MC56F8155VFGE [NXP]

16-bit DSC, 56800E core, 256KB Flash, 40MHz, QFP 128;
MC56F8155VFGE
型号: MC56F8155VFGE
厂家: NXP    NXP
描述:

16-bit DSC, 56800E core, 256KB Flash, 40MHz, QFP 128

时钟 微控制器 外围集成电路
文件: 总172页 (文件大小:1354K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
56F8355/56F8155  
Data Sheet  
Preliminary Technical Data  
56F8300  
16-Bit Digital Signal Controllers  
MC56F8355  
Rev. 17  
08/2009  
freescale.com  
Document Revision History  
Version History  
Rev 0.0  
Description of Change  
Initial release  
Rev 1.0  
Fixed typos in Section 1.1.3; Replace any reference to Flash Interface Unit with Flash  
Memory Module; added note to Vcap pin in Table 2-2; corrected Table 4-4, removed  
unneccessary notes in Table 10-12; corrected temperature range in Table 10-14; added  
ADC calibration information to Table 10-23 and new graphs in Figure 10-22  
Rev 2.0  
Rev 3.0  
Corrected 2.2μF to 0.1 μF low ESR capacitor in Table 2-2. Replaced Table 10-16 with  
correct parameters for the 128 package pinout. Corrected (fout/2) with (fout) in Table 10-14.  
Corrected pinout labels in Figure 11-1.  
Adding/clarifing notes to Table 4-4 to help clarify independent program flash blocks and  
other Program Flash modes, clarification to Table 10-22, corrected Digital Input Current Low  
(pullup enabled) numbers in Table 10-5. Removed text and Table 10-2; replaced with note to  
Table 10-1.  
Rev 4.0  
Rev 5.0  
Correcting Table 4-6 Address locations.  
Added 56F8155 information; edited to indicate differences in 56F8355 and 56F8155. Refor-  
matted for Freescale look and feel. Updated Temperature Sensor and ADC tables, then  
updated balance of electrical tables for consistency throughout the family. Clarified I/O power  
description in Table 2-2, added note to Table 10-7 and clarified Section 12.3.  
Rev 6.0  
Added output voltage maximum value and note to clarify in Table 10-1; also removed overall  
life expectancy note, since life expectancy is dependent on customer usage and must be  
determined by reliability engineering. Clarified value and unit measure for Maximum allowed  
PD in Table 10-3. Corrected note about average value for Flash Data Retention in  
Table 10-4. Added new RoHS-compliant orderable part numbers in Table 13-1.  
Rev 7.0  
Rev 8.0  
Updated Table 10-23 to reflect new value for maximum Uncalibrated Gain Error  
Deleted RSTO from Pin Group 2 (listed after Table 10-1). Deleted formula for Max Ambient  
Operating Temperature (Automotive) and Max Ambient Operating Temperature (Industrial)  
in Table 10-4. Added RoHS-compliance and “pb-free” language to back cover.  
Rev 9.0  
Added information/corrected state during reset in Table 2-2. Clarified external reference  
crystal frequency for PLL in Table 10-14 by increasing maximum value to 8.4MHz.  
Rev 10.0  
Rev 11.0  
Replaced “Tri-stated” with an explanation in State During Reset column in Table 2-2.  
Corrected bootflash memory map layout in Table 4-4 to 16KB.  
Added the following note to the description of the TMS signal in Table 2-2:  
Note: Always tie the TMS pin to VDD through a 2.2K resistor.  
Added the following note to the description of the TRST signal in Table 2-2:  
Rev. 12  
Note: For normal operation, connect TRST directly to VSS. If the design is to be used in a  
debugging environment, TRST may be tied to VSS through a 1K resistor.  
Please see http://www.freescale.com for the most current data sheet revision.  
56F8355 Technical Data, Rev. 17  
2
Freescale Semiconductor  
Preliminary  
Document Revision History (Continued)  
Version History  
Rev 13  
Description of Change  
Table 2-2 — TDO pullup is not enabled  
Table 2-2 — PWM pullup is not enabled  
Table 2-2 — CAN_TX — remove pullup related text  
Table 2-2 — Adding pullup is enabled to several rows for clarification  
Section 4 — Factory Programmed Memory — add ADC callibration vector  
Section 4 — Factory Programmed Memory — remove ADC callibration vector  
Section 10 — Add Figure 10-1  
Rev 14  
Section 10 — ADC correction factor refinement in Table 10-23  
Table 2-2 — Remove pullup is enabled from TDO, PWMA0–PWMA5, and  
Rev 15  
Rev 16  
PWMB0–PWMB5.  
Figure 10-1 — Label the vertical axis and include the phrase “maximum current” in the  
title of the figure.  
Remove the equation fragment from the bottom of Table 10-3 on page 133.  
Table 10-23 — Added non-averaged DC drift of error over temperature specification and  
Rev 17  
footnote.  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
3
56F8355/56F8155 General Description  
Note: Features in italics are NOT available in the 56F8155 device.  
• Up to 60 MIPS at 60MHz core frequency  
• Up to two Quadrature Decoders  
• DSP and MCU functionality in a unified,  
C-efficient architecture  
• FlexCAN module  
• Two Serial Communication Interfaces (SCIs)  
• Up to two Serial Peripheral Interface (SPIs)  
• Up to four general purpose Quad Timers  
• Computer Operating Properly (COP)/Watchdog  
• 256KB Program Flash  
• 4KB Program RAM  
• 8KB Data Flash  
• 16KB Data RAM  
• JTAG/Enhanced On-Chip Emulation (OnCE™) for  
unobtrusive, real-time debugging  
• 16KB Boot Flash  
• Up to two 6-channel PWM modules  
• Four 4-channel, 12-bit ADCs  
Temperature Sensor  
• Up to 49 GPIO lines  
• 128-pin LQFP Package  
OCR_DIS  
RSTO  
V
V
4
V
V
V
2
V
SSA  
PP  
CAP  
DD  
SS  
DDA  
5
RESET  
2
7
5
6
6
JTAG/  
EOnCE  
Port  
PWM Outputs  
Digital Reg  
Analog Reg  
PWMA  
Current Sense Inputs  
or GPIOC  
Low Voltage  
Supervisor  
3
4
16-Bit  
56800E Core  
Fault Inputs  
Data ALU  
Program Controller  
and Hardware  
Looping Unit  
Address  
Generation Unit  
Bit  
Manipulation  
Unit  
16 x 16 + 36 -> 36-Bit MAC  
Three 16-bit Input Registers  
Four 36-bit Accumulators  
PWM Outputs  
PWMB  
Current Sense Inputs  
or GPIOD  
3
PAB  
PDB  
CDBR  
CDBW  
4
4
Fault Inputs  
AD0  
ADCA  
4
5
AD1  
R/W Control  
Memory  
XDB2  
XAB1  
XAB2  
VREF  
AD0  
Program Memory  
128K x 16 Flash  
2K x 16 RAM  
Boot ROM  
6
* External  
Address Bus  
Switch  
A8-13 or GPIOA0-5  
GPIOB0-4 or A16-20  
4
4
ADCB  
5
PAB  
AD1  
8K x 16 Flash  
System Bus  
Control  
PDB  
Temp_Sense  
Data Memory  
4K x 16 Flash  
8K x 16 RAM  
* External  
Data  
Bus Switch  
CDBR  
CDBW  
4
D7-10 or GPIOF0-3  
GPIOD0-5 or CS2-7  
Quadrature  
Decoder 0 or  
Quad  
4
Timer A or  
GPIOC  
* Bus  
Control  
6
Quadrature  
Decoder 1 or  
Quad  
Timer B or  
SPI1 or  
IPBus Bridge (IPBB)  
4
Peripheral  
Device Selects  
RW  
IPAB IPWDB  
IPRDB  
Control  
Decoding  
GPIOC  
* EMI not functional in  
this package; use as  
GPIO pins  
Quad Timer C Peripherals  
2
or GPIOE  
Clock  
resets  
PLL  
Quad Timer D  
or GPIOE  
4
2
P
System  
Integration  
SPI0 or  
GPIOE  
SCI1 or  
GPIOD  
SCI0 or  
GPIOE  
COP/  
Interrupt  
O
O
XTAL  
Clock  
Generator  
R
FlexCAN  
S
Watchdog Controller  
EXTAL  
Module  
C
2
4
2
CLKO  
IRQA IRQB  
CLKMODE  
56F8355/56F8155 Block Diagram  
56F8355 Technical Data, Rev. 17  
4
Freescale Semiconductor  
Preliminary  
Table of Contents  
Part 1 Overview. . . . . . . . . . . . . . . . . . . . . 6  
Part 8 General Purpose Input/Output  
1.1  
1.2  
1.3  
56F8355/56F8155 Features . . . . . . . . . . . 6  
Device Description . . . . . . . . . . . . . . . . . . 8  
Award-Winning Development  
Environment. . . . . . . . . . . . . . . . . . 10  
Architecture Block Diagram . . . . . . . . . . 10  
Product Documentation . . . . . . . . . . . . . 14  
Data Sheet Conventions. . . . . . . . . . . . . 15  
(GPIO) . . . . . . . . . . . . . . . . . . . . . 125  
Introduction. . . . . . . . . . . . . . . . . . . . . . 125  
Memory Maps. . . . . . . . . . . . . . . . . . . . 126  
Configuration . . . . . . . . . . . . . . . . . . . . 126  
8.1  
8.2  
8.3  
1.4  
1.5  
1.6  
Part 9 Joint Test Action Group (JTAG) 131  
9.1  
56F8355 Information. . . . . . . . . . . . . . . 131  
Part 2 Signal/Connection Descriptions. 16  
Part 10Specifications. . . . . . . . . . . . . . . 131  
2.1  
2.2  
Introduction. . . . . . . . . . . . . . . . . . . . . . . 16  
Signal Pins . . . . . . . . . . . . . . . . . . . . . . . 19  
10.1  
10.2  
10.3  
10.4  
10.5  
10.6  
10.7  
10.8  
General Characteristics . . . . . . . . . . . . 131  
DC Electrical Characteristics . . . . . . . . 135  
AC Electrical Characteristics . . . . . . . . 139  
Flash Memory Characteristics . . . . . . . 140  
External Clock Operation Timing . . . . . 140  
Phase Locked Loop Timing . . . . . . . . . 141  
Crystal Oscillator Timing. . . . . . . . . . . . 141  
Reset, Stop, Wait, Mode Select, and  
Part 3 On-Chip Clock Synthesis (OCCS)35  
3.1  
3.2  
3.3  
Introduction. . . . . . . . . . . . . . . . . . . . . . . 35  
External Clock Operation . . . . . . . . . . . . 35  
Registers. . . . . . . . . . . . . . . . . . . . . . . . . 37  
Part 4 Memory Map. . . . . . . . . . . . . . . . . 37  
Interrupt Timing . . . . . . . . . . . . . . 142  
Serial Peripheral Interface (SPI)  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
Introduction. . . . . . . . . . . . . . . . . . . . . . . 37  
Program Map . . . . . . . . . . . . . . . . . . . . . 38  
Interrupt Vector Table. . . . . . . . . . . . . . . 40  
Data Map . . . . . . . . . . . . . . . . . . . . . . . . 43  
Flash Memory Map. . . . . . . . . . . . . . . . . 43  
EOnCE Memory Map . . . . . . . . . . . . . . . 44  
Peripheral Memory Mapped Registers . . 45  
Factory Programmed Memory . . . . . . . . 72  
10.9  
Timing . . . . . . . . . . . . . . . . . . . . . 144  
10.10 Quad Timer Timing. . . . . . . . . . . . . . . . 147  
10.11 Quadrature Decoder Timing . . . . . . . . . 148  
10.12 Serial Communication Interface (SCI)  
Timing . . . . . . . . . . . . . . . . . . . . . 149  
10.13 Controller Area Network (CAN) Timing. 149  
10.14 JTAG Timing. . . . . . . . . . . . . . . . . . . . . 150  
10.15 Analog-to-Digital Converter (ADC)  
Part 5 Interrupt Controller (ITCN) . . . . . 72  
Parameters. . . . . . . . . . . . . . . . . . 151  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
Introduction. . . . . . . . . . . . . . . . . . . . . . . 72  
Features . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Functional Description . . . . . . . . . . . . . . 73  
Block Diagram . . . . . . . . . . . . . . . . . . . . 75  
Operating Modes . . . . . . . . . . . . . . . . . . 75  
Register Descriptions . . . . . . . . . . . . . . . 76  
Resets. . . . . . . . . . . . . . . . . . . . . . . . . . 102  
10.16 Equivalent Circuit for ADC Inputs . . . . . 155  
10.17 Power Consumption . . . . . . . . . . . . . . . 155  
Part 11Packaging . . . . . . . . . . . . . . . . . . 157  
11.1  
56F8355 Package and Pin-Out  
Information . . . . . . . . . . . . . . . . . . 157  
56F8155 Package and Pin-Out  
11.2  
Information . . . . . . . . . . . . . . . . . . 160  
Part 6 System Integration Module (SIM)104  
6.1  
6.2  
6.3  
6.4  
6.5  
6.6  
6.7  
6.8  
6.9  
Overview. . . . . . . . . . . . . . . . . . . . . . . . 104  
Features . . . . . . . . . . . . . . . . . . . . . . . . 104  
Operating Modes . . . . . . . . . . . . . . . . . 104  
Operating Mode Register . . . . . . . . . . . 105  
Register Descriptions . . . . . . . . . . . . . . 106  
Clock Generation Overview . . . . . . . . . 120  
Power Down Modes Overview . . . . . . . 120  
Stop and Wait Mode Disable Function . 121  
Resets. . . . . . . . . . . . . . . . . . . . . . . . . . 122  
Part 12Design Considerations . . . . . . . 165  
12.1  
12.2  
12.3  
Thermal Design Considerations . . . . . . 165  
Electrical Design Considerations . . . . . 166  
Power Distribution and I/O Ring  
Implementation167  
Part 13Ordering Information . . . . . . . . . 168  
Part 7 Security Features. . . . . . . . . . . . 122  
7.1  
7.2  
Operation with Security Enabled . . . . . 122  
Flash Access Blocking Mechanisms. . . 123  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
5
Part 1 Overview  
1.1 56F8355/56F8155 Features  
1.1.1  
Core  
Efficient 16-bit 56800E family controller engine with dual Harvard architecture  
Up to 60 Million Instructions Per Second (MIPS) at 60MHz core frequency  
Single-cycle 16 × 16-bit parallel Multiplier-Accumulator (MAC)  
Four 36-bit accumulators, including extension bits  
Arithmetic and logic multi-bit shifter  
Parallel instruction set with unique DSP addressing modes  
Hardware DO and REP loops  
Three internal address buses  
Four internal data buses  
Instruction set supports both DSP and controller functions  
Controller-style addressing modes and instructions for compact code  
Efficient C compiler and local variable support  
Software subroutine and interrupt stack with depth limited only by memory  
JTAG/EOnCE debug programming interface  
1.1.2  
Differences Between Devices  
Table 1-1 outlines the key differences between the 56F8355 and 56F8155 devices.  
Table 1-1 Device Differences  
Feature  
56F8355  
56F8155  
Guaranteed Speed  
Program RAM  
Data Flash  
60MHz/60 MIPS  
40MHz/40MIPS  
Not Available  
Not Available  
1 x 6  
4KB  
8KB  
2 x 6  
1
PWM  
CAN  
Not Available  
2
Quad Timer  
4
Quadrature Decoder  
Temperature Sensor  
2 x 4  
1
1 x 4  
Not Available  
1.1.3  
Memory  
Note: Features in italics are NOT available in the 56F8155 device.  
56F8355 Technical Data, Rev. 17  
6
Freescale Semiconductor  
Preliminary  
 
56F8355/56F8155 Features  
Harvard architecture permits as many as three simultaneous accesses to program and data memory  
Flash security protection feature  
On-chip memory, including a low-cost, high-volume Flash solution  
— 256KB of Program Flash  
— 4KB of Program RAM  
— 8KB of Data Flash  
— 16KB of Data RAM  
— 16KB of Boot Flash  
EEPROM emulation capability  
1.1.4  
Peripheral Circuits  
Note: Features in italics are NOT available in the 56F8155 device.  
Pulse Width Modulator module:  
— In the 56F8355, two Pulse Width Modulator modules, each with six PWM outputs, three Current Sense  
inputs, and four Fault inputs; fault-tolerant design with dead time insertion; supports both center-aligned  
and edge-aligned modes  
— In the 56F8155, one Pulse Width Modulator module with six PWM outputs, three Current Sense inputs  
and three Fault inputs; fault-tolerant design with dead time insertion; supports both center-aligned and  
edge-aligned modes  
Four 12-bit, Analog-to-Digital Converters (ADCs), which support four simultaneous conversions with  
quad, 4-pin multiplexed inputs; ADC and PWM modules can be synchronized through Timer C, channels  
2 and 3  
Quadrature Decoder:  
— In the 56F8355, two four-input Quadrature Decoders or two additional Quad Timers  
— In the 56F8155, one four-input Quadrature Decoder, which works in conjunction with Quad Timer A  
Temperature Sensor can be connected, on the board, to any of the ADC inputs to monitor the on-chip  
temperature  
Quad Timer:  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
7
— In the 56F8355, four dedicated general-purpose Quad Timers totaling six dedicated pins: Timer C with  
two pins and Timer D with four pins  
— In the 56F8155, two Quad Timers; Timer A and Timer C both work in conjunction with GPIO  
Optional On-Chip Regulator  
FlexCAN (CAN Version 2.0 B-compliant) module with 2-pin port for transmit and receive  
Two Serial Communication Interfaces (SCIs), each with two pins (or four additional GPIO lines)  
Up to two Serial Peripheral Interfaces (SPIs), both with configurable 4-pin port (or eight additional GPIO  
lines); SPI 1 can also be used as Quadrature Decoder 1 or Quad Timer B  
Computer Operating Properly (COP)/Watchdog timer  
Two dedicated external interrupt pins  
49 General Purpose I/O (GPIO) pins; 28 pins dedicated to GPIO  
External reset input pin for hardware reset  
External reset output pin for system reset  
Integrated low-voltage interrupt module  
JTAG/Enhanced On-Chip Emulation (OnCE) for unobtrusive, processor speed-independent, real-time  
debugging  
Software-programmable, Phase Lock Loop-based frequency synthesizer for the core clock  
1.1.5  
Energy Information  
Fabricated in high-density CMOS with 5V-tolerant, TTL-compatible digital inputs  
On-board 3.3V down to 2.6V voltage regulator for powering internal logic and memories; can be disabled  
On-chip regulators for digital and analog circuitry to lower cost and reduce noise  
Wait and Stop modes available  
ADC smart power management  
Each peripheral can be individually disabled to save power  
1.2 Device Description  
The 56F8355 and 56F8155 are members of the 56800E core-based family of controllers. It combines, on  
a single chip, the processing power of a Digital Signal Processor (DSP) and the functionality of a  
microcontroller with a flexible set of peripherals to create an extremely cost-effective solution. Because  
of its low cost, configuration flexibility, and compact program code, the 56F8355 and 56F8155 are  
well-suited for many applications. The devices include many peripherals that are especially useful for  
motion control, smart appliances, steppers, encoders, tachometers, limit switches, power supply and  
control, automotive control (56F8355 only), engine management, noise suppression, remote utility  
metering, industrial control for power, lighting, and automation applications.  
The 56800E core is based on a Harvard-style architecture consisting of three execution units operating in  
parallel, allowing as many as six operations per instruction cycle. The MCU-style programming model and  
optimized instruction set allow straightforward generation of efficient, compact DSP and control code.  
The instruction set is also highly efficient for C/C++ Compilers to enable rapid development of optimized  
control applications.  
56F8355 Technical Data, Rev. 17  
8
Freescale Semiconductor  
Preliminary  
Device Description  
The 56F8355 and 56F8155 support program execution from internal memories. Two data operands can be  
accessed from the on-chip data RAM per instruction cycle. These devices also provide two external  
dedicated interrupt lines and up to 49 General Purpose Input/Output (GPIO) lines, depending on peripheral  
configuration.  
1.2.1  
56F8355 Features  
The 56F8355 controller includes 256KB of Program Flash and 8KB of Data Flash (each programmable  
through the JTAG port) with 4KB of Program RAM and 16KB of Data RAM. A total of 16KB of Boot  
Flash is incorporated for easy customer inclusion of field-programmable software routines that can be used  
to program the main Program and Data Flash memory areas. Both Program and Data Flash memories can  
be independently bulk erased or erased in page sizes. Program Flash page erase size is 1KB. Boot and Data  
Flash page erase size is 512 bytes. The Boot Flash memory can also be either bulk or page erased.  
A key application-specific feature of the 56F8355 is the inclusion of two Pulse Width Modulator (PWM)  
modules. These modules each incorporate three complementary, individually programmable PWM signal  
output pairs (each module is also capable of supporting six independent PWM functions, for a total of 12  
PWM outputs) to enhance motor control functionality. Complementary operation permits programmable  
dead time insertion, distortion correction via current sensing by software, and separate top and bottom  
output polarity control. The up-counter value is programmable to support a continuously variable PWM  
frequency. Edge-aligned and center-aligned synchronous pulse width control (0% to 100% modulation) is  
supported. The device is capable of controlling most motor types: ACIM (AC Induction Motors); both  
BDC and BLDC (Brush and Brushless DC motors); SRM and VRM (Switched and Variable Reluctance  
Motors); and stepper motors. The PWMs incorporate fault protection and cycle-by-cycle current limiting  
with sufficient output drive capability to directly drive standard optoisolators. A “smoke-inhibit”,  
write-once protection feature for key parameters is also included. A patented PWM waveform distortion  
correction circuit is also provided. Each PWM is double-buffered and includes interrupt controls to permit  
integral reload rates to be programmable from 1 to 16. The PWM modules provide a reference output to  
synchronize the Analog-to-Digital Converters through two channels of Quad Timer C.  
The 56F8355 incorporates two Quadrature Decoders capable of capturing all four transitions on the  
two-phase inputs, permitting generation of a number proportional to actual position. Speed computation  
capabilities accommodate both fast- and slow-moving shafts. An integrated watchdog timer in the  
Quadrature Decoder can be programmed with a time-out value to alert when no shaft motion is detected.  
Each input is filtered to ensure only true transitions are recorded.  
This controller also provides a full set of standard programmable peripherals that include two Serial  
Communications Interfaces (SCIs); two Serial Peripheral Interfaces (SPIs); and four Quad Timers. Any of  
these interfaces can be used as General-Purpose Input/Outputs (GPIOs) if that function is not required. A  
Flex Controller Area Network (FlexCAN) interface (CAN Version 2.0 B-compliant) and an internal  
interrupt controller are included on the 56F8355.  
1.2.2  
56F8155 Features  
The 56F8155 controller includes 256KB of Program Flash, programmable through the JTAG port, and  
16KB of Data RAM. A total of 16KB of Boot Flash is incorporated for easy customer inclusion of  
field-programmable software routines that can be used to program the main Program Flash memory area.  
The Program Flash memory can be independently bulk erased or erased in pages; Program Flash page  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
9
erase size is 1KB. The Boot Flash page erase size is 512 bytes; Boot Flash memory can also be either bulk  
or page erased.  
A key application-specific feature of the 56F8155 is the inclusion of one Pulse Width Modulator (PWM)  
module. This module incorporates three complementary, individually programmable PWM signal output  
pairs and can also support six independent PWM functions to enhance motor control functionality.  
Complementary operation permits programmable dead time insertion, distortion correction via current  
sensing by software, and separate top and bottom output polarity control. The up-counter value is  
programmable to support a continuously variable PWM frequency. Edge-aligned and center-aligned  
synchronous pulse width control (0% to 100% modulation) is supported. The device is capable of  
controlling most motor types: ACIM (AC Induction Motors); both BDC and BLDC (Brush and Brushless  
DC motors); SRM and VRM (Switched and Variable Reluctance Motors); and stepper motors. The PWM  
incorporates fault protection and cycle-by-cycle current limiting with sufficient output drive capability to  
directly drive standard optoisolators. A “smoke-inhibit”, write-once protection feature for key parameters  
is also included. A patented PWM waveform distortion correction circuit is also provided. The PWM is  
double-buffered and includes interrupt controls to permit integral reload rates to be programmable from 1  
to 16. The PWM module provides reference outputs to synchronize the Analog-to-Digital Converters  
through two channels of Quad Timer C.  
The 56F8155 incorporates a Quadrature Decoder capable of capturing all four transitions on the two-phase  
inputs, permitting generation of a number proportional to actual position. Speed computation capabilities  
accommodate both fast- and slow-moving shafts. An integrated watchdog timer in the Quadrature Decoder  
can be programmed with a time-out value to alert when no shaft motion is detected. Each input is filtered  
to ensure only true transitions are recorded.  
This controller also provides a full set of standard programmable peripherals that include two Serial  
Communications Interfaces (SCIs); two Serial Peripheral Interfaces (SPIs); and two Quad Timers. Any of  
these interfaces can be used as General Purpose Input/Outputs (GPIOs) if that function is not required. An  
internal interrupt controller is also a part of the 56F8155.  
1.3 Award-Winning Development Environment  
TM  
Processor Expert  
(PE) provides a Rapid Application Design (RAD) tool that combines easy-to-use  
component-based software application creation with an expert knowledge system.  
The CodeWarrior Integrated Development Environment is a sophisticated tool for code navigation,  
compiling, and debugging. A complete set of evaluation modules (EVMs) and development system cards  
will support concurrent engineering. Together, PE, CodeWarrior and EVMs create a complete, scalable  
tools solution for easy, fast, and efficient development.  
1.4 Architecture Block Diagram  
Note: Features in italics are NOT available in the 56F8155 device and are shaded in the following figures.  
The 56F8355/56F8155 architecture is shown in Figure 1-1 and Figure 1-2. Figure 1-1 illustrates how the  
56800E system buses communicate with internal memories and the IP Bus Bridge. Table 1-1 lists the  
internal buses in the 56800E architecture and provides a brief description of their function. Figure 1-2  
shows the peripherals and control blocks connected to the IP Bus Bridge. The figures do not show the  
56F8355 Technical Data, Rev. 17  
10  
Freescale Semiconductor  
Preliminary  
Architecture Block Diagram  
on-board regulator and power and ground signals. They also do not show the multiplexing between  
peripherals or the dedicated GPIOs. Please see Part 2, Signal/Connection Descriptions, to see which  
signals are multiplexed with those of other peripherals.  
Also shown in Figure 1-2 are connections between the PWM, Timer C and ADC blocks. These  
connections allow the PWM and/or Timer C to control the timing of the start of ADC conversions. The  
Timer C channel indicated can generate periodic start (SYNC) signals to the ADC to start its conversions.  
In another operating mode, the PWM load interrupt (SYNC output) signal is routed internally to the Timer  
C input channel as indicated. The timer can then be used to introduce a controllable delay before  
generating its output signal. The timer output then triggers the ADC. To fully understand this interaction,  
please see the 56F8300 Peripheral User Manual for clarification on the operation of all three of these  
peripherals.  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
11  
5
JTAG / EOnCE  
Boot  
Flash  
pdb_m[15:0]  
pab[20:0]  
Program  
Flash  
Program  
RAM  
cdbw[31:0]  
56800E  
EMI*  
11  
4
Address  
CHIP  
TAP  
Controller  
Data  
6
Control  
TAP  
Linking  
Module  
Data  
RAM  
xab1[23:0]  
xab2[23:0]  
Data  
Flash  
External  
JTAG  
Port  
cdbr_m[31:0]  
xdb2_m[15:0]  
To Flash  
Control Logic  
IPBus  
Bridge  
Flash  
Memory  
Module  
NOT available on the 56F8155 device.  
* EMI not functional in this package; since only part of  
the address/data bus is bonded out, use as GPIO pins  
IPBus  
Figure 1-1 System Bus Interfaces  
Note:  
Note:  
Flash memories are encapsulated within the Flash Memory (FM) Module. Flash control is  
accomplished by the I/O to the FM over the peripheral bus, while reads and writes are completed  
between the core and the Flash memories.  
The primary data RAM port is 32 bits wide. Other data ports are 16 bits.  
56F8355 Technical Data, Rev. 17  
12  
Freescale Semiconductor  
Preliminary  
Architecture Block Diagram  
To/From IPBus Bridge  
Interrupt  
Controller  
CLKGEN  
(OSC/PLL)  
Low-Voltage Interrupt  
POR & LVI  
Timer A  
4
System POR  
RESET  
Quadrature Decoder 0  
Timer D  
SIM  
4
COP Reset  
Timer B  
COP  
2
4
FlexCAN  
Quadrature Decoder 1  
SPI 1  
13  
PWMA  
SYNC Output  
13  
GPIO A  
GPIO B  
GPIO C  
GPIO D  
GPIO E  
GPIO F  
PWMB  
SYNC Output  
ch3i  
ch2i  
2
Timer C  
ch2o  
ch3o  
8
ADCB  
ADCA  
4
SPI 0  
SCI 0  
8
2
1
TEMP_SENSE  
2
SCI 1  
Note: ADC A and ADC B use the same volt-  
age reference circuit with VREFH, VREFP  
VREFMID, VREFN, and VREFLO pins.  
IPBus  
NOT available on the 56F8155 device.  
Figure 1-2 Peripheral Subsystem  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
13  
Table 1-2 Bus Signal Names  
Name  
Function  
Program Memory Interface  
pdb_m[15:0] Program data bus for instruction word fetches or read operations.  
cdbw[15:0]  
Primary core data bus used for program memory writes. (Only these 16 bits of the cdbw[31:0] bus  
are used for writes to program memory.)  
pab[20:0]  
Program memory address bus. Data is returned on pdb_m bus.  
Primary Data Memory Interface Bus  
cdbr_m[31:0] Primary core data bus for memory reads. Addressed via xab1 bus.  
cdbw[31:0]  
xab1[23:0]  
Primary core data bus for memory writes. Addressed via xab1 bus.  
Primary data address bus. Capable of addressing bytes1, words, and long data types. Data is written  
on cdbw and returned on cdbr_m. Also used to access memory-mapped I/O.  
Secondary Data Memory Interface  
xdb2_m[15:0] Secondary data bus used for secondary data address bus xab2 in the dual memory reads.  
xab2[23:0]  
Secondary data address bus used for the second of two simultaneous accesses. Capable of  
addressing only words. Data is returned on xdb2_m.  
Peripheral Interface Bus  
IPBus [15:0] Peripheral bus accesses all on-chip peripherals registers. This bus operates at the same clock rate  
as the Primary Data Memory and therefore generates no delays when accessing the processor.  
Write data is obtained from cdbw. Read data is provided to cdbr_m.  
1. Byte accesses can only occur in the bottom half of the memory address space. The MSB of the address will be forced  
to 0.  
1.5 Product Documentation  
The documents listed in Table 1-3 are required for a complete description and proper design with the  
56F8355 and 56F8155 devices. Documentation is available from local Freescale distributors, Freescale  
semiconductor sales offices, Freescale Literature Distribution Centers, or online at  
http://www.freescale.com.  
Table 1-3 Chip Documentation  
Topic  
DSP56800E  
Description  
Order Number  
Detailed description of the 56800E family architecture,  
and 16-bit controller core processor and the instruction  
set  
DSP56800EERM  
Reference Manual  
56F8300 Peripheral User  
Manual  
Detailed description of peripherals of the 56F8300  
devices  
MC56F8300UM  
56F8300 SCI/CAN  
Bootloader User Manual  
Detailed description of the SCI/CAN Bootloaders  
56F8300 family of devices  
MC56F83xxBLUM  
56F8355 Technical Data, Rev. 17  
14  
Freescale Semiconductor  
Preliminary  
 
