MC100ES8111ACR2 [NXP]

100E SERIES, LOW SKEW CLOCK DRIVER, 10 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, 0.80 MM PITCH, LEAD FREE, MS-026BBA, LQFP-32;
MC100ES8111ACR2
型号: MC100ES8111ACR2
厂家: NXP    NXP
描述:

100E SERIES, LOW SKEW CLOCK DRIVER, 10 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, 0.80 MM PITCH, LEAD FREE, MS-026BBA, LQFP-32

驱动 输出元件 逻辑集成电路
文件: 总12页 (文件大小:343K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: MC100ES8111  
Rev 3, 09/2005  
Freescale Semiconductor  
Technical Data  
Low Voltage 1:10 Differential HSTL  
Clock Fanout Buffer  
MC100ES8111  
The MC100ES8111 is a bipolar monolithic differential clock fanout buffer.  
Designed for most demanding clock distribution systems, the MC100ES8111  
supports various applications that require the distribution of precisely aligned  
differential clock signals. Using SiGe technology and a fully differential  
architecture, the device offers very low skew outputs and superior digital signal  
characteristics. Target applications for this clock driver are high performance  
clock distribution in computing, networking and telecommunication systems.  
LOW-VOLTAGE 1:10  
DIFFERENTIAL  
HSTL CLOCK  
FANOUT BUFFER  
Features  
1:10 differential clock fanout buffer  
80 ps maximum device skew  
SiGe technology  
Supports DC to 625 MHz operation of clock or data signals  
HSTL compatible differential clock outputs  
PECL and HSTL compatible differential clock inputs  
3.3 V power supply for device core, 1.5 V or 1.8 V HSTL output supply  
Supports industrial temperature range  
Standard 32 lead LQFP package  
FA SUFFIX  
32-LEAD LQFP PACKAGE  
CASE 873A-04  
32-lead Pb-free package available  
AC SUFFIX  
32-LEAD LQFP PACKAGE  
Pb-FREE PACKAGE  
CASE 873A-04  
Functional Description  
The MC100ES8111 is designed for low skew clock distribution systems and  
supports clock frequencies up to 625 MHz. The device accepts two clock  
sources. The CLK0 input accepts HSTL compatible signals and CLK1 accepts  
PECL compatible signals. The selected input signal is distributed to 10 identical,  
differential HSTL compatible outputs.  
In order to meet the tight skew specification of the device, both outputs of a  
differential output pair should be terminated, even if only one output is used. In  
the case where not all 10 outputs are used, the output pairs on the same package  
side as the parts being used on that side should be terminated.  
The HSTL compatible output levels are generated with an open emitter  
architecture. This minimizes part-to-part and output-to-output skew. The  
open-emitter outputs require a 50 DC termination to GND (0 V). The output  
supply voltage can be either 1.5 V or 1.8 V, the core voltage supply is 3.3 V. The  
output enable control is synchronized internally preventing output runt pulse  
generation. Outputs are only disabled or enabled when the outputs are already  
in logic low state (true outputs logic low, inverted outputs logic high). The internal  
synchronizer eliminates the setup and hold time requirements for the external  
clock enable signal. The device is packaged in a 7x7 mm2 32-lead LQFP  
package.  
ORDERING INFORMATION  
Device  
Package  
LQFP-32  
MC100ES8111FA  
MC100ES8111FAR2  
MC100ES8111AC  
MC100ES8111ACR2  
LQFP-32  
LQFP-32 (Pb-Free)  
LQFP-32 (Pb-Free)  
© Freescale Semiconductor, Inc., 2005. All rights reserved.  
Q0  
Q0  
VCC  
Q1  
Q1  
Q2  
Q2  
24 23 22 21 20 19 18 17  
CLK0  
CLK0  
25  
26  
27  
28  
29  
30  
31  
32  
16  
15  
14  
13  
12  
11  
10  
9
V
CC0  
V
CCO  
Q2  
Q7  
Q7  
Q8  
Q3  
Q3  
Q4  
