LPC54102J256BD64 [NXP]

32-bit ARM Cortex-M4/M0 MCU; 104 kB SRAM; 512 kB flash, 3 x I2C, 2 x SPI, 4 x USART, 32-bit counter/ timers, SCTimer/PWM, 12-bit 5.0 Msamples/sec ADC;
LPC54102J256BD64
型号: LPC54102J256BD64
厂家: NXP    NXP
描述:

32-bit ARM Cortex-M4/M0 MCU; 104 kB SRAM; 512 kB flash, 3 x I2C, 2 x SPI, 4 x USART, 32-bit counter/ timers, SCTimer/PWM, 12-bit 5.0 Msamples/sec ADC

时钟 静态存储器 外围集成电路
文件: 总95页 (文件大小:2142K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LPC5410x  
32-bit ARM Cortex-M4/M0+ MCU; 104 kB SRAM; 512 kB flash,  
3 x I2C, 2 x SPI, 4 x USART, 32-bit counter/ timers,  
SCTimer/PWM, 12-bit 5.0 Msamples/sec ADC  
Rev. 2.11 — 19 September 2019  
Product data sheet  
1. General description  
The LPC5410x are ARM Cortex-M4 based microcontrollers for embedded applications.  
These devices include:  
Optional ARM Cortex-M0+ coprocessor.  
104 kB of on-chip SRAM.  
Up to 512 kB on-chip flash.  
State-Configurable Timer with PWM capabilities (SCTimer/PWM).  
RTC/alarm timer.  
24-bit Multi-Rate Timer (MRT).  
12-bit 5.0 Msamples/sec ADC.  
Repetitive Interrupt Timer (RIT).  
Windowed Watchdog Timer (WWDT).  
Two SPIs.  
Three Fast-mode plus I2C-bus interfaces with high-speed slave mode.  
Four USARTs.  
Five general-purpose timers.  
The ARM Cortex-M4 is a 32-bit core that offers system enhancements such as low power  
consumption, enhanced debug features, and a high level of support block integration. The  
ARM Cortex-M4 CPU incorporates a 3-stage pipeline, uses a Harvard architecture with  
separate local instruction and data buses as well as a third bus for peripherals, and  
includes an internal prefetch unit that supports speculative branching. The ARM  
Cortex-M4 supports single-cycle digital signal processing and SIMD instructions. A  
hardware floating-point unit is integrated in the core.  
The ARM Cortex-M0+ coprocessor is an energy-efficient and easy-to-use 32-bit core  
which is code and tool-compatible with the Cortex-M4 core. The Cortex-M0+ coprocessor  
offers up to 150 MHz performance with a simple instruction set and reduced code size. In  
LPC5410x, the Cortex-M0 coprocessor hardware multiply is implemented as a 32-cycle  
iterative multiplier.  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
2. Features and benefits  
Dual processor cores: ARM Cortex-M4 and ARM Cortex-M0+. The M0+ core runs at  
the same frequency as the M4 core. Both cores operate up to a maximum frequency of  
150 MHz.  
ARM Cortex-M4 core (version r0p1):  
ARM Cortex-M4 processor, running at a frequency of up to 150 MHz, using the  
same clock as the Cortex-M4.  
Floating Point Unit (FPU) and Memory Protection Unit (MPU).  
ARM Cortex-M4 built-in Nested Vectored Interrupt Controller (NVIC).  
Non-maskable Interrupt (NMI) input with a selection of sources.  
Serial Wire Debug with eight breakpoints and four watch points.  
Includes Serial Wire Output for enhanced debug capabilities.  
System tick timer.  
ARM Cortex-M0+ core (version r0p1):  
ARM Cortex-M0+ processor, running at a frequency of up to 100 MHz.  
ARM Cortex-M0+ built-in Nested Vectored Interrupt Controller (NVIC).  
Non-maskable Interrupt (NMI) input with a selection of sources.  
Serial Wire Debug with four breakpoints and two watch points.  
System tick timer.  
On-chip memory:  
Up to 512 kB on-chip flash program memory with flash accelerator and 256 byte  
page erase and write.  
104 kB total SRAM composed of:  
Up to 96 kB contiguous main SRAM.  
An additional 8 kB SRAM.  
ROM API support:  
Flash In-Application Programming (IAP) and In-System Programming (ISP).  
Power control API.  
Serial interfaces:  
Four USART interfaces with synchronous mode and 32 kHz mode for wake-up  
from deep sleep and power down modes. The USARTs have FIFO support from  
the System FIFO and share a fractional baud-rate generator.  
Two SPI interfaces, each with four slave selects and flexible data configuration.  
The SPIs have FIFO support from the System FIFO. The slave function is able to  
wake up the device from deep sleep and power down modes.  
Three I2C-bus interfaces supporting fast mode and Fast-mode Plus with data rates  
of up to 1Mbit/s and with multiple address recognition and monitor mode. Each  
I2C-bus interface also supports High Speed Mode (3.4 Mbit/s) as a slave. The  
slave function is able to wake up the device from deep sleep and power down  
modes.  
Digital peripherals:  
DMA controller with 22 channels and 20 programmable triggers, able to access all  
memories and DMA-capable peripherals.  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
2 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
Up to 50 General-Purpose Input/Output (GPIO) pins. Most GPIOs have  
configurable pull-up/pull-down resistors, programmable open-drain mode, and  
input inverter.  
GPIO registers are located on the AHB for fast access. The DMA supports GPIO  
ports.  
Up to eight GPIOs (pin interrupts) can be selected as edge-sensitive (rising or  
falling edges or both) interrupt requests or level-sensitive (active low or active high)  
interrupt requests. In addition, up to eight GPIOs can be selected to contribute a  
boolean expression and interrupt generation using the pattern match engine block.  
Two GPIO grouped interrupts (GINT) enable an interrupt based on a logical  
(AND/OR) combination of input states.  
CRC engine.  
Timers:  
Five 32-bit standard general purpose timers/counters, four of which support up to 4  
capture inputs and 4 compare outputs, PWM mode, and external count input.  
Specific timer events can be selected to generate DMA requests. The fifth timer  
does not have external pin connections and may be used for internal timing  
operations.  
One State Configurable Timer/PWM (SCT/PWM) with 8 inputs (6 external inputs  
and 2 internal inputs) and 8 output functions (including capture and match). Inputs  
and outputs can be routed to/from external pins and internally to/from selected  
peripherals. Internally, the SCT supports 13 captures/matches, 13 events and 13  
states.  
32-bit Real-time clock (RTC) with 1 s resolution running in the always-on power  
domain. A timer in the RTC can be used for wake-up from all low power modes  
including deep power-down, with 1 ms resolution.  
Multiple-channel multi-rate 24-bit timer (MRT) for repetitive interrupt generation at  
up to four programmable, fixed rates.  
Windowed Watchdog Timer (WWDT).  
Ultra-low power Micro-tick Timer, running from the Watchdog oscillator, that can be  
used to wake up the device from low power modes.  
Repetitive Interrupt Timer (RIT) for debug time-stamping and general-purpose use.  
Analog peripheral: 12-bit, 12-channel, Analog-to-Digital Converter (ADC) supporting  
5.0 Msamples/s. The ADC supports two independent conversion sequences.  
Clock generation:  
12 MHz internal RC oscillator.  
External clock input for clock frequencies of up to 25 MHz.  
Internal low-power, watchdog oscillator (WDOSC) with a nominal frequency of 500  
kHz.  
32 kHz low-power RTC oscillator.  
System PLL allows CPU operation up to the maximum CPU rate. May be run from  
the internal RC oscillator, the external clock input CLKIN, or the RTC oscillator.  
Clock output function for monitoring internal clocks.  
Frequency measurement unit for measuring the frequency of any on-chip or  
off-chip clock signal.  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
3 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
Power-saving modes and wake-up:  
Integrated PMU (Power Management Unit) to minimize power consumption.  
Reduced power modes: sleep, deep sleep, power down, and deep power-down.  
Wake-up from deep sleep and power down modes via activity on the USART, SPI,  
and I2C peripherals.  
Wake-up from sleep, deep sleep, power down, and deep power-down modes using  
the RTC alarm.  
Single power supply 1.62 V to 3.6 V.  
Power-On Reset (POR).  
Brown-Out Detect (BOD) with separate thresholds for interrupt and forced reset.  
JTAG boundary scan supported.  
Unique device serial number (128 bit) for identification.  
Operating temperature range 40 °C to 105 °C.  
Available in a 3.288 x 3.288 mm WLCSP49 package and LQFP64 package.  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
4 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
3. Ordering information  
Table 1.  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
LPC54102J512UK49 WLCSP49 wafer level chip-size package; 49 (7 x 7) bumps; 3.288 x 3.288 x 0.54 mm -  
LPC54102J256UK49 WLCSP49 wafer level chip-size package; 49 (7 x 7) bumps; 3.288 x 3.288 x 0.54 mm -  
LPC54101J512UK49 WLCSP49 wafer level chip-size package; 49 (7 x 7) bumps; 3.288 x 3.288 x 0.54 mm -  
LPC54101J256UK49 WLCSP49 wafer level chip-size package; 49 (7 x 7) bumps; 3.288 x 3.288 x 0.54 mm -  
LPC54102J512BD64 LQFP64  
LPC54102J256BD64 LQFP64  
LPC54101J512BD64 LQFP64  
LPC54101J256BD64 LQFP64  
plastic low profile quad flat package; 64 leads; body 10 10 1.4 mm  
plastic low profile quad flat package; 64 leads; body 10 10 1.4 mm  
plastic low profile quad flat package; 64 leads; body 10 10 1.4 mm  
plastic low profile quad flat package; 64 leads; body 10 10 1.4 mm  
SOT314-2  
SOT314-2  
SOT314-2  
SOT314-2  
3.1 Ordering options  
Table 2.  
Ordering options  
Type number  
Device order part number Flash/kB Total SRAM/kB Core M4 w/ FPU Core  
M0+  
GPIO  
LPC54102J512UK49 LPC54102J512UK49Z  
LPC54102J256UK49 LPC54102J256UK49Z  
LPC54101J512UK49 LPC54101J512UK49Z  
LPC54101J256UK49 LPC54101J256UK49Z  
LPC54102J512BD64 LPC54102J512BD64QL  
LPC54102J256BD64 LPC54102J256BD64QL  
LPC54101J512BD64 LPC54101J512BD64QL  
LPC54101J256BD64 LPC54101J256BD64QL  
512  
256  
512  
256  
512  
256  
512  
256  
104  
104  
104  
104  
104  
104  
104  
104  
1
1
1
1
1
1
1
1
1
1
0
0
1
1
0
0
39  
39  
39  
39  
50  
50  
50  
50  
[1] All of the parts include five 32-bit general-purpose timers, one State-Configurable Timer with PWM  
capabilities (SCTimer/PWM), one RTC/alarm timer, one 24-bit Multi-Rate Timer (MRT), a Windowed  
Watchdog Timer (WWDT), four USARTs, two SPIs, three Fast-mode plus I2C-bus interfaces with  
high-speed slave mode, and one 12-bit 5.0 Msamples/sec ADC.  
4. Marking  
Terminal 1  
index area  
n
Terminal 1 index area  
1
aaa-011231  
aaa-015675  
Fig 1. LQFP64 package marking  
Fig 2. WLCSP49 package marking  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
5 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
The LPC5410x LQFP64 package has the following top-side marking:  
First line: LPC5410xJyyy  
x: 2 = dual core (M4, M0+), 1 = single core (M4)  
yyy: flash size  
Second line: BD64  
Third line: xxxxxxxxxxxx  
Fourth line: xxxyywwx[R]z  
yyww: Date code with yy = year and ww = week.  
xR = boot code version and device revision.  
The LPC5410x WLCSP49 package has the following top-side marking:  
First line: LPC5410x  
x: 2 = dual core (M4, M0+), 1 = single core (M4)  
Second line: JxxxUK49  
xxx: flash size  
Third line: xxxxxxxx  
Fourth line: xxxyyww  
yyww: Date code with yy = year and ww = week.  
Fifth line: xxxxx  
Sixth line: NXP x[R]z  
xR = boot code version and device revision.  
Table 3.  
Device revision table  
Revision identifier (R)  
Revision description  
‘1B’  
‘1C’  
Initial device revision with boot code version 17.1.  
Second device revision with boot code version 17.1.  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
6 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
5. Block diagram  
Serial Wire  
Debug  
JTAG boundary  
scan  
CLKIN  
RESET  
Debug Interface  
FPU MPU  
Power-on Reset  
Brownout Detect  
Internal RC osc.  
System PLL  
clock generation,  
power control,  
and other  
CLKOUT  
system functions  
ARM  
ARM  
Cortex M0+  
DMA  
controller  
Cortex M4  
Flash  
acclerator  
Flash  
512 kB  
SRAM0  
64 kB  
SRAM1  
32 kB  
SCTimer/  
PWM  
Multilayer  
AHB Matrix  
SRAM2  
8 kB  
Boot and driver  
ROM 64 kB  
GPIO  
CRC  
engine  
DMA  
VFIFO  
ADC  
12 ch, 12-bit  
Mailbox  
registers registers  
Sync APB  
bridge  
APB slave group 0  
Async APB  
bridge  
Multi-rate Timer  
Frequency Measurement Unit  
3x 32-bit timers (T2, T3, T4)  
APB slave group 1  
USART 0, 1, 2, and 3  
GPIO global interrupts 0 and 1  
I/O configuration  
System control  
I2C0, 1, 2  
SPI0, 1  
2x 32-bit timers (T0, T1)  
Fractional Rate Generator  
Flash registers  
PMU registers  
Windowed Watchdog  
Watchdog oscillator  
MicroTick Timer  
RTC Alarm  
RTC Power Domain  
32 kHz  
divider  
Real Time Clock  
oscillator  
aaa-015626  
Gray-shaded peripheral blocks provide dedicated request lines or triggers for DMA transfers.  
Fig 3. LPC5410x Block diagram  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
7 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
6. Pinning information  
6.1 Pinning  
G
F
E
D
C
B
A
1
2
3
4
5
6
7
ball A1 (pin #1)  
index area  
aaa-015470  
Fig 4. WLCSP49 Pin configuration (bottom view)  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
8 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
PIO0_14 49  
PIO0_15 50  
PIO1_12 51  
32 PIO0_1  
31 PIO0_0  
30 PIO1_10  
29 PIO1_9  
28 PIO1_8  
27 PIO1_7  
26 PIO1_6  
SWCLK/ PIO0_16 52  
SWDIO/ PIO0_17 53  
PIO1_13 54  
VSS 55  
VDD 56  
25 VSS  
LPC5410x  
PIO1_14 57  
PIO0_18 58  
PIO0_19 59  
PIO0_20 60  
PIO0_21 61  
PIO1_15 62  
PIO0_22 63  
RESET 64  
24 VDD  
23 VDDA  
22 VREFP  
21 VREFN  
20 VSSA  
19 PIO1_5  
18 PIO1_4  
17 PIO1_3  
aaa-013021  
Fig 5. LQFP64 Pin configuration  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
9 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
6.2 Pin description  
On the LPC5410x, digital pins are grouped into two ports. Each digital pin may support up  
to four different digital functions and one analog function, including General Purpose I/O  
(GPIO).  
Table 4.  
Symbol  
Pin description  
Description  
[2]  
PIO0_0  
A6 31  
PU I/O PIO0_0 — General-purpose digital input/output pin.  
Remark: In ISP mode, this pin is the UART0 RXD function.  
I
U0_RXD — Receiver input for USART0.  
I/O SPI0_SSEL0 — Slave Select 0 for SPI0.  
I
CT32B0_CAP0 — 32-bit CT32B0 capture input 0.  
R — Reserved.  
I
O
SCT0_OUT3 — SCT0 output 3. PWM output 3.  
[2]  
PIO0_1  
B6 32  
PU I/O PIO0_1 — General-purpose digital input/output pin.  
Remark: In ISP mode, this pin is the UART0 TXD function.  
O
U0_TXD — Transmitter output for USART0.  
I/O SPI0_SSEL1 — Slave Select 1 for SPI0.  
I
CT32B0_CAP1 — 32-bit CT32B0 capture input 1.  
R — Reserved.  
I
O
SCT0_OUT1 — SCT0 output 1. PWM output 1.  
[2]  
[2]  
[2]  
PIO0_2  
PIO0_3  
PIO0_4  
-
-
36  
37  
PU I/O PIO0_2 — General-purpose digital input/output pin.  
I
I
I
I
U0_CTS — Clear To Send input for USART0.  
R — Reserved.  
CT32B2_CAP1 — 32-bit CT32B2 capture input 1.  
R — Reserved.  
PU I/O PIO0_3 — General-purpose digital input/output pin.  
O
I
U0_RTS — Request To Send output for USART0.  
R — Reserved.  
O
I
CT32B1_MAT3 — 32-bit CT32B1 match output 3.  
R — Reserved.  
C7 38  
PU I/O PIO0_4 — General-purpose digital input/output pin.  
I/O U0_SCLK — USART0 clock in synchronous USART mode.  
I/O SPI0_SSEL2 — Slave Select 2 for SPI0.  
I
I
CT32B0_CAP2 — 32-bit CT32B0 capture input 2.  
R — Reserved.  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
10 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
Table 4.  
Symbol  
Pin description …continued  
Description  
[2]  
[2]  
[2]  
PIO0_5  
PIO0_6  
PIO0_7  
C6 39  
D7 40  
D6 41  
PU I/O PIO0_5 — General-purpose digital input/output pin.  
I
U1_RXD — Receiver input for USART1.  
SCT0_OUT6 — SCT0 output 6. PWM output 6.  
CT32B0_MAT0 — 32-bit CT32B0 match output 0.  
R — Reserved.  
O
O
I
PU I/O PIO0_6 — General-purpose digital input/output pin.  
O
I
U1_TXD — Transmitter output for USART1.  
R — Reserved.  
O
I
CT32B0_MAT1 — 32-bit CT32B0 match output 1.  
R — Reserved.  
PU I/O PIO0_7 — General-purpose digital input/output pin.  
I/O U1_SCLK — USART1 clock in synchronous USART mode.  
O
O
I
SCT0_OUT0 — SCT0 output 0. PWM output 0.  
CT32B0_MAT2 — 32-bit CT32B0 match output 2.  
R — Reserved.  
I
CT32B0_CAP2 — 32-bit CT32B0 capture input 2.  
[2]  
PIO0_8  
PIO0_9  
D5 43  
PU I/O PIO0_8 — General-purpose digital input/output pin.  
I
U2_RXD — Receiver input for USART2.  
SCT0_OUT1 — SCT0 output 1. PWM output 1.  
CT32B0_MAT3 — 32-bit CT32B0 match output 3.  
R — Reserved.  
O
O
I
[2]  
E7 44  
PU I/O PIO0_9 — General-purpose digital input/output pin.  
O
O
I
U2_TXD — Transmitter output for USART2.  
SCT0_OUT2 — SCT0 output 2. PWM output 2.  
CT32B3_CAP0 — 32-bit CT32B3 capture input 0.  
R — Reserved.  
I
I/O SPI0_SSEL0 — Slave Select 0 for SPI0.  
[2]  
PIO0_10  
PIO0_11  
E6 45  
PU I/O PIO0_10 — General-purpose digital input/output pin.  
I/O U2_SCLK — USART2 clock in synchronous USART mode.  
O
O
I
SCT0_OUT3 — SCT0 output 3. PWM output 3.  
CT32B3_MAT0 — 32-bit CT32B3 match output 0.  
R — Reserved.  
[2]  
E5 46  
PU I/O PIO0_11 — General-purpose digital input/output pin.  
I/O SPI0_SCK — Serial clock for SPI0.  
I
U1_RXD — Receiver input for USART1.  
CT32B2_MAT1 — 32-bit CT32B2 match output 1.  
R — Reserved.  
O
I
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
11 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
Table 4.  
Symbol  
Pin description …continued  
Description  
[2]  
[2]  
[2]  
PIO0_12  
PIO0_13  
F7 47  
PU I/O PIO0_12 — General-purpose digital input/output pin.  
I/O SPI0_MOSI — Master Out Slave in for SPI0.  
O
O
I
U1_TXD — Transmitter output for USART1.  
CT32B2_MAT3 — 32-bit CT32B2 match output 3.  
R — Reserved.  
G7 48  
PU I/O PIO0_13 — General-purpose digital input/output pin.  
I/O SPI0_MISO — Master In Slave Out for SPI0.  
O
O
I
SCT0_OUT4 — SCT0 output 4. PWM output 4.  
CT32B2_MAT0 — 32-bit CT32B2 match output 0.  
R — Reserved.  
PIO0_14/TCK F6 49  
PU I/O PIO0_14 — General-purpose digital input/output pin.  
In boundary scan mode: TCK (Test Clock).  
I/O SPI0_SSEL0 — Slave Select 0 for SPI0.  
O
O
I
SCT0_OUT5 — SCT0 output 5. PWM output 5.  
CT32B2_MAT1 — 32-bit CT32B2 match output 1.  
R — Reserved.  
[2]  
PIO0_15/TDO G6 50  
PU I/O PIO0_15 — General-purpose digital input/output pin.  
In boundary scan mode: TDO (Test Data Out).  
I/O SPI0_SSEL1 — Slave Select 1 for SPI0.  
I/O SWO — Serial wire trace output.  
O
I
CT32B2_MAT2 — 32-bit CT32B2 match output 2.  
R — Reserved.  
[2]  
SWCLK/  
PIO0_16  
F5 52  
PU I/O PIO0_16 — General-purpose digital input/output pin. After booting, this pin is  
connected to the SWCLK.  
I/O SPI0_SSEL2 — Slave Select 2 for SPI0.  
I
U1_CTS — Clear To Send input for USART1.  
CT32B3_MAT1 — 32-bit CT32B3 match output 1.  
R — Reserved.  
O
I
I/O SWCLK — Serial Wire Clock. This is the default function after booting.  
[2]  
SWDIO/  
PIO0_17  
G5 53  
PU I/O PIO0_17 — General-purpose digital input/output pin. After booting, this pin is  
connected to SWDIO.  
I/O SPI0_SSEL3 — Slave Select 3 for SPI0.  
O
O
I
U1_RTS — Request To Send output for USART1.  
