MC09XS3400AFKR2 [NXP]

BUF OR INV BASED PRPHL DRVR;
MC09XS3400AFKR2
型号: MC09XS3400AFKR2
厂家: NXP    NXP
描述:

BUF OR INV BASED PRPHL DRVR

文件: 总51页 (文件大小:1337K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: MC09XS3400  
Rev. 5.0, 8/2018  
NXP Semiconductors  
Technical Data  
Quad high-side switch (9.0 mOhm)  
09XS3400  
The 09XS3400 is one in a family of SMARTMOS devices designed for low-  
voltage automotive lighting applications. Its four low RDS(on) MOSFETs (quad  
9.0 mΩ) can control four separate 55 W bulbs, and/or Xenon modules, and/or  
LEDs.  
HIGH-SIDE SWITCH  
Programming, control and diagnostics are accomplished using a 16-bit SPI  
interface. Output slew rates are selectable to control electromagnetic emissions.  
Additionally, each output has its own parallel input or SPI control for pulse-width  
modulation (PWM) control if desired. The 09XS3400 allows the user to program  
via the SPI the fault current trip levels and duration of acceptable lamp inrush.  
The device has fail-safe mode to provide fail-safe functionality of the outputs in  
case of MCU damage.  
FK SUFFIX (PB-FREE)  
98ARL10596D  
24-PIN PQFN  
Features  
Applications  
• Low-voltage automotive lighting  
• Halogen bulbs  
• Light-emitting diodes (LEDs)  
• High beam  
• Low beam  
• Flashers  
• Four protected 9.0 mΩ high-side switches (at 25 °C)  
• Operating voltage range of 6.0 V to 20 V with sleep current < 5.0 μA,  
extended mode from 4.0 V to 28 V  
• 8.0 MHz 16-bit 3.3 V and 5.0 V SPI control and status reporting with daisy  
chain capability  
• PWM module using external clock or calibratable internal oscillator with  
programmable outputs delay management  
• Low-voltage industrial lighting  
• Smart overcurrent shutdown compliant to huge inrush current, severe  
short-circuit, overtemperature protections with time limited autoretry, and  
fail-safe mode in case of MCU damage  
• Output OFF or ON openload detection compliant to bulbs or LEDs and  
short-to-battery detection, analog current feedback with selectable ratio  
and board temperature feedback  
V
V
V
V
V
PWR  
DD  
DD  
PWR  
DD  
09XS3400  
VDD  
VPWR  
HS0  
WAKE  
FSB  
LOAD  
LOAD  
LOAD  
LOAD  
I/O  
SCLK  
CS  
SCLK  
CBS  
SO  
RSTB  
SI  
IN0  
IN1  
IN2  
IN3  
CSNS  
FSI  
HS1  
HS2  
HS3  
SI  
I/O  
SO  
I/O  
I/O  
I/O  
MCU  
I/O  
A/D  
GND  
GND  
Figure 1. 09XS3400 simplified application diagram  
© 2018 NXP B.V.  
Table of contents  
1
2
3
Orderable parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Internal block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
3.1 Pinout diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
3.2 Pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
4.1 Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
4.2 Static electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
4.3 Dynamic electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
4.4 Timing diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
5.2 Functional pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
5.3 Functional internal block description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Functional device operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
6.1 SPI protocol description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
6.2 Operational modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
6.3 Protection and diagnostic features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
6.4 Logic commands and registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Typical applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
8.1 Soldering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
8.2 Marking information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
8.3 Package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
4
5
6
7
8
9
09XS3400  
NXP Semiconductors  
2
ORDERABLE PARTS  
1
Orderable parts  
Table 1. Orderable part variations  
Part number  
Temperature (TA)  
Package  
MC09XS3400AFK (1)  
-40 °C to 125 °C  
24-pin PQFN  
Notes  
1. To order parts in tape and reel, add the R2 suffix to the part number.  
09XS3400  
3
NXP Semiconductors  
INTERNAL BLOCK DIAGRAM  
2
Internal block diagram  
VDD  
VPWR  
VPWR  
Voltage Clamp  
Internal  
Regulator  
Over/Undervoltage  
Protections  
VDD Failure  
Detection  
Charge  
Pump  
POR  
I
UP  
VREG  
CSB  
SCLK  
Selectable Slew Rate  
Gate Driver  
I
DWN  
Selectable Overcurrent  
Detection  
HS0  
SO  
SI  
RSTB  
WAKE  
FSB  
Severe Short-circuit  
Detection  
Logic  
Short to VPWR  
Detection  
IN0  
Overtemperature  
Detection  
IN1  
IN2  
IN3  
Open-Load  
Detections  
HS0  
R
R
I
DWN  
DWN  
DWN  
HS1  
HS1  
HS2  
HS3  
PWM  
Module  
Calibratable  
Oscillator  
HS2  
HS3  
VREG  
Programmable  
Watchdog  
FSI  
Temperature  
Feedback  
Selectable Output  
Current Recopy  
Overtemperature  
Prewarning  
Analog MUX  
VDD  
GND  
CSNS  
Figure 2. 09XS3400 simplified internal block diagram  
09XS3400  
NXP Semiconductors  
4
PIN CONNECTIONS  
3
Pin connections  
3.1  
Pinout diagram  
Transparent top view of package  
13 12 11 10  
9
8
7
6
5
4
3
2
1
SO  
16  
17  
24  
23  
FSI  
GND  
GND  
14  
GND  
HS2  
22  
18  
HS3  
15  
VPWR  
19  
20  
21  
HS0  
HS1  
NC  
Figure 3. 09XS3400 pin connections  
3.2  
Pin definitions  
A functional description of each pin can be found in the functional pin description section beginning on page 19.  
Table 2. 09XS3400 pin definitions  
Pin  
number  
Pin  
function  
Pin name  
Formal name  
Definition  
This pin reports an analog value proportional to the designated HS[0:3] output current or  
the temperature of the GND flag (pin 14). It is used externally to generate a ground-  
referenced voltage for the microcontroller (MCU). Current recopy and temperature  
feedback is SPI programmable.  
Output current  
monitoring  
1
CSNS  
Output  
Input  
Each direct input controls the device mode. The IN[0:3] high-side input pins are used to  
directly control HS0:HS3 high-side output pins.  
If the device is SPI configured to use an external clock, the external clock is applied at the  
IN0 pin.  
2
3
5
6
IN0  
IN1  
IN2  
IN3  
Direct inputs  
Fault status  
(active low)  
This pin is an open drain configured output requiring an external pull-up resistor to VDD  
for fault reporting.  
7
8
9
FSB  
WAKE  
RSTB  
Output  
Input  
Wake  
Reset  
This input pin controls the device mode.  
This input pin is used to initialize the device configuration and fault registers, as well as  
place the device in a low-current sleep mode.  
Input  
Chip select  
(active low)  
10  
11  
CSB  
Input  
Input  
This input pin is connected to a chip select output of a master microcontroller (MCU).  
This input pin is connected to the MCU providing the required bit shift clock for SPI  
communication.  
SCLK  
Serial clock  
09XS3400  
5
NXP Semiconductors  
PIN CONNECTIONS  
Table 2. 09XS3400 pin definitions (continued)  
Pin  
number  
Pin  
function  
Pin name  
Formal name  
Definition  
This pin is a command data input pin connected to the SPI Serial Data Output of the MCU  
or to the SO pin of the previous device of a daisy-chain of devices.  
12  
13  
SI  
Input  
Power  
Ground  
Serial input  
VDD  
GND  
Digital drain voltage This pin is an external voltage input pin used to supply power interfaces to the SPI bus.  
These pins, internally shorted, are the ground for the logic and analog circuitry of the  
device. These ground pins must be also shorted on the board.  
14, 17, 23  
Ground  
This pin connects to the positive power supply and is the source of operational power for  
the device and power for the load.  
15  
16  
VPWR  
SO  
Power  
Output  
Positive power supply  
This output pin is connected to the SPI Serial Data Input pin of the MCU or to the SI pin  
of the next device of a daisy-chain of devices.  
Serial output  
18  
19  
21  
22  
HS3  
HS1  
HS0  
HS2  
Output  
High-side outputs  
Protected 9.0 mΩ high-side power output pins to the load.  
4, 20  
24  
NC  
FSI  
N/A  
No connect  
These pins can be left open or shorted to GND.  
This input enables the watchdog timeout feature.  
Input  
Fail-safe input  
09XS3400  
NXP Semiconductors  
6
ELECTRICAL CHARACTERISTICS  
4
Electrical characteristics  
4.1  
Maximum ratings  
Table 3. Maximum ratings  
All voltages are with respect to ground unless otherwise noted. Exceeding these ratings may cause a malfunction or permanent damage  
to the device.  
Symbol  
Ratings  
Value  
Unit  
Notes  
Electrical ratings  
V
supply voltage range  
PWR  
• Load dump (400 ms)  
• Maximum operating voltage  
• Reverse battery  
41  
28  
-18  
V
V
PWR(SS)  
VDD  
VDIG  
VSO  
IDIG  
VDD supply voltage range  
Input/output voltage  
-0.3 to 5.5  
-0.3 to 5.5  
-0.3 to VDD + 0.3  
100  
V
V
(5)  
(5)  
SO and CSNS output voltage  
V
Digital input/output current in Clamp mode  
WAKE input clamp current  
µA  
mA  
mA  
I
2.5  
CL(WAKE)  
I
CSNS input clamp current  
2.5  
CL(CSNS)  
HS [0:3] voltage  
• Positive  
V
41  
V
HS[0:3]  
• Negative  
-24  
V
- V  
High-side breakdown voltage  
Output current  
47  
6.0  
100  
V
A
PWR  
HS  
(2)  
(3)  
I
HS[0:3]  
E
Output clamp energy using single pulse method  
mJ  
CL[0:3]  
ESD voltage  
• Human Body Model (HBM) for HS[0:3], VPWR and GND  
• Human Body Model (HBM) for other pins  
• Charge Device Model (CDM)  
V
V
±8000  
±2000  
ESD1  
ESD2  
(4)  
V
• Corner pins (1, 13, 19, 21)  
V
V
±750  
±500  
ESD3  
ESD4  
• All Other pins (2-12, 14-18, 20, 22-24)  
Thermal ratings  
Operating temperature  
• Ambient  
T
A
-40 to 125  
-40 to 150  
°C  
°C  
T
• Junction  
J
T
Storage temperature  
-55 to 150  
STG  
Notes  
2. Continuous high-side output current rating per channel so long as maximum junction temperature is not exceeded. Calculation of maximum output  
current using package thermal resistance is required.  
3. Active clamp energy using single-pulse method (L = 2.0 mH, R = 0 Ω, V  
= 14.0 V, T = 150 °C initial).  
J
L
PWR  
4. ESD testing is performed in accordance with the Human Body Model (HBM) (CZAP = 100 pF, RZAP = 1500 Ω), and the Charge Device Model  
(CDM), Robotic (CZAP = 4.0 pF).  
5. Input / Output pins are: IN[0:3], RSTB, FSI, SI, SCLK, CSB, and FSB.  
09XS3400  
7
NXP Semiconductors  
ELECTRICAL CHARACTERISTICS  
Table 3. Maximum ratings (continued)  
All voltages are with respect to ground unless otherwise noted. Exceeding these ratings may cause a malfunction or permanent damage  
to the device.  
Symbol  
Ratings  
Value  
Unit  
Notes  
Thermal resistance  
Thermal resistance  
• Junction to Case  
• Junction to Ambient  
(6)  
RθJC  
RθJA  
<1.0  
30  
°C/W  
°C  
(7), (8)  
T
Peak Pin Reflow Temperature During Solder Mounting  
Note 8  
SOLDER  
Notes  
6. Thermal resistance for all channels active. Device mounted on a 2s2p test board per JEDEC JESD51-2 all channels active. 15 °C/W of RθJA can  
be reached in a real application case (4 layer board).  
7. See Soldering information.  
8. NXP’s Package Reflow capability meets Pb-free requirements for JEDEC standard J-STD-020C. For Peak Package Reflow Temperature and  
Moisture Sensitivity Levels (MSL), go to www.nxp.com, search by part number (remove prefixes/suffixes) and enter the core ID to view all  
orderable parts, and review parametrics.  
09XS3400  
NXP Semiconductors  
8
ELECTRICAL CHARACTERISTICS  
4.2  
Static electrical characteristics  
Table 4. Static electrical characteristics  
Characteristics noted under conditions 6.0 V VPWR 20 V, 3.0 V VDD 5.5 V, -40 °C TA 125 °C, GND = 0 V, unless otherwise  
noted. Typical values are measured at TA = 25 °C and at nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit  
Notes  
Power inputs  
Battery supply voltage range  
• Fully operational  
(9)  
V
6.0  
4.0  
20  
28  
V
PWR  
• Extended mode  
(10)  
V
Battery clamp voltage  
41  
47  
53  
10  
V
PWR(CLAMP)  
V
operating supply current  
PWR  
I
7.2  
mA  
PWR(ON)  
• Outputs commanded ON, HS[0:3] open, IN[0:3] > V  
IH  
V
PWR supply current  
• Outputs commanded OFF, OFF openload detection disabled, HS[0:3]  
shorted to the ground with VDD= 5.5 V, WAKE > VIH or RSTB > V and  
I
6.5  
7.5  
mA  
PWR(SBY)  
IH  
IN[0:3] < V  
IL  
Sleep state supply current  
VPWR = 12 V, RSTB = WAKE = IN[0:3] < VIL, HS[0:3] shorted to the ground  
I
μA  
PWR(SLEEP)  
• TA = 25 °C  
• TA = 85 °C  
1.0  
5.0  
30  
V
V
V
supply voltage  
3.0  
5.5  
V
DD(ON)  
DD  
supply current at V = 5.5 V  
DD  
DD  
(11)  
I
• No SPI communication  
• 8.0 MHz SPI communication  
1.6  
5.0  
2.2  
mA  
DD(ON)  
I
V
sleep state current at V = 5.5 V  
5.0  
36  
μA  
DD(SLEEP)  
DD  
DD  
V
Overvoltage shutdown threshold  
Overvoltage shutdown hysteresis  
Undervoltage shutdown threshold  
28  
32  
0.8  
3.9  
V
PWR(OV)  
V
0.2  
3.3  
0.5  
3.4  
2.2  
1.5  
4.3  
0.9  
4.5  
2.8  
V
PWR(OVHYS)  
(12)  
V
V
PWR(UV)  
SUPPLY(POR)  
