LPC804M101JDH20FP [NXP]

RISC Microcontroller;
LPC804M101JDH20FP
型号: LPC804M101JDH20FP
厂家: NXP    NXP
描述:

RISC Microcontroller

时钟 微控制器 外围集成电路
文件: 总87页 (文件大小:2733K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LPC804  
32-bit Arm® Cortex®-M0+ microcontroller; up to 32 KB flash  
and 4 KB SRAM; 12-bit ADC; Comparator; 10-bit DAC;  
Capacitive Touch Interface; Programmable Logic Unit  
Rev. 1.4 — 12 July 2018  
Product data sheet  
1. General description  
The LPC804 are an ArmCortex-M0+ based, low-cost 32-bit MCU family operating at CPU  
frequencies of up to 15 MHz. The LPC804 supports 32 KB of flash memory and 4 KB of  
SRAM.  
The peripheral complement of the LPC804 includes a CRC engine, two I2C-bus  
interfaces, up to two USARTs, one SPI interface, Capacitive Touch Interface (Cap Touch),  
one multi-rate timer, self-wake-up timer, one general purpose 32-bit counter/timer, one  
12-bit ADC, one 10-bit DAC, one analog comparator, function-configurable I/O ports  
through a switch matrix, an input pattern match engine, Programmable Logic Unit (PLU),  
and up to 30 general-purpose I/O pins.  
For additional documentation related to the LPC804 parts, see Section 19.  
2. Features and benefits  
System:  
Arm Cortex-M0+ processor (revision r0p1), running at frequencies of up to 15 MHz  
with single-cycle multiplier and fast single-cycle I/O port.  
Arm Cortex-M0+ built-in Nested Vectored Interrupt Controller (NVIC).  
System tick timer.  
AHB multilayer matrix.  
Serial Wire Debug (SWD) with four break points and two watch points. JTAG  
boundary scan (BSDL) supported.  
Memory:  
Up to 32 KB on-chip EEPROM based flash programming memory.  
Code Read Protection (CRP).  
4 KB SRAM.  
Dual I/O power (LPC804M111JDH24):  
Independent supplies on each package side permitting level-shifting signals from  
one off-chip voltage domain to another and/or interfacing directly to off-chip  
peripherals operating at different supply levels.  
The switch matrix provides level shifter functionality to allow up to two selected  
signals to be routed from user-selected pins in one voltage domain to selected pins  
in the alternate domain. This feature can also be used on a single supply device if  
voltage level shifting is not required.  
ROM API support:  
Boot loader.  
 
 
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
Supports Flash In-Application Programming (IAP).  
Supports In-System Programming (ISP) through USART.  
On-chip ROM APIs for integer divide.  
Free Running Oscillator (FRO) API.  
Digital peripherals:  
High-speed GPIO interface connected to the Arm Cortex-M0+ I/O bus with up to 30  
General-Purpose I/O (GPIO) pins with configurable pull-up/pull-down resistors,  
programmable open-drain mode, and input inverter. GPIO direction control  
supports independent set/clear/toggle of individual bits.  
High-current source output driver (20 mA) on five pins.  
GPIO interrupt generation capability with boolean pattern-matching feature on eight  
GPIO inputs.  
Switch matrix for flexible configuration of each I/O pin function.  
CRC engine.  
Capacitive Touch Interface.  
Programmable Logic Unit (PLU) to create small combinatorial and/or sequential  
logic networks including simple state machines.  
Timers:  
One 32-bit general purpose counter/timer, with four match outputs and three  
capture inputs. Supports PWM mode, and external count  
Four channel Multi-Rate Timer (MRT) for repetitive interrupt generation at up to  
four programmable, fixed rates.  
Self-Wake-up Timer (WKT) clocked from either Free Running Oscillator (FRO), a  
low-power, low-frequency internal oscillator, or an external clock input.  
Windowed Watchdog timer (WWDT).  
Analog peripherals:  
One 12-bit ADC with up to 12 input channels with multiple internal and external  
trigger inputs and with sample rates of up to 480 Ksamples/s. The ADC supports  
two independent conversion sequences.  
Comparator with five input pins and external or internal reference voltage.  
One 10-bit DAC.  
Serial peripherals:  
Two USART interfaces with pin functions assigned through the switch matrix and  
one fractional baud rate generators.  
One SPI controllers with pin functions assigned through the switch matrix.  
Two I2C-bus interface. It supports data rates up to 400 kbit/s on standard digital  
pins.  
Clock generation:  
Free Running Oscillator (FRO). This oscillator provides a selectable  
9 MHz, 12 MHz and 15 MHz outputs that can be used as a system clock. The FRO  
is trimmed to ±1 % accuracy over the entire voltage and temperature range of 0 C  
to 70 C.  
1 MHz low power oscillator can be used as a clock source.  
Clock output function with divider that can reflect all internal clock sources.  
Power control:  
Reduced power modes: sleep mode, deep-sleep mode, power-down mode, and  
deep power-down mode.  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
2 of 87  
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
Wake-up from deep-sleep and power-down modes on activity on USART, SPI, and  
I2C peripherals.  
Wake-up from deep power-down mode on multiple pins.  
Timer-controlled self wake-up from sleep, deep-sleep, and power-down modes.  
Power-On Reset (POR).  
Brownout detect (BOD).  
Unique device serial number for identification.  
Single power supply (1.71 V to 3.6 V).  
Operating temperature range -40 °C to +105 °C.  
Available in WLCSP20, TSSOP20, TSSOP24, and HVQFN33 packages.  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
3 of 87  
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
3. Applications  
Sensor gateways  
Simple motor control  
Portables and wearables  
Lighting  
Industrial  
Gaming controllers  
8/16-bit applications  
Consumer  
Motor control  
Fire and security applications  
Climate control  
4. Ordering information  
Table 1.  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
LPC804M101JDH20 TSSOP20  
LPC804M101JDH24 TSSOP24  
plastic thin shrink small outline package; 20 leads; body width 4.4 mm  
plastic thin shrink small outline package; 24 leads; body width 4.4 mm  
plastic thin shrink small outline package; 24 leads; body width 4.4 mm  
SOT360-1  
SOT355-1  
SOT355-1  
LPC804M111JDH24  
LPC804M101JHI33  
TSSOP24  
HVQFN33  
HVQFN: plastic thermal enhanced very thin quad flat package; no leads; SOT617-11  
33 terminals; body 5 5 0.85 mm  
LPC804UK  
WLCSP20  
wafer level chip-size package; 20 (5 4) bumps; 2.50 1.84 0.5 mm  
SOT1397-8  
4.1 Ordering options  
Table 2.  
Ordering options  
Type number  
LPC804M101JDH20  
LPC804M101JDH24  
LPC804M111JDH24  
LPC804M101JHI33  
LPC804UK  
32  
32  
32  
32  
32  
4
4
4
4
4
2
2
2
2
2
2
2
2
2
2
1
1
1
1
1
-
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
17  
21  
20  
30  
17  
-
TSSOP20  
1
1
1
-
-
TSSOP24  
TSSOP24  
HVQFN33  
WLCSP20  
yes  
-
-
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
4 of 87  
 
 
 
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
5. Marking  
20  
Terminal 1 index area  
Terminal 1 index area  
1
aaa-014766  
aaa-014382  
Fig 1. TSSOP20 and TSSOP24 package markings  
Fig 2. HVQFN33 package marking  
Terminal 1  
index area  
aaa-015675  
Fig 3. WLCSP20 package marking  
The LPC804 HVQFN33 packages have the following top-side marking::  
First line: LPC804M1  
Second line: xxxx  
Third line: yywwx[R]  
yyww: Date code with yy = year and ww = week.  
xR = Boot code version and device revision.  
The LPC804 TSSOP20 packages typically have the following top-side marking:  
First line: LPC804  
Second line: M101  
Third line: xxxx  
Fourth line: xxywwx[R]  
yww: Date code with y = year and ww = week.  
xR = Boot code version and device revision.  
The LPC804 TSSOP24 packages have the following top-side marking:  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
5 of 87  
 
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
First line: LPC804  
Second line: xxxx  
Third line: ywwx[R]  
yww: Date code with y = year and ww = week.  
xR = Boot code version and device revision.  
Fourth line: M1y1J  
y: 0 or 1  
The LPC804 WLCSP20 packages have the following top-side marking:  
First line: LPC804  
Second line: xxxxx  
Third line: xyywwx[R]  
yyww: Date code with ww = week and yy = year.  
xR = Boot code version and device revision.  
Fourth line: xxx - yyy  
Table 3.  
Device revision table  
Revision identifier (R)  
Revision description  
1A  
1B  
Initial device revision with Boot ROM version 13.1  
Initial device revision with Boot ROM version 13.1  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
6 of 87  
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
6. Block diagram  
CLKIN  
ISP Access Port  
RESET  
Clock Generation,  
Power Control,  
DEBUG  
INTERFACE  
CLKOUT  
and other  
IOP bus  
GPIOs AND  
GPIOs  
ARM  
Cortex M0+  
System Functions  
GPOINT  
Voltage Regulator  
Vdd  
M0  
P0  
Flash  
interface  
Flash  
32 kB  
Boot ROM  
8 kB  
P1  
P2  
SRAM  
4 kB  
Multilayer  
AHB Matrix  
AHB to  
APB bridge  
APB slave group  
System control  
UART 0 and 1  
Capacitive Touch  
SPI0  
UART0,1  
CAPT  
IOCON Registers  
CTIMER0  
T0 Match/  
Capture  
SPI0  
Periph Input Mux Selects  
Comparator  
I2C 0 and 1  
PLU  
I2C0,1  
PLU  
COMP  
Inputs  
PMU Registers  
12-bit ADC  
ADC inputs  
and Triggers  
DAC outputs  
GPIOs  
10-bit DAC  
Switch Matrix  
Wakeup Timer  
Multi-Rate Timer  
LPOSc  
Windowed WDT  
aaa-029233  
Fig 4. LPC804 block diagram  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
7 of 87  
 
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
7. Pinning information  
7.1 Pinning  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
PIO0_16/ADC_3/ACMP_I4  
PIO0_17/ADC_9  
PIO0_14/ADC_2/ACMP_I3  
PIO0_0/ACMP_I1/TDO  
VREFP  
3
PIO0_13/ADC_10  
4
PIO0_12  
PIO0_7/ADC_1/ACMPV  
REF  
5
RESET/PIO0_5  
V
SS  
V
DD  
TSSOP20  
6
PIO0_4/ADC_11/TRST  
SWCLK/PIO0_3/TCK  
SWDIO/PIO0_2/TMS  
PIO0_11/ADC_6/WKTCLKIN  
PIO0_10/ADC_7  
7
PIO0_8/ADC_5  
PIO0_9/ADC_4  
8
9
PIO0_1/ADC_0/ACMP_I2/CLKIN/TDI  
PIO0_15/ADC_8  
10  
aaa-026614  
Fig 5.  
Pin configuration TSSOP20 package  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
PIO0_18  
PIO0_16/ACMP_I4/ADC_3  
PIO0_17/ADC_9  
PIO0_19/DACOUT  
PIO0_14/ACMP_I3/ADC_2  
PIO0_0/ACMP_I1/TDO  
VREFP  
3
4
PIO0_13/ADC_10  
5
PIO0_12  
PIO0_7/ADC_1/ACMPV  
VSS  
REF  
TSSOP24  
6
RESET/PIO0_5  
7
PIO0_4/ADC_11/TRSTN  
SWCLK/PIO0_3/TCK  
SWDIO/PIO0_2/TMS  
PIO0_11/ADC_6/WKTCLKIN  
PIO0_10/ADC_7  
VDD  
8
PIO0_8/ADC_5  
PIO0_9/ADC_4  
9
10  
11  
12  
PIO0_1/ADC_0/ACMP_I2/TDI/CLKIN  
PIO0_15/ADC_8  
PIO0_21/ACMP_I5  
PIO0_20  
aaa-029244  
Fig 6.  
Pin configuration TSSOP24 - 1 package (LPC804M101JDH24 - single supply device)  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
8 of 87  
 
 
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
PIO0_18  
PIO0_16/ACMP_I4/ADC_3  
VDD  
PIO0_19/DACOUT  
PIO0_14/ACMP_I3/ADC_2  
PIO0_0/ACMP_I1/TDO  
VREFP  
3
IO  
4
PIO0_13/ADC_10  
PIO0_12  
5
PIO0_7/ADC_1/ACMPV  
VSS  
REF  
TSSOP-24  
6
RESET/PIO0_5  
7
PIO0_4/ADC_11/TRSTN  
SWCLK/PIO0_3/TCK  
SWDIO/PIO0_2/TMS  
PIO0_11/ADC_6/WKTCLKIN  
PIO0_10/ADC_7  
VDD  
8
PIO0_8/ADC_5  
PIO0_9/ADC_4  
9
10  
11  
12  
PIO0_1/ADC_0/ACMP_I2/TDI/CLKIN  
PIO0_15/ADC_8  
PIO0_21/ACMP_I5  
PIO0_20  
aaa-029245  
Fig 7.  
Pin configuration TSSOP24 - 2 package with VDDIO (LPC804M111JDH20 - dual supply device)  
terminal 1  
index area  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
PIO0_17/ADC_9  
PIO0_13/ADC_10  
PIO0_0/ACMP_I1/TDO  
VREFP  
PIO0_12  
PIO0_7/ADC_1/ACMPV  
PIO0_30  
REF  
RESET/PIO0_5  
PIO0_4/ADC_11/TRSTN  
SWCLK/PIO0_3/TCK  
SWDIO/PIO0_2/TMS  
PIO0_11/ADC_6/WKTCLKIN  
VDD  
PIO0_8/ADC_5  
PIO0_9/ADC_4  
33 V  
SS  
PIO0_1/ADC_0/ACMP_I2/TDI/CLKIN  
aaa-029246  
Transparent top view  
Fig 8.  
Pin configuration HVQFN33 package  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
9 of 87  
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
7.2 Pin description  
Table 4 shows the pin functions that are fixed to specific pins on each package. These  
fixed-pin functions are selectable through the switch matrix between GPIO and the  
comparator, ADC, SWD, and RESET pins. By default, the GPIO function is selected  
except on pins PIO0_2, PIO0_3, and PIO0_5. JTAG functions are available in boundary  
scan mode only.  
Movable functions for the I2C, USART, SPI, CTimer pins, Capacitive Touch, and other  
peripherals can be assigned through the switch matrix to any pin that is not power or  
ground in place of the pin’s fixed functions.  
The following exceptions apply:  
Do not assign more than one output to any pin. However, an output and/or one or more  
inputs can be assigned to a pin. Once any function is assigned to a pin, the pin’s GPIO  
functionality is disabled.  
Eight GPIO pins trigger a wake-up from deep power-down mode. If the part must wake up  
from deep power-down mode via an external pin, do not assign any movable function to  
this pin. The GPIO pins should be pulled HIGH externally before entering deep  
power-down mode. A LOW-going pulse as short as 50 ns causes the chip to exit deep  
power-down mode and wakes up the part.  
The JTAG functions TDO, TDI, TCK, TMS, and TRST are selected on pins PIO0_0 to  
PIO0_4 by hardware when the part is in boundary scan mode.  
PIO0_2, PIO0_3, PIO0_12, PIO0_18, and PIO0_20 are the high drive output pins.  
PIO0_4, PIO0_8, PIO0_9, PIO0_10, PIO0_11, PIO0_13, PIO0_15, and PIO0_17 are the  
WAKEUP pins.  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
10 of 87  
 
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
Table 4.  
Symbol  
Pin description  
Reset Type Description  
state[1]  
[2]  
PIO0_0/ACMP_I1/TDO  
22  
22 19 24  
D3  
I; PU  
IO  
PIO0_0 — General-purpose port 0  
input/output 0.  
In ISP mode, this is the U0_RXD pin (for  
single supply devices).  
In boundary scan mode: TDO (Test Data  
Out).  
A
ACMP_I1 — Analog comparator input 1.  
[2]  
PIO0_1/ADC_0/ACMP_I2/ 15  
TDI/CLKIN  
15 12 17  
A4  
B2  
I; PU  
I; PU  
IO  
PIO0_1 — General-purpose port 0  
input/output 1.  
In boundary scan mode: TDI (Test Data In).  
ACMP_I2 — Analog comparator input 2.  
CLKIN — External clock input.  
A
I
[3]  
SWDIO/PIO0_2/  
TMS  
9
9
8
7
IO  
SWDIO — Serial Wire Debug I/O. SWDIO  
is enabled by default on this pin. In  
boundary scan mode: TMS (Test Mode  
Select).  
I/O  
I
PIO0_2 — General-purpose port 0  
input/output 2.  
[3]  
[2]  
SWCLK/PIO0_3/  
TCK  
8
7
8
7
7
6
6
5
B1  
C2  
I; PU  
I; PU  
SWCLK — Serial Wire Clock. SWCLK is  
enabled by default on this pin.  
In boundary scan mode: TCK (Test Clock).  
IO  
IO  
PIO0_3 — General-purpose port 0  
input/output 3.  
PIO0_4/ADC_11/  
TRSTN  
PIO0_4 — General-purpose port 0  
input/output 4.  
In ISP mode, this pin is the U0_TXD pin (for  
single supply devices).  
In boundary scan mode: TRST (Test  
Reset).  
A
ADC_11 — ADC input 11.  
[5]  
RESET/PIO0_5  
6
6
5
4
C1  
I; PU  
IO  
RESET — External reset input: A  
LOW-going pulse as short as 50 ns on this  
pin resets the device, causing I/O ports and  
peripherals to take on their default states,  
and processor execution to begin at  
address 0.  
The RESET pin can be left unconnected or  
be used as a GPIO or for any movable  
function if an external RESET function is  
not needed.  
I
PIO0_5 — General-purpose port 0  
input/output 5.  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
11 of 87  
 