Data Sheet Conventions  
Table 1-3 Chip Documentation  
Topic  
Description  
Order Number  
MC56F8355  
56F8355/56F8155  
Technical Data Sheet  
Electrical and timing specifications, pin descriptions,  
and package descriptions (this document)  
Errata  
Details any chip issues that might be present  
MC56F8355E  
MC56F8155E  
1.6 Data Sheet Conventions  
This data sheet uses the following conventions:  
OVERBAR  
This is used to indicate a signal that is active when pulled low. For example, the RESET pin is  
active when low.  
“asserted”  
“deasserted”  
Examples:  
A high true (active high) signal is high or a low true (active low) signal is low.  
A high true (active high) signal is low or a low true (active low) signal is high.  
Voltage1  
Signal/Symbol  
Logic State  
True  
Signal State  
Asserted  
PIN  
PIN  
PIN  
PIN  
VIL/VOL  
False  
Deasserted  
Asserted  
VIH/VOH  
VIH/VOH  
VIL/VOL  
True  
False  
Deasserted  
1. Values for VIL, VOL, VIH, and VOH are defined by individual product specifications.  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
15  
Part 2 Signal/Connection Descriptions  
2.1 Introduction  
The input and output signals of the 56F8355 and 56F8155 are organized into functional groups, as shown  
in Table 2-1 and as illustrated in Figure 2-1. In Table 2-2, each table row describes the signal or signals  
present on a pin.  
Table 2-1 Functional Group Pin Allocations  
Number of Pins in Package  
Functional Group  
56F8355  
56F8155  
Power (VDD or VDDA  
)
9
9
Power Option Control  
1
6
1
6
Ground (VSS or VSSA  
)
Supply Capacitors1 & VPP  
6
6
PLL and Clock  
4
6
4
6
Bus Control  
Interrupt and Program Control  
Pulse Width Modulator (PWM) Ports  
Serial Peripheral Interface (SPI) Port 0  
Serial Peripheral Interface (SPI) Port 1  
4
4
26  
4
13  
4
4
4
Quadrature Decoder Port 02  
4
Quadrature Decoder Port 13  
Serial Communications Interface (SCI) Ports  
CAN Ports  
4
4
2
4
21  
4
Analog-to-Digital Converter (ADC) Ports  
Timer Module Ports  
21  
6
JTAG/Enhanced On-Chip Emulation (EOnCE)  
Temperature Sense  
5
5
1
28  
Dedicated GPIO ( Address Bus = 11; Data Bus = 4; Other = 134)  
28  
1. If the on-chip regulator is disabled, the V  
pins serve as 2.5V V  
power inputs  
DD_CORE  
CAP  
2. Alternately, can function as Quad Timer pins or GPIO  
3. Pins in this section can function as Quad Timer, SPI 1, or GPIO  
4. EMI not functional in these packages; use as GPIO pins.  
56F8355 Technical Data, Rev. 17  
16  
Freescale Semiconductor  
Preliminary  
 
Introduction  
V
Power  
Power  
DD_IO  
7
1
1
5
1
Quadrature  
PHASEA0 (TA0, GPIOC4)  
PHASEB0 (TA1, GPIOC5)  
INDEX0 (TA2, GPIOC6)  
HOME0 (TA3, GPIOC7)  
VDDA_ADC  
1
1
1
1
Decoder 0  
or Quad  
Timer A or  
GPIO  
V
Power  
DDA_OSC_PLL  
VSS  
Ground  
Ground  
VSSA_ADC  
56F8355  
OCR_DIS  
SCLK0 (GPIOE4)  
MOSI0 (GPIOE5)  
MISO0 (GPIOE6)  
SS0 (GPIOE7)  
1
1
1
1
1
SPI0 OR  
GPIO  
VCAP1 - VCAP  
PP1 & VPP  
4
2
Other  
Supply  
Ports  
4
2
V
CLKMODE  
1
Quadrature  
Decoder 1 or  
Quad Timer  
B or SPI1 or  
GPIO  
PHASEA1(TB0, SCLK1, GPIOC0)  
PHASEB1 (TB1, MOSI1, GPIOC1)  
INDEX1 (TB2, MISO1, GPIOC2)  
HOME1 (TB3, SS1, GPIOC3)  
EXTAL  
XTAL  
1
1
1
1
1
1
1
PLL  
and  
Clock  
CLKO  
A8 - A13 (GPIOA0 - 5)  
GPIOB0-4 (A16 - 20)  
6
5
*External  
Address  
Bus  
PWMA0 - 5  
6
3
4
ISA0 - 2 (GPIOC8 - 10)  
FAULTA0 - 3  
PWMA  
or GPIO  
PWMB0 - 5  
*External  
Data Bus  
D7 - D10 (GPIOF0 - 3)  
GPIOD0 - 5(CS2 - 7)  
6
3
4
4
6
ISB0 - 2 (GPIOD10 - 12)  
FAULTB0 - 3  
PWMB  
ANA0 - 7  
VREF  
*External  
Bus  
Control  
ADCA  
ADCB  
8
5
8
ANB0 - 7  
Temperature  
Sensor  
TEMP_SENSE  
1
CAN_RX  
CAN_TX  
TXD0 (GPIOE0)  
RXD0 (GPIOE1)  
SCI0 or  
GPIO  
1
1
1
1
CAN  
TXD1 (GPIOD6)  
RXD1 (GPIOD7)  
SCI1 or  
GPIO  
Quad  
1
1
TC0 - 1 (GPIOE8 - 9)  
2
4
Timer C  
and D or  
GPIO  
TD0 - 3 (GPIOE10 - 13)  
TCK  
TMS  
TDI  
1
JTAG/  
EOnCE  
Port  
1
1
IRQA  
1
1
1
1
Interrupt/  
Program  
Control  
IRQB  
TDO  
TRST  
1
1
RESET  
RSTO  
* not functional in this package; use as GPIO pins  
1
Figure 2-1 56F8355 Signals Identified by Functional Group (128-pin LQFP)  
1. Alternate pin functionality is shown in parenthesis; pin direction/type shown is the default functionality.  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
17  
V
DD_IO  
Power  
Power  
Quadrature  
Decoder 0  
or Quad  
Timer A or  
GPIO  
7
1
1
5
PHASEA0 (TA0, GPIOC4)  
PHASEB0 (TA1, GPIOC5)  
INDEX0 (TA2, GPIOC6)  
HOME0 (TA3, GPIOC7)  
VDDA_ADC  
1
1
1
1
V
DDA_OSC_PLL  
VSS  
Power  
Ground  
Ground  
VSSA_ADC  
1
56F8155  
OCR_DIS  
1
SCLK0 (GPIOE4)  
MOSI0 (GPIOE5)  
MISO0 (GPIOE6)  
SS0 (GPIOE7)  
1
1
1
1
SPI0 OR  
GPIO  
VCAP1 - VCAP  
4
2
Other  
Supply  
Ports  
4
2
V
PP1 & VPP  
CLKMODE  
1
(SCLK1, GPIOC0)  
(MOSI1, GPIOC1)  
(MISO1, GPIOC2)  
(SS1, GPIOC3)  
EXTAL  
XTAL  
1
1
1
1
1
1
1
PLL  
and  
Clock  
SPI1 or GPIO  
CLKO  
A8 - A13 (GPIOA0 - 5)  
GPIOB0-4 (A16 - 20)  
6
5
*External  
Address  
Bus  
(GPIOC8 - 10)  
GPIO  
3
or GPIO  
PWMB0 - 5  
*External  
Data Bus  
D7 - D10 (GPIOF0 - 3)  
GPIOD0 - 5(CS2 - 7)  
6
3
4
4
6
ISB0 - 2 (GPIOD10 - 12)  
FAULTB0 - 3  
PWMB  
ANA0 - 7  
VREF  
*External  
Bus  
Control  
ADCA  
ADCB  
8
5
8
ANB0 - 7  
TXD0 (GPIOE0)  
RXD0 (GPIOE1)  
SCI0 or  
GPIO  
1
1
TXD1 (GPIOD6)  
RXD1 (GPIOD7)  
SCI1 or  
GPIO  
1
1
TC0 - 1 (GPIOE8 - 9)  
(GPIOE10 - 13)  
2
4
Quad  
Timer C or  
GPIO  
TCK  
TMS  
TDI  
1
JTAG/  
EOnCE  
Port  
1
1
IRQA  
1
1
1
1
Interrupt/  
Program  
Control  
IRQB  
TDO  
TRST  
1
1
RESET  
RSTO  
* not functional in this package; use as GPIO pins  
1
Figure 2-2 56F8155 Signals Identified by Functional Group (128-pin LQFP)  
1. Alternate pin functionality is shown in parenthesis; pin direction/type shown is the default functionality.  
56F8355 Technical Data, Rev. 17  
18  
Freescale Semiconductor  
Preliminary  
Signal Pins  
2.2 Signal Pins  
After reset, all pins are by default the primary function. Any alternate functionality must be programmed.  
EMI is not functional in this package; since only part of the address/data bus is bonded out, use as GPIO  
pins.  
Note: Signals in italics are NOT available in the 56F8155 device.  
If the “State During Reset” lists more than one state for a pin, the first state is the actual reset state. Other  
states show the reset condition of the alternate function, which you get if the alternate pin function is  
selected without changing the configuration of the alternate peripheral. For example, the A8/GPIOA0 pin  
shows that it is tri-stated during reset. If the GPIOA_PER is changed to select the GPIO function of the  
pin, it will become an input if no other registers are changed.  
Table 2-2 Signal and Package Information for the 128-Pin LQFP  
State  
Signal Name  
Pin No.  
Type  
During  
Reset  
Signal Description  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDDA_ADC  
4
14  
25  
36  
62  
76  
112  
94  
Supply  
I/O Power — This pin supplies 3.3V power to the chip I/O  
interface and also the Processor core throught the on-chip voltage  
regulator, if it is enabled.  
Supply  
Supply  
ADC Power — This pin supplies 3.3V power to the ADC modules.  
It must be connected to a clean analog power supply.  
VDDA_OSC_PLL  
72  
Oscillator and PLL Power — This pin supplies 3.3V power to the  
OSC and to the internal regulator that in turn supplies the Phase  
Locked Loop. It must be connected to a clean analog power  
supply.  
VSS  
VSS  
VSS  
VSS  
VSS  
3
Supply  
VSS — These pins provide ground for chip logic and I/O drivers.  
21  
35  
59  
65  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
19  
 
