsection 3.43, LIN master  
controller.  
Table 20. LIN controller pins  
Symbol  
Pin name  
Direction  
OUT  
Description  
LIN0/1 TXD TXDL0/1  
LIN0/1 RXD RXDL0/1  
LIN channel 0/1 transmit data output  
LIN channel 0/1 receive data input  
IN  
6.13.3 I2C-bus serial I/O controllers  
The LPC2917/2919/01 each contain two I2C-bus controllers.  
The I2C-bus is bidirectional for inter-IC control using only two wires: a serial clock line  
(SCL) and a serial data line (SDA). Each device is recognized by a unique address and  
can operate as either a receiver-only device (e.g., an LCD driver) or as a transmitter with  
the capability to both receive and send information (such as memory). Transmitters and/or  
receivers can operate in either master or slave mode, depending on whether the chip has  
to initiate a data transfer or is only addressed. The I2C is a multi-master bus, and it can be  
controlled by more than one bus master connected to it.  
The main features if the I2C-bus interfaces are:  
I2C0 and I2C1 use standard I/O pins with bit rates of up to 400 kbit/s (Fast I2C-bus)  
and do not support powering off of individual devices connected to the same bus  
lines.  
Easy to configure as master, slave, or master/slave.  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
35 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
Programmable clocks allow versatile rate control.  
Bidirectional data transfer between masters and slaves.  
Multi-master bus (no central master).  
Arbitration between simultaneously transmitting masters without corruption of serial  
data on the bus.  
Serial clock synchronization allows devices with different bit rates to communicate via  
one serial bus.  
Serial clock synchronization can be used as a handshake mechanism to suspend and  
resume serial transfer.  
The I2C-bus can be used for test and diagnostic purposes.  
All I2C-bus controllers support multiple address recognition and a bus monitor mode.  
6.13.3.1 Pin description  
Table 21. I2C-bus pins[1]  
Symbol Pin name  
Direction  
I/O  
Description  
I2C SCL0/1 SCL0/1  
I2C SDA0/1 SDA0/1  
I2C clock input/output  
I2C data input/output  
I/O  
[1] Note that the pins are not I2C-bus compliant open-drain pins.  
6.14 Modulation and sampling control subsystem  
The Modulation and Sampling Control Subsystem (MSCSS) in the LPC2917/2919/01  
includes four Pulse-Width Modulators (PWMs), two 10-bit successive approximation  
Analog-to-Digital Converters (ADCs) and two timers.  
The key features of the MSCSS are:  
Two 10-bit, 400 ksamples/s, 8-channel ADCs with 3.3 V inputs and various trigger-  
start options  
Four 6-channel PWMs (Pulse-Width Modulators) with capture and trap functionality  
Two dedicated timers to schedule and synchronize the PWMs and ADCs  
Quadrature encoder interface  
6.14.1 Functional description  
The MSCSS contains Pulse-Width Modulators (PWMs), Analog-to-Digital Converters  
(ADCs) and timers.  
Figure 8 provides an overview of the MSCSS. An AHB-to-APB bus bridge takes care of  
communication with the AHB system bus. Two internal timers are dedicated to this  
subsystem. MSCSS timer 0 can be used to generate start pulses for the ADCs and the  
first PWM. The second timer (MSCSS timer 1) is used to generate ‘carrier’ signals for the  
PWMs. These carrier patterns can be used, for example, in applications requiring current  
control. Several other trigger possibilities are provided for the ADCs (external, cascaded  
or following a PWM). The capture inputs of both timers can also be used to capture the  
start pulse of the ADCs.  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
36 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
The PWMs can be used to generate waveforms in which the frequency, duty cycle and  
rising and falling edges can be controlled very precisely. Capture inputs are provided to  
measure event phases compared to the main counter. Depending on the applications,  
these inputs can be connected to digital sensor motor outputs or digital external signals.  
Interrupt signals are generated on several events to closely interact with the CPU.  
The ADCs can be used for any application needing accurate digitized data from analog  
sources. To support applications like motor control, a mechanism to synchronize several  
PWMs and ADCs is available (sync_in and sync_out).  
Note that the PWMs run on the PWM clock and the ADCs on the ADC clock, see  
Section 6.15.2.  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
37 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
AHB-TO-APB BRIDGE  
MSCSS  
IDX0  
PHA0  
PHB0  
QEI  
ADC1 EXT START  
ADC1 IN[7:0]  
capture  
start  
ADC1  
MSCSS  
TIMER0  
ADC2 EXT START  
start  
ADC2 IN[7:0]  
ADC2  
start  
PWM0 MAT[5:0]  
PWM0  
capture  
carrier  
carrier  
carrier  
synch  
PWM1 MAT[5:0]  
PWM2 MAT[5:0]  
PWM1  
PAUSE  
MSCSS  
TIMER1  
synch  
PWM2  
carrier  
synch  
PWM3  
PWM3 MAT[5:0]  
PWM0 TRAP  
PWM0 CAP[2:0]  
PWM1 TRAP  
PWM1 CAP[2:0]  
PWM2 TRAP  
PWM2 CAP[2:0]  
PWM3 TRAP  
PWM3 CAP[2:0]  
002aad961  
Fig 8. Modulation and Sampling Control Subsystem (MSCSS) block diagram  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
38 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
6.14.2 Pin description  
The pins of the LPC2917/2919/01 MSCSS associated with the two ADC modules are  
described in Section 6.14.4.2. Pins connected to the four PWM modules are described in  
Section 6.14.5.4, pins directly connected to the MSCSS timer 1 module are described in  
Section 6.14.6.1, and pins connected to the quadrature encoder interface are described in  
Section 6.14.7.1.  
6.14.3 Clock description  
The MSCSS is clocked from a number of different sources:  
CLK_SYS_MSCSS_A clocks the AHB side of the AHB-to-APB bus bridge  
CLK_MSCSS_APB clocks the subsystem APB bus  
CLK_MSCSS_MTMR0/1 clocks the timers  
CLK_MSCSS_PWM0..3 clocks the PWMs.  
Each ADC has two clock areas; a APB part clocked by CLK_MSCSS_ADCx_APB (x = 1  
or 2) and a control part for the analog section clocked by CLK_ADCx = 1 or 2), see  
Section 6.7.2.  
All clocks are derived from the BASE_MSCSS_CLK, except for CLK_SYS_MSCSS_A  
which is derived form BASE_SYS_CLK, and the CLK_ADCx clocks which are derived  
from BASE_CLK_ADC. If specific PWM or ADC modules are not used their corresponding  
clocks can be switched off.  
6.14.4 Analog-to-digital converter  
The MSCSS in the LPC2917/2919/01 includes two 10-bit successive-approximation  
analog-to-digital converters.  
The key features of the ADC interface module are:  
ADC1 and ADC2: Eight analog inputs; time-multiplexed; measurement range up to  
3.3 V  
External reference-level inputs  
400 ksamples per second at 10-bit resolution up to 1500 ksamples per second at  
2-bit resolution  
Programmable resolution from 2-bit to 10-bit  
Single analog-to-digital conversion scan mode and continuous analog-to-digital  
conversion scan mode  
Optional conversion on transition on external start input, timer capture/match signal,  
PWM_sync or ‘previous’ ADC  
Converted digital values are stored in a register for each channel  
Optional compare condition to generate a ‘less than’ or an ‘equal to or greater than’  
compare-value indication for each channel  
Power-down mode  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
39 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
6.14.4.1 Functional description  
The ADC block diagram, Figure 9, shows the basic architecture of each ADC. The ADC  
functionality is divided into two major parts; one part running on the MSCSS Subsystem  
clock, the other on the ADC clock. This split into two clock domains affects the behavior  
from a system-level perspective. The actual analog-to-digital conversions take place in the  
ADC clock domain, but system control takes place in the system clock domain.  
A mechanism is provided to modify configuration of the ADC and control the moment at  
which the updated configuration is transferred to the ADC domain.  
The ADC clock is limited to 4.5 MHz maximum frequency and should always be lower than  
or equal to the system clock frequency. To meet this constraint or to select the desired  
lower sampling frequency, the clock generation unit provides a programmable fractional  
system-clock divider dedicated to the ADC clock. Conversion rate is determined by the  
ADC clock frequency divided by the number of resolution bits plus one. Accessing ADC  
registers requires an enabled ADC clock, which is controllable via the clock generation  
unit, see Section 6.15.2.  
Each ADC has four start inputs. Note that start 0 and start 2 are captured in the system  
clock domain while start 1 and start 3 are captured in the ADC domain. The start inputs  
are connected at MSCSS level, see Figure 8 for details.  
ADC clock  
(up to 4.5 MHz)  
(BASE_ADC_CLK)  
APB clock  
(BASE_MSCSS_CLK)  
SYSTEM DOMAIN  
ADC DOMAIN  
ANALOG  
MUX  
3.3 V  
ADC1  
ADC1 IN[7:0]  
ADC2 IN[7:0]  
update  
3.3 V IN  
ADC  
REGISTERS  
APB system bus  
IRQ scan  
ADC  
CONTROL  
conversion data  
ANALOG  
MUX  
configuration data  
3.3 V  
ADC2  
IRQ compare  
3.3 V IN  
IRQ  
ADC  
start 0  
ADC  
start 2  
ADC  
start 1  
ADC  
start 3  
sync_out  
002aad960  
Fig 9. ADC block diagram  
6.14.4.2 Pin description  
The two ADC modules in the MSCSS have the pins described below. The ADCx input pins  
are combined with other functions on the port pins of the LPC2917/2919/01. The VREFN  
and VREFP pins are common for both ADCs. Table 22 shows the ADC pins.  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
40 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
Table 22. Analog to digital converter pins  
Symbol  
ADC1/2 IN[7:0]  
Pin name  
Direction Description  
IN1/2[7:0]  
IN  
analog input for 3.3 V ADC1/2, channel 7 to  
channel 0  
ADCn_EXT_START CAP1[n]  
IN  
IN  
IN  
ADC external start-trigger input (n = 1 or 2)  
ADC LOW reference level  
ADC HIGH reference level  
VREFN  
VREFP  
VREFN  
VREFP  
Remark: Note that the ADC1 and ADC2 accept an input voltage up to of 3.6 V (see  
Table 33) on the ADC1/2 IN pins. If the ADC is not used, the pins are 5 V tolerant.  
6.14.4.3 Clock description  
The ADC modules are clocked from two different sources; CLK_MSCSS_ADCx_APB and  
CLK_ADCx (x = 1 or 2), see Section 6.7.2. Note that each ADC has its own CLK_ADCx  
and CLK_MSCSS_ADCx_APB branch clocks for power management. If an ADC is  
unused both its CLK_MSCSS_ADCx_APB and CLK_ADCx can be switched off.  
The frequency of all the CLK_MSCSS_ADCx_APB clocks is identical to  
CLK_MSCSS_APB since they are derived from the same base clock  
BASE_MSCSS_CLK. Likewise the frequency of all the CLK_ADCx clocks is identical  
since they are derived from the same base clock BASE_ADC_CLK.  
The register interface towards the system bus is clocked by CLK_MSCSS_ADCx_APB.  
Control logic for the analog section of the ADC is clocked by CLK_ADCx, see also  
Figure 9.  
6.14.5 Pulse Width Modulator (PWM)  
The MSCSS in the LPC2917/2919/01 includes four PWM modules with the following  
features.  
Six pulse-width modulated output signals  
Double edge features (rising and falling edges programmed individually)  
Optional interrupt generation on match (each edge)  
Different operation modes: continuous or run-once  
16-bit PWM counter and 16-bit prescale counter allow a large range of PWM periods  