CT32B3_MAT2 — 32-bit CT32B3 match output 2.  
R — Reserved.  
I/O SWDIO — Serial Wire Debug I/O. This is the default function after booting.  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
12 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
Table 4.  
Symbol  
Pin description …continued  
Description  
[2]  
[2]  
[2]  
PIO0_18/TRST G4 58  
PU I/O PIO0_18 — General-purpose digital input/output pin. In boundary scan mode:  
TRST (Test Reset).  
O
O
O
I
U3_TXD — Transmitter output for USART3.  
SCT0_OUT0 — SCT0 output 0. PWM output 0.  
CT32B0_MAT0 — 32-bit CT32B0 match output 0.  
R — Reserved.  
PIO0_19/TDI  
G3 59  
PU I/O PIO0_19 — General-purpose digital input/output pin. In boundary scan mode: TDI  
(Test Data In).  
I/O U3_SCLK — USART3 clock in synchronous USART mode.  
O
O
I
SCT0_OUT1 — SCT0 output 1. PWM output 1.  
CT32B0_MAT1 — 32-bit CT32B0 match output 1.  
R — Reserved.  
PIO0_20/TMS F3 60  
PU I/O PIO0_20 — General-purpose digital input/output pin. In boundary scan mode: TMS  
(Test Mode Select).  
I
U3_RXD — Receiver input for USART3.  
I/O U0_SCLK — USART0 clock in synchronous USART mode.  
I
I
CT32B3_CAP0 — 32-bit CT32B3 capture input 0.  
R — Reserved.  
[2]  
[2]  
[3]  
PIO0_21  
PIO0_22  
PIO0_23  
E3 61  
PU I/O PIO0_21 — General-purpose digital input/output pin.  
O
O
O
I
CLKOUT — Clock output pin.  
U0_TXD — Transmitter output for USART0.  
CT32B3_MAT0 — 32-bit CT32B3 match output 0.  
R — Reserved.  
G2 63  
PU I/O PIO0_22 — General-purpose digital input/output pin.  
I
CLKIN — Clock input.  
I
U0_RXD — Receiver input for USART0.  
CT32B3_MAT3 — 32-bit CT32B3 match output 3.  
R — Reserved.  
O
I
F2  
1
Z
I/O PIO0_23 — General-purpose digital input/output pin.  
I/O I2C0_SCL — I2C0 clock input/output.  
I
I
I
R — Reserved.  
CT32B0_CAP0 — 32-bit CT32B0 capture input 0.  
R — Reserved.  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
13 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
Table 4.  
Symbol  
Pin description …continued  
Description  
[3]  
PIO0_24  
PIO0_25  
F1  
2
3
Z
Z
I/O PIO0_24 — General-purpose digital input/output pin.  
I/O I2C0_SDA — I2C0 data input/output.  
I
R — Reserved.  
I
CT32B0_CAP1 — 32-bit CT32B0 capture input 1.  
R — Reserved.  
I
O
CT32B0_MAT0 — 32-bit CT32B0 match output 0.  
[3]  
E2  
I/O PIO0_25 — General-purpose digital input/output pin.  
I/O I2C1_SCL — I2C1 clock input/output.  
I
I
I
I
U1_CTS — Clear To Send input for USART1.  
CT32B0_CAP2 — 32-bit CT32B0 capture input 2.  
R — Reserved.  
CT32B1_CAP1 — 32-bit CT32B1 capture input 1.  
[3]  
[3]  
[3]  
[4]  
PIO0_26  
PIO0_27  
PIO0_28  
E1  
D2  
D1  
4
5
6
Z
Z
Z
I/O PIO0_26 — General-purpose digital input/output pin.  
I/O I2C1_SDA — I2C1 data input/output.  
I
I
I
R — Reserved.  
CT32B0_CAP3 — 32-bit CT32B0 capture input 3.  
R — Reserved.  
I/O PIO0_27 — General-purpose digital input/output pin.  
I/O I2C2_SCL — I2C2 clock input/output.  
I
I
I
R — Reserved.  
CT32B2_CAP0 — 32-bit CT32B2 capture input 0.  
R — Reserved.  
I/O PIO0_28 — General-purpose digital input/output pin.  
I/O I2C2_SDA — I2C2 data input/output.  
I
R — Reserved.  
O
I
CT32B2_MAT0 — 32-bit CT32B2 match output 0.  
R — Reserved.  
PIO0_29/  
ADC0_0  
D3 11  
PU I/O; PIO0_29/ADC0_0 — General-purpose digital input/output pin (default). ADC input  
AI channel 0 if the DIGIMODE bit is set to 0 in the IOCON register for this pin.  
-
R — Reserved.  
O
O
I
SCT0_OUT2 — SCT0 output 2.  
CT32B0_MAT3 — 32-bit CT32B0 match output 3.  
R — Reserved.  
I
CT32B0_CAP1 — 32-bit CT32B0 capture input 1.  
CT32B0_MAT1 — 32-bit CT32B0 match output 1.  
O
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
14 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
Table 4.  
Symbol  
Pin description …continued  
Description  
[4]  
PIO0_30/  
ADC0_1  
C1 12  
PU I/O; PIO0_30/ADC0_1 — General-purpose digital input/output pin (default). ADC input  
AI channel 1 if the DIGIMODE bit is set to 0 in the IOCON register for this pin.  
-
R — Reserved.  
O
O
I
SCT0_OUT3 — SCT0 output 3.  
CT32B0_MAT2 — 32-bit CT32B0 match output 2.  
R — Reserved.  
I
CT32B0_CAP2 — 32-bit CT32B0 capture input 2.  
[4]  
PIO0_31/  
ADC0_2  
C2 13  
PU I/O; PIO0_31/ADC0_2 — General-purpose digital input/output pin (default). ADC input  
AI channel 2 if the DIGIMODE bit is set to 0 in the IOCON register for this pin.  
Remark: This pin is also used to force In-System Programming mode (ISP) after  
device reset. See the LPC5410x User Manual (Boot Process chapter) for details.  
-
R — Reserved.  
I
U2_CTS — Clear To Send input for USART2.  
CT32B2_CAP2 — 32-bit CT32B2 capture input 2.  
R — Reserved.  
I
I
I
CT32B0_CAP3 — 32-bit CT32B0 capture input 3.  
CT32B0_MAT3 — 32-bit CT32B0 match output 3.  
O
[4]  
PIO1_0/  
ADC0_3  
C3 14  
PU I/O; PIO1_0/ADC0_3 — General-purpose digital input/output pin (default). ADC input  
AI channel 3 if the DIGIMODE bit is set to 0 in the IOCON register for this pin.  
-
R — Reserved.  
O
O
I
U2_RTS — Request To Send output for USART2.  
CT32B3_MAT1 — 32-bit CT32B3 match output 1.  
R — Reserved.  
I
CT32B0_CAP0 — 32-bit CT32B0 capture input 0.  
[4]  
PIO1_1/  
ADC0_4  
B1 15  
PU I/O; PIO1_1/ADC0_4 — General-purpose digital input/output pin (default). ADC input  
AI channel 4 if the DIGIMODE bit is set to 0 in the IOCON register for this pin.  
-
R — Reserved.  
I/O SWO — Serial wire trace output.  
SCT0_OUT4 — SCT0 output 4.  
O
[4]  
PIO1_2/  
ADC0_5  
A1 16  
PU I/O; PIO1_2/ADC0_5 — General-purpose digital input/output pin (default). ADC input  
AI channel 5 if the DIGIMODE bit is set to 0 in the IOCON register for this pin.  
-
R — Reserved.  
I/O SPI1_SSEL3 — Slave Select 3 for SPI1.  
O
SCT0_OUT5 — SCT0 output 5.  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
15 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
Table 4.  
Symbol  
Pin description …continued  
Description  
[4]  
[4]  
[4]  
[4]  
PIO1_3/  
ADC0_6  
B2 17  
A2 18  
B3 19  
A5 26  
PU I/O; PIO1_3/ADC0_6 — General-purpose digital input/output pin (default). ADC input  
AI channel 6 if the DIGIMODE bit is set to 0 in the IOCON register for this pin.  
-
R — Reserved.  
I/O SPI1_SSEL2 — Slave Select 2 for SPI1.  
O
I
SCT0_OUT6 — SCT0 output 6.  
R — Reserved.  
I/O SPI0_SCK — Serial clock for SPI0.  
CT32B0_CAP1 — 32-bit CT32B0 capture input 1.  
I
PIO1_4/  
ADC0_7  
PU I/O; PIO1_4/ADC0_7 — General-purpose digital input/output pin (default). ADC input  
AI channel 7 if the DIGIMODE bit is set to 0 in the IOCON register for this pin.  
-
R — Reserved.  
I/O SPI1_SSEL1 — Slave Select 1 for SPI1.  
O
I
SCT0_OUT7 — SCT0 output 7.  
R — Reserved.  
I/O SPI0_MISO — Master In Slave Out for SPI0.  
CT32B0_MAT1 — 32-bit CT32B0 match output 1.  
O
PIO1_5/  
ADC0_8  
PU I/O; PIO1_5/ADC0_8 — General-purpose digital input/output pin (default). ADC input  
AI channel 8 if the DIGIMODE bit is set to 0 in the IOCON register for this pin.  
-
R — Reserved.  
I/O SPI1_SSEL0 — Slave Select 0 for SPI1.  
I
CT32B1_CAP0 — 32-bit CT32B1 capture input 0.  
R — Reserved.  
I
O
I
CT32B1_MAT3 — 32-bit CT32B1 match output 3.  
R — Reserved.  
PIO1_6/  
ADC0_9  
PU I/O; PIO1_6/ADC0_9 — General-purpose digital input/output pin (default). ADC input  
AI channel 9 if the DIGIMODE bit is set to 0 in the IOCON register for this pin.  
-
R — Reserved.  
I/O SPI1_SCK — Serial clock for SPI1.  
I
CT32B1_CAP2 — 32-bit CT32B1 capture input 2.  
R — Reserved.  
-
O
I
CT32B1_MAT2 — 32-bit CT32B1 match output 2.  
R — Reserved.  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
16 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
Table 4.  
Symbol  
Pin description …continued  
Description  
[4]  
PIO1_7/  
B5 27  
PU I/O; PIO1_7/ADC0_10 — General-purpose digital input/output pin (default). ADC input  
ADC0_10  
AI channel 10 if the DIGIMODE bit is set to 0 in the IOCON register for this pin.  
-
R — Reserved.  
I/O SPI1_MOSI — Master Out Slave in for SPI1.  
O
-
CT32B1_MAT2 — 32-bit CT32B1 match output 2.  
R — Reserved.  
I
CT32B1_CAP2 — 32-bit CT32B1 capture input 2.  
R — Reserved.  
I
[4]  
PIO1_8/  
C5 28  
PU I/O; PIO1_8/ADC0_11 — General-purpose digital input/output pin (default). ADC input  
ADC0_11  
AI channel 11 if the DIGIMODE bit is set to 0 in the IOCON register for this pin.  
-
R — Reserved.  
I/O SPI1_MISO — Master In Slave Out for SPI1.  
O
I
CT32B1_MAT3 — 32-bit CT32B1 match output 3.  
R — Reserved.  
I
CT32B1_CAP3 — 32-bit CT32B1 capture input 3.  
R — Reserved.  
I
[2]  
[2]  
[2]  
[2]  
PIO1_9  
-
-
-
-
29  
30  
42  
51  
PU I/O PIO1_9 — General-purpose digital input/output pin.  
R — Reserved.  
I/O SPI0_MOSI — Master Out Slave In for SPI0.  
CT32B0_CAP2 — 32-bit CT32B0 capture input 2.  
PU I/O PIO1_10 — General-purpose digital input/output pin.  
I
I
PIO1_10  
PIO1_11  
PIO1_12  
I
R — Reserved.  
O
O
U1_TXD — Transmitter output for USART1.  
SCT0_OUT4 — SCT0 output 4.  
PU I/O PIO1_11 — General-purpose digital input/output pin.  
I
R — Reserved.  
O
I
U1_RTS — Request To Send output for USART1.  
CT32B1_CAP0 — 32-bit CT32B1 capture input 0.  
PU I/O PIO1_12 — General-purpose digital input/output pin.  
I
R — Reserved.  
I
U3_RXD — Receiver input for USART3.  
CT32B1_MAT0 — 32-bit CT32B1 match output 0.  
O
I/O SPI1_SCK — Serial clock for SPI1.  
[2]  
PIO1_13  
-
54  
PU I/O PIO1_13 — General-purpose digital input/output pin.  
I
R — Reserved.  
O
O
U3_TXD — Transmitter output for USART3.  
CT32B1_MAT1 — 32-bit CT32B1 match output 1.  
I/O SPI1_MOSI — Master Out Slave In for SPI1.  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
17 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
Table 4.  
Symbol  
Pin description …continued  
Description  
[2]  
[2]  
[2]  
PIO1_14  
PIO1_15  
PIO1_16  
-
-
-
-
57  
62  
7
PU I/O PIO1_14 — General-purpose digital input/output pin.  
I
R — Reserved.  
I
U2_RXD — Receiver input for USART2.  
SCT0_OUT7 — SCT0 output 7.  
O
I/O SPI1_MISO — Master In Slave Out for SPI1.  
PU I/O PIO1_15 — General-purpose digital input/output pin.  
I
R — Reserved.  
O
I
SCT0_OUT5 — SCT0 output 5.  
CT32B1_CAP3 — 32-bit CT32B1 capture input 3.  
I/O SPI1_SSEL0 — Slave Select 0 for SPI1.  
PU I/O PIO1_16 — General-purpose digital input/output pin.  
I
R — Reserved.  
O
I
CT32B0_MAT0 — 32-bit CT32B0 match output 0.  
CT32B0_CAP0 — 32-bit CT32B0 capture input 0.  
I/O SPI1_SSEL1 — Slave Select 1 for SPI1.  
[2]  
[5]  
PIO1_17  
RESET  
10  
PU I/O PIO1_17 — General-purpose digital input/output pin.  
G1 64  
PU I  
External reset input: A LOW on this pin resets the device, causing I/O ports and  
peripherals to take on their default states, and processor execution to begin at  
address 0. Wakes up the part from deep power-down mode.  
RTCXIN  
RTCXOUT  
VREFP  
VREFN  
VDDA  
A7 33  
B7 35  
B4 22  
-
-
-
-
-
-
-
-
-
-
-
-
RTC oscillator input.  
RTC oscillator output.  
ADC positive reference voltage.  
ADC negative reference voltage.  
Analog supply voltage.  
-
21  
A4 23  
VDD  
C4, 8,  
F4 24,  
56,  
Single 1.62 V to 3.6 V power supply powers internal digital functions and I/Os.  
34  
VSS  
D4, 9,  
E4 25,  
55  
-
-
-
-
Ground.  
VSSA  
A3 20  
Analog ground.  
[1] PU = input mode, pull-up enabled (pull-up resistor pulls up pin to VDD). Z = high impedance; pull-up or pull-down disabled.  
Reset state reflects the pin state at reset without boot code operation. For pin states in the different power modes, see Section 6.2.2 “Pin  
states in different power modes”. For termination on unused pins, see Section 6.2.1 “Termination of unused pins”.  
[2] 5 V tolerant pad with programmable glitch filter (5 V tolerant if VDD present; if VDD not present, do not exceed 3.6 V); provides digital I/O  
functions with TTL levels and hysteresis; normal drive strength. See Figure 27. Pulse width of spikes or glitches suppressed by input  
filter is from 3 ns to 16 ns (simulated value).  
[3] True open-drain pin. I2C-bus pins compliant with the I2C-bus specification for I2C standard mode, I2C Fast-mode, and I2C Fast-mode  
Plus. The pin requires an external pull-up to provide output functionality. When power is switched off, this pin is floating and does not  
disturb the I2C lines. Open-drain configuration applies to all functions on this pin.  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
18 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
[4] 5 V tolerant pin providing standard digital I/O functions with configurable modes, configurable hysteresis, and analog input. When  
configured as an analog input, the digital section of the pin is disabled, and the pin is not 5 V tolerant.  
[5] Reset pad.5 V tolerant pad with glitch filter with hysteresis. Pulse width of spikes or glitches suppressed by input filter is from 3 ns to  
20 ns (simulated value)  
[6] I = Input; AI = Analog input; O = Output  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
19 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
6.2.1 Termination of unused pins  
Table 5 shows how to terminate pins that are not used in the application. In many cases,  
unused pins should be connected externally or configured correctly by software to  
minimize the overall power consumption of the part.  
Unused pins with GPIO function should be configured as outputs set to LOW with their  
internal pull-up disabled. To configure a GPIO pin as output and drive it LOW, select the  
GPIO function in the IOCON register, select output in the GPIO DIR register, and write a 0  
to the GPIO PORT register for that pin. Disable the pull-up in the pin’s IOCON register.  
In addition, it is recommended to configure all GPIO pins that are not bonded out on  
smaller packages as outputs driven LOW with their internal pull-up disabled.  
Table 5.  
Pin  
Termination of unused pins  
Default Recommended termination of unused pins  
state[1]  
RESET  
I; PU  
The RESET pin can be left unconnected if the application does not use it.  
all PIOn_m (not open-drain) I; PU  
Can be left unconnected if driven LOW and configured as GPIO output with pull-up  
disabled by software.  
PIOn_m (I2C open-drain)  
RTCXIN  
IA  
-
Can be left unconnected if driven LOW and configured as GPIO output by software.  
Connect to ground. When grounded, the RTC oscillator is disabled.  
RTCXOUT  
VREFP  
-
Can be left unconnected.  
Tie to VDD.  
-
VREFN  
-
Tie to VSS.  
VDDA  
-
Tie to VDD.  
VSSA  
-
Tie to VSS.  
[1] I = Input, IA = Inactive (no pull-up/pull-down enabled), PU = Pull-Up.  
6.2.2 Pin states in different power modes  
Table 6.  
Pin  
Pin states in different power modes  
Active  
Sleep  
Deep sleep/Power down Deep power-down  
PIOn_m pins (not I2C)  
As configured in the IOCON[1]. Default: internal pull-up enabled. Floating.  
PIO0_23 to PIO0_28 (open-drain As configured in the IOCON[1].  
I2C-bus pins)  
Floating.  
RESET  
Reset function enabled. Default: input, internal pull-up enabled.  
Reset function disabled.  
[1] Default and programmed pin states are retained in sleep, deep sleep, and power down modes.  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
20 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
7. Functional description  
7.1 Architectural overview  
The ARM Cortex-M4 includes three AHB-Lite buses, one system bus and the I-code and  
D-code buses. One bus is dedicated for instruction fetch (I-code), and one bus is  
dedicated for data access (D-code). The use of two core buses allows for simultaneous  
operations if concurrent operations target different devices.  
A multi-layer AHB matrix connects the CPU buses and other bus masters to peripherals in  
a flexible manner that optimizes performance by allowing peripherals on different slaves  
ports of the matrix to be accessed simultaneously by different bus masters. Connections  
in the multilayer matrix are shown in Figure 3.  
APB peripherals are connected to the AHB matrix via two APB buses using separate  
slave ports from the multilayer AHB matrix. This allows for better performance by reducing  
collisions between the CPU and the DMA controller, and also for peripherals on the  
asynchronous bridge to have a fixed clock that does not track the system clock.  
7.2 ARM Cortex-M4 processor  
The ARM Cortex-M4 is a general purpose, 32-bit microprocessor, which offers high  
performance and very low power consumption. The ARM Cortex-M4 offers many new  
features, including a Thumb-2 instruction set, low interrupt latency, hardware multiply and  
divide, interruptable/continuable multiple load and store instructions, automatic state save  
and restore for interrupts, tightly integrated interrupt controller with wake-up interrupt  
controller, and multiple core buses capable of simultaneous accesses.  
A 3-stage pipeline is employed so that all parts of the processing and memory systems  
can operate continuously. Typically, while one instruction is being executed, its successor  
is being decoded, and a third instruction is being fetched from memory.  
7.3 ARM Cortex-M4 integrated Floating Point Unit (FPU)  
The FPU fully supports single-precision add, subtract, multiply, divide, multiply and  
accumulate, and square root operations. It also provides conversions between fixed-point  
and floating-point data formats, and floating-point constant instructions.  
The FPU provides floating-point computation functionality that is compliant with the  
ANSI/IEEE Std 754-2008, IEEE Standard for Binary Floating-Point Arithmetic, referred to  
as the IEEE 754 standard.  
7.4 Memory Protection Unit (MPU)  
The Cortex-M4 includes a Memory Protection Unit (MPU) which can be used to improve  
the reliability of an embedded system by protecting critical data within the user  
application.  
The MPU allows separating processing tasks by disallowing access to each other's data,  
disabling access to memory regions, allowing memory regions to be defined as read-only  
and detecting unexpected memory accesses that could potentially break the system.  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
21 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
The MPU separates the memory into distinct regions and implements protection by  
preventing disallowed accesses. The MPU supports up to eight regions each of which can  
be divided into eight subregions. Accesses to memory locations that are not defined in the  
MPU regions, or not permitted by the region setting, will cause the Memory Management  
Fault exception to take place.  
7.5 Nested Vectored Interrupt Controller (NVIC) for Cortex-M4  
The NVIC is an integral part of the Cortex-M4. The tight coupling to the CPU allows for low  
interrupt latency and efficient processing of late arriving interrupts.  
7.5.1 Features  
Controls system exceptions and peripheral interrupts.  
37 vectored interrupts.  
Eight programmable interrupt priority levels, with hardware priority level masking.  
Relocatable vector table.  
Non-Maskable Interrupt (NMI).  
Software interrupt generation.  
7.5.2 Interrupt sources  
Each peripheral device has one interrupt line connected to the NVIC but may have several  
interrupt flags.  
7.6 ARM Cortex-M0+ co-processor  
The ARM Cortex-M0+ co-processor offers high performance and very low power  
consumption. This processor uses a 2-stage pipeline von Neumann architecture and a  
small but powerful instruction set providing high-end processing hardware. The processor  
includes an NVIC with 32 interrupts and a separate system tick timer. In LPC5410x, the  
Cortex-M0 coprocessor hardware multiply is implemented as a 32-cycle iterative  
multiplier.  
