MC145503P [NXP]

A/MU-LAW, PCM CODEC, PDIP16, PLASTIC, DIP-16;
MC145503P
型号: MC145503P
厂家: NXP    NXP
描述:

A/MU-LAW, PCM CODEC, PDIP16, PLASTIC, DIP-16

PC 电信 光电二极管 电信集成电路
文件: 总28页 (文件大小:498K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Freescale Semiconductor, Inc.  
SEMICONDUCTOR TECHNICAL DATA  
Order this document  
by MC145500/D  
The MC145500, MC145501, MC145502, MC145503, and MC145505 are all  
per channel PCM Codec–Filter mono–circuits. These devices perform the voice  
digitization and reconstruction as well as the band limiting and smoothing  
required for PCM systems. The MC145500 and MC145503 are general  
purpose devices that are offered in a 16–pin package. They are designed to  
operate in both synchronous and asynchronous applications and contain an  
on–chip precision reference voltage. The MC145501 is offered in an 18–pin  
package and adds the capability of selecting from three peak overload voltages  
(2.5, 3.15, and 3.78 V). The MC145505 is a synchronous device offered in a  
16–pin DIP and wide body SOIC package intended for instrument use. The  
MC145502 is the full–featured device which presents all of the options of the  
chip. This device is packaged in a 22–pin DIP and a 28–pin chip carrier package  
and contains all the features of the MC145500 and MC145501 plus several  
more. Most of these features can be made available in a lower pin count  
package tailored to a specific user’s application. Contact the factory for further  
details.  
L SUFFIX  
CERAMIC PACKAGE  
CASE 620  
16  
MC145500/03/05  
1
P SUFFIX  
PLASTIC DIP  
CASE 648  
16  
These devices are pin–for–pin replacements for Motorola’s first generation of  
MC14400/01/02/03/05 PCM mono–circuits and are upwardly compatible with  
the MC14404/06/07 codecs and other industry standard codecs. They also  
maintain compatibility with Motorola’s family of MC33120 and MC3419 SLIC  
products.  
The MC145500 family of PCM Codec–Filter mono–circuits utilizes CMOS  
due to its reliable low–power performance and proven capability for complex  
analog/digital VLSI functions.  
1
MC145503/05  
L SUFFIX  
CERAMIC PACKAGE  
CASE 726  
18  
MC145501  
1
MC145500 (This Device is Not Recommended for New Designs)  
L SUFFIX  
CERAMIC PACKAGE  
CASE 736  
16–Pin Package  
22  
Transmit Bandpass and Receive Low–Pass Filter On–Chip  
Pin Selectable Mu–Law/A–Law Companding with Corresponding Data  
Format  
1
MC145502  
On–Chip Precision Reference Voltage (3.15 V)  
Power Dissipation of 50 mW, Power–Down of 0.1 mW at ± 5 V  
Automatic Prescaler Accepts 128 kHz, 1.536, 1.544, 2.048, and 2.56 MHz  
for Internal Sequencing  
P SUFFIX  
PLASTIC DIP  
CASE 708  
22  
1
MC145501 — All of the Above Plus:  
(This Device is Not Recommended for New Designs)  
MC145502  
18–Pin Package  
DW SUFFIX  
SOG PACKAGE  
CASE 751G  
Selectable Peak Overload Voltages (2.5, 3.15, 3.78 V)  
Access to the Inverting Input of the TxI Input Operational Amplifier  
16  
1
MC145502 — All of the Above Plus:  
MC145503/05  
22–Pin and 28–Pin Packages  
FN SUFFIX  
PLCC PACKAGE  
CASE 776  
Variable Data Clock Rates (64 kHz to 4.1 MHz)  
Complete Access to the Three Terminal Transmit Input Operational  
Amplifiers  
28  
MC145502  
1
An External Precision Reference May Be Used  
MC145503 — All of the Above Features of the MC145500 Plus:  
16–Pin Package  
Complete Access to the Three Terminal Transmit Input Operational Amplifiers  
MC145505 — Same as MC145503 Except:  
16–Pin Package  
Common 64 kHz to 4.1 MHz Transmit/Receive Data Clock  
REV 1  
9/95 (Replaces ADI1287)  
Motorola, Inc. 1995  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
MC145500/01/02/03/05 PCM CODEC–FILTER MONO–CIRCUIT BLOCK DIAGRAM  
RDD  
RCE  
RDC  
RECEIVE SHIFT  
REGISTER  
1
RxO  
RxG  
RxO  
D/A  
FREQUENCY  
Rx  
Rx  
V
SHARED  
DAC  
DD  
+
400 µA  
÷
1, 12, 16, 20  
CCI PRESCALER  
CCI  
MSI  
V
DD  
V
V
SS  
2.5 V  
REF  
+
AG  
SEQUENCE  
AND  
V
LS  
CONTROL  
PDI  
V
SS  
V
RSI  
ref  
RSI  
TxI  
CIRCUITRY  
TDD  
+
– Tx  
TRANSMIT SHIFT  
REGISTER  
A/D  
TDE  
TDC  
+ Tx  
FREQUENCY  
FREQUENCY  
NOTES:  
Controlled by V  
LS  
Rx 100 k(internal resistors)  
MC145500MC145501MC145502MC145503MC145505  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
2
Freescale Semiconductor, Inc.  
PIN ASSIGNMENTS  
(DRAWINGS DO NOT REFLECT RELATIVE SIZE)  
MC145505L, P  
MC145500L  
MC145503L, P  
MC145501L  
V
1
2
3
16  
15  
14  
V
DD  
V
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
V
V
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
V
RSI  
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
V
DD  
AG  
AG  
DD  
AG  
DD  
RxO  
+ Tx  
RxO  
RxO  
TxI  
RxO  
+ Tx  
TxI  
RDD  
RCE  
DCLK  
CCI  
V
RDD  
RCE  
RDC  
TDC  
TDD  
TDE  
MSI  
RDD  
RCE  
RDC  
TDC  
TDD  
TDE  
MSI  
RDD  
RCE  
RDC  
TDC  
AG  
RxO  
TxI  
– Tx  
Mu/A  
PDI  
4
5
6
7
8
13  
12  
11  
10  
9
RxO  
TxI  
– Tx  
Mu/A  
PDI  
Mu/A  
PDI  
– Tx  
Mu/A  
PDI  
TDD  
TDE  
TDD  
TDE  
V
7
8
9
12  
11  
10  
SS  
V
V
V
V
V
SS  
LS  
SS  
LS  
LS  
V
V
LS  
SS  
MC145502L, P  
MC145503DW  
MC145505DW  
MC145502FN  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
V
V
V
V
V
1
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
RSI  
AG  
DD  
AG  
DD  
ref  
RxO  
+ Tx  
TxI  
RDD  
RCE  
RDC  
TDC  
TDD  
TDE  
RxO  
+ Tx  
TxI  
RDD  
RCE  
DCLK  
CCI  
V
2
V
DD  
AG  
4
3
2
1
28 27 26  
25  
RxG  
5
6
7
8
RCE  
RDC  
RxO  
RxG  
RxO  
+ Tx  
TxI  
3
RDD  
RCE  
RDC  
TDC  
CCI  
24  
RxO  
+ Tx  
NC  
4
23  
22  
21  
20  
TDC  
NC  
NC  
28–PIN PQLCC  
(TOP VIEW)  
5
– Tx  
Mu/A  
PDI  
– Tx  
Mu/A  
PDI  
NC  
9
6
TDD  
TDE  
CCI  
TxI  
– Tx  
10  
11  
19  
TDD  
7
12 13 14 15 16 17 18  
– Tx  
Mu/A  
PDI  
8
TDD  
TDE  
MSI  
V
V
V
V
LS  
LS  
SS  
SS  
9
10  
11  
NC = NO CONNECTION  
V
V
LS  
SS  
MOTOROLA  
MC145500MC145501MC145502MC145503MC145505  
For More Information On This Product,  
Go to: www.freescale.com  
3
Freescale Semiconductor, Inc.  
ABSOLUTE MAXIMUM RATINGS (Voltage Referenced to V  
)
SS  
This device contains circuitry to protect  
against damage due to high static voltages or  
electric fields; however, it is advised that  
normal precautions be taken to avoid applica-  
tion of any voltage higher than maximum rated  
voltages to this high impedance circuit. For  
Rating  
DC Supply Voltage  
Voltage, Any Pin to V  
Symbol  
Value  
Unit  
V
V , V  
DD SS  
– 0.5 to 13  
V
I
– 0.5 to V  
DD  
+ 0.5  
V
SS  
DC Drain Per Pin (Excluding V , V  
)
10  
mA  
°C  
°C  
DD SS  
proper operation it is recommended that V  
in  
in  
Operating Temperature Range  
Storage Temperature Range  
T
A
– 40 to + 85  
andV beconstrainedtotherangeV (V  
out  
out  
SS  
or V ) V  
.
T
stg  
– 85 to + 150  
DD  
Unused inputs must always be tied to an  
appropriatelogicvoltagelevel(e.g.,V ,V  
,
SS DD  
V , or V ).  
LS AG  
RECOMMENDED OPERATING CONDITIONS (T = – 40 to + 85°C)  
A
Characteristic  
Min  
Typ  
Max  
Unit  
DC Supply Voltage  
V
Dual Supplies: V  
Single Supply: V  
= – V , (V  
SS AG  
= V = 0 V)  
LS  
4.75  
8.5  
5.0  
6.3  
DD  
DD  
to V  
(V  
is an Output, V = V  
or V )  
SS  
SS AG LS DD  
MC145500, MC145501, MC145502, MC145503, MC145505 (Using Internal  
3.15 V Reference)  
12.6  
MC145501, MC145502 Using Internal 2.5 V Reference  
MC145501, MC145502 Using Internal 3.78 V Reference  
MC145502 Using External 1.5 V Reference, Referenced to V  
7.0  
9.5  
4.75  
12.6  
12.6  
12.6  
AG  
Power Dissipation  
mW  
CMOS Logic Mode (V  
TTL Logic Mode (V  
DD  
to V  
SS  
= 10 V, V = V  
LS DD  
)
40  
50  
70  
90  
DD  
= + 5 V, V  
SS  
= – 5 V, V = V = 0 V)  
LS AG  
Power Down Dissipation  
0.1  
8.0  
1.0  
8.5  
mW  
kHz  
kHz  
Frame Rate Transmit and Receive  
7.5  
Data Rate  
MC145500, MC145501, MC145503  
128  
1536  
1544  
2048  
