M68HC16ZEC20D [NXP]

20.97 MHz Electrical Characteristics;
M68HC16ZEC20D
型号: M68HC16ZEC20D
厂家: NXP    NXP
描述:

20.97 MHz Electrical Characteristics

文件: 总28页 (文件大小:652K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Freescale Semiconductor, Inc.  
Order this document by: M68HC16ZEC20/D  
M68HC16 Z Series  
Technical Supplement  
20.97 MHz Electrical Characteristics  
Devices in the M68HC16 Modular Microcontroller Family are built up from a selection of standard  
functional modules. Microcontrollers in the M68HC16 Z Series contain the same central processing  
unit (CPU16) and system integration module (SIM), and thus have similar electrical characteristics.  
M68HC16 devices that operate at clock frequencies of 20.97 MHz are now available. This publica-  
tion contains a new electrical characteristics appendix that supplements the MC68HC16Z1 User's  
Manual (MC68HC16Z1UM/AD) and the MC68HC16Z2 User's Manual (MC68HC16Z2UM/AD).  
The supplement contains the following updated specifications:  
Table  
Page  
Maximum Ratings ......................................................................................................2  
Typical Ratings ..........................................................................................................3  
Thermal Characteristics .............................................................................................3  
Clock Control Timing .................................................................................................4  
DC Characteristics .....................................................................................................5  
AC Timing ..................................................................................................................8  
Background Debugging Mode Timing .....................................................................19  
ECLK Bus Timing ....................................................................................................20  
QSPI Timing ............................................................................................................21  
ADC Maximum Ratings ...........................................................................................24  
ADC DC Electrical Characteristics (Operating) .......................................................25  
ADC AC Characteristics (Operating) .......................................................................26  
ADC Conversion Characteristics (Operating) ..........................................................26  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Table A–1 Maximum Ratings  
Num  
Rating  
1,2,3  
Symbol  
Value  
Unit  
V
1
– 0.3 to + 6.5  
V
Supply Voltage  
1,2,3,4,5,7  
DD  
VIN  
ID  
2
3
– 0.3 to + 6.5  
25  
V
Input Voltage  
Instantaneous Maximum Current  
mA  
1,3,5,6  
Single Pin Limit (all pins)  
Operating Maximum Current  
Digital Input Disruptive Current  
3,5,6,7,8  
IiD  
4
– 500 to 500  
µA  
V
– 0.3 V  
NEGCLMAP  
POSCLAMP  
V
V
+ 0.3  
DD  
Operating Temperature Range  
C Suffix  
TL to TH  
– 40 to 85  
TA  
5
6
°C  
°C  
Tstg  
Storage Temperature Range  
– 55 to 150  
NOTES:  
1. Permanent damage can occur if maximum ratings are exceeded. Exposure to voltag-  
es or currents in excess of recommended values affects device reliability. Device mod-  
ules may not operate normally while being exposed to electrical extremes.  
2. Although sections of the device contain circuitry to protect against damage from high  
static voltages or electrical fields, take normal precautions to avoid exposure to voltag-  
es higher than maximum-rated voltages.  
3. This parameter is periodically sampled rather than 100% tested.  
4. All pins except TSC.  
5. Input must be current limited to the value specified. To determine the value of the re-  
quired current-limiting resistor, calculate resistance values for positive and negative  
clamp voltages, then use the larger of the two values.  
6. Power supply must maintain regulation within operating V  
neous and operating maximum current.  
range during instanta-  
DD  
7. All functional non-supply pins are internally clamped to V . All functional pins except  
SS  
EXTAL and XFC are internally clamped to V  
.
DD  
8. Total input current for all digital input-only and all digital input/output pins must not ex-  
ceed 10 mA. Exceeding this limit can cause disruption of normal operation.  
M68HC16ZEC20/D  
2
For More Information On This Product,  
Go to: www.freescale.com  
 
 
 
Freescale Semiconductor, Inc.  
Table A–2 Typical Ratings  
Num  
Rating  
Symbol  
Value  
Unit  
V
1
Supply Voltage  
Operating Temperature  
Supply Current  
5.0  
V
DD  
T
A
2
3
4
25  
°C  
V
DD  
RUN  
mA  
µA  
mA  
113  
125  
3.75  
I
DD  
LPSTOP, VCO off  
LPSTOP, External clock, max f  
sys  
V
Clock Synthesizer Operating Voltage  
Supply Current  
5.0  
V
DDSYN  
V
DDSYN  
VCO on, maximum f  
1.0  
5.0  
100  
50  
mA  
mA  
µA  
sys  
I
5
External Clock, maximum f  
sys  
DDSYN  
LPSTOP, VCO off  
µA  
V
powered down  
DD  
RAM Standby Current  
Normal RAM operation  
Standby operation  
I
6
7
7.0  
40  
µA  
µA  
SB  
P
D
Power Dissipation  
570  
mW  
Table A–3 Thermal Characteristics  
Num  
Characteristic  
Symbol  
Value  
Unit  
1
Thermal Resistance  
Θ
1
Plastic 132-Pin Surface Mount  
Plastic 144-pin Surface Mount  
38  
49  
°C/W  
JA  
NOTES:  
1. The average chip-junction temperature (T ) in C can be obtained from (1):  
J
TJ = TA + (PD ΘJA  
)
where:  
T = Ambient Temperature, °C  
A
Θ
= Package Thermal Resistance, Junction-to-Ambient, °C/W  
JA  
P = P  
+ P  
I/O  
D
INT  
P
P
= I × V , Watts — Chip Internal Power  
= Power Dissipation on Input and Output Pins — User Determined  
INT DD  
I/O  
DD  
For most applications P < P  
and can be neglected. An approximate relationship between  
I/O  
INT  
P
and T (if P is neglected) is (2):  
D
J
I/O  
PD = K + (TJ + 273°C)  
Solving equations (1) and (2) for K gives (3):  
2
K = P + (TA + 273°C) + ΘJA × PD  
D
Where K is a constant pertaining to the particular part. K can be determined from equation (3) by  
measuring P (at equilibrium) for a known T . Using this value of K, the values of P and T  
D
A
D
J
can be obtained by solving equations (1) and (2) iteratively for any value of T .  
A
M68HC16ZEC20/D  
3
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Table A–4 Clock Control Timing  
(V and V  
= 5.0 Vdc ± 5%, V = 0 Vdc, T = T to T )  
DD  
DDSYN  
SS  
A
L
H
Num  
Characteristic  
Symbol  
Minimum  
Maximum  
Unit  
1
PLL Reference Frequency Range  
MC68HC16Z1  
f
1
20  
50  
kHz  
ref  
3.2  
5.2  
MHz  
MC68HC16Z2  
dc  
2
20.97  
20.97  
20.97  
20.97  
System Frequency  
4 (f  
)
ref  
Slow On-Chip PLL System Frequency  
Fast On-Chip PLL System Frequency  
External Clock Operation  
f
2
MHz  
sys  
4 (f ) /128  
ref  
dc  
1,3,5,6,7  
t
3
4
20  
ms  
PLL Lock Time  
lpll  
4
f
2 (f max)  
sys  
VCO Frequency  
MHz  
VCO  
Limp Mode Clock Frequency  
SYNCR X bit = 0  
f
f
max /2  
max  
5
6
MHz  
%
sys  
limp  
f
SYNCR X bit = 1  
sys  
1,5,6,7,8  
CLKOUT Jitter  
J
–1.0  
–0.5  
1.0  
0.5  
Short term (5 µs interval)  
Long term (500 µs interval)  
clk  
NOTES:  
1. The base configuration of the MC68HC16Z1 requires a 32.768 kHz crystal reference, and the  
base configuration of the M68HC16Z2 requires a 4.194 MHz crystal reference. Both devices can  
be ordered with either reference as a mask option.  
2. All internal registers retain data at 0 Hz.  
3. Assumes that stable V  
measured from the time V  
is applied, and that the crystal oscillator is stable. Lock time is  
DDSYN  
and V  
are valid until RESET is released. This specification  
DD  
DDSYN  
also applies to the period required for PLL lock after changing the W and Y frequency control  
bits in the synthesizer control register (SYNCR) while the PLL is running, and to the period re-  
quired for the clock to lock after LPSTOP.  
4. Internal VCO frequency (f  
) is determined by SYNCR W and Y bit values.  
VCO  
The SYNCR X bit controls a divide-by-two circuit that is not in the synthesizer feedback loop.  
When X = 0, the divider is enabled, and f  
When X = 1, the divider is disabled, and f  
= f  
= f  
÷ 4.  
÷ 2.  
sys  
VCO  
sys  
VCO  
X must equal one when operating at maximum specified f  
.
sys  
5. This parameter is periodically sampled rather than 100% tested.  
6. Assumes that a low-leakage external filter network is used to condition clock synthesizer input  
voltage. Total external resistance from the XFC pin due to external leakage must be greater than  
15 M to guarantee this specification. Filter network geometry can vary depending upon operat-  
ing environment.  
7. Proper layout procedures must be followed to achieve specifications.  
8. Jitter is the average deviation from the programmed frequency measured over the specified in-  
terval at maximum f . Measurements are made with the device powered by filtered supplies  
sys  
and clocked by a stable external clock signal. Noise injected into the PLL circuitry via V  
DDSYN  
and V  
SS  
and variation in crystal oscillator frequency increase the J percentage for a given in-  
clk  
terval. When jitter is a critical constraint on control system operation, this parameter should be  
measured during functional testing of the final system.  
M68HC16ZEC20/D  
4
For More Information On This Product,  
Go to: www.freescale.com  
 