V
V
and VDD power-on reset threshold  
VPWR(UV)  
PWR  
V
Recovery undervoltage threshold  
supply failure threshold (for V  
4.1  
2.5  
V
V
PWR(UV)_UP  
V
V
> V  
)
PWR(UV)  
DD(FAIL)  
DD  
PWR  
Outputs HS0 TO HS3  
HS[0:3] output Drain-to-Source ON resistance (I = 5.0 A, T = 25 °C)  
HS  
A
• V  
• V  
• V  
• V  
= 4.5 V  
= 6.0 V  
= 10 V  
= 13 V  
32.5  
14.5  
9.0  
PWR  
PWR  
PWR  
PWR  
R
R
mΩ  
mΩ  
DS(on)  
DS(on)  
9.0  
HS[0:3] output Drain-to-Source ON resistance (I = 5.0 A, T = 150 °C)  
HS  
A
• V  
• V  
• V  
• V  
= 4.5 V  
= 6.0 V  
= 10 V  
= 13 V  
55.3  
24.7  
15.3  
15.3  
PWR  
PWR  
PWR  
PWR  
Notes  
9. In extended mode, the functionality is guaranteed but not the electrical parameters. From 4.0 V to 6.0 V voltage range, the device is only protected  
with the thermal shutdown detection.  
10. Measured with the outputs open.  
11. Typical value guaranteed per design.  
12. Output automatically recover with time limited autoretry to instructed state when V  
voltage is restored to normal, as long as the V  
PWR  
PWR  
degradation level does not go below the undervoltage power-ON reset threshold. This applies to all internal device logic supplied by V  
and  
PWR  
assumes the external V  
supply is within specification.  
DD  
09XS3400  
9
NXP Semiconductors  
ELECTRICAL CHARACTERISTICS  
Table 4. Static electrical characteristics (continued)  
Characteristics noted under conditions 6.0 V VPWR 20 V, 3.0 V VDD 5.5 V, -40 °C TA 125 °C, GND = 0 V, unless otherwise  
noted. Typical values are measured at TA = 25 °C and at nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit  
Notes  
Outputs HS0 TO HS3 (continued)  
HS[0:3] output Source-to-Drain ON resistance (I = -5.0 A, V  
HS  
-18 V)  
PWR=  
(13)  
(14)  
R
R
• T = 25 °C  
13.5  
18  
mΩ  
mΩ  
SD(ON)  
SHORT  
A
• T = 150 °C  
A
HS[0:3] maximum severe short-circuit impedance detection  
21  
47  
75  
HS[0:3] output leakage current in OFF state  
• Sleep mode, outputs grounded, T = 25 °C  
0
0
20  
2.0  
3.0  
25  
A
ILEAK(OFF)  
µA  
• Sleep mode, outputs grounded, T = 125 °C  
A
Normal mode (OLOFF_dis_s=1 and OS_dis_s=1), outputs grounded  
OCHI1  
OCHI2  
OC1  
OC2  
OC3  
89.4  
55.8  
49.8  
42.4  
35.7  
28.1  
21.6  
14  
131.6  
83.7  
73  
62.7  
52  
41.6  
31.2  
20.8  
16.7  
11.5  
HS[0:3] output overcurrent detection levels (6.0 V < V  
< 20 V)  
A
HS[0:3]  
OC4  
OCLO4  
OCLO3  
OCLO2  
OCLO1  
11  
6.9  
HS[0:3] current sense ratio (6.0 V <  
• CSNS_ratio bit = 0  
< 20 V, CSNS < 5.0 V)  
HS[0:3]  
(15)  
C
C
1/10300  
1/61000  
SR0  
SR1  
• CSNS_ratio bit = 1  
HS[0:3] current sense ratio (C  
• IHS[0:3] = 12.5 A  
) accuracy (6.0 V < V  
< 20 V)  
HS[0:3]  
SR0  
-12  
-13  
-16  
-20  
12  
13  
16  
20  
C
• IHS[0:3] = 5.0 A  
• IHS[0:3] = 3.0 A  
• IHS[0:3] = 1.5 A  
%
SR0_ACC  
HS[0:3] current recopy accuracy with one calibration point done at 5.0 A and  
25 °C (6.0 V < V < 20 V)  
(16)  
(17)  
C
-5.0  
5.0  
%
%/°C  
%
HS[0:3]  
SR0_ACC(CAL)  
• IHS[0:3] = 5.0 A  
HS[0,3] C current recopy temperature drift (6.0 V < V  
< 20 V)  
HS[0:3]  
SR0  
Δ(C  
)/Δ(T)  
0.04  
SR0  
• IHS[0:3] = 5.0 A  
HS[0,3] current sense ratio (C  
• IHS[0:3] = 12.5 A  
) accuracy (6.0 V < V  
< 20 V)  
HS[0:3]  
SR1  
C
-17  
-12  
+17  
+12  
SR1_ACC  
• IHS[0:3] = 75 A  
HS[0,3] current recopy accuracy with one calibration point done at 12.5 A and  
25 °C (6.0 V < V < 20 V)  
(16)  
C
-5.0  
5.0  
%
V
HS[0:3]  
SR1_ACC(CAL)  
• IHS[0:3] = 12.5 A  
Current sense clamp voltage  
• CSNS Open; I 5.0 A with C  
VDD+0.2  
5
V
VDD+1.0  
CL(CSNS)  
ratio  
SR0  
HS[0:3] =  
Notes  
13. Source-Drain ON Resistance (Reverse Drain-to-Source ON Resistance) with negative polarity V  
.
PWR  
14. Short-circuit impedance calculated from HS[0:3] to GND pins. Value guaranteed per design.  
15. Current sense ratio = ICSNS / IHS[0:3]  
16. Based on statistical analysis. It is not production tested.  
17. Based on statistical data: delta(C  
production tested.  
)/delta(T) = {(measured ICSNS at T1 - measured ICSNS at T2) / measured ICSNS at room} / {T1-T2}. Not  
SR0  
09XS3400  
NXP Semiconductors  
10  
ELECTRICAL CHARACTERISTICS  
Table 4. Static electrical characteristics (continued)  
Characteristics noted under conditions 6.0 V VPWR 20 V, 3.0 V VDD 5.5 V, -40 °C TA 125 °C, GND = 0 V, unless otherwise  
noted. Typical values are measured at TA = 25 °C and at nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit  
Notes  
Outputs HS0 TO HS3 (continued)  
(18)  
(18)  
I
OFF openload detection source current  
30  
2.0  
110  
100  
4.0  
μA  
V
OLD(off)  
V
OFF openload fault detection voltage threshold  
ON openload fault detection current threshold  
ON openload fault detection current threshold with LED  
3.0  
330  
OLD(THRES)  
I
660  
mA  
OLD(on)  
I
2.5  
5.0  
10  
VPWR-0.4  
-16  
mA  
V
OLD(ON_LED)  
V
= V  
- 0.75 V  
HS[0:3]  
PWR  
VPWR  
0.8  
-
V
Output short to V  
detection voltage threshold, output programmed OFF VPWR-1.2  
PWR  
OSD(THRES)  
VCL  
Output negative clamp voltage  
• 0.5 A < I < 5.0 A, output programmed OFF  
-22  
V
HS[0:3]  
T
Output overtemperature shutdown for 4.5 V < VPWR < 28 V  
Input logic high voltage  
155  
2.0  
-0.3  
5.0  
5.0  
175  
195  
5.5  
0.8  
20  
°C  
V
SD  
(19)  
(19)  
(22)  
(23)  
(20)  
V
IH  
V
Input logic low voltage  
V
IL  
I
Input logic pull-down current (SCLK, SI)  
Input logic pull-up current (CSB)  
SO, FSB tri-state capacitance  
μA  
μA  
pF  
kΩ  
pF  
DWN  
I
20  
UP  
C
20  
SO  
R
Input logic pull-down resistor (RSTB, WAKE and IN[0:3])  
Input capacitance  
125  
250  
4.0  
500  
12  
DWN  
(20)  
(21)  
CIN  
Wake input clamp voltage  
V
18  
25  
32  
-0.3  
V
V
V
CL(WAKE)  
• I  
< 2.5 mA  
CL(WAKE)  
Wake input forward voltage  
• I = -2.5 mA  
V
-2.0  
F(WAKE)  
CL(WAKE)  
SO high state output voltage  
• I = 1.0 mA  
V
VDD-0.4  
SOH  
OH  
Control interface  
SO and FSB Low-state Output Voltage  
V
0.4  
2.0  
V
SOL  
• I = -1.0 mA  
OL  
SO, CSNS and FSB Tri-state Leakage Current  
I
-2.0  
0.0  
μA  
SO(LEAK)  
RFS  
• CSB = VIH and 0 V < VSO < VDD, or FSB = 5.5 V, or CSNS = 0.0 V  
FSI External Pull-down Resistance  
• Watchdog Disabled  
(24)  
10  
0.0  
Infinite  
1.0  
kΩ  
• Watchdog Enabled  
Notes  
18. Output OFF openload detection current is the internal current source used during OFF state openload diagnostic. An openload fault is detected  
when the output voltage is greater than VOLD(THRES)  
19. Upper and lower logic threshold voltage range applies to SI, CSB, SCLK, RSTB, IN[0:3] and WAKE input signals. The WAKE and RSTB signals  
may be supplied by a voltage reference derived from V  
.
PWR  
20. Input capacitance of SI, CSB, SCLK, RSTB, IN[0:3] and WAKE. This parameter is guaranteed by process monitoring but is not production tested.  
21. The current must be limited by a series resistance when using voltages > 7.0 V.  
22. Pull-down current is with VSI > 1.0 V and VSCLK > 1.0 V.  
23. Pull-up current is wiTH VCSB < 2.0 V. CSB has an active internal pull-up to V  
.
DD  
24. In fail-safe HS[0:3] output depends respectively on IN[0:3] input. FSI has an active internal pull-up to V  
~ 3.0 V.  
REG  
09XS3400  
11  
NXP Semiconductors  
ELECTRICAL CHARACTERISTICS  
4.3  
Dynamic electrical characteristics  
Table 5. Dynamic electrical characteristics  
Characteristics noted under conditions 6.0 V VPWR 20 V, 3.0 V VDD 5.5 V, -40 °C TA 125 °C, GND = 0 V, unless otherwise  
noted. Typical values are measured at TA = 25 °C and at nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit  
Notes  
Power output timing HS0 TO HS3  
Output rising medium slew rate (medium speed slew rate / SR[1:0] = 00)  
• V = 14 V  
(25)  
(25)  
SRR_00  
SRR_01  
SRR_10  
SRF_00  
SRF_01  
SRF_10  
tDLY(on)  
tDLY(off)  
ΔSR  
0.25  
0.125  
0.5  
0.6  
0.3  
1.2  
0.6  
0.3  
1.2  
1.0  
0.5  
1.5  
1.0  
0.5  
1.5  
105  
65  
V/μs  
V/μs  
V/μs  
V/μs  
V/μs  
V/μs  
μs  
PWR  
Output rising slow slew rate (low speed slew rate / SR[1:0] = 01)  
• V = 14 V  
PWR  
Output rising fast slew rate (high speed slew rate / SR[1:0] = 10)  
• V = 14 V  
(25)  
PWR  
Output falling medium slew rate (medium speed slew rate / SR[1:0] = 00)  
• V = 14 V  
(25)  
0.25  
0.125  
0.5  
PWR  
Output falling slow slew rate (low speed slew rate / SR[1:0] = 01)  
• V = 14 V  
(25)  
PWR  
Output falling fast slew rate (high speed slew rate / SR[1:0] = 10)  
• V = 14 V  
(25)  
PWR  
HS[0:3] outputs turn-on delay time  
• V = 14 V for medium speed slew rate (SR[1:0] = 00)  
(26)(27)  
(26)(27)  
55  
PWR  
HS[0:3] outputs turn-off delay time  
• V = 14 V for medium speed slew rate (SR[1:0] = 00)  
15  
μs  
PWR  
Driver output matching slew rate (SR /SR )  
R
F
0.64  
1.0  
0.96  
V
= 14 V at 25 °C and for medium speed slew rate (SR[1:0] = 00)  
PWR  
HS[0:3] driver output matching time (t  
- t  
) V  
= 14 V,  
PWR  
DLY(on) DLY(off)  
ΔtRF  
f
= 240 Hz, PWM duty cycle = 50%, at 25 °C for medium speed slew  
rate (SR[1:0] = 00)  
15  
65  
μs  
PWM  
(28)  
(29)  
(30)  
(31)  
tFAULT  
tDETECT  
tCNSVAL  
tWDTO  
Fault detection blanking time  
Output shutdown delay time  
CSNS valid time  
1.0  
5.0  
7.0  
70  
20  
30  
μs  
μs  
μs  
ms  
100  
400  
Watchdog timeout  
217  
310  
ON openload fault cyclic detection time with LED  
8.3  
PWM  
period  
tOLLED  
• Internal clock (PWM_en bit = 1 & CLOCK_Set = 1)  
• External clock (PWM_en bit = 1 & CLOCK_Set = 0)  
6.3  
12  
ms  
Notes  
25. Rise and Fall Slew Rates measured across a 5.0 Ω resistive load at high-side output = 30% to 70% (see Figure 4, page 16).  
26. Turn-ON delay time measured from rising edge of any signal (IN[0:3] and CSB) that would turn the output ON to V  
= V  
/ 2 with  
PWR  
HS[0:3]  
R = 5.0 Ω resistive load.  
L
27. Turn-OFF delay time measured from falling edge of any signal (IN[0:3] and CSB) that would turn the output OFF to V  
= V  
/ 2 with  
HS[0:3]  
PWR  
R = 5.0 Ω resistive load.  
L
28. Time necessary to report the fault to the FSB pin.  
29. Time necessary to switch-off the output in case of OT or OC or SC or UV fault detection (from negative edge of the FSB pin to HS voltage = 50%  
of VPWR  
30. Time necessary for CSNS to be within ±5.0% of the targeted value (from HS voltage = 50% of VPWR to ±5.0% of the targeted CSNS value).  
31. For FSI open, the Watchdog timeout delay measured from the rising edge of RST, to commanded HS[0:3] output state depend on the  
corresponding input command.  
09XS3400  
NXP Semiconductors  
12  
ELECTRICAL CHARACTERISTICS  
Table 5. Dynamic electrical characteristics (continued)  
Characteristics noted under conditions 6.0 V VPWR 20 V, 3.0 V VDD 5.5 V, -40 °C TA 125 °C, GND = 0 V, unless otherwise  
noted. Typical values are measured at TA = 25 °C and at nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit  
Notes  
Power output timing HS0 TO HS3 (continued)  
tOC1_00  
tOC2_00  
tOC3_00  
tOC4_00  
tOC5_00  
tOC6_00  
tOC7_00  
HS[0:3] output overcurrent time step for OC[1:0] = 00 (slow by default)  
4.40  
1.62  
2.10  
2.88  
4.58  
10.16  
73.2  
6.30  
2.32  
3.00  
4.12  
6.56  
8.02  
3.00  
3.90  
5.36  
8.54  
14.52  
104.6  
18.88  
134.0  
tOC1_01  
tOC2_01  
tOC3_01  
tOC4_01  
tOC5_01  
tOC6_01  
tOC7_01  
OC[1:0] = 01 (fast)  
1.10  
0.40  
0.52  
0.72  
1.14  
2.54  
18.2  
1.57  
0.58  
0.75  
1.03  
1.64  
3.63  
26.1  
2.00  
0.75  
0.98  
1.34  
2.13  
4.72  
34.0  
ms  
tOC1_10  
tOC2_10  
tOC3_10  
tOC4_10  
tOC5_10  
tOC6_10  
tOC7_10  
OC[1:0] = 10 (medium)  
2.20  
0.81  
1.05  
1.44  
2.29  
5.08  
36.6  
3.15  
1.16  
1.50  
2.06  
3.28  
7.26  
52.3  
4.01  
1.50  
1.95  
2.68  
4.27  
9.44  
68.0  
tOC1_11  
tOC2_11  
tOC3_11  
tOC4_11  
tOC5_11  
tOC6_11  
tOC7_11  
OC[1:0] = 11 (very slow)  
8.8  
3.2  
4.2  
5.7  
9.1  
12.6  
4.6  
6.0  
16.4  
21.4  
7.8  
10.7  
17.0  
37.7  
272.0  
8.2  
13.1  
29.0  
209.2  
20.3  
146.4  
tBC1_00  
tBC2_00  
tBC3_00  
tBC4_00  
tBC5_00  
tBC6_00  
HS[0:3] Bulb Cooling Time Step for CB[1:0] = 00 or 11 (medium)  
242  
126  
140  
158  
181  
211  
347  
181  
200  
226  
259  
302  
452  
236  
260  
294  
337  
393  
tBC1_01  
tBC2_01  
tBC3_01  
tBC4_01  
tBC5_01  
tBC6_01  
CB[1:0] = 01 (fast)  
CB[1:0] = 10 (slow)  
121  
63  
70  
79  
90  
173  
90  
100  
113  
129  
151  
226  
118  
130  
147  
169  
197  
ms  
105  
tBC1_10  
tBC2_10  
tBC3_10  
tBC4_10  
tBC5_10  
tBC6_10  
484  
252  
280  
316  
362  
422  
694  
362  
400  
452  
518  
604  
1904  
472  
520  
588  
674  
786  
09XS3400  
13  
NXP Semiconductors  
ELECTRICAL CHARACTERISTICS  
Table 5. Dynamic electrical characteristics (continued)  
Characteristics noted under conditions 6.0 V VPWR 20 V, 3.0 V VDD 5.5 V, -40 °C TA 125 °C, GND = 0 V, unless otherwise  
noted. Typical values are measured at TA = 25 °C and at nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit  
Notes  
PWM module timing  