2560  
Must Use One of These Frequencies, Relative to MSI Frequency of 8 kHz  
Data Rate for MC145502, MC145505  
64  
4096  
kHz  
Vp  
Full Scale Analog Input and Output Level  
MC145500, MC145503, MC145505  
3.15  
3.78  
3.15  
MC145501, MC145502 (V = V  
)
RSI = V  
DD  
ref SS  
RSI = V  
SS  
RSI = V  
2.5  
1.51 x V  
1.26 x V  
AG  
DD  
MC145502 Using an External Reference Voltage Applied at V Pin  
ref  
RSI = V  
RSI = V  
ref  
ref  
SS  
RSI = V  
V
ref  
AG  
DIGITAL LEVELS (V  
SS  
to V  
DD  
= 4.75 V to 12.6 V, T = – 40 to + 85°C)  
A
Characteristic  
Symbol  
Min  
Max  
Unit  
Input Voltage Levels (TDE, TDC, RCE, RDC, RDD, DC, MSI, CCI, PDI)  
V
CMOS Mode (V = V , V  
is Digital Ground)  
“0”  
“1”  
V
0.7 x V  
0.3 x V  
LS  
DD SS  
IL  
DD  
V
V
V
IH  
IL  
DD  
V
LS  
+ 0.8 V  
TTL Mode (V V – 4.0 V, V is Digital Ground)  
DD LS  
“0”  
“1”  
LS  
V
LS  
+ 2.0 V  
IH  
Output Current for TDD (Transmit Digital Data)  
mA  
CMOS Mode (V = V , V  
= 0 V and is Digital Ground)  
(V  
LS  
DD SS  
= 5 V, V  
= 10 V, V  
= 5 V, V  
= 10 V, V  
= 0.4 V)  
= 0.5 V)  
= 4.5 V)  
= 9.5 V)  
I
1.0  
3.0  
– 1.0  
– 3.0  
1.6  
DD  
out  
out  
out  
out  
OL  
(V  
DD  
(V  
DD  
I
OH  
(V  
DD  
I
TTL Mode (V V  
– 4.75 V, V = 0 V and is Digital Ground)  
LS  
(V  
= 0.4 V)  
= 2.4 V)  
OL  
LS  
DD  
OL  
I
– 0.2  
(V  
OH  
OH  
MC145500MC145501MC145502MC145503MC145505  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
4
Freescale Semiconductor, Inc.  
ANALOG TRANSMISSION PERFORMANCE  
(V  
DD  
= + 5 V ± 5%, V  
= – 5 V ± 5%, V = V  
= 0 V, V = RSI = V  
(Internal 3.15 V Reference), 0 dBm0 = 1.546 Vrms = + 6 dBm @  
SS  
LS AG  
ref SS  
600 , T = – 40 to + 85°C, TDC = RDC = CC = 2.048 MHz, TDE = RCE = MSI = 8 kHz, Unless Otherwise Noted)  
A
End–to–End  
A/D  
D/A  
Characteristic  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
dB  
dB  
dB  
dB  
dB  
Absolute Gain (0 dBm0 @ 1.02 kHz, T = 25°C, V  
= 5 V, V = – 5 V)  
SS  
– 0.30 + 0.30 – 0.30 + 0.30  
A
DD  
Absolute Gain Variation with Temperature 0 to + 70°C  
Absolute Gain Variation with Temperature – 40 to +85°C  
Absolute Gain Variation with Power Supply (V = 5 V, V  
± 0.03  
± 0.1  
± 0.03  
± 0.1  
= – 5 V, 5%)  
± 0.02  
± 0.02  
DD SS  
Gain vs Level Tone (Relative to – 10 dBm0, 1.02 kHz) + 3 to – 40 dBm0 – 0.4  
– 40 to – 50 dBm0 – 0.8  
+ 0.4  
+ 0.8  
+ 1.6  
– 0.2  
– 0.4  
– 0.8  
+ 0.2  
+ 0.4  
+ 0.8  
– 0.2  
– 0.4  
– 0.8  
+ 0.2  
+ 0.4  
+ 0.8  
– 50 to – 55 dBm0 – 1.6  
Gain vs Level Pseudo Noise (A–Law Relative to – 10 dBm0)  
dB  
CCITT G.714  
– 10 to – 40 dBm0  
– 40 to – 50 dBm0  
– 50 to – 55 dBm0  
– 0.25 + 0.25 – 0.25 + 0.25  
– 0.30 + 0.30 – 0.30 + 0.30  
– 0.45 + 0.45 – 0.45 + 0.45  
Total Distortion – 1.02 kHz Tone (C–Message)  
0 to – 30 dBm0  
– 40 dBm0  
35  
29  
24  
36  
29  
24  
36  
30  
25  
dBC  
dB  
– 45 dBm0  
Total Distortion With Pseudo Noise (A–Law)  
CCITT G.714  
– 3 dBm0  
– 6 to – 27 dBm0  
27.5  
35  
28  
28.5  
36  
34.2  
30.0  
15.0  
35.5  
33.5  
28.5  
13.5  
– 34 dBm0 33.1  
– 40 dBm0 28.2  
– 55 dBm0 13.2  
Idle Channel Noise (For End–End and A/D, See Note 1)  
Mu–Law, C–Message Weighted  
A–Law, Psophometric Weighted  
15  
– 69  
15  
– 69  
9
– 78  
dBrnC0  
dBm0p  
Frequency Response (Relative to 1.02 kHz @ 0 dBm0)  
15 to 60 Hz  
300 to 3000 Hz – 0.3  
3400 Hz – 1.6  
– 23  
+ 0.3  
0
– 28  
– 60  
– 23  
0.15  
dB  
– 0.15 + 0.15 – 0.15 + 0.15  
– 0.8  
0
– 14  
– 32  
– 0.8  
0
– 14  
– 30  
4000 Hz  
4600 Hz  
Inband Spurious (1.02 kHz @ 0 dBm0, Transmit and RxO)  
– 43  
– 43  
dBm0  
dB  
300 to 3000 Hz  
Out–of–Band Spurious at RxO (300 – 3400 Hz @ 0 dBm0 In)  
4600 to 7600 Hz  
– 30  
– 40  
– 30  
– 30  
– 40  
– 30  
7600 to 8400 Hz  
8400 to 100,000 Hz  
Idle Channel Noise Selective @ 8 kHz, Input = V , 30 Hz Bandwidth  
AG  
– 70  
– 70  
180  
dBm0  
µs  
Absolute Delay @ 1600 Hz (TDC = 2.048 MHz, TDE = 8 kHz)  
310  
Group Delay Referenced to 1600 Hz (TDC = 2048 kHz,  
µs  
TDE = 8 kHz)  
500 to 600 Hz  
200  
140  
70  
40  
75  
– 40  
– 40  
– 30  
– 20  
90  
600 to 800 Hz  
800 to 1000 Hz  
1000 to 1600 Hz  
1600 to 2600 Hz  
2600 to 2800 Hz  
2800 to 3000 Hz  
110  
170  
120  
160  
Crosstalk of 1020 Hz @ 0 dBm0 From A/D or D/A (Note 2)  
– 75  
– 41  
– 80  
– 41  
dB  
dB  
Intermodulation Distortion of Two Frequencies of Amplitudes – 4 to  
– 21 dBm0 from the Range 300 to 3400 Hz  
NOTES:  
1. Extrapolated from a 1020 Hz @ – 50 dBm0 distortion measurement to correct for encoder enhancement.  
2. Selectively measured while the A/D is stimulated with 2667 Hz @ – 50 dBm0.  
MOTOROLA  
MC145500MC145501MC145502MC145503MC145505  
For More Information On This Product,  
Go to: www.freescale.com  
5
Freescale Semiconductor, Inc.  
ANALOG ELECTRICAL CHARACTERISTICS (V  
= – V = 5 V to 6 V ± 5%, T = – 40 to + 85°C)  
SS A  
DD  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
µA  
Input Current  
AC Input Impedance to V  
+Tx, –Tx (Txl for MC145500)  
I
in  
± 0.01  
± 0.2  
(1 kHz)  
+Tx, –Tx  
Txl for MC145500  
Z
in  
5
0.1  
10  
0.2  
MΩ  
AG  
Input Capacitance  
+Tx, –Tx  
< ± 30  
10  
pF  
mV  
V
Input Offset Voltage of Txl Op Amp  
Input Common Mode Voltage Range  
Input Common Mode Rejection Ratio  
Txl Unity Gain Bandwidth  
+Tx, –Tx  
+Tx, –Tx  
V
V
+ 1.0  
V
– 2.0  
ICR  
CMRR  
BW  
SS  
DD  
0
70  
dB  
R
R
10 kΩ  
10 kΩ  
1000  
75  
kHz  
dB  
L
L
p
Txl Open Loop Gain  
A
VOL  
Equivalent Input Noise (C–Message) Between +Tx and –Tx, at Txl  
Output Load Capacitance for Txl Op Amp  
– 20  
dBrnC0  
pF  
100  
Output Voltage Range Txl Op Amp, RxO or RxO  
V
out  
V
R
R
= 10 kto V  
= 600 to V  
AG  
V
SS  
V
SS  
+ 0.8  
+ 1.5  
V
DD  
V
DD  
– 1.0  
– 1.5  
L
L
AG  
± 5.5  
mA  
Output Current Txl, RxO, RxO  
Output Impedance RxO, RxO*  
V
+ 1.5 V V  
out  
V – 1.5 V  
DD  
SS  
0 to 3.4 kHz  
Z
out  
0
3
Output Load Capacitance for RxO and RxO*  
Output dc Offset Voltage Referenced to V  
200  
pF  
mV  
Pin  
RxO  
RxO*  
± 100  
± 150  
AG  
Internal Gainsetting Resistors for RxG to RxO and RxO  
62  
0.5  
100  
225  
kΩ  
V
External Reference Voltage Applied to V (Referenced to V  
)
V
– 1.0  
ref AG  
DD  
V
ref  
Input Current  
20  
µA  
V
V
AG  
Output Bias Voltage  
0.53 V  
0.47 V  
SS  
+
DD  
V
Output Current  
Source  
Sink  
I
0.4  
10.0  
0.8  
mA  
µA  
AG  
VAG  
Output Leakage Current During Power Down for the Txl Op Amp, V  
RxO, and RxO  
,
± 30  
AG  
Positive Power Supply Rejection Ratio,  
0 – 100 kHz @ 250 mV, C–Message Weighting  
Transmit  
Receive  
45  
55  
50  
65  
dBC  
dBC  
Negative Power Supply Rejection Ratio,  
0 – 100 kHz @ 250 mV, C–Message Weighting  
Transmit  
Receive  
50  
50  
55  
60  
* Assumes that RxG is not connected for gain modifications to RxO.  
MC145500MC145501MC145502MC145503MC145505  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
6
Freescale Semiconductor, Inc.  
MODE CONTROL LOGIC (V  
SS  
to V = 4.75 V to 12.6 V, T = – 40 to + 85°C)  
DD A  
Characteristic  
Voltage for TTL Mode (TTL Logic Levels Referenced to V  
Min  
Typ  
Max  
V – 4.0  
DD  
Unit  
V
V
V
)
V
SS  
LS  
LS  
Voltage for CMOS Mode (CMOS Logic Levels of V  
to V  
)
V
V
– 0.5  
V
DD  
V
LS  
SS  
DD  
DD  
Mu/A Select Voltage  
Mu–Law Mode  
Sign Magnitude Mode  
A–Law Mode  
V
– 0.5  
– 0.5  
V
DD  
DD  
AG  
V
V
V
V
SS  
+ 0.5  
+ 0.5  
AG  
SS  
RSI Voltage for Reference Select Input (MC145501 and MC145502)  
3.78 V Mode  
2.5 V Mode  
3.15 V Mode  
V
– 0.5  
– 0.5  
V
V
V
DD  
DD  
V
AG  
V
+ 0.5  
+ 0.5  
AG  
V
SS  
V
SS  
V
ref  
Voltage for Internal or External Reference (MC145502 Only)  
Internal Reference Mode  
External Reference Mode  
V
V
V
+ 0.5  
– 1.0  
SS  
+ 0.5  
SS  
DD  
V
AG  
Analog Test Mode Frequency, MS = CCI (MC145500, MC145501, MC145502 Only)  