 
Freescale Semiconductor, Inc.  
Table A–5 DC Characteristics  
(V and V  
= 5.0 Vdc ± 5%, V = 0 Vdc, T = T to T  
)
H
DD  
DDSYN  
SS  
A
L
Num  
Characteristic  
Symbol  
Min Max  
0.7 (V ) V + 0.3  
DD  
Unit  
V
V
1
2
3
Input High Voltage  
Input Low Voltage  
IH  
DD  
V
V
– 0.3 0.2 (V  
)
V
IL  
SS  
0.5  
DD  
1,2  
V
V
Input Hysteresis  
HYS  
3,16  
Input Leakage Current  
= V or V  
I
4
5
6
7
8
–2.5  
2.5  
2.5  
µA  
µA  
V
in  
V
in  
DD SS  
4,16  
High Impedance (Off-State) Leakage Current  
= V or V  
I
–2.5  
OZ  
V
in  
DD SS  
5,6,16  
CMOS Output High Voltage  
= –10.0 µA  
V
V
V
–0.2  
DD  
OH  
I
OH  
CMOS Output Low Voltage  
= 10.0 µA  
7,16  
V
0.2  
V
OL  
I
OL  
Output High Voltage  
= –0.8 mA  
6,7,16  
V
–0.8  
DD  
V
OH  
I
OH  
7,16  
Output Low Voltage  
I
I
I
= 1.6 mA  
= 5.3 mA  
= 12 mA  
OL  
OL  
OL  
0.4  
0.4  
0.4  
V
9
V
OL  
V
1.6 (V )  
DD  
10 Three State Control Input High Voltage  
8,9  
9.1  
V
IHTSC  
Data Bus Mode Select Pull-up Current  
V
= V  
IMSP  
–15  
–120  
µA  
11  
in  
in  
IL  
V
= V  
IH  
10,11,12  
Supply Current  
MC68HC16Z1V  
DD  
140  
350  
5
mA  
µA  
mA  
Run, crystal reference  
LPSTOP, crystal reference, VCO Off (STSIM = 0)  
LPSTOP, external clock input = max f  
I
12  
DD  
sys  
10,11,12  
MC68HC16Z2 V  
DD  
Supply Current  
140  
2
10  
mA  
mA  
mA  
Run, crystal reference  
LPSTOP, crystal reference, VCO Off (STSIM = 0)  
LPSTOP, external clock input = max f  
I
12A  
DD  
sys  
V
13 Clock Synthesizer Operating Voltage  
4.75  
5.25  
V
DDSYN  
M68HC16ZEC20/D  
5
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Table A–5 DC Characteristics (Continued)  
(V and V  
= 5.0 Vdc ± 5%, V = 0 Vdc, T = T to T  
)
H
DD  
DDSYN  
SS  
A
L
Num  
Characteristic  
Symbol  
Min  
Max  
Unit  
6,12  
MC68HC16Z1 V  
DDSYN  
Supply Current  
VCO on, crystal reference, maximum f  
2
6
150  
100  
mA  
mA  
µA  
sys  
I
14  
External Clock, maximum f  
sys  
DDSYN  
LPSTOP, crystal reference, VCO off (STSIM = 0)  
powered down  
µA  
V
DD  
6,12  
Supply Current  
MC68HC16Z2 V  
DDSYN  
VCO on, crystal reference, maximum f  
2.5  
8.75  
2
mA  
mA  
mA  
mA  
sys  
I
14A  
External Clock, maximum f  
sys  
DDSYN  
LPSTOP, crystal reference, VCO off (STSIM = 0)  
powered down  
2
V
DD  
RAM Standby Voltage  
Specified V applied  
13  
V
15  
16  
0.0  
3.0  
5.25  
5.25  
V
DD  
SB  
V
= V  
SS  
DD  
11  
MC68HC16Z1RAM Standby Current  
Normal RAM operation  
14  
V
> V – 0.5 V  
DD  
DD  
SB  
10  
3
50  
µA  
mA  
µA  
I
SB  
Transient condition  
V
V
0.5 V V  
V + 0.5 V  
SB  
SS  
13  
Standby operation  
V
< V + 0.5 V  
SS  
DD  
11  
MC68HC16Z2RAM Standby Current  
14  
Normal RAM operation  
V
> V – 0.5 V  
SB  
V + 0.5 V  
SS  
DD  
DD  
10  
3
100  
µA  
mA  
µA  
I
16A  
SB  
Transient condition  
0.5 V V  
SB  
13  
Standby operation  
V
< V + 0.5 V  
SS  
DD  
15  
P
D
17 MC68HC16Z1 Power Dissipation  
766  
831  
mW  
mV  
15  
MC68HC16Z2 Power Dissipation  
P
D
17A  
M68HC16ZEC20/D  
6
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Table A–5 DC Characteristics (Continued)  
(V and V  
= 5.0 Vdc ± 5%, V = 0 Vdc, T = T to T  
)
H
DD  
DDSYN  
SS  
A
L
Num  
Characteristic  
Symbol  
Min  
Max  
Unit  
3,16  
Input Capacitance  
All input-only pins except ADC pins  
All input/output pins  
C
in  
18  
10  
20  
pF  
16  
Load Capacitance  
90  
Group 1 I/O Pins, CLKOUT, FREEZE/QUOT, IPIPE0  
Group 2 I/O Pins and CSBOOT, BG/CS  
Group 3 I/O Pins  
C
L
19  
100  
130  
200  
pF  
Group 4 I/O Pins  
NOTES:  
1. Applies to:  
Port ADA[7:0] — AN[7:0]  
Port E[7:4] — SIZ[1:0], AS, DS  
Port F[7:0] — IRQ[7:1], MODCLK  
Port GP[7:0] — IC4/OC5/OC1, IC[3:1], OC[4:1]/OC1  
Port QS[7:0] — TXD, PCS[3:1], PCS0/SS, SCK, MOSI, MISO  
BKPT/DSCLK, DSI/IPIPE1, PAI, PCLK, RESET, RXD, TSC  
EXTAL (when PLL enabled)  
2. This parameter is periodically sampled rather than 100% tested.  
3. Applies to all input-only pins except ADC pins.  
4. Applies to all input/output and output pins  
5. Does not apply to HALT and RESET because they are open drain pins. Does not apply to Port QS[7:0] (TXD,  
PCS[3:1], PCS0/SS, SCK, MOSI, MISO) in wired-OR mode.  
6. Applies to Group 1, 2, 4 input/output and all output pins  
7. Applies to Group 1, 2, 3, 4 input/output pins, BG/CS, CLKOUT, CSBOOT, FREEZE/QUOT, and IPIPE0  
8. Applies to DATA[15:0]  
9. Use of an active pulldown device is recommended.  
10. Total operating current is the sum of the appropriate I , I  
, and I  
SB  
values, plus I values in-  
. I  
DD DDSYN  
DDA DD  
clude supply currents for device modules powered by V  
and V  
pins.  
DDE DDI  
11. Current measured at maximum system clock frequency, all modules active.  
12. The base configuration of the MC68HC16Z1 requires a 32.768 kHz crystal reference, and the base configu-  
ration of the M68HC16Z2 requires a 4.194 MHz crystal reference. Both devices can be ordered with either  
crystal reference as a mask option.  
13. The SRAM module will not switch into standby mode as long as V  
0.5 volts. The SRAM array cannot be accessed while the module is in standby mode.  
does not exceed V  
by more than  
SB  
DD  
14. When V is more than 0.3 V greater than V , current flows between the V  
and V  
pins, which  
DD  
SB DD STBY  
causes standby current to increase toward the maximum transient condition specification. System noise on  
the V and V pin can contribute to this condition.  
DD STBY  
15. Power dissipation measured at specified system clock frequency, all modules active. Power dissipation can  
be calculated using the expression:  
P
= Maximum V  
(I  
+ I  
+ I ) + Maximum V  
(I  
pins.  
)
D
DD DD  
DDSYN  
SB DDA DDA  
I
includes supply currents for all device modules powered by V  
and V  
DDI  
DD  
16. Input-Only Pins: EXTAL, TSC, BKPT/DSCLK, PAI, PCLK, RXD  
DDE  
Output-Only Pins: CSBOOT, BG/CS1, CLKOUT, FREEZE/QUOT, DS0/IPIPE0, PWMA, PWMB  
Input/Output Pins:  
Group 1: Port GP[7:0] — IC4/OC5/OC1, IC[3:1], OC[4:1]/OC1  
DATA[15:0], DSI/IPIPE1  
Group 2: Port C[6:0] — ADDR[22:19]/CS[9:6], FC[2:0]/CS[5:3]  
Port E[7:0] — SIZ[1:0], AS, DS, AVEC, DSACK[1:0]  
Port F[7:0] — IRQ[7:1], MODCLK  
Port QS[7:3] — TXD, PCS[3:1], PCS0/SS, ADDR23/CS10/ECLK  
ADDR[18:0], R/W, BERR, BR/CS0, BGACK/CS2  
Group 3: HALT, RESET  
Group 4: MISO, MOSI, SCK  
M68HC16ZEC20/D  
7
For More Information On This Product,  
Go to: www.freescale.com  
 