Table 2-2 Signal and Package Information for the 128-Pin LQFP (Continued)  
State  
Signal Name  
Pin No.  
Type  
During  
Reset  
Signal Description  
VSSA_ADC  
OCR_DIS  
95  
71  
Supply  
Input  
ADC Analog Ground — This pin supplies an analog ground to  
the ADC modules.  
Input  
On-Chip Regulator Disable —  
Tie this pin to VSS to enable the on-chip regulator.  
Tie this pin to VDD to disable the on-chip regulator.  
This pin is intended to be a static DC signal from power-up to  
shut down. Do no try to toggle this pin for power savings  
during operation.  
VCAP  
VCAP  
VCAP  
VCAP  
1
2
3
4
49  
122  
75  
Supply  
Supply  
VCAP1 - 4 — When OCR_DIS is tied to VSS (regulator enabled),  
connect each pin to a 2.2μF or greater bypass capacitor in order  
to bypass the core logic voltage regulator, required for proper chip  
operation. When OCR_DIS is tied to VDD (regulator disabled),  
these pins become VDD_CORE and should be connected to a  
regulated 2.5V power supply.  
13  
Note: This bypass is required even if the chip is powered with  
an external supply.  
V
PP1  
119  
5
Input  
Input  
Input  
Input  
VPP1 - VPP2 — These pins should be left unconnected as an open  
circuit for normal functionality.  
VPP  
2
CLKMODE  
79  
Clock Input Mode Selection — This input determines the  
function of the XTAL and EXTAL pins.  
1 = External clock input on XTAL is used to directly drive the input  
clock of the chip. The EXTAL pin should be grounded.  
0 = A crystal or ceramic resonator should be connected between  
XTAL and EXTAL.  
EXTAL  
XTAL  
74  
73  
Input  
Input  
External Crystal Oscillator Input — This input can be connected  
to an 8MHz external crystal. Tie this pin low if XTAL is driven by  
an external clock source.  
Input/  
Chip-driven Crystal Oscillator Output — This output connects the internal  
Output  
crystal oscillator output to an external crystal.  
If an external clock is used, XTAL must be used as the input and  
EXTAL connected to GND.  
The input clock can be selected to provide the clock directly to the  
core. This input clock can also be selected as the input clock for  
the on-chip PLL.  
56F8355 Technical Data, Rev. 17  
20  
Freescale Semiconductor  
Preliminary  
Signal Pins  
Table 2-2 Signal and Package Information for the 128-Pin LQFP (Continued)  
State  
During  
Reset  
Signal Name  
CLKO  
Pin No.  
Type  
Signal Description  
6
Output  
In reset,  
output is  
disabled  
Clock Output — This pin outputs a buffered clock signal. Using  
the SIM CLKO Select Register (SIM_CLKOSR), this pin can be  
programmed as any of the following: disabled, CLK_MSTR  
(system clock), IPBus clock, oscillator output, prescaler clock and  
postscaler clock. Other signals are also available for test  
purposes.  
See Part 6.5.7 for details.  
A8  
15  
Output  
In reset,  
output is  
disabled,  
pullup is  
enabled  
Address Bus — A8 - A13 specify six of the address lines for  
external program or data memory accesses. Depending upon the  
state of the DRV bit in the EMI bus control register (BCR), A8 -  
A13 and EMI control signals are tri-stated when the external bus is  
inactive.  
(GPIOA0)  
Schmitt  
Input/  
Output  
Port A GPIO — These six GPIO pins can be individually  
programmed as input or output pins.  
A9  
(GPIOA1)  
16  
17  
18  
19  
20  
27  
After reset, these pins default to address bus functionality and  
must be programmed as GPIO.  
A10  
(GPIOA2)  
To deactivate the internal pullup resistor, clear the appropriate  
GPIO bit in the GPIOA_PUR register.  
A11  
(GPIOA3)  
Example: GPIOA0, clear bit 0 in the GPIOA_PUR register.  
A12  
(GPIOA4)  
Note: Primary function is not available in this package  
configuration; GPIO function must be used instead.  
A13  
(GPIOA5)  
GPIOB0  
Schmitt  
Input/  
Input,  
pullup  
Port B GPIO — These four GPIO pins can be programmed as  
input or output pins.  
Output  
enabled  
(A16)  
Output  
Address Bus — A16 - A19 specify four of the address lines for  
external program or data memory accesses. Depending upon the  
state of the DRV bit in the EMI bus control register (BCR), A16 -  
A19 and EMI control signals are tri-stated when the external bus is  
inactive.  
GPIOB1  
(A17)  
28  
29  
30  
GPIOB2  
(A18)  
After reset, the default state is GPIO.  
GPIOB3  
(A19)  
To deactivate the internal pullup resistor, clear bit 0 in the  
GPIOB_PUR register.  
Example: GPIOB1, clear bit 1 in the GPIOB_PUR register.  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
21  
Table 2-2 Signal and Package Information for the 128-Pin LQFP (Continued)  
State  
Signal Name  
GPIOB4  
Pin No.  
Type  
During  
Reset  
Signal Description  
31  
Schmitt  
Input/  
Input,  
pullup  
Port B GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
Output  
enabled  
(A20)  
Output  
Address Bus — A20 specifies one of the address lines for  
external program or data memory accesses. Depending upon the  
state of the DRV bit in the EMI bus control register (BCR), A20  
and EMI control signals are tri-stated when the external bus is  
inactive.  
(prescaler_  
clock)  
Output  
Clock Output — can be used to monitor the prescaler_clock on  
GPIOB4.  
After reset, the default state is GPIO.  
This pin can also be used to view the prescaler_clock. In these  
cases, the GPIOB_PER can be used to disable the GPIO. The  
CLKOSR register in the SIM can then be used to choose between  
address and clock functions; see Part 6.5.7 for details.  
To deactivate the internal pullup resistor, clear clear bit 4 in the  
GPIOB_PUR register.  
D7  
22  
Input/  
Output  
In reset,  
output is  
disabled,  
pullup is  
enabled  
Data Bus — D7 - D10 specify part of the data for external  
program or data memory accesses. Depending upon the state of  
the DRV bit in the EMI bus control register (BCR), D7 - D10 are  
tri-stated when the external bus is inactive  
(GPIOF0)  
Input/  
Port F GPIO — These four GPIO pins can be individually  
Output  
programmed as input or output pins.  
D8  
(GPIOF1)  
23  
24  
26  
After reset, these pins default to data bus functionality and should  
be programmed as GPIO.  
D9  
(GPIOF2)  
To deactivate the internal pullup resistor, clear the appropriate  
GPIO bit in the GPIOF_PUR register.  
D10  
(GPIOF3)  
Example: GPIOF0, clear bit 0 in the GPIOF_PUR register.  
Note: Primary function is not available in this package  
configuration; GPIO function must be used instead.  
56F8355 Technical Data, Rev. 17  
22  
Freescale Semiconductor  
Preliminary  
Signal Pins  
Table 2-2 Signal and Package Information for the 128-Pin LQFP (Continued)  
State  
During  
Reset  
Signal Name  
GPIOD0  
(CS2)  
Pin No.  
Type  
Signal Description  
42  
Input/  
Output  
Input,  
pullup  
enabled  
Port D GPIO — These six GPIO pins can be individually  
programmed as input or output pins.  
Output  
Chip Select — CS2 - CS7 may be programmed within the EMI  
module to act as chip selects for specific areas of the external  
memory map. Depending upon the state of the DRV bit in the EMI  
bus control register (BCR), CS2 - CS7 are tri-stated when the  
external bus is inactive.  
GPIOD1  
(CS3)  
43  
44  
45  
46  
47  
7
GPIOD2  
(CS4)  
After reset, these pins are configured as GPIO.  
GPIOD3  
(CS5)  
To deactivate the internal pullup resistor, clear the appropriate  
GPIO bit in the GPIOD_PUR register.  
GPIOD4  
(CS6)  
Example: GPIOD0, clear bit 0 in the GPIOD_PUR register.  
GPIOD5  
(CS7)  
TXD0  
Output  
In reset,  
output is  
disabled,  
pullup is  
enabled  
Transmit Data — SCI0 transmit data output  
(GPIOE0)  
Input/  
Output  
Port E GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
After reset, the default state is SCI output.  
To deactivate the internal pullup resistor, clear bit 0 in the  
GPIOE_PUR register.  
RXD0  
8
Input  
Input,  
pullup  
Receive Data — SCI0 receive data input  
(GPIOE1)  
Input/  
enabled  
Port E GPIO — This GPIO pin can be individually programmed as  
Output  
an input or output pin.  
After reset, the default state is SCI output.  
To deactivate the internal pullup resistor, clear bit 1 in the  
GPIOE_PUR register.  
TXD1  
40  
Output  
In reset,  
output is  
disabled,  
pullup is  
enabled  
Transmit Data — SCI1 transmit data output  
(GPIOD6)  
Input/  
Output  
Port D GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
After reset, the default state is SCI output.  
To deactivate the internal pullup resistor, set bit 6 in the  
GPIOD_PUR register.  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
23  
Table 2-2 Signal and Package Information for the 128-Pin LQFP (Continued)  
State  
Signal Name  
Pin No.  
Type  
During  
Reset  
Signal Description  
RXD1  
41  
Input  
Input,  
pullup  
Receive Data — SCI1 receive data input  
(GPIOD7)  
Input/  
enabled  
Port D GPIO — This GPIO pin can be individually programmed as  
Output  
an input or output pin.  
After reset, the default state is SCI input.  
To deactivate the internal pullup resistor, clear bit 7 in the  
GPIOD_PUR register.  
TCK  
TMS  
115  
116  
Schmitt  
Input  
Input,  
pulled low  
internally  
Test Clock Input — This input pin provides a gated clock to  
synchronize the test logic and shift serial data to the  
JTAG/EOnCE port. The pin is connected internally to a pull-down  
resistor.  
Schmitt  
Input  
Input,  
pulled high  
internally  
Test Mode Select Input — This input pin is used to sequence the  
JTAG TAP controller’s state machine. It is sampled on the rising  
edge of TCK and has an on-chip pullup resistor.  
To deactivate the internal pullup resistor, set the JTAG bit in the  
SIM_PUDR register.  
Note: Always tie the TMS pin to VDD through a 2.2K resistor.  
TDI  
117  
118  
Schmitt  
Input  
Input,  
pulled high  
internally  
Test Data Input — This input pin provides a serial input data  
stream to the JTAG/EOnCE port. It is sampled on the rising edge  
of TCK and has an on-chip pullup resistor.  
To deactivate the internal pullup resistor, set the JTAG bit in the  
SIM_PUDR register.  
TDO  
Output  
In reset,  
output is  
disabled  
Test Data Output — This tri-stateable output pin provides a serial  
output data stream from the JTAG/EOnCE port. It is driven in the  
shift-IR and shift-DR controller states, and changes on the falling  
edge of TCK.  
56F8355 Technical Data, Rev. 17  
24  
Freescale Semiconductor  
Preliminary  
Signal Pins  
Table 2-2 Signal and Package Information for the 128-Pin LQFP (Continued)  
State  
During  
Reset  
Signal Name  
TRST  
Pin No.  
Type  
Signal Description  
114  
Schmitt  
Input  
Input,  
pulled high  
internally  
Test Reset — As an input, a low signal on this pin provides a  
reset signal to the JTAG TAP controller. To ensure complete  
hardware reset, TRST should be asserted whenever RESET is  
asserted. The only exception occurs in a debugging environment  
when a hardware device reset is required and the JTAG/EOnCE  
module must not be reset. In this case, assert RESET, but do not  
assert TRST.  
To deactivate the internal pullup resistor, set the JTAG bit in the  
SIM_PUDR register.  
Note: For normal operation, connect TRST directly to VSS. If the  
design is to be used in a debugging environment, TRST may be tied to  
VSS through a 1K resistor.  
PHASEA0  
(TA0)  
127  
Schmitt  
Input  
Input,  
pullup  
enabled  
Phase A — Quadrature Decoder 0, PHASEA input  
TA0 — Timer A, Channel 0  
Schmitt  
Input/  
Output  
(GPIOC4)  
Schmitt  
Input/  
Port C GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
Output  
After reset, the default state is PHASEA0.  
To deactivate the internal pullup resistor, clear bit 4 of the  
GPIOC_PUR register.  
PHASEB0  
(TA1)  
128  
Schmitt  
Input  
Input,  
pullup  
enabled  
Phase B — Quadrature Decoder 0, PHASEB input  
Schmitt  
Input/  
TA1 — Timer A, Channel 1  
Output  
(GPIOC5)  
Schmitt  
Input/  
Port C GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
Output  
After reset, the default state is PHASEB0.  
To deactivate the internal pullup resistor, clear bit 5 of the  
GPIOC_PUR register.  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
25  
Table 2-2 Signal and Package Information for the 128-Pin LQFP (Continued)  
State  
Signal Name  
INDEX0  
Pin No.  
Type  
During  
Reset  
Signal Description  
Index — Quadrature Decoder 0, INDEX input  
TA2 — Timer A, Channel 2  
1
Schmitt  
Input  
Input,  
pullup  
enabled  
(TA2)  
Schmitt  
Input/  
Output  
(GPOPC6)  
Schmitt  
Input/  
Port C GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
Output  
After reset, the default state is INDEX0.  
To deactivate the internal pullup resistor, clear bit 6 of the  
GPIOC_PUR register.  
HOME0  
(TA3)  
2
Schmitt  
Input  
Input,  
pullup  
enabled  
Home — Quadrature Decoder 0, HOME input  
Schmitt  
Input/  
TA3 — Timer A,Channel 3  
Output  
(GPIOC7)  
Schmitt  
Input/  
Port C GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
Output  
After reset, the default state is HOME0.  
To deactivate the internal pullup resistor, clear bit 7 of the  
GPIOC_PUR register.  
SCLK0  
124  
Schmitt  
Input/  
Output  
Input,  
pullup  
enabled  
SPI 0 Serial Clock — In the master mode, this pin serves as an  
output, clocking slaved listeners. In slave mode, this pin serves as  
the data clock input.  
(GPIOE4)  
Schmitt  
Input/  
Port E GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
Output  
After reset, the default state is SCLK0.  
To deactivate the internal pullup resistor, clear bit 4 in the  
GPIOE_PUR register.  
56F8355 Technical Data, Rev. 17  
26  
Freescale Semiconductor  
Preliminary  
Signal Pins  
Table 2-2 Signal and Package Information for the 128-Pin LQFP (Continued)  
State  
During  
Reset  
Signal Name  
MOSI0  
Pin No.  
Type  
Signal Description  
126  
Input/  
Output  
In reset,  
output is  
disabled,  
pullup is  
enabled  
SPI 0 Master Out/Slave In — This serial data pin is an output  
from a master device and an input to a slave device. The master  
device places data on the MOSI line a half-cycle before the clock  
edge the slave device uses to latch the data.  
(GPIOE5)  
Input/  
Port E GPIO — This GPIO pin can be individually programmed as  
Output  
an input or output pin.  
After reset, the default state is MOSI0.  
To deactivate the internal pullup resistor, clear bit 5 in the  
GPIOE_PUR register.  
MISO0  
125  
Input/  
Output  
Input,  
pullup  
enabled  
SPI 0 Master In/Slave Out — This serial data pin is an input to a  
master device and an output from a slave device. The MISO line  
of a slave device is placed in the high-impedance state if the slave  
device is not selected. The slave device places data on the MISO  
line a half-cycle before the clock edge the master device uses to  
latch the data.  
(GPIOE6)  
Input/  
Port E GPIO — This GPIO pin can be individually programmed as  
Output  
an input or output pin.  
After reset, the default state is MISO0.  
To deactivate the internal pullup resistor, clear bit 6 in the  
GPIOE_PUR register.  
SS0  
123  
Input  
Input,  
pullup  
SPI 0 Slave Select — SS0 is used in slave mode to indicate to the  
SPI module that the current transfer is to be received.  
enabled  
(GPIOE7)  
Input/  
Port E GPIO — This GPIO pin can be individually programmed as  
Output  
input or output pin.  
After reset, the default state is SS0.  
To deactivate the internal pullup resistor, clear bit 7 in the  
GPIOE_PUR register.  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
27  
Table 2-2 Signal and Package Information for the 128-Pin LQFP (Continued)  
State  
Signal Name  
PHASEA1  
(TB0)  
Pin No.  
Type  
During  
Reset  
Signal Description  
9
Schmitt  
Input  
Input,  
pullup  
enabled  
Phase A1 — Quadrature Decoder 1, PHASEA input for decoder  
1.  
Schmitt  
Input/  
TB0 — Timer B, Channel 0  
Output  
(SCLK1)  
Schmitt  
Input/  
Output  
SPI 1 Serial Clock — In the master mode, this pin serves as an  
output, clocking slaved listeners. In slave mode, this pin serves as  
the data clock input. To activate the SPI function, set the  
PHSA_ALT bit in the SIM_GPS register. For details, see Part  
6.5.8.  
(GPIOC0)  
Schmitt  
Input/  
Port C GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
Output  
In the 56F8355, the default state after reset is PHASEA1.  
In the 56F8155, the default state is not one of the functions offered  
and must be reconfigured.  
To deactivate the internal pullup resistor, clear bit 0 in the  
GPIOC_PUR register.  
PHASEB1  
(TB1)  
10  
Schmitt  
Input  
Input,  
pullup  
enabled  
Phase B1 — Quadrature Decoder 1, PHASEB input for decoder  
1.  
Schmitt  
Input/  
TB1 — Timer B, Channel 1  
Output  
(MOSI1)  
Schmitt  
Input/  
Output  
SPI 1 Master Out/Slave In — This serial data pin is an output  
from a master device and an input to a slave device. The master  
device places data on the MOSI line a half-cycle before the clock  
edge the slave device uses to latch the data. To activate the SPI  
function, set the PHSB_ALT bit in the SIM_GPS register. For  
details, see Part 6.5.8.  
(GPIOC1)  
Schmitt  
Input/  
Port C GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
Output  
In the 56F8355, the default state after reset is PHASEB1.  
In the 56F8155, the default state is not one of the functions offered  
and must be reconfigured.  
To deactivate the internal pullup resistor, clear bit 1 in the  
GPIOC_PUR register.  
56F8355 Technical Data, Rev. 17  
28  
Freescale Semiconductor  
Preliminary  
Signal Pins  
Table 2-2 Signal and Package Information for the 128-Pin LQFP (Continued)  
State  
During  
Reset  
Signal Name  
INDEX1  
Pin No.  
Type  
Signal Description  
Index1 — Quadrature Decoder 1, INDEX input  
TB2 — Timer B, Channel 2  
11  
Schmitt  
Input  
Input,  
pullup  
enabled  
(TB2)  
Schmitt  
Input/  
Output  
(MISO1)  
Schmitt  
Input/  
Output  
SPI 1 Master In/Slave Out — This serial data pin is an input to a  
master device and output from a slave device. The MISO line of a  
slave device is placed in the high-impedance state if the slave  
device is not selected. The slave device places data on the MISO  
line a half-cycle before the clock edge the master device uses to  
latch the data. To activate the SPI function, set the INDEX_ALT bit  
in the SIM_GPS register. For details, see Part 6.5.8.  
(GPIOC2)  
Schmitt  
Input/  
Port C GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
Output  
In the 56F8355, the default state after reset is INDEX1.  
In the 56F8155, the default state is not one of the functions offered  
and must be reconfigured.  
To deactivate the internal pullup resistor, clear bit 2 in the  
GPIOC_PUR register.  
HOME1  
(TB3)  
12  
Schmitt  
Input  
Input,  
pullup  
enabled  
Home — Quadrature Decoder 1, HOME input  
Schmitt  
Input/  
TB3 — Timer B, Channel 3  
Output  
(SS1)  
Schmitt  
Input  
SPI 1 Slave Select — In the master mode, this pin is used to  
arbitrate multiple masters. In slave mode, this pin is used to select  
the slave. To activate the SPI function, set the HOME_ALT bit in  
the SIM_GPS register. For details, see Part 6.5.8.  
(GPIOC3)  
Schmitt  
Input/  
Port C GPIO — This GPIO pin can be individually programmed as  
input or output pin.  
Output  
In the 56F8355, the default state after reset is HOME1.  
In the 56F8155, the default state is not one of the functions offered  
and must be reconfigured.  
To deactivate the internal pullup resistor, set bit 3 in the  
GPIOC_PUR register.  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
29  
Table 2-2 Signal and Package Information for the 128-Pin LQFP (Continued)  
State  
Signal Name  
Pin No.  
Type  
During  
Reset  
Signal Description  
PWMA0  
PWMA1  
PWMA2  
PWMA3  
PWMA4  
PWMA5  
ISA0  
58  
60  
Output  
In reset,  
output is  
disabled  
PWMA0 - 5 — These are six PWMA outputs.  
61  
63  
64  
66  
104  
Schmitt  
Input  
Input,  
pullup  
enabled  
ISA0 - 2 — These three input current status pins are used for  
top/bottom pulse width correction in complementary channel  
operation for PWMA.  
(GPIOC8)  
Schmitt  
Input/  
Output  
Port C GPIO — These GPIO pins can be individually programmed  
as input or output pins.  
ISA1  
(GPIOC9)  
105  
106  
In the 56F8355, these pins default to ISA functionality.  
ISA2  
(GPIOC10)  
In the 56F8155, the default state is not one of the functions offered  
and must be reconfigured.  
To deactivate the internal pullup resistor, clear the appropriate bit  
of the GPIOC_PUR register. See Part 6.5.6 for details.  
FAULTA0  
FAULTA1  
FAULTA2  
67  
68  
69  
Input  
Input,  
pullup  
enabled  
FAULTA0 - A2 — These three fault input pins are used for  
disabling selected PWMA outputs in cases where fault conditions  
originate off-chip.  
To deactivate the internal pullup resistor, set the PWMA0 bit in the  
SIM_PUDR register. For details, see Part 6.5.6.  
FAULTA3  
70  
Schmitt  
Input  
Input,  
pullup  
FAULTA3 — This fault input pin is used for disabling selected  
PWMA outputs in cases where fault conditions originate off-chip.  
enabled  
To deactivate the internal pullup resistor, set the PWMA1 bit in the  
SIM_PUDR register. See Part 6.5.6 for details.  
PWMB0  
PWMB1  
PWMB2  
PWMB3  
PWMB4  
PWMB5  
32  
33  
34  
37  
38  
39  
Output  
In reset,  
output is  
disabled  
PWMB0 - 5 — Six PWMB output pins.  
56F8355 Technical Data, Rev. 17  
30  
Freescale Semiconductor  
Preliminary  
Signal Pins  
Table 2-2 Signal and Package Information for the 128-Pin LQFP (Continued)  
State  
During  
Reset  
Signal Name  
ISB0  
Pin No.  
Type  
Signal Description  
48  
Schmitt  
Input  
Input,  
pullup  
enabled  
ISB0 - 2 — These three input current status pins are used for  
top/bottom pulse width correction in complementary channel  
operation for PWMB.  
(GPIOD10)  
Schmitt  
Input/  
Output  
Port D GPIO — These GPIO pins can be individually programmed  
as input or output pins.  
ISB1  
(GPIOD11)  
50  
51  
At reset, these pins default to ISB functionality.  
ISB2  
(GPIOD12)  
To deactivate the internal pullup resistor, clear the appropriate bit  
of the GPIOD_PUR register. For details, see Part 6.5.6.  
FAULTB0  
FAULTB1  
FAULTB2  
FAULTB3  
ANA0  
54  
55  
56  
57  
80  
81  
82  
83  
84  
85  
86  
87  
93  
Schmitt  
Input  
Input,  
pullup  
enabled  
FAULTB0 - 3 — These four fault input pins are used for disabling  
selected PWMB outputs in cases where fault conditions originate  
off-chip.  
To deactivate the internal pullup resistor, set the PWMB bit in the  
SIM_PUDR register. For details, see Part 6.5.6.  
Input  
Input  
Input  
Analog  
Input  
ANA0 - 3 — Analog inputs to ADC A, channel 0  
ANA1  
ANA2  
ANA3  
ANA4  
Analog  
Input  
ANA4 - 7 — Analog inputs to ADC A, channel 1  
ANA5  
ANA6  
ANA7  
VREFH  
Analog  
Input  
VREFH — Analog Reference Voltage High. VREFH must be less  
than or equal to VDDA_ADC.  
VREFP  
VREFMID  
VREFN  
92  
91  
90  
89  
Input/  
Output  
Analog  
Input/  
Output  
VREFP, VREFMID & VREFN — Internal pins for voltage reference  
which are brought off-chip so they can be bypassed. Connect to a  
0.1 μF low ESR capacitor.  
VREFLO  
Input  
Analog  
Input  
VREFLO — Analog Reference Voltage Low. This should normally  
be connected to a low-noise VSSA  
.
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
31  
Table 2-2 Signal and Package Information for the 128-Pin LQFP (Continued)  
State  
Signal Name  
Pin No.  
Type  
During  
Reset  
Signal Description  
ANB0  
ANB1  
96  
97  
Input  
Analog  
Input  
ANB0 - 3 — Analog inputs to ADC B, channel 0  
ANB2  
98  
ANB3  
99  
ANB4  
100  
101  
102  
103  
88  
Input  
Analog  
Input  
ANB4 - 7 — Analog inputs to ADC B, channel 1  
ANB5  
ANB6  
ANB7  
TEMP_SENSE  
Output  
Analog  
Output  
Temperature Sense Diode — This signal connects to an on-chip  
diode that can be connected to one of the ADC inputs and used to  
monitor the temperature of the die. Must be bypassed with a  
0.01μF capacitor.  
CAN_RX  
121  
Schmitt  
Input  
Input,  
pullup  
FlexCAN Receive Data — This is the CAN input. This pin has an  
internal pullup resistor.  
enabled  
To deactivate the internal pullup resistor, set the CAN bit in the  
SIM_PUDR register.  
CAN_TX  
120  
111  
Open  
Drain  
Output  
Open  
Drain  
Output  
FlexCAN Transmit Data — This is the CAN output.  
TC0  
Schmitt  
Input/  
Input,  
pullup  
TC0 - 1 — Timer C, Channels 0 and 1  
Output  
enabled  
(GPIOE8)  
Schmitt  
Input/  
Output  
Port E GPIO — These GPIO pins can be individually programmed  
as input or output pins.  
TC1  
(GPIOE9)  
113  
At reset, these pins default to Timer functionality.  
To deactivate the internal pullup resistor, clear the appropriate bit  
of the GPIOE_PUR register. See Part 6.5.6 for details.  
56F8355 Technical Data, Rev. 17  
32  
Freescale Semiconductor  
Preliminary  
Signal Pins  
Table 2-2 Signal and Package Information for the 128-Pin LQFP (Continued)  
State  
During  
Reset  
Signal Name  
Pin No.  
Type  
Signal Description  
TD0  
107  
Schmitt  
Input/  
Input,  
pullup  
TD0 - TD3 — Timer D, Channels 0, 1, 2 and 3  
Output  
enabled  
(GPIOE10)  
Schmitt  
Input/  
Output  
Port E GPIO — These GPIO pins can be individually programmed  
as input or output pins.  
TD1  
(GPIOE11)  
108  
109  
110  
At reset, these pins default to Timer functionality.  
TD2  
(GPIOE12)  
To deactivate the internal pullup resistor, clear the appropriate bit  
of the GPIOE_PUR register. See Part 6.5.6 for details.  
TD3  
(GPIOE13)  
IRQA  
IRQB  
52  
53  
Schmitt  
Input  
Input,  
pullup  
enabled  
External Interrupt Request A and B — The IRQA and IRQB  
inputs are asynchronous external interrupt requests during Stop  
and Wait mode operation. During other operating modes, they are  
synchronized external interrupt requests, which indicate an  
external device is requesting service. They can be programmed to  
be level-sensitive or negative-edge triggered.  
To deactivate the internal pullup resistor, set the IRQ bit in the  
SIM_PUDR register. See Part 6.5.6 for details.  
RESET  
78  
Schmitt  
Input  
Input,  
pullup  
enabled  
Reset — This input is a direct hardware reset on the processor.  
When RESET is asserted low, the device is initialized and placed  
in the reset state. A Schmitt trigger input is used for noise  
immunity. The internal reset signal will be deasserted  
synchronous with the internal clocks after a fixed number of  
internal clocks.  
To ensure complete hardware reset, RESET and TRST should be  
asserted together. The only exception occurs in a debugging  
environment when a hardware device reset is required and the  
JTAG/EOnCE module must not be reset. In this case, assert  
RESET but do not assert TRST.  
Note: The internal Power-On Reset will assert on initial power-up.  
To deactivate the internal pullup resistor, set the RESET bit in the  
SIM_PUDR register. See Part 6.5.6 for details.  
RSTO  
77  
Output  
Output  
Reset Output — This output reflects the internal reset state of the  
chip.  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
33  
Table 2-2 Signal and Package Information for the 128-Pin LQFP (Continued)  
State  
Signal Name  
EXTBOOT  
Pin No.  
Type  
During  
Reset  
Signal Description  
Internal  
Ground  
Schmitt  
Input  
Input,  
pullup  
enabled  
External Boot — This input is tied to VDD to force the device to  
boot from off-chip memory (assuming that the on-chip Flash  
memory is not in a secure state). Otherwise, it is tied to ground.  
For details, see Table 4-4.  
Note: When this pin is tied low, the customer boot software should  
disable the internal pullup resistor by setting the XBOOT bit of the  
SIM_PUDR; see Part 6.5.6.  
Note: This pin is internally tied low (to VSS).  
EMI_MODE  
Internal  
Ground  
Schmitt  
Input  
Input,  
pullup  
External Memory Mode — This device will boot from internal  
Flash memory under normal operation.  
enabled  
This function is also affected by EXTBOOT and the Flash security  
mode; see Table 4-4 for details.  
Note: When this pin is tied low, the customer boot software should  
disable the internal pullup resistor by setting the EMI_MODE bit of  
the SIM_PUDR; see Part 6.5.6.  
Note: This pin is internally tied low (to VSS).  
56F8355 Technical Data, Rev. 17  
34  
Freescale Semiconductor  
Preliminary  
Introduction  
Part 3 On-Chip Clock Synthesis (OCCS)  
3.1 Introduction  
Refer to the OCCS chapter of the 56F8300 Peripheral User Manual for a full description of the OCCS.  
The material contained here identifies the specific features of the OCCS design. Figure 3-1 shows the  
specific OCCS block diagram to reference from the OCCS chapter of the 56F8300 Peripheral User  
Manual.  
CLKMODE  
XTAL  
ZSRC  
Crystal  
OSC  
Prescaler CLK  
PLLCOD  
SYS_CLK2  
Source to SIM  
EXTAL  
PLLCID  
PLLDB  
PLL  
FOUT  
FOUT/2  
Postscaler  
Prescaler  
÷ (1,2,4,8)  
Postscaler CLK  
÷2  
x (1 to 128)  
÷ (1,2,4,8)  
Bus  
Interface  
Bus Interface & Control  
LCK  
Lock  
Detector  
Loss of Reference  
Clock Interrupt  
Loss of  
Reference  
Clock  
Detector  
Figure 3-1 OCCS Block Diagram  
3.2 External Clock Operation  
The system clock can be derived from an external crystal, ceramic resonator, or an external system clock  
signal. To generate a reference frequency using the internal oscillator, a reference crystal or ceramic  
resonator must be connected between the EXTAL and XTAL pins.  
3.2.1  
Crystal Oscillator  
The internal oscillator is designed to interface with a parallel-resonant crystal resonator in the frequency  
range specified for the external crystal in Table 10-15. A recommended crystal oscillator circuit is shown  
in Figure 3-2. Follow the crystal supplier’s recommendations when selecting a crystal, since crystal  
parameters determine the component values required to provide maximum stability and reliable start-up.  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
35  
 
 
The crystal and associated components should be mounted as near as possible to the EXTAL and XTAL  
pins to minimize output distortion and start up stabilization time.  
Crystal Frequency = 4 - 8MHz (optimized for 8MHz)  
EXTAL XTAL  
Rz  
EXTAL XTAL  
Rz  
Sample External Crystal Parameters:  
Rz = 750 KΩ  
Note: If the operating temperature range is limited to  
CLKMODE = 0  
below 85oC (105oC junction), then Rz = 10 Meg Ω  
CL1  
CL2  
Figure 3-2 Connecting to a Crystal Oscillator  
Note:  
The OCCS_COHL bit must be set to 1 when a crystal oscillator is used. The reset condition on the  
OCCS_COHL bit is 0. Please see the COHL bit in the Oscillator Control (OSCTL) register, discussed  
in the 56F8300 Peripheral User Manual.  
3.2.2  
Ceramic Resonator (Default)  
It is also possible to drive the internal oscillator with a ceramic resonator, assuming the overall system  
design can tolerate the reduced signal integrity. A typical ceramic resonator circuit is shown in Figure 3-3.  
Refer to the supplier’s recommendations when selecting a ceramic resonator and associated components.  
The resonator and components should be mounted as near as possible to the EXTAL and XTAL pins.  
Resonator Frequency = 4 - 8MHz (optimized for 8MHz)  
3 Terminal  
2 Terminal  
EXTAL XTAL  
Rz  
Sample External Ceramic Resonator Parameters:  
Rz = 750 KΩ  
EXTAL XTAL  
Rz  
CLKMODE = 0  
CL1  
CL2  
C1  
C2  
Figure 3-3 Connecting a Ceramic Resonator  
Note:  
The OCCS_COHL bit must be set to 0 when a ceramic resonator is used. The reset condition on the  
OCCS_COHL bit is 0. Please see the COHL bit in the Oscillator Control (OSCTL) register, discussed  
in the 56F8300 Peripheral User Manual.  
56F8355 Technical Data, Rev. 17  
36  
Freescale Semiconductor  
Preliminary  
 
Registers  
3.2.3  
External Clock Source  
The recommended method of connecting an external clock is illustrated in Figure 3-4. The external clock  
source is connected to XTAL and the EXTAL pin is grounded. Set OCCS_COHL bit high when using an  
external clock source as well.  
Note: When using an external clocking source  
XTAL  
EXTAL  
with this configuration, the input “CLKMODE”  
should be high and the COHL bit in the OSCTL  
register should be set to 1.  
V
External  
Clock  
SS  
Figure 3-4 Connecting an External Clock Signal Register  
3.3 Registers  
When referring to the register definitions for the OCCS in the 56F8300 Peripheral User Manual, use the  
register definitions without the internal Relaxation Oscillator, since the 56F8355/56F8155 devices do  
NOT contain this oscillator.  
Part 4 Memory Map  
4.1 Introduction  
The 56F8355 and 56F8155 devices are 16-bit motor-control chips based on the 56800E core. These parts  
use a Harvard-style architecture with two independent memory spaces for Data and Program. On-chip  
RAM and Flash memories are used in both spaces.  
This section provides memory maps for:  
Program Address Space, including the Interrupt Vector Table  
Data Address Space, including the EOnCE Memory and Peripheral Memory Maps  
On-chip memory sizes for each device are summarized in Table 4-1. Flash memories’ restrictions are  
identified in the “Use Restrictions” column of Table 4-1.  
Table 4-1 Chip Memory Configurations  
On-Chip Memory  
56F8355  
56F8155  
Use Restrictions  
Program Flash  
256KB  
8KB  
256KB  
Erase/Program via Flash interface unit and word writes to CDBW  
Data Flash  
Erase/Program via Flash interface unit and word writes to CDBW.  
Data Flash can be read via either CDBR or XDB2, but not by both  
simultaneously  
Program RAM  
Data RAM  
4KB  
16KB  
16KB  
None  
16KB  
16KB  
None  
Program Boot Flash  
Erase/Program via Flash Interface unit and word writes to CDBW  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
37  
 
 
4.2 Program Map  
The Program memory map is located in Table 4-4. The operating mode control bits (MA and MB) in the  
Operating Mode Register (OMR) control the Program memory map. At reset, these bits are set as indicated  
in Table 4-2.  
EXT_BOOT = EMI_MODE = 0 and cannot be changed in the 56F8355 or 56F8155.  
1
Table 4-2 OMR MB/MA Value at Reset  
OMR MB =  
OMR MA =  
Flash Secured  
State2,3  
Chip Operating Mode  
EXTBOOT Pin  
0
0
0
Mode 0 – Internal Boot; EMI is configured to use 16 address lines; Flash Memory is  
secured; external P-space is not allowed; the EOnCE is disabled  
1
Not valid; cannot boot externally if the Flash is secured and will actually configure to 00  
state  
1
1
0
1
Mode 0 – Internal Boot; EMI is configured to use 16 address lines  
Mode 1 – External Boot; Flash Memory is not secured; EMI configuration is  
determined by the state of the EMI_MODE pin  
1. Information in shaded areas not applicable to 56F8355/56F8155.  
2. This bit is only configured at reset. If the Flash secured state changes, this will not be reflected in MB until the next reset.  
3. Changing MB in software will not affect Flash memory security.  
After reset, the OMR MA bit can be changed and will have an effect on the P-space memory map, as shown  
in Table 4-3. Changing the OMR MB bit will have no effect.  
56F8355 Technical Data, Rev. 17  
38  
Freescale Semiconductor  
Preliminary  
 
 
Program Map  
Table 4-3 Changing OMR MA Value During Normal Operation  
Chip Operating Mode  
OMR MA  
0
Use internal P-space memory map configuration  
11  
Use external P-space memory map configuration – If MB = 0 at reset, changing this bit has no  
effect.  
1. Setting this bit can cause unpredictable results and is not recommended, since the EMI is not functional in this package.  
Table 4-4 shows the memory map options of the device. The two right columns cannot be used, since the  
EMI pins are not provided in the package; therefore, only the Mode 0 column is relevant.  
Note: Program RAM is NOT available on the 56F8155 device.  
Table 4-4 Program Memory Map at Reset  
Mode 11 (MA = 1)  
Mode 0 (MA = 0)  
Begin/End  
Address  
Internal Boot  
External Boot  
EMI_MODE = 02, 3  
EMI_MODE = 14  
Internal Boot  
16-Bit External Address Bus  
16-Bit External Address Bus  
20-Bit External Address Bus  
P:$1F FFFF  
P:$10 0000  
External Program Memory  
External Program Memory5  
External Program Memory6  
P:$0F FFFF  
P:$03 0000  
P:$02 FFFF  
P:$02 F800  
On-Chip Program RAM  
4KB  
On-Chip Program RAM  
4KB  
P:$02 F7FF  
P:$02 2000  
Reserved  
108KB  
External Program Memory  
COP Reset Address = 02 0002  
Boot Location = 02 0000  
P:$02 1FFF  
P:$02 0000  
Boot Flash  
16KB  
COP Reset Address = 02 0002  
Boot Location = 02 0000  
Boot Flash  
16KB  
(Not Used for Boot in this Mode)  
P:$01 FFFF  
P:$01 0000  
Internal Program Flash  
128KB  
Internal Program Flash7  
256KB  
External Program RAM5  
COP Reset Address = 00 0002  
Boot Location = 00 0000  
P:$00 FFFF  
P:$00 0000  
1. Cannot be used since MA = EXTBOOT = 0 and the EMI is not available; information in shaded areas not applicable to  
56F8355/56F8155.  
2. This mode provides maximum compatibility with 56F80x parts while operating externally.  
3. “EMI_MODE = 0”, EMI_MODE pin is tied to ground at boot up.  
4. “EMI_MODE = 1”, EMI_MODE pin is tied to V at boot up.  
DD  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
39  
 
5. Not accessible in reset configuration, since the address is above P:$00 FFFF. The higher bit address/GPIO (and/or chip selects)  
pins must be reconfigured before this external memory is accessible.  
6. Not accessible in this part, since the EMI is not fully pinned out in this package; information in shaded areas not applicable  
to 56F8355/56F8155.  
7. Two independent program flash blocks allow one to be programmed/erased while executing from another. Each block must have  
its own mass erase.  
4.3 Interrupt Vector Table  
Table 4-5 provides the reset and interrupt priority structure, including on-chip peripherals. The table is  
organized with higher-priority vectors at the top and lower-priority interrupts lower in the table. The  
priority of an interrupt can be assigned to different levels, as indicated, allowing some control over  
interrupt priorities. All level 3 interrupts will be serviced before level 2, and so on. For a selected priority  
level, the lowest vector number has the highest priority.  
The location of the vector table is determined by the Vector Base Address (VBA) register. Please see Part  
5.6.11 for the reset value of the VBA.  
In some configurations, the reset address and COP reset address will correspond to vector 0 and 1 of the  
interrupt vector table. In these instances, the first two locations in the vector table must contain branch or  
JMP instructions. All other entries must contain JSR instructions.  
Note: PWMA, FlexCAN, Quadrature Decoder1, and Quad Timers B and D are NOT available on the  
56F8155 device.  
1
Table 4-5 Interrupt Vector Table Contents  
Vector  
Number  
Priority  
Level  
Vector Base  
Address +  
Peripheral  
Interrupt Function  
Reserved for Reset Overlay2  
Reserved for COP Reset Overlay2  
Illegal Instruction  
core  
core  
core  
core  
core  
core  
2
3
4
5
6
7
3
3
P:$04  
P:$06  
P:$08  
P:$0A  
P:$0C  
P:$0E  
SW Interrupt 3  
3
HW Stack Overflow  
Misaligned Long Word Access  
OnCE Step Counter  
OnCE Breakpoint Unit 0  
Reserved  
3
1-3  
1-3  
core  
9
1-3  
P:$12  
OnCE Trace Buffer  
56F8355 Technical Data, Rev. 17  
40  
Freescale Semiconductor  
Preliminary  
 