7.7 Nested Vectored Interrupt Controller (NVIC) for Cortex-M0+  
The NVIC is an integral part of the Cortex-M0+. The tight coupling to the CPU allows for  
low interrupt latency and efficient processing of late arriving interrupts.  
7.7.1 Features  
Controls system exceptions and peripheral interrupts.  
32 vectored interrupts.  
Four programmable interrupt priority levels, with hardware priority level masking.  
Relocatable vector table.  
Non-Maskable Interrupt (NMI).  
Software interrupt generation.  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
22 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
7.7.2 Interrupt sources  
Each peripheral device has one interrupt line connected to the NVIC but may have several  
interrupt flags.  
7.8 System Tick timer (SysTick)  
The ARM Cortex-M4 and ARM Cortex-M0+ cores include a system tick timer (SysTick)  
that is intended to generate a dedicated SYSTICK exception. The clock source for the  
SysTick can be the system clock or the SYSTICK clock.  
7.9 On-chip static RAM  
The LPC5410x support 104 kB SRAM with separate bus master access for higher  
throughput and individual power control for low-power operation.  
7.10 On-chip flash  
The LPC5410x supports 512 kB of on-chip flash memory.  
7.11 On-chip ROM  
The 64 kB on-chip ROM contains the boot loader and the following Application  
Programming Interfaces (API):  
In-System Programming (ISP) and In-Application Programming (IAP) support for flash  
programming.  
Power control API for configuring power consumption and PLL settings.  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
23 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
7.12 Memory mapping  
The LPC5410x incorporates several distinct memory regions. The APB peripheral area is  
512 kB in size and is divided to allow for up to 32 peripherals.Each peripheral is allocated  
16 kB of space simplifying the address decoding. The registers incorporated into the CPU,  
such as NVIC, SysTick, and sleep mode control, are located on the private peripheral bus.  
Figure 6 shows the overall map of the entire address space from the user program  
viewpoint following reset.  
APB1 peripherals  
0x400F FFFF  
31-15  
14  
13  
12  
11  
10  
9
(reserved)  
Timer 1  
Memory space  
(reserved)  
0x400B C000  
0x400B 8000  
0x400B 4000  
0x400B 0000  
0x400A C000  
0x400A 8000  
0x400A 4000  
0x400A 0000  
0x4009 C000  
0x4009 8000  
0x4009 4000  
0x4009 0000  
0x4008 C000  
0x4008 8000  
0x4008 4000  
0x4008 0000  
4 GB  
0xFFFF FFFF  
0xE010 0000  
0xE000 0000  
0x4400 0000  
Timer 0  
private peripheral bus  
(reserved)  
(reserved)  
(reserved)  
SPI 1  
APB peripheral  
bit-band addressing  
SPI 0  
0x4200 0000  
0x4010 0000  
(reserved)  
APB peripheral group 1  
APB peripheral group 0  
(reserved)  
8
(reserved)  
I 2C 2  
7
0x4008 0000  
0x4000 0000  
0x1C03 C000  
0x1C03 8000  
0x1C03 4000  
0x1C03 0000  
0x1C02 C000  
0x1C01 C000  
0x1C01 8000  
0x1C01 4000  
0x1C01 0000  
0x1C00 8000  
0x1C00 4000  
0x1C00 0000  
6
I2C 1  
5
I2C 0  
4
USART 3  
USART 2  
USART 1  
USART 0  
ASYNCHSYSCON  
Peripheral FIFOs (VFIFO)  
ADC0  
3
2
(reserved)  
1
Mailbox  
0
(reserved)  
APB0 peripherals  
SCT0  
0x4007 FFFF  
0x4007 8000  
0x4007 4000  
0x4007 0000  
0x4005 4000  
0x4005 0000  
0x4004 0000  
0x4003 C000  
0x4003 8000  
31-30  
(reserved)  
MRT  
reserved  
29  
28  
CRC Engine  
(reserved)  
RIT  
27-21  
20  
(reserved)  
Input Mux  
(reserved)  
RTC  
DMA registers  
GPIO  
19:16  
15  
reserved  
14  
13:12  
Watchdog Timer  
(reserved)  
0x0340 2000  
0x0340 0000  
SRAM2 (8 kB)  
(reserved)  
Boot and Driver ROM  
(reserved)  
11  
10  
ADVSYSCON  
reserved  
0x4002 C000  
0x4002 8000  
0x4002 4000  
0x4002 0000  
0x4001 C000  
0x4001 8000  
0x4001 4000  
0x4001 0000  
0x4000 C000  
0x4000 8000  
0x4000 4000  
0x4000 0000  
0x0301 0000  
0x0300 0000  
0x0201 8000  
9
8
7
6
5
4
3
2
1
0
Flash controller  
MicroTick Timer  
IOCON  
SRAM1 (up to 32 kB)  
0x0201 0000  
PINT  
SRAM0 (up to 64 kB)  
reserved  
GINT 1  
0x0200 0000  
0x0008 0000  
GINT 0  
Timer  
Timer  
Timer  
4
3
2
512 kB flash memory  
0x0000 0000  
Syscon  
0x0000 00C0  
0x0000 0000  
active interrupt vectors  
aaa-015472  
Fig 6. LPC5410x Memory mapping  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
24 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
7.13 General Purpose I/O (GPIO)  
The LPC5410x provides two GPIO ports with a total of 50 GPIO pins.  
Device pins that are not connected to a specific peripheral function are controlled by the  
GPIO registers. Pins may be dynamically configured as inputs or outputs. Separate  
registers allow setting or clearing any number of outputs simultaneously. The current level  
of a port pin can be read back no matter what peripheral is selected for that pin.  
See Table 4 for the default state on reset.  
7.13.1 Features  
Accelerated GPIO functions:  
GPIO registers are located on the AHB so that the fastest possible I/O timing can  
be achieved.  
Mask registers allow treating sets of port bits as a group, leaving other bits  
unchanged.  
All GPIO registers are byte and half-word addressable.  
Entire port value can be written in one instruction.  
Bit-level set, clear and toggle registers allow a single instruction set, clear or toggle of  
any number of bits in one port.  
Direction control of individual bits.  
All I/O default to inputs after reset.  
All GPIO pins can be selected to create an edge or level-sensitive GPIO interrupt  
request.  
One GPIO group interrupt can be triggered by a combination of any pin or pins.  
7.14 Pin interrupt/pattern engine  
The pin interrupt block configures up to eight pins from all digital pins for providing eight  
external interrupts connected to the NVIC. The pattern match engine can be used in  
conjunction with software to create complex state machines based on pin inputs. Any  
digital pin, independent of the function selected through the switch matrix can be  
configured through the SYSCON block as an input to the pin interrupt or pattern match  
engine. The registers that control the pin interrupt or pattern match engine are located on  
the I/O+ bus for fast single-cycle access.  
7.14.1 Features  
Pin interrupts:  
Up to eight pins can be selected from all GPIO pins on ports 0 and 1 as  
edge-sensitive or level-sensitive interrupt requests. Each request creates a  
separate interrupt in the NVIC.  
Edge-sensitive interrupt pins can interrupt on rising or falling edges or both.  
Level-sensitive interrupt pins can be HIGH-active or LOW-active.  
Level-sensitive interrupt pins can be HIGH-active or LOW-active.  
Pin interrupts can wake up the device from sleep mode, deep sleep mode, and  
power down mode.  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
25 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
Pattern match engine:  
Up to eight pins can be selected from all digital pins on ports 0 and 1 to contribute  
to a boolean expression. The boolean expression consists of specified levels  
and/or transitions on various combinations of these pins.  
Each bit slice minterm (product term) comprising of the specified boolean  
expression can generate its own, dedicated interrupt request.  
Any occurrence of a pattern match can also be programmed to generate an RXEV  
notification to the CPU. The RXEV signal can be connected to a pin.  
Pattern match can be used in conjunction with software to create complex state  
machines based on pin inputs.  
Pattern match engine facilities wake-up only from active and sleep modes.  
7.15 AHB peripherals  
7.15.1 DMA controller  
The DMA controller allows peripheral-to memory, memory-to-peripheral, and  
memory-to-memory transactions. Each DMA stream provides unidirectional DMA  
transfers for a single source and destination.  
7.15.1.1 Features  
22 channels, 21 of which are connected to peripheral DMA requests. These come  
from the USART, SPI, and I2C peripherals. One spare channels has no DMA request  
connected, and can be used for functions such as memory-to-memory moves.  
DMA operations can be triggered by on- or off-chip events. Each DMA channel can  
select one trigger input from 20 sources. Trigger sources include ADC interrupts,  
Timer interrupts, pin interrupts, and the SCT DMA request lines.  
Priority is user selectable for each channel.  
Continuous priority arbitration.  
Address cache.  
Efficient use of data bus.  
Supports single transfers up to 1,024 words.  
Address increment options allow packing and/or unpacking data.  
7.16 Digital serial peripherals  
7.16.1 USART  
7.16.1.1 Features  
Synchronous mode with master or slave operation. Includes data phase selection and  
continuous clock option.  
Maximum bit rates of 6.25 Mbit/s in asynchronous mode.  
Maximum supported bit rate of 24 Mbit/s for USART master and slave synchronous  
modes.  
7, 8, or 9 data bits and 1 or 2 stop bits.  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
26 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
Multiprocessor/multidrop (9-bit) mode with software address compare.  
RS-485 transceiver output enable.  
Autobaud mode for automatic baud rate detection  
Parity generation and checking: odd, even, or none.  
Software selectable oversampling from 5 to 16 clocks in asynchronous mode.  
One transmit and one receive data buffer.  
RTS/CTS for hardware signaling for automatic flow control. Software flow control can  
be performed using Delta CTS detect, Transmit Disable control, and any GPIO as an  
RTS output.  
FIFO support from the System FIFO.  
Received data and status can optionally be read from a single register  
Break generation and detection.  
Receive data is 2 of 3 sample "voting". Status flag set when one sample differs.  
Built-in Baud Rate Generator with auto-baud function.  
A fractional rate divider is shared among all USARTs.  
Interrupts available for Receiver Ready, Transmitter Ready, Receiver Idle, change in  
receiver break detect, Framing error, Parity error, Overrun, Underrun, Delta CTS  
detect, and receiver sample noise detected.  
Loopback mode for testing of data and flow control.  
In synchronous slave mode, wakes up the part from deep sleep and power down  
modes.  
Special operating mode allows operation at up to 9600 baud using the 32 kHz RTC  
oscillator as the UART clock. This mode can be used while the device is in deep sleep  
or power down mode and can wake-up the device when a character is received.  
USART transmit and receive functions work with the system DMA controller.  
Activity on the USART synchronous slave mode allows wake-up from deep sleep and  
power down modes on any enabled interrupt.  
7.16.2 SPI serial I/O controller  
7.16.2.1 Features  
Master and slave operation.  
Maximum supported bit rate for SPI master mode is 48 Mbit/s, and the maximum  
supported bit rate for SPI slave mode is 21 Mbit/s.  
Data frames of 1 to 16 bits supported directly. Larger frames supported by software or  
DMA set-up.  
Data can be transmitted to a slave without the need to read incoming data. This can  
be useful while setting up an SPI memory.  
Control information can optionally be written along with data. This allows very  
versatile operation, including “any length” frames.  
Up to four Slave Select input/outputs with selectable polarity and flexible usage.  
Supports DMA transfers: SPIn transmit and receive functions can operated with the  
system DMA controller.  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
27 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
FIFO support from the System FIFO.  
Activity on the SPI in slave mode allows wake-up from deep sleep and power down  
modes on any enabled interrupt.  
7.17 I2C-bus interface  
The I2C-bus is bidirectional for inter-IC control using only two wires: a serial clock line  
(SCL) and a serial data line (SDA). Each device is recognized by a unique address and  
can operate as either a receiver-only device (for example, an LCD driver) or a transmitter  
with the capability to both receive and send information (such as memory). Transmitters  
and/or receivers can operate in either master or slave mode, depending on whether the  
chip has to initiate a data transfer or is only addressed. The I2C is a multi-master bus and  
can be controlled by more than one bus master connected to it.  
7.17.1 Features  
All I2Cs support standard (up to 100 Kbits/s), fast mode (up to 400 Kbits/s), and  
Fast-mode Plus (up to 1 Mbit/s).  
All I2Cs support high-speed slave mode with data rates of up to 3.4 Mbit/s.  
Independent Master, Slave, and Monitor functions.  
Supports both Multi-master and Multi-master with Slave functions.  
Multiple I2C slave addresses supported in hardware.  
One slave address can be selectively qualified with a bit mask or an address range in  
order to respond to multiple I2C-bus addresses.  
10-bit addressing supported with software assist.  
Supports System Management Bus (SMBus).  
No chip clocks are required in order to receive and compare an address as a Slave,  
so this event can wake up the device from power down mode.  
Supports the I2C-bus specification up to Fast-mode Plus (FM+, up to 1 MHz) in both  
master and slave modes. High-speed (HS, up to 3.4 MHz) I2C is support in slave  
mode only.  
Activity on the I2C in slave mode allows wake-up from deep sleep and power down  
modes on any enabled interrupt.  
7.18 Counter/timers  
7.18.1 General-purpose 32-bit timers/external event counter  
The LPC5410x includes five general-purpose 32-bit timer/counters.  
The timer/counter is designed to count cycles of the system derived clock or an  
externally-supplied clock. It can optionally generate interrupts, generate timed DMA  
requests, or perform other actions at specified timer values, based on four match  
registers. Each timer/counter also includes two capture inputs to trap the timer value when  
an input signal transitions, optionally generating an interrupt.  
7.18.1.1 Features  
Each is a 32-bit counter/timer with a programmable 32-bit prescaler. Four of the  
timers include external capture and match pin connections.  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
28 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
Counter or timer operation.  
For each timer with pin connections, up to 4 32-bit capture channels that can take a  
snapshot of the timer value when an input signal transitions. A capture event may also  
optionally generate an interrupt.  
The timer and prescaler may be configured to be cleared on a designated capture  
event. This feature permits easy pulse-width measurement by clearing the timer on  
the leading edge of an input pulse and capturing the timer value on the trailing edge.  
Four 32-bit match registers that allow:  
Continuous operation with optional interrupt generation on match.  
Stop timer on match with optional interrupt generation.  
Reset timer on match with optional interrupt generation.  
For each timer with pin connections, up to 4 external outputs corresponding to match  
registers with the following capabilities:  
Set LOW on match.  
Set HIGH on match.  
Toggle on match.  
Do nothing on match.  
PWM: for each timer with pin connections, up to 3 match outputs can be used as  
single edge controlled PWM outputs.  
7.18.2 State Configurable Timer/PWM (SCTimer/PWM)  
The SCTimer/PWM (SCT0) allows a wide variety of timing, counting, output modulation,  
and input capture operations. The inputs and outputs of the SCTimer/PWM are shared  
with the capture and match inputs/outputs of the 32-bit general-purpose counter/timers.  
The SCTimer/PWM can be configured as two 16-bit counters or a unified 32-bit counter. In  
the two-counter case, in addition to the counter value the following operational elements  
are independent for each half:  
State variable  
Limit, halt, stop, and start conditions  
Values of Match/Capture registers, plus reload or capture control values  
In the two-counter case, the following operational elements are global to the SCT, but the  
last three can use match conditions from either counter:  
Clock selection  
Inputs  
Events  
Outputs  
Interrupts  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
29 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
7.18.2.1 Features  
Two 16-bit counters or one 32-bit counter.  
Counter(s) clocked by bus clock or selected input.  
Up counter(s) or up-down counter(s).  
State variable allows sequencing across multiple counter cycles.  
Event combines input or output condition and/or counter match in a specified state.  
Events control outputs, interrupts, and the SCT states.  
Match register 0 can be used as an automatic limit.  
In bi-directional mode, events can be enabled based on the count direction.  
Match events can be held until another qualifying event occurs.  
Selected event(s) can limit, halt, start, or stop a counter.  
Supports:  
8 inputs (6 GPIO pins, ADC0_THCMP_IRQ, DEBUG_HALTED)  
up to 8 outputs  
13 match/capture registers  
13 events  
13 states  
PWM capabilities including dead time and emergency abort functions  
7.18.3 Windowed WatchDog Timer (WWDT)  
The purpose of the watchdog is to reset the controller if software fails to periodically  
service it within a programmable time window.  
7.18.3.1 Features  
Internally resets chip if not reloaded during the programmable time-out period.  
Optional windowed operation requires reload to occur between a minimum and  
maximum time-out period, both programmable.  
Optional warning interrupt can be generated at a programmable time prior to  
watchdog time-out.  
Programmable 24-bit timer with internal fixed pre-scaler.  
Selectable time period from 1,024 watchdog clocks (TWDCLK 256 4) to over 67  
million watchdog clocks (TWDCLK 224 4) in increments of 4 watchdog clocks.  
“Safe” watchdog operation. Once enabled, requires a hardware reset or a Watchdog  
reset to be disabled.  
Incorrect feed sequence causes immediate watchdog event if enabled.  
The watchdog reload value can optionally be protected such that it can only be  
changed after the “warning interrupt” time is reached.  
Flag to indicate Watchdog reset.  
The Watchdog clock (WDCLK) source is the fixed 500 kHz clock (+/- 40%) provided  
by the low-power watchdog oscillator.  
The Watchdog timer can be configured to run in deep sleep or power down mode.  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
30 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
Debug mode.  
7.18.4 RTC timer  
The RTC block has two timers: main RTC timer, and high-resolution/wake-up timer. The  
main RTC timer is a 32-bit timer that uses a 1 Hz clock and is intended to run continuously  
as a real-time clock. When the timer value reaches a match value, an interrupt is raised.  
The alarm interrupt can also wake up the part from any low power mode, if enabled.  
The high-resolution or wake-up timer is a 16-bit timer that uses a 1 kHz clock and  
operates as a one-shot down timer. When the timer is loaded, it starts counting down to 0  
at which point an interrupt is raised. The interrupt can wake up the part from any low  
power mode, if enabled. This timer is intended to be used for timed wake-up from deep  
sleep, power down, or deep power-down modes. The high-resolution wake-up timer can  
be disabled to conserve power if not used.  
The RTC timer uses the 32 kHz clock input to create a 1 Hz or 1 kHz clock  
7.18.4.1 Features  
The RTC oscillator has the following clock outputs:  
32 kHz clock, selectable for system clock and CLKOUT pin.  
1 Hz clock for RTC timing.  
1 kHz clock for high-resolution RTC timing.  
32-bit, 1 Hz RTC counter and associated match register for alarm generation.  
Separate 16-bit high-resolution/wake-up timer clocked at 1 kHz for 1 ms resolution  
with a more that one minute maximum time-out period.  
RTC alarm and high-resolution/wake-up timer time-out each generate independent  
interrupt requests. Either time-out can wake up the part from any of the low power  
modes, including deep power-down.  
7.18.5 Multi-Rate Timer (MRT)  
The Multi-Rate Timer (MRT) provides a repetitive interrupt timer with four channels. Each  
channel can be programmed with an independent time interval, and each channel  
operates independently from the other channels.  
7.18.5.1 Features  
24-bit interrupt timer.  
Four channels independently counting down from individually set values.  
Repeat interrupt, one-shot interrupt, and one-shot bus stall modes.  
7.18.6 Repetitive Interrupt Timer (RIT)  
The Repetitive Interrupt Timer provides a versatile means of generating interrupts at  
specified time intervals, without using a standard timer. It is intended for repeating  
interrupts that are not related to Operating System interrupts. However, it could be used  
as an alternative to the System Tick Timer if there are different system requirements.  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
31 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
7.18.6.1 Features  
48-bit counter running from the main clock. Counter can be free-running or be reset  
by a generated interrupt.  
48-bit compare value.  
48-bit compare mask. An interrupt is generated when the counter value equals the  
compare value, after masking. This allows for combinations not possible with a simple  
compare.  
7.18.7 Micro-tick timer (UTICK)  
The ultra-low power Micro-tick Timer, running from the Watchdog oscillator, can be used  
to wake up the device from low power modes.  
7.18.7.1 Features  
Ultra simple timer.  
Write once to start.  
Interrupt or software polling.  
7.19 12-bit Analog-to-Digital Converter (ADC)  
The ADC supports a resolution of 12-bit and fast conversion rates of up to 5.0  
Msamples/s. Sequences of analog-to-digital conversions can be triggered by multiple  
sources. Possible trigger sources are the SCT, external pins, and the ARM TXEV  
interrupt.  
The ADC supports a variable clocking scheme with clocking synchronous to the system  
clock or independent, asynchronous clocking for high-speed conversions  
The ADC includes a hardware threshold compare function with zero-crossing detection.  
The threshold crossing interrupt is connected internally to the SCT inputs for tight timing  
control between the ADC and the SCT.  
7.19.1 Features  
12-bit successive approximation analog to digital converter.  
Input multiplexing among up to 12 pins.  
Two configurable conversion sequences with independent triggers.  
Optional automatic high/low threshold comparison and “zero crossing” detection.  
Measurement range VREFN to VREFP (typically 3 V; not to exceed VDDA voltage  
level).  
12-bit conversion rate of 5.0 MHz. Options for reduced resolution at higher conversion  
rates.  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
32 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
Burst conversion mode for single or multiple inputs.  
Synchronous or asynchronous operation. Asynchronous operation maximizes  
flexibility in choosing the ADC clock frequency, Synchronous mode minimizes trigger  
latency and can eliminate uncertainty and jitter in response to a trigger.  
7.20 System control  
7.20.1 Clock sources  
The LPC5410x supports two external and three internal clock sources:  
The Internal RC (IRC).  
Watchdog oscillator (WDOSC).  
External clock source from the digital I/O pin CLKIN.  
External RTC 32 KHz clock.  
Output of the system PLL.  
7.20.1.1 Internal RC oscillator (IRC)  
The IRC can be used as the clock that drives the system PLL and subsequently the CPU.  
The nominal IRC frequency is 12 MHz.  
Upon power-up or any chip reset, the LPC5410x uses the IRC as the clock source.  
Software may later switch to one of the other available clock sources.  
7.20.1.2 Watchdog oscillator (WDOSC)  
The watchdog oscillator is a low-power internal oscillator. The WDOSC can be used to  
provide a clock to the WWDT and to the entire chip. The nominal output frequency is  
500 kHz.  