Q4  
0
1
Q2  
Q1  
MC100ES8111  
Q5  
Q5  
OE  
VCC  
Q1  
Q0  
Q0  
Q8  
Q9  
CLK1  
CLK1  
Q6  
Q6  
Q7  
Q7  
Q8  
Q8  
Q9  
V
V
CCO  
CCO  
CLK_SEL  
1
2
3
4
5
6
7
8
Q9  
Q9  
OE  
Figure 1. MC100ES8111 Logic Diagram  
Table 1. Pin Configuration(1)  
Figure 2. 23-Lead Package Pinout (Top View)  
Pin  
CLK0, CLK0  
CLK1, CLK1  
CLK_SEL  
OE  
I/O  
Input  
Type  
Function  
HSTL  
PECL  
Differential HSTL reference clock signal input  
Differential PECL reference clock signal input  
Reference clock input select  
Input  
Input  
Input  
LVCMOS  
LVCMOS  
Output enable/disable. OE is synchronous to tlhe input reference clock which  
eliminates possible output runt pulses when the OE state is changed.  
Q[0-9], Q[0-9]  
GND  
Output  
Supply  
Supply  
Supply  
HSTL  
Differential clock outputs  
Negative power supply  
VCC  
Positive power supply of the device core (3.3 V)  
VCCO  
Positive power supply of the HSTL outputs. All VCCO pins must be connected to the  
positive power supply (1.5 V or 1.8 V) for correct DC and AC operation.  
1. Input pull-up/pull-down resistors have a value of 75 k.  
Table 2. Function Table  
Control  
Default  
0
1
CLK_SEL  
0
CLK0, CLK0 (HSTL) is the active differential clock  
input  
CLK1, CLK1 (PECL) is the active differential clock  
input  
OE  
0
Q[0-9], Q[0-9] are active. Deassertion of OE can be Q[0-9] = L, Q[0-9] =H (outputs disabled). Assertion of  
asynchronous to the reference clock without  
generation of output runt pulses.  
OE can be asynchronous to the reference clock  
without generation of output runt pulses.  
MC100ES8111  
Advanced Clock Drivers Devices  
Freescale Semiconductor  
2
Table 3. Absolute Maximum Ratings(1)  
Symbol  
VCC  
Characteristics  
Min  
–0.3  
–0.3  
–0.3  
–0.3  
Max  
3.6  
Unit  
V
Condition  
Supply Voltage  
Supply Voltage  
DC Input Voltage  
VCCO  
VIN  
3.1  
V
VCC + 0.3  
VCC + 0.3  
±20  
V
VOUT  
IIN  
IOUT  
TS  
DC Output Voltage  
V
DC Input Current  
mA  
mA  
°C  
°C  
DC Output Current  
±50  
Storage Temperature  
Functional Temperature Range  
–65  
125  
TFunc  
TA = –40  
TJ = +110  
1. Absolute maximum continuous ratings are those maximum values beyond which damage to the device may occur. Exposure to these  
conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation at absolute-maximum-rated  
conditions is not implied.  
Table 4. General Specifications  
Symbol  
VTT  
Characteristics  
Output termination voltage  
Min  
Typ  
Max  
Unit  
V
Condition  
0
MM  
ESD Protection (Machine model)  
ESD Protection (Human body model)  
ESD Protection (Charged device model)  
Latch-up Immunity  
200  
2000  
2000  
200  
V
HBM  
CDM  
LU  
V
V
mA  
pF  
CIN  
Input Capacitance  
4.0  
Inputs  
θJA  
Thermal resistance junction to ambient  
JESD 51-3, single layer test board  
83.1  
73.3  
68.9  
63.8  
57.4  
86.0  
75.4  
70.9  
65.3  
59.6  
°C/W Natural convection  
°C/W 100 ft/min  
°C/W 200 ft/min  
°C/W 400 ft/min  
°C/W 800 ft/min  
JESD 51-6, 2S2P multilayer test board  
59.0  
54.4  
52.5  
50.4  
47.8  
60.6  
55.7  
53.8  
51.5  
48.8  
°C/W Natural convection  
°C/W 100 ft/min  
°C/W 200 ft/min  
°C/W 400 ft/min  
°C/W 800 ft/min  
θJC  
Thermal Resistance Junction to Case  
23.0  
26.3  
°C/W MIL-SPEC 883E  
Method 1012.1  
TJ  
Operating Junction Temperature(1)  
(continuous operation)  
MTBF = 9.1 years  
110  
°C  
1. Operating junction temperature impacts device life time. Maximum continuous operating junction temperature should be selected  
according to the application life time requirements (See application note AN1545 and the application section in this datasheet for more  
