MC32PF1510A0EP [NXP]

Power management integrated circuit (PMIC) for low power application processors;
MC32PF1510A0EP
型号: MC32PF1510A0EP
厂家: NXP    NXP
描述:

Power management integrated circuit (PMIC) for low power application processors

集成电源管理电路
文件: 总108页 (文件大小:961K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PF1510  
Power management integrated circuit (PMIC) for low power  
application processors  
Rev. 3 — 7 April 2020  
Product data sheet  
1 General description  
The PF1510 is a power management integrated circuit (PMIC) designed specifically for  
use with i.MX processors on low-power portable, smart wearable and Internet-of-Things  
(IoT) applications. It is also capable of providing full power solution to i.MX 7ULP, i.MX  
6SL, 6UL, 6ULL and 6SX processors.  
With three high efficiency buck converters, three linear regulators, DDR reference and  
RTC supply, the PF1510 can provide power for a complete system, including application  
processors, memory, and system peripherals.  
1.1 Features and benefits  
This section summarizes the PF1510 features:  
Input voltage VIN from 5V bus, USB, or AC adapter (4.1 V to 6.0 V)  
Linear front-end input LDO (1500 mA input limit)  
Up to 6.5 V input operating range  
VIN can withstand transient and DC inputs from 0 V up to +22 V  
Buck converters:  
SW1, 1.0 A; 0.6 V to 1.3875 V in 12.5 mV steps, or 1.1 V to 3.3 V in variable steps  
SW2, 1.0 A; 0.6 V to 1.3875 V in 12.5 mV steps, or 1.1 V to 3.3 V in variable steps  
SW3, 1.0 A; 1.8 V to 3.3 V in 100 mV steps  
Internal digital soft start  
Quiescent current 1.0 μA in ULP mode with light load  
Peak efficiency > 90 %  
Dynamic voltage scaling on SW1 and SW2  
Modes: forced PWM quasi-fixed frequency mode, adaptive variable-frequency mode  
Programmable output voltage, current limit and soft start  
LDO regulators  
LDO1, 0.75 to 1.5 V/1.8 to 3.3 V, 300 mA with load switch mode  
LDO2, 1.8 to 3.3 V, 400 mA  
LDO3, 0.75 to 1.5 V/1.8 to 3.3 V, 300 mA with load switch mode  
Quiescent current < 1.5 μA in Low-power mode  
Programmable output voltage  
Soft start and ramp  
Current limit protection  
USB_PHY low dropout linear regulator  
LDO2P7 always on regulator output  
LDO/switch supply  
RTC supply VSNVS 3.0 V, 2.0 mA  
Coin cell charger  
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
DDR memory reference voltage, VREFDDR, 0.5 to 0.9 V, 10 mA  
OTP (One time programmable) memory for device configuration  
User programmable start-up sequence, timing, soft-start and power-down sequence  
Programmable regulator output voltages  
I2C interface  
User programmable Standby, Sleep/Low-power, and Off (REGS_DISABLE) modes  
Ambient temperature range −40 °C to 105 °C  
1.2 Applications  
Low-power IoT applications  
Wireless game controllers  
Embedded monitoring systems  
Home automation  
POS  
E-Reader  
Smart mobile/wearable devices  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
2 / 108  
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
2 Application diagram  
PF1510  
Low-power application  
processor  
VREFDDR  
DDR MEMORY  
DDR MEMORY INTERFACE  
PROCESSOR ARM CORE  
SW2  
SW1  
PROCESSOR REAL-TIME  
SOC/GPU  
GPS  
MIPI  
LDO1  
SW3  
FLASH  
NAND - NOR  
INTERFACES  
SD/MMC/  
NAND MEMORY  
WIFI  
LDO2  
LDO3  
VSNVS  
EXTERNAL AMP  
MICROPHONES  
SPEAKERS  
BLUETOOTH  
SNVS_IN  
AUDIO  
CODEC  
PARALLEL CONTROL  
/ GPIO  
CONTROL SIGNALS  
2
2
I C COMMUNICATION  
I C COMMUNICATION  
SENSORS  
LI-CELL  
CHARGER  
COIN CELL  
USB_PHY  
FRONT-END  
LDO  
5.0 V FROM ADAPTER OR USB  
aaa-028828  
Figure 1.ꢀApplication diagram  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
3 / 108  
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
2.1 Functional block diagram  
PF1510 FUNCTIONAL BLOCK DIAGRAM  
BUCK1  
FRONT-END LDO  
(0.6 V to 1.3875 V, 1.0 A, DVS;  
(Up to 6.5 V input, 1500 mA,  
1.1 V to 3.3 V, 1.0 A, no DVS)  
22 V surge)  
BUCK2  
(0.6 V to 1.3875 V, 1.0 A, DVS;  
1.1 V to 3.3 V, 1.0 A, no DVS)  
LDO1  
(0.75 V to 3.3 V, 300 mA)  
LOGIC AND CONTROL  
I C/processor interface/  
2
LDO2  
BUCK3  
(1.8 V to 3.3 V, no DVS)  
(1.8 V to 3.3 V, 400 mA)  
regulator control/  
OTP  
(flexible configuration)  
LDO3  
(0.75 V to 3.3 V, 300 mA)  
VSNVS (RTC SUPPLY)  
(3.0 V, 2.0 mA)  
USBPHY  
(4.9 V or 3.3 V, 60 mA)  
DDR VOLTAGE REFERENCE  
LDO2P7  
(2.7 V, 5.0 mA)  
(V  
/2, 10 mA)  
INREFDDR  
aaa-028829  
Figure 2.ꢀFunctional block diagram  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
4 / 108  
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
2.2 Internal block diagram  
PF1510 ANALOG CORE  
(REFERENCE  
AND BIAS CURRENT)  
SW1FB  
SW1IN  
SW1LX  
EPAD  
VCORE  
VDIG  
SW1 DVS  
AND MISC  
REFERENCE  
VCORE  
LDO  
EA AND  
DRIVER  
PF1510 DIGITAL CORE  
AND STATE MACHINE  
VDIG  
LDO  
SW2FB  
SW2IN  
SW2LX  
EPAD  
COIN CELL  
CHARGER  
OTP MEMORY  
LICELL  
VSNVS  
VSYS  
SW2 DVS  
AND MISC  
REFERENCE  
VSNVS  
EA AND  
DRIVER  
WATCHDOG  
TIMER  
32 kHz CLOCK  
16 kHz CLOCK  
SW3FB  
SW3IN  
SW3LX  
EPAD  
VIN  
USBPHY  
LDO2P7  
LDO2P7  
LDO  
USBPHY  
LDO  
SW3  
AND MISC  
REFERENCE  
EA AND  
DRIVER  
ICTEST  
VREFDDR  
DIVIDE INPUT  
BY 2  
INTERNAL  
LOGIC  
LDO1  
LDO3  
LDO3  
digital signal(s)  
analog reference(s)  
16 kHz clock / derivative  
32 kHz clock / derivative  
aaa-028830  
Figure 3.ꢀInternal block diagram  
3 Orderable parts  
The PF1510 is available only with preprogrammed configurations. These preprogrammed  
devices are identified using the program codes from Table 1, which also list the  
associated NXP reference designs where applicable. Details of the OTP programming for  
each device can be found in Table 53.  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
5 / 108  
 
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
Table 1.ꢀOrderable part variations  
Part number[1]  
Temperature (TA)  
Package  
Programming options  
0 - not programmed  
MC32PF1510A0EP  
MC32PF1510A1EP  
MC32PF1510A2EP  
MC32PF1510A3EP  
MC32PF1510A4EP  
MC32PF1510A5EP  
MC32PF1510A6EP  
MC32PF1510A7EP  
MC34PF1510A0EP  
MC34PF1510A1EP  
MC34PF1510A2EP  
MC34PF1510A3EP  
MC34PF1510A4EP  
MC34PF1510A5EP  
MC34PF1510A6EP  
MC34PF1510A7EP  
1 (Default)  
2 (i.MX 7ULP with LPDDR3) [2]  
3 (i.MX 6UL with DDR3L)  
4 (i.MX 7ULP with LPDDR3)  
5 (i.MX 6UL with DDR3)  
6 (i.MX 6ULL with DDR3L)  
7 (i.MX 6UL with LPDDR2)  
0 - not programmed  
−40 °C to 85 °C (for use  
in consumer applications)  
98ASA00913D, 40-pin QFN  
5.0 mm x 5.0 mm with exposed pad  
1 (Default)  
2 (i.MX 7ULP with LPDDR3) [2]  
3 (i.MX 6UL with DDR3L)  
4 (i.MX 7ULP with LPDDR3)  
5 (i.MX 6UL with DDR3)  
6 (i.MX 6ULL with DDR3L)  
7 (i.MX 6UL with LPDDR2)  
−40 °C to 105 °C (for use  
in industrial applications)  
[1] For tape and reel, add an R2 suffix to the part number.  
[2] For internal validation only  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
6 / 108  
 
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
4 Pinning information  
4.1 Pinning  
PF1510  
30 VSNVS  
29 VLDO1  
28 VLDO1IN  
27 SW1FB  
WDI  
SDA  
1
2
3
4
5
6
7
8
9
SCL  
VDDIO  
VDDOTP  
PWRON  
STANDBY  
ONKEY  
INTB  
SW1IN  
26  
EPAD  
(41)  
25 SW1LX  
24 VCORE  
23 VDIG  
22 VINREFDDR  
21 VREFDDR  
RESETBMCU 10  
Transparent top view  
aaa-028831  
Figure 4.ꢀPinout diagram  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
7 / 108  
 
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
4.2 Pin definitions  
Table 2.ꢀPin description  
Pin  
number  
Block  
Pin name  
Recommended connection  
Recommended connection when not  
used  
1
WDI  
Watchdog input from processor  
Connect to WDI signal from processor. Connect via 100 kΩ to regulator with  
Pull up via 8 kΩ - 100 kΩ to VDDIO  
output voltage < 3.6 V  
2
3
4
SDA  
I2C data line  
Pull-up to VDDIO  
Leave floating  
SCL  
I2C clock line  
Pull-up to VDDIO  
Leave floating  
VDDIO  
Supply for I2C bus  
Connect to 1.7 to 3.6 V supply. Bypass Leave floating  
with 0.1 µF capacitor to ground  
5
6
VDDOTP  
PWRON  
Supply to program OTP fuses  
Power On/Off from processor  
Connect to ground for the fuse loading  
N/A  
N/A  
Connect to PMIC_ON_REQ from  
processor. Pull up via 8 kΩ - 100 kΩ to  
VSNVS if required  
7
8
9
STANDBY  
ONKEY  
INTB  
Standby input signal from processor  
ONKEY push button input  
Connect to PMIC_STBY_REQ signal  
from processor  
Connect to ground  
Connect to push button and pull up via  
8kΩ - 100 kΩ to VIN  
Connect via 100 kΩ to VSYS  
Open drain interrupt signal to processor Pull-up via 68 kΩ - 100 kΩ to VSNVS or Leave floating  
other rail at voltage less than or equal to  
VDDIO  
10  
11  
RESETBMCU  
VLDO3IN  
Open drain reset output to processor  
LDO3 regulator input  
Pull-up via 68 kΩ - 100 kΩ to VSNVS or Leave floating  
other rail at voltage less than or equal to  
VDDIO  
Connect to VSYS and bypass with 1.0  
mF capacitor to ground  
Connect to regulator with output voltage  
< 4.5 V  
12  
13  
14  
VLDO3  
SW3LX  
SW3IN  
LDO3 regulator output  
SW3 switching node  
Input to SW3 regulator  
Bypass with 4.7 µF capacitor to ground Leave floating  
Connect to SW3 inductor  
Leave floating  
Connect to VSYS and bypass with 0.1  
µF + 4.7 µF capacitors to ground  
Connect to VSYS  
15  
16  
17  
SW3FB  
SW2FB  
SW2IN  
Output voltage feedback for SW3  
Output voltage feedback for SW2  
Input to SW2 regulator  
Connect to SW3 output voltage rail near Leave floating  
load  
Connect to SW2 output voltage rail near Leave floating  
load  
Connect to VSYS and bypass with 0.1  
µF + 4.7 µF capacitors to ground  
Connect to VSYS  
18  
19  
20  
SW2LX  
VLDO2  
SW2 switching node  
LDO2 regulator output  
LDO2 regulator input  
Connect to SW2 inductor  
Leave floating  
Leave floating  
Bypass with 10 µF capacitor to ground  
VLDO2IN  
Connect to VSYS and bypass with 1.0  
mF capacitor to ground  
Connect to regulator with output voltage  
< 4.5 V  
21  
22  
VREFDDR  
VREFDDR regulator output  
VREFDDR regulator input  
Bypass with 1.0 µF capacitor to ground Leave floating  
VINREFDDR  
Ensure there is at least 1.0 µF net  
capacitance from VINREFDDR to  
ground  
Leave floating  
23  
24  
25  
26  
VDIG  
Digital core supply  
Analog core supply  
SW1 switching node  
Input to SW1 regulator  
Bypass with 1.0 µF capacitor to ground N/A  
Bypass with 1.0 µF capacitor to ground N/A  
VCORE  
SW1LX  
SW1IN  
Connect to SW1 inductor  
Leave floating  
Connect to VSYS  
Connect to VSYS and bypass with 0.1  
µF + 4.7 µF capacitors to ground  
27  
28  
29  
SW1FB  
VLDO1IN  
VLDO1  
Output voltage feedback for SW1  
LDO1 regulators input  
Connect to SW1 output voltage rail near Leave floating  
load  
Connect to VSYS and bypass with 1.0  
µF capacitor to ground  
Connect to regulator with output voltage  
< 4.5 V  
LDO1 regulator output  
Bypass with 4.7 µF capacitor to ground Leave floating  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
8 / 108  
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
Pin  
number  
Block  
Pin name  
Recommended connection  
Recommended connection when not  
used  
30  
VSNVS  
LICELL  
VSNVS regulator/switch output  
Coin cell supply input/output  
Bypass with 0.47 µF capacitor to  
ground  
Bypass with 0.47 µF capacitor to  
ground  
31  
Bypass with 0.1 µF capacitor. Connect  
to optional coin cell.  
Bypass with 0.1 µF capacitor to ground  
32  
33  
34  
35  
36  
37  
GND  
NC  
Ground  
Connect to ground  
Connect to ground  
Leave floating  
N/A  
Not connected  
Not connected  
NC  
VSYS  
VSYS  
VIN  
Main input voltage to PMIC  
Bypass with 2x 22 µF/10 V capacitors  
or a 47 µF/10 V capacitor to ground  
Main IC supply  
Connect to a valid 5.0 V input, bypass  
with a 2.2 µF/25 V capacitor to ground  
Leave floating  
38  
LDO2P7  
LDO2P7 regulator output  
Bypass with 2.2 μF capacitor to ground Bypass with 2.2 μF capacitor to ground  
mandatory mandatory  
39  
40  
USBPHY  
GND  
USBPHY regulator output  
Ground  
Bypass with 1.0 µF capacitor to ground Leave floating  
Connect to ground  
Connect to ground  
N/A  
EP  
Expose pad. Functions as ground return Ground. Connect this pad to the inner  
for buck and boost regulators  
and external ground planes through  
multiple vias to allow effective thermal  
dissipation.  
5 General product characteristics  
5.1 Thermal characteristics  
Table 3.ꢀThermal ratings  
Symbol  
Description (Rating)  
Min  
Max  
Unit  
THERMAL RATINGS  
TA  
Ambient operating temperature range (industrial)  
Ambient operating temperature range (consumer)  
−40  
−40  
105  
85  
°C  
[1]  
TJ  
Operating junction temperature range  
Storage temperature range  
−40  
−65  
125  
150  
°C  
°C  
°C  
TST  
TPPRT  
[2] [3]  
Peak package reflow temperature  
QFN40 THERMAL RESISTANCE AND PACKAGE DISSIPATION RATINGS  
[4] [5]  
[6]  
RΘJA  
Junction to ambient thermal resistance, natural convection  
Four layer board (2s2p)  
°C/W  
27  
Six layer board (2s4p)  
Eight layer board (2s6p)  
20.6  
17.8  
[4] [6]  
RΘJMA  
Junction to ambient (@200ft/min)  
Four layer board (2s2p)  
°C/W  
21.4  
8.8  
[7]  
[8]  
[9]  
RΘJB  
Junction to board  
°C/W  
°C/W  
°C/W  
RΘJCBOTTOM  
ΨJT  
Junction to case bottom  
1.4  
Junction to package top – Natural convection  
0.6  
[1] Do not operate beyond 125 °C for extended periods of time. Operation above 150 °C may cause permanent damage to the IC. See Thermal Protection  
Thresholds for thermal protection features.  
[2] Pin soldering temperature limit is for 10 seconds maximum duration. Not designed for immersion soldering. Exceeding these limits may cause a  
malfunction or permanent damage to the device.  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
9 / 108  
 
 
 
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
[3] NXP's package reflow capability meets Pb-free requirements for JEDEC standard J-STD-020C. For peak package reflow temperature and moisture  
sensitivity levels (MSL), go to http://www.nxp.com, search by part number [ remove prefixes/suffixes and enter the core ID to view all orderable parts (for  
MC33xxxD enter 33xxx), and review parametrics.  
[4] Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient  
temperature, air flow, power dissipation of other components on the board, and board thermal resistance.  
[5] The Board uses the JEDEC specifications for thermal testing (and simulation) JESD51-7 and JESD51-5.  
[6] Per JEDEC JESD51-6 with the board horizontal.  
[7] Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board  
near the package.  
[8] Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).  
[9] Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2.  
When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.  
5.2 Absolute maximum ratings  
Table 4.ꢀMaximum ratings  
Symbol  
I/Os  
Description (Rating)  
Min  
Max  
Unit  
VIN  
Main IC supply  
−0.3  
−0.3  
−0.3  
−0.3  
−0.3  
−0.3  
−0.3  
−0.3  
−0.3  
−0.3  
24  
V
V
V
V
V
V
V
V
V
V
VDDIO  
SCL  
I/O supply voltage. Connect to voltage rail between 1.7 V and 3.3 V.  
SCL when used in I2C mode. SCLK when used in SPI mode.  
SDA when used in I2C mode. MISO when used in SPI mode.  
RESETBMCU open drain output  
PWRON input  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
4.8  
3.6  
3.6  
SDA  
RESETBMCU  
PWRON  
STANDBY  
ONKEY  
INTB  
STANDBY input  
ONKEY push button input  
INTB open-drain output  
WDI  
Watchdog input from processor  
VDDOTP  
VDDOTP  
BUCK 1  
SW1IN  
SW1LX  
SW1FB  
BUCK 2  
SW2IN  
SW2LX  
SW2FB  
BUCK 3  
SW3IN  
SW3LX  
SW3FB  
LDO1  
Connect to ground in the application  
−0.3  
10  
V
Buck 1 input supply  
Buck 1 switching node  
Buck 1 feedback input  
−0.3  
−0.3  
−0.3  
4.8  
4.8  
3.6  
V
V
V
Buck 2 input supply  
−0.3  
−0.3  
−0.3  
4.8  
4.8  
3.6  
V
V
V
Buck 2 switching node  
Buck 2 output voltage feedback  
Buck 3 input supply  
−0.3  
−0.3  
−0.3  
4.8  
4.8  
3.6  
V
V
V
Buck 3 switching node  
Buck 3 output voltage feedback  
VLDO1IN  
VLDO1  
LDO1 input supply  
LDO1 output  
−0.3  
−0.3  
4.8  
3.6  
V
V
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
10 / 108  
 
 
 
 
 
 
 
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
Symbol  
LDO2  
Description (Rating)  
Min  
Max  
Unit  
VLDO2IN  
VLDO2  
LDO2 input supply  
LDO2 output  
−0.3  
−0.3  
4.8  
3.6  
V
V
LDO3  
VLDO3IN  
VLDO3  
LDO3 input supply  
LDO3 output  
−0.3  
−0.3  
4.8  
3.6  
V
V
VSNVS  
VSNVS  
VSNVS regulator output  
Coin cell input  
−0.3  
−0.3  
3.6  
3.6  
V
V
LICELL  
FRONT-END LDO  
LDO2P7  
USBPHY  
LDO2P7 regulator output  
USBPHY regulator output  
−0.3  
−0.3  
3.6  
5.5  
V
V
INPUT/OUTPUT SUPPLY  
VINREFDDR  
VREFDDR  
IC CORE  
VSYS  
VREFDDR input supply  
−0.3  
−0.3  
3.6  
3.6  
V
V
VREFDDR output  
Main input voltage to PMIC  
−0.3  
−0.3  
−0.3  
4.8  
V
V
VDIG  
VDIG regulator output (used within PF1510)  
VCORE regulator output (used within PF1510)  
1.65  
1.65  
VCORE  
ELECTRICAL RATINGS  
ESD ratings  
[1]  
VESD  
Human body model  
±2000  
±750  
±500  
V
Charge device model (corner pins)  
Charge device model (all other pins)  
[1] Testing is performed in accordance with the human body model (HBM) (CZAP = 100 pF, RZAP = 1500 Ω), and the charge device model (CDM), Robotic  
(CZAP = 4.0 pF).  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
11 / 108  
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
5.3 Electrical characteristics  
5.3.1 Electrical characteristics – Front-end LDO  
All parameters are specified at TA = −40 to 105 °C, VIN = 5.0 V, VSYS = 3.7 V, typical  
external component values, unless otherwise noted. Typical values are characterized at  
VIN = 5.0 V, VSYS = 3.7 V and 25 °C, unless otherwise noted.  
Table 5.ꢀFront-end LDO  
Symbol Parameter  
FRONT-END LDO INPUT  
Measurement condition  
Operating voltage  
Rising  
Min  
Typ  
Max  
Unit  
VIN  
VIN voltage range  
VUVLO  
VOVLO  
22  
V
VIN_WITHSTAND  
VIN_OVLO  
VOVLO_HYS  
tD-OVLO  
VIN maximum withstand voltage rating  
VIN overvoltage threshold  
V
6.0  
50  
6.5  
150  
10  
7.0  
V
VIN overvoltage threshold hysteresis Falling  
VIN overvoltage delay  
250  
15  
mV  
µs  
V
5.0  
3.8  
VUVLO  
VIN to GND minimum turn on  
threshold accuracy  
VIN rising  
4.0  
4.2  
VUVLO-HYS  
VIN2SYS_50  
VIN UVLO hysteresis  
400  
20  
500  
50  
600  
80  
mV  
mV  
VIN to VSYS minimum turn on  
threshold accuracy  
VIN rising, 50 mV setting  
VIN rising, 175 mV setting  
VIN2SYS_175  
VIN to VSYS minimum turn on  
threshold accuracy  
100  
175  
250  
mV  
Table 6.ꢀInput currents  
Symbol  
Parameter  
Measurement condition  
Min  
Typ  
Max  
Unit  
VIN CURRENT LIMIT  
ILIM10  
ILIM15  
ILIM20  
ILIM25  
ILIM30  
ILIM35  
ILIM40  
ILIM45  
ILIM50  
ILIM100  
ILIM150  
ILIM200  
ILIM300  
ILIM400  
VIN current limit (10 mA settings)  
10 mA  
15 mA  
20 mA  
25 mA  
30 mA  
35 mA  
40 mA  
45 mA  
50 mA  
100 mA  
150 mA  
200 mA  
300 mA  
400 mA  
6.0  
8.5  
11  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
VIN current limit (15 mA settings)  
VIN current limit (20 mA settings)  
VIN current limit (25 mA settings)  
VIN current limit (30 mA setting)  
VIN current limit (35 mA settings)  
VIN current limit (40 mA settings)  
VIN current limit (45 mA settings)  
VIN current limit (50 mA settings)  
VIN current limit (100 mA settings)  
VIN current limit (150 mA settings)  
VIN current limit (200 mA settings)  
VIN current limit (300 mA setting)  
VIN current limit (400 mA settings)  
10.5  
14  
12.75 16  
17 21  
21.25 26  
25.5 30  
29.75 35  
34 40  
38.25 45  
17.5  
21  
24.5  
28  
31.5  
35  
42.5  
95  
50  
85  
105  
125  
170  
260  
345  
137.5 160  
190  
285  
380  
210  
320  
425  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
12 / 108  
 
 
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
Symbol  
ILIM500  
ILIM600  
ILIM700  
ILIM800  
ILIM900  
ILIM1000  
ILIM1500  
RINSD  
Parameter  
Measurement condition  
500 mA  
Min  
430  
520  
610  
690  
780  
855  
1260  
18  
Typ  
475  
570  
665  
760  
855  
950  
1400  
30  
Max  
530  
640  
750  
850  
950  
1100  
1700  
42  
Unit  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
kΩ  
VIN current limit (500 mA settings)  
VIN current limit (600 mA settings)  
VIN current limit (700 mA settings)  
VIN current limit (800 mA settings)  
VIN current limit (900 mA settings)  
VIN current limit (1000 mA settings)  
VIN current limit (1500 mA settings)  
Input self discharge resistance  
600 mA  
700 mA  
800 mA  
900 mA  
1000 mA  
1500 mA  
Table 7.ꢀSwitch impedances and leakage currents  
Symbol  
RVIN2SYS  
ISYS  
Parameter  
Measurement Condition  
Min  
100  
0
Typ  
250  
0.2  
Max  
550  
10  
Unit  
mΩ  
µA  
VIN to VSYS resistance  
VSYS leakage current  
VSYS = 0 V  
Table 8.ꢀWatchdog timer  
Symbol  
tWD  
Parameter  
Measurement condition  
Min  
Typ  
80  
0
Max  
Unit  
s
Watchdog timer period  
Watchdog timer accuracy  
tWDACC  
−20  
20  
%
Table 9.ꢀInternal 2.7 V Regulator (LDO2P7)  
Symbol  
VGDRV  
Parameter  
Measurement condition  
Min  
2.6  
5.0  
0
Typ  
2.7  
Max  
2.8  
Unit  
V
Output voltage  
Output current  
Dropout voltage  
IGDRV  
mA  
mV  
VDO(GDRV)  
800  
Table 10.ꢀUSBPHY LDO  
Symbol  
Parameter  
Measurement condition  
Min  
Typ  
Max  
Unit  
VUSB_PHY  
Output voltage  
IOUT = 10 mA; 3.3 V and 4.9 −5.0  
V settings. VIN = 5.5 V  
5.0  
%
IUSB_PHY  
Maximum output current  
60  
mA  
USBRDIS  
USBCAPSTA  
Internal discharge resistance  
Output capacitor for stable operation  
500  
1000  
1.0  
1500  
2.2  
0 µA < IOUT < 60 mA, MAX  
ESR = 10 mΩ  
0.7  
µF  
IQUSB  
Quiescent supply current  
0
35  
µA  
USBPHYLDREG DC load regulation  
VIN = 5.5 V, 30 µA < IOUT  
60 mA  
<
5.0  
13  
mV  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
13 / 108  
 
