MC33SA0528ACR2 [NXP]

SPECIALTY INTERFACE CIRCUIT, PQFP32;
MC33SA0528ACR2
型号: MC33SA0528ACR2
厂家: NXP    NXP
描述:

SPECIALTY INTERFACE CIRCUIT, PQFP32

接口集成电路
文件: 总40页 (文件大小:687K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: MC33SA0528  
Rev. 3.0, 7/2016  
NXP Semiconductors  
Data sheet: Advance Information  
Dual DSI master transceiver  
33SA0528  
The 33SA0528 is a third generation SMARTMOS standalone, dual-channel  
distributed system interface (DSI) master device.  
Each of the two independent channels contain a differential driver and a dual  
adder receiver. The embedded DSI protocol engine converts the DSI data  
between the physical interface and the two redundant SPI interfaces. The MCU  
can control and configure the 33SA0528 and extract all of the slaves  
transceivers data from it via the dual SPI.  
Automotive restraint system  
To ensure the communication reliability, the 33SA0528 uses an on-chip band  
gap reference regulator to monitor all of the supply voltages, and uses an on-  
chip oscillator to monitor the PLL clock for the external clock error detection.  
Features  
AC SUFFIX (PB-FREE)  
98ASH70029A  
• Two independent DSI master channels  
• Supports command and response mode for slave configuration  
• Supports periodic data collection mode (PDCM) for periodic slave data  
transfers  
32-PIN LQFP  
Applications  
• Automotive airbag and safety  
• Industrial systems  
• Sense and trigger applications  
• Supports discovery mode for slave physical address self-programming  
• 10 MHz 32-bit dual SPI: main SPI for device configuration and DSI operation,  
and redundant SPI for safety purposes  
• Point-to-point, parallel, daisy chain bus topologies  
• Various diagnostic features  
VCC5 VDSI  
MCU  
33SA0528  
VDSI  
V2P5A  
VCC5  
V2P5D  
GNDA  
GNDD  
DSI Slaves Interfaces  
GPIO  
RSTB  
SPI0_SCK  
SPI0_CS  
SPI0_MOSI  
SPI0_MISO  
SCK0  
DH0  
DL0  
CS0B_D  
MOSI0  
MISO0  
GNDP_DSI0  
GNDP_DSI1  
SPI1_SCK  
SPI1_CS  
SCK1  
CS1B  
SPI1_MOSI  
SPI1_MISO  
MOSI1  
MISO1  
DH1  
DL1  
CLKOUT  
CLK_IN  
CLK_OUT  
CLK  
GNDSUB  
Figure 1. 33SA0528 simplified application diagram  
* This document contains certain information on a new product.  
Specifications and information herein are subject to change without notice.  
© 2016 NXP B.V.  
Table of Contents  
1
2
3
Orderable parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Internal block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
3.1 Pinout diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
3.2 Pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
General product characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
4.1 Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
4.2 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
4.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
4.4 Supply currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
General IC functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
5.1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
5.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
5.3 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
5.4 Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Functional block description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
6.1 SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
6.2 DSI protocol engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
6.4 Power supply monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
6.5 Clock and reset module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Typical applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
7.2 Application diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
7.3 Layout recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
8.1 Package mechanical dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
4
5
6
7
8
9
33SA0528  
NXP Semiconductors  
2
1
Orderable parts  
This section describes the part numbers available to be purchased along with their differences.  
Table 1. Orderable part variations  
Temperature (T )  
Part number  
MC33SA0528AC  
Notes  
1. To order parts in tape & reel, add the R2 suffix to the part number.  
Notes  
Package  
A
(1)  
-40 °C to 125 °C  
32-PIN LQFP  
33SA0528  
3
NXP Semiconductors  
 
2
Internal block diagram  
Voltage Supplies Monitors  
POR  
VDSI  
VCC5  
Ch0 Driver/Receiver  
Bus Driver  
Bus Receiver  
RSTB  
Current Limiter  
DH0  
DL0  
CLK_IN  
Adder  
CLK Monitor  
and PLL  
TS  
CLK_OUT  
Receiver Sum1  
Receiver Sum2  
CS0B_D  
SPI0_D  
Registers  
and  
SCLK0  
MOSI0  
MISO0  
State Machine  
DH1  
DL1  
CS1B  
SCLK1  
MOSI1  
MISO1  
GNDA  
GNDD  
V2P5A  
V2P5D  
Ch1 Driver/Receiver  
SPI1  
Registers  
and  
State Machine  
Bandgap References  
Internal  
Voltages  
GNDP_DSI  
Figure 2. 33SA0528 simplified internal block diagram  
33SA0528  
NXP Semiconductors  
4
3
Pin connections  
3.1  
Pinout diagram  
32 21 30 29 28 27 26 25  
24  
MISO0  
CLKOUT  
MISO1  
GNDSUB  
CLKIN  
NC  
VDSI  
DH0  
1
2
3
4
5
6
7
8
23  
22  
21  
20  
19  
18  
17  
GNDP_DSI0  
DL0  
GNDSUB  
DH1  
NC  
GNDP_DSI1  
DL1  
NC  
9
10 11 12 13 14 15 16  
Figure 3. 33SA0528 32-pin LQFP pinout diagram  
3.2  
Pin definitions  
A functional description of each pin can be found in the functional pin description section beginning on page 9.  
Table 2. 33SA0528 pin definitions  
Pin number  
Pin name  
Pin function  
Definition  
1
2
3
4
5
6
7
8
9
VDSI  
DH0  
Power  
This supply input is used to provide the positive level output of buses  
Output driver Bus 0 high-side  
Ground Bus power return  
Output driver Bus 0 low-side  
GND_DSI0  
DL0  
GNDSUB  
DH1  
Ground  
This pin must be tied to ground in the application.  
Output driver Bus 1 high-side  
GND_DSI1  
DL1  
Ground  
Bus power return  
Output driver Bus 1 low-side  
RSTB  
Reset  
Input  
A low level on this pin returns all registers to a known initial state.  
Clocks data in from and out to DSI_SPI0. MISO0 data changes on the negative transition of SCLK0.  
MOSI0 is sampled on the positive edge of SCLK0  
10  
11  
12  
SCK0  
CS0B_D  
SCK1  
When this signal is high, SPI signals on DSI_SPI0 are ignored. Asserting this pin low starts a DSI_SPI0  
transaction. The DSI_SPI0 transaction is signaled as completed when this signal returns high  
Input  
Input  
Clocks data in from and out to DSI_SPI1. MISO1 data changes on the negative transition of SCLK1.  
MOSI1 is sampled on the positive edge of SCLK1  
33SA0528  
5
NXP Semiconductors  
 
Table 2. 33SA0528 pin definitions(continued)  
Pin number  
Pin name  
Pin function  
Definition  
When this signal is high, SPI signals on DSI_SPI1 are ignored. Asserting this pin low starts a DSI_SPI1  
transaction. The DSI_SPI1 transaction is signaled as completed when this signal returns high  
13  
CS1B  
Input  
14  
15  
16  
17  
18  
19  
20  
21  
N.C  
MOSI0  
MOSI1  
N.C  
Input  
Input  
This pin is not internally connected and must be left unconnected or tied to ground in the application  
SPI data into DSI_SPI0. This data input is sampled on the positive edge of SCLK0  
SPI data into DSI_SPI1. This data input is sampled on the positive edge of SCLK1  
This pin is not internally connected and must be left unconnected or tied to ground in the application  
This pin is not internally connected and must be left unconnected or tied to ground in the application  
This pin is not internally connected and must be left unconnected or tied to ground in the application  
4.0 MHz clock input  
N.C  
N.C  
CLK_IN  
GNDSUB  
Input  
Ground  
This pin must be tied to ground in the application  
DSI_SPI1 data sent to the MCU by this device. This data output changes on the negative edge of  
SCLK1. When CS1B_D is high, this pin is high  
22  
23  
24  
MISO1  
CLK_OUT  
MISO0  
Output  
Output  
Output  
Output buffered clock signal that is input from CLK_IN  
DSI_SPI0 data sent to the MCU by this device. This data output changes on the negative edge of  
SCLK0. When CS0B_D is high, this pin is set at high impedance  
25  
26  
27  
28  
29  
30  
GNDD  
VCC5  
N.C  
Ground  
Power  
Ground for the digital circuits. Ground for IDDQ. This pin should be tied to MCU ground  
Regulated 5.0 V input  
This pin is not internally connected and must be left unconnected or tied to ground in the application  
This pin is not internally connected and must be left unconnected or tied to ground in the application  
0.1 μF capacitor should be connected between this pin and ground  
N.C  
V2P5D  
V2P5A  
Output  
Output  
0.1 μF capacitor should be connected between this pin and ground  
Ground for the analog circuits. This pin is not connected internally to the other grounds on the chip. It  
should be connected to a quiet ground on the board  
31  
32  
GNDA  
N.C  
Ground  
This pin is not internally connected and must be left unconnected or tied to ground in the application  
33SA0528  
NXP Semiconductors  
6
4
General product characteristics  
4.1  
Maximum ratings  
Table 3. Maximum ratings  
All voltages are with respect to ground unless otherwise noted. Exceeding these ratings may cause a malfunction or permanent damage  
to the device.  
Symbol  
Description (rating)  
Min.  
Max.  
Unit  
Notes  
Electrical ratings  
DSI bus voltage supply  
Steady-state  
VDSI  
-0.3  
10  
V
VCC5  
V2P5A  
V2P5D  
VLOGIC  
ILOGIC  
VBUS  
VCC logic supply voltage  
Regulated output voltage  
Regulated output voltage  
-0.3  
-0.3  
-0.3  
-0.3  
7.0  
3.0  
3.0  
V
V
V
Voltage on logic input/output pins  
Current on logic input/output pins  
Voltage on DSI bus pins  
Current on DSI bus pins  
ESD voltage  
V
+ 3.0  
V
CC5  
20  
20  
mA  
V
-0.3  
IBUS  
200  
mA  
Human body model (HBM)  
Machine model (MM)  
Charge device model (CDM)  
2000  
150  
500  
(2)  
VESD  
V
Notes  
2. ESD testing is performed in accordance with the human body model (HBM) (CZAP = 100 pF, RZAP = 1500 Ω), the machine model (MM)  
(CZAP = 200 pF, RZAP = 0 Ω), and the charge device model.  
4.2  
Thermal characteristics  
Table 4. Thermal ratings  
All voltages are with respect to ground unless otherwise noted. Exceeding these ratings may cause a malfunction or permanent damage  
to the device.  
Symbol  
Description (rating)  
Min.  
Max.  
Unit  
Notes  
Operating temperature  
TA  
TJ  
Ambient  
Junction  
-40  
-40  
105  
150  
°C  
TSTG  
TSD  
Storage temperature  
Thermal shutdown (bus driver)  
-55  
150  
195  
°C  
°C  
155  
33SA0528  
7
NXP Semiconductors  
 