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
Table 4.  
Symbol  
Pin description  
Reset Type Description  
state[1]  
[2]  
PIO0_7/ADC_1/  
ACMPVREF  
20  
20 17 22  
D4  
I; PU  
IO  
A
PIO0_7 — General-purpose port 0  
input/output 7.  
ADC_1 — ADC input 1.  
ACMPVREF Alternate reference voltage  
for the analog comparator.  
[2]  
[2]  
PIO0_8/ADC_5  
PIO0_9/ADC_4  
PIO0_10/ADC_7  
17  
16  
17 14 19  
C3  
B3  
I; PU  
I; PU  
IO  
PIO0_8 — General-purpose port 0  
input/output 8. In ISP mode, this is the  
U0_RXD pin (for dual supply devices).  
A
ADC_5 — ADC input 5.  
16 13 18  
IO  
PIO0_9 — General-purpose port 0  
input/output 9. In ISP mode, this is the  
U0_TXD pin (for dual supply devices).  
A
ADC_4 — ADC input 4.  
[2]  
[2]  
11  
10  
11 10  
9
8
A2  
A1  
Inactive I; F  
PIO0_10 — General-purpose port 0  
input/output 10.  
ADC_7 — ADC input 7.  
PIO0_11/ADC_6/  
WKTCLKIN  
10  
9
Inactive I; F  
PIO0_11 — General-purpose port 0  
input/output 11.  
ADC_6 — ADC input 6.  
WKTCKLKIN — This pin can host an  
external clock for the self-wake-up timer. To  
use the pin as a self-wake-up timer clock  
input, select the external clock in the  
wake-up timer CTRL register. The external  
clock input is active in sleep, deep-sleep,  
and power-down modes.  
[3]  
PIO0_12  
5
5
4
4
3
3
2
D1  
I; PU  
IO  
IO  
PIO0_12 — General-purpose port 0  
input/output 12. ISP entry pin. A LOW level  
on this pin during reset starts the ISP  
command handler.  
[2]  
[2]  
PIO0_13/ADC_10  
4
D2  
E3  
I; PU  
I; PU  
PIO0_13 — General-purpose port 0  
input/output 13.  
A
ADC_10 — ADC input 10.  
PIO0_14/ACMP_3/  
ADC_2  
23  
23 20 25  
IO  
PIO0_14 — General-purpose port 0  
input/output 14.  
A
ACMP_I3 — Analog comparator common  
input 3.  
A
ADC_2 — ADC input 2.  
[4]  
PIO0_15/ADC_8  
14  
14 11 16  
A3  
I; PU  
IO  
PIO0_15 — General-purpose port 0  
input/output 15.  
ADC_8 — ADC input 8.  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
12 of 87  
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
Table 4.  
Symbol  
Pin description  
Reset Type Description  
state[1]  
[3]  
[2]  
PIO0_16/ACMP_I4/  
ADC_3  
2
3
2
-
1
2
32  
E2  
E1  
I; PU  
IO  
PIO0_16 — General-purpose port 0  
input/output 16.  
ACMP_I4 — Analog comparator common  
input 4.  
ADC_3 — ADC input 3.  
PIO0_17/ADC_9  
1
I; PU  
IO  
PIO0_17 — General-purpose port 0  
input/output 17.  
A
ADC_9 — ADC input 9.  
[3]  
[2]  
PIO0_18  
1
1
-
-
31  
26  
-
-
I; PU  
I; PU  
IO  
PIO0_18 — General-purpose port 0  
input/output 18.  
PIO0_19/DACOUT  
24  
24  
IO  
PIO0_19 — General-purpose port 0  
input/output 19.  
A
DACOUT — DAC output.  
[3]  
[3]  
PIO0_20  
13  
12  
13  
12  
-
-
15  
10  
-
-
I; PU  
I; PU  
IO  
PIO0_20 — General-purpose port 0  
input/output 20.  
PIO0_21/ACMP_I5  
IO  
PIO0_21 — General-purpose port 0  
input/output 21.  
ACMP_15 — Analog comparator common  
input 5.  
[3]  
[3]  
[3]  
[3]  
[3]  
[3]  
[3]  
[3]  
[3]  
PIO0_22  
PIO0_23  
PIO0_24  
PIO0_25  
PIO0_26  
PIO0_27  
PIO0_28  
PIO0_29  
PIO0_30  
VREFP  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
30  
29  
28  
27  
14  
13  
12  
11  
21  
-
I; PU  
I; PU  
I; PU  
I; PU  
I; PU  
I; PU  
I; PU  
I; PU  
I; PU  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
A
PIO0_22 — General-purpose port 0  
input/output 22.  
-
-
PIO0_23 — General-purpose port 0  
input/output 23.  
-
-
PIO0_24 — General-purpose port 0  
input/output 24.  
-
-
PIO0_25 — General-purpose port 0  
input/output 25.  
-
-
PIO0_26 — General-purpose port 0  
input/output 26.  
-
-
PIO0_27 — General-purpose port 0  
input/output 27.  
-
-
PIO0_28 — General-purpose port 0  
input/output 28.  
-
-
PIO0_29 — General-purpose port 0  
input/output 29.  
-
-
PIO0_30 — General-purpose port 0  
input/output 30.  
21  
21 18 23  
E4  
VREFP — ADC positive reference voltage.  
Must be equal or lower than VDD  
.
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
13 of 87  
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
Table 4.  
Symbol  
Pin description  
Reset Type Description  
state[1]  
VDD  
18  
18 15 20  
B4  
-
-
If VDDIO is present, VDD is the supply  
voltage for the I/Os on the right side of the  
package and the core voltage regulator. If  
VDDIO is not present, VDD also supplies  
voltage to the I/Os on the left side of the  
package.  
VDDIO  
VSS  
-
3
-
-
-
-
-
-
-
If present, it is the supply voltage for the  
I/Os on the left side of the package.  
19  
16 33[8] C4  
Ground.  
[1] Pin state at reset for default function: I = Input; AI = Analog Input; O = Output; PU = internal pull-up enabled (pins pulled up to full VDD  
level); IA = inactive, no pull-up/down enabled; F = floating. For pin states in the different power modes, see Section 15.5 “Pin states in  
different power modes”. For termination on unused pins, see Section 15.4 “Termination of unused pins”.  
[2] 5 V tolerant pin providing standard digital I/O functions with configurable modes, configurable hysteresis, and analog input. When  
configured as an analog input, the digital section of the pin is disabled, and the pin is not 5 V tolerant.  
[3] 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors and configurable hysteresis; includes  
high-current output driver.  
[4] 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors and configurable hysteresis.  
[5] See Figure 16 for the reset pad configuration. This pin includes a 20 ns glitch filter (active in all power modes). RESET functionality is  
not available in deep power-down mode. Use the WAKEUP pin to reset the chip and wake up from deep power-down mode.  
[6] The WKTCLKIN function is enabled in the PINENABLE0 register in the PMU. See the LPC804 user manual.  
[7] The digital part of this pin is 3 V tolerant pin due to special analog functionality. Pin provides standard digital I/O functions with  
configurable modes, configurable hysteresis, and an analog input. When configured as an analog input, the digital section of the pin is  
disabled.  
[8] Thermal pad for HVQFN33.  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
14 of 87  
 
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
8. Movable functions  
Movable functions for the I2C, USART, SPI, CTimer pins, Capacitive Touch, and other  
peripherals can be assigned through the switch matrix to any pin that is not power or  
ground in place of the fixed functions of the pin.  
Table 5.  
Movable functions (assign to pins PIO0_0 to PIO0_5, PIO0_7 to PIO0_30 through  
switch matrix)  
Function name  
Ux_TXD  
Type Description  
O
Transmitter output for USART0 to USART1.  
Ux_RXD  
I
Receiver input for USART0 to USART1.  
Request To Send output for USART0.  
Clear To Send input for USART0.  
Serial clock input/output for USART0 to USART1 in synchronous mode.  
Serial clock for SPI0.  
Ux_RTS  
O
Ux_CTS  
I
Ux_SCLK  
SPIx_SCK  
SPIx_MOSI  
SPIx_MISO  
SPIx_SSEL0  
SPIx_SSEL1  
I2Cx_SDA  
I2Cx_SCL  
ACMP_O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
Master Out Slave In for SPI0.  
Master In Slave Out for SPI0.  
Slave select 0 for SPI0.  
Slave select 1 for SPI0.  
I2C0 and I2C1 bus data input/output.  
I2C0 and I2C1 bus clock input/output.  
Analog comparator output.  
Clock output.  
CLKOUT  
O
GPIO_INT_BMAT O  
Output of the pattern match engine.  
Timer Match channel 0.  
T0_MAT0  
O
O
O
O
I
T0_MAT1  
Timer Match channel 1.  
T0_MAT2  
Timer Match channel 2.  
T0_MAT3  
Timer Match channel 3.  
T0_CAP0  
Timer Capture channel 0.  
Timer Capture channel 1.  
Timer Capture channel 2.  
CAPT_X0 function.  
T0_CAP1  
I
T0_CAP2  
I
CAPT_X0  
O
O
O
O
O
O
O
I
CAPT_X1  
CAPT_X1 function.  
CAPT_X2  
CAPT_X2 function.  
CAPT_X3  
CAPT_X3 function.  
CAPT_X4  
CAPT_X4 function.  
CAPT_YL  
CAPT_YL function.  
CAPT_YH  
LVLSHFT_IN0  
LVLSHFT_IN1  
LVLSHFT_OUT0  
LVLSHFT_OUT1  
CAPT_YH function.  
Level shift input 0.  
I
Level shift input 1.  
O
O
Level shift output 0.  
Level shift output 1.  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
15 of 87  
 
 
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
9. Functional description  
9.1 Arm Cortex-M0+ core  
The Arm Cortex-M0+ core runs at an operating frequency of up to 15 MHz using a  
two-stage pipeline. The core revision is r0p1.  
Integrated in the core are the NVIC and Serial Wire Debug with four breakpoints and two  
watchpoints. The Arm Cortex-M0+ core supports a single-cycle I/O enabled port for fast  
GPIO access.  
The core includes a single-cycle multiplier and a system tick timer.  
9.2 On-chip flash program memory  
The LPC804 contain up to 32 KB of on-chip EEPROM based flash program memory.  
9.3 On-chip SRAM  
The LPC804 contain a total of 4 KB on-chip static RAM data memory.  
9.4 On-chip ROM  
The on-chip ROM contains the bootloader:  
Boot loader.  
Supports Flash In-Application Programming (IAP).  
Supports In-System Programming (ISP) through USART.  
On-chip ROM APIs for integer divide.  
Free Running Oscillator (FRO) API.  
9.5 Memory map  
The LPC804 incorporates several distinct memory regions. Figure 9 shows the overall  
map of the entire address space from the user program viewpoint following reset. The  
interrupt vector area supports address remapping.  
The Arm private peripheral bus includes the Arm core registers for controlling the NVIC,  
the system tick timer (SysTick), and the reduced power modes.  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
16 of 87  
 
 
 
 
 
 
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
Memory space  
(reserved)  
AHB perpherals  
0xFFFF FFFF  
0xE010 0000  
0xE000 0000  
0xA000 8000  
0xA000 4000  
0xA000 0000  
0x5001 4000  
0x5001 4000  
(reserved)  
private peripheral bus  
(reserved)  
0x5000 4000  
CRC engine  
0x5000 0000  
GPIO interrupts  
GPIO  
(reserved)  
AHB  
peripherals  
APB perpherals  
0x4007 FFFF  
(reserved)  
0x5000 0000  
0x4008 0000  
(reserved)  
31-30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
0x4007 8000  
(reserved)  
APB  
peripherals  
0x4007 4000  
(reserved)  
0x4000 0000  
0x4007 0000  
(reserved)  
(reserved)  
0x4006 C000  
USART1  
0x1000 1000  
0x1000 0000  
0x0F00 2000  
0x0F00 0000  
0x0000 8000  
0x4006 8000  
RAM  
USART0  
CAPTouch  
0x4006 4000  
(reserved)  
Boot ROM  
(reserved)  
0x4006 0000  
(reserved)  
0x4005 C000  
SPI  
I2C1  
0x4005 8000  
Flash memory  
(up to 32 KB)  
0x4005 4000  
I2C0  
0x0000 0000  
0x4005 0000  
(reserved)  
0x4004 C000  
Syscon  
0x0000 00C0  
0x0000 0000  
0x4004 8000  
IOCON  
active interrupt vectors  
0x4004 4000  
(reserved)  
0x4004 0000  
(reserved)  
0x4003 C000  
CTIMER 0  
0x4003 8000  
(reserved)  
0x4003 4000  
(reserved)  
0x4003 0000  
(reserved)  
0x4002 C000  
PLU  
0x4002 8000  
Analog Comparator  
0x4002 4000  
PMU  
8
0x4002 0000  
7
ADC  
(reserved)  
0x4001 C000  
6
0x4001 8000  
DAC0  
5
0x4001 4000  
4
(reserved)  
0x4001 0000  
3
Switch Matrix  
0x4000 C000  
Wake-up Timer  
0x4000 8000  
2
1
Multi-Rate Timer  
0x4000 4000  
0
Watchdog timer  
0x4000 0000  
aaa-029247  
Fig 9. LPC804 Memory mapping  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
17 of 87  
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
9.6 Nested Vectored Interrupt Controller (NVIC)  
The Nested Vectored Interrupt Controller (NVIC) is part of the Cortex-M0+. The tight  
coupling to the CPU allows for low interrupt latency and efficient processing of late arriving  
interrupts.  
9.6.1 Features  
Nested Vectored Interrupt Controller is a part of the Arm Cortex-M0+.  
Tightly coupled interrupt controller provides low interrupt latency.  
Controls system exceptions and peripheral interrupts.  
Supports 32 vectored interrupts.  
In the LPC804, the NVIC supports vectored interrupts for each of the peripherals and  
the eight pin interrupts.  
Four programmable interrupt priority levels with hardware priority level masking.  
Software interrupt generation using the Arm exceptions SVCall and PendSV.  
Supports NMI.  
9.6.2 Interrupt sources  
Each peripheral device has at least one interrupt line connected to the NVIC but can have  
several interrupt flags. Individual interrupt flags can also represent more than one interrupt  
source.  
9.7 System tick timer  
The Arm Cortex-M0+ includes a 24-bit system tick timer (SysTick) that is intended to  
generate a dedicated SysTick exception at a fixed time interval (typically 10 ms).  
9.8 I/O configuration  
The IOCON block controls the configuration of the I/O pins. Each digital or mixed  
digital/analog pin with the PIO0_n designator in Table 4 can be configured as follows:  
Enable or disable the weak internal pull-up and pull-down resistors.  
Select a pseudo open-drain mode. The input cannot be pulled up above VDD. The  
pins are not 5 V tolerant when VDD is grounded.  
Program the input glitch filter with different filter constants using one of the IOCON  
divided clock signals (IOCONCLKCDIV, see Figure 12 “LPC804 clock generation”).  
You can also bypass the glitch filter.  
Invert the input signal.  
Hysteresis can be enabled or disabled.  
The switch matrix setting enables the analog input mode on pins with analog and  
digital functions. Enabling the analog mode disconnects the digital functionality.  
The LPC804 uses a dual voltage I/O feature. The pins on one side of the package are  
supplied by VDDIO and the pins on the other side are supplied by VDD. Each of these  
two supplies can be connected to different voltages within the allowed Vdd range.  
This feature allows the device to level-shift signals from one off-chip voltage domain to  
another.  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
18 of 87  
 
 
 
 
 
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
The switch matrix provides level shifter functionality to allow up to two selected  
signals to be routed from user-selected pins in one voltage domain to selected pins in  
the alternate domain. This feature can also be used on a single supply device if  
voltage level shifting is not required.  
Remark: The functionality of each I/O pin is flexible and is determined entirely through the  
switch matrix. See Section 9.9 for details.  
9.8.1 Standard I/O pad configuration  
Figure 10 shows the possible pin modes for standard I/O pins with analog input function:  
Digital output driver with configurable open-drain output.  
Digital input: Weak pull-up resistor (PMOS device) enabled/disabled.  
Digital input: Weak pull-down resistor (NMOS device) enabled/disabled.  
Digital input: Repeater mode enabled/disabled.  
Digital input: Programmable input digital filter selectable on all pins.  
Analog input: Selected through the switch matrix.  
V
V
DD  
DD  
open-drain enable  
output enable  
ESD  
strong  
pull-up  
data output  
PIN  
strong  
pull-down  
pin configured  
as digital output  
driver  
ESD  
V
SS  
V
DD  
weak  
pull-up  
pull-up enable  
weak  
pull-down  
repeater mode  
enable  
pull-down enable  
data input  
pin configured  
as digital input  
select data  
inverter  
SWM PINENABLE for  
analog input  
analog input  
transmission  
gate  
pin configured  
as analog input  
aaa-028401  
Fig 10. Standard I/O pad configuration  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
19 of 87  
 
 
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
9.9 Switch Matrix (SWM)  
The switch matrix controls the function of each digital or mixed analog/digital pin in a  
highly flexible way by allowing to connect many functions like the USART, SPI, CTimer,  
Capacitive Touch, and I2C functions to any pin that is not power or ground. These  
functions are called movable functions and are listed in Table 5.  
Functions that need specialized pads can be enabled or disabled through the switch  
matrix. These functions are called fixed-pin functions and cannot move to other pins. The  
fixed-pin functions are listed in Section 7.2 “Pin description”. If a fixed-pin function is  
disabled, any other movable function can be assigned to this pin.  
9.10 Fast General-Purpose parallel I/O (GPIO)  
Device pins that are not connected to a specific peripheral function are controlled by the  
GPIO registers. Pins may be dynamically configured as inputs or outputs. Multiple outputs  
can be set or cleared in one write operation.  
LPC804 use accelerated GPIO functions:  
GPIO registers are on the Arm Cortex-M0+ IO bus for fastest possible single-cycle I/O  
timing, allowing GPIO toggling with rates of up to 7 MHz.  
An entire port value can be written in one instruction.  
Mask, set, and clear operations are supported for the entire port.  
All GPIO port pins are fixed-pin functions that are enabled or disabled on the pins by the  
switch matrix. Therefore each GPIO port pin is assigned to one specific pin and cannot be  
moved to another pin. Except for pins SWDIO/PIO0_2, SWCLK/PIO0_3, and  
RESET/PIO0_5, the switch matrix enables the GPIO port pin function by default.  
9.10.1 Features  
Bit level port registers allow a single instruction to set and clear any number of bits in  
one write operation.  
Direction control of individual bits.  
All I/O default to GPIO inputs with internal pull-up resistors enabled after reset.  
Pull-up/pull-down configuration, repeater, and open-drain modes can be programmed  
through the IOCON block for each GPIO pin (see Figure 10).  
Direction (input/output) can be set and cleared individually.  
Pin direction bits can be toggled.  
9.11 Pin interrupt  
The pin interrupt block configures up to eight pins from all digital pins for providing eight  
external interrupts connected to the NVIC.  
Any digital pin, independently of the function selected through the switch matrix, can be  
configured through the SYSCON block as input to the pin interrupt. The registers that  
control the pin interrupt are on the IO+ bus for fast single-cycle access.  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
20 of 87  
 