7.20.1.3 Clock input pin (CLKIN)  
An external square-wave clock source (up to 25 MHz) can be supplied on the digital I/O  
pin CLKIN.  
7.20.2 System PLL  
The system PLL accepts an input clock frequency in the range of 32 kHz to 12 MHz. The  
input frequency is multiplied up to a high frequency with a Current Controlled Oscillator  
(CCO).  
The PLL can be enabled or disabled by software.  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
33 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
7.20.3 Clock Generation  
irc_clk  
CLKIN  
wdt_clk  
00  
01  
10  
sysclk  
Main clock select A  
MAINCLKSELA[1:0]  
00  
01  
10  
11  
to CPU, AHB  
bus, Sync  
irc_clk  
00  
APB, etc.  
main clock  
CPU Clock  
pll_clk  
32k_clk  
CLKIN  
Divider  
System PLL  
(PLL0)  
01  
32k_clk  
11  
System clock divider  
AHBCLKDIV[7:0]  
System PLL  
settings  
main clock  
00  
Main clock select B  
MAINCLKSELB[1:0]  
PLL clock select  
SYSPLLCLKSEL[1:0]  
CLKIN  
to async  
APB bridge  
01  
10  
11  
Async APB  
Divider  
pll_clk  
Async APB clock divider  
ASYNCAPBCLKDIV[7:0]  
irc_clk  
00  
01  
wdt_clk  
APB clock select B  
ASYNCAPBCLKSELB[1:0]  
APB clock select A  
ASYNCAPBCLKSELA[1:0]  
main clock  
pll_clk  
00  
01  
10  
to ADC  
ADC Clock  
Divider  
irc_clk  
AD C clock divider  
ADCCLKDIV[7:0]  
ADC clock select  
ADCCLKSEL[1:0]  
main clock  
00  
01  
10  
11  
CLKOUTDIV[7:0]  
CLKIN  
wdt_clk  
irc_osc  
00  
11  
CLKOUT  
CLKOUT  
Divider  
32k_osc  
CLKOUT select B  
CLKOUTSELB[1:0]  
CLKOUT select A  
CLKOUTSELA[1:0]  
aaa-015553  
Fig 7. LPC5410x clock generation  
7.20.4 Power control  
The LPC5410x support a variety of power control features. In Active mode, when the chip  
is running, power and clocks to selected peripherals can be optimized for power  
consumption. In addition, there are four special modes of processor power reduction with  
different peripherals running: Sleep mode, deep sleep mode, power down mode, and  
deep power-down mode, activated by the power mode configure API.  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
34 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
7.20.4.1 Sleep mode  
When sleep mode is entered, the clock to the core is stopped along with any unused  
peripherals. Waking up from the sleep mode does not need any special sequence other  
than re-enabling the clock to the ARM core.  
In sleep mode, execution of instructions is suspended until either a reset or interrupt  
occurs. Peripheral functions continue operation during sleep mode and may generate  
interrupts to cause the processor to resume execution. Sleep mode eliminates dynamic  
power used by the processor itself, memory systems and related controllers, internal  
buses, and unused peripherals. The processor state and registers, peripheral registers,  
and internal SRAM values are maintained, and the logic levels of the pins remain static.  
7.20.4.2 Deep sleep mode  
In deep sleep mode, all peripheral clocks and all clock sources are off with the option of  
keeping the 32 kHz clock and the WDOSC running. In addition, all analog blocks are shut  
down and the flash is put in stand-by mode. In deep sleep mode, the application can keep  
some of the internal clocks and the BOD circuit running for self-timed wake-up and BOD  
protection.  
The LPC5410x can wake up from deep sleep mode via a reset, digital pins selected as  
inputs to the pin interrupt block, RTC alarm, Micro-tick, a watchdog timer reset interrupt,  
BOD interrupt/reset, or an interrupt from the USART (in 32 kHz mode or synchronous  
slave mode), the SPI, or any of the I2C peripherals. For wake-up from deep sleep mode,  
the SPI, USART, and I2C peripherals must be configured in slave mode.  
Any interrupt used for waking up from deep sleep mode must be enabled in one of the  
SYSCON wake-up enable registers and the NVIC.  
In deep sleep mode, the processor state and registers, peripheral registers, and internal  
SRAM values are maintained, and the logic levels of the pins remain static. deep sleep  
mode allows for very low quiescent power and fast wake-up options.  
7.20.4.3 Power down mode  
In power down mode, all peripheral clocks and all clock sources are off with the option of  
keeping the 32 kHz clock, and the WDOSC running. In addition, all analog blocks and the  
flash are shut down. In power down mode, the application can keep the BOD circuit  
running for BOD protection.  
The LPC5410x can wake up from power down mode via a reset, digital pins selected as  
inputs to the pin interrupt block, RTC alarm, Micro-tick, a watchdog timer reset interrupt,  
BOD interrupt/reset, or an interrupt from the USART (in 32 kHz mode or synchronous  
slave mode), the SPI, or any of the I2C peripherals. For wake-up from power down mode,  
the SPI, USART, and I2C peripherals must be configured in slave mode.  
In power down mode, the processor state and registers, peripheral registers, and internal  
SRAM values are maintained, and the logic levels of the pins remain static. Power down  
mode reduces power consumption compared to deep sleep mode at the expense of  
longer wake-up times.  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
35 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
7.20.4.4 Deep power-down mode  
In deep power-down mode, power is shut off to the entire chip except for the RTC power  
domain and the RESET pin. The LPC5410x can wake up from deep power down mode  
via the RESET pin and the RTC alarm.  
7.20.5 Brownout detection  
The LPC5410x includes a monitor for the voltage level on the VDD pin. If this voltage falls  
below a fixed level, the BOD sets a flag that can be polled or cause an interrupt. In  
addition, a separate threshold levels can be selected to cause chip reset and interrupt.  
7.20.6 Safety  
The LPC5410x includes a Windowed WatchDog Timer (WWDT), which can be enabled  
by software after reset. Once enabled, the WWDT remains locked and cannot be modified  
in any way until a reset occurs.  
7.21 Code security (Code Read Protection - CRP)  
This feature of the LPC5410x allows user to enable different levels of security in the  
system so that access to the on-chip flash and use of the Serial Wire Debugger (SWD)  
and In-System Programming (ISP) can be restricted. When needed, CRP is invoked by  
programming a specific pattern into a dedicated flash location. IAP commands are not  
affected by the CRP.  
In addition, ISP entry can be invoked by pulling a pin on the LPC5410x LOW on reset.  
This pin is called the ISP entry pin.  
There are three levels of Code Read Protection:  
1. CRP1 disables access to the chip via the SWD and allows partial flash update  
(excluding flash sector 0) using a limited set of the ISP commands. This mode is  
useful when CRP is required and flash field updates are needed but all sectors cannot  
be erased.  
2. CRP2 disables access to the chip via the SWD and only allows full flash erase and  
update using a reduced set of the ISP commands.  
3. CRP3 fully disables any access to the chip via SWD and ISP. It is up to the user’s  
application to provide (if needed) flash update mechanism using IAP calls or a call to  
reinvoke ISP command to enable a flash update via USART.  
4. In addition to the three CRP levels, sampling of the ISP entry pin for valid user code  
can be disabled (No_ISP mode). For details, see the LPC5410x user manual.  
CAUTION  
If level three Code Read Protection (CRP3) is selected, no future factory testing can be  
performed on the device.  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
36 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
7.22 Emulation and debugging  
Debug and trace functions are integrated into the ARM Cortex-M4 and ARM Cortex-M0+.  
Serial wire debug and trace functions are supported. The ARM Cortex-M4 is configured to  
support up to eight breakpoints and four watch points. The ARM Cortex-M0+ is configured  
to support up to four breakpoints and two watch points. In addition, JTAG boundary scan  
mode is provided.  
The ARM SYSREQ reset is supported and causes the processor to reset the peripherals,  
execute the boot code, restart from address 0x0000 0000, and break at the user entry  
point.  
The SWD pins are multiplexed with other digital I/O pins. On reset, the pins assume the  
SWD functions by default.  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
37 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
8. Limiting values  
Table 7.  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).[1]  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
[2]  
VDD  
supply voltage (core and on pin VDD  
external rail)  
0.5  
+4.6  
V
VDDA  
Vref  
VI  
analog supply voltage  
reference voltage  
input voltage  
on pin VDDA  
-0.5  
0.5  
0.5  
+4.6  
+4.6  
5.0  
V
V
V
on pin VREFP  
-
[6][7]  
only valid when the VDD > 1.8 V;  
5 V tolerant I/O pins  
on I2C open-drain pins  
[5]  
VI  
input voltage  
0.5  
0.5  
+5.0  
VDD  
V
V
[8][9]  
VIA  
analog input voltage  
on digital pins configured for an  
analog function  
[3]  
[3]  
IDD  
total supply current  
total ground current  
I/O latch-up current  
-
-
-
60  
mA  
mA  
mA  
ISS  
60  
Ilatch  
(0.5VDD) < VI < (1.5VDD);  
Tj < 125 C  
100  
[2]  
Vi(rtcx)  
32 kHz oscillator input  
voltage  
-0.5  
4.6  
V
[10]  
Tstg  
storage temperature  
65  
+150  
+150  
C  
C  
Tj(max)  
maximum junction  
temperature  
-
Ptot(pack)  
VESD  
total power dissipation  
(per package)  
based on package heat transfer,  
not device power consumption  
-
1.5  
W
V
[4]  
electrostatic discharge  
voltage  
human body model; all pins  
4000  
[1] The following applies to the limiting values:  
a) This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive  
static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated  
maximum.  
b) Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to VSS unless  
otherwise noted.  
c) The limiting values are stress ratings only and operating the part at these values is not recommended and proper operation is not  
guaranteed. The conditions for functional operation are specified in Table 16.  
[2] Maximum/minimum voltage above the maximum operating voltage (see Table 16) and below ground that can be applied for a short time  
(< 10 ms) to a device without leading to irrecoverable failure. Failure includes the loss of reliability and shorter lifetime of the device.  
[3] The peak current is limited to 25 times the corresponding maximum current.  
[4] Human body model: equivalent to discharging a 100 pF capacitor through a 1.5 kseries resistor.  
[5] VDD present or not present. Compliant with the I2C-bus standard. 5.5 V can be applied to this pin when VDD is powered down.  
[6] Applies to all 5 V tolerant I/O pins except true open-drain pins.  
[7] Including the voltage on outputs in 3-state mode.  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
38 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
[8] An ADC input voltage above 3.6 V can be applied for a short time without leading to immediate, unrecoverable failure. Accumulated  
exposure to elevated voltages at 4.6 V must be less than 106 s total over the lifetime of the device. Applying an elevated voltage to the  
ADC inputs for a long time affects the reliability of the device and reduces its lifetime.  
[9] It is recommended to connect an overvoltage protection diode between the analog input pin and the voltage supply pin.  
[10] Dependent on package type.  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
39 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
9. Thermal characteristics  
The average chip junction temperature, Tj (C), can be calculated using the following  
equation:  
T j = Tamb + PD Rthj a  
(1)  
Tamb = ambient temperature (C),  
Rth(j-a) = the package junction-to-ambient thermal resistance (C/W)  
PD = sum of internal and I/O power dissipation  
The internal power dissipation is the product of IDD and VDD. The I/O power dissipation of  
the I/O pins is often small and many times can be negligible. However it can be significant  
in some applications.  
Table 8.  
Thermal resistance  
Symbol Parameter  
LQFP64 Package  
Conditions  
Max/Min  
Unit  
Rth(j-a)  
thermal resistance from  
JEDEC (4.5 in 4 in); still air  
58 ± 15 % C/W  
junction to ambient  
Single-layer (4.5 in 3 in); still air 81 ± 15 % C/W  
18 ± 15 % C/W  
Rth(j-c)  
thermal resistance from  
junction to case  
WLCSP49 Package  
Rth(j-a) thermal resistance from  
JEDEC (4.5 in 4 in); still air  
41 ± 15 % C/W  
0.3 ± 15 % C/W  
junction to ambient  
Rth(j-c)  
thermal resistance from  
junction to case  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
40 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
10. Static characteristics  
10.1 General operating conditions  
Table 9.  
General operating conditions  
Tamb = 40 C to +105 C, unless otherwise specified.  
Symbol  
fclk  
Parameter  
Conditions  
Min  
-
Typ  
Max  
150  
3.6  
Unit  
MHz  
V
clock frequency  
internal CPU/system clock  
-
-
VDD  
supply voltage (core  
and external rail)  
1.62  
[1]  
[2]  
VDDA  
Vrefp  
analog supply voltage  
1.62  
2.0  
-
-
3.6  
V
V
ADC positive reference VDDA 2 V  
VDDA  
voltage  
VDDA < 2 V  
VDDA  
-
VDDA  
V
RTC oscillator pins  
Vi(rtcx) 32 kHz oscillator input  
voltage  
on pin RTCXIN  
0.5  
0.5  
-
-
+3.6  
+3.6  
V
V
Vo(rtcx)  
32 kHz oscillator output on pin RTCXOUT  
voltage  
[1] The VDD voltage must be equal or lower than the voltage level on VDDA  
.
[2] The Vrefp voltage must not exceed the voltage level on VDDA  
.
10.2 CoreMark data  
Table 10. CoreMark score  
Tamb = 25C, VDD = 3.3V  
Parameter  
Conditions  
Typ  
Unit  
ARM Cortex-M4 in active mode; ARM Cortex-M0+ in sleep mode  
CoreMark score  
CoreMark code executed from SRAM;  
CCLK = 12 MHz  
[1][3][4][5]  
[2][3][4][5]  
[2][3][4][5]  
[2][3][4][5]  
[2][3][4][5]  
2.6  
2.6  
2.6  
2.6  
2.6  
(Iterations/s) / MHz  
(Iterations/s) / MHz  
(Iterations/s) / MHz  
(Iterations/s) / MHz  
(Iterations/s) / MHz  
CCLK = 48 MHz  
CCLK = 84 MHz  
CCLK = 100 MHz  
CCLK = 150 MHz  
CoreMark score  
CoreMark code executed from flash;  
CCLK = 12 MHz; 1 system clock flash  
access time.  
[1][3][4][6]  
[2][3][4][6]  
2.6  
2.4  
(Iterations/s) / MHz  
(Iterations/s) / MHz  
CCLK = 48 MHz; 3 system clock flash  
access time.  
[2][3][4][6]  
[2][3][4][6]  
[2][3][4][6]  
CCLK = 84 MHz; 5 system clock flash  
access time.  
2.3  
(Iterations/s) / MHz  
(Iterations/s) / MHz  
(Iterations/s) / MHz  
CCLK = 100 MHz; 6 system clock flash  
access time.  
2.2  
CCLK = 150 MHz; 7 system clock flash  
access time.  
1.94  
[1] Clock source 12 MHz IRC. PLL disabled.  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
41 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
[2] Clock source 12 MHz IRC. PLL enabled.  
[3] Characterized through bench measurements using typical samples.  
[4] Compiler settings: Keil μVision v.5.12, optimization level 3, optimized for time on.  
[5] SRAM0 and SRAM1 powered, SRAM2 powered down.  
[6] See the FLASHCFG register in the LPC5410x User Manual for system clock flash access time settings.  
aaa-015950  
3
Coremark score  
(iterations/s) / MHz)  
M4 SRAM  
2.6  
M4 Flash  
2.2  
1.8  
1.4  
1
12  
24  
36  
48  
60  
72  
84  
96  
108  
Frequency (MHz)  
Conditions: VDD = 3.3 V; Tamb = 25 °C; active mode; all peripherals except one UART; BOD  
disabled; SRAM0 and SRAM1 powered, SRAM2 powered down. See the FLASHCFG register in  
the LPC5410x User Manual for system clock flash access time settings. Measured with Keil  
uVision 5.12. Optimization level 3, optimized for time on.  
12 MHz: IRC enabled; PLL disabled. 24 MHz - 100 MHz: IRC enabled; PLL enabled.  
Fig 8. Typical CoreMark score  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
42 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
10.3 Power consumption  
Power measurements in Active, sleep, deep sleep, and power down modes were  
performed under the following conditions:  
Configure all pins as GPIO with pull-up resistor disabled in the IOCON block.  
Configure GPIO pins as outputs using the GPIO DIR register.  
Write 1 to the GPIO CLR register to drive the outputs LOW.  
All peripherals disabled.  
Table 11. Static characteristics: Power consumption in active and sleep modes  
Tamb = 40 C to +105 C, unless otherwise specified.1.62 V VDD 3.6 V.  
Symbol Parameter Conditions  
ARM Cortex-M0+ in active mode; ARM Cortex-M4 in sleep mode  
Min  
Typ[1]  
Max  
Unit  
IDD  
supply current  
CoreMark code executed from  
SRAM; flash powered down  
[2][4][6]  
[3][4][6]  
[3][4][6]  
[3][4][6]  
[3][4][6]  
CCLK = 12 MHz  
CCLK = 48 MHz  
-
-
-
-
-
1.2  
3.0  
4.5  
5.5  
11.0  
-
-
-
-
-
mA  
mA  
mA  
mA  
mA  
CCLK = 84 MHz  
CCLK = 100 MHz  
CCLK = 150 MHz  
IDD  
supply current  
CoreMark code executed from flash;  
CCLK = 12 MHz; 1 system clock  
flash access time.  
[2][4][6]  
[3][4][6]  
-
-
1.5  
3.6  
-
-
mA  
mA  
CCLK = 48 MHz; 3 system clock  
flash access time.  
[3][4][6]  
[3][4][6]  
[3][4][6]  
CCLK = 84 MHz; 6 system clock  
flash access time.  
-
-
-
5.4  
-
-
-
mA  
mA  
mA  
CCLK = 100 MHz; 7 system clock  
flash access time.  
6.6  
CCLK = 150 MHz; 7 system clock  
flash access time.  
14.0  
IDD  
supply current  
Calculating Fibonacci numbers  
executed from flash;  
[2][4][5]  
[3][4][5]  
[3][4][5]  
CCLK = 12 MHz  
CCLK = 84 MHz  
CCLK = 96 MHz  
-
-
-
1.5  
6.2  
7.2  
-
-
-
mA  
mA  
mA  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
43 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
Table 11. Static characteristics: Power consumption in active and sleep modes  
Tamb = 40 C to +105 C, unless otherwise specified.1.62 V VDD 3.6 V.  
Symbol  
Parameter  
Conditions  
Min  
Typ[1]  
Max  
Unit  
ARM Cortex-M4 in active mode; ARM Cortex-M0+ in sleep mode  
IDD  
supply current  
CoreMark code executed from  
SRAM; flash powered down  
[2][4][6]  
[3][4][6]  
[3][4][6]  
[3][4][6]  
[3][4][6]  
CCLK = 12 MHz  
CCLK = 48 MHz  
-
-
-
-
-
1.5  
4.8  
7.9  
9.9  
15.0  
-
-
-
-
-
mA  
mA  
mA  
mA  
mA  
CCLK = 84 MHz  
CCLK = 100 MHz  
CCLK = 150 MHz  
IDD  
supply current  
CoreMark code executed from flash;  
CCLK = 12 MHz; 1 system clock  
flash access time.  
[2][4][6]  
[3][4][6]  
-
-
1.9  
5.7  
-
-
mA  
mA  
CCLK = 48 MHz; 3 system clock  
flash access time.  
[3][4][6]  
[3][4][6]  
[3][4][6]  
CCLK = 84 MHz; 6 system clock  
flash access time.  
-
-
-
8.8  
-
-
-
mA  
mA  
mA  
CCLK = 100 MHz; 7 system clock  
flash access time.  
10.7  
17.0  
CCLK = 150 MHz; 7 system clock  
flash access time.  
IDD  
supply current  
supply current  
Calculating Fibonacci numbers  
executed from SRAM;  
[2][4][5]  
[3][4][5]  
[3][4][5]  
CCLK = 12 MHz  
CCLK = 84 MHz  
CCLK = 96 MHz  
-
-
-
1.7  
8.0  
9.4  
-
-
-
mA  
mA  
mA  
IDD  
Calculating Fibonacci numbers  
executed from flash;  
[2][4][5]  
[3][4][5]  
[3][4][5]  
CCLK = 12 MHz  
CCLK = 84 MHz  
CCLK = 96 MHz  
-
-
-
1.7  
8.0  
9.4  
-
-
-
mA  
mA  
mA  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
44 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
Table 11. Static characteristics: Power consumption in active and sleep modes  
Tamb = 40 C to +105 C, unless otherwise specified.1.62 V VDD 3.6 V.  
Symbol  
Parameter  
Conditions  
Min  
Typ[1]  
Max  
Unit  
ARM Cortex-M4 in sleep mode; ARM Cortex-M0+ in sleep mode  
[2][4][7]  
[3][4][7]  
IDD  
supply current  
CCLK = 12 MHz  
CCLK = 100 MHz  
-
-
990  
4.0  
-
-
A  
mA  
[1] Typical ratings are not guaranteed. Typical values listed are at room temperature (25 C), 3.3V.  
[2] Clock source 12 MHz IRC. PLL disabled.  
[3] Clock source 12 MHz IRC. PLL enabled.  
[4] Characterized through bench measurements using typical samples.  
[5] Compiler settings: Keil μVision v.5.10, optimization level 0, optimized for time off.  
[6] Prefetch disabled in FLASHCFG register. System clock flash access time set by power API. SRAM0 powered, SRAM1 and SRAM2  
powered down.Compiler settings: Keil μVision v.5.12, optimization level 0, optimized for time off.  
[7] First 8 kB in SRAM0 powered; Flash, SRAM1, and SRAM2 are powered down; all peripheral clocks disabled. Compiler settings: Keil  
μVision v.5.12, optimization level 0, optimized for time off.  
aaa-015966  
170  
μ/MHz  
M4F Fllash  
140  
110  
80  
M4F SSRRAM  
M0+ FFllash  
M0+ SRAM  
50  
12  
24  
36  
48  
60  
72  
84  
96  
108  
Frequency (MHz)  
Conditions: VDD = 3.3 V; Tamb = 25 °C; active mode; all peripherals disabled; BOD disabled;  
Prefetch disabled in FLASHCFG register. System clock flash access time set by power API.  
SRAM0 powered, SRAM1 and SRAM2 powered down. Measured with Keil uVision 5.12.  