4.3  
Operating conditions  
This section describes the operating conditions of the device. Conditions apply to all the following data, unless otherwise noted.  
Table 5. Operating conditions  
All voltages are with respect to ground unless otherwise noted. Exceeding these ratings may cause a malfunction or permanent damage  
to the device.  
Symbol  
Ratings  
Min.  
Max.  
Unit  
Notes  
VDSI  
Full characteristics are guaranteed  
9.0  
9.6  
V
Some characteristics are out of specification, but the 33SA0528 can  
communicate with the bus slaves  
VDSI  
8.8  
9.0  
V
Some characteristics are out of specification, but the VDSI monitor is active, so  
the RNE bit is never set  
VDSI  
8.2  
4.8  
8.8  
V
V
VCC5  
Functional operating VCC5 voltage  
5.25  
4.4  
Supply currents  
This section describes the current consumption characteristics of the device, as well as the conditions for the measurements.  
Table 6. Supply currents  
All voltages are with respect to ground unless otherwise noted. Exceeding these ratings may cause a malfunction or permanent damage  
to the device. Typical values noted reflect the approximate parameter mean at TA = 25 °C.  
Symbol  
Ratings  
Min.  
Typ.  
Max.  
Unit  
Notes  
Current on DSI bus  
8.0  
18  
96  
11  
24  
13  
30  
9.6 V (disabled)  
9.6 V (enabled 1.0 mA/channel)  
9.6 V (enabled 40 mA/channel)  
(3)  
IVDSI  
mA  
mA  
108  
114  
IVCC  
Current on VCC5 supply  
2.0  
Notes  
3. IOUT is the total current for all sensors connected to two DSI interfaces. For example: If 40 mA is flowing out (DHx to DLx) on each DSI channel,  
then IOUT = 2 x 40 mA = 80 mA. The max. internal current flowing from VDSI to GND is ’28 mA + (80 mA/14) = 34 mA’. The max. total current is  
flowing from VDSI (includes sensor current) is ’34 mA + 80 mA = 114 mA’. If the DSI channel-0 is enabled and 40 mA is flowing out (DHx to DLx),  
the other DSI channel (ch1) is the disabled case. The max. internal current flowing from VDSI to GND is ’19 mA + (40 mA/14) = 22 mA’. The Max.  
total current flowing from VDSI (include sensor current) is ’22 mA + 40 mA = 62 mA’.  
33SA0528  
NXP Semiconductors  
8
 
5
General IC functional description  
5.1  
Block diagram  
Power Supply  
Monitoring  
Clock Monitoring  
and Reset  
Main SPI  
Redundant SPI  
DSI Protocol Engine  
Figure 4. 33SA0528 functional block diagram  
5.2  
Features  
• Main SPI at 10 MHz and 32-bit frame size provides access to all main registers  
• Redundant SPI with the same format provides access to redundant registers with slaves’ data, for safety purposes  
• DSI protocol engine provides two independent channels to communicate and decode up to eight sensors  
• Power supplies monitor detects and informs undervoltages on all four power pins (VDSI, VCC5, V2P5A, V2P5D)  
• Internal PLL block generates 10 MHz stable frequency from 4.0 Mhz input clock  
• Internal clock generator (no resonator) provides internal 4.0 MHz reference for clock frequency watchdog block  
• Clock monitor sets proper flags if any abnormality is detected in clock or PLL frequencies  
5.3  
Functional description  
The 33SA0528 is a DSI master device behaving as an interface between the MCU and the DSI slaves connected to the system bus. It  
supports up to four slaves connected to each of the two available DSI channels, allowing for a total of eight slaves. The MCU can access  
the registers in the 33SA0528 via two independent SPIs, the first one being for configuration purposes and to interact with the DSI slaves.  
The second one provides full redundancy of slaves’ responses, which is designed for safety applications. The 33SA0528 can also act as  
a DSI Companion Chip when working together with a DSI SBC, expanding this last chip’s capacity regarding the maximum number of DSI  
slaves it can decode.  
5.4  
Communication  
5.4.1 SPI  
Both SPI channels share the same speed and format, so only one MCU configuration scheme is needed to communicate with the  
33SA0528. The maximum frequency of this interface is clocked at 10 MHz and provided by the internal PLL, generated from the 4.0 MHz  
clock input. Each command follows a 32-bit format, with the 5th byte being optional. The SPI is in-command full-duplex, which means the  
33SA0528 responds during the same SPI frame in which it demands to read a register, meaning the device can write or read any register  
in just one SPI command.  
5.4.2 DSI  
The 33SA0528 provides an interface for a DSI Differential bus, having two independent channels. Each channel can drive and decode up  
to four slaves connected in either point-to-point, parallel, or resistor-based daisy-chained bus. For each channel, the DSI Receiver block  
provides a doubled redundancy when composing the differential (high/send and low/return) values read from the bus, which makes this  
device is ideal for safety applications. For more information on the DSI protocol, refer to its consortium web site: http://  
www.dsiconsortium.org.  
33SA0528  
9
NXP Semiconductors  
6
Functional block description  
6.1  
SPI  
6.1.1 Block diagram  
SPI0  
SPI1  
SCK0  
SCK1  
CS0B_D  
MOSI0  
MISO0  
CS1B  
MOSI1  
MISO1  
To MCU  
SPI0  
To MCU  
SPI1  
Figure 5. SPI modules pins and block diagram  
6.1.2 Timings and configuration  
The timings and commands format is the same for both SPI modules.  
tNEG  
VIH  
VIL  
CSB  
VIL  
tLAG  
tCYC  
tLEAD  
tF  
tR  
tHI  
tLO  
VIH  
VIL  
SCLK  
MOSI  
tSU  
tH  
VIH  
VIH  
X
MSB  
MSB  
LSB  
tV  
tDIS  
VOH  
VOL  
X
LSB  
MISO  
Figure 6. SPI modules timings  
33SA0528  
NXP Semiconductors  
10  
Table 7. SPI modules timings  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
tCYC  
tHI  
SPI clock cycle time  
99  
40  
40  
50  
50  
ns  
ns  
ns  
ns  
ns  
SPI clock high time  
SPI clock low time  
tLO  
tLEAD  
tLAG  
SPI chip select lead time  
SPI chip select lag time  
Data setup time  
tSU  
10  
10  
25  
50  
10  
ns  
ns  
ns  
ns  
ns  
MOSI valid after SCK rising edge  
Data hold time  
tH  
MOSI valid after SCK rising edge  
Data valid time  
tV  
SCK falling edge to MISO valid, C = 50 pF  
Output disable time  
tDIS  
CSB rise to MISO high-impedance  
Rise time (30% VCC to 70% VCC  
)
tR  
SCK, MOSI  
Fall time (70% VCC to 30% VCC  
SCK, MOSI  
Chip select negate timer (read/write)  
)
tF  
10  
ns  
ns  
tNEG  
600  
6.1.3 Frame format  
The SPI module transactions start with a command and address byte and can be followed by three or four bytes of data. The start of a  
SPI transaction is signaled by the CSB signal being asserted low. The first bit sent (bit 7) of the first byte signals a read (bit = ‘0’) or write  
(bit = ‘1’) operation. The last seven bits (bit 6 to 0) of the first byte indicate the address of the desired register. Both 4-byte access and 5-  
byte access are valid for all register address. During a SPI transaction the 33SA0528 checks for SPI framing errors. A framing error is  
defined as any number of clocks received which is neither 32 nor 40. If this occurs, all bits sent by the SPI master are discarded and no  
registers are updated.  
CSB  
SCK  
1st byte  
REG ADDR  
7 bits  
2nd byte  
3rd byte  
4th byte  
MOSI  
MISO  
DATA  
DATA  
DATA  
Write/Read bit  
N/A  
DATA  
DATA  
DATA  
Figure 7. SPI module frames format - 4 byte access  
33SA0528  
11  
NXP Semiconductors  
CSB  
SCK  
1st byte  
REG ADDR  
7 bits  
2nd byte  
3rd byte  
4th byte  
5th byte  
MOSI  
MISO  
DATA  
DATA  
DATA  
DATA  
Write/Read bit  
N/A  
DATA  
DATA  
DATA  
DATA  
5th byte is only available for SPI0 registers 0x00 and 0x10  
Figure 8. SPI modules frames format - 5 bytes access  
6.1.4 Register maps  
Table 8. SPI0 register map  
Address  
Name  
Type  
2nd byte  
3rd byte  
4th byte  
5th byte (optional)  
0x00  
0x01  
0x02  
0x04  
0x06  
0x08  
0x0A  
0x0B  
0x0C  
0x0E  
0x10  
0x11  
0x12  
0x14  
0x16  
0x18  
0x1A  
0x1B  
0x1C  
0x1E  
0x40  
0x41  
0x42  
CRM Tx/Rx Data Buffer D0  
CRM Tx/Rx Data Buffer D0  
PDCM Data Buffer D0R0  
PDCM Data Buffer D0R1  
PDCM Data Buffer D0R2  
PDCM Data Buffer D0R3  
PDCM Control D0  
R/W  
R
D0DATA2  
D0DATA1  
D0DATA1  
D0DATA0  
D0R0DATA1  
D0R1DATA1  
D0R2DATA1  
D0R3DATA1  
D0PDCM_DLY  
D0DPC  
D0DATA0  
D0RES_STAT  
D0R0DATA0  
D0R1DATA0  
D0R2DATA0  
D0R3DATA0  
N/A  
D0RES_STAT  
R
D0R0DATA2  
D0R1DATA2  
D0R2DATA2  
D0R3DATA2  
D0PDCM_CTRL  
D0CTRL  
R
R
R
R/W  
R/W  
R/W  
R/W  
R/W  
R
Channel Control D0  
PDCM Configuration D0  
Channel Clear D0  
D0STAT  
D0CHIP_TIME  
D0CLR  
D0SID_R0R1  
N/A  
D0SID_R2R3  
N/A  
CRM Tx/Rx Data Buffer D1  
CRM Tx/Rx Data Buffer D1  
PDCM Data Buffer D1R0  
PDCM Data Buffer D1R1  
PDCM Data Buffer D1R2  
PDCM Data Buffer D1R3  
PDCM Control D1  
D1DATA2  
D1DATA1  
D1DATA0  
D1R0DATA1  
D1R1DATA1  
D1R2DATA1  
D1R3DATA1  
D1PDCM_DLY  
D1DPC  
D1DATA0  
D1RES_STAT  
D1R0DATA0  
D1R1DATA0  
D1R2DATA0  
D1R3DATA0  
N/A  
D1RES_STAT  
D1DATA1  
R
D1R0DATA2  
D1R1DATA2  
D1R2DATA2  
D1R3DATA2  
D1PDCM_CTRL  
D1CTRL  
R
R
R
R/W  
R/W  
R/W  
R/W  
R
Channel Control D1  
PDCM Configuration D1  
Channel Clear D1  
D1STAT  
D1CHIP_TIME  
D1CLR  
D1SID_R0R1  
N/A  
D1SID_R2R3  
N/A  
NCKPTN  
0xAA  
0xAA  
0xAA  
CHKPTN  
R
0x55  
0x55  
0x55  
MASKID  
R
MASKID  
Notes  
4. Dn registers refer to the DSI channel n, so D0 corresponds to channel 0 and D1 corresponds to channel 1.  
5. Rm registers refer to the DSI slave addressed at m, so R0 corresponds to slave at address 0 and so on.  
6. The registers that correspond to different DSI channels and addresses have the same format and description.  
33SA0528  
NXP Semiconductors  
12  
 