Interrupt Vector Table  
1
Table 4-5 Interrupt Vector Table Contents (Continued)  
Vector  
Number  
Priority  
Level  
Vector Base  
Address +  
Peripheral  
Interrupt Function  
core  
core  
10  
11  
1-3  
1-3  
P:$14  
P:$16  
OnCE Transmit Register Empty  
OnCE Receive Register Full  
Reserved  
core  
core  
core  
core  
core  
14  
15  
16  
17  
18  
2
1
P:$1C  
P:$1E  
P:$20  
P:$22  
P:$24  
SW Interrupt 2  
SW Interrupt 1  
0
SW Interrupt 0  
0-2  
0-2  
IRQA  
IRQB  
Reserved  
LVI  
PLL  
FM  
FM  
FM  
20  
21  
22  
23  
24  
0-2  
0-2  
0-2  
0-2  
0-2  
P:$28  
P:$2A  
P:$2C  
P:$2E  
P:$30  
Low Voltage Detector (power sense)  
PLL  
FM Access Error Interrupt  
FM Command Complete  
FM Command, data and address Buffers Empty  
Reserved  
FLEXCAN  
FLEXCAN  
FLEXCAN  
FLEXCAN  
GPIOF  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
P:$34  
P:$36  
P:$38  
P:$3A  
P:$3C  
P:$3E  
P:$40  
P:$42  
P:$44  
P:$46  
FLEXCAN Bus Off  
FLEXCAN Error  
FLEXCAN Wake Up  
FLEXCAN Message Buffer Interrupt  
GPIO F  
GPIOE  
GPIO E  
GPIOD  
GPIO D  
GPIOC  
GPIO C  
GPIOB  
GPIO B  
GPIOA  
GPIO A  
Reserved  
SPI1  
SPI1  
SPI0  
SPI0  
SCI1  
SCI1  
38  
39  
40  
41  
42  
43  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
P:$4C  
P:$4E  
P:$50  
P:$52  
P:$54  
P:$56  
SPI 1 Receiver Full  
SPI 1 Transmitter Empty  
SPI 0 Receiver Full  
SPI 0 Transmitter Empty  
SCI 1 Transmitter Empty  
SCI 1 Transmitter Idle  
Reserved  
SCI1  
SCI1  
DEC1  
45  
46  
47  
0-2  
0-2  
0-2  
P:$5A  
P:$5C  
P:$5E  
SCI 1 Receiver Error  
SCI 1 Receiver Full  
Quadrature Decoder #1 Home Switch or Watchdog  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
41  
1
Table 4-5 Interrupt Vector Table Contents (Continued)  
Vector  
Number  
Priority  
Level  
Vector Base  
Address +  
Peripheral  
Interrupt Function  
DEC1  
DEC0  
DEC0  
48  
49  
50  
0-2  
0-2  
0-2  
P:$60  
P:$62  
P:$64  
Quadrature Decoder #1 INDEX Pulse  
Quadrature Decoder #0 Home Switch or Watchdog  
Quadrature Decoder #0 INDEX Pulse  
Reserved  
TMRD  
TMRD  
TMRD  
TMRD  
TMRC  
TMRC  
TMRC  
TMRC  
TMRB  
TMRB  
TMRB  
TMRB  
TMRA  
TMRA  
TMRA  
TMRA  
SCI0  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
P:$68  
P:$6A  
P:$6C  
P:$6E  
P:$70  
P:$72  
P:$74  
P:$76  
P:$78  
P:$7A  
P:$7C  
P:$7E  
P:$80  
P:$82  
P:$84  
P:$86  
P:$88  
P:$8A  
Timer D, Channel 0  
Timer D, Channel 1  
Timer D, Channel 2  
Timer D, Channel 3  
Timer C, Channel 0  
Timer C, Channel 1  
Timer C, Channel 2  
Timer C, Channel 3  
Timer B, Channel 0  
Timer B, Channel 1  
Timer B, Channel 2  
Timer B, Channel 3  
Timer A, Channel 0  
Timer A, Channel 1  
Timer A, Channel 2  
Timer A, Channel 3  
SCI 0 Transmitter Empty  
SCI 0 Transmitter Idle  
Reserved  
SCI0  
SCI0  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
- 1  
P:$8E  
P:$90  
P:$92  
P:$94  
P:$96  
P:$98  
P:$9A  
P:$9C  
P:$9E  
P:$A0  
P:$A2  
SCI 0 Receiver Error  
SCI 0 Receiver Full  
SCI0  
ADCB  
ADCA  
ADCB  
ADCA  
PWMB  
PWMA  
PWMB  
PWMA  
core  
ADC B Conversion Compete / End of Scan  
ADC A Conversion Complete / End of Scan  
ADC B Zero Crossing or Limit Error  
ADC A Zero Crossing or Limit Error  
Reload PWM B  
Reload PWM A  
PWM B Fault  
PWM A Fault  
SW Interrupt LP  
1. Two words are allocated for each entry in the vector table. This does not allow the full address range to be referenced  
from the vector table, providing only 19 bits of address.  
2. If the VBA is set to $0200 (or VBA = 0000 for Mode 1, EMI_MODE = 0), the first two locations of the vector table are  
the chip reset addresses; therefore, these locations are not interrupt vectors.  
56F8355 Technical Data, Rev. 17  
42  
Freescale Semiconductor  
Preliminary  
Data Map  
2.  
4.4 Data Map  
Note: Data Flash is NOT available on the 56F8155 device.  
1, 2  
Table 4-6 Data Memory Map  
Begin/End  
Address  
EX = 03  
EX = 14  
X:$FF FFFF  
X:$FF FF00  
EOnCE  
256 locations allocated  
EOnCE  
256 locations allocated  
X:$FF FEFF  
X:$01 0000  
External Memory  
External Memory  
X:$00 FFFF  
X:$00 F000  
On-Chip Peripherals  
4096 locations allocated  
On-Chip Peripherals  
4096 locations allocated  
X:$00 EFFF  
X:$00 3000  
External Memory  
X:$00 2FFF  
X:$00 2000  
On-Chip Data Flash  
8KB  
External Memory  
X:$00 1FFF  
X:$00 0000  
On-Chip Data RAM  
16KB5  
1. Information in shaded areas not applicable to 56F8355/56F8155.  
2. All addresses are 16-bit Word addresses, not byte addresses.  
3. In the Operating Mode Register.  
4. Setting EX = 1 is not recommended in the 56F8355/56F8155, since the EMI is not functional in this package.  
5. The Data RAM is organized as a 2K x 32-bit memory to allow single-cycle, long-word operations.  
4.5 Flash Memory Map  
Figure 4-1 illustrates the Flash Memory (FM) map on the system bus.  
The Flash Memory is divided into three functional blocks. The Program and boot memories reside on the  
Program Memory buses. They are controlled by one set of banked registers. Data Memory Flash resides  
on the Data Memory buses and is controlled separately by its own set of banked registers.  
The top nine words of the Program Memory Flash are treated as special memory locations. The content of  
these words is used to control the operation of the Flash Controller. Because these words are part of the  
Flash Memory content, their state is maintained during power-down and reset. During chip initialization,  
the content of these memory locations is loaded into Flash Memory control registers, detailed in the Flash  
Memory chapter of the 56F8300 Peripheral User Manual. These configuration parameters are located  
between $01_FFF7 and $01_FFFF.  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
43  
 
Program Memory  
Data Memory  
FM_BASE + $14  
FM_BASE + $00  
BOOT_FLASH_START + $1FFF  
Banked Registers  
16KB  
Boot  
Unbanked Registers  
BOOT_FLASH_START = $02_0000  
PROG_FLASH_START + $01_FFFF  
PROG_FLASH_START + $01_FFF7  
PROG_FLASH_START + $01_FFF6  
FM_PROG_MEM_TOP = $01_FFFF  
Configure Field  
DATA_FLASH_START + $0FFF  
DATA_FLASH_START + $0000  
128KB  
Program  
8KB  
Note: Data Flash is  
NOT available in the  
56F8155 device.  
BLOCK 1 Odd (2 Bytes) $01_0003  
BLOCK 1 Even (2 Bytes) $01_0002  
BLOCK 1 Odd (2 Bytes) $01_0001  
BLOCK 1 Even (2 Bytes) $01_0000  
PROG_FLASH_START + $01_0000  
PROG_FLASH_START + $00_FFFF  
128KB  
Program  
BLOCK 0 Odd (2 Bytes) $00_0003  
BLOCK 0 Even (2 Bytes) $00_0002  
BLOCK 0 Odd (2 Bytes) $00_0001  
BLOCK 0 Even (2 Bytes) $00_0000  
PROG_FLASH_START = $00_0000  
Figure 4-1 Flash Array Memory Maps  
Table 4-7 shows the page and sector sizes used within each Flash memory block on the chip.  
Note: Data Flash is NOT available on the 56F8155 device.  
Table 4-7 Flash Memory Partitions  
Flash Size  
Sectors  
Sector Size  
Page Size  
Program Flash  
Data Flash  
256KB  
8KB  
16  
16  
4
8K x 16 bits  
256 x 16 bits  
2K x 16 bits  
512 x 16 bits  
256 x 16 bits  
256 x 16 bits  
Boot Flash  
16KB  
Please see 56F8300 Peripheral User Manual for additional Flash information.  
4.6 EOnCE Memory Map  
Table 4-8 EOnCE Memory Map  
Address  
Register Acronym  
Register Name  
Reserved  
56F8355 Technical Data, Rev. 17  
44  
Freescale Semiconductor  
Preliminary  
Peripheral Memory Mapped Registers  
Table 4-8 EOnCE Memory Map (Continued)  
Address  
Register Acronym  
OESCR  
Register Name  
X:$FF FF8A  
External Signal Control Register  
Reserved  
X:$FF FF8E  
OBCNTR  
Breakpoint Unit [0] Counter  
Reserved  
X:$FF FF90  
X:$FF FF91  
X:$FF FF92  
X:$FF FF93  
X:$FF FF94  
X:$FF FF95  
X:$FF FF96  
X:$FF FF97  
X:$FF FF98  
X:$FF FF99  
X:$FF FF9A  
X:$FF FF9B  
X:$FF FF9C  
X:$FF FF9D  
X:$FF FF9E  
X:$FF FF9F  
X:$FF FFA0  
OBMSK (32 bits)  
Breakpoint 1 Unit [0] Mask Register  
Breakpoint 1 Unit [0] Mask Register  
Breakpoint 2 Unit [0] Address Register  
Breakpoint 2 Unit [0] Address Register  
Breakpoint 1 Unit [0] Address Register  
Breakpoint 1 Unit [0] Address Register  
Breakpoint Unit [0] Control Register  
Breakpoint Unit [0] Control Register  
Trace Buffer Register Stages  
Trace Buffer Register Stages  
Trace Buffer Pointer Register  
Trace Buffer Control Register  
Peripheral Base Address Register  
Status Register  
OBAR2 (32 bits)  
OBAR1 (24 bits)  
OBCR (24 bits)  
OTB (21-24 bits/stage)  
OTBPR (8 bits)  
OTBCR  
OBASE (8 bits)  
OSR  
OSCNTR (24 bits)  
Instruction Step Counter  
Instruction Step Counter  
OCR (bits)  
Control Register  
Reserved  
X:$FF FFFC  
X:$FF FFFD  
X:$FF FFFE  
X:$FF FFFF  
OCLSR (8 bits)  
Core Lock / Unlock Status Register  
Transmit and Receive Status and Control Register  
Transmit Register / Receive Register  
OTXRXSR (8 bits)  
OTX / ORX (32 bits)  
OTX1 / ORX1  
Transmit Register Upper Word  
Receive Register Upper Word  
4.7 Peripheral Memory Mapped Registers  
On-chip peripheral registers are part of the data memory map on the 56800E series. These locations may  
be accessed with the same addressing modes used for ordinary Data memory, except all peripheral  
registers should be read/written using word accesses only.  
Table 4-9 summarizes base addresses for the set of peripherals on the 56F8355 and 56F8155 devices.  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
45  
Peripherals are listed in order of the base address.  
The following tables list all of the peripheral registers required to control or access the peripherals.  
Note: Features in italics are NOT available in the 56F8155 device.  
Table 4-9 Data Memory Peripheral Base Address Map Summary  
Peripheral  
Prefix  
Base Address  
Table Number  
External Memory Interface  
Timer A  
EMI  
X:$00 F020  
X:$00 F040  
X:$00 F080  
X:$00 F0C0  
X:$00 F100  
X:$00 F140  
X:$00 F160  
X:$00 F180  
X:$00 F190  
X:$00 F1A0  
X:$00 F200  
X:$00 F240  
X:$00 F270  
X:$00 F280  
X:$00 F290  
X:$00 F2A0  
X:$00 F2B0  
X:$00 F2C0  
X:$00 F2D0  
X:$00 F2E0  
X:$00 F300  
X:$00 F310  
X:$00 F320  
X:$00 F330  
X:$00 F340  
X:$00 F350  
X:$00 F360  
X:$00 F400  
X:$00 F800  
4-10  
4-11  
4-12  
4-13  
4-14  
4-15  
4-16  
4-17  
4-18  
4-19  
4-20  
4-21  
4-22  
4-23  
4-24  
4-25  
4-26  
4-27  
4-28  
4-29  
4-30  
4-31  
4-32  
4-33  
4-34  
4-35  
4-36  
4-37  
4-38  
TMRA  
TMRB  
TMRC  
TMRD  
PWMA  
PWMB  
DEC0  
DEC1  
ITCN  
Timer B  
Timer C  
Timer D  
PWM A  
PWM B  
Quadrature Decoder 0  
Quadrature Decoder 1  
ITCN  
ADC A  
ADCA  
ADCB  
ADC B  
Temperature Sensor  
SCI #0  
TSENSOR  
SCI0  
SCI #1  
SCI1  
SPI #0  
SPI0  
SPI #1  
SPI1  
COP  
COP  
PLL, OSC  
GPIO Port A  
GPIO Port B  
GPIO Port C  
GPIO Port D  
GPIO Port E  
GPIO Port F  
SIM  
CLKGEN  
GPIOA  
GPIOB  
GPIOC  
GPIOD  
GPIOE  
GPIOF  
SIM  
Power Supervisor  
FM  
LVI  
FM  
FlexCAN  
FC  
56F8355 Technical Data, Rev. 17  
46  
Freescale Semiconductor  
Preliminary  
Peripheral Memory Mapped Registers  
Table 4-10 External Memory Integration Registers Address Map  
(EMI_BASE = $00 F020)  
Register  
Acronym  
Address  
Offset  
Register Description  
Reset Values  
CSBAR 0  
$0  
Chip Select Base Address Register 0  
0 x 0004 = 64K since  
EXTBOOT = EMI_MODE = 0  
CSBAR 1  
$1  
Chip Select Base Address Register 1  
0 x 0004 = 64K since  
EMI_MODE = 0  
CSBAR 2  
CSBAR 3  
CSBAR 4  
CSBAR 5  
CSBAR 6  
CSBAR 7  
CSOR 0  
CSOR 1  
CSOR 2  
CSOR 3  
CSOR 4  
CSOR 5  
CSOR 6  
CSOR 7  
CSTC 0  
CSTC 1  
CSTC 2  
CSTC 3  
CSTC 4  
CSTC 5  
CSTC 6  
CSTC 7  
BCR  
$2  
$3  
Chip Select Base Address Register 2  
Chip Select Base Address Register 3  
Chip Select Base Address Register 4  
Chip Select Base Address Register 5  
Chip Select Base Address Register 6  
Chip Select Base Address Register 7  
Chip Select Option Register 0  
$4  
$5  
$6  
$7  
$8  
$9  
Chip Select Option Register 1  
$A  
Chip Select Option Register 2  
$B  
Chip Select Option Register 3  
$C  
$D  
$E  
Chip Select Option Register 4  
Chip Select Option Register 5  
Chip Select Option Register 6  
$F  
Chip Select Option Register 7  
$10  
$11  
$12  
$13  
$14  
$15  
$16  
$17  
$18  
Chip Select Timing Control Register 0  
Chip Select Timing Control Register 1  
Chip Select Timing Control Register 2  
Chip Select Timing Control Register 3  
Chip Select Timing Control Register 4  
Chip Select Timing Control Register 5  
Chip Select Timing Control Register 6  
Chip Select Timing Control Register 7  
Bus Control Register  
Table 4-11 Quad Timer A Registers Address Map  
(TMRA_BASE = $00 F040)  
Register Acronym  
Address Offset  
Register Description  
Compare Register 1  
TMRA0_CMP1  
$0  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
47  
Table 4-11 Quad Timer A Registers Address Map (Continued)  
(TMRA_BASE = $00 F040)  
Register Acronym  
Address Offset  
Register Description  
Compare Register 2  
TMRA0_CMP2  
TMRA0_CAP  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
Capture Register  
TMRA0_LOAD  
TMRA0_HOLD  
TMRA0_CNTR  
TMRA0_CTRL  
TMRA0_SCR  
Load Register  
Hold Register  
Counter Register  
Control Register  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
Reserved  
TMRA0_CMPLD1  
TMRA0_CMPLD2  
TMRA0_COMSCR  
TMRA1_CMP1  
TMRA1_CMP2  
TMRA1_CAP  
$10  
$11  
$12  
$13  
$14  
$15  
$16  
$17  
$18  
$19  
$1A  
Compare Register 1  
Compare Register 2  
Capture Register  
TMRA1_LOAD  
TMRA1_HOLD  
TMRA1_CNTR  
TMRA1_CTRL  
TMRA1_SCR  
Load Register  
Hold Register  
Counter Register  
Control Register  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
Reserved  
TMRA1_CMPLD1  
TMRA1_CMPLD2  
TMRA1_COMSCR  
TMRA2_CMP1  
TMRA2_CMP2  
TMRA2_CAP  
TMRA2_LOAD  
TMRA2_HOLD  
$20  
$21  
$22  
$23  
$24  
Compare Register 1  
Compare Register 2  
Capture Register  
Load Register  
Hold Register  
56F8355 Technical Data, Rev. 17  
48  
Freescale Semiconductor  
Preliminary  
Peripheral Memory Mapped Registers  
Table 4-11 Quad Timer A Registers Address Map (Continued)  
(TMRA_BASE = $00 F040)  
Register Acronym  
Address Offset  
$25  
Register Description  
TMRA2_CNTR  
TMRA2_CTRL  
Counter Register  
Control Register  
$26  
$27  
$28  
$29  
$2A  
TMRA2_SCR  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
Reserved  
TMRA2_CMPLD1  
TMRA2_CMPLD2  
TMRA2_COMSCR  
TMRA3_CMP1  
TMRA3_CMP2  
TMRA3_CAP  
$30  
$31  
$32  
$33  
$34  
$35  
$36  
$37  
$38  
$39  
$3A  
Compare Register 1  
Compare Register 2  
Capture Register  
TMRA3_LOAD  
TMRA3_HOLD  
TMRA3_CNTR  
TMRA3_CTRL  
TMRA3_SCR  
Load Register  
Hold Register  
Counter Register  
Control Register  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
TMRA3_CMPLD1  
TMRA3_CMPLD2  
TMRA3_COMSCR  
Table 4-12 Quad Timer B Registers Address Map  
(TMRB_BASE = $00 F080)  
Quad Timer B is NOT available in the 56F8155 device  
Register Acronym  
Address Offset  
Register Description  
Compare Register 1  
TMRB0_CMP1  
TMRB0_CMP2  
TMRB0_CAP  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
Compare Register 2  
Capture Register  
TMRB0_LOAD  
TMRB0_HOLD  
TMRB0_CNTR  
TMRB0_CTRL  
TMRB0_SCR  
Load Register  
Hold Register  
Counter Register  
Control Register  
Status and Control Register  
Comparator Load Register 1  
TMRB0_CMPLD1  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
49  
Table 4-12 Quad Timer B Registers Address Map (Continued)  
(TMRB_BASE = $00 F080)  
Quad Timer B is NOT available in the 56F8155 device  
Register Acronym  
Address Offset  
Register Description  
Comparator Load Register 2  
TMRB0_CMPLD2  
TMRB0_COMSCR  
$9  
$A  
Comparator Status and Control Register  
Reserved  
TMRB1_CMP1  
TMRB1_CMP2  
TMRB1_CAP  
$10  
$11  
$12  
$13  
$14  
$15  
$16  
$17  
$18  
$19  
$1A  
Compare Register 1  
Compare Register 2  
Capture Register  
TMRB1_LOAD  
TMRB1_HOLD  
TMRB1_CNTR  
TMRB1_CTRL  
TMRB1_SCR  
Load Register  
Hold Register  
Counter Register  
Control Register  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
Reserved  
TMRB1_CMPLD1  
TMRB1_CMPLD2  
TMRB1_COMSCR  
TMRB2_CMP1  
TMRB2_CMP2  
TMRB2_CAP  
$20  
$21  
$22  
$23  
$24  
$25  
$26  
$27  
$28  
$29  
$2A  
Compare Register 1  
Compare Register 2  
Capture Register  
TMRB2_LOAD  
TMRB2_HOLD  
TMRB2_CNTR  
TMRB2_CTRL  
TMRB2_SCR  
Load Register  
Hold Register  
Counter Register  
Control Register  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
Reserved  
TMRB2_CMPLD1  
TMRB2_CMPLD2  
TMRB2_COMSCR  
TMRB3_CMP1  
TMRB3_CMP2  
TMRB3_CAP  
TMRB3_LOAD  
TMRB3_HOLD  
$30  
$31  
$32  
$33  
$34  
Compare Register 1  
Compare Register 2  
Capture Register  
Load Register  
Hold Register  
56F8355 Technical Data, Rev. 17  
50  
Freescale Semiconductor  
Preliminary  
Peripheral Memory Mapped Registers  
Table 4-12 Quad Timer B Registers Address Map (Continued)  
(TMRB_BASE = $00 F080)  
Quad Timer B is NOT available in the 56F8155 device  
Register Acronym  
Address Offset  
Register Description  
TMRB3_CNTR  
TMRB3_CTRL  
$35  
$36  
$37  
$38  
$39  
$3A  
Counter Register  
Control Register  
TMRB3_SCR  
Status and Control Register  
TMRB3_CMPLD1  
TMRB3_CMPLD2  
TMRB3_COMSCR  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
Table 4-13 Quad Timer C Registers Address Map  
(TMRC_BASE = $00 F0C0)  
Register Acronym  
Address Offset  
Register Description  
Compare Register 1  
TMRC0_CMP1  
TMRC0_CMP2  
TMRC0_CAP  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
Compare Register 2  
Capture Register  
TMRC0_LOAD  
TMRC0_HOLD  
TMRC0_CNTR  
TMRC0_CTRL  
TMRC0_SCR  
Load Register  
Hold Register  
Counter Register  
Control Register  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
Reserved  
TMRC0_CMPLD1  
TMRC0_CMPLD2  
TMRC0_COMSCR  
TMRC1_CMP1  
TMRC1_CMP2  
TMRC1_CAP  
$10  
$11  
$12  
$13  
$14  
$15  
$16  
$17  
$18  
$19  
Compare Register 1  
Compare Register 2  
Capture Register  
TMRC1_LOAD  
TMRC1_HOLD  
TMRC1_CNTR  
TMRC1_CTRL  
TMRC1_SCR  
Load Register  
Hold Register  
Counter Register  
Control Register  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
TMRC1_CMPLD1  
TMRC1_CMPLD2  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
51  
Table 4-13 Quad Timer C Registers Address Map (Continued)  
(TMRC_BASE = $00 F0C0)  
Register Acronym  
Address Offset  
Register Description  
TMRC1_COMSCR  
$1A  
Comparator Status and Control Register  
Reserved  
TMRC2_CMP1  
TMRC2_CMP2  
TMRC2_CAP  
$20  
$21  
$22  
$23  
$24  
$25  
$26  
$27  
$28  
$29  
$2A  
Compare Register 1  
Compare Register 2  
Capture Register  
TMRC2_LOAD  
TMRC2_HOLD  
TMRC2_CNTR  
TMRC2_CTRL  
TMRC2_SCR  
Load Register  
Hold Register  
Counter Register  
Control Register  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
Reserved  
TMRC2_CMPLD1  
TMRC2_CMPLD2  
TMRC2_COMSCR  
TMRC3_CMP1  
TMRC3_CMP2  
TMRC3_CAP  
$30  
$31  
$32  
$33  
$34  
$35  
$36  
$37  
$38  
$39  
$3A  
Compare Register 1  
Compare Register 2  
Capture Register  
TMRC3_LOAD  
TMRC3_HOLD  
TMRC3_CNTR  
TMRC3_CTRL  
TMRC3_SCR  
Load Register  
Hold Register  
Counter Register  
Control Register  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
TMRC3_CMPLD1  
TMRC3_CMPLD2  
TMRC3_COMSCR  
Table 4-14 Quad Timer D Registers Address Map  
(TMRD_BASE = $00 F100)  
Quad Timer D is NOT available in the 56F8155 device  
Register Acronym  
Address Offset  
Register Description  
Compare Register 1  
TMRD0_CMP1  
TMRD0_CMP2  
TMRD0_CAP  
$0  
$1  
$2  
Compare Register 2  
Capture Register  
56F8355 Technical Data, Rev. 17  
52  
Freescale Semiconductor  
Preliminary  
Peripheral Memory Mapped Registers  
Table 4-14 Quad Timer D Registers Address Map (Continued)  
(TMRD_BASE = $00 F100)  
Quad Timer D is NOT available in the 56F8155 device  
Register Acronym  
Address Offset  
Register Description  
TMRD0_LOAD  
TMRD0_HOLD  
TMRD0_CNTR  
TMRD0_CTRL  
TMRD0_SCR  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
Load Register  
Hold Register  
Counter Register  
Control Register  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
Reserved  
TMRD0_CMPLD1  
TMRD0_CMPLD2  
TMRD0_COMSCR  
TMRD1_CMP1  
TMRD1_CMP2  
TMRD1_CAP  
$10  
$11  
$12  
$13  
$14  
$15  
$16  
$17  
$18  
$19  
$1A  
Compare Register 1  
Compare Register 2  
Capture Register  
TMRD1_LOAD  
TMRD1_HOLD  
TMRD1_CNTR  
TMRD1_CTRL  
TMRD1_SCR  
Load Register  
Hold Register  
Counter Register  
Control Register  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
Reserved  
TMRD1_CMPLD1  
TMRD1_CMPLD2  
TMRD1_COMSCR  
TMRD2_CMP1  
TMRD2_CMP2  
TMRD2_CAP  
$20  
$21  
$22  
$23  
$24  
$25  
$26  
$27  
$28  
Compare Register 1  
Compare Register 2  
Capture Register  
TMRD2_LOAD  
TMRD2_HOLD  
TMRD2_CNTR  
TMRD2_CTRL  
TMRD2_SCR  
Load Register  
Hold Register  
Counter Register  
Control Register  
Status and Control Register  
Comparator Load Register 1  
TMRD2_CMPLD1  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
53  
Table 4-14 Quad Timer D Registers Address Map (Continued)  
(TMRD_BASE = $00 F100)  
Quad Timer D is NOT available in the 56F8155 device  
Register Acronym  
Address Offset  
Register Description  
Comparator Load Register 2  
TMRD2_CMPLD2  
TMRD2_COMSCR  
$29  
$2A  
Comparator Status and Control Register  
Reserved  
TMRD3_CMP1  
TMRD3_CMP2  
TMRD3_CAP  
$30  
$31  
$32  
$33  
$34  
$35  
$36  
$37  
$38  
$39  
$3A  
Compare Register 1  
Compare Register 2  
Capture Register  
TMRD3_LOAD  
TMRD3_HOLD  
TMRD3_CNTR  
TMRD3_CTRL  
TMRD3_SCR  
Load Register  
Hold Register  
Counter Register  
Control Register  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
TMRD3_CMPLD1  
TMRD3_CMPLD2  
TMRD3_COMSCR  
Table 4-15 Pulse Width Modulator A Registers Address Map  
(PWMA_BASE = $00 F140)  
PWMA is NOT available in the 56F8155 device  
Register Acronym  
Address Offset  
Register Description  
PWMA_PMCTL  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
$B  
Control Register  
PWMA_PMFCTL  
PWMA_PMFSA  
Fault Control Register  
Fault Status Acknowledge Register  
Output Control Register  
Counter Register  
PWMA_PMOUT  
PWMA_PMCNT  
PWMA_PWMCM  
PWMA_PWMVAL0  
PWMA_PWMVAL1  
PWMA_PWMVAL2  
PWMA_PWMVAL3  
PWMA_PWMVAL4  
PWMA_PWMVAL5  
Counter Modulo Register  
Value Register 0  
Value Register 1  
Value Register 2  
Value Register 3  
Value Register 4  
Value Register 5  
56F8355 Technical Data, Rev. 17  
54  
Freescale Semiconductor  
Preliminary  
Peripheral Memory Mapped Registers  
Table 4-15 Pulse Width Modulator A Registers Address Map (Continued)  
(PWMA_BASE = $00 F140)  
PWMA is NOT available in the 56F8155 device  
Register Acronym  
Address Offset  
Register Description  
Dead Time Register  
PWMA_PMDEADTM  
PWMA_PMDISMAP1  
PWMA_PMDISMAP2  
PWMA_PMCFG  
$C  
$D  
Disable Mapping Register 1  
Disable Mapping Register 2  
Configure Register  
$E  
$F  
PWMA_PMCCR  
$10  
$11  
$12  
Channel Control Register  
PWMA_PMPORT  
PWMA_PMICCR  
Port Register  
PWM Internal Correction Control Register  
Table 4-16 Pulse Width Modulator B Registers Address Map  
(PWMB_BASE = $00 F160)  
Register Acronym  
Address Offset  
Register Description  
PWMB_PMCTL  
$0  
$1  
Control Register  
PWMB_PMFCTL  
PWMB_PMFSA  
Fault Control Register  
Fault Status Acknowledge Register  
Output Control Register  
Counter Register  
$2  
PWMB_PMOUT  
$3  
PWMB_PMCNT  
$4  
PWMB_PWMCM  
PWMB_PWMVAL0  
PWMB_PWMVAL1  
PWMB_PWMVAL2  
PWMB_PWMVAL3  
PWMB_PWMVAL4  
PWMB_PWMVAL5  
PWMB_PMDEADTM  
PWMB_PMDISMAP1  
PWMB_PMDISMAP2  
PWMB_PMCFG  
$5  
Counter Modulo Register  
Value Register 0  
$6  
$7  
Value Register 1  
$8  
Value Register 2  
$9  
Value Register 3  
$A  
$B  
$C  
$D  
$E  
$F  
$10  
$11  
$12  
Value Register 4  
Value Register 5  
Dead Time Register  
Disable Mapping Register 1  
Disable Mapping Register 2  
Configure Register  
PWMB_PMCCR  
Channel Control Register  
PWMB_PMPORT  
PWMB_PMICCR  
Port Register  
PWM Internal Correction Control Register  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
55  
Table 4-17 Quadrature Decoder 0 Registers Address Map  
(DEC0_BASE = $00 F180)  
Register Acronym  
Address Offset  
Register Description  
Decoder Control Register  
DEC0_DECCR  
DEC0_FIR  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
$B  
$C  
$D  
Filter Interval Register  
DEC0_WTR  
DEC0_POSD  
DEC0_POSDH  
DEC0_REV  
Watchdog Timeout Register  
Position Difference Counter Register  
Position Difference Counter Hold Register  
Revolution Counter Register  
Revolution Hold Register  
DEC0_REVH  
DEC0_UPOS  
DEC0_LPOS  
DEC0_UPOSH  
DEC0_LPOSH  
DEC0_UIR  
Upper Position Counter Register  
Lower Position Counter Register  
Upper Position Hold Register  
Lower Position Hold Register  
Upper Initialization Register  
Lower Initialization Register  
Input Monitor Register  
DEC0_LIR  
DEC0_IMR  
Table 4-18 Quadrature Decoder 1 Registers Address Map  
(DEC1_BASE = $00 F190)  
Quadrature Decoder 1 is NOT available in the 56F8155 device  
Register Acronym  
Address Offset  
Register Description  
Decoder Control Register  
DEC1_DECCR  
DEC1_FIR  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
$B  
Filter Interval Register  
DEC1_WTR  
DEC1_POSD  
DEC1_POSDH  
DEC1_REV  
Watchdog Timeout Register  
Position Difference Counter Register  
Position Difference Counter Hold Register  
Revolution Counter Register  
Revolution Hold Register  
DEC1_REVH  
DEC1_UPOS  
DEC1_LPOS  
DEC1_UPOSH  
DEC1_LPOSH  
DEC1_UIR  
Upper Position Counter Register  
Lower Position Counter Register  
Upper Position Hold Register  
Lower Position Hold Register  
Upper Initialization Register  
56F8355 Technical Data, Rev. 17  
56  
Freescale Semiconductor  
Preliminary  
Peripheral Memory Mapped Registers  
Table 4-18 Quadrature Decoder 1 Registers Address Map (Continued)  
(DEC1_BASE = $00 F190)  
Quadrature Decoder 1 is NOT available in the 56F8155 device  
Register Acronym  
Address Offset  
Register Description  
DEC1_LIR  
DEC1_IMR  
$C  
$D  
Lower Initialization Register  
Input Monitor Register  
Table 4-19 Interrupt Control Registers Address Map  
(ITCN_BASE = $00 F1A0)  
Register Acronym  
IPR 0  
Address Offset  
Register Description  
Interrupt Priority Register 0  
$0  
$1  
IPR 1  
Interrupt Priority Register 1  
Interrupt Priority Register 2  
Interrupt Priority Register 3  
Interrupt Priority Register 4  
Interrupt Priority Register 5  
Interrupt Priority Register 6  
Interrupt Priority Register 7  
Interrupt Priority Register 8  
Interrupt Priority Register 9  
Vector Base Address Register  
Fast Interrupt Match Register 0  
Fast Interrupt Vector Address Low 0 Register  
Fast Interrupt Vector Address High 0 Register  
Fast Interrupt Match Register 1  
Fast Interrupt Vector Address Low 1 Register  
Fast Interrupt Vector Address High 1 Register  
IRQ Pending Register 0  
IPR 2  
$2  
IPR 3  
$3  
IPR 4  
$4  
IPR 5  
$5  
IPR 6  
$6  
IPR 7  
$7  
IPR 8  
$8  
IPR 9  
$9  
VBA  
$A  
$B  
$C  
$D  
$E  
$F  
FIM0  
FIVAL0  
FIVAH0  
FIM1  
FIVAL1  
FIVAH1  
IRQP 0  
IRQP 1  
IRQP 2  
IRQP 3  
IRQP 4  
IRQP 5  
$10  
$11  
$12  
$13  
$14  
$15  
$16  
IRQ Pending Register 1  
IRQ Pending Register 2  
IRQ Pending Register 3  
IRQ Pending Register 4  
IRQ Pending Register 5  
Reserved  
ICTL  
$1D  
Interrupt Control Register  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
57  
Table 4-20 Analog-to-Digital Converter Registers Address Map  
(ADCA_BASE = $00 F200)  
Register Acronym  
Address Offset  
Register Description  
Control Register 1  
ADCA_CR 1  
$0  
$1  
ADCA_CR 2  
Control Register 2  
ADCA_ZCC  
$2  
Zero Crossing Control Register  
Channel List Register 1  
Channel List Register 2  
Sample Disable Register  
Status Register  
ADCA_LST 1  
ADCA_LST 2  
ADCA_SDIS  
$3  
$4  
$5  
ADCA_STAT  
ADCA_LSTAT  
ADCA_ZCSTAT  
ADCA_RSLT 0  
ADCA_RSLT 1  
ADCA_RSLT 2  
ADCA_RSLT 3  
ADCA_RSLT 4  
ADCA_RSLT 5  
ADCA_RSLT 6  
ADCA_RSLT 7  
ADCA_LLMT 0  
ADCA_LLMT 1  
ADCA_LLMT 2  
ADCA_LLMT 3  
ADCA_LLMT 4  
ADCA_LLMT 5  
ADCA_LLMT 6  
ADCA_LLMT 7  
ADCA_HLMT 0  
$6  
$7  
Limit Status Register  
Zero Crossing Status Register  
Result Register 0  
$8  
$9  
$A  
Result Register 1  
$B  
Result Register 2  
$C  
$D  
$E  
Result Register 3  
Result Register 4  
Result Register 5  
$F  
Result Register 6  
$10  
$11  
$12  
$13  
$14  
$15  
$16  
$17  
$18  
$19  
Result Register 7  
Low Limit Register 0  
Low Limit Register 1  
Low Limit Register 2  
Low Limit Register 3  
Low Limit Register 4  
Low Limit Register 5  
Low Limit Register 6  
Low Limit Register 7  
High Limit Register 0  
56F8355 Technical Data, Rev. 17  
58  
Freescale Semiconductor  
Preliminary  
Peripheral Memory Mapped Registers  
Table 4-20 Analog-to-Digital Converter Registers Address Map (Continued)  
(ADCA_BASE = $00 F200)  
Register Acronym  
Address Offset  
$1A  
Register Description  
High Limit Register 1  
ADCA_HLMT 1  
ADCA_HLMT 2  
ADCA_HLMT 3  
ADCA_HLMT 4  
ADCA_HLMT 5  
ADCA_HLMT 6  
ADCA_HLMT 7  
ADCA_OFS 0  
ADCA_OFS 1  
ADCA_OFS 2  
ADCA_OFS 3  
ADCA_OFS 4  
ADCA_OFS 5  
ADCA_OFS 6  
ADCA_OFS 7  
ADCA_POWER  
ADCA_CAL  
$1B  
$1C  
$1D  
$1E  
$1F  
$20  
$21  
$22  
$23  
$24  
$25  
$26  
$27  
$28  
$29  
$2A  
High Limit Register 2  
High Limit Register 3  
High Limit Register 4  
High Limit Register 5  
High Limit Register 6  
High Limit Register 7  
Offset Register 0  
Offset Register 1  
Offset Register 2  
Offset Register 3  
Offset Register 4  
Offset Register 5  
Offset Register 6  
Offset Register 7  
Power Control Register  
ADC Calibration Register  
Table 4-21 Analog-to-Digital Converter Registers Address Map  
(ADCB_BASE = $00 F240)  
Register Acronym  
Address Offset  
Register Description  
Control Register 1  
ADCB_CR 1  
ADCB_CR 2  
ADCB_ZCC  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
Control Register 2  
Zero Crossing Control Register  
Channel List Register 1  
Channel List Register 2  
Sample Disable Register  
Status Register  
ADCB_LST 1  
ADCB_LST 2  
ADCB_SDIS  
ADCB_STAT  
ADCB_LSTAT  
ADCB_ZCSTAT  
ADCB_RSLT 0  
ADCB_RSLT 1  
Limit Status Register  
Zero Crossing Status Register  
Result Register 0  
Result Register 1  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
59  
Table 4-21 Analog-to-Digital Converter Registers Address Map (Continued)  
(ADCB_BASE = $00 F240)  
Register Acronym  
Address Offset  
Register Description  
Result Register 2  
ADCB_RSLT 2  
ADCB_RSLT 3  
ADCB_RSLT 4  
ADCB_RSLT 5  
ADCB_RSLT 6  
ADCB_RSLT 7  
ADCB_LLMT 0  
ADCB_LLMT 1  
ADCB_LLMT 2  
ADCB_LLMT 3  
ADCB_LLMT 4  
ADCB_LLMT 5  
ADCB_LLMT 6  
ADCB_LLMT 7  
ADCB_HLMT 0  
ADCB_HLMT 1  
ADCB_HLMT 2  
ADCB_HLMT 3  
ADCB_HLMT 4  
ADCB_HLMT 5  
ADCB_HLMT 6  
ADCB_HLMT 7  
ADCB_OFS 0  
ADCB_OFS 1  
ADCB_OFS 2  
ADCB_OFS 3  
ADCB_OFS 4  
ADCB_OFS 5  
ADCB_OFS 6  
ADCB_OFS 7  
ADCB_POWER  
ADCB_CAL  
$B  
$C  
Result Register 3  
$D  
Result Register 4  
$E  
Result Register 5  
$F  
Result Register 6  
$10  
$11  
$12  
$13  
$14  
$15  
$16  
$17  
$18  
$19  
$1A  
$1B  
$1C  
$1D  
$1E  
$1F  
$20  
$21  
$22  
$23  
$24  
$25  
$26  
$27  
$28  
$29  
$2A  
Result Register 7  
Low Limit Register 0  
Low Limit Register 1  
Low Limit Register 2  
Low Limit Register 3  
Low Limit Register 4  
Low Limit Register 5  
Low Limit Register 6  
Low Limit Register 7  
High Limit Register 0  
High Limit Register 1  
High Limit Register 2  
High Limit Register 3  
High Limit Register 4  
High Limit Register 5  
High Limit Register 6  
High Limit Register 7  
Offset Register 0  
Offset Register 1  
Offset Register 2  
Offset Register 3  
Offset Register 4  
Offset Register 5  
Offset Register 6  
Offset Register 7  
Power Control Register  
ADC Calibration Register  
56F8355 Technical Data, Rev. 17  
60  
Freescale Semiconductor  
Preliminary  
Peripheral Memory Mapped Registers  
Table 4-22 Temperature Sensor Register Address Map  
(TSENSOR_BASE = $00 F270)  
Temperature Sensor is NOT available in the 56F8155 device  
Register Acronym  
Address Offset  
Register Description  
TSENSOR_CNTL  
$0  
Control Register  
Table 4-23 Serial Communication Interface 0 Registers Address Map  
(SCI0_BASE = $00 F280)  
Register Acronym  
Address Offset  
Register Description  
Baud Rate Register  
SCI0_SCIBR  
SCI0_SCICR  
$0  
$1  
Control Register  
Reserved  
SCI0_SCISR  
SCI0_SCIDR  
$3  
$4  
Status Register  
Data Register  
Table 4-24 Serial Communication Interface 1 Registers Address Map  
(SCI1_BASE = $00 F290)  
Register Acronym  
Address Offset  
Register Description  
Baud Rate Register  
SCI1_SCIBR  
SCI1_SCICR  
$0  
$1  
Control Register  
Reserved  
SCI1_SCISR  
SCI1_SCIDR  
$3  
$4  
Status Register  
Data Register  
Table 4-25 Serial Peripheral Interface 0 Registers Address Map  
(SPI0_BASE = $00 F2A0)  
Register Acronym  
Address Offset  
Register Description  
Status and Control Register  
SPI0_SPSCR  
SPI0_SPDSR  
SPI0_SPDRR  
SPI0_SPDTR  
$0  
$1  
$2  
$3  
Data Size Register  
Data Receive Register  
Data Transmitter Register  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
61  
Table 4-26 Serial Peripheral Interface 1 Registers Address Map  
(SPI1_BASE = $00 F2B0)  
Register Acronym  
Address Offset  
Register Description  
Status and Control Register  
SPI1_SPSCR  
SPI1_SPDSR  
SPI1_SPDRR  
SPI1_SPDTR  
$0  
$1  
$2  
$3  
Data Size Register  
Data Receive Register  
Data Transmitter Register  
Table 4-27 Computer Operating Properly Registers Address Map  
(COP_BASE = $00 F2C0)  
Register Acronym  
Address Offset  
Register Description  
COPCTL  
COPTO  
$0  
$1  
$2  
Control Register  
Time Out Register  
Counter Register  
COPCTR  
Table 4-28 Clock Generation Module Registers Address Map  
(CLKGEN_BASE = $00 F2D0)  
Register Acronym  
PLLCR  
Address Offset  
Register Description  
$0  
$1  
$2  
Control Register  
PLLDB  
PLLSR  
Divide-By Register  
Status Register  
Reserved  
SHUTDOWN  
OSCTL  
$4  
$5  
Shutdown Register  
Oscillator Control Register  
56F8355 Technical Data, Rev. 17  
62  
Freescale Semiconductor  
Preliminary  
Peripheral Memory Mapped Registers  
Table 4-29 GPIOA Registers Address Map  
(GPIOA_BASE = $00 F2E0)  
Address Offset  
Register Description  
Pullup Enable Register  
Reset Value  
0 x 3FFF  
0 x 0000  
0 x 0000  
0 x 3FFF  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 3FFF  
Register Acronym  
GPIOA_PUR  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
GPIOA_DR  
Data Register  
GPIOA_DDR  
Data Direction Register  
Peripheral Enable Register  
Interrupt Assert Register  
Interrupt Enable Register  
Interrupt Polarity Register  
Interrupt Pending Register  
Interrupt Edge-Sensitive Register  
Push-Pull Mode Register  
Raw Data Input Register  
GPIOA_PER  
GPIOA_IAR  
GPIOA_IENR  
GPIOA_IPOLR  
GPIOA_IPR  
GPIOA_IESR  
GPIOA_PPMODE  
GPIOA_RAWDATA  
Table 4-30 GPIOB Registers Address Map  
(GPIOB_BASE = $00 F300)  
Register Acronym  
Address Offset  
Register Description  
Pullup Enable Register  
Reset Value  
GPIOB_PUR  
GPIOB_DR  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
0 x 00FF  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 00FF  
Data Register  
GPIOB_DDR  
GPIOB_PER  
GPIOB_IAR  
Data Direction Register  
Peripheral Enable Register  
Interrupt Assert Register  
Interrupt Enable Register  
Interrupt Polarity Register  
Interrupt Pending Register  
Interrupt Edge-Sensitive Register  
Push-Pull Mode Register  
Raw Data Input Register  
GPIOB_IENR  
GPIOB_IPOLR  
GPIOB_IPR  
GPIOB_IESR  
GPIOB_PPMODE  
GPIOB_RAWDATA  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
63  
 
