MC33978AEKR2 [NXP]

Switch Detection Interface, 22-switches, 3.3 V / 5.0 V SPI , SOICW-EP 32, Reel;
MC33978AEKR2
型号: MC33978AEKR2
厂家: NXP    NXP
描述:

Switch Detection Interface, 22-switches, 3.3 V / 5.0 V SPI , SOICW-EP 32, Reel

文件: 总65页 (文件大小:1022K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: MC33978  
Rev. 7.0, 8/2017  
NXP Semiconductors  
Advance Information  
22 channel multiple switch detection  
interface with programmable wetting  
current  
33978  
34978  
MULTIPLE SWITCH DETECTION INTERFACE  
The 33978 is designed to detect the closing and opening of up to 22 switch  
contacts. The switch status, either open or closed, is transferred to the  
microprocessor unit (MCU) through a serial peripheral interface (SPI). This  
SMARTMOS device also features a 24-to-1 analog multiplexer for reading the  
input channels as analog inputs. The analog selected input signal is buffered and  
provided on the AMUX output pin for the MCU to read.  
Independent programmable wetting currents are available as needed for the  
application. A battery and temperature monitor are included in the IC and  
available via the AMUX pin.  
ES SUFFIX (PB-FREE)  
98ASA00656D  
EK SUFFIX (PB-FREE)  
98ASA10556D  
The 33978 device has two modes of operation, Normal and Low-power mode  
(LPM). Normal mode allows programming of the device and supplies switch  
contacts with pull-up or pull-down current as it monitors the change of state on  
the switches. The LPM provides low quiescent current, which makes the 33978  
ideal for automotive and industrial products requiring low sleep-state currents.  
32-PIN QFN (WF-TYPE)  
32-PIN SOICW-EP  
Applications  
• Automotive  
• Heating ventilation and air conditioning (HVAC)  
• Lighting  
Features  
• Central gateway/in-vehicle networking  
• Gasoline engine management  
• Industrial  
• Fully functional operation 4.5 V VBATP 36 V  
• Full parametric operation 6.0 V VBATP 28 V  
• Operating switch input voltage range from -1.0 V to 36 V  
• Eight programmable inputs (switches to battery or ground)  
• 14 switch-to-ground inputs  
• Selectable wetting current (2, 6, 8, 10, 12, 14, 16, or 20 mA)  
• Interfaces directly to an MCU using 3.3 V / 5.0 V SPI protocol  
• Selectable wake-up on change of state  
• Programmable logic control (PLC)  
• Process control, temperature control  
• Input-output control (I/O Control)  
• Single board computer  
• Ethernet switch  
• Typical standby current IBATP = 30 μA and IDDQ = 10 μA  
• Active interrupt (INT_B) on change-of-switch state  
• Integrated battery and temperature sensing  
Notes  
1. The IC is functional from 4.5 V < VBATP < 6.0 V, but with degraded parametric values. The parameters may not meet the minimum and maximum  
specifications when VBATP drops below 6.0 V.  
VDDQ  
Battery  
Power  
Supply  
33978  
SG1  
Battery  
VBATP  
SP0  
Power  
Supply  
WAKE_B  
MCU  
SP1  
VDDQ  
INT_B  
CS_B  
INTB  
SP7  
SG0  
CSB  
MISO  
MISO  
MOSI  
SCLK  
MOSI  
SCLK  
AN0  
AMUX  
SG12  
SG13  
EP  
GND  
Figure 1. 33978 simplified application diagram  
* This document contains certain information on a new product.  
Specifications and information herein are subject to change without notice.  
© NXP B.V. 2017.  
 
Table of Contents  
1
2
3
Orderable parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Internal block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
3.1 Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
3.2 Pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
General product characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
4.1 Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
4.2 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
4.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
4.4 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
5.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
5.2 Functional block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
General IC functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
6.1 Battery voltage ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
6.2 Power sequencing conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Functional block description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
7.1 State diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
7.2 Low-power mode operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
7.3 Input functional block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
7.4 Oscillator and timer control functional block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
7.5 Temperature monitor and control functional block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
7.6 WAKE_B control functional block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
7.7 INT_B functional block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
7.8 AMUX functional block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
7.9 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
7.10 SPI control register definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Typical applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
8.1 Application diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
8.2 Bill of materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
8.3 Abnormal operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
9.1 Package mechanical dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
4
5
6
7
8
9
10 Reference section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
11 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
33978  
NXP Semiconductors  
2
1
Orderable parts  
This section describes the part numbers available to be purchased along with their differences.  
Table 1. Orderable part variations  
Temperature (T )  
Part number  
Package  
SOICW-EP 32 pins  
Notes  
A
MC33978EK  
MC33978AEK  
MC33978AES  
MC34978EK  
MC34978AEK  
MC34978AES  
Notes  
(2), (3)  
-40 °C to 125 °C  
(2)  
QFN (WF-TYPE) 32 pins  
SOICW-EP 32 pins  
(2), (3)  
(2)  
-40 °C to 105 °C  
QFN (WF-TYPE) 32 pins  
2. To order parts in tape and reel, add the R2 suffix to the part number.  
3. Refer to errata MC33978ER ER01 for details on current conditions present on the MC33978EK and MC34978EK devices only.  
33978  
3
NXP Semiconductors  
 
 
 
2
Internal block diagram  
Inputs  
Internal 2.5 V  
VBATP  
SG0  
VBATP  
VBATP, VDDQ  
Internal 2.5 V/5.0 V  
Power On Reset  
Bandgap reference  
Sleep Power  
VBATP  
VDDQ  
Wetting (2.0 mA to 20 mA)  
Sustain (2.0 mA)  
Low Power Mode (1.0 mA)  
GND  
EP  
SG0  
Internal 2.5 V  
To SPI  
4.0 V  
reference  
SG1  
Oscillator  
and  
VBATP  
Clock control  
SG2  
SG5  
VBATP  
Internal 2.5 V  
Temperature  
Monitor and  
Control  
Wetting (2.0 mA to 20 mA)  
Sustain (2.0 mA)  
Low Power Mode (1.0 mA)  
VDDQ  
125 kΩ  
Internal 2.5 V  
SG5  
To SPI  
4.0 V  
reference  
WAKE_B  
INT_B  
WAKE_B control  
1/6 Ratio  
Internal 2.5 V  
VDDQ  
SGx  
125 kΩ  
VBATP  
Interrupt  
control  
Wetting (2.0 mA to 20 mA)  
Sustain (2.0 mA)  
Low Power Mode (1.0 mA)  
Internal 2.5 V  
SG13  
VDDQ  
To SPI  
4.0 V  
reference  
SPI Interface and  
Control  
125 kΩ  
CS_B  
SCLK  
MOSI  
MISO  
SP0-7  
VBATP  
VDDQ  
Mux control  
24  
Wetting (2.0 mA to 20 mA)  
Sustain (2.0 mA)  
Low Power Mode (1.0 mA)  
VDDQ  
+
-
AMUX  
SP0  
To SPI  
4.0 V  
SP1  
reference  
Wetting (2.0 mA to 20 mA)  
Sustain (2.0 mA)  
Low Power Mode (2.0 mA)  
SP7  
Figure 2. 33978 internal block diagram  
33978  
NXP Semiconductors  
4
3
Pin connections  
3.1  
Pinout  
Transparent Top View  
GND  
MOSI  
SCLK  
CS_B  
SP0  
SP1  
SP2  
SP3  
SG0  
SG1  
SG2  
SG3  
SG4  
SG5  
SG6  
VBATP  
MISO  
VDDQ  
AMUX  
INT_B  
SP7  
SP6  
SP5  
SP4  
SG13  
SG12  
SG11  
SG10  
SG9  
SG8  
SG7  
WAKE_B  
1
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
2
32 31 30 29 28 27 26 25  
1
2
3
4
5
6
7
8
SP7  
24  
23  
22  
21  
20  
19  
18  
17  
SP0  
3
4
SP6  
SP1  
SP2  
SP3  
SG0  
SG1  
SG2  
SG3  
5
SP5  
6
7
Exposed Pad  
SP4  
8
EK Suffix  
Only  
9
SG13  
SG12  
SG11  
SG10  
10  
11  
12  
13  
14  
15  
16  
9
10 11 12 13 14 15 16  
Figure 3. 33978 SOICW-EP and QFN (WF-Type) pinouts  
3.2  
Pin definitions  
Table 2. 33978 pin definitions  
Pin number Pin number  
Pin name Pin function  
Formal name  
Definition  
SOIC  
QFN  
1
2
3
4
29  
GND  
MOSI  
SCLK  
CS_B  
Ground  
Input/SPI  
Input/SPI  
Input/SPI  
Ground  
Ground for logic, analog  
30  
SPI Slave In  
Serial Clock  
Chip Select  
SPI control data input pin from the MCU  
SPI control clock input pin  
31  
32  
SPI control chip select input pin  
5–8  
25–28  
1 - 4  
21 - 24  
SP0–3  
SP4–7  
Programmable  
Switches 0–7  
Input  
Input  
Switch to programmable input pins (SB or SG)  
Switch-to-ground input pins  
9–15,  
18–24  
5 - 11  
14 - 20  
SG0–6,  
SG7–13  
Switch-to-Ground  
Inputs 0–13  
Battery supply input pin. Pin requires external reverse battery  
protection  
16  
17  
12  
13  
VBATP  
Power  
Battery Input  
Wake-up  
Open drain wake-up output. Designed to control a power supply  
enable pin. Input used to allow a wake-up from an external event.  
WAKE_B  
Input/Output  
Open-drain output to MCU. Used to indicate an input switch change  
of state. Used as an input to allow wake-up from LPM via an external  
INT_B falling event.  
29  
25  
INT_B  
Input/Output  
Interrupt  
30  
31  
26  
27  
AMUX  
VDDQ  
Output  
Input  
Analog Multiplex Output Analog multiplex output.  
3.3 V/5.0 V supply. Sets SPI communication level for the MISO driver  
Voltage Drain Supply  
and I/O level buffer  
33978  
5
NXP Semiconductors  
Table 2. 33978 pin definitions (continued)  
Pin number Pin number  
Pin name Pin function  
Formal name  
Definition  
SOIC  
QFN  
32  
28  
MISO  
EP  
Output/SPI  
Ground  
SPI Slave Out  
Exposed Pad  
Provides digital data from the 33978 to the MCU.  
It is recommended that the exposed pad is terminated to GND (pin 1)  
and system ground.  
33978  
NXP Semiconductors  
6
4
General product characteristics  
4.1  
Maximum ratings  
Table 3. Maximum ratings  
All voltages are with respect to ground unless otherwise noted. Exceeding these ratings may cause a malfunction or permanent damage  
to the device.  
Symbol  
Electrical ratings  
VBATP  
Description (rating)  
Min.  
Max.  
Unit  
Notes  
Battery Voltage  
Supply Voltage  
-0.3  
-0.3  
40  
V
V
VDDQ  
7.0  
CS_B, MOSI,  
MISO, SCLK  
SPI Inputs/Outputs  
-0.3  
7.0  
V
SGx, SPx  
AMUX  
Switch Input Range  
AMUX  
-14(4)  
-0.3  
38  
7.0  
7.0  
40  
V
V
V
V
INT_B  
INT_B  
-0.3  
WAKE_B  
WAKE_B  
-0.3  
ESD Voltage  
• Human Body Model (HBM) (VBATP versus GND)  
MC33978 and MC34978  
MC33978A and MC34978A  
• Human Body Model (HBM) (All other pins)  
• Machine Model (MM)  
• Charge Device Model (CDM) (Corners pins)  
• Charge Device Model (CDM) (All other pins)  
V
±2000  
±4000  
±2000  
±200  
±750  
±500  
ESD1-2  
(5)  
V
V
V
V
V
ESD1-3  
ESD3-1  
ESD2-1  
ESD2-2  
Contact Discharge  
V
V
V
• VBATP(8)  
• WAKE_B (series resistor 10 kΩ)  
• SGx and SPx pins with 100 nF capacitor (100 series R) based on external  
protection performance(7)  
±8000  
±8000  
±15000  
ESD5-3  
ESD5-4  
ESD6-1  
(6)  
V
V
±8000  
ESD6-2  
• SGx and SPx pins with 100 nF capacitor (50 Ω series R)  
Notes  
4. Minimum value of -18 V is guaranteed by design for switch input voltage range (SGx, SPx).  
5. ESD testing is performed in accordance AEC Q100, with the Human Body Model (HBM) (CZAP = 100 pF, RZAP = 1500 Ω), the Machine Model  
(MM) (CZAP = 200 pF, RZAP = 0 Ω), and the Charge Device Model (CDM).  
6. CZAP = 330 pF, RZAP = 2.0 kΩ (Powered and unpowered) / CZAP = 150 pF, RZAP = 330 Ω (Unpowered)  
7. ±15000V capability in powered condition, ±8000V in all other conditions.  
8. External component requirements at system level:  
Cbulk = 100uF aluminum electrolytic capacitor  
Cbypass= 100nF ±37 % ceramic capacitor  
Reverse blocking diode from Battery to VBATP (0.6 V < VF < 1 V). See Figure 23, Typical application diagram.  
33978  
7
NXP Semiconductors  
 
 
 
 
 
 
 
4.2  
Thermal characteristics  
Table 4. Thermal ratings  
All voltages are with respect to ground unless otherwise noted. Exceeding these ratings may cause a malfunction or permanent damage  
to the device.  
Symbol  
Description (rating)  
Min.  
Max.  
Unit  
Notes  
Thermal ratings  
Operating Temperature  
• Ambient  
TA  
TJ  
-40  
-40  
125  
150  
°C  
• Junction  
TSTG  
TPPRT  
Storage Temperature  
-65  
150  
°C  
°C  
Peak Package Reflow Temperature During Reflow  
Thermal resistance  
Junction-to-Ambient, Natural Convection, Single-Layer Board  
(9) (10)  
RΘJA  
RΘJB  
RΘJC  
• 32 SOIC-EP  
• 32 QFN  
79  
94  
°C/W  
°C/W  
°C/W  
°C/W  
,
Junction-to-Board  
• 32 SOIC-EP  
• 32 QFN  
(11)  
(12)  
(13)  
9.0  
12  
Junction-to-Case (Bottom)  
• 32 SOIC-EP  
3.0  
2.0  
• 32 QFN  
Junction-to-Package (Top), Natural convection  
Ψ
• 32 SOIC-EP  
• 32 QFN  
11  
2.0  
JT  
Package dissipation ratings  
Thermal Shutdown  
TSD  
• 32 SOIC-EP  
• 32 QFN  
155  
3.0  
185  
15  
°C  
°C  
Thermal Shutdown Hysteresis  
• 32 SOIC-EP  
TSDH  
• 32 QFN  
Notes  
9. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient  
temperature, air flow, power dissipation of other components on the board, and board thermal resistance.  
10. Per JEDEC JESD51-2 with natural convection for horizontally oriented board. Board meets JESD51-9 specification for 1s or 2s2p board,  
respectively.  
11. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the  
board near the package.  
12. Thermal resistance between the die and the solder pad on the bottom of the package based on simulation without any interface resistance.  
13. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-  
2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.  
33978  
NXP Semiconductors  
8
 
 
 
 
 