Table 9. SPI1 register map  
Address  
Name  
Type  
2nd byte  
3rd byte  
4th byte  
5th byte (optional)  
0x02  
0x04  
0x06  
0x08  
0x12  
0x14  
0x16  
0x18  
0x40  
0x41  
Notes  
PDCM Data Buffer D0R0  
PDCM Data Buffer D0R1  
PDCM Data Buffer D0R2  
PDCM Data Buffer D0R3  
PDCM Data Buffer D1R0  
PDCM Data Buffer D1R1  
PDCM Data Buffer D1R2  
PDCM Data Buffer D1R3  
NCKPTN  
R
R
R
R
R
R
R
R
R
R
D0R0DATA2  
D0R1DATA2  
D0R2DATA2  
D0R3DATA2  
D1R0DATA2  
D1R1DATA2  
D1R2DATA2  
D1R3DATA2  
0xAA  
D0R0DATA1  
D0R1DATA1  
D0R2DATA1  
D0R3DATA1  
D1R0DATA1  
D1R1DATA1  
D1R2DATA1  
D1R3DATA1  
0xAA  
D0R0DATA0  
D0R1DATA0  
D0R2DATA0  
D0R3DATA0  
D1R0DATA0  
D1R1DATA0  
D1R2DATA0  
D1R3DATA0  
0xAA  
-
-
-
-
-
-
-
-
-
-
CHKPTN  
0x55  
0x55  
0x55  
These registers have the same format and description as their SPI0 counterparts, as they are just for redundancy purposes.  
6.1.5 Registers description  
6.1.5.1  
CRM Tx/Rx data buffer Dn  
Table 10. 2nd byte - DnDATA2  
Bit  
7
6
5
4
3
2
1
0
R
W
DnDATA[23]  
0
DnDATA[22]  
0
DnDATA[21]  
0
DnDATA[20]  
0
DnDATA[19]  
0
DnDATA[18]  
0
DnDATA[17]  
0
DnDATA[16]  
0
Reset  
Table 11. 3rd byte - DnDATA1  
Bit  
7
6
5
4
3
2
1
0
R
W
DnDATA[15]  
0
DnDATA[14]  
0
DnDATA[13]  
0
DnDATA[12]  
0
DnDATA[11]  
0
DnDATA[10]  
0
DnDATA[9]  
0
DnDATA[8]  
0
Reset  
Table 12. 4th byte - DnDATA  
Bit  
7
6
5
4
3
2
1
0
R
W
DnDATA[7]  
0
DnDATA[6]  
0
DnDATA[5]  
0
DnDATA[4]  
0
DnDATA[3]  
0
DnDATA[2]  
0
DnDATA[1]  
0
DnDATA[0]  
0
Reset  
Table 13. 5th byte - DnRES_STAT  
Bit  
7
6
5
4
3
2
1
0
R
ER  
-
-
UV  
TE  
RNE  
0
1
33SA0528  
13  
NXP Semiconductors  
 