Freescale Semiconductor, Inc.  
Table A–6 AC Timing  
1
(V and V  
= 5.0 Vdc ± 5%, V = 0 Vdc, T = T to T  
)
H
DD  
DDSYN  
SS  
A
L
Num  
Characteristic  
Symbol  
Min  
Max Unit  
2
Frequency of Operation  
MC68HC16Z1  
4 (f  
)
F1  
f
20.97 MHz  
ref  
4 (f )/128 20.97  
MC68HC16Z2  
ref  
t
1
Clock Period  
ECLK Period  
47.7  
381  
47.7  
18.8  
183  
23.8  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
cyc  
t
1A  
1B  
Ecyc  
3
External Clock Input Period  
t
Xcyc  
t
2, 3 Clock Pulse Width  
2A, 3A ECLK Pulse Width  
CW  
t
ECW  
3
External Clock Input High/Low Time  
t
2B, 3B  
XCHL  
t
4, 5 CLKOUT Rise and Fall Time  
Crf  
t
4A, 5A Rise and Fall Time (All Outputs except CLKOUT)  
8
rf  
4
t
4B, 5B External Clock Input Rise and Fall Time  
5
XCrf  
t
6
7
Clock High to ADDR, FC, SIZE Valid  
0
23  
47  
23  
10  
23  
47  
23  
23  
23  
CHAV  
t
Clock High to ADDR, Data, FC, SIZE, High Impedance  
Clock High to ADDR, FC, SIZE, Invalid  
0
CHAZx  
t
8
0
CHAZn  
t
9
Clock Low to AS, DS, CS Asserted  
0
CLSA  
5
t
9A  
11  
12  
13  
14  
AS to DS or CS Asserted (Read)  
-10  
10  
2
STSA  
t
ADDR, FC, SIZE Valid to AS, CS, (and DS Read) Asserted  
Clock Low to AS, DS, CS Negated  
AVSA  
t
CLSN  
t
AS, DS, CS Negated to ADDR, FC SIZE Invalid (Address Hold)  
AS, CS (and DS Read) Width Asserted  
10  
80  
36  
32  
32  
SNAI  
t
SWA  
t
14A DS, CS Width Asserted (Write)  
SWAW  
t
14B AS, CS (and DS Read) Width Asserted (Fast Cycle)  
6
SWDW  
t
15  
16  
17  
18  
20  
21  
22  
23  
24  
25  
26  
AS, DS, CS Width Negated  
SN  
t
Clock High to AS, DS, R/W High Impedance  
AS, DS, CS Negated to R/W High  
Clock High to R/W High  
CHSZ  
t
10  
0
SNRN  
t
CHRH  
t
Clock High to R/W Low  
0
CHRL  
t
R/W High to AS, CS Asserted  
10  
54  
RAAA  
t
R/W Low to DS, CS Asserted (Write)  
Clock High to Data Out Valid  
RASA  
t
CHDO  
t
Data Out Valid to Negating Edge of AS, CS (Fast Write Cycle)  
DS, CS Negated to Data Out Invalid (Data Out Hold)  
Data Out Valid to DS, CS Asserted (Write)  
10  
10  
10  
DVASN  
t
SNDOI  
t
DVSA  
M68HC16ZEC20/D  
8
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Table A–6 AC Timing (Continued)  
1
(V and V  
= 5.0 Vdc ± 5%, V = 0 Vdc, T = T to T  
)
H
DD  
DDSYN  
SS  
A
L
Num  
Characteristic  
Symbol  
Min  
5
Max Unit  
t
27  
Data In Valid to Clock Low (Data Setup)  
60  
48  
72  
46  
23  
2
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DICL  
t
27A Late BERR, HALT Asserted to Clock Low (Setup Time)  
15  
0
BELCL  
t
28  
29  
AS, DS Negated to DSACK[1:0], BERR, HALT, AVEC Negated  
SNDN  
7
t
DS, CS Negated to Data In Invalid (Data In Hold)  
0
SNDI  
7, 8  
t
29A  
30  
10  
1
DS, CS Negated to Data In High Impedance  
SHDI  
7
t
CLKOUT Low to Data In Invalid (Fast Cycle Hold)  
CLDI  
7
t
30A  
31  
CLKOUT Low to Data In High Impedance  
CLDH  
9
t
DSACK[1:0] Asserted to Data In Valid  
DADI  
t
33  
Clock Low to BG Asserted/Negated  
CLBAN  
10  
t
t
t
t
t
35  
BR Asserted to BG Asserted  
BRAGA  
cyc  
cyc  
cyc  
cyc  
ns  
t
37  
BGACK Asserted to BG Negated  
BG Width Negated  
1
GAGN  
t
39  
2
GH  
t
39A BG Width Asserted  
1
GA  
t
46  
R/W Width Asserted (Write or Read)  
115  
70  
RWA  
t
46A R/W Width Asserted (Fast Write or Read Cycle)  
ns  
RWAS  
Asynchronous Input Setup Time  
47A  
t
5
ns  
AIST  
BR, BGACK, DSACK[1:0], BERR, AVEC, HALT  
t
47B Asynchronous Input Hold Time  
11  
12  
0
30  
23  
23  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AIHT  
t
48  
53  
54  
55  
70  
71  
72  
73  
74  
75  
76  
77  
78  
DSACK[1:0] Asserted to BERR, HALT Asserted  
Data Out Hold from Clock High  
DABA  
t
DOCH  
t
Clock High to Data Out High Impedance  
R/W Asserted to Data Bus Impedance Change  
Clock Low to Data Bus Driven (Show Cycle)  
Data Setup Time to Clock Low (Show Cycle)  
Data Hold from Clock Low (Show Cycle)  
BKPT Input Setup Time  
32  
0
CHDH  
t
RADC  
t
SCLDD  
t
10  
10  
10  
10  
20  
0
SCLDS  
t
SCLDH  
t
BKST  
t
BKPT Input Hold Time  
BKHT  
t
t
Mode Select Setup Time (DATA[15:0], MODCLK, BKPT)  
Mode Select Hold Time (DATA[15:0], MODCLK, BKPT)  
MSS  
cyc  
ns  
t
MSH  
12  
t
t
RESET Assertion Time  
4
RSTA  
cyc  
cyc  
13,14  
t
t
RESET Rise Time  
RSTR  
M68HC16ZEC20/D  
9