Table 4-31 GPIOC Registers Address Map  
(GPIOC_BASE = $00 F310)  
Register Acronym  
Address Offset  
Register Description  
Pullup Enable Register  
Reset Value  
GPIOC_PUR  
GPIOC_DR  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
0 x 07FF  
0 x 0000  
0 x 0000  
0 x 07FF  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 07FF  
Data Register  
GPIOC_DDR  
GPIOC_PER  
GPIOC_IAR  
Data Direction Register  
Peripheral Enable Register  
Interrupt Assert Register  
Interrupt Enable Register  
Interrupt Polarity Register  
Interrupt Pending Register  
Interrupt Edge-Sensitive Register  
Push-Pull Mode Register  
Raw Data Input Register  
GPIOC_IENR  
GPIOC_IPOLR  
GPIOC_IPR  
GPIOC_IESR  
GPIOC_PPMODE  
GPIOC_RAWDATA  
Table 4-32 GPIOD Registers Address Map  
(GPIOD_BASE = $00 F320)  
Register Acronym  
Address Offset  
Register Description  
Pullup Enable Register  
Reset Value  
GPIOD_PUR  
GPIOD_DR  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
0 x 1FFF  
0 x 0000  
0 x 0000  
0 x 1FC0  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 1FFF  
Data Register  
GPIOD_DDR  
GPIOD_PER  
GPIOD_IAR  
Data Direction Register  
Peripheral Enable Register  
Interrupt Assert Register  
Interrupt Enable Register  
Interrupt Polarity Register  
Interrupt Pending Register  
Interrupt Edge-Sensitive Register  
Push-Pull Mode Register  
Raw Data Input Register  
GPIOD_IENR  
GPIOD_IPOLR  
GPIOD_IPR  
GPIOD_IESR  
GPIOD_PPMODE  
GPIOD_RAWDATA  
56F8355 Technical Data, Rev. 17  
64  
Freescale Semiconductor  
Preliminary  
Peripheral Memory Mapped Registers  
Table 4-33 GPIOE Registers Address Map  
(GPIOE_BASE = $00 F330)  
Register Acronym  
Address Offset  
Register Description  
Pullup Enable Register  
Reset Value  
GPIOE_PUR  
GPIOE_DR  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
0 x 3FFF  
0 x 0000  
0 x 0000  
0 x 3FFF  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 3FFF  
Data Register  
GPIOE_DDR  
GPIOE_PER  
GPIOE_IAR  
Data Direction Register  
Peripheral Enable Register  
Interrupt Assert Register  
Interrupt Enable Register  
Interrupt Polarity Register  
Interrupt Pending Register  
Interrupt Edge-Sensitive Register  
Push-Pull Mode Register  
Raw Data Input Register  
GPIOE_IENR  
GPIOE_IPOLR  
GPIOE_IPR  
GPIOE_IESR  
GPIOE_PPMODE  
GPIOE_RAWDATA  
Table 4-34 GPIOF Registers Address Map  
(GPIOF_BASE = $00 F340)  
Register Acronym  
Address Offset  
Register Description  
Pullup Enable Register  
Reset Value  
GPIOF_PUR  
GPIOF_DR  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
0 x FFFF  
0 x 0000  
0 x 0000  
0 x FFFF  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 0000  
0 x FFFF  
Data Register  
GPIOF_DDR  
GPIOF_PER  
GPIOF_IAR  
Data Direction Register  
Peripheral Enable Register  
Interrupt Assert Register  
Interrupt Enable Register  
Interrupt Polarity Register  
Interrupt Pending Register  
Interrupt Edge-Sensitive Register  
Push-Pull Mode Register  
Raw Data Input Register  
GPIOF_IENR  
GPIOF_IPOLR  
GPIOF_IPR  
GPIOF_IESR  
GPIOF_PPMODE  
GPIOF_RAWDATA  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
65  
 
Table 4-35 System Integration Module Registers Address Map  
(SIM_BASE = $00 F350)  
Register Acronym  
Address Offset  
Register Description  
SIM_CONTROL  
SIM_RSTSTS  
SIM_SCR0  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
Control Register  
Reset Status Register  
Software Control Register 0  
Software Control Register 1  
Software Control Register 2  
Software Control Register 3  
Most Significant Half JTAG ID  
Least Significant Half JTAG ID  
Pullup Disable Register  
SIM_SCR1  
SIM_SCR2  
SIM_SCR3  
SIM_MSH_ID  
SIM_LSH_ID  
SIM_PUDR  
Reserved  
SIM_CLKOSR  
SIM_GPS  
$A  
$B  
$C  
$D  
$E  
Clock Out Select Register  
Quad Decoder 1 / Timer B / SPI 1 Select Register  
Peripheral Clock Enable Register  
I/O Short Address Location High Register  
I/O Short Address Location Low Register  
SIM_PCE  
SIM_ISALH  
SIM_ISALL  
Table 4-36 Power Supervisor Registers Address Map  
(LVI_BASE = $00 F360)  
Register Acronym  
Address Offset  
Register Description  
LVI_CONTROL  
LVI_STATUS  
$0  
$1  
Control Register  
Status Register  
Table 4-37 Flash Module Registers Address Map  
(FM_BASE = $00 F400)  
Register Acronym  
Address Offset  
Register Description  
Clock Divider Register  
FMCLKD  
FMMCR  
$0  
$1  
Module Control Register  
Reserved  
FMSECH  
FMSECL  
$3  
$4  
Security High Half Register  
Security Low Half Register  
56F8355 Technical Data, Rev. 17  
66  
Freescale Semiconductor  
Preliminary  
Peripheral Memory Mapped Registers  
Table 4-37 Flash Module Registers Address Map (Continued)  
(FM_BASE = $00 F400)  
Register Acronym  
Address Offset  
Register Description  
Reserved  
Reserved  
FMPROT  
$10  
$11  
Protection Register (Banked)  
Protection Boot Register (Banked)  
Reserved  
FMPROTB  
FMUSTAT  
FMCMD  
$13  
$14  
User Status Register (Banked)  
Command Register (Banked)  
Reserved  
Reserved  
16-Bit Information Option Register 0  
Hot temperature ADC reading of Temperature Sensor;  
value set during factory test  
FMOPT 0  
$1A  
16-Bit Information Option Register 1  
Not used  
FMOPT 1  
FMOPT 2  
$1B  
$1C  
16-Bit Information Option Register 2  
Room temperature ADC reading of Temperature Sensor;  
value set during factory test  
Table 4-38 FlexCAN Registers Address Map  
(FC_BASE = $00 F800)  
FlexCAN is NOT available in the 56F8155 device  
Register Acronym  
FCMCR  
Address Offset  
Register Description  
Module Configuration Register  
$0  
Reserved  
FCCTL0  
FCCTL1  
FCTMR  
$3  
$4  
$5  
$6  
Control Register 0 Register  
Control Register 1 Register  
Free-Running Timer Register  
Maximum Message Buffer Configuration Register  
Reserved  
FCMAXMB  
FCRXGMASK_H  
FCRXGMASK_L  
FCRX14MASK_H  
FCRX14MASK_L  
FCRX15MASK_H  
$8  
$9  
$A  
$B  
$C  
Receive Global Mask High Register  
Receive Global Mask Low Register  
Receive Buffer 14 Mask High Register  
Receive Buffer 14 Mask Low Register  
Receive Buffer 15 Mask High Register  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
67  
Table 4-38 FlexCAN Registers Address Map (Continued)  
(FC_BASE = $00 F800)  
FlexCAN is NOT available in the 56F8155 device  
Register Acronym  
FCRX15MASK_L  
Address Offset  
Register Description  
$D  
Receive Buffer 15 Mask Low Register  
Reserved  
FCSTATUS  
$10  
$11  
$12  
$13  
Error and Status Register  
FCIMASK1  
Interrupt Masks 1 Register  
FCIFLAG1  
Interrupt Flags 1 Register  
FCR/T_ERROR_CNTRS  
Receive and Transmit Error Counters Register  
Reserved  
Reserved  
Reserved  
FCMB0_CONTROL  
FCMB0_ID_HIGH  
FCMB0_ID_LOW  
FCMB0_DATA  
$40  
$41  
$42  
$43  
$44  
$45  
$46  
Message Buffer 0 Control / Status Register  
Message Buffer 0 ID High Register  
Message Buffer 0 ID Low Register  
Message Buffer 0 Data Register  
Message Buffer 0 Data Register  
Message Buffer 0 Data Register  
Message Buffer 0 Data Register  
Reserved  
FCMB0_DATA  
FCMB0_DATA  
FCMB0_DATA  
FCMSB1_CONTROL  
FCMSB1_ID_HIGH  
FCMSB1_ID_LOW  
FCMB1_DATA  
$48  
$49  
$4A  
$4B  
$4C  
$4D  
$4E  
Message Buffer 1 Control / Status Register  
Message Buffer 1 ID High Register  
Message Buffer 1 ID Low Register  
Message Buffer 1 Data Register  
Message Buffer 1 Data Register  
Message Buffer 1 Data Register  
Message Buffer 1 Data Register  
Reserved  
FCMB1_DATA  
FCMB1_DATA  
FCMB1_DATA  
FCMB2_CONTROL  
FCMB2_ID_HIGH  
FCMB2_ID_LOW  
FCMB2_DATA  
$50  
$51  
$52  
$53  
$54  
$55  
Message Buffer 2 Control / Status Register  
Message Buffer 2 ID High Register  
Message Buffer 2 ID Low Register  
Message Buffer 2 Data Register  
Message Buffer 2 Data Register  
Message Buffer 2 Data Register  
FCMB2_DATA  
FCMB2_DATA  
56F8355 Technical Data, Rev. 17  
68  
Freescale Semiconductor  
Preliminary  
Peripheral Memory Mapped Registers  
Table 4-38 FlexCAN Registers Address Map (Continued)  
(FC_BASE = $00 F800)  
FlexCAN is NOT available in the 56F8155 device  
Register Acronym  
FCMB2_DATA  
Address Offset  
Register Description  
Message Buffer 2 Data Register  
$56  
Reserved  
FCMB3_CONTROL  
FCMB3_ID_HIGH  
FCMB3_ID_LOW  
FCMB3_DATA  
$58  
$59  
$5A  
$5B  
$5C  
$5D  
$5E  
Message Buffer 3 Control / Status Register  
Message Buffer 3 ID High Register  
Message Buffer 3 ID Low Register  
Message Buffer 3 Data Register  
Message Buffer 3 Data Register  
Message Buffer 3 Data Register  
Message Buffer 3 Data Register  
Reserved  
FCMB3_DATA  
FCMB3_DATA  
FCMB3_DATA  
FCMB4_CONTROL  
FCMB4_ID_HIGH  
FCMB4_ID_LOW  
FCMB4_DATA  
$60  
$61  
$62  
$63  
$64  
$65  
$66  
Message Buffer 4 Control / Status Register  
Message Buffer 4 ID High Register  
Message Buffer 4 ID Low Register  
Message Buffer 4 Data Register  
Message Buffer 4 Data Register  
Message Buffer 4 Data Register  
Message Buffer 4 Data Register  
Reserved  
FCMB4_DATA  
FCMB4_DATA  
FCMB4_DATA  
FCMB5_CONTROL  
FCMB5_ID_HIGH  
FCMB5_ID_LOW  
FCMB5_DATA  
$68  
$69  
$6A  
$6B  
$6C  
$6D  
$6E  
Message Buffer 5 Control / Status Register  
Message Buffer 5 ID High Register  
Message Buffer 5 ID Low Register  
Message Buffer 5 Data Register  
Message Buffer 5 Data Register  
Message Buffer 5 Data Register  
Message Buffer 5 Data Register  
Reserved  
FCMB5_DATA  
FCMB5_DATA  
FCMB5_DATA  
FCMB6_CONTROL  
FCMB6_ID_HIGH  
FCMB6_ID_LOW  
FCMB6_DATA  
$70  
$71  
$72  
$73  
$74  
$75  
$76  
Message Buffer 6 Control / Status Register  
Message Buffer 6 ID High Register  
Message Buffer 6 ID Low Register  
Message Buffer 6 Data Register  
Message Buffer 6 Data Register  
Message Buffer 6 Data Register  
Message Buffer 6 Data Register  
FCMB6_DATA  
FCMB6_DATA  
FCMB6_DATA  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
69  
Table 4-38 FlexCAN Registers Address Map (Continued)  
(FC_BASE = $00 F800)  
FlexCAN is NOT available in the 56F8155 device  
Register Acronym  
Address Offset  
Register Description  
Reserved  
FCMB7_CONTROL  
FCMB7_ID_HIGH  
FCMB7_ID_LOW  
FCMB7_DATA  
$78  
$79  
$7A  
$7B  
$7C  
$7D  
$7E  
Message Buffer 7 Control / Status Register  
Message Buffer 7 ID High Register  
Message Buffer 7 ID Low Register  
Message Buffer 7 Data Register  
Message Buffer 7 Data Register  
Message Buffer 7 Data Register  
Message Buffer 7 Data Register  
Reserved  
FCMB7_DATA  
FCMB7_DATA  
FCMB7_DATA  
FCMB8_CONTROL  
FCMB8_ID_HIGH  
FCMB8_ID_LOW  
FCMB8_DATA  
$80  
$81  
$82  
$83  
$84  
$85  
$86  
Message Buffer 8 Control / Status Register  
Message Buffer 8 ID High Register  
Message Buffer 8 ID Low Register  
Message Buffer 8 Data Register  
Message Buffer 8 Data Register  
Message Buffer 8 Data Register  
Message Buffer 8 Data Register  
Reserved  
FCMB8_DATA  
FCMB8_DATA  
FCMB8_DATA  
FCMB9_CONTROL  
FCMB9_ID_HIGH  
FCMB9_ID_LOW  
FCMB9_DATA  
$88  
$89  
$8A  
$8B  
$8C  
$8D  
$8E  
Message Buffer 9 Control / Status Register  
Message Buffer 9 ID High Register  
Message Buffer 9 ID Low Register  
Message Buffer 9 Data Register  
Message Buffer 9 Data Register  
Message Buffer 9 Data Register  
Message Buffer 9 Data Register  
Reserved  
FCMB9_DATA  
FCMB9_DATA  
FCMB9_DATA  
FCMB10_CONTROL  
FCMB10_ID_HIGH  
FCMB10_ID_LOW  
FCMB10_DATA  
$90  
$91  
$92  
$93  
$94  
$95  
Message Buffer 10 Control / Status Register  
Message Buffer 10 ID High Register  
Message Buffer 10 ID Low Register  
Message Buffer 10 Data Register  
Message Buffer 10 Data Register  
Message Buffer 10 Data Register  
FCMB10_DATA  
FCMB10_DATA  
56F8355 Technical Data, Rev. 17  
70  
Freescale Semiconductor  
Preliminary  
Peripheral Memory Mapped Registers  
Table 4-38 FlexCAN Registers Address Map (Continued)  
(FC_BASE = $00 F800)  
FlexCAN is NOT available in the 56F8155 device  
Register Acronym  
FCMB10_DATA  
Address Offset  
Register Description  
Message Buffer 10 Data Register  
$96  
Reserved  
FCMB11_CONTROL  
FCMB11_ID_HIGH  
FCMB11_ID_LOW  
FCMB11_DATA  
FCMB11_DATA  
FCMB11_DATA  
FCMB11_DATA  
$98  
$99  
$9A  
$9B  
$9C  
$9D  
$9E  
Message Buffer 11 Control / Status Register  
Message Buffer 11 ID High Register  
Message Buffer 11 ID Low Register  
Message Buffer 11 Data Register  
Message Buffer 11 Data Register  
Message Buffer 11 Data Register  
Message Buffer 11 Data Register  
Reserved  
FCMB12_CONTROL  
FCMB12_ID_HIGH  
FCMB12_ID_LOW  
FCMB12_DATA  
FCMB12_DATA  
FCMB12_DATA  
FCMB12_DATA  
$A0  
$A1  
$A2  
$A3  
$A4  
$A5  
$A6  
Message Buffer 12 Control / Status Register  
Message Buffer 12 ID High Register  
Message Buffer 12 ID Low Register  
Message Buffer 12 Data Register  
Message Buffer 12 Data Register  
Message Buffer 12 Data Register  
Message Buffer 12 Data Register  
Reserved  
FCMB13_CONTROL  
FCMB13_ID_HIGH  
FCMB13_ID_LOW  
FCMB13_DATA  
FCMB13_DATA  
FCMB13_DATA  
FCMB13_DATA  
$A8  
$A9  
$AA  
$AB  
$AC  
$AD  
$AE  
Message Buffer 13 Control / Status Register  
Message Buffer 13 ID High Register  
Message Buffer 13 ID Low Register  
Message Buffer 13 Data Register  
Message Buffer 13 Data Register  
Message Buffer 13 Data Register  
Message Buffer 13 Data Register  
Reserved  
FCMB14_CONTROL  
FCMB14_ID_HIGH  
FCMB14_ID_LOW  
FCMB14_DATA  
$B0  
$B1  
$B2  
$B3  
$B4  
Message Buffer 14 Control / Status Register  
Message Buffer 14 ID High Register  
Message Buffer 14 ID Low Register  
Message Buffer 14 Data Register  
Message Buffer 14 Data Register  
FCMB14_DATA  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
71  
Table 4-38 FlexCAN Registers Address Map (Continued)  
(FC_BASE = $00 F800)  
FlexCAN is NOT available in the 56F8155 device  
Register Acronym  
FCMB14_DATA  
Address Offset  
Register Description  
Message Buffer 14 Data Register  
$B5  
$B6  
FCMB14_DATA  
Message Buffer 14 Data Register  
Reserved  
FCMB15_CONTROL  
FCMB15_ID_HIGH  
FCMB15_ID_LOW  
FCMB15_DATA  
FCMB15_DATA  
FCMB15_DATA  
FCMB15_DATA  
$B8  
$B9  
$BA  
$BB  
$BC  
$BD  
$BE  
Message Buffer 15 Control / Status Register  
Message Buffer 15 ID High Register  
Message Buffer 15 ID Low Register  
Message Buffer 15 Data Register  
Message Buffer 15 Data Register  
Message Buffer 15 Data Register  
Message Buffer 15 Data Register  
Reserved  
4.8 Factory Programmed Memory  
4.8.1  
Serial Bootloader  
The Boot Flash memory block is programmed during manufacturing with a default Serial Bootloader  
program. The Serial Bootloader application can be used to load a user application into the Program and  
Data Flash (NOT available in the 56F8155) memories of the device. The 56F83xx SCI/CAN Bootloader  
User Manual (MC56F83xxBLUM) provides detailed information on this firmware. An application note,  
Production Flash Programming (AN1973), details how the Serial Bootloader program can be used to  
perform production Flash programming of the on board flash memories as well as other potential methods.  
Like all the Flash memory blocks, the Boot Flash can be erased and programmed by the user. The Serial  
Bootloader application is programmed as an aid to the end user, but is not required to be used or maintained  
in the Boot Flash memory.  
The Boot Flash memory block also includes the ADC calibration vector.  
Part 5 Interrupt Controller (ITCN)  
5.1 Introduction  
The Interrupt Controller (ITCN) module is used to arbitrate between various interrupt requests (IRQs), to  
signal to the 56800E core when an interrupt of sufficient priority exists, and to what address to jump in  
order to service this interrupt.  
56F8355 Technical Data, Rev. 17  
72  
Freescale Semiconductor  
Preliminary  
Features  
5.2 Features  
The ITCN module design includes these distinctive features:  
Programmable priority levels for each IRQ  
Two programmable Fast Interrupts  
Notification to SIM module to restart clocks out of Wait and Stop modes  
Drives initial address on the address bus after reset  
For further information, see Table 4-5, Interrupt Vector Table Contents.  
5.3 Functional Description  
The Interrupt Controller is a slave on the IPBus. It contains registers allowing each of the 82 interrupt  
sources to be set to one of four priority levels, excluding certain interrupts of fixed priority. Next, all of  
the interrupt requests of a given level are priority encoded to determine the lowest numerical value of the  
active interrupt requests for that level. Within a given priority level, 0 is the highest priority, while number  
81 is the lowest.  
5.3.1  
Normal Interrupt Handling  
Once the ITCN has determined that an interrupt is to be serviced and which interrupt has the highest  
priority, an interrupt vector address is generated. Normal interrupt handling concatenates the VBA and the  
vector number to determine the vector address. In this way, an offset is generated into the vector table for  
each interrupt.  
5.3.2  
Interrupt Nesting  
Interrupt exceptions may be nested to allow an IRQ of higher priority than the current exception to be  
serviced. The following tables define the nesting requirements for each priority level.  
Table 5-1 Interrupt Mask Bit Definition  
SR[9]1  
SR[8]1  
Permitted Exceptions  
Masked Exceptions  
None  
0
0
1
1
0
1
0
1
Priorities 0, 1, 2, 3  
Priorities 1, 2, 3  
Priorities 2, 3  
Priority 3  
Priority 0  
Priorities 0, 1  
Priorities 0, 1, 2  
1. Core status register bits indicating current interrupt mask within the core.  
Table 5-2 Interrupt Priority Encoding  
Current Interrupt  
Priority Level  
Required Nested  
Exception Priority  
IPIC_LEVEL[1:0]1  
00  
No Interrupt or SWILP  
Priorities 0, 1, 2, 3  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
73  
 