Optimization level 0, optimized for time off.  
12 MHz: IRC enabled; PLL disabled. 24 MHz - 100 MHz: IRC enabled; PLL enabled.  
Fig 9. CoreMark power consumption: typical A/MHz for M4 and M0+ cores  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
45 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
Table 12. Static characteristics: Power consumption in deep sleep, power down, and deep power-down modes  
Tamb = 40 C to +105 C, 1.62 V VDD 2.0 V; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ[1][2] Max[3]  
Unit  
[2]  
IDD  
supply current  
Deep sleep mode; all SRAM  
on:  
Tamb = 25 C  
Tamb = 105 C  
-
-
235  
-
380  
1.9  
A  
mA  
[2]  
Power down mode;  
first 8 kB in SRAM0  
powered:  
Tamb = 25 C  
-
4
8
A  
A  
A  
A  
Tamb = 105 C  
-
110  
SRAM0 (64 kB) powered  
-
-
6.7  
7.8  
-
-
SRAM0 (64 kB), SRAM1  
(32 kB) powered  
SRAM0 (64 kB), SRAM1  
(32 kB), SRAM2 (8 kB)  
powered  
-
-
8.2  
-
A  
[2]  
Deep power-down mode;  
RTC oscillator input  
grounded (RTC oscillator  
disabled)  
Tamb = 25 C  
Tamb = 105 C  
160  
-
340  
14  
-
nA  
A  
nA  
RTC oscillator running with  
external crystal  
-
240  
[1] Typical ratings are not guaranteed. Typical values listed are at room temperature (25 C).  
[2] Characterized through bench measurements using typical samples. VDD = 1.62 V  
[3] Guaranteed by characterization, not tested in production. VDD = 2.0 V  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
46 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
Table 13. Static characteristics: Power consumption in deep sleep, power down, and deep power-down modes  
Tamb = 40 C to +105 C, 2.7 V . VDD 3.6 V; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ[1][2] Max[3]  
Unit  
[2]  
IDD  
supply current  
Deep sleep mode; all SRAM  
on:  
-
Tamb = 25 C  
Tamb = 105 C  
306  
-
480  
2.3  
A  
-
mA  
[2]  
Power down mode;  
first 8 kB in SRAM0  
powered:  
Tamb = 25 C  
-
-
-
-
5
10  
115  
-
A  
A  
A  
A  
Tamb = 105 C  
-
SRAM0 (64 kB) powered  
7.3  
8.6  
SRAM0 (64 kB), SRAM1  
(32 kB) powered  
-
SRAM0 (64 kB), SRAM1  
(32 kB), SRAM2 (8 kB)  
powered  
-
9
-
A  
[2]  
Deep power-down mode;  
RTC oscillator input  
grounded (RTC oscillator  
disabled)  
Tamb = 25 C  
Tamb = 105 C  
-
-
200  
-
570  
20  
-
nA  
A  
nA  
RTC oscillator running with  
external crystal  
280  
[1] Typical ratings are not guaranteed. Typical values listed are at room temperature (25 C).  
[2] Characterized through bench measurements using typical samples. VDD = 3.3 V  
[3] Tested in production, VDD = 3.6 V  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
47 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
DDDꢀꢁꢂꢃꢄꢅꢁ  
ꢆꢂꢂ  
,
''  
ꢉ—$ꢊ  
ꢌꢋꢇ9  
ꢌꢋꢌ9  
ꢃꢋꢆ9  
ꢃꢋꢇꢄ9  
ꢇꢂꢂ  
ꢁꢂꢂ  
ꢄꢂꢂ  
ꢀꢁꢂ  
ꢀꢃꢂ  
ꢄꢂ  
ꢅꢂ  
ꢆꢂ  
ꢃꢃꢂ  
7HPSHUDWXUHꢈꢉƒ&ꢊ  
Conditions: BOD disabled; All SRAM blocks enabled.  
Fig 10. Deep sleep mode: Typical supply current IDD versus temperature for different  
supply voltages VDD  
DDDꢀꢁꢂꢃꢄꢅꢂ  
ꢁꢂ  
,
''  
ꢉ—$ꢊ  
ꢌꢋꢇ9  
ꢌꢋꢌ9  
ꢃꢋꢆ9  
ꢃꢋꢇꢄ9  
ꢌꢂ  
ꢄꢂ  
ꢃꢂ  
ꢀꢁꢂ  
ꢀꢃꢂ  
ꢄꢂ  
ꢅꢂ  
ꢆꢂ  
ꢃꢃꢂ  
7HPSHUDWXUHꢈꢉƒ&ꢊ  
Conditions: BOD disabled; all SRAM disabled except first 8 kB in SRAM0.  
Fig 11. Power down mode: Typical supply current IDD versus temperature for different  
supply voltages VDD  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
48 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
DDDꢀꢁꢂꢃꢄꢅꢄ  
,
''  
ꢉ—$ꢊ  
ꢌꢋꢇ9  
ꢌꢋꢌ9  
ꢃꢋꢆ9  
ꢃꢋꢇꢄ9  
ꢀꢁꢂ  
ꢀꢃꢂ  
ꢄꢂ  
ꢅꢂ  
ꢆꢂ  
ꢃꢃꢂ  
7HPSHUDWXUHꢈꢉƒ&ꢊ  
RTC disabled (RTC oscillator input grounded)  
Fig 12. Deep power-down mode: Typical supply current IDD versus temperature for  
different supply voltages VDD  
Table 14. Typical peripheral power consumption[1][2][3]  
VDD = 3.3 V; Tamb = 25 °C  
Peripheral  
IRC  
IDD in uA  
262  
WDT OSC  
Flash  
2.0  
200.0  
2.0  
BOD  
CLKOUT  
37  
[1] The supply current per peripheral is measured as the difference in supply current between the peripheral  
block enabled and the peripheral block disabled using PDRUNCFG register. All other blocks are disabled  
and no code accessing the peripheral is executed.  
[2] The supply currents are shown for system clock frequencies of 12 MHz.  
[3] Typical ratings are not guaranteed. Characterized through bench measurements using typical samples.  
Table 15. Typical AHB/APB peripheral power consumption[3][4][5]  
VDD = 3.3 V; T = 25 °C  
Peripheral  
IDD in A  
IDD in A/MHz  
IDD in A/MHz  
AHB peripheral  
CPU: 12 MHz, sync APB  
bus: 12 MHz  
CPU: 96MHz, sync APB bus:  
96 MHz  
[1]  
[1]  
GPIO0  
-
-
-
-
-
-
-
0.50  
0.42  
5.0  
0.7  
GPIO1  
0.52  
6.86  
0.50  
0.20  
2.92  
7.07  
DMA  
CRC  
0.42  
0.17  
2.25  
5.08  
MAILBOX  
ADC0  
SCTimer/PWM  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
49 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
Table 15. Typical AHB/APB peripheral power consumption[3][4][5]  
VDD = 3.3 V; T = 25 °C  
Peripheral  
IDD in A  
IDD in A/MHz  
IDD in A/MHz  
FIFO  
-
3.17  
4.49  
Sync APB  
peripheral  
CPU: 12 MHz, sync APB  
bus: 12 MHz  
CPU: 96MHz, sync APB bus:  
96 MHz  
[1]  
[1]  
INPUTMUX  
IOCON  
PINT  
-
-
-
-
-
-
-
-
-
-
-
-
0.83  
1.25  
0.83  
0.50  
0.17  
0.50  
0.08  
0.50  
0.17  
0.58  
0.42  
0.50  
0.96  
1.55  
1.05  
0.61  
0.28  
0.65  
0.09  
0.71  
0.11  
0.67  
0.42  
0.57  
GINT  
WWDT  
MRT  
RTC  
RIT  
UTICK  
Timer2  
Timer3  
Timer4  
Async APB  
peripheral  
CPU: 12 MHz, Async APB CPU: 96MHz, Async APB  
bus: 12 MHz  
bus: 12 MHz[2]  
USART0  
USART1  
USART2  
USART3  
I2C0  
-
-
-
-
-
-
-
-
-
-
-
-
0.67  
0.11  
0.75  
0.07  
0.67  
0.11  
0.75  
0.07  
0.92  
0.10  
I2C1  
0.83  
0.26  
I2C2  
0.83  
0.25  
SPIO0  
SPIO1  
CTimer0  
CTimer1  
0.92  
0.21  
0.83  
0.25  
0.58  
0.18  
0.42  
0.14  
Fractional Rate  
Generator  
4.17  
0.73  
[1] Turn off the peripheral when the configuration is done.  
[2] For optimal system power consumption, use fixed low frequency Async APB bus when the CPU is at a  
higher frequency.  
[3] The supply current per peripheral is measured as the difference in supply current between the peripheral  
block enabled and the peripheral block disabled using ASYNCAPBCLKCTRL, AHBCLKCTRL0/1, and  
PDRUNCFG register. All other blocks are disabled and no code accessing the peripheral is executed.  
[4] The supply currents are shown for system clock frequencies of 12 MHz and 96 MHz.  
[5] Typical ratings are not guaranteed. Characterized through bench measurements using typical samples.  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
50 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
10.4 Pin characteristics  
Table 16. Static characteristics: pin characteristics  
Tamb = 40 C to +105 C, unless otherwise specified. 1.62 V VDD 3.6 V unless otherwise specified. Values tested in  
production unless otherwise specified.  
Symbol Parameter  
RESET pin  
Conditions  
Min  
Typ[1] Max  
Unit  
VIH  
VIL  
HIGH-level input voltage  
0.8 VDD  
0.5  
-
-
-
5.0  
V
V
V
LOW-level input voltage  
hysteresis voltage  
0.3 VDD  
[9]  
Vhys  
0.05 VDD  
-
Standard I/O pins  
Input characteristics  
IIL  
IIH  
IIH  
VI  
LOW-level input current  
VI = 0 V; on-chip pull-up resistor  
disabled  
-
-
3.0  
3.0  
3.0  
180  
180  
180  
nA  
nA  
nA  
HIGH-level input current VI = VDD; VDD = 3.6 V; for RESETN  
pin  
HIGH-level input current VI = VDD; on-chip pull-down resistor  
disabled  
[3]  
input voltage  
pin configured to provide a digital  
function;  
VDD 1.8 V  
0
-
-
-
-
-
-
-
5.0  
3.6  
5.0  
5.0  
+0.4  
+0.8  
-
V
V
V
V
V
V
V
VDD = 0 V  
0
VIH  
VIL  
HIGH-level input voltage 1.62 V VDD < 2.7 V  
2.7 V VDD 3.6 V  
1.5  
2.0  
LOW-level input voltage 1.62 V VDD < 2.7 V  
2.7 V VDD 3.6 V  
0.5  
0.5  
0.1 VDD  
[9]  
Vhys  
hysteresis voltage  
Output characteristics  
VO  
IOZ  
output voltage  
output active  
0
-
-
VDD  
180  
V
OFF-state output current VO = 0 V; VO = VDD; on-chip  
pull-up/pull-down resistors disabled  
3
nA  
VOH  
VOL  
IOH  
HIGH-level output voltage IOH = 4 mA; 1.62 V VDD < 2.7 V  
IOH = 6 mA; 2.7 V VDD 3.6 V  
VDD 0.4  
-
-
V
VDD 0.4  
LOW-level output voltage IOL = 4 mA; 1.62 V VDD < 2.7 V  
IOL = 6 mA; 2.7 V VDD 3.6 V  
-
-
-
-
0.4  
0.4  
-
V
-
V
HIGH-level output current VOH = VDD 0.4 V;  
1.62 V VDD < 2.7 V  
4.0  
mA  
VOH = VDD 0.4 V;  
2.7 V VDD 3.6 V  
6.0  
-
-
mA  
IOL  
LOW-level output current VOL = 0.4 V; 1.62 V VDD < 2.7 V  
VOL = 0.4 V; 2.7 V VDD 3.6 V  
4.0  
6.0  
-
-
-
-
-
mA  
mA  
mA  
-
[2][4]  
IOHS  
HIGH-level short-circuit  
output current  
1.62 V VDD < 2.7 V  
35  
drive HIGH; connected to  
ground;  
2.7 V VDD 3.6 V  
-
-
87  
mA  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
51 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
Table 16. Static characteristics: pin characteristics …continued  
Tamb = 40 C to +105 C, unless otherwise specified. 1.62 V VDD 3.6 V unless otherwise specified. Values tested in  
production unless otherwise specified.  
Symbol Parameter  
IOLS LOW-level short-circuit  
Conditions  
Min  
Typ[1] Max  
Unit  
[2][4]  
1.62 V VDD < 2.7 V  
-
-
30  
mA  
output current  
drive LOW; connected to  
VDD  
2.7 V VDD 3.6 V  
-
-
77  
mA  
Weak input pull-up/pull-down characteristics  
Ipd  
pull-down current  
VI = VDD  
25  
80  
25  
6
80  
A  
A  
A  
A  
[2]  
VI = 5 V  
100  
80  
30  
Ipu  
pull-up current  
VI = 0 V  
[2][7]  
VDD < VI < 5 V  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
52 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
Table 16. Static characteristics: pin characteristics …continued  
Tamb = 40 C to +105 C, unless otherwise specified. 1.62 V VDD 3.6 V unless otherwise specified. Values tested in  
production unless otherwise specified.  
Symbol Parameter  
Open-drain I2C pins  
Conditions  
Min  
Typ[1] Max  
Unit  
VIH  
HIGH-level input voltage  
1.62 V VDD < 2.7 V  
2.7 V VDD 3.6 V  
1.62 V VDD < 2.7 V  
2.7 V VDD 3.6 V  
0.7 VDD  
-
-
V
0.7 VDD  
-
-
V
VIL  
LOW-level input voltage  
0
-
0.3 VDD  
V
0
-
0.3 VDD  
V
Vhys  
ILI  
hysteresis voltage  
0.1 VDD  
-
-
V
[5]  
input leakage current  
VI = VDD  
VI = 5 V  
-
2.5  
5.5  
-
3.5  
10  
-
A  
A  
mA  
-
IOL  
LOW-level output  
current  
VOL = 0.4 V; pin configured for  
standard mode or fast mode  
4.0  
VOL = 0.4V; pin configured for  
Fast-mode Plus  
20  
-
-
mA  
Pin capacitance  
Cio  
input/output capacitance I2C-bus pins  
[8]  
[6]  
[6]  
-
-
-
-
-
-
6.0  
2.0  
7.0  
pF  
pF  
pF  
pins with digital functions only  
Pins with digital and analog  
functions  
[1] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply voltage.  
[2] Based on characterization. Not tested in production.  
[3] With respect to ground.  
[4] Allowed as long as the current limit does not exceed the maximum current allowed by the device.  
[5] To VSS  
.
[6] The values specified are simulated and absolute values, including package/bondwire capacitance.  
[7] The weak pull-up resistor is connected to the VDD rail and pulls up the I/O pin to the VDD level.  
[8] The value specified is a simulated value, excluding package/bondwire capacitance.  
[9] Guaranteed by design, not tested in production.  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
53 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
V
DD  
I
I
OL  
pd  
+
-
pin PIO0_n  
pin PIO0_n  
A
I
OH  
Ipu  
-
+
A
aaa-010819  
Fig 13. Pin input/output current measurement  
10.4.1 Electrical pin characteristics  
DDDꢀꢁꢂꢃꢆꢁꢇ  
DDDꢀꢁꢂꢃꢆꢂꢁ  
ꢇꢂ  
ꢅꢂ  
ꢁꢂ  
ꢌꢂ  
ꢄꢂ  
ꢃꢂ  
ꢇꢂ  
ꢀꢁꢂ&  
,
,
2/  
ꢉP$ꢊ  
2/  
ꢄꢅ&  
ꢉP$ꢊ  
ꢍꢂ&  
ꢃꢂꢅ&  
ꢀꢁꢂ&  
ꢄꢅ&  
ꢁꢅ  
ꢌꢂ  
ꢃꢅ  
ꢍꢂ&  
ꢃꢂꢅ&  
ꢂꢋꢃ  
ꢂꢋꢄ  
ꢂꢋꢌ  
ꢂꢋꢁ  
ꢂꢋꢅ  
2/  
ꢂꢋꢇ  
ꢂꢋꢃ  
ꢂꢋꢄ  
ꢂꢋꢌ  
ꢂꢋꢁ  
ꢂꢋꢅ  
ꢂꢋꢇ  
9
ꢈꢉ9ꢊ  
9
ꢈꢉ9ꢊ  
2/  
Conditions: VDD = 1.8 V; on pins PIO0_23 to PIO0_28.  
Conditions: VDD = 3.3 V; on pins PIO0_23 to PIO0_28.  
Fig 14. I2C-bus pins (high current sink): Typical LOW-level output current IOL versus LOW-level output voltage  
VOL  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
54 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
DDDꢀꢁꢂꢃꢆꢂꢂ  
DDDꢀꢁꢂꢃꢆꢂꢄ  
ꢃꢄ  
ꢃꢅ  
ꢃꢄ  
ꢀꢁꢂ&  
ꢄꢅ&  
,
,
2/  
ꢉP$ꢊ  
2/  
ꢉP$ꢊ  
ꢍꢂ&  
ꢃꢂ  
ꢃꢂꢅ&  
ꢀꢁꢂ&  
ꢍꢂ&  
ꢄꢅ&  
ꢃꢂꢅ&  
ꢂꢋꢃ  
ꢂꢋꢄ  
ꢂꢋꢌ  
ꢂꢋꢁ  
ꢂꢋꢅ  
ꢂꢋꢇ  
ꢂꢋꢃ  
ꢂꢋꢄ  
ꢂꢋꢌ  
ꢂꢋꢁ  
ꢂꢋꢅ  
ꢂꢋꢇ  
9
ꢈꢉ9ꢊ  
9
ꢈꢉ9ꢊ  
2/  
2/  
Conditions: VDD = 1.8 V; on standard port pins.  
Conditions: VDD = 3.3 V; on standard port pins.  
Fig 15. Typical LOW-level output current IOL versus LOW-level output voltage VOL  
DDDꢀꢁꢂꢃꢆꢂꢆ  
DDDꢀꢁꢂꢃꢆꢂꢈ  
ꢃꢋꢆ  
2+  
ꢌꢋꢅ  
9
2+  
ꢉ9ꢊ  
9
ꢉ9ꢊ  
ꢃꢋꢎ  
ꢃꢋꢇ  
ꢃꢋꢅ  
ꢃꢋꢁ  
ꢃꢋꢌ  
ꢃꢋꢄ  
ꢌꢋꢄ  
ꢄꢋꢍ  
ꢄꢋꢇ  
ꢄꢋꢌ  
ꢀꢁꢂ&  
ꢄꢅ&  
ꢀꢁꢂ&  
ꢄꢅ&  
ꢍꢂ&  
ꢍꢂ&  
ꢃꢂꢅ&  
ꢃꢂꢅ&  
ꢄꢋꢁ  
ꢁꢋꢆ  
ꢎꢋꢄ  
ꢍꢋꢇ  
ꢈꢉP$ꢊ  
ꢃꢄ  
ꢃꢁ  
ꢄꢃ  
ꢄꢆ  
ꢈꢉP$ꢊ  
ꢌꢅ  
,
,
2+  
2+  
Conditions: VDD = 1.8 V; on standard port pins.  
Conditions: VDD = 3.3 V; on standard port pins.  
Fig 16. Typical HIGH-level output voltage VOH versus HIGH-level output source current IOH  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
55 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
DDDꢀꢁꢂꢃꢆꢂꢉ  
DDDꢀꢁꢂꢃꢆꢂꢊ  
ꢁꢂ  
ꢅꢂ  
ꢌꢂ  
ꢃꢂ  
,
,
SX  
ꢉ—$ꢊ  
SX  
ꢉ—$ꢊ  
ꢄꢂ  
ꢀꢃꢂ  
ꢀꢌꢂ  
ꢀꢅꢂ  
ꢀꢎꢂ  
ꢀꢁꢂ&  
ꢄꢅ&  
ꢀꢁꢂ&  
ꢄꢅ&  
ꢍꢂ&  
ꢍꢂ&  
ꢀꢄꢂ  
ꢀꢁꢂ  
ꢃꢂꢅ&  
ꢃꢂꢅ&  
ꢂꢋꢂ  
ꢂꢋꢅ  
ꢃꢋꢂ  
ꢃꢋꢅ  
ꢄꢋꢂ  
ꢄꢋꢅ  
ꢌꢋꢂ  
9 ꢈꢉ9ꢊ  
ꢌꢋꢅ  
ꢂꢋꢂ  
ꢃꢋꢂ  
ꢄꢋꢂ  
ꢌꢋꢂ  
ꢁꢋꢂ  
9 ꢈꢉ9ꢊ  
ꢅꢋꢂ  
,
,
Conditions: VDD = 1.8 V; on standard port pins.  
Conditions: VDD = 3.3 V; on standard port pins.  
Fig 17. Typical pull-up current IPU versus input voltage VI  
DDDꢀꢁꢂꢃꢆꢂꢃ  
DDDꢀꢁꢂꢃꢆꢂꢅ  
ꢎꢂ  
ꢃꢂꢂ  
,
,
SG  
SG  
ꢉ—$ꢊ  
ꢉ—$ꢊ  
ꢅꢇ  
ꢁꢄ  
ꢄꢆ  
ꢃꢁ  
ꢆꢂ  
ꢇꢂ  
ꢁꢂ  
ꢄꢂ  
ꢄꢅ&  
ꢃꢂꢅ&  
ꢍꢂ&  
ꢀꢁꢂ&  
ꢍꢂ&  
ꢄꢅ&  
ꢃꢂꢅ&  
ꢀꢁꢂ&  
ꢂꢋꢂ  
ꢂꢋꢎ  
ꢃꢋꢁ  
ꢄꢋꢃ  
ꢄꢋꢆ  
9 ꢈꢉ9ꢊ  
ꢌꢋꢅ  
9 ꢈꢉ9ꢊ  
,
,
Conditions: VDD = 1.8V; on standard port pins.  
Conditions: VDD = 3.3 V; on standard port pins.  