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Table A–6 AC Timing (Continued)  
1
(V and V  
= 5.0 Vdc ± 5%, V = 0 Vdc, T = T to T  
)
H
DD  
DDSYN  
SS  
A
L
Num  
Characteristic  
Symbol  
Min  
3
Max Unit  
15  
t
100 CLKOUT High to Phase 1 Asserted  
40  
40  
ns  
ns  
ns  
ns  
ns  
ns  
CHP1A  
15  
CLKOUT High to Phase 2 Asserted  
t
101  
102  
103  
104  
105  
3
CHP2A  
15  
15  
t
10  
10  
10  
10  
Phase 1 Valid to AS or DS Asserted  
P1VSA  
t
Phase 2 Valid to AS or DS Asserted  
P2VSN  
15  
AS or DS Valid to Phase 1 Negated  
t
SAP1N  
15  
AS or DS Negated to Phase 2 Negated  
t
SNP2N  
NOTES:  
1. All AC timing is shown with respect to 20% V  
and 70% V  
levels unless otherwise noted.  
DD  
DD  
2. The base configuration of the MC68HC16Z1 requires a 32.768 kHz crystal reference, and the base con-  
figuration of the M68HC16Z2 requires a 4.194 MHz crystal reference. Both devices can be ordered with  
either crystal reference as a mask option.  
3. When an external clock is used, minimum high and low times are based on a 50% duty cycle. The mini-  
mum allowable t  
between external clock input duty cycle and minimum t  
Xcyc  
period is reduced when the duty cycle of the external clock varies. The relationship  
is expressed:  
/ (50% – external clock input duty cycle tolerance).  
Xcyc  
Minimum t  
period = minimum t  
Xcyc  
XCHL  
4. Parameters for an external clock signal applied while the internal PLL is disabled (MODCLK pin held low  
during reset). Does not pertain to an external reference applied while the PLL is enabled (MODCLK pin  
held high during reset). When the PLL is enabled, the clock synthesizer detects successive transitions of  
the reference signal. If transitions occur within the correct clock period, rise/fall times and duty cycle are  
not critical.  
5. Specification 9A is the worst-case skew between AS and DS or CS. The amount of skew depends on the  
relative loading of these signals. When loads are kept within specified limits, skew will not cause AS and  
DS to fall outside the limits shown in specification 9.  
6. If multiple chip selects are used, CS width negated (specification 15) applies to the time from the nega-  
tion of a heavily loaded chip select to the assertion of a lightly loaded chip select. The CS width negated  
specification between multiple chip selects does not apply to chip selects being used for synchronous  
ECLK cycles.  
7. Hold times are specified with respect to DS or CS on asynchronous reads and with respect to CLKOUT  
on fast cycle reads. The user is free to use either hold time.  
8. Maximum value is equal to (t  
/ 2) + 25 ns.  
cyc  
9. If the asynchronous setup time (specification 47A) requirements are satisfied, the DSACK[1:0] low to data  
setup time (specification 31) and DSACK[1:0] low to BERR low setup time (specification 48) can be ig-  
nored. The data must only satisfy the data-in to clock low setup time (specification 27) for the following  
clock cycle. BERR must satisfy only the late BERR low to clock low setup time (specification 27A) for the  
following clock cycle.  
10. To ensure coherency during every operand transfer, BG is not asserted in response to BR until after all  
cycles of the current operand transfer are complete.  
11. In the absence of DSACK[1:0], BERR is an asynchronous input using the asynchronous setup time  
(specification 47A).  
12. After external RESET negation is detected, a short transition period (approximately 2) t  
elapses, then  
cyc  
the SIM drives RESET low for 512 t  
.
cyc  
13. External assertion of the RESET input can overlap internally-generated resets. To insure that an exter-  
nal reset is recognized in all cases, RESET must be asserted for at least 590 CLKOUT cycles.  
14. External logic must pull RESET high during this period in order for normal MCU operation to begin.  
15. Eight pipeline states are multiplexed into IPIPE[1:0]. The multiplexed signals have two phases.  
16.Address access time = (2.5 + WS) t  
Chip select access time = (2 + WS) t  
Where: WS = number of wait states. When fast termination is used (2 clock bus) WS = –1.  
– t  
– t  
– t  
– t  
cyc  
cyc  
CHAV  
CLSA  
DICL  
DICL  
M68HC16ZEC20/D  
10  
For More Information On This Product,  
Go to: www.freescale.com  
 