 
 
 
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
9.11.1 Features  
Pin interrupts  
Up to eight pins can be selected from all digital pins as edge- or level-sensitive  
interrupt requests. Each request creates a separate interrupt in the NVIC.  
Edge-sensitive interrupt pins can interrupt on rising or falling edges or both.  
Level-sensitive interrupt pins can be HIGH- or LOW-active.  
Pin interrupts can wake up the LPC804 from sleep mode, deep-sleep mode, and  
power-down mode.  
9.12 USART0/1  
All USART functions are movable functions and are assigned to pins through the switch  
matrix.  
9.12.1 Features  
Maximum bit rates of 1.875 Mbit/s in asynchronous mode and 10 Mbit/s in  
synchronous mode for USART functions connected to all digital pins.  
7, 8, or 9 data bits and 1 or 2 stop bits  
Synchronous mode with master or slave operation. Includes data phase selection and  
continuous clock option.  
Multiprocessor/multidrop (9-bit) mode with software address compare. (RS-485  
possible with software address detection and transceiver direction control.)  
Parity generation and checking: odd, even, or none.  
One transmit and one receive data buffer.  
RTS/CTS for hardware signaling for automatic flow control. Software flow control can  
be performed using Delta CTS detect, Transmit Disable control, and any GPIO as an  
RTS output.  
Received data and status can optionally be read from a single register  
Break generation and detection.  
Receive data is 2 of 3 sample "voting". Status flag set when one sample differs.  
Built-in Baud Rate Generator.  
A fractional rate divider is shared among all UARTs.  
Interrupts available for Receiver Ready, Transmitter Ready, Receiver Idle, change in  
receiver break detect, Framing error, Parity error, Overrun, Underrun, Delta CTS  
detect, and receiver sample noise detected.  
Separate data and flow control loopback modes for testing.  
Baud rate clock can also be output in asynchronous mode.  
9.13 SPI0  
All SPI functions are movable functions and are assigned to pins through the switch  
matrix.  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
21 of 87  
 
 
 
 
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
9.13.1 Features  
Maximum data rates of up to 15 Mbit/s in master mode and up to 20 Mbit/s in slave  
mode for SPI functions connected to all digital pins.  
Data frames of 1 to 16 bits supported directly. Larger frames supported by software.  
Master and slave operation.  
Data can be transmitted to a slave without the need to read incoming data, which can  
be useful while setting up an SPI memory.  
Control information can optionally be written along with data, which allows very  
versatile operation, including “any length” frames.  
One Slave Select input/output with selectable polarity and flexible usage.  
Remark: Texas Instruments SSI and National Microwire modes are not supported.  
9.14 I2C-bus interface (I2C0 and I2C1)  
The I2C-bus is bidirectional for inter-IC control using only two wires: a serial clock line  
(SCL) and a serial data line (SDA). Each device is recognized by a unique address and  
can operate as either a receiver-only device (e.g., an LCD driver) or a transmitter with the  
capability to both receive and send information (such as memory). Transmitters and/or  
receivers can operate in either master or slave mode, depending on whether the chip has  
to initiate a data transfer or is only addressed. The I2C is a multi-master bus and can be  
controlled by more than one bus master.  
9.14.1 Features  
I2C0 and I2C1 support standard and fast mode with data rates of up to 400 kbit/s.  
Independent Master, Slave, and Monitor functions.  
Supports both Multi-master and Multi-master with Slave functions.  
Multiple I2C slave addresses supported in hardware.  
One slave address can be selectively qualified with a bit mask or an address range in  
order to respond to multiple I2C bus addresses.  
10-bit addressing supported with software assist.  
Supports SMBus.  
9.15 Capacitive Touch Interface  
The Capacitive Touch interface is designed to handle up to five capacitive buttons in  
different sensor configurations, such as slider, and button matrix. It operates in sleep,  
deep sleep, and power-down modes, allowing very low power performance.  
The Capacitive Touch module measures the change in capacitance of an electrode plate  
when an earth-ground connected object (for example, finger) is brought within close  
proximity.  
9.16 CTimer  
9.16.1 General-purpose 32-bit timers/external event counter  
The LPC804 has one general-purpose 32-bit timer/counter.  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
22 of 87  
 
 
 
 
 
 
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
The timer/counter is designed to count cycles of the system derived clock or an  
externally-supplied clock. It can optionally generate interrupts or perform other actions at  
specified timer values, based on four match registers. The timer/counter also includes  
three capture inputs to trap the timer value when an input signal transitions, optionally  
generating an interrupt.  
9.16.1.1 Features  
A 32-bit timer/counter with a programmable 32-bit prescaler.  
Counter or timer operation.  
Up to three 32-bit captures can take a snapshot of the timer value when an input  
signal transitions. A capture event may also optionally generate an interrupt. The  
number of capture inputs for each timer that are actually available on device pins can  
vary by device.  
Four 32-bit match registers that allow:  
Continuous operation with optional interrupt generation on match.  
Stop timer on match with optional interrupt generation.  
Reset timer on match with optional interrupt generation.  
Shadow registers are added for glitch-free PWM output.  
For each timer, up to 4 external outputs corresponding to match registers with the  
following capabilities (the number of match outputs for each timer that are actually  
available on device pins can vary by device):  
Set LOW on match.  
Set HIGH on match.  
Toggle on match.  
Do nothing on match.  
The timer and prescaler may be configured to be cleared on a designated capture  
event. This feature permits easy pulse width measurement by clearing the timer on  
the leading edge of an input pulse and capturing the timer value on the trailing edge.  
Up to 4 match registers can be configured for PWM operation, allowing up to 3 single  
edged controlled PWM outputs. (The number of match outputs for each timer that are  
actually available on device pins can vary by device.)  
9.17 Multi-Rate Timer (MRT)  
The Multi-Rate Timer (MRT) provides a repetitive interrupt timer with two channels. Each  
channel can be programmed with an independent time interval, and each channel  
operates independently from the other channels.  
9.17.1 Features  
31-bit interrupt timer  
Two channels independently counting down from individually set values  
Bus stall, repeat and one-shot interrupt modes  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
23 of 87  
 
 
 
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
9.18 Windowed WatchDog Timer (WWDT)  
The watchdog timer resets the controller if software fails to service the watchdog timer  
periodically within a programmable time window.  
9.18.1 Features  
Internally resets chip if not periodically reloaded during the programmable time-out  
period.  
Optional windowed operation requires reload to occur between a minimum and  
maximum time period, both programmable.  
Optional warning interrupt can be generated at a programmable time prior to  
watchdog time-out.  
Enabled by software but requires a hardware reset or a watchdog reset/interrupt to be  
disabled.  
Incorrect feed sequence causes reset or interrupt if enabled.  
Flag to indicate watchdog reset.  
Programmable 24-bit timer with internal prescaler.  
Selectable time period from (Tcy(WDCLK) 256 4) to (Tcy(WDCLK) 224 4) in  
multiples of Tcy(WDCLK) 4.  
The WatchDog Clock (WDCLK) is generated by the dedicated watchdog oscillator  
(WDOSC).  
9.19 Self-Wake-up Timer (WKT)  
The self-wake-up timer is a 32-bit, loadable down counter. Writing any non-zero value to  
this timer automatically enables the counter and launches a count-down sequence. When  
the counter is used as a wake-up timer, this write can occur prior to entering a reduced  
power mode.  
9.19.1 Features  
32-bit loadable down counter. Counter starts automatically when a count value is  
loaded. Time-out generates an interrupt/wake up request.  
The WKT supports three clock sources: an external clock on the WKTCLKIN pin, the  
low-power oscillator, and the FRO. The low-power oscillator can be used as the clock  
source in sleep, deep-sleep, and power-down modes.  
The WKT can be used for waking up the part from any reduced power mode or for  
general-purpose timing.  
9.20 Programmable Logic Unit (PLU)  
The PLU is comprised of 26 5-input LUT elements. Each LUT element contains a 32-bit  
truth table (look-up table) register and a 32:1 multiplexer. During operation, the five LUT  
inputs control the select lines of the multiplexer. This structure allows any desired logical  
combination of the five LUT inputs.  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
24 of 87  
 
 
 
 
 
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
9.20.1 Features  
The PLU is used to create small combinatorial and/or sequential logic networks  
including simple state machines.  
The PLU is comprised of an array of 26 inter-connectable, 5-input Look-up Table  
(LUT) elements, and four flip-flops.  
Eight primary outputs can be selected using a multiplexer from among all of the LUT  
outputs and the four flip-flops.  
An external clock to drive the four flip-flops must be applied to the PLU_CLKIN pin if a  
sequential network is implemented.  
Programmable logic can be used to drive on-chip inputs/triggers through external  
pin-to-pin connections.  
A tool suite is provided to facilitate programming of the PLU to implement the logic  
network described in a Verilog RTL design.  
Remark: PLU cannot be used to wake-up from sleep, deep-sleep, power-down, and deep  
power-down modes.  
9.21 Analog comparator (ACMP)  
The analog comparator with selectable hysteresis can compare voltage levels on external  
pins and internal voltages.  
After power-up and after switching the input channels of the comparator, the output of the  
voltage ladder must be allowed to settle to its stable value before it can be used as a  
comparator reference input. Settling times are given in Table 27.  
The analog comparator output is a movable function and is assigned to a pin through the  
switch matrix. The comparator inputs and the voltage reference are enabled through the  
switch matrix.  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
25 of 87  
 
 
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
COMPARATOR ANALOG BLOCK  
COMPARATOR DIGITAL BLOCK  
V
DD  
ACMPVREF  
4
32  
comparator  
level ACMP_O,  
ADC trigger  
sync  
edge detect  
comparator  
edge NVIC  
DACOUT_0  
internal  
voltage  
reference  
4
ACMP_I[5:1]  
aaa-027485  
Fig 11. Comparator block diagram  
9.21.1 Features  
Selectable 0 mV, 10 mV (5 mV), and 20 mV (10 mV), 40 mV (20 mV) input  
hysteresis.  
Two selectable external voltages (VDD or ACMPVREF); fully configurable on either  
positive or negative input channel.  
Internal voltage reference from band gap selectable on either positive or negative  
input channel.  
32-stage voltage ladder with the internal reference voltage selectable on either the  
positive or the negative input channel.  
Voltage ladder source voltage is selectable from an external pin or the main 3.3 V  
supply voltage rail.  
Voltage ladder can be separately powered down for applications only requiring the  
comparator function.  
Interrupt output is connected to NVIC.  
Comparator level output is connected to output pin ACMP_O.  
One comparator output is internally collected to the ADC trigger input multiplexer.  
9.22 Analog-to-Digital Converter (ADC)  
The ADC supports a resolution of 12 bit and fast conversion rates of up to  
480 KSamples/s. Sequences of analog-to-digital conversions can be triggered by multiple  
sources. Possible trigger sources are the pin triggers, the analog comparator output, and  
the Arm TXEV.  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
26 of 87  
 
 
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
The ADC includes a hardware threshold compare function with zero-crossing detection.  
Remark: For best performance, select VREFP and VREFN at the same voltage levels as  
V
DD and VSS. When selecting VREFP and VREFN different from VDD and VSS, ensure  
that the voltage midpoints are the same:  
(VREFP-VREFN)/2 + VREFN = VDD/2  
9.22.1 Features  
12-bit successive approximation analog to digital converter.  
12-bit conversion rate of up to 480 KSamples/s.  
Two configurable conversion sequences with independent triggers.  
Optional automatic high/low threshold comparison and zero-crossing detection.  
Power-down mode and low-power operating mode.  
Measurement range VREFN to VREFP (not to exceed VDD voltage level).  
Burst conversion mode for single or multiple inputs.  
9.23 Digital-to-Analog Converter (DAC)  
The DAC supports a resolution of 10 bits. Conversions can be triggered by an external pin  
input or an internal timer. The DAC includes an optional automatic hardware shut-off  
feature, which forces the DAC output voltage to zero while a HIGH level on the external  
DAC_SHUTOFF pin is detected.  
9.23.1 Features  
10-bit digital-to-analog converter.  
Internal timer or pin external trigger for staged, jitter-free DAC conversion sequencing.  
Automatic hardware shut-off triggered by an external pin.  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
27 of 87  
 
 
 
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
9.24 CRC engine  
The Cyclic Redundancy Check (CRC) generator with programmable polynomial settings  
supports several CRC standards commonly used. To save system power and bus  
bandwidth, the CRC engine supports DMA transfers.  
9.24.1 Features  
Supports three common polynomials CRC-CCITT, CRC-16, and CRC-32.  
CRC-CCITT: x16 + x12 + x5 + 1  
CRC-16: x16 + x15 + x2 + 1  
CRC-32: x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1  
Bit order reverse and 1’s complement programmable setting for input data and CRC  
sum.  
Programmable seed number setting.  
Supports CPU PIO or DMA back-to-back transfer.  
Accept any size of data width per write: 8, 16 or 32-bit.  
8-bit write: 1-cycle operation.  
16-bit write: 2-cycle operation (8-bit x 2-cycle).  
32-bit write: 4-cycle operation (8-bit x 4-cycle).  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
28 of 87  
 
 
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
9.25 Clocking and power control  
SYSAHBCLKCTRL  
(one bit per destination)  
fro  
to AHB peripherals, AHB  
00  
01  
10  
11  
matrix, memories, etc.  
clk_in  
lposc_clk  
fro_div  
main_clk  
main_clk  
Divider  
to CPU  
(1)  
SYSAHBCLKDIV[7:0]  
Main clock select  
MAINCLKSEL[1:0]  
fro  
000  
main_clk  
fro_div  
001  
to CAPT  
fro  
011  
100  
111  
000  
001  
010  
lposc_clk  
“none”  
main_clk  
“none”  
clk_in  
CLKOUT  
CLKOUT  
Divider  
011  
100  
111  
lposc_clk  
“none”  
CAPT clock select  
CAPTCLKSEL[2:0]  
CLKOUTDIV[7:0]  
fro  
00  
CLKOUT select  
CLKOUTSEL[2:0]  
clk_in  
“none”  
01  
11  
ADC Clock  
Divider  
to ADC  
ADCCLKDIV  
ADC clock select  
ADCCLKSEL[1:0]  
aaa-029248  
Fig 12. LPC804 clock generation  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
29 of 87  
 
 
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
One for each USART (USART0 and USART1)  
fro  
main_clk  
SYSAHBCLKCTRL0[USARTn]  
to USARTn  
000  
001  
frg0clk  
fro_div  
“none”  
010  
100  
111  
UARTn clock select  
UARTnCLKSEL[2:0]  
fro  
main_clk  
00  
Fractional Rate  
01  
Divider 0 (FRG0)  
“none”  
11  
fro  
000  
main_clk  
frg0clk  
fro_div  
“none”  
001  
010  
100  
111  
FRG0DIV,  
FRG0MULT  
to I2Cn  
FRG0 clock select  
FRG0CLKSEL[1:0]  
I2Cn clock select  
I2CnCLKSEL[2:0]  
fro  
main_clk  
000  
001  
frg0clk  
fro_div  
to SPIn  
010  
100  
“none”  
111  
SPln clock select  
SPInCLKSEL[2:0]  
aaa-029249  
Fig 13. LPC804 clock generation (continued)  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
30 of 87  
 
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
WKT  
SYSCON  
system clock  
WKT registers  
SYSAHBCLKCTRL  
(WKT clock enable)  
CTRL  
750 kHz  
1 MHz  
12 MHz  
FRO  
div  
PDRUNCFG  
(enable FRO and FRO output  
FRO_PD, FROOUT_PD)  
32-bit counter  
COUNT  
CLKSEL  
SET_EXTCLK  
LPOSC  
PDRUNCFG  
aaa-029250  
WKTCLKIN  
Fig 14. LPC804 WKT clocking  
fro  
Divide by 2  
FRO OSCILLATOR  
30/24/18 MHz  
(default = 24 MHz)  
15/12/9 MHz  
(default = 12 MHz)  
set_fro_frequency() API  
fro_div  
Divide by 2  
aaa-029251  
Fig 15. LPC804 FRO subsystem  
Table 6.  
Name  
clk_in  
Clocking diagram signal name descriptions  
Description  
The internal clock that comes from the main CLK_IN pin function. That function must be connected to the  
pin by selecting it in the SWM block.  
frg_clk  
fro_div  
fro  
The output of the Fractional Rate Generator. The FRG and its source selection are shown in Figure 13.  
Divided output of the currently selected on-chip FRO oscillator. See Figure 15.  
The output of the currently selected on-chip FRO oscillator. See Figure 15.  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
31 of 87  
 