 
4.3  
Operating conditions  
This section describes the operating conditions of the device. Conditions apply to the following data, unless otherwise noted.  
Table 5. Operating conditions  
All voltages are with respect to ground unless otherwise noted. Exceeding these ratings may cause a malfunction or permanent damage  
to the device.  
Symbol  
VBATP  
VDDQ  
Ratings  
Min.  
4.5  
Max.  
36  
Unit  
V
Notes  
Battery Voltage  
Supply Voltage  
3.0  
5.25  
V
CS_B, MOSI,  
MISO, SCLK  
SPI Inputs / Outputs  
3.0  
5.25  
V
SGx, SPx  
AMUX, INT_B  
WAKE_B  
Switch Input Range  
AMUX, INT_B  
WAKE_B  
-1.0  
0.0  
0.0  
36  
5.25  
36  
V
V
V
4.4  
Electrical characteristics  
4.4.1  
Static electrical characteristics  
Table 6. Static electrical characteristics  
TA = - 40 °C to +125 °C, VDDQ = 3.1 V to 5.25 V, VBATP = 6.0 V to 28.0 V, unless otherwise noted.  
Symbol  
Characteristic  
Min.  
Typ.  
Max.  
Units  
Notes  
Power input  
VBATP Supply Voltage POR  
VBATP(POR)  
2.7  
3.3  
3.8  
V
• VBATP Supply Power on Reset voltage.  
VBATP Undervoltage Rising Threshold  
VBATP Undervoltage Hysteresis  
VBATPUV  
VBATPUVHYS  
VBATPOV  
250  
32  
4.3  
4.5  
500  
37  
V
mV  
V
VBATP Overvoltage Rising Threshold  
VBATP Overvoltage Hysteresis  
VBATPOVHYS  
1.5  
3.0  
V
VBATP Supply Current  
IBAT(ON)  
7.0  
12  
mA  
µA  
• All switches open, Normal mode, Tri-state disabled (all channels)  
VBATP Low-power Mode Supply Current (polling disabled)  
• Parametric VBATP, 6.0 V < VBATP < 28 V  
IBATP,IQ,LPM,P  
IBATP,IQ,LPM,F  
40  
40  
• Functional Low VBATP, 4.5 V < VBATP < 6.0 V  
VBATP Polling Current  
(14)  
IPOLLING,IQ  
20  
µA  
uA  
• Polling 64 ms, 11 inputs of wake enabled  
Normal mode (IVDDQ  
)
IVDDQ,NORMAL  
• SCLK, MOSI, WakeB = 0 V, CS_B, INT_B =VDDQ, no SPI  
communication, AMUX selected no input  
500  
Logic Low-power mode Supply Current  
• SCLK, MOSI = 0 V, CS_B, INT_B, WAKE_B = VDDQ, no SPI  
communication  
IVDDQ,LPM  
10  
µA  
V
Ground Offset  
VGNDOFFSET  
-1.0  
1.0  
• Ground offset of Global pins to IC ground  
VDDQUV  
VDDQ Undervoltage Falling Threshold  
VDDQ Undervoltage Hysteresis  
2.2  
2.8  
V
VDDQUVHYS  
150  
350  
mV  
33978  
9
NXP Semiconductors  
 
Table 6. Static electrical characteristics (continued)  
TA = - 40 °C to +125 °C, VDDQ = 3.1 V to 5.25 V, VBATP = 6.0 V to 28.0 V, unless otherwise noted.  
Symbol  
Characteristic  
Min.  
Typ.  
Max.  
Units  
Notes  
Switch input  
Leakage (SGx/SPx pins) to GND  
ILEAKSG_GND  
2.0  
2.0  
2.4  
μA  
• Inputs tri-stated, analog mux selected for each input, voltage at  
SGx = VBATP  
Leakage (SGx/SPx pins) to Battery  
ILEAKSG_BAT  
μA  
• Inputs tri-stated, analog mux selected for each input, voltage at  
SGx = GND  
SG Sustain current / Mode 0 Wetting current  
• VBATP 6.0 to 28 V  
ISUSSG  
mA  
1.6  
2.0  
SG Sustain current / Mode 0 Wetting current LV  
• VBATP 4.5 V to 6.0 V  
(15)  
ISUSSGLV  
ISUSSB  
mA  
mA  
1.0  
2.4  
SB Sustain current / Mode 0 Wetting current  
1.75  
2.2  
2.85  
Wetting current level (SG & SB)  
• Mode 1 = 6mA  
6
• Mode 2 = 8mA  
8
• Mode 3 = 10mA  
• Mode 4 = 12mA  
• Mode 5 = 14mA  
• Mode 6 = 16mA  
• Mode 7 = 20mA  
10  
12  
14  
16  
20  
IWET  
IWETSG  
IWETSGLV  
IWETSB  
mA  
SG wetting current tolerance  
• Mode 1 to 7  
-10  
10  
%
SG wetting current tolerance LV (VBATP 4.5 to 6.0V)(15)  
• Mode 1 = 6mA  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
6.6  
8.8  
• Mode 2 = 8mA  
• Mode 3 = 10mA  
• Mode 4 = 12mA  
• Mode 5 = 14mA  
• Mode 6 = 16mA  
• Mode 7 = 20mA  
11.0  
13.2  
15.4  
17.6  
22.0  
mA  
SB wetting current tolerance  
• Mode 1 to 7  
%
-20  
20  
10  
(16), (17)  
(18), (19)  
(20)  
IMATCH(SUS)  
IMATCH(WET)  
VICTHR  
Sustain Current Matching Between Channels  
Wetting Current Matching Between Channels  
Switch Detection Threshold  
%
%
V
6.0  
4.3  
3.7  
4.0  
Switch Detection Threshold Low Battery  
• VBATP 4.5 V to 6.0 V  
0.55 *  
VBATP  
VICTHRLV  
4.3  
V
(21)  
VICTHRLPM  
VICTHRH  
Switch Detection Threshold Low-power Mode (SG only)  
Switch Detection Threshold Hysteresis (4.0 V threshold)  
100  
80  
300  
300  
mV  
mV  
Input Threshold 2.5 V,  
VICTH2P5  
2.0  
2.5  
3.0  
V
• Used for Comp Only and for AMUX Hardwired Select (SG1/2/3)  
Low-power Mode Polling Current SG  
• VBATP 4.5 V to 28 V  
IACTIVEPOLLSG  
IACTIVEPOLLSB  
0.7  
1.0  
2.2  
1.44  
2.85  
mA  
mA  
Low-power Mode Polling Current SB  
1.75  
33978  
NXP Semiconductors  
10  
Table 6. Static electrical characteristics (continued)  
TA = - 40 °C to +125 °C, VDDQ = 3.1 V to 5.25 V, VBATP = 6.0 V to 28.0 V, unless otherwise noted.  
Symbol  
Characteristic  
Min.  
Typ.  
Max.  
Units  
Notes  
Digital interface  
Tri-state Leakage Current (MISO)  
IHZ  
-2.0  
2.0  
DDQ * 0.7  
μA  
V
• VDDQ = 0.0 to VDDQ  
Input Logic Voltage Thresholds  
• SI, SCLK, CS_B, INT_B  
VDDQ  
0.25  
*
VINLOGIC  
V
Input Logic Hysteresis  
VINLOGICHYS  
300  
mV  
• SI, SCLK, CS_B, INT_B  
VINLOGICWAKE  
VINWAKEBHYS  
Input Logic Voltage Threshold WAKE_B  
Input Logic Voltage Hysteresis WAKE_B  
0.8  
1.25  
1.7  
V
200  
800  
mV  
SCLK / MOSI Input Current  
• SCLK / MOSI = 0 V  
ISCLK, IMOSI  
ISCLK, IMOSI  
ICS_BH  
-3.0  
30  
3.0  
100  
10  
µA  
µA  
µA  
kΩ  
V
SCLK / MOSI Pull-down Current  
• SCLK / MOSI = VDDQ  
CS_B Input Current  
• CS_B = VDDQ  
-10  
40  
CS_B Pull-up Resistor to VDDQ  
• CS_B = 0.0 V  
RCS_BL  
125  
270  
VDDQ  
MISO High-side Output Voltage  
• IOHMISO = -1.0 mA  
VOHMISO  
VDDQ – 0.8  
MISO Low-side Output Voltage  
• IOLMISO = 1.0 mA  
VOLMISO  
0.4  
20  
V
CIN  
Input Capacitance on SCLK, MOSI, Tri-state MISO (GBD)  
pF  
Analog MUX output  
Input Offset Voltage When Selected as Analog  
• EK suffix (SOICW)  
(22)  
VOFFSET  
-10  
-15  
10  
15  
mV  
• ES suffix (QFN at TA = -40 °C to 25 °C)  
Analog Operational Amplifier Output Voltage  
• Sink 1.0 mA  
VOLAMUX  
50  
mV  
V
Analog Operational Amplifier Output Voltage  
• Source 1.0 mA  
VOHAMUX  
VDDQ – 0.1  
AMUX selectable outputs  
Chip Temperature Sensor Coefficient  
8.0  
mV/°C  
%
Temp-Coeff  
VBATSNSACC  
Battery Sense (SG5 config) Accuracy  
• Battery voltage (SG5 input) divided by 6  
• Accuracy over full temperature range  
-5.0  
5.0  
Divider By 6 coefficient accuracy  
(23)  
VBATSNSDIV  
-3.0  
3.0  
%
• Offset over operating voltage range (VBATP=6.0 V to 28 V)  
33978  
11  
NXP Semiconductors  
Table 6. Static electrical characteristics (continued)  
TA = - 40 °C to +125 °C, VDDQ = 3.1 V to 5.25 V, VBATP = 6.0 V to 28.0 V, unless otherwise noted.  
Symbol  
INT_B  
Characteristic  
Min.  
Typ.  
Max.  
Units  
Notes  
INT_B Output Low Voltage  
• IOUT = 1.0 mA  
VOLINT  
0.2  
0.5  
V
INT_B Output High Voltage  
• INT_B = Open-circuit  
VOHINT  
RPU  
VDDQ – 0.5  
125  
VDDQ  
270  
1.0  
V
Pull-up Resistor to VDDQ  
40  
kΩ  
µA  
Leakage Current INT_B  
ILEAKINT_B  
Temperature limit  
tFLAG  
• INT_B pulled up to VDDQ  
Temperature Warning  
• First flag to trip  
105  
120  
135  
°C  
(24)  
(24)  
tLIM  
tLIM(HYS)  
Temperature Monitor  
155  
5.0  
185  
15  
°C  
°C  
Temperature Monitor Hysteresis  
WAKE_B  
RWAKE_B(RPU)  
WAKE_B Internal pull-up Resistor to VDDQ  
40  
125  
270  
kΩ  
WAKE_B Voltage High  
VWAKE_B(VOH)  
VDDQ -1.0  
VDDQ  
V
• WAKE_B = Open-circuit  
WAKE_B Voltage Low  
VWAKE_B(VOL)  
0.4  
1.0  
V
• WAKE_B = 1.0 mA (RPU to VBATP = 16 V)  
WAKE_B Leakage  
IWAKE_BLEAK  
µA  
• WAKE_B pulled up to VBATP = 16 V through 10 kΩ  
Notes  
14. Guaranteed by design  
15. During low voltage range operation SG wetting current may be limited when there is not enough headroom between VBATP and SG pin voltage.  
16. (ISUS(MAX)– ISUS(MIN)) X 100/ISUS(MIN)  
17. Sustain current source (SGs only)  
18. (IWET(MAX) – IWET(MIN)) X 100/IWET(MIN)  
19. Wetting current source (SGs only)  
20. The input comparator threshold decreases when VBATP 6.0 V.  
21. SP (as SB) only use the 4.0 V VICTHR for LPM wake-up detection.  
22. For applications requiring a tight AMUX offset through the whole operating range, it is recommended to use the MC33978AEK or MC34978AEK  
(SOICW package) variant.  
23. Calibration of divider ratio can be done at VBAT = 12 V, 25 °C to achieve a higher accuracy. See Figure 4 for AMUX offset linearity waveform  
through the operating voltage range.  
24. Guaranteed by characterization in the Development Phase, parameter not tested.  
33978  
NXP Semiconductors  
12  
 
4.4.2  
Dynamic electrical characteristics  
Table 7. Dynamic electrical characteristics  
TA = -40 °C to +125 °C. VDDQ = 3.1 V to 5.25 V, VBATP = 6.0 V to 28 V, unless otherwise specified. All SPI timing is performed with a  
100 pF load on MISO, unless otherwise noted.  
Symbol  
General  
Parameter  
Min.  
Typ.  
Max.  
Units  
Notes  
POR to Active time  
tACTIVE  
Switch input  
tPULSE(ON)  
250  
340  
450  
µs  
• Undervoltage to Normal mode  
Pulse Wetting Current Timer  
• Normal mode  
17  
20  
58  
23  
18.5  
15  
ms  
µs  
%
Interrupt Delay Time  
• Normal mode  
tINT-DLY  
tPOLLING_TIMER  
tINT-TIMER  
Polling Timer Accuracy  
• Low-power mode  
Interrupt Timer Accuracy  
• Low-power mode  
15  
%
tACTIVEPOLLSGTI  
Tactivepoll Timer SG  
49.5  
66.5  
µs  
ME  
Tactivepoll Timer SB  
• SBPOLLTIME=0  
• SBPOLLTIME=1  
tACTIVEPOLLSBTI  
1.0  
49.5  
1.2  
58  
1.4  
66.5  
ms  
µs  
ME  
Input Glitch Filter Timer  
• Normal mode  
tGLITCHTIMER  
5.0  
1.0  
18  
µs  
LPM Debounce Additional Time  
• Low-power mode  
tDEBOUNCE  
AMUX output  
AMUXVALID  
1.2  
1.4  
ms  
AMUX Access Time (Selected Output to Selected Output)  
• CMUX = 1.0 nF, Rising edge of CS_B to selected  
(26)  
μs  
μs  
AMUX Access Time (Tristate to ON)  
AMUXVALIDTS  
20  
• CMUX = 1.0 nF, Rising edge of CS_B to selected  
Oscillator  
OSCTOLLPM  
OSCTOLNOR  
Interrupt  
Oscillator Tolerance at 192 kHz in Low-power Mode  
Oscillator Tolerance Normal Mode at 4.0 MHz  
-15  
-15  
15  
15  
%
%
INT Pulse Duration  
INTPULSE  
90  
100  
110  
µs  
• Interrupt occurs or INT_B request  
SPI interface  
fOP  
Transfer Frequency  
8.0  
MHz  
ns  
SCLK Period  
Figure 7 - 1  
tSCK  
tLEAD  
tLAG  
160  
Enable Lead Time  
Figure 7 - 2  
140  
50  
ns  
ns  
ns  
Enable Lag Time  
Figure 7 - 3  
SCLK High Time  
Figure 7 - 4  
tSCKHS  
56  
33978  
13  
NXP Semiconductors  
 
Table 7. Dynamic electrical characteristics (continued)  
TA = -40 °C to +125 °C. VDDQ = 3.1 V to 5.25 V, VBATP = 6.0 V to 28 V, unless otherwise specified. All SPI timing is performed with a  
100 pF load on MISO, unless otherwise noted.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Units  
Notes  
SPI interface (continued)  
SCLK Low Time  
tSCKLS  
tSUS  
tHS  
56  
16  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Figure 7 - 5  
MOSI Input Setup Time  
Figure 7 - 6  
MOSI Input Hold Time  
Figure 7 - 7  
MISO Access Time  
Figure 7 - 8  
tA  
116  
100  
116  
MISO Disable Time (25)  
Figure 7 - 9  
tDIS  
MISO Output Valid Time  
Figure 7 - 10  
tVS  
MISO Output Hold Time (No cap on MISO)  
Figure 7 - 11  
tHO  
20  
Rise Time  
(25)  
(25)  
tRO  
30  
Figure 7 - 12  
Fall Time  
tFO  
30  
Figure 7 - 13  
CS_B Negated Time  
Figure 7 - 14  
tCSN  
500  
WAKE-UP  
(27)  
tCSB_WAKEUP  
LPM mode wake-up time triggered by edge of CS_B  
755  
1000  
µs  
Notes  
25. Guaranteed by characterization.  
26. AMUX settling time to be within the 10 mV offset specification. AMUXVALID is dependant of the voltage step applied on the input SGx/SPx pin or  
the difference between the first and second channel selected as the multiplexed analog output. See Figure 9 for a typical AMUX access time VS  
voltage step waveform.  
27. The parameter is guaranteed at VBATP = 4.5 V to 28 V.  
33978  
NXP Semiconductors  
14  
 
 
Figure 4. Divide by 6 coefficient accuracy  
LPM CLK  
SG_Pin  
tglitchTIMER  
Input Glitch  
filter timer  
500ns  
tINT-DLY  
INT_B  
Figure 5. Glitch filter and interrupt delay timers  
LPM CLK  
SG_Pin  
tINT-DLY  
INTPulse  
INT_B  
Figure 6. Interrupt pulse timer  
33978  
15  
NXP Semiconductors  
 
 
 