Table 13. 5th byte - DnRES_STAT  
Bit  
7
6
5
4
3
2
1
0
W
Reset  
0
0
0
0
1
0
0
1
Table 14. CRM Tx/Rx data buffer Dn fields description  
Field  
Description  
CRM data to transmit or CRM data received from slaves  
DnDATA[23:0]  
ER  
If the DSI channel EN bit is set, and the 33SA0528 is not in PDCM, data is transmitted after being written to the register. Also,  
slaves’ CRM data is written back to the buffer as soon as it is received through the bus.  
Error bit  
This bit indicates, for received data, there is either a CRC error, an undefined symbol error, or data mismatch between the dual  
DSI receivers.  
Undervoltage  
UV  
TE  
This bit indicates VDSI dropped below its minimum threshold for a specified time. Refer to Power supply monitor on page 30.  
Transmit empty  
This bit indicates there is no data in the transmit buffer.  
Receiver not empty  
RNE  
This bit indicates there is data available that has been received from the slaves.  
6.1.5.2  
PDCM data buffer DnRm  
Table 15. 2nd byte - DnRmDATA2  
Bit  
7
6
5
4
3
2
1
0
R
W
ER  
-
RNE  
UV  
DnRmData[19] DnRmData[18] DnRmData[17] DnRmData[16]  
Reset  
0
0
0
0
0
0
0
0
Table 16. 3rd byte - DnRmDATA1  
Bit  
7
6
5
4
3
2
1
0
R
W
DnRmData[15] DnRmData[14] DnRmData[13] DnRmData[12] DnRmData[11] DnRmData[10] DnRmData[9]  
DnRmData[8]  
Reset  
0
0
0
0
0
0
0
0
Table 17. 4th byte - DnRmDATA0  
Bit  
7
6
5
4
3
2
1
0
R
W
DnRmData[7]  
DnRmData[6]  
DnRmData[5]  
DnRmData[4]  
DnRmData[3]  
DnRmData[2]  
DnRmData[1]  
DnRmData[0]  
Reset  
0
0
0
0
0
0
0
0
33SA0528  
NXP Semiconductors  
14  
Table 18. PDCM data buffer DnRm fields description  
Field  
Description  
PDCM data received from slaves  
DnRmDATA[19:0]  
DnRmDATA[19:16] represent the source ID field of the slave, and it is used as seed for CRC calculation.  
Error bit  
ER  
This bit indicates, for received data, that there is either a CRC error, an undefined symbol error, or data mismatch between the  
dual DSI receivers.  
Undervoltage  
UV  
This bit indicates VDSI dropped below its minimum threshold for a specified time. Refer to Power supply monitor on page 30.  
Receiver not empty  
RNE  
This bit indicates there is data available that has been received from the slaves.  
6.1.5.3  
PDCM control Dn  
Table 19. 2nd byte - DnPDCM_CTRL  
Bit  
7
6
5
4
3
2
1
0
R
W
DnBRC  
0
-
-
-
-
-
DnAUTO  
0
DnPDCM_EN  
0
Reset  
0
0
0
0
0
Table 20. 3rd byte - DnPDCM_DLY  
Bit  
7
6
5
4
3
2
1
0
R
W
DELAY[7]  
0
DELAY[6]  
0
DELAY[5]  
0
DELAY[4]  
0
DELAY[3]  
0
DELAY[2]  
0
DELAY[1]  
0
DELAY[0]  
0
Reset  
Table 21. PDCM control Dn fields description  
Field  
Description  
Broadcast read command  
DnBRC  
Each time this bit is set, a manual BRC is transmitted through the DSI bus. Only valid when DnPDCM_EN is 1 and DnAUTO is 0.  
Automatic BRC  
DnAUTO  
DnPDCM_EN  
DELAY[7:0]  
When this bit is set, a BRC is transmitted automatically through the DSI bus every 500 µs. Write access to this bit is ignored when  
DnPDCM_EN is 0.  
Periodic data collection mode enable  
Once this bit is set, the 33SA0528 enters PDCM, preventing any CRM communication or any configuration change. This bit can  
be cleared by clearing the channel, by writing to the channel clear Dn register.  
Broadcast read command delay  
This bits set the delay to be applied to both manual and automatic BRCs, from BRC bit set to its transmission through the DSI bus.  
It is calculated as  
, with a range of 0 ‘~ 127.5 µs and a 0.5 µs step at 10 MHz.  
Delay time = DELAY[7:0] × 5clockcounts  
33SA0528  
15  
NXP Semiconductors  
6.1.5.4  
Channel control Dn  
Table 22. 2nd byte - DnCTRL  
Bit  
7
6
5
4
3
2
1
0
R
W
0
0
0
0
UVDSI_ON  
0
EN  
0
BCK[1]  
0
BCK[0]  
0
Reset  
0
0
0
0
Table 23. 3rd byte - DnDPC  
Bit  
7
6
5
4
3
2
1
0
R
W
0
0
0
0
0
DPC[2]  
0
DPC[1]  
0
DPC[0]  
0
Reset  
0
0
0
0
0
Table 24. 4th byte - DnSTAT  
Bit  
7
6
5
4
3
2
1
0
R
W
CFM3  
w0c  
0
CFM2  
w0c  
0
GNDA_OP  
GNDD_OP  
OCS  
w0c  
0
TS  
w0c  
0
0
UV  
w0c  
0
w0c  
0
w0c  
0
Reset  
0
Table 25. Channel control Dn fields description  
Field  
Description  
VDSI undervoltage monitor test function  
This bit forces an undervoltage detection on the UVDSI monitor, for test purposes, by forcing its input to ground.  
0: Normal operation. UVDSI module monitors the voltage in VDSI pin.  
UVDSI_ON  
1: Test operation. UVDSI is forced to ground, so the UV bit in status registers should be set.  
DSI channel enable  
EN  
0: Disable the DSI channel, if conditions are met.  
1: Enable the DSI channel, if conditions are met.  
Buffer check mode  
If both these bits are set simultaneously (in the same SPI transaction), the 33SA0528 enters BCM. Refer to the DSI protocol  
engine module. Note that the BCK[1:0] bits have higher priority than EN and DPC[2:0], meaning if are three fields are written at  
the same time, only BCK[1:0] is considered.  
BCK[1:0]  
DPC[2:0]  
Discovery pulses count  
If conditions are met, setting these bits transmits the set number of discovery pulses through the DSI bus. Refer to DSI protocol  
engine on page 20 for required conditions.  
Clock failure monitor flags  
CFM3=0 and CFM2=0: Normal case. Each bit can be cleared by writing a 0 to them.  
CFM3=1: The internal PLL in charge of generating the internal 10 MHz frequency is unlocked.  
CFM2=1: The clock watchdog indicates CLKIN is out of its 4.0 MHz accepted range.  
CFM3 and CFM2  
GNDA open pin  
GNDA_OP  
GNDD_OP  
OCS  
0: Normal case. The bit can be cleared by writing a 0 to it.  
1: GNDA pin is open.  
GNDD open pin  
0: Normal case. The bit can be cleared by writing a 0 to it.  
1: GNDD pin is open.  
Overcurrent shutdown  
0: Normal case. The bit can be cleared by writing a 0 to it.  
1: The DSI bus current limiter has worked for a certain amount of time. Refer to Power supply monitor on page 30.  
33SA0528  
NXP Semiconductors  
16  
Table 25. Channel control Dn fields description (continued)  
Field  
Description  
Thermal shutdown  
TS  
UV  
0: Normal case. The bit can be cleared by writing a 0 to it.  
1: The DSI bus thermal limit has been reached. Refer to Power supply monitor on page 30.  
Undervoltage  
0: Normal case. The bit can be cleared by writing a 0 to it.  
1: VDSI dropped below its minimum threshold for a specified time. Refer to Power supply monitor on page 30.  
6.1.5.5  
PDCM configuration Dn  
Table 26. 2nd byte - DnCHIP_TIME  
Bit  
7
6
5
4
3
2
1
0
R
W
0
0
0
0
0
0
CHIPTIME[1]  
0
CHIPTIME[0]  
0
Reset  
0
0
0
0
0
0
Table 27. 3rd byte - DnSID_R0R1  
Bit  
7
6
5
4
3
2
1
0
R
W
SID_R0[3]  
0
SID_R0[2]  
0
SID_R0[1]  
0
SID_R0[0]  
0
SID_R1[3]  
0
SID_R1[2]  
0
SID_R1[1]  
0
SID_R1[0]  
0
Reset  
Table 28. 4th byte - DnSID_R2R3  
Bit  
7
6
5
4
3
2
1
0
R
W
SID_R2[3]  
0
SID_R2[2]  
0
SID_R2[1]  
0
SID_R2[0]  
0
SID_R3[3]  
0
SID_R3[2]  
0
SID_R3[1]  
0
SID_R3[0]  
0
Reset  
Table 29. PDCM configuration Dn fields description  
Field  
Description  
DSI responses chip time  
These bits set the chip duration to use when decoding the current responses from slaves in the DSI bus.  
00: 3.0 µs  
01: 3.5 µs  
10: 4.0 µs  
11: 4.5 µs  
CHIPTIME[3:0]  
SID_Rm[3:0]  
Source ID  
These bits set the expected source ID of the DSI slave at address m. These values are used as CRC seeds.  
33SA0528  
17  
NXP Semiconductors  
6.1.5.6  
Channel clear Dn  
Table 30. 2nd byte - DnCLR  
Bit  
7
6
5
4
3
2
1
0
R
W
DnCLR[7]  
0
DnCLR[6]  
0
DnCLR[5]  
0
DnCLR[4]  
0
DnCLR[3]  
0
DnCLR[2]  
0
DnCLR[1]  
0
DnCLR[0]  
0
Reset  
Table 31. Channel clear Dn fields description  
Field  
Description  
Channel clear  
DnCLR[7:0]  
When writing 0xFF to this byte, all the registers of the corresponding channel n are reset to its initial values.  
6.1.5.7  
NCKPTN  
Table 32. 2nd byte - 0xAA  
Bit  
7
6
5
4
3
2
1
0
R
W
1
0
1
0
1
0
1
0
Reset  
1
0
1
0
1
0
1
0
Table 33. 3rd byte - 0xAA  
Bit  
7
6
5
4
3
2