See Pin Description; Test Modes  
128  
kHz  
SWITCHING CHARACTERISTICS (V  
SS  
to V  
DD  
= 9.5 V to 12.6 V, T = – 40 to + 85°C, C = 150 pF, CMOS or TTL Mode)  
A
L
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Output Rise Time  
Output Fall Time  
TDD  
t
t
30  
30  
80  
80  
ns  
TLH  
THL  
Input Rise Time  
Input Fall Time  
TDE, TDC, RCE, RDC, DC, MSI, CCI  
t
t
4
4
µs  
TLH  
THL  
Pulse Width  
TDE Low, TDC, RCE, RDC, DC, MSI, CCI  
t
100  
64  
ns  
w
DCLK Pulse Frequency (MC145502/05 Only)  
CCI Clock Pulse Frequency (MSI = 8 kHz)  
CCI is internally tied to TDC on the MC145500/01/03, therefore, the  
transmit data clock must be one of these frequencies. This pin will accept  
one of these discrete clock frequencies and will compensate to produce  
internal sequencing.  
TDC, RDC, DC  
f
4096  
kHz  
kHz  
CL  
f
f
f
f
f
128  
CL1  
CL2  
CL3  
CL4  
CL5  
1536  
1544  
2048  
2560  
Propagation Delay Time  
ns  
TDE Rising to TDD Low Impedance  
TTL  
CMOS  
TTL  
CMOS  
TTL  
CMOS  
TTL  
CMOS  
t
t
t
t
90  
90  
90  
90  
90  
90  
180  
150  
55  
P1  
P2  
P3  
P4  
TDE Falling to TDD High Impedance  
40  
TDC Rising Edge to TDD Data, During TDE High  
TDE Rising Edge to TDD Data, During TDC High  
180  
150  
180  
150  
TDC Falling Edge to TDE Rising Edge Setup Time  
TDE Rising Edge to TDC Falling Edge Setup Time  
t
20  
100  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
pF  
µA  
pF  
µA  
su1  
su2  
su8  
su3  
su4  
su5  
su6  
su7  
t
t
t
t
t
t
t
TDE Falling Edge to TDC Rising Edge to Preserve the Next TDD Data  
RDC Falling Edge to RCE Rising Edge Setup Time  
RCE Rising Edge to RDC Falling Edge Setup Time  
RDD Valid to RDC Falling Edge Setup Time  
20  
100  
60  
CCI Falling Edge to MSI Rising Edge Setup Time  
MSI Rising Edge to CCI Falling Edge Setup Time  
RDD Hold Time from RDC Falling Edge  
20  
100  
100  
t
h
TDE, TDC, RCE, RDC, RDD, DC, MSI, CCI Input Capacitance  
TDE,TDC, RCE, RDC, RDD, DC, MSI, CCI Input Current  
TDD Capacitance During High Impedance (TDE Low)  
TDD Input Current During High Impedance (TDE Low)  
10  
± 0.01  
12  
± 10  
15  
± 0.1  
± 10.0  
MOTOROLA  
MC145500MC145501MC145502MC145503MC145505  
For More Information On This Product,  
Go to: www.freescale.com  
7
Freescale Semiconductor, Inc.  
MC145500  
DEVICE DESCRIPTIONS  
The MC145500 PCM Codec–Filter is intended for stan-  
dard byte interleaved synchronous and asynchronous appli-  
cations. The TDC pin on this device is the input to both the  
TDC and CCI functions in the pin description. Consequently,  
for MSI = 8 kHz, TDC can be one of five discrete frequencies.  
These are 128 kHz (40 to 60% duty cycle) 1.536, 1.544,  
2.048, or 2.56 MHz. (For other data clock frequencies, see  
MC145502 or MC145505.) The internal reference is set for  
3.15 V peak full scale, and the full scale input level at Txl and  
output level at RxO is 6.3 V peak–to–peak. This is the  
+ 3 dBm0 level of the PCM Codec–Filter. All other functions  
are described in the pin description.  
A codec–filter is a device which is used for digitizing and  
reconstructing the human voice. These devices were devel-  
oped primarily for the telephone network to facilitate voice  
switching and transmission. Once the voice is digitized, it  
may be switched by digital switching methods or transmitted  
long distance (T1, microwave, satellites, etc.) without degra-  
dation. The name codec is an acronym from “Coder” for the  
A/D used to digitize voice, and “Decoder” for the D/A used for  
reconstructing voice. A codec is a single device that does  
both the A/D and D/A conversions.  
To digitize intelligible voice requires a signal to distortion of  
about 30 dB for a dynamic range of about 40 dB. This may be  
accomplished with a linear 13–bit A/D and D/A, but will far  
exceed the required signal to distortion at amplitudes greater  
than 40 dB below the peak amplitude. This excess perform-  
ance is at the expense of data per sample. Two methods of  
data reduction are implemented by compressing the 13–bit  
linear scheme to companded 8–bit schemes. These com-  
panding schemes follow a segmented or “piecewise–linear”  
curve formatted as sign bit, three chord bits, and four step  
bits. For a given chord, all 16 of the steps have the same volt-  
age weighting. As the voltage of the analog input increases,  
the four step bits increment and carry to the three chord bits  
which increment. With the chord bits incremented, the step  
bits double their voltage weighting. This results in an effec-  
tive resolution of 6–bits (sign + chord + four step bits) across  
a 42 dB dynamic range (7 chords above zero, by 6 dB per  
chord). There are two companding schemes used; Mu–255  
Law specifically in North America, and A–Law specifically in  
Europe. These companding schemes are accepted world  
wide. The tables show the linear quantization levels to PCM  
words for the two companding schemes.  
In a sampling environment, Nyquist theory says that to  
properly sample a continuous signal, it must be sampled at a  
frequency higher than twice the signal’s highest frequency  
component. Voice contains spectral energy above 3 kHz, but  
its absence is not detrimental to intelligibility. To reduce the  
digital data rate, which is proportional to the sampling rate, a  
sample rate of 8 kHz was adopted, consistent with a band-  
width of 3 kHz. This sampling requires a low–pass filter to  
limit the high frequency energy above 3 kHz from distorting  
the inband signal. The telephone line is also subject to  
50/60 Hz power line coupling which must be attenuated from  
the signal by a high–pass filter before the A/D converter.  
The D/A process reconstructs a staircase version of the  
desired inband signal which has spectral images of the in-  
band signal modulated about the sample frequency and its  
harmonics. These spectral images are called aliasing com-  
ponents which need to be attenuated to obtain the desired  
signal. The low–pass filter used to attenuate filter aliasing  
components is typically called a reconstruction or smoothing  
filter.  
MC145501  
The MC145501 PCM Codec–Filter offers the same fea-  
tures and is for the same application as the MC145500, but  
offers two additional pins and features. The reference select  
input allows the full scale level of the device to be set at  
2.5 Vp, 3.15 Vp, or 3.78 Vp. The –Tx pin allows for external  
transmit gain adjust and simplifies the interface to the  
MC3419 SLIC. Otherwise, it is identical to MC145500.  
MC145502  
The MC145502 PCM Codec–Filter is the full feature  
22–pin device. It is intended for use in applications requiring  
maximum flexibility. The MC145502 contains all the features  
of the MC145500 and MC145501. The MC145502 is in-  
tended for bit interleaved or byte interleaved applications  
with data clock frequencies which are nonstandard or time  
varying. One of the five standard frequencies (listed above)  
is applied to the CCI input, and the data clock inputs can be  
any frequency between 64 kHz and 4.096 MHz. The V pin  
ref  
allows for use of an external shared reference or selection of  
the internal reference. The RxG pin accommodates gain ad-  
justments for the inverted analog output. All three pins of the  
input gain–setting operational amplifier are present, provid-  
ing maximum flexibility for the analog interface.  
MC145503  
The MC145503 PCM Codec–Filter is intended for stan-  
dard byte interleaved synchronous or asynchronous applica-  
tions. TDC can be one of five discrete frequencies. These  
are 128 kHz (40 to 60% duty cycle), 1.536, 1.544, 2.048, or  
2.56 MHz. (For other data clock frequencies, see MC145502  
or MC145505.) The internal reference is set for 3.15 V peak  
full scale, and the full scale input level at Txl and output level  