3
14  
CSb  
1
4
2
8
SCLK  
5
10  
9
11  
DON'T  
CARE  
MISO  
MOSI  
DATA  
MSB OUT  
MSB IN  
LSB OUT  
12 13  
7
6
DATA  
LSB IN  
Figure 7. SPI timing diagram  
+5.0 V  
4.0 V  
VDDQ  
1kohm  
MISO  
1.0 V  
0 V  
MISO  
1kohm  
9
CS_B  
Figure 8. MISO loading for disable time measurement  
AMUX settling time vs voltage step  
Figure 9. AMUX access time waveform  
33978  
NXP Semiconductors  
16  
5
General description  
The 33978 is designed to detect the closing and opening of up to 22 switch contacts. The switch status, either open or closed, is  
transferred to the microprocessor unit (MCU) through a serial peripheral interface (SPI). Individually selectable input currents are available  
in Normal and Low-power (LPM) modes, as needed for the application.  
It also features a 24-to-1 analog multiplexer for reading inputs as analog. The analog input signal is buffered and provided on the AMUX  
output pin for the MCU to read. A battery and temperature monitor are included in the IC and available via the AMUX pin.  
The 33978 device has two modes of operation, Normal and Low-power mode (LPM). Normal mode allows programming of the device and  
supplies switch contacts with pull-up or pull-down current as it monitors the change of state of switches. The LPM provides low quiescent  
current, which makes the 33978 ideal for automotive and industrial products requiring low sleep-state currents.  
5.1  
Features  
Fully functional operation from 4.5 V to 36 V  
Full parametric operation from 6.0 V to 28 V  
Low-power mode current IBATP = 30 μA and IDDQ = 10 μA  
22 Switch detection channels  
14 Switch-to-Ground (SG) inputs  
Eight Programmable switch (SP) inputs  
Switch-to-Ground (SG) or Switch-to-Battery (SB)  
Operating switch input voltage range from -1.0 V to 36 V  
Selectable wetting current (2, 6, 8, 10, 12, 14, 16, or 20 mA)  
Programmable wetting operation (Pulse or Continuous)  
Selectable wake-up on change of state  
24 to 1 Analog Multiplexer  
Buffered AMUX output from SG/SP channels  
Integrated divider by 6 on SG5 for battery voltage sensing  
Integrated die temperature sensing through AMUX output  
Two or three pin hardwire AMUX selection.  
Active interrupt (INT_B) on change-of-switch state  
Direct MCU Interface through 3.3 V / 5.0 V SPI protocol  
33978  
17  
NXP Semiconductors  
5.2  
Functional block diagram  
33978 Functional Internal Block Diagram  
Switch Status Detection  
Input Power  
VBATP  
Battery Supply  
VDDQ  
Logic Supply  
8 x Programmable Switch  
14 x Switch to Ground  
SG0 – SG13  
SP0 – SP7  
Bias & References  
Switch to Ground (SG)  
Only  
Switch to Ground (SG)  
Switch to Battery (SB)  
1.25 V internal Bandgap  
4.0 V SW detection reference.  
Selectable Wetting Current Level  
192 kHz  
LPM Oscillator  
4.0 MHz  
Oscillator  
Pulse/Continuous Wetting Current  
Analog Multiplexer (AMUX)  
Logic and Control  
WAKE_B I/O  
INT_B I/O  
24 to 1 SPI AMUX select  
Hardwire selectable  
SPx/SGx Inputs to AMUX  
Battery Voltage sensing (divided by 6 )  
Die Temperature Sensing  
SPI Serial Communication & Registers  
Fault Detection and Protection  
Over Temperature  
OV Detection  
Protection  
Modes of Operation  
Normal Mode  
Low Power Mode  
VBATP UV detect  
SPI Error detect  
SPI communication/  
Switch status read  
Programmable Polling/  
Interrupt Time  
HASH error detect  
Figure 10. Functional block diagram  
33978  
NXP Semiconductors  
18  
 
6
General IC functional description  
The 33978 device interacts with many connections outside the module and near the end user. The IC detects changes in switch state and  
reports the information to the MCU via the SPI protocol. The input pins generally connected to switches located outside the module and  
in proximity to battery in car harnesses. Consequently, the IC must have some external protection including an ESD capacitor and series  
resistors, to ensure the energy from the various pulses are limited at the IC.  
The IC requires a blocking diode be used on the VBATP pin to protect from a reverse battery condition. The inputs are capable of surviving  
reverse battery without a blocking diode and also contain an internal blocking diode from the input to the power supply (VBATP), to ensure  
there is no backfeeding of voltage/current into the IC, when the voltage on the input is higher than the VBATP pin.  
6.1  
Battery voltage ranges  
The 33978 device operates from 4.5 V VBATP 36 V and is capable to withstand up to 40 V. The IC operates functionally from  
4.5 V < VBATP < 6.0 V, but with degraded parametrics values. Voltages in excess of 40 V must be clamped externally in order to protect  
the IC from destruction. The VBATP pin must be isolated from the main battery node by a diode.  
6.1.1  
Load dump (overvoltage)  
During load dump the 33978 operates properly up to the VBATP overvoltage. Voltages greater than load dump (~32 V) causes the current  
sources to be limited to ~2.0 mA, but the register values are maintained. Upon leaving this overvoltage condition, the original setup is  
returned and normal operation begins again.  
6.1.2  
Jump start (double battery)  
During a jump start (double battery) condition, the device functions normally and meets all the specified parametric values. No internal  
faults are set and no abnormal operation noted as a result of operating in this range.  
6.1.3  
Normal battery range  
The normal voltage range is fully functional with all parametrics in the given specification.  
6.1.4  
Low-voltage range (degraded parametrics)  
In the VBATP range between 4.5 V to 6.0 V the 33978 functions normally, but has some degraded parametric values. The SPI functions  
normally with no false reporting. The degraded parameters are noted in Table 6 and Table 7. During this condition, the input comparator  
threshold is reduced from 4.0 V and remain ratiometrically adjusted, according to the battery level.  
6.1.5  
Undervoltage lockout  
During undervoltage lockout, the MISO output is tri-stated to avoid any data from being transmitted from the 33978. Any CS_B pulses are  
ignored in this voltage range. If the battery enters this range at any point (even during a SPI word), the 33978 ignores the word and enters  
lockout mode. A SPI bit register is available to notify the MCU that the 33978 has seen an undervoltage lockout condition once the battery  
is high enough to leave this range.  
6.1.6  
Power on reset (POR) activated  
The Power on Reset is activated when the VBATP is within the 2.7 V to 3.8 V range. During the POR all SPI registers are reset to default  
values and SPI operation is disabled. The 33978 is initialized after the POR is de-asserted. A SPI bit in the device configuration register  
is used to note a POR occurrence and all SPI registers are reset to the default values.  
6.1.7  
No operation  
The device does not function and no switch detection is possible.  
33978  
19  
NXP Semiconductors  
VBATP  
(IC Level)  
Battery Voltage  
(System Level)  
41 V  
Over Voltage  
37 V  
40 V  
Overvoltage  
Functional  
36 V  
28 V  
Load Dump  
29 V  
Normal Mode  
Full Parametrics  
Normal  
Battery  
6.0 V  
4.5 V  
7.0 V  
Low Battery  
5.5 V  
Degraded Parametrics  
Undervoltage lockout  
POR  
4.8 V  
3.7 V  
3.8 V  
2.7 V  
Reset  
No Operation  
0 V  
0 V  
Figure 11. Battery voltage range  
6.2  
Power sequencing conditions  
The chip uses two supplies as inputs into the device for various usage. The pins are VBATP and VDDQ. The VBATP pin is the power  
supply for the chip where the internal supplies are generated and power supply for the SG circuits. The VDDQ pin is used for the I/O buffer  
supply to talk to the MCU or other logic level devices, as well as AMUX. The INT_B pin is held low upon POR until the IC is ready to  
operate and communicate. Power can be applied in various ways to the 33978 and the following states are possible:  
6.2.1  
VBATP before VDDQ  
The normal condition for operation is the application of VBATP and then VDDQ. The chip begin to operate logically in the default state but  
without the ability to drive logic pins. When the VDDQ supply is available the chip is able to communicate correctly. The IC maintains its  
logical state (register settings) with functional behavior consistent with logical state. No SPI communications can occur.  
6.2.2  
VDDQ before VBATP  
The VDDQ supply in some cases may be available before the VBATP supply is ready. In this scenario, there is no back feeding current into  
the VDDQ pin that could potentially turn on the device into an unknown state. VDDQ is isolated from VBATP circuits and the device is off  
until VBATP is applied; when VBATP is available the device powers up the internal rails and logic within tACTIVE time. Communication is  
undefined until the tACTIVE time and becomes available after this time frame.  
6.2.3  
VBATP okay, VDDQ lost  
After power up, it is possible that the VDDQ may turn off or be lost. In this case, the chip remains in the current state but is not able to  
communicate. After the VDDQ pin is available again, the chip is ready to communicate.  
6.2.4  
VDDQ okay, VBATP lost  
After power up, the VBATP supply could be lost. The operation is consistent as when VDDQ is available before VBATP  
.
33978  
NXP Semiconductors  
20  
 
7
Functional block description  
7.1  
State diagram  
IC OFF  
VBATP applied  
RESET  
SPI RESET  
command  
VBAT too low:  
POR  
VBAT applied >  
por  
VBATP > UV  
threshold  
UV  
OV / OT  
Iwet-> Isus  
VBATP > OV  
or OT  
Wait 50 μs  
Read fuses  
VBATP  
UV  
<
Not VBATP > OV  
or OT  
Run  
Normal Mode  
Detect change in switch  
status (opn/close)  
Wake  
Event  
SPI CMD  
Polling time expires  
Low Power  
Mode  
Polling  
Polling timer initiates  
Figure 12. 33978 state diagram  
7.1.1  
State machine  
After power up, the IC enters into the device state machine, as illustrated in Figure 12. The voltage on VBATP begins to power the internal  
oscillators and regulator supplies. The POR is based on the internal 2.5 V digital core rail. When the internal logic regulator reaches  
approximately 1.8 V (typically 3.3 V on the VBATP node), the IC enters into the UV range. Below the POR threshold, the IC is in RESET  
mode where no activity occurs.  
33978  
21  
NXP Semiconductors  
 
7.1.2  
UV: undervoltage lockout  
After the POR circuit has reset the logic, the IC is in undervoltage. In this state, the IC remembers all register conditions, but is in a lockout  
mode, where no SPI communication is allowed. The AMUX is inactive and the current sources are off. The user does not receive a valid  
response from the MISO, as it is disabled in this state. The chip oscillators (4.0 MHz for most normal mode activities, 192 kHz for LPM,  
and limited normal mode functions) are turned on in the UV state. The chip moves to the Read fuses state when the VBATP voltage rises  
above the UV threshold (~4.3 V rising). The internal fuses read in approximately 50 μs and the chip enters the Normal mode.  
7.1.3  
Normal mode  
In normal mode, the chip operates as selected in the available registers. Any command may be loaded in normal mode, although not all  
(Low-power mode) registers are used in the Normal mode. All the LPM registers must be programmed in Normal mode as the SPI is not  
active in LPM. The Normal mode of the chip is used to operate the AMUX, communicate via the SPI, Interrupt the IC, wetting and sustain  
currents, as well as the thresholds available to use. The WAKE_B pin is asserted (low) in Normal mode and can be used to enable a power  
supply (ENABLE_B). Various fault detections are available in this mode including overvoltage, overtemperature, thermal warning, SPI  
errors, and Hash faults.  
7.1.4  
Low-power mode  
When the user needs to lower the IC current consumption, a low-power mode is used. The only method to enter LPM is through a SPI  
word. After the chip is in low-power mode, the majority of circuitry is turned off including most power rails, the 4.0 MHz oscillator, and all  
the fault detection circuits. This mode is the lowest current consumption mode on the chip. If a fault occurs while the chip is in this mode,  
the chip does not see or register the fault (does not report via the SPI when awakened). Some items may wake the IC in this mode,  
including the interrupt timer, falling edge of INT_B, CS_B, or WAKE_B (configurable), or a comparator only mode switch detection.  
7.1.5  
Polling mode  
The 33978 uses a polling mode which periodically (selectable in LPM config register) interrogates the input pins to determine in what state  
the pins are, and decide if there was a change of state from when the chip was in Normal mode. There are various configurations for this  
mode, which allow the user greater flexibility in operation. This mode uses the current sources to pull-up (SG) or down (SB) to determine  
if a switch is open or closed. More information is available in section 7.2, “Low-power mode operation".  
In the case of a low VBATP, the polling pauses and waits until the VBATP rises out of UV or a POR occurs. The pause of the polling ensures  
all of the internal rails, currents, and thresholds are up at the required levels to accurately detect open or closed switches. The chip does  
not wake-up in this condition and simply waits for the VBATP voltage to rise or cause a POR.  
After the polling ends, the chip either returns to the low-power mode, or enters Normal mode when a wake event was detected. Other  
events may wake the chip as well, such as the falling edge of CS_B, INT_B, or WAKE_B (configurable). A comparator only mode switch  
detection is always on in LPM or Polling mode, so a change of state for those inputs would effectively wake the IC in Polling mode as well.  
If the Wake-up enable bits are disable on all channels (SG and SP) the device will not wake up with a change of state on any of the input  
pins; in this case, the device will disable the polling timer to allow the lowest current consumption during low-power mode.  
7.2  
Low-power mode operation  
Low-power mode (LPM) is used to reduce system quiescent currents. LPM may be entered only by sending the Enter Low-power mode  
command. All register settings programmed in Normal mode are maintained while in LPM.  
The 33978 exits LPM and enter Normal mode when any of the following events occur:  
• Input switch change of state (when enabled)  
• Interrupt timer expire  
• Falling edge of WAKE_B (as set by the device configuration register)  
• Falling edge of INT_B (with VDDQ = 5.0 V)  
• Falling edge of CS_B (with VDDQ = 5.0 V)  
• Power-ON Reset (POR)  
The VDDQ supply may be removed from the device during LPM, however removing VDDQ from the device disables a wake-up from falling  
edge of INT_B and CS_B. The IC checks the status of VDDQ after a falling edge of WAKE_B (as selected in the device configuration  
register), INT_B and CS_B. The IC returns to LPM and does not report a Wake event, if VDDQ is low. If the VDDQ is high, the IC wakes up  
and reports the Wake event. In cases where CS_B is used to wake the device, the first MISO data message is not valid.  
33978  
NXP Semiconductors  
22  
 
The LPM command contains settings for two programmable registers: the interrupt timer and the polling timer, as shown in Table 26. The  
interrupt timer is used as a periodic wake-up timer. When the timer expires, an interrupt is generated and the device enters Normal mode.  
The polling timer is used periodically to poll the inputs during Low-power mode to check for change of states. The tACTIVEPOLL time is the  
length of time the part is active during the polling timer to check for change of state. The Low-power mode voltage threshold allows the  
user to determine the noise immunity versus lower current levels that polling allows. Figure 14 shows the polling operation.  
When polling and Interrupt timer coincide, the Interrupt timer wakes the device and the polling does not occur. When an input is determined  
to meet the condition Open (when entering LPM), yet while Open (on polling event) the chip does not continue the polling event for that  
input(s) to lower current in the chip (Figure 13 shows SG, SB is logically the same).  
Compare voltage to initial  
(Delta > 0.25 or > 4.0v)  
End Polling (current off if  
no change detected)  
LPM Voltage threshold  
(~0.25v)  
Voltage on SG pin  
55µs  
Polling timer  
(64ms def)  
Figure 13. Low-power mode polling check  
Go To LPM  
CS_B  
64ms (config)  
Normal  
Normal  
Mode  
LPM  
Polling Time  
Polling startup  
Tactive time  
20us  
78us  
58us  
330uA  
IC Current  
20uA  
0uA  
X * 1mA SG  
(2mA SB)  
Load  
Current  
Figure 14. Low-power mode typical timing  
33978  
23  
NXP Semiconductors  
 