1
0
R
W
1
0
1
0
1
0
1
0
Reset  
1
0
1
0
1
0
1
0
Table 34. 4th byte - 0xAA  
Bit  
7
6
5
4
3
2
1
0
R
W
1
0
1
0
1
0
1
0
Reset  
1
0
1
0
1
0
1
0
Table 35. NCKPTN fields description  
Field  
Description  
Inverted pattern check  
0xAA  
This register and its bytes are meant to check validate the communication with the device.  
33SA0528  
NXP Semiconductors  
18  
6.1.5.8  
CHKPTN  
Table 36. 2nd byte - 0x55  
Bit  
7
6
5
4
3
2
1
0
R
W
0
1
0
1
0
1
0
1
Reset  
0
1
0
1
0
1
0
1
Table 37. 3rd byte - 0x55  
Bit  
7
6
5
4
3
2
1
0
R
W
0
1
0
1
0
1
0
1
Reset  
0
1
0
1
0
1
0
1
Table 38. 4th byte - 0x55  
Bit  
7
6
5
4
3
2
1
0
R
W
0
1
0
1
0
1
0
1
Reset  
0
1
0
1
0
1
0
1
Table 39. CHKPTN fields description  
Field  
Description  
Pattern check  
0x55  
This register and its bytes are meant to check validate the communication with the device.  
6.1.5.9  
MASKID  
Table 40. 2nd byte - MASKID  
Bit  
7
6
5
4
3
2
1
0
R
W
MASKID[7]  
MASKID[6]  
MASKID[5]  
MASKID[4]  
MASKID[3]  
MASKID[2]  
MASKID[1]  
MASKID[0]  
Reset  
Table 41. MASKID fields description  
Field  
Description  
Mask ID  
MASKID[7:0]  
These bits indicate the chip's silicon revision number  
33SA0528  
19  
NXP Semiconductors  
6.1.6 Electrical characteristics  
Table 42. SPI modules electrical characteristics  
Typical values noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted.  
Symbol  
Characteristic  
Min.  
Typ.  
Max.  
Unit  
Notes  
I/O logic levels (CSB, MOSI, SCK)  
VIH  
VIL  
VHYST  
Input high-voltage  
Input low-voltage  
Input hysteresis  
2.0  
0.1  
0.35  
0.9  
0.8  
V
Input capacitance  
CI  
0.0  
10  
pF  
V
CSB, MOSI, and SCK  
Output low voltage  
VOL  
0.5  
MISO pin = 1.0 mA  
Output high voltage  
VOH  
VCC5 - 0.5  
V
MISO pin = -1.0 mA  
Output leakage current  
MISO pin = 0 V  
MISO pin = VCC5  
IMISO  
-10  
-10  
10  
10  
μA  
SCK, CSB pull-up current  
VOUT = VCC5 - 2.0 V  
IPU  
-50  
5.0  
-30  
10  
-10  
13  
μA  
μA  
MOSI pull-down current  
VOUT = 1.0 V  
IPD  
6.2  
DSI protocol engine  
6.2.1 Block diagram  
SPI  
DSI Channel 1  
DSI Channel 0  
DH1  
DL1  
GNDP_DSI1  
DH0  
DL0  
GNDP_DSI0  
CH0  
CH1  
To DSI3 bus  
(slaves)  
Figure 9. DSI modules pins and block diagram  
33SA0528  
NXP Semiconductors  
20  
6.2.2 DSI implementation parameters  
6.2.2.1  
Bus driver  
VDSI  
VHIGH  
Bus Receiver  
DnH  
DnL  
Differential voltage  
(DnH – DnL)  
VLOW  
Current  
Limitation  
SPI  
DSI Logic  
Hi Z  
Figure 10. DSI bus driver block diagram  
CS0B  
2V  
tSE_DLY  
Command  
VHIGH  
V
HIGH-0.6  
VHIGH-0.9  
VHIGH-1.1  
DnH  
V
HIGH-1.4  
VLOW  
tSLEW  
VHIGH  
0.9*VHIGH  
VHIGH-0.3  
VHIGH-0.9  
VHIGH-1.1  
VLOW  
tDISC_PULSE  
tDISC_Per  
0.1*VHIGH  
GND  
tEN_Rise  
Figure 11. DSI bus voltages timings  
33SA0528  
21  
NXP Semiconductors  
Table 43. Bus driver characteristics  
Characteristics noted under conditions 9.0 V VDSI < 9.6 V, 4.8 V < VCC5 < 5.25 V, -40 °C TA 125 °C, unless otherwise noted. Typical  
values noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted. All parameters  
not mentioned in this table are compliant with those described in the DSI protocol specification, unless otherwise noted.  
Symbol  
Characteristic  
Min.  
Typ.  
Max.  
Unit  
Notes  
VHIGH  
VLOW  
DSI voltage level high (DnH open, DnL open)  
DSI voltage level low (DnH open, DnL open)  
DSI high level voltage drift  
7.5  
VHIGH - 1.8  
150  
V
V
VHIGH - 2.2  
VHIGH_Drift  
-150  
mV  
mV  
W
Common mode voltage peak to peak during single bit signal  
High-side output resistance  
100  
RHIGH  
RLOW  
RM  
3.0  
3.0  
5.4  
Low-side output resistance  
5.4  
W
Total output resistance (RHIGH + RLOW  
Communication data rate  
)
10  
W
DRATE  
125  
kbps  
Command start delay (CS0B rising edge to command start edge)  
tSE_DLY  
PDCM (DnPDCM_DLY = 0)  
CRM  
1.5  
5.0  
μs  
tSLEW  
tEN_Rise  
tDISC_PULSE  
tDISC_PER  
Voltage signal slew rate  
Bus enable rising time  
2.0  
6.0  
10  
V/μs  
μs  
Self discovery pulse width  
Self discovery pulse period  
15  
16  
17  
μs  
120  
125  
130  
μs  
6.2.2.2  
Bus receiver  
DHn  
Adder 1  
Receiver  
Decision  
Logic  
Adder 1  
Receiver  
SPI0 Data buffer  
SPI1 Data buffer  
Adder 2  
Receiver  
Decision  
Logic  
Adder 2  
Receiver  
DLn  
Figure 12. DSI bus receiver block diagram  
The bus receiver presents doubled redundancy for safety purposes. It consists of two receivers and two independent decision logics.  
The first decision logic checks data integrity of the first receiver (referring to the second receiver), and transfers this data to SPI0  
data buffer.  
The second decision logic checks data integrity of the second receiver (referring to the first receiver), and transfers this data to SPI1  
data buffer.  
The only case where ER bit is not set is given by satisfying all three conditions below. Any other case sets an ER bit.  
Receiver 1 CRC is OK  
Receiver 2 CRC is OK  
Receiver 1 XOR (bitwise) receiver 2 is OK  
33SA0528  
NXP Semiconductors  
22  
VH  
2*Iresp  
VH-1.1V  
90%  
VL  
tRESP_START_CRM  
10%  
Iq+2.1mA  
tSLEW_RESP  
Iq  
2*Iresp  
Iresp  
IQ  
0A  
tVLD  
CS0B  
Can read response data  
Slave N response  
Slave N+1 response  
tIPS  
tCHIP  
Figure 13. DSI bus currents timings  
Table 44. Bus receiver characteristics  
Characteristics noted under conditions 9.0 V VDSI < 9.6 V, 4.8 V < VCC5 < 5.25 V, -40 °C TA 125 °C, unless otherwise noted. Typical  
values noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted. All parameters  
not mentioned in this table are compliant with those described in the DSI protocol specification, unless otherwise noted.  
Symbol  
Characteristic  
Total slaves quiescent current  
Min.  
Typ.  
Max.  
Unit  
Notes  
IQ_TOTAL  
-
-
40  
mA  
IRESP_TH_LOW_  
IQ_TOTAL  
+5.0  
IQ_TOTAL  
+7.0  
Response current low threshold (receiver 1)  
Response current high threshold (receiver 1)  
Response current low threshold (receiver 2)  
Response current high threshold (receiver 2)  
-
-
-
-
mA  
mA  
mA  
mA  
DnH  
IRESP_TH_HIGH_  
IQ_TOTAL  
+15  
IQ_TOTAL  
+20  
DnH  
IRESP_TH_LOW_  
IQ_TOTAL  
+5.0  
IQ_TOTAL  
+7.0  
ADDER  
IRESP_TH_HIGH_  
IQ_TOTAL  
+15  
IQ_TOTAL  
+20  
ADDER  
tRESP_START_CRM Response start time in command and response mode  
280  
21  
295  
-
310  
45  
μs  
mA/μs  
μs  
tSLEW_RESP  
tCHIP_CRM  
Response current slew rate  
Chip time in command and response mode  
4.75  
5.0  
5.25  
33SA0528  
23  
NXP Semiconductors  
Table 44. Bus receiver characteristics (continued)  
Characteristics noted under conditions 9.0 V VDSI < 9.6 V, 4.8 V < VCC5 < 5.25 V, -40 °C TA 125 °C, unless otherwise noted. Typical  
values noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted. All parameters  
not mentioned in this table are compliant with those described in the DSI protocol specification, unless otherwise noted.  
Symbol  
Characteristic  
Min.  
Typ.  
Max.  
Unit  
Notes  
tVLD  
tIPS  
Data valid time  
-
-
-
1.0  
-
μs  
Inter packet separation  
3.0  
chips  
6.2.3 Block logic and operation  
Buffer Check  
Mode  
BCK[1:0]  
BCK0 | BCK1  
DnCLR[7:0]  
Enabled  
POR  
DPC[2:0]  
EN  
EN  
Command and  
Response  
Mode  
Send  
Discovery  
Pulses  
Disabled  
DnCLR[7:0]  
PDCM_EN  
Periodic Data  
Collection Mode  
Figure 14. DSI block main states diagram for channel n  
There are three states in the DSI protocol engine’s logic for each channel: disabled, enabled and buffer check mode. In the disabled state,  
all SPI data buffers are reset to their initial values and any write access to the Tx buffer is ignored. The enabled state contains two modes,  
command and response mode, and periodic data collection mode. In command and response mode, the MCU can request the 33SA0528  
to transceive any data (Tx/Rx buffers) or DSI discovery pulses to the DSI slaves in the bus. In periodic data collection mode, the DSI  