Freescale Semiconductor, Inc.  
1
2
3
4
CLKOUT  
5
16 CLKOUT TIM  
16 EXT CLK INPUT TIM  
16 ECLK OUTPUT TIM  
Figure A–1 CLKOUT Output Timing Diagram  
1B  
2B  
3B  
4B  
EXTAL  
5B  
NOTE: TIMING SHOWN WITH RESPECT TO 20% AND 70% V  
.
DD  
.
PULSE WIDTH SHOWN WITH RESPECT TO 50% V  
DD  
Figure A–2 External Clock Input Timing Diagram  
1A  
2A  
3A  
4A  
ECLK  
5A  
NOTE: TIMING SHOWN WITH RESPECT TO 20% AND 70% V  
DD.  
Figure A–3 ECLK Output Timing Diagram  
M68HC16ZEC20/D  
11  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
S0  
S1  
S2  
S3  
S4  
S5  
CLKOUT  
8
6
ADDR[23:0]  
FC[2:0]  
SIZ[1:0]  
14  
16  
11  
AS  
DS  
CS  
13  
9
9A  
12  
20  
18  
21  
R/W  
46  
DSACK0  
47A  
31  
28  
DSACK1  
29  
DATA[15:0]  
27  
29A  
BERR  
HALT  
48  
27A  
BKPT  
47A  
47B  
ASYNCHRONOUS  
INPUTS  
105  
100  
101  
IPIPE0  
IPIPE1  
PHASE 1  
104  
PHASE 2  
103  
102  
16 RD CYC TIM  
Figure A–4 Read Cycle Timing Diagram  
M68HC16ZEC20/D  
12  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
S0  
S1  
S2  
S3  
S4  
S5  
CLKOUT  
6
8
ADDR[23:20]  
FC[2:0]  
SIZ[1:0]  
11  
14  
15  
AS  
DS  
13  
9
9
12  
CS  
22  
20  
14A  
17  
R/W  
46  
DSACK0  
47A  
28  
DSACK1  
55  
25  
DATA[15:0]  
23  
26  
54  
53  
BERR  
HALT  
48  
27A  
73  
74  
BKPT  
101  
100  
102  
105  
IPIPE0  
IPIPE1  
PHASE 1  
104  
PHASE 2  
103  
16 WR CYC TIM  
Figure A–5 Write Cycle Timing Diagram  
M68HC16ZEC20/D  
13  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
S0  
S1  
S4  
S5  
S0  
CLKOUT  
8
6
ADDR[23:0]  
FC[2:0]  
SIZ[1:0]  
AS  
14B  
12  
9
DS  
CS  
20  
18  
46A  
R/W  
30  
30A  
27  
DATA[15:0]  
29A  
73  
29  
BKPT  
74  
100  
101  
IPIPE0  
IPIPE1  
PHASE 1  
102  
PHASE 2  
105  
104  
103  
16 FAST RD CYC TIM  
Figure A–6 Fast Termination Read Cycle Timing Diagram  
M68HC16ZEC20/D  
14  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
S0  
S1  
S4  
S5  
S0  
CLKOUT  
6
8
ADDR[23:0]  
FC[1:0]  
SIZ[1:0]  
14B  
AS  
DS  
9
12  
CS  
20  
46A  
R/W  
24  
18  
23  
DATA[15:0]  
27A  
25  
BKPT  
100  
101  
105  
IPIPE0  
IPIPE1  
PHASE 1  
PHASE 2  
103  
102  
104  
16 FAST WR CYC TIM  
Figure A–7 Fast Termination Write Cycle Timing Diagram  
M68HC16ZEC20/D  
15  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
S0  
S1  
S2  
S3  
S4  
S5  
S98  
A5  
A5  
A2  
CLKOUT  
ADDR[23:0]  
DATA[15:0]  
7
AS  
DS  
16  
R/W  
DSACK0  
DSACK1  
47A  
BR  
BG  
39A  
35  
33  
33  
BGACK  
37  
100  
PHASE 1  
102  
101  
IPIPE0  
IPIPE1  
PHASE 2  
104  
103  
105  
16 BUS ARB TIM  
Figure A–8 Bus Arbitration Timing Diagram — Active Bus Case  
M68HC16ZEC20/D  
16  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
A0  
A5  
A5  
A2  
A3  
A0  
CLKOUT  
ADDR[23:0]  
DATA[15:0]  
AS  
47A  
47A  
BR  
BG  
35  
37  
47A  
33  
33  
BGACK  
16 BUS ARB TIM IDLE  
Figure A–9 Bus Arbitration Timing Diagram — Idle Bus Case  
S0  
S41  
S42  
S43  
S0  
S1  
S2  
CLKOUT  
6
8
ADDR[23:0]  
R/W  
18  
20  
AS  
9
12  
15  
DS  
71  
72  
70  
74  
DATA[15:0]  
73  
BKPT  
100  
101  
PHASE 1  
102  
IPIPE0  
PHASE 2  
105  
PHASE 1  
PHASE 2  
IPIPE1  
104  
103  
SHOW CYCLE  
START OF EXTERNAL CYCLE  
NOTE:  
Show cycles can stretch during clock phase S42 when bus accesses take longer than two cycles due to IMB module wait-state insertion.  
16 SHW CYC TIM  
Figure A–10 Show Cycle Timing Diagram  
M68HC16ZEC20/D  
17  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
S0  
S1  
S2  
S3  
S4  
S5  
S0  
S1  
S2  
S3  
S4  
S5  
CLKOUT  
8
6
6
ADDR[23:0]  
FC[2:0]  
SIZ[1:0]  
14  
11  
11  
14  
13  
AS  
DS  
15  
9
9
9
12  
17  
17  
21  
12  
CS  
20  
18  
14A  
18  
46  
R/W  
46  
25  
29  
55  
DATA[15:0]  
29A  
53  
23  
27  
54  
16 CHIP SEL TIM  
Figure A–11 Chip-Select Timing Diagram  
77  
78  
RESET  
75  
DATA[15:0],  
MODCLK,  
BKPT  
76  
16 RST/MODE SEL TIM  
Figure A–12 Reset and Mode Select Timing Diagram  
Table A–7 Background Debugging Mode Timing  
1
(V and V  
= 5.0 Vdc ± 5%, V = 0 Vdc, T = T to T  
)
SS A L H  
DD  
DDSYN  
Characteristic  
Num  
Symbol  
Min  
Max  
Unit  
t
B0 DSI Input Setup Time  
15  
ns  
DSISU  
M68HC16ZEC20/D  
18  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Table A–7 Background Debugging Mode Timing  
1
(V and V  
= 5.0 Vdc ± 5%, V = 0 Vdc, T = T to T  
)
SS A L H  
DD  
DDSYN  
Characteristic  
Num  
Symbol  
Min  
10  
15  
10  
Max  
Unit  
ns  
t
B1 DSI Input Hold Time  
B2 DSCLK Setup Time  
B3 DSCLK Hold Time  
B4 DSO Delay Time  
B5 DSCLK Cycle Time  
DSIH  
t
ns  
DSCSU  
t
ns  
DSCH  
t
25  
ns  
DSOD  
t
t
2
DSCCYC  
cyc  
t
B6 CLKOUT Low to FREEZE Asserted/Negated  
B7 CLKOUT High to IPIPE1 High Impedance  
B8 CLKOUT High to IPIPE1 Valid  
50  
50  
50  
ns  
ns  
ns  
FRZAN  
t
IPZ  
t
IP  
t
t
B9 DSCLK Low Time  
1
DSCLO  
cyc  
t
t
B10 IPIPE1 High Impedance to FREEZE Asserted  
TBD  
TBD  
IPFA  
cyc  
t
t
B11 FREEZE Negated to IPIPE[0:1] Active  
NOTES:  
FRIP  
cyc  
1. All AC timing is shown with respect to 20% V  
and 70% V  
levels unless otherwise noted.  
DD  
DD  