Table 5-2 Interrupt Priority Encoding  
Current Interrupt  
Priority Level  
Required Nested  
Exception Priority  
IPIC_LEVEL[1:0]1  
01  
10  
11  
Priority 0  
Priorities 1, 2, 3  
Priority 1  
Priorities 2, 3  
Priority 3  
Priorities 2 or 3  
1. See IPIC field definition in Part 5.6.30.2  
5.3.3  
Fast Interrupt Handling  
Fast interrupts are described in the DSP56800E Reference Manual. The interrupt controller recognizes fast  
interrupts before the core does.  
A fast interrupt is defined (to the ITCN) by:  
1. Setting the priority of the interrupt as level 2, with the appropriate field in the IPR registers  
2. Setting the FIMn register to the appropriate vector number  
3. Setting the FIVALn and FIVAHn registers with the address of the code for the fast interrupt  
When an interrupt occurs, its vector number is compared with the FIM0 and FIM1 register values. If a  
match occurs, and it is a level 2 interrupt, the ITCN handles it as a fast interrupt. The ITCN takes the vector  
address from the appropriate FIVALn and FIVAHn registers, instead of generating an address that is an  
offset from the VBA.  
The core then fetches the instruction from the indicated vector adddress and if it is not a JSR, the core starts  
its fast interrupt handling.  
56F8355 Technical Data, Rev. 17  
74  
Freescale Semiconductor  
Preliminary  
 