master stores and decodes four slaves responses per channel after every broadcast read command is sent through the DSI bus, which  
happens every 500 μs if in auto mode, or manually each time the DnBRC bit is set.  
33SA0528  
NXP Semiconductors  
24  
6.2.3.1  
Command and response mode  
Command  
(Manchester encoded)  
Voltage  
Current  
Response  
(Tri-level current moduration)  
Figure 15. DSI Command and response mode operating principle  
In this mode, any data written to the CRM Tx/Rx data buffer registers by the MCU, via SPI0, is outputted through the DSI bus as  
Manchester encoded voltage pulses, composing a command. The DSI slaves connected to the bus then receive this command and, if  
applicable, send back their responses following a tri-level current modulation, as detailed in the DSI protocol specification. The response  
is decoded by the DSI block and stored back to the corresponding CRM Tx/Rx Data Buffer register.  
When TE is 0, write access  
to Tx buffer is ignored.  
Write to  
Tx buffer  
Read from Write to  
Tx buffer Tx buffer  
SPI Tx  
MCU can read Rx buffer in any  
cases.  
SPI Transaction  
SPI Rx  
TE bit:  
RNE bit:  
1
0
1
0
1
0
1
0
Command  
at least 500us  
Response  
Figure 16. Command and response mode behavior on TE and RNE bits  
The DSI voltage command is transmitted through the DSI bus immediately after the MCU completes writing data, via SPI0, to the CRM  
Tx/Rx data buffer register. This is not valid if the elapsed time from the start of the previous command is less than 500 μs. If the MCU  
writes data to the CRM Tx buffer when the TE bit is set (TE=1) and 500 μs have not yet elapsed from the start of the previous command,  
a new command is queued and outputted once this time is concluded. When the TE bit is cleared (TE=0), any MCU write operation to the  
CRM Tx buffer are ignored. However, the MCU can read the CRM Rx Data Buffer at any time.  
Received data is stored  
New data arrives  
Overwrite data and status  
RNE=0  
RNE=1  
Rx Data Buffer register is read by MCU  
Clear other status bits  
Figure 17. Command and response mode RNE bit behavior  
33SA0528  
25  
NXP Semiconductors  
If a DSI slave response is detected by the receiver logic, the RNE bit is set (RNE=1), indicating there is new data in the buffer. When the  
MCU reads the Rx data buffer register, the RNE bit clears (RNE=0). If another DSI slave response is detected with the receiver not being  
empty, the Rx data buffer overwrites with the new data and the RNE bit is kept set (RNE=1).  
To enter into command and response mode, the corresponding EN bit from the channel control register must be set (EN=1). If BCK[1:0]  
bits and EN bit are set in the same SPI transaction, the operation on the EN bit is ignored as the BCK bits have higher priority.  
There are two ways to exit this mode (note that data buffers are cleared entering into disabled mode):  
Clear the corresponding EN bit (EN=0).  
Write 0xFF to the DnCLR byte of the channel clear register in SPI0.  
6.2.3.2  
Discovery pulses  
The 33SA0528 can send DSI discovery commands as detailed in the DSI protocol specification, for the automatic addressing of the slaves  
connected to the bus (discovery mode). For this, the device must first enter command and response mode.  
Command and  
Response  
Mode  
DPC[2:0]  
t<16us  
t<109 μs  
VHIGH  
tELAPSED = 16 μs  
Decrement DPC[2:0]  
VLOW  
tELAPSED = 109 μs AND  
DPC[2:0] is not 0  
DPC[2:0] = 0  
Figure 18. Send discovery pulses behavior  
When writing a non-zero value to the DPC[2:0] bits of the corresponding channel control register, a series of voltages pulses are sent  
through the DSI bus, between VLOW and VHIGH. The number of pulses is the value written to the DPC bits and, as detailed in the DSI  
protocol specification, it must be equal or higher to the number of DSI slaves to be addressed. Once all the pulses have been transmitted,  
the device goes back to command and response mode.  
6.2.3.3  
Periodic data collection mode  
BRC  
BRC  
353.8 μs  
226 μs  
112.8 μs  
1st slot  
2nd slot  
3rd slot  
4th slot  
DnR0DataBuffer  
DnR1DataBuffer  
DnR2DataBuffer  
DnR3DataBuffer  
Figure 19. DSI periodic data collection mode operating principle  
33SA0528  
NXP Semiconductors  
26  
In this mode, the 33SA0528 can send special voltage pulses through the DSI bus, called broadcast read commands, after which it stores  
all received responses to the corresponding SPI0 and SPI1 PDCM data buffer registers. The responses must be separated following a  
TDMA approach, as defined in the DSI protocol specification.  
Slot boundary  
Correct data  
Error  
Correct data  
Error  
Figure 20. Periodic data collection mode time slots  
The current-modulated responses from the DSI slaves must be contained between the boundaries of one of the four available time slots.  
Each time slot has an associated PDCM data buffer DnRm register. If two or more responses overlap each other, the ER bit of the  
corresponding data buffer register is set (ER=1).  
Table 45. Periodic data collection mode time slots and data buffer registers  
Address  
Time slot  
SPI0 data buffer  
SPI1 data buffer  
1
2
3
4
20 - 112.8 μs  
112.8 - 226 μs  
226 - 353.8 μs  
353.8 - 500 μs  
PDCM data buffer DnR0  
PDCM data buffer DnR1  
PDCM data buffer DnR2  
PDCM data buffer DnR3  
PDCM data buffer DnR0  
PDCM data buffer DnR1  
PDCM data buffer DnR2  
PDCM data buffer DnR3  
The 33SA0528 features two modes for transmitting the BRC: manual mode for single shot transmissions, and automatic mode where a  
BRC is sent every 500 μs.  
CS0B  
This access is ignored.  
W, DnBRC=1  
W, DnBRC=1  
MOSI  
DnPDCM_DLY[7:0] x 5 clk  
DnBRC=1  
DnBRC bit is cleared  
DnH  
Figure 21. Periodic data collection mode manual BRC  
If the DnAUTO bit is cleared (DnAUTO=0), the device works in manual mode, so a single BRC transmits through the DSI bus when setting  
the corresponding DnBRC bit (DnBRC=1) in the PDCM control register of SPI0. Any subsequent write access to the DnBRC bit is ignored  
until the DSI BRC pulse is transmitted and the DnBRC bit gets cleared (DnBRC=0). The transmission occurs after the configured PDCM  
delay has elapsed from the moment the BRC bit was set. The delay is calculated as five clock times the value on the corresponding  
PDCM_DLY[7:0] bits.  
33SA0528  
27  
NXP Semiconductors  
CS0B  
MOSI  
W, DnAUTO=1  
500 μs  
DnH  
Figure 22. Periodic data collection mode automatic BRC  
At the moment the DnAUTO bit is set (DnAUTO=1), a BRC transmits right after the SPI0 transmission finishes, and with a periodicity of  
500 μs. Write access to this bit is ignored when the corresponding DnPDCM_EN bit is cleared (DnPDCM_EN=0).  
New data arrives  
Overwrite data and status  
Received data is stored  
RNE=0  
RNE=0  
RNE=1  
2 clock cycles  
Rx Data Buffer register is read by MCU  
Clear other status bits  
Figure 23. Periodic data collection mode RNE bit behavior  
For each of the PDCM data buffer registers, when a DSI slave response is detected by the receiver logic the RNE bit is set (RNE=1),  
indicating there is new data in the buffer. When the MCU reads the Rx data buffer register, the RNE bit is cleared (RNE=0). If another DSI  
slave response is detected with the receiver not being empty, the Rx data buffer overwrites with the new data and the RNE bit is cleared  
(RNE=0) and then reset after two clock cycles (RNE=1).  
To enter into periodic data collection mode, the corresponding PDCM_EN bit from the PDCM control register must be set (PDCM_EN=1).  
To exit this mode, a 0xFF must be written to the corresponding DnCLR[7:0] bits (note that all of the corresponding channel registers are  
cleared as they enter into disabled mode).  
6.2.3.4  
Buffer check mode  