at RxO is 6.3 V peak–to–peak. This is the + 3 dBm0 level of  
the PCM Codec–Filter. The +Tx and –Tx inputs provide max-  
imum flexibility for analog interface. All other functions are  
described in the pin description.  
MC145505  
The MC145500 series PCM Codec–Filters have the co-  
dec, both presampling and reconstruction filters, a precision  
voltage reference on chip, and require no external compo-  
nents. There are five distinct versions of the Motorola  
MC145500 Series.  
The MC145505 PCM Codec–Filter is intended for byte in-  
terleaved synchronous applications. The MC145505 has all  
the features of the MC145503 but internally connects TDC  
and RDC (see pin description) to the DC pin. One of the five  
standard frequencies (listed above) should be applied to  
MC145500MC145501MC145502MC145503MC145505  
For More Information On This Product,  
MOTOROLA  
Go to: www.freescale.com  
8
Freescale Semiconductor, Inc.  
CCI. The data clock input (DC) can be any frequency be-  
tween 64 kHz and 4.096 MHz.  
the transmit shift register (sign bit first) ready to be output at  
TDD. The TDE pin is the high impedance control for the  
transmit digital data (TDD) output. As long as this pin is high,  
the TDD output stays low impedance. This pin also enables  
the output shift register for clocking out the 8–bit serial PCM  
word. The logical AND of the TDE pin with the TDC pin  
clocks out a new data bit at TDD. TDE should be held high  
for eight consecutive TDC cycles to clock out a complete  
PCM word for byte interleaved applications. The transmit  
shift register feeds back on itself to allow multiple reads of  
the transmit data. If the PCM word is clocked out once per  
frame in a byte interleaved system, the MSI pin function is  
transparent and may be connected to TDE.  
PIN DESCRIPTIONS  
DIGITAL  
V
LS  
Logic Level Select input and TTL Digital Ground  
V
controls the logic levels and digital ground reference  
LS  
for all digital inputs and the digital output. These devices can  
operate with logic levels from full supply (V to V ) or  
SS  
DD  
with TTL logic levels using V  
as digital ground. For V  
to V  
DD  
=
LS  
, all I/O is full supply (V  
LS  
swing) with CMOS  
V
DD  
switch points. For V  
outputs are TTL compatible with V being the digital ground.  
The pins controlled by V  
RCE, RDC, RDD, PDI, and output TDD.  
SS  
< (V – 4 V), all inputs and  
DD  
The TDE pin may be cycled during a PCM word for bit in-  
terleaved applications. TDE controls both the high imped-  
ance state of the TDD output and the internal shift clock. TDE  
< V  
SS  
LS  
LS  
are inputs MSI, CCI, TDE, TDC,  
LS  
must fall before TDC rises (t  
) to ensure integrity of the  
su8  
next data bit. There must be at least two TDC falling edges  
between the last TDE rising edge of one frame and the first  
TDE rising edge of the next frame. MSI must be available  
separate from TDE for bit interleaved applications.  
MSI  
Master Synchronization Input  
MSI is used for determining the sample rate of the transmit  
side and as a time base for selecting the internal prescale  
divider for the convert clock input (CCI) pin. The MSI pin  
should be tied to an 8 kHz clock which may be a frame sync  
or system sync signal. MSI has no relation to transmit or  
receive data timing, except for determining the internal trans-  
mit strobe as described under the TDE pin description. MSI  
should be derived from the transmit timing in asynchronous  
applications. In many applications MSI can be tied to TDE.  
(MSI is tied internally to TDE in MC145503/05.)  
TDD  
Transmit Digital Data Output  
The output levels at this pin are controlled by the V  
LS  
pin. For V  
connected to V , the output levels are from  
LS  
DD  
toV .ForavoltageofV betweenV  
V
–4VandV  
,
SS  
DD  
LS  
DD  
SS  
the output levels are TTL compatible with V being the digi-  
LS  
tal ground supply. The TDD pin is a three–state output  
controlled by the TDE pin. The timing of this pin is controlled  
by TDC and TDE. When in TTL mode, this output may be  
made high–speed CMOS compatible using a pull–up resis-  
tor. The data format (Mu–Law, A–Law, or sign magnitude) is  
controlled by the Mu/A pin.  
CCI  
Convert Clock Input  
CCI is designed to accept five discrete clock frequencies.  
These are 128 kHz, 1.536 MHz, 1.544 MHz, 2.048 MHz, or  
2.56 MHz. The frequency at this input is compared with MSI  
and prescale divided to produce the internal sequencing  
clock at 128 kHz (or 16 times the sampling rate). The duty  
cycle of CCI is dictated by the minimum pulse width except  
for 128 kHz, which is used directly for internal sequencing  
and must have a 40 to 60% duty cycle. In asynchronous  
applications, CCI should be derived from transmit timing.  
(CCI is tied internally to TDC in MC145500/01/03.)  
RDC  
Receive Data Clock Input  
RDC can be any frequency from 64 kHz to 4.096 MHz.  
This pin is often tied to the TDC pin for applications that can  
use a common clock for both transmit and receive data trans-  
fers. The receive shift register is controlled by the receive  
clock enable (RCE) pin to clock data into the receive digital  
data (RDD) pin on falling RDC edges. These three signals  
can be asynchronous with all other digital pins. The RDC in-  
put is internally tied to the TDC input on the MC145505 and  
called DC.  
TDC  
Transmit Data Clock Input  
RCE  
TDC can be any frequency from 64 kHz to 4.096 MHz, and  
is often tied to CCI if the data rate is equal to one of the five  
discrete frequencies. This clock is the shift clock for the  
transmit shift register and its rising edges produce succes-  
sive data bits at TDD. TDE should be derived from this clock.  
(TDC and RDC are tied together internally in the MC145505  
and are called DC.) CCI is internally tied to TDC on the  
MC145500/ 01/03. Therefore, TDC must satisfy CCI timing  
requirements also.  
Receive Clock Enable Input  
The rising edge of RCE should identify the sign bit of a re-  
ceive PCM word on RDD. The next falling edge of RDC, after  
a rising RCE, loads the first bit of the PCM word into the re-  
ceive register. The next seven falling edges enter the remain-  
der of the PCM word. On the ninth rising edge, the receive  
PCM word is transferred to the receive buffer register and the  
A/D sequence is interrupted to commence the decode pro-  
cess. In asynchronous applications with an 8 kHz transmit  
sample rate, the receive sample rate should be between 7.5  
and 8.5 kHz. Two receive PCM words may be decoded and  
analog summed each transmit frame to allow on–chip con-  
ferencing. The two PCM words should be clocked in as two  
single PCM words, a minimum of 31.25 µs apart, with a  
receive data clock of 512 kHz or faster.  
TDE  
Transmit Data Enable Input  
TDE serves three major functions. The first TDE rising  
edge following an MSI rising edge generates the internal  
transmit strobe which initiates an A/D conversion. The inter-  
nal transmit strobe also transfers a new PCM data word into  
MOTOROLA  
MC145500MC145501MC145502MC145503MC145505  
For More Information On This Product,  
Go to: www.freescale.com  
9
Freescale Semiconductor, Inc.  
RDD  
dec–Filter family can provide its own analog ground supply  
internally. The dc voltage of this internal supply is 6% positive  
of the midway between V and V . This supply can sink  
more than 8 mA but has a current source limited to 400 µA.  
The output of this supply is internally connected to the analog  
ground input of the part. The node where this supply and the  
Receive Digital Data Input  
DD  
SS  
RDD is the receive digital data input. The timing for this pin  
is controlled by RDC and RCE. The data format is deter-  
mined by the Mu/A pin.  