 
VBATP  
VDDQ  
Wake up from Interrupt  
Timer expire  
WAKE_B  
INT_B  
CS_B  
SGn  
Wake up from  
Closed Switch  
Power – up  
Normal Mode  
Tri-state  
Command  
Sleep  
Command  
Normal  
Mode  
Sleep  
Command  
Normal  
Mode  
Sleep  
Command  
Sleep Mode  
Sleep Mode  
Figure 15. Low-power mode to normal mode operation  
7.3  
Input functional block  
The SGx pins are switch-to-ground inputs only (pull-up current sources).  
The SPx pins are configurable as either switch to ground or switch to battery (pull-up and pull-down current sources).  
The input is compared with a 4.0 V (input comparator threshold configurable) reference. Voltages greater than the input comparator  
threshold value are considered open for SG pins and closed for SB configuration.  
Voltages less than the input comparator threshold value are considered closed for SG pins and open for the SB configurations.  
Programming features are defined in the SPI control register definition section of this data sheet.  
The input comparator has hysteresis with the thresholds based on the closing of the switch (falling on SG, rising on SB).  
The user must take care to keep power conditions within acceptable limits (package is capable of 2.0 W). Using many of the inputs with  
continuous wetting current levels causes overheating of the IC and may cause an overtemperature (OT) event to occur.  
33978  
NXP Semiconductors  
24  
VBATP  
Pre-reg = ~8v  
6 - 20  
mA  
2.0  
mA  
1.0mA  
(LPM)  
To AMUX  
To SPI  
4.0 V ref comparator  
Or  
250mV Delta V  
Or  
2.5v Comparator only  
Figure 16. SG block diagram  
33978  
25  
NXP Semiconductors  
VBATP  
Pre-reg  
6 - 20  
mA  
2.0  
mA  
1.0mA  
(LPM)  
To SPI  
4.0 V ref comparator  
2.0  
mA  
2
0mA  
(LPM)  
6 - 20  
mA  
Figure 17. SP block diagram  
7.4  
Oscillator and timer control functional block  
Two oscillators are generated in this block. A 4.0 MHz clock is used in Normal mode only, as well as a Low-power mode 192 kHz clock,  
which is on all the time. All timers are generated from these oscillators. The oscillator accuracy is 15 % for both, the 4.0 MHz clock and  
the 192 kHz clock. No calibration is needed and the accuracy is over voltage and temperature.  
7.5  
Temperature monitor and control functional block  
The device has multiple thermal limit (tLIM) cells to detect thermal excursions in excess of 155 °C. The tLIM cells from various locations on  
the IC are logically ORed together and communicated to the MCU as one tLIM fault. When the tLIM value is seen, the wetting current is  
lowered to 2.0 mA until the temperature has decreased beyond the tLIM(HYS) value (the sustain current remains on or as selected). A  
hysteresis value of 15 °C exists to keep the device from cycling.  
A thermal flag also exists to alert the system to increasing temperatures more than approximately 120 °C.  
7.6  
WAKE_B control functional block  
The WAKE_B pin can operate as an open-drain output or a wake-up input. In the Normal Mode, the WAKE_B pin is LOW. In the Low-  
power mode, the WAKE_B pin is pulled HIGH. The WAKE_B pin has an internal pull-up to VDDQ supply with an internal series diode to  
allow an external pull-up to VBATP if required.  
33978  
NXP Semiconductors  
26  
As an input, in Low-power mode with the WAKE_B pin pulled HIGH, when commanded LOW by MCU, the falling edge of WAKE_B places  
the MC33978 in Normal mode. In Low-power mode if VDDQ goes low, the WAKE_B pin can still wake the device based on the status of  
the WAKE_B bit in the device configuration register, this allows the user to pull the WAKE_B pin up to VBATP such that it can be used in  
VDDQ off setup.  
As an output, WAKE_B pin can drive either an MCU input or the EnableB of a regulator (possibly for VDDQ). WAKE_B is driven Low during  
Normal mode regardless of the state of VDDQ. When the 33978 is in LPM, the WAKE_B pin is released and is expected to be pulled up  
internally to VDDQ or externally to VBATP. When a valid wake-up event is detected, the 33978 wakes up from LPM and the WAKE_B is  
driven Low (regardless of the state of VDDQ).  
7.7  
INT_B functional block  
INT_B is an input/output pin in the 33978 device to indicate an interrupt event has occurred, as well as receiving interrupts from other  
devices when the INT_B pins are wired ORed. The INT_B pin is an open-drain output with an internal pull-up to VDDQ. In Normal mode,  
a switch state change triggers the INT_B pin (when enabled). The INT_B pin and INT_B bit in the SPI register are latched on the falling  
edge of CS_B. This permits the MCU to determine the origin of the interrupt. When two 33978 devices are used, only the device initiating  
the interrupt has the INT_B bit set. The INT_B pin and INTflg bit are cleared 1.0 μs after the falling edge of CS B. The INT_B pin does not  
clear with the rising edge of CS_B if a switch contact change has occurred while CS_B was Low.  
In a multiple 33978 device system with WAKE_B High and VDDQ on (Low-power mode), the falling edge of INT_B places all 33978s in  
Normal mode. The INT_B has the option of a pulsed output (pulsed low for INTpulse duration) or a latched low output. The default case is  
the latched low operation; the pulsed option is selectable via the SPI.  
An INT_B request by the MCU can be done by a SPI word and results in an INTPULSE of 100 μs duration on the INT_B pin.  
The chip causes an INT_B assertion for the following cases:  
1. A change of state is detected  
2. Interrupt timer expires  
3. Any Wake-up event  
4. Any faults detected  
5. After a POR, the INT_B pin states asserted during startup until the chip is ready to communicate  
7.8  
AMUX functional block  
The analog voltage on switch inputs may be read by the MCU using the analog command (Table 43). Internal to the IC is a 24-to-1 analog  
multiplexer. The voltage present on the selected input pin is buffered and made available on the AMUX output pin. The output pin is  
clamped to a maximum of VDDQ regardless of the higher voltages present on the input pin. After an input has been selected as the analog,  
the corresponding bit in the next MISO data stream is logic [0]. When selecting a channel to be read as analog input, the user can also  
set the current level allowed in the AMUX output. Current level can be set to the programmed wetting current for the selected channel or  
set to high-impedance as defined in Table 42.  
When selecting an input to be sent to the AMUX output, that input is not polled or a wake-up enabled input from Low-power mode. The  
user should set the AMUX to “No input selected” or “Temp diode” before entering Low-power mode. The AMUX pin is not active during  
Low-power mode. The SG5 pin can also be used as a VBATP sense pin. An internal resistor divider of 1/6 is provided for conditioning the  
VBATP higher voltage to a level within the 0 V to VDDQ range.  
Besides the default SPI input selection method, the AMUX has two hardwire operation such that the user can select an specific input  
channel by physically driving the SG1, SG2 or SG3 pin (HW 3-bit), or by driving the SG1 and SG2 pins (HW 2-bit) as shown in Table 9  
and Table 10. When using the AMUX hardwired options, the SG1, SG2, and SG3 inputs use a 2.5 V input voltage threshold to read a  
logic 0 or logic 1.  
Table 8 shows the AMUX selection methods configurable by the Aconfig0 and Aconfig1 bits in the Device Configuration register.  
Table 8. AMUX selection method  
Aconfig1  
Aconfig0  
AMUX Selection method  
0
0
1
1
0
1
0
1
SPI (def)  
SPI  
HW 2-bit  
HW 3-bit  
33978  
27  
NXP Semiconductors  
 
 
Table 9. AMUX hardware 3-bit  
Pins [SG3, SG2, SG1]  
Output of AMUX  
000  
001  
010  
011  
100  
101  
110  
111  
SG0  
SG5  
SG6  
SG7  
SG8  
SG9  
Temperature Diode  
Battery Sense  
Table 10. AMUX hardware 2-bit  
Pins [SG2, SG1]  
Output of AMUX  
00  
01  
10  
11  
SG0  
SG5  
SG6  
SG7  
Since the device is required to meet the ±1.0 V offset with ground, it is imperative that the user bring the sensor ground back to the 33978  
when using the AMUX for accurate measurements to ensure any ground difference does not impact the device operation.  
7.9  
Serial peripheral interface (SPI)  
The 33978 contains a serial peripheral interface consisting of Serial Clock (SCLK), Serial Data Out (MISO), Serial Data In (MOSI), and  
Chip Select Bar (CS_B). The SPI interface is used to provide configuration, control, and status functions; the user may read the registers  
contents as well as read some status bits of the IC. This device is configured as an SPI slave.  
All SPI transmissions to the 33978 must be done in exact increments of 32 bits (modulo 0 is ignored as well). The 33978 contains a data  
valid method via SCLK input to keep non-modulo-32 bit transmissions from being written into the IC. The SPI module also provides a daisy  
chain capability to accommodate MOSI to MISO wrap around (see Figure 21).  
The SPI registers have a hashing technique to ensure that the registers are consistent with the programmed values. If the hashed value  
does not match the register status, a SPI bit is set as well as an interrupt to alert the MCU to this issue.  
7.9.1  
Chip select low (CS_B)  
The CS_B input selects this device for serial transfers. On the falling edge of CS_B, the MISO pin is released from tri-state mode, and all  
status information are latched in the SPI shift register. While CS_B is asserted, register data is shifted in the MOSI pin and shifted out the  
MISO pin on each subsequent SCLK. On the rising edge of CS_B, the MISO pin is tri-stated and the fault register reloaded (latched) with  
the current filtered status data. To allow sufficient time to reload the fault registers, the CS_B pin must remain low for a minimum of tCSN  
prior to going high again.  
The CS_B input contains a pull-up current source to VDDQ to command the de-asserted state should an open-circuit condition occur.  
This pin has threshold compatible voltages allowing proper operation with microprocessors using a 3.3 V to 5.0 V supply.  
7.9.2  
Serial clock (SCLK)  
The SCLK input is the clock signal input for synchronization of serial data transfer. This pin has a threshold compatible voltages allowing  
proper operation with microprocessors using a 3.3 V to 5.0 V supply.  
When CS_B is asserted, both the Master Microprocessor and this device latch input data on the rising edge of SCLK. The SPI master  
typically shifts data out on the falling edge of SCLK, while this device shifts data out on the rising edge of SCLK, to allow more time to  
drive the MISO pin to the proper level.  
33978  
NXP Semiconductors  
28  
This input is used as the input for the modulo-32 bit counter validation. Any SPI transmissions which are NOT exact multiples of 32 bits  
(i.e. clock edges) is treated as an illegal transmission. The entire frame is aborted and no information is changed in the configuration or  
control registers.  
7.9.3  
Serial data output (MISO)  
The MISO output pin is in a tri-state condition when CS_B is negated. When CS_B is asserted, MISO is driven to the state of the MSB of  
the internal register and start shifting out the requested data from the MSB to the LSB. This pin supplies a “rail to rail” output, depending  
on the voltage at the VDDQ pin.  
7.9.4  
Serial data input (MOSI)  
The MOSI input takes data from the master microprocessor while CS_B is asserted. The MSB is the first bit of each word received on  
MOSI and the LSB is the last bit of each word received on MOSI. This pin has threshold level compatible input voltages allowing proper  
operation with microprocessors using a 3.3 V to 5.0 V (VDDQ) supply.  
CS_B  
Control word  
Configure words  
MOSI/  
SCLK  
...  
20  
31 30 29 28 27 26 25 24 23 22 21  
3
2
1
0
MISO  
INTflg  
Fault Status  
Switch Status Register  
SG/SP input status  
Figure 18. First SPI operation (after POR)  
CS_B  
CS_B  
Next Control word  
Next Configure words  
Control word  
Configure word  
MOSI/  
SCLK  
MOSI/  
SCLK  
...  
...  
20  
31 30 29 28 27 26 25 24 23 22 21  
3
2
1
0
20  
31 30 29 28 27 26 25 24 23 22 21  
3
2
1
0
MISO  
MISO  
Previous Address  
Previous command data  
Control Word  
Configure Word  
Figure 19. SPI write operation  
33978  
29  
NXP Semiconductors  
 
 
CS_B  
CS_B  
Next Control word  
Next Configure words  
Control word (READ)  
DON’T CARE  
MOSI/  
MOSI/  
SCLK  
SCLK  
...  
...  
20  
31 30 29 28 27 26 25 24 23 22 21  
3
2
1
0
20  
31 30 29 28 27 26 25 24 23 22 21  
3
2
1
0
MISO  
MISO  
Previous Address  
Previous command data  
Control Word (READ)  
Register Data  
Figure 20. SPI read operation  
CSb  
SCLK  
DI  
DO  
1st IC  
CSb  
CSb  
SCLK  
DI  
SCLK  
MISO  
MISI  
DO  
MCU  
2nd IC  
CSb  
SCLK  
DI  
DO  
3rd IC  
CSb  
Don' t Care  
- 3rd IC  
- 2nd IC  
- 1st IC  
MOSI  
MOSI  
MOSI  
MOSI- 1st IC  
MCU MISO  
MISO - 1st IC  
MOSI-2nd IC  
MISO  
MOSI  
- 2st IC  
- 3rd IC  
MISO - 3rd IC  
MCU MOSI  
- 3rd IC  
- 2nd IC - 1st IC  
MISO  
Don' t Care  
MISO  
MISO  
Figure 21. Daisy chain SPI operation  
33978  
NXP Semiconductors  
30  
 
7.10 SPI control register definition  
A 32-bit SPI allows the system microprocessor to configure the 33978 for each input as well as read out the status of each input. The SPI  
also allows the Fault Status and INTflg bits to be read via the SPI. The SPI MOSI bit definitions are given in Table 11:  
Table 11. MOSI input register bit definition  
Register #  
0
Register name  
Address  
Rb/W  
0
SPI check  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
0
1
1
1
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
0
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
1
1
0
02/03  
04/05  
06/07  
08/09  
0A/0B  
0C/0D  
16/17  
18/19  
1A/1B  
1C/1D  
1E/1F  
20/21  
22/23  
24/25  
26/27  
28/29  
2A/2B  
2C/2D  
2E/2F  
30/31  
32/33  
34/35  
36/37  
39  
Device configuration register  
Tri-state SP register  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
1
Tri-state SG register  
Wetting current level SP register  
Wetting current level SG register 0  
Wetting current level SG register 1  
Continuous wetting current SP register  
Continuous Wetting Current SG Register  
Interrupt enable SP register  
Interrupt enable SG register  
Low-power mode configuration  
Wake-up enable register SP  
Wake-up enable register SG  
Comparator only SP  
Comparator only SG  
LPM voltage threshold SP configuration  
LPM voltage threshold SG configuration  
Polling current SP configuration  
Polling current SG configuration  
Slow polling SP  
Slow polling SG  
Wake-up debounce SP  
Wake-up debounce SG  
Enter low-power mode  
3A/3B  
3E  
AMUX control register  
0/1  
0
Read switch status  
42  
Fault status register  
0
47  
Interrupt request  
1
49  
Reset register  
1
The 32-bit SPI word consists of a command word (8-bit) and three configure words (24-bit). The 8 MSB bits are the command bits that  
select what type of configuration is to occur. The remaining 24-bits are used to select the inputs to be configured.  
• Bit 31 - 24 = Command word: Use to select what configuration is to occur (example: setting wake-up enable command)  
• Bit 23 - 0 = SGn input select word: Use these bits in conjunction with the command word to determine which input is setup.  
Configuration registers may be read or written to. To read the contents of a configuration register, send the register address + ‘0’ on the  
LSB of the command word; the contents of the corresponding register will be shifted out of the MISO buffer in the next SPI cycle. When  
a Read command is sent, the answer (in the next SPI transaction) includes the Register address in the upper byte (see Figure 20).  
33978  
31  
NXP Semiconductors  
 