This mode tests and verifies the state of the buffers (for stuck-at bits checking, for example) by routing them internally to other registers.  
When in this mode, all data written to the SPI0 Tx buffer registers is not transmitted over the DSI bus, but instead copied to each of the  
periodic data buffer registers, both in SPI0 and SPI1. This action sets the associated RNE bits of the Rx registers. The Tx bytes to Rx  
bytes routing are done as follows:  
33SA0528  
NXP Semiconductors  
28  
CRM Tx Data Buffer Dn  
DnData2[19:16] DnData1  
DnData0  
PDCM Data Buffer DnR0  
PDCM Data Buffer DnR0  
DnData2[19:16]  
DnData1  
DnData0  
DnData0  
DnData2[19:16]  
DnData1  
DnData0  
DnData0  
.
.
.
.
.
.
PDCM Data Buffer DnR3  
PDCM Data Buffer DnR3  
DnData2[19:16]  
DnData1  
DnData2[19:16]  
DnData1  
SPI0 registers  
SPI1 registers  
Figure 24. Buffer check mode bytes routing  
To enter into this mode, both BCK0 and BCK1 bits must be set in the same SPI0 transaction.  
There are two ways to exit this mode and so, go back to the disabled state:  
1. Clear any of BCK0 or BCK1 bits by writing a 0 to them.  
2. Clear the channel by writing the CLR[7:0] bits.  
6.3  
Bus driver protection  
The bus driver has a current limiter and protection circuit with the following features.  
Limiting the current output through DHn and DLn to a specific value.  
Overcurrent shutdown of the corresponding DSI channel (current over threshold for a specified time).  
Thermal shutdown of the corresponding DSI channel (temperature over threshold for a specified time).  
The corresponding bits in the SPI registers are set to indicate the condition met.  
Table 46. Bus driver protection characteristics  
Characteristics noted under conditions 9.0 V VDSI < 9.6 V, 4.8 V < VCC5 < 5.25 V, -40 °C TA 125 °C, unless otherwise noted. Typical  
values noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted. All parameters  
not mentioned in this table are compliant with those described in the DSI protocol specification, unless otherwise noted.  
Symbol  
Characteristic  
High-side current limit (sink)  
Min.  
Typ.  
Max.  
Unit  
Notes  
ILIM_DNH(SINK)  
100  
-200  
100  
200  
-120  
200  
mA  
mA  
mA  
mA  
ILIM_DNH(SOURCE) High-side current limit (source)  
ILIM_DNL(SINK) Low-side current limit (sink)  
ILIM_DNL(SOURCE) Low-side current limit (source)  
Disabled high-side leakage  
-200  
-120  
ILK_DNH  
CT  
RT, HT  
DHn VDSI  
DHn VDSI  
VDSI < DHn < 16 V  
-35  
-10  
-1000  
10  
10  
1000  
μA  
33SA0528  
29  
NXP Semiconductors  
Table 46. Bus driver protection characteristics (continued)  
Characteristics noted under conditions 9.0 V VDSI < 9.6 V, 4.8 V < VCC5 < 5.25 V, -40 °C TA 125 °C, unless otherwise noted. Typical  
values noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted. All parameters  
not mentioned in this table are compliant with those described in the DSI protocol specification, unless otherwise noted.  
Symbol  
Characteristic  
Min.  
Typ.  
Max.  
Unit  
Notes  
Disabled low-side leakage  
ILK_DNL  
-10  
-1000  
10  
1000  
μA  
DHn VDSI  
VDSI < DHn < 16 V  
tOCS_DLY  
230  
320  
560  
μs  
Overcurrent shutdown delay  
6.4  
Power supply monitor  
This block is responsible of monitoring the voltages on pins VDSI, VCC5, V2P5A, and V2P5D.  
6.4.1 Monitor behavior  
6.4.1.1  
VDSI  
If the voltage on this pin drops below the defined voltage threshold for longer than the voltage threshold mask time, the 33SA0528  
continues to send queued DSI commands, but takes following actions:  
Not setting any RNE bit in the data buffer registers  
Setting UV bits in the data buffer registers and DnSTAT registers  
These actions continues until one of following condition is applied:  
The device is reset by POR  
DnCLR[7:0] bits are set to 0xFF in one SPI transaction  
EN bits in DnCTRL registers are cleared and then reset (EN = 0 then EN = 1)  
Finally, if VDSI falls below the VDSI voltage reset threshold, the device is reset.  
6.4.1.2  
VCC5  
If VCC5 voltage falls below its undervoltage threshold, the 33SA0528 is reset. In the case of VCC5 rising, the device is activated after a  
specific deglitch time from the threshold crossing point. In the case of VCC5 falling, the device is reset after a specific deglitch time from  
the threshold crossing point.  
6.4.1.3  
V2P5A and V2P5D  
If any of the voltages fall below the corresponding threshold level, the 33SA0528 resets.  
6.4.2 Electrical parameters  
Table 47. Power supply monitor characteristics  
Characteristics noted under conditions 9.0 V VDSI < 9.6 V, 4.8 V < VCC5 < 5.25 V, -40 °C TA 125 °C, unless otherwise noted. Typical  
values noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted. All parameters  
not mentioned in this table are compliant with those described in the DSI protocol specification, unless otherwise noted.  
Symbol  
Characteristic  
Min.  
Typ.  
Max.  
Unit  
Notes  
VDSI_UV  
tDSI_UV  
VDSI_RST  
tDSI_RST  
VDSI voltage low threshold  
Deglitch time  
8.2  
13  
8.5  
16  
8.8  
25  
V
μs  
V
VDSI voltage reset threshold  
Deglitch time (analog)  
5.5  
12.5  
4.0  
6.0  
μs  
33SA0528  
NXP Semiconductors  
30  
Table 47. Power supply monitor characteristics (continued)  
Characteristics noted under conditions 9.0 V VDSI < 9.6 V, 4.8 V < VCC5 < 5.25 V, -40 °C TA 125 °C, unless otherwise noted. Typical  
values noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted. All parameters  
not mentioned in this table are compliant with those described in the DSI protocol specification, unless otherwise noted.  
Symbol  
Characteristic  
Min.  
Typ.  
Max.  
Unit  
Notes  
VCC5_UV1  
VCC5 undervoltage threshold for system reset  
4.5  
4.65  
4.8  
V
When VCC5 ramps up, time delay from VCC5 pass over the  
undervoltage threshold to start reset recovery  
tCC5_UV1_RISE  
tCC5_UV1_FALL  
13  
13  
16  
16  
25  
25  
μs  
μs  
When VCC5 ramps down, time delay from VCC5 pass below the  
undervoltage threshold to reset activation  
V2P5A_UV  
V2P5D_UV  
Internal analog supply undervoltage threshold  
2.0  
2.0  
0.5  
0.5  
0.2  
0.2  
13  
2.175  
2.175  
1.0  
2.35  
2.35  
2.5  
4.0  
0.4  
0.4  
25  
V
V
Internal digital supply undervoltage threshold  
t2P5A_UV  
Internal analog supply undervoltage detection deglitch time  
Internal digital supply undervoltage detection deglitch time  
Analog ground connection open detection threshold  
Digital ground connection open detection threshold  
Deglitch time of analog ground connection open detection  
Deglitch time of digital ground connection open detection  
μs  
μs  
V
t2P5D_UV  
1.0  
VGNDA_OPEN  
VGNDD_OPEN  
tGNDA_OPEN  
tGNDD_OPEN  
0.3  
0.3  
V
16  
μs  
μs  
13  
16  
25  
6.5  
Clock and reset module  
6.5.1 Block diagram  
CLKOUT  
V2P5AV2P5D  
scan clock  
CFM2 signal  
Clockfrequency  
watchdog  
CFM2 flag  
Frequency  
Divider  
(4.0 MHz±5%)  
Oscillator  
(fINTCLK=8.0 MHz±5%)  
Clockgenerator  
(No resonator)  
CFM3 signal  
pll lock  
CFM3 flag  
Frequency  
Divider  
(10MHz±1%)  
DSI_CLOCK10 MHz±1%  
DSI3  
20 MHz±1%  
PLL Block  
CLKIN  
GNDD  
External clock  
From MCU  
4.0 MHz±1%  
Figure 25. Clock module pins and block diagram  
33SA0528  
31  
NXP Semiconductors  
The clock module takes a 4.0 MHz clock source from the CLKIN pin. This frequency is usually provided by the MCU. As an output, it  
provides this same frequency through a buffer connected to the CLKOUT pin.  
This module has an internal frequency generator used as reference to detect abnormalities in CLKIN. If any abnormality is detected, the  
CFM2 bit of the channel control registers in SPI0 is set (CFM2=1).  
The clock module also includes a PLL block that generates a 10 MHz frequency from CLKIN. This generated frequency is used for the  
DSI protocol engine logic. If the PLL block is unstable (i.e. PLL unlocked), the CFM3 bit of the channel control registers in SPI0 is set  