A protective mode (TRAP) holding the output in a software-controllable state and with  
optional interrupt generation on a trap event  
Three capture registers and capture trigger pins with optional interrupt generation on  
a capture event  
Interrupt generation on match event, capture event, PWM counter overflow or trap  
event  
A burst mode mixing the external carrier signal with internally generated PWM  
Programmable sync-delay output to trigger other PWM modules (master/slave  
behavior)  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
41 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
6.14.5.1 Functional description  
The ability to provide flexible waveforms allows PWM blocks to be used in multiple  
applications; e.g. dimmer/lamp control and fan control. Pulse-width modulation is the  
preferred method for regulating power since no additional heat is generated, and it is  
energy-efficient when compared with linear-regulating voltage control networks.  
The PWM delivers the waveforms/pulses of the desired duty cycles and cycle periods. A  
very basic application of these pulses can be in controlling the amount of power  
transferred to a load. Since the duty cycle of the pulses can be controlled, the desired  
amount of power can be transferred for a controlled duration. Two examples of such  
applications are:  
Dimmer controller: The flexibility of providing waves of a desired duty cycle and cycle  
period allows the PWM to control the amount of power to be transferred to the load.  
The PWM functions as a dimmer controller in this application  
Motor controller: The PWM provides multi-phase outputs, and these outputs can be  
controlled to have a certain pattern sequence. In this way the force/torque of the  
motor can be adjusted as desired. This makes the PWM function as a motor drive.  
sync_in  
transfer_enable_in  
APB DOMAIN  
update  
PWM DOMAIN  
match outputs  
capture inputs  
APB system bus  
capture data  
PWM,  
COUNTER,  
PRESCALE  
COUNTER  
&
PWM  
CONTROL  
&
PWM counter value  
IRQ pwm  
REGISTERS  
SHADOW  
REGISTERS  
IRQ capt_match  
config data  
IRQs  
trap input  
carrier inputs  
transfer_enable_out  
sync_out  
002aad837  
Fig 10. PWM block diagram  
The PWM block diagram in Figure 10 shows the basic architecture of each PWM. PWM  
functionality is split into two major parts, a APB domain and a PWM domain, both of which  
run on clocks derived from the BASE_MSCSS_CLK. This split into two domains affects  
behavior from a system-level perspective. The actual PWM and prescale counters are  
located in the PWM domain but system control takes place in the APB domain.  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
42 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
The actual PWM consists of two counters; a 16-bit prescale counter and a 16-bit PWM  
counter. The position of the rising and falling edges of the PWM outputs can be  
programmed individually. The prescale counter allows high system bus frequencies to be  
scaled down to lower PWM periods. Registers are available to capture the PWM counter  
values on external events.  
Note that in the Modulation and Sampling SubSystem, each PWM has its individual clock  
source CLK_MSCSS_PWMx (x runs from 0 to 3). Both the prescale and the timer  
counters within each PWM run on this clock CLK_MSCSS_PWMx, and all time references  
are related to the period of this clock. See Section 6.15 for information on generation of  
these clocks.  
6.14.5.2 Synchronizing the PWM counters  
A mechanism is included to synchronize the PWM period to other PWMs by providing a  
sync input and a sync output with programmable delay. Several PWMs can be  
synchronized using the trans_enable_in/trans_enable_out and sync_in/sync_out ports.  
See Figure 8 for details of the connections of the PWM modules within the MSCSS in the  
LPC2917/2919/01. PWM 0 can be master over PWM 1; PWM 1 can be master over  
PWM 2, etc.  
6.14.5.3 Master and slave mode  
A PWM module can provide synchronization signals to other modules (also called Master  
mode). The signal sync_out is a pulse of one clock cycle generated when the internal  
PWM counter (re)starts. The signal trans_enable_out is a pulse synchronous to sync_out,  
generated if a transfer from system registers to PWM shadow registers occurred when the  
PWM counter restarted. A delay may be inserted between the counter start and  
generation of trans_enable_out and sync_out.  
A PWM module can use input signals trans_enable_in and sync_in to synchronize its  
internal PWM counter and the transfer of shadow registers (Slave mode).  
6.14.5.4 Pin description  
Each of the four PWM modules in the MSCSS has the following pins. These are combined  
with other functions on the port pins of the LPC2917/2919/01. Table 23 shows the PWM0  
to PWM3 pins.  
Table 23. PWM pins  
Symbol  
Pin name  
PCAPn[0]  
PCAPn[1]  
PCAPn[2]  
PMATn[0]  
PMATn[1]  
PMATn[2]  
PMATn[3]  
PMATn[4]  
PMATn[5]  
TRAPn  
Direction  
IN  
Description  
PWMn CAP[0]  
PWMn CAP[1]  
PWMn CAP[2]  
PWMn MAT[0]  
PWMn MAT[1]  
PWMn MAT[2]  
PWMn MAT[3]  
PWMn MAT[4]  
PWMn MAT[5]  
PWMn TRAP  
PWM n capture input 0  
PWM n capture input 1  
PWM n capture input 2  
PWM n match output 0  
PWM n match output 1  
PWM n match output 2  
PWM n match output 3  
PWM n match output 4  
PWM n match output 5  
PWM n trap input  
IN  
IN  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
IN  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
43 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
6.14.5.5 Clock description  
The PWM modules are clocked by CLK_MSCSS_PWMx (x = 0 - 3), see Section 6.7.2.  
Note that each PWM has its own CLK_MSCSS_PWMx branch clock for power  
management. The frequency of all these clocks is identical to CLK_MSCSS_APB since  
they are derived from the same base clock BASE_MSCSS_CLK.  
Also note that unlike the timer modules in the Peripheral SubSystem, the actual timer  
counter registers of the PWM modules run at the same clock as the APB system interface  
CLK_MSCSS_APB. This clock is independent of the AHB system clock.  
If a PWM module is not used its CLK_MSCSS_PWMx branch clock can be switched off.  
6.14.6 Timers in the MSCSS  
The two timers in the MSCSS are functionally identical to the timers in the peripheral  
subsystem, see Section 6.12.3. The features of the timers in the MSCSS are the same as  
the timers in the peripheral subsystem, but the capture inputs and match outputs are not  
available on the device pins. These signals are instead connected to the ADC and PWM  
modules as outlined in the description of the MSCSS, see Section 6.14.1.  
See section Section 6.12.3 for a functional description of the timers.  
6.14.6.1 Pin description  
MSCSS timer 0 has no external pins.  
MSCSS timer 1 has a PAUSE pin available as external pin. The PAUSE pin is combined  
with other functions on the port pins of the LPC2917/2919/01. Table 24 shows the MSCSS  
timer 1 external pin.  
Table 24. MSCSS timer 1 pin  
Symbol  
Direction  
Description  
MSCSS PAUSE  
IN  
pause pin for MSCSS timer 1  
6.14.6.2 Clock description  
The Timer modules in the MSCSS are clocked by CLK_MSCSS_MTMRx (x = 0 to 1), see  
Section 6.7.2. Note that each timer has its own CLK_MSCSS_MTMRx branch clock for  
power management. The frequency of all these clocks is identical to CLK_MSCSS_APB  
since they are derived from the same base clock BASE_MSCSS_CLK.  
Note that, unlike the timer modules in the Peripheral SubSystem, the actual timer counter  
registers run at the same clock as the APB system interface CLK_MSCSS_APB. This  
clock is independent of the AHB system clock.  
If a timer module is not used its CLK_MSCSS_MTMRx branch clock can be switched off.  
6.14.7 Quadrature Encoder Interface (QEI)  
A quadrature encoder, also known as a 2-channel incremental encoder, converts angular  
displacement into two pulse signals. By monitoring both the number of pulses and the  
relative phase of the two signals, the user can track the position, direction of rotation, and  
velocity. In addition, a third channel, or index signal, can be used to reset the position  
counter. The quadrature encoder interface decodes the digital pulses from a quadrature  
encoder wheel to integrate position over time and determine direction of rotation. In  
addition, the QEI can capture the velocity of the encoder wheel.  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
44 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
The QEI has the following features:  
Tracks encoder position.  
Increments/ decrements depending on direction.  
Programmable for 2X or 4X position counting.  
Velocity capture using built-in timer.  
Velocity compare function with less than interrupt.  
Uses 32-bit registers for position and velocity.  
Three position compare registers with interrupts.  
Index counter for revolution counting.  
Index compare register with interrupts.  
Can combine index and position interrupts to produce an interrupt for whole and  
partial revolution displacement.  
Digital filter with programmable delays for encoder input signals.  
Can accept decoded signal inputs (clk and direction).  
Connected to APB.  
6.14.7.1 Pin description  
The QEI module in the MSCSS has the following pins. These are combined with other  
functions on the port pins of the LPC2917/2919/01. Table 25 shows the QEI pins.  
Table 25. QEI pins  
Symbol  
Pin name  
IDX0  
Direction  
Description  
QEI0 IDX  
QEI0 PHA  
IN  
IN  
Index signal. Can be used to reset the position.  
PHA0  
Sensor signal. Corresponds to PHA in  
quadrature mode and to direction in  
clock/direction mode.  
QEI0 PHB  
PHB0  
IN  
Sensor signal. Corresponds to PHB in  
quadrature mode and to clock signal in  
clock/direction mode.  
6.14.7.2 Clock description  
The QEI module is clocked by CLK_MSCSS_QEI, see Section 6.7.2. The frequency of  
this clock is identical to CLK_MSCSS_APB since they are derived from the same base  
clock BASE_MSCSS_CLK.  
If the QEI is not used its CLK_MSCSS_QEI branch clock can be switched off.  
6.15 Power, clock and reset control subsystem  
The Power, Clock, and Reset Control Subsystem (PCRSS) in the LPC2917/2919/01  
includes the Clock Generator Units (CGU0 and CGU1), a Reset Generator Unit (RGU)  
and a Power Management Unit (PMU).  
Figure 11 provides an overview of the PCRSS. An AHB-to-DTL bridge provides  
communication with the AHB system bus.  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
45 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
PMU  
CGU0  
CGU1  
OUT  
PLL  
EXTERNAL  
OSCILLATOR  
OUT6  
OUT11  
PLL  
branch  
clocks  
CLOCK  
GATES  
OUT0  
OUT1  
FDIV  
LOW POWER  
RING  
OSCILLATOR  
OUT5  
OUT7  
FDIV[6:0]  
AHB  
master  
disable:  
OUT9  
CGU0/1  
REGISTERS  
CLOCK  
ENABLE  
CONTROL  
grant  
request  
PMU  
REGISTERS  
AHB2DTL  
BRIDGE  
wakeup_a  
RGU  
AHB_RST  
RGU  
REGISTERS  
SCU_RST  
RESET OUTPUT  
DELAY LOGIC  
WARM_RST  
COLD_RST  
PCR_RST  
RGU_RST  
POR_RST  
INPUT  
DEGLITCH/  
SYNC  
POR  
RST (device pin)  
reset from watchdog counter  
002aae355  
Fig 11. Power, Clock, and Reset control Sub System (PCRSS) block diagram  
6.15.1 Clock description  
The PCRSS is clocked by a number of different clocks. CLK_SYS_PCRSS clocks the  
AHB side of the AHB to DTL bus bridge and CLK_PCR_SLOW clocks the CGU, RGU and  
PMU internal logic, see Section 6.7.2. CLK_SYS_PCRSS is derived from  