information). The device AC and DC parameters are specified up to 110°C junction temperature allowing the MC100ES8111 to be used  
in applications requiring industrial temperature range. It is recommended that users of the MC100ES8111 employ thermal modeling  
analysis to assist in applying the junction temperature specifications to their particular application.  
MC100ES8111  
Advanced Clock Drivers Devices  
Freescale Semiconductor  
3
Table 5. DC Characteristics (VCC = 3.3 V ± 5%, VCCO = 1.5 V ± 0.1 V or VCCO = 1.8 V ± 0.1 V), TJ = 0°C to +110°C  
Symbol  
Characteristics  
Min  
Typ  
Max  
Unit  
Condition  
Clock Input Pair CLK0, CLK0 (HSTL differential signals)  
VDIF  
VX, IN  
VIH  
Differential Input Voltage(1)  
Differential Cross Point Voltage(2)  
Input High Voltage  
0.2  
0.25  
V
V
V
V
0.68 - 0.9  
VCC-1.3  
VX+0.1  
VIL  
Input Low Voltage  
VX-0.1  
±150  
IIN  
Input Current  
µA VIN = VX ± 0.1 V  
Clock Input Pair CLK1, CLK1 (PECL differential signals)  
VPP  
VCMR  
VIH  
Differential Input Voltage(3)  
Differential Cross Point Voltage(4)  
Input Voltage High  
0.15  
1.0  
1.0  
V
V
V
V
Differential operation  
Differential operation  
VCC-0.6  
VCC-0.880  
VCC-1.475  
±150  
VCC-1.165  
VCC-1.810  
VIL  
Input Voltage Low  
IIN  
Input Current  
µA VIN = VIH or VIN  
LVCMOS Control Inputs OE, CLK_SEL  
VIL  
VIH  
IIN  
Input Voltage Low  
Input Voltage High  
Input Current  
0.8  
±150  
0.9  
V
2.0  
V
µA VIN = VIH or VIN  
HSTL Clock Outputs (Q[0-9], Q[0-9])  
VX, OUT Output Differential Crosspoint  
0.68  
1.0  
0.75  
V
V
V
VOH  
VOL  
Output High Voltage  
Output Low Voltage  
0.4  
Supply Current  
ICC Maximum Supply Current without output  
80  
105  
410  
mA VCC pin (core)  
termination current  
(5)  
ICCO  
Maximum Supply Current, outputs  
350  
mA VCCO pins (outputs)  
terminated 50 to VTT  
1. VDIF (DC) is the minimum differential HSTL input voltage swing required for device functionality.  
2. VX (DC) is the crosspoint of the differential HSTL input signal. Functional operation is obtained when the crosspoint is within the VX (DC)  
range and the input swing lies within the VPP (DC) specification.  
3. VPP (DC) is the minimum differential input voltage swing required to maintain device functionality.  
4. VCMR (DC) is the crosspoint of the differential input signal. Functional operation is obtained when the crosspoint is within the VCMR (DC)  
range and the input swing lies within the VPP (DC) specification.  
5. ICC includes current through the output resistors (all outputs terminated to VTT). See also “Power Consumption and Junction Temperature”  
on page 6.  
MC100ES8111  
Advanced Clock Drivers Devices  
4
Freescale Semiconductor  
Table 6. AC Characteristics (VCC = 3.3 V ± 5%, VCCO = 1.5 V ± 0.1 V or VCCO = 1.8 V ± 0.1 V), TJ = 0°C to +110°C(1)  
Symbol Characteristics  
Min  
Typ  
Max  
Unit  
Condition  
REF_SEL= 0, Active Clock Input Pair CLK0, CLK0 (HSTL differential signals)  
VDIF  
VX, IN  
fCLK  
tPD  
Differential Input Voltage(2) (Peak-to-Peak)  
Differential Cross Point Voltage(3)  
Input Frequency  
0.4  
0.68  
0
V
V
0.9  
625  
MHz  
Propagation Delay CLK0 to Qn  
VCCO = 1.8 V  
CCO = 1.5 V  
700  
700  
990  
1030  
1270  
1420  
ps  
ps  
Differential  
Differential  
V
tSK(PP) Output-to-Output Skew (Part-to-Part)  
tSK(P)  
Output Pulse Skew(4)  
VCCO = 1.8 V  
CCO = 1.5 V  
570  
720  
ps  
ps  
V
VCCO = 1.8 V  
CCO = 1.5 V  
100  
150  
ps  
ps  
V
REF_SEL = 1, Active Clock Input Pair CLK1, CLK1 (PECL differential signals)  