f
Input PWM clock range on IN0  
7.68  
1.0  
2.0  
30.72  
4.0  
400  
781  
+10  
156  
26  
kHz  
kHz  
kHz  
Hz  
%
IN0  
(32)  
(32)  
f
Input PWM clock low frequency detection range on IN0  
Input PWM clock high frequency detection range on IN0  
Output PWM frequency range using external clock on IN0  
Output PWM frequency accuracy using calibrated oscillator  
Default output PWM frequency using internal oscillator  
CSB calibration low minimum time detection range  
CSB calibration low maximum time detection range  
Output PWM duty cycle range for fPWM = 1.0 kHz for high speed slew rate  
Output PWM duty cycle range for fPWM = 400 Hz  
IN0(LOW)  
f
100  
31.25  
-10  
84  
IN0(HIGH)  
f
PWM  
FPWM(CAL)  
A
f
120  
20  
200  
Hz  
μs  
PWM(0)  
tCSB(MIN)  
14  
tCSB(MAX)  
RPWM_1k  
140  
10  
260  
94  
μs  
(33)  
(33)  
(33)  
%
RPWM_400  
RPWM_200  
Input timing  
6.0  
98  
%
Output PWM duty cycle range for fPWM = 200 Hz  
5.0  
98  
%
t
Direct input toggle timeout  
175  
105  
250  
150  
325  
195  
ms  
ms  
IN  
Autoretry timing  
t
Autoretry period  
AUTO  
Temperature on the GND flag  
(34)  
(34)  
T
Thermal prewarning detection  
110  
1.15  
-3.5  
125  
1.20  
-3.7  
140  
1.25  
-3.9  
°C  
V
OTWAR  
TFEED  
Analog temperature feedback at TA = 25 °C with RCSNS = 2.5 kΩ  
Analog temperature feedback derating with RCSNS = 2.5 kΩ  
DTFEED  
mV/°C  
Notes  
32. Clock Fail detector available for PWM_en bit is set to logic [1] and CLOCK_sel is set to logic [0].  
33. The PWM ratio is measured at VHS = 50% of VPWR and for the default SR value. It is possible to put the device fully-on (PWM duty cycle 100%)  
and fully-off (duty cycle 0%). For values outside this range, a calibration is needed between the PWM duty cycle programming and the PWM on  
the output with R = 5.0 Ω resistive load.  
L
34. Parameters guaranteed by design, not production tested.  
09XS3400  
NXP Semiconductors  
14  
ELECTRICAL CHARACTERISTICS  
Table 5. Dynamic electrical characteristics (continued)  
Characteristics noted under conditions 6.0 V VPWR 20 V, 3.0 V VDD 5.5 V, -40 °C TA 125 °C, GND = 0 V, unless otherwise  
noted. Typical values are measured at TA = 25 °C and at nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit  
Notes  
SPI interface characteristics (35)  
(41)  
f
Maximum frequency of SPI operation  
10  
8.0  
MHz  
μs  
ns  
μs  
ns  
ns  
ns  
ns  
ns  
ns  
SPI  
(36)  
(37)  
(37)  
(37)  
(37)  
(37)  
(37)  
(38)  
(38)  
t
Required low state duration for RSTB  
WRST  
tCS  
Rising edge of CSB to falling edge of CSB (required setup time)  
Rising edge of RSTB to falling edge of CSB (required setup time)  
Falling edge of CSB to rising edge of SCLK (required setup time)  
Required high state duration of SCLK (required setup time)  
Required low state duration of SCLK (required setup time)  
Falling edge of SCLK to rising edge of CSB (required setup time)  
SI to falling edge of SCLK (required setup time)  
Falling edge of SCLK to SI (required setup time)  
SO rise time  
500  
5.0  
500  
50  
tENBL  
t
LEAD  
t
WSCLKh  
t
50  
WSCLKl  
t
60  
LAG  
t
37  
SI(SU)  
t
49  
SI(HOLD)  
t
t
13  
13  
ns  
ns  
RSO  
FSO  
• C = 80 pF  
L
SO fall time  
• C = 80 pF  
L
(38)  
(38)  
(39)  
(40)  
t
SI, CSB, SCLK, incoming signal rise time  
13  
13  
60  
60  
ns  
ns  
ns  
ns  
RSI  
FSI  
t
SI, CSB, SCLK, incoming signal fall time  
t
Time from falling edge of CSB to SO low-impedance  
Time from rising edge of CSB to SO high-impedance  
SO(EN)  
t
SO(DIS)  
Notes  
35. Parameters guaranteed by design, not production tested.  
36. RSTB low duration measured with outputs enabled and going to OFF or disabled condition.  
37. Maximum setup time required for the 09XS3400 is the minimum guaranteed time needed from the microcontroller.  
38. Rise and Fall time of incoming SI, CSB, and SCLK signals suggested for design consideration to prevent the occurrence of double pulsing.  
39. Time required for output status data to be available for use at SO. 1.0 kΩ on pull-up on CSB.  
40. Time required for output status data to be terminated at SO. 1.0 kΩ on pull-up on CSB.  
41. The SPI frequency is limited if tRSI and tFSI are higher than 13 ns due to resistor in series with SPI signal.  
09XS3400  
15  
NXP Semiconductors  
ELECTRICAL CHARACTERISTICS  
4.4  
Timing diagrams  
IN[0:3]  
High logic level  
Low logic level  
Time  
Time  
or  
CSB  
High logic level  
Low logic level  
VHS[0:3]  
V
PWR  
R
PWM  
50%V  
PWR  
Time  
tDLY(off)  
tDLY(on)  
VHS[0:3]  
70% V  
30% V  
PWR  
SRF  
SRR  
PWR  
Time  
Figure 4. Output slew rate and time delays  
I
OCH1  
I
I
OCH2  
OC1  
OC2  
Load  
Current  
I
I
I
OC3  
OC4  
I
I
I
OCLO4  
OCLO3  
OCLO2  
I
OCLO1  
Time  
t
t
t
t
OC7  
OC3  
OC1  
t
OC5  
t
t
OC6  
OC4  
OC2  
Figure 5. Overcurrent shutdown protection  
09XS3400  
NXP Semiconductors  
16  
ELECTRICAL CHARACTERISTICS  
I
OCH1  
OCH2  
I
I
OC1  
OC2  
I
I
I
I
I
OC3  
OC4  
OCLO4  
OCLO3  
I
OCLO2  
I
OCLO1  
Previous OFF duration  
(tOFF  
)
t
t
t
B
C5  
B
C3  
B
C1  
t
B
C6  
t
B
C4  
t
B
C2  
Figure 6. Bulb cooling management  
VIH  
RSTB  
10% VDD  
D  
VIL  
t
t
ENBL  
CSB  
t
WRSTB  
VIH  
90% V  
DD  
CSB
10%V
DD  
VIL  
t
RSI  
T
t
WSCLKH  
t
LEAD  
t
LAG  
VIH  
90% VDD  
SCLK  
10% VDD  
VIL  
t
SI(SU)  
t
WSCLKl  
t
FSI  
t
SI(HOLD)  
VIH  
90%V
DD  
Don’t Care  
Don’t Care  
Don’t Care  
Valid  
Valid  
SI  
10%V
DD  
VIH  
Figure 7. Input timing switching characteristics  
09XS3400  
17  
NXP Semiconductors  
ELECTRICAL CHARACTERISTICS  
t
t
FSI  
RSI  
VOH  
90% V  
DD  
50%  
SCLK  
10% VDD  
VOL  
tSO(EN)  
10%VDD  
VOH  
90% V  
DD  
SO  
VOL  
Low to High  
tRSO  
tVALID  
tFSO  
SO  
VOH  
90% V  
DD  
High to Low  
10% VDD  
VOL  
tSO(DIS)  
Figure 8. SCLK waveform and valid SO data delay time  
09XS3400  
NXP Semiconductors  
18  
FUNCTIONAL DESCRIPTION  
5
Functional description  
5.1  
Introduction  
The 09XS3400 is one in a family of devices designed for low-voltage automotive lighting applications. Its four low RDS(on) MOSFETs (quad  
9.0 mΩ) can control four separate 55 W bulbs and/or Xenon modules.  
Programming, control and diagnostics are accomplished using a 16-bit SPI interface. Its output with selectable slew-rate improves  
electromagnetic compatibility (EMC) behavior. Additionally, each output has its own parallel input or SPI control for pulse-width modulation  
(PWM) control if desired. The 09XS3400 allows the user to program via the SPI the fault current trip levels and duration of acceptable  
lamp inrush. The device has fail-safe mode to provide fail-safe functionality of the outputs in case of MCU damage.  
5.2  
Functional pin description  
5.2.1 Output current monitoring (CSNS)  
The current sense pin provides a current proportional to the designated HS0:HS3 output or a voltage proportional to the temperature on  
the GND flag. This current feeds into a ground-referenced resistor (2.5 kΩ typical) and its voltage is monitored by an MCU's A/D. The  
output type is selected via the SPI. This pin can be tri-stated through the SPI.  
5.2.2 Direct inputs (IN0, IN1, IN2, IN3)  
Each IN input wakes the device. The IN0:IN3 high-side input pins are also used to directly control HS0:HS3 high-side output pins. In case  
of the outputs are controlled by PWM module, the external PWM clock is applied to IN0 pin. These pins are to be driven with CMOS levels,  
and they have a passive internal pull-down, RDWN  
.
5.2.3 Fault status (FSB)  
This pin is an open drain configured output requiring an external pull-up resistor to VDD for fault reporting. If a device fault condition is  
detected, this pin is active LOW. Detailed diagnostic and fault in formation is reported via the SPI SO pin.  
5.2.4 Wake  
The WAKE input wakes the device. An external resistor (10 kΩ typical) and in internal voltage clamp protect this pin from high damaging  
voltages. This input has a passive internal pull-down, RDWN  
.
5.2.5 Reset (RSTB)  
The reset input wakes the device. This is used to initialize the device configuration and fault registers, as well as place the device in a low  
current sleep mode. The pin also starts the watchdog timer when transitioning from logic [0] to logic [1]. This pin has a passive internal  
pull-down, RDWN  
.
5.2.6 Chip select (CSB)  
The CSB pin enables communication with the master microcontroller (MCU). When this pin is in a logic [0] state, the device is capable of  
transferring information to, and receiving information from, the MCU. The 09XS3400 latches in data from the Input Shift registers to the  
addressed registers on the rising edge of CSB. The device transfers status information to the Shift register on the falling edge of CSB.  
The SO output driver is enabled when CSB is logic [0]. CSB should transition from a logic [1] to a logic [0] state only when SCLK is a  
logic [0]. CSB has an active internal pull-up to VDD, IUP  
.
09XS3400  
19  
NXP Semiconductors  
FUNCTIONAL DESCRIPTION  
5.2.7 Serial clock (SCLK)  
The SCLK pin clocks the internal shift registers of the 09XS3400 device. The serial input (SI) pin accepts data into the input shift register  
on the falling edge of the SCLK signal while the serial output (SO) pin shifts data information out of the SO line driver on the rising edge  
of the SCLK signal. The SCLK pin should be in a logic low state whenever CSB makes any transition. For this reason, it is recommended  
the SCLK pin be in a logic [0] whenever the device is not accessed (CSB logic [1] state). When CSB is logic [1], signals at the SCLK and  
SI pins are ignored and SO is tri-stated (high-impedance) (see Figure 10). SCLK input has an active internal pull-down, IDWN  
.
5.2.8 Serial Input (SI)  
This is a serial interface (SI) command data input pin. Each SI bit is read on the falling edge of SCLK. A 16-bit stream of serial data is  
required on the SI pin, starting with D15 (MSB) to D0 (LSB). The internal registers of the 09XS3400 are configured and controlled using  
a 5-bit addressing scheme described in Table 10. Register addressing and configuration are described in Table 11. SI input has an active  
internal pull-down, IDWN  
.
5.2.9 Digital drain voltage (VDD)  
This pin is an external voltage input pin used to supply power to the SPI circuit. When VDD is lost (VDD Failure), the device goes to fail-  
safe mode.  
5.2.10 Ground (GND)  
These pins are the ground for the device.  
5.2.11 Positive power supply (VPWR)  
This pin connects to the positive power supply and is the source of operational power for the device. The VPWR contact is the backside  
surface mount tab of the package.  
5.2.12 Serial output (SO)  
The SO data pin is a tri-stateable output from the shift register. The SO pin remains in a high-impedance state until the CSB pin is put into  
a logic [0] state. The SO data is capable of reporting the status of the output, the device configuration, the state of the key inputs, etc. The  
SO pin changes state on the rising edge of SCLK and reads out on the falling edge of SCLK. SO reporting descriptions are provided in  
Table 23.  
5.2.13 High-side outputs (HS3, HS1, HS0, HS2)  
These are protected 9.0 mΩ high-side power outputs to the loads.  
5.2.14 Fail-safe input (FSI)  
This pin incorporates an active internal pull-up current source from internal supply (VREG). This enables the watchdog timeout feature.  
When the FSI pin is opened, the watchdog circuit is enabled. After a watchdog timeout occurs, the output states depends on IN[0:3]. In  
case of a VDD failure and when VDD failure detection is activated, the output states depend on IN{0:3].  
09XS3400  
NXP Semiconductors  
20  
FUNCTIONAL DESCRIPTION  
5.3  
Functional internal block description  
09XS3400 - functional block diagram  
Power supply  
MCU  
interface  
MCU interface and output control  
SPI interface  
Self-protected  
high-side  
switches  
HS0-HS3  
Parallel control inputs  
PWM controller  
Supply  
MCU Interface & Output Control  
Self-Protected High-side Switches  
Figure 9. Functional block diagram  
5.3.1 Power supply  
The 09XS3400 is designed to operate from 4.0 V to 28 V on the VPWR pin. Device characterization is provided from 6.0 V to 20 V. The  
VPWR pin supplies power to internal regulator, analog, and logic circuit blocks. The VDD supply is used for serial peripheral interface (SPI)  
communication to configure and diagnose the device. This IC architecture provides a low quiescent current sleep mode. Applying VPWR  
and VDD to the device places the device in the Normal mode. The device transits to fail-safe mode in case of failures on the SPI or/and  
on VDD voltage.  
5.3.2 High-side switches: HS0–HS3  
These pins are the high-side outputs controlling automotive lamps, such as 65 W/55 W bulbs and Xenon-HID modules. Those N-channel  
MOSFETs with 9.0 mΩ RDS(on) are self-protected and present extended diagnostics in order to detect bulb outage and short-circuit fault  