 
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
Symbol  
Parameter  
Measurement condition  
Min  
Typ  
200  
150  
60  
Max  
350  
200  
75  
Unit  
mV  
mA  
dB  
USBPHYDO  
USBPHYILIM  
PSRRUSB_PHY  
Dropout voltage  
Output current limit  
PSRR  
VIN = 5.0 V, IOUT = 60 mA  
65  
VIN = 5.5 V, COUT = 1.0 µF  
55  
5.3.2 Electrical characteristics – SW1 and SW2  
All parameters are specified at TA = −40 to 105 °C, VSYS = VSWxIN = 2.5 to 4.5 V, VSWx  
= 1.2 V, ISWx = 200 mA, typical external component values, fSWx = 2.0 MHz, unless  
otherwise noted. Typical values are characterized at VSYS = VSWxIN = 3.6 V, VSWx  
1.1 V, ISWx = 100 mA, and 25 °C, unless otherwise noted.  
=
Table 11.ꢀSW1 and SW2 electrical characteristics  
Symbol  
VSWxIN  
ISWx  
Parameter  
Min  
2.5  
Typ  
Max  
4.5  
Unit  
V
Operating input voltage  
Rated output current  
1000  
−15  
mA  
mV  
VSWx  
Output voltage accuracy  
15  
DVS enabled mode (OTP_SWx_DVS_SEL = 0)  
Normal power mode, 2.5 V < VSWxIN < 4.5 V, 0 < ISWx < 1.0 A  
0.6 V ≤ VSWx ≤ 1.0 V  
VSWx  
VSWx  
VSWx  
VSWx  
VSWx  
VSWx  
Output voltage accuracy  
−2.0  
−30  
−3.0  
−45  
−3.0  
−55  
2.0  
30  
%
DVS enabled mode (OTP_SWx_DVS_SEL = 0)  
Normal power mode, 2.5 V < VSWxIN < 4.5 V, 0 < ISWx < 1.0 A  
1.0 V < VSWx ≤ 1.3875 V  
Output voltage accuracy  
mV  
%
DVS enabled mode (OTP_SWx_DVS_SEL = 0)  
Low-power mode, 2.5 V < VSWxIN < 4.5 V, 0 < ISWx < 0.1 A  
0.6 V ≤ VSWx ≤ 1.0 V  
Output voltage accuracy  
3.0  
45  
DVS enabled mode (OTP_SWx_DVS_SEL = 0)  
Low-power mode, 2.5 V < VSWxIN < 4.5 V, 0 < ISWx < 0.1 A  
1.0 V < VSWx ≤ 1.3875 V  
Output voltage accuracy  
mV  
%
DVS disabled mode (OTP_SWx_DVS_SEL = 1)  
Normal power mode, 2.5 V < VSWxIN < 4.5 V, 0 < ISWx < 1.0 A  
1.1 V ≤ VSWx ≤ 1.5 V  
Output voltage accuracy  
3.0  
55  
DVS disabled mode (OTP_SWx_DVS_SEL = 1)  
Normal power mode, 2.5 V < VSWxIN < 4.5 V, 0 < ISWx < 1.0 A  
1.8 V ≤ VSWx ≤ 3.3 V  
Output voltage accuracy  
mV  
DVS disabled mode (OTP_SWx_DVS_SEL = 1)  
Low-power mode, 2.5 V < VSWxIN < 4.5 V, 0 < ISWx < 0.1 A  
1.1 V < VSWx ≤ 1.5 V  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
14 / 108  
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
VSWx  
Output voltage accuracy  
−4.0  
4.0  
%
DVS disabled mode (OTP_SWx_DVS_SEL = 1)  
Low-power mode, 2.5 V < VSWxIN < 4.5 V, 0 < ISWx < 0.1 A  
1.8 V ≤ VSWx ≤ 3.3 V  
ΔVSWx  
Output ripple  
5.0  
88  
mV  
%
SWxEFF  
Efficiency  
VSWxIN = 3.6 V, LSWx = 1.0 µH, DCR = 50 mΩ  
LP/ ULP mode, 1.2 V, 1.0 mA  
SWxEFF  
SWxEFF  
SWxEFF  
SWxEFF  
ISWxLIMH  
Efficiency  
90  
92  
89  
83  
%
%
%
%
A
VSWxIN = 3.6 V, LSWx = 1.0 µH, DCR = 50 mΩ  
Normal power mode, 1.2 V, 50 mA  
Efficiency  
VSWxIN = 3.6 V, LSWx = 1.0 µH, DCR = 50 mΩ  
Normal power mode, 1.2 V, 150 mA  
Efficiency  
VSWxIN = 3.6 V, LSWx = 1.0 µH, DCR = 50 mΩ  
Normal power mode, 1.2 V, 400 mA  
Efficiency  
VSWxIN = 3.6 V, LSWx = 1.0 µH, DCR = 50 mΩ  
Normal power mode, 1.2 V, 1000 mA  
Current limiter peak (high-side MOSFET) current detection  
SWxILIM[1:0] = 00  
0.7  
0.8  
1.0  
1.4  
1.0  
1.2  
1.5  
2.0  
1.3  
1.6  
2.0  
2.6  
SWxILIM[1:0] = 01  
SWxILIM[1:0] = 10  
SWxILIM[1:0] = 11  
ISWxLIML  
ISWxQ  
Current limiter low-side MOSFET current detection (sinking current)  
0.7  
1.0  
1.0  
6.0  
5.5  
1.3  
A
Quiescent current (at 25 °C)  
µA  
Low-power mode with DVS disabled (OTP_SWx_DVS_SEL = 1)  
ISWxQ  
Quiescent current (at 25 °C)  
µA  
µA  
Low-power mode with DVS enabled (OTP_SWx_DVS_SEL = 0)  
ISWxQ  
Quiescent current (at 25 °C)  
Normal power mode with DVS disabled (OTP_SWx_DVS_SEL = 1)  
ISWxQ  
Quiescent current (at 25 °C)  
µA  
Normal power mode with DVS enabled (OTP_SWx_DVS_SEL = 0)  
10  
VSWxOSH  
Startup overshoot (Normal mode)  
25  
mV  
ISWx = 0 mA  
DVS speed = 12.5 mV/4 µs, VSYS = VSWxIN = 3.6 V, VSWx = 1.35 V  
tONSWx  
Turn on time  
500  
µs  
10 % to 90 % of end value  
DVS speed = 12.5 mV/4 µs, VSYS = VSWxIN = 3.6 V, VSWx = 1.35 V  
VSWxLOTR  
Transient load regulation (Normal power mode)  
Transient load = 50 mA to 250 mA, di/dt = 200 mA/μs  
Overshoot  
mV  
25  
25  
Undershoot  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
15 / 108  
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
Symbol  
RONSWxP  
RONSWxN  
RSWxDIS  
Parameter  
Min  
Typ  
200  
150  
500  
Max  
Unit  
mΩ  
mΩ  
SWx P-MOSFET RDS(on) at VSWxIN = 3.6 V  
SWx N-MOSFET RDS(on) at VSWxIN = 3.6 V  
Turn off discharge resistance  
5.3.3 Electrical characteristics – SW3  
All parameters are specified at TA = −40 to 105 °C, VSYS = VSW3IN = 2.5 to 4.5 V, VSW3  
= 1.8 V, ISW3 = 200 mA, typical external component values, fSW3 = 2.0 MHz, unless  
otherwise noted. Typical values are characterized at VSYS = VSW3IN = 3.6 V, VSW3  
1.8 V, ISW3 = 200 mA, and 25 °C, unless otherwise noted.  
=
Table 12.ꢀSW3 electrical characteristics  
Symbol  
VSW3IN  
VSW3  
Parameter  
Min  
Typ  
Max  
Unit  
V
Operating input voltage  
2.5  
4.5  
Output voltage accuracy (all voltage settings)  
%
Normal power mode, 2.5 V < VSW3IN < 4.5 V, 0 < ISW3 < 1.0 A  
−2.0  
2.0  
VSW3  
Output voltage accuracy (all voltage settings)  
%
Low-power mode, 2.5 V < VSW3IN < 4.5 V, 0 < ISW3 < 0.1 A  
−3.0  
3.0  
ΔVSW3  
SW3EFF  
Output ripple  
5.0  
mV  
%
Efficiency  
VSW3IN = 3.6 V, LSW3 = 1.0 µH, DCR = 50 mΩ  
LP/ ULP Mode, 1.8 V, 1.0 mA  
88  
90  
91  
92  
83  
Efficiency  
%
%
%
%
A
SW3EFF  
SW3EFF  
SW3EFF  
VSW3IN = 3.6 V, LSWx = 1.0 µH, DCR = 50 mΩ  
Normal power mode, 1.8 V, 50 mA  
Efficiency  
VSW3IN = 3.6 V, LSWx = 1.0 mH, DCR = 50 mΩ  
Normal power mode, 1.8 V, 100 mA  
Efficiency  
VSW3IN = 3.6 V, LSWx = 1.0 µH, DCR = 50 mΩ  
Normal power mode, 1.8 V, 400 mA  
Efficiency  
SW3EFF  
ISW3LIMH  
VSW3IN = 3.6 V, LSWx = 1.0 µH, DCR = 50 mΩ  
Normal power mode, 1.8 V, 1000 mA  
Current limiter peak (high-side MOSFET) current detection  
SW3ILIM[1:0] = 00  
0.7  
0.8  
1.0  
1.4  
1.0  
1.2  
1.5  
2.0  
1.3  
1.6  
2.0  
2.6  
SW3ILIM[1:0] = 01  
SW3ILIM[1:0] = 10  
SW3ILIM[1:0] = 11  
ISW3LIML  
ISW3Q  
Current limiter low-side MOSFET current detection (sinking current)  
0.7  
1.0  
1.3  
A
Quiescent current (at 25 °C)  
Low-power mode  
µA  
1.0  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
16 / 108  
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
VSW3OSH  
Start-up overshoot (Normal mode)  
ISW3 = 0 mA  
50  
mV  
VSYS = VSW3IN = 3.6 V, VSW3 = 1.8 V  
tONSW3  
Turn on time  
500  
µs  
10 % to 90 % of end value  
VSYS = VSW3IN = 3.6 V, VSW3 = 1.8 V  
VSW3LOTR  
Transient load regulation (Normal power mode)  
Transient load = 50 mA to 250 mA, di/dt = 200 mA/μs  
Overshoot  
mV  
50  
50  
Undershoot  
RONSW3N  
RONSW3P  
RSW3DIS  
SW3 N-MOSFET RDS(on) at VSW3IN = 3.6 V  
SW3 P-MOSFET RDS(on) at VSW3IN = 3.6 V  
Turn off discharge resistance  
150  
200  
300  
mΩ  
mΩ  
5.3.4 Electrical characteristics – LDO1  
All parameters are specified at TA = −40 to 105 °C, VSYS = 2.5 to 4.5 V, VLDOIN1  
=
3.6 V, VLDO1[4:0] = 11111, ILDO1 = 10 mA, typical external component values, unless  
otherwise noted. Typical values are characterized at VSYS = 3.6 V, VLDOIN1 = 3.6 V,  
VLDO1[4:0] = 11111, ILDO1 = 10 mA, and 25 °C, unless otherwise noted.  
Table 13.ꢀLDO1 electrical characteristics  
Symbol  
Parameter  
Min  
Typ  
Max Unit  
VLDO1IN  
Operating input voltage  
V
VLDO1 + 250 mV ≤ VSYS ≤ 4.5 V  
1.0  
4.5  
VLDO1NOM  
ILDO1MAX  
ILDO1MAXLPM  
VLDO1TOL  
Nominal output voltage  
See Table 33  
V
Rated output load current, Normal mode  
Rated output load current, Low-power mode  
300  
10  
mA  
mA  
%
Output voltage tolerance, Normal mode  
VLDO1INMIN < VLDO1IN < 4.5 V, 0 mA < ILDO1 ≤ 300 mA  
0.8 V ≤ VLDO1 < 1.8 V  
−2.5  
−2.5  
2.5  
2.5  
4.0  
1.8 V ≤ VLDO1 ≤ 3.3 V  
VLDO1INMIN < VLDO1IN < 4.5 V, 0 mA < ILDO1 < 10 mA (Low-power −4.0  
mode)  
ILDO1LIM  
Current limit  
320  
1000 mA  
ILDO1 when VLDO1 is forced to VLDO1NOM/2  
ILDO1OCP  
ILDO1Q  
LDO1FAULTI threshold (also used to disable LDO1 when  
REGSCPEN = 1)  
320  
1000 mA  
µA  
Quiescent current (at 25 °C)  
No load, change in IVSYS and IVLDOIN1  
When LDO1 enabled in Normal mode  
When LDO1 enabled in Low-power mode  
17  
2.5  
RDSON_QFN_LDO1 Dropout on resistance  
350  
mΩ  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
17 / 108  
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
Symbol  
Parameter  
Min  
Typ  
Max Unit  
PSRRLDO1  
PSRR  
dB  
ILDO1 = 150 mA, 20 Hz to 20 kHz  
VLDO1 = 3.30 V, VLDO1IN = 3.8 V, VSYS = 4.2 V  
56  
TRVLDO1  
Turn on time  
µs  
10 % to 90 % of end value  
VLDO1INMIN < VLDO1IN ≤ 4.5 V, ILDO1 = 0.0 mA  
200  
250  
1.0  
500  
RLDO1DIS  
Turn off discharge resistance  
LDO1OUTOSHT Start-up overshoot (% of final value)  
VLDO1INMIN < VLDO1IN ≤ 4.5 V, ILDO1 = 0.0 mA  
%
2.0  
VLDO1LOTR  
Transient load response  
mV  
VLDO1INMIN < VLDO1IN ≤ 4.5 V, ILDO1 = 10 mA to 200 mA in 10 μs  
Overshoot  
Undershoot  
50  
50  
5.3.5 Electrical characteristics – LDO2  
All parameters are specified at TA = −40 to 105 °C, VSYS = 3.6 V, VLDOIN2 = 3.6 V,  
VLDO2[3:0] = 1111, ILDO2 = 10 mA, typical external component values, unless otherwise  
noted. Typical values are characterized at VSYS = 3.6 V, VLDOIN2 = 3.6 V, VLDO2[3:0] =  
1111, ILDO2 = 10 mA, and 25 °C, unless otherwise noted.  
Table 14.ꢀLDO2 electrical characteristics  
Symbol  
Parameter  
Min  
Typ  
Max Unit  
VLDO2IN  
Operating input voltage  
1.8 V ≤ VLDO2NOM ≤ 2.5 V  
2.6 V ≤ VLDO2NOM ≤ 3.3 V  
V
4.5  
2.8  
VLDO2NOM + 0.250  
4.5  
VLDO2NOM  
ILDO2MAX  
ILDO2MAXLPM  
VLDO2TOL  
Nominal output voltage  
See Table 35  
V
Rated output load current, Normal mode  
Rated output load current, Low-power mode  
400  
10  
mA  
mA  
%
Output voltage tolerance  
VLDO2INMIN < VLDO2IN < 4.5 V  
10.0 mA ≤ ILDO2 < 400 mA  
−2.0  
−4.0  
2.0  
4.0  
0.0 mA < ILDO2 < 10 mA (Low-power mode)  
ILDO2LIM  
Current limit  
450  
750  
1050 mA  
ILDO2 when VLDO2 is forced to VLDO2NOM/2  
ILDO2OCP  
ILDO2Q  
LDO2FAULTI threshold (also used to disable LDO2  
when REGSCPEN = 1)  
450  
1050 mA  
µA  
Quiescent Current (25 °C)  
No load, change in IVSYS and IVLDO2IN  
When VLDO2 enabled in Normal mode  
When VLDO2 enabled in Low-power mode  
15  
1.5  
RDSON_QFN_LDO2 Dropout on resistance  
300 mΩ  
PSRRVLDO2  
PSRR  
dB  
ILDO2 = 200 mA, 20 Hz to 20 kHz  
VLDO2 = 3.30 V, VLDO2IN = 3.9 V, VSYS = 4.2 V  
60  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
18 / 108  
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
Symbol  
Parameter  
Min  
Typ  
Max Unit  
tONLDO2  
Turn on time  
200  
500 µs  
10 % to 90 % of end value  
VLDO2INMIN < VLDO2IN ≤ 4.5 V, ILDO2 = 0.0 mA  
RLDO2DIS  
Turn off discharge resistance  
250  
1.0  
LDO2OUTOSHT Start-up overshoot (% of final value)  
VLDO2INMIN < VLDO2IN ≤ 4.5 V, ILDO2 = 0.0 mA  
2.0  
%
VLDO2LOTR  
Transient load response  
mV  
VLDO2INMIN < VLDO2IN ≤ 4.5 V, ILDO2 = 10 mA to 100  
mA in 10 μs  
Overshoot  
Undershoot  
50  
50  
5.3.6 Electrical characteristics – LDO3  
All parameters are specified at TA = −40 to 105 °C, VSYS = 2.5 to 4.5 V, VLDOIN3  
=
3.6 V, VLDO3[4:0] = 11111, ILDO3 = 10 mA, typical external component values, unless  
otherwise noted. Typical values are characterized at VSYS = 3.6 V, VLDOIN3 = 3.6 V,  
VLDO3[4:0] = 11111, ILDO3 = 10 mA, and 25 °C, unless otherwise noted.  
Table 15.ꢀLDO3 electrical characteristics  
Symbol  
Parameter  
Min Typ  
Max Unit  
VLDO3IN  
Operating input voltage  
1.0  
4.5  
V
VLDO3 + 250 mV ≤ VSYS ≤ 4.5 V  
VLDO3NOM  
ILDO3MAX  
ILDO3MAXLPM  
VLDO3TOL  
Nominal output voltage  
See Table 33  
V
Rated output load current, Normal mode  
Rated output load current, Low-power mode  
300  
10  
mA  
mA  
%
Output voltage tolerance, Normal mode  
VLDO3INMIN < VLDO3IN < 4.5 V, 0 mA < ILDO3 < 300 mA  
0.8 V ≤ VLDO3 < 1.8 V  
1.8 V ≤ VLDO3 ≤ 3.3 V  
−2.5  
−2.5  
−4.0  
2.5  
2.5  
4.0  
VLDO3INMIN < VLDO3IN < 4.5 V, 0 mA < ILDO3 < 10 mA (Low-power  
mode)  
ILDO3LIM  
Current limit  
320  
1000 mA  
ILDO3 when VLDO3 is forced to VLDO3NOM/2  
ILDO3OCP  
ILDO3Q  
LDO3FAULTI threshold (also used to disable LDO3 when  
REGSCPEN = 1)  
320  
1000 mA  
µA  
Quiescent current (at 25 °C)  
No load, change in IVSYS and IVLDOIN3  
When LDO3 enabled in Normal mode  
When LDO3 enabled in Low-power mode  
17  
2.5  
RDSON_QFN_LDO3 Dropout on resistance  
350 mΩ  
PSRRLDO3  
PSRR  
dB  
ILDO3 = 150 mA, 20 Hz to 20 kHz  
VLDO3 = 3.30 V, VLDO3IN = 3.8 V, VSYS = 4.2 V  
56  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
19 / 108  
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
Symbol  
Parameter  
Min Typ  
Max Unit  
TRVLDO3  
Turn on time  
µs  
10 % to 90 % of end value  
VLDO3INMIN < VLDO3IN < 4.5 V, ILDO3 = 0.0 mA  
200  
250  
1.0  
500  
RLDO3DIS  
Turn off discharge resistance  
Ω
LDO3OUTOSHT Start-up overshoot (% of final value)  
VLDO3INMIN < VLDO3IN ≤ 4.5 V, ILDO3 = 0.0 mA  
%
2.0  
VLDO3LOTR  
Transient load response  
mV  
VLDO3INMIN < VLDO3IN ≤ 4.5 V, ILDO3 = 10 mA to 100 mA in 10 μs  
Overshoot  
Undershoot  
50  
50  
5.3.7 Electrical characteristics – VREFDDR  
TA = −40 to 105 °C, VSYS = 2.5 to 4.5 V, IREFDDR = 0.0 mA, VINREFDDR = 1.35 V  
and typical external component values, unless otherwise noted. Typical values are  
characterized at VSYS = 3.6 V, IREFDDR = 0.0 mA, VINREFDDR = 1.35 V, and 25 °C, unless  
otherwise noted.  
Table 16.ꢀVREFDDR electrical characteristics  
Symbol Parameter  
VINREFDDR Operating input voltage range  
Min  
0.9  
Typ  
Max  
1.8  
Unit  
V
VREFDDR  
Output voltage, 0.9 V < VINREFDDR < 1.8 V, 0 mA < IREFDDR < 10 mA  
VINREFDDR/2  
V
VREFDDRTOL Output voltage tolerance, as a percentage of VINREFDDR, 1.2 V <  
VINREFDDR < 1.65 V, 0 mA < IREFDDR < 10 mA  
49.25 50  
50.75  
%
IREFDDRQ  
Quiescent current (at 25 °C)  
1.1  
24  
µA  
mA  
µs  
IREFDDRLM Current limit, IREFDDR when VREFDDR is forced to VINREFDDR/4  
10.5  
38  
tONREFDDR Turn on time, 10 % to 90 % of end value, VINREFDDR = 1.2 V to 1.65  
V, IREFDDR = 0.0 mA  
100  
5.3.8 Electrical characteristics – VSNVS  
All parameters are specified at TA = −40 to 105 °C, VSYS = 3.6 V, VSNVS = 3.0 V, ISNVS  
= 5.0 μA, typical external component values, unless otherwise noted. Typical values  
are characterized at VSYS = 3.6 V, VSNVS = 3.0 V, ISNVS = 5.0 μA, and 25 °C, unless  
otherwise noted.  
Table 17.ꢀVSNVS electrical characteristics  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
VSNVSIN  
Operating input voltage  
Valid coin cell range  
Valid VSYS  
V
1.8  
3.3  
4.5  
2.45  
ISNVS  
Operating load current  
2000  
µA  
VSNVSINMIN < VSNVSIN < VSNVSINMAX  
VTL1  
VTH1  
VSYS threshold (VSYS powered to coin cell powered)  
VSYS threshold (coin cell powered to VSYS powered)  
UVDET failing  
UVDET rising  
V
V
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
20 / 108  
 
 
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
VSNVS  
Output voltage (when running from VSYS)  
0 µA < ISNVS < 2000 µA  
−7.0 %  
3.0  
7.0 %  
V
VCOIN − 0.20  
Output voltage (when running from LICELL)  
0 µA < ISNVS < 2000 µA  
2.84 V < VCOIN < 3.3 V  
VSNVSDROP  
Dropout voltage  
VSYS = 2.9 V  
220  
mV  
ISNVS = 2000 µA  
ISNVSLIM  
Current limit  
VSYS > VTH1  
µA  
ms  
5200  
24000  
3.0  
VSNVSTON  
Turn on time (load capacitor, 0.47 µF)  
10 % to 90 % of final value VSNVS  
VCOIN = 0.0 V, ISNVS = 0 µA  
VSNVSOSH  
Start-up overshoot  
ISNVS = 5.0 µA  
mV  
Ω
40  
70  
dVSYS/dt = 50 mV/µs  
RDSONSNVS  
Internal switch RDS(on)  
VCOIN = 2.6 V  
100  
5.3.9 Electrical characteristics – IC level bias currents  
All parameters are specified at 25 °C, VSYS = 3.6 V, VIN = 0 V, typical external  
component values, unless otherwise noted. Typical values are characterized at VSYS =  
3.6 V, VSNVS = 3.0 V, and 25 °C, unless otherwise noted.  
Table 18.ꢀIC level electrical characteristics  
Mode  
PF1510 conditions  
System conditions  
Typ  
Max  
Unit  
Coin cell  
VSNVS from LICELL  
All other blocks off  
VSYS = 0.0 V  
No load on VSNVS  
1.5  
4.0  
µA  
CORE_OFF  
Sleep  
VSNVS from VSYS  
Wake-up from ONKEY active  
All other blocks off  
No load on VSNVS,  
PMIC able to wake-up  
1.5  
4.0  
25  
µA  
µA  
VSYS > UVDET  
VSNVS from VSYS  
No load on VSNVS.  
DDR memories in self  
refresh.  
12.5  
Wake-up from PWRON active  
Trimmed reference active  
DDR I/O rail in Low-power mode  
VREFDDR disabled  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
21 / 108  
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
Mode  
PF1510 conditions  
System conditions  
Typ  
Max  
Unit  
Standby/Suspend VSNVS from either VSYS or LICELL  
SW1 in ultra Low-power mode  
SW2 in ultra Low-power mode  
SW3 in ultra Low-power mode  
Trimmed reference active  
No load on VSNVS.  
Processor enabled in  
Low-power mode.  
23  
46  
µA  
VLDO1 is disabled  
VLDO2 enabled in Low-power mode  
VLDO3 enabled in Low-power mode  
VREFDDR enabled  
REGS_DISABLE VSNVS from VSYS  
Wake-up from ONKEY active  
Other blocks are off  
No load on VSNVS,  
PMIC able to wake-up  
14  
20  
µA  
VSYS > UVDET  
6 Detailed description  
The PF1510 PMIC features three high efficiency low quiescent current buck regulators,  
three LDO regulators, a DDR voltage reference to supply voltages for the application  
processor and peripheral devices.  
The buck regulators provide the supply to processor cores and to other low voltage  
circuits such as I/O and memory. Dynamic voltage scaling is provided to allow controlled  
supply rail adjustments for the processor cores for power optimization.  
The three LDO regulators are general purpose to power various processor rails, system  
connectivity devices and/or peripherals. Depending on the system power configuration,  
the general purpose LDO regulators can be directly supplied from the main system  
supply VSYS or from the switching regulators to power peripherals, such as audio,  
camera, Bluetooth, Wireless LAN.  
A specific VREFDDR voltage reference is included to provide accurate reference voltage  
for DDR memories operation.  
The VSNVS block behaves as an LDO, or as a bypass switch to supply the SNVS  
(Secure Non-Volatile Storage)/RTC (Real Time Clock) circuitry on the processor. VSNVS  
is powered from VSYS or from a coin cell.  
The PF1510 uses an integrated linear front-end LDO that provides 4.5 V at VSYS from  
the 5.0 V VIN.  
Table 19.ꢀVoltage regulators  
Supply  
Output voltage (V)  
Programming  
step size (mV)  
Load current  
(mA)  
SW1 / SW2  
SW3  
0.60 to 1.3875 / 1.1 to 3.3  
1.80 to 3.30  
12.5/variable  
100  
1000  
1000  
300  
LDO1  
0.75 to 1.50  
1.80 to 3.30  
50  
100  
LDO2  
LDO3  
1.80 to 3.30  
100  
400  
300  
0.75 to 1.50  
1.80 to 3.30  
50  
100  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
22 / 108  
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
Supply  
Output voltage (V)  
Programming  
step size (mV)  
Load current  
(mA)  
USBPHY  
VSNVS  
3.3 or 4.9  
3.0  
60  
2
N/A  
N/A  
VREFDDR  
0.5*VINREFDDR  
10  
6.1 Buck regulators  
The PF1510 features three high efficiency buck regulators with internal compensation.  
Each buck regulator is capable of meeting optimum power efficiency operation using  
reduced power variable-frequency pulse skip switching scheme at light loads as well  
as operating in forced PWM quasi-fixed frequency switching mode at higher loads. The  
switching regulator controller combines the advantages of hysteretic and voltage mode  
control which provides outstanding load regulation and transient response, low output  
ripple voltage and seamless transition between pulse-skip mode and Active Quasi-fixed  
frequency switching mode. The control circuitry includes an AC loop which senses the  
output voltage (at SWxFB pin) and directly feeds it to a fast comparator stage. This  
comparator sets the switching frequency, which is almost constant for steady state  
operating conditions. It also provides immediate response to dynamic load changes.  
In order to achieve accurate DC load regulation, a voltage feedback loop is used. The  
internally compensated regulation network achieves fast and stable operation with small  
external components and low ESR capacitors. The transition into and out of low power  
pulse-skip switching mode takes place automatically according to the load current to  
maintain optimum power efficiency. Additionally, further power savings through cutting  
the buck circuitry quiescent current can be achieved by activating a Low-power mode  
upon entering either STANDBY or SLEEP PMIC power mode or as commanded via I2C  
control bits. In SW1 and SW2. An OTP option enables or disables DVS in the regulators.  
When DVS is disabled and the low-power bit is set, the regulator enters an Ultra Low  
Power (ULP) mode cuts the operating quiescent current even in order to reach extremely  
low standby power levels needed for ultra low power processors such as that from  
Kinetis K and L series.  
As indicated above, the buck controller supports PWM (Pulse Width Modulation) mode  
for medium and high load conditions and low-power variable-frequency pulse skip mode  
at light loads. During high current mode, it operates in continuous conduction and the  
switching frequency is up to 2.0 MHz with a controlled on-time variation depending on the  
input voltage and output voltage. If the load current decreases, the converter seamlessly  
enters the pulse-skip mode to cut the operating quiescent current and maintain high  
efficiency down to very light loads. In pulse-skip mode the switching frequency varies  
linearly with the load current. Since the controller supports both power modes within one  
single building block, the transition from normal power mode to lower power pulse-skip  
mode and vice versa is seamless without dramatic effects on the output voltage.  
In the adopted pulse-skip scheme, the device generates a single switching pulse to ramp  
up the inductor current and recharge the output capacitor, followed by a non-switching  
(pause) period where most of the internal circuits are shutdown to achieve a lowest  
quiescent current. During this time, the load current is supported by the output capacitor.  
The duration of the pause period depends on the load current and the inductor peak  
current.  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
23 / 108  
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
6.2 SW1 and SW2 detailed description  
SW1 and SW2 are identical buck regulators designed to carry a nominal load current  
of 1.0 A. Detailed characteristics and features of SW1 and SW2 are described in this  
section. Being identical, reference is made only to SWx though the same specifications  
apply to SW1 and SW2.  
6.2.1 SWx dynamic voltage scaling description  
SWx integrates an optional DVS circuit that is enabled via OTP. To reduce overall power  
consumption, when DVS is enabled SWx output voltage can be varied depending on the  
mode or activity level of the processor.  
• Normal operation:  
The output voltage is selected by I2C bits SWx_VOLT[5:0]. A voltage transition initiated  
by I2C is governed by the SWx_DVSSPEED I2C bit as shown in Table 20.  
• Standby mode:  
The output voltage can be selected by I2C bits SWx_STBY_VOLT[5:0]. Voltage  
transitions initiated by a Standby event are governed by the SWx_DVSSPEED I2C bit  
as shown in Table 20. This applies only when DVS is enabled.  
• Sleep mode:  
The output voltage can be higher or lower than in normal operation, but is typically  
selected to be the lowest state retention voltage of a given processor; it is selected  
by I2C bits SWx_SLP_VOLT[5:0]. Voltage transitions initiated by a turn off event are  
governed by the SWx_DVSSPEED I2C bit for SWx as shown in Table 20. This applies  
only when DVS is enabled.  
As shown in Figure 5, during a falling DVS transition, dv/dt of the output voltage depends  
on the load current. Setting the SWx_FPWM_IN_DVS bit forces the regulator in the  
FPWM mode during the falling transition allowing it to accurately track the DVS reference  
removing the load dependency. The SWx_FPWM_IN_DVS bit is active only when  
OTP_SWx_DVS_SEL = 0.  
Table 20.ꢀSWx DVS setting selection  
SWx_DVS speed  
Function  
0
1
12.5 mV step each 2.0 µs  
12.5 mV step each 4.0 µs  
Requested  
set point  
Output voltage  
with light load  
Internally  
controlled steps  
Example  
actual output  
voltage  
Output  
voltage  
Initial  
set point  
Actual  
output voltage  
Internally  
controlled steps  
Possible  
output voltage  
window  
Request for  
higher voltage  
Request for  
lower voltage  
Voltage  
change  
request  
2
Initiated by I C programming, standby control or DVS control  
aaa-023876  
Figure 5.ꢀSWx DVS transitions  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
24 / 108  
 
 
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
6.2.2 SWx DVS and non-DVS operation  
SWx has two distinct modes of operation selectable via OTP:  
DVS enabled: a DVS reference is activated and output accuracy of the regulator  
is tight at the cost of slightly higher quiescent current. See Section 5.3 "Electrical  
characteristics" for details. In Figure 6, DVS FB and DVS REF are enabled via OTP for  
this mode of operation.  
DVS disabled: the regulator operates as a traditional buck converter with a fixed  
reference and soft-start. The quiescent current in this mode is lower at the cost of  
output accuracy and transient response. See Section 5.3 "Electrical characteristics"  
for details. In Figure 6, VREF FB and VREF are enabled via OTP for this mode of  
operation.  
V
IN  
TON  
iLim  
Low  
PWR  
ibias  
sel  
DVS FB  
V
OUT  
V
OUT  
CTRL  
logic  
VREF FB  
COMP  
ZCD  
iLim  
TOFF  
Low  
PWR  
Bias control  
Programmable resistor divider V  
Fixed bandgap reference with soft-start function  
Reduced accuracy and transient capabilities  
: 1.1, 1.2, 1.35, 1.5, 1.8, 2.5, 3.0, 3.3 (three bits)  
OUT  
VREF FB  
VREF  
OR  
DVS FB  
Fixed DVS feedback and compensation  
DVS REF  
Programmable DVS feedback and compensation  
aaa-023877  
Figure 6.ꢀSWx DVS and non-DVS selection  
6.2.3 Regulator control  
To improve system efficiency, the buck regulators can operate in different switching/  
bias modes. The changing between DCM (Discontinuous Conduction Mode)/CCM  
(Continuous Conduction Mode) takes place automatically based on detecting the load  
current level. It can be enforced by one of the following means: I2C programming, exiting/  
entering the Standby mode, exiting/entering Sleep/Low-power mode.  
Available modes for buck regulators are presented in Table 21. These switching modes  
are available with OTP_SWx_DVS_SEL = 0 and OTP_SWx_DVS_SEL = 1. Table 22  
shows the bit settings for operating the buck converter is these modes based on the  
PMIC operating state.  
Table 21.ꢀBuck regulator operating modes  
Mode  
Description  
The regulator is switched off and the output voltage is discharged using an internal resistor.  
OFF  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
25 / 108  
 