VPP  
VCMR  
fCLK  
tPD  
Differential Input Voltage(5) (Peak-to-Peak)  
Differential Input Crosspoint Voltage(6)  
Input Frequency  
0.2  
1.0  
0
1.0  
VCC-0.6  
625  
V
V
MHz  
Differential  
Differential  
Propagation Delay CLK1 to Qn  
VCCO = 1.8 V  
CCO = 1.5 V  
590  
590  
860  
910  
1220  
1360  
ps  
ps  
V
tSK(PP) Output-to-Output Skew (Part-to-Part)  
tSK(P)  
Output Pulse Skew(7)  
VCCO = 1.8 V  
CCO = 1.5 V  
630  
770  
ps  
ps  
Differential  
V
VCCO = 1.8 V  
CCO = 1.5 V  
150  
200  
ps  
ps  
V
HSTL Clock Outputs (Qn, Qn)  
VX, OUT Output Differential Crosspoint  
0.68  
0.91  
1.1  
V
VOH  
Output High Voltage  
VCCO = 1.8 V  
CCO = 1.5 V  
VCCO-0.8 V  
1.5  
1.5  
V
V
V
V
CCO-0.5 V  
VOL  
Output Low Voltage  
0.2  
0.8  
V
VO(P-P) Differential Output Voltage (Peak-to-Peak) VCCO = 1.8 V  
CCO = 1.5 V  
0.45  
0.40  
1.0  
1.0  
V
V
V
tSK(O)  
Output-to-Output Skew  
VCCO = 1.8 V  
CCO = 1.5 V  
37  
60  
80  
105  
ps  
ps  
Differential  
V
tJIT(CC) Output Cycle-to-Cycle Jitter RMS (1 σ)  
1.0  
ps  
ps  
ns  
ns  
tr, tf  
Output Rise/Fall Time  
Output Disable Time  
Output Enable Time  
150  
800  
20% to 80%  
T=CLKn period  
T=CLKn period  
(8)  
tPDL  
2.5·T + tPD  
3.0·T + tPD  
3.5·T + tPD  
4.0·T + tPD  
(9)  
tPLE  
1. AC characteristics apply for parallel output termination of 50 to VTT (GND).  
2. VDIF (DC) is the minimum differential HSTL input voltage swing required for device functionality.  
3. VX (DC) is the crosspoint of the differential HSTL input signal. Functional operation is obtained when the crosspoint is within the VX (DC)  
range and the input swing lies within the VDIF (DC) specification.  
4. Output duty cycle is DC = (0.5 ± 150 ps · fOUT) · 100%. E.g. the DC range at fOUT = 100 MHz is 48.5% < DC < 51.5%.  
5. VPP (AC) is the minimum differential PECL input voltage swing required to maintain AC characteristics including tpd and device-to-device  
skew.  
6. VCMR (AC) is the crosspoint of the differential HSTL input signal. Normal AC operation is obtained when the crosspoint is within the VCMR  
(AC) range and the input swing lies within the VPP (AC) specification. Violation of VCMR (AC) or VPP (AC) impacts the device propagation  
delay, device and part-to-part skew.  
7. Output pulse skew is the absolute difference of the propagation delay times: | tPLH - tPHL |. The output duty cycle is DC = (0.5 ± 200 ps ·  
f
OUT) · 100%. E.g. the DC range at fOUT = 100 MHz and VCCO = 1.5 V is 48.0% < DC < 52.0%.  
8. Propagation delay OE deassertion to differential output disabled (differential low: true output low, complementary output high).  
9. Propagation delay OE assertion to output enabled (active).  
MC100ES8111  
Advanced Clock Drivers Devices  
Freescale Semiconductor  
5
APPLICATIONS INFORMATION  
GND, with the termination resistor located as close as  
Test Reference and Output Termination  
possible to the end of the clock transmission line. All DC and  
AC specifications apply to this termination method (see the  
reference circuit shown in Figure 3 “MC100ES8111 AC Test  
Reference”). The MC100ES8111 does not support an output  
termination to VTT = VX = 0.75 V (center voltage termination).  
The MC100ES8111 is designed for high-frequency and  
low-skew clock distribution. The high-speed differential  
outputs are capable of driving 50 transmission lines and  
always require a DC termination to VTT (GND). In order to  
maintain the tight skew and timing specifications, it is  
recommend to terminate the differential outputs by 50 to  
VCC = 3.3 V ± 5%  
VCCO = 1.8 V ± 0.1 V or 1.5 V ± 0. 1 V  