analog ground are connected is brought out to the V  
symmetric dual supply systems (± 5, ± 6, etc.), V  
AG  
externally tied to the system analog ground supply. When  
pin. In  
may be  
Mu/A  
Select  
AG  
This pin selects the companding law and the data format at  
TDD and RDD.  
Mu/A = V ; Mu–255 Companding D3 Data Format with  
Zero Code Suppress  
Mu/A = V ; Mu–255 Companding with Sign Magnitude  
RxO or RxO drive low impedance loads tied to V , a pull–up  
AG  
will be required to boost the source current  
resistor to V  
capability if V  
DD  
DD  
is not tied to the supply ground. All analog  
AG  
signals for the part are referenced to V , including noise;  
AG  
AG  
therefore, decoupling capacitors (0.1 µF) should be used  
Data Format  
from V  
to V  
and V  
to V .  
DD  
AG  
SS  
AG  
Mu/A = V ; A–Law Companding with CCITT Data Format  
Bit Inversions  
SS  
V
ref  
Positive Voltage Reference Input (MC145502 Only)  
Sign/  
Magnitude  
A–Law  
(CCITT)  
The V  
ref  
pin allows an external reference voltage to be  
Code  
Mu–Law  
used for the A/D and D/A conversions. If V is tied to V  
,
ref  
SS  
the internal reference is selected. If V > V , then the ex-  
ternal mode is selected and the voltage applied to V  
ref  
+ Full Scale  
+ Zero  
– Zero  
1111 1111  
1000 0000  
0000 0000  
0111 1111  
1000 0000  
1111 1111  
0111 1111  
0000 0010  
1010 1010  
1101 0101  
0101 0101  
0010 1010  
ref  
AG  
is  
used for generating the internal converter reference voltage.  
In either internal or external reference mode, the actual volt-  
age used for conversion is multiplied by the ratio selected by  
the RSI pin. The RSI pin circuitry is explained under its pin  
description below. Both the internal and external references  
are inverted within the PCM Codec–Filter for negative input  
voltages such that only one reference is required.  
– Full Scale  
SIGN  
BIT  
CHORD BITS  
STEP BITS  
0
1
2
3
4
5
6
7
External Mode — In the external reference mode (V  
>
ref  
NOTE: Starting from sign magnitude, to change format:  
To Mu–Law —  
V
), a 2.5 V reference like the MC1403 may be connected  
AG  
from V to V . A single external reference may be shared  
ref  
AG  
MSB is unchanged (sign)  
by tying together a number of V pins and V  
ref AG  
pins from dif-  
Invert remaining seven bits  
If code is 0000 0000, change to 0000 0010 (for zero  
code suppression)  
To A–Law —  
MSB is unchanged (sign)  
ferent codec–filters. In special applications, the external ref-  
erence voltage may be between 0.5 and 5 V. However, the  
reference voltage gain selection circuitry associated with RSI  
must be considered to arrive at the desired codec–filter gain.  
Internal Mode — In the internal reference mode (V  
=
ref  
Invert odd numbered bits  
Ignore zero code suppression  
V
), an internal 2.5 V reference supplies the reference volt-  
SS  
age for the RSI circuitry. The V  
pin is functionally con-  
ref  
for the MC145500, MC145501, MC145503,  
nected to V  
SS  
PDI  
and MC145505 pinouts.  
Power Down Input  
The power down input disables the bias circuitry and gates  
RSI  
off all clock inputs. This puts the V , Txl, RxO, RxO, and  
AG  
Reference Select Input (MC145501/02 Only)  
TDD outputs into a high–impedance state. The power dissi-  
pation is reduced to 0.1 mW when PDI is a low logic level.  
The RSI input allows the selection of three different over-  
load or full–scale A/D and D/A converter reference voltages  
independent of the internal or external reference mode. The  
RSI pin is a digital input that senses three different logic  
states: V , V , and V  
voltage is used directly for the converters. The internal refer-  
The circuit operates normally with PDI = V  
or with a logic  
DD  
high as defined by connection at V . TDD will not come out  
LS  
of high impedance for two MSI cycles after PDI goes high.  
. For RSI = V , the reference  
SS AG  
DD  
AG  
DCLK  
ence is 2.5 V. For RSI = V , the reference voltage is multi-  
plied by the ratio of 1.26, which results in an internal  
Data Clock Input  
SS  
In the MC145505, TDC and RDC are internally connected  
to DCLK.  
converter reference of 3.15 V. For RSI = V  
, the reference  
DD  
voltage is multiplied by 1.51, which results in an internal con-  
verter reference of 3.78 V. The device requires a minimum of  
1.0 V of headroom between the internal converter reference  
ANALOG  
V
AG  
Analog Ground input/Output Pin  
to V  
. V  
has this same absolute valued minimum, also  
pin. The various modes of operation are  
DD SS  
measured from V  
AG  
V
is the analog ground power supply input/output. All  
summarized in Table 2. The RSI pin is functionally connected  
to V for the MC145500, MC145503, and MC145505  
AG  
analog signals into and out of the device use this as their  
ground reference. Each version of the MC145500 PCM Co-  
SS  
pinouts.  
MC145500MC145501MC145502MC145503MC145505  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
10  
Freescale Semiconductor, Inc.  
RxO, RxO  
+Tx / –Tx  
Receive Analog Outputs  
Positive Tx Amplifier Input (MC145502/03/05 Only) /  
Negative Tx Amplifier Input (MC145501/02/03/05 Only)  
These two complimentary outputs are generated from the  
output of the receive filter. They are equal in magnitude and  
out of phase. The maximum signal output of each is equal to  
the maximum peak–to–peak signal described with the refer-  
The Txl pin is the input to the transmit band–pass filter. If  
+Tx or –Tx is available, then there is an internal amplifier  
preceding the filter whose pins are +Tx, –Tx, and TxI. These  
pins allow access to the amplifier terminals to tailor the input  
gain with external resistors. The resistors should be in the  
range of 10 k. If +Tx is not available, it is internally tied to  
ence. If a 3.15 V reference is used with RSI tied to V  
and a  
AG  
+ 3 dBm0 sine wave is decoded, the RxO output will be a  
6.3 V peak–to–peak signal. RxO will also have an inverted  
signal output of 6.3 V peak–to–peak. External loads may be  
connected from RxO to RxO for a 6 dB push–pull signal gain  
V
. If –Tx and +Tx are not available, the TxI is a unity gain  
AG  
high–impedance input.  
or from either RxO or RxO to V . With a 3.15 V reference  
AG  
POWER SUPPLIES  
each output will drive 600 to + 9 dBm. With RSI tied to V  
each output will drive 900 to + 9 dBm.  
,
DD  
V
DD  
Most Positive Power Supply  
V
is typically 5 to 12 V.  
DD  
RxG  
V
Receive Output Gain Adjust (MC145502 Only)  
SS  
Most Negative Power Supply  
The purpose of the RxG pin is to allow external gain ad-  
justment for the RxO pin. If RxG is left open, then the output  
signal at RxO will be inverted and output at RxO. Thus the  
push–pull gain to a load from RxO to RxO is two times the  
output level at RxO. If external resistors are applied from  
RxO to RxG (RI) and from RxG to RxO (RG), the gain of RxO  
can be set differently from inverting unity. These resistors  
should be in the range of 10 k. The RxO output level is un-  
changed by the resistors and the RxO gain is approximately  
equal to minus RG/RI. The actual gain is determined by tak-  
ing into account the internal resistors which will be in parallel  
to these external resistors. The internal resistors have a  
large tolerance, but they match each other very closely. This  
matching tends to minimize the effects of their tolerance on  
external gain configurations. The circuit for RxG and RxO is  
shown in the block diagram.  
V
is typically 10 to 12 V negative of V .  
DD  
SS  
For a ± 5 V dual–supply system, the typical power supply  
configuration is V = + 5 V, V = – 5 V, V = 0 V (digital  
DD SS LS  
ground accommodating TTL logic levels), and V  
= 0 V  
AG  
being tied to system analog ground.  