 
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
Mode  
Description  
Adaptive  
This is the default mode of operation of the buck regulator. In this mode, the regulator operates in a quasi-  
fixed frequency switching mode at moderate and high loads, with pulse skip (variable switching frequency)  
scheme at light load for optimized efficiency.  
F-PWM  
In this mode, the regulator is always in PWM mode operation regardless of load conditions.  
Low-power  
To further extend power savings when the load current is minimal, this mode cuts the quiescent current of  
the buck converter by reducing the bias to the comparator. The regulator is operated in low power modes  
(Standby and/or Sleep) with the proper I2C setting. See Table 22.  
The following table shows actions to control different bits for SW1 and SW2.  
Table 22.ꢀBuck mode control  
PMIC state  
SWx_EN SWx_STBY SWx_OMODE SWx_LPWR SWx_FPWM SWx operating mode  
Run/Standby  
/Sleep  
0
X
X
X
X
SW disabled  
Run  
Run  
Run  
1
1
1
X
X
X
X
X
X
0
0
1
0
1
0
SW enabled. Operates in DCM at light loads  
SW enabled. Forced PWM mode  
SW Enabled. Does not operate in Low-power  
mode.  
Run  
1
1
1
1
1
1
1
1
1
1
1
X
0
X
X
X
X
X
X
0
1
X
0
0
1
1
X
0
0
1
1
1
X
0
1
0
1
X
0
1
0
1
SW enabled. Forced PWM mode  
SW disabled  
Standby  
Standby  
Standby  
Standby  
Standby  
Sleep  
1
SW enabled. Operates in DCM at light loads.  
SW enabled. Forced PWM mode.  
SW enabled. Operates in Low-power mode.  
SW enabled. Forced PWM mode  
SW disabled  
1
1
1
X
X
X
X
X
Sleep  
1
SW enabled. Operates in DCM at light loads.  
SW enabled. Forced PWM mode.  
SW enabled. Operates in Low-power mode.  
SW enabled. Forced PWM mode  
Sleep  
1
Sleep  
1
Sleep  
1
6.2.4 Current limit protection  
SWx features high and low-side FET current limit. When current through the FETs goes  
above their respective thresholds, the FET is turned off to prevent further increase in  
current.  
The protection is enabled in a cycle-by-cycle mode. Hitting either current limit sets  
the corresponding interrupt sense bits. If the faults persist for longer than the 8.0 ms  
debounce time, the interrupt status bit is set.  
6.2.5 Output voltage setting in SWx  
Output voltage of SWx is programmable via OTP. During startup (REGS_DISABLE  
mode to RUN mode), contents of the OTP_SWx_VOLT[5:0] are mapped into the  
SWx_VOLT[5:0], SWx_STBY_VOLT[5:0] and SWx_SLP_VOLT[5:0] register which set  
the regulator output voltage during Run, Standby and Sleep modes respectively.  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
26 / 108  
 
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
In the DVS enabled mode (OTP_SWx_DVS_SEL = 0), values of SWx_VOLT[5:0],  
SWx_STBY[VOLT[5:0] and SWx_SLP_VOLT[5:0] can be changed via I2C after the PMIC  
starts up (RESETBMCU is released).  
In the DVS disabled mode (OTP_SWx_DVS_SEL = 1), value of SWx_VOLT[5:0],  
SWx_STBY[VOLT[5:0] and SWx_SLP_VOLT[5:0] are read-only and must not be written  
to.  
Table 23.ꢀSW1 and SW2 output voltage setting  
Set  
point  
SWx_VOLT[5:0]  
SWx_STBY_VOLT[5:0]  
SWx_SLP_VOLT[5:0]  
Output voltage  
with DVS enabled  
Output voltage  
with DVS disabled  
OTP_SWx_DVS_SEL = 0  
OTP_SWx_DVS_SEL = 1  
0
000000  
000001  
000010  
000011  
000100  
000101  
000110  
000111  
001000  
001001  
001010  
001011  
001100  
001101  
001110  
001111  
010000  
010001  
010010  
010011  
010100  
010101  
010110  
010111  
011000  
011001  
011010  
011011  
011100  
0.6000  
0.6125  
0.6250  
0.6375  
0.6500  
0.6625  
0.6750  
0.6875  
0.7000  
0.7125  
0.7250  
0.7375  
0.7500  
0.7625  
0.7750  
0.7875  
0.8000  
0.8125  
0.8250  
0.8375  
0.8500  
0.8625  
0.8750  
0.8875  
0.9000  
0.9125  
0.9250  
0.9375  
0.9500  
1.10  
1.20  
1.35  
1.50  
1.80  
2.50  
3.00  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.3  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
27 / 108  
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
Set  
point  
SWx_VOLT[5:0]  
SWx_STBY_VOLT[5:0]  
SWx_SLP_VOLT[5:0]  
Output voltage  
with DVS enabled  
Output voltage  
with DVS disabled  
OTP_SWx_DVS_SEL = 0  
OTP_SWx_DVS_SEL = 1  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
011101  
011110  
011111  
100000  
100001  
100010  
100011  
100100  
100101  
100110  
100111  
101000  
101001  
101010  
101011  
101100  
101101  
101110  
101111  
110000  
110001  
110010  
110011  
110100  
110101  
110110  
110111  
111000  
111001  
111010  
111011  
111100  
111101  
111110  
111111  
0.9625  
0.9750  
0.9875  
1.0000  
1.0125  
1.0250  
1.0375  
1.0500  
1.0625  
1.0750  
1.0875  
1.1000  
1.1125  
1.125  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.3  
1.1375  
1.1500  
1.1625  
1.1750  
1.1875  
1.2000  
1.2125  
1.2250  
1.2375  
1.2500  
1.2625  
1.2750  
1.2875  
1.3000  
1.3125  
1.3250  
1.3375  
1.3500  
1.3625  
1.3750  
1.3875  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
28 / 108  
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
6.2.6 SWx external components  
Table 24 shows the combination of inductor and capacitor values that work with the SWx  
regulator.  
The design is optimized for a 1.0 µH inductor.  
Table 24.ꢀAcceptable inductance and capacitance values  
Inductance / capacitance  
1.0 µH  
2 x 10 µF  
Table 25 and Table 26 show example inductor and capacitor part numbers respectively.  
Table 25.ꢀExample inductor part numbers  
Part number  
DFE201610E  
DFE201610P  
DFE201210U  
DFE160810S  
DFE201208S  
DFE160808S  
Size (mm)  
2.0 x 1.6  
2.0 x 1.6  
2.0 x 1.2  
1.6 x 0.8  
2.0 x 1.2  
1.6 x 0.8  
1.0 µH  
57 mΩ, 3.6 A  
70 mΩ, 3.1 A  
95 mΩ, 3.1 A  
120 mΩ, 2.0 A  
86 mΩ, 2.4 A  
144 mΩ, 1.9 A  
Table 26.ꢀExample capacitor part numbers  
Murata part number  
Description  
GRM188R60J106ME47D  
GRM188D70J106MA73  
GRM188R61A106KE69  
GRM219R61A106KE44  
6.3 V, 10 µF, 0402, X5R  
6.3 V, 10 µF, 0402, X7R  
10 µF 10 V 10 % X5R 0603 .95 mm  
10 µF 10 V 10 % X5R 0805 .95 mm  
6.3 SW3 detailed description  
SW3 is a buck regulator designed to carry a nominal load current of 1.0 A. The output  
voltage is programmable from 1.8 V to 3.3 V in 100 mV steps. Dynamic voltage scaling is  
not supported in this regulator.  
V
IN  
V
OUT  
TON  
iLim  
Low  
PWR  
ibias  
V
OUT  
CTRL  
logic  
COMP  
ZCD  
iLim  
TOFF  
Low  
PWR  
Bias control  
Programmable resistor divider V  
Fixed bandgap reference with soft-start function  
Reduced accuracy and transient capabilities  
(four bits): 1.8 V to 3.3 V in 100 mV steps  
OUT  
VREF FB  
VREF  
aaa-023878  
Figure 7.ꢀSW3 block diagram  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
29 / 108  
 
 
 
 
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
6.3.1 Regulator control  
To improve system efficiency the buck regulator can operate in different switching/  
bias modes. The changing between DCM/CCM takes place automatically based on  
detecting the load current level. It can be enforced by one of the following means: I2C  
programming, exiting/entering the Standby mode, exiting/entering Sleep/ Low-power  
mode.  
Available modes for buck regulators are presented in Table 27 .  
Table 28 shows the bit settings for operating the buck converter in these modes based  
on the PMIC operating state.  
Table 27.ꢀSW3 buck regulator operating modes  
Mode  
Description  
OFF  
The regulator is switched off and the output voltage is discharged using an internal  
resistor.  
Adaptive  
This is the default mode of operation of the buck regulator. In this mode, the  
regulator operates in a quasi-fixed frequency switching mode at moderate and  
high loads, with pulse skip (variable switching frequency) scheme at light load for  
optimized efficiency.  
F-PWM  
In this mode, the regulator is always in PWM mode operation regardless of load  
conditions.  
Low-power To further extend power savings when the load current is minimal, this mode cuts  
the quiescent current of the buck converter by reducing the bias to the comparator.  
The regulator is operated in low power modes (Standby and/or Sleep) with the  
proper I2C setting. See Table 28.  
Table 28.ꢀSW3 buck mode control  
PMIC state  
SW3_EN  
SW3_STBY  
SW3_OMODE  
SW3_LPWR SW3_FPWM SW3 operating mode  
Run/  
Standby/  
Sleep  
0
X
X
X
X
SW disabled  
Run  
1
X
X
0
0
SW enabled  
Operates in DCM at light  
loads  
Run  
Run  
1
1
X
X
X
X
0
1
1
0
SW enabled  
Forced PWM mode  
SW enabled  
Does not operate in Low-  
power mode  
Run  
1
X
X
1
1
SW enabled  
Forced PWM mode  
Standby  
Standby  
1
1
0
1
X
X
X
0
X
0
SW disabled  
SW enabled  
Operates in DCM at light  
loads  
Standby  
1
1
X
0
1
SW enabled  
Forced PWM mode  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
30 / 108  
 
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
PMIC state  
SW3_EN  
SW3_STBY  
SW3_OMODE  
SW3_LPWR SW3_FPWM SW3 operating mode  
Standby  
1
1
X
1
0
SW enabled  
perates in Low-power mode  
Standby  
1
1
X
1
1
SW enabled  
Forced PWM mode  
Sleep  
Sleep  
1
1
X
X
0
1
X
0
X
0
SW disabled  
SW enabled  
Operates in DCM at light  
loads  
Sleep  
Sleep  
1
1
X
X
1
1
0
1
1
0
SW enabled  
Forced PWM mode  
SW enabled  
Operates in Low-power  
mode  
Sleep  
1
X
1
1
1
SW enabled  
Forced PWM mode  
6.3.2 Current limit protection  
SW3 features high and low-side FET current limit. When current through the FETs goes  
above their respective thresholds, the FET is turned off to prevent further increase in  
current.  
The protection is enabled in a cycle-by-cycle mode. Hitting either current limit sets  
the corresponding interrupt sense bits. If the faults persist for longer than the 8.0 ms  
debounce time, the interrupt status bit is set.  
6.3.3 Output voltage setting in SW3  
Output voltage of SW3 is programmable via OTP. During start up (REGS_DISABLE  
mode to RUN mode), contents of the OTP_SW3_VOLT[5:0] are mapped into the  
SW3_VOLT[5:0], SW3_STBY_VOLT[5:0] and SW3_SLP_VOLT[5:0] register which set  
the regulator output voltage during Run, Standby and Sleep modes respectively.  
Values of SW3_VOLT[5:0], SW3_STBY[VOLT[5:0] and SW3_SLP_VOLT[5:0] are read-  
only and cannot be written to.  
Table 29.ꢀSW3 output voltage setting  
Set point  
SW3_VOLT[3:0]  
SW3_STBY_VOLT[3:0]  
SW3_SLP_VOLT[3:0]  
Output voltage (V)  
0
1
2
3
4
5
6
0000  
0001  
0010  
0011  
0100  
0101  
0110  
1.80  
1.90  
2.00  
2.10  
2.20  
2.30  
2.40  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
31 / 108  
 
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
Set point  
SW3_VOLT[3:0]  
SW3_STBY_VOLT[3:0]  
SW3_SLP_VOLT[3:0]  
Output voltage (V)  
7
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
2.50  
2.60  
2.70  
2.80  
2.90  
3.00  
3.10  
3.20  
3.30  
8
9
10  
11  
12  
13  
14  
15  
6.3.4 SW3 external components  
Table 30 shows the combination of inductor and capacitor values that work with the SW3  
regulator.  
Table 30.ꢀAcceptable inductance and capacitance values  
Inductance / capacitance  
1.0 µH  
2 x 10 µF  
Table 31 and Table 32 show example inductor and capacitor part numbers respectively.  
Table 31.ꢀExample inductor part numbers  
Part number  
DFE201610E  
DFE201610P  
DFE201210U  
DFE160810S  
DFE201208S  
DFE160808S  
Size (mm)  
2.0 x 1.6  
2.0 x 1.6  
2.0 x 1.2  
1.6 x 0.8  
2.0 x 1.2  
1.6 x 0.8  
1.0 µH  
57 mΩ, 3.6 A  
70 mΩ, 3.1 A  
95 mΩ, 3.1 A  
120 mΩ, 2.0 A  
86 mΩ, 2.4 A  
144 mΩ, 1.9 A  
Table 32.ꢀExample capacitor part numbers  
Murata part number  
Description  
GRM188R60J106ME47D  
GRM188D70J106MA73  
GRM188R61A106KE69  
GRM219R61A106KE44  
6.3 V, 10 µF, 0402, X5R  
6.3 V, 10 µF, 0402, X7R  
10 µF 10 V 10 % X5R 0603 .95 mm  
10 µF 10 V 10 % X5R 0805 .95 mm  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
32 / 108  
 
 
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
7 Low dropout linear regulators, VREFDDR and VSNVS  
7.1 General description  
This section describes the LDO regulators provided by the PF1510. All regulators use the  
main bandgap as reference.  
When a regulator is disabled, the output is discharged by an internal pull-down.  
VLDO1 and VLDO3 can be used as load switches by setting the corresponding load  
switch enable bit OTP_VLDOx_LS.  
All general purpose LDOs have short-circuit protection capability. The Short-circuit  
Protection (SCP) system includes debounced fault condition detection, regulator  
shutdown, and processor interrupt generation, to contain failures and minimize the  
chance of product damage. If a short-circuit condition is detected and REGSCPEN  
bit is set, the LDO is disabled by resetting its VLDOxEN bit, while at the same time,  
an interrupt VLDOxFAULTI is generated to flag the fault to the system processor. The  
VLDOxFAULTI interrupt is maskable through the VLDOxFAULTM mask bit.  
The SCP feature is enabled by setting the REGSCPEN bit. If this bit is not set, the  
regulators are not automatically disabled upon a short-circuit detection. However,  
the current limiter continues to limit the output current of the regulator. By default, the  
REGSCPEN is not set; therefore, at start up none of the regulators are disabled if an  
overloaded condition occurs. A fault interrupt, VLDOxFAULTI is generated in an overload  
condition regardless of the state of the REGSCPEN bit. Each LDO features a Low-power  
mode where the quiescent current consumed is significantly lower than in regulator  
operation. In the Low-power mode, load current of each regulator is limited to 10 mA.  
7.2 LDO1 and LDO3 detailed description  
LDO1 and LDO3 are identical 300 mA low dropout (LDO) regulators that provide output  
voltage with high accuracy and are programmable through I2C interface bits. Being  
identical, reference is made to these LDOs as LDOy.  
To support this wide input range, LDOy circuit incorporates a PMOS pass FET as well as  
an NMOS pass FET. The LDO uses the main bandgap as its reference.  
The regulator incorporates a soft-start circuit that ramps the internal reference in order  
to provide smooth output waveform with minimal overshooting during power up. When  
the regulator is disabled, the output is discharged by an internal pull-down resistor.  
Additionally, the LDO can be used as a load switch by setting the corresponding Load  
Switch enable bit OTP_LDOy_LS.  
Moreover, LDOy includes current limit protection with the option to turn off the LDO when  
an overcurrent is detected.  
7.2.1 Features summary  
Input range LDO from 1.0 V to 4.5 V  
Programmable output voltage between 0.75 V to 1.5 V (uses NMOS) or 1.8 V and  
3.3 V (uses PMOS) with 2 % accuracy  
Soft-start ramp control during power up and discharge mechanism during power down  
Low quiescent current (~ 2.5 µA) at Low-power mode  
Current limit protection  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
33 / 108  
 
 
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
Configurable into load switch via OTP bit  
7.2.2 LDOy block diagram  
VINx  
VDD V  
REF  
LDOxIN  
LDOxEN  
LDOxLPWR  
LDOxOUT  
2
C
I C  
LDOx  
interface  
LDOx  
Discharge  
aaa-023879  
Figure 8.ꢀLDOy Block Diagram  
7.2.3 LDOy external components  
Use a 4.7 µF X5R/X7R capacitor from output to ground with a voltage rating at least 2  
times the nominal output voltage.  
7.2.4 LDOy output voltage setting  
LDOy output voltage is programmed by setting the LDOy[4:0] bits as shown in Table 33.  
Table 33.ꢀLDOy output voltage setting  
Set point  
LDOy[4:0]  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
LDOy output (V)  
0.7500  
0.8000  
0.8500  
0.9000  
0.9500  
1.0000  
1.0500  
1.1000  
1.1500  
1.2000  
1.2500  
1.3000  
1.3500  
1.4000  
1.4500  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
34 / 108  
 
 
 
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
Set point  
15  
LDOy[4:0]  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
LDOy output (V)  
1.5000  
1.8000  
1.9000  
2.0000  
2.1000  
2.2000  
2.3000  
2.4000  
2.5000  
2.6000  
2.7000  
2.8000  
2.9000  
3.0000  
3.1000  
3.2000  
3.3000  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
7.2.5 LDOy low power mode operation  
LDOy can operate in a Low-power mode with reduced quiescent current. The Low-power  
mode can be activated in Standby and Sleep modes by setting the LDOy_LPWR bit as  
shown in Table 34. Maximum load current is limited to 10 mA when operating in the Low-  
power mode.  
Table 34.ꢀLDOy control bits  
PMIC state  
Run/Standby/Sleep  
Run  
LDOy_EN LDOy_STBY  
LDOy_OMODE LDOy_LPWR LDOy operating mode  
0
1
1
1
1
1
1
1
X
X
0
X
X
X
X
X
0
X
X
X
0
1
X
0
1
LDO disabled  
LDO enabled  
Standby  
Standby  
Standby  
Sleep  
LDO disabled  
1
LDO enabled  
1
LDO enabled in Low-power mode  
LDO disabled  
X
X
X
Sleep  
1
LDO enabled  
Sleep  
1
LDO enabled in Low-power mode  
7.2.6 LDOy current limit protection  
LDOy has built in current limit protection. When the load current exceeds the current  
limit threshold, the regulator goes from a voltage regulation mode to a current regulation  
mode that limits the available output current.  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
35 / 108  
 
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
By setting the REGSCPEN bit, LDOy can be automatically disabled in the event of  
an over current situation. In the event of an over current, the LDO will be disabled  
by resetting its LDOy_EN bit, while at the same time an interrupt LDOy_FAULTI is  
generated to flag the fault to the system processor. The LDOy_FAULTI interrupt is  
maskable through the LDOy_FAULTM mask bit.  
If REGSCPEN is not set, the regulator will not be automatically disabled, but will instead  
enter the current limit mode. By default, the REGSCPEN is not set; therefore, at start-  
up none of the regulators will be disabled if an overloaded condition occurs. A fault  
interrupt, LDOy_FAULTI, is generated in an overload condition regardless of the state of  
the REGSCPEN bit.  
Current limit is not active when LDOy is operated in the load switch mode.  
7.2.7 LDOy load switch mode  
The LDOy path can be turned into a switch by setting the OTP_LDOy_LS bit. Setting this  
bit fully turns on the LDO pass FET. This could be useful if power domain partitioning or  
additional isolation is needed on the system application. Soft-start is engaged during start  
up of the load switch to reduce inrush currents.  
7.3 LDO2 detailed description  
LDO2 is a 400 mA low dropout (LDO) regulator that provides output voltage with high  
accuracy and programmable through I2C/ interface bits. To support this wide input range  
the LDO circuit incorporates a PMOS pass FET. The LDO uses the main bandgap as its  
reference.  
The regulator incorporates a soft-start circuit that ramps the internal reference in order to  
provide smooth output waveform with minimal overshooting during power up. When the  
regulator is disabled, the output is discharged by an internal pull-down resistor. The pull-  
down is also activated when RESETBMCU is low.  
Moreover, LDO2 includes current limit protection with option to turn off the LDO when an  
overcurrent is detected.  
7.3.1 LDO2 features summary  
Input range LDO from 2.8 V to 4.5 V  
Programmable output voltage between 1.8 V and 3.3 V with 2 % accuracy  
Soft-start ramp control during power up and discharge mechanism during power down  
Low quiescent current (~ 1.5 µA) at Low-power mode  
Current limit protection  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
36 / 108  
 
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
7.3.2 LDO2 block diagram  
LDOxIN  
LDOxIN  
V
REF  
LDOxEN  
LDOxLPWR  
LDOxOUT  
2
I C  
C
interface  
LDOx  
LDOx  
Discharge  
aaa-023880  
Figure 9.ꢀLDO2 block diagram  
7.3.3 LDO2 external components  
Use a 10 µF X5R/X7R capacitor from output to ground with a voltage rating at least 2  
times the nominal output voltage.  
7.3.4 LDO2 output voltage setting  
LDO2 output voltage is programmed by setting the VLDO2[3:0] bits as shown in  
Table 35.  
Table 35.ꢀLDO2 output voltage setting  
Set point  
VLDO2[3:0]  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
VLDO2 output (V)  
0
1
1.80  
1.90  
2.00  
2.10  
2.20  
2.30  
2.40  
2.50  
2.60  
2.70  
2.80  
2.90  
3.00  
3.10  
3.20  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
37 / 108  
 
 
 
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
Set point  
VLDO2[3:0]  
VLDO2 output (V)  
15  
1111  
3.30  
7.3.5 LDO2 Low-power mode operation  
LDO2 can operate in a Low-power mode with reduced quiescent current. The low power  
mode can be activated in Standby and Sleep modes by setting the LDO2LPWR bit as  
shown in Table 36. Maximum load current is limited to 10 mA when operating in the Low-  
power mode.  
Table 36.ꢀLDO2 control bits  
PMIC state  
Run  
LDO2EN  
LDO2STBY  
LDO2OMODE  
LDO2LPWR LDO2 operating mode  
0
1
1
1
1
1
1
1
X
X
0
X
X
X
X
X
0
X
X
X
0
1
X
0
1
LDO disabled  
Run  
LDO enabled  
Standby  
Standby  
Standby  
Sleep  
LDO disabled  
1
LDO enabled  
1
LDO enabled in Low-power mode  
LDO disabled  
X
X
X
Sleep  
1
LDO enabled  
Sleep  
1
LDO enabled in Low-power mode  
7.3.6 LDO2 current limit protection  
LDO2 has built in current limit protection. When the load current exceeds the current  
limit threshold, the regulator goes from a voltage regulation mode to a current regulation  
mode limiting the available output current.  
By setting the REGSCPEN bit, LDO2 can be automatically disabled in the event of an  
over current situation. In the event of an over current, the LDO is disabled by resetting  
its VLDO2EN bit, while at the same time an interrupt VLDO2FAULTI is generated to flag  
the fault to the system processor. The VLDO2FAULTI interrupt is maskable through the  
VLDO2FAULTM mask bit.  
If REGSCPEN is not set, the regulator will not be automatically disabled, but instead  
enter the current limit mode. By default, the REGSCPEN is not set; therefore, at start-  
up none of the regulators will be disabled if an overloaded condition occurs. A fault  
interrupt, VLDO2FAULTI is generated in an overload condition regardless of the state of  
the REGSCPEN bit.  
7.4 VREFDDR reference  
VREFDDR is an internal NMOS half supply voltage follower capable of supplying up  
to 10 mA. The output voltage is at one half the input voltage. It is typically used as the  
reference voltage for DDR memories.  
A filtered resistor divider is utilized to create a low frequency pole. This divider then  
utilizes a voltage follower to drive the load.  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
38 / 108  
 
 
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
VINREFDDR  
VINREFDDR  
Discharge  
VREFDDR  
VREFDDR  
C
REFDDR  
1.0 µF  
aaa-023881  
Figure 10.ꢀVREFDDR block diagram  
7.5 VSNVS LDO/Switch  
VSNVS powers the low-power SNVS/RTC domain on the processor. It derives its power  
from either VSYS or a coin cell. When powered by both, VSYS powers VSNVS if VSYS >  
VTH threshold and LICELL powers VSNVS when VSYS < VTL. When powered by VSYS,  
VSNVS is an LDO capable of supplying 2.0 mA at 3.0 V. When powered by coin cell,  
VSNVS output tracks the coin cell voltage by means of a switch. In this case, the VSNVS  
voltage is simply the coin cell voltage minus the voltage drop across the switch.  
Upon subsequent removal of VSYS, with the coin cell attached, VSNVS will change  
configuration from an LDO to a switch.  
PF1510  
V
SYS  
V
REF  
Input  
Coin cell  
sense  
charger  
selector  
1.8 to 3.3 V  
VSNVS  
Coin cell  
LDO/LOAD  
switch  
2
I C interface  
aaa-028833  
Figure 11.ꢀVSNVS block diagram  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
39 / 108  
 
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
8 Front-end LDO description  
The VIN operates from 4.0 V to 6.5 V with up to 22 V overvoltage protection.  
The VIN current limit works by monitoring the current being drawn from the VIN and  
comparing it to the programmed current limit. The current limit should be set based on  
the current-handling capability of the input adaptor. Generally, this limit is chosen to  
optimally fulfill the system-power requirements. See Table 40.  
The PMIC is powered from the VSYS node in the PF1510.  
The VSYS voltage can be regulated to either 3.5 V, 3.7 V or 4.3 V. See Table 38.  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
40 / 108  
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
8.1 Operating modes and behavioral description  
startup sequence  
5.0 V  
VIN  
LDO2P7  
VIN_VALID  
LDO2P7  
T
BGOK  
SSVIN  
1.5 V  
1.5 V  
VCORE  
VCOREDIG  
VSYS  
4.3 V  
VSYSMIN  
> 100 ms (min)  
default mode OTP  
selectable (linear on)  
USBPHY  
(3.3 V)  
1.8 V  
external  
supply  
VDDIO  
0 V  
SLEEP  
processor detection sequence  
SLEEP  
IC detection  
VIN_ILIM  
based on  
adapter type  
0x00 (100 mA)  
aaa-028834  
Figure 12.ꢀStartup sequence  
Table 37.ꢀFront-end regulator register  
FRONT-END REGULATOR REGISTER  
0x8F  
ADDR:  
D7  
0
D6  
0
D5  
D4  
D3  
D2  
0
D1  
1
D0  
1
BITS:  
POR:  
VSYSMIN  
Reserved  
1
0
1
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
41 / 108  
 
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
FRONT-END REGULATOR REGISTER  
ACCESS:  
The VSYSMIN value is programmable via OTP as per the table below.  
Table 38.ꢀVSYSMIN setting  
VSYSMIN[1:0] setting  
VSYSMIN setting (V)  
00  
01  
10  
11  
3.5  
3.7  
4.3  
Reserved  
The VSYSMIN setting is the "normal" regulation point for VSYS. This parameter sets the  
point where the VSYS loop starts taking control and regulates the output. 4.3 V is the  
recommended setting to ensure that there is enough headroom before reaching UVDET  
(PMIC undervoltage detection, 2.9 V typ.).  
Typically, the VSYS output range can go as low as 300 mV below the VSYSMIN setting.  
Therefore, the recommended setting for the VSYS output should be between 4.0 V to  
4.3 V.  
Table 39.ꢀVIN current limit register  
VIN CURRENT LIMIT REGISTER  
ADDR:  
0x94  
D7  
D6  
D5  
VIN_ILIM  
1
D4  
D3  
D2  
0
D1  
D0  
0
BITS:  
RESERVED  
POR:  
0
1
0
1
0
ACCESS:  
R/W  
R/W  
R/W  
R/W  
R/W  
The table below shows valid VIN limit settings.  
Table 40.ꢀVIN limit settings  
VIN_ILIM[4:0] setting  
VIN current limit (mA)  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
10  
15  
20  
25  
30  
35  
40  
45  
50  
100  
150  
200  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
42 / 108  
 
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
VIN_ILIM[4:0] setting  
01100  
VIN current limit (mA)  
300  
400  
01101  
01110  
500  
01111  
600  
10000  
700  
10001  
800  
10010  
900  
10011  
1000  
10100  
1500  
10101 to 11101  
11110  
Reserved  
Reserved  
Reserved  
11111  
9 Control and interface signals  
The PF1510 PMIC is fully programmable via the I2C interface. Additional communication  
is provided by direct logic interfacing including interrupt and reset pins as well as pins for  
power buttons.  
9.1 PWRON  
PWRON is an input signal to the IC that acts as an enable signal for the voltage  
regulators in the PF1510.  
The PWRON pin can be configured as either a level sensitive input (OTP_PWRON_CFG  
= 0), or as an edge sensitive input (OTP_PWRON_CFG = 1).  
As a level sensitive input, an active high signal turns on the part and an active low signal  
turns off the part, or puts it into Sleep mode.  
As an edge sensitive input, such as when connected to a mechanical switch, a falling  
edge will turn on the part and if the switch is held low for greater than or equal to 4.0  
seconds, the part turns off or enters Sleep mode.  
Table 41.ꢀPWRON pin OTP configuration options  
OTP_PWRON_CFG  
Mode  
0
PWRON pin HIGH = ON  
PWRON pin LOW = OFF or Sleep mode  
1
PWRON pin pulled LOW momentarily = ON  
PWRON pin LOW for 4.0 seconds = OFF or Sleep mode  
Table 42.ꢀPWRON pin logic level  
Pin name  
Parameter  
Load condition  
Min  
Max  
Unit  
PWRON  
VIL  
0.0  
0.4  
V
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
43 / 108  
 
 
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
Pin name  
Parameter  
Load condition  
Min  
Max  
Unit  
VIH  
1.4  
3.6  
V
When OTP_PWRON_CFG = 1, PWRON pin pulled low momentarily takes the system  
from REGS_DISABLE/SLEEP to RUN mode. There is no effect if PWRON is pulled low  
momentarily while in RUN or STANDBY modes. Only an interrupt is generated.  
PWRON pin low for 4.0 seconds with PWRONRSTEN bit = 1: Enters REGS_DISABLE or  
Sleep mode.  
See Section 10 "PF1510 state machine" for detailed description.  
In this configuration, the PWRON input can be a mechanical switch debounced through a  
programmable de-bouncer, PWRONDBNC[1:0], to avoid a response to a very short key  
press. The interrupt is generated for both the falling and the rising edge of the PWRON  
pin. By default, a 31.25 ms interrupt debounce is applied to both falling and rising  
edges. The falling edge debounce timing can be extended with PWRONDBNC[1:0]. The  
interrupt is cleared by software, or when cycling through the REGS_DISABLE mode.  
Table 43.ꢀPWRONDBNC settings  
Bits  
State  
Turn on  
debounce (ms)  
Falling edge INT  
debounce (ms)  
Rising edge INT  
debounce (ms)  
PWRONDBNC[1:0]  
00  
01  
10  
11  
31.25  
31.25  
125  
31.25  
31.25  
125  
31.25  
31.25  
31.25  
31.25  
750  
750  
9.2 STANDBY  
STANDBY is an input signal to the IC. When it is asserted the part enters standby mode  
and when deasserted, the part exits standby mode. STANDBY can be configured as  
active high or active low using the STANDBYINV bit.  
Table 44.ꢀStandby pin polarity control  
STANDBY (pin)  
STANDBYINV (I2C bit)  
STANDBY control  
Not in Standby mode  
In Standby mode  
0
0
1
1
0
1
0
1
In Standby mode  
Not in Standby mode  
Table 45.ꢀSTANDBY pin logic level  
Pin name  
Parameter  
Load condition  
Min  
0
Max  
0.4  
Unit  
V
STANDBY  
VIL  
VIH  
1.4  
3.6  
V
Since STANDBY pin activity is driven asynchronously to the system, a finite time  
is required for the internal logic to qualify and respond to the pin level changes. A  
programmable delay is provided to hold off the system response to a Standby event. This  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
44 / 108  
 
 
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
allows the processor and peripherals some time after a standby instruction has been  
received to terminate processes to facilitate seamless entering into Standby mode. When  
enabled (STANDBYDLY = 01, 10, or 11), STANDBYDLY delays the Standby initiated  
response for the entire IC, until the STBYDLY counter expires. An allowance should be  
made for three additional 32 kHz cycles required to synchronize the Standby event.  
9.3 RESETBMCU  
RESETBMCU is an open-drain, active low output configurable via OTP for two modes of  
operation.  
In its default mode, it is deasserted at the end of the start-up sequence. In this mode, the  
signal can be used to bring the processor out of reset (POR), or as an indicator that all  
supplies have been enabled; it is only asserted during a turn off event.  
When configured for its fault mode, RESETBMCU is deasserted after the startup  
sequence is completed only if no faults occurred during start up. At any time, if a fault  
occurs and persists for 1.8 ms typically, RESETBMCU is asserted low.  
The PF1510 is turned off if the fault persists for more than 100 ms typically. The PWRON  
signal restarts the part, though if the fault persists, the sequence described above is  
repeated. To enter the fault mode, set bit OTP_PWRGD_EN to 1.  
The time from the last regulator in the start-up sequence to when RESETBMCU is  
deasserted is programmable between 2.0 ms and 1024 ms via OTP_POR_DLY[2:0] bits.  
Table 46.ꢀRESETBMCU pin logic level  
Pin name  
Parameter  
VOL  
Load condition  
–2.0 mA  
Min  
0
Max  
0.2 * VDDIO  
3.6 V  
Unit  
V
RESETBMCU  
VOH  
Open Drain  
0.8 * VDDIO  
V
9.4 INTB  
INTB is an open-drain, active low output. It is asserted when any interrupt occurs,  
provided that the interrupt is unmasked. INTB is deasserted after the fault interrupt is  
cleared by software, which requires writing a “1” to the interrupt bit.  
Each interrupt can be masked by setting the corresponding mask bit to a 1. As a result,  
when a masked interrupt bit goes high, the INTB pin does not go low. A masked interrupt  
can still be read from the interrupt status register. This gives the processor the option of  
polling for status from the IC.  
The IC powers up with all interrupts masked, so the processor must initially poll the  
device to determine if any interrupts are active. Alternatively, the processor can unmask  
the interrupt bits of interest. If a masked interrupt bit was already high, the INTB pin goes  
low after unmasking. The sense registers contain status and input sense bits so the  
system processor can poll the current state of interrupt sources. They are read only, and  
not latched or clearable.  
Table 47.ꢀINTB pin logic level  
Pin name  
Parameter  
VOL  
Load condition  
–2.0 mA  
Min  
0
Max  
0.2 * VDDIO  
3.6 V  
Unit  
V
INTB  
VOH  
Open Drain  
0.8 * VDDIO  
V
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
45 / 108  
 
 
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
9.5 WDI  
WDI is an input signal to the IC. It is typically connected to the watchdog output of the  
processor. When the WDI pin is pulled low, the PMIC enters the “REGS_DISABLE”  
mode where all the regulators are turned off. The WDI acts as a hard reset input from the  
processor.  
During PMIC startup (REGS_DISABLE to RUN mode), the WDI pin is masked till  
RESETBMCU is deasserted.  
Table 48.ꢀWDI pin logic level  
Pin name  
Parameter  
Load condition  
Min  
0
Max  
0.2 * VDDIO  
3.6  
Unit  
V
WDI  
VIL  
VIH  
0.8 * VDDIO  
V
9.6 ONKEY  
ONKEY is an input pin to the IC and is typically connected to a push-button switch. The  
ONKEY pin is pulled high when the switch is depressed, and is pulled low when the  
switch is pressed.  
Pressing the switch generates interrupts which the processor uses to initiate PMIC  
state transitions. Pressing the ONKEY for longer than the delay programmed  
by OTP_TGRESET[1:0] (ranges from 4.0 s to 16 s), forces the PMIC into the  
REGS_DISABLE state.  
Table 49.ꢀONKEY pin logic level  
Pin name  
Parameter  
Load condition  
Min  
0
Max  
0.4  
Unit  
V
ONKEY  
VIL  
VIH  
1.4  
4.8  
V
Table 50.ꢀONKEYDBNC settings  
Bits  
State  
Turn On  
Debounce (ms)  
Falling Edge INT  
Debounce (ms)  
Rising Edge INT  
Debounce (ms)  
ONKEYDBNC[1:0]  
00  
01  
10  
11  
31.25  
31.25  
125  
31.25  
31.25  
125  
31.25  
31.25  
31.25  
31.25  
750  
750  
The ONKEY input can be a mechanical switch debounced through a programmable  
debouncer, ONKEYDBNC[1:0], to avoid a response to a very short (unintentional) key  
press. The interrupt is generated during the rising edge of the ONKEY pin.  
The falling edge debounce timing can be extended with ONKEYDBNC[1:0] as  
defined Table 50. The interrupt is cleared by software, or when cycling through the  
REGS_DISABLE mode.  
See Section 12 "Register map" for detailed description of the ONKEY interrupt registers.  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
46 / 108  
 
 
 
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
9.7 Control interface I2C block description  
The PF1510 contains an I2C interface port which allows access by a processor, or  
any I2C master, to the register set. Via these registers, the resources of the IC can be  
controlled. The registers also provide status information about how the IC is operating.  
The SCL and SDA lines should be routed away from noisy signals and planes to  
minimize noise pick up. To prevent reflections in the SCL and SDA traces from creating  
false pulses, the rise and fall times of the SCL and SDA signals must be greater than  
20 ns. This can be accomplished by reducing the drive strength of the I2C master via  
software.  
9.7.1 I2C device ID  
I2C interface protocol requires a device ID for addressing the target IC on a multi-device  
bus. The PF1510 I2C device address is 0x08.  
9.7.2 I2C operation  
The I2C mode of the interface is implemented generally following the fast mode definition  
which supports up to 400 kbits/s operation (exceptions to the standard are noted to be  
7-bit only addressing and no support for general call addressing). Timing diagrams,  
electrical specifications, and further details can be found in the I2C specification, which is  
available for download at:  
http://www.nxp.com/acrobat_download/literature/9398/39340011.pdf  
I2C read operations are also performed in byte increments separated by an ACK. Read  
operations also begin with the MSB and each byte is sent out unless a STOP command  
or NACK is received prior to completion.  
The following examples show how to write and read data to and from the IC. The host  
initiates and terminates all communication. The host sends a master command packet  
after driving the start condition. The device responds to the host if the master command  
packet contains the corresponding slave address. In the following examples, the device  
is shown always responding with an ACK to transmissions from the host. If at any time  
a NACK is received, the host should terminate the current transaction and retry the  
transaction.  
2
I C write example  
host can also drive  
another START  
instead of STOP  
device address  
register address  
master driven data  
DATA (byte 0)  
SDA  
S
0
A
A
A
P
acknowledge  
from slave  
acknowledge STOP  
from slave condition  
START condition  
R/W  
acknowledge  
from slave  
2
host can also drive  
another START  
instead of STOP  
I C read example  
device address  
register address  
device address  
PMIC driven data  
SDA  
S
0
A
A
S
1
A
NA P  
acknowledge  
from slave  
no acknowledge STOP  
from slave condition  
START condition  
START condition  
R/W  
R/W  
acknowledge  
from slave  
acknowledge  
from slave  
aaa-026501  
Figure 13.ꢀI2C sequence  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
47 / 108  
 
 
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
10 PF1510 state machine  
The PMIC part of the PF1510 can operate in a number of states as shown in Figure 14.  
The states can be split into two categories:  
1. “System On” that includes the RUN, STANDBY and SLEEP modes  
2. “System Off” that includes the REGS_DISABLE and CORE_OFF modes  
A
STANDBY  
RUN  
H
G
B
REGS_DISABLE  
(VSNVS from VSYS  
or LICELL)  
C
E
F
(MBATT ON,  
VCOREDIG ON)  
CORE_OFF  
VSNVS_ONLY  
(VSNVS from VSYS  
or LICELL)  
I
SLEEP/LPSR  
K
(MBATT ON,  
System running, VCOREDIG ON  
VCOREDIG OFF)  
aaa-023889  
Figure 14.ꢀPMIC state machine  
In the “System On” modes, some or all of the PMIC regulators are powered and in  
general the system processor is powered.  
In the “System Off” modes, all (or all regulators except VSNVS) are powered off. In  
general the system processor is powered off during these states. In the REGS_DISABLE  
and CORE_OFF modes, the VSNVS supply remains enabled keeping the system RTC  
running.  
The only way to transition from “System Off” to “System On” and vice versa is through  
the REGS_DISABLE mode. From the REGS_DISABLE mode, the only exit into a  
“System On” state is into the “Run” mode. Transition from the REGS_DISABLE mode to  
the Run mode requires a Turn On event. See Section 10.3 "Turn on events".  
Transition from any of the “System On” modes to the REGS_DISABLE state is allowed.  
This transition is referred to as a Turn Off event. See Section 10.4 "Turn off events".  
10.1 System ON states  
10.1.1 Run state  
In this state, the PMIC regulators are enabled and the system is powered up.  
RESETBMCU is de-asserted in this state.  
This mode can be entered in several ways:  
1. From REGS_DISABLE through a Turn On Event: During this transition, the PMIC  
regulators are powered up as per their programmed start-up sequence. After all the  
regulators are powered, the RESETBMCU pin is de-asserted.  
2. From STANDBY by using the STANDBY pin  
3. From SLEEP mode by using the PWRON pin: Typically, some of the regulators are  
turned off in the SLEEP mode compared to the RUN mode. In the SLEEP mode,  
some of the buck regulator output voltages are set lower than those in the RUN  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
48 / 108  
 
 
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
mode. While transitioning from the SLEEP to the RUN mode, regulators that were  
turned off in the SLEEP mode are turned back on in the RUN mode following the  
same sequence as the programmed OTP sequence. Output voltage transitions during  
transition from the SLEEP to the RUN mode also occurs at the same OTP sequence  
time slot. RESETBMCU is de-asserted through this state transition.  
10.1.2 STANDBY state  
This state is entered by controlling the logic level of the STANDBY pin. It can be entered  
only from the RUN mode.  
The STANDBY pin polarity is programmable through the STANDBYINV I2C bit. By  
default, STANDBYINV = 0 and a logic high on the STANDBY pin moves the state  
machine from the RUN state to the STANDBY state. When STANDBYINV = 1, a logic  
low moves the state machine from the RUN state to the STANDBY state.  
Regulator output voltage may be changed, or regulator outputs could be disabled while  
entering the STANDBY state and vice versa.  
For details on the power-down sequence, see Section 10.7 "Regulator power-down  
sequencer". While exiting STANDBY state into the RUN mode, regulator output voltage  
changes and regulator enables follow the power-up sequence.  
It is possible to exit STANDBY state and enter the SLEEP state. SLEEP state is  
generally a lower power system state compared to the STANDBY state. Exiting  
STANDBY into the SLEEP state follows the power-down sequence.  
RESETBMCU is de-asserted in the STANDBY state.  
10.1.3 SLEEP state  
This state is entered from either the RUN state or the STANDBY state by controlling  
the PWRON pin. The exact condition required for this transition depends on the OTP  
configuration of the PWRON pin. For details see Section 9.1 "PWRON".  
The power-down sequence is followed while entering this state and the power-up  
sequence is followed while exiting this state into the RUN state.  
RESETBMCU is de-asserted in the SLEEP state.  
10.2 System OFF states  
RESETBMCU is asserted (low) in all the System Off states.  
10.2.1 REGS_DISABLE  
This state can be considered the ‘home state’ for the state machine. In this state, the  
state machine waits for appropriate commands to proceed to other states.  
REGS_DISABLE can be entered from one of the “System On” state through a turn off  
event.  
REGS_DISABLE can be entered from the CORE_OFF by pressing the ONKEY button  
for more than 1000 ms or by applying the Vin.  
In the REGS_DISABLE state, the PMIC core circuitry is active. VSNVS is a best-of-  
supply output of VSYS and LICELL.  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
49 / 108  
 
 
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
10.2.2 CORE_OFF  
This state is entered in two ways:  
1. From the REGS_DISABLE mode by pressing and holding the ONKEY button low >  
Tgreset  
2. From the REGS_DISABLE mode if the GOTO_CORE_OFF bit is set  
This state cannot be entered if Vin is applied.  
In this state, the internal core of the PMIC is turned off to reduce quiescent current.  
VSNVS is the only regulator that is supplied to external loads.  
10.3 Turn on events  
A turn on event takes the PMIC from the REGS_DISABLE state to the RUN state  
(transition H in Figure 14 ).  
The turn on events are:  
1. PWRON logic high with PWRON_CFG = 0  
2. PWRON H -> L with PWRON_CFG = 1  
VSYS > UVDETrising and TJ < TSHDN_fall are preconditions for a turn on event to occur.  
The turn on is said to be complete after the RESETBMCU pin is deasserted. The WDI pin  
is masked till the RESETBMCU pin is deasserted.  
10.4 Turn off events  
A turn off event takes the PMIC state machine from one of the “System On” states (RUN,  
STANDBY or SLEEP) to the REGS_DISABLE state. The power-down sequence is  
followed during all of the turn off events.  
The turn off events are:  
1. Thermal Shutdown (TJ > TSHDN_rise  
)
2. PWRON logic low with OTP_PWRON_CFG = 0  
3. PWRON low > 4.0 s with OTP_PWRON_CFG = 1 && PWRONRSTEN = 1  
4. WDI = 0. This occurs when the processor watchdog expires and pulls the WDI pin low  
to create a hard reset.  
5. ONKEY pressed low > Tgreset && ONKEYRST_EN = 1. This facilitates creating a hard  
reset when pressing the ONKEY button without processor intervention.  
10.5 State diagram and transition conditions  
Table 51.ꢀState transition table  
Transition  
Description  
PWRON_CFG = 0 (Level sensitive)  
PWRON_CFG = 1 (Edge sensitive)  
A
Standby to Run  
(STANDBY pin = 0 && STANDBYINV bit = 0)  
OR  
(STANDBY pin = 0 && STANDBYINV bit = 0)  
OR  
(STANDBY pin = 1 && STANDBYINV bit = 1)  
(STANDBY pin = 1 && STANDBYINV bit = 1)  
B
C
Run to Standby  
(STANDBY pin = 1 && STANDBYINV bit = 0)  
OR  
(STANDBY pin = 1 && STANDBYINV bit = 0)  
OR  
(STANDBY pin = 0 && STANDBYINV bit = 1)  
(STANDBY pin = 0 && STANDBYINV bit = 1)  
Standby to Sleep  
(PWRON = 0) && (Any SWxOMODE = 1 || Any  
LDOxOMODE = 1)  
(PWRON High to Low and PWRON = 0 > 4s) &&  
(PWRONRSTEN = 1) && (Any SWxOMODE = 1 || Any  
LDOxOMODE = 1)  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
50 / 108  
 
 
 
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
Transition  
Description  
Sleep to Run  
Run to Sleep  
PWRON_CFG = 0 (Level sensitive)  
PWRON_CFG = 1 (Edge sensitive)  
E
F
PWRON = 1  
PWRON High to Low to High [1]  
(PWRON = 0) && (Any SWxOMODE = 1 || Any  
LDOxOMODE = 1)  
(PWRON High to Low and PWRON = 0 > 4s) &&  
(PWRONRSTEN = 1) && (Any SWxOMODE = 1 || Any  
LDOxOMODE = 1)  
G
Run/Standby/Sleep to  
REGS_DISABLE  
(Thermal shutdown)  
OR  
(Thermal shutdown)  
OR  
(PWRON = 0 && All SWxOMODE = 0 && All  
LDOxOMODE = 0)  
(PWRON = 0 > 4s && PWRONRSTEN = 1 && All  
SWxOMODE = 0 && All LDOxOMODE = 0)  
OR  
OR  
(WDI = 0) [2]  
OR  
(PWRON High to Low and PWRON = 0 > 4s when in  
Sleep state)  
OR  
(ONKEY High to Low and ONKEY = 0 > Tgreset &&  
ONKEY_RST_EN = 1)  
(WDI = 0) [2]  
OR  
OR  
(VSYS < UVDET_Fall) [3]  
(ONKEY High to Low and ONKEY = 0 > Tgreset and  
ONKEY_RST_EN = 1)  
OR  
(VSYS < UVDET_Fall) [3]  
H
REGS_DISABLE to Run  
(Only if VSYS > UVDET  
PWRON = 1  
(PWRON High to Low )  
OR  
and TJ < TSHDN_fall  
)
(If entered REGS_DISABLE via long press on PWRON  
&& RESTARTEN = 1 && PWRON stays Low > 1.0 s)  
OR  
(Vin applied)  
[4] [5]  
I
REGS_DISABLE to  
CORE_OFF  
(GOTO_CORE_OFF = 1 && ONKEY = 1)  
OR  
(GOTO_CORE_OFF = 1 && ONKEY = 1)  
OR  
(Only if VIN_INVALID = 1)  
(ONKEY High to Low and ONKEY = 0 > Tgreset &&  
ONKEY_RST_EN = 1) [6][7]  
(ONKEY High to Low and ONKEY = 0 > Tgreset &&  
ONKEY_RST_EN = 1) [6][8]  
K
CORE_OFF to REGS_  
DISABLE  
(ONKEY High to Low and ONKEY = 0 > 1000 ms)  
(ONKEY High to Low and ONKEY = 0 > 1000 ms)  
OR  
OR  
(Vin applied)  
(Vin applied)  
[1] This low period is < 4.0 s. If it is longer than 4.0 s, it transitions to G  
[2] PWRON pin is pulled low by processor after WDI = 0.  
[3] Follows regulator power-down sequence for this transition  
[4] WDI pin is masked till RESETBMCU is deasserted.  
[5] Debounce on PWRON programmable via PWRONDBNC[1:0]  
[6] PWRON pin is pulled low by processor after ONKEY = 0 > Tgreset.  
[7] GOTO_CORE_OFF is set by user when system is ON. For other products, a secondary processor is used to set this bit while in REGS_DISABLE  
[8] GOTO_CORE_OFF must be set by user when system is ON  
10.6 Regulator power-up sequencer  
Start-up sequence of all the switching and linear regulators in the PF1510 is  
programmable. VSNVS's sequence is not programmable but is always the first regulator  
to power up when the PF1510 is powered up via a cold start (from no input to valid input).  
When SYS is first applied to the PF1510, VSNVS comes up first.  
The switching and linear regulators power up based on their programmed OTP sequence  
using the respective OTP_XX_SEQ[2:0] when transitioning from REGS_DISABLE to the  
RUN state.  
RESETBMCU is pulled low from VCOREDIG POR till the end of the power-up  
sequencer.  
RESETBMCU is pulled high 2.0 ms to 1024 ms after the last regulator powers up. This  
delay is OTP programmable through the OTP_POR_DLY[2:0] bits.  
When transitioning from STANDBY mode to RUN mode, the power-up sequencer is  
activated only if any of the regulators turn back on during this transition.  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
51 / 108  
 
 
 
 
 
 
 
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
The power-up sequencer ends as soon as the last regulator powers up, rather than  
waiting for a fixed time.  
The power-up sequencer is always activated when transitioning from Sleep to Run  
modes. The sequencer ends as soon as the last regulator powers up, rather than waiting  
for a fixed time.  
The PWRUP_I interrupt is set to indicate completion of transition from STANDBY to RUN  
and SLEEP to RUN.  
The PWRUP_I interrupt is set while transitioning from STANDBY to RUN even if the  
sequencers were not used. This is used to indicate that the transition is complete.  
10.7 Regulator power-down sequencer  
The power-down sequencer performs the functional opposite to the power-up  
sequencer. Each regulator has an associated register setting (SW1_PWRDN_SEQ[2:0],  
SW2_PWRDN_SEQ[2:0], SW3_PWRDN_SEQ[2:0], LDO1_PWRDN_SEQ[2:0],  
LDO2_PWRDN_SEQ[2:0], LDO3_PWRDN_SEQ[2:0], VREFDDR_PWRDN_SEQ[2:0])  
that sets its power-down sequence.  
The default setting of the above registers is equal to the corresponding  
power-up sequence setting. For example, SW1_PWRDN_SEQ[2:0] =  
OTP_SW1_PWRUP_SEQ[2:0].  
When the power-down sequencer is activated, regulators are turned off one by one in  
the descending order of the XXX_PWRDN_SEQ[2:0] setting. This way, by default power-  
down is a mirror of the power-up sequence.  
In one of the "System On" states, the processor can change the values of the  
XXX_PWRDN_SEQ[2:0] registers. The power-up sequence is fixed by OTP (or TBB). If  
all XXX_PWRDN_SEQ[2:0] = 0x00, the power-down sequencer is bypassed and all the  
regulators are turned off at once. During transition from Run to Standby, the power-down  
sequencer is activated if any of the regulators are turned off during this transition.  
If regulators are not turned off during this transition, the power-down sequencer is  
bypassed and the transition happens at once (any associated DVS transitions still take  
time).  
During transition from Run to Sleep, the power-down sequencer is always activated.  
However, if all XXX_PWRDN_SEQ[2:0] = 0, the transition happens immediately.  
The PWRDN_I interrupt is set during transition from Run to Sleep and Run to Standby  
even if regulators are not turned off during these transitions.  
11 Device start up  
11.1 Startup timing diagram  
The startup timing of the regulators is programmable through OTP, Figure 15 shows the  
startup timing of the regulators as determined by their OTP A4 sequence.  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
52 / 108  
 
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
UVDET  
UVDET  
VSYS  
t
R1  
t
D1  
VSNVS  
t
R2  
t
D2  
PWRON  
t
R3  
t
D3  
Time Slot 0  
t
R3  
t
D3  
LDO1, 3  
Time Slot 1  
t
R3  
t
D5  
t
D3  
LDO2  
SW3  
Time Slot 2  
t
R3  
t
D5  
t
D3  
SW2  
VREFDDR  
Time Slot 3  
t
R3  
t
D5  
t
D3  
SW1  
Time Slot 4  
t
R4  
t
D4  
RESETBMCU  
aaa-028914  
Figure 15.ꢀA4 startup and power down sequence  
Table 52.ꢀA4 startup and power down sequence timing  
Parameter Description [1]  
Min  
Typ  
0.6  
0.1  
Max  
Unit  
ms  
ms  
ms  
ms  
ms  
tD1  
tR1  
tD2  
tR2  
tD3  
Turn-on delay of VSNVS  
Rise time of VSNVS  
User determined delay  
Rise time of PWRON  
[2]  
Power up delay between regulators  
OTP_SEQ_CLK_SPEED = 0  
OTP_SEQ_CLK_SPEED = 1  
0.5  
2.0  
[3]  
[4]  
tR3  
tD4  
tR4  
tD5  
Rise time of regulators  
0.2  
2.0  
0.2  
2.0  
ms  
ms  
ms  
ms  
Turn-on delay of RESETBMCU  
Rise time of RESETBMCU  
Power down delay between  
regulators  
[1] All regulators avoid drop-out mode at startup  
[2] Depends on the external signal driving PWRON  
[3] A4 configuration  
[4] Rise time is a function of slew rate of regulators and nominal voltage selected.  
11.2 Device start up configuration  
Table 53.ꢀPF1510 start up configuration  
Pre-programmed OTP configuration  
Registers  
A1  
A2  
A3  
0x08  
A4  
A5  
0x08  
A6  
A7  
Default I2C Address  
OTP_VSNVS_VOLT[2:0]  
OTP_SW1_VOLT[5:0]  
0x08  
3.0 V  
1.1 V  
0x08  
3.0 V  
1.0V  
0x08  
3.0 V  
1.1 V  
0x08  
3.0 V  
0x08  
3.0 V  
3.0 V  
3.0 V  
1.3875 V  
1.3875 V  
1.275 V  
1.3875 V  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
53 / 108  
 
 
 
 
 
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
Pre-programmed OTP configuration  
Registers  
A1  
1
A2  
5
A3  
A4  
4
A5  
3
A6  
A7  
3
OTP_SW1_PWRUP_SEQ[2:0]  
OTP_SW2_VOLT[5:0]  
3
1.35 V  
3
3
1.35 V  
3
1.1 V  
2
1.2V  
5
1.2 V  
3
1.5 V  
3
1.2 V  
3
OTP_SW2_PWRUP_SEQ[2:0]  
OTP_SW3_VOLT[5:0]  
1.8 V  
3
1.8V  
1
3.3 V  
3
1.8 V  
2
3.3 V  
3
3.3 V  
3
1.8 V  
3
OTP_SW3_PWRUP_SEQ[2:0]  
OTP_LDO1_VOLT[4:0]  
1.0 V  
4
1.8 V  
1
1.8 V  
3
3.3 V  
1
1.8 V  
3
1.8 V  
3
3.3 V  
3
OTP_LDO1_PWRUP_SEQ[2:0]  
OTP_LDO2_VOLT[3:0]  
2.5 V  
4
3.3 V  
1
3.3 V  
2
3.3 V  
2
3.3 V  
2
3.3 V  
2
3.3 V  
2
OTP_LDO2_PWRUP_SEQ[2:0]  
OTP_LDO3_VOLT[4:0]  
1.0 V  
5
1.8 V  
1
3.3 V  
3
1.8 V  
1
3.3 V  
3
3.3 V  
3
3.3 V  
3
OTP_LDO3_PWRUP_SEQ[2:0]  
OTP_VREFDDR_PWRUP_  
SEQ[2:0]  
5
5
3
3
3
3
3
OTP_SW1_DVS_SEL  
Non-DVS  
mode  
DVS mode  
OTP_SW2_DVS_SEL  
OTP_LDO1_LS_EN  
DVS mode  
Non-DVS mode  
DVS mode  
LDO mode  
Non-DVS mode  
OTP_LDO3_LS_EN  
LS mode  
LDO mode  
OTP_SW1_RDIS_ENB  
OTP_SW2_RDIS_ENB  
OTP_SW3_RDIS_ENB  
OTP_SW1_DVSSPEED  
OTP_SW2_DVSSPEED  
Enabled  
Enabled  
Enabled  
12.5 mV step each 4.0 µs  
12.5 mV  
step each  
2.0 µs  
12.5 mV step each 4.0 µs  
OTP_SWx_EN_AND_STBY_EN  
OTP_LDOx_EN_AND_STBY_EN  
OTP_PWRON_CFG  
SW1, SW2, SW3 enabled in RUN and STANDBY  
LDO1, LDO2, LDO3, VREFDDR enabled in RUN and STANDBY  
Level sensitive  
OTP_SEQ_CLK_SPEED  
0.5 ms  
2 ms time slots  
time slots  
OTP_TGRESET[1:0]  
OTP_POR_DLY[2:0]  
OTP_UVDET[1:0]  
4 secs global reset timer  
2 ms RESETBMCU power-up delay  
Rising 3.0 V; falling 2.9 V  
OTP_I2C_DEGLITCH_EN  
OTP_VSYSMIN[1:0]  
I2C deglitch filter disabled  
VSYSMIN = 4.3 V  
VSYSMIN VSYSMIN  
= 3.7 V = 4.3 V  
OTP_VIN_ILIM[4:0]  
VIN ILIM  
VIN ILIM = 1500 mA  
= 500 mA  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
54 / 108  
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
Pre-programmed OTP configuration  
Registers  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
OTP_USBPHYLDO  
USBPHY  
LDO  
USBPHY LDO enabled  
disabled  
OTP_USBPHY  
USBPHY = 3.3 V  
OTP_ACTDISPHY  
USBPHY  
active  
USBPHY active discharge enabled  
discharge  
disabled  
12 Register map  
12.1 Specific PMIC Registers (Offset is 0x00)  
The following pages contain description of the various registers in the PF1510.  
Table 54.ꢀRegister DEVICE_ID - ADDR 0x00  
Name  
Bit  
R/W  
Default Description  
100 Loaded from fuses  
DEVICE_ID  
2 to 0  
R
000 — Future use  
001 — Future use  
010 — Future use  
011 — Future use  
100 — PF1510  
101 — Future use  
110 — Future use  
111 — Future use  
FAMILY  
7 to 3  
R
01111 Identifies PMIC  
01111 — 0b0_1111 for "15" used to denote the "PF1510"  
Table 55.ꢀRegister OTP_FLAVOR - ADDR 0x01  
Name  
Bit  
R/W  
Default Description  
UNUSED  
7 to 0  
R
0x00  
Blown by ATE to indicate flavor of OTP used  
0x00 — OTP not burned  
0x01 — A1  
0x02 — A2  
0x03 — A3  
continues...  
Table 56.ꢀRegister SILICON_REV - ADDR 0x02  
Name  
Bit  
R/W  
R
Default Description  
METAL_LAYER_REV  
FULL_LAYER_REV  
2 to 0  
5 to 3  
000  
001  
Unused  
Unused  
R
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
55 / 108  
 
 
 
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
Name  
Bit  
R/W  
Default Description  
00 Unused  
FAB_FIN  
7 to 6  
R
Table 57.ꢀRegister INT_CATEGORY - ADDR 0x06  
Name  
Bit  
R/W  
Default Description  
VIN_INT  
0
R
0
0
0
0
0
This bit is set high if the VIN_I interrupt bit is set  
0 — No interrupt bit is set, cleared, or did not occur  
1 — "OR" function of all interrupt status bit  
SW1_INT  
SW2_INT  
SW3_INT  
LDO_INT  
1
2
3
4
R
R
R
R
This bit is set high if any of the Buck 1 interrupt status bits are set  
0 — SW1 interrupts cleared or did not occur  
1 — Any of the SW1 interrupt status bits are set  
This bit is set high if any of the Buck 2 interrupt status bits are set  
0 — SW2 interrupts cleared or did not occur  
1 — Any of the SW2 interrupt status bits are set  
This bit is set high if any of the Buck 3 interrupt status bits are set  
0 — SW3 interrupts cleared or did not occur  
1 — any of the SW3 interrupt status bits are set  
This bit is set high if any of the LDO interrupt status bits are set.  
This includes LDO1, LDO2 and LDO3.  
0 — LDO interrupts cleared or did not occur  
1 — Any of the LDO interrupt status bits are set  
ONKEY_INT  
TEMP_INT  
5
6
R
R
0
0
This bit is set high if any of the interrupts associated with ONKEY  
push button are set.  
0 — ONKEY related interrupts cleared or did not occur  
1 — Any of the ONKEY interrupt status bits are set  
This bit is set if any of the interrupts associated with the die  
temperature monitor are set  
0 — PMIC junction temperature related interrupts cleared or did  
not occur  
1 — any of the PMIC junction temperature interrupts status bits  
are set  
MISC_INT  
7
R
0
This bit is set if interrupts not covered by the above mentioned  
categories occur  
0 — Other interrupts (not covered by categories above) cleared,  
or did not occur  
1 — Status bit of other interrupts (not covered by categories  
above) is set  
Table 58.ꢀRegister SW_INT_STAT0 - ADDR 0x08  
Name  
Bit  
R/W  
Default Description  
SW1_LS_I  
0
RW1C[1]  
0
SW1 low-side current limit interrupt status. This bit is set if the  
current limit fault persists for longer than the debounce time.  
0 — Interrupt cleared or did not occur  
1 — Interrupt occurred and/or not cleared  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
56 / 108  
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
Name  
Bit  
R/W  
Default Description  
SW2_LS_I  
1
RW1C  
0
0
SW2 low-side current limit interrupt status. This bit is set if the  
current limit fault persists for longer than the debounce time.  
0 — Interrupt cleared or did not occur  
1 — Interrupt occurred and/or not cleared  
SW3_LS_I  
2
RW1C  
SW3 low-side current limit interrupt status. This bit is set if the  
current limit fault persists for longer than the debounce time.  
0 — Interrupt cleared or did not occur  
1 — Interrupt occurred and/or not cleared  
UNUSED  
7 to 3  
Unused  
[1] Read or Write 1 to clear the bit  
Table 59.ꢀRegister SW_INT_MASK0 - ADDR 0x09  
Name  
Bit  
R/W  
Default Description  
SW1_LS_M  
0
RW  
1
SW1 low-side current limit interrupt mask  
0 — Mask removed. INTB pin is pulled low if corresponding  
interrupt status bit is set.  
1 — Mask enabled. INTB pin is NOT pulled low if corresponding  
interrupt status bit is set.  
SW2_LS_M  
SW3_LS_M  
UNUSED  
1
2
RW  
RW  
1
SW2 low-side current limit interrupt mask  
0 — Mask removed. INTB pin is pulled low if corresponding  
interrupt status bit is set.  
1 — Mask enabled. INTB pin is NOT pulled low if corresponding  
interrupt status bit is set.  
1
SW3 low-side current limit interrupt mask  
0 — Mask removed. INTB pin is pulled low if corresponding  
interrupt status bit is set.  
1 — Mask enabled. INTB pin is NOT pulled low if corresponding  
interrupt status bit is set.  
7 to 3  
Unused  
Table 60.ꢀRegister SW_INT_SENSE0 - ADDR 0x0A  
Name  
Bit  
R/W  
Default Description  
SW1_LS_S  
0
R
0
0
0
SW1 low-side current limit interrupt sense. Sense is high as long  
as fault persists (post-debounce).  
0 — Fault removed  
1 — Fault exists  
SW2_LS_S  
SW3_LS_S  
1
2
R
R
SW2 low-side current limit interrupt sense. Sense is high as long  
as fault persists (post-debounce).  
0 — Fault removed  
1 — Fault exists  
SW3 low-side current limit interrupt sense. Sense is high as long  
as fault persists (post-debounce)  
0 — Fault removed  
1 — Fault exists  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
57 / 108  
 
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
Name  
Bit  
R/W  
Default Description  
Unused  
UNUSED  
7 to 3  
Table 61.ꢀRegister SW_INT_STAT1 - ADDR 0x0B  
Name  
Bit  
R/W  
Default Description  
SW1_HS_I  
0
RW1C [1]  
0
SW1 high-side current limit interrupt  
0 — Interrupt cleared or did not occur  
1 — Interrupt occurred and/or not cleared  
SW2_HS_I  
SW3_HS_I  
UNUSED  
1
2
RW1C  
RW1C  
0
SW2 high-side current limit interrupt  
0 — Interrupt cleared or did not occur  
1 — Interrupt occurred and/or not cleared  
0
SW3 high-side current limit interrupt  
0 — Interrupt cleared or did not occur  
1 — Interrupt occurred and/or not cleared  
7 to 3  
Unused  
[1] Read or Write 1 to clear the bit  
Table 62.ꢀRegister SW_INT_MASK1 - ADDR 0x0C  
Name  
Bit  
R/W  
Default Description  
SW1_HS_M  
0
RW  
1
SW1 high-side current limit interrupt mask  
0 — Mask removed. INTB pin is pulled low if corresponding  
interrupt status bit is set.  
1 — Mask enabled. INTB pin is NOT pulled low if corresponding  
interrupt status bit is set.  
SW2_HS_M  
SW3_HS_M  
UNUSED  
1
2
RW  
RW  
1
SW2 high-side current limit interrupt mask  
0 — Mask removed. INTB pin is pulled low if corresponding  
interrupt status bit is set.  
1 — Mask enabled. INTB pin is NOT pulled low if corresponding  
interrupt status bit is set.  
1
SW3 high-side current limit interrupt mask  
0 — Mask removed. INTB pin is pulled low if corresponding  
interrupt status bit is set.  
1 — Mask enabled. INTB pin is NOT pulled low if corresponding  
interrupt status bit is set.  
7 to 3  
Unused  
Table 63.ꢀRegister SW_INT_SENSE1 - ADDR 0x0D  
Name  
Bit  
R/W  
Default Description  
SW1_HS_S  
0
R
0
SW1 high-side current limit interrupt sense. This bit should not  
toggle within a switching cycle (at buck switching frequency), but  
report the sense status within the switching cycle.  
0 — Fault removed  
1 — Fault exists  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
58 / 108  
 
 
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
Name  
Bit  
R/W  
Default Description  
SW2_HS_S  
1
R
0
SW2 high-side current limit interrupt sense. This bit should not  
toggle within a switching cycle (at buck switching frequency), but  
report the sense status within the switching cycle.  
0 — Fault removed  
1 — Fault exists  
SW3_HS_S  
UNUSED  
2
R
0
SW3 high-side current limit interrupt sense. This bit should not  
toggle within a switching cycle (at buck switching frequency), but  
report the sense status within the switching cycle.  
0 — Fault removed  
1 — Fault exists  
7 to 3  
Unused  
Table 64.ꢀRegister SW_INT_STAT2 - ADDR 0x0E  
Name  
Bit  
R/W  
Default Description  
SW1_DVS_DONE_I  
0
RW1C[1]  
0
Interrupt to indicate SW1 DVS complete. This interrupt should  
occur every time regulator output voltage is changed (either via  
I2C within a given state, or if there is change in voltage when  
transitioning states, Run to Standby, for example).  
0 — DVS not complete and/or bit cleared  
1 — DVS complete  
SW2_DVS_DONE_I  
1
RW1C  
0
Interrupt to indicate SW2 DVS complete. This interrupt should  
occur every time regulator output voltage is changed (either via  
I2C within a given state, or if there is change in voltage when  
transitioning states, Run to Standby, for example).  
0 — DVS not complete and/or bit cleared  
1 — DVS complete  
UNUSED  
7 to 2  
Unused  
[1] Read or Write 1 to clear the bit  
Table 65.ꢀRegister SW_INT_MASK2 - ADDR 0x0F  
Name  
Bit  
R/W  
Default Description  
SW1_DVS_DONE_M  
0
RW  
1
Mask for interrupt that indicates SW1 DVS complete  
0 — Mask removed. INTB pin is pulled low if corresponding  
interrupt status bit is set.  
1 — Mask enabled. INTB pin is not pulled low if corresponding  
interrupt status bit is set.  
SW2_DVS_DONE_M  
1
RW  
1
Mask for interrupt that indicates SW2 DVS complete  
0 — Mask removed. INTB pin is pulled low if corresponding  
interrupt status bit is set.  
1 — Mask enabled. INTB pin is not pulled low if corresponding  
interrupt status bit is set.  
UNUSED  
7 to 2  
Unused  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
59 / 108  
 
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
Table 66.ꢀRegister SW_INT_SENSE2 - ADDR 0x10  
Name  
Bit  
R/W  
Default Description  
SW1_DVS_S  
0
R
0
Indicates DVS in progress for SW1  
0 — DVS not in progress  
1 — DVS in progress  
SW2_DVS_S  
UNUSED  
1
R
0
Indicates DVS in progress for SW2  
0 — DVS not in progress  
1 — DVS in progress  
7 to 2  
Unused  
Table 67.ꢀRegister LDO_INT_STAT0 - ADDR 0x18  
Name  
Bit  
R/W  
Default Description  
LDO1_FAULTI  
0
RW1C[1]  
0
LDO1 current limit interrupt  
0 — Interrupt cleared or did not occur  
1 — Interrupt occurred and/or not cleared  
LDO2_FAULTI  
LDO3_FAULTI  
UNUSED  
1
2
RW1C  
RW1C  
0
LDO2 current limit interrupt  
0 — Interrupt cleared or did not occur  
1 — Interrupt occurred and/or not cleared  
0
LDO3 current limit interrupt  
0 — Interrupt cleared or did not occur  
1 — Interrupt occurred and/or not cleared  
7 to 3  
Unused  
[1] Read or Write 1 to clear the bit  
Table 68.ꢀRegister LDO_INT_MASK0 - ADDR 0x19  
Name  
Bit  
R/W  
Default Description  
LDO1_FAULTM  
0
RW  
1
LDO1 current limit fault interrupt mask  
0 — Mask removed. INTB pin is pulled low if corresponding  
interrupt status bit is set.  
1 — Mask enabled. INTB pin is not pulled low if corresponding  
interrupt status bit is set.  
LDO2_FAULTM  
LDO3_FAULTM  
UNUSED  
1
2
RW  
RW  
1
LDO2 current limit fault interrupt mask  
0 — Mask removed. INTB pin is pulled low if corresponding  
interrupt status bit is set  
1 — Mask enabled. INTB pin is not pulled low if corresponding  
interrupt status bit is set.  
1
LDO3 current limit fault interrupt mask  
0 — Mask removed. INTB pin is pulled low if corresponding  
interrupt status bit is set.  
1 — Mask enabled. INTB pin is not pulled low if corresponding  
interrupt status bit is set.  
7 to 3  
Unused  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
60 / 108  
 
 
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
Table 69.ꢀRegister LDO_INT_SENSE0 - ADDR 0x1A  
Name  
Bit  
R/W  
Default Description  
LDO1_FAULTS  
0
R
0
LDO1 fault interrupt sense  
0 — Fault removed  
1 — Fault exists  
LDO2_FAULTS  
LDO3_FAULTS  
UNUSED  
1
2
R
R
0
LDO2 fault interrupt sense  
0 — Fault removed  
1 — Fault exists  
0
LDO3 fault interrupt sense  
0 — Fault removed  
1 — Fault exists  
7 to 3  
Unused  
Table 70.ꢀRegister TEMP_INT_STAT0 - ADDR 0x20  
Name  
Bit  
R/W  
Default Description  
THERM110I  
0
RW1C[1]  
0
Die temperature crosses 110 °C interrupt. Bidirectional interrupt.  
0 — Interrupt cleared or did not occur  
1 — Interrupt occurred and/or not cleared  
UNUSED  
1
2
0
Unused  
THERM125I  
RW1C  
Die temperature crosses 125 °C interrupt. Bidirectional interrupt.  
0 — Interrupt cleared or did not occur  
1 — Interrupt occurred and/or not cleared  
UNUSED  
7 to 3  
Unused  
[1] Read or Write 1 to clear the bit  
Table 71.ꢀRegister TEMP_INT_MASK0 - ADDR 0x21  
Name  
Bit  
R/W  
Default Description  
THERM110M  
0
RW  
1
Die temperature crosses 110 °C interrupt mask  
0 — Mask removed. INTB pin is pulled low if corresponding  
interrupt status bit is set.  
1 — Mask enabled. INTB pin is NOT pulled low if corresponding  
interrupt status bit is set.  
UNUSED  
1
2
1
Unused  
THERM125M  
RW  
Die temperature crosses 125 °C interrupt mask  
0 — Mask removed. INTB pin is pulled low if corresponding  
interrupt status bit is set.  
1 — Mask enabled. INTB pin is not pulled low if corresponding  
interrupt status bit is set.  
UNUSED  
7 to 3  
Unused  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
61 / 108  
 
 
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
Table 72.ꢀRegister TEMP_INT_SENSE0 - ADDR 0x22  
Name  
Bit  
R/W  
Default Description  
THERM110S  
0
R
0
110 °C interrupt sense  
0 — Die temperature below 110 °C  
1 — Die temperature above 110 °C  
UNUSED  
1
2
R
0
Unused  
THERM125S  
125 °C interrupt sense  
0 — Die temperature below 125 °C  
1 — Die temperature above 125 °C  
UNUSED  
7 to 3  
Unused  
Table 73.ꢀRegister ONKEY_INT_STAT0 - ADDR 0x24  
Name  
Bit  
R/W  
Default Description  
ONKEY_PUSHI  
0
RW1C [1]  
0
Interrupt to indicate a push of the ONKEY button. Goes high after  
debounce.  
0 — Interrupt cleared or did not occur  
1 — Interrupt occurred and/or not cleared. Interrupt occurs  
whenever ONKEY button is pushed low for longer than the falling  
edge debounce setting.  
Interrupt also occurs whenever ONKEY button is released high  
for longer than the rising edge debounce setting, provided it went  
past the falling edge debounce time. In other words, this interrupt  
occurs whenever a change in status of the ONKEY_PUSHS  
sense bit occurs.  
ONKEY_1SI  
ONKEY_2SI  
ONKEY_3SI  
ONKEY_4SI  
ONKEY_8SI  
UNUSED  
1
RW1C  
RW1C  
RW1C  
RW1C  
RW1C  
0
0
Interrupt after ONKEY pressed for > 1 s  
0 — Interrupt cleared or did not occur  
1 — Interrupt occurred and/or not cleared  
2
Interrupt after ONKEY pressed for > 2 s  
0 — Interrupt cleared or did not occur  
1 — Interrupt occurred and/or not cleared  
3
4
0
Interrupt after ONKEY pressed for > 3 s  
0 — Interrupt cleared or did not occur  
1 — Interrupt occurred and/or not cleared  
0
Interrupt after ONKEY pressed for > 4 s  
0 — Interrupt cleared or did not occur  
1 — Interrupt occurred and/or not cleared  
5
0
Interrupt after ONKEY pressed for > 8 s  
0 — Interrupt cleared or did not occur  
1 — Interrupt occurred and/or not cleared  
7 to 6  
Unused  
[1] Read or Write 1 to clear the bit  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
62 / 108  
 
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
Table 74.ꢀRegister ONKEY_INT_MASK0 - ADDR 0x25  
Name  
Bit  
R/W  
Default Description  
ONKEY_PUSHM  
0
RW  
1
Interrupt mask for ONKEY_PUSH_I  
0 — Mask removed. INTB pin is pulled low if corresponding  
interrupt status bit is set.  
1 — Mask enabled. INTB pin is not pulled low if corresponding  
interrupt status bit is set.  
ONKEY_1SM  
ONKEY_2SM  
ONKEY_3SM  
ONKEY_4SM  
ONKEY_8SM  
UNUSED  
1
RW  
RW  
RW  
RW  
RW  
1
Interrupt mask for ONKEY_1SI  
0 — Mask removed. INTB pin is pulled low if corresponding  
interrupt status bit is set.  
1 — Mask enabled. INTB pin is not pulled low if corresponding  
interrupt status bit is set.  
2
1
Interrupt mask for ONKEY_2SI  
0 — Mask removed. INTB pin is pulled low if corresponding  
interrupt status bit is set.  
1 — Mask enabled. INTB pin is NOT pulled low if corresponding  
interrupt status bit is set.  
3
4
1
Interrupt mask for ONKEY_3SI  
0 — Mask removed. INTB pin is pulled low if corresponding  
interrupt status bit is set.  
1 — Mask enabled. INTB pin is not pulled low if corresponding  
interrupt status bit is set.  
1
Interrupt mask for ONKEY_4SI  
0 — Mask removed. INTB pin is pulled low if corresponding  
interrupt status bit is set.  
1 — Mask enabled. INTB pin is not pulled low if corresponding  
interrupt status bit is set.  
5
1
Interrupt mask for ONKEY_8SI  
0 — Mask removed. INTB pin is pulled low if corresponding  
interrupt status bit is set.  
1 — Mask enabled. INTB pin is not pulled low if corresponding  
interrupt status bit is set.  
7 to 6  
Unused  
Table 75.ꢀRegister ONKEY_INT_SENSE0 - ADDR 0x26  
Name  
Bit  
R/W  
Default Description  
ONKEY_PUSHS  
0
R
0
Push interrupt sense  
0 — ONKEY not pushed low. This bit follows debounced version  
of the ONKEY button being released.  
1 — ONKEY pushed low. This follows the ONKEY button after  
the debounce circuit (debounce is programmable).  
ONKEY_1SS  
1
R
0
1 s interrupt sense or cleared after ONKEY button is released  
0 — ONKEY not pushed low for >1 s or cleared after ONKEY  
button is released.  
1 — ONKEY pushed and being held low > 1 s. This bit is cleared  
when ONKEY_PUSHS goes back to 0 when the push button is  
released.  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
63 / 108  
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
Name  
Bit  
R/W  
Default Description  
ONKEY_2SS  
2
R
0
2 s interrupt sense or cleared after ONKEY button is released  
0 — ONKEY not pushed low for >1 s or cleared after ONKEY  
button is released.  
1 — ONKEY pushed and being held low > 1 s. This bit is cleared  
when ONKEY_PUSHS goes back to 0 when the push button is  
released.  
ONKEY_3SS  
ONKEY_4SS  
ONKEY_8SS  
UNUSED  
3
4
R
R
0
3 s interrupt sense or cleared after ONKEY button is released  
0 — ONKEY not pushed low for >1 s or cleared after ONKEY  
button is released  
1 — ONKEY pushed and being held low > 1 s. This bit is cleared  
when ONKEY_PUSHS goes back to 0 when the push button is  
released.  
0
4 s interrupt sense or cleared after ONKEY button is released  
0 — ONKEY not pushed low for >1 s or cleared after ONKEY  
button is released.  
1 — ONKEY pushed and being held low > 1 s. This bit is cleared  
when ONKEY_PUSHS goes back to 0 when the push button is  
released.  
5
R
0
8 s interrupt sense or cleared after ONKEY button is released  
0 — ONKEY not pushed low for >1 s or cleared after ONKEY  
button is released.  
1 — ONKEY pushed and being held low > 1 s. This bit is cleared  
when ONKEY_PUSHS goes back to 0 when the push button is  
released.  
7 to 6  
Unused  
Table 76.ꢀRegister MISC_INT_STAT0 - ADDR 0x28  
Name  
Bit  
R/W  
Default Description  
PWRUP_I  
0
RW1C[1]  
0
Interrupt to indicate completion of transition from STANDBY to  
RUN and from SLEEP to RUN  
0 — Interrupt cleared or has not occurred  
1 — Interrupt has occurred  
PWRDN_I  
1
RW1C  
0
Interrupt to indicate completion of transition from RUN to  
STANDBY and from RUN to SLEEP  
0 — Interrupt cleared or has not occurred  
1 — Interrupt has occurred  
PWRON_I  
2
3
RW1C  
RW1C  
RW1C  
0
0
Power on button event interrupt  
0 — Interrupt cleared or has not occurred  
1 — Interrupt has occurred  
LOW_SYS_WARN_I  
SYS_OVLO_I  
UNUSED  
LOW_SYS_WARN threshold crossed interrupt  
0 — Interrupt cleared or has not occurred  
1 — Interrupt has occurred  
4
0
SYS_OVLO threshold crossed interrupt  
0 — Interrupt cleared or has not occurred  
1 — Interrupt has occurred  
7 to 5  
Unused  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
64 / 108  
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
[1] Read or Write 1 to clear the bit  
Table 77.ꢀRegister MISC_INT_MASK0- ADDR 0x29  
Name  
Bit  
R/W  
Default Description  
PWRUP_M  
0
RW[1]  
1
Mask for interrupt to indicate completion on transition from  
STANDBY to RUN and from SLEEP to RUN  
0 — Mask removed. INTB pin is pulled low if corresponding  
interrupt status bit is set.  
1 — Mask enabled. INTB pin is not pulled low if corresponding  
interrupt status bit is set.  
PWRDN_M  
1
RW  
1
Mask for interrupt to indicate completion on transition from RUN  
to STANDBY and from RUN to SLEEP  
0 — Mask removed. INTB pin is pulled low if corresponding  
interrupt status bit is set.  
1 — Mask enabled. INTB pin is not pulled low if corresponding  
interrupt status bit is set.  
PWRON_M  
2
3
RW  
RW  
RW  
1
1
Power on button event interrupt mask  
0 — Mask removed. INTB pin is pulled low if corresponding  
interrupt status bit is set.  
1 — Mask enabled. INTB pin is not pulled low if corresponding  
interrupt status bit is set.  
LOW_SYS_WARN_M  
SYS_OVLO_M  
UNUSED  
LOW_SYS_WARN threshold crossed interrupt mask  
0 — Mask removed. INTB pin is pulled low if corresponding  
interrupt status bit is set.  
1 — Mask enabled. INTB pin is not pulled low if corresponding  
interrupt status bit is set.  
4
1
SYS_OVLO threshold crossed interrupt mask  
0 — Mask removed. INTB pin is pulled low if corresponding  
interrupt status bit is set.  
1 — Mask enabled. INTB pin is not pulled low if corresponding  
interrupt status bit is set.  
7 to 5  
Unused  
[1] Asynchronous Set, Read and Write  
Table 78.ꢀRegister MISC_INT_SENSE0 - ADDR 0x2A  
Name  
Bit  
R/W  
Default Description  
PWRUP_S  
0
R
0
Sense for interrupt to indicate completion on transition from  
STANDBY to RUN and from SLEEP to RUN  
0 — Transition not in progress  
1 — Transition in progress  
PWRDN_S  
1
R
0
Interrupt to indicate completion on transition from RUN to  
STANDBY and from RUN to SLEEP  
0 — Transition not in progress  
1 — Transition in progress  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
65 / 108  
 
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
Name  
Bit  
R/W  
Default Description  
PWRON_S  
2
R
0
Power on button event interrupt sense  
0 — PWRON low  
1 — PWRON high  
LOW_SYS_WARN_S  
SYS_OVLO_S  
UNUSED  
3
4
R
R
0
LOW_SYS_WARN threshold crossed interrupt sense  
0 — SYS > LOW_SYS_WARN  
1 — SYS < LOW_SYS_WARN  
0
SYS_OVLO threshold crossed interrupt sense  
0 — SYS < SYS_OVLO  
1 — SYS > SYS_OVLO  
7 to 5  
Unused  
Table 79.ꢀRegister COINCELL_CONTROL - ADDR 0x30  
Name  
Bit  
R/W  
Default Description  
VCOIN  
3 to 0  
RW  
0000  
Coin cell charger charging voltage  
0000 — 1.8 V  
0111 — 3.3 V (goes up in 100 mV step per LSB)  
COINCHEN  
UNUSED  
4
RW  
0
Coin cell charger enable  
0 — Charger disabled  
1 — Charger enabled  
7 to 5  
Unused  
Table 80.ꢀRegister SW1_VOLT - ADDR 0x32  
Name  
Bit  
R/W  
Default Description  
SW1_VOLT  
5 to 0 RW1S[1]  
SW1 voltage setting register (Run mode)  
000000 — See Table 23 for voltage settings  
111111 — See Table 23 for voltage settings  
Reset condition — POR  
UNUSED  
7 to 5  
Unused  
[1] Load from OTP fuse, Read and Write  
Table 81.ꢀRegister SW1_STBY_VOLT - ADDR 0x33  
Name  
Bit  
R/W  
Default Description  
SW1_STBY_VOLT  
5 to 0 RW1S[1]  
SW1 output voltage setting register (Standby mode). The default  
value here should be identical to SW1_VOLT[5:0] register.  
000000 — See Table 23 for voltage settings  
111111 — See Table 23 for voltage settings  
UNUSED  
7 to 6  
Unused  
[1] Load from OTP fuse, Read and Write  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
66 / 108  
 
 
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
Table 82.ꢀRegister SW1_SLP_VOLT - ADDR 0x34  
Name  
Bit  
R/W  
Default Description  
SW1_SLP_VOLT  
5 to 0 RW1S[1]  
SW1 output voltage setting register (Sleep mode). The default  
value here should be identical to SW1_VOLT[5:0] register.  
000000 — See Table 23 for voltage settings  
111111 — See Table 23 for voltage settings  
UNUSED  
7 to 6  
Unused  
[1] Load from OTP fuse, Read and Write  
Table 83.ꢀRegister SW1_CTRL - ADDR 0x35  
Name  
Bit  
R/W  
Default Description  
SW1_EN  
0
RW1S[1]  
0
Enables buck regulator. Loaded from OTP based on the  
sequence settings. User can turn regulator off by clearing this bit.  
0 — Regulator disabled in Run mode  
1 — Regulator enabled in Run mode  
SW1_STBY_EN  
1
RW1S  
0
Enables buck regulator in Standby mode. User can turn regulator  
off by clearing this bit. The default value of this bit should be  
equal to the SW1_EN bit (based on OTP).  
0 — Regulator disabled in Standby mode  
1 — Regulator enabled in Standby mode  
SW1_OMODE  
SW1_LPWR  
2
3
RW[2]  
0
0
Enables buck regulator in Sleep mode. User can turn regulator off  
by clearing this bit.  
0 — Regulator disabled in Sleep mode  
1 — Regulator enabled in Sleep mode  
RW  
Enables the buck to enter Low-power mode during Standby and  
Sleep  
0 — Regulator not in Low-power mode  
1 — Regulator in Low-power mode during Standby or Sleep  
modes  
SW1_DVSSPEED  
4
RW1S  
0
Controls slew rate of DVS transitions. Loaded from OTP and  
changeable by user after boot up. Not used when OTP_SW1_  
DVS_SEL = 1.  
0 — DVS rate at 12.5 mV/2 μs  
1 — DVS rate at 12.5 mV/4 μs  
SW1_FPWM_IN_DVS  
SW1_FPWM  
5
6
RW  
RW  
0
0
Enables CCM operation during DVS down  
0 — does not force FPWM during DVS  
1 — forces regulator to track the DVS reference while it is falling  
rather than relying on the load current to pull the voltage low  
Forces buck to go into CCM mode  
0 — Not in FPWM mode  
1 — Forced in PWM mode irrespective of load current  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
67 / 108  
 
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
Name  
Bit  
R/W  
Default Description  
Controls discharge resistor on output when regulator disabled  
SW1_RDIS_ENB  
7
RW1S  
0
0 — Enables discharge resistor on output when regulator  
disabled. Resistor connected at FB pin when regulator disabled to  
force capacitor discharge.  
1 — Disables discharge resistor on output when regulator  
disabled. Resistor not connected at FB pin when regulator  
disabled. Relies on leakage/residue load to discharge output  
capacitor.  
[1] Load from OTP fuse, Read and Write  
[2] Asynchronous Set, Read and Writ  
Table 84.ꢀRegister SW1_SLP_VOLT - ADDR 0x36  
Name  
Bit  
R/W  
Default Description  
SW1_ILIM  
1 to 0 RW1S[1]  
00  
Sets current limit of SW1 regulator  
00 — Typical current limit of 1.0 A  
01 — Typical current limit of 1.2 A  
10 — Typical current limit of 1.5 A  
11 — Typical current limit of 2.0 A  
UNUSED  
3 to 2  
4
0
Unused  
SW1_TMODE_SEL  
RW  
0 — TON control  
1 — TOFF control  
UNUSED  
7 to 5  
Unused  
[1] Load from OTP fuse, Read and Write  
Table 85.ꢀRegister SW2_VOLT - ADDR 0x38  
Name  
Bit  
R/W  
Default Description  
SW2_VOLT  
5 to 0 RW1S[1]  
SW2 voltage setting register (Run mode)  
000000 — See Table 23 for voltage settings  
111111 — See Table 23 for voltage settings  
UNUSED  
7 to 6  
Unused  
[1] Load from OTP fuse, Read and Write  
Table 86.ꢀRegister SW2_STBY_VOLT - ADDR 0x39  
Name  
Bit  
R/W  
Default Description  
SW2_STBY_VOLT  
5 to 0 RW1S[1]  
SW2 output voltage setting register (Standby mode). The default  
value here should be identical to SW2_VOLT[5:0] register.  
000000 — See Table 23 for voltage settings  
111111 — See Table 23 for voltage settings  
UNUSED  
7 to 6  
Unused  
[1] Load from OTP fuse, Read and Write  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
68 / 108  
 
 
 
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
Table 87.ꢀRegister SW2_SLP_VOLT - ADDR 0x3A  
Name  
Bit  
R/W  
Default Description  
SW2_SLP_VOLT  
5 to 0 RW1S[1]  
SW2 output voltage setting register (Sleep mode). The default  
value here should be identical to SW2_VOLT[5:0] register.  
000000 — See Table 23 for voltage settings  
111111 — See Table 23 for voltage settings  
UNUSED  
7 to 6  
Unused  
[1] Load from OTP fuse, Read and Write  
Table 88.ꢀRegister SW2_CTRL - ADDR 0x3B  
Name  
Bit  
R/W  
Default Description  
SW2_EN  
0
RW1S[1]  
0
Enables buck regulator. Loaded from OTP based on the  
sequence settings. User can turn regulator off by clearing this bit.  
0 — Regulator disabled in Run mode  
1 — Regulator enabled in Run mode  
SW2_STBY_EN  
1
RW1S  
0
Enables buck regulator in Standby mode. User can turn regulator  
off by clearing this bit. The default value of this bit should be  
equal to the SW1_EN bit (based on OTP).  
0 — Regulator disabled in Standby mode  
1 — Regulator enabled in Standby mode  
SW2_OMODE  
SW2_LPWR  
2
3
4
RW  
RW  
0
0
0
Enables buck regulator in Sleep mode. User can turn regulator off  
by clearing this bit.  
0 — Regulator disabled in Sleep mode  
1 — Regulator enabled in Sleep mode  
Enables the buck to enter Low-power mode during Standby and  
Sleep modes  
0 — Regulator not in Low-power mode  
1 — Regulator in Low-power mode during Standby or Sleep  
SW2_DVSSPEED  
RW1S  
Controls slew rate of DVS transitions. Loaded from OTP and  
changeable by user after boot up. Not used when OTP_SW2_  
DVS_SEL = 1.  
0 — DVS rate at 12.5 mV/2 μs  
1 — DVS rate at 12.5 mV/4 μs  
SW2_FPWM_IN_DVS  
SW2_FPWM  
5
6
RW  
RW  
0
0
Enables CCM operation during DVS down  
0 — does not force FPWM during DVS  
1 — forces regulator to track the DVS reference while it is falling  
rather than relying on the load current to pull the voltage low  
Forces buck to go into CCM mode  
0 — Not in FPWM mode  
1 — Forced in PWM mode irrespective of load current.  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
69 / 108  
 
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
Name  
Bit  
R/W  
Default Description  
Controls discharge resistor on output when regulator disabled  
SW2_RDIS_ENB  
7
RW1S  
0
0 — Enables discharge resistor on output when regulator  
disabled. Resistor connected at FB pin when regulator disabled to  
force capacitor discharge.  
1 — Disables discharge resistor on output when regulator  
disabled. Resistor not connected at FB pin when regulator  
disabled. Relies on leakage/residue load to discharge output  
capacitor.  
[1] Load from OTP fuse, Read and Write  
Table 89.ꢀRegister SW2_CTRL1 - ADDR 0x3C  
Name  
Bit  
R/W  
Default Description  
SW2_ILIM  
1 to 0  
RW1S  
00  
Sets current limit of SW2 regulator  
00 — Typical current limit of 1.0 A  
01 — Typical current limit of 1.2 A  
10 — Typical current limit of 1.5 A  
11 — Typical current limit of 2.0 A  
UNUSED  
3 to 2  
4
0
Unused  
SW2_TMODE_SEL  
RW  
0 — TON control  
1 — TOFF control  
UNUSED  
7 to 5  
Unused  
Table 90.ꢀRegister SW3_VOLT - ADDR 0x3E  
Name  
Bit  
R/W  
Default Description  
SW3_VOLT  
3 to 0  
RW1S  
SW3 voltage setting register (Run mode). Loaded from fuses.  
Read only because DVS is not supported in this regulator.  
0000 — See Table 29 for voltage settings  
1111 — See Table 29 for voltage settings  
UNUSED  
7 to 4  
Unused  
Table 91.ꢀRegister SW3_STBY_VOLT - ADDR 0x3F  
Name  
Bit  
R/W  
Default Description  
SW3_STBY_VOLT  
3 to 0  
RW1S  
SW3 voltage setting register (Standby mode). Loaded from fuses.  
Read only because DVS is not supported in this regulator.  
0000 — See Table 29 for voltage settings  
1111 — See Table 29 for voltage settings  
UNUSED  
7 to 4  
Unused  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
70 / 108  
 
 
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
Table 92.ꢀRegister SW3_SLP_VOLT - ADDR 0x40  
Name  
Bit  
R/W  
Default Description  
SW3_SLP_VOLT  
3 to 0  
RW1S  
SW3 voltage setting register (Sleep mode). Loaded from fuses.  
Read only because DVS is not supported in this regulator.  
0000 — See Table 29 for voltage settings  
1111 — See Table 29 for voltage settings  
UNUSED  
7 to 4  
Unused  
Table 93.ꢀRegister SW3_CTRL - ADDR 0x41  
Name  
Bit  
R/W  
Default Description  
SW3_EN  
0
RW1S  
0
Enables buck regulator. Loaded from OTP based on the  
sequence settings. User can turn regulator off by clearing this bit.  
0 — Regulator disabled in Run mode  
1 — Regulator enabled in Run mode  
SW3_STBY_EN  
1
RW1S  
0
Enables buck regulator in Standby mode. User can turn regulator  
off by clearing this bit. The default value of this bit should be  
equal to the SW1_EN bit (based on OTP).  
0 — Regulator disabled in Standby mode  
1 — Regulator enabled in Standby mode  
SW3_OMODE  
SW3_LPWR  
2
3
RW  
RW  
0
0
Enables buck regulator in Sleep mode. User can turn regulator off  
by clearing this bit.  
0 — Regulator disabled in Sleep mode  
1 — Regulator enabled in Sleep mode  
Enables the buck to enter Low-power mode during Standby and  
Sleep modes  
0 — Regulator not in Low-power mode  
1 — Regulator in Low-power mode while in Standby or Sleep  
UNUSED  
4
5
6
0
Unused  
Unused  
UNUSED  
SW3_FPWM  
RW  
Forces buck to go into CCM mode  
0 — Not in FPWM mode  
1 — Forced in PWM mode irrespective of load current  
SW3_RDIS_ENB  
7
RW1S  
0
Controls discharge resistor on output when regulator is disabled  
0 — Enables discharge resistor on output when regulator  
disabled. Resistor connected at FB pin when regulator disabled to  
force capacitor discharge.  
1 — Disables discharge resistor on output when regulator  
disabled. Resistor not connected at FB pin when regulator  
disabled. Relies on leakage/residue load to discharge output  
capacitor.  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
71 / 108  
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
Table 94.ꢀRegister SW3_CTRL1 - ADDR 0x42  
Name  
Bit  
R/W  
Default Description  
SW3_ILIM  
1 to 0  
RW1S  
00  
Sets current limit of SW3 regulator  
00 — Typical current limit of 1.0 A  
01 — Typical current limit of 1.2 A  
10 — Typical current limit of 1.5 A  
11 — Typical current limit of 2.0 A  
UNUSED  
3 to 2  
4
0
Unused  
SW3_TMODE_SEL  
RW  
0 — TON control  
1 — TOFF control  
UNUSED  
7 to 5  
Unused  
Table 95.ꢀRegister VSNVS_CTRL - ADDR 0x48  
Name  
Bit  
2 to 0  
3
R/W  
RW1S  
RW  
Default Description  
VSNVS_VOLT  
CLKPULSE  
FORCEBOS  
000  
0
Not used in PF1510. Placeholder for future products.  
Optional bit used for evaluation. Refer to IP block  
4
RW  
0
Optional bit for evaluation  
0 — BOS circuit activated only when VSYS < UVDET  
1 — Forces best of supply circuit irrespective of UVDET  
LIBGDIS  
UNUSED  
5
RW  
0
Use to reduce quiescent current in coin cell mode  
0 — VSNVS local bandgap enabled in coin cell mode  
1 — VSNVS local bandgap disabled in coin cell mode to save  
quiescent current  
7 to 6  
Unused  
Table 96.ꢀRegister VREFDDR_CTRL - ADDR 0x4A  
Name  
Bit  
R/W  
Default Description  
VREFDDR_EN  
0
RW1S  
0
0 — Disables VREFDDR regulator  
1 — Enables VREFDDR regulator. This is set by the OTP  
sequence.  
VREFDDR_STBY_EN  
1
RW1S  
0
The default value for this should be same as VREFDDREN  
0 — Disables VREFDDR regulator in Standby mode  
1 — Enables VREFDDR regulator in Standby mode if  
VREFDDREN = 1  
VREFDDR_OMODE  
VREFDDR_LPWR  
UNUSED  
2
3
RW  
RW  
0
0
0 — Keeps VREFDDR off in Off mode  
1 — Enables VREFDDR in Sleep mode if VREFDDREN = 1  
0 — Disables VREFDDR Low-power mode  
1 — Enables VREFDDR Low-power mode  
7 to 4  
Unused  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
72 / 108  
 
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
Table 97.ꢀRegister LDO1_VOLT - ADDR 0x4C  
Name  
Bit  
R/W  
Default Description  
LDO1_VOLT  
4 to 0  
RW1S  
LDO1 output voltage setting register. Loaded from OTP.  
00000 — See Table 33 for voltage settings  
11111 — See Table 33 for voltage settings  
UNUSED  
7 to 5  
Unused  
Table 98.ꢀRegister LDO1_CTRL - ADDR 0x4D  
Name  
Bit  
R/W  
Default Description  
VLDO1_EN  
0
RW1S  
0
Enables LDO regulator. Loaded from OTP based on the  
sequence settings. User can turn regulator off by clearing this bit.  
0 — Disables regulator  
1 — Enables regulator  
VLDO1_STBY_EN  
1
RW1S  
0
Enables LDO in Standby mode. Default value of this bit should be  
same as VLDO1_EN.  
0 — Disables regulator  
1 — Enables regulator  
VLDO1_OMODE  
VLDO1_LPWR  
LDO1_LS_EN  
2
3
4
RW  
RW  
0
0
0
Enables LDO in Sleep mode  
0 — Disables regulator  
1 — Enables regulator  
Forces LDO to Low-power mode in Sleep and Standby modes  
0 — Not in Low-power mode during Standby and Sleep  
1 — Regulator in Low-power mode during Standby and Sleep  
RW1S  
This is loaded from OTP_LDOy_LS_EN and changeable from 0  
to 1 on power up. Changing from 1 to 0 is not allowed.  
0 — Sets LDOy in LDO mode  
1 — Sets LDOy to a load switch (fully on) mode  
UNUSED  
7 to 5  
Unused  
Table 99.ꢀRegister LDO2_VOLT - ADDR 0x4F  
Name  
Bit  
R/W  
Default Description  
LDO2_VOLT  
3 to 0  
RW1S  
LDO2 output voltage setting register. Loaded from OTP.  
0000 — See Table 35 for voltage settings  
1111 — See Table 35 for voltage settings  
UNUSED  
7 to 4  
Unused  
Table 100.ꢀRegister LDO2_CTRL - ADDR 0x50  
Name  
Bit  
R/W  
Default Description  
VLDO2_EN  
0
RW1S  
0
Enables LDO regulator. Loaded from OTP based on the  
sequence settings. User can turn regulator off by clearing this bit.  
0 — Disables regulator  
1 — Enables regulator  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
73 / 108  
 
 
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
Name  
Bit  
R/W  
Default Description  
VLDO2_STBY_EN  
1
RW1S  
0
Enables LDO in Standby mode. Default value of this bit should be  
same as VLDO1_EN.  
0 — Disables regulator  
1 — Enables regulator  
VLDO2_OMODE  
VLDO2_LPWR  
UNUSED  
2
3
RW  
RW  
0
0
Enables LDO in Sleep mode  
0 — Disables regulator  
1 — Enables regulator  
Forces LDO to Low-power mode in Sleep and Standby modes  
0 — Not in Low-power mode during Standby and Sleep  
1 — Regulator in Low-power mode during Standby and Sleep  
7 to 4  
Unused  
Table 101.ꢀRegister LDO3_VOLT - ADDR 0x52  
Name  
Bit  
R/W  
Default Description  
LDO3_VOLT  
4 to 0  
RW1S  
LDO3 output voltage setting register. Loaded from OTP.  
00000 — See Table 33 for voltage settings  
11111 — See Table 33 for voltage settings  
UNUSED  
7 to 5  
Unused  
Table 102.ꢀRegister LDO3_CTRL - ADDR 0x53  
Name  
Bit  
R/W  
Default Description  
VLDO3_EN  
0
RW1S  
0
Enables LDO regulator. Loaded from OTP based on the  
sequence settings. User can turn regulator off by clearing this bit.  
0 — Disables regulator  
1 — Enables regulator  
VLDO3_STBY_EN  
1
RW1S  
0
Enables LDO in Standby mode. Default value of this bit should be  
same as VLDO1_EN.  
0 — Disables regulator  
1 — Enables regulator  
VLDO3_OMODE  
VLDO3_LPWR  
LDO3_LS_EN  
2
3
4
RW  
RW  
0
0
0
Enables LDO in Sleep mode  
0 — Disables regulator  
1 — Enables regulator  
Forces LDO to Low-power mode in Sleep and Standby modes  
0 — Not in Low-power mode during Standby and Sleep  
1 — Regulator in Low-power mode during Standby and Sleep  
RW1S  
This is loaded from OTP_LDOy_LS_EN and changeable from 0  
to 1 on power up. Changing from 1 to 0 is not allowed.  
0 — Sets LDOy in LDO mode  
1 — Sets LDOy to a load switch (fully on) mode  
UNUSED  
7 to 5  
Unused  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
74 / 108  
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
Table 103.ꢀRegister PWRCTRL0 - ADDR 0x58  
Name  
Bit  
R/W  
Default Description  
STANDBYDLY  
1 to 0  
RW  
01  
Controls delay of Standby pin after synchronization  
0 — No additional delay  
1 — 32 kHz cycle additional delay  
2 — 32 kHz cycle additional delay  
3 — 32 kHz cycle additional delay  
STANDBYINV  
POR_DLY  
2
RW  
0
Controls polarity of STANDBY pin  
0 — Standby pin input active high  
1 — Standby pin input active low  
5 to 3  
RW1S  
000  
Controls delay of RESETBMCU pin after power up (loaded from  
OTP)  
000 — RESETBMCU goes high 2 ms after last regulator  
010 — RESETBMCU goes high 4 ms after last regulator  
011 — RESETBMCU goes high 8 ms after last regulator  
100 — RESETBMCU goes high 16 ms after last regulator  
101 — RESETBMCU goes high 128 ms after last regulator  
110 — RESETBMCU goes high 256 ms after last regulator  
111 — RESETBMCU goes high 1024 ms after last regulator  
TGRESET  
7 to 6  
RW1S  
00  
Controls duration for which ONKEY has to be pushed low for a  
global reset (part goes to REGS_DISABLE)  
00 — 4 s  
01 — 8 s  
10 — 12 s  
11 — 16 s  
Table 104.ꢀRegister PWRCTRL1 - ADDR 0x59  
Name  
Bit  
R/W  
Default Description  
PWRONDBNC  
1 to 0  
RW  
00  
Controls debounce of PWRON when in push button mode  
(PWRON_CFG = 1)  
00 — 31.25 ms falling edge; 31.25 ms rising edge  
01 — 31.25 ms falling edge; 31.25 ms rising edge  
10 — 125 ms falling edge; 31.25 ms rising edge  
11 — 750 ms falling edge; 31.25 ms rising edge  
ONKEYDBNC  
3 to 2  
RW  
RW  
00  
Controls debounce of ONKEY push button  
00 — 31.25 ms falling edge; 31.25 ms rising edge  
01 — 31.25 ms falling edge; 31.25 ms rising edge  
10 — 125 ms falling edge; 31.25 ms rising edge  
11 — 750 ms falling edge; 31.25 ms rising edge  
PWRONRSTEN  
4
0
Enables going to REGS_DISABLE or Sleep mode when  
PWRON_CFG = 1. See Section 10 "PF1510 state machine" for  
details.  
0 — Long press on PWRON button does not take state to  
REGS_DISABLE or Sleep  
1 — Long press on PWRON button takes state to  
REGS_DISABLE or Sleep  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
75 / 108  
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
Name  
Bit  
R/W  
Default Description  
RESTARTEN  
5
RW  
0
Enables restart of system when PWRON push button is held low  
for 5 s  
0 — No impact  
1 — When going to REGS_DISABLE via a long press of PWRON  
button, holding it low for 1 more second takes state back to RUN  
(equally, a 5 second push restarts the system)  
REGSCPEN  
6
7
RW  
RW  
0
1
Shuts down LDO if it enters a current limit fault. Controls LDO1,  
LDO2 and LDO3.  
0 — LDO does not shutdown in the event of a current limit fault.  
Continues to limit current.  
1 — LDO is turned off when it encounters a current limit fault  
ONKEY_RST_EN  
Enables turning off of system via ONKEY. See Section 10  
"PF1510 state machine" for details.  
0 — ONKEY cannot be used to turn off or restart system  
1 — ONKEY can be used to turn off or restart system  
Table 105.ꢀRegister PWRCTRL2 - ADDR 0x5A  
Name  
Bit  
R/W  
Default Description  
UVDET  
1 to 0  
RW1S  
00  
00  
Sets UVDET threshold  
00 — Rising 2.65 V; falling 2.55 V  
01 — Rising 2.8 V; falling 2.7 V  
10 — Rising 3.0 V; falling 2.9 V  
11 — Rising 3.1 V; falling 3.0 V  
LOW_SYS_WARN  
3 to 2  
7 to 4  
RW  
Sets LOW_SYS_WARN threshold  
00 — Rising 3.3 V; falling 3.1 V  
01 — Rising 3.5 V; falling 3.3 V  
10 — Rising 3.7 V; falling 3.5 V  
11 — Rising 3.9 V; falling 3.7 V  
UNUSED  
Unused  
Table 106.ꢀRegister PWRCTRL3 - ADDR 0x5B  
Name  
Bit  
0
R/W  
RW  
RW  
Default Description  
UNUSED  
0
0
Unused  
GOTO_CORE_OFF  
1
Set this bit to go to CORE_OFF mode once in REGS_DISABLE  
state  
0 — No impact  
1 — PF1510 gracefully enters CORE_OFF mode when in  
REGS_DISABLE state  
UNUSED  
7 to 2  
Unused  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
76 / 108  
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
Table 107.ꢀRegister SW1_PWRDN_SEQ - ADDR 0x5F  
Name  
Bit  
R/W  
Default Description  
SW1_PWRDN_SEQ  
2 to 0  
RW1S  
000 This contains same value as power-up sequence value by  
default. Power-up sequence is in mirror registers.  
xxx = The power-down sequencer performs the functional  
opposite to the power-up sequencer. Each regulator has an  
associated register setting (SW1_PWRDN_SEQ[2:0], SW2_  
PWRDN_SEQ[2:0], SW3_PWRDN_SEQ[2:0], LDO1_PWRDN_  
SEQ[2:0], LDO2_PWRDN_SEQ[2:0], LDO3_PWRDN_SEQ[2:0].  
VREFDDR_PWRDN_SEQ[2:0]) that sets its power-down  
sequence. The default setting of the above registers is equal  
to the corresponding power-up sequence setting. For example,  
SW1_PWRDN_SEQ[2:0] = OTP_SW1_PWRUP_SEQ[2:0].  
When the power-down sequencer is activated, regulators are  
turned off one by one in the descending order of the XXX_  
PWRDN_SEQ[2:0] setting. This way, by default, power-down  
is a mirror of the power-up sequence. In one of the "System  
On" states, the processor can change the values of the XXX_  
PWRDN_SEQ[2:0] registers. The power-up sequence is fixed by  
OTP (or TBB). If all XXX_PWRDN_SEQ[2:0] = 0x00, the power-  
down sequencer is bypassed and all the regulators are turned off  
at once.  
UNUSED  
7 to 3  
Unused  
Table 108.ꢀRegister SW2_PWRDN_SEQ - ADDR 0x60  
Name  
Bit  
R/W  
Default Description  
SW2_PWRDN_SEQ  
2 to 0  
RW1S  
000  
This contains same value as power-up sequence value by  
default. Power-up sequence is in mirror registers.  
xxx = The power-down sequencer performs the functional  
opposite to the power-up sequencer. Each regulator has an  
associated register setting (SW1_PWRDN_SEQ[2:0], SW2_  
PWRDN_SEQ[2:0], SW3_PWRDN_SEQ[2:0], LDO1_PWRDN_  
SEQ[2:0], LDO2_PWRDN_SEQ[2:0], LDO3_PWRDN_SEQ[2:0].  
VREFDDR_PWRDN_SEQ[2:0]) that sets its power-down  
sequence. The default setting of the above registers is equal  
to the corresponding power-up sequence setting. For example,  
SW1_PWRDN_SEQ[2:0] = OTP_SW1_PWRUP_SEQ[2:0].  
When the power-down sequencer is activated, regulators are  
turned off one by one in the descending order of the XXX_  
PWRDN_SEQ[2:0] setting. This way, by default, power-down  
is a mirror of the power-up sequence. In one of the "System  
On" states, the processor can change the values of the XXX_  
PWRDN_SEQ[2:0] registers. The power-up sequence is fixed by  
OTP (or TBB). If all XXX_PWRDN_SEQ[2:0] = 0x00, the power-  
down sequencer is bypassed and all the regulators are turned off  
at once.  
UNUSED  
7 to 3  
Unused  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
77 / 108  
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
Table 109.ꢀRegister SW2_PWRDN_SEQ - ADDR 0x61  
Name  
Bit  
R/W  
Default Description  
SW3_PWRDN_SEQ  
2 to 0  
RW1S  
000 This contains same value as power-up sequence value by  
default. Power-up sequence is in mirror registers.  
xxx = The power-down sequencer performs the functional  
opposite to the power-up sequencer. Each regulator has an  
associated register setting (SW1_PWRDN_SEQ[2:0], SW2_  
PWRDN_SEQ[2:0], SW3_PWRDN_SEQ[2:0], LDO1_PWRDN_  
SEQ[2:0], LDO2_PWRDN_SEQ[2:0], LDO3_PWRDN_SEQ[2:0].  
VREFDDR_PWRDN_SEQ[2:0]) that sets its power-down  
sequence. The default setting of the above registers is equal  
to the corresponding power-up sequence setting. For example,  
SW1_PWRDN_SEQ[2:0] = OTP_SW1_PWRUP_SEQ[2:0].  
When the power-down sequencer is activated, regulators are  
turned off one by one in the descending order of the XXX_  
PWRDN_SEQ[2:0] setting. This way, by default, power-down  
is a mirror of the power-up sequence. In one of the "System  
On" states, the processor can change the values of the XXX_  
PWRDN_SEQ[2:0] registers. The power-up sequence is fixed by  
OTP (or TBB). If all XXX_PWRDN_SEQ[2:0] = 0x00, the power-  
down sequencer is bypassed and all the regulators are turned off  
at once.  
UNUSED  
7 to 3  
Unused  
Table 110.ꢀRegister LDO1_PWRDN_SEQ - ADDR 0x62  
Name  
Bit  
R/W  
Default Description  
LDO1_PWRDN_SEQ  
2 to 0  
RW1S  
000  
This contains same value as power-up sequence value by  
default. Power-up sequence is in mirror registers.  
xxx = The power-down sequencer performs the functional  
opposite to the power-up sequencer. Each regulator has an  
associated register setting (SW1_PWRDN_SEQ[2:0], SW2_  
PWRDN_SEQ[2:0], SW3_PWRDN_SEQ[2:0], LDO1_PWRDN_  
SEQ[2:0], LDO2_PWRDN_SEQ[2:0], LDO3_PWRDN_SEQ[2:0].  
VREFDDR_PWRDN_SEQ[2:0]) that sets its power-down  
sequence. The default setting of the above registers is equal  
to the corresponding power-up sequence setting. For example,  
SW1_PWRDN_SEQ[2:0] = OTP_SW1_PWRUP_SEQ[2:0].  
When the power-down sequencer is activated, regulators are  
turned off one by one in the descending order of the XXX_  
PWRDN_SEQ[2:0] setting. This way, by default, power-down  
is a mirror of the power-up sequence. In one of the "System  
On" states, the processor can change the values of the XXX_  
PWRDN_SEQ[2:0] registers. The power-up sequence is fixed by  
OTP (or TBB). If all XXX_PWRDN_SEQ[2:0] = 0x00, the power-  
down sequencer is bypassed and all the regulators are turned off  
at once.  
UNUSED  
7 to 3  
Unused  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
78 / 108  
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
Table 111.ꢀRegister LDO2_PWRDN_SEQ - ADDR 0x63  
Name  
Bit  
R/W  
Default Description  
LDO2_PWRDN_SEQ  
2 to 0  
RW1S  
000 This contains same value as power-up sequence value by  
default. Power-up sequence is in mirror registers.  
xxx = The power-down sequencer performs the functional  
opposite to the power-up sequencer. Each regulator has an  
associated register setting (SW1_PWRDN_SEQ[2:0], SW2_  
PWRDN_SEQ[2:0], SW3_PWRDN_SEQ[2:0], LDO1_PWRDN_  
SEQ[2:0], LDO2_PWRDN_SEQ[2:0], LDO3_PWRDN_SEQ[2:0].  
VREFDDR_PWRDN_SEQ[2:0]) that sets its power-down  
sequence. The default setting of the above registers is equal  
to the corresponding power-up sequence setting. For example,  
SW1_PWRDN_SEQ[2:0] = OTP_SW1_PWRUP_SEQ[2:0].  
When the power-down sequencer is activated, regulators are  
turned off one by one in the descending order of the XXX_  
PWRDN_SEQ[2:0] setting. This way, by default, power-down  
is a mirror of the power-up sequence. In one of the "System  
On" states, the processor can change the values of the XXX_  
PWRDN_SEQ[2:0] registers. The power-up sequence is fixed by  
OTP (or TBB). If all XXX_PWRDN_SEQ[2:0] = 0x00, the power-  
down sequencer is bypassed and all the regulators are turned off  
at once.  
UNUSED  
7 to 3  
Unused  
Table 112.ꢀRegister LDO3_PWRDN_SEQ - ADDR 0x64  
Name  
Bit  
R/W  
Default Description  
LDO3_PWRDN_SEQ  
2 to 0  
RW1S  
000  
This contains same value as power-up sequence value by  
default. Power-up sequence is in mirror registers.  
xxx = The power-down sequencer performs the functional  
opposite to the power-up sequencer. Each regulator has an  
associated register setting (SW1_PWRDN_SEQ[2:0], SW2_  
PWRDN_SEQ[2:0], SW3_PWRDN_SEQ[2:0], LDO1_PWRDN_  
SEQ[2:0], LDO2_PWRDN_SEQ[2:0], LDO3_PWRDN_SEQ[2:0].  
VREFDDR_PWRDN_SEQ[2:0]) that sets its power-down  
sequence. The default setting of the above registers is equal  
to the corresponding power-up sequence setting. For example,  
SW1_PWRDN_SEQ[2:0] = OTP_SW1_PWRUP_SEQ[2:0].  
When the power-down sequencer is activated, regulators are  
turned off one by one in the descending order of the XXX_  
PWRDN_SEQ[2:0] setting. This way, by default, power-down  
is a mirror of the power-up sequence. In one of the "System  
On" states, the processor can change the values of the XXX_  
PWRDN_SEQ[2:0] registers. The power-up sequence is fixed by  
OTP (or TBB). If all XXX_PWRDN_SEQ[2:0] = 0x00, the power-  
down sequencer is bypassed and all the regulators are turned off  
at once.  
UNUSED  
7 to 3  
Unused  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
79 / 108  
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
Table 113.ꢀRegister VREFDDR_PWRDN_SEQ - ADDR 0x65  
Name  
Bit  
R/W  
Default Description  
VREFDDR_PWRDN_S 2 to 0  
EQ  
RW1S  
000 This contains same value as power-up sequence value by  
default. Power-up sequence is in mirror registers.  
xxx = The power-down sequencer performs the functional  
opposite to the power-up sequencer. Each regulator has an  
associated register setting (SW1_PWRDN_SEQ[2:0], SW2_  
PWRDN_SEQ[2:0], SW3_PWRDN_SEQ[2:0], LDO1_PWRDN_  
SEQ[2:0], LDO2_PWRDN_SEQ[2:0], LDO3_PWRDN_SEQ[2:0].  
VREFDDR_PWRDN_SEQ[2:0]) that sets its power-down  
sequence. The default setting of the above registers is equal  
to the corresponding power-up sequence setting. For example,  
SW1_PWRDN_SEQ[2:0] = OTP_SW1_PWRUP_SEQ[2:0].  
When the power-down sequencer is activated, regulators are  
turned off one by one in the descending order of the XXX_  
PWRDN_SEQ[2:0] setting. This way, by default, power-down  
is a mirror of the power-up sequence. In one of the "System  
On" states, the processor can change the values of the XXX_  
PWRDN_SEQ[2:0] registers. The power-up sequence is fixed by  
OTP (or TBB). If all XXX_PWRDN_SEQ[2:0] = 0x00, the power-  
down sequencer is bypassed and all the regulators are turned off  
at once.  
UNUSED  
7 to 3  
Unused  
Table 114.ꢀRegister STATE_INFO - ADDR 0x67  
Name  
Bit  
R/W  
Default Description  
STATE  
5 to 0  
R
000000 Indicates machine state  
000000 — Wait state  
001100 — Run state  
001101 — Standby state  
001110 — Sleep/LPSR state  
101011 — REGS_DISABLE state  
Other bits are reserved  
UNUSED  
7 to 6  
Unused  
Table 115.ꢀRegister I2C_ADDR - ADDR 0x68  
Name  
Bit  
R/W  
Default Description  
000 Loaded from fuses. But read only in functional space.  
I2C_SLAVE_ADDR_L  
SBS  
2 to 0  
R
000 — Slave Address: 0x08  
001 — Slave Address: 0x09  
010 — Slave Address: 0x0A  
011 — Slave Address: 0x0B  
100 — Slave Address: 0x0C  
101 — Slave Address: 0x0D  
110 — Slave Address: 0x0E  
111 — Slave Address: 0x0F  
USE_DEFAULT_ADD  
R
7
RW  
0
DEFAULT ADDR  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
80 / 108  
 
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
Table 116.ꢀRegister RC_16MHZ - ADDR 0x6B  
Name  
Bit  
R/W  
Default Description  
REQ_16MHZ  
0
RW  
0
Enables 16 MHz clock  
0 — 16 MHz clock enable controlled by state machine  
1 — 16 MHz clock always enabled  
REQ_ACORE_ON  
REQ_ACORE_HIPWR  
UNUSED  
1
2
RW  
RW  
0
Controls Analog core enable  
0 — Analog core enable controlled by state machine  
1 — Analog core always on  
0
Controls Low-power mode of the analog core  
0 — Analog core Low-power mode controlled by state machine  
1 — Analog core never in Low-power mode  
7 to 3  
Unused  
Table 117.ꢀRegister KEY1 - ADDR 0x6B  
Name  
Bit  
R/W  
Default Description  
0x00 Unused  
KEY1  
7 to 0  
RW  
12.2 Specific Registers (Offset is 0x80)  
Table 118.ꢀRegister INT - ADDR 0x00  
Name  
Bit  
0
R/W  
Default Description  
RSVD0  
RSVD1  
RSVD2  
RSVD3  
RSVD4  
VIN_I  
1
2
RW1S[1]  
RW1S  
0
0
Unused  
3
4
5
VIN interrupt  
0 — The VIN_OK interrupt has not occurred or been cleared  
1 — The VIN_OK interrupt has occurred  
Reset condition — VCOREDIG_RSTB  
RSVD6  
RSVD7  
6
7
RW1S  
RW1S  
0
0
Unused  
Unused  
[1] Load from OTP fuse, Read and Write  
Table 119.ꢀRegister INT_MASK - ADDR 0x02  
Name  
Bit  
0
R/W  
Default Description  
RSVD0  
RSVD1  
RSVD2  
RSVD3  
RSVD4  
1
2
RW  
1
Unused  
3
4
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
81 / 108  
 
 
 
 
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
Name  
Bit  
R/W  
Default Description  
VIN_M  
5
RW  
1
VIN interrupt mask  
0 — Unmasked  
1 — Masked  
Reset condition — VCOREDIG_RSTB  
RSVD6  
RSVD7  
6
7
RW  
RW  
1
1
Unused  
Unused  
Table 120.ꢀRegister INT_OK - ADDR 0x04  
Name  
Bit  
0
R/W  
Default Description  
RSVD0  
RSVD1  
RSVD2  
RSVD3  
RSVD4  
VIN_OK  
0
0
1
2
R
1
0
0
0
Unused  
3
4
5
R
Single bit VIN status indicator. See VIN_SNS for more  
information.  
0 — The VIN input is invalid. For example, VIN_VALID = 0.  
1 — The VIN input is valid. For example, VIN_VALID = 1.  
Reset condition — VCOREDIG_RSTB  
RSVS6  
RSVD7  
6
7
R
R
0
1
Unused  
Unused  
Table 121.ꢀRegister VIN_SNS - ADDR 0x06  
Name  
Bit  
1 to 0  
2
R/W  
R
Default Description  
RSVD[1:0]  
VIN_UVLO_SNS  
00  
1
Unused  
R
0 — VIN > VIN_UVLO  
1 — VIN < VIN_UVLO or when VIN is detached  
VIN2SYS_SNS  
VIN_OVLO_SNS  
VIN_VALID  
3
4
5
R
R
R
1
0
0
0 — VIN > VSYS + VIN2SYS  
1 — VIN < VSYS + VIN2SYS  
0 — VIN < VIN_OVLO  
1 — VIN > VIN_OVLO  
0 — VIN is not valid  
1 — VIN is valid, VIN > VIN_UVLO, VIN > VSYS + VIN2SYS, VIN  
< VIN_OVLO  
Reset condition — VCOREDIG_RSTB  
RSVD6  
RSVD7  
6
7
R
R
0
0
Unused  
Unused  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
82 / 108  
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
Table 122.ꢀRegister FRONT_END_OPER- ADDR 0x09  
Name  
Bit  
R/W  
Default Description  
FRONT_END_ON  
1 to 0  
RW1S[1]  
01  
Front-end LDO operation configuration  
0 — Front-end LDO is OFF  
1 — Front-end LDO is ON  
2 — Reserved  
3 — Reserved  
Reset condition — VCOREDIG_RSTB  
RSVD2  
2
3
0
0
RSVD3  
RW  
Unused  
RSVD4  
4
0
RSVD[7:5]  
7 to 5  
000  
[1] Load from OTP fuse, Read and Write  
Table 123.ꢀRegister FRONT_END_REG - ADDR 0x0F  
Name  
Bit  
R/W  
Default Description  
101011 Unused  
00 Minimum system regulation voltage (VSYSMIN  
RSVD[5:0]  
VSYSMIN  
5 to 0  
7 to 6  
RW1S  
RW1S  
)
0 — 3.5 V  
1 — 3.7 V  
2 — 4.3 V  
3 — Reserved  
Reset condition — VCOREDIG_RSTB  
Table 124.ꢀRegister VIN_INLIM_CNFG - ADDR 0x14  
Name  
Bit  
R/W  
Default Description  
000 Unused  
RSVD[2:0]  
2 to 0  
RW  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
83 / 108  
 
 
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
Name  
Bit  
R/W  
Default Description  
VIN_ILIM  
7 to 3  
RW1S  
01101 Maximum input current limit selection. 5 bit adjustment from 10  
mA to 1500 mA.  
0 — 10 mA  
1 — 15 mA  
2 — 20 mA  
3 — 25 mA  
4 — 30 mA  
5 — 35 mA  
6 — 40 mA  
7 — 45 mA  
8 — 50 mA  
9 — 100 mA  
10 — 150 mA  
11 — 200 mA  
12 — 300 mA  
13 — 400 mA  
14 — 500 mA  
15 — 600 mA  
16 — 700 mA  
17 — 800 mA  
18 — 900 mA  
19 — 1000 mA  
20 — 1500 mA  
21 — Reserved  
22 — Reserved  
23 — Reserved  
24 — Reserved  
25 — Reserved  
26 — Reserved  
27 — Reserved  
28 — Reserved  
29 — Reserved  
30 — Reserved  
31 — Reserved  
Reset condition — CHGPOK_RSTB  
Table 125.ꢀRegister USB_PHY_LDO_CNFG - ADDR 0x16  
Name  
Bit  
0
R/W  
Default Description  
RSVD0  
USBPHY  
RW1S  
RW1S  
1
0
Unused  
1
USBPHY voltage setting register  
0 — 3.3 V  
1 — 4.9 V  
Reset condition — VCOREDIG_RSTB  
USBPHYLDO  
2
RW1S  
0
USBPHY LDO enable  
0 — Disabled  
1 — Enabled  
Reset condition — VCOREDIG_RSTB  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
84 / 108  
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
Name  
Bit  
3
R/W  
Default Description  
RSVD3  
0
RSVD[5:4]  
RSVD[7:6]  
5 to 4  
7 to 6  
RW  
00  
00  
Unused  
Table 126.ꢀRegister DBNC_DELAY_TIME - ADDR 0x18  
Name  
Bit  
R/W  
Default Description  
VIN_OV_TDB  
1 to 0  
RW1S  
00  
00  
00  
00  
VIN overvoltage debounce delay  
0 — 10 µs (reserved)  
1 — 100 µs  
2 — 1 ms  
3 — 10 ms  
Reset condition — VCOREDIG_RSTB  
USB_PHY_TDB  
SYS_WKUP_DLY  
RSVD[7:6]  
3 to 2  
5 to 4  
7 to 6  
RW1S  
RW1S  
RW  
USBPHY debounce timer - not used in PF1510  
0 — 0 ms  
1 — 16 ms  
2 — 32 ms  
3 — Not used  
Reset condition — VCOREDIG_RSTB  
System wake-up time  
0 — 8.0 ms  
1 — 16 ms  
2 — 32 ms  
3 — 100 ms  
Reset condition — VCOREDIG_RSTB  
Unused  
Table 127.ꢀRegister VIN2SYS_CNFG - ADDR 0x1B  
Name  
Bit  
R/W  
Default Description  
VIN2SYS_TDB  
1 to 0  
RW1S  
00  
VIN to VSYS comparator debounce time  
0 — Reserved  
1 — 100 µs  
2 — 1 ms  
3 — 10 ms  
Reset condition — VCOREDIG_RSTB  
VIN2SYS_THRSH  
RSVD[7:3]  
2
RW1S  
RW  
0
VIN to VSYS comparator threshold setting  
0 — 50 mV  
1 — 175 mV  
Reset condition — VCOREDIG_RSTB  
7 to 3  
00000 Unused  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
85 / 108  
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
12.3 Register PMIC bitmap  
VCOREDIG_PORB [1]  
PS_END_RSTB [2]  
REGS_DISABLE_TOG_RSTB [3]  
[1] Bits reset by invalid VCOREDIG  
[2] Bits reset by PORB or RESETBMCU  
[3] Bits reset by pulse to REGS_DISABLE mode  
Table 128.ꢀRegister PMIC bitmap  
Address Register name  
BITS[7:0]  
3
7
6
5
4
2
1
0
0x00  
0x01  
0x02  
0x06  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
DEVICE_ID  
Name  
Reset  
Type  
FAMILY[3:7]  
DEVICE_ID[2:0]  
0
R
1
R
1
1
1
1
0
0
R
R
R
R
R
R
OTP_FLAVOR  
Name  
Reset  
Type  
0
0
OTP_FLAVOR[5:0]  
0
0
0
0
0
0
R
R
R
R
R
R
SILICON_REV  
Name  
Reset  
Type  
FAB_FIN[7:6]  
FULL_LAYER_REV[5:3]  
METAL_LAYER_REV[2:0]  
0
0
0
0
1
0
0
0
R
R
R
R
R
R
R
R
INT_CATEGORY  
SW_INT_STAT0  
SW_INT_MASK0  
SW_INT_SENSE0  
SW_INT_STAT1  
SW_INT_MASK1  
SW_INT_SENSE1  
SW_INT_STAT2  
Name  
Reset  
Type  
MISC_INT TEMP_INT  
ONKEY_INT  
LDO_INT  
SW3_INT  
SW2_INT  
SW1_INT  
VIN_INT  
0
R
0
R
0
R
0
R
0
R
0
0
0
R
R
R
Name  
Reset  
Type  
0
0
0
0
0
SW3_LS_I  
SW2_LS_I  
SW1_LS_I  
0
0
0
0
0
0
0
0
RW1C  
RW1C  
RW1C  
Name  
Reset  
Type  
SW3_LS_M  
SW2_LS_M  
SW1_LS_M  
1
1
1
0
0
0
0
0
RW  
RW  
RW  
Name  
Reset  
Type  
SW3_LS_S  
SW2_LS_S  
SW1_LS_S  
0
0
0
0
0
0
0
0
R
R
R
Name  
Reset  
Type  
SW3_HS_I  
SW2_HS_I  
SW1_HS_I  
0
0
0
0
0
0
0
0
RW1C  
RW1C  
RW1C  
Name  
Reset  
Type  
SW3_HS_M  
SW2_HS_M  
SW1_HS_M  
1
1
1
0
0
0
0
0
RW  
RW  
RW  
Name  
Reset  
Type  
SW3_HS_S  
SW2_HS_S  
SW1_HS_S  
0
R
0
0
R
R
Name  
SW2_DVS_  
DONE_I  
SW1_DVS_  
DONE_I  
Reset  
Type  
0
0
0
0
0
0
0
0
RW1C  
RW1C  
0x0F  
SW_INT_MASK2  
Name  
SW2_DVS_  
DONE_M  
SW1_DVS_  
DONE_M  
Reset  
Type  
0
0
0
0
0
0
1
1
RW  
RW  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
86 / 108  
 
 
 
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
Address Register name  
BITS[7:0]  
7
0
6
0
5
0
4
0
3
2
1
0
0x10  
0x18  
0x19  
0x1A  
0x20  
0x21  
0x22  
0x24  
0x25  
SW_INT_SENSE2  
LDO_INT_STAT0  
Name  
Reset  
Type  
SW2_DVS_S  
SW1_DVS_S  
0
0
0
0
0
0
0
0
LDO3_FAULTI  
0
R
LDO2_FAULTI  
0
R
LDO1_FAULTI  
0
Name  
Reset  
Type  
0
0
0
0
0
RW1C  
RW1C  
RW1C  
LDO_INT_MASK0  
LDO_INT_SENSE0  
TEMP_INT_STAT0  
TEMP_INT_MASK0  
TEMP_INT_SENSE0  
ONKEY_INT_STAT0  
ONKEY_INT_MASK0  
Name  
Reset  
Type  
LDO3_FAULTM LDO2_FAULTM LDO1_FAULTM  
0
1
1
1
0
0
0
0
RW  
RW  
RW  
Name  
Reset  
Type  
LDO3_FAULTS LDO2_FAULTS LDO1_FAULTS  
0
0
0
0
0
0
0
0
R
R
R
Name  
Reset  
Type  
THERM125I  
THERM110I  
0
0
0
0
0
0
0
0
RW1C  
RW1C  
Name  
Reset  
Type  
THERM125M  
THERM110M  
1
1
1
1
0
0
0
0
RW  
RW  
Name  
Reset  
Type  
THERM125S  
THERM110S  
0
0
0
0
0
0
ONKEY_3SI  
0
R
ONKEY_2SI  
0
R
ONKEY_PUSHI  
0
Name  
Reset  
Type  
ONKEY_8SI ONKEY_4SI  
ONKEY_1SI  
0
0
0
RW1C  
RW1C  
RW1C  
RW1C  
RW1C  
RW1C  
Name  
ONKEY_8SM ONKEY_4SM  
ONKEY_3SM ONKEY_2SM  
ONKEY_1SM  
ONKEY_  
PUSHM  
Reset  
Type  
0
0
1
1
1
RW  
1
RW  
1
RW  
1
RW  
RW  
RW  
0x26  
0x28  
ONKEY_INT_SENSE0 Name  
ONKEY_8SS ONKEY_4SS  
ONKEY_3SS  
ONKEY_2SS  
ONKEY_1SS  
ONKEY_  
PUSHS  
Reset  
Type  
0
0
0
R
0
R
0
0
R
0
R
0
R
R
MISC_INT_STAT0  
MISC_INT_MASK0  
MISC_INT_SENSE0  
Name  
SYS_OVLO_I  
LOW_SYS_  
WARN_I  
PWRON_I  
PWRDN_I  
PWRUP_I  
Reset  
Type  
0
0
0
0
0
0
RW1C  
0
RW1C  
0
RW1C  
RW1C  
RW1C  
0x29  
0x2A  
Name  
SYS_OVLO_M  
LOW_SYS_  
WARN_M  
PWRON_M  
PWRDN_M  
PWRUP_M  
Reset  
Type  
0
0
0
1
RW  
1
1
RW  
1
RW  
1
RW  
RW  
Name  
SYS_OVLO_S  
LOW_SYS_  
WARN_S  
PWRON_S  
PWRDN_S  
PWRUP_S  
Reset  
Type  
0
0
0
0
0
0
0
0
R
R
R
R
R
0x30  
0x32  
0x33  
COINCELL_CONTROL Name  
COINCHEN  
VCOIN[3:0]  
Reset  
Type  
0
0
0
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
SW1_VOLT  
Name  
Reset  
Type  
SW1_VOLT[5:0]  
0
0
0
0
0
0
0
0
RW1S  
RW1S  
RW1S  
RW1S  
RW1S  
RW1S  
SW1_STBY_VOLT  
Name  
Reset  
Type  
SW1_STBY_VOLT[5:0]  
0
0
0
0
0
0
RW1S  
RW1S  
RW1S  
RW1S  
RW1S  
RW1S  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
87 / 108  
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
Address Register name  
BITS[7:0]  
7
0
6
0
5
4
3
2
1
0
0x34  
0x35  
SW1_SLP_VOLT  
SW1_CTRL  
Name  
Reset  
Type  
SW1_SLP_VOLT[5:0]  
0
0
0
0
0
0
RW1S  
RW1S  
RW1S  
RW1S  
RW1S  
RW1S  
Name  
SW1_  
SW1_FPWM SW1_FPWM_ SW1_  
SW1_LPWR  
SW1_OMODE  
SW1_STBY_EN SW1_EN  
RDIS_ENB  
IN_DVS  
DVSSPEED  
Reset  
Type  
0
RW1S  
0
0
0
0
RW  
0
RW  
0
0
RW  
RW  
RW1S  
RW1S  
RW1S  
0x36  
SW1_CTRL1  
Name  
SW1_TMODE_  
SEL  
SW1_ILIM[1:0]  
Reset  
Type  
0
0
0
0
0
0
0
0
0
0
RW  
RW1S  
RW1S  
0x38  
0x39  
0x3A  
0x3B  
SW2_VOLT  
Name  
Reset  
Type  
SW2_VOLT[5:0]  
0
0
0
0
0
0
0
0
RW1S  
RW1S  
RW1S  
RW1S  
RW1S  
RW1S  
SW2_STBY_VOLT  
SW2_SLP_VOLT  
SW2_CTRL  
Name  
Reset  
Type  
SW2_STBY_VOLT[5:0]  
0
0
0
0
0
0
0
0
RW1S  
RW1S  
RW1S  
RW1S  
RW1S  
RW1S  
Name  
Reset  
Type  
SW2_SLP_VOLT[5:0]  
0
0
0
0
0
0
RW1S  
RW1S  
RW1S  
RW1S  
RW1S  
RW1S  
Name  
SW2_  
SW2_FPWM SW2_FPWM_ SW2_  
SW2_LPWR  
SW2_OMODE  
SW2_STBY_EN SW2_EN  
RDIS_ENB  
IN_DVS  
DVSSPEED  
Reset  
Type  
0
RW1S  
0
0
0
0
0
0
0
RW  
RW  
RW1S  
RW  
RW  
RW1S  
RW1S  
0x3C  
SW2_CTRL1  
Name  
SW2_TMODE_  
SEL  
SW2_ILIM[1:0]  
Reset  
Type  
0
0
0
0
RW  
0
0
0
0
0
0
0
RW1S  
RW1S  
0x3E  
0x3F  
0x40  
0x41  
SW3_VOLT  
Name  
Reset  
Type  
SW3_VOLT[3:0]  
0
0
0
0
0
0
0
0
RW1S  
RW1S  
RW1S  
RW1S  
SW3_STBY_VOLT  
SW3_SLP_VOLT  
SW3_CTRL  
Name  
Reset  
Type  
SW3_STBY_VOLT[3:0]  
0
0
0
0
0
0
0
0
RW1S  
RW1S  
RW1S  
RW1S  
Name  
Reset  
Type  
SW3_SLP_VOLT[3:0]  
0
0
0
0
0
RW1S  
RW1S  
RW1S  
RW1S  
Name  
SW3_  
SW3_FPWM  
SW3_  
SW3_LPWR  
SW3_OMODE  
SW3_STBY_EN SW3_EN  
RDIS_ENB  
DVSSPEED  
Reset  
Type  
0
RW1S  
0
0
0
0
0
0
0
RW  
RW1S  
RW  
RW  
RW1S  
RW1S  
0x42  
SW3_CTRL1  
Name  
SW3_TMODE_  
SEL  
SW3_ILIM[1:0]  
Reset  
Type  
0
0
0
0
0
0
0
0
0
0
LIBGDIS  
0
RW  
CLKPULSE  
0
RW1S  
RW1S  
0x48  
0x4A  
VSNVS_CTRL  
Name  
Reset  
Type  
FORCEBOS  
VSNVS_VOLT[2:0]  
0
0
0
0
RW  
RW  
RW  
RW1S  
RW1S  
RW1S  
VREFDDR_CTRL  
Name  
VREFDDR_  
LPWR  
VREFDDR_  
OMODE  
VREFDDR_  
STBY_EN  
VREFDDR_EN  
Reset  
Type  
0
0
0
0
0
0
0
0
0
0
0
RW  
RW  
RW1S  
RW1S  
0x4C  
LDO1_VOLT  
Name  
Reset  
LDO1_VOLT[4:0]  
0
0
0
0
0
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
88 / 108  
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
Address Register name  
BITS[7:0]  
7
6
5
4
3
2
1
0
RW1S  
Type  
RW1S  
RW1S  
RW1S  
RW1S  
0x4D  
LDO1_CTRL  
Name  
LDO1_LS_EN  
LDO1_LPWR  
LDO1_OMODE LDO1_STB Y_  
EN  
VLDO1_EN  
Reset  
Type  
0
0
0
0
RW1S  
0
0
0
0
0
0
0
RW  
RW  
RW1S  
RW1S  
0x4F  
0x50  
LDO2_VOLT  
LDO2_CTRL  
Name  
Reset  
Type  
LDO2_VOLT[3:0]  
0
0
0
0
0
RW1S  
RW1S  
RW1S  
RW1S  
Name  
LDO2_LPWR  
LDO2_OMODE LDO2_STB Y_  
EN  
VLDO2_EN  
Reset  
Type  
0
0
0
0
0
0
0
0
0
0
0
RW  
RW  
RW1S  
RW1S  
0x52  
0x53  
LDO3_VOLT  
LDO3_CTRL  
Name  
Reset  
Type  
LDO3_VOLT[4:0]  
0
0
0
0
0
RW1S  
RW1S  
RW1S  
RW1S  
RW1S  
Name  
LDO3_LS_EN  
LDO3_LPWR  
LDO3_OMODE LDO3_STB Y_  
EN  
VLDO3_EN  
Reset  
Type  
0
0
0
0
RW1S  
0
0
0
0
RW  
RW  
RW1S  
RW1S  
0x58  
0x59  
PWRCTRL0  
PWRCTRL1  
Name  
Reset  
Type  
TGRESET[7:6]  
POR_DLY[5:3]  
0
STANDBYINV  
STANDBYDLY[1:0]  
0
0
0
0
0
0
1
RW1S  
RW1S  
RW1S  
RW1S  
RW1S  
RW  
RW  
RW  
Name  
ONKEY_ REGSCPEN RESTARTEN  
RST_EN  
PWRONRSTEN  
ONKEYDBNC[3:2]  
PWRONDBNC[1:0]  
Reset  
Type  
1
RW  
0
0
RW  
0
0
RW  
0
0
RW  
0
0
0
0
RW  
RW  
RW  
RW  
015A  
0x5B  
PWRCTRL2  
PWRCTRL3  
Name  
Reset  
Type  
LOW_SYS_WARN[3:2]  
UVDET[1:0]  
0
0
0
0
0
RW1S  
RW  
RW  
RW1S  
Name  
GOTO_CORE_  
OFF  
Reset  
Type  
0
RW  
0
0
RW  
0
0
RW  
0
0
RW  
0
0
RW  
0
0
0
0
RW  
RW  
RW  
0x5F  
0x60  
0x61  
0x62  
0x63  
0x64  
SW1_PWRDN_SEQ  
SW2_PWRDN_SEQ  
SW3_PWRDN_SEQ  
LDO1_PWRDN_SEQ  
LDO2_PWRDN_SEQ  
LDO3_PWRDN_SEQ  
Name  
Reset  
Type  
SW1_PWRDN_SEQ[2:0]  
0
0
0
0
0
0
0
0
RW1S  
RW1S  
RW1S  
Name  
Reset  
Type  
SW2_PWRDN_SEQ[2:0]  
0
0
0
0
0
0
0
0
RW1S  
RW1S  
RW1S  
Name  
Reset  
Type  
SW3_PWRDN_SEQ[2:0]  
0
0
0
0
0
0
0
0
RW1S  
RW1S  
RW1S  
Name  
Reset  
Type  
LDO1_PWRDN_SEQ[2:0]  
0
0
0
0
0
0
0
0
RW1S  
RW1S  
RW1S  
Name  
Reset  
Type  
LDO2_PWRDN_SEQ[2:0]  
0
0
0
0
0
0
0
0
RW1S  
RW1S  
RW1S  
Name  
Reset  
Type  
LDO3_PWRDN_SEQ[2:0]  
0
0
0
0
0
0
0
0
RW1S  
RW1S  
RW1S  
0x65  
VREFDDR_PWRDN_  
S EQ  
Name  
Reset  
VREFDDR_PWRDN_SEQ[2:0]  
0
0
0
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
89 / 108  
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
Address Register name  
BITS[7:0]  
7
6
5
4
3
2
1
0
Type  
0
0
RW1S  
RW1S  
RW1S  
0x67  
0x68  
STATE_INFO  
I2C_ADDR  
Name  
Reset  
Type  
STATE[5:0]  
0
R
0
R
0
R
0
0
0
R
R
R
Name  
USE_  
I2C_SLAVE_ADDR_LSBS[2:0]  
DEFAULT_  
ADDR  
Reset  
Type  
0
RW  
0
0
0
0
0
0
R
0
R
0
R
0
0
0
0
0x69  
0x6A  
0x6B  
IO_DRV0  
IO_DRV1  
RC_16MHZ  
Name  
Reset  
Type  
0
0
0
0
0
0
0
0
0
0
0
Name  
Reset  
Type  
Name  
REQ_ACORE_  
HIPWR  
REQ_ACORE_  
ON  
REQ_16MHZ  
Reset  
Type  
0
0
0
0
0
0
0
0
KEY1[7:0]  
0
RW  
RW  
RW  
0x6F  
KEY1  
Name  
Reset  
Type  
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
90 / 108  
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
12.4 Additional register bitmap  
CHGPOK_RSTB [1]  
VCOREDIG_RSTB [2]  
[1] Bits reset by invalid VIN  
[2] Bits reset by invalid VCOREDIG  
Table 129.ꢀAdditional register bitmap  
Address Register name  
BITS[7:0]  
7
6
RSVD6  
0
5
4
RSVD4  
0
3
2
1
RSVD1  
0
0
RSVD0  
0
0x00  
0x02  
0x04  
0x06  
INT  
Name RSVD7  
VIN_I  
RSVD3  
RSVD2  
Reset  
Type  
0
0
0
0
RW1C  
RW1C  
RW1C  
VIN_M  
RW1C  
RW1C  
RSVD3  
RW1C  
RW1C  
RW1C  
RSVD0  
1
INT_MASK  
INT_OK  
VIN_SNS  
Name RSVD7  
RSVD6  
RSVD4  
RSVD2  
RSVD1  
Reset  
Type  
1
1
RW  
1
RW  
1
RW  
1
1
1
RW  
RW  
RW  
RW  
RW  
Name RSVD7  
RSVD6  
0
VIN_OK  
0
RSVD4  
0
RSVD3  
RSVD2  
RSVD1  
0
RSVD0  
0
Reset  
Type  
1
0
1
R
R
R
R
R
R
R
R
Name RSVD7  
RSVD6  
VIN2SYS_  
SNS  
VIN_OVLO_ VIN_IN2SYS_ VIN_UVLO_  
SNS SNS SNS  
RSVD[1:0]  
Reset  
Type  
0
0
0
0
1
1
0
0
R
R
R
R
R
R
R
R
0x09  
0x0F  
0x14  
0x16  
0x18  
0x1B  
FRONT_END_  
OPER  
Name  
Reset  
Type  
RSVD[7:5]  
RSVD4  
0
RSVD3  
RSVD2  
FRONT_END_ON[1:0]  
0
0
0
0
0
0
1
RW  
RW  
RW  
RW  
RW  
RW  
RW1S  
RW1S  
FRONT_END_REG Name  
VSYSMIN[7:6]  
RSVD[5:0]  
Reset  
0
0
1
0
1
0
1
RW1S  
RSVD[2:0]  
0
1
Type  
RW1S  
RW1S  
RW1S  
RW1S  
RW1S  
RW1S  
RW1S  
VIN_INLIM_CNFG Name  
VIN_ILIM[7:3]  
Reset  
Type  
0
1
1
0
1
0
RW  
0
RW  
RW1S  
RW1S  
RW1S  
RW1S  
RW1S  
RW  
USB_PHY_LDO_  
CNFG  
Name  
Reset  
Type  
RSVD[7:6]  
RSVD[5:4]  
RSVD3  
USBPHYLDO  
0
USBPHY  
0
RSVD0  
1
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW1S  
RW1S  
RW1S  
DBNC_DELAY_  
TIME  
Name  
Reset  
Type  
RSVD[7:6]  
SYS_WKUP_DLY[5:4]  
USB_PHY_TDB[3:2]  
VIN_OV_TDB[1:0]  
0
0
0
0
0
0
0
0
RW  
RW  
RW1S  
RSVD[7:3]  
RW1S  
RW1S  
RW1S  
RW1S  
RW1S  
VIN2SYS_CNFG  
Name  
VIN2SYS_  
THRSH  
VIN2SYS_TDB[1:0]  
Reset  
Type  
0
0
0
0
0
0
0
0
RW  
RW  
RW  
RW  
RW  
RW1S  
RW1S  
RW1S  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
91 / 108  
 
 
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
13 Application details  
13.1 Example schematic  
Figure 16 shows a typical schematic of the PF1510 with key external components.  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
92 / 108  
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
VIN  
D-  
5.0 V  
3.3 V  
VIN  
VSYS1  
VSYS2  
1
2
3
4
5
37  
39  
35  
36  
2.2 µF  
25 V  
4.3 V  
DM  
DP  
PHY PWR  
i.MX 7ULP  
(USB)  
VSYS  
D+  
USBPHY  
22 µF  
10 V  
22 µF  
10 V  
ID  
SW1FB  
SW1LX  
UID  
1.0 µF  
6.3 V  
27  
25  
GND  
0.6 V to 1.3785 V @ 1.0 A (DVS)  
VDD_DIG1  
VDD_HSIC  
1.0 µH  
1.0 µH  
1.0 µH  
10 µF  
6.3 V  
10 µF  
6.3 V  
SW1IN  
VSYS  
26  
17  
14  
31  
22  
28  
20  
4.7 µF  
SW2FB  
SW2LX  
6.3 V  
16  
18  
SW2IN  
1.2 V @ 1.0 A (DVS)  
4.7 µF  
6.3 V  
10 µF  
6.3 V  
10 µF  
6.3 V  
i.MX 7ULP  
(CORE)  
SW3IN  
SW3FB  
SW3LX  
15  
13  
4.7 µF  
6.3 V  
1.8 V @ 1.0 A  
VDD_PTC  
10 µF  
6.3 V  
10 µF  
6.3 V  
LICELL  
VDD_PTD  
VDD_RTC  
0.1 µF  
6.3 V  
VSNVS  
30  
21  
VINREFDDR  
0.47 µF  
6.3 V  
1.0 µF  
6.3 V  
0.5 V to 0.9 V @ 10 mA  
VREFDDR  
VLDO1IN  
0.9 V  
1.0 µF  
6.3 V  
1.0 µF  
6.3 V  
1.8 V LPDDR2  
1.2 V  
VLDO2IN  
VLDO1  
VLDO2  
VLDO3  
0.75 V to 3.3 V @ 300 mA  
1.0 µF  
6.3 V  
PF1510  
29  
19  
12  
3.3 V  
1.8 V  
4.7 µF  
6.3 V  
VLDO3IN  
11  
4
1.8 V  
1.8 V to 3.3 V @ 400 mA  
PERIPHERALS  
1.0 µF  
6.3 V  
10 µF  
6.3 V  
VDDIO  
0.75 V to 3.3 V @ 300 mA  
0.1 µF  
6.3 V  
4.7 µF  
6.3 V  
4.7 kΩ  
4.7 kΩ  
SCL  
SDA  
GND  
I2C SCL  
I2C SDA  
3
2
40  
24  
VCORE  
1.0 µF  
6.3 V  
100 kΩ  
100 kΩ  
100 kΩ  
100 kΩ  
100 kΩ  
i.MX 7ULP  
(interface)  
VDIG  
23  
INTB  
RESETBMCU  
PWRON  
INTB (GPIO)  
POR_B  
9
1.0 µF  
6.3 V  
10  
6
VDDOTP  
PMIC_ON_REQ  
WDOG_B  
5
WDI  
NC  
1
33  
34  
38  
STANDBY  
NC  
PMIC_STBY_REQ  
7
LDO2P7  
VSYS  
2.2 µF  
6.3 V  
100 kΩ  
ICTEST  
EP  
on/off  
32  
ONKEY  
8
GND  
aaa-028832  
Figure 16.ꢀTypical schematic  
13.2 Bill of materials  
The table below shows an example bill of materials to be used with the PF1510.  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
93 / 108  
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
Table 130.ꢀBill of materials  
Block  
VCORE  
VDIG  
Function  
Description  
Qty  
1
1
1
1
1
2
1
1
1
2
1
1
2
1
1
2
1
1
1
1
1
1
1
1
1
1
Analog IC supply  
CAP CER 1.0 µF 6.3 V 20 % X5R 0201  
CAP CER 1.0 µF 6.3 V 20 % X5R 0201  
CAP CER 2.2 µF 6.3 V 20% X5R 0201  
CAP CER 1.0 µF 6.3 V 20 % X5R 0201  
CAP CER 2.2 µF 25 V 20 % X5R 0402  
22 µF, 10 V, MLCC, X5R  
Digital IC supply  
LDO2P7  
USBPHY  
VIN  
Analog supply  
USB PHY output capacitor  
VIN bypass capacitor  
VSYS capacitor  
VSYS  
VDDIO  
Buck 1  
VDDIO bypass capacitor  
BUCK1 inductor  
CAP CER 0.1 uF 6.3 V 20 % X5R 0201  
1.0 µH, +/−20 %, 120 mOhm typ, 1700 mA  
4.7 µF, 6.3 V, MLCC, X5R  
BUCK1 input capacitor  
BUCK1 output capacitor  
BUCK2 inductor  
10 µF, 6.3 V, MLCC, X5R  
Buck 2  
Buck 3  
1.0 µH, +/−20 %, 120 mOhm typ, 1700 mA  
4.7 µF, 6.3 V, MLCC, X5R  
BUCK2 input capacitor  
BUCK2 output capacitor  
BUCK3 inductor  
10 µF, 6.3V, MLCC, X5R  
1.0 µH, +/-20 %, 120 mOhm typ, 1700 mA  
4.7 µF, 6.3 V, MLCC, X5R  
BUCK3 input capacitor  
BUCK3 output capacitor  
LDO1 input capacitor  
LDO1 output capacitor  
LDO2 input capacitor  
LDO2 output capacitor  
LDO3 input capacitor  
LDO3 output capacitor  
VREFDDR input capacitor  
VREFDDR output capacitor  
VSNVS output capacitor  
LICELL bypass capacitor  
10 µF, 6.3 V, MLCC, X5R  
LDO1  
LDO2  
CAP CER 1.0 µF 6.3 V 20 % X5R 0201  
4.7 µF, 6.3 V, MLCC, X5R  
CAP CER 1.0 µF 6.3 V 20 % X5R 0201  
10 µF, 6.3 V, MLCC, X5R  
LDO3  
CAP CER 1.0 µF 6.3 V 20 % X5R 0201  
4.7 µF, 6.3 V, MLCC, X5R  
VREFDDR  
CAP CER 1.0 µF 6.3 V 20 % X5R 0201  
CAP CER 1.0 µF 6.3 V 20 % X5R 0201  
CAP CER 0.47 µF 6.3 V 20 % X5R 0201  
CAP CER 0.1 µF 6.3 V 20 % X5R 0201  
VSNVS  
LICELL  
13.3 PF1510 layout guidelines  
13.3.1 General board recommendations  
It is recommended to use an eight layer board stack-up arranged as follows:  
High current signal  
GND  
Signal  
Power  
Power  
Signal  
GND  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
94 / 108  
 
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
Allocate TOP and BOTTOM PCB layers for POWER ROUTING (high current signals),  
copper-pour the unused area.  
Use internal layers sandwiched between two GND planes for the SIGNAL routing.  
13.3.2 Component placement  
It is desirable to keep all component related to the power stage as close to the PMIC as  
possible, specially decoupling input and output capacitors.  
13.3.3 General routing requirements  
Some recommended things to keep in mind for manufacturability:  
Via in pads require a 4.5 mil minimum annular ring. Pad must be 9.0 mils larger than  
the hole  
Maximum copper thickness for lines less than 5.0 mils wide is 0.6 oz copper  
Minimum allowed spacing between line and hole pad is 3.5 mils  
Minimum allowed spacing between line and line is 3.0 mils  
Care must be taken with SWxFB pins traces. These signals are susceptible to noise  
and must be routed far away from power, clock, or high power signals, like the ones on  
the SWxIN, SWxLX. They could be also shielded.  
Shield feedback traces of the regulators and keep them as short as possible (trace  
them on the bottom so the ground and power planes shield these traces).  
Avoid coupling traces between important signal/low noise supplies (like VCORE, VDIG)  
from any switching node (for example, SW1LX, SW2LX, SW3LX).  
Make sure that all components related to a specific block are referenced to the  
corresponding ground.  
13.3.4 Parallel routing requirements  
I2C signal routing  
CLK is the fastest signal of the system, so it must be given special care.  
To avoid contamination of these delicate signals by nearby high power or high  
frequency signals, it is a good practice to shield them with ground planes placed on  
adjacent layers. Make sure the ground plane is uniform throughout the whole signal  
trace length.  
These signals can be placed on an outer layer of the board to reduce their  
capacitance with respect to the ground plane.  
Care must be taken with these signals not to contaminate analog signals, as they are  
high frequency signals. Another good practice is to trace them perpendicularly on  
different layers, so there is a minimum area of proximity between signals.  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
95 / 108  
 
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
DO  
Signal  
DONT  
Signal  
Ground plane  
Ground planes  
aaa-023891  
Figure 17.ꢀRecommended shielding for critical signals  
13.3.5 Switching regulator layout recommendations  
Per design, the switching regulators in PF1510 are designed to operate with only one  
input bulk capacitor. However, it is recommended to add a high frequency filter input  
capacitor (CIN_hf), to filter out any noise at the regulator input. This capacitor should  
be in the range of 100 nF and should be placed right next to or under the IC, closest to  
the IC pins.  
Make high-current ripple traces low-inductance (short, high W/L ratio).  
Make high-current traces wide or copper islands.  
VIN  
SWxIN  
C
C
IN  
IN_HF  
SWxLX  
SWxFB  
Driver  
controller  
L
C
OUT  
Compensation  
aaa-023892  
Figure 18.ꢀGeneric buck regulator architecture  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
96 / 108  
 
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
Route FB trace on any layer away from noisy nodes  
VIN  
GND  
C
OUT  
C
IN  
VOUT  
SWxFB  
SWxIN  
SWxLX  
C
IN_HF  
Inductor  
aaa-023893  
Figure 19.ꢀLayout example for buck regulators  
13.4 Thermal information  
13.4.1 Rating data  
The thermal rating data of the packages has been simulated with the results listed in  
Table 3 .  
Junction to Ambient Thermal Resistance Nomenclature: the JEDEC specification  
reserves the symbol RθJA or θJA (Theta-JA) strictly for junction-to-ambient thermal  
resistance on a 1s test board in natural convection environment. RθJMA or θJMA (Theta-  
JMA) is used for both junction-to-ambient on a 2s2p test board in natural convection  
and for junction-to-ambient with forced convection on both 1s and 2s2p test boards. It is  
anticipated that the generic name, Theta-JA, continues to be commonly used.  
The JEDEC standards can be consulted at http://www.jedec.org/.  
13.4.2 Estimation of junction temperature  
An estimation of the chip junction temperature TJ can be obtained from the equation: TJ=  
TA+ (RθJA x PD) with:  
TA = Ambient temperature for the package in °C  
RθJA = Junction to ambient thermal resistance in °C/W  
PD= Power dissipation in the package in W  
The junction to ambient thermal resistance is an industry standard value that provides a  
quick and easy estimation of thermal performance. Unfortunately, there are two values  
in common usage: the value determined on a single layer board RθJA and the value  
obtained on a four layer board RθJMA. Actual application PCBs show a performance close  
to the simulated four layer board value although this may be somewhat degraded in case  
of significant power dissipated by other components placed close to the device.  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
97 / 108  
 
 
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
At a known board temperature, the junction temperature TJ is estimated using the  
following equation TJ= TB+ (RθJBx PD) with  
TB = Board temperature at the package perimeter in °C  
RθJB = Junction to board thermal resistance in °C/W  
PD = Power dissipation in the package in W  
14 Packaging information  
The PF1510 uses a 40 QFN 5.0 mm x 5.0 mm with exposed pad, case number  
98ASA00913D.  
14.1 Packaging description  
This drawing is available for download at http://www.nxp.com. Consult the most recently  
issued drawing before initiating or completing a design.  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
98 / 108  
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
99 / 108  
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
100 / 108  
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
Figure 20.ꢀPF1510 Package dimensions  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
101 / 108  
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
15 Revision history  
Table 131.ꢀRevision history  
Document ID  
Release date  
Data sheet status  
Change notice  
Supersedes  
PF1510 v.3.0  
Modifications  
PF1510 v.2.0  
Modifications  
20200407  
Data sheet: product  
CIN 202004001I  
PF1510 v.2.0  
Table 1: added MC32PF1510A0EP and MC34PF1510A0EP (non-programmed parts)  
20190524 Data sheet: product CIN 201904034I PF1510 v.1.0  
Changed data sheet status from advanced information to product  
Table 2, pin 38  
Changed Recommended connection from "Bypass with 1.0 capacitor to ground" to  
"Bypass with 2.2 μF capacitor to ground mandatory"  
Changed Recommended connection when not used from "Leave floating" to "Bypass  
with 2.2 μF capacitor to ground mandatory"  
Section 7.5  
Changed "It derives its power from either VSYS or a coin cell (only if the COIN_CELL bit  
is set)." to "It derives its power from either VSYS or a coin cell."  
Changed "Upon subsequent removal of VSYS, with the coin cell attached and COIN_  
CELL set, VSNVS..." to "Upon subsequent removal of VSYS, with the coin cell attached,  
VSNVS..."  
Table 45  
Changed VIL max from "0.2 * VSNVS" to "0.4"  
Changed VIH min from "0.8 * VSNVS" to "1.4"  
Added Table 46  
Added Table 47  
Table 49  
Changed VIL max from "0.2 * VSYS" to "0.4"  
Changed VIH min from "0.8 * VSYS" to "1.4"  
Changed "3.6" to "4.8"  
Figure 15  
Removed step-down from VSYS and VSNVS lines  
Figure 16  
Terminal 38, changed capacitor value from 1.0 μF to 2.2 μF  
Table 125  
Changed USBPHYLDO description from "0 — Enabled" to "1 — Enabled"  
PF1510 v.1.0  
20180523  
Data sheet: advance  
information  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
102 / 108  
 
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
16 Legal information  
16.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Definition  
Objective [short] data sheet  
Development  
This document contains data from the objective specification for product  
development.  
Preliminary [short] data sheet  
Product [short] data sheet  
Qualification  
Production  
This document contains data from the preliminary specification.  
This document contains the product specification.  
[1] Please consult the most recently issued document before initiating or completing a design.  
[2] The term 'short data sheet' is explained in section "Definitions".  
[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple  
devices. The latest product status information is available on the Internet at URL http://www.nxp.com.  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
16.2 Definitions  
Suitability for use — NXP Semiconductors products are not designed,  
authorized or warranted to be suitable for use in life support, life-critical or  
safety-critical systems or equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
to result in personal injury, death or severe property or environmental  
damage. NXP Semiconductors and its suppliers accept no liability for  
inclusion and/or use of NXP Semiconductors products in such equipment or  
applications and therefore such inclusion and/or use is at the customer’s own  
risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences  
of use of such information.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is  
intended for quick reference only and should not be relied upon to contain  
detailed and full information. For detailed and full information see the  
relevant full data sheet, which is available on request via the local NXP  
Semiconductors sales office. In case of any inconsistency or conflict with the  
short data sheet, the full data sheet shall prevail.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes  
no representation or warranty that such applications will be suitable  
for the specified use without further testing or modification. Customers  
are responsible for the design and operation of their applications and  
products using NXP Semiconductors products, and NXP Semiconductors  
accepts no liability for any assistance with applications or customer product  
design. It is customer’s sole responsibility to determine whether the NXP  
Semiconductors product is suitable and fit for the customer’s applications  
and products planned, as well as for the planned application and use of  
customer’s third party customer(s). Customers should provide appropriate  
design and operating safeguards to minimize the risks associated with  
their applications and products. NXP Semiconductors does not accept any  
liability related to any default, damage, costs or problem which is based  
on any weakness or default in the customer’s applications or products, or  
the application or use by customer’s third party customer(s). Customer is  
responsible for doing all necessary testing for the customer’s applications  
and products using NXP Semiconductors products in order to avoid a  
default of the applications and the products or of the application or use by  
customer’s third party customer(s). NXP does not accept any liability in this  
respect.  
Product specification — The information and data provided in a Product  
data sheet shall define the specification of the product as agreed between  
NXP Semiconductors and its customer, unless NXP Semiconductors and  
customer have explicitly agreed otherwise in writing. In no event however,  
shall an agreement be valid in which the NXP Semiconductors product  
is deemed to offer functions and qualities beyond those described in the  
Product data sheet.  
16.3 Disclaimers  
Limited warranty and liability — Information in this document is believed  
to be accurate and reliable. However, NXP Semiconductors does not  
give any representations or warranties, expressed or implied, as to the  
accuracy or completeness of such information and shall have no liability  
for the consequences of use of such information. NXP Semiconductors  
takes no responsibility for the content in this document if provided by an  
information source outside of NXP Semiconductors. In no event shall NXP  
Semiconductors be liable for any indirect, incidental, punitive, special or  
consequential damages (including - without limitation - lost profits, lost  
savings, business interruption, costs related to the removal or replacement  
of any products or rework charges) whether or not such damages are based  
on tort (including negligence), warranty, breach of contract or any other  
legal theory. Notwithstanding any damages that customer might incur for  
any reason whatsoever, NXP Semiconductors’ aggregate and cumulative  
liability towards customer for the products described herein shall be limited  
in accordance with the Terms and conditions of commercial sale of NXP  
Semiconductors.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) will cause permanent  
damage to the device. Limiting values are stress ratings only and (proper)  
operation of the device at these or any other conditions above those  
given in the Recommended operating conditions section (if present) or the  
Characteristics sections of this document is not warranted. Constant or  
repeated exposure to limiting values will permanently and irreversibly affect  
the quality and reliability of the device.  
Terms and conditions of commercial sale — NXP Semiconductors  
products are sold subject to the general terms and conditions of commercial  
sale, as published at http://www.nxp.com/profile/terms, unless otherwise  
agreed in a valid written individual agreement. In case an individual  
agreement is concluded only the terms and conditions of the respective  
agreement shall apply. NXP Semiconductors hereby expressly objects to  
applying the customer’s general terms and conditions with regard to the  
purchase of NXP Semiconductors products by customer.  
Right to make changes — NXP Semiconductors reserves the right to  
make changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
103 / 108  
 
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
No offer to sell or license — Nothing in this document may be interpreted  
customer uses the product for automotive applications beyond NXP  
Semiconductors’ specifications such use shall be solely at customer’s own  
risk, and (c) customer fully indemnifies NXP Semiconductors for any liability,  
damages or failed product claims resulting from customer design and use  
of the product for automotive applications beyond NXP Semiconductors’  
standard warranty and NXP Semiconductors’ product specifications.  
or construed as an offer to sell products that is open for acceptance or  
the grant, conveyance or implication of any license under any copyrights,  
patents or other industrial or intellectual property rights.  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from competent authorities.  
Translations — A non-English (translated) version of a document is for  
reference only. The English version shall prevail in case of any discrepancy  
between the translated and English versions.  
Non-automotive qualified products — Unless this data sheet expressly  
states that this specific NXP Semiconductors product is automotive qualified,  
the product is not suitable for automotive use. It is neither qualified nor  
tested in accordance with automotive testing or application requirements.  
NXP Semiconductors accepts no liability for inclusion and/or use of non-  
automotive qualified products in automotive equipment or applications. In  
the event that customer uses the product for design-in and use in automotive  
applications to automotive specifications and standards, customer (a) shall  
use the product without NXP Semiconductors’ warranty of the product for  
such automotive applications, use and specifications, and (b) whenever  
16.4 Trademarks  
Notice: All referenced brands, product names, service names and  
trademarks are the property of their respective owners.  
NXP — is a trademark of NXP B.V.  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
104 / 108  
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
Tables  
Tab. 1.  
Tab. 2.  
Tab. 3.  
Tab. 4.  
Tab. 5.  
Tab. 6.  
Tab. 7.  
Tab. 8.  
Tab. 9.  
Orderable part variations ...................................6  
Tab. 55. Register OTP_FLAVOR - ADDR 0x01 ............ 55  
Tab. 56. Register SILICON_REV - ADDR 0x02 ............ 55  
Tab. 57. Register INT_CATEGORY - ADDR 0x06 ........ 56  
Tab. 58. Register SW_INT_STAT0 - ADDR 0x08 ......... 56  
Tab. 59. Register SW_INT_MASK0 - ADDR 0x09 ........ 57  
Tab. 60. Register SW_INT_SENSE0 - ADDR 0x0A ......57  
Tab. 61. Register SW_INT_STAT1 - ADDR 0x0B .........58  
Tab. 62. Register SW_INT_MASK1 - ADDR 0x0C ........58  
Tab. 63. Register SW_INT_SENSE1 - ADDR 0x0D ......58  
Tab. 64. Register SW_INT_STAT2 - ADDR 0x0E .........59  
Tab. 65. Register SW_INT_MASK2 - ADDR 0x0F ........ 59  
Tab. 66. Register SW_INT_SENSE2 - ADDR 0x10 ...... 60  
Tab. 67. Register LDO_INT_STAT0 - ADDR 0x18 ........60  
Tab. 68. Register LDO_INT_MASK0 - ADDR 0x19 .......60  
Tab. 69. Register LDO_INT_SENSE0 - ADDR 0x1A .... 61  
Tab. 70. Register TEMP_INT_STAT0 - ADDR 0x20 ..... 61  
Tab. 71. Register TEMP_INT_MASK0 - ADDR 0x21 .... 61  
Tab. 72. Register TEMP_INT_SENSE0 - ADDR 0x22 ...62  
Tab. 73. Register ONKEY_INT_STAT0 - ADDR 0x24 ... 62  
Pin description ...................................................8  
Thermal ratings ................................................. 9  
Maximum ratings .............................................10  
Front-end LDO ................................................ 12  
Input currents .................................................. 12  
Switch impedances and leakage currents ....... 13  
Watchdog timer ............................................... 13  
Internal 2.7 V Regulator (LDO2P7) ................. 13  
Tab. 10. USBPHY LDO .................................................13  
Tab. 11. SW1 and SW2 electrical characteristics ..........14  
Tab. 12. SW3 electrical characteristics ......................... 16  
Tab. 13. LDO1 electrical characteristics ........................17  
Tab. 14. LDO2 electrical characteristics ........................18  
Tab. 15. LDO3 electrical characteristics ........................19  
Tab. 16. VREFDDR electrical characteristics ................20  
Tab. 17. VSNVS electrical characteristics ..................... 20  
Tab. 18. IC level electrical characteristics ..................... 21  
Tab. 19. Voltage regulators ........................................... 22  
Tab. 20. SWx DVS setting selection ............................. 24  
Tab. 21. Buck regulator operating modes ..................... 25  
Tab. 22. Buck mode control .......................................... 26  
Tab. 23. SW1 and SW2 output voltage setting ..............27  
Tab. 24. Acceptable inductance and capacitance  
values .............................................................. 29  
Tab. 25. Example inductor part numbers ...................... 29  
Tab. 26. Example capacitor part numbers .....................29  
Tab. 27. SW3 buck regulator operating modes ............. 30  
Tab. 28. SW3 buck mode control ..................................30  
Tab. 29. SW3 output voltage setting ............................. 31  
Tab. 30. Acceptable inductance and capacitance  
values .............................................................. 32  
Tab. 31. Example inductor part numbers ...................... 32  
Tab. 32. Example capacitor part numbers .....................32  
Tab. 33. LDOy output voltage setting ............................34  
Tab. 34. LDOy control bits ............................................ 35  
Tab. 35. LDO2 output voltage setting ............................37  
Tab. 36. LDO2 control bits ............................................ 38  
Tab. 37. Front-end regulator register .............................41  
Tab. 38. VSYSMIN setting ............................................ 42  
Tab. 39. VIN current limit register ................................. 42  
Tab. 40. VIN limit settings ............................................. 42  
Tab. 41. PWRON pin OTP configuration options .......... 43  
Tab. 42. PWRON pin logic level ....................................43  
Tab. 43. PWRONDBNC settings ...................................44  
Tab. 44. Standby pin polarity control .............................44  
Tab. 45. STANDBY pin logic level ................................ 44  
Tab. 46. RESETBMCU pin logic level ...........................45  
Tab. 47. INTB pin logic level .........................................45  
Tab. 48. WDI pin logic level .......................................... 46  
Tab. 49. ONKEY pin logic level .....................................46  
Tab. 50. ONKEYDBNC settings .................................... 46  
Tab. 51. State transition table ....................................... 50  
Tab. 52. A4 startup and power down sequence timing ...53  
Tab. 53. PF1510 start up configuration .........................53  
Tab. 54. Register DEVICE_ID - ADDR 0x00 .................55  
Tab. 74. Register ONKEY_INT_MASK0  
- ADDR  
0x25 .................................................................63  
Tab. 75. Register ONKEY_INT_SENSE0 - ADDR  
0x26 .................................................................63  
Tab. 76. Register MISC_INT_STAT0 - ADDR 0x28 ...... 64  
Tab. 77. Register MISC_INT_MASK0- ADDR 0x29 ...... 65  
Tab. 78. Register MISC_INT_SENSE0 - ADDR 0x2A ... 65  
Tab. 79. Register COINCELL_CONTROL - ADDR  
0x30 .................................................................66  
Tab. 80. Register SW1_VOLT - ADDR 0x32 .................66  
Tab. 81. Register SW1_STBY_VOLT - ADDR 0x33 ......66  
Tab. 82. Register SW1_SLP_VOLT - ADDR 0x34 ........ 67  
Tab. 83. Register SW1_CTRL - ADDR 0x35 .................67  
Tab. 84. Register SW1_SLP_VOLT - ADDR 0x36 ........ 68  
Tab. 85. Register SW2_VOLT - ADDR 0x38 .................68  
Tab. 86. Register SW2_STBY_VOLT - ADDR 0x39 ......68  
Tab. 87. Register SW2_SLP_VOLT - ADDR 0x3A ........69  
Tab. 88. Register SW2_CTRL - ADDR 0x3B ................ 69  
Tab. 89. Register SW2_CTRL1 - ADDR 0x3C .............. 70  
Tab. 90. Register SW3_VOLT - ADDR 0x3E ................ 70  
Tab. 91. Register SW3_STBY_VOLT - ADDR 0x3F ..... 70  
Tab. 92. Register SW3_SLP_VOLT - ADDR 0x40 ........ 71  
Tab. 93. Register SW3_CTRL - ADDR 0x41 .................71  
Tab. 94. Register SW3_CTRL1 - ADDR 0x42 ...............72  
Tab. 95. Register VSNVS_CTRL - ADDR 0x48 ............ 72  
Tab. 96. Register VREFDDR_CTRL - ADDR 0x4A .......72  
Tab. 97. Register LDO1_VOLT - ADDR 0x4C .............. 73  
Tab. 98. Register LDO1_CTRL - ADDR 0x4D .............. 73  
Tab. 99. Register LDO2_VOLT - ADDR 0x4F ...............73  
Tab. 100. Register LDO2_CTRL - ADDR 0x50 ...............73  
Tab. 101. Register LDO3_VOLT - ADDR 0x52 ...............74  
Tab. 102. Register LDO3_CTRL - ADDR 0x53 ...............74  
Tab. 103. Register PWRCTRL0 - ADDR 0x58 ................75  
Tab. 104. Register PWRCTRL1 - ADDR 0x59 ................75  
Tab. 105. Register PWRCTRL2 - ADDR 0x5A ................76  
Tab. 106. Register PWRCTRL3 - ADDR 0x5B ................76  
Tab. 107. Register SW1_PWRDN_SEQ - ADDR 0x5F ... 77  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
105 / 108  
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
Tab. 108. Register SW2_PWRDN_SEQ - ADDR 0x60 ... 77  
Tab. 109. Register SW2_PWRDN_SEQ - ADDR 0x61 ... 78  
Tab. 110. Register LDO1_PWRDN_SEQ ADDR  
0x62 .................................................................78  
Tab. 111. Register LDO2_PWRDN_SEQ ADDR  
0x63 .................................................................79  
Tab. 112. Register LDO3_PWRDN_SEQ ADDR  
0x64 .................................................................79  
Tab. 113. Register VREFDDR_PWRDN_SEQ - ADDR  
0x65 .................................................................80  
Tab. 114. Register STATE_INFO - ADDR 0x67 ..............80  
Tab. 115. Register I2C_ADDR - ADDR 0x68 ..................80  
Tab. 116. Register RC_16MHZ - ADDR 0x6B ................ 81  
Tab. 117. Register KEY1 - ADDR 0x6B ..........................81  
Tab. 118. Register INT - ADDR 0x00 ..............................81  
Tab. 119. Register INT_MASK - ADDR 0x02 ..................81  
Tab. 120. Register INT_OK - ADDR 0x04 .......................82  
Tab. 121. Register VIN_SNS - ADDR 0x06 .................... 82  
Tab. 122. Register FRONT_END_OPER- ADDR 0x09 ... 83  
Tab. 123. Register FRONT_END_REG - ADDR 0x0F .... 83  
Tab. 124. Register VIN_INLIM_CNFG - ADDR 0x14 ...... 83  
Tab. 125. Register USB_PHY_LDO_CNFG - ADDR  
0x16 .................................................................84  
-
-
-
Tab. 126. Register DBNC_DELAY_TIME  
- ADDR  
0x18 .................................................................85  
Tab. 127. Register VIN2SYS_CNFG - ADDR 0x1B ........ 85  
Tab. 128. Register PMIC bitmap .....................................86  
Tab. 129. Additional register bitmap ................................91  
Tab. 130. Bill of materials ................................................94  
Tab. 131. Revision history .............................................102  
Figures  
Fig. 1.  
Fig. 2.  
Fig. 3.  
Fig. 4.  
Fig. 5.  
Fig. 6.  
Fig. 7.  
Fig. 8.  
Fig. 9.  
Application diagram ...........................................3  
Functional block diagram .................................. 4  
Internal block diagram .......................................5  
Pinout diagram ..................................................7  
SWx DVS transitions .......................................24  
SWx DVS and non-DVS selection ...................25  
SW3 block diagram .........................................29  
LDOy Block Diagram .......................................34  
LDO2 block diagram ....................................... 37  
Fig. 11. VSNVS block diagram .....................................39  
Fig. 12. Startup sequence ............................................ 41  
Fig. 13. I2C sequence ..................................................47  
Fig. 14. PMIC state machine ........................................48  
Fig. 15. A4 startup and power down sequence ............53  
Fig. 16. Typical schematic ............................................93  
Fig. 17. Recommended shielding for critical signals .....96  
Fig. 18. Generic buck regulator architecture ................ 96  
Fig. 19. Layout example for buck regulators ................ 97  
Fig. 20. PF1510 Package dimensions ..........................99  
Fig. 10. VREFDDR block diagram ............................... 39  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
106 / 108  
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
Contents  
1
1.1  
1.2  
2
2.1  
2.2  
3
4
4.1  
4.2  
5
5.1  
5.2  
5.3  
5.3.1  
5.3.2  
5.3.3  
5.3.4  
5.3.5  
5.3.6  
5.3.7  
5.3.8  
5.3.9  
General description ............................................ 1  
7.4  
7.5  
8
8.1  
9
9.1  
9.2  
9.3  
9.4  
9.5  
9.6  
9.7  
9.7.1  
9.7.2  
10  
10.1  
10.1.1  
10.1.2  
10.1.3  
10.2  
10.2.1  
10.2.2  
10.3  
10.4  
10.5  
10.6  
10.7  
11  
11.1  
11.2  
12  
12.1  
12.2  
12.3  
12.4  
13  
13.1  
13.2  
13.3  
13.3.1  
13.3.2  
13.3.3  
13.3.4  
13.3.5  
13.4  
13.4.1  
13.4.2  
14  
VREFDDR reference ....................................... 38  
VSNVS LDO/Switch .........................................39  
Front-end LDO description .............................. 40  
Operating modes and behavioral description ...41  
Control and interface signals .......................... 43  
PWRON ........................................................... 43  
STANDBY ........................................................44  
RESETBMCU .................................................. 45  
INTB .................................................................45  
WDI ..................................................................46  
ONKEY ............................................................ 46  
Control interface I2C block description ............ 47  
I2C device ID ...................................................47  
I2C operation ...................................................47  
PF1510 state machine ...................................... 48  
System ON states ........................................... 48  
Run state ......................................................... 48  
STANDBY state ...............................................49  
SLEEP state .................................................... 49  
System OFF states ..........................................49  
REGS_DISABLE ..............................................49  
CORE_OFF ..................................................... 50  
Turn on events ................................................ 50  
Turn off events ................................................ 50  
State diagram and transition conditions ...........50  
Regulator power-up sequencer ....................... 51  
Regulator power-down sequencer ...................52  
Device start up ..................................................52  
Startup timing diagram .................................... 52  
Device start up configuration ...........................53  
Register map ..................................................... 55  
Specific PMIC Registers (Offset is 0x00) .........55  
Specific Registers (Offset is 0x80) ...................81  
Register PMIC bitmap ..................................... 86  
Additional register bitmap ................................91  
Application details ............................................ 92  
Example schematic ..........................................92  
Bill of materials ................................................93  
PF1510 layout guidelines ................................ 94  
General board recommendations .................... 94  
Component placement .....................................95  
General routing requirements ..........................95  
Parallel routing requirements ...........................95  
Switching regulator layout recommendations ...96  
Thermal information .........................................97  
Rating data ...................................................... 97  
Estimation of junction temperature .................. 97  
Packaging information ..................................... 98  
Packaging description ......................................98  
Revision history .............................................. 102  
Legal information ............................................103  
Features and benefits ........................................1  
Applications ........................................................2  
Application diagram ............................................3  
Functional block diagram ...................................4  
Internal block diagram ....................................... 5  
Orderable parts ................................................... 5  
Pinning information ............................................ 7  
Pinning ...............................................................7  
Pin definitions .................................................... 8  
General product characteristics ........................ 9  
Thermal characteristics ......................................9  
Absolute maximum ratings .............................. 10  
Electrical characteristics .................................. 12  
Electrical characteristics – Front-end LDO .......12  
Electrical characteristics – SW1 and SW2 .......14  
Electrical characteristics – SW3 ...................... 16  
Electrical characteristics – LDO1 .....................17  
Electrical characteristics – LDO2 .....................18  
Electrical characteristics – LDO3 .....................19  
Electrical characteristics – VREFDDR .............20  
Electrical characteristics – VSNVS ..................20  
Electrical characteristics – IC level bias  
currents ............................................................21  
Detailed description ..........................................22  
Buck regulators ................................................23  
SW1 and SW2 detailed description ................. 24  
SWx dynamic voltage scaling description ........24  
SWx DVS and non-DVS operation .................. 25  
Regulator control ............................................. 25  
Current limit protection .................................... 26  
Output voltage setting in SWx ......................... 26  
SWx external components ...............................29  
SW3 detailed description .................................29  
Regulator control ............................................. 30  
Current limit protection .................................... 31  
Output voltage setting in SW3 .........................31  
SW3 external components .............................. 32  
Low dropout linear regulators, VREFDDR  
and VSNVS ........................................................ 33  
General description ..........................................33  
LDO1 and LDO3 detailed description .............. 33  
Features summary ...........................................33  
LDOy block diagram ........................................34  
LDOy external components ............................. 34  
LDOy output voltage setting ............................ 34  
LDOy low power mode operation .................... 35  
LDOy current limit protection ...........................35  
LDOy load switch mode .................................. 36  
LDO2 detailed description ............................... 36  
LDO2 features summary ................................. 36  
LDO2 block diagram ........................................37  
LDO2 external components .............................37  
LDO2 output voltage setting ............................37  
LDO2 Low-power mode operation ...................38  
LDO2 current limit protection ...........................38  
6
6.1  
6.2  
6.2.1  
6.2.2  
6.2.3  
6.2.4  
6.2.5  
6.2.6  
6.3  
6.3.1  
6.3.2  
6.3.3  
6.3.4  
7
7.1  
7.2  
7.2.1  
7.2.2  
7.2.3  
7.2.4  
7.2.5  
7.2.6  
7.2.7  
7.3  
7.3.1  
7.3.2  
7.3.3  
7.3.4  
7.3.5  
7.3.6  
14.1  
15  
16  
PF1510  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
Rev. 3 — 7 April 2020  
107 / 108  
NXP Semiconductors  
PF1510  
Power management integrated circuit (PMIC) for low power application processors  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section 'Legal information'.  
© NXP B.V. 2020.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 7 April 2020  
Document identifier: PF1510  

相关型号:

MC32PF1510A1EP

Power Supply Management Circuit
NXP

MC32PF1510A2EP

Power management integrated circuit (PMIC) for low power application processors
NXP

MC32PF1510A3EP

Power Supply Management Circuit
NXP

MC32PF1510A4EP

Power management integrated circuit (PMIC) for low power application processors
NXP

MC32PF1510A5EP

Power management integrated circuit (PMIC) for low power application processors
NXP

MC32PF1510A6EP

Power management integrated circuit (PMIC) for low power application processors
NXP

MC32PF1510A7EP

Power management integrated circuit (PMIC) for low power application processors
NXP

MC32PF1550A0EP

Power management integrated circuit (PMIC) for low power application processors
NXP

MC32PF1550A1EP

Power management integrated circuit (PMIC) for low power application processors
NXP

MC32PF1550A2EP

Power management integrated circuit (PMIC) for low power application processors
NXP

MC32PF1550A3EP

Power management integrated circuit (PMIC) for low power application processors
NXP

MC32PF1550A4EP

Power management integrated circuit (PMIC) for low power application processors
NXP