Z = 50 Ω  
Z = 50 Ω  
Oscilloscope  
Differential Pulse  
or Tester  
Generator  
Z = 50 Ω  
DUT  
MC100ES8111  
RT = 50 Ω  
RT = 50 Ω  
VTT = GND  
VTT = GND  
Figure 3. MC100ES8111 AC Test Reference  
Power Consumption and the Junction Temperature  
typical power consumption of 575 mW (all outputs terminated  
50 ohms to GND, VCCO = 1.8 V), the junction temperature of  
the MC100ES8111 is approximately TA + 31°C, and the  
minimum ambient temperature in this example case  
calculates to -31°C (the maximum ambient temperature  
is 79°C. See Table 8). Exceeding the minimum junction  
temperature specification of the MC100ES8111 does not  
have a significant impact on the device functionality.  
However, the continuous use the MC100ES8111 at high  
ambient temperatures requires thermal management to not  
exceed the specified maximum junction temperature.  
The power consumption PTOT of the MC100ES8111  
depends on the supply voltages and the DC output  
termination. The clock frequency has a negligible effect on  
PTOT. If all outputs are terminated by 50 to GND, the device  
power consumption is calculated by:  
PTOT = VCC · ICC + ICCO · (VCCO - VX)  
For instance, at a supply voltage of VCC = 3.3 V and a  
termination of 50 to GND, the typical device power  
consumption is 579 mW at VCCO = 1.8 V and 474 mW at  
VCCO = 1.5 V.  
Table 8. Ambient Temperature Ranges (Ptot = 575 mW)  
Table 7. Power Consumption  
(1)  
Rthja (2s2p board)  
Natural convection  
TA, max  
TA, min  
(1)  
(2)  
MC100ES8111  
PTOT, TYP  
PTOT, MAX  
59.0°C/W  
54.4°C/W  
52.5°C/W  
50.4°C/W  
47.8°C/W  
-34°C  
-31°C  
-30°C  
-29°C  
-27.5°C  
76°C  
79°C  
VCCO = 1.5 V  
VCCO = 1.8 V  
470 mW  
575 mW  
647 mW  
769 mW  
100 ft/min  
200 ft/min  
400 ft/min  
800 ft/min  
80°C  
81°C  
1. Typical case: VCC, VCCO at nominal values and using typical  
CC, ICCO data.  
I
82.5°C  
2. Worst case: VCC, VCC at max. values and using max. ICC, ICCO  
limits.  
1. The MC100ES8111 device function is guaranteed from  
TA = -40°C to TJ = 110°C.  
To make the optimum use of high clock frequency and low  
skew capabilities of the MC100ES8111, the device is  
specified, characterized and tested for the junction  
temperature range of TJ = 0°C to +110°C. Because the exact  
thermal performance depends on the PCB type, design,  
thermal management and natural or forced air convection,  
the junction temperature provides an exact way to correlate  
the application specific conditions to the published  
performance data of this datasheet. The correlation of the  
junction temperature range to the application ambient  
temperature range and vice versa can be done by  
calculation:  
Maintaining Lowest Device Skew  
The MC100ES8111 guarantees low output-to-output skew  
of max. 80 ps and a part-to-part skew of max. 630 ps  
(VCCO = 1.8 V). To ensure low skew clock signals in the  
application, both outputs of any differential output pair need  
to be terminated identically, even if only one output is used.  
When fewer than all ten output pairs are used, identical  
termination of all output pairs within the output bank (same  
package side) is recommended. If an entire output bank is not  
used, it is recommended to leave all of these outputs open  
and unterminated. This will reduce the device power  
consumption while maintaining minimum output skew.  
TJ = TA + Rthja · Ptot  
Assuming a thermal resistance (junction to ambient) of  
54.4°C/W (2s2p board, 100 ft/min airflow, see Table 8) and a  
MC100ES8111  
Advanced Clock Drivers Devices  
Freescale Semiconductor  
6