Read example:  
• Send 0x0C00_0000 Receive: 8000_0000 (for example after a POR)  
• Send 0x0000_0000 Receive: 0C00_0000 (address + register data)  
The first response from the device after a POR event is a Read Status register (0x3Exxxxxx where x is the status of the inputs). This is  
the same for exiting the Low-power mode (see Figure 18.).  
To write into a configuration register, send the register Address + ‘1’ on the LSB of the command word and the configuration data on the  
next 24 bits. The new value of the register will be shifted out of the MISO buffer in the next SPI cycle, along with the register address.  
Table 7.10.1 provides a general overview of the functional SPI commands and configuration bits.  
Table 12. Functional SPI register map  
Commands  
[31-25]  
Address R/W  
0000000  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
SPI check  
0
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Device Configuration  
0000001 0/1  
FS  
INT  
X
X
X
X
X
X
X
X
Tri-State Enable SP  
0000010 0/1  
0000011 0/1  
0000100 0/1  
0000101 0/1  
0000110 0/1  
FS  
FS  
INT  
INT  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0  
Tri-State Enable SG  
X
SG13 SG12 SG11 SG10 SG9 SG8 SG7 SG6 SG5 SG4 SG3 SG2 SG1 SG0  
Wetting Current Level SP  
Wetting Current Level SG 0  
Wetting Current Level SG 1  
SP7[2-0]  
SG7[2-0]  
INT  
SP6[2-0]  
SG6[2-0]  
X
SP5[2-0]  
SG5[2-0]  
SG13[2-0]  
SP4[2-0]  
SG4[2-0]  
SG12[2-0]  
SP3[2-0]  
SG3[2-0]  
SG11[2-0]  
SP2[2-0]  
SG2[2-0]  
SG10[2-0]  
SP1[2-0]  
SG1[2-0]  
SG9[2-0]  
SP0[2-0]  
SG0[2-0]  
SG8[2-0]  
FS  
FS  
X
X
X
X
X
X
Continuous Wetting Current  
Enable SP  
0001011 0/1  
0001100 0/1  
INT  
INT  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0  
Continuous Wetting Current  
Enable SG  
FS  
X
X
X
SG13 SG12 SG11 SG10 SG9 SG8 SG7 SG6 SG5 SG4 SG3 SG2 SG1 SG0  
Interrupt Enable SP  
Interrupt Enable SG  
0001101 0/1  
0001110 0/1  
FS  
FS  
INT  
INT  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0  
SG13 SG12 SG11 SG10 SG9 SG8 SG7 SG6 SG5 SG4 SG3 SG2 SG1 SG0  
Low-power mode  
configuration  
0001111 0/1  
FS  
INT  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
int3  
int2  
int2  
int0 poll3 poll2 poll1 poll0  
Wake-Up Enable SP  
0010000 0/1  
0010001 0/1  
0010010 0/1  
0010011 0/1  
0010100 0/1  
0010101 0/1  
FS  
FS  
FS  
FS  
FS  
FS  
INT  
INT  
INT  
INT  
INT  
INT  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0  
Wake-Up Enable SG  
SG13 SG12 SG11 SG10 SG9 SG8 SG7 SG6 SG5 SG4 SG3 SG2 SG1 SG0  
SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0  
SG13 SG12 SG11 SG10 SG9 SG8 SG7 SG6 SG5 SG4 SG3 SG2 SG1 SG0  
SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0  
SG13 SG12 SG11 SG10 SG9 SG8 SG7 SG6 SG5 SG4 SG3 SG2 SG1 SG0  
LPM Comparator Only SP  
LPM Comparator Only SG  
LPM Voltage Threshold SP  
LPM Voltage Threshold SG  
X
X
X
X
X
X
X
X
X
X
X
X
LPM Polling current config  
SP  
0010110 0/1  
0010111 0/1  
FS  
FS  
INT  
INT  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0  
LPM Polling current config  
SG  
SG13 SG12 SG11 SG10 SG9 SG8 SG7 SG6 SG5 SG4 SG3 SG2 SG1 SG0  
LPM Slow Polling SP  
0011000 0/1  
0011001 0/1  
0011010 0/1  
0011011 0/1  
FS  
FS  
FS  
FS  
FS  
FS  
INT  
INT  
INT  
INT  
INT  
INT  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0  
SG13 SG12 SG11 SG10 SG9 SG8 SG7 SG6 SG5 SG4 SG3 SG2 SG1 SG0  
SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0  
SG13 SG12 SG11 SG10 SG9 SG8 SG7 SG6 SG5 SG4 SG3 SG2 SG1 SG0  
LPM Slow Polling SG  
Wake-Up Debounce SP  
Wake-Up Debounce SG  
Enter Low-power mode  
AMUX Channel Select SPI  
X
X
X
X
X
X
0011100  
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0011101 0/1  
asett asel5 asel4 asel3 asel2 asel1 asel0  
Read Switch Status  
0011111  
0100001  
0
0
Fault Status  
X
Interrupt Pulse Request  
Reset  
0100011  
0100100  
1
1
FS  
X
INT  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Notes  
28. FS = FAULT STATUS (available for reading on MISO return word)  
29. INT = INTflg (available for reading on MISO return word)  
33978  
NXP Semiconductors  
32  
7.10.1 SPI check  
The MCU may check the communication with the IC by using the SPI Check register. The MCU sends the command and the response  
during the next SPI transaction will be 0x123456. The SPI Check command does not return Fault Status or INTflg bit, thus interrupts will  
not be cleared.  
Table 13. SPI check command  
Register address  
[31-25]  
R
[24]  
0
SPI data bits [23 - 0]  
bits [23 - 16]  
0000_0000  
0000_000  
bits [15 - 8]  
0000_0000  
bits [7 - 0]  
0000_0000  
MISO return word  
0x00123456  
7.10.2 Device configuration register  
The device has various configuration settings that are global in nature. The configuration settings are as follows:  
• When the 33978 is in the overvoltage region, a Logic [0] on the VBATP OV bit limits the wetting current on all input channels to 2 mA  
and the 33978 will not be able to enter into the Low-power mode. A Logic [1] allows the device to operate normally even in the  
overvoltage region. The OV flag will be set when the device enters in the OV region, regardless the value of the VBATP OV bit.  
• WAKE_B can be used to enable an external power supply regulator to supply the VDDQ voltage rail. When the WAKE_B VDDQ check  
bit is a Logic [0], the WAKE_B pin is expected to be pulled-up internally or externally to VDDQ and VDDQ is expected to go low,  
therefore the 33978 does not wake-up on the falling edge of WAKE_B. A Logic [1], assumes the user is using an external pull-up to  
VBATP or VDDQ (when VDDQ is not expected to be off) and the IC wakes up on a falling edge of WAKE_B.  
• INT_B out is used to select how the INT_B pin operates when an interrupt occurs. The IC is able to pulse low [1] or latch low [0].  
• Aconfig[1-0] is used to determine the method of selecting the AMUX output, either a SPI command or using a hardwired setup using  
SG[3-1].  
• Inputs SP0-7 may be programmable for switch-to-battery or switch-to-ground. These inputs types are defined using the settings  
command. To set a SPn input for switch-to-battery, a logic [1] for the appropriate bit must be set. To set a SPn input for switch-to-  
ground, a logic [0] for the appropriate bit must be set. The MCU may change or update the programmable switch register via software  
at any time in Normal mode. Regardless of the setting, when the SPn input switch is closed a logic [1] is placed in the serial output  
response register.  
33978  
33  
NXP Semiconductors  
 
 
Table 14. Device configuration register  
Register address R/W  
SPI data bits [23 - 0]  
[31-25]  
[24]  
bit 23  
bit 22  
bit 21  
bit 20  
bit 19  
bit 18  
bit 17  
bit 16  
0000_001  
0/1  
Unused  
0
0
0
0
0
0
0
0
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
bit 8  
SBPOLL  
TIME  
VBATP OV  
disable  
WAKE_B  
VDDQ Check  
Unused  
INT_B out  
Aconfig1  
Aconfig0  
0
0
0
0
1
0
0
0
Default on POR  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
SP0  
SP7  
SP6  
SP5  
1
SP4  
1
SP3  
1
SP2  
1
SP1  
1
1
1
1
MISO return word  
bit [23]  
FAULT  
bit [22]  
bits [21 - 0]  
Register Data  
0000_001[R/W]  
INTflg  
STATUS  
Table 15. Device configuration bits definition  
Bit  
Functions  
Default value  
Description  
23-14  
Unused  
0
Unused  
Select the polling time for SP channels configured as SB.  
• A logic [0] set the active polling timer to 1ms,  
• A logic [1] sets the active polling timer to 55 μs.  
13  
12  
SBPOLLTIME  
0
0
VBATP Overvoltage protection  
• 0 - Enabled  
VBATP OV  
Disable  
• 1 - Disable  
Enable/Disable WAKE_B to wake-up the device on falling edge when VDDQ is not present.  
• 0 - WAKE_B is pulled up to VDDQ (internally and/or externally). WAKE_B is ignored while in LPM if VDDQ  
is low.  
• 1 - WAKE_B is externally pulled up to VBATP or VDDQ and wakes upon a falling edge of the WAKE_B pin  
regardless of the VDDQ status.(VDDQ is not expected to go low)  
WAKE_B  
VDDQ Check  
11  
10  
1
0
Interrupt pin behavior  
Int_B_Out  
Aconfig(1-0)  
SP7 - SP0  
• 0 - INT pin stays low when interrupt occurs  
• 1 - INT pin pulse low and return high  
Configure the AMUX output control method  
• 00 - SPI (default)  
• 01 - SPI  
• 10 - HW 2bit  
• 11 - HW 3bit  
9-8  
7-0  
00  
Refer to section 7.8, “AMUX functional block" for details on 2 and 3 bit hardwire configuration.  
Configure the SP pin as Switch to Battery (SB) or Switch to ground (SG)  
• 0 - Switch to Ground  
1111_1111  
• 1 - Switch to Battery  
33978  
NXP Semiconductors  
34  
7.10.3 Tri-state SP register  
The tri-state command is use to set the input nodes as high-impedance (Table 16). By setting the tri-state register bit to logic [1], the input  
is high-impedance regardless of the Wetting current setting. The configurable comparator (4.0 V default) on each input remains active.  
The MCU may change or update the tri-state register via software at any time in Normal mode. The tri-state register defaults to 1 (inputs  
are tri-stated). Any inputs in tri-state is still polled in LPM but the current source is not active during this time. The determination of change  
of state occurs at the end of the tACTIVEPOLL and the wake-up decision is made.  
Table 16. Tri-state SP register  
Register address R/W  
SPI data bits [23 - 0]  
[31-25]  
[24]  
bit 23  
bit 22  
bit 21  
bit 20  
bit 19  
bit 18  
bit 17  
bit 16  
0000_010  
0/1  
Unused  
Unused  
0
0
0
0
0
0
0
0
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
bit 8  
Default on POR  
0
bit 7  
SP7  
1
0
bit 6  
SP6  
1
0
0
0
0
0
0
bit 5  
SP5  
1
bit 4  
SP4  
1
bit 3  
SP3  
1
bit 2  
SP2  
1
bit 1  
SP1  
1
bit 0  
SP0  
1
MISO return word  
bit [23]  
bit [22]  
bits [21 - 0]  
Register Data  
FAULT  
STATUS  
0000_010[R/W]  
INTflg  
7.10.4 Tri-state SG register  
The tri-state command is used to set the input nodes as high-impedance (Table 17). By setting the tri-state register bit to logic [1], the  
input is high-impedance regardless of the Wetting command setting. The configurable comparator (4.0 V default) on each input remains  
active. The MCU may change or update the tri-state register via software at any time in Normal mode. The tri-state register defaults to 1  
(inputs are tri-stated. Any inputs in tri-state is still polled in LPM but the current source is not active during this time. The determination of  
change of state occurs at the end of the tACTIVEPOLL and the wake-up decision is made.  
Table 17. Tri-state SG register  
Register address R/W  
SPI data bits [23 - 0]  
[31-25]  
[24]  
bit 23  
bit 22  
bit 21  
bit 20  
bit 19  
bit 18  
bit 17  
bit 16  
0000_011  
0/1  
Unused  
0
0
0
bit 13  
SG13  
1
0
bit 12  
SG12  
1
0
bit 11  
SG11  
1
0
bit 10  
SG10  
1
0
0
bit 15  
bit 14  
bit 9  
SG9  
1
bit 8  
SG8  
1
Unused  
Default on POR  
0
0
bit 6  
SG6  
1
bit 7  
SG7  
1
bit 5  
SG5  
1
bit 4  
SG4  
1
bit 3  
SG3  
1
bit 2  
SG2  
1
bit 1  
SG1  
1
bit 0  
SG0  
1
MISO return word  
bit [23]  
FAULT  
bit [22]  
bits [21 - 0]  
Register Data  
0000_011[R/W]  
INTflg  
STATUS  
33978  
35  
NXP Semiconductors  
 
 
7.10.5 Wetting current level SP register  
The IC contains configurable wetting currents (Default = 16 mA). Three bits are used to control each individual input pin with the values  
set in Table 18. The MCU may change or update the wetting current register via software at any time in Normal mode.  
Table 18. Wetting current level SP register  
Register address R/W  
SPI data bits [23 - 0]  
bit [20 - 18]  
[31-25]  
[24]  
bit [23 - 21]  
SP7 [2-0]  
110  
bit [17 - 16]  
SP5[2-1]  
11  
0000_100  
0/1  
SP6[2-0]  
110  
bit [15]  
SP5[0]  
0
bit [14 - 12]  
SP4 [2-0]  
110  
bit [11 - 9]  
SP3[2-0]  
110  
bit [8]  
SP2[2]  
1
Default on POR  
bit [7 - 6]  
bit [5 - 3]  
SP1[2-0]  
110  
bit [2 - 0]  
SP0[2-0]  
110  
SP2[1-0]  
10  
MISO return word  
bits [23 - 0]  
Register Data  
0000_100[R/W]  
See Table 21 for the selectable Wetting Current level values for both SPx and SGx pins.  
7.10.6 Wetting current level SG register 0  
The IC contains configurable wetting currents (Default = 16 mA). Three bits are used to control each individual input pin with the values  
set in Table 19. The MCU may change or update the wetting current register via software at any time in Normal mode.  
Table 19. Wetting current level SG register 0  
Register address R/W  
SPI data bits [23 - 0]  
bit [20 - 18]  
[31-25]  
[24]  
bit [23 - 21]  
SG7 [2-0]  
110  
bit [17 - 16]  
SG5[2-1]  
11  
0000_101  
0/1  
SG6[2-0]  
110  
bit [15]  
SG5[0]  
0
bit [14 - 12]  
SG4 [2-0]  
110  
bit [11 - 9]  
SG3[2-0]  
110  
bit [8]  
SG2[2]  
1
Default on POR  
bit [7 - 6]  
bit [5 - 3]  
SG1[2-0]  
110  
bit [2 - 0]  
SG0[2-0]  
110  
SG2[1-0]  
10  
MISO return word  
bits [23 - 0]  
Register Data  
0000_101[R/W]  
See Table 21 for the selectable Wetting Current level values for both SPx and SGx pins.  
33978  
NXP Semiconductors  
36  
 
 
7.10.7 Wetting current level SG register 1  
The IC contains configurable wetting currents (Default = 16 mA). Three bits are used to control each individual input pin with the values  
set in Table 20. The MCU may change or update the wetting current register via software at any time in Normal mode.  
Table 20. Wetting current level SG register 1  
Register address R/W  
SPI data bits [23 - 0]  
bit [20 - 18]  
[31-25]  
[24]  
bit [23 - 21]  
bit [17 - 16]  
SG13[2-1]  
11  
0000_110  
0/1  
Unused  
0
bit [15]  
SG13[0]  
0
bit [14 - 12]  
bit [11 - 9]  
SG11[2-0]  
110  
bit [8]  
SG12 [2-0]  
110  
SG10[2]  
1
Default on POR  
bit [7 - 6]  
bit [5 - 3]  
SG9[2-0]  
110  
bit [2 - 0]  
SG8[2-0]  
110  
SG10[1-0]  
10  
MISO return word  
bits [23 - 0]  
Register Data  
0000_110[R/W]  
See Table 21 for the selectable Wetting Current level values for both SPx and SGx pins.  
Table 21. SPx/SGx selectable wetting current levels  
SPx/SGx[2-0]  
Wetting Current Level  
bit 2  
bit 1  
bit 0  
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
2.0 mA  
6.0 mA  
8.0 mA  
10 mA  
12 mA  
14 mA  
16 mA  
20 mA  
1
0
1
0
1
0
1
33978  
37  
NXP Semiconductors  
 