For single–supply applications, typical power supply con-  
figurations include:  
V
V
= 10 V to 12 V  
= 0 V  
generates a mid supply voltage for referencing all  
DD  
SS  
V
AG  
analog signals.  
controls the logic levels. This pin should be connected  
V
LS  
to V  
for CMOS logic levels from V  
to V . This pin  
DD  
SS DD  
should be connected to digital ground for true TTL logic  
levels referenced to V  
.
LS  
TESTING CONSIDERATIONS (MC145500/01/02 ONLY)  
An analog test mode is activated by connecting MSI and  
CCI to 128 kHz. In this mode, the input of the A/D (the output  
of the Tx filter) is available at the PDI pin. This input is direct  
coupled to the A/D side of the codec. The A/D is a differential  
design. This results in the gain of this input being effectively  
attenuated by half. If monitored with a high–impedance buff-  
er, the output of the Tx low–pass filter can also be measured  
at the PDI pin. This test mode allows independent evaluation  
of the transmit low–pass filter and A/D side of the codec. The  
transmit and receive channels of these devices are tested  
with the codec–filter fully functional.  
Txl  
Transmit Analog Input  
TxI is the input to the transmit filter. It is also the output of  
the transmit gain amplifiers of the MC145501/02/03/05. The  
input impedance is greater than 100 kto V  
MC145500. The TxI input has an internal gain of 1.0, such  
that a +3 dBm0 signal at TxI corresponds to the peak con-  
verter reference voltage as described in the V and RSI pin  
in the  
AG  
ref  
descriptions. For 3.15 V reference, the + 3 dBm0 input  
should be 6.3 V peak–to–peak.  
MOTOROLA  
MC145500MC145501MC145502MC145503MC145505  
For More Information On This Product,  
Go to: www.freescale.com  
11  
Freescale Semiconductor, Inc.  
MC145503  
V
5 V  
AG  
51 k*  
1
16  
0.1 µF  
V
V
DD  
AG  
600  
2
3
4
5
6
7
8
15  
14  
13  
12  
11  
10  
9
Rx  
Tx  
RxO  
+ Tx  
RDD  
RCE  
ENABLE  
CLOCK  
5 k  
10 kΩ  
TxI  
RDC  
– Tx  
Mu/A  
PDI  
TDC  
TDD  
TDE  
681  
V
V
LS  
SS  
0.1 µF  
– 5 V  
* To define RDD when TDD is high Z.  
Figure 1. Test Circuit  
Table 1. Options Available by Pin Selection  
RSI*  
Pin Level  
V
*
Peak–to–Peak Overload Voltage  
(Txl, RxO)  
ref  
Pin Level  
V
V
V
7.56 V p–p  
DD  
SS  
V
+ V  
(3.02 x V  
) V p–p  
5 V p–p  
DD  
AG  
EXT  
EXT  
EXT  
EXT  
V
AG  
V
SS  
V
AG  
V
+ V  
(2 x V ) V p–p  
EXT  
AG  
V
V
V
SS  
6.3 V p–p  
SS  
V
+ V  
(2.52 x V ) V p–p  
EXT  
SS  
AG  
* On MC145500/03/05, RSI and V  
tied internally to V . On MC145501, V  
SS  
ref  
ref  
tied internally to V  
.
SS  
Table 2. Summary of Operation Conditions User Programmed Through Pins V , V , and V  
DD AG  
SS  
Pin  
RSI  
Programmed  
Peak Overload  
Voltage  
Logic  
Level  
Mu/A  
V
LS  
V
Mu–Law Companding Curve and D3/D4 Digital  
Formats with Zero Code Suppress  
3.78  
2.50  
3.15  
CMOS  
DD  
Logic Levels  
TTL Levels  
V
AG  
Mu–Law Companding Curve and Sign  
Magnitude Data Format  
V
Up  
AG  
TTL Levels  
Up  
V
A–Law Companding Curve and CCITT Digital  
Format  
SS  
V
SS  
MC145500MC145501MC145502MC145503MC145505  
For More Information On This Product,  
MOTOROLA  
Go to: www.freescale.com  
12  
Freescale Semiconductor, Inc.  
TDE  
TDC  
t
t
w
f
P4  
CL  
t
su2  
t
t
t
w
su8  
su1  
1
2
3
t
4
5
6
7
8
t
9
10  
11  
t
t
P3  
P3  
P2  
P2  
t
P1  
MSB  
LSB  
*
TDD  
PCM WORD REPEATED  
* Data output during this time will vary depending on TDC rate and TDE timing.  
Figure 2. Transmit Timing Diagram  
t
w
RCE  
t
su4  
f
t
w
CL  
t
su3  
t
w
1
2
3
4
5
6
7
8
9
10  
11  
RDC  
RDD  
t
h
t
su5  
DON’T  
CARE  
DON’T  
CARE  
MSB  
LSB  
Figure 3. Receive Timing Diagram  
t
w
MSI  
CCI  
t
t
w
su7  
t
t
w
su6  
1
2
3
4
5
6
7
8
9
10  
11  
Figure 4. MSI/CCI Timing Diagram  
MOTOROLA  
MC145500MC145501MC145502MC145503MC145505  
For More Information On This Product,  
Go to: www.freescale.com  
13  
Freescale Semiconductor, Inc.  
1.00  
0.80  
1.00  
V
V
= + 5 V  
= – 5 V  
V
V
= + 5 V  
= – 5 V  
DD  
SS  
DD  
SS  
0.80  
0.60  
0.40  
0.20  
0
2048 kHz CLOCK  
0.60  
2048 kHz CLOCK  
GUARANTEED  
PERFORMANCE  
GUARANTEED  
PERFORMANCE  
0.40  
0.20  
0
TYPICAL  
PEFORMANCE  
TYPICAL  
PEFORMANCE  
– 0.20  
– 0.40  
– 0.60  
– 0.20  
– 0.40  
– 0.60  
– 0.80  
– 1.00  
– 0.80  
– 1.00  
– 60  
– 50  
– 40  
– 30  
– 20  
– 10  
0
– 60  
– 50  
– 40  
– 30  
– 20  
– 10  
0
INPUT LEVEL AT 1.02 kHz  
INPUT LEVEL AT 1.02 kHz  
Figure 5. MC145502 Gain vs Level Mu–Law Transmit  
Figure 6. MC145502 Gain vs Level Mu–Law Receive  
45.0  
45.0  
40.0  
40.0  
35.0  
30.0  
25.0  
TYPICAL  
PEFORMANCE  
TYPICAL  
PEFORMANCE  
35.0  
30.0  
25.0  
C–MESSAGE WEIGHTED  
C–MESSAGE WEIGHTED  
V
V
= + 5 V  
= – 5 V  
V
V
= + 5 V  
= – 5 V  
DD  
SS  
DD  
SS  
2048 kHz CLOCK  
2048 kHz CLOCK  
20.0  
15.0  
20.0  
15.0  
GUARANTEED  
PERFORMANCE  
GUARANTEED  
PERFORMANCE  
10.0  
10.0  
– 60  
– 50  
– 40  
– 30  
– 20  
– 10  
0
– 60  
– 50  
– 40  
– 30  
– 20  
– 10  
0
INPUT LEVEL AT 1.02 kHz  
INPUT LEVEL AT 1.02 kHz  
Figure 7. MC145502 Quantization  
Distortion Mu–Law Transmit  
Figure 8. MC145502 Quantization  
Distortion Mu–Law Receive  
0.8  
0.6  
0.4  
0.8  
0.6  
0.4  
V
V
= + 5 V  
= – 5 V  
V
V
= + 5 V  
= – 5 V  
DD  
SS  
DD  
SS  
2048 kHz CLOCK  
2048 kHz CLOCK  
0.2  
0
0.2  
0
TYPICAL PEFORMANCE  
TYPICAL PEFORMANCE  
GUARANTEED  
– 0.2  
– 0.4  
– 0.2  
– 0.4  
PERFORMANCE  
GUARANTEED  
PERFORMANCE  
– 0.6  
– 0.8  
– 0.6  
– 0.8  
– 60  
– 50  
– 40  
– 30  
– 20  
– 10  
– 60  
– 50  
– 40  
– 30  
– 20  
– 10  
INPUT LEVEL PSEUDO NOISE (dBm0)  
INPUT LEVEL PSEUDO NOISE (dBm0)  
Figure 9. MC145502 Gain vs Level A–Law Transmit  
Figure 10. MC145502 Gain vs Level A–Law Receive  
MC145500MC145501MC145502MC145503MC145505  
For More Information On This Product,  
MOTOROLA  
Go to: www.freescale.com  
14  
Freescale Semiconductor, Inc.  
40.0  
35.0  
30.0  
25.0  
20.0  
15.0  
10.0  
40.0  
TYPICAL  
PERFORMANCE  
TYPICAL  
PERFORMANCE  
GUARANTEED  
PERFORMANCE  
35.0  
GUARANTEED  
PERFORMANCE  
30.0  
PSOPHOMETRIC  
WEIGHTED  
25.0  
20.0  
15.0  
10.0  
PSOPHOMETRIC  
WEIGHTED  
V
V
= + 5 V  
= – 5 V  
V
V
= + 5 V  
= – 5 V  
2048 kHz  
DD  
SS  
DD  
SS  
2048 kHz  
– 60  
– 50  
– 40  
– 30  
– 20  
– 10  
0
– 60  
– 50  
– 40  
– 30  
– 20  
– 10  
0
INPUT LEVEL PSEUDO NOISE (dBm0)  
INPUT LEVEL PSEUDO NOISE (dBm0)  
Figure 11. MC145502 Quantization Distortion  
A–Law Transmit  
Figure 12. MC145502 Quantization Distortion  
A–Law Receive  
70  
60  
70  
TYPICAL PERFORMANCE  
TYPICAL PERFORMANCE  
60  
50  
50  
40  
30  
40  
30  
20  
10  
0
20  
10  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 13. MC145502 Power Supply Rejection  
Ratio Positive Transmit VAC = 250 mVrms,  
C–Message Weighted  
Figure 14. MC145502 Power Supply Rejection  
Ratio Negative Transmit VAC = 250 mVrms,  
C–Message Weighted  
70  
60  
50  
40  
30  
20  
10  
0
70  
TYPICAL PERFORMANCE  
TYPICAL PERFORMANCE  
60  
50  
40  
30  
20  
10  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 15. MC145502 Power Supply Rejection  
Ratio Positive Receive VAC = 250 mVrms,  
C–Message Weighted  
Figure 16. MC145502 Power Supply Rejection  
Ratio Negative Receive VAC = 250 mVrms,  
C–Message Weighted  
MOTOROLA  
MC145500MC145501MC145502MC145503MC145505  
For More Information On This Product,  
Go to: www.freescale.com  
15  
Freescale Semiconductor, Inc.  
0.2  
0.1  
2.0  
0
0
– 2.0  
TYPICAL  
PERFORMANCE  
– 4.0  
– 0.1  
– 0.2  
– 0.3  
– 0.4  
– 0.5  
– 0.6  
– 0.7  
– 0.8  
– 6.0  
– 8.0  
GUARANTEED  
PERFORMANCE  
TYPICAL  
PERFORMANCE  
– 10.0  
– 12.0  
GUARANTEED  
PERFORMANCE  
GUARANTEED  
PERFORMANCE  
– 14.0  
– 16.0  
– 18.0  
0
0.4  
0.8  
1.2  
1.6  
2.0  
2.4  
2.8  
3.2  
3.6  
3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 17. MC145502 Pass–Band  