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
Table 6.  
Name  
Clocking diagram signal name descriptions  
Description  
main_clk  
The main clock used by the CPU and AHB bus, and potentially many others. The main clock and its source  
selection are shown in Figure 12.  
“none”  
A tied-off source that should be selected to save power when the output of the related multiplexer is not  
used.  
lposc_clk  
The output of the 1 MHz low power oscillator. It must also be enabled in the PDRUNCFG0 register.  
9.25.1 Internal oscillators  
The LPC804 include two independent oscillators:  
1. Free Running Oscillator.  
2. Low power oscillator.  
Following reset, the LPC804 operates from the FRO until switched by software allowing  
the part to run without any external clock and the bootloader code to operate at a known  
frequency.  
See Figure 12 for an overview of the LPC804 clock generation.  
9.25.1.1 Free Running Oscillator (FRO)  
The FRO provides the default clock at reset and provides a clean system clock shortly  
after the supply pins reach operating voltage.  
This oscillator provides a selectable 15 MHz, 12 MHz, and 9 MHz outputs that can be  
used as a system clock. Also, these outputs can be divided down to 7.5 MHz, 6 MHz,  
and 4.5 MHz for system clock.  
The FRO is trimmed to ±1 % accuracy over the entire voltage and temperature range  
of 0 C to 70 C.  
By default, the FRO output frequency is default system (CPU) clock frequency of 12  
MHz.  
9.25.1.2 Low Power Oscillator (LPOsc)  
The LPOsc is an independent oscillator which can be used as a system clock. The  
frequency of the LPCOsc is 1 MHz.  
9.25.2 Clock input  
An external clock source can be supplied on the selected CLKIN pin. When selecting a  
clock signal for the CLKIN pin, follow the specifications for digital I/O pins in Table 12  
Static characteristics, supply pins” and Table 18 “Dynamic characteristics: I/O pins[1].  
The maximum frequency for both clock signals is 15 MHz.  
9.25.3 Clock output  
The LPC804 features a clock output function that routes any oscillator or the main clock  
can be selected to the CLKOUT function. The CLKOUT function can be connected to any  
digital pin through the switch matrix.  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
32 of 87  
 
 
 
 
 
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
9.25.4 Power control  
The LPC804 supports the Arm Cortex-M0+ sleep mode. The CPU clock rate may also be  
controlled as needed by changing clock sources, and/or altering the CPU clock divider  
value. This allows a trade-off of power versus processing speed based on application  
requirements. In addition, a register is provided for shutting down the clocks to individual  
on-chip peripherals, allowing to fine-tune power consumption by eliminating all dynamic  
power use in any peripherals that are not required for the application. Selected  
peripherals have their own clock divider which provides even better power control.  
9.25.4.1 Sleep mode  
When sleep mode is entered, the clock to the core is stopped. Resumption from the sleep  
mode does not need any special sequence but re-enabling the clock to the Arm core.  
In sleep mode, execution of instructions is suspended until either a reset or interrupt  
occurs. Peripheral functions continue operation during sleep mode and may generate  
interrupts to cause the processor to resume execution. sleep mode eliminates dynamic  
power used by the processor itself, memory systems and related controllers, and internal  
buses.  
9.25.4.2 Deep-sleep mode  
In deep-sleep mode, the LPC804 core is in sleep mode and all peripheral clocks and all  
clock sources are off except for the FRO or low-power oscillator if selected. The FRO  
output is disabled. In addition, all analog blocks are shut down and the flash is in standby  
mode. In deep-sleep mode, the application can keep the low power oscillator and the  
BOD circuit running for self-timed wakeup and BOD protection.  
The LPC804 can wake up from deep-sleep mode via a reset, digital pins selected as  
inputs to the pin interrupt block, a watchdog timer interrupt, an interrupt from Capacitive  
Touch, or an interrupt from the USART (if the USART is configured in synchronous slave  
mode), the SPI (in slave mode), or the I2C blocks (in slave mode).  
Any interrupt used for waking up from deep-sleep mode must be enabled in one of the  
SYSCON wake-up enable registers and the NVIC.  
Deep-sleep mode saves power and allows for short wake-up times.  
9.25.4.3 Power-down mode  
In power-down mode, the LPC804 is in sleep mode and all peripheral clocks and all clock  
sources are off except for low-power oscillator if selected. In addition, all analog blocks  
and the flash are shut down. In power-down mode, the application can keep the  
low-power oscillator and the BOD circuit running for self-timed wake up and BOD  
protection.  
The LPC804 can wake up from power-down mode via a reset, digital pins selected as  
inputs to the pin interrupt block, a watchdog timer interrupt, an interrupt from Capacitive  
Touch, or an interrupt from the USART (if the USART is configured in synchronous slave  
mode), the SPI (in slave mode), or the I2C blocks (in slave mode).  
Any interrupt used for waking up from power-down mode must be enabled in one of the  
SYSCON wake-up enable registers and the NVIC.  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
33 of 87  
 
 
 
 
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
Power-down mode reduces power consumption compared to deep-sleep mode at the  
expense of longer wake-up times.  
9.25.4.4 Deep power-down mode  
In deep power-down mode, power is shut off to the entire chip except for the WAKEUP  
pins. The LPC804 can wake up from deep power-down mode via eight WAKEUP pins.  
See Section 9.19. Five general-purpose registers are available to store information during  
deep power-down mode.  
The LPC804 can be prevented from entering deep power-down mode by setting a lock bit  
in the PMU block. Locking out deep power-down mode enables the application to keep  
the watchdog timer or the BOD running at all times.  
When entering deep power-down mode, an external pull-up resistor is required on the  
WAKEUP pins to hold it HIGH.  
Table 7.  
Peripheral configuration in reduced power modes  
Peripheral  
Sleep mode  
Deep-sleep mode  
Power-down mode Deep power-down  
mode  
FRO  
software configurable  
software configurable  
software configurable  
software configurable  
software configurable  
on  
off  
off  
off  
off  
off  
off  
FRO output  
Flash  
off  
standby  
BOD  
software configurable  
software configurable  
off  
software configurable off  
software configurable off  
LPOsc/WWDT  
Digital peripherals software configurable  
off  
off  
Wake-up buffers  
software configurable (cannot software configurable  
software configurable software configurable  
(cannot be used as  
wake-up source)  
be used as wake-up source)  
(cannot be used as  
wake-up source)  
ADC  
DAC  
software configurable  
software configurable  
off  
off  
off  
off  
off  
off  
Capacitive Touch software configurable  
software configurable  
software configurable  
software configurable off  
software configurable off  
WKT/low-power  
oscillator  
software configurable  
Comparator  
PLU  
software configurable  
off  
off  
off  
off  
off  
off  
off  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
34 of 87  
 
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
Table 8.  
Wake-up sources for reduced power modes  
power mode  
Sleep  
Wake-up source  
Any interrupt  
Conditions  
Enable interrupt in NVIC.  
Deep-sleep and  
power-down  
Pin interrupts  
BOD interrupt  
Enable pin interrupts in NVIC and STARTERP0 registers.  
Enable interrupt in NVIC and STARTERP1 registers.  
Enable interrupt in BODCTRL register.  
BOD powered in PDSLEEPCFG register.  
BOD reset  
Enable reset in BODCTRL register.  
BOD powered in PDSLEEPCFG register.  
Enable interrupt in NVIC and STARTERP1 registers.  
WWDT running. Enable WWDT in WWDT MOD register and feed.  
Enable interrupt in WWDT MOD register.  
LPOsc powered in PDSLEEPCFG register.  
WWDT running.  
WWDT interrupt  
WWDT reset  
Enable reset in WWDT MOD register.  
LPOsc powered in PDSLEEPCFG register.  
Self-Wake-up Timer  
(WKT) time-out  
Enable interrupt in NVIC and STARTERP1 registers.  
Enable low-power oscillator in the LPOSCCLKEN register in the SYSCON  
block.  
Select low-power clock for WKT clock in the WKT CTRL register.  
Start the WKT by writing a time-out value to the WKT COUNT register.  
Enable interrupt in NVIC and STARTERP1 registers.  
Enable USART/I2C/SPI interrupts.  
Interrupt from  
USART/SPI/I2C  
peripheral  
Provide an external clock signal to the peripheral.  
Configure the USART in synchronous slave mode and I2C and SPI in  
slave mode.  
Interrupt from  
Capacitive Touch  
peripheral  
Enable interrupt in NVIC and STARTERP1 registers.  
Enable the Capacitive Touch interrupt.  
Switch FCLK clock source to the LPOsc.  
Set Capacitive Touch registers.  
Provide a touch event to the peripheral.  
Deep power-down WAKEUP pins  
Enable the WAKEUP function in the WUENAREG register in the PMU.  
9.25.5 Wake-up process  
The LPC804 begin operation at power-up by using the FRO as the clock source allowing  
chip operation to resume quickly. If LPOsc or external clock sources are needed by the  
application, software must enable these features and wait for them to stabilize before they  
are used as a clock source.  
9.26 System control  
9.26.1 Reset  
Reset has four sources on the LPC804: the RESET pin, the Watchdog reset, power-on  
reset (POR), and the BrownOut Detection (BOD) circuit. The RESET pin is a Schmitt  
trigger input pin. Assertion of chip reset by any source, once the operating voltage attains  
a usable level, starts the FRO and initializes the flash controller.  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
35 of 87  
 
 
 
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
A LOW-going pulse as short as 50 ns resets the part.  
When the internal Reset is removed, the processor begins executing at address 0, which  
is initially the Reset vector mapped from the boot block. At that point, all of the processor  
and peripheral registers have been initialized to predetermined values.  
9
''  
9
''  
9
''  
5
SX  
(6'  
ꢀꢁꢂQVꢂ5&  
*/,7&+ꢂ),/7(5  
UHVHW  
3,1  
(6'  
9
66  
DDDꢀꢁꢁꢂꢃꢄꢅ  
Fig 16. Reset pad configuration  
9.26.2 Brownout detection  
The LPC804 includes one reset level and three interrupt levels for monitoring the voltage  
on the VDD pin. If this voltage falls below one of the selected levels, the BOD asserts an  
interrupt signal to the NVIC. This signal can be enabled for interrupt in the Interrupt  
Enable Register in the NVIC to cause a CPU interrupt. Alternatively, software can monitor  
the signal by reading a dedicated status register. One threshold level can be selected to  
cause a forced reset of the chip.  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
36 of 87  
 
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
9.26.3 Code security (Code Read Protection - CRP)  
CRP provides different levels of security in the system so that access to the on-chip flash  
and use of the Serial Wire Debugger (SWD) and In-System Programming (ISP) can be  
restricted. Programming a specific pattern into a dedicated flash location invokes CRP.  
IAP commands are not affected by the CRP.  
In addition, ISP entry via the ISP entry pin can be disabled without enabling CRP. For  
details, see the LPC804 user manual.  
There are three levels of Code Read Protection:  
1. CRP1 disables access to the chip via the SWD and allows partial flash update  
(excluding flash sector 0) using a limited set of the ISP commands. This mode is  
useful when CRP is required and flash field updates are needed but all sectors cannot  
be erased.  
2. CRP2 disables access to the chip via the SWD and only allows full flash erase and  
update using a reduced set of the ISP commands.  
3. Running an application with level CRP3 selected, fully disables any access to the chip  
via the SWD pins and the ISP. This mode effectively disables ISP override using the  
ISP entry pin as well. If necessary, the application must provide a flash update  
mechanism using IAP calls or using a call to the reinvoke ISP command to enable  
flash update via the USART.  
CAUTION  
If level three Code Read Protection (CRP3) is selected, no future factory testing can be  
performed on the device.  
In addition to the three CRP levels, sampling of the ISP entry pin for valid user code can  
be disabled. For details, see the LPC804 user manual.  
9.26.4 APB interface  
The APB peripherals are located on one APB bus.  
9.26.5 AHBLite  
The AHBLite connects the CPU bus of the Arm Cortex-M0+ to the flash memory, the main  
static RAM, the ROM, and the APB peripherals.  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
37 of 87  
 
 
 
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
9.27 Emulation and debugging  
Debug functions are integrated into the Arm Cortex-M0+. Serial wire debug functions are  
supported in addition to a standard JTAG boundary scan. The Arm Cortex-M0+ is  
configured to support up to four breakpoints and two watch points.  
The RESET pin selects between the JTAG boundary scan (RESET = LOW) and the Arm  
SWD debug (RESET = HIGH). The Arm SWD debug port is disabled while the LPC804 is  
in reset. The JTAG boundary scan pins are selected by hardware when the part is in  
boundary scan mode. See Table 4.  
To perform boundary scan testing, follow these steps:  
1. Erase any user code residing in flash.  
2. Power up the part with the RESET pin pulled HIGH externally.  
3. Wait for at least 250 s.  
4. Pull the RESET pin LOW externally.  
5. Perform boundary scan operations.  
6. Once the boundary scan operations are completed, assert the TRST pin to enable the  
SWD debug mode, and release the RESET pin (pull HIGH).  
Remark: The JTAG interface cannot be used for debug purposes.  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
38 of 87  
 
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
10. Limiting values  
Table 9.  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).[1]  
Symbol Parameter  
Conditions  
Min  
Max  
Unit  
[2]  
VDD  
supply voltage (core and external  
0.5  
+4.6  
V
rail)  
Vref  
VI  
reference voltage  
input voltage  
on pin VREFP  
0.5  
0.5  
VDD  
V
V
[3][4]  
[5]  
5 V tolerant I/O pins; VDD  
1.71 V  
+5.4  
3 V tolerant I/O pin ACMPVREF  
0.5  
0.5  
+3.6  
+4.6  
V
V
[6][7]  
[8]  
VIA  
analog input voltage  
supply current  
on digital pins configured for an  
analog function  
IDD  
per supply pin (TSSOP20)  
-
18  
mA  
mA  
mA  
per supply pin (TSSOP24)  
per supply pin (HVQFN33)  
per ground pin (TSSOP20)  
-
-
-
22  
30  
40  
ISS  
ground current  
per ground pin (TSSOP24)  
per ground pin (HVQFN33)  
(0.5VDD) < VI < (1.5VDD);  
Tj < 125 C  
-
-
-
45  
50  
Ilatch  
I/O latch-up current  
100  
[9]  
Tstg  
storage temperature  
65  
+150  
150  
C  
C  
W
Tj(max)  
maximum junction temperature  
-
-
[11]  
Ptot(pack) total power dissipation (per  
package)  
TSSOP20, based on package  
heat transfer, not device power  
consumption  
0.36  
[12]  
[11]  
[12]  
[11]  
[12]  
[10]  
TSSOP20, based on package  
heat transfer, not device power  
consumption  
-
-
-
-
-
-
0.26  
0.34  
0.26  
0.93  
0.34  
2000  
W
W
W
W
W
V
TSSOP24, based on package  
heat transfer, not device power  
consumption  
TSSOP24, based on package  
heat transfer, not device power  
consumption  
HVQFN33, based on package  
heat transfer, not device power  
consumption  
HVQFN33, based on package  
heat transfer, not device power  
consumption  
Vesd  
electrostatic discharge voltage  
human body model; all pins  
[1] The following applies to the limiting values:  
a) This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive  
static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated  
maximum.  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
39 of 87  
 
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
b) Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to VSS unless  
otherwise noted.  
[2] Maximum/minimum voltage above the maximum operating voltage (see Table 12) and below ground that can be applied for a short time  
(< 10 ms) to a device without leading to irrecoverable failure. Failure includes the loss of reliability and shorter lifetime of the device.  
[3] Applies to all 5 V tolerant I/O pins except the 3 V tolerant pin PIO0_7.  
[4] Including the voltage on outputs in 3-state mode.  
[5] VDD present or not present.  
[6] An ADC input voltage above 3.6 V can be applied for a short time without leading to immediate, unrecoverable failure. Accumulated  
exposure to elevated voltages at 4.6 V must be less than 106 s total over the lifetime of the device. Applying an elevated voltage to the  
ADC inputs for a long time affects the reliability of the device and reduces its lifetime.  
[7] If the comparator is configured with the common mode input VIC = VDD, the other comparator input can be up to 0.2 V above or below  
V
DD without affecting the hysteresis range of the comparator function.  
[8] It is recommended to connect an overvoltage protection diode between the analog input pin and the voltage supply pin.  
[9] Dependent on package type.  
[10] Human body model: equivalent to discharging a 100 pF capacitor through a 1.5 kseries resistor.  
[11] JEDEC (4.5 in 4 in); still air.  
[12] Single layer (4.5 in 3 in); still air.  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
40 of 87  
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
11. Thermal characteristics  
The average chip junction temperature, Tj (C), can be calculated using the following  
equation:  
Tj = Tamb + PD Rthj a  
(1)  
Tamb = ambient temperature (C),  
Rth(j-a) = the package junction-to-ambient thermal resistance (C/W)  
PD = sum of internal and I/O power dissipation  
The internal power dissipation is the product of IDD and VDD. The I/O power dissipation of  
the I/O pins is often small and many times can be negligible. However it can be significant  
in some applications.  
Table 10. Thermal resistance  
Symbol  
TSSOP20 package  
Rth(j-a) thermal resistance from  
Parameter  
Conditions  
Max/min  
Unit  
JEDEC (4.5 in 4 in); still air 108 15 %  
C/W  
C/W  
junction-to-ambient  
single-layer (4.5 in 3 in); still 151 15 %  
air  
Rth(j-c)  
thermal resistance from  
junction-to-case  
24 15 %  
C/W  
TSSOP24 package  
Rth(j-a) thermal resistance from  
JEDEC (4.5 in 4 in); still air 114 15 %  
C/W  
C/W  
junction-to-ambient  
single-layer (4.5 in 3 in); still 153 15 %  
air  
Rth(j-c)  
thermal resistance from  
junction-to-case  
31 15 %  
C/W  
HVQFN33 package  
Rth(j-a) thermal resistance from  
JEDEC (4.5 in 4 in); still air 42 15 %  
C/W  
C/W  
junction-to-ambient  
single-layer (4.5 in 3 in); still 114 15 %  
air  
Rth(j-c)  
thermal resistance from  
junction-to-case  
21 15 %  
C/W  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
41 of 87  
 
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
12. Static characteristics  
12.1 General operating conditions  
Table 11. General operating conditions  
Tamb = 40 C to +105 C, unless otherwise specified.  
Symbol  
fclk  
Parameter  
Conditions  
Min  
-
Typ[1]  
Max  
15  
Unit  
MHz  
V
clock frequency  
internal CPU/system clock  
-
-
-
-
-
-
-
-
VDD  
supply voltage (core  
and external rail)  
1.71  
2.5  
2.7  
1.71  
2.5  
2.7  
2.5  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
VDD  
For ADC operations  
For DAC operations  
V
V
VDDIO  
I/O rail  
V
For ADC operations  
For DAC operations  
V
V
Vref  
ADC positive reference on pin VREFP  
voltage  
V
Pin capacitance  
Cio input/output  
capacitance  
[2]  
[2]  
pins with analog and digital  
functions  
-
-
-
-
7.1  
2.8  
pF  
pF  
pins with digital functions only  
[1] Typical ratings are not guaranteed. The values listed are for room temperature (25 C), nominal supply voltages.  
[2] Including bonding pad capacitance. Based on simulation, not tested in production.  
12.2 Power consumption  
Power measurements in active, sleep, deep-sleep, and power-down modes were  
performed under the following conditions:  
Configure all pins as GPIO with pull-up resistor disabled in the IOCON block.  
Configure GPIO pins as outputs using the GPIO DIR register.  
Write 1 to the GPIO CLR register to drive the outputs LOW.  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
42 of 87  
 