 
7.10.8 Continuous wetting current SP register  
Each switch input has a designated 20 ms timer. The timer starts when the specific switch input crosses the comparator threshold. When  
the 20 ms timer expires, the contact current is reduced from the configured wetting current (16 mA) to the Sustain current. The wetting  
current is defined to be an elevated level that reduces to the lower sustain current level after the timer has expired. With multiple wetting  
current timers disabled, power dissipation for the IC must be considered.  
The MCU may change or update the continuos wetting current register via software at any time in Normal mode. This allows the MCU to  
control the amount of time wetting current is applied to the switch contact. Programming the continuos wetting current bit to logic [0]  
operates normally with a higher wetting current followed by sustain current after 20 ms (pulsed Wetting current operation). Programming  
to logic [1] enables the continuous wetting current (Table 22) and results in a full time wetting current level. The continuous wetting current  
register defaults to 0 (pulse wetting current operation).  
Table 22. Continuous wetting current SP register  
Register address R/W  
SPI data bits [23 - 0]  
[31-25]  
[24]  
bit 23  
bit 22  
bit 21  
bit 20  
bit 19  
bit 18  
bit 17  
bit 16  
0001_011  
0/1  
Unused  
Unused  
0
0
0
0
0
0
0
0
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
bit 8  
Default on POR  
0
bit 7  
SP7  
0
0
bit 6  
SP6  
0
0
0
0
0
0
0
bit 5  
SP5  
0
bit 4  
SP4  
0
bit 3  
SP3  
0
bit 2  
SP2  
0
bit 1  
SP1  
0
bit 0  
SP0  
0
MISO return word  
bit [23]  
bit [22]  
bits [21 - 0]  
Register Data  
FAULT  
STATUS  
0001_011[R/W]  
INTflg  
7.10.9 Continuous Wetting Current SG Register  
Each switch input has a designated 20 ms timer. The timer starts when the specific switch input crosses the comparator threshold. When  
the 20 ms timer expires, the contact current is reduced from the configured wetting current (16 mA) to 2.0 mA. The wetting current is  
defined to be at an elevated level that reduces to the lower sustain current level after the timer has expired. With multiple wetting current  
timers disabled, power dissipation for the IC must be considered.  
The MCU may change or update the continuous wetting current register via software at any time in Normal mode. This allows the MCU  
to control the amount of time wetting current is applied to the switch contact. Programming the continuos wetting current bit to logic [0]  
operates normally with a higher wetting current followed by sustain current after 20 ms (Pulse wetting current operation). Programming to  
logic [1] enables the continuous wetting current (Table 23) and results in a full time wetting current level. The continuous wetting current  
register defaults to 0 (pulse wetting current operation).  
33978  
NXP Semiconductors  
38  
 
Table 23. Continuous wetting current SG register  
Register address R/W  
SPI data bits [23 - 0]  
[31-25]  
[24]  
bit 23  
bit 22  
bit 21  
bit 20  
bit 19  
bit 18  
bit 17  
bit 16  
0001_100  
0/1  
Unused  
0
0
0
bit 13  
SG13  
0
0
bit 12  
SG12  
0
0
bit 11  
SG11  
0
0
bit 10  
SG10  
0
0
0
bit 15  
bit 14  
bit 9  
SG9  
0
bit 8  
SG8  
0
Unused  
Default on POR  
0
0
bit 6  
SG6  
0
bit 7  
SG7  
0
bit 5  
SG5  
0
bit 4  
SG4  
0
bit 3  
SG3  
0
bit 2  
SG2  
0
bit 1  
SG1  
0
bit 0  
SG0  
0
MISO return word  
bit [23]  
FAULT  
bit [22]  
bits [21 - 0]  
0001_100[R/W]  
INTflg  
Register Data  
STATUS  
Switch to  
Switch to  
Ground Closed  
Ground open  
IWET  
Continuous wetting  
current enabled  
0 ma  
0 ma  
IWET  
Continuous wetting  
current disabled  
ISUS=~2mA  
20 ms  
Figure 22. Pulsed/continuous wetting current configuration  
33978  
39  
NXP Semiconductors  
 
7.10.10 Interrupt enable SP register  
The interrupt register defines the inputs that are allowed to Interrupt the 33978 Normal mode. Programming the interrupt bit to logic [0]  
disables the specific input from generating an interrupt. Programming the interrupt bit to logic [1] enables the specific input to generate an  
interrupt with switch change of state The MCU may change or update the interrupt register via software at any time in Normal mode. The  
Interrupt register defaults to logic [1] (Interrupt enabled).  
Table 24. Interrupt enable SP register  
Register address R/W  
SPI data bits [23 - 0]  
[31-25]  
[24]  
bit 23  
bit 22  
bit 21  
bit 20  
bit 19  
bit 18  
bit 17  
bit 16  
0001_101  
0/1  
Unused  
Unused  
0
0
0
0
0
0
0
0
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
bit 8  
Default on POR  
0
bit 7  
SP7  
1
0
bit 6  
SP6  
1
0
0
0
0
0
0
bit 5  
SP5  
1
bit 4  
SP4  
1
bit 3  
SP3  
1
bit 2  
SP2  
1
bit 1  
SP1  
1
bit 0  
SP0  
1
MISO return word  
bit [23]  
bit [22]  
bits [21 - 0]  
Register Data  
FAULT  
STATUS  
0001_101[R/W]  
INTflg  
7.10.11 Interrupt enable SG register  
The interrupt register defines the inputs that are allowed to Interrupt the 33978 Normal mode. Programming the interrupt bit to logic [0]  
disables the specific input from generating an interrupt. Programming the interrupt bit to logic [1] enables the specific input to generate an  
interrupt with switch change of state The MCU may change or update the interrupt register via software at any time in Normal mode. The  
Interrupt register defaults to logic [1] (Interrupt enabled).  
Table 25. Interrupt enable SG register  
Register address R/W  
SPI data bits [23 - 0]  
[31-25]  
[24]  
bit 23  
bit 22  
bit 21  
bit 20  
bit 19  
bit 18  
bit 17  
bit 16  
0001_110  
0/1  
Unused  
0
0
0
bit 13  
SG13  
1
0
bit 12  
SG12  
1
0
bit 11  
SG11  
1
0
bit 10  
SG10  
1
0
0
bit 15  
bit 14  
bit 9  
SG9  
1
bit 8  
SG8  
1
Unused  
Default on POR  
0
0
bit 6  
SG6  
1
bit 7  
SG7  
1
bit 5  
SG5  
1
bit 4  
SG4  
1
bit 3  
SG3  
1
bit 2  
SG2  
1
bit 1  
SG1  
1
bit 0  
SG0  
1
MISO return word  
bit [23]  
FAULT  
bit [22]  
bits [21 - 0]  
Register Data  
0001_110[R/W]  
INTflg  
STATUS  
33978  
NXP Semiconductors  
40  
7.10.12 Low-power mode configuration  
The device has various configuration settings for the Low-power mode operation. The configuration settings are as follows:  
int[3-0] is used to set the interrupt timer value. With the interrupt timer set, the IC wakes up after the selected timer expires and issue an  
interrupt. This register can be selected to be OFF such that the IC does not wake-up from an interrupt timer.  
poll[3-0] is used to set the normal polling rate for the IC. The polling rate is the time between polling events. The current sources become  
active at this time for a time of tACTIVESGPOLLING or tACTIVESBPOLLING for SG or SB channels respectively.  
Table 26. Low-power mode configuration register  
Register address R/W  
SPI data bits [23 - 0]  
[31-25]  
[24]  
bit 23  
bit 22  
bit 21  
bit 20  
bit 19  
bit 18  
bit 17  
bit 16  
0001_111  
0/1  
Unused  
Unused  
0
0
0
0
0
0
0
0
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
bit 8  
Default on POR  
0
bit 7  
int3  
0
bit 6  
int2  
0
bit 5  
int1  
0
0
bit 4  
int0  
0
0
0
0
0
bit 3  
poll3  
1
bit 2  
poll2  
1
bit 1  
poll1  
1
bit 0  
poll0  
1
0
0
MISO return word  
bit [23]  
bit [22]  
bits [21 - 0]  
Register Data  
FAULT  
STATUS  
0001_111[R/W]  
INTflg  
Table 27. Low-power mode configuration bits definition  
Bit  
Functions  
Default value  
Description  
23 - 8  
Unused  
0
Unused  
Set the Interrupt timer value  
• 0000 - OFF  
• 1000 - 4.0 ms  
• 0001 - 6.0 ms  
• 0010 - 12 ms  
• 0011 - 24 ms  
• 0100 - 48 ms  
• 0101 - 96 ms  
• 0110 - 192 ms  
• 0111 - 394 ms  
• 1001 - 8.0 ms  
• 1010 - 16 ms  
• 1011 - 32 ms  
• 1100 - 64 ms  
• 1101 - 128 ms  
• 1110 - 256 ms  
• 1111 - 512 ms  
7 - 4  
int[3-0]  
0000  
Set the polling rate for switch detection  
• 0000 - 3.0 ms  
• 0001 - 6.0 ms  
• 0010 - 12 ms  
• 0011 - 24 ms  
• 0100 - 48 ms  
• 0101 - 68 ms  
• 0110 - 76 ms  
• 0111 - 128 ms  
• 1000 - 32 ms  
• 1001 - 36 ms  
• 1010 - 40 ms  
• 1011 - 44 ms  
• 1100 - 52 ms  
• 1101 - 56 ms  
• 1110 - 60 ms  
3 - 0  
poll[3-0]  
1111  
• 1111 - 64 ms (default)  
33978  
41  
NXP Semiconductors  
7.10.13 Wake-up enable register SP  
The wake-up register defines the inputs that are allowed to wake the 33978 from Low-power mode. Programming the wake-up bit to  
logic [0] disables the specific input from waking the IC (Table 28). Programming the wake-up bit to logic [1] enables the specific input to  
wake-up with switch change of state The MCU may change or update the wake-up register via software at any time in Normal mode. The  
Wake-up register defaults to logic [1] (wake-up enabled). If all channels (SG and SB) have the Wake-up bit disabled, the device disables  
the polling timer to reduce the current consumption during Low-power mode.  
Table 28. Wake-up enable SP register  
Register address R/W  
SPI data bits [23 - 0]  
[31-25]  
[24]  
bit 23  
bit 22  
bit 21  
bit 20  
bit 19  
bit 18  
bit 17  
bit 16  
0010_000  
0/1  
Unused  
Unused  
0
0
0
0
0
0
0
0
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
bit 8  
Default on POR  
0
bit 7  
SP7  
1
0
bit 6  
SP6  
1
0
0
0
0
0
0
bit 5  
SP5  
1
bit 4  
SP4  
1
bit 3  
SP3  
1
bit 2  
SP2  
1
bit 1  
SP1  
1
bit 0  
SP0  
1
MISO return word  
bit [23]  
bit [22]  
bits [21 - 0]  
Register Data  
FAULT  
STATUS  
0010_000[R/W]  
INTflg  
7.10.14 Wake-up enable register SG  
The wake-up register defines the inputs that are allowed to wake the 33978 from Low-power mode. Programming the wake-up bit to  
logic [0] disables the specific input from waking the IC (Table 29). Programming the wake-up bit to logic [1] enables the specific input to  
wake-up with any switch change of state The MCU may change or update the wake-up register via software at any time in Normal mode.  
The Wake-up register defaults to logic [1] (wake-up enabled). If all channels (SG and SB) have the Wake-up bit disabled, the device  
disables the polling timer to reduce the current consumption during Low-power mode.  
Table 29. Wake-up enable SG register  
Register address R/W  
SPI data bits [23 - 0]  
[31-25]  
[24]  
bit 23  
bit 22  
bit 21  
bit 20  
bit 19  
bit 18  
bit 17  
bit 16  
0010_001  
0/1  
Unused  
0
0
0
bit 13  
SG13  
1
0
bit 12  
SG12  
1
0
bit 11  
SG11  
1
0
bit 10  
SG10  
1
0
0
bit 15  
bit 14  
bit 9  
SG9  
1
bit 8  
SG8  
1
Unused  
Default on POR  
0
0
bit 6  
SG6  
1
bit 7  
SG7  
1
bit 5  
SG5  
1
bit 4  
SG4  
1
bit 3  
SG3  
1
bit 2  
SG2  
1
bit 1  
SG1  
1
bit 0  
SG0  
1
MISO return word  
bit [23]  
FAULT  
bit [22]  
bits [21 - 0]  
Register Data  
0010_001[R/W]  
INTflg  
STATUS  
33978  
NXP Semiconductors  
42  
 