Filter Response Transmit  
Figure 18. MC145502 Low–Pass Filter  
Response Transmit  
2.0  
– 2.0  
0.2  
0.1  
TYPICAL  
PERFORMANCE  
0
– 0.1  
– 0.2  
– 0.3  
– 0.4  
– 0.5  
– 6.0  
TYPICAL  
PERFORMANCE  
– 10.0  
– 14.0  
– 18.0  
– 22.0  
– 26.0  
– 30.0  
GUARANTEED  
PERFORMANCE  
GUARANTEED  
PERFORMANCE  
– 0.6  
– 0.7  
– 0.8  
0
0.4  
0.8  
1.2  
1.6  
2.0  
2.4  
2.8  
3.2  
3.6  
0
0.04  
0.08  
0.12  
0.16  
0.20  
0.24  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 19. MC145502 High–Pass Filter  
Response Transmit  
Figure 20. MC145502 Pass–Band  
Filter Response Receive  
2.0  
0
GUARANTEED  
– 2.0  
PERFORMANCE  
– 4.0  
– 6.0  
– 8.0  
TYPICAL  
PERFORMANCE  
– 10.0  
– 12.0  
GUARANTEED  
PERFORMANCE  
– 14.0  
– 16.0  
– 18.0  
3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2  
FREQUENCY (kHz)  
Figure 21. MC145502 Low–Pass Filter Response Receive  
MC145500MC145501MC145502MC145503MC145505  
For More Information On This Product,  
MOTOROLA  
Go to: www.freescale.com  
16  
Freescale Semiconductor, Inc.  
2.048 MHz  
18 pF  
18 pF  
10 MΩ  
300  
2.048 MHz  
+ 5 V  
(TDC, RDC, CCI)  
V
R
OSC  
IN  
OSC  
OUT 1 OUT 2  
OSC  
CC  
8 kHz  
(TDE, RCE, MSI)  
0.1 µF  
MC74HC4060  
GND Q8  
Q4  
+ 5 V  
V
CC  
J
Q
J
Q
Q
1/2  
MC74HC73  
1/2  
MC74HC73  
K
Q
K
GND  
R
R
+ 5 V  
255  
256  
1
2
3
4
5
6
7
8
9
10  
2.048 MHz  
8 kHz  
Figure 22. Simple Clock Circuit for Driving MC145500/01/02/03/05 Codec–Filters  
MOTOROLA  
MC145500MC145501MC145502MC145503MC145505  
For More Information On This Product,  
Go to: www.freescale.com  
17  
Freescale Semiconductor, Inc.  
V
V
DD  
AG  
N = 1  
R0  
RxO  
+ Tx  
TxI  
RDD  
RCE  
R0  
N = 2  
– 48 V  
10 kΩ  
N = 1  
RDC  
TDC  
10 kΩ  
– Tx  
TDD  
TDE  
Mu/A  
PDI  
V
V
LS  
SS  
MC145503  
23a. Simplified Transformer Hybrid Using MC145503  
V
V
DD  
AG  
N = 1  
R3  
RxO  
+ Tx  
TxI  
RDD  
RCE  
R0  
R5  
R6  
N = 2  
R4  
– 48 V  
R1  
N = 1  
RDC  
TDC  
R2  
– Tx  
TDD  
TDE  
Mu/A  
PDI  
R0 = R3 R4 (R2 + R1) R3 R4  
R0 R4 (R2 + R1)  
R0 R4  
A
=
V
out  
R3 + R0 R4 (R2 + R1)  
R3 + R0 R4  
V
V
LS  
SS  
– R1  
A
=
V
MC145503  
in  
R2  
NOTE: Hybrid Balance by R5 and R6 to equate the RxO signal gain at Txl through the  
inverting and non–inverting signal paths.  
23b. Universal Transformer Hybrid Using MC145503  
Figure 23. Hybrid Interfaces to the MC145503 PCM Codec–Filter Mono–Circuit  
MC145500MC145501MC145502MC145503MC145505  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
18  
Freescale Semiconductor, Inc.  
R0 = 600  
R0 = 900 Ω  
+ V  
ref  
RSI  
V
SS  
V
V
DD  
AG  
N = 1  
RxO  
RxG  
RDD  
R5  
R6  
R4  
R3  
R0  
N = 2  
RCE  
RDC  
TDC  
RxO  
+ Tx  
– 48  
N = 1  
R0  
TxI  
CCI  
TDD  
TDE  
MSI  
R2  
R1  
– Tx  
NOTE: Balance by R5 and R6 to equate the Txl gains through the inverting  
and non–inverting input signal paths, respectively, is given by:  
Mu/A  
PDI  
R1  
R3  
R4  
R1  
R2  
R6  
R3  
R5  
1 –  
=
1 +  
2 × R2  
R5 + R6  
R4 R5 + R6  
V
V
LS  
SS  
Tx Gain = R1/R2  
Rx Gain = 1 + R3/R4  
R5, R6 10 kΩ  
MC145502  
Adjust Rx Gain with R3  
Adjust Tx Gain with R1  
24a. Universal Transformer Hybrid Using MC145502  
R0 = 600  
R0 = 900  
T
+ V  
V
ref  
RSI  
N = 1  
V
SS  
10 kΩ  
AG  
V
DD  
N = 2  
R0  
R0  
RxO  
RxG  
RDD  
20 kΩ  
RCE  
RDC  
TDC  
– 48  
R
N = 1  
RxO  
+ Tx  
TxI  
CCI  
20 kΩ  
– Tx  
10 kΩ  
TDD  
TDE  
Mu/A  
PDI  
MSI  
V
V
LS  
SS  
MC145502  
24b. Single–Ended Hybrid Using MC145502  
Figure 24. Hybrid Interfaces to the MC145502 PCM Codec–Filter Mono–Circuit  
MOTOROLA  
MC145500MC145501MC145502MC145503MC145505  
For More Information On This Product,  
Go to: www.freescale.com  
19  
Freescale Semiconductor, Inc.  
Figure 25. A Complete Single Party Channel Unit Using  
MC3419 SLIC and MC145503 PCM Mono–Circuit  
MC145500MC145501MC145502MC145503MC145505  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
20  
Freescale Semiconductor, Inc.  
MC145406  
MC145428  
MC145426  
MC34119  
MC145503  
MC145412  
Figure 26. Digital Telephone Schematic  
MOTOROLA  
MC145500MC145501MC145502MC145503MC145505  
For More Information On This Product,  
Go to: www.freescale.com  
21  
Freescale Semiconductor, Inc.  
Table 3. Mu–Law Encode–Decode Characteristics  
Normalized  
Digital Code  
Encode  
Normalized  
Decode  
Levels  
1
2
3
4
5
6
7
8
Chord  
Number  
Number  
of Steps  
Step  
Size  
Decision  
Levels  
Sign  
Chord Chord Chord Step  
Step Step  
Step  
8159  
7903  
4319  
4063  
2143  
2015  
1055  
991  
511  
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
0
0
0
1
1
0
0
1
0
0
1
0
1
0
1
0
0
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
8031  
4191  
2079  
1023  
495  
231  
99  
8
16  
256  
7
6
5
4
3
2
1
16  
16  
16  
16  
16  
16  
128  
64  
32  
16  
8
479  
239  
223  
103  
95  
4
35  
33  
31  
15  
1
2
1
3
1
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
2
0
NOTES:  
1. Characteristics are symmetrical about analog zero with sign bit = 0 for negative analog values.  
2. Digital code includes inversion of all magnitude bits.  
MC145500MC145501MC145502MC145503MC145505  
For More Information On This Product,  
MOTOROLA  
Go to: www.freescale.com  
22  
Freescale Semiconductor, Inc.  
Table 4. A–Law Encode–Decode Characteristics  
Normalized  
Digital Code  
Encode  
Normalized  
Decode  
Levels  
1
2
3
4
5
6
7
8
Chord  
Number  
Number  
of Steps  
Step  
Size  
Decision  
Levels  
Sign  
Chord Chord Chord Step  
Step Step  
Step  
4096  
3968  
2176  
2048  
1088  
1024  
544  
512  
272  
256  
136  
128  
68  
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
1
0
0
1
1
0
0
0
1
0
1
0
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
4032  
2112  
1056  
528  
264  
132  
66  
7
16  
128  
6
5
4
3
2
16  
16  
16  
16  
16  
32  
64  
32  
16  
8
4
64  
1
2
2
1
0
NOTES:  
1. Characteristics are symmetrical about analog zero with sign bit = 0 for negative analog values.  
2. Digital code includes alternate bit inversion, as specified by CCITT.  
MOTOROLA  
MC145500MC145501MC145502MC145503MC145505  
For More Information On This Product,  
Go to: www.freescale.com  
23  
Freescale Semiconductor, Inc.  
PACKAGE DIMENSIONS  
L SUFFIX  
CERAMIC PACKAGE  
CASE 620–09  
(MC145500/03/05)  
NOTES:  
-A-  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
16  
1
9
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION L TO CENTER OF LEAD WHEN  
FORMED PARALLEL.  
4. DIMENSION F MAY NARROW TO 0.76 (0.030)  
WHERE THE LEAD ENTERS THE CERAMIC  
BODY.  
-B-  
8
L
C
INCHES  
MILLIMETERS  
DIM  
A
B
C
D
E
MIN  
MAX  
0.770  
0.290  
0.165  
0.021  
MIN  
19.05  
6.10  
0.39  
1.27 BSC  
MAX  
19.55  
7.36  
4.19  
0.53  
0.750  
0.240  
0.015  
0.050 BSC  
-T-  
SEATING  
PLANE  
K
0.055  
0.070  
1.40  
1.77  
F
G
J
0.100 BSC  
2.54 BSC  
0.009  
0.011  
0.23  
0.27  
M
N
E
0.200  
5.08  
K
L
M
N
J 16 PL  
0.300 BSC  
15  
0.035  
7.62 BSC  
15  
0.39 0.88  
G
D 16 PL  
F
0
°
°
0
°
°
M
S
0.015  
0.25 (0.010)  
T
B
M
S
0.25 (0.010)  
T
A
P SUFFIX  
PLASTIC DIP  
CASE 648–08  
(MC145503/05)  
NOTES:  
–A–  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION L TO CENTER OF LEADS WHEN  
FORMED PARALLEL.  
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.  
5. ROUNDED CORNERS OPTIONAL.  
16  
1
9
B
S
8
INCHES  
MILLIMETERS  
DIM  
A
B
C
D
F
MIN  
MAX  
0.770  
0.270  
0.175  
0.021  
0.70  
MIN  
18.80  
6.35  
3.69  
0.39  
1.02  
MAX  
19.55  
6.85  
4.44  
0.53  
1.77  
F
0.740  
0.250  
0.145  
0.015  
0.040  
C
L
SEATING  
PLANE  
–T–  
G
H
J
K
L
0.100 BSC  
0.050 BSC  
2.54 BSC  
1.27 BSC  
K
M
0.008  
0.015  
0.130  
0.305  
10  
0.21  
0.38  
3.30  
7.74  
10  
H
J
0.110  
0.295  
0
2.80  
7.50  
0
G
D 16 PL  
M
S
0.020  
0.040  
0.51  
1.01  
M
M
0.25 (0.010)  
T A  