 
 
 
 
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
Table 12. Static characteristics, supply pins  
Tamb = 40 C to +105 C, unless otherwise specified.  
Symbol Parameter Conditions  
Min  
Typ[1][2] Max[9] Unit  
IDD  
supply current Active mode; code  
while(1){}  
executed from flash;  
[3][5][6][10]  
[3][4][5][6]  
[3][4][5][6]  
[3][4][5][6]  
system clock = 1 MHz  
VDD = 3.3 V  
0.5  
0.8  
1.0  
1.3  
-
-
-
-
mA  
mA  
mA  
mA  
system clock = 9 MHz  
VDD = 3.3 V  
system clock = 12 MHz  
-
-
VDD = 3.3 V  
system clock = 15 MHz  
VDD = 3.3 V  
Sleep mode  
[3][4][5][6]  
[3][4][5][6]  
system clock = 9 MHz  
VDD = 3.3 V  
0.4  
0.5  
0.6  
system clock = 12 MHz  
-
-
-
-
-
mA  
mA  
VDD = 3.3 V  
[3][4]  
[5][6]  
system clock = 15 MHz  
VDD = 3.3 V  
[3][7]  
[3][7]  
[8]  
IDD  
IDD  
IDD  
supply current Deep-sleep mode;  
VDD = 3.3 V;  
amb = 25 C  
T
100  
-
175  
240  
A  
A  
Tamb = 105 C  
-
-
supply current Power-down mode;  
VDD = 3.3 V  
Tamb = 25 C  
Tamb = 105 C  
6
-
14  
75  
A  
A  
-
supply current Deep power-down mode;  
VDD = 3.3 V;  
T
amb = 25 C  
-
-
0.15  
-
0.5  
7
A  
A  
Tamb = 105 C  
[1] Typical ratings are not guaranteed. The values listed are for room temperature (25 C), VDD = 3.3 V.  
[2] Characterized through bench measurements using typical samples.  
[3] IDD measurements were performed with all pins configured as GPIO outputs driven LOW and pull-up resistors disabled.  
[4] FRO enabled.  
[5] BOD disabled.  
[6] All peripherals disabled in the SYSAHBCLKCTRL register. Peripheral clocks disabled in system configuration block.  
[7] All oscillators and analog blocks turned off.  
[8] WAKEUP function pin pulled HIGH externally.  
[9] Tested in production, VDD = 3.6 V.  
[10] LPOsc enabled, FRO disabled.  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
43 of 87  
 
 
 
 
 
 
 
 
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
DDDꢀꢁꢆꢇꢁꢁꢈ  
ꢅꢇꢁ  
,
''  
ꢉ—$ꢊ  
ꢅꢈꢁ  
ꢍꢋꢈꢂ99  
ꢍꢋꢁꢂ99  
ꢀꢋꢌꢂ99  
ꢀꢋꢁꢂ99  
ꢅꢋꢇꢂ99  
ꢅꢋꢌꢂ99  
ꢅꢄꢁ  
ꢅꢀꢁ  
ꢅꢁꢁ  
ꢇꢁ  
ꢃꢄꢁ  
ꢃꢅꢁ  
ꢀꢁ  
ꢆꢁ  
ꢇꢁ  
ꢅꢅꢁ  
7HPSHUDWXUHꢂꢉƒ&ꢊ  
Conditions: BOD disabled; all oscillators and analog blocks disabled in the PDSLEEPCFG register.  
Fig 17. Deep-sleep mode: Typical supply current IDD versus temperature for different  
supply voltages VDD  
DDDꢀꢁꢆꢇꢁꢁꢉ  
ꢍꢁ  
,,  
''  
ꢉ—$ꢊ  
ꢀꢆ  
ꢀꢁ  
ꢅꢆ  
ꢅꢁ  
ꢍꢋꢈ9  
ꢍꢋꢁ9  
ꢅꢋꢇ9  
ꢅꢋꢌ9  
ꢃꢄꢁ  
ꢃꢅꢁ  
ꢀꢁ  
ꢆꢁ  
ꢇꢁ  
ꢅꢅꢁ  
WHPSHUDWXUHꢂꢉƒ&ꢊ  
Conditions: BOD disabled; all oscillators and analog blocks disabled in the PDSLEEPCFG register.  
Fig 18. Power-down mode: Typical supply current IDD versus temperature for different  
supply voltages VDD  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
44 of 87  
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
DDDꢀꢁꢆꢇꢁꢁꢃ  
ꢅꢋꢆ  
ꢅꢋꢍ  
,
''  
ꢉ—$ꢊ  
ꢍꢋꢈ9  
ꢍꢋꢁ9  
ꢅꢋꢇ9  
ꢅꢋꢌ9  
ꢀꢋꢌ9  
ꢁꢋꢇ  
ꢁꢋꢆ  
ꢁꢋꢍ  
ꢃꢄꢁ  
ꢃꢅꢁ  
ꢀꢁ  
ꢆꢁ  
ꢇꢁ  
ꢅꢅꢁ  
7HPSHUDWXUHꢂꢉƒ&ꢊ  
WKT not running.  
Fig 19. Deep power-down mode: Typical supply current IDD versus temperature for  
different supply voltages VDD  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
45 of 87  
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
12.2.1 Peripheral power consumption  
The supply current per peripheral is measured as the difference in supply current between  
the peripheral block enabled and the peripheral block disabled in the SYSAHBCLKCFG.  
and PDRUNCFG (for analog blocks) registers. All other blocks are disabled in both  
registers and no code accessing the peripheral is executed. Measured on a typical  
sample at Tamb = 25 C.  
The supply currents are shown for system clock frequencies of 12 MHz and 15 MHz.  
Table 13. Power consumption for individual analog and digital blocks  
Peripheral  
Typical supply current in μA  
Notes  
System clock frequency =  
n/a  
74  
39  
80  
1
12 MHz  
15 MHz  
FRO  
-
-
FRO = 12MHz. FRO output disabled.  
Independent of main clock frequency.  
-
BOD  
-
-
Flash  
-
-
LPOsc  
-
-
FRO; independent of main clock frequency.  
GPIO + pin interrupt  
-
40  
54  
GPIO pins configured as outputs and set to  
LOW. Direction and pin state are maintained if  
the GPIO is disabled in the SYSAHBCLKCFG  
register.  
SWM  
-
-
-
-
-
-
-
-
-
-
-
-
24  
28  
28  
45  
31  
44  
30  
36  
37  
56  
41  
58  
-
-
-
-
-
-
IOCON  
CTimer  
MRT  
WWDT  
I2C0  
I2C1  
SPI0  
33  
39  
40  
36  
61  
42  
46  
50  
46  
78  
-
-
-
-
USART0  
USART1  
Comparator ACMP  
ADC  
Digital controller only. Analog portion of the  
ADC disabled in the PDRUNCFG register.  
-
61  
78  
Combined analog and digital logic. ADC  
enabled in the PDRUNCFG register and  
LPWRMODE bit set to 1 in the ADC CTRL  
register (ADC in low-power mode).  
-
61  
78  
Combined analog and digital logic. ADC  
enabled in the PDRUNCFG register and  
LPWRMODE bit set to 0 in the ADC CTRL  
register (ADC powered).  
DAC  
-
-
-
-
29  
22  
35  
Capacitive Touch  
26  
PLU  
118  
37  
149  
50  
CRC  
-
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
46 of 87  
 
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
12.3 Pin characteristics  
Table 14. Static characteristics, electrical pin characteristics  
amb = 40 C to +105 C, unless otherwise specified.  
T
Symbol Parameter Conditions  
Standard port pins configured as digital pins, RESET  
Min  
Typ[1]  
Max  
Unit  
IIL  
LOW-level input current VI = 0 V; on-chip pull-up resistor  
disabled  
-
0.5  
0.5  
0.5  
-
10[2]  
10[2]  
10[2]  
5.4  
nA  
nA  
nA  
V
IIH  
IOZ  
VI  
HIGH-level input  
current  
VI = VDD; on-chip pull-down resistor  
disabled  
-
OFF-state output  
current  
VO = 0 V; VO = VDD; on-chip  
pull-up/down resistors disabled  
-
input voltage  
VDD 1.71 V; 5 V tolerant pins  
0
except PIO0_7  
VDD = 0 V  
0
-
-
-
3.6  
VDD  
-
V
V
V
VO  
output voltage  
output active  
0
VIH  
HIGH-level input  
voltage  
0.7VDD  
VIL  
LOW-level input voltage  
hysteresis voltage  
-
-
-
0.3VDD  
V
Vhys  
VOH  
0.4  
-
V
HIGH-level output  
voltage  
IOH = 4 mA; 2.5 V <= VDD <= 3.6 V  
IOH = 3 mA; 1.71 V <= VDD < 2.5 V  
IOL = 4 mA; 2.5 V <= VDD <= 3.6 V  
IOL = 3 mA; 1.71 V <= VDD < 2.5 V  
VOH = VDD 0.4 V;  
VDD 0.4 -  
VDD 0.5 -  
-
V
-
V
VOL  
LOW-level output  
voltage  
-
-
-
-
0.5  
0.5  
-
V
-
V
IOH  
HIGH-level output  
current  
4
mA  
2.5 V VDD 3.6 V  
VOH = VDD 0.5 V;  
3
4
-
-
-
-
mA  
mA  
1.71 V VDD 2.5 V  
IOL  
LOW-level output  
current  
VOL = 0.5 V  
2.5 V VDD 3.6 V  
1.71 V VDD < 2.5 V  
3
-
-
-
-
mA  
mA  
[3]  
[3]  
IOHS  
IOLS  
HIGH-level short-circuit VOH = 0 V  
output current  
45  
LOW-level short-circuit VOL = VDD  
output current  
-
-
50  
mA  
[4]  
[4]  
Ipd  
Ipu  
pull-down current  
pull-up current  
VI = 5 V  
VI = 0 V;  
10  
50  
150  
A  
2.0 V VDD 3.6 V  
10  
7
50  
50  
0
90  
85  
0
A  
A  
A  
1.71 V VDD < 2.0 V  
VDD < VI < 5 V  
0
High-drive output pin configured as digital pin (PIO0_2, PIO0_3, PIO0_12, PIO0_18, and PIO0_20)  
IIL  
LOW-level input current VI = 0 V; on-chip pull-up resistor  
disabled  
-
0.5  
10[2]  
10[2]  
nA  
nA  
IIH  
HIGH-level input  
current  
VI = VDD; on-chip pull-down resistor  
disabled  
-
0.5  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
47 of 87  
 
 
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
Table 14. Static characteristics, electrical pin characteristics …continued  
Tamb = 40 C to +105 C, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ[1]  
Max  
Unit  
IOZ  
OFF-state output  
current  
VO = 0 V; VO = VDD; on-chip  
pull-up/down resistors disabled  
-
0.5  
10[2]  
nA  
VI  
input voltage  
VDD 1.8 V  
0
-
5.0  
V
VDD = 0 V  
0
-
-
-
3.6  
VDD  
-
V
V
V
VO  
output voltage  
output active  
0
VIH  
HIGH-level input  
voltage  
0.7VDD  
VIL  
LOW-level input voltage  
hysteresis voltage  
-
-
-
0.3VDD  
V
V
V
V
V
Vhys  
VOH  
0.4  
-
HIGH-level output  
voltage  
IOH = 20 mA; 2.5 V <= VDD < 3.6 V  
IOH = 12 mA; 1.71 V <= VDD < 2.5 V  
VDD 0.6 -  
VDD 0.6 -  
-
-
VOL  
IOH  
LOW-level output  
voltage  
IOL = 4 mA; 2.5 V <= VDD <= 3.6 V  
IOL = 3 mA; 1.71 V <= VDD < 2.5 V  
-
-
-
-
-
0.5  
HIGH-level output  
current  
VOH = VDD 0.6 V;  
2.5 V <= VDD < 3.6 V  
20  
12  
4
-
-
-
mA  
mA  
mA  
VOH = VDD 0.6 V;  
1.71 V <= VDD < 2.5 V  
IOL  
LOW-level output  
current  
VOL = 0.5 V  
2.5 V VDD 3.6 V  
1.71 V VDD < 2.5 V  
3
-
-
-
-
mA  
mA  
[3]  
IOLS  
LOW-level short-circuit VOL = VDD  
output current  
50  
[4]  
[4]  
Ipd  
Ipu  
pull-down current  
pull-up current  
VI = 5 V  
VI = 0 V;  
10  
50  
150  
A  
A  
A  
A  
A  
2.0 V VDD 3.6 V  
10  
7
50  
50  
0
90  
85  
0
1.71 V VDD < 2.0 V  
VDD < VI < 5 V  
0
[1] Typical ratings are not guaranteed. The values listed are for room temperature (25 C), nominal supply voltages.  
[2] Based on characterization. Not tested in production.  
[3] Allowed as long as the current limit does not exceed the maximum current allowed by the device.  
[4] Pull-up and pull-down currents are measured across the weak internal pull-up/pull-down resistors. See Figure 20.  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
48 of 87  
 
 
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
V
DD  
I
I
OL  
pd  
+
-
pin PIO0_n  
pin PIO0_n  
A
I
OH  
Ipu  
-
+
A
aaa-010819  
Fig 20. Pin input/output current measurement  
12.3.1 Electrical pin characteristics  
DDDꢀꢁꢆꢇꢁꢁꢇ  
DDDꢀꢁꢆꢇꢁꢄꢁ  
ꢅꢋꢈ  
ꢅꢋꢀ  
ꢁꢋꢇ  
ꢁꢋꢍ  
ꢍꢋꢆ  
9
9
2+  
ꢉ9ꢊ  
2+  
ꢉ9ꢊ  
ꢍꢋꢍ  
ꢍꢋꢅ  
ꢀꢋꢇ  
ꢀꢋꢈ  
ꢀꢋꢄ  
ꢃꢄꢁ&  
ꢀꢆ&  
ꢎꢁ&  
ꢅꢁꢆ&  
ꢃꢄ&&  
ꢀꢆ&&  
ꢎꢁ&&  
&&  
ꢃꢁꢋꢅ  
ꢃꢁꢋꢆ  
ꢅꢀ  
ꢅꢈ  
ꢀꢁ  
ꢅꢁ  
ꢀꢁ  
ꢍꢁ  
, ꢂꢉP$ꢊ  
2+  
ꢄꢁ  
,
ꢂꢉP$ꢊ  
2+  
Conditions: VDD = 1.8 V; on pin PIO0_12.  
Conditions: VDD = 3.3 V; on pin PIO0_12.  
Fig 21. High-drive output: Typical HIGH-level output voltage VOH versus HIGH-level output current IOH  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
49 of 87  
 
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
DDDꢀꢁꢆꢇꢁꢄꢆ  
DDDꢀꢁꢆꢇꢁꢄꢅ  
ꢅꢈ  
ꢅꢍ  
ꢅꢅ  
,
,
2/  
ꢉP$ꢊ  
2/  
ꢉP$ꢊ  
ꢃꢄ&&  
ꢀꢆ&  
ꢃꢄ&&  
ꢀꢆ&&  
ꢎꢁ&  
ꢎꢁ&&  
&&  
&&  
ꢁꢋꢅ  
ꢁꢋꢀ  
ꢁꢋꢍ  
ꢁꢋꢄ  
ꢁꢋꢆ  
2/  
ꢁꢋꢈ  
ꢁꢋꢅ  
ꢁꢋꢀ  
ꢁꢋꢍ  
ꢁꢋꢄ  
ꢁꢋꢆ  
2/  
ꢁꢋꢈ  
9
ꢂꢉ9ꢊ  
9
ꢂꢉ9ꢊ  
Conditions: VDD = 1.8 V; standard port pins and  
high-drive pin PIO0_12.  
Conditions: VDD = 3.3 V; standard port pins and  
high-drive pin PIO0_12.  
Fig 22. Typical LOW-level output current IOL versus LOW-level output voltage VOL  
DDDꢀꢁꢆꢇꢁꢅꢁ  
DDDꢀꢁꢆꢇꢁꢅꢄ  
ꢅꢋꢇ  
2+  
ꢍꢋꢆ  
9
2+  
ꢉ9ꢊ  
9
ꢉ9ꢊ  
ꢅꢋꢌ  
ꢅꢋꢆ  
ꢅꢋꢄ  
ꢅꢋꢍ  
ꢅꢋꢅ  
ꢍꢋꢅ  
ꢀꢋꢌ  
ꢀꢋꢍ  
ꢅꢋꢎ  
ꢅꢋꢆ  
ꢃꢄꢁ&  
ꢀꢆ&  
ꢎꢁ&  
ꢅꢁꢆ&  
ꢃꢄ&&  
ꢀꢆ&&  
ꢎꢁ&&  
&&  
ꢅꢋꢅ  
ꢀꢋꢍ  
ꢍꢋꢄ  
ꢂꢉP$ꢊ  
ꢄꢋꢆ  
ꢅꢀ  
, ꢂꢉP$ꢊ  
2+  
ꢅꢈ  
,
2+  
Conditions: VDD = 1.8 V; standard port pins.  
Conditions: VDD = 3.3 V; standard port pins.  
Fig 23. Typical HIGH-level output voltage VOH versus HIGH-level output source current IOH  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
50 of 87  
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
DDDꢀꢁꢆꢇꢁꢅꢆ  
DDDꢀꢁꢆꢇꢁꢅꢅ  
,
,
SX  
ꢉ—$ꢊ  
SX  
ꢉ—$ꢊ  
ꢃꢅꢄ  
ꢃꢀꢇ  
ꢃꢄꢀ  
ꢃꢆꢈ  
ꢃꢌꢁ  
ꢃꢄ  
ꢃꢇ  
ꢀꢆ&  
ꢅꢁ&&  
ꢎꢁ&&  
ꢃꢄꢁ&  
ꢎꢁ&  
ꢃꢄꢁ&  
ꢀꢆ&&  
ꢅꢁꢆ&  
ꢃꢅꢀ  
ꢃꢅꢈ  
ꢁꢋꢌ  
ꢅꢋꢄ  
ꢀꢋꢅ  
ꢀꢋꢇ  
9 ꢂꢉ9ꢊ  
ꢍꢋꢆ  
9 ꢂꢉ9ꢊ  
,
,
Conditions: VDD = 1.8 V; standard port pins.  
Conditions: VDD = 3.3 V; standard port pins.  
Fig 24. Typical pull-up current IPU versus input voltage VI  
DDDꢀꢁꢆꢇꢁꢅꢂ  
DDDꢀꢁꢆꢇꢁꢅꢊ  
ꢍꢆ  
ꢌꢆ  
ꢈꢁ  
ꢄꢆ  
ꢍꢁ  
ꢅꢆ  
,
,
SG  
ꢉ—$ꢊ  
SG  
ꢉ—$ꢊ  
ꢀꢇ  
ꢀꢅ  
ꢅꢄ  
ꢃꢄꢁ&  
ꢀꢆ&  
ꢃꢄꢁ&  
ꢀꢆ&&  
ꢎꢁ&  
ꢎꢁ&&  
ꢅꢁꢆ&  
ꢅꢁ&&  
9 ꢂꢉ9ꢊ  
,
9 ꢂꢉ9ꢊ  
,
Conditions: VDD = 1.8 V; standard port pins.  
Conditions: VDD = 3.3 V; standard port pins.  
Fig 25. Typical pull-down current IPD versus input voltage VI  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
51 of 87  
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
13. Dynamic characteristics  
13.1 Flash memory (EEPROM based)  
Table 15. Flash characteristics  
Tamb = 40 C to +105 C. Based on JEDEC NVM qualification.  
Symbol  
Nendu  
tret  
Parameter  
endurance  
Conditions  
Min  
Typ  
Max  
Unit  
[1]  
200,000 500,000  
-
-
-
-
cycles  
years  
years  
ms  
retention time  
powered  
10  
20  
-
-
not powered  
-
[2]  
tprog/ter  
programming  
time or erase  
time  
page or multiple  
consecutivepages,  
sector or multiple  
consecutive  
2.5  
sectors  
[1] Number of program/erase cycles.  
[2] Programming times are given for writing 64 bytes to the flash. Tamb <= +85 C. Flash programming with IAP  
calls (see LPC804 user manual).  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
52 of 87  
 