Fig 18. Typical pull-down current IPD versus input voltage VI  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
56 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
11. Dynamic characteristics  
11.1 Power-up ramp conditions  
Table 17. Power-up characteristics  
Tamb = 40 C to +105 C; 1.62 V VDD 3.6 V  
Symbol Parameter  
Conditions  
Min  
0
Typ  
Max  
500  
-
Unit  
ms  
s  
[1][3]  
[1][2]  
[3]  
tr  
rise time  
at t = t1: 0 < VI 200 mV  
-
-
-
twait  
VI  
wait time  
12  
0
input voltage  
at t = t1 on pin VDD  
200  
mV  
[1] See Figure 19.  
[2] Based on simulation. The wait time specifies the time the power supply must be at levels below 200 mV  
before ramping up.  
[3] Based on characterization, not tested in production.  
t
r
V
DD  
200 mV  
0
t
wait  
t = t  
1
aaa-017426  
Condition: 0 < VI 200 mV at start of power-up (t = t1)  
Fig 19. Power-up ramp  
11.2 Flash memory  
Table 18. Flash characteristics  
Tamb = 40 C to +105 C, unless otherwise specified. 1.62 V VDD 3.6 V  
Symbol Parameter  
Nendu endurance  
Conditions  
Min  
Typ  
Max  
Unit  
[1]  
sector erase/program  
10000  
1000  
-
-
-
-
cycles  
cycles  
page erase/program; page  
in a sector  
tret  
retention time powered  
unpowered  
10  
10  
-
-
-
-
-
years  
years  
ms  
-
ter  
erase time  
page, sector, or multiple  
consecutive sectors  
100  
[2]  
tprog  
programming  
time  
-
1
-
ms  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
57 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
[1] Number of erase/program cycles.  
[2] Programming times are given for writing 256 bytes from RAM to the flash.  
11.3 I/O pins  
Table 19. Dynamic characteristic: I/O pins[1]  
Tamb = 40 C to +85 C; 1.62 V VDD 3.6 V  
Symbol Parameter Conditions  
Min Typ Max Unit  
Standard I/O pins - normal drive strength  
[2][3]  
[2][3]  
[2][3]  
[2][3]  
tr  
tf  
tr  
tf  
rise time  
fall time  
rise time  
fall time  
pin configured as output; SLEW = 1 (fast  
mode);  
2.7 V VDD 3.6 V  
1.0  
1.6  
-
-
2.5  
3.8  
ns  
ns  
1.62 V VDD 1.98 V  
pin configured as output; SLEW = 1 (fast  
mode);  
2.7 V VDD 3.6 V  
1.62 V VDD 1.98 V  
0.9  
1.7  
-
-
2.5  
4.1  
ns  
ns  
pin configured as output; SLEW = 0  
(standard mode);  
2.7 V VDD 3.6 V  
1.9  
2.9  
-
-
4.3  
7.8  
ns  
ns  
1.62 V VDD 1.98 V  
pin configured as output; SLEW = 0  
(standard mode);  
2.7 V VDD 3.6 V  
1.62 V VDD 1.98 V  
pin configured as input  
pin configured as input  
1.9  
2.7  
0.3  
0.2  
-
-
-
-
4.0  
6.7  
1.3  
1.2  
ns  
ns  
ns  
ns  
[4]  
[4]  
tr  
tf  
rise time  
fall time  
[1] Simulated data.  
[2] Simulated using 10 cm of 50 Ω PCB trace with 5 pF receiver input. Rise and fall times measured between  
80 % and 20 % of the full output signal level.  
[3] The slew rate is configured in the IOCON block the SLEW bit. See the LPC5410x user manual.  
[4] CL = 20 pF. Rise and fall times measured between 90 % and 10 % of the full input signal level.  
11.4 Wake-up process  
Table 20. Dynamic characteristic: Typical wake-up times from low power modes  
VDD = 3.3 V;Tamb = 25 C; using IRC as the system clock.  
Symbol Parameter Conditions  
Min Typ[1]  
Max Unit  
[2][3]  
[2]  
twake  
wake-up  
time  
from sleep mode  
-
-
1.6  
18  
-
-
s  
s  
from deep sleep mode with full  
SRAM retention:  
to code executing in flash or  
SRAM  
[2]  
[4]  
from power down mode  
180  
200  
-
-
s  
s  
from deep power-down mode;  
RTC disabled; using RESET pin.  
-
[1] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply  
voltages.  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
58 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
[2] The wake-up time measured is the time between when a GPIO input pin is triggered to wake the device up  
from the low power modes and from when a GPIO output pin is set in the interrupt service routine (ISR)  
wake-up handler. Measurements are based on using the power library provided in the LPC5410x LPCOpen  
software platform version v.3.04.  
[3] IRC enabled, all peripherals off.  
[4] RTC disabled. Wake-up from deep power-down causes the part to go through entire reset  
process. The wake-up time measured is the time between when the RESET pin is triggered to wake the  
device up and when a GPIO output pin is set in the reset handler.  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
59 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
11.5 System PLL  
Table 21. PLL lock times and current  
Tamb = 40 C to +105 C, unless otherwise specified. VDD = 1.62 V to 3.6 V  
Symbol Parameter Conditions Min Typ Max  
Unit  
PLL configuration: input frequency 12 MHz; output frequency 75 MHz  
[2]  
tlock(PLL)  
IDD(PLL)  
PLL lock time  
PLL current  
PLL set-up procedure followed  
when locked  
400  
550  
s  
[1][3]  
-
-
A  
PLL configuration: input frequency 12 MHz; output frequency 100 MHz  
[2]  
tlock(PLL)  
IDD(PLL)  
PLL lock time  
PLL current  
PLL set-up procedure followed  
when locked  
-
-
-
-
400  
750  
s  
[1][3]  
A  
PLL configuration: input frequency 32.768 kHz; output frequency 75 MHz  
[1]  
tlock(PLL)  
IDD(PLL)  
PLL lock time  
PLL current  
-
6250  
450  
s  
[1][3]  
when locked  
-
-
A  
PLL configuration: input frequency 32.768 kHz; output frequency 100 MHz  
[1]  
tlock(PLL)  
IDD(PLL)  
PLL lock time  
PLL current  
-
-
-
-
-
6250  
560  
s  
[1][3]  
when locked  
A  
[1] Data based on characterization results, not tested in production.  
[2] PLL set-up requires high-speed start-up and transition to normal mode. Lock times are only valid when  
high-speed start-up settings are applied followed by normal mode settings. The procedure for setting up the  
PLL is described in the LPC5410x user manual.  
[3] PLL current measured using lowest CCO frequency to obtain the desired output frequency.  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
60 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
Table 22. Dynamic characteristics of the PLL[1]  
Symbol  
Parameter  
Conditions  
Min  
Typ Max  
Unit  
Reference clock input  
Fin  
input frequency  
-
32.768 kHz  
-
25 MHz  
-
Clock output  
[3]  
[4]  
fo  
output frequency  
output duty cycle  
CCO frequency  
for PLL clkout output  
for PLL clkout output  
1.2  
46  
-
-
-
-
150  
54  
MHz  
%
do  
fCCO  
150  
MHz  
Lock detector output  
lock(PFD) PFD lock criterion  
1
2
4
ns  
Dynamic parameters at fout = fCCO = 100 MHz; standard bandwidth settings  
[5][6]  
Jrms-interval  
Jpp-period  
RMS interval jitter  
fref = 10 MHz  
-
-
15  
40  
30  
80  
ps  
ps  
[5][6]  
peak-to-peak, period jitter fref = 10 MHz  
[1] Data based on characterization results, not tested in production.  
[2] Output jitter depends on the frequency of input jitter and is equal to or less than the input jitter.  
[3] Excluding under- and overshoot which may occur when the PLL is not in lock.  
[4] A phase difference between the inputs of the PFD (clkref and clkfb) smaller than the PFD lock criterion  
means lock output is HIGH.  
[5] Actual jitter dependent on amplitude and spectrum of substrate noise.  
[6] Input clock coming from a crystal oscillator with less than 250 ps peak-to-peak period jitter.  
11.6 IRC  
Table 23. Dynamic characteristic: IRC oscillator  
1.62 V VDD 3.6 V.  
Symbol Parameter  
Conditions  
Min  
Typ[1] Max  
12 12 +1 %  
12 +3 %  
Unit  
MHz  
MHz  
[2]  
[3]  
[3]  
fosc(RC)  
internal RC oscillator frequency  
Tamb = 25 C  
12 1 %  
40 C Tamb +105 C  
0 C Tamb +85 C  
12 3.5 % 12  
12 2 % 12  
12 +2.5 % MHz  
[1] Typical ratings are not guaranteed. The value listed is at room temperature (25 C).  
[2] Tested in production.  
[3] Guaranteed by characterization, not tested in production.  
11.7 RTC oscillator  
See Section 13.5 for connecting the RTC oscillator to a crystal or an external clock  
source.  
Table 24. Dynamic characteristic: RTC oscillator  
1.62 V VDD 3.6 V[1]  
Symbol Parameter  
fi input frequency  
Conditions  
Min  
Typ[1]  
Max  
Unit  
-
-
32.768  
-
kHz  
[1] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply  
voltages.  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
61 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
11.8 Watchdog oscillator  
Table 25. Dynamic characteristics: Watchdog oscillator  
Symbol  
Parameter  
Min  
Typ[1]  
Max  
Unit  
[2]  
fosc(int)  
internal watchdog oscillator  
frequency  
-
500  
-
kHz  
Dclkout  
JPP-CC  
tstart  
clkout duty cycle  
peak-peak period jitter  
start-up time  
48  
-
-
52  
20  
-
%
[3][4]  
[4]  
1
4
ns  
s  
-
[1] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply  
voltages.  
[2] The typical frequency spread over processing and temperature (Tamb = 40 C to +105 C) is 40 %.  
[3] Actual jitter dependent on amplitude and spectrum of substrate noise.  
[4] Guaranteed by design. Not tested in production samples.  
11.9 I2C-bus  
Table 26. Dynamic characteristic: I2C-bus pins[1]  
Tamb = 40 C to +105 C; 1.62 V VDD 3.6 V.[2]  
Symbol Parameter  
fSCL SCL clock frequency  
Conditions  
Min  
Max  
100  
400  
1
Unit  
kHz  
kHz  
MHz  
ns  
Standard-mode  
Fast-mode  
0
0
0
-
Fast-mode Plus  
of both SDA and SCL signals  
Standard-mode  
Fast-mode  
[4][5][6][7]  
tf  
fall time  
300  
20 + 0.1 Cb  
300  
ns  
ns  
s  
s  
s  
s  
s  
s  
s  
s  
s  
ns  
ns  
ns  
Fast-mode Plus  
Standard-mode  
Fast-mode  
-
120  
tLOW  
LOW period of the SCL clock  
HIGH period of the SCL clock  
data hold time  
4.7  
1.3  
0.5  
4.0  
0.6  
0.26  
0
-
-
-
-
-
-
-
-
-
-
-
-
Fast-mode Plus  
Standard-mode  
Fast-mode  
tHIGH  
Fast-mode Plus  
Standard-mode  
Fast-mode  
[3][4][8]  
[9][10]  
tHD;DAT  
0
Fast-mode Plus  
Standard-mode  
Fast-mode  
0
tSU;DAT  
data set-up time  
250  
100  
50  
Fast-mode Plus  
[1] Guaranteed by design. Not tested in production.  
[2] Parameters are valid over operating temperature range unless otherwise specified. See the I2C-bus specification UM10204 for details.  
[3] tHD;DAT is the data hold time that is measured from the falling edge of SCL; applies to data in transmission and the acknowledge.  
[4] A device must internally provide a hold time of at least 300 ns for the SDA signal (with respect to the VIH(min) of the SCL signal) to  
bridge the undefined region of the falling edge of SCL.  
[5] Cb = total capacitance of one bus line in pF. If mixed with Hs-mode devices, faster fall times are allowed.  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
62 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
[6] The maximum tf for the SDA and SCL bus lines is specified at 300 ns. The maximum fall time for the SDA output stage tf is specified at  
250 ns. This allows series protection resistors to be connected in between the SDA and the SCL pins and the SDA/SCL bus lines  
without exceeding the maximum specified tf.  
[7] In Fast-mode Plus, fall time is specified the same for both output stage and bus timing. If series resistors are used, designers should  
allow for this when considering bus timing.  
[8] The maximum tHD;DAT could be 3.45 s and 0.9 s for Standard-mode and Fast-mode but must be less than the maximum of tVD;DAT or  
tVD;ACK by a transition time. This maximum must only be met if the device does not stretch the LOW period (tLOW) of the SCL signal. If  
the clock stretches the SCL, the data must be valid by the set-up time before it releases the clock.  
[9] tSU;DAT is the data set-up time that is measured with respect to the rising edge of SCL; applies to data in transmission and the  
acknowledge.  
[10] A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system but the requirement tSU;DAT = 250 ns must then be met.  
This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the  
LOW period of the SCL signal, it must output the next data bit to the SDA line tr(max) + tSU;DAT = 1000 + 250 = 1250 ns (according to the  
Standard-mode I2C-bus specification) before the SCL line is released. Also the acknowledge timing must meet this set-up time.  
t
t
SU;DAT  
f
70 %  
30 %  
70 %  
30 %  
SDA  
SCL  
t
t
HD;DAT  
VD;DAT  
t
f
t
HIGH  
70 %  
30 %  
70 %  
30 %  
70 %  
30 %  
70 %  
30 %  
t
LOW  
1 / f  
S
SCL  
002aaf425  
Fig 20. I2C-bus pins clock timing  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
63 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
11.10 SPI interfaces  
The actual SPI bit rate depends on the delays introduced by the external trace, the  
external device, system clock (CCLK), and capacitive loading. Excluding delays  
introduced by external device and PCB, the maximum supported bit rate for SPI master  
mode is 48 Mbit/s, and the maximum supported bit rate for SPI slave mode is 21 Mbit/s.  
Table 27. SPI dynamic characteristics[1]  
Tamb = 40 C to 105 C; CL = 30 pF balanced loading on all pins; SLEW = standard mode. Parameters sampled at the 50 %  
level of the rising or falling edge.  
Symbol Parameter  
Conditions  
Min  
Max  
Unit  
SPI master 1.62V VDD 2.0 V  
tDS  
data set-up time  
CCLK = 1 MHz to 12 MHz  
CCLK = 48 MHz to 60 MHz  
CCLK = 96 MHz  
0
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0
-
0
-
tDH  
data hold time  
CCLK = 1 MHz to 12 MHz  
CCLK = 48 MHz to 60 MHz  
CCLK = 96 MHz  
14  
12  
9
-
-
-
tv(Q)  
data output valid time CCLK = 1 MHz to 12 MHz  
CCLK = 48 MHz to 60 MHz  
0
7
2
2
0
CCLK = 96 MHz  
0
SPI slave 1.62V VDD 2.0 V  
tDS  
data set-up time  
data hold time  
CCLK = 1 MHz to 12 MHz  
CCLK = 48 MHz to 60 MHz  
CCLK = 96 MHz  
22  
4
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
-
4
-
tDH  
CCLK = 1 MHz to 12 MHz  
CCLK = 48 MHz to 60 MHz  
CCLK = 96 MHz  
0
-
0
-
0
-
tv(Q)  
data output valid time CCLK = 1 MHz to 12 MHz  
CCLK = 48 MHz to 60 MHz  
46  
30  
30  
70  
37  
36  
CCLK = 96 MHz  
SPI master 2.7 V VDD 3.6 V  
tDS  
data set-up time  
data hold time  
CCLK = 1 MHz to 12 MHz  
CCLK = 48 MHz to 60 MHz  
CCLK = 96 MHz  
0
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0
-
0
-
tDH  
CCLK = 1 MHz to 12 MHz  
CCLK = 48 MHz to 60 MHz  
CCLK = 96 MHz  
10  
8
-
-
7
-
tv(Q)  
data output valid time CCLK = 1 MHz to 12 MHz  
CCLK = 48 MHz to 60 MHz  
0
6
1
1
0
CCLK = 96 MHz  
0
SPI slave 2.7V VDD 3.6 V  
tDS  
data set-up time  
CCLK = 1 MHz to 12 MHz  
CCLK = 48 MHz to 60 MHz  
CCLK = 96 MHz  
21  
4
-
-
-
ns  
ns  
ns  
3
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
64 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
Table 27. SPI dynamic characteristics[1]  
Tamb = 40 C to 105 C; CL = 30 pF balanced loading on all pins; SLEW = standard mode. Parameters sampled at the 50 %  
level of the rising or falling edge.  
Symbol Parameter  
Conditions  
Min  
0
Max  
-
Unit  
ns  
tDH  
data hold time  
CCLK = 1 MHz to 12 MHz  
CCLK = 48 MHz to 60 MHz  
CCLK = 96 MHz  
0
-
ns  
0
-
ns  
tv(Q)  
data output valid time CCLK = 1 MHz to 12 MHz  
CCLK = 48 MHz to 60 MHz  
36  
21  
20  
61  
22  
21  
ns  
ns  
CCLK = 96 MHz  
ns  
[1] Based on characterization; not tested in production.  
T
cy(clk)  
SCK (CPOL = 0)  
SCK (CPOL = 1)  
SSEL  
MOSI (CPHA = 0)  
MISO (CPHA = 0)  
t
t
v(Q)  
v(Q)  
IDLE  
IDLE  
DATA VALID (MSB)  
DATA VALID  
DATA VALID (MSB)  
DATA VALID (MSB)  
DATA VALID (LSB)  
t
t
DH  
DS  
DATA VALID (MSB)  
DATA VALID  
DATA VALID (LSB)  
MOSI (CPHA = 1)  
MISO (CPHA = 1)  
t
t
v(Q)  
v(Q)  
DATA VALID (MSB)  
DATA VALID (MSB)  
IDLE  
IDLE  
DATA VALID (LSB)  
DATA VALID  
t
t
DH  
DS  
DATA VALID (MSB)  
DATA VALID (MSB)  
DATA VALID (LSB)  
DATA VALID  
aaa-014969  
Fig 21. SPI master timing  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
65 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
T
cy(clk)  
SCK (CPOL = 0)  
SCK (CPOL = 1)  
SSEL  
MISO (CPHA = 0)  
MOSI (CPHA = 0)  
t
t
v(Q)  
v(Q)  
IDLE  
IDLE  
DATA VALID (MSB)  
DATA VALID  
DATA VALID (MSB)  
DATA VALID (MSB)  
DATA VALID (LSB)  
t
t
DH  
DS  
DATA VALID (MSB)  
DATA VALID  
DATA VALID (LSB)  
MISO (CPHA = 1)  
MOSI (CPHA = 1)  
t
t
v(Q)  
v(Q)  
DATA VALID (MSB)  
DATA VALID (MSB)  
DATA VALID (LSB)  
DATA VALID  
IDLE  
IDLE  
t
t
DH  
DS  
DATA VALID (MSB)  
DATA VALID (MSB)  
DATA VALID (LSB)  
DATA VALID  
aaa-014970  
Fig 22. SPI slave timing  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
66 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
11.11 USART interface  
The actual USART bit rate depends on the delays introduced by the external trace, the  
external device, system clock (CCLK), and capacitive loading. Excluding delays  
introduced by external device and PCB, the maximum supported bit rate for USART  
master and slave synchronous modes is 24 Mbit/s.  
Table 28. USART dynamic characteristics[1]  
Tamb = 40 C to 105 C; 1.62 V VDD 3.6 V; CL = 30 pF balanced loading on all pins; SLEW =  
standard mode. Parameters sampled at the 50% level of the falling or rising edge.  
Symbol Parameter  
Conditions  
Min  
Max  
Unit  
USART master (in synchronous mode) 1.62V VDD 2.0 V  
tsu(D)  
th(D)  
tv(Q)  
data input set-up time CCLK = 1 MHz to 12 MHz  
65  
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CCLK = 48 MHz to 60 MHz 35  
-
CCLK = 96 MHz  
34  
0
-
data input hold time  
data output valid time  
CCLK = 1 MHz to 12 MHz  
CCLK = 48 MHz to 60 MHz  
CCLK = 96 MHz  
-
0
-
0
-
CCLK = 1 MHz to 12 MHz  
CCLK = 48 MHz to 60 MHz  
CCLK = 96 MHz  
0
8
2
2
0
0
USART slave (in synchronous mode) 1.62V VDD 2.0 V  
tsu(D)  
th(D)  
tv(Q)  
data input set-up time CCLK = 1 MHz to 12 MHz  
CCLK = 48 MHz to 60 MHz  
18  
5
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
-
CCLK = 96 MHz  
4
-
data input hold time  
data output valid time  
CCLK = 1 MHz to 12 MHz  
CCLK = 48 MHz to 60 MHz  
CCLK = 96 MHz  
0
-
0
-
0
-
CCLK = 1 MHz to 12 MHz  
50  
65  
40  
36  
CCLK = 48 MHz to 60 MHz 35  
CCLK = 96 MHz  
USART master (in synchronous mode) 2.7V VDD 3.6V  
30  
tsu(D)  
th(D)  
tv(Q)  
data input set-up time CCLK = 1 MHz to 12 MHz  
61  
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CCLK = 48 MHz to 60 MHz 22  
-
CCLK = 96 MHz  
21  
0
-
data input hold time  
data output valid time  
CCLK = 1 MHz to 12 MHz  
CCLK = 48 MHz to 60 MHz  
CCLK = 96 MHz  
-
0
-
0
-
CCLK = 1 MHz to 12 MHz  
CCLK = 48 MHz to 60 MHz  
CCLK = 96 MHz  
0
7
2
2
1
1
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
67 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
Table 28. USART dynamic characteristics[1]  
Tamb = 40 C to 105 C; 1.62 V VDD 3.6 V; CL = 30 pF balanced loading on all pins; SLEW =  
standard mode. Parameters sampled at the 50% level of the falling or rising edge.  
Symbol Parameter  
Conditions  
Min  
Max  
Unit  
USART slave (in synchronous mode) 2.7V VDD 3.6 V  
tsu(D)  
th(D)  
tv(Q)  
data input set-up time CCLK = 1 MHz to 12 MHz  
CCLK = 48 MHz to 60 MHz  
21  
5
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
-
CCLK = 96 MHz  
4
-
data input hold time  
data output valid time  
CCLK = 1 MHz to 12 MHz  
CCLK = 48 MHz to 60 MHz  
CCLK = 96 MHz  
0
-
0
-
0
-
CCLK = 1 MHz to 12 MHz  
37  
62  
25  
21  
CCLK = 48 MHz to 60 MHz 22  
CCLK = 96 MHz 19  
[1] Based on characterization; not tested in production.  