CLKOUT  
FREEZE  
B3  
B2  
BKPT/DSCLK  
B9  
B5  
B1  
B0  
IPIPE1/DSI  
B4  
IPIPE0/DSO  
16 BDM SER COM TIM  
Figure A–13 BDM Serial Communication Timing Diagram  
CLKOUT  
FREEZE  
B6  
B6  
B11  
B7  
B10  
IPIPE1/DSI  
B8  
16 BDM FRZ TIM  
Figure A–14 BDM Freeze Assertion Timing Diagram  
M68HC16ZEC20/D  
19  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Table A–8 ECLK Bus Timing  
1
(V and V  
= 5.0 Vdc ± 5%, V = 0 Vdc, T = T to T )  
SS A L H  
DD  
DDSYN  
Num  
Characteristic  
Symbol  
Min  
10  
10  
25  
25  
5
Max  
48  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2
t
E1 ECLK Low to Address Valid  
E2 ECLK Low to Address Hold  
E3 ECLK Low to CS Valid (CS Delay)  
E4 ECLK Low to CS Hold  
EAD  
tEAH  
tECSD  
tECSH  
tECSN  
tEDSR  
tEDHR  
tEDHZ  
tECDH  
tECDZ  
120  
E5 CS Negated Width  
E6 Read Data Setup Time  
E7 Read Data Hold Time  
E8 ECLK Low to Data High Impedance  
E9 CS Negated to Data Hold (Read)  
E10 CS Negated to Data High Impedance  
0
48  
t
1
cyc  
t
tEDDW  
tEDHW  
tEACC  
tEACS  
tEAS  
E11 ECLK Low to Data Valid (Write)  
E12 ECLK Low to Data Hold (Write)  
10  
2
cyc  
ns  
ns  
ns  
3
E13 Address Access Time (Read)  
308  
236  
1/2  
4
E14 Chip-Select Access Time (Read)  
t
E15 Address Setup Time  
cyc  
NOTES:  
1. All AC timing is shown with respect to 20% V  
and 70% V  
levels unless otherwise noted.  
DD  
DD  
2. When previous bus cycle is not an ECLK cycle, the address may be valid before ECLK goes low.  
3. Address access time = t  
– t  
– t  
.
Ecyc  
EAD  
EDSR  
4. Chip select access time = t  
– t  
– t  
.
Ecyc  
ECSD  
EDSR  
CLKOUT  
ECLK  
2A  
3A  
1A  
R/W  
E1  
E2  
ADDR[23:0]  
E5  
E3  
E14  
E13  
E4  
CS  
E6  
E15  
E9  
DATA[15:0]  
READ  
E7  
WRITE  
E8  
E11  
E10  
DATA[15:0]  
WRITE  
E12  
HC16 E CYCLE TIM  
Figure A–15 ECLK Timing Diagram  
M68HC16ZEC20/D  
20  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Table A–9 QSPI Timing  
1
(V and V  
= 5.0 Vdc ± 5%, V = 0 Vdc, T = T to T  
, 200 pF load on all QSPI pins)  
DD  
DDSYN  
Function  
SS  
A
L
H
Num  
Symbol  
Min  
Max  
Unit  
Operating Frequency  
Master  
Slave  
f
f
1
DC  
DC  
1/4  
1/4  
sys  
op  
f
sys  
Cycle Time  
Master  
Slave  
t
t
t
2
3
4
5
4
4
510  
cyc  
cyc  
qcyc  
Enable Lead Time  
Master  
Slave  
t
t
t
2
2
128  
cyc  
cyc  
lead  
Enable Lag Time  
Master  
Slave  
t
SCK  
2
1/2  
lag  
t
cyc  
Clock (SCK) High or Low Time  
Master  
2 t  
cyc  
2 t  
cyc  
– 60  
– n  
t
255 t  
cyc  
ns  
ns  
sw  
2
Slave  
Sequential Transfer Delay  
Master  
Slave (Does Not Require Deselect)  
t
t
6
7
17  
13  
8192  
cyc  
td  
t
cyc  
Data Setup Time (Inputs)  
Master  
Slave  
t
30  
20  
ns  
ns  
su  
Data Hold Time (Inputs)  
Master  
Slave  
t
8
9
0
20  
ns  
ns  
hi  
t
t
t
Slave Access Time  
1
2
a
cyc  
cyc  
t
10 Slave MISO Disable Time  
Data Valid (after SCK Edge)  
dis  
t
11  
Master  
Slave  
50  
50  
ns  
ns  
v
Data Hold Time (Outputs)  
Master  
Slave  
t
12  
0
0
ns  
ns  
ho  
Rise Time  
Input  
Output  
t
13  
14  
2
30  
µs  
ns  
ri  
t
ro  
Fall Time  
Input  
Output  
t
2
30  
µs  
ns  
fi  
t
fo  
NOTES:  
1. All AC timing is shown with respect to 20% V  
and 70% V  
levels unless otherwise noted.  
DD  
DD  
2. For high time, n = External SCK rise time; for low time, n = External SCK fall time.  
M68HC16ZEC20/D  
21  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
3
2
PCS[3:0]  
OUTPUT  
5
13  
12  
SCK  
CPOL=0  
OUTPUT  
4
1
SCK  
CPOL=1  
OUTPUT  
12  
6
4
13  
7
MISO  
INPUT  
MSB IN  
DATA  
LSB IN  
MSB IN  
11  
10  
LSB OUT  
MOSI  
OUTPUT  
MSB OUT  
DATA  
PORT DATA  
12  
MSB OUT  
PD  
13  
16 QSPI MAST CPHA0  
Figure A–16 QSPI Timing — Master, CPHA = 0  
3
2
PCS[3:0]  
OUTPUT  
5
13  
12  
1
SCK  
CPOL=0  
OUTPUT  
4
1
7
SCK  
CPOL=1  
OUTPUT  
12  
4
13  
6
MISO  
INPUT  
DATA  
DATA  
LSB IN  
MSB  
MSB  
MSB IN  
11  
10  
LSB OUT  
MOSI  
OUTPUT  
MSB OUT  
PORT DATA  
12  
PORT DATA  
13  
16 QSPI MAST CPHA1  
Figure A–17 QSPI Timing — Master, CPHA = 1  
M68HC16ZEC20/D  
22  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
3
2
SS  
INPUT  
5
13  
12  
SCK  
CPOL=0  
INPUT  
4
1
SCK  
CPOL=1  
INPUT  
12  
4
13  
11  
10  
11  
8
9
MISO  
OUTPUT  
MSB OUT  
DATA  
LSB OUT  
PD  
13  
MSB OUT  
MSB IN  
7
6
MOSI  
INPUT  
MSB IN  
DATA  
LSB IN  
16 QSPI SLV CPHA0  
Figure A–18 QSPI Timing — Slave, CPHA = 0  
SS  
INPUT  
5
1
13  
4
12  
SCK  
CPOL=0  
INPUT  
4
3
2
SCK  
CPOL=1  
INPUT  
12  
13  
11  
10  
9
10  
8
SLAVE  
LSB OUT  
MISO  
OUTPUT  
PD  
MSB OUT  
DATA  
DATA  
PD  
12  
7
6
MOSI  
INPUT  
MSB IN  
LSB IN  
16 QSPI SLV CPHA1  
Figure A–19 QSPI Timing — Slave, CPHA = 1  
M68HC16ZEC20/D  
23  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Table A–10 ADC Maximum Ratings  
Num  
Parameter  
Symbol  
Min  
–0.3  
–0.3  
–0.3  
–0.1  
–6.5  
–6.5  
–6.5  
–6.5  
Max  
6.5  
6.5  
6.5  
0.1  
6.5  
6.5  
6.5  
6.5  
Unit  
V
V
1
2
3
4
5
6
7
8
Analog Supply  
DDA  
V
Internal Digital Supply, with reference to V  
V
SSI  
DDI  
V
, V  