 
 
 
LPC804  
NXP Semiconductors  
13.2 FRO  
32-bit Arm Cortex-M0+ microcontroller  
Table 16. Dynamic characteristic: FRO  
amb = 40 C to +105 C; 1.7 V VDD 3.6 V.  
T
Symbol Min  
Typ[1]  
Max  
Unit  
FRO clock frequency; Condition: 0 C Tamb 70 C  
fosc(RC)  
fosc(RC)  
fosc(RC)  
9 -1 %  
9
9 +1 %  
MHz  
MHz  
MHz  
12 -1 %  
15 -1 %  
12  
15  
12 +1 %  
15 +1 %  
FRO clock frequency; Condition: 20 C Tamb 70 C  
fosc(RC)  
fosc(RC)  
fosc(RC)  
9 -2 %  
9
9 +1 %  
MHz  
MHz  
MHz  
12 -2 %  
15 -2 %  
12  
15  
12 +1 %  
15 +1 %  
FRO clock frequency; Condition: 40 C Tamb 105 C  
fosc(RC)  
fosc(RC)  
fosc(RC)  
9 -3.5 %  
12 -3.5 %  
15 -3.5 %  
9
9 +2.5 %  
12 +2.5 %  
15 +2.5 %  
MHz  
MHz  
MHz  
12  
15  
[1] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply  
voltages.  
Table 17. Dynamic characteristic: LPOsc  
Tamb = 40 C to +105 C; 1.71 V VDD 3.6 V.  
Symbol Parameter  
Conditions  
Min  
Typ[1]  
Max  
Unit  
fosc(RC)  
LPOsc clock  
frequency  
-
1 -3%  
1
1 +3%  
MHz  
[1] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply  
voltages.  
13.3 I/O pins  
Table 18. Dynamic characteristics: I/O pins[1]  
Tamb = 40 C to +105 C; 3.0 V VDD 3.6 V.  
Symbol Parameter Conditions  
Min  
3.0  
2.5  
Typ  
Max  
5.0  
Unit  
ns  
tr  
tf  
rise time  
fall time  
pin configured as output  
pin configured as output  
-
-
5.0  
ns  
[1] Applies to standard port pins and RESET pin.  
13.4 WKTCLKIN pin (wake-up clock input)  
Table 19. Dynamic characteristics: WKTCLKIN pin  
Tamb = 40 C to +105 C; 1.71 V VDD 3.6 V.  
Symbol Parameter  
Conditions  
Min Max  
Unit  
[1]  
fclk  
clock frequency  
power-down, deep-sleep, and active  
mode  
-
10  
MHz  
tCHCX  
tCLCX  
clock HIGH time  
clock LOW time  
-
-
50  
50  
-
-
ns  
ns  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
53 of 87  
 
 
 
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
[1] Assuming a square-wave input clock.  
13.5 I2C-bus  
Table 20. Dynamic characteristic: I2C-bus pins[1]  
Tamb = 40 C to +105 C; values guaranteed by design.[2]  
Symbol  
Parameter  
Conditions  
Standard-mode  
Fast-mode  
Min  
Max  
100  
400  
300  
Unit  
kHz  
kHz  
ns  
fSCL  
SCL clock  
frequency  
0
0
-
[4][5][6]  
tf  
fall time  
of both SDA and  
SCL signals  
Standard-mode  
Fast-mode  
20 + 0.1 Cb 300  
ns  
s  
s  
s  
s  
s  
s  
ns  
ns  
tLOW  
LOW period of  
the SCL clock  
Standard-mode  
Fast-mode  
4.7  
1.3  
4.0  
0.6  
0
-
-
-
-
-
-
-
-
tHIGH  
HIGH period of  
the SCL clock  
Standard-mode  
Fast-mode  
[3][4][7]  
[8][9]  
tHD;DAT  
data hold time  
Standard-mode  
Fast-mode  
0
tSU;DAT  
data set-up  
time  
Standard-mode  
Fast-mode  
250  
100  
[1] See the I2C-bus specification UM10204 for details.  
[2] Parameters are valid over operating temperature range unless otherwise specified.  
[3] tHD;DAT is the data hold time that is measured from the falling edge of SCL; applies to data in transmission  
and the acknowledge.  
[4] A device must internally provide a hold time of at least 300 ns for the SDA signal (with respect to the  
VIH(min) of the SCL signal) to bridge the undefined region of the falling edge of SCL.  
[5] Cb = total capacitance of one bus line in pF.  
[6] The maximum tf for the SDA and SCL bus lines is specified at 300 ns. The maximum fall time for the SDA  
output stage tf is specified at 250 ns. This allows series protection resistors to be connected in between the  
SDA and the SCL pins and the SDA/SCL bus lines without exceeding the maximum specified tf.  
[7] The maximum tHD;DAT could be 3.45 s and 0.9 s for Standard-mode and Fast-mode but must be less than  
the maximum of tVD;DAT or tVD;ACK by a transition time (see UM10204). This maximum must only be met if  
the device does not stretch the LOW period (tLOW) of the SCL signal. If the clock stretches the SCL, the  
data must be valid by the set-up time before it releases the clock.  
[8]  
t
SU;DAT is the data set-up time that is measured with respect to the rising edge of SCL; applies to data in  
transmission and the acknowledge.  
[9] A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system but the requirement  
SU;DAT = 250 ns must then be met. This will automatically be the case if the device does not stretch the  
t
LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must  
output the next data bit to the SDA line tr(max) + tSU;DAT = 1000 + 250 = 1250 ns (according to the  
Standard-mode I2C-bus specification) before the SCL line is released. Also the acknowledge timing must  
meet this set-up time.  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
54 of 87  
 
 
 
 
 
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
W
I
W
68ꢐ'$7  
ꢌꢁꢂꢏ  
ꢍꢁꢂꢏ  
ꢌꢁꢂꢏ  
ꢍꢁꢂꢏ  
6'$  
6&/  
W
W
+'ꢐ'$7  
9'ꢐ'$7  
W
I
W
+,*+  
ꢌꢁꢂꢏ  
ꢍꢁꢂꢏ  
ꢌꢁꢂꢏ  
ꢍꢁꢂꢏ  
ꢌꢁꢂꢏ  
ꢍꢁꢂꢏ  
ꢌꢁꢂꢏ  
ꢍꢁꢂꢏ  
W
/2:  
ꢅꢂꢑꢂI  
6
6&/  
DDDꢀꢁꢁꢂꢃꢂꢅ  
Fig 26. I2C-bus pins clock timing  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
55 of 87  
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
13.6 SPI interfaces  
The actual SPI bit rate depends on the delays introduced by the external trace, the  
external device, system clock (CCLK), and capacitive loading. Excluding delays  
introduced by external device and PCB, the maximum supported bit rate for SPI master  
mode is 15 Mbit/s, and the maximum supported bit rate for SPI slave mode is 1/(2 x 25 ns)  
= 20.0 Mbit/s at 3.0v <= VDD <= 3.6v and 1/(2 x 35 ns) = 14.2 Mbit/s at 1.7v <= VDD <=  
3.0v.  
Remark: SPI functions can be assigned to all digital pins. The characteristics are valid for  
all digital pins.  
Table 21. SPI dynamic characteristics  
Tamb = 40 C to 105 C; CL = 20 pF; input slew = 1 ns. Simulated parameters sampled at the 30 %  
and 70 % level of the rising or falling edge; values guaranteed by design. Delays introduced by the  
external trace or external device are not considered.  
Symbol  
SPI master  
tDS  
Parameter  
Conditions  
Min  
Max  
Unit  
data set-up time  
data hold time  
1.71 V <= VDD <= 3.6 V  
1.71 V <= VDD <= 3.6 V  
6
4
0
-
ns  
ns  
ns  
tDH  
-
tv(Q)  
data output valid time 1.71 V <= VDD <= 3.6 V  
4
SPI slave  
tDS  
data set-up time  
data hold time  
1.71 V <= VDD <= 3.6 V  
1.71 V <= VDD <= 3.6 V  
6
4
0
0
-
ns  
ns  
ns  
ns  
tDH  
-
tv(Q)  
data output valid time 3.0 V <= VDD <= 3.6 V  
1.71 V <= VDD < 3.0 V  
25  
35  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
56 of 87  
 
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
T
cy(clk)  
SCK (CPOL = 0)  
SCK (CPOL = 1)  
SSEL  
MOSI (CPHA = 0)  
MISO (CPHA = 0)  
t
t
v(Q)  
v(Q)  
IDLE  
IDLE  
DATA VALID (MSB)  
DATA VALID  
DATA VALID (MSB)  
DATA VALID (MSB)  
DATA VALID (LSB)  
t
t
DH  
DS  
DATA VALID (MSB)  
DATA VALID  
DATA VALID (LSB)  
MOSI (CPHA = 1)  
MISO (CPHA = 1)  
t
t
v(Q)  
v(Q)  
DATA VALID (MSB)  
DATA VALID (MSB)  
IDLE  
IDLE  
DATA VALID (LSB)  
DATA VALID  
t
t
DH  
DS  
DATA VALID (MSB)  
DATA VALID (MSB)  
DATA VALID (LSB)  
DATA VALID  
aaa-014969  
Tcy(clk) = CCLK/DIVVAL with CCLK = system clock frequency. DIVVAL is the SPI clock divider. See the LPC804 User manual.  
Fig 27. SPI master timing  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
57 of 87  
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
T
cy(clk)  
SCK (CPOL = 0)  
SCK (CPOL = 1)  
SSEL  
MISO (CPHA = 0)  
MOSI (CPHA = 0)  
t
t
v(Q)  
v(Q)  
IDLE  
IDLE  
DATA VALID (MSB)  
DATA VALID  
DATA VALID (MSB)  
DATA VALID (MSB)  
DATA VALID (LSB)  
t
t
DH  
DS  
DATA VALID (MSB)  
DATA VALID  
DATA VALID (LSB)  
MISO (CPHA = 1)  
MOSI (CPHA = 1)  
t
t
v(Q)  
v(Q)  
DATA VALID (MSB)  
DATA VALID (MSB)  
DATA VALID (LSB)  
DATA VALID  
IDLE  
IDLE  
t
t
DH  
DS  
DATA VALID (MSB)  
DATA VALID (MSB)  
DATA VALID (LSB)  
DATA VALID  
aaa-014970  
Fig 28. SPI slave timing  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
58 of 87  
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
13.7 USART interface  
The actual USART bit rate depends on the delays introduced by the external trace, the  
external device, system clock (CCLK), and capacitive loading. Excluding delays  
introduced by external device and PCB, the maximum supported bit rate for USART  
master synchronous mode is 10 Mbit/s, and the maximum supported bit rate for USART  
slave synchronous mode is 10 Mbit/s.  
Remark: USART functions can be assigned to all digital pins. The characteristics are valid  
for all digital pins  
Table 22. USART dynamic characteristics  
Tamb = 40 C to 105 C; 1.71 V <= VDD <= 3.6 V unless noted otherwise; CL = 10 pF; input slew = 10 ns. Simulated  
parameters sampled at the 30 %/70 % level of the falling or rising edge; values guaranteed by design.  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
USART master (in synchronous mode)  
tsu(D)  
th(D)  
tv(Q)  
data input set-up time  
3.0 V <= VDD <= 3.6 V  
1.71 V <= VDD < 3.0 V  
3.0 V <= VDD <= 3.6 V  
1.71 V <= VDD < 3.0 V  
3.0 V <= VDD <= 3.6 V  
1.71 V <= VDD < 3.0 V  
32  
38  
0
-
ns  
ns  
ns  
ns  
ns  
ns  
-
data input hold time  
data output valid time  
-
0
-
0
3
4
0
USART slave (in synchronous mode)  
tsu(D)  
th(D)  
tv(Q)  
data input set-up time  
3.0 V <= VDD <= 3.6 V  
1.71 V <= VDD < 3.0 V  
3.0 V <= VDD <= 3.6 V  
1.71 V <= VDD < 3.0 V  
3.0 V <= VDD <= 3.6 V  
1.71 V <= VDD < 3.0 V  
5
4
6
4
0
0
-
ns  
ns  
ns  
ns  
ns  
ns  
-
data input hold time  
data output valid time  
-
-
31  
40  
T
cy(clk)  
Un_SCLK (CLKPOL = 0)  
Un_SCLK (CLKPOL = 1)  
TXD  
t
t
vQ)  
v(Q)  
START  
BIT0  
BIT1  
t
t
su(D) h(D)  
BIT1  
START  
BIT0  
RXD  
aaa-015074  
Fig 29. USART timing  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
59 of 87  
 
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
13.8 Wake-up process  
Table 23. Dynamic characteristic: Typical wake-up times from low power modes  
DD = 3.3 V;Tamb = 25 C; Using FRO (15 MHz) as the system clock.  
V
Symbol Parameter Conditions  
Min Typ[1]  
Max Unit  
[2][3]  
twake  
wake-up  
time  
from sleep mode  
-
-
-
-
1.97  
2.07  
25  
-
-
-
-
s  
s  
s  
s  
[2]  
from deep-sleep mode  
from power-down mode  
from deep power-down mode  
[2]  
[4]  
313  
[1] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply  
voltages.  
[2] The wake-up time measured is the time between when a GPIO input pin is triggered to wake the device up  
from the low power modes and from when a GPIO output pin is set in the interrupt service routine (ISR)  
wake-up handler. ISR is located in SRAM.  
[3] FRO enabled, all peripherals off.  
[4] Wake up from deep power-down causes the part to go through entire reset  
process. The wake-up time measured is the time between when the Wake-Up pin is triggered to wake the  
device up and when a GPIO output pin is set in the reset handler.  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
60 of 87  
 
 
 
 
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
14. Characteristics of analog peripherals  
14.1 BOD  
Table 24. BOD static characteristics[1]  
Tamb = 25 C.  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Vth  
threshold voltage interrupt level 1  
assertion  
-
-
2.24  
2.40  
-
-
V
V
de-assertion  
interrupt level 2  
assertion  
-
-
2.52  
2.64  
-
-
V
V
de-assertion  
interrupt level 3  
assertion  
-
-
2.81  
2.90  
-
-
V
V
de-assertion  
reset level 0  
assertion  
-
-
1.51  
1.54  
-
-
V
V
de-assertion  
[1] Interrupt levels are selected by writing the level value to the BOD control register BODCTRL, see the  
LPC804 user manual.  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
61 of 87  
 