T
cy(clk)  
Un_SCLK (CLKPOL = 0)  
Un_SCLK (CLKPOL = 1)  
TXD  
t
t
vQ)  
v(Q)  
START  
BIT0  
BIT1  
t
t
su(D) h(D)  
BIT1  
START  
BIT0  
RXD  
aaa-015074  
Fig 23. USART timing  
11.12 SCTimer/PWM output timing  
Table 29. SCTimer/PWM output dynamic characteristics  
Tamb = 40 C to 105 C; 1.62 V VDD 3.6 V CL = 30 pF. Simulated skew (over process, voltage,  
and temperature) of any two SCT fixed-pin output signals; sampled at 10 % and 90 % of the signal  
level; values guaranteed by design.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
tsk(o)  
output skew time  
-
-
-
3.0  
ns  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
68 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
12. Analog characteristics  
12.1 BOD  
Table 30. BOD static characteristics  
Tamb = 25 C; based on characterization; not tested in production.  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Vth  
threshold voltage interrupt level 0  
assertion  
-
-
2.05  
2.20  
-
-
V
V
de-assertion  
Vth  
threshold voltage interrupt level 1  
assertion  
-
-
2.45  
2.60  
-
-
V
V
de-assertion  
reset level 1  
assertion  
-
-
1.85  
2.00  
-
-
V
V
de-assertion  
Vth  
threshold voltage interrupt level 2  
assertion  
-
-
2.75  
2.90  
-
-
V
V
de-assertion  
reset level 2  
assertion  
-
-
2.00  
2.15  
-
-
V
V
de-assertion  
Vth  
threshold voltage interrupt level 3  
assertion  
-
-
3.05  
3.20  
-
-
V
V
de-assertion  
reset level 3  
assertion  
-
-
2.30  
2.45  
-
-
V
V
de-assertion  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
69 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
12.2 12-bit ADC characteristics  
Table 31. 12-bit ADC static characteristics  
Tamb = 40 C to +105 C; 1.62 V VDD 3.6 V; VREFP = VDDA; VSSA = VREFN = GND. ADC  
calibrated at Tamb = 25C.  
Symbol Parameter  
Conditions  
Min  
Typ[2] Max  
Unit  
[3]  
[4]  
VIA  
Cia  
analog input  
voltage  
0
-
-
VDDA  
V
analog input  
capacitance  
5
-
-
pF  
fclk(ADC) ADC clock  
frequency  
80  
5.0  
-
MHz  
fs  
sampling  
frequency  
-
-
-
Msamples/s  
[1][5]  
[1][6]  
ED  
differential  
linearity error  
VDDA = VREFP = 1.62 V  
VDDA = VREFP = 3.6 V  
VDDA = VREFP = 1.62 V  
VDDA = VREFP = 3.6 V  
calibration enabled  
3  
2  
5  
2  
5.6  
3  
3  
-
LSB  
LSB  
LSB  
LSB  
mV  
EL(adj)  
integral  
non-linearity  
-
-
-
-
-
[1][7]  
[1][8]  
EO  
offset error  
-
Verr(FS) full-scale error VDDA = VREFP = 1.62 V  
-
LSB  
LSB  
k  
voltage  
VDDA = VREFP = 3.6 V  
-
[9][10]  
Zi  
input  
fs = 5.0 Msamples/s  
17.0  
-
impedance  
[1] Based on characterization; not tested in production.  
[2] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply  
voltages.  
[3] The input resistance of ADC channels 6 to 11 is higher than ADC channels 0 to 5.  
[4] Cia represents the external capacitance on the analog input channel for sampling speeds of  
5.0 Msamples/s. No parasitic capacitances included.  
[5] The differential linearity error (ED) is the difference between the actual step width and the ideal step width.  
See Figure 24.  
[6] The integral non-linearity (EL(adj)) is the peak difference between the center of the steps of the actual and  
the ideal transfer curve after appropriate adjustment of gain and offset errors. See Figure 24.  
[7] The offset error (EO) is the absolute difference between the straight line which fits the actual curve and the  
straight line which fits the ideal curve. See Figure 24.  
[8] The full-scale error voltage or gain error (EG) is the difference between the straight-line fitting the actual  
transfer curve after removing offset error, and the straight line which fits the ideal transfer curve. See  
Figure 24.  
[9] Tamb = 25 C; maximum sampling frequency fs = 5.0 Msamples/s and analog input capacitance Cia = 5 pF.  
[10] Input impedance Zi is inversely proportional to the sampling frequency and the total input capacity including  
Cia and Cio: Zi 1 / (fs Ci). See Table 16 for Cio. See Figure 25.  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
70 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
offset  
error  
O
gain  
error  
E
E
G
4095  
4094  
4093  
4092  
4091  
4090  
(2)  
7
code  
out  
(1)  
6
5
4
3
2
1
0
(5)  
(4)  
(3)  
1 LSB  
(ideal)  
4090 4091 4092 4093 4094 4095 4096  
1
2
3
4
5
6
7
V
IA  
(LSB  
)
ideal  
offset error  
E
O
VREFP - VREFN  
1 LSB =  
4096  
aaa-016908  
(1) Example of an actual transfer curve.  
(2) The ideal transfer curve.  
(3) Differential linearity error (ED).  
(4) Integral non-linearity (EL(adj)).  
(5) Center of a step of the actual transfer curve.  
Fig 24. 12-bit ADC characteristics  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
71 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
Table 32. ADC sampling times[1]  
-40 C Tamb 85 C; 1.62 V VDDA 3.6 V; 1.62 V VDD 3.6 V  
Symbol Parameter Conditions  
Min  
Typ Max Unit  
ADC inputs ADC_5 to ADC_0 (fast channels); ADC resolution = 12 bit  
[3]  
ts  
sampling time  
Zo < 0.05 kΩ  
20  
23  
26  
31  
47  
75  
-
-
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
0.05 kΩ Zo < 0.1 kΩ  
0.1 kΩ Zo < 0.2 kΩ  
0.2 kΩ Zo < 0.5 kΩ  
0.5 kΩ Zo < 1 kΩ  
1 kΩ Zo < 5 kΩ  
ADC inputs ADC_5 to ADC_0 (fast channels); ADC resolution = 10 bit  
[3]  
ts  
sampling time  
Zo < 0.05 kΩ  
15  
18  
20  
24  
38  
62  
-
-
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
0.05 kΩ Zo < 0.1 kΩ  
0.1 kΩ Zo < 0.2 kΩ  
0.2 kΩ Zo < 0.5 kΩ  
0.5 kΩ Zo < 1 kΩ  
1 kΩ Zo < 5 kΩ  
ADC inputs ADC_5 to ADC_0 (fast channels); ADC resolution = 8 bit  
[3]  
ts  
sampling time  
Zo < 0.05 kΩ  
12  
13  
15  
19  
30  
48  
-
-
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
0.05 kΩ Zo < 0.1 kΩ  
0.1 kΩ Zo < 0.2 kΩ  
0.2 kΩ Zo < 0.5 kΩ  
0.5 kΩ Zo < 1 kΩ  
1 kΩ Zo < 5 kΩ  
ADC inputs ADC_5 to ADC_0 (fast channels); ADC resolution = 6 bit  
[3]  
ts  
sampling time  
Zo < 0.05 kΩ  
9
-
-
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
0.05 kΩ Zo < 0.1 kΩ  
0.1 kΩ Zo < 0.2 kΩ  
0.2 kΩ Zo < 0.5 kΩ  
0.5 kΩ Zo < 1 kΩ  
1 kΩ Zo < 5 kΩ  
10  
11  
13  
22  
36  
ADC inputs ADC_11 to ADC_6 (slow channels); ADC resolution = 12 bit  
[3]  
ts  
sampling time  
Zo < 0.05 kΩ  
43  
46  
50  
56  
74  
105  
-
-
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
0.05 kΩ Zo < 0.1 kΩ  
0.1 kΩ Zo < 0.2 kΩ  
0.2 kΩ Zo < 0.5 kΩ  
0.5 kΩ Zo < 1 kΩ  
1 kΩ Zo < 5 kΩ  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
72 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
Table 32. ADC sampling times[1] …continued  
-40 C Tamb 85 C; 1.62 V VDDA 3.6 V; 1.62 V VDD 3.6 V  
Symbol Parameter Conditions  
Min  
Typ Max Unit  
ADC inputs ADC_11 to ADC_6 (slow channels); ADC resolution = 10 bit  
[3]  
ts  
sampling time  
Zo < 0.05 kΩ  
35  
38  
40  
46  
61  
86  
-
-
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
0.05 kΩ Zo < 0.1 kΩ  
0.1 kΩ Zo < 0.2 kΩ  
0.2 kΩ Zo < 0.5 kΩ  
0.5 kΩ Zo < 1 kΩ  
1 kΩ Zo < 5 kΩ  
ADC inputs ADC_11 to ADC_6 (slow channels); ADC resolution = 8 bit  
[3]  
ts  
sampling time  
Zo < 0.05 kΩ  
27  
29  
32  
36  
48  
69  
-
-
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
0.05 kΩ Zo < 0.1 kΩ  
0.1 kΩ Zo < 0.2 kΩ  
0.2 kΩ Zo < 0.5 kΩ  
0.5 kΩ Zo < 1 kΩ  
1 kΩ Zo < 5 kΩ  
ADC inputs ADC_11 to ADC_6 (slow channels); ADC resolution = 6 bit  
[3]  
ts  
sampling time  
Zo < 0.05 kΩ  
20  
22  
23  
26  
36  
51  
-
-
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
0.05 kΩ Zo < 0.1 kΩ  
0.1 kΩ Zo < 0.2 kΩ  
0.2 kΩ Zo < 0.5 kΩ  
0.5 kΩ Zo < 1 kΩ  
1 kΩ Zo < 5 kΩ  
[1] Characterized through simulation. Not tested in production.  
[2] The ADC default sampling time is 2.5 ADC clock cycles. To match a given analog source output  
impedance, the sampling time can be extended by adding up to seven ADC clock cycles for a maximum  
sampling time of 9.5 ADC clock cycles. See the TSAMP bits in the ADC CTRL register.  
[3] Zo = analog source output impedance.  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
73 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
12.2.1 ADC input impedance  
Figure 25 shows the ADC input impedance. In this figure:  
ADCx represents slow ADC input channels 6 to 11.  
ADCy represents fast ADC input channels 0 to 5.  
R1 and Rsw are the switch-on resistance on the ADC input channel.  
If fast channels (ADC inputs 0 to 5) are selected, the ADC input signal goes through  
Rsw to the sampling capacitor (Cia).  
If slow channels (ADC inputs 6 to 11) are selected, the ADC input signal goes through  
R1 + Rsw to the sampling capacitor (Cia).  
Typical values, R1 = 487 , Rsw = 278   
See Table 16 for Cio.  
See Table 31 for Cia.  
ADC  
R
1
ADCx  
ADCy  
C
io  
C
ia  
R
sw  
DAC  
C
io  
aaa-017600  
Fig 25. ADC input impedance  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
74 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
13. Application information  
13.1 Start-up behavior  
Figure 26 shows the start-up timing after reset. The IRC 12 MHz oscillator provides the  
default clock at Reset and provides a clean system clock shortly after the supply pins  
reach operating voltage.  
IRC  
starts  
IRC status  
internal reset  
V
DD  
valid threshold  
= 1.62 V  
t
a
μs  
t μs  
b
GND  
boot time  
supply ramp-up  
time  
user code  
t
c
μs  
processor status  
boot code  
execution  
finishes;  
user code starts  
aaa-024042  
Fig 26. Start-up timing  
Table 33. Typical start-up timing parameters  
Parameter Description  
Value  
20 s  
151 s  
68 s  
ta  
tb  
tc  
IRC start time  
Internal reset de-asserted  
Boot time  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
75 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
13.2 Standard I/O pin configuration  
Figure 27 shows the possible pin modes for standard I/O pins:  
Digital output driver: with configurable open-drain output.  
Digital input: pull-up resistor (PMOS device) enabled/disabled.  
Digital input: pull-down resistor (NMOS device) enabled/disabled.  
Digital input: repeater mode enabled/disabled.  
Digital input: programmable input digital filter and input inverter.  
Analog input: selected through IOCON register.  
The default configuration for standard I/O pins is input with pull-up resistor enabled. The  
weak MOS devices provide a drive capability equivalent to pull-up and pull-down  
resistors.  
V
V
DD  
DD  
open-drain enable  
output enable  
data output  
strong  
pull-up  
ESD  
pin configured  
as digital output  
PIN  
strong  
pull-down  
ESD  
V
DD  
weak  
pull-up  
pull-up enable  
weak  
pull-down  
repeater  
mode enable  
pin configured  
as digital input  
pull-down enable  
digital  
input  
glitch filter  
enable  
input invert  
enable  
filter  
enable  
analog input  
pin configured  
as analog input  
analog  
input  
aaa-017273  
Fig 27. Standard I/O pin configuration  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
76 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
13.3 Connecting power, clocks, and debug functions  
3.3 V  
SWD connector  
Note 4  
3.3 V  
~10 kΩ - 100 kΩ  
(6)  
SWDIO/PIO0_17  
1
2
3.3 V  
~10 kΩ - 100 kΩ  
SWCLK/PIO0_16  
(6)  
3
5
7
9
4
6
n.c.  
n.c.  
n.c.  
8
RTCXIN  
RESET  
Note 1  
DGND  
C3  
C4  
10  
RTCXOUT  
V
SS  
Note 2  
3.3 V  
DGND  
V
DD  
(2 to 4 pins)  
DGND  
0.1 ꢀF  
0.01 ꢀF  
V
SSA  
LPC5410x  
DGND  
Note 3  
3.3 V  
AGND  
V
DDA  
PIO0_31  
0.1 ꢀF  
10 ꢀF  
ISP select pins  
Note 5  
ADC0  
DGND  
Note 3  
3.3 V  
VREFP  
0.1 ꢀF  
10 ꢀF  
0.1 ꢀF  
VREFN  
AGND  
AGND  
AGND  
DGND  
aaa-017247  
(1) See Section 13.5 “RTC oscillator” for the values of C3 and C4.  
(2) Position the decoupling capacitors of 0.1 F and 0.01 F as close as possible to the VDD pin. Add one set of decoupling  
capacitors to each VDD pin.  
(3) Position the decoupling capacitors of 0.1 F as close as possible to the VREFN and VDDA pins. The 10 F bypass capacitor  
filters the power line. Tie VDDA and VREFP to VDD if the ADC is not used. Tie VREFN to VSS if ADC is not used.  
(4) Uses the ARM 10-pin interface for SWD.  
(5) When measuring signals of low frequency, use a low-pass filter to remove noise and to improve ADC performance. Also see  
Ref. 3.  
(6) External pull-up resistors on SWDIO and SWCLK pins are optional because these pins have an internal pull-up enabled by  
default.  
Fig 28. Power, clock, and debug connections  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
77 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
13.4 I/O power consumption  
I/O pins can contribute to the overall static and dynamic power consumption of the part.  
If pins are configured as digital inputs with the pull-up resistor enabled, a static current can  
flow depending on the voltage level at the pin. This current can be calculated using the  
parameters Ipu and Ipd given in Table 16.  
If pins are configured as digital outputs, the static current is derived from parameters IOH  
and IOL shown in Table 16, and any external load connected to the pin.  
When an I/O pin switches in an application, it contributes to the dynamic power  
consumption because the VDD supply provides the current to charge and discharge all  
internal and external capacitive loads connected to the pin.  
The contribution from the I/O switching current Isw can be calculated as follows for any  
given switching frequency fsw if the external capacitive load (Cext) is known (see Table 16  
for the internal I/O capacitance):  
Isw = VDD x fsw x (Cio + Cext  
)
13.5 RTC oscillator  
In the RTC oscillator circuit, only the crystal (XTAL) and the capacitances CX1 and CX2  
need to be connected externally on the RTCXIN and RTCXOUT pins. See Figure 29.  
An external clock can be connected to RTCX1 if RTCX2 is left open. The recommended  
amplitude of the clock signal is Vi(RMS) = 100 mV to 200 mV with a coupling capacitance of  
5 pF to 10 pF.  
LPC5410x  
L
RTCXIN  
RTCXOUT  
C
R
C
P
=
L
XTAL  
S
C
C
X2  
X1  
aaa-016002  
Fig 29. RTC oscillator components  
For best results, it is very critical to select a matching crystal for the on-chip oscillator.  
Load capacitance (CL), series resistance (RS), and drive level (DL) are important  
parameters to consider while choosing the crystal. After selecting the proper crystal, the  
external load capacitor CX1 and CX2 values can also be generally determined by the  
following expression:  
CX1 = CX2 = 2CL (CPad + CParasitic  
)
Where:  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
78 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
CL - Crystal load capacitance  
CPad - Pad capacitance of the RTCXIN and RTCXOUT pins (~3 pF).  
CParasitic – Parasitic or stray capacitance of external circuit.  
Although CParasitic can be ignored in general, the actual board layout and placement of  
external components influences the optimal values of external load capacitors. Therefore,  
it is recommended to fine tune the values of external load capacitors on actual hardware  
board to get the accurate clock frequency. For fine tuning, output the RTC Clock to one of  
the GPIOs and optimize the values of external load capacitors for minimum frequency  
deviation.  
Table 34. Recommended values for the RTC external 32.768 kHz oscillator CL, RS, DL, and  
C
X1/CX2 components  
Maximum crystal  
series resistance RS drive level DL  
< 70 k0.5 W  
Crystal load  
capacitance CL  
Maximum crystal  
External load  
capacitors CX1/CX2  
12.5 pF  
22 pF, 22 pF  
Remark: The crystals with lower CL (< 12.5 pF) values are not recommended.  
13.5.1 RTC Printed Circuit Board (PCB) design guidelines  
Connect the crystal and external load capacitors on the PCB as close as possible  
(within 20 mm) to the oscillator input and output pins of the chip.  
The length of traces in the oscillation circuit should be as short as possible and must  
not cross other signal lines.  
Ensure that the load capacitors CX1, CX2, and CX3, in case of third overtone crystal  
usage, have a common ground plane.  
Loops must be made as small as possible to minimize the noise coupled in through  
the PCB and to keep the parasitics as small as possible.  
Lay out the ground (GND) pattern under crystal unit.  
Do not lay out other signal lines under crystal unit for multi-layered PCB.  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
79 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
14. Package outline  
WLCSP49: wafer level chip-scale package; 49 bumps; 3.29 x 3.29 x 0.54 mm (backside coating included)  
LPC5410  
D
B
A
E
ball A1  
index area  
A
2
A
A
1
detail X  
e
C
1
Ø v  
Ø w  
C
C
A
B
y
e
b
G
e
F
E
D
C
B
A
e
2
1
2
3
4
5
6
7
X
ball A1  
index area  
0
3 mm  
scale  
w
Dimensions (mm are the original dimensions)  
Unit  
A
A
1
A
2
b
D
E
e
e
e
2
v
y
1
max 0.58 0.23 0.37 0.29 3.318 3.318  
mm nom 0.54 0.20 0.34 0.26 3.288 3.288 0.4 2.4 2.4 0.05 0.015 0.03  
min 0.50 0.17 0.31 0.23 3.258 3.258  
Note  
Backside coating 40 μm  
wlcsp49_lpc5410_po  
References  
Outline  
version  
European  
projection  
Issue date  
IEC  
JEDEC  
- - -  
JEITA  
13-09-16  
14-11-03  
LPC5410  
Fig 30. WLCSP49 Package outline (Applies to LPC5410x Device Revision 1B)  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
80 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
Fig 31. WLCSP49 Package outline (Applies to LPC5410x Device Revision 1C)  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
81 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
LQFP64: plastic low profile quad flat package; 64 leads; body 10 x 10 x 1.4 mm  
SOT314-2  
y
X
A
48  
33  
Z
49  
32  
E
e
H
A
E
2
E
A
(A )  
3
A
1
w M  
p
θ
b
L
p
pin 1 index  
L
64  
17  
detail X  
1
16  
Z
v
M
A
D
e
w M  
b
p
D
B
H
v
M
B
D
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
D
H
L
L
v
w
y
Z
Z
E
θ
1
2
3
p
E
p
D
max.  
7o  
0o  
0.20 1.45  
0.05 1.35  
0.27 0.18 10.1 10.1  
0.17 0.12 9.9 9.9  
12.15 12.15  
11.85 11.85  
0.75  
0.45  
1.45 1.45  
1.05 1.05  
1.6  
mm  
0.25  
0.5  
1
0.2 0.12 0.1  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
00-01-19  
03-02-25  
SOT314-2  
136E10  
MS-026  
Fig 32. LQFP64 Package outline  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
82 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
15. Soldering  
Fig 33. WLCSP49 Soldering footprint (1 of 3)  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
83 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
Fig 34. WLCSP49 Soldering footprint (2 of 3)  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
84 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
Fig 35. WLCSP49 Soldering footprint (3 of 3)  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
85 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
Footprint information for reflow soldering of LQFP64 package  
SOT314-2  
Hx  
Gx  
(0.125)  
P2  
P1  
Hy Gy  
By  
Ay  
C
D2 (8×)  
D1  
Bx  
Ax  
Generic footprint pattern  
Refer to the package outline drawing for actual layout  
solder land  
occupied area  
DIMENSIONS in mm  
P1 P2 Ax  
Ay  
Bx  
By  
C
D1  
D2  
Gx  
Gy  
Hx  
Hy  
0.500 0.560 13.300 13.300 10.300 10.300 1.500 0.280 0.400 10.500 10.500 13.550 13.550  
sot314-2_fr  
Fig 36. LQFP64 Soldering footprint  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
86 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
16. Abbreviations  
Table 35. Abbreviations  
Acronym  
AHB  
APB  
Description  
Advanced High-performance Bus  
Advanced Peripheral Bus  
Application Programming Interface  
Direct Memory Access  
API  
DMA  
GPIO  
IRC  
General Purpose Input/Output  
Internal RC  
LSB  
Least Significant Bit  
MCU  
PLL  
MicroController Unit  
Phase-Locked Loop  
SPI  
Serial Peripheral Interface  
Transistor-Transistor Logic  
Universal Asynchronous Receiver/Transmitter  
TTL  
USART  
17. References  
[1] LPC5410x User manual UM10850:  
http://www.nxp.com/documents/user_manual/UM10850.pdf  
[2] LPC5410x Errata sheet:  
http://www.nxp.com/documents/errata_sheet/ES_LPC5410X.pdf  
[3] Technical note ADC design guidelines:  
http://www.nxp.com/documents/technical_note/TN00009.pdf  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
87 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
18. Revision history  
Table 36. Revision history  
Document ID  
LPC5410x v.2.11  
Modification:  
Release date Data sheet status  
20190815 Product data sheet  
Maximum CPU frequency changed from 100 MHz to 150 MHz.  