 
7.10.15 Comparator only SP  
The comparator only register allows the input comparators to be active during LPM with no polling current. In this case, the inputs can  
receive a digital signal on the order of the LPM clock cycle and wake-up on a change of state. This register is intended to be used for  
signals that are driven by an external chip and drive to 5.0 V.  
Table 30. Comparator only SP Register  
Register address R/W  
SPI data bits [23 - 0]  
[31-25]  
[24]  
bit 23  
bit 22  
bit 21  
bit 20  
bit 19  
bit 18  
bit 17  
bit 16  
0010_010  
0/1  
Unused  
Unused  
0
0
0
0
0
0
0
0
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
bit 8  
Default on POR  
0
bit 7  
SP7  
0
0
bit 6  
SP6  
0
0
0
0
0
0
0
bit 5  
SP5  
0
bit 4  
SP4  
0
bit 3  
SP3  
0
bit 2  
SP2  
0
bit 1  
SP1  
0
bit 0  
SP0  
0
MISO return word  
bit [23]  
bit [22]  
bits [21 - 0]  
Register Data  
FAULT  
STATUS  
0010_010[R/W]  
INTflg  
7.10.16 Comparator only SG  
The comparator only register allows the input comparators to be active during LPM with no polling current. In this case, the inputs can  
receive a digital signal on the order of the LPM clock cycle and wake-up on a change of state. This register is intended to be used for  
signals that are driven by an external chip and drive to 5.0 V.  
Table 31. Comparator only SG register  
Register address R/W  
SPI data bits [23 - 0]  
[31-25]  
[24]  
bit 23  
bit 22  
bit 21  
bit 20  
bit 19  
bit 18  
bit 17  
bit 16  
0010_011  
0/1  
Unused  
0
0
0
bit 13  
SG13  
0
0
bit 12  
SG12  
0
0
bit 11  
SG11  
0
0
bit 10  
SG10  
0
0
0
bit 15  
bit 14  
bit 9  
SG9  
0
bit 8  
SG8  
0
Unused  
Default on POR  
0
0
bit 6  
SG6  
0
bit 7  
SG7  
0
bit 5  
SG5  
0
bit 4  
SG4  
0
bit 3  
SG3  
0
bit 2  
SG2  
0
bit 1  
SG1  
0
bit 0  
SG0  
0
MISO return word  
bit [23]  
FAULT  
bit [22]  
bits [21 - 0]  
Register Data  
0010_011[R/W]  
INTflg  
STATUS  
33978  
43  
NXP Semiconductors  
7.10.17 LPM voltage threshold SP configuration  
The 33978 is able to use different voltage thresholds to wake-up from LPM. When configured as SG, a Logic [0] means the input will use  
the LPM delta voltage threshold to determine the state of the switch. A Logic [1] means the input uses the Normal threshold (VICTHR) to  
determine the state of the switch. When configured as an SB, it only uses the 4.0 V threshold regardless the status of the LPM voltage  
threshold bit. The user must ensure that the correct current level is set to allow the crossing of the normal mode threshold (typ. 4.0 V)  
Table 32. LPM voltage threshold configuration SP register  
Register address R/W  
SPI data bits [23 - 0]  
[31-25]  
[24]  
bit 23  
bit 22  
bit 21  
bit 20  
bit 19  
bit 18  
bit 17  
bit 16  
0010_100  
0/1  
Unused  
Unused  
0
0
0
0
0
0
0
0
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
bit 8  
Default on POR  
0
bit 7  
SP7  
0
0
bit 6  
SP6  
0
0
0
0
0
0
0
bit 5  
SP5  
0
bit 4  
SP4  
0
bit 3  
SP3  
0
bit 2  
SP2  
0
bit 1  
SP1  
0
bit 0  
SP0  
0
MISO return word  
bit [23]  
bit [22]  
bits [21 - 0]  
Register Data  
FAULT  
STATUS  
0010_100[R/W]  
INTflg  
7.10.18 LPM voltage threshold SG configuration  
This means the input uses the LPM delta voltage threshold to determine the state of the switch. A Logic [1] means the input uses the  
Normal threshold to determine the state of the switch. The user must ensure that the correct current level is set to allow the crossing of  
the normal mode threshold (typ. 4.0 V)  
Table 33. LPM voltage threshold configuration SG register  
Register address R/W  
SPI data bits [23 - 0]  
[31-25]  
[24]  
bit 23  
bit 22  
bit 21  
bit 20  
bit 19  
bit 18  
bit 17  
bit 16  
0010_101  
0/1  
Unused  
0
0
0
bit 13  
SG13  
0
0
bit 12  
SG12  
0
0
bit 11  
SG11  
0
0
bit 10  
SG10  
0
0
0
bit 15  
bit 14  
bit 9  
SG9  
0
bit 8  
SG8  
0
Unused  
Default on POR  
0
0
bit 6  
SG6  
0
bit 7  
SG7  
0
bit 5  
SG5  
0
bit 4  
SG4  
0
bit 3  
SG3  
0
bit 2  
SG2  
0
bit 1  
SG1  
0
bit 0  
SG0  
0
MISO return word  
bit [23]  
FAULT  
bit [22]  
bits [21 - 0]  
Register Data  
0010_101[R/W]  
INTflg  
STATUS  
33978  
NXP Semiconductors  
44  
7.10.19 Polling current SP configuration  
The normal polling current for LPM is 2.2 mA for SB channels and 1.0 mA for SG channels, A logic [0] selects the normal polling current  
for each individual channel. The user may choose to select the IWET current value as defined in the wetting current level registers by writing  
a Logic [1] on this bit; this will result in higher LPM currents but may be used in cases when a higher polling current is needed.  
Table 34. Polling current configuration SP register  
Register address R/W  
SPI data bits [23 - 0]  
[31-25]  
[24]  
bit 23  
bit 22  
bit 21  
bit 20  
bit 19  
bit 18  
bit 17  
bit 16  
0010_110  
0/1  
Unused  
Unused  
0
0
0
0
0
0
0
0
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
bit 8  
Default on POR  
0
bit 7  
SP7  
0
0
bit 6  
SP6  
0
0
0
0
0
0
0
bit 5  
SP5  
0
bit 4  
SP4  
0
bit 3  
SP3  
0
bit 2  
SP2  
0
bit 1  
SP1  
0
bit 0  
SP0  
0
MISO return word  
bit [23]  
bit [22]  
bits [21 - 0]  
Register Data  
FAULT  
STATUS  
0010_110[R/W]  
INTflg  
7.10.20 Polling current SG configuration  
A Logic [0] selects the normal polling current for LPM =1.0 mA. The user may choose to select the IWET current value as defined in the  
wetting current registers for LPM by writing a Logic [1] in this bit; this results in higher LPM currents but may be used in cases when a  
higher polling current is needed.  
Table 35. Polling current configuration SG register  
Register address R/W  
SPI data bits [23 - 0]  
[31-25]  
[24]  
bit 23  
bit 22  
bit 21  
bit 20  
bit 19  
bit 18  
bit 17  
bit 16  
0010_111  
0/1  
Unused  
0
0
0
bit 13  
SG13  
0
0
bit 12  
SG12  
0
0
bit 11  
SG11  
0
0
bit 10  
SG10  
0
0
0
bit 15  
bit 14  
bit 9  
SG9  
0
bit 8  
SG8  
0
Unused  
Default on POR  
0
0
bit 6  
SG6  
0
bit 7  
SG7  
0
bit 5  
SG5  
0
bit 4  
SG4  
0
bit 3  
SG3  
0
bit 2  
SG2  
0
bit 1  
SG1  
0
bit 0  
SG0  
0
MISO return word  
bit [23]  
FAULT  
bit [22]  
bits [21 - 0]  
Register Data  
0010_111[R/W]  
INTflg  
STATUS  
33978  
45  
NXP Semiconductors  
7.10.21 Slow polling SP  
The normal polling rate is defined in the Low-power mode configuration register. If the user is able to poll at a slower rate (4x) the LPM  
current level decreases significantly. Setting the bit to [0] results in the input polling at the normal rate as selected. Setting the bit to [1]  
results in the input being polled at a slower frequency at 4x the normal rate.  
Table 36. Slow polling SP Register  
Register Address R/W  
SPI Data Bits [23 - 0]  
[31-25]  
[24]  
bit 23  
bit 22  
bit 21  
bit 20  
bit 19  
bit 18  
bit 17  
bit 16  
0011_000  
0/1  
Unused  
Unused  
0
0
0
0
0
0
0
0
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
bit 8  
Default on POR  
0
bit 7  
SP7  
0
0
bit 6  
SP6  
0
0
0
0
0
0
0
bit 5  
SP5  
0
bit 4  
SP4  
0
bit 3  
SP3  
0
bit 2  
SP2  
0
bit 1  
SP1  
0
bit 0  
SP0  
0
MISO Return Word  
bit [23]  
bit [22]  
bits [21 - 0]  
Register Data  
FAULT  
STATUS  
0011_000[R/W]  
INTflg  
7.10.22 Slow polling SG  
The normal polling rate is defined in the Low-power mode configuration register. If the user is able to poll at a slower rate (4x) the LPM  
current level decreases significantly. Setting the bit to [0] results in the input polling at the normal rate as selected. Setting the bit to [1]  
results in the input being polled at a slower frequency at 4x the normal rate.  
Table 37. Slow Polling SG Register  
Register address R/W  
SPI data bits [23 - 0]  
[31-25]  
[24]  
bit 23  
bit 22  
bit 21  
bit 20  
bit 19  
bit 18  
bit 17  
bit 16  
0011_001  
0/1  
Unused  
0
0
0
bit 13  
SG13  
0
0
bit 12  
SG12  
0
0
bit 11  
SG11  
0
0
bit 10  
SG10  
0
0
0
bit 15  
bit 14  
bit 9  
SG9  
0
bit 8  
SG8  
0
Unused  
Default on POR  
0
0
bit 6  
SG6  
0
bit 7  
SG7  
0
bit 5  
SG5  
0
bit 4  
SG4  
0
bit 3  
SG3  
0
bit 2  
SG2  
0
bit 1  
SG1  
0
bit 0  
SG0  
0
MISO return word  
bit [23]  
FAULT  
bit [22]  
bits [21 - 0]  
Register Data  
0011_001[R/W]  
INTflg  
STATUS  
33978  
NXP Semiconductors  
46  
7.10.23 Wake-up debounce SP  
The IC is able to extend the time that the active polling takes place to ensure that a true change of state has occurred in LPM and reduce  
the chance that noise has impacted the measurement. If this bit is [0], the IC uses a voltage difference technique to determine if a switch  
has changed sate. If this bit is set [1], the IC debounces the measurement by continuing to source the LPM polling current for an additional  
1.2 ms and take the measurement based on the final voltage level. This helps to ensure that the switch is detected correctly in noisy  
systems.  
Table 38. Wake-up debounce SP register  
Register address R/W  
SPI data bits [23 - 0]  
[31-25]  
[24]  
bit 23  
bit 22  
bit 21  
bit 20  
bit 19  
bit 18  
bit 17  
bit 16  
0011_010  
0/1  
Unused  
Unused  
0
0
0
0
0
0
0
0
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
bit 8  
Default on POR  
0
bit 7  
SP7  
0
0
bit 6  
SP6  
0
0
0
0
0
0
0
bit 5  
SP5  
0
bit 4  
SP4  
0
bit 3  
SP3  
0
bit 2  
SP2  
0
bit 1  
SP1  
0
bit 0  
SP0  
0
MISO return word  
bit [23]  
bit [22]  
bits [21 - 0]  
Register Data  
FAULT  
STATUS  
0011_010[R/W]  
INTflg  
7.10.24 Wake-up debounce SG  
The IC is able to extend the time that the active polling takes place to ensure that a true change of state has occurred in LPM and reduce  
the chance that noise has impacted the measurement. If this bit is [0], the IC uses a voltage difference technique to determine if a switch  
has changed sate. If this bit is set [1], the IC debounces the measurement by continuing to source the LPM polling current for an additional  
1.2 ms and take the measurement based on the final voltage level. This helps to ensure that the switch is detected correctly in noisy  
systems.  
Table 39. Slow polling SG Register  
Register address R/W  
SPI data bits [23 - 0]  
[31-25]  
[24]  
bit 23  
bit 22  
bit 21  
bit 20  
bit 19  
bit 18  
bit 17  
bit 16  
0011_011  
0/1  
Unused  
0
0
0
bit 13  
SG13  
0
0
bit 12  
SG12  
0
0
bit 11  
SG11  
0
0
bit 10  
SG10  
0
0
0
bit 15  
bit 14  
bit 9  
SG9  
0
bit 8  
SG8  
0
Unused  
Default on POR  
0
0
bit 6  
SG6  
0
bit 7  
SG7  
0
bit 5  
SG5  
0
bit 4  
SG4  
0
bit 3  
SG3  
0
bit 2  
SG2  
0
bit 1  
SG1  
0
bit 0  
SG0  
0
MISO return word  
bit [23]  
FAULT  
bit [22]  
bits [21 - 0]  
Register Data  
0011_011[R/W]  
INTflg  
STATUS  
33978  
47  
NXP Semiconductors  
7.10.25 Enter low-power mode  
Low-power mode (LPM) is used to reduce system quiescent currents. Low-power mode may be entered only by sending the Low-power  
command. When returning to Normal mode, all register settings is maintained.  
The Enter Low-power mode register is write only and has the effect of going to LPM and beginning operation as selected (polling, interrupt  
timer). When returning form Low-power mode, the first SPI transaction will return the Fault Status and the intflg bit set to high, as well as  
the actual status of the Input pins.  
Table 40. Enter low-power mode command  
Register address  
[31-25]  
W
[24]  
1
SPI data bits [23 - 0]  
bits [23 - 16]  
0000_0000  
bits [15 - 8]  
0000_0000  
bits [7 - 0]  
0000_0000  
-
0011_100  
MISO return word  
7.10.26 AMUX control register  
The analog voltage on switch inputs may be read by the MCU using the analog command (Table 41). Internal to the33978 is a 24-to-1  
analog multiplexer. The voltage present on the selected input pin is buffered and made available on the AMUX output pin. The AMUX  
output pin is clamped to a maximum of VDDQ volts regardless of the higher voltages present on the input pin. After an input has been  
selected as the analog, the corresponding bit in the next MISO data stream is logic [0].  
Setting the current to wetting current (configurable) may be useful for reading sensor inputs. The MCU may change or update the analog  
select register via software at any time in Normal mode. The analog select defaults to no input.  
Table 41. Slow polling SG register  
Register address R/W  
SPI data bits [23 - 0]  
[31-25]  
[24]  
bit 23  
bit 22  
bit 21  
bit 20  
bit 19  
bit 18  
bit 17  
bit 16  
0011_101  
0/1  
Unused  
Unused  
0
0
0
0
0
0
0
0
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
bit 8  
Default on POR  
0
0
bit 6  
asett0  
0
0
0
0
0
0
0
bit 7  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Unused  
0
asel[5-0]  
0
0
0
0
0
0
MISO return word  
bit [23]  
bit [22]  
bits [21 - 0]  
FAULT  
STATUS  
0011_101[R/W]  
INTflg  
Register Data  
Table 42. AMUX current select  
asett[0]  
Zsource  
0
1
hi Z (default)  
IWET  
33978  
NXP Semiconductors  
48  
 
Table 43. AMUX channel select  
asel 5  
asel 4  
asel3  
0
asel 2  
asel 1  
asel 0  
Analog channel select  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
No Input Selected  
SG0  
0
0
SG1  
0
SG2  
0
SG3  
0
SG4  
0
SG5  
0
SG6  
1
SG7  
1
SG8  
1
SG9  
1
SG10  
SG11  
SG12  
SG13  
SP0  
1
1
1
1
0
SP1  
0
SP2  
0
SP3  
0
SP4  
0
SP5  
0
SP6  
0
SP7  
0
Temp Diode  
Battery Sense  
1
7.10.27 Read switch status  
The Read switch status register is used to determine the state of each of the inputs and is read only. All of the inputs (SGn and SPn) are  
returned after the next command is sent. A Logic [1] means the switch is closed while a Logic [0] is an open switch.  
Included in the status register are two more bits, the Fault Status bit and intflg bit. The Fault Status bit is a combination of the extended  
status bits and the wetting current fault bits. If any of these bits are set, the Fault Status bit is set. The intflg bit is set when an interrupt  
occurs on this device.  
After POR, both the Fault Status bit and the intflg bit are set high to indicate an interrupt due to a POR occurred. The intflg bit will be  
cleared upon reading the Read Switch Status register, and the Fault Status bit will remain high until the Fault status register is read and  
thus the POR fault bit and all other fault flags are cleared.  
The Fault Status and Intflg bits are semi-global flags, if a fault or an interrupt occurs, these bit will be returned after writing or reading any  
command, except for the SPICheck and the Wetting Current configuration registers, which use those bits to set/display the device  
configuration.  
33978  
49  
NXP Semiconductors  
Table 44. Read switch status command  
Register address  
[31-25]  
R
SPI data bits [23 - 0]  
[24]  
bit 23  
bit 22  
bit 21  
bit 20  
bit 19  
bit 18  
bit 17  
bit 16  
FAULT  
STATUS  
0011_111  
0
INTflg  
SP7  
SP6  
SP5  
SP4  
SP3  
SP2  
1
bit 15  
SP1  
X
1
bit 14  
SP0  
X
X
bit 13  
SG13  
X
X
bit 12  
SG12  
X
X
bit 11  
SG11  
X
X
bit 10  
SG10  
X
X
X
bit 9  
SG9  
X
bit 8  
SG8  
X
Default After POR  
bit 7  
SG7  
X
bit 6  
SG6  
X
bit 5  
SG5  
X
bit 4  
SG4  
X
bit 3  
SG3  
X
bit 2  
SG2  
X
bit 1  
SG1  
X
bit 0  
SG0  
X
MISO return word  
bit [23]  
bit [22]  
bits [21-14]  
SP7 -SP0 Switch Status  
bits [13-0]  
SG13 - SG0 Switch Status  
FAULT  
STATUS  
0011_1110  
INTflg  
The fault/status diagnostic capability consists of one internal 24 bit register. The content of the fault/status register is shown in Table 45.  
Bits 0 – 21 shows the status of each input where logic [1] is a closed switch and logic [0] is an open switch. In addition to input status  
information, Fault status such as die over-temp, Hash fault, SPI errors, as well as interrupts are reported.  
A SPI read cycle is initiated by a CS_B logic ‘1’ to ‘0’ transition, followed by 32 SCLK cycles to shift the fault / status registers out the MISO  
pin. The INT_B pin is cleared 1.0 ms after the falling edge of CS_B. The fault is immediately set again if the fault condition is still present.  
The Fault Status bit sets any time a Fault occurs, and the Fault register (Table 46) must be read in order to clear the Fault status flag.  
The intflg bit sets any time an interrupt event occurs (change of state on switch, any fault status bit gets set). Any SPI message that will  
return intflg bit will clear this flag (even if the event is still occurring, for example an overtemp, will cause an interrupt. The interrupt can be  
cleared but the chip will not interrupt again based on the overtemp until that fault has gone away).  
Table 45. MISO output register definition  
MISO  
Response  
Sends  
Bit 23 : Fault Status:  
• 0 = No Fault  
• 1 = Indicates a fault has occurred and should be viewed in the fault status register.  
Bit 22 : Intflg:  
• 0 = No Change of state  
• 1 = Change of state detected.  
Bit 21 – 0 : SPx /SGx input status:  
• 0 = Open switch;  
• 1 =Closed switch  
33978  
NXP Semiconductors  
50  
 