BASE_SYS_CLK, which can be switched off in low-power modes. CLK_PCR_SLOW is  
derived from BASE_PCR_CLK and is always on in order to be able to wake up from  
low-power modes.  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
46 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
6.15.2 Clock Generation Unit (CGU0)  
The key features are:  
Generation of 11 base clocks, selectable from several embedded clock sources.  
Crystal oscillator with power-down.  
Control PLL with power-down.  
Very low-power ring oscillator, always on to provide a ‘safe clock’.  
Seven fractional clock dividers with L/D division.  
Individual source selector for each base clock, with glitch-free switching.  
Autonomous clock-activity detection on every clock source.  
Protection against switching to invalid or inactive clock sources.  
Embedded frequency counter.  
Register write-protection mechanism to prevent unintentional alteration of clocks.  
Remark: Any clock-frequency adjustment has a direct impact on the timing of all on-board  
peripherals.  
6.15.2.1 Functional description  
The clock generation unit provides 11 internal clock sources as described in Table 26.  
Table 26. CGU0 base clocks  
Numbe Name  
r
Frequency  
(MHz) [1]  
Description  
0
BASE_SAFE_CLK  
0.4  
base safe clock (always on)  
base system clock  
1
BASE_SYS_CLK  
BASE_PCR_CLK  
BASE_IVNSS_CLK  
BASE_MSCSS_CLK  
BASE_UART_CLK  
BASE_ICLK0_CLK  
BASE_SPI_CLK  
BASE_TMR_CLK  
BASE_ADC_CLK  
reserved  
125  
0.4 [2]  
125  
125  
125  
125  
50  
2
base PCR subsystem clock  
base IVNSS subsystem clock  
base MSCSS subsystem clock  
base UART clock  
3
4
5
6
base internal clock 0, for CGU1  
base SPI clock  
7
8
125  
4.5  
base timers clock  
9
base ADCs clock  
10  
11  
-
-
BASE_ICLK1_CLK  
125  
base internal clock 1, for CGU1  
[1] Maximum frequency that guarantees stable operation of the LPC2917/2919/01.  
[2] Fixed to low-power oscillator.  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
47 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
CLOCK GENERATION UNIT (CGU0)  
OUT 0  
BASE_SAFE_CLK  
BASE_SYS_CLK  
FDIV0  
FDIV1  
OUT 1  
OUT 2  
OUT 3  
400 kHz LP_OSC  
clkout  
clkout120  
EXTERNAL  
OSCILLATOR  
PLL  
BASE_PCR_CLK  
clkout240  
BASE_IVNSS_CLK  
OUT 11  
BASE_ICLK1_CLK  
FDIV6  
FREQUENCY  
MONITOR  
CLOCK  
DETECTION  
AHB TO DTL BRIDGE  
002aae147  
Fig 12. Block diagram of the CGU0  
For generation of these base clocks, the CGU consists of primary and secondary clock  
generators and one output generator for each base clock.  
There are two primary clock generators: a low-power ring oscillator (LP_OSC) and a  
crystal oscillator. See Figure 12.  
LP_OSC is the source for the BASE_PCR_CLK that clocks the CGU0 itself and for  
BASE_SAFE_CLK that clocks a minimum of other logic in the device (like the watchdog  
timer). To prevent the device from losing its clock source LP_OSC cannot be put into  
power-down. The crystal oscillator can be used as source for high-frequency clocks or as  
an external clock input if a crystal is not connected.  
Secondary clock generators are a PLL and seven fractional dividers (FDIV0..6). The PLL  
has three clock outputs: normal, 120° phase-shifted and 240° phase-shifted.  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
48 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
Configuration of the CGU0: For every output generator generating the base clocks a  
choice can be made from the primary and secondary clock generators according to  
Figure 13.  
LP_OSC  
FDIV0:6  
EXTERNAL  
OSCILLATOR  
clkout  
clkout120  
PLL  
clkout240  
OUTPUT  
CONTROL  
clock  
outputs  
002aad834  
Fig 13. Structure of the clock generation scheme  
Any output generator (except for BASE_SAFE_CLK and BASE_PCR_CLK) can be  
connected to either a fractional divider (FDIV0..6) or to one of the outputs of the PLL or to  
LP_OSC/crystal oscillator directly. BASE_SAFE_CLK and BASE_PCR_CLK can use only  
LP_OSC as source.  
The fractional dividers can be connected to one of the outputs of the PLL or directly to  
LP_OSC/crystal Oscillator.  
The PLL is connected to the crystal oscillator.  
In this way every output generating the base clocks can be configured to get the required  
clock. Multiple output generators can be connected to the same primary or secondary  
clock source, and multiple secondary clock sources can be connected to the same PLL  
output or primary clock source.  
Invalid selections/programming - connecting the PLL to an FDIV or to one of the PLL  
outputs itself for example - will be blocked by hardware. The control register will not be  
written, the previous value will be kept, although all other fields will be written with new  
data. This prevents clocks being blocked by incorrect programming.  
Default Clock Sources: Every secondary clock generator or output generator is  
connected to LP_OSC at reset. In this way the device runs at a low frequency after reset.  
It is recommended to switch BASE_SYS_CLK to a high-frequency clock generator as one  
of the first steps in the boot code after verifying that the high-frequency clock generator is  
running.  
Clock Activity Detection: Clocks that are inactive are automatically regarded as invalid,  
and values of ‘CLK_SELthat would select those clocks are masked and not written to the  
control registers. This is accomplished by adding a clock detector to every clock  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
49 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
generator. The RDET register keeps track of which clocks are active and inactive, and the  
appropriate ‘CLK_SELvalues are masked and unmasked accordingly. Each clock  
detector can also generate interrupts at clock activation and deactivation so that the  
system can be notified of a change in internal clock status.  
Clock detection is done using a counter running at the BASE_PCR_CLK frequency. If no  
positive clock edge occurs before the counter has 32 cycles of BASE_PCR_CLK the clock  
is assumed to be inactive. As BASE_PCR_CLK is slower than any of the clocks to be  
detected, normally only one BASE_PCR_CLK cycle is needed to detect activity. After  
reset all clocks are assumed to be ‘non-present’, so the RDET status register will be  
correct only after 32 BASE_PCR_CLK cycles.  
Note that this mechanism cannot protect against a currently-selected clock going from  
active to inactive state. Therefore an inactive clock may still be sent to the system under  
special circumstances, although an interrupt can still be generated to notify the system.  
Glitch-Free Switching: Provisions are included in the CGU to allow clocks to be switched  
glitch-free, both at the output generator stage and also at secondary source generators.  
In the case of the PLL the clock will be stopped and held low for long enough to allow the  
PLL to stabilize and lock before being re-enabled. For all non-PLL Generators the switch  
will occur as quickly as possible, although there will always be a period when the clock is  
held low due to synchronization requirements.  
If the current clock is high and does not go low within 32 cycles of BASE_PCR_CLK it is  
assumed to be inactive and is asynchronously forced low. This prevents deadlocks on the  
interface.  
6.15.2.2 PLL functional description  
A block diagram of the PLL is shown in Figure 14. The input clock is fed directly to the  
analog section. This block compares the phase and frequency of the inputs and generates  
the main clock2. These clocks are either divided by 2 × P by the programmable post  
divider to create the output clock, or sent directly to the output. The main output clock is  
then divided by M by the programmable feedback divider to generate the feedback clock.  
The output signal of the analog section is also monitored by the lock detector to signal  
when the PLL has locked onto the input clock.  
PSEL bits  
P23EN bit  
clkout120  
clkout240  
clkout  
/ 2PDIV  
input clock  
P23  
CCO  
bypass  
direct  
clkout  
/ MDIV  
002aad833  
MSEL bits  
Fig 14. PLL block diagram  
2. Generation of the main clock is restricted by the frequency range of the PLL clock input. See Table 35, Dynamic characteristics.  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
50 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
Triple output phases: For applications that require multiple clock phases two additional  
clock outputs can be enabled by setting register P23EN to logic 1, thus giving three clocks  
with a 120° phase difference. In this mode all three clocks generated by the analog  
section are sent to the output dividers. When the PLL has not yet achieved lock the  
second and third phase output dividers run unsynchronized, which means that the phase  
relation of the output clocks is unknown. When the PLL LOCK register is set the second  
and third phase of the output dividers are synchronized to the main output clock CLKOUT  
PLL, thus giving three clocks with a 120° phase difference.  
Direct output mode: In normal operating mode (with DIRECT set to logic 0) the CCO  
clock is divided by 2, 4, 8 or 16 depending on the value on the PSEL[1:0] input, giving an  
output clock with a 50 % duty cycle. If a higher output frequency is needed the CCO clock  
can be sent directly to the output by setting DIRECT to logic 1. Since the CCO does not  
directly generate a 50 % duty cycle clock, the output clock duty cycle in this mode can  
deviate from 50 %.  
Power-down control: A Power-down mode has been incorporated to reduce power  
consumption when the PLL clock is not needed. This is enabled by setting the PD control  
register bit. In this mode the analog section of the PLL is turned off, the oscillator and the  
phase-frequency detector are stopped and the dividers enter a reset state. While in  
Power-down mode the LOCK output is low, indicating that the PLL is not in lock. When  
Power-down mode is terminated by clearing the PD control-register bit the PLL resumes  
normal operation, and makes the LOCK signal high once it has regained lock on the input  
clock.  
6.15.2.3 Pin description  
The CGU0 module in the LPC2917/2919/01 has the pins listed in Table 27 below.  
Table 27. CGU0 pins  
Symbol  
Direction  
OUT  
Description  
XOUT_OSC  
XIN_OSC  
Oscillator crystal output  
IN  
Oscillator crystal input or external clock input  
6.15.3 Clock generation for CLK_OUT (CGU1)  
The CGU1 block is functionally identical to the CGU0 block and generates a dedicated  
output clock. The CGU1 block uses its own PLL and fractional divider. The PLLs used in  
CGU0 and CGU1 are identical (see Section 6.15.2.2).  
The clock input to the CGU1 PLL is provided by one of two base clocks generated in the  
CGU0: BASE_ICLK0_CLK or BASE_ICLK1_CLK. The base clock not used for the PLL  
can be configured to drive the output clock directly.  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
51 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
CLOCK GENERATION UNIT  
(CGU1)  
OUT  
BASE_OUT_CLK  
clkout  
BASE_ICLK0_CLK  
BASE_ICLK1_CLK  
clkout120  
PLL  
FDIV0  
clkout240  
AHB TO DTL BRIDGE  
002aae266  
Fig 15. Block diagram of the CGU1  
6.15.3.1 Pin description  
The CGU1 module in the LPC2917/2919/01 has the pins listed in Table 27 below.  
Table 28. CGU1 pins  
Symbol  
Direction  
Description  
CLK_OUT  
OUT  
clock output  