condition. The HS output is actively clamped during turn off of inductive loads and inductive battery line. When driving DC motor or  
solenoid loads, an external recirculation device must be used to maintain the device in its safe operating area.  
5.3.3 MCU interface and output control  
In Normal mode, each bulb is controlled directly from the MCU through SPI. A pulse width modulation control module allows improvement  
of lamp lifetime with bulb power regulation (PWM frequency range from 100 Hz to 400 Hz) and addressing the dimming application (day  
running light). An analog feedback output provides a current proportional to the load current or the temperature of the board. The SPI is  
used to configure and to read the diagnostic status (faults) of high-side outputs. The reported fault conditions are: openload, short-circuit  
to battery, short-circuit to ground (overcurrent and severe short-circuit), thermal shutdown, and under/overvoltage. With accurate and  
configurable overcurrent detection circuitry and wire harness optimization, the vehicle is lighter.  
In Fail-safe mode, each lamp is controlled with dedicated parallel input pins. The device reverts to its default mode.  
09XS3400  
21  
NXP Semiconductors  
FUNCTIONAL DEVICE OPERATION  
6
Functional device operation  
6.1  
SPI protocol description  
The SPI interface has a full duplex, three-wire synchronous data transfer with four I/O lines associated with it: Serial Input (SI), Serial  
Output (SO), Serial Clock (SCLK), and Chip Select (CSB).  
The SI/SO pins of the 09XS3400 follow a first-in first-out (D15 to D0) protocol, with both input and output words transferring the most  
significant bit (MSB) first. All inputs are compatible with 5.0 V or 3.3 V CMOS logic levels.  
CSB  
SCLK  
SI  
D15  
D14  
D13  
D12 D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SO  
OD15 OD14 OD13 OD12 OD11 OD10 OD9 OD8 OD7 OD6 OD5 OD4 OD3 OD2 OD1 OD0  
Notes 1. RSTB is a logic [1] state during the above operation.  
2. D15 D0 relate to the most recent ordered entry of data into the device.  
:
3. OD15:OD0 relate to the first 16 bits of ordered fault and status data out of the device.  
Figure 10. Single 16-Bit word SPI Communication  
6.2  
Operational modes  
The 09XS3400 has four operating modes: Sleep, Normal, Fail-safe, and Fault. Table 6 and Figure 12 summarize details contained in  
succeeding paragraphs. The Figure 11 describes an internal signal called IN_ON[x] which is a function of the respective IN[x] input.  
tIN  
N[x]  
N_ON[x]  
Figure 11. IN_ON[x] internal signal  
The 09XS3400 transits to operating modes according to the following signals:  
• wake-up = RSTB or WAKE or IN_ON[0] or IN_ON[1] or IN_ON[2] or IN_ON[3],  
• fail = (VDD Failure and VDD_FAIL_en) or (Watchdog timeout and FSI input not shorted to ground),  
• fault = OC[0:3] or OT[0:3] or SC[0:3] or UV or (OV and OV_dis).  
09XS3400  
NXP Semiconductors  
22  
FUNCTIONAL DEVICE OPERATION  
Table 6. 09XS3400 operating modes  
Mode Wake-up Fail Fault  
Comments  
Sleep  
Normal  
Fail-safe  
0
1
1
x
0
1
x
0
0
Device is in Sleep mode. All outputs are OFF.  
Device is currently in Normal mode. Watchdog is active if enabled.  
Device is currently in fail-safe mode due to Watchdog timeout or VDD Failure conditions.  
Device is currently in fault mode. The faulted output(s) is (are) OFF. The safe autoretry circuitry is active to turn-on again  
the output(s).  
Fault  
1
X
1
x = Don’t care.  
(fail = 0) and (wake-up = 1) and (fault = 0)  
Sleep  
(wake-up = 0)  
(wake-up = 1) and  
(fail = 1)  
and (fault = 0)  
(wake-up=0)  
(wake-up = 1)  
and (fault = 1)  
(wake-up = 0)  
(fail = 1) and  
(wake-up  
and (fault = 1)  
(fail = 0) and  
(wake-up = 1)  
and (fault = 1)  
=
1)  
Fault  
Normal  
(fail = 0) and  
(wake-up = 1)  
and (fault = 0)  
(fail = 1) and  
(wake-up = 1)  
and (fault = 0)  
Fail-safe  
(fail = 0) and (wake-up = 1) and (fault = 0)  
(fail = 1) and (wake-up = 1) and (fault = 0)  
Figure 12. Operating modes  
6.2.1 Sleep mode  
The 09XS3400 is in Sleep mode when:  
• VPWR and VDD are within the normal voltage range,  
• wake-up = 0,  
• fail = X,  
• fault = X.  
This is the Default mode of the device after first applying battery voltage (VPWR) prior to any I/O transitions. This is also the state of the  
device when the WAKE and RSTB and IN_ON[0:3] are logic [0]. In the Sleep mode, the output and all unused internal circuitry, such as  
the internal regulator, are off to minimize draw current. In addition, all SPI-configurable features of the device are set to logic [0].  
6.2.2 Normal mode  
The 09XS3400 is in Normal mode when:  
• VPWR and VDD are within the normal voltage range,  
• wake-up = 1,  
• fail = 0,  
• fault = 0.  
09XS3400  
23  
NXP Semiconductors  
FUNCTIONAL DEVICE OPERATION  
In this mode, the NM bit is set to fault_control logic [1] and the outputs HS[0:3] are under control, as defined by the hson signal:  
hson[x] = ( ( (IN[x] and DIR_dis[x]) or On bit[x] ) and PWM_en ) or (On bit [x] and Duty_cycle[x] and PWM_en).  
In this mode and also in fail-safe, the fault condition reset depends on fault_control signal, as defined by the following:  
fault_control[x] = ( (IN_ON[x] and DIR_dis[x]) and PWM_en ) or (On bit [x]).  
6.2.2.1  
Programmable PWM module  
The outputs HS[0:3] are controlled by the programmable PWM module if PWM_en and On bit [x] are set to logic [1]. The clock frequency  
from IN0 input pin or from internal clock is the factor 27 (128) of the output PWM frequency (CLOCK_sel bit). The outputs HS[0:3] can be  
controlled in the range of 5% to 98% with a resolution of 7 bits of duty cycle (Table 7). The states of other IN pins are ignored.  
Table 7. Output PWM Resolution  
On bit  
Duty cycle  
X
Output state  
OFF  
0
1
0000000  
PWM (1/128 duty cycle)  
1
1
1
1
0000001  
0000010  
n
PWM (2/128 duty cycle)  
PWM (3/128 duty cycle)  
PWM ((n+1)/128 duty cycle)  
fully ON  
1111111  
The timing includes seven programmable PWM switching delays (number of PWM clock rising edges) to stagger the turn on/off times of  
the outputs (Table 8).  
Table 8. Output PWM switching delay  
Delay bits  
Output delay  
000  
001  
010  
011  
100  
101  
110  
111  
no delay  
16 PWM clock periods  
32 PWM clock periods  
48 PWM clock periods  
64 PWM clock periods  
80 PWM clock periods  
96 PWM clock periods  
112 PWM clock periods  
The clock frequency from IN0 is permanently monitored to report a clock failure in case the frequency is outside a specified frequency  
range (from fIN0(LOW) to fIN0(HIGH)). During a clock failure, no PWM feature is provided, the On bit defines the outputs’ states and the  
CLOCK_fail bit reports [1].  
6.2.2.2  
Calibratable internal clock  
The internal clock can vary as much as 30 percent relative to the to typical fPWM(0) output switching period. Using the existing SPI inputs  
and the precision timing reference already available to the MCU, the 09XS3400 allows clock calibration to 10 percent of accuracy.  
Calibrating the internal clock is initiated by defined word to CALR register. The calibration pulse is provided by the MCU. The pulse is sent  
on the CSB pin after the SPI word is launched. The MCU keeps the CSB pin low for 1/128th of the desired PWM frequency.  
09XS3400  
NXP Semiconductors  
24  
FUNCTIONAL DEVICE OPERATION  
CSB  
SI  
SI command  
ignored  
CALR  
Internal  
clock duration  
Figure 13. Internal clock calibration diagram  
If the negative CSB pulse is outside a predefined time range (from tCSB(MIN) to tCSB(MAX)), the calibration event is ignored and the internal  
clock is unaltered or reset to its default value (fPWM(0)), if this was not calibrated before. The calibratable clock is used, instead of the clock  
from IN0 input, when CLOCK_sel is set to [1].  
6.2.3 Fail-safe mode  
The 09XS3400 is in Fail-safe mode when:  
• VPWR is within the normal voltage range,  
• wake-up = 1,  
• fail = 1,  
• fault = 0.  
6.2.4 Watchdog  
If the FSI input is not grounded, the watchdog timeout detection is active when either the WAKE or IN_ON[0:3] or RSTB input pin  
transitions from logic [0] to logic [1]. The WAKE input is capable of being pulled up to VPWR with a series resistance limiting the internal  
clamp current according to the specification.  
The Watchdog timeout interval is a multiple of the internal oscillator. As long as the WD bit (D15) of an incoming SPI message is toggled  
within the minimum watchdog timeout period (WDTO), the device operates normally.  
6.2.4.1  
Fail-safe conditions  
If an internal watchdog timeout occurs before the WD bit for FSI open (Table 9) or in case of VDD failure condition (VDD< VDD(FAIL))) for  
VDD_FAIL_en bit is set to logic [1], the device reverts to a fail-safe mode until the WD bit is written to logic [1] (see fail-safe to normal  
mode transition paragraph) and VDD is within the normal voltage range.  
Table 9. SPI watchdog activation  
Typical RFSI (Ω)  
Watchdog  
0 (shorted to ground)  
(open)  
Disabled  
Enabled  
During the Fail-safe mode, the outputs depend on the corresponding input. The SPI register contents are reset to their default values  
(except POR bit) and fault protections are fully operational. The NM bit is set to (0] when the device is in Fail-safe mode.  
09XS3400  
25  
NXP Semiconductors  
FUNCTIONAL DEVICE OPERATION  
6.2.5 Normal and fail-safe mode transitions  
6.2.5.1  
Transition fail-safe to normal mode  
To leave the Fail-safe mode, VDD must be within its valid operating voltage range and the microcontroller has to send an SPI command  
with WDIN bit set to logic [1]; the other bits are not considered. The previously latched faults are reset by the transition into Normal mode  
(autoretry included). Moreover, the device can be brought out of the Fail-safe mode due to a watchdog timeout issue by forcing the FSI  
pin to logic [0].  
6.2.5.2  
Transition normal to fail-safe mode  
To enter the Fail-safe mode from normal mode, a fail-safe condition must occur (fail = 1). The previous latched faults are reset by the  
transition into Fail-safe mode (autoretry included).  
6.2.6 Fault mode  
The 09XS3400 is in Fault mode when:  
• VPWR and VDD are within the normal voltage range,  
• wake-up = 1,  
• fail = X,  
• fault = 1.  
This device indicates the faults below as they occur by driving the FSB pin to logic [0], provided the RSTB input is pulled up:  
• Overtemperature fault,  
• Overcurrent fault,  
• Severe short-circuit fault,  
• Output(s) shorted to VPWR fault in OFF state,  
• Openload fault in OFF state,  
• Overvoltage fault (enabled by default),  
• Undervoltage fault.  
The FS pin automatically returns to logic [1] when the fault condition is removed, except for overcurrent, severe short-circuit,  
overtemperature, and undervoltage which resets by a new turn-on command (each fault_control signal to be toggled). Fault information  
is retained in the SPI fault register and is available (and reset) via the SO pin during the first valid SPI communication. The openload fault  
in ON state is only reported through the SPI register without effect on the corresponding output state (HS[x]) and the FSB pin.  
6.2.7 Typical start-up sequence  
The 09XS3400 enters in Normal mode after start-up if following sequence is provided:  
• VPWR and VDD power supplies must be above their undervoltage thresholds,  
• generate wake-up event (wake-up = 1) from 0 to 1 on RSTB. The device switches to Normal mode with SPI register content is reset  
(as defined in Table 11 and Table 23). All features of the 09XS3400 are available after 50 μs typical, and all SPI registers are set to  
default values (set to logic [0]).  
• toggle WD bit from 0 to 1.  
And, if the PWM module is used (PWM_en bit is set to logic [1]) with an external reference clock:  
• apply PWM clock on IN0 input pin between 26 µs and 140 µs.  
If the correct start-up sequence is not provided, the PWM function is not guaranteed.  
09XS3400  
NXP Semiconductors  
26  
FUNCTIONAL DEVICE OPERATION  
6.3  
Protection and diagnostic features  
6.3.1 Protections  
6.3.1.1  
Overtemperature fault  
The 09XS3400 incorporates overtemperature detection and shutdown circuitry for each output channel. Two cases need to be considered  
when the output temperature is higher than TSD  
:
• If the output command is ON: the corresponding output is latched OFF. FSB also latches to logic [0]. To delatch the fault and be able  
to turn ON again the outputs, the failure condition must disappear and the autoretry circuitry must be active or the corresponding  
output must be commanded OFF and then ON (toggling fault_control signal of corresponding output) or VSUPPLY(POR) condition if  
VDD = 0.  
• If the output command is OFF: FSB goes to logic [0] until the corresponding output temperature is below TSD  
.