Reference Supply, with reference to V  
V
SSI  
RH RL  
V
V
–V  
SSA  
V
V
V
V
V
Differential Voltage  
Differential Voltage  
Differential Voltage  
V
SS  
DD  
SSI  
–V  
DDA  
V
DDI  
V
–V  
RL  
V
REF  
RH  
V
–V  
to V  
Differential Voltage  
Differential Voltage  
V
RH  
RL  
DDA  
RH  
DDA  
SSA  
V
–V  
NA  
to V  
V
SSA  
RL  
1 2 3 4 5 6 7  
, , , , , ,  
Disruptive Input Current  
V
V
–0.3 V  
8 V  
I
9
–500  
500  
µA  
NEGCLAMP  
POSCLAMP  
8
1,5,6,  
K
K
10  
11  
2000  
500  
Positive Overvoltage Current Coupling Ratio  
P
1,5,6  
,8  
Negative Overvoltage Current Coupling Ratio  
N
3,4,6  
Maximum Input Current  
V
V
–0.3 V  
8 V  
I
12  
–25  
25  
mA  
NEGCLAMP  
POSCLAMP  
MA  
NOTES:  
1. Below disruptive current conditions, a stressed channel will store the maximum conversion value for  
analog inputs greater than V and the minimum conversion value for inputs less than V . This as-  
RH RL  
RL SSA  
are not affected by non-disruptive conditions  
sumes that V  
V  
and V V  
due to the presence of the sample amplifier. Other channels  
RH  
DDA  
2. Input signals with large slew rates or high frequency noise components cannot be converted accurate-  
ly. These signals also interfere with conversion of other channels.  
3. Exceeding limit may cause conversion error on stressed channels and on unstressed channels. Transi-  
tions within the limit do not affect device reliability or cause permanent damage.  
4. Input must be current limited to the value specified. To determine the value of the required current-lim-  
iting resistor, calculate resistance values using positive and negative clamp values, then use the larger  
of the calculated values.  
5. This parameter is periodically sampled rather than 100% tested.  
6. Applies to single pin only.  
7. The values of external system components can change the maximum input current value, and affect  
operation. A voltage drop may occur across the external source impedances of the adjacent pins, im-  
pacting conversions on these adjacent pins. The actual maximum may need to be determined by test-  
ing the complete design.  
8. Current coupling is the ratio of the current induced from overvoltage (positive or negative, through an  
external series coupling resistor), divided by the current induced on adjacent pins. A voltage drop may  
occur across the external source impedances of the adjacent pins, impacting conversions on these ad-  
jacent pins  
M68HC16ZEC20/D  
24  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Table A–11 ADC DC Electrical Characteristics (Operating)  
(VSS = 0 Vdc, ADCLK = 2.1 MHz, T = T to T )  
A
L
H
Num  
Parameter  
Symbol  
Min  
Max  
5.5  
5.5  
1.0  
1.0  
Unit  
V
1
V
1
2
3
4
5
6
4.5  
4.5  
Analog Supply  
Internal Digital Supply  
DDA  
1
V
V
DDI  
V
V
V
V
Differential Voltage  
Differential Voltage  
– 1.0  
– 1.0  
mV  
V
SS  
DD  
SSI  
SSA  
V
V
DDI  
DDA  
2,3  
2,3  
V
V
V
/ 2  
DDA  
V
Reference Voltage Low  
RL  
SSA  
V
V
/ 2  
V
DDA  
V
Reference Voltage High  
RH  
DDA  
4.5  
V
3
V
V
RL  
7
8
9
V
REF  
Differential Voltage  
5.5  
V
V
V
V
RH  
V
2
V
DDA  
Input Voltage  
INDC  
SSA  
V
0.7 (V  
)
V
+ 0.3  
DDA  
Input High, Port ADA  
IH  
DDA  
V
V
0.3  
0.2 (V  
)
10 Input Low, Port ADA  
IL  
SSA –  
DDA  
Analog Supply Current  
4
I
11  
1.0  
mA  
Normal Operation  
Low-power stop  
DDA  
200  
250  
150  
10  
µA  
I
I
12 Reference Supply Current  
µA  
nA  
pF  
pF  
REF  
5
13  
Input Current, Off Channel  
OFF  
C
14 Total Input Capacitance, Not Sampling  
INN  
C
15 Total Input Capacitance, Sampling  
NOTES:  
15  
I
NS  
1. Refers to operation over full temperature and frequency range.  
2. To obtain full-scale, full-range results, V V V V  
V  
DDA.  
SSA RL RH  
INDC  
3. Accuracy tested and guaranteed at V  
– V = 5.0 V ± 5%.  
RH  
RL  
4. Current measured at maximum system clock frequency with ADC active.  
5. Maximum leakage occurs at maximum operating temperature. Current decreases by approximately  
one-half for each 10°C decrease from maximum temperature.  
M68HC16ZEC20/D  
25  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Table A–12 ADC AC Characteristics (Operating)  
(VDD and VDDA = 5.0 Vdc ± 5%, VSS = 0 Vdc, TA within operating temperature range)  
Num  
Parameter  
ADC Clock Frequency  
Symbol  
Min  
Max  
Unit  
f
1
0.5  
2.1  
MHz  
ADCLK  
1
8-bit Conversion Time  
f
= 1.0 MHz  
= 2.1 MHz  
t
2
15.2  
7.6  
µs  
ADCLK  
CONV  
f
K
ADCL  
1
10-bit Conversion Time  
f
= 1.0 MHz  
= 2.1 MHz  
t
3
4
17.1  
8.6  
µs  
µs  
ADCLK  
ADCLK  
CONV  
f
t
Stop Recovery Time  
10  
SR  
NOTES:  
1. Conversion accuracy varies with f  
rate. Reduced conversion accuracy occurs at maximum.  
ADCLK  
Table A–13 ADC Conversion Characteristics (Operating)  
(VDD and VDDA = 5.0 Vdc ± 5%, VSS = 0 Vdc, TA = TL to TH,  
0.5 MHz f  
1.0 MHz, 2 clock input sample time)  
ADCLK  
Num  
Parameter  
Symbol  
1 Count  
DNL  
Min  
Typical  
20  
Max  
0.5  
1
Unit  
1
1
2
3
4
mV  
8-bit Resolution  
8-bit Differential Nonlinearity  
8-bit Integral Nonlinearity  
–0.5  