Power Supply Bypassing  
Output Enable/Disable Control  
The MC100ES8111 is a mixed analog/digital product. The  
differential architecture of the MC100ES8111 supports low  
noise signal operation at high frequencies. In order to  
maintain its superior signal quality, all VCC pins should be  
bypassed by high-frequency ceramic capacitors connected  
to GND. If the spectral frequencies of the internally  
generated switching noise on the supply pins cross the series  
resonant point of an individual bypass capacitor, its overall  
impedance begins to look inductive and thus increases with  
increasing frequency. The parallel capacitor combination  
shown ensures that a low impedance path to ground exists  
for frequencies well above the noise bandwidth.  
The MC100ES8111 enables and disables outputs  
synchronously to the input clock signal. The user may enable  
and disable the outputs by using the OE control regardless of  
any hold and setup time constraints. Output runt pulses are  
prevented in any case. Outputs are disabled in logic low state  
(Qn=Low, Qn=High) without a change of the output  
impedance.  
VCC  
3.3 V ± 5%  
MC100ES8111  
33...100 nF  
0.1 nF  
0.1 nF  
1.8 V ± 0.1 V or  
1.5 V ± 0. 1V  
VCCO  
4
33...100 nF  
Figure 4. VCC, VCCO Power Supply Bypass  
CLKn  
CLKn  
50%  
OE  
tPDL (OE to Qn)  
tPLE (OE to Qn)  
Qn  
Qn  
Outputs Disabled  
Figure 5. MC100ES8111 Output Disable/Enable Timing  
MC100ES8111  
Advanced Clock Drivers Devices  
Freescale Semiconductor  
7
AC MEASUREMENT REFERENCES  
Q0  
CLK0  
CLK0  
Qn  
VDIF = 1.0 V  
VX,IN = 0.75 V  
Q0  
QN  
VOH  
VO(P-P)  
VX;OUT  
VOL  
QN  
Qn  
tSK(O)  
tPD (CLK0 to Qn)  
Figure 8. Output-to-Output Skew  
REF_SEL = 0  
The output-to-output skew is defined as the worst case  
difference in propagation delay between any two similar  
delay paths within a single device.  
Figure 6. MC100ES8111 AC Reference  
Measurement Waveform (HSTL Input)  
CLK1  
CLK1  
Qn  
VPP = 0.8 V  
VCMR = VCC-1.3 V  
80%  
VO(PP)  
VOH  
20%  
VO(P-P)  
VX;OUT  
tR  
tF  
VOL  
Qn  
tPD (CLK1 to Qn)  
REF_SEL = 1  
Figure 9. HSTL Output Rise/Fall Time  
Figure 7. MC100ES8111 AC Reference  
Measurement Waveform (PECL Input)  
MC100ES8111  
Advanced Clock Drivers Devices  
Freescale Semiconductor  
8
PACKAGE DIMENSIONS  
PAGE 1 OF 3  
CASE 873A-04  
ISSUE C  
32-LEAD LQFP PACKAGE  
MC100ES8111  
Advanced Clock Drivers Devices  
Freescale Semiconductor  
9
PACKAGE DIMENSIONS  
PAGE 2 OF 3  
CASE 873A-04  
ISSUE C  
32-LEAD LQFP PACKAGE  
MC100ES8111  
Advanced Clock Drivers Devices  
Freescale Semiconductor  
10  
PACKAGE DIMENSIONS  
PAGE 3 OF 3  
CASE 873A-04  
ISSUE C  
32-LEAD LQFP PACKAGE  
MC100ES8111  
11  
Advanced Clock Drivers Devices  
Freescale Semiconductor  
How to Reach Us:  
Home Page:  
www.freescale.com  
E-mail:  
support@freescale.com  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor  
Technical Information Center, CH370  
1300 N. Alma School Road  
Chandler, Arizona 85224  
+1-800-521-6274 or +1-480-768-2130  
support@freescale.com  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
support@freescale.com  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
+800 2666 8080  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Semiconductor was negligent regarding the design or manufacture of the part.  
Denver, Colorado 80217  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
1-800-441-2447 or 303-675-2140  
Fax: 303-675-2150  
© Freescale Semiconductor, Inc. 2005. All rights reserved.  
LDCForFreescaleSemiconductor@hibbertgroup.com  
MC100ES8111  
Rev. 3  
09/2005  