6.15.4 Reset Generation Unit (RGU)  
The RGU controls all internal resets.  
The key features of the Reset Generation Unit (RGU) are:  
Reset controlled individually per subsystem  
Automatic reset stretching and release  
Monitor function to trace resets back to source  
Register write-protection mechanism to prevent unintentional resets  
6.15.4.1 Functional description  
Each reset output is defined as a combination of reset input sources including the external  
reset input pins and internal power-on reset, see Table 29. The first five resets listed in this  
table form a sort of cascade to provide the multiple levels of impact that a reset may have.  
The combined input sources are logically OR-ed together so that activating any of the  
listed reset sources causes the output to go active.  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
52 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
Table 29. Reset output configuration  
Reset output Reset source  
Parts of the device reset when activated  
POR_RST  
power-on reset module  
POR_RST, RST pin  
LP_OSC; is source for RGU_RST  
RGU_RST  
RGU internal; is source for PCR_RST  
PCR_RST  
RGU_RST, WATCHDOG PCR internal; is source for COLD_RST  
COLD_RST  
WARM_RST  
SCU_RST  
PCR_RST  
parts with COLD_RST as reset source below  
parts with WARM_RST as reset source below  
SCU  
COLD_RST  
COLD_RST  
COLD_RST  
COLD_RST  
COLD_RST  
COLD_RST  
WARM_RST  
WARM_RST  
WARM_RST  
WARM_RST  
WARM_RST  
WARM_RST  
WARM_RST  
WARM_RST  
WARM_RST  
WARM_RST  
CFID_RST  
CFID  
FMC_RST  
embedded Flash-Memory Controller (FMC)  
embedded SRAM-Memory Controller  
external Static-Memory Controller (SMC)  
GeSS AHB-to-APB bridge  
PeSS AHB-to-APB bridge  
all GPIO modules  
EMC_RST  
SMC_RST  
GESS_A2A_RST  
PESS_A2A_RST  
GPIO_RST  
UART_RST  
all UART modules  
TMR_RST  
all Timer modules in PeSS  
all SPI modules  
SPI_RST  
IVNSS_A2A_RST  
IVNSS_CAN_RST  
IVNSS_LIN_RST  
MSCSS_A2A_RST  
IVNSS AHB-to-APB bridge  
all CAN modules including Acceptance filter  
all LIN modules  
MSCSS AHB to APB bridge  
all PWM modules  
MSCSS_PWM_RST WARM_RST  
MSCSS_ADC_RST WARM_RST  
MSCSS_TMR_RST WARM_RST  
all ADC modules  
all Timer modules in MSCSS  
all I2C modules  
I2C_RST  
QEI_RST  
DMA_RST  
VIC_RST  
AHB_RST  
WARM_RST  
WARM_RST  
WARM_RST  
WARM_RST  
WARM_RST  
Quadrature encoder  
GPDMA controller  
Vectored Interrupt Controller (VIC)  
CPU and AHB Bus infrastructure  
6.15.4.2 Pin description  
The RGU module in the LPC2917/2919/01 has the following pins. Table 30 shows the  
RGU pins.  
Table 30. RGU pins  
Symbol  
Direction Description  
IN external reset input, Active LOW; pulled up internally  
RST  
6.15.5 Power Management Unit (PMU)  
This module enables software to actively control the system’s power consumption by  
disabling clocks not required in a particular operating mode.  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
53 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
Using the base clocks from the CGU as input, the PMU generates branch clocks to the  
rest of the LPC2917/2919/01. Output clocks branched from the same base clock are  
phase- and frequency-related. These branch clocks can be individually controlled by  
software programming.  
The key features are:  
Individual clock control for all LPC2917/2919/01 sub-modules  
Activates sleeping clocks when a wake-up event is detected  
Clocks can be individually disabled by software  
Supports AHB master-disable protocol when AUTO mode is set  
Disables wake-up of enabled clocks when Power-down mode is set  
Activates wake-up of enabled clocks when a wake-up event is received  
Status register is available to indicate if an input base clock can be safely switched off  
(i.e. all branch clocks are disabled)  
6.15.5.1 Functional description  
The PMU controls all internal clocks coming out of the CGU0 for power-mode  
management. With some exceptions, each branch clock can be switched on or off  
individually under control of software register bits located in its individual configuration  
register. Some branch clocks controlling vital parts of the device operate in a fixed mode.  
Table 31 shows which mode- control bits are supported by each branch clock.  
By programming the configuration register the user can control which clocks are switched  
on or off, and which clocks are switched off when entering Power-down mode.  
Note that the standby-wait-for-interrupt instructions of the ARM968E-S processor (putting  
the ARM CPU into a low-power state) are not supported. Instead putting the ARM CPU  
into power-down should be controlled by disabling the branch clock for the CPU.  
Remark: For any disabled branch clocks to be re-activated their corresponding base  
clocks must be running (controlled by CGU0).  
Table 31 shows the relation between branch and base clocks, see also Section 6.7.1.  
Every branch clock is related to one particular base clock: it is not possible to switch the  
source of a branch clock in the PMU.  
Table 31. Branch clock overview  
Legend:  
‘1’ Indicates that the related register bit is tied off to logic HIGH, all writes are ignored  
‘0’ Indicates that the related register bit is tied off to logic LOW, all writes are ignored  
‘+’ Indicates that the related register bit is readable and writable  
Branch clock name  
Base clock  
Implemented switch on/off  
mechanism  
WAKE-UP  
AUTO  
RUN  
CLK_SAFE  
BASE_SAFE_CLK  
BASE_SYS_CLK  
BASE_SYS_CLK  
BASE_SYS_CLK  
BASE_SYS_CLK  
0
+
+
+
+
0
+
+
+
+
1
1
1
1
+
CLK_SYS_CPU  
CLK_SYS  
CLK_SYS_PCR  
CLK_SYS_FMC  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
54 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
Table 31. Branch clock overview …continued  
Legend:  
‘1’ Indicates that the related register bit is tied off to logic HIGH, all writes are ignored  
‘0’ Indicates that the related register bit is tied off to logic LOW, all writes are ignored  
‘+’ Indicates that the related register bit is readable and writable  
Branch clock name  
Base clock  
Implemented switch on/off  
mechanism  
WAKE-UP  
AUTO  
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
RUN  
+
+
+
+
+
+
+
+
+
+
+
+
+
1
CLK_SYS_RAM0  
CLK_SYS_RAM1  
CLK_SYS_SMC  
BASE_SYS_CLK  
BASE_SYS_CLK  
BASE_SYS_CLK  
BASE_SYS_CLK  
BASE_SYS_CLK  
BASE_SYS_CLK  
BASE_SYS_CLK  
BASE_SYS_CLK  
BASE_SYS_CLK  
BASE_SYS_CLK  
BASE_SYS_CLK  
BASE_SYS_CLK  
BASE_SYS_CLK  
BASE_PCR_CLK  
BASE_IVNSS_CLK  
BASE_IVNSS_CLK  
BASE_IVNSS_CLK  
BASE_IVNSS_CLK  
BASE_IVNSS_CLK  
BASE_IVNSS_CLK  
BASE_IVNSS_CLK  
BASE_MSCSS_CLK  
BASE_MSCSS_CLK  
BASE_MSCSS_CLK  
BASE_MSCSS_CLK  
BASE_MSCSS_CLK  
BASE_MSCSS_CLK  
BASE_MSCSS_CLK  
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
CLK_SYS_GESS  
CLK_SYS_VIC  
CLK_SYS_PESS  
CLK_SYS_GPIO0  
CLK_SYS_GPIO1  
CLK_SYS_GPIO2  
CLK_SYS_GPIO3  
CLK_SYS_IVNSS_A  
CLK_SYS_MSCSS_A  
CLK_SYS_DMA  
CLK_PCR_SLOW  
CLK_IVNSS_APB  
CLK_IVNSS_CANC0  
CLK_IVNSS_CANC1  
CLK_IVNSS_I2C0  
CLK_IVNSS_I2C1  
CLK_IVNSS_LIN0  
CLK_IVNSS_LIN1  
CLK_MSCSS_APB  
CLK_MSCSS_MTMR0  
CLK_MSCSS_MTMR1  
CLK_MSCSS_PWM0  
CLK_MSCSS_PWM1  
CLK_MSCSS_PWM2  
CLK_MSCSS_PWM3  
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
CLK_MSCSS_ADC1_APB BASE_MSCSS_CLK  
CLK_MSCSS_ADC2_APB BASE_MSCSS_CLK  
CLK_MSCSS_QEI  
CLK_OUT_CLK  
CLK_UART0  
CLK_UART1  
CLK_SPI0  
BASE_MSCSS_CLK  
BASE_OUT_CLK  
BASE_UART_CLK  
BASE_UART_CLK  
BASE_SPI_CLK  
CLK_SPI1  
BASE_SPI_CLK  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
55 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
Table 31. Branch clock overview …continued  
Legend:  
‘1’ Indicates that the related register bit is tied off to logic HIGH, all writes are ignored  
‘0’ Indicates that the related register bit is tied off to logic LOW, all writes are ignored  
‘+’ Indicates that the related register bit is readable and writable  
Branch clock name  
Base clock  
Implemented switch on/off  
mechanism  
WAKE-UP  
AUTO  
RUN  
CLK_SPI2  
CLK_TMR0  
CLK_TMR1  
CLK_TMR2  
CLK_TMR3  
CLK_ADC1  
CLK_ADC2  
BASE_SPI_CLK  
BASE_TMR_CLK  
BASE_TMR_CLK  
BASE_TMR_CLK  
BASE_TMR_CLK  
BASE_ADC_CLK  
BASE_ADC_CLK  
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
6.16 Vectored Interrupt Controller (VIC)  
The LPC2917/2919/01 contains a very flexible and powerful Vectored Interrupt Controller  
to interrupt the ARM processor on request.  
The key features are:  
Level-active interrupt request with programmable polarity.  
56 interrupt-request inputs.  
Software-interrupt request capability associated with each request input.  
Interrupt request state can be observed before masking.  
Software-programmable priority assignments to interrupt requests up to 15 levels.  
Software-programmable routing of interrupt requests towards the ARM-processor  
inputs IRQ and FIQ.  
Fast identification of interrupt requests through vector.  
Support for nesting of interrupt service routines.  
6.16.1 Functional description  
The Vectored Interrupt Controller routes incoming interrupt requests to the ARM  
processor. The interrupt target is configured for each interrupt request input of the VIC.  
The targets are defined as follows:  
Target 0 is ARM processor FIQ (fast interrupt service).  
Target 1 is ARM processor IRQ (standard interrupt service).  
Interrupt-request masking is performed individually per interrupt target by comparing the  
priority level assigned to a specific interrupt request with a target-specific priority  
threshold. The priority levels are defined as follows:  
Priority level 0 corresponds to ‘masked’ (i.e. interrupt requests with priority 0 never  
lead to an interrupt).  
Priority 1 corresponds to the lowest priority.  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
56 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
Priority 15 corresponds to the highest priority.  
Software interrupt support is provided and can be supplied for:  
Testing RTOS (Real-Time Operating System) interrupt handling without using  
device-specific interrupt service routines.  
Software emulation of an interrupt-requesting device, including interrupts.  
6.16.2 Clock description  
The VIC is clocked by CLK_SYS_VIC, see Section 6.7.2.  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
57 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
7. Limiting values  
Table 32. Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
Supply pins  
Ptot  
[1]  
total power dissipation  
core supply voltage  
-
1.5  
W
V
VDD(CORE)  
VDD(OSC_PLL)  
0.5  
0.5  
+2.0  
+2.0  
oscillator and PLL supply  
voltage  
V
VDDA(ADC3V3)  
3.3 V ADC analog supply  
voltage  
0.5  
+4.6  
V
VDD(IO)  
IDD  
input/output supply voltage  
supply current  
0.5  
+4.6  
98  
V
[2]  
[2]  
average value per supply  
pin  
-
mA  
ISS  
ground current  
average value per ground  
pin  
-
98  
mA  
Input pins and I/O pins  
VXIN_OSC voltage on pin XIN_OSC  
VI(IO)  
0.5  
0.5  
0.5  
+2.0  
V
V
V
[3][4][5]  
[4][5]  
I/O input voltage  
VDD(IO) + 3.0  
VI(ADC)  
ADC input voltage  
for ADC1/2: I/O port 0 pin 8  
to pin 23.  
VDDA(ADC3V3)  
+ 0.5  
VVREFP  
VVREFN  
II(ADC)  
voltage on pin VREFP  
voltage on pin VREFN  
ADC input current  
0.5  
0.5  
-
+3.6  
+3.6  
35  
V
V
[2]  
average value per input pin  
mA  
Output pins and I/O pins configured as output  
[6]  
[6]  
IOHS  
HIGH-level short-circuit  
output current  
drive HIGH, output shorted  
to VSS(IO)  
-
-
33  
mA  
mA  