–1  
Counts  
Counts  
Counts  
INL  
2
AE  
–1  
1
8-bit Absolute Error  
1
5
6
7
8
9
1 Count  
DNL  
INL  
5
0.5  
2.0  
2.5  
mV  
10-bit Resolution  
3
–0.5  
–2.0  
–2.5  
20  
Counts  
Counts  
Counts  
kΩ  
10-bit Differential Nonlinearity  
3
10-bit Integral Nonlinearity  
3,4  
AE  
10-bit Absolute Error  
5
R
S
Source Impedance at Input  
NOTES:  
1. At V  
–V = 5.12 V, one 10-bit count = 5 mV and one 8-bit count = 20 mV.  
RL  
RH  
2. 8-bit absolute error of 1 count (20 mV) includes 1/2 count (10 mV) inherent quantization error and 1/2  
count (10 mV) circuit (differential, integral, and offset) error.  
3. Conversion accuracy varies with f  
rate. Reduced conversion accuracy occurs at maximum f  
ADCLK  
AD-  
. Assumes that minimum sample time (2 ADC Clocks) is selected.  
CLK  
4. 10-bit absolute error of 2.5 counts (12.5 mV) includes 1/2 count (2.5 mV) inherent quantization error  
and 2 counts (10 mV) circuit (differential, integral, and offset) error.  
5. Maximum source impedance is application-dependent. Error resulting from pin leakage depends on  
junction leakage into the pin and on leakage due to charge-sharing with internal capacitance.  
Error from junction leakage is a function of external source impedance and input leakage current. Ex-  
pected error in result value due to junction leakage is expressed in voltage (V  
):  
ERRJ  
V
= R X I  
OFF  
ERRJ  
S
where I  
OFF  
is a function of operating temperature, as shown in Table A–11.  
Charge-sharing leakage is a function of input source impedance, conversion rate, change in voltage  
between successive conversions, and the size of the decoupling capacitor used. Error levels are best  
determined empirically. In general, continuous conversion of the same channel may not be compatible  
with high source impedance.  
M68HC16ZEC20/D  
26  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
IDEAL TRANSFER CURVE  
(NO CIRCUIT ERROR)  
8-BIT TRANSFER CURVE  
A
C
B
D GI TI A OL U T PU T  
0
20  
40  
INPUT IN mV, V – V = 5.120 V  
60  
RH  
RL  
A – +1/2 COUNT (10 mV) INHERENT QUANTIZATION ERROR  
B – CIRCUIT-CONTRIBUTED +10mV ERROR  
– + 20 mV ABSOLUTE ERROR (ONE 8-BIT COUNT)  
C
ADC 8-BIT ACCURACY  
Figure A–20 8-Bit ADC Conversion Accuracy  
IDEAL TRANSFER CURVE  
10-BIT TRANSFER CURVE  
(NO CIRCUIT ERROR)  
C
B
A
0
20  
40  
INPUT IN mV, V – V = 5.120 V  
60  
RH  
RL  
– +.5 COUNT (2.5 mV) INHERENT QUANTIZATION ERROR  
A
B – CIRCUIT-CONTRIBUTED +10 mV ERROR  
C – +12.5 mV ABSOLUTE ERROR (2.5 10-BIT COUNTS)  
ADC 10-BIT ACCURACY  
Figure A–21 10-Bit ADC Conversion Accuracy  
M68HC16ZEC20/D  
27  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
RoHS-compliant and/or Pb- free versions of Freescale products have the functionality  
Home Page:  
www.freescale.com  
email:  
and electrical characteristics of their non-RoHS-compliant and/or non-Pb- free  
counterparts. For further information, see http://www.freescale.com or contact your  
Freescale sales representative.  
support@freescale.com  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor  
Technical Information Center, CH370  
1300 N. Alma School Road  
Chandler, Arizona 85224  
(800) 521-6274  
For information on Freescale.s Environmental Products program, go to  
http://www.freescale.com/epp.  
480-768-2130  
support@freescale.com  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
support@freescale.com  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku  
Tokyo 153-0064, Japan  
0120 191014  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
+81 2666 8080  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of  
any product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters which may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do  
vary in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals” must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
Tai Po Industrial Estate,  
Tai Po, N.T., Hong Kong  
+800 2666 8080  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor  
Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
(800) 441-2447  
303-675-2140  
Fax: 303-675-2150  
LDCForFreescaleSemiconductor  
@hibbertgroup.com  
Semiconductor was negligent regarding the design or manufacture of the part.  
For More Information On This Product,  
Go to: www.freescale.com  

相关型号:

M68HC705UGANG

High-density complementary metal oxide semiconductor (HCMOS) microcontroller unit
FREESCALE

M68HC705UPGMR

High-density complementary metal oxide semiconductor (HCMOS) microcontroller unit
FREESCALE

M68HC711CFD

CONFIG REGISTER PROGRAMMING FOR EEPROM-BASED MHC MICROCONTROLLERS
MOTOROLA

M68HC711CFG

CONFIG REGISTER PROGRAMMING FOR EEPROM-BASED MHC MICROCONTROLLERS
MOTOROLA

M68HC711CFG/D

CONFIG REGISTER PROGRAMMING FOR EEPROM-BASED MHC MICROCONTROLLERS
MOTOROLA

M68HC711M2CFU4

M68HC711M2CFU4
NXP

M68HC711M2MFN3

M68HC711M2MFN3
NXP

M68HC711M2MFN4

M68HC711M2MFN4
NXP

M68HC711M2VFE4

M68HC711M2VFE4
NXP

M68HC711M2VFU2

M68HC711M2VFU2
NXP

M68HC908LB8

Microcontrollers
MOTOROLA

M68HC908LB8

Microcontrollers
FREESCALE