MC145500MC145501MC145502MC145503MC145505  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
24  
Freescale Semiconductor, Inc.  
L SUFFIX  
CERAMIC PACKAGE  
CASE 726–04  
(MC145501)  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
–A–  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION L TO CENTER OF LEAD WHEN  
FORMED PARALLEL.  
4. DIMENSION F FOR FULL LEADS. HALF  
LEADS OPTIONAL AT LEAD POSITIONS 1, 9,  
10, AND 18.  
18  
1
10  
–B–  
9
OPTIONAL LEAD  
CONFIGURATION (1, 9, 10, 18)  
INCHES  
MILLIMETERS  
DIM  
A
B
C
D
MIN  
MAX  
0.910  
0.295  
0.200  
0.021  
0.070  
MIN  
22.35  
6.10  
–––  
0.38  
1.40  
MAX  
23.11  
7.49  
5.08  
0.53  
1.78  
0.880  
0.240  
–––  
0.015  
0.055  
L
C
N
F
G
J
K
L
M
N
0.100 BSC  
2.54 BSC  
0.008  
0.125  
0.012  
0.170  
0.20  
3.18  
0.30  
4.32  
–T–  
SEATING  
PLANE  
K
0.300 BSC  
7.62 BSC  
M
F
G
0
15  
0
15  
0.020  
0.040  
0.51  
1.02  
J 18 PL  
D 18 PL  
M
S
0.25 (0.010)  
T B  
M
S
0.25 (0.010)  
T
A
L SUFFIX  
CERAMIC PACKAGE  
CASE 736–05  
(MC145502)  
-A-  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION L TO CENTER OF LEAD WHEN  
FORMED PARALLEL.  
4. DIMENSION F FOR FULL LEADS. HALF LEADS  
OPTIONAL AT LEAD POSITIONS 1, 11, 12, AND 22.  
5. DIMENSION F MAY NARROW TO 0.76 (0.030)  
WHERE THE LEAD ENTERS THE CERAMIC BODY.  
22  
1
12  
11  
OPTIONAL LEAD  
CONFIGURATION  
-B-  
C
L
INCHES  
MILLIMETERS  
DIM  
A
B
C
D
MIN  
MAX  
1.095  
0.390  
0.215  
0.021  
0.065  
MIN  
26.93  
9.15  
3.81  
0.39  
1.27  
MAX  
27.81  
9.90  
5.46  
0.53  
1.65  
1.060  
0.360  
0.150  
0.015  
0.050  
-T-  
SEATING  
PLANE  
K
F
G
J
K
0.100 BSC  
2.54 BSC  
N
M
0.008  
0.125  
0.015  
0.170  
0.20  
3.18  
0.39  
4.31  
F
G
D 22 PL  
0.25 (0.010)  
J 22 PL  
L
M
N
0.400 BSC  
15  
0.050  
10.16 BSC  
15  
0.51 1.27  
0
°
°
0
°
°
M
M
S
S
B
T
A
0.25 (0.010)  
T
0.020  
MOTOROLA  
MC145500MC145501MC145502MC145503MC145505  
For More Information On This Product,  
Go to: www.freescale.com  
25  
Freescale Semiconductor, Inc.  
P SUFFIX  
PLASTIC DIP  
CASE 708–04  
(MC145502)  
NOTES:  
1. POSITIONAL TOLERANCE OF LEADS (D),  
SHALL BE WITHIN 0.25 (0.010) AT MAXIMUM  
MATERIAL CONDITION, IN RELATION TO  
SEATING PLANE AND EACH OTHER.  
2. DIMENSION L TO CENTER OF LEADS WHEN  
FORMED PARALLEL.  
22  
1
12  
11  
B
3. DIMENSION B DOES NOT INCLUDE MOLD  
FLASH.  
MILLIMETERS  
INCHES  
DIM  
A
B
C
D
F
G
H
J
K
L
M
N
MIN  
27.56  
8.64  
3.94  
0.36  
1.27  
MAX  
28.32  
9.14  
5.08  
0.56  
1.78  
MIN  
MAX  
1.115  
0.360  
0.200  
0.022  
0.070  
L
1.085  
0.340  
0.155  
0.014  
0.050  
A
N
C
K
2.54 BSC  
0.100 BSC  
1.02  
0.20  
2.92  
1.52  
0.38  
3.43  
0.040  
0.008  
0.115  
0.060  
0.015  
0.135  
10.16 BSC  
15  
1.02  
0.400 BSC  
15  
0.040  
0.020  
H
G
F
D
J
SEATING  
PLANE  
M
°
°
0°  
0°  
0.51  
DW SUFFIX  
SOG PACKAGE  
CASE 751G–02  
(MC145503/05)  
–A–  
16  
9
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
PROTRUSION.  
–B–  
8X P  
M
M
0.010 (0.25)  
B
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER  
SIDE.  
1
8
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.13 (0.005) TOTAL IN  
EXCESS OF D DIMENSION AT MAXIMUM  
MATERIAL CONDITION.  
J
16X D  
M
S
S
0.010 (0.25)  
T
A
B
F
MILLIMETERS  
INCHES  
DIM  
A
B
C
D
MIN  
10.15  
7.40  
2.35  
0.35  
0.50  
MAX  
10.45  
7.60  
2.65  
0.49  
0.90  
MIN  
MAX  
0.411  
0.299  
0.104  
0.019  
0.035  
0.400  
0.292  
0.093  
0.014  
0.020  
R X 45  
C
F
G
J
K
M
P
R
1.27 BSC  
0.050 BSC  
–T–  
0.25  
0.10  
0
0.32  
0.25  
7
0.010  
0.004  
0
0.012  
0.009  
7
M
SEATING  
14X G  
K
PLANE  
10.05  
0.25  
10.55  
0.75  
0.395  
0.010  
0.415  
0.029  
MC145500MC145501MC145502MC145503MC145505  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
26  
Freescale Semiconductor, Inc.  
FN SUFFIX  
PLCC PACKAGE  
CASE 776–02  
(MC145502)  
M
S
S
0.007 (0.180)  
T
L–M  
N
B
Z
Y BRK  
D
–N–  
M
S
S
0.007 (0.180)  
T
L–M  
N
U
–M–  
–L–  
W
D
S
S
S
0.010 (0.250)  
T
L–M  
N
X
G1  
V
28  
1
VIEW D–D  
M
S
S
S
A
0.007 (0.180)  
0.007 (0.180)  
T
L–M  
L–M  
N
M
S
S
0.007 (0.180)  
T
L–M  
N
H
Z
M
S
T
N
R
K1  
C
E
0.004 (0.100)  
SEATING  
PLANE  
G
K
–T–  
VIEW S  
J
M
S
S
0.007 (0.180)  
T
L–M  
N
F
G1  
S
S
S
0.010 (0.250)  
T
L–M  
N
VIEW S  
NOTES:  
INCHES  
MILLIMETERS  
1. DATUMS –L–, –M–, AND –N– DETERMINED  
WHERE TOP OF LEAD SHOULDER EXITS  
PLASTIC BODY AT MOLD PARTING LINE.  
2. DIMENSION G1, TRUE POSITION TO BE  
MEASURED AT DATUM –T–, SEATING PLANE.  
3. DIMENSIONS R AND U DO NOT INCLUDE  
MOLD FLASH. ALLOWABLE MOLD FLASH IS  
0.010 (0.250) PER SIDE.  
DIM  
A
B
C
E
F
G
H
J
K
R
U
V
W
X
Y
Z
G1  
K1  
MIN  
MAX  
0.495  
0.495  
0.180  
0.110  
0.019  
MIN  
12.32  
12.32  
4.20  
MAX  
12.57  
12.57  
4.57  
0.485  
0.485  
0.165  
0.090  
0.013  
2.29  
2.79  
0.33  
0.48  
0.050 BSC  
1.27 BSC  
4. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
0.026  
0.020  
0.025  
0.450  
0.450  
0.042  
0.042  
0.042  
–––  
0.032  
–––  
–––  
0.456  
0.456  
0.048  
0.048  
0.056  
0.020  
10  
0.66  
0.51  
0.64  
11.43  
11.43  
1.07  
1.07  
1.07  
–––  
0.81  
–––  
–––  
11.58  
11.58  
1.21  
1.21  
1.42  
0.50  
10  
5. CONTROLLING DIMENSION: INCH.  
6. THE PACKAGE TOP MAY BE SMALLER THAN  
THE PACKAGE BOTTOM BY UP TO 0.012  
(0.300). DIMENSIONS R AND U ARE  
DETERMINED AT THE OUTERMOST  
EXTREMES OF THE PLASTIC BODY  
EXCLUSIVE OF MOLD FLASH, TIE BAR  
BURRS, GATE BURRS AND INTERLEAD  
FLASH, BUT INCLUDING ANY MISMATCH  
BETWEEN THE TOP AND BOTTOM OF THE  
PLASTIC BODY.  
2
2
0.410  
0.040  
0.430  
–––  
10.42  
1.02  
10.92  
–––  
7. DIMENSION H DOES NOT INCLUDE DAMBAR  
PROTRUSION OR INTRUSION. THE DAMBAR  
PROTRUSION(S) SHALL NOT CAUSE THE H  
DIMENSION TO BE GREATER THAN 0.037  
(0.940). THE DAMBAR INTRUSION(S) SHALL  
NOT CAUSE THE H DIMENSION TO BE  
SMALLER THAN 0.025 (0.635).  
MOTOROLA  
MC145500MC145501MC145502MC145503MC145505  
For More Information On This Product,  
Go to: www.freescale.com  
27  
Freescale Semiconductor, Inc.  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representationorguaranteeregarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,  
andspecifically disclaims any and all liability, includingwithoutlimitationconsequentialorincidentaldamages. “Typical” parameters can and do vary in different  
applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does  
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in  
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of  
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such  
unintendedor unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless  
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.  
Motorola and  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.  
How to reach us:  
USA/EUROPE: Motorola Literature Distribution;  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki,  
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447  
6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315  
HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
I51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
MC145500/D  
For More Information On This Product,  
Go to: www.freescale.com  

相关型号:

MC145505

PCM Codec-Filter Mono-Circuit
MOTOROLA

MC145505DW

PCM Codec-Filter Mono-Circuit
MOTOROLA

MC145505DW

PCM Codec-Filter Mono-Circuit
LANSDALE

MC145505DW

IC,PCM CODEC,SINGLE,CMOS,SOP,16PIN,PLASTIC
NXP

MC145505DWR2

A/MU-LAW, PCM CODEC, PDSO16, PLASTIC, SOP-16
MOTOROLA

MC145505DWR2

A/MU-LAW, PCM CODEC, PDSO16, PLASTIC, SOP-16
ROCHESTER

MC145505L

PCM Codec-Filter Mono-Circuit
MOTOROLA

MC145505P

PCM Codec-Filter Mono-Circuit
MOTOROLA

MC145505P

PCM Codec-Filter Mono-Circuit
LANSDALE

MC145506

PCM CODEC FILTER MONO CIRCUIT
MOTOROLA

MC145506P

A/MU-LAW, PCM CODEC, PDIP22, PLASTIC, DIP-22
MOTOROLA

MC145507

PCM CODEC FILTER MONO CIRCUIT
MOTOROLA