IOLS  
LOW-level short-circuit  
output current  
drive LOW, output shorted  
to VDD(IO)  
+38  
General  
Tstg  
storage temperature  
ambient temperature  
65  
40  
+150  
+85  
°C  
°C  
Tamb  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
58 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
Table 32. Limiting values …continued  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
ESD  
Parameter  
Conditions  
Min  
Max  
Unit  
VESD  
electrostatic discharge  
voltage  
on all pins  
[7]  
human body model  
charged device model  
on corner pins  
2000  
500  
+2000  
+500  
V
V
charged device model  
750  
+750  
V
[1] Based on package heat transfer, not device power consumption.  
[2] Peak current must be limited at 25 times average current.  
[3] For I/O Port 0, the maximum input voltage is defined by VI(ADC)  
.
[4] Only when VDD(IO) is present.  
[5] Note that pull-up should be off. With pull-up do not exceed 3.6 V.  
[6] 112 mA per VDD(IO) or VSS(IO) should not be exceeded.  
[7] Human-body model: discharging a 100 pF capacitor via a 10 kseries resistor.  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
59 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
8. Static characteristics  
Table 33. Static characteristics  
VDD(CORE) = VDD(OSC_PLL) ; VDD(IO) = 2.7 V to 3.6 V; VDDA(ADC3V3) = 3.0 V to 3.6 V; Tvj = -40 °C to +85 °C; all voltages are  
measured with respect to ground; positive currents flow into the IC; unless otherwise specified.[1]  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Supplies  
Core supply  
VDD(CORE)  
IDD(CORE)  
core supply voltage  
core supply current  
1.71  
-
1.80  
75  
1.89  
-
V
Device state after reset;  
system clock at  
mA  
125 MHz; Tamb = 85 °C;  
executing code  
while(1){} from flash.  
[2]  
all clocks off  
-
30  
475  
µA  
I/O supply  
VDD(IO)  
input/output supply  
voltage  
2.7  
-
-
3.6  
V
IDD(IO)  
I/O supply current  
Power-down mode  
0.5  
3.25  
µA  
Oscillator supply  
VDD(OSC_PLL) oscillator and PLL supply  
voltage  
1.71  
1.80  
1.89  
V
IDD(OSC_PLL) oscillator and PLL supply normal mode  
current  
-
-
-
-
1
2
mA  
Power-down mode  
µA  
Analog-to-digital converter supply  
VDDA(ADC3V3) 3.3 V ADC analog supply  
voltage  
3.0  
3.3  
3.6  
V
IDDA(ADC3V3) 3.3 V ADC analog supply normal mode  
current  
-
-
-
-
1.9  
4
mA  
Power-down mode  
µA  
Input pins and I/O pins configured as input  
[3][4]  
VI  
input voltage  
all port pins and VDD(IO)  
applied;  
0.5  
-
+ 5.5  
V
see Section 7  
[4]  
port 0 pins 8 to 23 when  
ADC1/2 is used  
VVREFP  
+3.6  
all port pins and VDD(IO)  
not applied  
0.5  
0.5  
-
-
V
V
all other I/O pins, RST,  
TRST, TDI, JTAGSEL,  
TMS, TCK  
VDD(IO)  
VIH  
HIGH-level input voltage all port pins, RST,  
TRST, TDI, JTAGSEL,  
TMS, TCK; see  
2.0  
-
-
-
-
V
V
Figure 22  
VIL  
LOW-level input voltage  
all port pins, RST,  
TRST, TDI, JTAGSEL,  
TMS, TCK; see  
Figure 21  
0.8  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
60 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
Table 33. Static characteristics …continued  
VDD(CORE) = VDD(OSC_PLL) ; VDD(IO) = 2.7 V to 3.6 V; VDDA(ADC3V3) = 3.0 V to 3.6 V; Tvj = -40 °C to +85 °C; all voltages are  
measured with respect to ground; positive currents flow into the IC; unless otherwise specified.[1]  
Symbol  
Vhys  
Parameter  
Conditions  
Min  
0.4  
-
Typ  
Max  
Unit  
V
hysteresis voltage  
-
-
-
ILIH  
HIGH-level input leakage  
current  
1
µA  
ILIL  
LOW-level input leakage  
current  
-
-
1
µA  
µA  
µA  
II(pd)  
II(pu)  
pull-down input current  
all port pins, VI = 3.3 V;  
VI = 5.5 V; see Figure 23  
25  
25  
50  
50  
100  
115  
pull-up input current  
all port pins, RST,  
TRST, TDI, JTAGSEL,  
TMS: VI = 0 V; VI > 3.6 V  
is not allowed; see  
Figure 24  
[5]  
Ci  
input capacitance  
-
3
8
pF  
Output pins and I/O pins configured as output  
VO  
output voltage  
0
-
-
-
-
VDD(IO)  
V
VOH  
HIGH-level output voltage IOH = 4 mA  
LOW-level output voltage IOL = 4 mA  
load capacitance  
VDD(IO) – 0.4  
-
V
VOL  
-
-
0.4  
25  
V
CL  
pF  
Oscillator  
VXIN_OSC  
Rs(xtal)  
voltage on pin XIN_OSC  
0
-
1.8  
V
[6]  
crystal series resistance  
fosc = 10 MHz to 15 MHz  
Cxtal = 10 pF;  
ext = 18 pF  
Cxtal = 20 pF;  
ext = 39 pF  
-
-
-
-
160  
60  
C
C
[6]  
[7]  
fosc = 15 MHz to 20 MHz  
Cxtal = 10 pF;  
-
-
-
80  
2
C
ext = 18 pF  
Ci  
input capacitance  
of XIN_OSC  
pF  
Power-up reset  
[8]  
[8]  
[8]  
Vtrip(high)  
Vtrip(low)  
Vtrip(dif)  
high trip level voltage  
1.1  
1.0  
50  
1.4  
1.3  
120  
1.6  
1.5  
180  
V
low trip level voltage  
V
difference between high  
and low trip level voltage  
mV  
[1] All parameters are guaranteed over the virtual junction temperature range by design. Pre-testing is performed at Tamb = 85 °C on wafer  
level. Cased products are tested at Tamb = 25 °C (final testing). Both pre-testing and final testing use correlated test conditions to cover  
the specified temperature and power-supply voltage range.  
[2] Leakage current is exponential to temperature; worst-case value is at 85 °C Tvj. All clocks off. Analog modules and FLASH powered  
down.  
[3] Not 5 V-tolerant when pull-up is on.  
[4] For I/O Port 0, the maximum input voltage is defined by VI(ADC)  
.
[5] For Port 0, pin 0 to pin 15 add maximum 1.5 pF for input capacitance to ADC. For Port 0, pin 16 to pin 31 add maximum 1.0 pF for input  
capacitance to ADC.  
[6] Cxtal is crystal load capacitance and Cext are the two external load capacitors.  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
61 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
[7] This parameter is not part of production testing or final testing, hence only a typical value is stated. Maximum and minimum values are  
based on simulation results.  
[8] The power-up reset has a time filter: VDD(CORE) must be above Vtrip(high) for 2 µs before reset is de-asserted; VDD(CORE) must be below  
Vtrip(low) for 11 µs before internal reset is asserted.  
Table 34. ADC static characteristics  
VDDA(ADC3V3) = 3.0 V to 3.6 V; Tamb = 40 °C to +85 °C unless otherwise specified; ADC frequency 4.5 MHz.  
Symbol  
VVREFN  
VVREFP  
Zi  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
V
voltage on pin VREFN  
voltage on pin VREFP  
input impedance  
0
-
-
-
VVREFP 2  
VVREFN + 2  
4.4  
VDDA(ADC3V3)  
-
V
between VVREFN and  
VVREFP  
kΩ  
VIA  
Cia  
analog input voltage  
analog input capacitance  
differential linearity error  
integral non-linearity  
offset error  
VVREFN  
-
-
-
-
-
-
-
-
-
VVREFP  
1
V
pF  
[1][2][3]  
[1][4]  
[1][5]  
[1][6]  
[1][7]  
[8]  
ED  
±1  
LSB  
LSB  
LSB  
%
EL(adj)  
EO  
-
-
-
-
-
±2  
±3  
EG  
gain error  
±0.5  
±4  
ET  
absolute error  
LSB  
kΩ  
Rvsi  
voltage source interface  
resistance  
40  
[1] Conditions: VSS(IO) = 0 V, VDDA(ADC3V3) = 3.3 V.  
[2] The ADC is monotonic, there are no missing codes.  
[3] The differential linearity error (ED) is the difference between the actual step width and the ideal step width. See Figure 17.  
[4] The integral non-linearity (EL(adj)) is the peak difference between the center of the steps of the actual and the ideal transfer curve after  
appropriate adjustment of gain and offset errors. See Figure 17.  
[5] The offset error (EO) is the absolute difference between the straight line which fits the actual curve and the straight line which fits the  
ideal curve. See Figure 17.  
[6] The gain error (EG) is the relative difference in percent between the straight line fitting the actual transfer curve after removing offset  
error, and the straight line which fits the ideal transfer curve. See Figure 17.  
[7] The absolute error (ET) is the maximum difference between the center of the steps of the actual transfer curve of the non-calibrated ADC  
and the ideal transfer curve. See Figure 17.  
[8] See Figure 16.  
LPC2XXX  
R
vsi  
20 kΩ  
ADC IN[y]  
ADC IN[y]  
SAMPLE  
3 pF  
5 pF  
V
EXT  
V
V
SS(IO), SS(CORE)  
002aae280  
Fig 16. Suggested ADC interface - LPC2917/2919/01 ADC1/2 IN[y] pin  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
62 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
offset  
error  
gain  
error  
E
E
O
G
1023  
1022  
1021  
1020  
1019  
1018  
(2)  
7
code  
out  
(1)  
6
5
4
3
2
1
0
(5)  
(4)  
(3)  
1 LSB  
(ideal)  
1018 1019 1020 1021 1022 1023 1024  
1
2
3
4
5
6
7
V
IA  
(LSB  
)
ideal  
offset error  
E
O
002aae703  
(1) Example of an actual transfer curve.  
(2) The ideal transfer curve.  
(3) Differential linearity error (ED).  
(4) Integral non-linearity (EL(adj)).  
(5) Center of a step of the actual transfer curve.  
Fig 17. ADC characteristics  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
63 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
8.1 Power consumption  
002aae241  
80  
I
DD(CORE)  
(mA)  
60  
40  
20  
0
10  
50  
90  
130  
core frequency (MHz)  
Conditions: Tamb = 25 °C; active mode entered executing code from flash; core voltage 1.8 V; all  
peripherals enabled but not configured to run.  
Fig 18. IDD(CORE) at different core frequencies (active mode)  
002aae240  
80  
125 MHz  
I
DD(CORE)  
(mA)  
60  
40  
20  
0
100 MHz  
80 MHz  
40 MHz  
10 MHz  
1.8  
1.7  
1.9  
core voltage (V)  
Conditions: Tamb = 25 °C; active mode entered executing code from flash; all peripherals enabled  
but not configured to run.  
Fig 19. IDD(CORE) at different core voltages VDD(CORE) (active mode)  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
64 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
002aae239  
80  
125 MHz  
I
DD(CORE)  
(mA)  
60  
40  
20  
0
100 MHz  
80 MHz  
40 MHz  
10 MHz  
40  
15  
10  
35  
60  
85  
temperature (°C)  
Conditions: active mode entered executing code from flash; core voltage 1.8 V; all peripherals  
enabled but not configured to run.  
Fig 20. IDD(CORE) at different temperatures (active mode)  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
65 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
8.2 Electrical pin characteristics  
002aae689  
500  
OL  
V
(mV)  
400  
85 °C  
25 °C  
0 °C  
300  
200  
100  
0
40 °C  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
I
(mA)  
OL  
VDD(IO) = 3.3 V.  
Fig 21. Typical LOW-level output voltage versus LOW-level output current  
002aae690  
3.5  
V
OH  
(V)  
85 °C  
25 °C  
0 °C  
3.0  
40 °C  
2.5  
2.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
I
(mA)  
OH  
VDD(IO) = 3.3 V.  
Fig 22. Typical HIGH-level output voltage versus HIGH-level output current  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
66 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
002aae691  
80  
I
I(pd)  
(µA)  
70  
V
= 3.6 V  
3.0 V  
DD(IO)  
60  
50  
40  
2.7 V  
40  
15  
10  
35  
60  
85  
temperature (°C)  
VI = 3.3 V.  
Fig 23. Typical pull-down current versus temperature  
002aae692  
20  
I
I(pu)  
(µA)  
V
= 2.7 V  
DD(IO)  
40  
3.3 V  
3.6 V  
60  
80  
100  
40  
15  
10  
35  
60  
85  
temperature (°C)  
VI = 0 V.  
Fig 24. Typical pull-up current versus temperature  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
67 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
9. Dynamic characteristics  
9.1 Dynamic characteristics: I/O pins, internal clock, oscillators, PLL, and  
CAN  
Table 35. Dynamic characteristics  
VDD(CORE) = VDD(OSC_PLL); VDD(IO) = 2.7 V to 3.6 V; VDDA(ADC3V3) = 3.0 V to 3.6 V; all voltages are measured with respect to  