相关型号:

MC100ES8111FA

Low Skew Clock Driver, 100E Series, 10 True Output(s), 0 Inverted Output(s), ECL, PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, 0.80 MM PITCH, MS-026BBA, LQFP-32
IDT

MC100ES8111FA

Low Skew Clock Driver, 100E Series, 10 True Output(s), 0 Inverted Output(s), ECL, PQFP32, 7 X 7 MM, PLASTIC, LQFP-32
MOTOROLA

MC100ES8111FAR2

Low Skew Clock Driver, 100E Series, 10 True Output(s), 0 Inverted Output(s), ECL, PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, 0.80 MM PITCH, MS-026BBA, LQFP-32
IDT

MC100H600

9-Bit TTL/ECL Translator
ONSEMI

MC100H600FN

9-Bit TTL/ECL Translator
ONSEMI

MC100H600FN

9 TTL TO ECL TRANSLATOR, TRUE OUTPUT, PQCC28, PLASTIC, LCC-28
MOTOROLA

MC100H600FNG

9−Bit TTL to ECL Translator
ONSEMI

MC100H600FNR2

9−Bit TTL to ECL Translator
ONSEMI

MC100H600FNR2G

9−Bit TTL to ECL Translator
ONSEMI

MC100H601

9-Bit ECL/TTL Translator
ONSEMI

MC100H601FN

9-Bit ECL/TTL Translator
MOTOROLA

MC100H601FN

9−Bit ECL to TTL Translator
ONSEMI