For both cases, the fault register OT[0:3] bit into the status register is set to [1]. The fault bits are cleared in the status register after a SPI  
read command.  
6.3.1.2  
Overcurrent fault  
The 09XS3400 incorporates output shutdown to protect each output structure against resistive short-circuit condition. This protection is  
composed of four predefined current levels (time dependent) to fit Xenon-HID current profiles by default or 55 W bulb profiles, selectable  
by Xenon bit (as illustrated Figure 17). Initial turn-on of a cold lamp filament usually creates a large inrush current, as shown in Figure 5.  
This overcurrent protection is programmable: OC[1:0] bits select overcurrent slope speed and OCHI1 current step can be removed in case  
of OCHI bit is set to [1].  
Over-current thresholds  
fault_control  
hson  
Figure 14. Overcurrent detection profile  
In steady state, the wire harness is protected by OCLO2 current level by default. Three other DC overcurrent levels are available: OCLO1  
or OCLO3 or OCLO4 based on the state of the OCLO[1,0] bits.  
If the load current level ever reaches the overcurrent detection level, the corresponding output latches the output OFF and FSB is also  
latched to logic [0]. To delatch the fault and be able to turn ON again the corresponding output, the failure condition must disappear and  
the autoretry circuitry must be active or the corresponding output must be commanded OFF and then ON (toggling fault_control signal of  
corresponding output) or the VSUPPLY(POR) condition if VDD = 0.  
The SPI fault bits (OC[0:3] bits) are cleared after a read operation.  
In Normal mode using internal PWM module, the 09XS3400 also incorporates a cooling bulb filament management if OC_mode and  
Xenon are set to logic [1]. In this case, the 1st step of multi-step overcurrent protection depends on the previous OFF duration, as illustrated  
in Figure 6. The following figure illustrates how the current level depends on the duration of previous OFF state (toff). The slope of cooling  
bulb emulator is configurable with OCOFFCB[1:0] bits.  
09XS3400  
27  
NXP Semiconductors  
FUNCTIONAL DEVICE OPERATION  
Depending on toff  
Over-current thresholds  
Cooling  
toff  
fault_control  
hson signal  
PWM  
hson  
Figure 15. Bulb cooling principle  
6.3.1.3  
Severe short-circuit fault  
The 09XS3400 immediately turns-off an output channel if it detects a severe short circuit at turn-on. If the short-circuit impedance is below  
RSHORT, the device latches the output OFF, FSB goes to logic [0] and the fault register SC[0:3] bit is set to [1]. To delatch the fault and be  
able to turn ON again the outputs, the failure condition must disappear and the corresponding output must be commanded OFF and then  
ON (toggling fault_control signal of corresponding output) or VSUPPLY(POR) condition if VDD = 0. The SPI fault bits (SC[0:3] bits) are  
cleared after a read operation.  
6.3.1.4  
Overvoltage fault (enabled by default)  
By default, the overvoltage protection is enabled. The 09XS3400 shuts down all outputs and FSB goes to logic [0] during an overvoltage  
fault condition on the VPWR pin (VPWR > VPWR(OV)). The outputs remain in the OFF state until the overvoltage condition is removed  
(VPWR < VPWR(OV) -VPWR(OVHYS)). When experiencing this fault, the OVF fault bit is set to logic [1] and cleared after a valid SPI read.  
The overvoltage protection can be disabled through SPI (OV_dis bit is disabled when set to logic [1]). The fault register reflects any  
overvoltage condition (VPWR > VPWR(OV)). This overvoltage diagnosis, as a warning, is removed after a read operation, if the fault condition  
disappears. The HS[0:3] outputs cannot be commanded on during an over voltage condition.  
6.3.1.5  
Undervoltage fault  
The output(s) latch off at some battery voltage below VPWR(UV). As long as the VDD level stays within the normal specified range, the  
internal logic states within the device will remain (configuration and reporting). If the battery voltage drops below the undervoltage  
threshold (VPWR < VPWR(UV)), the outputs turn off, FSB goes to logic [0], and the fault register UV bit is set to [1].  
The FSB pin follows the battery voltage. This pin goes to a logic [0] when VPWR < VPWR(UV) and returns to a logic [1] when  
VPWR > VPWR(UV)_UP  
.
In extended mode, the output is protected by overtemperature shutdown circuitry. All previous latched faults, which occurred when VPWR  
was within the normal voltage range, are guaranteed if VDD is within the operational voltage range or until VSUPPLY(POR) if VDD = 0. Any  
new OT fault is detected (VDD failure included) and reported through SPI above VPWR(UV). The output state is not changed as long as  
the VPWR voltage does not drop any lower than 3.5 V typical.  
Below 3.5 V (typ) of VPWR, the output shutdown delay time is not guaranteed. The N-channel MOSFSET could drain current during the  
next 10 μs to 30 μs.  
All latched faults (overtemperature, overcurrent, severe short-circuit, over and undervoltage) are reset if:  
• VDD < VDD(FAIL) with VPWR in nominal voltage range,  
• VDD and VPWR supplies are below VSUPPLY(POR) voltage value.  
09XS3400  
NXP Semiconductors  
28  
FUNCTIONAL DEVICE OPERATION  
(fault_control = 0)  
(OpenloadOFF = 1  
or ShortVpwr = 1  
or OV = 1)  
(OpenloadOFF = 1  
or ShortVpwr = 1  
or OV = 1)  
(fault_control = 1 and OV = 0)  
(fault_control = 0 or OV = 1)  
(fault_control = 0)  
(OpenloadON = 1)  
OFF  
if hson = 0  
(SC = 1)  
ON  
if hson=1  
Latched  
OFF  
(count = 16)  
(Retry = 1)  
(SC = 1)  
(OpenloadON = 1)  
(after Retry Period and OV = 0)  
(OV = 1)  
Autoretry  
OFF  
Autoretry  
ON  
if hson = 1  
(Retry = 1)  
= > count = count+1  
(OpenloadOFF = 1  
or ShortVpwr = 1  
or OV = 1)  
(fault_control = 0)  
Figure 16. Autoretry state machine  
6.3.2 Autoretry  
The autoretry circuitry is used to reactivate the output(s) automatically in case of overcurrent or overtemperature or undervoltage failure  
conditions, to provide a high availability of the load.  
Autoretry feature is available in Fault mode. It is activated when the internal retry signal is set to logic [1]:  
retry[x] = OC[x] or OT[x] or UV.  
The feature attempts to reactivate the output(s) after one autoretry period (tAUTO), limited to 16 retries per channel. The counter of retry  
occurrences is reset in case of Fail-safe to Normal or Normal to Fail-safe mode transitions. At each autoretry, the overcurrent detection  
is set to default values to sustain the inrush current. The Figure 16 describes the autoretry state machine.  
6.3.3 Diagnostic  
6.3.3.1  
Output shorted to VPWR fault  
The 09XS3400 incorporates output shorted to VPWR detection circuitry in OFF state. Output shorted to VPWR fault is detected if output  
voltage is higher than VOSD(THRES) and reported as a fault condition when the output is disabled (OFF). The output shorted to VPWR fault  
is latched into the status register after the internal gate voltage is pulled low enough to turn OFF the output. The OS[0:3] and OL_OFF[0:3]  
fault bits are set in the status register and the FSB pin reports the fault in real time. If the output shorted to VPWR fault is removed, the  
status register clears after reading the register. The output shorted to VPWR protection can be disabled through the SPI (OS_DIS[0:3] bit).  
6.3.3.2  
Openload faults  
The 09XS3400 incorporates three dedicated openload detection circuitries on the output to detect in OFF and in ON state.  
09XS3400  
29  
NXP Semiconductors  
FUNCTIONAL DEVICE OPERATION  
6.3.3.3  
Openload detection in OFF state  
The OFF output openload fault is detected when the output voltage is higher than VOLD(THRES) pulled up with internal current source  
(IOLD(off)) and reported as a fault condition when the output is disabled (OFF). The OFF Output openload fault is latched into the status  
register when the internal gate voltage is pulled low enough to turn OFF the output. The OL_OFF[0:3] fault bit is set in the status register.  
If the openload fault is removed (FSB output pin goes to high), the status register clears after reading the register. The OFF output  
openload protection can be disabled through the SPI (OLOFF_DIS[0:3] bit).  
6.3.3.4  
Openload detection in ON state  
The ON output openload current thresholds can be chosen by the SPI to monitor standard bulbs or LEDs (OLLED[0:3] bit set to logic [1]).  
In the case where load current drops below the defined current threshold, the OLON bit is set to logic [1], the output stays ON and FSB  
is not disturbed.  
6.3.3.5  
Openload detection in ON state for LED  
Openload for LEDs only (OLLED[0:3] set to logic [1]) is detected periodically each tOLLED (fully-on, D[7:0] = FF). To detect OLLED in fully-  
on state, the output must be ON at least tOLLED and PWM module must be enabled (PWM_en = 1 in GCR register). To delatch the  
diagnosis, the condition should be removed and an SPI read operation is needed (OL_ON[0:3] bit). The ON output openload protection  
can be disabled through SPI (OLON_DIS[0:3] bit).  
6.3.4 Analog current recopy and temperature feedback  
The CSNS pin is an analog output reporting a current proportional to the designed output current or a voltage proportional to the  
temperature of the GND flag (pin #14). The designed signal is SPI programmable (TEMP_en, CSNS_en, CSNS_s[1,0] and CSNS_ratio_s  
bits).  
In case the current recopy is active, the CSNS output delivers current only during ON time of the output switch. The CSNS control circuitry  
creates the signal without overshoot. The maximum current is.0 mA typical. The typical value of external CSNS resistor connected to the  
ground is 2.5 kΩ. The current recopy is not active in Fail-safe mode.  
6.3.4.1  
Temperature prewarning detection  
In Normal mode, the 09XS3400 provides a temperature prewarning reported via SPI if the temperature of the GND flag is higher than  
TOTWAR. This diagnosis (OTW bit set to [1]) is latched in the SPI DIAGR0 register. To delatch this diagnostic, a read SPI command is  
needed and the temperature must be below TOTWAR  
.
6.3.5 Active clamp on VPWR  
The device provides an active gate clamp circuit to limit the maximum transient VPWR voltage at VPWR(CLAMP). In case of an overload on  
an output, the corresponding output is turned off, which leads to high voltage at VPWR with an inductive VPWR line. When VPWR voltage  
exceeds VPWR(CLAMP) threshold, the turn-off on the corresponding output is deactivated and all HS[0:3] outputs are switched ON  
automatically to demagnetize the inductive Battery line.  
6.3.6 Reverse battery on VPWR  
The output survives the application of reverse voltage as low as -18 V. Under these conditions, the ON resistance of the output is two  
times higher than typical ohmic values in forward mode. No additional passive components are required except a diode in the VDD  
regulator circuitry.  
6.3.7 Ground disconnect protection  
In the event the 09XS3400 ground is disconnected from load ground, the device protects itself and safely turns OFF the outputs regardless  
of the state of the outputs at the time of disconnection (maximum VPWR = 16 V). A 10 kΩ resistor needs to be added between the MCU  
and each digital input pin in order to ensure the device turns off during a ground disconnect and to prevent this pin from exceeding  
maximum ratings.  
09XS3400  
NXP Semiconductors  
30  
FUNCTIONAL DEVICE OPERATION  
6.3.8 Loss of supply lines  
6.3.8.1  
Loss of V  
DD  
If the external VDD supply is disconnected (or not within specification: VDD < VDD(FAIL)) with VDD_FAIL_en bit is set to logic [1]), all SPI  
register content is reset.  
The outputs can still be driven by the direct inputs IN[0:3] if VPWR is within its specified voltage range. The 09XS3400 uses the battery  
input to power the output MOSFET-related current sense circuitry and any other internal logic providing fail-safe device operation with no  
VDD supplied. In this state, the overtemperature, overcurrent, severe short-circuit, short to VPWR, and OFF openload protection circuitry  
are fully operational with default values corresponding to all SPI bits are set to logic [0]. SPI fault register remain reset.  
During a loss of VDD, no current is conducted from VPWR to VDD  
.
6.3.8.2  
Loss of V  
PWR  
If the external VPWR supply is disconnected (or not within specification), the SPI configuration, reporting, and daisy chain features are  
maintained provided RST to set to logic [1] and VDD is within nominal operating range. This fault condition can be diagnosed with UV fault  
in SPI STATR_s registers. The SPI pull-up and pull-down current sources are not operational. The previous device configuration is  
maintained. No current is conducted from VDD to VPWR  
.
6.3.8.3  
Loss of V  
and V  
PWR DD  
If the external VPWR and VDD supplies are disconnected (or not within specification: (VDD and VPWR) < VSUPPLY(POR)), all SPI register  