Block Diagram  
5.4 Block Diagram  
any0  
Priority  
Level  
Level 0  
82 -> 7  
Priority  
Encoder  
7
2 -> 4  
INT1  
Decode  
INT  
VAB  
IPIC  
CONTROL  
any3  
IACK  
SR[9:8]  
Level 3  
Priority  
Level  
82 -> 7  
Priority  
PIC_EN  
7
Encoder  
2 -> 4  
Decode  
INT82  
Figure 5-1 Interrupt Controller Block Diagram  
5.5 Operating Modes  
The ITCN module design contains two major modes of operation:  
Functional Mode  
The ITCN is in this mode by default.  
Wait and Stop Modes  
During Wait and Stop modes, the system clocks and the 56800E core are turned off. The ITCN will signal  
a pending IRQ to the System Integration Module (SIM) to restart the clocks and service the IRQ. An IRQ  
can only wake up the core if the IRQ is enabled prior to entering the Wait or Stop mode. Also, the IRQA  
and IRQB signals automatically become low-level sensitive in these modes even if the control register bits  
are set to make them falling-edge sensitive. This is because there is no clock available to detect the falling  
edge.  
A peripheral which requires a clock to generate interrupts will not be able to generate interrupts during Stop  
mode. The FlexCAN module can wake the device from Stop mode, and a reset will do just that, or IRQA  
and IRQB can wake it up.  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
75  
5.6 Register Descriptions  
A register address is the sum of a base address and an address offset. The base address is defined at the  
system level and the address offset is defined at the module level. The ITCN peripheral has 24 registers.  
Table 5-3 ITCN Register Summary  
(ITCN_BASE = $00F1A0)  
Register  
Acronym  
Base Address +  
Register Name  
Interrupt Priority Register 0  
Section Location  
IPR0  
$0  
$1  
5.6.1  
5.6.2  
Interrupt Priority Register 1  
IPR1  
Interrupt Priority Register 2  
IPR2  
$2  
5.6.3  
Interrupt Priority Register 3  
IPR3  
$3  
5.6.4  
Interrupt Priority Register 4  
IPR4  
$4  
5.6.5  
Interrupt Priority Register 5  
IPR5  
$5  
5.6.6  
Interrupt Priority Register 6  
IPR6  
$6  
5.6.7  
Interrupt Priority Register 7  
IPR7  
$7  
5.6.8  
Interrupt Priority Register 8  
IPR8  
$8  
5.6.9  
Interrupt Priority Register 9  
IPR9  
$9  
5.6.10  
5.6.11  
5.6.12  
5.6.13  
5.6.14  
5.6.15  
5.6.16  
5.6.17  
5.6.18  
5.6.19  
5.6.20  
5.6.21  
5.6.22  
5.6.23  
Vector Base Address Register  
Fast Interrupt 0 Match Register  
Fast Interrupt 0 Vector Address Low Register  
Fast Interrupt 0 Vector Address High Register  
Fast Interrupt 1 Match Register  
Fast Interrupt 1 Vector Address Low Register  
Fast Interrupt 1 Vector Address High Register  
IRQ Pending Register 0  
VBA  
$A  
$B  
$C  
$D  
$E  
$F  
FIM0  
FIVAL0  
FIVAH0  
FIM1  
FIVAL1  
FIVAH1  
IRQP0  
IRQP1  
IRQP2  
IRQP3  
IRQP4  
IRQP5  
Reserved  
ICTL  
$10  
$11  
$12  
$13  
$14  
$15  
$16  
IRQ Pending Register 1  
IRQ Pending Register 2  
IRQ Pending Register 3  
IRQ Pending Register 4  
IRQ Pending Register 5  
Interrupt Control Register  
$1 $1DD  
5.6.30  
56F8355 Technical Data, Rev. 17  
76  
Freescale Semiconductor  
Preliminary  
Register Descriptions  
Table 5-3 ITCN Register Summary  
(ITCN_BASE = $00F1A0) (Continued)  
Register  
Acronym  
Base Address +  
Register Name  
Section Location  
Add. Register  
Offset Name  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
R
W
R
0
0
0
0
0
0
0
0
0
0
0
0
$0  
$1  
IPR0  
IPR1  
BKPT_U0 IPL  
STPCNT IPL  
0
0
0
0
0
0
0
0
0
0
RX_REG IPL  
TX_REG IPL  
IRQB IPL  
TRBUF IPL  
IRQA IPL  
W
R
0
0
$2  
IPR2  
FMCBE IPL  
FMCC IPL  
FMERR IPL  
LOCK IPL  
LVI IPL  
W
R
0
0
GPIOD  
IPL  
GPIOE  
IPL  
GPIOF  
IPL  
$3  
IPR3  
FCMSGBUF IPL FCWKUP IPL  
FCERR IPL  
GPIOA IPL  
FCBOFF IPL  
GPIOB IPL  
W
R
0
0
0
0
0
0
SPI1_RCV  
IPL  
$4  
IPR4  
SPI0_RCV IPL SPI1_XMIT IPL  
DEC1_XIRQ IPL DEC1_HIRQ IPL  
GPIOC IPL  
W
R
SCI1_RCV  
IPL  
$5  
IPR5  
SCI1_RERR IPL  
TMRD1 IPL  
SCI1_TIDL IPL SCI1_XMIT IPL SPI0_XMIT IPL  
W
R
0
0
$6  
IPR6  
TMRC0 IPL  
TMRA0 IPL  
TMRD3 IPL  
TMRB3 IPL  
TMRD2 IPL  
TMRB2 IPL  
TMRD0 IPL  
TMRB0 IPL  
DEC0_XIRQ IPL DEC0_HIRQ IPL  
W
R
$7  
IPR7  
TMRB1 IPL  
TMRC3 IPL  
TMRA3 IPL  
TMRC2 IPL  
TMRA2 IPL  
TMRC1 IPL  
TMRA1 IPL  
W
R
0
0
$8  
IPR8  
SCI0_RCV IPL SCI0_RERR IPL  
SCI0_TIDL IPL SCI0_XMIT IPL  
PWMB_RL IPL ADCA_ZC IPL  
W
R
PWMA_RL  
IPL  
$9  
IPR9  
PWMA_F IPL  
PWMB_F IPL  
0
ABCB_ZC IPL  
ADCA_CC IPL  
ADCB_CC IPL  
W
R
0
0
0
0
VECTOR BASE ADDRESS  
$A  
$B  
$C  
$D  
$E  
$F  
$10  
$11  
$12  
$13  
VBA  
W
R
0
0
0
0
0
0
0
VBA0  
FIVAL0  
FIVAH0  
FIM1  
FAST INTERRUPT 0  
W
R
FAST INTERRUPT 0 VECTOR ADDRESS LOW  
W
R
0
0
0
0
0
0
0
0
0
0
0
FAST INTERRUPT 0  
VECTOR ADDRESS HIGH  
W
R
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
FAST INTERRUPT 1  
W
R
FAST INTERRUPT 1  
VECTOR ADDRESS LOW  
FIVAL1  
FIVAH1  
IRQP0  
IRQP1  
IRQP2  
W
R
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
FAST INTERRUPT 1  
VECTOR ADDRESS HIGH  
W
R
PENDING [16:2]  
1
W
R
PENDING [32:17]  
W
R
PENDING [48:33]  
W
Figure 5-2 ITCN Register Map Summary  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
77  
Add. Register  
Offset Name  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
R
W
R
PENDING [64:49]  
$14  
$15  
IRQP3  
IRQP4  
PENDING [80:65]  
W
PEND-  
ING  
[81]  
R
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
$16  
IRQP5  
W
Reserved  
ICTL  
IRQB  
STATE STATE  
IRQA  
INT  
IPIC  
VAB  
R
IRQB  
EDG  
IRQA  
EDG  
INT_DIS  
$1D  
W
= Reserved  
Figure 5-2 ITCN Register Map Summary  
5.6.1  
Interrupt Priority Register 0 (IPR0)  
Base + $0  
Read  
15  
0
14  
0
13  
12  
11  
10  
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
BKPT_U0IPL  
STPCNT IPL  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 5-3 Interrupt Priority Register 0 (IPR0)  
5.6.1.1  
Reserved—Bits 15–14  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
5.6.1.2  
EOnCE Breakpoint Unit 0 Interrupt Priority Level (BKPT_U0 IPL)—  
Bits13–12  
This field is used to set the interrupt priority levels for IRQs. This IRQ is limited to priorities 1 through 3.  
It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 1  
10 = IRQ is priority level 2  
11 = IRQ is priority level 3  
5.6.1.3  
EOnCE Step Counter Interrupt Priority Level (STPCNT IPL)—  
Bits 11–10  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 1 through 3.  
56F8355 Technical Data, Rev. 17  
78  
Freescale Semiconductor  
Preliminary  
Register Descriptions  
It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 1  
10 = IRQ is priority level 2  
11 = IRQ is priority level 3  
5.6.1.4  
Reserved—Bits 9–0  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
5.6.2  
Interrupt Priority Register 1 (IPR1)  
Base + $1  
Read  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
4
3
2
1
0
RX_REG IPL TX_REG IPL  
TRBUF IPL  
Write  
RESET  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 5-4 Interrupt Priority Register 1 (IPR1)  
5.6.2.1  
Reserved—Bits 15–6  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
5.6.2.2  
EOnCE Receive Register Full Interrupt Priority Level  
(RX_REG IPL)—Bits 5–4  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 1 through 3.  
It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 1  
10 = IRQ is priority level 2  
11 = IRQ is priority level 3  
5.6.2.3  
EOnCE Transmit Register Empty Interrupt Priority Level  
(TX_REG IPL)—Bits 3–2  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 1 through 3.  
It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 1  
10 = IRQ is priority level 2  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
79  
11 = IRQ is priority level 3  
5.6.2.4  
EOnCE Trace Buffer Interrupt Priority Level (TRBUF IPL)—  
Bits 1–0  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 1 through 3.  
It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 1  
10 = IRQ is priority level 2  
11 = IRQ is priority level 3  
5.6.3  
Interrupt Priority Register 2 (IPR2)  
Base + $2  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
0
5
0
4
0
3
2
1
0
FMCBE IPL  
FMCC IPL  
FMERR IPL  
LOCK IPL  
LVI IPL  
IRQB IPL  
IRQA IPL  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 5-5 Interrupt Priority Register 2 (IPR2)  
5.6.3.1  
Flash Memory Command, Data, Address Buffers Empty Interrupt  
Priority Level (FMCBE IPL)—Bits 15–14  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.3.2  
Flash Memory Command Complete Priority Level  
(FMCC IPL)—Bits 13–12  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
56F8355 Technical Data, Rev. 17  
80  
Freescale Semiconductor  
Preliminary  
Register Descriptions  
5.6.3.3  
Flash Memory Error Interrupt Priority Level  
(FMERR IPL)—Bits 11–10  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.3.4  
PLL Loss of Lock Interrupt Priority Level (LOCK IPL)—Bits 9–8  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.3.5  
Low Voltage Detector Interrupt Priority Level (LVI IPL)—Bits 7–6  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.3.6  
Reserved—Bits 5–4  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
5.6.3.7  
External IRQ B Interrupt Priority Level (IRQB IPL)—Bits 3–2  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
81  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.3.8  
External IRQ A Interrupt Priority Level (IRQA IPL)—Bits 1–0  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.4  
Interrupt Priority Register 3 (IPR3)  
Base + $3  
Read  
15 14 13 12 11 10  
GPIOD IPL GPIOE IPL GPIOFIPL  
9
8
7
6
5
4
3
2
1
0
0
0
FCMSGBUF IPL  
FCWKUP IPL  
FCERR IPL  
FCBOFF IPL  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 5-6 Interrupt Priority Register 3 (IPR3)  
GPIOD Interrupt Priority Level (GPIOD IPL)—Bits 15–14  
5.6.4.1  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.4.2  
GPIOE Interrupt Priority Level (GPIOE IPL)—Bits 13–12  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.4.3  
GPIOF Interrupt Priority Level (GPIOF IPL)—Bits 11–10  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
56F8355 Technical Data, Rev. 17  
82  
Freescale Semiconductor  
Preliminary  
Register Descriptions  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.4.4  
FlexCAN Message Buffer Interrupt Priority Level  
(FCMSGBUF IPL)—Bits 9–8  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.4.5  
FlexCAN Wake Up Interrupt Priority Level (FCWKUP IPL)—  
Bits 7–6  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.4.6  
FlexCAN Error Interrupt Priority Level (FCERR IPL)— Bits 5–4  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.4.7  
FlexCAN Bus Off Interrupt Priority Level (FCBOFF IPL)— Bits 3–2  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
83  
11 = IRQ is priority level 2  
5.6.4.8  
Reserved—Bits 1–0  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
5.6.5  
Interrupt Priority Register 4 (IPR4)  
Base + $4  
Read  
15  
14  
13  
12  
11  
10  
9
0
8
0
7
0
6
0
5
4
3
2
1
0
SPI0_RCV  
IPL  
SPI1_XMIT  
IPL  
SPI1_RCV  
IPL  
GPIOA IPL  
GPIOB IPL  
GPIOC IPL  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 5-7 Interrupt Priority Register 4 (IPR4)  
5.6.5.1  
SPI0 Receiver Full Interrupt Priority Level (SPI0_RCV IPL)—  
Bits 15–14  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.5.2  
SPI1 Transmit Empty Interrupt Priority Level (SPI1_XMIT IPL)—  
Bits 13–12  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.5.3  
SPI1 Receiver Full Interrupt Priority Level (SPI1_RCV IPL)—  
Bits 11–10  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
56F8355 Technical Data, Rev. 17  
84  
Freescale Semiconductor  
Preliminary  
Register Descriptions  
5.6.5.4  
Reserved—Bits 9–6  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
5.6.5.5  
GPIOA Interrupt Priority Level (GPIOA IPL)—Bits 5–4  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.5.6  
GPIOB Interrupt Priority Level (GPIOB IPL)—Bits 3–2  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.5.7  
GPIOC Interrupt Priority Level (GPIOC IPL)—Bits 1–0  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.6  
Interrupt Priority Register 5 (IPR5)  
Base + $5  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
0
6
0
5
4
3
2
1
0
DEC1_XIRQ DEC1_HIRQ  
IPL IPL  
SCI1_RCV  
IPL  
SCI1_RERR  
IPL  
SCI1_TIDL  
IPL  
SCI1_XMIT  
IPL  
SPI0_XMIT  
IPL  
Write  
RESET  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 5-8 Interrupt Priority Register 5 (IPR5)  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
85  
5.6.6.1  
Quadrature Decoder 1 INDEX Pulse Interrupt Priority Level (DEC1_XIRQ  
IPL)—Bits 15–14  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.6.2  
Quadrature Decoder 1 HOME Signal Transition or Watchdog Timer  
Interrupt Priority Level (DEC1_HIRQ IPL)—Bits 13–12  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.6.3  
SCI1 Receiver Full Interrupt Priority Level (SCI1_RCV IPL)—  
Bits 11–10  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.6.4  
SCI1 Receiver Error Interrupt Priority Level (SCI1_RERR IPL)—  
Bits 9–8  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
56F8355 Technical Data, Rev. 17  
86  
Freescale Semiconductor  
Preliminary  
Register Descriptions  
5.6.6.5  
Reserved—Bits 7–6  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
5.6.6.6  
SCI1 Transmitter Idle Interrupt Priority Level (SCI1_TIDL IPL)—  
Bits 5–4  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.6.7  
SCI1 Transmitter Empty Interrupt Priority Level (SCI1_XMIT IPL)— Bits  
3–2  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.6.8  
SPI0 Transmitter Empty Interrupt Priority Level (SPI_XMIT IPL)—  
Bits 1–0  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.7  
Interrupt Priority Register 6 (IPR6)  
Base + $6  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
0
4
0
3
2
1
0
DEC0_XIRQ  
IPL  
DEC0_HIRQ  
IPL  
TMRC0 IPL  
TMRD3 IPL  
TMRD2 IPL  
TMRD1 IPL  
TMRD0 IPL  
Write  
RESET  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 5-9 Interrupt Priority Register 6 (IPR6)  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
87  
5.6.7.1  
Timer C, Channel 0 Interrupt Priority Level (TMRC0 IPL)—  
Bits 15–14  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.7.2  
Timer D, Channel 3 Interrupt Priority Level (TMRD3 IPL)—  
Bits 13–12  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.7.3  
Timer D, Channel 2 Interrupt Priority Level (TMRD2 IPL)—  
Bits 11–10  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.7.4  
Timer D, Channel 1 Interrupt Priority Level (TMRD1 IPL)—  
Bits 9–8  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
56F8355 Technical Data, Rev. 17  
88  
Freescale Semiconductor  
Preliminary  
Register Descriptions  
5.6.7.5  
Timer D, Channel 0 Interrupt Priority Level (TMRD0 IPL)—  
Bits 7–6  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.7.6  
Reserved—Bits 5–4  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
5.6.7.7  
Quadrature Decoder 0, INDEX Pulse Interrupt Priority Level (DEC0_XIRQ  
IPL)—Bits 3–2  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.7.8  
Quadrature Decoder 0, HOME Signal Transition or Watchdog Timer  
Interrupt Priority Level (DEC0_HIRQ IPL)—Bits 1–0  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.8  
Interrupt Priority Register 7 (IPR7)  
Base + $7  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
TMRA0 IPL  
TMRB3 IPL  
TMRB2 IPL  
TMRB1 IPL  
TMRB0 IPL  
TMRC3 IPL  
TMRC2 IPL  
TMRC1 IPL  
Write  
RESET  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 5-10 Interrupt Priority Register (IPR7)  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
89  
5.6.8.1  
Timer A, Channel 0 Interrupt Priority Level (TMRA0 IPL)—  
Bits 15–14  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.8.2  
Timer B, Channel 3 Interrupt Priority Level (TMRB3 IPL)—  
Bits 13–12  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.8.3  
Timer B, Channel 2 Interrupt Priority Level (TMRB2 IPL)—  
Bits 11–10  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.8.4  
Timer B, Channel 1 Interrupt Priority Level (TMRB1 IPL)—Bits 9–8  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
56F8355 Technical Data, Rev. 17  
90  
Freescale Semiconductor  
Preliminary  
Register Descriptions  
5.6.8.5  
Timer B, Channel 0 Interrupt Priority Level (TMRB0 IPL)—Bits 7–6  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.8.6  
Timer C, Channel 3 Interrupt Priority Level (TMRC3 IPL)—Bits 5–4  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.8.7  
Timer C, Channel 2 Interrupt Priority Level (TMRC2 IPL)—Bits 3–2  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.8.8  
Timer C, Channel 1 Interrupt Priority Level (TMRC1 IPL)—Bits 1–0  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.9  
Interrupt Priority Register 8 (IPR8)  
Base + $8  
Read  
15  
14  
13  
12  
11  
0
10  
0
9
8
7
6
5
4
3
2
1
0
SCI0_RCV  
IPL  
SCI0_RERR  
IPL  
SCI0_TIDL  
IPL  
SCI0_XMIT  
IPL  
TMRA3 IPL  
TMRA2 IPL  
TMRA1 IPL  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 5-11 Interrupt Priority Register 8 (IPR8)  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
91  
5.6.9.1  
SCI0 Receiver Full Interrupt Priority Level (SCI0_RCV IPL)—  
Bits 15–14  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.9.2  
SCI0 Receiver Error Interrupt Priority Level (SCI0_RERR IPL)—  
Bits 13–12  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.9.3  
Reserved—Bits 11–10  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
5.6.9.4  
SCI0 Transmitter Idle Interrupt Priority Level (SCI0_TIDL IPL)—  
Bits 9–8  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.9.5  
SCI0 Transmitter Empty Interrupt Priority Level (SCI0_XMIT IPL)—  
Bits 7–6  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
56F8355 Technical Data, Rev. 17  
92  
Freescale Semiconductor  
Preliminary  
Register Descriptions  
5.6.9.6  
Timer A, Channel 3 Interrupt Priority Level (TMRA3 IPL)—Bits 5–4  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.9.7  
Timer A, Channel 2 Interrupt Priority Level (TMRA2 IPL)—Bits 3–2  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.9.8  
Timer A, Channel 1 Interrupt Priority Level (TMRA1 IPL)—Bits 1–0  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.10 Interrupt Priority Register 9 (IPR9)  
Base + $9  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PWMA_RL  
IPL  
PWMB_RL  
IPL  
ADCA_CC  
IPL  
ADCB_CC  
IPL  
PWMA_F IPL PWMB_F IPL  
ADCA_ZC IPL ABCB_ZC IPL  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 5-12 Interrupt Priority Register 9 (IPR9)  
5.6.10.1 PWM A Fault Interrupt Priority Level (PWMA_F IPL)—Bits 15–14  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
93  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.10.2 PWM B Fault Interrupt Priority Level (PWMB_F IPL)—Bits 13–12  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.10.3 Reload PWM A Interrupt Priority Level (PWMA_RL IPL)—  
Bits 11–10  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.10.4 Reload PWM B Interrupt Priority Level (PWMB_RL IPL)—Bits 9–8  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.10.5 ADC A Zero Crossing or Limit Error Interrupt Priority Level  
(ADCA_ZC IPL)—Bits 7–6  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
56F8355 Technical Data, Rev. 17  
94  
Freescale Semiconductor  
Preliminary  
Register Descriptions  
5.6.10.6 ADC B Zero Crossing or Limit Error Interrupt Priority Level  
(ADCB_ZC IPL)—Bits 5–4  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.10.7 ADC A Conversion Complete Interrupt Priority Level  
(ADCA_CC IPL)—Bits 3–2  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.10.8 ADC B Conversion Complete Interrupt Priority Level  
(ADCB_CC IPL)—Bits 1–0  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.11 Vector Base Address Register (VBA)  
Base + $A  
Read  
15  
0
14  
0
13  
0
12  
11  
10  
9
8
7
6
5
4
0
3
0
2
0
1
0
0
0
VECTOR BASE ADDRESS  
Write  
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 5-13 Vector Base Address Register (VBA)  
5.6.11.1 Reserved—Bits 15–13  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
95  
5.6.11.2 Interrupt Vector Base Address (VECTOR BASE ADDRESS)—  
Bits 12–0  
The contents of this register determine the location of the Vector Address Table. The value in this register  
is used as the upper 13 bits of the interrupt Vector Address Bus (VAB[20:0]). The lower eight bits are  
determined based upon the highest-priority interrupt. They are then appended onto VBA before presenting  
the full interrupt address to the 56800E core; see Part 5.3.1 for details.  
5.6.12 Fast Interrupt 0 Match Register (FIM0)  
Base + $B  
Read  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
5
4
3
2
1
0
0
0
FAST INTERRUPT 0  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 5-14 Fast Interrupt 0 Match Register (FIM0)  
5.6.12.1 Reserved—Bits 15–7  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
5.6.12.2 Fast Interrupt 0 Vector Number (FAST INTERRUPT 0)—Bits 6–0  
This value determines which IRQ will be a Fast Interrupt 0. Fast interrupts vector directly to a service  
routine based on values in the Fast Interrupt Vector Address registers without having to go to a jump table  
first; see Part 5.3.3. IRQs used as fast interrupts must be set to priority level 2. Unexpected results will  
occur if a fast interrupt vector is set to any other priority. Fast interrupts automatically become the  
highest-priority level 2 interrupt, regardless of their location in the interrupt table, prior to being declared  
as fast interrupt. Fast Interrupt 0 has priority over Fast Interrupt 1. To determine the vector number of each  
IRQ, refer to Table 4-5.  
5.6.13 Fast Interrupt 0 Vector Address Low Register (FIVAL0)  
Base + $C  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
FAST INTERRUPT 0  
VECTOR ADDRESS LOW  
Write  
RESET  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 5-15 Fast Interrupt 0 Vector Address Low Register (FIVAL0)  
5.6.13.1 Fast Interrupt 0 Vector Address Low (FIVAL0)—Bits 15–0  
The lower 16 bits of the vector address are used for Fast Interrupt 0. This register is combined with  
FIVAH0 to form the 21-bit vector address for Fast Interrupt 0 defined in the FIM0 register.  
56F8355 Technical Data, Rev. 17  
96  
Freescale Semiconductor  
Preliminary  
Register Descriptions  
5.6.14 Fast Interrupt 0 Vector Address High Register (FIVAH0)  
Base + $D  
Read  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
3
2
1
0
0
FAST INTERRUPT 0  
VECTOR ADDRESS HIGH  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 5-16 Fast Interrupt 0 Vector Address High Register (FIVAH0)  
5.6.14.1 Reserved—Bits 15–5  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
5.6.14.2 Fast Interrupt 0 Vector Address High (FIVAH0)—Bits 4–0  
The upper five bits of the vector address are used for Fast Interrupt 0. This register is combined with  
FIVAL0 to form the 21-bit vector address for Fast Interrupt 0 defined in the FIM0 register.  
5.6.15 Fast Interrupt 1 Match Register (FIM1)  
Base + $E  
Read  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
5
4
3
2
1
0
0
0
FAST INTERRUPT 1  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 5-17 Fast Interrupt 1 Match Register (FIM1)  
5.6.15.1 Reserved—Bits 15–7  
This bit field is reserved or not implemented. It is read as 0, but cannot be modified by writing.  
5.6.15.2 Fast Interrupt 1 Vector Number (FAST INTERRUPT 1)—Bits 6–0  
This value determines which IRQ will be a Fast Interrupt 1. Fast interrupts vector directly to a service  
routine based on values in the Fast Interrupt Vector Address registers without having to go to a jump table  
first; see Part 5.3.3. IRQs used as fast interrupts must be set to priority level 2. Unexpected results will  
occur if a fast interrupt vector is set to any other priority. Fast interrupts automatically become the  
highest-priority level 2 interrupt, regardless of their location in the interrupt table, prior to being declared  
as fast interrupt. Fast interrupt 0 has priority over Fast Interrupt 1. To determine the vector number of each  
IRQ, refer to Table 4-5.  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
97  
5.6.16 Fast Interrupt 1 Vector Address Low Register (FIVAL1)  
Base + $F  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
0
1
0
0
0
FAST INTERRUPT 1  
VECTOR ADDRESS LOW  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 5-18 Fast Interrupt 1 Vector Address Low Register (FIVAL1)  
5.6.16.1 Fast Interrupt 1 Vector Address Low (FIVAL1)—Bits 15–0  
The lower 16 bits of vector address are used for Fast Interrupt 1. This register is combined with FIVAH1  
to form the 21-bit vector address for Fast Interrupt 1 defined in the FIM1 register.  
5.6.17 Fast Interrupt 1 Vector Address High Register (FIVAH1)  
Base + $10  
Read  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
3
2
1
0
0
FAST INTERRUPT 1  
VECTOR ADDRESS HIGH  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 5-19 Fast Interrupt 1 Vector Address High Register (FIVAH1)  
5.6.17.1 Reserved—Bits 15–5  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
5.6.17.2 Fast Interrupt 1 Vector Address High (FIVAH1)—Bits 4–0  
The upper five bits of vector address are used for Fast Interrupt 1. This register is combined with FIVAL1  
to form the 21-bit vector address for Fast Interrupt 1 defined in the FIM1 register.  
5.6.18 IRQ Pending 0 Register (IRQP0)  
Base + $11  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
1
2
1
1
1
0
1
PENDING [16:2]  
Write  
1
1
1
1
1
1
1
1
1
1
1
1
1
RESET  
Figure 5-20 IRQ Pending 0 Register (IRQP0)  
5.6.18.1 IRQ Pending (PENDING)—Bits 16–2  
This register combines with the other five to represent the pending IRQs for interrupt vector numbers 2  
through 81.  
0 = IRQ pending for this vector number  
1 = No IRQ pending for this vector number  
56F8355 Technical Data, Rev. 17  
98  
Freescale Semiconductor  
Preliminary  
Register Descriptions  
5.6.18.2 Reserved—Bit 0  
This bit is reserved or not implemented. It is read as 1 and cannot be modified by writing.  
5.6.19 IRQ Pending 1 Register (IRQP1)  
$Base + $12  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
1
2
1
1
1
0
1
PENDING [32:17]  
Write  
1
1
1
1
1
1
1
1
1
1
1
1
RESET  
Figure 5-21 IRQ Pending 1 Register (IRQP1)  
5.6.19.1 IRQ Pending (PENDING)—Bits 32–17  
This register combines with the other five to represent the pending IRQs for interrupt vector numbers 2  
through 81.  
0 = IRQ pending for this vector number  
1 = No IRQ pending for this vector number  
5.6.20 IRQ Pending 2 Register (IRQP2)  
Base + $13  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
1
5
1
4
1
3
1
2
1
1
1
0
1
PENDING [48:33]  
Write  
1
1
1
1
1
1
1
1
1
RESET  
Figure 5-22 IRQ Pending 2 Register (IRQP2)  
5.6.20.1 IRQ Pending (PENDING)—Bits 48–33  
This register combines with the other five to represent the pending IRQs for interrupt vector numbers 2  
through 81.  
0 = IRQ pending for this vector number  
1 = No IRQ pending for this vector number  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
99  
5.6.21 IRQ Pending 3 Register (IRQP3)  
Base + $14  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
1
5
1
4
1
3
1
2
1
1
1
0
1
PENDING [64:49]  
Write  
1
1
1
1
1
1
1
1
1
RESET  
Figure 5-23 IRQ Pending 3 Register (IRQP3)  
5.6.21.1 IRQ Pending (PENDING)—Bits 64–49  
This register combines with the other five to represent the pending IRQs for interrupt vector numbers 2  
through 81.  
0 = IRQ pending for this vector number  
1 = No IRQ pending for this vector number  
5.6.22 IRQ Pending 4 Register (IRQP4)  
Base + $15  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
1
5
1
4
1
3
1
2
1
1
1
0
1
PENDING [80:65]  
Write  
1
1
1
1
1
1
1
1
1
RESET  
Figure 5-24 IRQ Pending 4 Register (IRQP4)  
5.6.22.1 IRQ Pending (PENDING)—Bits 80–65  
This register combines with the other five to represent the pending IRQs for interrupt vector numbers 2  
through 81.  
0 = IRQ pending for this vector number  
1 = No IRQ pending for this vector number  
5.6.23 IRQ Pending 5 Register (IRQP5)  
Base + $16  
Read  
15  
1
14  
1
13  
1
12  
1
11  
1
10  
1
9
1
8
1
7
1
6
1
5
1
4
1
3
1
2
1
1
1
0
PEND-  
ING  
[81]  
Write  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
RESET  
Figure 5-25 IRQ Pending Register 5 (IRQP5)  
5.6.23.1 Reserved—Bits 96–82  
This bit field is reserved or not implemented. The bits are read as 1 and cannot be modified by writing.  
56F8355 Technical Data, Rev. 17  
100  
Freescale Semiconductor  
Preliminary  
Register Descriptions  
5.6.23.2 IRQ Pending (PENDING)—Bit 81  
This register combines with the other five to represent the pending IRQs for interrupt vector numbers 2  
through 81.  
0 = IRQ pending for this vector number  
1 = No IRQ pending for this vector number  
5.6.24 Reserved—Base + 17  
5.6.25 Reserved—Base + 18  
5.6.26 Reserved—Base + 19  
5.6.27 Reserved—Base + 1A  
5.6.28 Reserved—Base + 1B  
5.6.29 Reserved—Base + 1C  
5.6.30 ITCN Control Register (ICTL)  
Base + $1D  
Read  
15  
14  
13  
12 11 10  
9
8
7
6
0
5
INT_DIS  
0
4
1
3
2
1
0
INT  
IPIC  
VAB  
IRQB STATE IRQA STATE  
IRQB IRQA  
EDG  
EDG  
Write  
0
0
0
1
0
0
0
0
0
1
1
1
0
0
RESET  
Figure 5-26 ITCN Control Register (ICTL)  
5.6.30.1 Interrupt (INT)—Bit 15  
This read-only bit reflects the state of the interrupt to the 56800E core.  
0 = No interrupt is being sent to the 56800E core  
1 = An interrupt is being sent to the 56800E core  
5.6.30.2 Interrupt Priority Level (IPIC)—Bits 14–13  
These read-only bits reflect the state of the new interrupt priority level bits being presented to the 56800E  
core at the time the last IRQ was taken. This field is only updated when the 56800E core jumps to a new  
interrupt service routine.  
Note:  
Nested interrupts may cause this field to be updated before the original interrupt service routine can  
read it.  
00 = Required nested exception priority levels are 0, 1, 2, or 3  
01 = Required nested exception priority levels are 1, 2, or 3  
10 = Required nested exception priority levels are 2 or 3  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
101  
11 = Required nested exception priority level is 3  
5.6.30.3 Vector Number - Vector Address Bus (VAB)—Bits 12–6  
This read-only field shows the vector number (VAB[7:1]) used at the time the last IRQ was taken. This  
field is only updated when the 56800E core jumps to a new interrupt service routine.  
Note:  
Nested interrupts may cause this field to be updated before the original interrupt service routine can  
read it.  
5.6.30.4 Interrupt Disable (INT_DIS)—Bit 5  
This bit allows all interrupts to be disabled.  
0 = Normal operation (default)  
1 = All interrupts disabled  
5.6.30.5 Reserved—Bit 4  
This bit field is reserved or not implemented. It is read as 1 and cannot be modified by writing.  
5.6.30.6 IRQB State Pin (IRQB STATE)—Bit 3  
This read-only bit reflects the state of the external IRQB pin.  
5.6.30.7 IRQA State Pin (IRQA STATE)—Bit 2  
This read-only bit reflects the state of the external IRQA pin.  
5.6.30.8 IRQB Edge Pin (IRQB Edg)—Bit 1  
This bit controls whether the external IRQB interrupt is edge or level sensitive. During Stop and Wait  
modes, it is automatically level sensitive.  
0 = IRQB interrupt is a low-level sensitive (default)  
1 = IRQB interrupt is falling-edge sensitive.  
5.6.30.9 IRQA Edge Pin (IRQA Edg)—Bit 0  
This bit controls whether the external IRQA interrupt is edge- or level-sensitive. During Stop and Wait  
modes, it is automatically level-sensitive.  
0 = IRQA interrupt is a low-level sensitive (default)  
1 = IRQA interrupt is falling-edge sensitive.  
5.7 Resets  
5.7.1  
Reset Handshake Timing  
The ITCN provides the 56800E core with a reset vector address whenever RESET is asserted. The reset  
vector will be presented until the second rising clock edge after RESET is released.  
56F8355 Technical Data, Rev. 17  
102  
Freescale Semiconductor  
Preliminary  
Resets  
5.7.2  
ITCN After Reset  
After reset, all of the ITCN registers are in their default states. This means all interrupts are disabled except  
the core IRQs with fixed priorities:  
Illegal Instruction  
SW Interrupt 3  
HW Stack Overflow  
Misaligned Long Word Access  
SW Interrupt 2  
SW Interrupt 1  
SW Interrupt 0  
SW Interrupt LP  
These interrupts are enabled at their fixed priority levels.  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
103  
Part 6 System Integration Module (SIM)  
6.1 Overview  
The SIM module is a system catchall for the glue logic that ties together the system-on-chip. It controls  
distribution of resets and clocks and provides a number of control features. The system integration module  
is responsible for the following functions:  
Reset sequencing  
Clock generation & distribution  
Stop/Wait control  
Pullup enables for selected peripherals  
System status registers  
Registers for software access to the JTAG ID of the chip  
Enforcing Flash security  
These are discussed in more detial in the sections that follow.  
6.2 Features  
The SIM has the following features:  
Flash security feature prevents unauthorized access to code/data contained in on-chip Flash memory  
Power-saving clock gating for peripheral  
Three power modes (Run, Wait, Stop) to control power utilization  
— Stop mode shuts down the 56800E core, system clock, peripheral clock, and PLL operation  
— Stop mode entry can optionally disable PLL and Oscillator (low power vs. fast restart); must be  
explicitly done  
— Wait mode shuts down 56800E core and unnecessary system clock operation  
— Run mode supports full part operation  
Controls to enable/disable the 56800E core WAIT and STOP instructions  
Calculates base delay for reset extension based upon POR or RESET operations. Reset delay will be 3 x 32  
clocks (phased release of reset) for reset, except for POR, which is 221 clock cycles.  
Controls reset sequencing after reset  
Software-initiated reset  
Four 16-bit registers reset only by a Power-On Reset usable for general-purpose software control  
System Control Register  
Registers for software access to the JTAG ID of the chip  
6.3 Operating Modes  
Since the SIM is responsible for distributing clocks and resets across the chip, it must understand the  
various chip operating modes and take appropriate action. These are:  
56F8355 Technical Data, Rev. 17  
104  
Freescale Semiconductor  
Preliminary  
Operating Mode Register  
Reset Mode, which has two submodes:  
— POR and RESET operation  
The 56800E core and all peripherals are reset. This occurs when the internal POR is asserted or the  
RESET pin is asserted.  
— COP reset and software reset operation  
The 56800E core and all peripherals are reset. The MA bit within the OMR is not changed. This allows  
the software to determine the boot mode (internal or external boot) to be used on the next reset.  
Run Mode  
This is the primary mode of operation for this device. In this mode, the 56800E controls chip operation  
Debug Mode  
The 56800E is controlled via JTAG/EOnCE when in debug mode. All peripherals, except the COP and  
PWMs, continue to run. COP is disabled and PWM outputs are optionally switched off to disable any motor  
from being driven; see the PWM chapter in the 56F8300 Peripheral User Manual for details.  
Wait Mode  
In Wait mode, the core clock and memory clocks are disabled. Optionally, the COP can be stopped.  
Similarly, it is an option to switch off PWM outputs to disable any motor from being driven. All other  
peripherals continue to run.  
Stop Mode  
When in Stop mode, the 56800E core, memory and most peripheral clocks are shut down. Optionally, the  
COP and CAN can be stopped. For lowest power consumption in Stop mode, the PLL can be shut down.  
This must be done explicitly before entering Stop mode, since there is no automatic mechanism for this. The  
CAN (along with any non-gated interrupt) is capable of waking the chip up from Stop mode, but is not fully  
functional in Stop mode.  
6.4 Operating Mode Register  
Bit  
15  
NL  
R/W  
0
14  
13  
12  
11  
10  
9
0
8
CM  
R/W  
0
7
XP  
R/W  
0
6
SD  
R/W  
0
5
R
4
SA  
R/W  
0
3
EX  
R/W  
0
2
0
1
MB  
R/W  
X
0
MA  
R/W  
X
R/W  
0
Type  
0
0
0
0
0
0
RESET  
Figure 6-1 OMR  
The reset state for MB and MA will depend on the Flash secured state. See Part 4.2 and Part 7 for detailed  
information on how the Operating Mode Register (OMR) MA and MB bits operate in this device. For  
additional information on the EX bit, see Part 4.4. For all other bits, see the DSP56800E Reference  
Manual.  
Note:  
The OMR is not a Memory Map register; it is directly accessible in code through the acronym OMR.  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
105  
6.5 Register Descriptions  
Table 6-1 SIM Registers (SIM_BASE = $00 F350)  
Address Offset  
Address Acronym  
Register Name  
Section Location  
Base + $0  
Base + $1  
Base + $2  
Base + $3  
Base + $4  
Base + $5  
Base + $6  
Base + $7  
Base + $8  
SIM_CONTROL  
SIM_RSTSTS  
SIM_SCR0  
Control Register  
6.5.1  
6.5.2  
6.5.3  
6.5.3  
6.5.3  
6.5.3  
6.5.4  
6.5.5  
6.5.6  
Reset Status Register  
Software Control Register 0  
Software Control Register 1  
Software Control Register 2  
Software Control Register 3  
Most Significant Half of JTAG ID  
Least Significant Half of JTAG ID  
Pullup Disable Register  
SIM_SCR1  
SIM_SCR2  
SIM_SCR3  
SIM_MSH_ID  
SIM_LSH_ID  
SIM_PUDR  
Reserved  
Base + $A  
Base + $B  
Base + $C  
Base + $D  
Base + $E  
SIM_CLKOSR  
SIM_GPS  
CLKO Select Register  
6.5.7  
6.5.8  
GPIO Peripheral Select Register  
Peripheral Clock Enable Register  
I/O Short Address Location High Register  
I/O Short Address Location Low Register  
SIM_PCE  
6.5.9  
SIM_ISALH  
SIM_ISALL  
6.5.10  
6.5.10  
56F8355 Technical Data, Rev. 17  
106  
Freescale Semiconductor  
Preliminary  
Register Descriptions  
Add.  
Offset  
Register  
Name  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
R
W
R
0
0
0
0
0
0
0
0
0
0
SIM_  
CONTROL  
ONCE  
EBL0  
SW  
RST  
STOP_  
DISABLE  
WAIT_  
DISABLE  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
0
0
0
0
0
0
0
0
0
0
0
0
SIM_  
RSTSTS  
SWR  
COPR EXTR POR  
W
R
SIM_SCR0  
SIM_SCR1  
SIM_SCR2  
SIM_SCR3  
FIELD  
FIELD  
FIELD  
FIELD  
W
R
W
R
W
R
W
R
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
1
0
1
0
1
0
0
1
0
1
1
0
0
1
1
1
0
0
0
0
0
1
0
SIM_MSH_  
ID  
W
R
SIM_LSH_ID  
W
R
EMI_  
MODE  
SIM_PUDR  
Reserved  
PWMA1 CAN  
RESET IRQ XBOOT PWMB PWMA0  
CTRL  
JTAG  
W
R
W
R
0
0
0
0
0
0
0
0
0
0
0
0
SIM_  
CLKOSR  
$A  
$B  
$C  
$D  
$E  
A23  
0
A22  
0
A21  
0
A20 CLKDIS  
CLKOSEL  
C2  
0
0
0
SIM_GPS  
SIM_PCE  
C3  
C1  
C0  
W
R
EMI  
1
ADCB ADCA  
CAN  
1
DEC1 DEC 0 TMRD TMRC TMRB TMRA  
SCI1  
1
SCI0  
1
SPI1  
1
SPI0 PWMB PWMA  
W
R
1
1
1
1
1
1
1
1
1
SIM_ISALH  
SIM_ISALL  
ISAL[23:22]  
W
R
ISAL[21:6]  
W
= Reserved  
Figure 6-2 SIM Register Map Summary  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
107  
6.5.1  
SIM Control Register (SIM_CONTROL)  
Base + $0  
Read  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
4
3
2
1
0
ONCE SW  
EBL  
STOP_  
DISABLE  
WAIT_  
DISABLE  
RST  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 6-3 SIM Control Register (SIM_CONTROL)  
6.5.1.1  
Reserved—Bits 15–6  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
6.5.1.2  
OnCE Enable (OnCE EBL)—Bit 5  
0 = OnCE clock to 56800E core enabled when core TAP is enabled  
1 = OnCE clock to 56800E core is always enabled  
6.5.1.3  
Software Reset (SWRST)—Bit 4  
This bit is always read as 0. Writing 1 to this field will cause the part to reset.  
6.5.1.4  
Stop Disable (STOP_DISABLE)—Bits 3–2  
00 - STOP mode will be entered when the 56800E core executes a STOP instruction  
01 - The 56800E STOP instruction will not cause entry into Stop mode; stop_disable can be reprogrammed  
in the future  
10 - The 56800E STOP instruction will not cause entry into Stop mode; stop_disable can then only be  
changed by resetting the device  
11 - Same operation as 10  
6.5.1.5  
Wait Disable (WAIT_DISABLE)—Bits 1–0  
00 - WAIT mode will be entered when the 56800E core executes a WAIT instruction  
01 - The 56800E WAIT instruction will not cause entry into Wait mode; wait_disable can be reprogrammed  
in the future  
10 - The HawkV2 WAIT instruction will not cause entry into Wait mode; wait_disable can then only be  
changed by resetting the device  
11 - Same operation as 10  
6.5.2  
SIM Reset Status Register (SIM_RSTSTS)  
Bits in this register are set upon any system reset and are initialized only by a Power-On Reset (POR). A  
reset (other than POR) will only set bits in the register; bits are not cleared. Only software should clear this  
register.  
56F8355 Technical Data, Rev. 17  
108  
Freescale Semiconductor  
Preliminary  
 
Register Descriptions  
Base + $1  
Read  
15  
0
14  
0
13  
O
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
4
3
2
1
0
0
0
SWR COPR  
EXTR POR  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 6-4 SIM Reset Status Register (SIM_RSTSTS)  
6.5.2.1  
Reserved—Bits 15–6  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
6.5.2.2  
Software Reset (SWR)—Bit 5  
When 1, this bit indicates that the previous reset occurred as a result of a software reset (write to SW RST  
bit in the SIM_CONTROL register). This bit will be cleared by any hardware reset or by software. Writing  
a 0 to this bit position will set the bit, while writing a 1 to the bit will clear it.  
6.5.2.3  
COP Reset (COPR)—Bit 4  
When 1, the COPR bit indicates the Computer Operating Properly (COP) timer-generated reset has  
occurred. This bit will be cleared by a Power-On Reset or by software. Writing a 0 to this bit position will  
set the bit, while writing a 1 to the bit will clear it.  
6.5.2.4  
External Reset (EXTR)—Bit 3  
If 1, the EXTR bit indicates an external system reset has occurred. This bit will be cleared by a Power-On  
Reset or by software. Writing a 0 to this bit position will set the bit, while writing a 1 to the bit position  
will clear it. Basically, when the EXTR bit is 1, the previous system reset was caused by the external  
RESET pin being asserted low.  
6.5.2.5  
Power-On Reset (POR)—Bit 2  
When 1, the POR bit indicates a Power-On Reset occurred some time in the past. This bit can be cleared  
only by software or by another type of reset. Writing a 0 to this bit will set the bit, while writing a 1 to the  
bit position will clear the bit. In summary, if the bit is 1, the previous system reset was due to a Power-On  
Reset.  
6.5.2.6  
Reserved—Bits 1–0  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
6.5.3  
SIM Software Control Registers (SIM_SCR0, SIM_SCR1, SIM_SCR2,  
and SIM_SCR3)  
Only SIM_SCR0 is shown below. SIM_SCR1, SIM_SCR2, and SIM_SCR3 are identical in functionality.  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
109  
Base + $2  
Read  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
FIELD  
0
Write  
RESET  
Figure 6-5 SIM Software Control Register 0 (SIM_SCR0)  
Software Control Data 1 (FIELD)—Bits 15–0  
6.5.3.1  
This register is reset only by the Power-On Reset (POR). It has no part-specific functionality and is  
intended for use by a software developer to contain data that will be unaffected by the other reset sources  
(RESET pin, software reset, and COP reset).  
6.5.4  
Most Significant Half of JTAG ID (SIM_MSH_ID)  
This read-only register displays the most significant half of the JTAG ID for the chip. This register reads  
$01F4.  
Base + $6  
Read  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
1
7
1
6
1
5
1
4
1
3
0
2
1
1
0
0
0
Write  
0
0
0
0
0
0
0
1
1
1
1
1
0
1
0
0
RESET  
Figure 6-6 Most Significant Half of JTAG ID (SIM_MSH_ID)  
6.5.5  
Least Significant Half of JTAG ID (SIM_LSH_ID)  
This read-only register displays the least significant half of the JTAG ID for the chip. This register reads  
$601D.  
Base + $7  
Read  
15  
0
14  
1
13  
1
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
1
3
1
2
1
1
0
0
1
Write  
0
1
1
0
0
0
0
0
0
0
0
1
1
1
0
1
RESET  
Figure 6-7 Least Significant Half of JTAG ID (SIM_LSH_ID)  
6.5.6  
SIM Pullup Disable Register (SIM_PUDR)  
Most of the pins on the chip have on-chip pullup resistors. Pins which can operate as GPIO can have these  
resistors disabled via the GPIO function. Non-GPIO pins can have their pullups disabled by setting the  
appropriate bit in this register. Disabling pullups is done on a peripheral-by-peripheral basis (for pins not  
muxed with GPIO). Each bit in the register (see Figure 6-8) corresponds to a functional group of pins. See  
56F8355 Technical Data, Rev. 17  
110  
Freescale Semiconductor  
Preliminary  
Register Descriptions  
Table 2-2 to identify which pins can deactivate the internal pullup resistor.  
Base + $8 15  
14  
13  
12  
11  
10  
9
8
7
6
0
5
CTRL  
0
4
0
3
JTAG  
0
2
0
1
0
0
0
0
Read  
Write  
EMI_  
MODE  
PWMA1 CAN  
RESET IRQ XBOOT PWMB PWMA0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 6-8 SIM Pullup Disable Register (SIM_PUDR)  
6.5.6.1  
Reserved—Bit 15  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
6.5.6.2  
PWMA1—Bit 14  
This bit controls the pullup resistors on the FAULTA3 pin.  
6.5.6.3  
CAN—Bit 13  
This bit controls the pullup resistors on the CAN_RX pin.  
6.5.6.4  
EMI_MODE—Bit 12  
This bit controls the pullup resistors on the EMI_MODE pin  
Note:  
In this package, this input pin is double-bonded with the adjacent VSS pin and this bit should be  
changed to a 1 in order to reduce power consumption.  
6.5.6.5  
RESET—Bit 11  
This bit controls the pullup resistors on the RESET pin.  
6.5.6.6  
IRQ—Bit 10  
This bit controls the pullup resistors on the IRQA and IRQB pins.  
6.5.6.7  
XBOOT—Bit 9  
This bit controls the pullup resistors on the EXTBOOT pin.  
Note:  
In this package, this input pin is double-bonded with the adjacent VSS pin and this bit should be  
changed to a 1 in order to reduce power consumption.  
6.5.6.8  
PWMB—Bit 8  
This bit controls the pullup resistors on the FAULTB0, FAULTB1, FAULTB2, and FAULTB3 pins.  
6.5.6.9  
PWMA0—Bit 7  
This bit controls the pullup resistors on the FAULTA0, FAULTA1, and FAULTA2 pins.  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
111  
6.5.6.10 Reserved—Bit 6  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
6.5.6.11 CTRL—Bit 5  
This bit controls the pullup resistors on the WR and RD pins.  
6.5.6.12 Reserved—Bit 4  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
6.5.6.13 JTAG—Bit 3  
This bit controls the pullup resistors on the TRST, TMS and TDI pins.  
6.5.6.14 Reserved—Bit 2–0  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
6.5.7  
CLKO Select Register (SIM_CLKOSR)  
The CLKO select register can be used to multiplex out any one of the clocks generated inside the clock  
generation and SIM modules. The default value is SYS_CLK. This path has been optimized in order to  
minimize any delay and clock duty cycle distortion. All other clocks primarily muxed out are for test  
purposes only, and are subject to significant phase shift at high frequencies.  
The upper four bits of the GPIOB register can function as GPIO, A[23:20], or as additional clock output  
signals. GPIO has priority and is enabled/disabled via the GPIOB_PER. If GPIOB[7:4] are programmed  
to operate as peripheral outputs, then the choice between A[23:20] and additional clock outputs is done  
here in the CLKOSR. The default state is for the peripheral function of GPIOB[7:4] to be programmed as  
A[23:20]. This can be changed by altering A[23:20], as shown in Figure 6-9.  
Base + $A  
Read  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
A23  
0
8
A22  
0
7
A21  
0
6
A20  
0
5
4
0
3
0
2
CLKOSEL  
0
1
0
0
0
CLK  
DIS  
Write  
0
0
0
0
0
0
1
RESET  
Figure 6-9 CLKO Select Register (SIM_CLKOSR)  
6.5.7.1  
Reserved—Bits 15–10  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
6.5.7.2  
Alternate GPIOB Peripheral Function for A23 (A23)—Bit 9  
0 = Peripheral output function of GPIOB7 is defined to be A23  
56F8355 Technical Data, Rev. 17  
112  
Freescale Semiconductor  
Preliminary  
 