(CFM3=1).  
When any of both CFM2 or CFM3 bits are set, the 10 MHz frequency is tied to low level, meaning the DSI protocol engine is not functional,  
as it is lacking its input clock. Each flag can be cleared (CFMx=0) by writing a 0 to it via SPI communication.  
6.5.2 Electrical parameters  
Table 48. Clock and reset module characteristics  
Characteristics noted under conditions 9.0 V VDSI < 9.6 V, 4.8 V < VCC5 < 5.25 V, -40 °C TA 125 °C, unless otherwise noted. Typical  
values noted reflect the approximate parameter means at TA = 25 °C under nominal conditions, unless otherwise noted. All parameters  
not mentioned in this table are compliant with those described in the DSI protocol specification, unless otherwise noted.  
Symbol  
Characteristic  
Min.  
Typ.  
Max.  
Unit  
Notes  
I/O logic levels (RSTB, CLKIN)  
VIH  
VIL  
VHYST  
Input high-voltage  
Input low-voltage  
Input hysteresis  
2.0  
0.1  
0.35  
0.9  
0.8  
V
Input capacitance  
RSTB and CLK  
CI  
20  
pF  
V
Output low-voltage  
VOL  
0.0  
0.5  
CLKOUT pin = 1.0 mA  
Output high-voltage  
VOH  
IRSTBPD  
IPD  
VCC5 - 0.5  
100  
200  
10  
400  
13  
V
CLKOUT pin = 1.0 mA  
RSTB pull-down resistor  
kΩ  
μA  
CLKIN pull-down current  
5.0  
VOUT = 1.0 V  
fINTCLK  
Internal clock frequency  
-5.0%  
3.50  
4.09  
8.0  
3.76  
4.26  
+5.0%  
3.91  
4.58  
64  
MHz  
MHz  
MHz  
μs  
fCLKIN_WD_FALL  
fCLKIN_WD_RISE  
tCLKIN_WD  
External input clock watchdog unusual fall frequency  
External input clock watchdog unusual rise frequency  
Clock frequency watchdog detect time  
tCLKIN_TRAN  
External input clock transfer function design guarantee  
10  
ns  
CLKIN input frequency for PLL operating  
PLL ratio vs. CLKIN  
3.76 MHz CLKIN 4.24 MHz  
V2P5D > 2.0 V  
fCLKIN_OP  
4.95  
5.0  
5.05  
tCLKIN_HI  
tCLKIN_LO  
tCLKIN_PER  
tCLKIN_LH  
CLKIN periods time high  
75  
75  
245  
ns  
ns  
ns  
ns  
ns  
ns  
μs  
μs  
CLKIN periods time low  
CLKIN period  
250  
255  
100  
100  
25  
CLKIN transition time for low to high  
CLKIN transition time for high to low  
CLKIN clock edge jitter for PLL operating  
PLL lock time for first lock  
PLL lock time for re-lock  
tCLKIN_HL  
tCLKIN_JITT  
tPLL_LOCK  
tPLL_RELOCK  
-25  
10  
15  
40  
30  
33SA0528  
NXP Semiconductors  
32  
7
Typical applications  
7.1  
Introduction  
The 33SA0528 is a standalone, dual-channel DSI transceiver. This means it can act on its own as a direct interface between an MCU and  
up to eight DSI slaves. The MCU communicates with the 33SA0528 via its SPI0 (for device configuration and DSI operation) and its  
SPI1(for DSI slaves’ data redundancy). The device can also work as a companion chip for a DSI system basis chip master. In this case,  
the 33SA0528 is used to expand the channels of the DSI SBC, increasing in turn the maximum number of slaves which can be connected  
to the system. The main advantage of the companion chip operation is the SBC master’s internal safing logic can access the 33SA0528  
DSI data, making this configuration ideal for safety applications.  
7.2  
Application diagram  
5.0 V 9.0 V  
MCU  
33SA0528  
VDSI  
VCC5  
V2P5A  
V2P5D  
0.1 μF 0.1 μF  
6.8 μF 2.2 μF  
GNDA  
GNDD  
MMA2712  
GPIO  
RSTB  
SPI0_SCK  
SPI0_CS  
SPI0_MOSI  
SPI0_MISO  
SCK0  
DH0  
DL0  
CS0B_D  
MOSI0  
MISO0  
2200 pF  
2200 pF  
GNDP_DSI0  
GNDP_DSI1  
SPI1_SCK  
SPI1_CS  
SCK1  
CS1B  
MOSI1  
MISO1  
SPI1_MOSI  
SPI1_MISO  
DH1  
DL1  
CLKOUT  
CLK_IN  
CLK_OUT  
CLK  
GNDSUB  
Figure 26. 33SA0528 typical application schematic as standalone transceiver  
33SA0528  
33  
NXP Semiconductors  
MCU  
DSI Master SBC  
SPI0_CS0  
SPI0_CS1  
SPI0_CS2  
CS0B_A  
CS0B_D  
CS0B_S  
SCK0  
MOSI0  
MISO0  
SPI0_SCK  
SPI0_MOSI  
SPI0_MISO  
CS1B  
SCK1  
SPI1_CS0  
SPI1_SCK  
MOSI1  
MISO1  
SPI1_MOSI  
SPI1_MISO  
SPI1_CS1  
BP0  
VCC5  
VBUCK  
33SA0528  
VDSI  
VCC5  
V2P5A  
V2P5D  
0.1 μF 0.1 μF  
2.2 μF 2.2 μF  
GNDA  
GNDD  
Freescale MMA2712  
GPIO  
RSTB  
SCK0  
DH0  
DL0  
CS0B_D  
MOSI0  
MISO0  
2200 pF  
2200 pF  
GNDP_DSI0  
GNDP_DSI1  
SCK1  
CS1B  
MOSI1  
MISO1  
DH1  
DL1  
CLKOUT  
CLK_IN  
CLK_OUT  
CLK  
GNDSUB  
Figure 27. 33SA0528 typical application schematic as a companion chip  
7.3  
Layout recommendations  
NXP recommends placing the components as described below:  
VDSI to ground 2.2 μF capacitor to be placed close to the chip  
VCC5 to ground 2.2 μF capacitor to be placed close to the chip  
V2P5A to GNDA 0.1 μF capacitor to be placed close to GNDA pin  
V2P5D to GNDD 0.1 μF capacitor to be placed close to GNDD pin  
DHn, DLn to GNDP_DSIn 2200 pF capacitors to be placed close to the corresponding GNDP_DSIn pin  
33SA0528  
NXP Semiconductors  
34  
8
Packaging  
8.1  
Package mechanical dimensions  
Package dimensions are provided in package drawings. To find the most current package outline drawing, go to www.nxp.com and  
perform a keyword search for the drawing’s document number.  
Package  
Suffix  
Package Outline Drawing Number  
32-Pin LQFP  
AC  
98ASH70029A  
33SA0528  
35  
NXP Semiconductors  
33SA0528  
NXP Semiconductors  
36  
33SA0528  
37  
NXP Semiconductors  
33SA0528  
NXP Semiconductors  
38  
9
Revision history  
Revision  
Date  
Description of Changes  
1.0  
1/2015  
Initial release  
Minor corrections to form and style - No technical content changes  
Changed document status to Advance Information  
Changed orderable part number from PC to MC.  
Corrected definitions for pins 5, 6, 7, 8, and 24 in Table 2  
Updated document form and style  
2.0  
3.0  
2/2015  
5/2016  
6/2016  
7/2016  
Corrected the title of Table 9  
Corrected address names in Table 8  
33SA0528  
39  
NXP Semiconductors  
Information in this document is provided solely to enable system and software implementers to use NXP products.  
There are no expressed or implied copyright licenses granted hereunder to design or fabricate any integrated circuits  
based on the information in this document. NXP reserves the right to make changes without further notice to any  
products herein.  
How to Reach Us:  
Home Page:  
NXP.com  
Web Support:  
http://www.nxp.com/support  
NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular  
purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and  
specifically disclaims any and all liability, including without limitation, consequential or incidental damages. "Typical"  
parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications,  
and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each  
customer application by the customer's technical experts. NXP does not convey any license under its patent rights nor  
the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the  
following address:  
http://www.nxp.com/terms-of-use.html.  
NXP, the NXP logo, Freescale, the Freescale logo, SafeAssure, the SafeAssure logo, and SMARTMOS are  
trademarks of NXP B.V. All other product or service names are the property of their respective owners. All rights  
reserved.  
© 2016 NXP B.V.  
Document Number: MC33SA0528  
Rev. 3.0  
7/2016  

相关型号:

MC33SB0400ES

LOW SIDE DRIVER X4, WHEEL SPEED
NXP

MC33SB0400ESR2

Interface Circuit, MOS
NXP

MC33SB0401ES

LOW SIDE DRIVER X2, WHEEL SPEED
NXP

MC34001

JFET INPUT OPERATIONAL AMPLIFIERS
ONSEMI

MC34001

JFET Input Operational Amplifiers
MOTOROLA

MC34001

GENERAL PURPOSE SINGLE JEFT OPERATIONAL AMPLIFIERS
STMICROELECTR

MC34001

JFET Input Operational Amplifiers
FREESCALE

MC34001A

GENERAL PURPOSE SINGLE JEFT OPERATIONAL AMPLIFIERS
STMICROELECTR

MC34001AD

GENERAL PURPOSE SINGLE JEFT OPERATIONAL AMPLIFIERS
STMICROELECTR

MC34001AG

暂无描述
MOTOROLA

MC34001AH

GENERAL PURPOSE SINGLE JEFT OPERATIONAL AMPLIFIERS
STMICROELECTR

MC34001AN

GENERAL PURPOSE SINGLE JEFT OPERATIONAL AMPLIFIERS
STMICROELECTR