 
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
14.2 ADC  
Table 25. 12-bit ADC static characteristics  
Tamb = 25 C to +105 C unless noted otherwise; VDD = 2.5 V to 3.6 V; VREFP = VDD; VREFN = VSS  
.
Symbol  
Parameter  
Conditions  
Min  
0
Typ  
Max  
VDD  
VDD  
26  
Unit  
V
VIA  
Vref  
Cia  
analog input voltage  
reference voltage  
-
-
-
on pin VREFP  
2.5  
-
V
analog input  
capacitance  
pF  
[2]  
[2]  
fclk(ADC)  
ADC clock frequency  
sampling frequency  
-
-
-
-
15  
480  
-
MHz  
fs  
-
Ksamples/s  
LSB  
[5][4]  
ED  
differential linearity  
error  
1  
[6][4]  
[7][4]  
EL(adj)  
EO  
integral non-linearity  
offset error  
-
4  
3  
0.1  
-
-
-
-
-
LSB  
LSB  
%
-
[8][4]  
Verr(fs)  
Zi  
full-scale error voltage  
input impedance  
-
[1][9][10]  
fs = 480 Ksamples/s  
0.1  
M  
[1] The input resistance of ADC channel 0 is higher than for all other channels. See Figure 30.  
[2] In the ADC TRM register, set VRANGE = 0 (default).  
[3] In the ADC TRM register, set VRANGE = 1 (default).  
[4] Based on characterization. Not tested in production.  
[5] The differential linearity error (ED) is the difference between the actual step width and the ideal step width. See Figure 30.  
[6] The integral non-linearity (EL(adj)) is the peak difference between the center of the steps of the actual and the ideal transfer curve after  
appropriate adjustment of gain and offset errors. See Figure 30.  
[7] The offset error (EO) is the absolute difference between the straight line which fits the actual curve and the straight line which fits the  
ideal curve. See Figure 30. For device revision 1B, typical offset value is 3 LSB. For device revision 1A, the typical offset value is 8  
LSB.  
[8] The full-scale error voltage or gain error (EG) is the difference between the straight line fitting the actual transfer curve after removing  
offset error, and the straight line which fits the ideal transfer curve. See Figure 30.  
[9] Tamb = 25 C; maximum sampling frequency fs = 480 Ksamples/s and analog input capacitance Cia = 26 pF.  
[10] Input impedance Zi (see Section 14.2.1) is inversely proportional to the sampling frequency and the total input capacity including Cia and  
Cio: Zi 1 / (fs Ci). See Table 12 for Cio.  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
62 of 87  
 
 
 
 
 
 
 
 
 
 
 
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
offset  
error  
O
gain  
error  
E
E
G
4095  
4094  
4093  
4092  
4091  
4090  
(2)  
7
code  
out  
(1)  
6
5
4
3
2
1
0
(5)  
(4)  
(3)  
1 LSB  
(ideal)  
4090 4091 4092 4093 4094 4095 4096  
1
2
3
4
5
6
7
V
IA  
(LSB  
)
ideal  
offset error  
E
O
VREFP - V  
4096  
SS  
1 LSB =  
002aaf436  
(1) Example of an actual transfer curve.  
(2) The ideal transfer curve.  
(3) Differential linearity error (ED).  
(4) Integral non-linearity (EL(adj)).  
(5) Center of a step of the actual transfer curve.  
Fig 30. 12-bit ADC characteristics  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
63 of 87  
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
14.2.1 ADC input impedance  
Figure 31 shows the ADC input impedance. In this figure:  
ADCx represents ADC input channel 0.  
ADCy represents ADC input channels 1 to 11.  
R1 and Rsw are the switch-on resistance on the ADC input channel.  
If ADC input channel 0 is selected, the ADC input signal goes through R1 + Rsw to the  
sampling capacitor (Cia).  
If ADC input channels 1 to 11 are selected, the ADC input signal goes through Rsw to  
the sampling capacitor (Cia).  
Typical values, R1 = 5.6 k, Rsw = 6.9 k  
To calculate total resistance, use the following equation:  
RTOTAL = Rexternal + Rinternal  
Rexternal = External resistance on the ADC input channel.  
Rinternal for channel 0 = R1 +RSW = 12.5 k.  
Rinternal for channels 1 to 11 = 6.9 k.  
See Table 11 for Cio.  
See Table 25 for Cia.  
ADC  
R
1
ADCx  
ADCy  
C
io  
C
ia  
R
sw  
DAC  
C
io  
aaa-017600  
Fig 31. ADC input impedance  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
64 of 87  
 
 
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
14.3 Comparator and internal voltage reference  
Table 26. Internal voltage reference static and dynamic characteristics  
amb = 40 C to +105 C; VDD = 3.3 V; hysteresis disabled in the comparator CTRL register.  
T
Symbol Parameter  
Conditions  
output voltage Tamb = 25 C to 105C  
Tamb = 25 C  
Min  
Typ  
-
Max  
Unit  
mV  
mV  
VO  
860  
940  
904  
aaa-014424  
0.910  
V
Oref  
(m(VV))  
0.905  
0.900  
0.895  
0.890  
-40  
-10  
20  
50  
80  
temperature (°C)  
110  
VDD = 3.3 V; characterized through bench measurements on typical samples.  
Fig 32. Typical internal voltage reference output voltage  
Table 27. Comparator characteristics  
Tamb = 40 C to +105 C unless noted otherwise; VDD = 1.71 V to 3.6 V.  
Symbol Parameter  
Static characteristics  
Conditions  
Min  
Typ  
Max  
Unit  
Vref(cmp)  
comparator reference  
pin ACMPVREF  
1.5  
-
3.6  
V
voltage  
[2]  
[2]  
IDD  
supply current  
VP > VM; Tamb = 25 °C; VDD = 3.3 V  
VM > VP; Tamb = 25 °C; VDD = 3.3 V  
-
90  
60  
-
-
A  
A  
V
-
-
VIC  
common-mode input voltage  
output voltage variation  
offset voltage  
0
0
-
VDD  
DVO  
Voffset  
-
VDD  
V
[2]  
[2]  
[2]  
VIC = 0.1 V; VDD = 3.0 V  
VIC = 1.5 V; VDD = 3.0 V  
VIC = 2.9 V; VDD = 3.0V  
4
-
-
-
mV  
mV  
mV  
-
6
-
6
Dynamic characteristics  
tstartup  
start-up time  
nominal process; VDD = 3.3 V; Tamb  
=
-
13  
-
s  
25 °C  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
65 of 87  
 
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
Table 27. Comparator characteristics …continued  
Tamb = 40 C to +105 C unless noted otherwise; VDD = 1.71 V to 3.6 V.  
Symbol Parameter  
tPD propagation delay  
Conditions  
Min  
Typ  
Max  
Unit  
HIGH to LOW; VDD = 3.0 V; Tamb  
=
320  
105 °C  
[1][2][4]  
[1][2]  
VIC = 0.1 V; 100 mV overdrive input  
-
-
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
VIC = 0.1 V; rail-to-rail input  
260  
300  
160  
400  
80  
[1][2][4]  
[1][2]  
VIC = 1.5 V; 100 mV overdrive input  
VIC = 1.5 V; rail-to-rail input  
[1][2][4]  
[1][2]  
VIC = 2.9 V; 100 mV overdrive input  
VIC = 2.9 V; rail-to-rail input  
tPD  
propagation delay  
LOW to HIGH; VDD = 3.0 V; Tamb  
105 °C  
=
170  
[1][2][4]  
[1][2]  
VIC = 0.1 V; 100 mV overdrive input  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
VIC = 0.1 V; rail-to-rail input  
80  
[1][2][4]  
[1][2]  
VIC = 1.5 V; 100 mV overdrive input  
VIC = 1.5 V; rail-to-rail input  
120  
220  
160  
320  
6
[1][2][4]  
[1][2]  
VIC = 2.9 V; 100 mV overdrive input  
VIC = 2.9 V; rail-to-rail input  
[3]  
Vhys  
Vhys  
Rlad  
hysteresis voltage  
hysteresis voltage  
ladder resistance  
positive hysteresis; VDD = 3.0 V;  
VIC = 1.5 V; Tamb = 105 °C; settings:  
5 mV  
mV  
mV  
mV  
10 mV  
20 mV  
-
-
11  
21  
11  
-
-
[1][3]  
negative hysteresis; VDD = 3.0 V;  
VIC = 1.5 V; Tamb = 105 °C; settings:  
5 mV  
10 mV  
20 mV  
-
-
-
-
-
-
-
-
-
mV  
mV  
mV  
M  
18  
30  
1
[1] CL = 10 pF  
[2] Characterized on typical samples, not tested in production.  
[3] Input hysteresis is relative to the reference input channel and is software programmable.  
[4] 100 mV overdrive corresponds to a square wave from 50 mV below the reference (VIC) to 50 mV above the reference.  
Table 28. Comparator voltage ladder dynamic characteristics  
Tamb = 40 C to +105 C; VDD = 1.8 V to 3.6 V.  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
[1]  
[1]  
ts(pu)  
power-up settling  
time  
to 99% of voltage  
ladder output value  
-
17  
-
s  
ts(sw)  
switching settling  
time  
to 99% of voltage  
ladder output value  
-
18  
-
s  
[1] Characterized on typical samples, not tested in production.  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
66 of 87  
 
 
 
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
Table 29. Comparator voltage ladder reference static characteristics  
DD = 1.8 V to 3.6 V. Tamb = -40 C to + 105C; external or internal reference.  
V
Symbol  
EV(O)  
Parameter  
Conditions  
Min  
Typ[1] Max  
Unit  
mV  
%
[2]  
output voltage error  
decimal code = 00  
decimal code = 08  
decimal code = 16  
decimal code = 24  
decimal code = 30  
decimal code = 31  
-
-
-
-
-
-
6  
1  
1  
1  
1  
1  
-
-
-
-
-
-
%
%
%
%
[1] Characterized though limited samples. Not tested in production.  
[2] All peripherals except comparator, temperature sensor, and FRO turned off.  
14.4 DAC  
Table 30. 10-bit DAC electrical characteristics  
VDD = VDDA = 2.7 V to 3.6 V; Tamb = 40 C to +105 C unless otherwise specified  
Symbol Parameter  
Min  
Typ  
0.4  
Max  
Unit  
[1][2]  
[1][2]  
[1][2]  
[1][2]  
ED  
differential linearity error  
-
-
-
-
-
-
-
LSB  
LSB  
mV  
mV  
pF  
EL(adj)  
EO  
integral non-linearity  
offset error  
6.0  
-
57.0  
36.0  
200  
90  
-
EG  
gain error  
-
CL  
load capacitance  
-
[3]  
ROUT  
VOUT  
PIO0_19/DACOUT_0 pin resistance  
Output voltage range  
200  
0.175 -  
VDDA-0.175  
V
[1] Typical ratings are not guaranteed. The values listed are for room temperature (25 C) and  
DD = VDDA = 3.6 V.  
V
[2] Characterized through bench measurements, not tested in production.  
[3] DAC output voltage depends on the voltage divider ratio of the ROUT and external load resistance.  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
67 of 87  
 
 
 
 
 
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
15. Application information  
15.1 Start-up behavior  
Figure 33 shows the start-up timing after reset. The FRO 12 MHz oscillator provides the  
default clock at Reset and provides a clean system clock shortly after the supply pins  
reach operating voltage.  
FRO  
starts  
FRO status  
internal reset  
V
DD  
valid threshold  
= 1.71 V  
t
a
μs  
t μs  
b
GND  
boot time  
supply ramp-up  
time  
user code  
t
c
μs  
processor status  
boot code  
execution  
finishes;  
user code starts  
aaa-028455  
Fig 33. Start-up timing  
Table 31. Typical start-up timing parameters  
Parameter  
Description  
Value  
26 s  
101 s  
36 s  
ta  
tb  
tc  
FRO start time  
Internal reset de-asserted  
Boot time  
15.2 Connecting power, clocks, and debug functions  
Figure 34 shows the basic board connections used to power the LPC804 and provide  
debug capabilities via the serial wire port.  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
68 of 87  
 
 
 
 
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
3.3 V  
3.3 V  
3.3 V  
SWD connector  
(4)  
~10 kΩ - 100 kΩ  
(5)  
SWDIO/PIO0_2  
1
2
~10 kΩ - 100 kΩ  
SWCLK/PIO0_3  
(5)  
3
4
6
8
n.c.  
n.c.  
5
7
9
n.c.  
RESETN/PIO0_5  
10  
(1)  
V
SS  
V
DD  
3.3 V  
GND  
0.1 ꢀF  
0.01 ꢀF  
GND  
LPC804  
(4) (ADC_1),  
(2) (ACMPV  
GND  
PIO0_7/ADC_1/ACMPV  
)
REF  
REF  
PIO0_12  
ISP select pin  
(4)  
ADC_0  
(2)  
VREFP  
3.3 V  
0.1 ꢀF  
10 ꢀF  
0.1 ꢀF  
GND  
GND  
aaa-029252  
(1) Position the decoupling capacitors of 0.1 μF and 0.01 μF as close as possible to the VDD pin. Add one set of decoupling  
capacitors to each VDD pin.  
(2) Position the decoupling capacitors of 0.1 μF as close as possible to the VREFN and VDD pins. The 10 μF bypass capacitor  
filters the power line. Tie VREFP to VDD if the ADC is not used. Tie VREFN to VSS if ADC is not used.  
(3) Uses the Arm 10-pin interface for SWD.  
(4) When measuring signals of low frequency, use a low-pass filter to remove noise and to improve ADC performance. Also see  
Ref. 4.  
(5) External pull-up resistors on SWDIO and SWCLK pins are optional because these pins have an internal pull-up enabled by  
default.  
Fig 34. Power, clock, and debug connections  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
69 of 87  
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
15.3 I/O power consumption  
I/O pins are contributing to the overall dynamic and static power consumption of the part.  
If pins are configured as digital inputs, a static current can flow depending on the voltage  
level at the pin and the setting of the internal pull-up and pull-down resistors. This current  
can be calculated using the parameters Rpu and Rpd given in Table 14 for a given input  
voltage VI. For pins set to output, the current drive strength is given by parameters IOH and  
IOL in Table 14, but for calculating the total static current, you also need to consider any  
external loads connected to the pin.  
I/O pins also contribute to the dynamic power consumption when the pins are switching  
because the VDD supply provides the current to charge and discharge all internal and  
external capacitive loads connected to the pin in addition to powering the I/O circuitry.  
The contribution from the I/O switching current Isw can be calculated as follows for any  
given switching frequency fsw if the external capacitive load (Cext) is known (see Table 14  
for the internal I/O capacitance):  
Isw = VDD x fsw x (Cio + Cext)  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
70 of 87  
 
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
15.4 Termination of unused pins  
Table 32 shows how to terminate pins that are not used in the application. In many cases,  
unused pins may should be connected externally or configured correctly by software to  
minimize the overall power consumption of the part.  
Unused pins with GPIO function should be configured as outputs set to LOW with their  
internal pull-up disabled. To configure a GPIO pin as output and drive it LOW, select the  
GPIO function in the IOCON register, select output in the GPIO DIR register, and write a 0  
to the GPIO PORT register for that pin. Disable the pull-up in the pin’s IOCON register.  
In addition, it is recommended to configure all GPIO pins that are not bonded out on  
smaller packages as outputs driven LOW with their internal pull-up disabled.  
Table 32. Termination of unused pins  
Pin  
Default Recommended termination of unused pins  
state[1]  
all PIOn_m  
VREFP  
I; PU  
Can be left unconnected if driven LOW and configured as GPIO output with pull-up  
disabled by software.  
-
Tie to VDD.  
[1] I = Input, O = Output, IA = Inactive (no pull-up/pull-down enabled), F = floating, PU = Pull-Up.  
15.5 Pin states in different power modes  
Table 33. Pin states in different power modes  
Pin  
Active  
Sleep  
Deep-sleep/power- Deep power-down  
down  
PIOn_m pins  
RESET  
As configured in the IOCON[1]. Default: internal pull-up  
enabled.  
Floating.  
Reset function enabled. Default: input, internal pull-up  
enabled.  
Reset function disabled; floating; if the part  
is in deep power-down mode.  
[1] Default and programmed pin states are retained in sleep, deep-sleep, and power-down modes.  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
71 of 87  
 
 
 
 
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
16. Package outline  
TSSOP20: plastic thin shrink small outline package; 20 leads; body width 4.4 mm  
SOT360-1  
D
E
A
X
c
H
v
M
A
y
E
Z
11  
20  
Q
A
2
(A )  
3
A
A
1
pin 1 index  
θ
L
p
L
1
10  
detail X  
w
M
b
p
e
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(2)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
Q
v
w
y
Z
θ
1
2
3
p
E
p
max.  
8o  
0o  
0.15  
0.05  
0.95  
0.80  
0.30  
0.19  
0.2  
0.1  
6.6  
6.4  
4.5  
4.3  
6.6  
6.2  
0.75  
0.50  
0.4  
0.3  
0.5  
0.2  
mm  
1.1  
0.65  
0.25  
1
0.2  
0.13  
0.1  
Notes  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
99-12-27  
03-02-19  
SOT360-1  
MO-153  
Fig 35. Package outline SOT360-1 (TSSOP20)  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
72 of 87  
 
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
TSSOP24: plastic thin shrink small outline package; 24 leads; body width 4.4 mm  
SOT355-1  
D
E
A
X
c
H
v
M
A
y
E
Z
13  
24  
Q
A
2
(A )  
3
A
A
1
pin 1 index  
L
p
L
1
12  
detail X  
w
M
b
p
e
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(2)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
p
Q
v
w
y
Z
1
2
3
p
E
max.  
8o  
0o  
0.15  
0.05  
0.95  
0.80  
0.30  
0.19  
0.2  
0.1  
7.9  
7.7  
4.5  
4.3  
6.6  
6.2  
0.75  
0.50  
0.4  
0.3  
0.5  
0.2  
mm  
1.1  
0.65  
0.25  
1
0.2  
0.13  
0.1  
Notes  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
99-12-27  
03-02-19  
SOT355-1  
MO-153  
Fig 36. Package outline SOT355-1 (TSSOP24)  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
73 of 87  
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
HVQFN33: plastic thermal enhanced very thin quad flat package; no leads;  
32 terminals; body 5 x 5 x 0.85 mm  
D
B
A
terminal 1  
index area  
A
A
1
E
c
detail X  
C
e
1
y
y
v
w
C
C
A
B
C
1
e
1/2 e  
b
9
16  
L
17  
8
e
e
E
h
2
1/2 e  
24  
1
terminal 1  
index area  
32  
25  
X
D
h
0
2.5  
scale  
5 mm  
Dimensions (mm are the original dimensions)  
(1)  
(1)  
(1)  
(1)  
Unit  
A
A
b
c
D
D
E
E
e
e
e
L
v
w
y
y
1
1
h
h
1
2
max  
0.05 0.30  
5.1 3.75 5.1 3.75  
0.5  
mm nom 0.85  
min  
0.2  
0.5 3.5 3.5  
0.1 0.05 0.05 0.1  
0.00 0.18  
4.9 3.45 4.9 3.45  
0.3  
Note  
1. Plastic or metal protrusions of 0.075 mm maximum per side are not included.  
hvqfn33f_po  
References  
Outline  
version  
European  
projection  
Issue date  
IEC  
JEDEC  
JEITA  
11-10-11  
11-10-17  
MO-220  
Fig 37. Package outline HVQFN33 (5 x 5 x 0.85 mm)  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
74 of 87  
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
Fig 38. Package outline WLCSP20 (2.50 1.84 0.5 mm)  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
75 of 87  
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
17. Soldering  
Footprint information for reflow soldering of TSSOP20 package  
SOT360-1  
Hx  
Gx  
P2  
(0.125)  
(0.125)  
Hy Gy  
By Ay  
C
D2 (4x)  
P1  
D1  
Generic footprint pattern  
Refer to the package outline drawing for actual layout  
solder land  
occupied area  
DIMENSIONS in mm  
P1 P2 Ay  
By  
C
D1  
D2  
Gx  
Gy  
Hx  
Hy  
0.650 0.750 7.200 4.500 1.350 0.400 0.600 6.900 5.300 7.300 7.450  
sot360-1_fr  
Fig 39. Reflow soldering of the TSSOP20 package  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
76 of 87  
 