ground; positive currents flow into the IC; unless otherwise specified.[1]  
Symbol  
I/O pins  
tTHL  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
HIGH to LOW transition CL = 30 pF  
time  
4
4
-
-
13.8  
13.8  
ns  
ns  
tTLH  
LOW to HIGH transition CL = 30 pF  
time  
CLKOUT pin  
fclk  
clock frequency  
on pin CLKOUT  
-
-
40  
MHz  
Internal clock  
fclk(sys)  
[2]  
[2]  
system clock frequency  
system clock period  
10  
8
-
-
125  
100  
MHz  
ns  
Tclk(sys)  
Low-power ring oscillator  
fref(RO)  
RO reference  
frequency  
0.36  
-
0.4  
6
0.42  
-
MHz  
[3]  
tstartup  
start-up time  
at maximum frequency  
µs  
Oscillator  
fi(osc)  
oscillator input  
frequency  
maximum frequency is  
the clock input of an  
external clock source  
applied to the XIN_OSC  
pin  
10  
-
100  
MHz  
[3]  
[4]  
tstartup  
start-up time  
at maximum frequency  
-
500  
-
µs  
PLL  
fi(PLL)  
fo(PLL)  
PLL input frequency  
PLL output frequency  
10  
10  
156  
-
-
-
-
-
-
25  
MHz  
MHz  
MHz  
ns  
160  
320  
63.4  
60.3  
CCO; direct mode  
ta(clk)  
ta(A)  
clock access time  
address access time  
-
ns  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
68 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
Table 35. Dynamic characteristics …continued  
VDD(CORE) = VDD(OSC_PLL); VDD(IO) = 2.7 V to 3.6 V; VDDA(ADC3V3) = 3.0 V to 3.6 V; all voltages are measured with respect to  
ground; positive currents flow into the IC; unless otherwise specified.[1]  
Symbol  
Jitter specification for CAN  
tjit(cc)(p-p) cycle to cycle jitter  
(peak-to-peak value)  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
[3]  
on CAN TXDC pin  
-
0.4  
1
ns  
[1] All parameters are guaranteed over the virtual junction temperature range by design. Pre-testing is performed at Tamb = 85 °C ambient  
temperature on wafer level. Cased products are tested at Tamb = 25 °C (final testing). Both pre-testing and final testing use correlated  
test conditions to cover the specified temperature and power supply voltage range.  
[2] See Table 26.  
[3] This parameter is not part of production testing or final testing, hence only a typical value is stated.  
[4] Oscillator start-up time depends on the quality of the crystal. For most crystals it takes about 1000 clock pulses until the clock is fully  
stable.  
002aae373  
520  
1.9 V  
f
ref(RO)  
(kHz)  
1.8 V  
1.7 V  
510  
500  
490  
480  
40  
15  
10  
35  
60  
85  
temperature (°C)  
Fig 25. Low-power ring oscillator thermal characteristics  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
69 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
9.2 Dynamic characteristics: I2C-bus interface  
Table 36. Dynamic characteristic: I2C-bus pins  
VDD(CORE) = VDD(OSC_PLL); VDD(IO) = 2.7 V to 3.6 V; VDDA(ADC3V3) = 3.0 V to 3.6 V; all voltages are measured with respect to  
ground; positive currents flow into the IC; unless otherwise specified[1]  
Symbol  
Parameter  
Conditions  
Min  
Typ[2]  
Max  
Unit  
[3]  
tf(o)  
output fall time  
VIH to VIL  
20 + 0.1 × Cb  
-
-
ns  
[1] All parameters are guaranteed over the virtual junction temperature range by design. Pre-testing is performed at Tamb = 85 °C ambient  
temperature on wafer level. Cased products are tested at Tamb = 25 °C (final testing). Both pre-testing and final testing use correlated  
test conditions to cover the specified temperature and power supply voltage range.  
[2] Typical ratings are not guaranteed. The values listed are at room temperature (25 °C), nominal supply voltages.  
[3] Bus capacitance Cb in pF, from 10 pF to 400 pF.  
9.3 Dynamic characteristics: SPI  
Table 37. Dynamic characteristics of SPI pins  
VDD(CORE) = VDD(OSC_PLL) ; VDD(IO) = 2.7 V to 3.6 V; VDDA(ADC3V3) = 3.0 V to 3.6 V; VDDA(ADC5V0) = 3.0 V to 5.5 V;  
Tvj = -40 °C to +85 °C; all voltages are measured with respect to ground; positive currents flow into the IC; unless otherwise  
specified.[1]  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
1
fSPI  
SPI operating frequency  
master operation  
slave operation  
65024fclk(SPI)  
-
12fclk(SPI) MHz  
14fclk(SPI) MHz  
1
65024fclk(SPI)  
-
tsu(SPI_MISO)  
SPI_MISO set-up time  
Tamb = 25 °C;  
measured in SPI  
Master mode;  
see Figure 26  
-
11  
-
ns  
[1] All parameters are guaranteed over the virtual junction temperature range by design. Pre-testing is performed at Tamb = 85 °C ambient  
temperature on wafer level. Cased products are tested at Tamb = 25 °C (final testing). Both pre-testing and final testing use correlated  
test conditions to cover the specified temperature and power supply voltage range.  
shifting edges  
SCKn  
sampling edges  
SDOn  
SDIn  
t
su(SPI_MISO)  
002aae695  
Fig 26. SPI data input set-up time in SSP Master mode  
Rev. 02 — 17 June 2009  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
70 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
9.4 Dynamic characteristics: flash memory and EEPROM  
Table 38. Flash characteristics  
Tamb = -40 °C to +85 °C; VDD(CORE) = VDD(OSC_PLL); VDD(IO) = 2.7 V to 3.6 V;  
VDDA(ADC3V3) = 3.0 V to 3.6 V; all voltages are measured with respect to ground.  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
-
Unit  
cycles  
years  
years  
ms  
[1]  
Nendu  
endurance  
10000  
-
tret  
retention time  
powered  
unpowered  
word  
10  
20  
0.95  
95  
95  
-
-
-
-
-
tprog  
ter  
programming time  
erase time  
1
1.05  
105  
105  
150  
1.05  
70  
global  
100  
ms  
sector  
100  
ms  
tinit  
initialization time  
page write time  
-
µs  
twr(pg)  
tfl(BIST)  
ta(clk)  
ta(A)  
0.95  
-
1
38  
-
ms  
flash word BIST time  
clock access time  
address access time  
ns  
-
63.4  
60.3  
ns  
-
-
ns  
[1] Number of program/erase cycles.  
Table 39. EEPROM characteristics  
Tamb = -40 °C to +85 °C; VDD(CORE) = VDD(OSC_PLL); VDD(IO) = 2.7 V to 3.6 V;  
DDA(ADC3V3) = 3.0 V to 3.6 V; all voltages are measured with respect to ground.  
V
Symbol  
Parameter  
Conditions  
Min  
Typ  
375  
500000  
-
Max  
Unit  
fclk  
clock frequency  
endurance  
200  
400  
kHz  
Nendu  
tret  
100000  
10  
-
-
cycles  
years  
retention time  
powered  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
71 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
9.5 Dynamic characteristics: external static memory  
Table 40. External static memory interface dynamic characteristics  
VDD(CORE) = VDD(OSC_PLL); VDD(IO) = 2.7 V to 3.6 V; VDDA(ADC3V3) = 3.0 V to 3.6 V; all voltages are measured with respect to  
ground.[1]  
Symbol Parameter  
Conditions  
Min  
Typ  
Max Unit  
100 ns  
20.5 ns  
24.9 ns  
TCLCL  
ta(R)int  
ta(W)int  
clock cycle time  
8
-
-
-
-
internal read access time  
internal write access time  
-
Read cycle parameters  
tCSLAV CS LOW to address valid  
5  
2.5  
-
-
ns  
ns  
time  
tOELAV  
OE LOW to address valid  
time  
5 WSTOEN × TCLCL 2.5 WSTOEN × TCLCL  
tCSLOEL  
tsu(DQ)  
CS LOW to OE LOW time  
-
0 + WSTOEN × TCLCL  
-
ns  
ns  
data input /output set-up  
time  
11  
16  
22  
th(D)  
data input hold time  
0
-
2.5  
0
5
-
ns  
ns  
ns  
tCSHOEH CS HIGH to OE HIGH time  
tBLSLBLSH BLS LOW to BLS HIGH time  
-
(WST1 WSTOEN +1) ×  
-
TCLCL  
tOELOEH OE LOW to OE HIGH time  
-
-
(WST1 WSTOEN +1) ×  
TCLCL  
-
-
ns  
ns  
tBLSLAV  
BLS LOW to address valid  
time  
0 + WSTOEN × TCLCL  
Write cycle parameters  
[2]  
[3]  
tCSHBLSH CS HIGH to BLS HIGH time  
-
0
-
-
-
-
ns  
ns  
ns  
ns  
tCSLWEL  
CS LOW to WE LOW time  
-
(WSTWEN + 0.5) × TCLCL  
WSTWEN × TCLCL  
(WSTWEN + 0.5) × TCLCL  
0.1  
tCSLBLSL CS LOW to BLS LOW time  
-
tWELDV  
tCSLDV  
WE LOW to data valid time  
CS LOW to data valid time  
-
0.5  
0.3 ns  
tWELWEH WE LOW to WE HIGH time  
-
(WST2 WSTWEN +1) ×  
-
ns  
TCLCL  
[4]  
tBLSLBLSH BLS LOW to BLS HIGH time  
-
(WST2 - WSTWEN +2) ×  
-
ns  
TCLCL  
[1] All parameters are guaranteed over the virtual junction temperature range by design. Pre-testing is performed at Tamb = 85 °C ambient  
temperature on wafer level. Cased products are tested at Tamb = 25 °C (final testing). Both pre-testing and final testing use correlated  
test conditions to cover the specified temperature and power supply voltage range.  
[2] When the byte lane select signals are used to connect the write enable input (8 bit devices), tCSHBLSH = 0.5 × TCLCL  
.
[3] When the byte lane select signals are used to connect the write enable input (8 bit devices), tCSLBLSL = tCSLWEL  
[4] For 16 and 32 bit devices.  
.
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
72 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
t
t
CSHOEH  
CSLAV  
CS  
A
t
t
h(D)  
su(DQ)  
D
t
CSLOEL  
t
, t  
OELAV BLSLAV  
t
, t  
OELOEH BLSLBLSH  
OE/BLS  
002aae687  
Fig 27. External memory read access  
t
t
CSHBLSH  
CSLDV  
CS  
t
BLSLBLSH  
BLS  
t
CSLBLSL  
t
t
CSLWEL  
WELWEH  
WE  
t
WELDV  
A
D
t
CSLDV  
002aae688  
Fig 28. External memory write access  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
73 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
9.6 Dynamic characteristics: ADC  
Table 41. ADC dynamic characteristics  
VDD(CORE) = VDD(OSC_PLL); VDD(IO) = 2.7 V to 3.6 V; VDDA(ADC3V3) = 3.0 V to 3.6 V; all voltages are measured with respect to  
ground.[1]  
Symbol  
fi(ADC)  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
[2]  
ADC input frequency  
maximum sampling rate  
4
-
4.5  
MHz  
fs(max)  
fi(ADC) = 4.5 MHz;  
fs = fi(ADC)/(n + 1) with  
n = resolution  
resolution 2 bit  
resolution 10 bit  
-
-
-
-
1500  
400  
11  
ksample/s  
ksample/s  
cycles  
-
tconv  
conversion time  
In number of ADC  
clock cycles  
3
In number of bits  
2
-
10  
bits  
[1] All parameters are guaranteed over the virtual junction temperature range by design. Pre-testing is performed at Tamb = 85 °C ambient  
temperature on wafer level. Cased products are tested at Tamb = 25 °C (final testing). Both pre-testing and final testing use correlated  
test conditions to cover the specified temperature and power supply voltage range.  
[2] Duty cycle clock should be as close as possible to 50 %.  
10. Application information  
10.1 Operating frequency selection  
The LPC2917/2919/01 is specified to operate at a maximum frequency of 125 MHz,  
maximum temperature of 85 °C, and maximum core voltage of 1.89 V. Figure 29 and  
Figure 30 show that the user can achieve higher operating frequencies for the  
LPC2917/2919/01 by controlling the temperature and the core voltage accordingly.  
002aae194  
145  
core  
V
= 1.95 V  
= 1.8 V  
frequency  
(MHz)  
DD(CORE)  
135  
125  
115  
105  
V
DD(CORE)  
V
= 1.65 V  
DD(CORE)  
25  
45  
65  
85  
temperature (°C)  
Fig 29. Core operating frequency versus temperature for different core voltages  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
74 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
002aae193  
145  
core  
frequency  
(MHz)  
135  
125  
115  
105  
25 °C  
45 °C  
65 °C  
85 °C  
1.65  
1.75  
1.85  
1.95  
core voltage (V)  
Fig 30. Core operating frequency versus core voltage for different temperatures  
10.2 SPI signal forms  
SCKn (CPOL = 0)  
SCKn (CPOL = 1)  
SDOn  
MSB OUT  
MSB IN  
DATA VALID  
DATA VALID  
LSB OUT  
LSB IN  
CPHA = 1  
SDIn  
SDOn  
MSB OUT  
DATA VALID  
LSB OUT  
CPHA = 0  
SDIn  
MSB IN  
DATA VALID  
LSB IN  
002aae693  
Fig 31. SPI timing in master mode  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