contents are reset with default values corresponding to all SPI bits are set to logic [0] and all latched faults are also reset.  
6.3.9 EMC performances  
All following tests are performed on NXP evaluation board in accordance with the typical application schematic. The device is protected  
during positive and negative transients on the VPWR line (per ISO 7637-2). The 09XS3400 successfully meets the Class 5 of the CISPR25  
emission standard and 200 V/m or BCI 200 mA injection level for immunity tests.  
6.4  
Logic commands and registers  
6.4.1 Serial input communication  
SPI communication is accomplished using 16-bit messages. A message is transmitted by the MCU starting with the MSB D15 and ending  
with the LSB, D0 (Table 10). Each incoming command message on the SI pin can be interpreted using the following bit assignments: the  
MSB, D15, is the watchdog bit (WDIN). In some cases, output selection is done with bits D14:D13. The next three bits, D12:D10, are  
used to select the command register. The remaining nine bits, D8:D0, are used to configure and control the outputs and their protection  
features.  
Multiple messages can be transmitted in succession to accommodate those applications where daisy-chaining is desirable, or to confirm  
transmitted data, as long as the messages are all multiples of 16 bits. Any attempt made to latch in a message not 16 bits is ignored. The  
09XS3400 has defined registers, which are used to configure the device and to control the state of the outputs. Table 11 summarizes the  
SI registers.  
09XS3400  
31  
NXP Semiconductors  
FUNCTIONAL DEVICE OPERATION  
Table 10. SI message bit assignment  
Bit sig  
SI Msg bit  
Message bit description  
Watchdog in: toggled to satisfy watchdog requirements.  
MSB  
D15  
D14:D13  
D12:D10  
D9  
Register address bits used in some cases for output selection (Table 12).  
Register address bits.  
Not used (set to logic [0]).  
LSB  
D8:D0  
Used to configure the inputs, outputs, and the device protection features and SO status content.  
Table 11. Serial input address and configuration bit map  
SI data  
D6  
SI Register  
D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
0
D5  
0
D4  
D3  
D2  
D1  
D0  
STATR_s  
PWMR_s  
WDIN  
WDIN  
X
X
0
0
0
0
0
1
0
1
0
0
0
0
0
0
PWM6_s  
0
SOA4  
SOA3  
SOA2  
SOA1  
SOA0  
(42)  
A
A
0
ON_s  
0
PWM5_s  
DIR_dis_s  
PWM4_s  
SR1_s  
PWM3_s  
SR0_s  
PWM2_s  
PWM1_s  
PWM0_s  
1
1
0
0
CONFR0_s WDIN  
CONFR1_s WDIN  
A
A
A
A
0
0
DELAY2_s DELAY1_s DELAY0_s  
Retry_  
Retry_dis_  
s
OLON_dis OLOFF_di OLLED_en CSNS_rati  
0
1
1
0
1
0
0
0
0
OS_dis_s  
OC0_s  
1
1
0
0
_s  
s_s  
_s  
o_s  
unlimited_s  
OC_mode  
_s  
OCR_s  
WDIN  
A
A
Xenon_s  
BC1_s  
BC0_s  
OC1_s  
OCHI_s  
OLCO1_s OLCO0_s  
VDD_FAIL  
_en  
CLOCK_se  
l
GCR  
WDIN  
WDIN  
0
0
1
1
0
1
1
1
0
0
PWM_en  
0
TEMP_en CSNS_en  
CSNS1  
1
CSNS0  
0
X
1
OV_dis  
1
CALR  
0
0
1
1
0
1
Registerstate  
after RST = 0  
or V  
DD(FAIL)  
or  
0
0
0
X
X
X
0
0
0
0
0
0
0
0
0
0
V
SUPPLY(POR)  
condition  
x = Don’t care.  
s = Output selection with the bits A A as defined in Table 12.  
1
0
Notes  
42. The PWMR_s D8 bit must always be a logic low and never placed in a logic high.  
6.4.2 Device register addressing  
The following section describes the possible register addresses (D[14:10]) and their impact on device operation.  
6.4.2.1  
Address XX000—Status register (STATR_S)  
The STATR register is used to read the device status and the various configuration register contents without disrupting the device  
operation or the register contents. The five least significant register bits, F[4:0], are called SOA[4:0]. Bits SOA[4:3] are used to select the  
output channel of interest and bit SOA[2:0] are used to request status information for that channel. The status is returned as part of the  
first sixteen bits of the SO data. In addition to the device status, this feature provides the ability to read the content of the PWMR_s,  
CONFR0_s, CONFR1_s, OCR_s, GCR and CALR registers (Refer to the section 6.4.3 Serial output communication (device status return  
data), page 36.  
09XS3400  
NXP Semiconductors  
32  
FUNCTIONAL DEVICE OPERATION  
6.4.2.2  
Address A A 001—Output PWM control register (PWMR_S)  
1 0  
The PWMR_s register allows the MCU to control the state of corresponding output through the SPI. Each output “s” is independently  
selected for configuration based on the state of the D14:D13 bits (Tables 12).  
Table 12. Output selection  
A1 (D14)  
A0 (D13)  
HS selection  
0
0
1
1
0
1
0
1
HS0 (default)  
HS1  
HS2  
HS3  
Bit D7 sets the output’s ON/OFF state. A logic [1] enables the corresponding output switch and a logic [0] turns it OFF (if IN input is also  
pulled down). Bits D6:D0 set the output PWM duty-cycle to one of 128 levels provided PWM_en is set to logic [1], as shown Table 7.  
6.4.2.3  
Address A A 010—Output configuration register (CONFR0_S)  
1 0  
The CONFR0_s register allows the MCU to configure corresponding output switching through the SPI. Each output “s” is independently  
selected for configuration based on the state of the D14:D13 bits (Table 12).  
For the selected output, a logic [0] on bit D5 (DIR_DIS_s) will enable the output for direct control by its respective IN[3:0] pin. A logic [1]  
on bit D5 will disable the output from direct control (in this case, the output is only controlled by On bit).  
D4:D3 bits (SR1_s and SR0_s) are used to select the high or medium or low speed slew rate for the selected output, the default value  
[00] corresponds to the medium speed slew rate (Table 13).  
Table 13. Slew rate speed selection  
SR1_s (D4)  
SR0_s (D3)  
Slew rate speed  
0
0
1
1
0
1
0
1
medium (default)  
low  
high  
Not guaranteed  
Incoming message bits D[2:0] specify the desired PWM switching delay. This delay is relative to the PWM clock rising edge as illustrated  
in Table 8. The adjustable phase delay is available only when the PWM_en bit is set to logic [1].  
6.4.2.4  
Address A A 011Output configuration register (CONFR1_S)  
1 0  
The CONFR1_s register allows the MCU to configure corresponding output fault management through the SPI. Each output “s” is  
independently selected for configuration based on the state of the D14:D13 bits (Table 12).  
A logic [1] on bit D6 (RETRY_unlimited_s) disables the autoretry counter for the selected output, the default value [1] corresponds to  
enable autoretry feature without time limitation.  
A logic [1] on bit D5 (RETRY_dis_s) disables the autoretry for the selected output, the default value [0] enables this feature.  
A logic [1] on bit D4 (OS_dis_s) disables the output hard shorted to VPWR protection for the selected output, the default value [0] enables  
this feature.  
A logic [1] on bit D3 (OLON_dis_s) disables the ON output openload detection for the selected output, the default value [0] enables this  
feature (Table 14).  
A logic [1] on bit D2 (OLOFF_dis_s) disables the OFF output openload detection for the selected output, the default value [0] enables this  
feature.  
A logic [1] on bit D1 (OLLED_en_s) enables the ON output openload detection for LEDs for the selected output, the default value [0]  
enables the On output openload detection for bulbs (Table 14).  
09XS3400  
33  
NXP Semiconductors  
FUNCTIONAL DEVICE OPERATION  
Table 14. On openload selection  
OLON_dis_s (D3)  
OLLED_en_s (D1)  
ON openload detection  
0
0
1
0
1
enable with bulb threshold (default)  
enable with LED threshold  
disable  
X
A logic [1] on bit D0 (CSNS_ratio_s) selects the high ratio on the CSNS pin for the corresponding output. The default value [0] is the low  
ratio (Table 15).  
Table 15. Current sense ratio selection  
CSNS_high_s (D0)  
Current sense ratio  
0
1
CRS0 (default)  
CRS1  
6.4.2.5  
Address A A 100—Output overcurrent register (OCR)  
1 0  
The OCR_s register allows the MCU to configure corresponding output overcurrent protection through the SPI. Each output “s” is  
independently selected for configuration based on the state of the D14:D13 bits (Table 12). A logic [1] on bit D8 (Xenon_s) disables the  
Xenon overcurrent profile, as described Table 14.  
Xenon bit set to logic [0]:  
I
OCH1  
I
OCH2  
I
OC1  
I
OC2  
I
OCLO4  
I
OCLO3  
I
OCLO2  
I
OCLO1  
Time  
t
t
t
t
t
t
OC7  
OC1  
OC3 OC4 OC5  
OC2  
OC6  
t
Xenon bit set to logic [1]:  
I
I
OCH1  
OCH2  
I
OC1  
OC2  
OC3  
OC4  
I
I
I
I
I
OCL4  
OCL3  
I
I
OCL2  
OCL1  
Time  
t
t
t
t
t
t
OC7  
OC1  
t
OC3 OC4 OC5  
OC6  
OC2  
Figure 17. Overcurrent profile depending on xenon bit  
D[7:6] bits are used to select the bulb cooling curves and D[5:4] bits modify the decay speed of the overcurrent profile, as shown Table 16  
and Table 17.  
09XS3400  
NXP Semiconductors  
34  
FUNCTIONAL DEVICE OPERATION  
Table 16. Cooling curve selection  
BC1_s (D7)  
BC0_s (D6)  
Profile curves speed  
0
0
1
1
0
1
0
1
medium (default)  
slow  
fast  
medium  
Table 17. Inrush curve selection  
OC1_s (D5)  
OC0_s (D4)  
Profile curves speed  
0
0
1
1
0
1
0
1
slow (default)  
fast  
medium  
very slow  
A logic [1] on bit D3 (OCHI_s bit reduces the current threshold from IOCHI1 to IOCHI2 during tOC1, as shown Table 15.  
I
OCH1  
I
OCH2  
I
OC1  
I
OC2  
I
OC3  
I
OC4  
I
I
OCL4  
OCL3  
I
I
OCL2  
OCL1  
Time  
t
t
t
t
t
t
OC7  
OC1  
t
OC3 OC4 OC5  
OC6  
OC2  
Figure 18. Overcurrent profile with OCHI bit set to ‘1’  
The wire harness is protected by one of four possible current levels in steady state, as defined in Table 18.  
Table 18. Output steady state selection  
OCLO1 (D2)  
OCLO0 (D1)  
Steady state current  
0
0
1
1
0
1
0
1
OCLO2 (default)  
OCLO3  
OCLO4  
OCLO1  
Bit D0 (OC_mode_sel) determines which of two overcurrent modes the output uses. In one mode the overcurrent profile is used every  
time the output turns on. In the other mode, Which can be used during PWM operation, the overcurrent profile is adjusted to account for  
bulb cooling effects, as described Table 19.  
Table 19. Overcurrent mode selection  
OC_mode_s (D0)  
Overcurrent mode  
0
1
only inrush current management (default)  
inrush current and bulb cooling management  
09XS3400  
35  
NXP Semiconductors  
FUNCTIONAL DEVICE OPERATION  
6.4.2.6  
Address 00101—Global configuration register (GCR)  
The GCR register allows the MCU to configure the device through the SPI. The D8 bit controls how the device responds to a VDD_FAIL  
condition, which is, VDD < VDD(FAIL). If the VDD_FAIL_en bit is logic [1], then the loss of VDD, the device enters immediately in Fail-safe  
mode. In the VDD_FAIL_en bit is logic [0], the Fail-safe mode transition is done after the SPI watchdog timeout.  
Bit D8 allows the MCU to enable or disable the VDD failure detector. A logic [1] on VDD_FAIL_en bit allows switch-off the outputs HS[0:3]  
in fail-safe mode. Bit D7 allows the MCU to enable or disable the PWM module. A logic [1] on PWM_en bit allows control of the outputs  
HS[0:3] with PWMR register (the direct input states are ignored). Bit D6 (CLOCK_sel) is used to select the clock used as reference by  
PWM module, as described in the following Table 20.  
Table 20. PWM module selection  
PWM_en (D7)  
CLOCK_sel (D6)  
PWM module  
0
X
PWM module disabled (default)  
PWM module enabled with external clock  
from IN0  
1
1
0
1
PWM module enabled with  
internal calibrated clock  
Bits D5:D4 allow the MCU to select one of two analog signals on CSNS output pin, as shown in Table 21.  
Table 21. CSNS reporting selection  
TEMP_en (D5) CSNS_en (D4)  
CSNS reporting  
0
X
1
0
1
0
CSNS tri-stated (default)  
current recopy of selected output (D3:2] bits)  
temperature on GND flag  
The Table 22 describes how bits D[3:2] specifies the output channel whose current is being mirrored at the CSNS pin.  
Table 22. Output current recopy selection  
CSNS1 (D3)  
CSNS0 (D2)  
CSNS reporting  
0
0
1
1
0
1
0
1
HS0 (default)  
HS1  
HS2  
HS3  
The GCR register disables the overvoltage protection (D0). When this bits is [0], the overvoltage is enabled (default value).  
6.4.2.7  
Address 00111—Calibration register (CALR)  
The CALR register allows the MCU to calibrate internal clock.  
6.4.3 Serial output communication (device status return data)  
When the CSB pin is pulled low, the output register is loaded. Meanwhile, the data is clocked out MSB- (OD15-) first as the new message  
data is clocked into the SI pin after a CSB transition. The first sixteen bits of data clocking out of the SO are dependent upon the previously  
written SPI word.  
Any bits clocked out of the Serial Output (SO) pin after the first 16 bits are representative of the initial message bits clocked into the SI pin  
since the CSB pin first transitioned to a logic [0]. This feature is useful for daisy-chaining devices as well as for message verification.  