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
Footprint information for re ow soldering of TSSOP24 package  
SOT355-1  
Hx  
Gx  
P2  
(0.125)  
(0.125)  
Hy Gy  
By Ay  
C
D2 (4x)  
P1  
D1  
Generic footprint pattern  
Refer to the package outline drawing for actual layout  
solder land  
occupied area  
DIMENSIONS in mm  
P1 P2 Ay  
By  
C
D1  
D2  
Gx  
Gy  
Hx  
Hy  
0.650 0.750 7.200 4.500 1.350 0.400 0.600 8.200 5.300 8.600 7.450  
sot355-1_fr  
Fig 40. Reflow soldering of the TSSOP24 package  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
77 of 87  
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
Footprint information for reflow soldering of HVQFN33 package  
Hx  
Gx  
see detail X  
P
nSPx  
Ay  
By  
SLy  
Hy Gy  
nSPy  
C
D
SLx  
Bx  
Ax  
0.60  
0.30  
solder land  
solder paste  
occupied area  
detail X  
Dimensions in mm  
P
Ax  
Ay  
Bx  
By  
C
D
Gx  
Gy  
Hx  
Hy  
6.2  
SLx  
SLy  
nSPx nSPy  
0.5  
5.95  
5.95  
4.25  
4.25  
0.85  
0.27  
5.25  
5.25  
6.2  
3.75  
3.75  
3
3
11-11-15  
11-11-20  
Issue date  
002aag766  
Fig 41. Reflow soldering for the HVQFN33 (5x5) package  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
78 of 87  
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
Fig 42. Reflow soldering for the WLCSP20 package (1 of 3)  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
79 of 87  
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
Fig 43. Reflow soldering for the WLCSP20 package (2 of 3)  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
80 of 87  
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
Fig 44. Reflow soldering for the WLCSP20 package (3 of 3)  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
81 of 87  
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
18. Abbreviations  
Table 34. Abbreviations  
Acronym  
AHB  
Description  
Advanced High-performance Bus  
Advanced Peripheral Bus  
BrownOut Detection  
APB  
BOD  
GPIO  
RC  
General-Purpose Input/Output  
Resistor-Capacitor  
SPI  
Serial Peripheral Interface  
System Management Bus  
Transverse ElectroMagnetic  
SMBus  
TEM  
UART  
Universal Asynchronous Receiver/Transmitter  
19. References  
[1] LPC804 User manual UM11065:  
[2] LPC804 Errata sheet:  
[3] I2C-bus specification UM10204.  
[4] Technical note ADC design guidelines:  
http://www.nxp.com/documents/technical_note/TN00009.pdf  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
82 of 87  
 
 
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
20. Revision history  
Table 35. Revision history  
Document ID  
Release date  
Data sheet status  
Change notice Supersedes  
LPC804 v.1.4  
20180712  
Product data sheet  
201804020F01 LPC804 v.1.3  
Added LPC804UK device.  
Updated Section 5 “Marking”.  
Updated Table 25 “12-bit ADC static characteristics”: Changed typical offset error (EO)  
to 3 LSB. Added table note text: For device revision 1B, typical offset value is 3 LSB.  
For device revision 1A, the typical offset value is 8 LSB.  
Updated Section 9.25.1 “Internal oscillators”. Changed heading title.  
Updated Section 15.2 “Connecting power, clocks, and debug functions”: removed text:  
connect the external crystal.  
LPC804 v.1.3  
Modifications:  
20180323  
Product data sheet  
-
LPC804 v.1.2  
Fixed revision number.  
Updated Table 15 “Flash characteristics”. ter consolidated to tprog/ter.  
Updated Section 9.25.4.4 “Deep power-down mode” with text: Five general-purpose  
registers are available to store information during deep power-down mode.  
LPC804 v.1.2  
Modifications:  
20180227  
Product data sheet  
-
LPC804 v.1.1  
Updated Table 12 “Static characteristics, supply pins”: Added condition:  
system clock = 1 MHz, VDD = 3.3 V.  
Updated Table 16 “Dynamic characteristic: FRO”: Max values: FRO clock frequency;  
Condition: 20 C Tamb 70 C and FRO clock frequency; Condition: 40 C Tamb  
105 C.  
Updated title of Section 13.1 “Flash memory (EEPROM based)”.  
LPC804 v.1.1  
Modifications:  
20180214  
Product data sheet  
-
LPC804 v.1  
Updated Section 2 “Features and benefits”.  
Updated Table 5 “Movable functions (assign to pins PIO0_0 to PIO0_5, PIO0_7 to  
PIO0_30 through switch matrix)”.  
Added level shifter functionality to Section 9.8 “I/O configuration”.  
Updated Table 16 “Dynamic characteristic: FRO”: Changed frequencies to 9 MHz, 12  
MHz, and 15 MHz. Added Condition: 20 C Tamb 70 C and Condition: 40 C   
Tamb 70 C.  
LPC804 v.1  
20180126  
Product data sheet  
-
-
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
83 of 87  
 
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
21. Legal information  
21.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
Suitability for use — NXP Semiconductors products are not designed,  
21.2 Definitions  
authorized or warranted to be suitable for use in life support, life-critical or  
safety-critical systems or equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
to result in personal injury, death or severe property or environmental  
damage. NXP Semiconductors and its suppliers accept no liability for  
inclusion and/or use of NXP Semiconductors products in such equipment or  
applications and therefore such inclusion and/or use is at the customer’s own  
risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Customers are responsible for the design and operation of their applications  
and products using NXP Semiconductors products, and NXP Semiconductors  
accepts no liability for any assistance with applications or customer product  
design. It is customer’s sole responsibility to determine whether the NXP  
Semiconductors product is suitable and fit for the customer’s applications and  
products planned, as well as for the planned application and use of  
customer’s third party customer(s). Customers should provide appropriate  
design and operating safeguards to minimize the risks associated with their  
applications and products.  
Product specification — The information and data provided in a Product  
data sheet shall define the specification of the product as agreed between  
NXP Semiconductors and its customer, unless NXP Semiconductors and  
customer have explicitly agreed otherwise in writing. In no event however,  
shall an agreement be valid in which the NXP Semiconductors product is  
deemed to offer functions and qualities beyond those described in the  
Product data sheet.  
NXP Semiconductors does not accept any liability related to any default,  
damage, costs or problem which is based on any weakness or default in the  
customer’s applications or products, or the application or use by customer’s  
third party customer(s). Customer is responsible for doing all necessary  
testing for the customer’s applications and products using NXP  
Semiconductors products in order to avoid a default of the applications and  
the products or of the application or use by customer’s third party  
customer(s). NXP does not accept any liability in this respect.  
21.3 Disclaimers  
Limited warranty and liability — Information in this document is believed to  
be accurate and reliable. However, NXP Semiconductors does not give any  
representations or warranties, expressed or implied, as to the accuracy or  
completeness of such information and shall have no liability for the  
consequences of use of such information. NXP Semiconductors takes no  
responsibility for the content in this document if provided by an information  
source outside of NXP Semiconductors.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) will cause permanent  
damage to the device. Limiting values are stress ratings only and (proper)  
operation of the device at these or any other conditions above those given in  
the Recommended operating conditions section (if present) or the  
Characteristics sections of this document is not warranted. Constant or  
repeated exposure to limiting values will permanently and irreversibly affect  
the quality and reliability of the device.  
In no event shall NXP Semiconductors be liable for any indirect, incidental,  
punitive, special or consequential damages (including - without limitation - lost  
profits, lost savings, business interruption, costs related to the removal or  
replacement of any products or rework charges) whether or not such  
damages are based on tort (including negligence), warranty, breach of  
contract or any other legal theory.  
Terms and conditions of commercial sale — NXP Semiconductors  
products are sold subject to the general terms and conditions of commercial  
sale, as published at http://www.nxp.com/profile/terms, unless otherwise  
agreed in a valid written individual agreement. In case an individual  
agreement is concluded only the terms and conditions of the respective  
agreement shall apply. NXP Semiconductors hereby expressly objects to  
applying the customer’s general terms and conditions with regard to the  
purchase of NXP Semiconductors products by customer.  
Notwithstanding any damages that customer might incur for any reason  
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards  
customer for the products described herein shall be limited in accordance  
with the Terms and conditions of commercial sale of NXP Semiconductors.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
No offer to sell or license — Nothing in this document may be interpreted or  
construed as an offer to sell products that is open for acceptance or the grant,  
conveyance or implication of any license under any copyrights, patents or  
other industrial or intellectual property rights.  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
84 of 87  
 
 
 
 
 
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from competent authorities.  
whenever customer uses the product for automotive applications beyond  
NXP Semiconductors’ specifications such use shall be solely at customer’s  
own risk, and (c) customer fully indemnifies NXP Semiconductors for any  
liability, damages or failed product claims resulting from customer design and  
use of the product for automotive applications beyond NXP Semiconductors’  
standard warranty and NXP Semiconductors’ product specifications.  
Non-automotive qualified products — Unless this data sheet expressly  
states that this specific NXP Semiconductors product is automotive qualified,  
the product is not suitable for automotive use. It is neither qualified nor tested  
in accordance with automotive testing or application requirements. NXP  
Semiconductors accepts no liability for inclusion and/or use of  
21.4 Trademarks  
non-automotive qualified products in automotive equipment or applications.  
In the event that customer uses the product for design-in and use in  
automotive applications to automotive specifications and standards, customer  
(a) shall use the product without NXP Semiconductors’ warranty of the  
product for such automotive applications, use and specifications, and (b)  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
I2C-bus — logo is a trademark of NXP B.V.  
22. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
85 of 87  
 
 
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
23. Contents  
1
General description. . . . . . . . . . . . . . . . . . . . . . 1  
9.20.1  
9.21  
9.21.1  
9.22  
9.22.1  
9.23  
9.23.1  
9.24  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Analog comparator (ACMP). . . . . . . . . . . . . . 25  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Analog-to-Digital Converter (ADC). . . . . . . . . 26  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Digital-to-Analog Converter (DAC). . . . . . . . . 27  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
CRC engine . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Clocking and power control . . . . . . . . . . . . . . 29  
Internal oscillators . . . . . . . . . . . . . . . . . . . . . 32  
2
Features and benefits . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Ordering information. . . . . . . . . . . . . . . . . . . . . 4  
Ordering options. . . . . . . . . . . . . . . . . . . . . . . . 4  
Marking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
3
4
4.1  
5
6
9.24.1  
9.25  
9.25.1  
7
7.1  
7.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 8  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . 10  
9.25.1.1 Free Running Oscillator (FRO) . . . . . . . . . . . 32  
9.25.1.2 Low Power Oscillator (LPOsc). . . . . . . . . . . . 32  
9.25.2  
9.25.3  
9.25.4  
9.25.4.1 Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
9.25.4.2 Deep-sleep mode. . . . . . . . . . . . . . . . . . . . . . 33  
9.25.4.3 Power-down mode. . . . . . . . . . . . . . . . . . . . . 33  
9.25.4.4 Deep power-down mode . . . . . . . . . . . . . . . . 34  
9.25.5  
9.26  
9.26.1  
9.26.2  
9.26.3  
9.26.4  
9.26.5  
9.27  
8
Movable functions . . . . . . . . . . . . . . . . . . . . . . 15  
9
9.1  
9.2  
9.3  
9.4  
9.5  
9.6  
Functional description . . . . . . . . . . . . . . . . . . 16  
Arm Cortex-M0+ core . . . . . . . . . . . . . . . . . . . 16  
On-chip flash program memory . . . . . . . . . . . 16  
On-chip SRAM . . . . . . . . . . . . . . . . . . . . . . . . 16  
On-chip ROM . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Nested Vectored Interrupt Controller (NVIC) . 18  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Interrupt sources. . . . . . . . . . . . . . . . . . . . . . . 18  
System tick timer . . . . . . . . . . . . . . . . . . . . . . 18  
I/O configuration . . . . . . . . . . . . . . . . . . . . . . . 18  
Standard I/O pad configuration. . . . . . . . . . . . 19  
Switch Matrix (SWM) . . . . . . . . . . . . . . . . . . . 20  
Fast General-Purpose parallel I/O (GPIO) . . . 20  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Pin interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
USART0/1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
SPI0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
I2C-bus interface (I2C0 and I2C1) . . . . . . . . . . 22  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Capacitive Touch Interface . . . . . . . . . . . . . . . 22  
CTimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
General-purpose 32-bit timers/external event  
counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Clock input . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Clock output. . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Power control. . . . . . . . . . . . . . . . . . . . . . . . . 33  
9.6.1  
9.6.2  
9.7  
9.8  
9.8.1  
9.9  
9.10  
9.10.1  
9.11  
9.11.1  
9.12  
9.12.1  
9.13  
9.13.1  
9.14  
9.14.1  
9.15  
9.16  
9.16.1  
Wake-up process . . . . . . . . . . . . . . . . . . . . . . 35  
System control . . . . . . . . . . . . . . . . . . . . . . . . 35  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Brownout detection . . . . . . . . . . . . . . . . . . . . 36  
Code security (Code Read Protection - CRP) 37  
APB interface. . . . . . . . . . . . . . . . . . . . . . . . . 37  
AHBLite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Emulation and debugging . . . . . . . . . . . . . . . 38  
10  
11  
Limiting values . . . . . . . . . . . . . . . . . . . . . . . . 39  
Thermal characteristics . . . . . . . . . . . . . . . . . 41  
12  
Static characteristics . . . . . . . . . . . . . . . . . . . 42  
General operating conditions. . . . . . . . . . . . . 42  
Power consumption . . . . . . . . . . . . . . . . . . . . 42  
Peripheral power consumption . . . . . . . . . . . 46  
Pin characteristics . . . . . . . . . . . . . . . . . . . . . 47  
Electrical pin characteristics. . . . . . . . . . . . . . 49  
12.1  
12.2  
12.2.1  
12.3  
12.3.1  
13  
Dynamic characteristics. . . . . . . . . . . . . . . . . 52  
Flash memory (EEPROM based) . . . . . . . . . 52  
FRO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
I/O pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
WKTCLKIN pin (wake-up clock input) . . . . . . 53  
I2C-bus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
SPI interfaces. . . . . . . . . . . . . . . . . . . . . . . . . 56  
USART interface . . . . . . . . . . . . . . . . . . . . . . 59  
Wake-up process . . . . . . . . . . . . . . . . . . . . . . 60  
13.1  
13.2  
13.3  
13.4  
13.5  
13.6  
13.7  
13.8  
9.16.1.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
9.17  
9.17.1  
9.18  
9.18.1  
9.19  
Multi-Rate Timer (MRT) . . . . . . . . . . . . . . . . . 23  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Windowed WatchDog Timer (WWDT) . . . . . . 24  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Self-Wake-up Timer (WKT). . . . . . . . . . . . . . . 24  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Programmable Logic Unit (PLU). . . . . . . . . . . 24  
9.19.1  
9.20  
14  
14.1  
Characteristics of analog peripherals. . . . . . 61  
BOD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
continued >>  
LPC804  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 1.4 — 12 July 2018  
86 of 87  
 
LPC804  
NXP Semiconductors  
32-bit Arm Cortex-M0+ microcontroller  
14.2  
ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
14.2.1  
14.3  
14.4  
ADC input impedance. . . . . . . . . . . . . . . . . . . 64  
Comparator and internal voltage reference . . 65  
DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
15  
15.1  
15.2  
Application information. . . . . . . . . . . . . . . . . . 68  
Start-up behavior . . . . . . . . . . . . . . . . . . . . . . 68  
Connecting power, clocks, and debug  
functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
I/O power consumption. . . . . . . . . . . . . . . . . . 70  
Termination of unused pins. . . . . . . . . . . . . . . 71  
Pin states in different power modes . . . . . . . . 71  
15.3  
15.4  
15.5  
16  
17  
18  
19  
20  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 72  
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . 82  
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 83  
21  
Legal information. . . . . . . . . . . . . . . . . . . . . . . 84  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 84  
Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
21.1  
21.2  
21.3  
21.4  
22  
23  
Contact information. . . . . . . . . . . . . . . . . . . . . 85  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP Semiconductors N.V. 2018.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 12 July 2018  
Document identifier: LPC804  

相关型号:

LPC804M101JDH24FP

RISC Microcontroller
NXP

LPC804M101JDH24J

RISC Microcontroller
NXP

LPC804M101JHI33E

RISC Microcontroller
NXP

LPC80B99-__E

low power consumption, global input voltage
ETC

LPC80B99-__H

low power consumption, global input voltage
ETC

LPC80B99-__L

low power consumption, global input voltage
ETC

LPC80B99-__M

low power consumption, global input voltage
ETC

LPC810

NXP Microcontrollers Selection Guide
NXP

LPC810M021FN8

A 32-bit microcontroller designed for the 8-bit world
NXP

LPC810M021FN8,129

RISC Microcontroller, 32-Bit, FLASH, CMOS, PDIP8
NXP

LPC810M021FN8FP

LPC810M021FN8 - 32-bit ARM Cortex-M0+ microcontroller; 4 kB flash and 1 kB SRAM DIP 8-Pin
NXP

LPC811

NXP Microcontrollers Selection Guide
NXP