75 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
SCKn (CPOL = 0)  
SCKn (CPOL = 1)  
SDIn  
MSB IN  
DATA VALID  
DATA VALID  
LSB IN  
CPHA = 1  
SDOn  
MSB OUT  
LSB OUT  
SDIn  
MSB IN  
DATA VALID  
LSB IN  
CPHA = 0  
SDOn  
MSB OUT  
DATA VALID  
LSB OUT  
002aae694  
Fig 32. SPI timing in slave mode  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
76 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
10.3 XIN_OSC input  
The input voltage to the on-chip oscillators is limited to 1.8 V. If the oscillator is driven by a  
clock in slave mode, it is recommended that the input be coupled through a capacitor with  
Ci = 100 pF. To limit the input voltage to the specified range, choose an additional  
capacitor to ground Cg which attenuates the input voltage by a factor Ci/(Ci + Cg). In slave  
mode, a minimum of 200 mVrms is needed. For more details see the LPC29xx User  
manual UM10316.  
LPC29xx  
XIN_OSC  
C
i
C
g
100 pF  
002aae730  
Fig 33. Slave mode operation of the on-chip oscillator  
10.4 XIN_OSC Printed Circuit Board (PCB) layout guidelines  
The crystal should be connected on the PCB as close as possible to the oscillator input  
and output pins of the chip. Take care that the load capacitors Cx1 and Cx2, and Cx3 in  
case of third overtone crystal usage, have a common ground plane. The external  
components must also be connected to the ground plain. Loops must be made as small  
as possible, in order to keep the noise coupled in via the PCB as small as possible. Also  
parasitics should stay as small as possible. Values of Cx1 and Cx2 should be chosen  
smaller accordingly to the increase in parasitics of the PCB layout.  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
77 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
11. Package outline  
LQFP144: plastic low profile quad flat package; 144 leads; body 20 x 20 x 1.4 mm  
SOT486-1  
y
X
A
108  
109  
73  
72  
Z
E
e
H
A
E
2
A
E
(A )  
3
A
1
θ
w M  
p
L
p
b
L
pin 1 index  
detail X  
37  
144  
1
36  
v M  
Z
A
w M  
D
b
p
e
D
B
H
v M  
B
D
0
5
10 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
D
H
L
L
v
w
y
Z
Z
E
θ
1
2
3
p
E
p
D
max.  
7o  
0o  
0.15 1.45  
0.05 1.35  
0.27 0.20 20.1 20.1  
0.17 0.09 19.9 19.9  
22.15 22.15  
21.85 21.85  
0.75  
0.45  
1.4  
1.1  
1.4  
1.1  
mm  
1.6  
0.25  
1
0.2 0.08 0.08  
0.5  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
00-03-14  
03-02-20  
SOT486-1  
136E23  
MS-026  
Fig 34. Package outline SOT486-1 (LQFP144)  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
78 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
12. Soldering of SMD packages  
This text provides a very brief insight into a complex technology. A more in-depth account  
of soldering ICs can be found in Application Note AN10365 “Surface mount reflow  
soldering description”.  
12.1 Introduction to soldering  
Soldering is one of the most common methods through which packages are attached to  
Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both  
the mechanical and the electrical connection. There is no single soldering method that is  
ideal for all IC packages. Wave soldering is often preferred when through-hole and  
Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not  
suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high  
densities that come with increased miniaturization.  
12.2 Wave and reflow soldering  
Wave soldering is a joining technology in which the joints are made by solder coming from  
a standing wave of liquid solder. The wave soldering process is suitable for the following:  
Through-hole components  
Leaded or leadless SMDs, which are glued to the surface of the printed circuit board  
Not all SMDs can be wave soldered. Packages with solder balls, and some leadless  
packages which have solder lands underneath the body, cannot be wave soldered. Also,  
leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered,  
due to an increased probability of bridging.  
The reflow soldering process involves applying solder paste to a board, followed by  
component placement and exposure to a temperature profile. Leaded packages,  
packages with solder balls, and leadless packages are all reflow solderable.  
Key characteristics in both wave and reflow soldering are:  
Board specifications, including the board finish, solder masks and vias  
Package footprints, including solder thieves and orientation  
The moisture sensitivity level of the packages  
Package placement  
Inspection and repair  
Lead-free soldering versus SnPb soldering  
12.3 Wave soldering  
Key characteristics in wave soldering are:  
Process issues, such as application of adhesive and flux, clinching of leads, board  
transport, the solder wave parameters, and the time during which components are  
exposed to the wave  
Solder bath specifications, including temperature and impurities  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
79 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
12.4 Reflow soldering  
Key characteristics in reflow soldering are:  
Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to  
higher minimum peak temperatures (see Figure 35) than a SnPb process, thus  
reducing the process window  
Solder paste printing issues including smearing, release, and adjusting the process  
window for a mix of large and small components on one board  
Reflow temperature profile; this profile includes preheat, reflow (in which the board is  
heated to the peak temperature) and cooling down. It is imperative that the peak  
temperature is high enough for the solder to make reliable solder joints (a solder paste  
characteristic). In addition, the peak temperature must be low enough that the  
packages and/or boards are not damaged. The peak temperature of the package  
depends on package thickness and volume and is classified in accordance with  
Table 42 and 43  
Table 42. SnPb eutectic process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (°C)  
Volume (mm3)  
< 350  
235  
350  
220  
< 2.5  
2.5  
220  
220  
Table 43. Lead-free process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (°C)  
Volume (mm3)  
< 350  
260  
350 to 2000  
> 2000  
260  
< 1.6  
260  
250  
245  
1.6 to 2.5  
> 2.5  
260  
245  
250  
245  
Moisture sensitivity precautions, as indicated on the packing, must be respected at all  
times.  
Studies have shown that small packages reach higher temperatures during reflow  
soldering, see Figure 35.  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
80 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
maximum peak temperature  
= MSL limit, damage level  
temperature  
minimum peak temperature  
= minimum soldering temperature  
peak  
temperature  
time  
001aac844  
MSL: Moisture Sensitivity Level  
Fig 35. Temperature profiles for large and small components  
For further information on temperature profiles, refer to Application Note AN10365  
“Surface mount reflow soldering description”.  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
81 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
13. Abbreviations  
Table 44. Abbreviations list  
Abbreviation Description  
AHB  
AMBA  
APB  
BCL  
Advanced High-performance Bus  
Advanced Microcontroller Bus Architecture  
ARM Peripheral Bus  
Buffer Control List  
BDL  
Buffer Descriptor List  
BEL  
Buffer Entry List  
BIST  
CCO  
CISC  
DMA  
DSP  
DTL  
Built-In Self Test  
Current Controlled Oscillator  
Complex Instruction Set Computers  
Direct Memory Access  
Digital Signal Processing  
Device Transaction Level  
Embedded Trace Buffer  
ETB  
ETM  
FIQ  
Embedded Trace Macrocell  
Fast Interrupt reQuest  
GPDMA  
IRQ  
General Purpose DMA  
Interrupt Request  
LIN  
Local Interconnect Network  
Media Access Control  
MAC  
PLL  
Phase-Locked Loop  
RISC  
SFSP  
SCL  
Reduced Instruction Set Computer  
SCU Function Select Port x,y (use without the P if there are no x,y)  
Slot Control List  
UART  
Universal Asynchronous Receiver Transmitter  
14. References  
[1] UM10316 LPC29xx user manual  
[2] ARM ARM web site  
[3] ARM-SSP ARM primecell synchronous serial port (PL022) technical reference  
manual  
[4] CAN ISO 11898-1: 2002 road vehicles - Controller Area Network (CAN) - part 1:  
data link layer and physical signalling  
[5] LIN LIN specification package, revision 2.0  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
82 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
15. Revision history  
Table 45. Revision history  
Document ID  
Release date  
20090617  
Data sheet status  
Change notice  
Supersedes  
LPC2917_19_01_2  
Modifications:  
Preliminary data sheet  
-
LPC2917_19_01_1  
Dynamic characteristics of CLKOUT pin added (Table 35).  
Flash/EEPROM endurance and retention characteristics updated (Table 38 and Table 39).  
Electrical pin characteristics added (Figure 21 to Figure 23).  
External static memory timing parameters and diagrams updated (Section 9.5. and  
Figure 5 to Figure 7).  
SPI signal forms added (Figure 31 and Figure 32).  
SPI timing parameters and diagram updated (Section 9.3).  
PCB layout guidelines added (Section 10.4).  
XIN_OSC circuit added (Section 10.3).  
IDD(CORE) conditions and value updated in Table 33.  
Dynamic characterization of CLKOUT pin added.  
LPC2917_19_01_1  
20090112  
Preliminary data sheet  
-
-
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
83 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
16. Legal information  
16.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
damage. NXP Semiconductors accepts no liability for inclusion and/or use of  
NXP Semiconductors products in such equipment or applications and  
therefore such inclusion and/or use is at the customer’s own risk.  
16.2 Definitions  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) may cause permanent  
damage to the device. Limiting values are stress ratings only and operation of  
the device at these or any other conditions above those given in the  
Characteristics sections of this document is not implied. Exposure to limiting  
values for extended periods may affect device reliability.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Terms and conditions of sale — NXP Semiconductors products are sold  
subject to the general terms and conditions of commercial sale, as published  
at http://www.nxp.com/profile/terms, including those pertaining to warranty,  
intellectual property rights infringement and limitation of liability, unless  
explicitly otherwise agreed to in writing by NXP Semiconductors. In case of  
any inconsistency or conflict between information in this document and such  
terms and conditions, the latter will prevail.  
16.3 Disclaimers  
General — Information in this document is believed to be accurate and  
reliable. However, NXP Semiconductors does not give any representations or  
warranties, expressed or implied, as to the accuracy or completeness of such  
information and shall have no liability for the consequences of use of such  
information.  
No offer to sell or license — Nothing in this document may be interpreted  
or construed as an offer to sell products that is open for acceptance or the  
grant, conveyance or implication of any license under any copyrights, patents  
or other industrial or intellectual property rights.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from national authorities.  