Change notice Supersedes  
-
LPC5410x v2.10  
LPC5410x v.2.10  
20190205  
Product data sheet  
201901014F01 LPC5410x v2.9  
May 22, 2014  
Modification:  
Added package drawing for LPC5410x Device Revision 1C.  
Updated soldering diagram to new soldering diagram format.  
LPC5410x v.2.9  
Modification:  
20180126  
Product data sheet  
-
LPC5410x v2.8  
Updated a feature in Section 7.16.2 “SPI serial I/O controller” Maximum supported bit  
rate for SPI master mode is 48 Mbit/s. Was 71 Mbit/s.  
Updated Section 11.10 “SPI interfaces”: the maximum supported bit rate for SPI master  
mode is 48 Mbit/s. Was 71 Mbit/s.  
LPC5410x v.2.8  
Modification:  
20171219  
Updated Table 20 “Dynamic characteristic: Typical wake-up times from low power modes”.  
20170426 Product data sheet LPC5410x v2.6  
Updated Figure 28 “Power, clock, and debug connections”.  
20160926 Product data sheet LPC5410x v2.5  
Product data sheet  
-
LPC5410x v2.7  
LPC5410x v.2.7  
Modification:  
-
LPC5410x v.2.6  
Modification:  
-
Updated Table 13 “Static characteristics: Power consumption in deep sleep, power down,  
and deep power-down modes”: in deep power-down mode, the RTC oscillator running with  
external crystal typical value is 240 nA at: Tamb = 40 C to +105 C, 1.62 V VDD 2.0 V;  
unless otherwise specified.  
LPC5410x v.2.5  
Modification:  
20160913  
Product data sheet  
-
LPC5410x v2.4  
Updated Table 10 “CoreMark score”: changed CoreMark scoreCoreMark code executed  
from flash; CCLK = 84 MHz; 4 system clock flash access time; CCLK = 100 MHz; 5 system  
clock flash access time to CCLK = 84 MHz; 5 system clock flash access time; CCLK = 100  
MHz; 6 system clock flash access time  
LPC5410x v.2.4  
20160711  
Product data sheet  
-
LPC5410x v2.3  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
88 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
Table 36. Revision history …continued  
Document ID  
Release date Data sheet status  
Change notice Supersedes  
Modification:  
Updated Table 27 “SPI dynamic characteristics[1]”:  
Min values of SPI master 1.62V VDD 2.0 V, tDS and tv(Q)  
Min values of SPI slave 1.62V VDD 2.0 V, tDSHand tv(Q)  
Min values of SPI master 2.7 V VDD 3.6 V, tDS  
Min values of SPI slave 2.7 V VDD 3.6 V, tDH  
.
.
.
.
Updated Table 28 “USART dynamic characteristics[1]”:  
Min values of USART master (in synchronous mode) 1.62V VDD 2.0 V, th(D) and tv(Q).  
Min values of USART slave (in synchronous mode) 1.62V VDD 2.0 V, th(D).  
Min values of USART master (in synchronous mode) 2.7V VDD 3.6V, th(D).  
Min values of USART slave (in synchronous mode) 2.7V VDD 3.6 V, th(D).  
Updated features of Section 7.16.2 “SPI serial I/O controller”: Maximum supported bit rate  
for SPI master mode is 71 Mbit/s, and the maximum supported bit rate for SPI slave mode is  
21 Mbit/s.  
Updated features of Section 7.16.1 “USART”: Maximum supported bit rate of 24 Mbit/s for  
USART master and slave synchronous modes.  
Updated Table 22 “Dynamic characteristics of the PLL[1]”:  
fref changed to Fin; reference frequency to input frequency.  
removed frefjitter  
.
Updated the description for Section 11.10 “SPI interfaces”.  
20160524 Product data sheet LPC5410x v2.2  
LPC5410x v2.3  
Modification:  
-
Updated Table 18 “Flash characteristics”: For Nendu conditions, removed the row with page  
erase/program; page in small sector 10000 and removed the word large so that it is "page  
erase/program;page in a sector".  
Updated Section 7.16.1 “USART” features: changed maximum bit rates to 6.25 Mbit/s in  
asynchronous mode.  
LPC5410x v2.2  
20151222  
Product data sheet  
201512007I  
LPC5410x v2.1  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
89 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
Table 36. Revision history …continued  
Document ID  
Release date Data sheet status  
Change notice Supersedes  
Modification:  
Updated Section 11.6 “IRC”, Table 23 “Dynamic characteristic: IRC oscillator” for IRC  
frequency tolerance improvement over temperature.  
Added boot code version and device revision. See Section 4 “Marking”.  
Added the abbreviation ISP to the Remark: This pin is also used to force In-System  
Programming mode (ISP) after device reset. See the LPC5410x User Manual (Boot Process  
chapter) for details to PIO0_31. See Table 4 “Pin description”.  
Removed 164 uA PLL spec in peripheral power consumption table, Table 15 “Typical  
AHB/APB peripheral power consumption[3][4][5]”.  
Added Table 21 “PLL lock times and current”.  
Updated Figure 10 “Deep sleep mode: Typical supply current IDD versus temperature for  
different supply voltages VDD”, Figure 11 “Power down mode: Typical supply current IDD  
versus temperature for different supply voltages VDD”, and Figure 12 “Deep power-down  
mode: Typical supply current IDD versus temperature for different supply voltages VDD”.  
Updated Table 12 “Static characteristics: Power consumption in deep sleep, power down,  
and deep power-down modes”: added max values to Deep sleep mode at 25 °C and 105 °C,  
Power down mode at 25 °C and 105 °C. Changed typ and max values for Deep power-down  
mode RTC oscillator input grounded (RTC oscillator disabled) at 25 °C; was: typ = 84 nA,  
max = 240 nA; now: typ = 160 nA, max = 340 nA.  
Updated Table 13 “Static characteristics: Power consumption in deep sleep, power down,  
and deep power-down modes”: added max values to Deep sleep mode at 25 °C and 105 °C,  
Power down mode at 25 °C and 105 °C. Changed typ and max values for Deep power-down  
mode RTC oscillator input grounded (RTC oscillator disabled) at 25 °C; was: typ = 135 nA,  
max = 470 nA; now: typ = 200 nA, max = 570 nA.  
Updated Table 7 “Limiting values”; VESD, electrostatic discharge voltage, human body  
model; all pins value to 4000 V; was 5000 V.  
Updated Table 31 “12-bit ADC static characteristics”: ED differential linearity error, VDDA =  
VREFP = 1.62 V and 3.6 V, typ value 3 and 2; EL(adj) integral non-linearity, VDDA =  
VREFP = 1.62 V, typ value 5; Verr(FS) full-scale error voltage VDDA = VREFP = 1.62 V and  
3.6 V, typ value to 3  
LPC5410x v2.1  
Modification:  
20150701  
Product data sheet  
-
LPC5410x v2.0  
Updated Figure 3 “LPC5410x Block diagram”. Corrected Sync APB bridge to Async APB  
bridge.  
Updated external clock input for clock frequencies of up to 24 MHz to 25 MHz in Section 2  
“Features and benefits”.  
Updated Table 12 “Static characteristics: Power consumption in deep sleep, power down,  
and deep power-down modes”. Fixed the unit of the max value from nA to A for IDD in deep  
power-down mode; RTC oscillator input grounded (RTC oscillator disabled), Tamb = 105 C.  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
90 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
Table 36. Revision history …continued  
Document ID  
LPC5410x v2.0  
Modification:  
Release date Data sheet status  
20150417 Product data sheet  
Change notice Supersedes  
-
LPC5410x v1.1  
Updated the ADC conversion rate from 4.8 Msamples/s to 5.0 Msamples/s.  
Added Section 7.14 “Pin interrupt/pattern engine”.  
Added Section 7.18.6 “Repetitive Interrupt Timer (RIT)”.  
Updated Table 12 “Static characteristics: Power consumption in deep sleep, power down,  
and deep power-down modes” on page 44.  
Updated Table 15 “Static characteristics: pin characteristics” on page 49:  
Tamb = 40 C to +105 C, unless otherwise specified. 1.62 V VDD 3.6 V.  
updated min and max values.  
Added Section 11.1 “Power-up ramp conditions”.  
Added Section 11.9 “SPI interfaces”, Section 11.10 “USART interface”, and Section 11.11  
“SCTimer/PWM output timing”.  
Updated Section 11.5 “IRC”:  
added temperature conditions: Tamb = 25 C, 40 C Tamb +105 C  
updated min and max values.  
Added Table 14 “Typical peripheral power consumption”.  
Added Table 28 “12-bit ADC static characteristics”:  
Tamb = 40 C to +105 C.  
Values for ED, EL(adj), EO, and Verr(FS)  
.
Added Section 12.2.1 “ADC input impedance”  
Updated Figure 26 “Standard I/O pin configuration” on page 71  
Minor updates to Section 13.3 “I/O power consumption”.  
LPC5410x v1.1  
Modification:  
20141117  
Minor editorial update in Section 1.  
20141106 Product data sheet  
Product data sheet  
-
LPC5410x v1.0  
LPC5410x v1.0  
-
-
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
91 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
19. Legal information  
19.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
Suitability for use — NXP Semiconductors products are not designed,  
19.2 Definitions  
authorized or warranted to be suitable for use in life support, life-critical or  
safety-critical systems or equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
to result in personal injury, death or severe property or environmental  
damage. NXP Semiconductors and its suppliers accept no liability for  
inclusion and/or use of NXP Semiconductors products in such equipment or  
applications and therefore such inclusion and/or use is at the customer’s own  
risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Customers are responsible for the design and operation of their applications  
and products using NXP Semiconductors products, and NXP Semiconductors  
accepts no liability for any assistance with applications or customer product  
design. It is customer’s sole responsibility to determine whether the NXP  
Semiconductors product is suitable and fit for the customer’s applications and  
products planned, as well as for the planned application and use of  
customer’s third party customer(s). Customers should provide appropriate  
design and operating safeguards to minimize the risks associated with their  
applications and products.  
Product specification — The information and data provided in a Product  
data sheet shall define the specification of the product as agreed between  
NXP Semiconductors and its customer, unless NXP Semiconductors and  
customer have explicitly agreed otherwise in writing. In no event however,  
shall an agreement be valid in which the NXP Semiconductors product is  
deemed to offer functions and qualities beyond those described in the  
Product data sheet.  
NXP Semiconductors does not accept any liability related to any default,  
damage, costs or problem which is based on any weakness or default in the  
customer’s applications or products, or the application or use by customer’s  
third party customer(s). Customer is responsible for doing all necessary  
testing for the customer’s applications and products using NXP  
Semiconductors products in order to avoid a default of the applications and  
the products or of the application or use by customer’s third party  
customer(s). NXP does not accept any liability in this respect.  
19.3 Disclaimers  
Limited warranty and liability — Information in this document is believed to  
be accurate and reliable. However, NXP Semiconductors does not give any  
representations or warranties, expressed or implied, as to the accuracy or  
completeness of such information and shall have no liability for the  
consequences of use of such information. NXP Semiconductors takes no  
responsibility for the content in this document if provided by an information  
source outside of NXP Semiconductors.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) will cause permanent  
damage to the device. Limiting values are stress ratings only and (proper)  
operation of the device at these or any other conditions above those given in  
the Recommended operating conditions section (if present) or the  
Characteristics sections of this document is not warranted. Constant or  
repeated exposure to limiting values will permanently and irreversibly affect  
the quality and reliability of the device.  
In no event shall NXP Semiconductors be liable for any indirect, incidental,  
punitive, special or consequential damages (including - without limitation - lost  
profits, lost savings, business interruption, costs related to the removal or  
replacement of any products or rework charges) whether or not such  
damages are based on tort (including negligence), warranty, breach of  
contract or any other legal theory.  
Terms and conditions of commercial sale — NXP Semiconductors  
products are sold subject to the general terms and conditions of commercial  
sale, as published at http://www.nxp.com/profile/terms, unless otherwise  
agreed in a valid written individual agreement. In case an individual  
agreement is concluded only the terms and conditions of the respective  
agreement shall apply. NXP Semiconductors hereby expressly objects to  
applying the customer’s general terms and conditions with regard to the  
purchase of NXP Semiconductors products by customer.  
Notwithstanding any damages that customer might incur for any reason  
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards  
customer for the products described herein shall be limited in accordance  
with the Terms and conditions of commercial sale of NXP Semiconductors.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
No offer to sell or license — Nothing in this document may be interpreted or  
construed as an offer to sell products that is open for acceptance or the grant,  
conveyance or implication of any license under any copyrights, patents or  
other industrial or intellectual property rights.  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
92 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from competent authorities.  
NXP Semiconductors’ specifications such use shall be solely at customer’s  
own risk, and (c) customer fully indemnifies NXP Semiconductors for any  
liability, damages or failed product claims resulting from customer design and  
use of the product for automotive applications beyond NXP Semiconductors’  
standard warranty and NXP Semiconductors’ product specifications.  
Non-automotive qualified products — Unless this data sheet expressly  
states that this specific NXP Semiconductors product is automotive qualified,  
the product is not suitable for automotive use. It is neither qualified nor tested  
in accordance with automotive testing or application requirements. NXP  
Semiconductors accepts no liability for inclusion and/or use of  
non-automotive qualified products in automotive equipment or applications.  
19.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
In the event that customer uses the product for design-in and use in  
automotive applications to automotive specifications and standards, customer  
(a) shall use the product without NXP Semiconductors’ warranty of the  
product for such automotive applications, use and specifications, and (b)  
whenever customer uses the product for automotive applications beyond  
I2C-bus — logo is a trademark of NXP B.V.  
20. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
93 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
21. Contents  
1
General description . . . . . . . . . . . . . . . . . . . . . . 1  
7.18.1  
General-purpose 32-bit timers/external event  
counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
2
Features and benefits . . . . . . . . . . . . . . . . . . . . 1  
Ordering information. . . . . . . . . . . . . . . . . . . . . 4  
Ordering options . . . . . . . . . . . . . . . . . . . . . . . . 4  
Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
7.18.1.1 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
7.18.2  
3
3.1  
4
State Configurable Timer/PWM  
(SCTimer/PWM) . . . . . . . . . . . . . . . . . . . . . . 28  
7.18.2.1 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
7.18.3 Windowed WatchDog Timer (WWDT) . . . . . . 29  
7.18.3.1 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
7.18.4 RTC timer. . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
7.18.4.1 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
7.18.5 Multi-Rate Timer (MRT) . . . . . . . . . . . . . . . . . 30  
7.18.5.1 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
7.18.6 Repetitive Interrupt Timer (RIT) . . . . . . . . . . . 30  
7.18.6.1 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
7.18.7 Micro-tick timer (UTICK). . . . . . . . . . . . . . . . . 31  
7.18.7.1 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
5
6
6.1  
6.2  
6.2.1  
6.2.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 7  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Termination of unused pins. . . . . . . . . . . . . . . 19  
Pin states in different power modes . . . . . . . . 19  
7
Functional description . . . . . . . . . . . . . . . . . . 20  
Architectural overview. . . . . . . . . . . . . . . . . . . 20  
ARM Cortex-M4 processor . . . . . . . . . . . . . . . 20  
ARM Cortex-M4 integrated Floating Point Unit  
(FPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Memory Protection Unit (MPU). . . . . . . . . . . . 20  
Nested Vectored Interrupt Controller (NVIC) for  
Cortex-M4. . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Interrupt sources. . . . . . . . . . . . . . . . . . . . . . . 21  
ARM Cortex-M0+ co-processor . . . . . . . . . . . 21  
Nested Vectored Interrupt Controller (NVIC) for  
Cortex-M0+. . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Interrupt sources. . . . . . . . . . . . . . . . . . . . . . . 22  
System Tick timer (SysTick) . . . . . . . . . . . . . . 22  
On-chip static RAM. . . . . . . . . . . . . . . . . . . . . 22  
On-chip flash. . . . . . . . . . . . . . . . . . . . . . . . . . 22  
On-chip ROM . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Memory mapping . . . . . . . . . . . . . . . . . . . . . . 23  
General Purpose I/O (GPIO) . . . . . . . . . . . . . 24  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Pin interrupt/pattern engine . . . . . . . . . . . . . . 24  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
AHB peripherals . . . . . . . . . . . . . . . . . . . . . . . 25  
DMA controller . . . . . . . . . . . . . . . . . . . . . . . . 25  
7.1  
7.2  
7.3  
7.19  
7.19.1  
7.20  
12-bit Analog-to-Digital Converter (ADC). . . . 31  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
System control . . . . . . . . . . . . . . . . . . . . . . . . 32  
Clock sources. . . . . . . . . . . . . . . . . . . . . . . . . 32  
7.4  
7.5  
7.20.1  
7.20.1.1 Internal RC oscillator (IRC) . . . . . . . . . . . . . . 32  
7.20.1.2 Watchdog oscillator (WDOSC). . . . . . . . . . . . 32  
7.20.1.3 Clock input pin (CLKIN) . . . . . . . . . . . . . . . . . 32  
7.20.2  
7.20.3  
7.20.4  
7.20.4.1 Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
7.20.4.2 Deep sleep mode. . . . . . . . . . . . . . . . . . . . . . 34  
7.20.4.3 Power down mode . . . . . . . . . . . . . . . . . . . . . 34  
7.20.4.4 Deep power-down mode . . . . . . . . . . . . . . . . 35  
7.20.5  
7.20.6  
7.21  
7.5.1  
7.5.2  
7.6  
System PLL . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Clock Generation . . . . . . . . . . . . . . . . . . . . . 33  
Power control . . . . . . . . . . . . . . . . . . . . . . . . . 33  
7.7  
7.7.1  
7.7.2  
7.8  
7.9  
7.10  
7.11  
7.12  
7.13  
7.13.1  
7.14  
7.14.1  
7.15  
7.15.1  
Brownout detection . . . . . . . . . . . . . . . . . . . . 35  
Safety. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Code security (Code Read Protection - CRP) 35  
Emulation and debugging . . . . . . . . . . . . . . . 36  
7.22  
8
9
Limiting values . . . . . . . . . . . . . . . . . . . . . . . . 37  
Thermal characteristics . . . . . . . . . . . . . . . . . 39  
10  
Static characteristics . . . . . . . . . . . . . . . . . . . 40  
General operating conditions . . . . . . . . . . . . . 40  
CoreMark data . . . . . . . . . . . . . . . . . . . . . . . . 40  
Power consumption . . . . . . . . . . . . . . . . . . . . 42  
Pin characteristics . . . . . . . . . . . . . . . . . . . . . 50  
Electrical pin characteristics. . . . . . . . . . . . . . 53  
10.1  
10.2  
10.3  
10.4  
10.4.1  
7.15.1.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
7.16  
7.16.1  
7.16.1.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
7.16.2 SPI serial I/O controller. . . . . . . . . . . . . . . . . . 26  
7.16.2.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
7.17  
7.17.1  
7.18  
Digital serial peripherals . . . . . . . . . . . . . . . . . 25  
USART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
11  
Dynamic characteristics. . . . . . . . . . . . . . . . . 56  
Power-up ramp conditions . . . . . . . . . . . . . . . 56  
Flash memory . . . . . . . . . . . . . . . . . . . . . . . . 56  
I/O pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Wake-up process . . . . . . . . . . . . . . . . . . . . . . 57  
11.1  
11.2  
11.3  
11.4  
I2C-bus interface. . . . . . . . . . . . . . . . . . . . . . . 27  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Counter/timers . . . . . . . . . . . . . . . . . . . . . . . . 27  
continued >>  
LPC5410x  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2019. All rights reserved.  
Product data sheet  
Rev. 2.11 — 19 September 2019  
94 of 95  
LPC5410x  
NXP Semiconductors  
32-bit ARM Cortex-M4/M0+ microcontroller  
11.5  
System PLL . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
11.6  
11.7  
11.8  
11.9  
11.10  
11.11  
11.12  
IRC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
RTC oscillator . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Watchdog oscillator . . . . . . . . . . . . . . . . . . . . 61  
I2C-bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
SPI interfaces . . . . . . . . . . . . . . . . . . . . . . . . . 63  
USART interface. . . . . . . . . . . . . . . . . . . . . . . 66  
SCTimer/PWM output timing . . . . . . . . . . . . . 67  
12  
Analog characteristics . . . . . . . . . . . . . . . . . . 68  
BOD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
12-bit ADC characteristics . . . . . . . . . . . . . . . 69  
ADC input impedance. . . . . . . . . . . . . . . . . . . 73  
12.1  
12.2  
12.2.1  
13  
Application information. . . . . . . . . . . . . . . . . . 74  
Start-up behavior . . . . . . . . . . . . . . . . . . . . . . 74  
Standard I/O pin configuration . . . . . . . . . . . . 75  
Connecting power, clocks, and debug  
13.1  
13.2  
13.3  
functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
I/O power consumption. . . . . . . . . . . . . . . . . . 77  
RTC oscillator . . . . . . . . . . . . . . . . . . . . . . . . . 77  
RTC Printed Circuit Board (PCB) design  
13.4  
13.5  
13.5.1  
guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
14  
15  
16  
17  
18  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 79  
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . 83  
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 84  
19  
Legal information. . . . . . . . . . . . . . . . . . . . . . . 87  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 87  
Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
19.1  
19.2  
19.3  
19.4  
20  
21  
Contact information. . . . . . . . . . . . . . . . . . . . . 88  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2019.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 19 September 2019  
Document identifier: LPC5410x  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY