MC33901WEF [NXP]

DATACOM, INTERFACE CIRCUIT, PDSO8, ROHS COMPLIANT, MS-012AA, SOIC-8;
MC33901WEF
型号: MC33901WEF
厂家: NXP    NXP
描述:

DATACOM, INTERFACE CIRCUIT, PDSO8, ROHS COMPLIANT, MS-012AA, SOIC-8

电信 光电二极管 电信集成电路
文件: 总24页 (文件大小:580K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: MC33901  
Rev. 3.0, 6/2015  
ale Semiconductor  
cal Data  
High-speed CAN Transceiver  
33901  
34901  
The MC33901/34901 are SMARTMOS high-speed (up to 1.0 Mbits/s) CAN  
transceivers providing the physical interface between the CAN protocol  
controller of an MCU and the physical dual wires CAN bus. They are packaged  
in an 8-pin SOIC with market standard pinout, and offer excellent EMC and ESD  
performance without the need for external filter components.  
.
HIGH-SPEED CAN TRANSCEIVER  
Four devices variations are available:  
- Versions with and without CAN bus wake-up.  
- Versions with and without TXD dominant protection.  
Features  
• Very low-current consumption in standby mode  
• Compatible with 3.3 V or 5.0 V MCU interface  
• Standby mode with remote CAN wake-up on some versions.  
• Pin and function compatible with market standard  
EF SUFFIX (PB-FREE)  
98ASA42564B  
8-PIN SOICN  
Cost efficient robustness:  
Industrial Applications (MC34901)  
• Transportation  
• Backplanes  
• High system level ESD performance  
• Very high electromagnetic Immunity and low electromagnetic emission  
without common mode choke or other external components.  
• Lift/elevators  
Fail-safe behaviors:  
• Factory automation  
• Industrial process control  
Automotive Applications (MC33901)  
• Supports automotive CAN high-speed applications  
• Body electronics  
• TXD Dominant timeout, on the 33901 version.  
• Ideal passive when unpowered, CAN bus leakage current <10 A.  
• VDD and VIO monitoring  
• Power train  
• Chassis and safety  
• Infotainment  
• Diagnostic equipment  
• Accessories  
33901  
34901  
VREG  
5.0 V  
5.0 V  
VDD  
VIO  
3.3 V  
V
PWR  
MCU  
CAN H  
CAN BUS  
3.3 V  
120  
VCC  
STB  
I/O  
TX  
RX  
CAN L  
CAN  
TXD  
RXD  
protocol  
controller  
GND  
Figure 1. Simplified Application Diagram for MC3x901xEF  
© Freescale Semiconductor, Inc., 2013-2015. All rights reserved.  
33901  
34901  
VREG  
5.0 V  
5.0 V  
VDD  
STB  
V
PWR  
MCU  
CAN H  
CAN L  
CAN BUS  
120  
VCC  
I/O  
TX  
RX  
CAN  
TXD  
RXD  
protocol  
controller  
GND  
Figure 2. Simplified Application Diagram for MC3x901xNEF  
33901  
Analog Integrated Circuit Device Data  
2
Freescale Semiconductor  
Table of Contents  
1
2
3
Orderable Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Internal Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
3.1 Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
3.2 Pin Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
3.3 Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
3.4 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
3.5 Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
General IC Functional Description and Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
4.2 Pin Function and Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
4.3 Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
4.4 Fail-safe Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
4.5 Device Operation Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
4.6 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Typical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
5.1 Application Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
6.1 Package Mechanical Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
4
5
6
7
33901  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
3
1
Orderable Parts  
This section describes the part numbers available to be purchased along with their differences.  
Table 1. Orderable Part Variations  
Part Number (1)  
MC33901WEF  
Temperature (T )  
Package  
VIO  
Yes  
No  
Wake-up Function  
Available  
TXD dominant protection  
A
MC33901WNEF  
MC33901SEF  
MC33901SNEF  
MC34901WEF  
MC34901WNEF  
MC34901SEF  
MC34901SNEF  
Notes  
Available  
Yes  
No  
Not Available  
Available  
-40 to 125 °C  
SOIC 8 pins  
Yes  
No  
Not Available  
Yes  
No  
Not Available  
1. To order parts in Tape & Reel, add the R2 suffix to the part number.  
Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to http://  
www.freescale.com and perform a part number search.  
33901  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
4
 
 
2
Internal Block Diagram  
VDD  
TXD  
VIO  
Bus Biasing  
2.5V  
V
Monitor  
VDD  
DD  
Pre-  
driver  
Timeout  
MC33xx only  
Input  
CAN H  
CAN L  
R
IN  
VIO  
VDD  
R
IN  
50 k  
High  
Impedance  
Mode  
and  
Buffer  
RXD  
Pre-  
driver  
VIO  
Control  
VDD  
Over  
temperature  
-
STB  
VIO  
VIO  
Differential  
Receiver  
V
IO  
V
Monitor  
IO  
Wake-up  
Receiver (*)  
GND  
(*) MC3x901WEF only  
Figure 3. Internal Block Diagram for MC3x901xEF  
VDD  
TXD  
V
IO  
Bus Biasing  
V
DD  
VDD Monitor  
Pre-  
driver  
Timeout  
MC33xx only  
Input  
2.5V  
CAN H  
CAN L  
RIN  
RIN  
VIO  
V
DD  
50 k  
High  
Impedance  
Mode  
and  
Buffer  
RXD  
Pre-  
driver  
V
IO  
Control  
V
DD  
STB  
NC  
Over-  
temperature  
V
V
DD  
IO  
Differential  
Receiver  
V
IO  
VIO Monitor  
Wake-up  
Receiver (*)  
GND  
(*) MC3x901WNEF only  
Figure 4. Internal Block Diagram for MC3x901xNEF (Version N)  
33901  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
5
3
Pin Connections  
3.1  
Pinout  
TXD  
TXD  
8
7
8
7
1
2
3
STB  
1
2
3
STB  
CANH  
CANH  
GND  
VDD  
GND  
VDD  
6
5
6
5
CANL  
VIO  
CANL  
NC  
4
4
RXD  
RXD  
MC3x901xEF  
MC3x901xNEF  
Figure 5. 8-Pin SOIC Pinout  
3.2  
Pin Definitions  
A functional description of each pin can be found in the Functional Pin Description section beginning on page 9.  
Table 2. 33901 Pin Definitions  
MC3x901xEF Mc3x901xNEF  
Pin Number  
Pin Function  
Definition  
Pin Name  
Pin Name  
1
2
3
4
5
TXD  
TXD  
CAN bus transmit data input pin  
Ground  
Input  
Ground  
Input  
GND  
GND  
VDD  
VDD  
5.0 V input supply for CAN driver and receiver  
CAN bus receive data output pin  
RXD  
RXD  
Output  
VIO  
NC  
Input supply for the digital input output pins (MC3x901WEF and MC3x901SEF)  
or  
Not connected pin (MC3x901WNEF and MC3x901SNEF)  
Input  
or  
Not connected  
6
7
8
CAN L  
CAN H  
STB  
CAN L  
CAN H  
STB  
CAN bus low pin  
Input/Output  
Input/Output  
Input  
CAN bus high pin  
Standby input for device mode selection  
33901  
Analog Integrated Circuit Device Data  
6
Freescale Semiconductor  
3.3  
Maximum Ratings  
Table 3. Maximum Ratings  
All voltages are with respect to ground unless otherwise noted. Exceeding these ratings may cause a malfunction or permanent damage  
to the device.  
Symbol  
Description (Rating)  
Min.  
Max.  
Unit  
Notes  
ELECTRICAL RATINGS  
V
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-27  
VDD Logic Supply Voltage  
Input/Output Logic Voltage  
Standby pin Input Voltage  
TXD maximum voltage range  
7.0  
7.0  
7.0  
7.0  
7.0  
40  
V
V
V
V
V
V
V
DD  
V
IO  
V
V
V
STB  
TXD  
RXD maximum voltage range  
CANH Bus pin maximum range  
CANL Bus pin maximum range  
RXD  
VCANH  
V
-27  
40  
CANL  
ESD Voltage  
• Human Body Model (HBM) (all pins except CANH and CANL pins)  
• Human Body Model (HBM) (CANH, CANL pins)  
• Machine Model (MM)  
±2000  
±8000  
±200  
V
• Charge Device Model (CDM)(/corners pins)  
• System level ESD  
±500(/±750)  
(2)  
V
ESD  
• 330 /150 pF Unpowered According to IEC61000-4-2:  
• 330 /150 pF Unpowered According to OEM LIN, CAN, Flexray  
Conformance  
8.0  
6.0  
kV  
• 2.0 k/150 pF Unpowered According to ISO10605.2008  
• 2.0 k/330 pF Powered According to ISO10605.2008  
8.0  
6.0  
Notes  
2. ESD testing is performed in accordance with the Human Body Model (HBM) (CZAP = 100 pF, RZAP = 1500 ), the Machine Model (MM)   
(CZAP = 200 pF, RZAP = 0 ), and the Charge Device Model.  
3.4  
Thermal Characteristics  
Table 4. Thermal Ratings  
Symbol  
Description (Rating)  
Min.  
Max.  
Unit  
Notes  
THERMAL RATINGS  
Operating Temperature  
• Ambient  
TA  
TJ  
-40  
-40  
125  
150  
°C  
• Junction  
TSTG  
Storage Temperature  
-55  
150  
°C  
°C  
TPPRT  
Peak Package Reflow Temperature During Reflow  
THERMAL RESISTANCE AND PACKAGE DISSIPATION RATINGS  
R  
Junction-to-Ambient, Natural Convection, Single-Layer Board  
Thermal Shutdown  
150  
140  
°C/W  
°C  
JA  
TSD  
TSDH  
Thermal Shutdown Hysteresis  
15  
°C  
33901  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
7
 
3.5  
Operating Conditions  
This section describes the operating conditions of the device. Conditions apply to all the following data, unless otherwise noted.  
Table 5. Operating Conditions  
All voltages are with respect to ground unless otherwise noted. Exceeding these ratings may cause a malfunction or permanent damage  
to the device.  
Symbol  
VDD_F  
Ratings  
Min  
Max  
7.0  
5.5  
7.0  
5.5  
Unit  
V
Notes  
VDD_UV  
Functional operating VDD voltage  
Parametric operating VDD voltage  
Functional operating VIO voltage  
Parametric operating VIO voltage  
VDD_OP  
VIO_F  
4.5  
V
VIO_UV  
V
VIO_OP  
2.8  
V
VDD  
VIO  
Max rating exceeded  
Max rating exceeded  
7.0 V  
7.0 V  
Device functional  
Device functional  
5.5 V  
5.5 V  
5.0 V  
VIO operating range  
VDD operating range  
5.0 V  
4.5 V  
3.3 V  
2.8 V  
Device functional or  
Device functional or  
CAN bus recessive state  
CAN bus recessive state  
Device in Standby mode  
V
UV  
V
UV  
IO  
DD  
Device in Unpowered mode  
0 V  
0 V  
Figure 6. Supply Voltage Operating Range  
33901  
Analog Integrated Circuit Device Data  
8
Freescale Semiconductor  
 
 
4
General IC Functional Description and Application  
Information  
4.1  
Introduction  
The 33901/34901 are high speed CAN transceivers providing the physical interface between the CAN protocol controller of an MCU and  
the physical dual wires CAN bus. They are packaged in an 8-pin SOIC with market standard pinout, and offer excellent EMC and ESD  
performance without the need for external filter components. They meet the ISO 11898-2 and ISO11898-5 standards, and have low  
leakage on CAN bus while unpowered.  
The devices are supplied from VDD and VIO, to allow automatic operation with 5.0 V and 3.3 V microcontrollers. They are offered in four  
versions: with and without CAN bus wake-up, and with and without TXD dominant timeout.  
• MC3x901xEF devices are supplied from VDD and VIO, to allow automatic operation with 5.0 V and 3.3 V microcontrollers.  
• MC3x901xNEF devices are supplied from VDD, to allow operation with 5.0 V microcontrollers.  
They are offered in eight versions: with and without CAN bus wake-up, with and without TXD dominant time out, and with or without  
external VIO.  
4.2  
Pin Function and Description  
4.2.1 VDD Power Supply  
This is the supply for the CANH and CANL bus drivers, the bus differential receiver and the bus biasing voltage circuitry. VDD is monitored  
for under voltage conditions. See Fail-safe Mechanisms. When the device is in standby mode, the consumption on VDD is extremely low  
(Refer to IVDD).  
4.2.2 VIO Digital I/O Power Supply  
This is the supply for the TXD, RXD, and STB digital input outputs pins. VIO also supplies the low-power differential wake-up receivers  
and filter circuitry. This allows detecting and reporting bus wake-up events with device supplied only from VIO. VIO is monitored for  
undervoltage conditions. See Fail-safe Mechanisms. When the device is in Standby mode, the consumption on VIO is extremely low  
(Refer to IVIO). VIO is internally connected to VDD for the MC3x901xNEF.  
4.2.3 STB  
STB is the input pin to control the device mode. When STB is high or floating, the device is in Standby mode. When STB is low, the device  
is set in Normal mode. STB has an internal pull-up to VIO, so if STB is left open, the device is set to a predetermined Standby mode.  
4.2.4 TXD  
TXD is the device input pin to control the CAN bus level. In the application, this pin is connected to the microcontroller transmit terminal.  
In Normal mode, when TXD is high or floating, the CANH and CANL drivers are OFF, setting the bus in a recessive state. When TXD is  
low, the CANH and CANL drivers are activated and the bus is set to a dominant state. TXD has a built-in timing protection that disables  
the bus when TXD is dominant for more than tXDOM  
.
In Standby mode, TXD has no effect on the device. The TXD dominant protection is available on 33901, but not available on 34901.  
4.2.5 RXD  
RXD is the bus output level report pin. In the application, this pin is connected to the microcontroller receive terminal. In Normal mode,  
RXD is a push-pull structure. When the bus is in a recessive state, RXD is high. When the bus is dominant, RXD is low.  
In Standby mode, the push-pull structure is disabled, RXD is pulled up to VIO via a resistor (RPU-RXD), and is in a high level. When the  
bus wake-up is detected, the push-pull structure resumes and TXD reports a wake-up via a toggling mechanism (refer to Figure 10). The  
toggling mechanism for bus wake-up reports is available on the MC33901WEF. This mechanism is not available on the MC33901SEF.  
33901  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
9
4.2.6 CANH and CANL  
These are the CAN bus terminals.  
CANL is a low side driver to GND, and CANH is a high-side driver to VDD. In Normal mode and TXD high, the CANH and CANL drivers  
are OFF, and the voltage at CANH and CANL is approx. 2.5 V, provided by the internal bus biasing circuitry. When TXD is low, CANL is  
pulled to GND and CANH to VDD, creating a differential voltage on the CAN bus.  
In Standby mode, CANH and CANL drivers are OFF, and these pins are pulled to GND via the device RIN resistor for the MC3x901WEF  
versions (ref to parameter Input resistance). In device unpowered mode, CANH and CANL are high-impedance with extremely low leakage  
to GND, making the device ideally passive when unpowered.  
CANH and CANL have integrated ESD protection and extremely high robustness versus external disturbance, such as EMC and electrical  
transients. These pins have current limitation and thermal protection.  
4.3  
Operating Modes  
The device has two operating modes: Standby and Normal.  
4.3.1 Normal Mode  
This mode is selected when the STB pin is low. In this mode, the device is able to transmit information from TXD to the bus and report the  
bus level to the RXD pin. When TXD is high, CANH and CANL drivers are off and the bus is in the recessive state (unless it is in an  
application where another device drives the bus to the dominant state). When TXD is low, CANH and CANL drivers are ON and the bus  
is in the dominant state.  
4.3.2 Standby Mode  
This mode is selected when the STB pin is high or floating. In this mode, the device is not able to transmit information from TXD to the  
bus, and it cannot report accurate bus information. The Device can only report bus wake-up events via the RXD toggling mechanism.  
The bus wake-up report is available on the MC3x901WEF and MC3x901WNEF. This feature is not available on the MC3x901SEF. In  
Standby mode, the consumption from VDD and VIO is extremely low. In this mode, the CANH and CANL pins are pulled to GND via the  
internal RIN resistor, for device versions MC33901WEF and MC34901WNEF.  
4.3.2.1  
Wake-up Mechanism  
The device versions MC3x901WEF and MC34901WNEF include bus monitoring circuitry to detect and report bus wake-ups. To activate  
a wake-up report, three events must occur on the CAN bus:  
- event 1: a dominant level for a time longer than tWU_FLT1 followed by  
- event 2: a recessive level (event 2) longer than tWU_FLT2 followed by  
- event 3: a dominant level (event 3) longer than tWU_FLT2  
.
The RXD terminal then reports the bus state (bus dominant => RXD low, bus recessive => RXD high). The delay between bus dominant  
and RXD low, and bus recessive and RXD high is longer than in Normal mode (refer to tTGLT).  
The three events must occur within the tWU_TO timeout.  
Figure 10 illustrates the wake-up detection and reporting (toggling) mechanism. If the three events do not occur within the TWU_TO timeout,  
the wake-up and toggling mechanism are not active. This is illustrated in Figure 11.  
The three events and the timeout function avoid a permanent dominant state on the bus that would generate a permanent wake-up  
situation, which would prevent the system from entering low power mode.  
4.3.3 Unpowered Mode  
When VIO is below VIO UV, the device is in unpowered mode. The CAN bus is in high-impedance and is unable to transmit, receive, or  
report bus wake-up events.  
4.4  
Fail-safe Mechanisms  
The device implements various protection, detection, and predictable fail-safe mechanisms.  
33901  
Analog Integrated Circuit Device Data  
10  
Freescale Semiconductor  
4.4.1 STB and TXD Input Pins  
The STB input pin has an internal integrated pull-up structure to the VIO supply pin. If STB is open, the device is set to Standby mode to  
ensure predictable behavior and minimize system current consumption.  
The TXD input pin also has an internal integrated pull-up structure to the VIO supply pin. If TXD is open, the CAN driver is set to the  
recessive state to minimize current consumption and ensure that no false dominant bit is transmitted on the bus.  
4.4.2 TXD Dominant Timeout Detection  
If TXD is set low for a time longer than the TXD DOM parameter, the CAN drivers are disabled and the CAN bus returns to recessive state.  
This prevents the bus from being set to the dominant state permanently in case a fault sets the TXD input to low level permanently.  
The device recovers from this when a high level is detected on TXD. Refer to Figures 12.  
4.4.3 CAN Current Limitation  
The current flowing in and out of the CANH and CANL driver is limited to a maximum of 100 mA, in case of a short-circuit (parameter for  
ILIM).  
4.4.4 CAN Overtemperature  
If the driver temperature exceeds TSD, the driver is turned off to protect the device. A hysteresis is implemented in this protection feature.  
The device overtemperature and recovery conditions are shown in Figure 7 Overtemperature behavior”. The driver remains disabled until  
the temperature has fallen below the OT threshold minus the hysteresis and a TXD high to low transition is detected.  
Overtemperature Threshold  
Hysteresis  
Event 3  
Hysteresis  
Temperature  
Event 1  
Event 1  
Event 2  
Event 2  
Event 4  
Event 3  
low  
high  
TXD  
BUS  
recessive  
dominant  
dominant  
dominant  
Event 1: overtemperature detection. CAN driver disable.  
Event 2: temperature falls below “overtemperature threshold minus hysteresis” => CAN driver remains disable.  
Event 3: temperature below “overtemperature threshold minus hysteresis” and TxD high to low transition => CAN driver enable.  
Event 4: temperature above “overtemperature threshold minus hysteresis” and TxD high to low transition => CAN driver remains disable.  
Figure 7. Overtemperature behavior  
4.4.5 VDD and VIO Supply Voltage Monitoring  
For MC3x901WEF and MC3x901SEF versions:  
The device monitors the VDD and VIO supply inputs. If VDD falls below VDD UV (VDD_UV), the device is set in Standby mode. This ensures  
a predictable behavior due to the loss of VDD. CAN driver, receiver, or bus biasing cannot operate any longer. In this case, the bus wake-  
up is available as VIO remains active.  
If VIO falls below VIO UV (VIO_UV), the device is set to an unpowered condition. This ensures a predictable behavior due to the loss of  
VIO, CAN driver, receiver, or bus biasing can not operate any longer. This sets the bus in high-impedance and in ideal passive behavior.  
33901  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
11  
 
For MC3x901WNEF and MC3x901SNEF versions:  
As VIO is internally connected to VDD, VIO voltage depends on the VDD supply. If VDD is between VIO_UV and VDD_UV, the device is set in  
Standby mode. If VDD is below VIO UV, the device is set in unpowered mode.  
4.4.6 Bus Dominant State Behavior in Standby Mode  
In device Standby mode, a bus dominant condition due, for instance to a short-circuit or a fault in one of the other CAN nodes, does not  
generate a permanent wake-up event, by virtue of the multiple events (dominant, recessive, dominant) and timeout required to detect and  
report bus wake-ups.  
4.5  
Device Operation Summary  
The following table summarizes the device operation and the state of the input output pins, depending on the operating mode and power  
supply conditions.  
Table 6. Operation for VIO Devices  
STANDBY AND NORMAL MODES FOR MC3X901 VERSION  
VDD  
range  
VIO  
range  
MODE  
Description  
STB  
TXD  
RXD  
CAN  
Wake-up  
CANH and CANL drivers  
controlled by TXD input.  
Differential receiver report bus  
state on RXD pins.  
Biasing circuitry provides approx  
2.5 in recessive state.  
TXD High  
=> bus  
recessive  
TXD Low  
=> bus  
dominant  
Report CAN state  
(bus recessive =>  
RXD high, bus  
dominant => RXD  
low).  
Nominal  
supply and  
normal mode  
from  
4.5 V to  
5.5 V  
from 2.8 V  
to 5.5 V  
Normal  
Low  
Disabled  
CAN driver and differential  
receiver disabled.  
Bus biased to GND via internal RIN  
resistors for MC3x901WNEF.  
Bus high-impedance for  
MC3x901SNEF.  
Report bus wake  
up via toggling  
mechanism for  
MC3x901WNEF.  
RXD High level for  
MC3x901SNEF  
Enabled on  
MC3x901WNEF  
Not available on  
MC3x901SNEF  
Nominal  
supply and  
standby mode  
No effect.  
on CAN  
bus.  
from 0 V from 2.8 V High or  
to 5.5 V to 5.5 V floating  
Standby  
UNDERVOLTAGE AND LOSS OF POWER CONDITIONS FOR MC3X901 VERSION  
VDD  
range  
VIO  
range  
MODE  
Description  
STB  
TXD  
RXD  
CAN  
Wake up  
CAN driver and differential  
receiver disabled.  
Bus biased to GND via internal RIN MC33901WEF  
resistors for MC3x901WEF.  
Bus high-impedance for  
MC3x901SEF.  
Device in  
standby mode  
due to loss of  
VDD (VDD fall  
below VDD  
UV)  
Report bus wake  
up via toggling  
mechanism for  
MC3x901WEF.  
RXD High level for  
MC3x901SEF  
from 0 V  
to  
VDD_UV  
Enabled on  
from 2.8 V  
to 5.5 V  
(5)  
Standby  
due to VDD  
loss  
X
(3)  
X
Not available on  
MC33901SEF.  
(4)  
Device in  
unpowered  
state due to  
low VIO. CAN  
bus high-  
CAN driver and differential  
receiver disabled.  
High-impedance, with ideal  
passive behavior.  
Unpowered  
due to VIO  
loss  
Pulled up to VIO  
down to VIO  
approx 1.5 V.  
from0 Vto  
VIO_UV  
(4)  
X
X
Not available.  
impedance  
Notes  
3. STB pin has no effect. Device enters in standby mode.  
4. VDD consumption < 10 uA down to VDD approx 1.5 V.  
5. VIO consumption < 10 uA down to VIO approx 1.5 V. If STB is high or floating.  
33901  
Analog Integrated Circuit Device Data  
12  
Freescale Semiconductor  
 
 
 
Table 7. Operation for Non-VIO Devices  
STANDBY AND NORMAL MODES FOR MC3X901N VERSIONS  
MODE  
Description VDD range  
STB  
TXD  
RXD  
CAN  
Wake-up  
Report CAN state  
(bus recessive =>  
RXD high, bus  
dominant => RXD  
low)  
CANH and CANL drivers controlled  
by TXD input. Differential receiver  
report bus state on RXD pins.  
Biasingcircuitryprovides approx2.5  
in recessive state  
TXD High  
=> bus recessive  
TXD Low  
Nominal  
supply and  
normal mode  
from 4.5 V  
to 5.5 V  
Normal  
Low  
Disabled  
=> bus dominant  
CAN driver and differential receiver  
disabled.  
Bus biased to GND via internal RIN  
resistors for MC3x901WEF.  
Bus high-impedance for  
MC3x901SEF  
Reportbuswake up  
via toggling  
mechanism for  
MC3x901WEF.  
RXD High level for  
MC3x901SEF  
Enabled on  
MC33901WEF  
Not available on  
MC33901SEF  
Nominal  
from 2.8 V  
supply and  
to 5.5 V  
High or  
floating  
No effect. on  
CAN bus.  
Standby  
standby mode  
UNDERVOLTAGE AND LOSS OF POWER CONDITIONS FOR MC3X901N VERSIONS  
MODE  
Description VDD range  
STB  
TXD  
RXD  
CAN  
Wake-up  
Device in  
unpowered  
CAN driver and differential receiver  
disabled.  
High-impedance, with ideal passive  
behavior  
Unpowered  
due to VDD  
loss  
Pulled up to VIO  
down to VIO  
approx 1.5 V.  
state due to  
low VDD and  
so VIO. CAN  
bus high-  
from 0 V to  
VIO_UV  
X
X
Not available.  
impedance  
33901  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
13  
4.6  
Electrical Characteristics  
Table 8. Static Electrical Characteristics  
Characteristics noted under conditions 4.5 V VDD 5.5 V, 2.8 V VIO 5.5 V, -40 C TA 125 C, GND = 0 V, R on CAN bus   
(RL) = 60 , unless otherwise noted. Typical values noted reflect the approximate parameter at TA = 25 °C under nominal conditions,  
unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit  
Notes  
POWER INPUT VDD  
VDD Supply Voltage Range  
VDD  
V
4.5  
3.0  
5.5  
4.5  
• Nominal Operation  
VDD_UV  
VDD Undervoltage threshold  
V
VDD supply current  
• Normal mode, TXD High  
• Normal mode, TXD Low  
• Standby mode (MC3x901)  
• Standby mode (MC3x901N)  
40  
5.0  
65  
5.0  
15  
mA  
mA  
µA  
IVDD  
µA  
POWER INPUT VIO  
Vio Supply Voltage Range  
• Nominal Operation  
VIO  
V
2.8  
5.5  
2.8  
VIO_UV  
VIO Under voltage threshold  
V
VIO supply current  
• Normal mode, TXD high  
5.0  
200  
1.0  
10  
µA  
mA  
µA  
µA  
IVIO  
• Normal mode, TXD low or CAN bus in dominant state  
• Standby mode, CAN bus in recessive state  
• Standby mode, wake-up filter and wake-up time out running  
150  
STB INPUT  
Input voltages  
VIO  
V
mV  
• High level Input Voltage  
• Low level input voltage  
• Input threshold hysteresis  
0.7  
200  
0.3  
VSTB  
RPU-STB  
Pull-up resistor to VIO  
100  
k  
TXD INPUT  
Input voltages  
VIO  
V
mV  
• High level Input Voltage  
• Low level input voltage  
• Input threshold hysteresis  
0.7  
200  
300  
0.3  
VTXD  
RPU-TXD  
Pull-up resistor to VIO  
5.0  
50  
k  
RXD OUTPUT  
Output current  
mA  
IRXD  
• RXD high, VRXD high = VIO - 0.4 V  
• RXD low, VRXD high = 0.4 V  
-5.0  
1.0  
-2.5  
2.5  
-1.0  
5.0  
Pull-up resistor to VIO (in standby mode, without toggling - no wake-up  
report)  
RPU-RXD  
25  
50  
90  
k  
33901  
Analog Integrated Circuit Device Data  
14  
Freescale Semiconductor  
Table 8. Static Electrical Characteristics (continued)  
Characteristics noted under conditions 4.5 V VDD 5.5 V, 2.8 V VIO 5.5 V, -40 C TA 125 C, GND = 0 V, R on CAN bus   
(RL) = 60 , unless otherwise noted. Typical values noted reflect the approximate parameter at TA = 25 °C under nominal conditions,  
unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit  
Notes  
CANL AND CANH TERMINALS  
Recessive voltage, TXD high, no load  
• CANL recessive voltage  
VREC  
2.0  
2.0  
2.5  
2.5  
3.0  
3.0  
V
mV  
V
• CANH recessive voltage  
VDIFF_REC  
CANH - CANL differential recessive voltage, TXD high, no load  
-50  
50  
Recessive voltage, sleep mode, no load  
• CANL recessive voltage  
VREC_SM  
-0.1  
-0.1  
0.1  
0.1  
• CANH recessive voltage  
Dominant voltage, TXD low (t < TXDOM), RL = 45 to 65   
• CANL dominant voltage  
VDOM  
0.5  
2.75  
2.25  
4.5  
V
• CANH dominant voltage  
CANH - CANL differential dominant voltage, RL = 45 to 65   
VDIFF_DOM  
VSYM  
1.5  
0.9  
2.0  
1.0  
3.0  
1.1  
V
TxDLOW  
VDD  
Driver symmetry CANH + CANL  
Current limitation, TXD low (t < TXDOM  
)
ILIM  
• CANL current limitation, CANL 5.0 V to 28 V  
• CANH current limitation, CANH = 0 V  
40  
-100  
100  
-40  
mA  
VDIFF_THR  
VDIFF_HYS  
VDIFF_THR_S  
VCM  
CANH - CANL Differential input threshold  
CANH - CANL Differential input voltage hysteresis  
CANH - CANL Differential input threshold, in standby mode  
Common Mode Voltage  
0.5  
50  
0.9  
400  
1.15  
12  
V
mV  
V
0.4  
-12  
V
Input resistance  
RIN  
• CANL input resistance  
• CANH input resistance  
5.0  
5.0  
50  
50  
k
RIN_DIFF  
CANH, CANL differential input resistance  
Input resistance matching  
10  
100  
3.0  
k  
RIN_MATCH  
-3.0  
%
CANL or CANH input current, device unpowered, VDD = VIO = 0 V,  
VCANL and VCANH 0 V to 5.0 V range  
IIN_UPWR  
µA  
• VDD connected with R = 0 kto GND  
• VDD connected with R=47 kto GND  
-10  
-10  
10  
10  
RIN_UPWR  
CCAN_CAP  
CDIF_CAP  
TSD  
CANL, CANH input resistance, VCANL = VCANH = 12 V  
10  
k  
CANL, CANH input capacitance (guaranteed by design and  
characterization)  
20  
pF  
CANL, CANH differential input capacitance (guaranteed by design  
and characterization)  
10  
pF  
°C  
Temperature Shutdown  
150  
185  
33901  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
15  
Table 9. Dynamic Electrical Characteristics  
Characteristics noted under conditions 4.5 V VDD 5.5 V, 2.8 V VIO 5.5 V, -40 C TA 125 C, GND = 0 V, R on CAN bus (RL) =  
60 , unless otherwise noted. Typical values noted reflect the approximate parameter at TA = 25 °C under nominal conditions, unless  
otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Unit  
Notes  
TIMING PARAMETERS  
(6)  
tXDOM  
tLOOP  
TXD DOM  
2.5  
16  
255  
5.0  
1.0  
1.3  
7.0  
300  
40  
ms  
ns  
µs  
µs  
µs  
ms  
µs  
us  
T loop  
(7)  
(7)  
(7)  
(7)  
tWU_FLT1  
tWU_FLT2  
tTGLT  
TWU filter1  
0.5  
0.08  
TWU filter2  
Tdelay during toggling  
Twake up timeout  
tWU_TO  
1.5  
tDELAY_PWR  
tDELAY_SN  
Notes  
Delay between power-up and device ready  
120  
Transition time from Standby to Normal mode (STB high to low)  
6. MC33901 & MC33901N versions only  
7. MC3x901WEF and MC3x901WNEF versions only  
5.0 V  
1.0 F  
100 nF  
VDD  
VIO  
CANH  
STB  
MC33901  
60   
100 pF  
TXD  
RXD  
CANL  
15 pF  
GND  
Figure 8. Timing Test Circuit  
33901  
Analog Integrated Circuit Device Data  
16  
Freescale Semiconductor  
 
 
high  
TXD  
low  
CANH  
CANL  
dominant  
0.9 V  
VDIFF  
(CANH - CANL)  
0.5 V  
recessive  
high  
0.7 VIO  
RXD  
0.3 VIO  
low  
tLOOP (R-D)  
tLOOP (D-R)  
Figure 9. CAN Timing Diagram  
recessive  
recessive  
recessive  
dominant  
t_WUFL1  
dominant  
dominant  
BUS  
t_WUFL2  
t_WUFL2  
1st event  
2nd event  
3rd event  
T_TOG  
T_TOG  
T_TOG  
T_TOG  
high  
RXD  
low  
note: 1st, 2nd and 3rd event must occurs within t_WUTO timing.  
t_WUTO  
Figure 10. Wake-up Pattern Timing Illustration  
33901  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
17  
recessive  
recessive  
dominant  
t_WUFL1  
dominant  
t_WUFL1  
BUS  
t_wUFL2  
t_WUFL2  
1st event  
2nd event  
1st event  
2nd event  
t_WUTO (expired)  
high  
note: only the 1st and the 2nd event occurred within t_WUTO timing.  
RXD  
Figure 11. Timeout Wake-up Timing Illustration  
recovery condition: TXD high  
high  
TXD  
BUS  
low  
recessive  
dominant  
dominant  
dominant  
TXD_dom timeout  
TXD_dom timeout  
TXD_dom timeout  
TXD dom timeout expired  
high  
RXD  
low  
Figure 12. TXD Dominant Timeout Detection Illustration  
33901  
Analog Integrated Circuit Device Data  
18  
Freescale Semiconductor  
5
Typical Applications  
5.1  
Application Diagrams  
VPWR  
D
5.0 V  
5.0 V Reg.  
VDD  
VIO  
VCC  
C1  
CANH  
STB  
MCU  
Port_xx  
MC3x901xEF  
R1  
TXD  
TXD  
CANL  
CAN  
controller  
RXD  
RXD  
C1: 1.0 µF  
R1: application dependant  
(ex: 60, 120 ohm or other value)  
GND  
Figure 13. Single Supply Typical Application Schematic for MC3x901xEF  
VPWR  
D
5.0 V  
5.0 V Reg.  
VDD  
VCC  
C1  
CANH  
STB  
MCU  
Port_xx  
R1  
MC3x901xNEF  
TXD  
TXD  
CANL  
CAN  
controller  
RXD  
RXD  
C1: 1.0 µF  
R1: application dependant  
(ex: 60, 120 ohm or other value)  
GND  
Figure 14. Single Supply Typical Application Schematic for MC3x901xNEF  
33901  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
19  
5.0 V  
5.0 V Reg  
C2  
D
VPWR  
3.3 - 5.0 V  
3.3-5.0 V Reg  
VDD  
VIO  
VCC  
C1  
STB  
CANH  
MCU  
Port_xx  
TXD  
MC3x901xEF  
TXD  
R1  
CAN  
controller  
CANL  
RXD  
RXD  
C1: 1.0 µF  
C2: 1.0 µF  
GND  
R1: application dependant  
(ex: 60, 120 ohm or other value)  
Figure 15. Dual Supply Typical Application Schematic for MC3x901xEF  
CANH  
R2, R3: application dependant  
(ex: 60 ohm or other value):  
R2  
R3  
C3: application dependant  
(ex: 4.7 nF or other value):  
C3  
CANL  
Figure 16. Example of Bus Termination Options  
33901  
Analog Integrated Circuit Device Data  
20  
Freescale Semiconductor  
6
Packaging  
6.1  
Package Mechanical Dimensions  
Package dimensions are provided in package drawings. To find the most current package outline drawing, go to www.freescale.com and  
perform a keyword search for the drawing’s document number.  
Table 10. Packaging Information  
Package  
Suffix  
Package Outline Drawing Number  
98ASA42564B  
8-Pin SOICN  
EF  
.
33901  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
21  
.
33901  
Analog Integrated Circuit Device Data  
22  
Freescale Semiconductor  
7
Revision History  
REVISION  
DATE  
DESCRIPTION OF CHANGES  
1.0  
12/2013  
Initial release  
Changed Advance Information to Technical Data  
Added information for high-speed (up to 1.0 Mbit/s)  
Added VREC_SM (CANH, CANL recessive voltage, sleep mode) to Table 7  
2.0  
3.0  
4/2015  
Added VSYM (Driver symmetry) to Table 7  
Added IIN_UPWR to Table 7  
Added MC33901xNEF and MC34901xNEF parts to Table 1, Orderable Parts  
6/2015  
Added additions to all figures and tables to include the variations for the new part numbers  
33901  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
23  
Information in this document is provided solely to enable system and software implementers to use Freescale products.  
There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based  
on the information in this document.  
How to Reach Us:  
Home Page:  
freescale.com  
Web Support:  
freescale.com/support  
Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no  
warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any  
and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance  
may vary over time. All operating parameters, including “typicals,” must be validated for each customer application by  
customer’s technical experts. Freescale does not convey any license under its patent rights nor the rights of others.  
Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address:  
freescale.com/SalesTermsandConditions.  
Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off.  
SMARTMOS is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their  
respective owners.  
© 2015 Freescale Semiconductor, Inc.  
Document Number: MC33901  
Rev. 3.0  
6/2015  

相关型号:

MC33902

High Speed CAN Interface with Embedded 5.0 V Supply
FREESCALE

MC33903

SBC Gen2 with CAN High Speed and LIN Interface
FREESCALE

MC33903D

SBC Gen2 with CAN High Speed and LIN Interface
FREESCALE

MC33903P

SBC Gen2 with CAN High Speed and LIN Interface
FREESCALE

MC33903S

SBC Gen2 with CAN High Speed and LIN Interface
FREESCALE

MC33903_4_5

SBC Gen2 with CAN High Speed and LIN Interface
FREESCALE

MC33904

SBC Gen2 with CAN High Speed and LIN Interface
FREESCALE

MC33905D

SBC Gen2 with CAN High Speed and LIN Interface
FREESCALE

MC33905S

SBC Gen2 with CAN High Speed and LIN Interface
FREESCALE

MC33907AE

System Basis Chip, CAN, 5V , 0.7A VCORE, QFP 48, Tray
NXP

MC33907LAE

System Basis Chip, CAN/LIN, 5V , 0.7A VCORE, QFP 48, Tray
NXP

MC33907NAE

System Basis Chip, CAN, 5V , 0.7A VCORE, QFP 48, Tray
NXP