Suitability for use — NXP Semiconductors products are not designed,  
authorized or warranted to be suitable for use in medical, military, aircraft,  
space or life support equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
to result in personal injury, death or severe property or environmental  
16.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
I2C-bus — logo is a trademark of NXP B.V.  
17. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
84 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
18. Contents  
1
General description . . . . . . . . . . . . . . . . . . . . . . 1  
6.12  
6.12.1  
6.12.2  
Peripheral subsystem. . . . . . . . . . . . . . . . . . . 28  
Peripheral subsystem clock description . . . . . 28  
Watchdog timer . . . . . . . . . . . . . . . . . . . . . . . 28  
2
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Ordering information. . . . . . . . . . . . . . . . . . . . . 3  
Ordering options. . . . . . . . . . . . . . . . . . . . . . . . 3  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
3
3.1  
4
6.12.2.1 Functional description . . . . . . . . . . . . . . . . . . 29  
6.12.2.2 Clock description . . . . . . . . . . . . . . . . . . . . . . 29  
6.12.3  
6.12.3.1 Pin description . . . . . . . . . . . . . . . . . . . . . . . . 30  
6.12.3.2 Clock description . . . . . . . . . . . . . . . . . . . . . . 30  
6.12.4  
Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
5
5.1  
5.2  
5.2.1  
5.2.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 5  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 5  
General description. . . . . . . . . . . . . . . . . . . . . . 5  
LQFP144 pin assignment . . . . . . . . . . . . . . . . . 5  
UARTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
6.12.4.1 Pin description . . . . . . . . . . . . . . . . . . . . . . . . 31  
6.12.4.2 Clock description . . . . . . . . . . . . . . . . . . . . . . 31  
6.12.5  
Serial peripheral interface (SPI). . . . . . . . . . . 31  
6
6.1  
6.2  
6.3  
6.4  
6.5  
6.6  
6.6.1  
6.6.2  
6.6.3  
Functional description . . . . . . . . . . . . . . . . . . 11  
Architectural overview. . . . . . . . . . . . . . . . . . . 11  
ARM968E-S processor. . . . . . . . . . . . . . . . . . 12  
On-chip flash memory system . . . . . . . . . . . . 13  
On-chip static RAM. . . . . . . . . . . . . . . . . . . . . 13  
Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Reset, debug, test, and power description . . . 15  
Reset and power-up behavior. . . . . . . . . . . . . 15  
Reset strategy. . . . . . . . . . . . . . . . . . . . . . . . . 15  
IEEE 1149.1 interface pins  
6.12.5.1 Functional description . . . . . . . . . . . . . . . . . . 32  
6.12.5.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . 32  
6.12.5.3 Clock description . . . . . . . . . . . . . . . . . . . . . . 33  
6.12.6  
General-purpose I/O . . . . . . . . . . . . . . . . . . . 33  
6.12.6.1 Functional description . . . . . . . . . . . . . . . . . . 33  
6.12.6.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . 33  
6.12.6.3 Clock description . . . . . . . . . . . . . . . . . . . . . . 34  
6.13  
6.13.1  
6.13.1.1 Global acceptance filter . . . . . . . . . . . . . . . . . 34  
6.13.1.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . 34  
6.13.2  
6.13.2.1 Pin description . . . . . . . . . . . . . . . . . . . . . . . . 35  
6.13.3  
I2C-bus serial I/O controllers . . . . . . . . . . . . . 35  
6.13.3.1 Pin description . . . . . . . . . . . . . . . . . . . . . . . . 36  
Networking subsystem. . . . . . . . . . . . . . . . . . 34  
CAN gateway . . . . . . . . . . . . . . . . . . . . . . . . . 34  
(JTAG boundary-scan test). . . . . . . . . . . . . . . 15  
ETM/ETB . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Power supply pins. . . . . . . . . . . . . . . . . . . . . . 16  
Clocking strategy . . . . . . . . . . . . . . . . . . . . . . 16  
Clock architecture. . . . . . . . . . . . . . . . . . . . . . 16  
Base clock and branch clock relationship. . . . 18  
Flash memory controller. . . . . . . . . . . . . . . . . 20  
Functional description. . . . . . . . . . . . . . . . . . . 20  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . 21  
Clock description . . . . . . . . . . . . . . . . . . . . . . 21  
Flash layout. . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Flash bridge wait-states . . . . . . . . . . . . . . . . . 22  
EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
External static memory controller . . . . . . . . . . 23  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . 24  
Clock description . . . . . . . . . . . . . . . . . . . . . . 24  
External memory timing diagrams . . . . . . . . . 24  
DMA controller . . . . . . . . . . . . . . . . . . . . . . . . 26  
DMA support for peripherals. . . . . . . . . . . . . . 26  
Clock description . . . . . . . . . . . . . . . . . . . . . . 27  
General subsystem. . . . . . . . . . . . . . . . . . . . . 27  
General subsystem clock description . . . . . . . 27  
Chip and feature identification . . . . . . . . . . . . 27  
System Control Unit (SCU). . . . . . . . . . . . . . . 27  
Event router . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
6.6.3.1  
6.6.4  
6.7  
6.7.1  
6.7.2  
6.8  
6.8.1  
6.8.2  
6.8.3  
6.8.4  
6.8.5  
6.8.6  
6.9  
6.9.1  
6.9.2  
6.9.3  
6.9.4  
6.10  
LIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
6.14  
Modulation and sampling control subsystem . 36  
Functional description . . . . . . . . . . . . . . . . . . 36  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . 39  
Clock description . . . . . . . . . . . . . . . . . . . . . . 39  
Analog-to-digital converter . . . . . . . . . . . . . . . 39  
6.14.1  
6.14.2  
6.14.3  
6.14.4  
6.14.4.1 Functional description . . . . . . . . . . . . . . . . . . 40  
6.14.4.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . 40  
6.14.4.3 Clock description . . . . . . . . . . . . . . . . . . . . . . 41  
6.14.5  
Pulse Width Modulator (PWM). . . . . . . . . . . . 41  
6.14.5.1 Functional description . . . . . . . . . . . . . . . . . . 42  
6.14.5.2 Synchronizing the PWM counters . . . . . . . . . 43  
6.14.5.3 Master and slave mode . . . . . . . . . . . . . . . . . 43  
6.14.5.4 Pin description . . . . . . . . . . . . . . . . . . . . . . . . 43  
6.14.5.5 Clock description . . . . . . . . . . . . . . . . . . . . . . 44  
6.10.1  
6.10.2  
6.11  
6.11.1  
6.11.2  
6.11.3  
6.11.4  
6.14.6  
Timers in the MSCSS. . . . . . . . . . . . . . . . . . . 44  
6.14.6.1 Pin description . . . . . . . . . . . . . . . . . . . . . . . . 44  
6.14.6.2 Clock description . . . . . . . . . . . . . . . . . . . . . . 44  
6.14.7  
6.14.7.1 Pin description . . . . . . . . . . . . . . . . . . . . . . . . 45  
6.14.7.2 Clock description . . . . . . . . . . . . . . . . . . . . . . 45  
6.15  
Quadrature Encoder Interface (QEI) . . . . . . . 44  
Power, clock and reset control subsystem . . . 45  
6.11.4.1 Pin description . . . . . . . . . . . . . . . . . . . . . . . . 28  
continued >>  
LPC2917_19_01_2  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 June 2009  
85 of 86  
LPC2917/01; LPC2919/01  
NXP Semiconductors  
ARM9 microcontroller with CAN and LIN  
6.15.1  
6.15.2  
Clock description . . . . . . . . . . . . . . . . . . . . . . 46  
Clock Generation Unit (CGU0) . . . . . . . . . . . . 47  
16.1  
16.2  
16.3  
16.4  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 84  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
6.15.2.1 Functional description. . . . . . . . . . . . . . . . . . . 47  
6.15.2.2 PLL functional description . . . . . . . . . . . . . . . 50  
6.15.2.3 Pin description . . . . . . . . . . . . . . . . . . . . . . . . 51  
6.15.3  
6.15.3.1 Pin description . . . . . . . . . . . . . . . . . . . . . . . . 52  
6.15.4 Reset Generation Unit (RGU). . . . . . . . . . . . . 52  
17  
18  
Contact information . . . . . . . . . . . . . . . . . . . . 84  
Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Clock generation for CLK_OUT (CGU1). . . . . 51  
6.15.4.1 Functional description. . . . . . . . . . . . . . . . . . . 52  
6.15.4.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . 53  
6.15.5  
Power Management Unit (PMU). . . . . . . . . . . 53  
6.15.5.1 Functional description. . . . . . . . . . . . . . . . . . . 54  
6.16  
6.16.1  
6.16.2  
Vectored Interrupt Controller (VIC) . . . . . . . . . 56  
Functional description. . . . . . . . . . . . . . . . . . . 56  
Clock description . . . . . . . . . . . . . . . . . . . . . . 57  
7
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 58  
8
8.1  
8.2  
Static characteristics. . . . . . . . . . . . . . . . . . . . 60  
Power consumption . . . . . . . . . . . . . . . . . . . . 64  
Electrical pin characteristics . . . . . . . . . . . . . . 66  
9
9.1  
Dynamic characteristics . . . . . . . . . . . . . . . . . 68  
Dynamic characteristics: I/O pins,  
internal clock, oscillators, PLL,  
and CAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Dynamic characteristics: I2C-bus  
9.2  
interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Dynamic characteristics: SPI . . . . . . . . . . . . . 70  
Dynamic characteristics:  
9.3  
9.4  
flash memory and EEPROM. . . . . . . . . . . . . . 71  
Dynamic characteristics:  
external static memory . . . . . . . . . . . . . . . . . . 72  
Dynamic characteristics:  
9.5  
9.6  
ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
10  
Application information. . . . . . . . . . . . . . . . . . 74  
Operating frequency selection . . . . . . . . . . . . 74  
SPI signal forms . . . . . . . . . . . . . . . . . . . . . . . 75  
XIN_OSC input . . . . . . . . . . . . . . . . . . . . . . . . 77  
XIN_OSC Printed Circuit Board  
10.1  
10.2  
10.3  
10.4  
(PCB) layout guidelines . . . . . . . . . . . . . . . . . 77  
11  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 78  
12  
Soldering of SMD packages . . . . . . . . . . . . . . 79  
Introduction to soldering . . . . . . . . . . . . . . . . . 79  
Wave and reflow soldering . . . . . . . . . . . . . . . 79  
Wave soldering . . . . . . . . . . . . . . . . . . . . . . . . 79  
Reflow soldering . . . . . . . . . . . . . . . . . . . . . . . 80  
12.1  
12.2  
12.3  
12.4  
13  
14  
15  
16  
Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . 82  
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 83  
Legal information. . . . . . . . . . . . . . . . . . . . . . . 84  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2009.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 17 June 2009  
Document identifier: LPC2917_19_01_2  

相关型号:

LPC2921

ARM9 microcontroller with CAN, LIN, and USB
NXP

LPC2921FBD100

ARM9 microcontroller with CAN, LIN, and USB device
NXP

LPC2921FBD100,551

LPC2921/2923/2925 - ARM9 microcontroller with CAN, LIN, and USB QFP 100-Pin
NXP

LPC2921_10

ARM9 microcontroller with CAN, LIN, and USB
NXP

LPC2923

ARM9 microcontroller with CAN, LIN, and USB
NXP

LPC2923FBD100

ARM9 microcontroller with CAN, LIN, and USB device
NXP

LPC2923FBD100,551

LPC2921/2923/2925 - ARM9 microcontroller with CAN, LIN, and USB QFP 100-Pin
NXP

LPC2925

ARM9 microcontroller with CAN, LIN, and USB
NXP

LPC2925FBD100

ARM9 microcontroller with CAN, LIN, and USB
NXP

LPC2926

ARM9 microcontroller with CAN, LIN, and USB
NXP

LPC2926FBD144

ARM9 microcontroller with CAN, LIN, and USB
NXP

LPC2926FBD144,551

LPC2926/2927/2929 - ARM9 microcontroller with CAN, LIN, and USB QFP 144-Pin
NXP