7.10.28 Fault status register  
To read the fault status bits the user should first sent a message to the IC with the fault status register address followed by any given  
second command. The MISO response from the second command will contain the fault flags information.  
Table 46. Fault status register  
Register address  
[31-25]  
R
[24]  
0
SPI data bits [23 - 0]  
bit 23  
Unused  
0
bit 22  
INTflg  
1
bit 21  
bit 20  
bit 19  
bit 18  
bit 17  
bit 16  
0100_001  
Unused  
0
bit 13  
Unused  
0
0
0
0
0
bit 9  
0
bit 8  
Unused  
0
bit 15  
bit 14  
bit 12  
bit 11  
bit 10  
SPI error  
X
Hash Fault  
X
0
0
0
0
Default After POR  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
WAKE_B  
Wake  
UV  
OV  
TempFlag  
X
OT  
X
INT_B Wake  
X
SPI Wake  
X
POR  
X
X
X
X
MISO return word  
bit [23]  
bit [22]  
bits [21-0]  
FAULT/FLAG BITS  
FAULT  
STATUS  
0100_0010  
INTflg  
Table 47. MISO response for fault status command  
Bit  
Functions  
Default value  
Description  
23  
Unused  
0
Unused  
Reports that an Interrupt has occurred, user should read the status register to determine cause.  
• Set: Various (SGx change of state, SPx change of state, Extended status bits).  
• Reset: Clear of fault or read of Status register  
22  
21-11  
10  
INTflg  
Unused  
SPI error  
X
0
Unused  
Any SPI error generates a bit (Wrong address, incorrect modulo).  
• Set: SPI message error.  
X
• Reset: Read fault status register and no SPI errors.  
SPI register and hash mismatch.  
9
8
7
Hash Fault  
Unused  
UV  
X
0
• Set: Mismatch between SPI registers and hash.  
• Reset: No mismatch and SPI flag read.  
Unused  
Reports that low VBATP voltage was in undervoltage range  
• Set: Voltage drops below UV level.  
X
• Reset: VBATP rises above UV level and flag read (SPI)  
Report that the voltage on VBATP was higher than OV threshold  
• Set: Voltage at VBATP rises above overvoltage threshold.  
• Reset: Overvoltage condition is over and flag read (SPI)  
6
5
4
OV  
Temp Flag  
OT  
X
X
X
Temperature warning to note elevated IC temperature  
• Set: tLIM warning threshold is passed.  
• Reset: Temperature drops below thermal warning threshold + hysteresis and flag read (SPI)  
Tlim event occurred on the IC  
• Set: Tlim warning threshold is passed.  
• Reset: Temperature drops below thermal warning threshold + hysteresis and flag read (SPI)  
33978  
51  
NXP Semiconductors  
Table 47. MISO response for fault status command (continued)  
Part awakens via an external INT_B falling edge  
3
2
1
0
INT_B Wake  
WAKE_B Wake  
SPI Wake  
X
X
X
X
• Set: INT_B Wakes the part from LPM (external falling edge)  
• Reset: flag read (SPI).  
Part awakens via an external WAKE_B falling edge  
• Set: External WAKE_B falling edge seen  
• Reset: flag read (SPI).  
Part awaken via a SPI message  
• Set: SPI message wakes the IC from LPM  
• Reset: flag read (SPI).  
Reports a POR event occurred.  
POR  
• Set: Voltage at VBATP pin dropped below VBATP(POR) voltage  
• Reset: flag read (SPI)  
7.10.29 Interrupt request  
The MCU may request an Interrupt pulse of duration 100 μs by sending the Interrupt request command. After an Interrupt request  
commands, the 33978 returns the Interrupt request command word, as well as the Fault status and INTflg bits set if a fault/interrupt event  
occurred. Sending an interrupt request command does not set the INTflg bit itself.  
Table 48. Interrupt request command  
Register address  
[31-25]  
W
[24]  
1
SPI data bits [23 - 0]  
bits [23 - 16]  
0000_0000  
0100_011  
bits [15 - 8]  
0000_0000  
bits [7 - 0]  
0000_0000  
MISO return word  
bit [23]  
bit [22]  
bits [21-0]  
FAULT  
STATUS  
0100_0111  
INTflg  
0
7.10.30 Reset register  
Writing to this register causes all of the SPI registers to reset.  
Table 49. Reset command  
Register address  
[31-25]  
W
[24]  
1
SPI data bits [23 - 0]  
bits [23 - 16]  
0000_0000  
0100_100  
bits [15 - 8]  
0000_0000  
bits [7 - 0]  
0000_0000  
MISO return word  
bit [23]  
bit [22]  
bits [21-0]  
FAULT  
STATUS  
0011_1110  
INTflg  
Switch Status  
33978  
NXP Semiconductors  
52  
8
Typical applications  
8.1  
Application diagram  
Figure 23. Typical application diagram  
8.2  
Bill of materials  
Table 50. Bill of materials  
Item Quantity  
Reference  
Value  
Description  
C1, C2, C3, C4, C5, C6, C7, C8, C9, C10,  
C11, C12, C13, C14, C15, C16, C17, C18,  
C19, C20, C21, C22, C25, C27  
1
24  
0.1 μF  
CAP CER 0.1 uF 100 V X7R 10 % 0603  
2
3
4
2
1
1
C23,C24  
C26  
1.0 nF  
100 μF  
-
CAP CER 1000 PF 100 V 10 % X7R 0603  
CAP ALEL 100 μF 50 V 20 % -- SMD  
DIODE RECT 3.0 A 50 V AEC-Q101 SMB  
D1  
R1, R2, R3, R4, R5, R6, R7, R8, R9, R10,  
R11, R12, R13, R14, R15, R16, R17, R18,  
R19, R20, R21, R22  
5
22  
100 Ω  
RES MF 100 Ω 0.5 W 1% 0805  
6
7
8
9
1
1
1
1
R23  
R25  
R24  
U1  
10 kΩ  
10 kΩ  
RES MF 10 kΩ 0.5 W 5 % 0805 (optional)  
RES MF 10 kΩ 0.5 W 5 % 0805  
1.0 kΩ  
RES MF 1 kΩ 0.5 W 5 % 0805  
MC33978  
IC MULTIPLE DETECTION SWITCH INTERFACE SOIC32  
33978  
53  
NXP Semiconductors  
8.3  
Abnormal operation  
The 33978 could be subject to various conditions considered abnormal as defined within this section.  
8.3.1  
Reverse battery  
This device with applicable external components will not be damaged by exposure to reverse battery conditions of -14 V. This test is  
performed for a period of one minute at 25 °C. In addition, this negative voltage condition does not force any of the logic level I/O pins to  
a negative voltage less than -0.6 V at 10 mA or to a positive voltage greater the 5.0 V. This insures protection of the digital device  
interfacing with this device.  
8.3.2  
Ground offset  
The applicable driver outputs and/or current sense inputs are capable of operation with a ground offset of 1.0 V. The device will not be  
damaged by exposure to this condition and will maintain specified functionality.  
8.3.3  
Shorts to ground  
All I/Os of the device that are available at the module connector are protected against shorts to ground with maximum ground offset  
considered (i.e. -1.0 V referenced to device ground or other application specific value). The device will not be damaged by this condition.  
8.3.4  
Shorts to battery  
All I/Os of the device that are available at the module connector are protected against a short to battery (voltage value is application  
dependent, there may be cases where short to jump start or load dump voltage values are required). The device will not be damaged by  
this condition.  
8.3.5  
Unpowered shorts to battery  
All I/Os of the device that are available at the module connector are protected against unpowered (battery to the module is open) shorts  
to battery per application specifics. The device will not be damaged by this condition, will not enable any outputs nor backfeed onto the  
power rails (VBATP, VDDQ) or the digital I/O pins.  
8.3.6  
Loss of module ground  
The definition of a loss of ground condition at the device level is that all pins of the IC detects very low-impedance to battery. The  
nomenclature is suited to a test environment. In the application, a loss of ground condition results in all I/O pins floating to battery voltage,  
while all externally referenced I/O pins are at worst case pulled to ground. All applicable driver outputs and current sense inputs are  
protected against excessive leakage current due to loads that are referenced to an external ground (high-side drivers).  
8.3.7  
Loss of module battery  
The loss of battery condition at the parts level is that the power input pins of the IC see infinite impedance to the battery supply voltage  
(depending upon the application) but there is some undefined impedance looking from these pins to ground. All applicable driver outputs  
and current sense inputs are protected against excessive leakage current due to loads that are referenced to an external battery  
connection (low-side drivers).  
33978  
NXP Semiconductors  
54  
9
Packaging  
9.1  
Package mechanical dimensions  
Package dimensions are provided in package drawings. To find the most current package outline drawing, go to www.nxp.com and  
perform a keyword search for the drawing’s document number.  
Table 51. Packaging information  
Package  
Suffix  
EK  
Package outline drawing number  
98ASA10556D  
98ASA00656D  
32-Pin SOICW-EP  
32-Pin QFN (WF-type)  
ES  
33978  
55  
NXP Semiconductors  
33978  
NXP Semiconductors  
56  
33978  
57  
NXP Semiconductors  
33978  
NXP Semiconductors  
58  
33978  
59  
NXP Semiconductors  
33978  
NXP Semiconductors  
60  
33978  
61  
NXP Semiconductors  
10 Reference section  
Table 52. 33978 reference documents  
Reference  
Description  
CDF-AEC-Q100  
Q-1000  
Stress Test Qualification For Automotive Grade Integrated Circuits  
Qualification Specification for Integrated Circuits  
Specification Conformance  
SQ-1001  
ISO 7637  
Electrical Disturbances from Conduction and Coupling  
Electromagnetic Compatibility  
ISO 61000  
33978  
NXP Semiconductors  
62  
11 Revision history  
Revision  
1.0  
Date  
Description of changes  
3/2014  
3/2014  
Initial release  
2.0  
Removed Z from part numbers PCZ33978EK and PCZ33978ES in the Orderable part variations table  
Major formatting and information arrangement  
Updated Figure 1, 33978 simplified application diagram, removed CS_B pull-up resistor, not needed.  
Added Industrial Part numbers MC34978EK and MC34978ES to Table 1  
Table 3 Clarified Switch Input Range specification (not a differential voltage between inputs and VBATP)  
Table 3 Reduced Human Body Model (HBM) (VBATP versus GND) to 2500 V  
Table 3 VESD6-2 Series resistor corrected to 50 Ω, Added missing CZAP and RZAP conditions  
Table 4 Updated Thermal Resistance specification  
Added Figure 10, Functional block diagram  
Added Figure 11, Battery voltage range  
Added Figure 5, Glitch filter and interrupt delay timers and Figure 6, Interrupt pulse timer  
Updated POR minimum specification to 2.7 V (previous 2.9 V)  
Updated VBATP Normal mode maximum supply current to 12 mA (previous 8.0 mA)  
Updated VDDQ undervoltage threshold maximum to 2.8 V (previous 2.7 V)  
Updated sustain current at low battery to 2.4 mA (previous 2.0 mA)  
Added a specification to cover the Normal mode switch detection threshold hysteresis.  
Updated minimum limit on Switch detection threshold in LPM to 80 mV  
Updated minimum ratio for switch threshold at low battery to 0.55x (previous 0.8x)  
Fixed typo on Input threshold specifications to VDD*0.25 and VDD*0.7  
Updated the INT_B VOL maximum level to 0.5 V (previous 0.4 V)  
Updated limits on the POR to Active time to 250 μs (min) to 450 μs (max) (previous min was 40 μs)  
Clarified Operating voltage range (4.5 V to 28 V)  
Corrected WAKE_B Max rating to 40 V.  
3.0  
12/2014  
Added Figure 19, SPI write operation and Figure 20, SPI read operation  
Added Table 7.10.1, SPI check  
Corrected Rb/W bits on Table 11 From 1/0 to 0/1  
Clarified SPI Read/write operation and SPI registers information.  
Updated VBATP(POR) maximum voltage to 3.8 V.  
Updated VBATP under voltage hysteresis minimum voltage to 250 mV  
Updated VBATP low-power mode supply current to 40 uA  
Input logic voltage threshold WAKE_B typical value added at 1.25 V, max value updated to 1.7 V  
Added new Specification for WAKE_B input logic hysteresis.  
Clarified AMUX accuracy and Coefficient accuracy specifications, added Figure 4, Divide by 6 coefficient accuracy.  
Update internal pull-up resistance to 270 KΩ (INT_B, WAKE_B, CS_B)  
Low-power mode oscillator frequency centered at 192 KHz with +/- 15% tolerance.  
Updated all timing specs derived from the 192 kHz oscillator (Low-power mode)  
Added SBPOLLTIME (bit 13) selection functionality on 7.10.2, “Device configuration register"  
Added SB Tactive Polling time specification (58 μs or 1.2 ms Typical)  
Table 6 Clarified wetting current specification for SB and SG channels.  
SB sustain Current and Low-power mode polling current SB Typical value centered at 2.2mA, Min = 1.75 mA and Max  
= 2.65 mA, (+/- 20% tolerance).  
Wetting current matching, Max value updated to 6%  
Updated Switch detection Threshold in Low Voltage maximum value to 4.3 V.  
Added Figure 22, Pulsed/continuous wetting current configuration  
Removed section (Electrical Test requirement, Stress testing, and EMC consideration)  
33978  
63  
NXP Semiconductors  
Revision  
Date  
Description of changes  
Changed VESD1-2 to ±2000  
Changed ISUSSB max. value to 2.85 mA  
4.0  
12/2014  
Changed IACTIVEPOLLSB max. value to 2.85 mA  
Changed PC33978EK and PC34978EK parts to MC in the Orderable part variations table  
Deleted PC33978ES and PC34978ES part numbers  
Updated case outline  
Added new part numbers MC33978AEK, MC33978AES, MC34978AEK, and MC34978AES to the Orderable part vari-  
ations table  
8/2015  
8/2015  
Updated AMUX specification for QFN package  
Added thermal characteristics for QFN package  
5.0  
Updated VBATP HBM specification to 4.0 KV  
Added additional line to VESD1-2 spec in Table 3 to show the max. value for MC33978/MC34978 and MC33978A/  
MC34978A  
8/2016  
2/2017  
Updated to NXP document form and style  
Added note (4) to switch input voltage range in Table 3  
Added a new parameter tCSB_WAKEUP to Table 7  
6.0  
7.0  
8/2017  
Updated the dynamic electrical characteristics condition statement in Table 7 (changed “VBATP = 4.5 V to 28 V” to  
“VBATP = 6.0 V to 28 V”)  
33978  
NXP Semiconductors  
64  
Information in this document is provided solely to enable system and software implementers to use NXP products.  
There are no expressed or implied copyright licenses granted hereunder to design or fabricate any integrated circuits  
based on the information in this document. NXP reserves the right to make changes without further notice to  
anyproducts herein. NXP makes no warranty, representation, or guarantee regarding the suitability of its products for  
any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit,  
and specifically disclaims any and all liability, including without limitation, consequential or incidental damages.  
"Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different  
applications, and actual performance may vary over time. All operating parameters, including "typicals," must be  
validated for each customer application by the customer's technical experts. NXP does not convey any license under  
its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which  
can be found at the following address:  
How to Reach Us:  
Home Page:  
NXP.com  
Web Support:  
http://www.nxp.com/support  
http://www.nxp.com/terms-of-use.html.  
NXP, the NXP logo, Freescale, the Freescale logo and SMARTMOS are trademarks of NXP Semiconductors B.V.  
All other product or service names are the property of their respective owners. All rights reserved.  
© NXP B.V. 2017.  
Document Number: MC33978  
Rev. 7.0  
8/2017  

相关型号:

MC33978AES

SPECIALTY INTERFACE CIRCUIT
NXP

MC33978AESR2

SPECIALTY INTERFACE CIRCUIT
NXP

MC3397DW

Dual Gauge Driver Integrated Circuit with Improved Damping Algorithms
NXP

MC3397DWR2

Dual Gauge Driver Integrated Circuit with Improved Damping Algorithms
NXP

MC33981

High-Frequency, High-Current, Self-Protected High-Side Switch (4.0 mз up to 60 kHz)
MOTOROLA

MC33981

Single High Side Switch (4.0 mΩ), PWM clock up to 60 kHz
FREESCALE

MC33981ABHFK

High-Side Switch, 12V, Single 4m?, PQFN 16, Tray
NXP

MC33981BHFK

High-Side Switch, 12V, Single 4m?, PQFN 16, Tray
NXP

MC33981BHFKR2

High-Side Switch, 12V, Single 4m?, PQFN 16, Reel
NXP

MC33981BPNA

Single High-Side Switch (4.0 mΩ), PWM clock up to 60kHz
FREESCALE

MC33981BPNA/R2

Single High Side Switch (4.0 mΩ), PWM clock up to 60 kHz
FREESCALE

MC33981BPNAR2

Single High-Side Switch (4.0 mз), PWM clock up to 60kHz
FREESCALE