A valid message length is determined following a CSB transition of [0] to [1]. If there is a valid message length, the data is latched into the  
appropriate registers. A valid message length is a multiple of 16 bits. At this time, the SO pin is tri-stated and the fault status register is  
now able to accept new fault status information.  
SO data includes information ranging from fault status to register contents, user selected by writing to the STATR bits OD4, OD3, OD2,  
OD1, and OD0. The value of the previous bits SOA4 and SOA3 determine which output the SO information applies to for the registers  
which are output specific; viz., Fault, PWMR, CONFR0, CONFR1, and OCR registers.  
09XS3400  
NXP Semiconductors  
36  
FUNCTIONAL DEVICE OPERATION  
Note that the SO data continues to reflect the information for each output (depending on the previous SOA4, SOA3 state) selected during  
the most recent STATR write until changed with an updated STATR write.  
The output status register correctly reflects the status of the STATR-selected register data at the time that CSB is pulled to a logic [0]  
during SPI communication, and/or for the period of time since the last valid SPI communication, with the following exception:  
• The previous SPI communication was determined to be invalid. In this case, the status is reported as though the invalid SPI  
communication never occurred.  
• The VPWR voltage is below 4.0 V. In this case the status must be ignored by the MCU.  
6.4.4 Serial output bit assignment  
The 16 bits of serial output data depend on the previous serial input message, as explained in the following paragraphs. Table 23,  
summarizes SO returned data for bits OD15:OD0.  
• Bit OD15 is the MSB; it reflects the state of the Watchdog bit from the previously clocked-in message.  
• Bits OD14:OD10 reflect the state of the bits SOA4:SOA0 from the previously clocked in message.  
• Bit OD9 is set to logic [1] in Normal mode (NM).  
• The contents of bits OD8:OD0 depend on bits D4:D0 from the most recent STATR command SOA4:SOA0 as explained in the  
paragraphs following Table 23.  
Table 23. Serial output bit map description  
Previous STATR  
SO returned data  
SOA SOA SOA SOA SOA OD  
OD  
14  
OD  
13  
OD  
12  
OD  
11  
OD  
10  
OD9 OD8 OD7 OD6 OD5 OD4 OD3 OD2 OD1 OD0  
4
3
2
1
0
15  
OLON OLOF  
STATR_s  
A
A
0
0
0
WDIN SOA4 SOA3 SOA2 SOA1 SOA0 NM  
POR  
UV  
OV  
OS_s OT_s SC_s OC_s  
1
0
_s  
F_s  
PWM PWM PWM PWM PWM PWM PWM  
PWMR_s  
A
A
A
A
0
0
0
1
1
0
WDIN SOA4 SOA3 SOA2 SOA1 SOA0 NM  
WDIN SOA4 SOA3 SOA2 SOA1 SOA0 NM  
0
ON_s  
X
1
1
0
0
6_s  
X
5_s  
4_s  
3_s  
2_s  
1_s  
0_s  
DIR_d SR1_ SR0_ DELA DELA DELA  
CONFR0_s  
X
is_s  
s
s
Y2_s Y1_s Y0_s  
Retry  
_
unlimit  
ed_s  
OLOF OLLE CSNS  
F_dis D_en _ratio  
Retry OS_di OLON  
_dis_s s_s _dis_s  
CONFR1_s  
A
A
A
A
0
1
1
WDIN SOA4 SOA3 SOA2 SOA1 SOA0 NM  
WDIN SOA4 SOA3 SOA2 SOA1 SOA0 NM  
X
X
1
1
0
0
_s  
_s  
_s  
Xenon BC1_  
_s  
BC0_ OC1_ OC0_ OCHI OCLO OCLO OC_m  
s
OCR_s  
GCR  
1
1
1
0
0
1
0
1
1
s
s
_s  
1_s  
0_s ode_s  
s
VDD_  
PWM CLOC TEMP CSNS CSNS CSNS  
_en K_sel _en  
OV_di  
s
0
0
WDIN SOA4 SOA3 SOA2 SOA1 SOA0 NM FAIL_  
en  
X
_en  
1
0
CAL_f  
OTW  
ail  
CLOC  
K_fail  
DIAGR0  
0
0
WDIN SOA4 SOA3 SOA2 SOA1 SOA0 NM  
X
X
X
X
X
X
WD_e  
DIAGR1  
DIAGR2  
0
1
1
0
1
1
1
1
1
1
WDIN SOA4 SOA3 SOA2 SOA1 SOA0 NM  
WDIN SOA4 SOA3 SOA2 SOA1 SOA0 NM  
X
X
X
X
X
X
X
X
IN3  
X
IN2  
X
IN1  
0
IN0  
n
0
0
0
Register  
state after  
RST = 0 or  
N/A N/A N/A N/A N/A  
0
0
0
0
0
0
0
X
0
0
0
0
0
0
0
V
or  
DD(FAIL)  
V
SUPPLY(POR)  
condition  
s = Output selection with the bits A A as defined in Table 12  
1
0
6.4.4.1  
Previous address SOA4:SOA0 = A A 000 (STATR_S)  
1 0  
The returned data OD8 reports logic [1] in case of previous power-on reset condition (VSUPPLY(POR)). This bit is only reset by a read  
operation.  
Bits OD7:OD0 reflect the current state of the Fault register (FLTR) corresponding to the output previously selected with the bits  
SOA4:SOA3 = A1A0 (Table 23).  
• OC_s: overcurrent fault detection for a selected output,  
• SC_s: severe short-circuit fault detection for a selected output,  
09XS3400  
37  
NXP Semiconductors  
FUNCTIONAL DEVICE OPERATION  
• OS_s: output shorted to VPWR fault detection for a selected output,  
• OLOFF_s: openload in OFF state fault detection for a selected output,  
• OLON_s: openload in ON state fault detection (depending on current level threshold: bulb or LED) for a selected output,  
• OV: overvoltage fault detection,  
• UV: undervoltage fault detection  
• POR: power-on reset detection.  
The FSB pin reports all faults. For latched faults, this pin is reset by a new Switch OFF command (toggling fault_control signal).  
6.4.4.2  
Previous address SOA4:SOA0 = A A 001 (PWMR_S)  
1 0  
The returned data contains the programmed values in the PWMR register for the output selected with A1A0.  
6.4.4.3  
Previous address SOA4:SOA0 = A A 010 (CONFR0_S)  
1 0  
The returned data contains the programmed values in the CONFR0 register for the output selected with A1A0.  
6.4.4.4  
Previous address SOA4:SOA0 = A A 011 (CONFR1_S)  
1 0  
The returned data contains the programmed values in the CONFR1 register for the output selected with A1A0.  
6.4.4.5  
Previous address SOA4:SOA0 = A A 100 (OCR_S)  
1 0  
The returned data contains the programmed values in the OCR register for the output selected with A1A0.  
6.4.4.6  
Previous address SOA4:SOA0 = 00101 (GCR)  
The returned data contains the programmed values in the GCR register.  
6.4.4.7  
Previous address SOA4:SOA0 = 00111 (DIAGR0)  
The returned data OD2 reports logic [1] in case of PWM clock on IN0 pin is out of specified frequency range.  
The returned data OD1 reports logic [1] in case of clock calibration failure.  
The returned data OD0 reports logic [1] in case of overtemperature prewarning (temperature of GND flag is above TOTWAR).  
6.4.4.8  
Previous address SOA4:SOA0 = 01111 (DIAGR1)  
The returned data OD[4:1] report in real time the state of the direct input IN[3:0]. The OD0 indicates if the watchdog is enabled (set to logic  
[1]) or not (set to logic [0]). OD4:OD1 report the output state in case of fail-safe state due to watchdog time-out as explained in the following  
Table 24.  
Table 24. Watchdog activation report  
WD_en (OD0)  
SPI watchdog  
0
1
disabled  
enabled  
6.4.4.9  
Previous address SOA4:SOA0 = 10111 (DIAGR2)  
The returned data is the product ID. Bits OD2:OD0 are set to 000 for protected quad 9.0 mΩ high-side switches.  
09XS3400  
NXP Semiconductors  
38  
FUNCTIONAL DEVICE OPERATION  
6.4.5 Default device configuration  
The default device configuration is explained by the following:  
• HS output is commanded by corresponding IN input or On bit through the SPI. The medium slew-rate is used,  
• HS output is fully protected by the Xenon overcurrent profile by default, the severe short-circuit protection, the undervoltage, and the  
overtemperature protection. The autoretry feature is enabled,  
• Openload in ON and OFF state and HS shorted to VPWR detections are available,  
• No current recopy and no analog temperature feedback active,  
• Overvoltage protection is enabled,  
• SO reporting fault status from HS0,  
• VDD failure detection is disabled.  
09XS3400  
39  
NXP Semiconductors  
TYPICAL APPLICATIONS  
7
Typical applications  
7.1  
Introduction  
Figure 19 shows a typical automotive lighting application using an external PWM clock from the main MCU. In this instance, an auxiliary  
circuit (watchdog) provides IN[3:0] control inputs if the system detects a serious fault such as a watchdog timeout. A 22 nF decoupling  
capacitor, placed at the module connector, is recommended for each output. 100 nF decoupling capacitors, placed at the device power  
supply pins are also recommended to pass conducted emission and susceptibility tests.  
VPWR  
VDD  
Voltage regulator  
10 µF  
100 nF  
10 µF  
100 nF  
VPWR  
VDD  
VDD  
VPWR  
ignition  
switch  
VDD  
VPWR  
VDD  
100 nF  
100 nF  
10 k  
10 k  
100 nF  
VDD  
WAKE  
HS0  
HS1  
HS2  
22 nF  
22 nF  
I/O  
I/O  
FSB  
IN0  
IN1  
IN2  
IN3  
10 k  
LOAD 0  
MCU  
09XS3400  
10 k  
10 k  
10 k  
10 k  
LOAD 1  
LOAD 2  
LOAD 3  
SCLK  
CSB  
I/O  
SO  
SI  
SCLK  
CSB  
RSTB  
SI  
22 nF  
22 nF  
SO  
HS3  
A/D  
CSNS  
FSI  
10 k  
GND  
22 nF  
2.5 k  
VPWR  
Watchdog  
direct light commands (pedal, comodo,...)  
Figure 19. 09XS3400 typical application schematic  
09XS3400  
NXP Semiconductors  
40  
PACKAGING  
8
Packaging  
8.1  
Soldering information  
The 09XS3400 is packaged in a surface mount power package intended to be soldered directly to the printed circuit board. The 09XS3400  
was qualified in accordance with JEDEC standards J-STD-020D for moisture sensitivity level (MSL) 3, Pb-free assembly.  
The Peak Package Body Temperature (TP) must not exceed the classification temperature TC = 260 °C during the soldering process. The  
time (tP) within the specified classification temperature TC - 5.0 °C must not exceed 40 seconds maximum. The application note AN2467  
provides guidelines for printed circuit board design and assembly.  
8.2  
Marking information  
The device is identified by the part number: 09XS3400.  
Device markings indicate build information containing the week and year of manufacture. The date is coded with the last four characters  
of the nine character build information code (e.g. “CTKAH0929”). The date is coded as four numerical digits where the first two digits  
indicate the year and the last two digits indicate the week. For instance, the date code “0929” indicates the 29th week of the year 2009.  
8.3  
Package dimensions  
Package dimensions are provided in package drawings. To find the most current package outline drawing, go to www.nxp.com and  
perform a keyword search for the drawing’s document number.  
Table 25. Package outline  
Package  
Suffix  
Package outline drawing number  
24-pin QFN  
FK  
98ARL10596D  
09XS3400  
41  
NXP Semiconductors  
PACKAGING  
09XS3400  
NXP Semiconductors  
42  
PACKAGING  
09XS3400  
43  
NXP Semiconductors  
PACKAGING  
09XS3400  
NXP Semiconductors  
44  
PACKAGING  
09XS3400  
45  
NXP Semiconductors  
PACKAGING  
09XS3400  
NXP Semiconductors  
46  
PACKAGING  
09XS3400  
47  
NXP Semiconductors  
PACKAGING  
09XS3400  
NXP Semiconductors  
48  
PACKAGING  
09XS3400  
49  
NXP Semiconductors  
REVISION HISTORY  
9
Revision history  
Revision  
Date  
Description of changes  
1.0  
2.0  
2/2012  
Initial release  
No technical changes. Revised back page. Updated document properties. Added SMARTMOS  
sentence to last paragraph on page one.  
4/2014  
8/2014  
Modified tDLY and slew rates per Product Bulletin 16375  
Fixed typo in Table 5  
Updated to current data sheet template style  
3.0  
4.0  
Deleted the 28W mode references as per PB 17070  
Table 4 - relabeled parameter descriptions, conditions, and symbols  
Table 5 - relabeled parameter descriptions, conditions, and symbols  
Table 11 - changed the PWMR_s D8 bit  
Table 23 - changed the PWMR_s D8 bit  
Added note (42) for Table 11  
1/2016  
Updated document form and style  
1/2016  
1/2016  
7/2016  
Corrected PB number  
Detailed a description for the 28W mode change  
Updated NXP document form and style.  
Updated as per CIN 201808007I  
• Corrected tOLLED values in Table 5, Dynamic electrical characteristics  
8/2018  
5.0  
• Updated Openload detection in ON state for LED (added clarification for the usage of openload  
LED function and changed D[6:0]=7F to D[7:0]=FF)  
• Deleted 28 W references  
09XS3400  
NXP Semiconductors  
50  
Information in this document is provided solely to enable system and software implementers to use NXP products.  
There are no expressed or implied copyright licenses granted hereunder to design or fabricate any integrated circuits  
based on the information in this document. NXP reserves the right to make changes without further notice to any  
products herein.  
How to Reach Us:  
Home Page:  
NXP.com  
Web Support:  
http://www.nxp.com/support  
NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular  
purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and  
specifically disclaims any and all liability, including without limitation, consequential or incidental damages. "Typical"  
parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications,  
and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each  
customer application by the customer's technical experts. NXP does not convey any license under its patent rights nor  
the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the  
following address:  
http://www.nxp.com/terms-of-use.html.  
NXP, the NXP logo, Freescale, the Freescale logo and SMARTMOS are trademarks of NXP B.V. All other product or  
service names are the property of their respective owners. All rights reserved.  
© 2018 NXP B.V.  
Document Number: MC09XS3400  
Rev. 5.0  
8/2018  

相关型号:

MC1,5/10-G-3,81P26THR

Barrier Strip Terminal Block, 8A, 1 Row(s), 1 Deck(s), ROHS COMPLIANT
PHOENIX

MC1,5/10-GF-3,5P26THR

Barrier Strip Terminal Block
PHOENIX

MC1,5/10-GFL-3,5THTPANZ71737

Barrier Strip Terminal Block
PHOENIX

MC1,5/10-GFR-3,5THTPANZ71736

Barrier Strip Terminal Block
PHOENIX

MC1,5/10-GFR-3,5THTPANZ71739

Barrier Strip Terminal Block
PHOENIX

MC1,5/10-ST-3,5BD:1-10

Barrier Strip Terminal Block
PHOENIX

MC1,5/10-ST-3,5BD:21-30

Barrier Strip Terminal Block,
PHOENIX

MC1,5/10-ST-3,5BKBD:1-10

Barrier Strip Terminal Block, 8A, 1.5mm2
PHOENIX

MC1,5/10-ST-3,81

Barrier Strip Terminal Block, 8A, 1.5mm2, 1 Row(s), 1 Deck(s), ROHS COMPLIANT
PHOENIX

MC1,5/10-ST-3,811CNBD24V-BRQ

Barrier Strip Terminal Block,
PHOENIX

MC1,5/10-ST-3,81BD:X16

Barrier Strip Terminal Block,
PHOENIX

MC1,5/10-ST-3,81CN2BD:X18

Barrier Strip Terminal Block,
PHOENIX