Register Descriptions  
1 = Peripheral output function of GPIOB7 is defined to be the oscillator clock (MSTR_OSC, see  
Figure 3-4)  
6.5.7.3  
Alternate GPIOB Peripheral Function for A22 (A22)—Bit 8  
0 = Peripheral output function of GPIOB6 is defined to be A22  
1 = Peripheral output function of GPIOB6 is defined to be SYS_CLK2  
6.5.7.4  
Alternate GPIOB Peripheral Function for A21 (A21)—Bit 7  
0 = Peripheral output function of GPIOB5 is defined to be A21  
1 = Peripheral output function of GPIOB5 is defined to be SYS_CLK  
6.5.7.5  
Alternate GPIOB Peripheral Function for A20 (A20)—Bit 6  
0 = Peripheral output function of GPIOB4 is defined to be A20  
1 = Peripheral output function of GPIOB4 is defined to be the prescaler clock  
6.5.7.6  
Clockout Disable (CLKDIS)—Bit 5  
0 = CLKOUT output is enabled and will output the signal indicated by CLKOSEL  
1 = CLKOUT is tri-stated  
6.5.7.7  
CLockout Select (CLKOSEL)—Bits 4–0  
Selects clock to be muxed out on the CLKO pin.  
00000 = SYS_CLK (from OCCS - DEFAULT)  
00001 = Reserved for factory test—56800E clock  
00010 = Reserved for factory test—XRAM clock  
00011 = Reserved for factory test—PFLASH odd clock  
00100 = Reserved for factory test—PFLASH even clock  
00101 = Reserved for factory test—BFLASH clock  
00110 = Reserved for factory test—DFLASH clock  
00111 = Oscillator output  
01000 = Fout (from OCCS)  
01001 = Reserved for factory test—IPB clock  
01010 = Reserved for factory test—Feedback (from OCCS, this is path to PLL)  
01011 = Reserved for factory test—Prescaler clock (from OCCS)  
01100 = Reserved for factory test—Postscaler clock (from OCCS)  
01101 = Reserved for factory test—SYS_CLK2 (from OCCS)  
01110 = Reserved for factory test—SYS_CLK_DIV2  
01111 = Reserved for factory test—SYS_CLK_D  
10000 = ADCA clock  
10001 = ADCB clock  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
113  
6.5.8  
GPIO Peripheral Select Register (SIM_GPS)  
The GPIO Peripheral Select register can be used to multiplex out any one of the three alternate peripherals  
for GPIOC. The default peripheral is Quad Decoder 1 and Quad Decoder 1, (NOT available in the  
56F8155 device); these peripherals work together.  
The four I/O pins associated with GPIOC can function as GPIO, Quad Decoder 1/Quad Decoder 1, or as  
SPI 1 signals. GPIO is not the default and is enabled/disabled via the GPIOC_PER, as shown in  
Figure 6-10 and Table 6-2. When GPIOC[3:0] are programmed to operate as peripheral I/O, then the  
choice between decoder/timer and SPI inputs/outputs is made in the SIM_GPS register and in conjunction  
with the Quad Timer Status and Control Registers (SCR). The default state is for the peripheral function  
of GPIOC[3:0] to be programmed as decoder functions. This can be changed by altering the appropriate  
controls in the indicated registers.  
GPIOC_PER Register  
GPIO Controlled  
0
1
I/O Pad Control  
SIM_ GPS Register  
0
1
Quad Timer Controlled  
SPI Controlled  
Figure 6-10 Overall Control of Pads Using SIM_GPS Control  
1
Table 6-2 Control of Pads Using SIM_GPS Control  
Control Registers  
Pin Function  
Comments  
GPIO Input  
0
0
1
0
1
0
0
GPIO Output  
Quad Timer Input /  
See the “Switch Matrix for Inputs to the Timer”  
table in the 56F8300 Peripheral User Manual  
for the definition of timer inputs based on the  
Quad Decoder mode configuration.  
Quad Decoder Input 2  
Quad Timer Output /  
Quad Decoder Input 3  
1
0
1
56F8355 Technical Data, Rev. 17  
114  
Freescale Semiconductor  
Preliminary  
 
 
Register Descriptions  
1
Table 6-2 Control of Pads Using SIM_GPS Control (Continued)  
Control Registers  
Pin Function  
Comments  
SPI input  
1
1
1
1
See SPI controls for determining the direction  
of each of the SPI pins.  
SPI output  
1. This applies to the four pins that serve as Quad Decoder / Quad Timer / SPI / GPIOC functions. A separate set of control bits  
is used for each pin.  
2. Reset configuration  
3. Quad Decoder pins are always inputs and function in conjunction with the Quad Timer pins.  
Base + $B  
Read  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
0
3
C3  
0
2
C2  
0
1
C1  
0
0
C0  
0
Write  
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 6-11 GPIO Peripheral Select Register (SIM_GPS)  
6.5.8.1  
Reserved—Bits 15–4  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
6.5.8.2  
GPIOC3 (C3)—Bit 3  
This bit selects the alternate function for GPIOC3.  
0 = HOME1/TB3 (default - see “Switch Matrix Mode” bits of the Quad Decoder DECCR register in the  
56F8300 Peripheral User Manual)  
1 = SS1  
6.5.8.3  
GPIOC2 (C2)—Bit 2  
This bit selects the alternate function for GPIOC2.  
0 = INDEX1/TB2 (default)  
1 = MISO1  
6.5.8.4  
GPIOC1 (C1)—Bit 1  
This bit selects the alternate function for GPIOC1.  
0 = PHASEB1/TB1 (default)  
1 = MOSI1  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
115  
6.5.8.5  
GPIOC0 (C0)—Bit 0  
This bit selects the alternate function for GPIOC0.  
0 = PHASEA1/TB0 (default)  
1 = SCLK1  
6.5.9  
Peripheral Clock Enable Register (SIM_PCE)  
The Peripheral Clock Enable register is used enable or disable clocks to the peripherals as a power savings  
feature. The clocks can be individually controlled for each peripheral on the chip.  
Base + $C  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
EMI ADCB ADCA CAN DEC1 DEC0 TMRD TMRC TMRB TMRA SCI 1 SCI 0 SPI 1 SPI 0 PWMB PWMA  
Write  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
RESET  
Figure 6-12 Peripheral Clock Enable Register (SIM_PCE)  
6.5.9.1  
External Memory Interface Enable (EMI)—Bit 15  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.9.2  
Analog-to-Digital Converter B Enable (ADCB)—Bit 14  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.9.3  
Analog-to-Digital Converter A Enable (ADCA)—Bit 13  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.9.4  
FlexCAN Enable (CAN)—Bit 12  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.9.5  
Decoder 1 Enable (DEC1)—Bit 11  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
56F8355 Technical Data, Rev. 17  
116  
Freescale Semiconductor  
Preliminary  
Register Descriptions  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.9.6  
Decoder 0 Enable (DEC0)—Bit 10  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.9.7  
Quad Timer D Enable (TMRD)—Bit 9  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.9.8  
Quad Timer C Enable (TMRC)—Bit 8  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.9.9  
Quad Timer B Enable (TMRB)—Bit 7  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.9.10 Quad Timer A Enable (TMRA)—Bit 6  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.9.11 Serial Communications Interface 1 Enable (SCI1)—Bit 5  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.9.12 Serial Communications Interface 0 Enable (SCI0)—Bit 4  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
117  
6.5.9.13 Serial Peripheral Interface 1 Enable (SPI1)—Bit 3  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.9.14 Serial Peripheral Interface 0 Enable (SPI0)—Bit 2  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.9.15 Pulse Width Modulator B Enable (PWMB)—Bit 1  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.9.16 Pulse Width Modulator A Enable (PWMA)—Bit 0  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.10 I/O Short Address Location Register (SIM_ISALH and SIM_ISALL)  
The I/O Short Address Location registers are used to specify the memory referenced via the I/O short  
address mode. The I/O short address mode allows the instruction to specify the lower six bits of address;  
the upper address bits are not directly controllable. This register set allows limited control of the full  
address, as shown in Figure 6-13.  
Note:  
If this register is set to something other than the top of memory (EOnCE register space) and the EX bit  
in the OMR is set to 1, the JTAG port cannot access the on-chip EOnCE registers, and debug functions  
will be affected.  
56F8355 Technical Data, Rev. 17  
118  
Freescale Semiconductor  
Preliminary  
Register Descriptions  
Instruction Portion  
Hard Coded” Address Portion  
6 Bits from I/O Short Address Mode Instruction  
16 Bits from SIM_ISALL Register  
2 Bits from SIM_ISALH Register  
Full 24-Bit for Short I/O Address  
Figure 6-13 I/O Short Address Determination  
With this register set, an interrupt driver can set the SIM_ISALL register pair to point to its peripheral  
registers and then use the I/O Short addressing mode to reference them. The ISR should restore this register  
to its previous contents prior to returning from interrupt.  
Note:  
Note:  
The default value of this register set points to the EOnCE registers.  
The pipeline delay between setting this register set and using short I/O addressing with the new value  
is three cycles.  
Base + $D  
Read  
15  
1
14  
1
13  
1
12  
1
11  
1
10  
1
9
1
8
1
7
1
6
1
5
1
4
1
3
1
2
1
1
0
ISAL[23:22]  
Write  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
RESET  
Figure 6-14 I/O Short Address Location High Register (SIM_ISALH)  
6.5.10.1 Input/Output Short Address Low (ISAL[23:22])—Bit 1–0  
This field represents the upper two address bits of the “hard coded” I/O short address.  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
119  
Base + $E  
Read  
15  
1
14  
1
13  
1
12  
1
11  
1
10  
1
9
1
8
7
6
1
5
1
4
1
3
1
2
1
1
1
0
1
ISAL[21:6]  
Write  
1
1
RESET  
Figure 6-15 I/O Short Address Location Low Register (SIM_ISALL)  
6.5.10.2 Input/Output Short Address Low (ISAL[21:6])—Bit 15–0  
This field represents the lower 16 address bits of the “hard coded” I/O short address.  
6.6 Clock Generation Overview  
The SIM uses an internal master clock from the OCCS (CLKGEN) module to produce the peripheral and  
system (core and memory) clocks. The maximum master clock frequency is 120MHz. Peripheral and  
system clocks are generated at half the master clock frequency and therefore at a maximum 60MHz. The  
SIM provides power modes (Stop, Wait) and clock enables (SIM_PCE register, CLK_DIS, ONCE_EBL)  
to control which clocks are in operation. The OCCS, power modes, and clock enables provide a flexible  
means to manage power consumption.  
Power utilization can be minimized in several ways. In the OCCS, crystal oscillator, and PLL may be shut  
down when not in use. When the PLL is in use, its prescaler and postscaler can be used to limit PLL and  
master clock frequency. Power modes permit system and/or peripheral clocks to be disabled when unused.  
Clock enables provide the means to disable individual clocks. Some peripherals provide further controls  
to disable unused subfunctions. Refer to Part 3 On-Chip Clock Synthesis (OCCS), and the 56F8300  
Peripheral User Manual for further details.  
6.7 Power Down Modes Overview  
The 56F8355/56F8155 operate in one of three power-down modes, as shown in Table 6-3.  
Table 6-3 Clock Operation in Power-Down Modes  
Mode  
Core Clocks  
Active  
Peripheral Clocks  
Description  
Device is fully functional  
Run  
Wait  
Active  
Active  
Core and memory  
clocks disabled  
Peripherals are active and can produce interrupts if they  
have not been masked off.  
Interrupts will cause the core to come out of its  
suspended state and resume normal operation.  
Typically used for power-conscious applications.  
56F8355 Technical Data, Rev. 17  
120  
Freescale Semiconductor  
Preliminary  
Stop and Wait Mode Disable Function  
Table 6-3 Clock Operation in Power-Down Modes (Continued)  
Mode  
Core Clocks  
Peripheral Clocks  
Description  
Stop  
System clocks continue to be generated in The only possible recoveries from Stop mode are:  
the SIM, but most are gated prior to  
reaching memory, core and peripherals.  
1. CAN traffic (1st message will be lost)  
2. Non-clocked interrupts  
3. COP reset  
4. External reset  
5. Power-on reset  
All peripherals, except the COP/watchdog timer, run off the IPBus clock frequency, which is the same as  
the main processor frequency in this architecture. The maximum frequency of operation is  
SYS_CLK = 60MHz.  
6.8 Stop and Wait Mode Disable Function  
Permanent  
D
Q
Disable  
D-FLOP  
C
56800E  
Reprogrammable  
Disable  
STOP_DIS  
D
Q
D-FLOP  
Clock  
Select  
C
R
Reset  
Note: Wait disable circuit is similar  
Figure 6-16 Stop Disable Circuit  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
121  
The 56800E core contains both STOP and WAIT instructions. Both put the CPU to sleep. For lowest  
power consumption in Stop mode, the PLL can be shut down. This must be done explicitly before entering  
Stop mode, since there is no automatic mechanism for this. When the PLL is shut down, the 56800E  
system clock must be set equal to the oscillator output.  
Some applications require the 56800E STOP and WAIT instructions to be disabled. To disable those  
instructions, write to the SIM control register (SIM_CONTROL), described in Part 6.5.1. This procedure  
can be on either a permanent or temporary basis. Permanently assigned applications last only until their  
next reset.  
6.9 Resets  
The SIM supports four sources of reset. The two asynchronous sources are the external RESET pin and  
the Power-On Reset (POR). The two synchronous sources are the software reset, which is generated within  
the SIM itself by writing to the SIM_CONTROL register, and the COP reset.  
Reset begins with the assertion of any of the reset sources. Release of reset to various blocks is sequenced  
21  
to permit proper operation of the device. A POR reset is first extended for 2 clock cycles to permit  
stabilization of the clock source, followed by a 32 clock window in which SIM clocking is initiated. It is  
then followed by a 32 clock window in which peripherals are released to implement Flash security, and,  
finally, followed by a 32 clock window in which the core is initialized. After completion of the described  
reset sequence, application code will begin execution.  
Resets may be asserted asynchronously, but are always released internally on a rising edge of the system  
clock.  
Part 7 Security Features  
The 56F8355/56F8155 offer security features intended to prevent unauthorized users from reading the  
contents of the Flash Memory (FM) array. The Flash security consists of several hardware interlocks that  
block the means by which an unauthorized user could gain access to the Flash array.  
However, part of the security must lie with the user’s code. An extreme example would be user’s code that  
dumps the contents of the internal program, as this code would defeat the purpose of security. At the same  
time, the user may also wish to put a “backdoor” in his program. As an example, the user downloads a  
security key through the SCI, allowing access to a programming routine that updates parameters stored in  
another section of the Flash.  
7.1 Operation with Security Enabled  
Once the user has programmed the Flash with his application code, the device can be secured by  
programming the security bytes located in the FM configuration field, which occupies a portion of the FM  
array. These non-volatile bytes will keep the part secured through reset and through power-down of the  
device. Only two bytes within this field are used to enable or disable security. Refer to the Flash Memory  
section in the 56F8300 Peripheral User Manual for the state of the security bytes and the resulting state  
56F8355 Technical Data, Rev. 17  
122  
Freescale Semiconductor  
Preliminary  
Flash Access Blocking Mechanisms  
of security. When Flash security mode is enabled in accordance with the method described in the Flash  
Memory module specification, the device will disable the core EOnCE debug capabilities. Normal  
program execution is otherwise unaffected.  
7.2 Flash Access Blocking Mechanisms  
The 56F8355/56F8155 have several operating functional and test modes. Effective Flash security must  
address operating mode selection and anticipate modes in which the on-chip Flash can be compromised  
and read without explicit user permission. Methods to block these are outlined in the next subsections.  
7.2.1  
Forced Operating Mode Selection  
At boot time, the SIM determines in which functional modes the device will operate. These are:  
Unsecured Mode  
Secure Mode (EOnCE disabled)  
When Flash security is enabled as described in the Flash Memory module specification, the device will  
disable the EOnCE debug interface.  
7.2.2  
Disabling EOnCE Access  
On-chip Flash can be read by issuing commands across the EOnCE port, which is the debug interface for  
the 56800E core. The TRST, TCLK, TMS, TDO, and TDI pins comprise a JTAG interface onto which the  
EOnCE port functionality is mapped. When the device boots, the chip-level JTAG TAP (Test Access Port)  
is active and provides the chip’s boundary scan capability and access to the ID register.  
Proper implementation of Flash security requires that no access to the EOnCE port is provided when  
security is enabled. The 56800E core has an input which disables reading of internal memory via the  
JTAG/EOnCE. The FM sets this input at reset to a value determined by the contents of the FM security  
bytes.  
7.2.3  
Flash Lockout Recovery  
If a user inadvertently enables Flash security on the device, a built-in lockout recovery mechanism can be  
used to reenable access to the device. This mechanism completely reases all on-chip Flash, thus disabling  
Flash security. Access to this recovery mechanism is built into CodeWarrior via an instruction in memory  
configuration (.cfg) files. Add, or uncomment the following configuration command:  
unlock_flash_on_connect 1  
For more information, please see CodeWarrior MC56F83xx/DSP5685x Family Targeting Manual.  
The LOCKOUT_RECOVERY instruction has an associated 7-bit Data Register (DR) that is used to  
control the clock divider circuit within the FM module. This divider, FM_CLKDIV[6:0], is used to control  
the period of the clock used for timed events in the FM erase algorithm. This register must be set with  
appropriate values before the lockout sequence can begin. Refer to the JTAG section of the 56F8300  
Peripheral User Manual for more details on setting this register value.  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
123  
The value of the JTAG FM_CLKDIV[6:0] will replace the value of the FM register FMCLKD that divides  
down the system clock for timed events, as illustrated in Figure 7-1. FM_CLKDIV[6] will map to the  
PRDIV8 bit, and FM_CLKDIV[5:0] will map to the DIV[5:0] bits. The combination of PRDIV8 and DIV  
must divide the FM input clock down to a frequency of 150kHz-200kHz. The “Writing the FMCLKD  
Register” section in the Flash Memory chapter of the 56F8300 Peripheral User Manual gives specific  
equations for calculating the correct values.  
Flash Memory  
SYS_CLK  
2
input  
clock  
DIVIDER  
7
FMCLKD  
7
7
FM_CLKDIV  
FM_ERASE  
JTAG  
Figure 7-1 JTAG to FM Connection for Lockout Recovery  
Two examples of FM_CLKDIV calculations follow.  
EXAMPLE 1: If the system clock is the 8MHz crystal frequency because the PLL has not been set up,  
the input clock will be below 12.8MHz, so PRDIV8 = FM_CLKDIV[6] = 0. Using the following equation  
yields a DIV value of 19 for a clock of 200kHz, and a DIV value of 20 for a clock of 190kHz. This  
translates into an FM_CLKDIV[6:0] value of $13 or $14, respectively.  
SYS_CLK  
( )  
(2)  
150[kHz]  
200[kHz]  
<
<
(DIV + 1)  
EXAMPLE 2: In this example, the system clock has been set up with a value of 32MHz, making the FM  
56F8355 Technical Data, Rev. 17  
124  
Freescale Semiconductor  
Preliminary  
 
Introduction  
input clock 16MHz. Because that is greater than 12.8MHz, PRDIV8 = FM_CLKDIV[6] = 1. Using the  
following equation yields a DIV value of 9 for a clock of 200kHz, and a DIV value of 10 for a clock of  
181kHz. This translates to an FM_CLKDIV[6:0] value of $49 or $4A, respectively.  
SYS_CLK  
( )  
(2)  
150[kHz]  
200[kHz]  
<
<
(DIV + 1)  
Once the LOCKOUT_RECOVERY instruction has been shifted into the instruction register, the clock  
divider value must be shifted into the corresponding 7-bit data register. After the data register has been  
updated, the user must transition the TAP controller into the RUN-TEST/IDLE state for the lockout  
sequence to commence. The controller must remain in this state until the erase sequence has completed.  
For details, see the JTAG Section in the 56F8300 Peripheral User Manual.  
Note:  
When the lockout recovery sequence has completed, the user must reset both the JTAG TAP controller  
(by asserting TRST) and the device (by asserting external chip reset) to return to normal unsecured  
operation.  
7.2.4  
Product Analysis  
The recommended method of unsecuring a programmed device for product analysis of field failures is via  
the backdoor key access. The customer would need to supply Technical Support with the backdoor key  
and the protocol to access the backdoor routine in the Flash. Additionally, the KEYEN bit that allows  
backdoor key access must be set.  
An alternative method for performing analysis on a secured hybrid controller would be to mass-erase and  
reprogram the Flash with the original code, but modify the security bytes.  
To insure that a customer does not inadvertently lock himself out of the device during programming, it is  
recommended that he program the backdoor access key first, his application code second, and the security  
bytes within the FM configuration field last.  
Part 8 General Purpose Input/Output (GPIO)  
8.1 Introduction  
This section is intended to supplement the GPIO information found in the 56F8300 Peripheral User  
Manual and contains only chip-specific information. This information supercedes the generic information  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
125  
in the 56F8300 Peripheral User Manual.  
8.2 Memory Maps  
The width of the GPIO port defines how many bits are implemented in each of the GPIO registers. Based  
on this and the default function of each of the GPIO pins, the reset values of the GPIOx_PUR and  
GPIOx_PER registers will change from port to port. Tables 4-29 through 4-34 define the actual reset  
values of these registers for these devices.  
8.3 Configuration  
There are six GPIO ports defined on the 56F8355/56F8155. The width of each port and the associated  
peripheral function is shown in Table 8-1 and Table 8-2. The specific mapping of GPIO port pins is  
shown in Table 8-2.  
Table 8-1 56F8355 GPIO Ports Configuration  
Available  
Port  
GPIO Port  
Pins in  
Peripheral Function  
Reset Function  
Width  
56F8355  
EMI Address  
N/A  
A
B
C
14  
6
5
6 pins - EMI Address pins - Can only be used as GPIO  
8 pins - EMI Address pins - Not available in this package  
GPIO  
N/A  
8
5 pins - EMI Address pins - Can only be used as GPIO  
3 pins - EMI Address pins - Not available in this package  
DEC1 / TMRB  
DEC0 / TMRA  
PWMA current  
sense  
11  
11  
4 pins - DEC1 / TMRB / SPI1  
4 pins - DEC0 / TMRA  
3 pins - PWMA current sense  
56F8355 Technical Data, Rev. 17  
126  
Freescale Semiconductor  
Preliminary  
Configuration  
Table 8-1 56F8355 GPIO Ports Configuration  
Available  
Pins in  
56F8355  
Port  
Width  
GPIO Port  
Peripheral Function  
Reset Function  
EMI Chip Selects  
EMI Chip Selects  
SCI1  
D
13  
11  
2 pins - EMI CSn  
4 pins - EMI CSn - Can only be used as GPIO  
2 pins - SCI1  
N/A  
PWMB current  
sense  
2 pins - EMI CSn - Not available in this package  
3 pins - PWMB current sense  
2 pins - SCI0  
E
F
14  
16  
12  
4
SCI0  
N/A  
SPI0  
TMRC  
TMRD  
2 pins - EMI Address pins - Not available in this package  
4 pins - SPI0  
2 pins - TMRC  
4 pins - TMRD  
EMI Data  
N/A  
4 pins - EMI Data - Can only be used as GPIO  
12 pins - EMI Data - Not available in this package  
Table 8-2 56F8155 GPIO Ports Configuration  
Available  
Pins in  
56F8155  
Port  
Width  
GPIO Port  
Peripheral Function  
Reset Function  
EMI Address  
N/A  
A
B
C
14  
8
6
5
6 pins - EMI Address pins - Can only be used as GPIO  
8 pins - EMI Address pins - Not available in this package  
GPIO  
N/A  
5 pins - EMI Address pins - Can only be used as GPIO  
3 pins - EMI Address pins - Not available in this package  
DEC1 / TMRB  
DEC0 / TMRA  
GPIO  
11  
11  
4 pins - SPI1  
4 pins - DEC0 / TMRA  
3 pins - Dedicated GPIO  
EMI Chip Selects  
SCI1  
N/A  
PWMB current  
sense  
D
E
F
13  
14  
16  
11  
12  
4
6 pins - EMI CSn - Can only be used as GPIO  
2 pins - SCI1  
2 pins - EMI CSn - Not available in this package  
3 pins - PWMB current sense  
2 pins - SCI0  
SCI0  
N/A  
SPI0  
TMRC  
GPIO  
2 pins - EMI Address pins - Not available in this package  
4 pins - SPI0  
2 pins - TMRC  
4 pins - Dedicated GPIO  
EMI Data  
N/A  
4 pins - EMI Data - Can only be used as GPIO  
12 pins - EMI Data - Not available in this package  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
127  
Table 8-3 GPIO External Signals Map  
Pins in shaded rows are not available in 56F8355 / 56F8155  
Pins in italics are NOT available in the 56F8155 device  
Reset Function  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Functional Signal  
Package Pin #  
GPIO Port  
GPIO Bit  
A81  
A91  
0
1
2
3
4
5
15  
16  
17  
18  
19  
20  
A101  
A111  
A121  
A131  
6
7
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
GPIO  
GPIOA  
8
9
10  
11  
12  
13  
0
A161  
A171  
A181  
27  
28  
29  
30  
31  
1
2
3
GPIO  
GPIO  
GPIO  
A191  
GPIOB  
4
5
6
7
GPIO  
N/A  
A20 / Prescaler_clock  
N/A  
N/A  
56F8355 Technical Data, Rev. 17  
128  
Freescale Semiconductor  
Preliminary  
Configuration  
Table 8-3 GPIO External Signals Map (Continued)  
Pins in shaded rows are not available in 56F8355 / 56F8155  
Pins in italics are NOT available in the 56F8155 device  
Reset Function  
Peripheral  
Functional Signal  
Package Pin #  
GPIO Port  
GPIO Bit  
PHASEA1 / TB0 / SCLK12  
PHASEB1 / TB1 / MOSI12  
INDEX1 / TB2 / MISO12  
0
1
2
3
9
Peripheral  
10  
11  
12  
Peripheral  
HOME1 / TB3 / SS12  
PHASEA0 / TA0  
PHASEB0 / TA1  
INDEX0 / TA2  
HOME0 / TA3  
ISA0  
Peripheral  
4
5
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
GPIO  
127  
128  
1
GPIOC  
6
7
2
8
104  
105  
106  
42  
9
ISA1  
10  
0
ISA2  
CS21  
CS31  
CS41  
CS51  
CS61  
1
2
3
4
5
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
43  
44  
45  
46  
47  
CS71  
TXD1  
RXD1  
GPIOD  
6
7
Peripheral  
Peripheral  
N/A  
40  
41  
8
9
N/A  
10  
11  
12  
Peripheral  
Peripheral  
Peripheral  
ISB0  
ISB1  
ISB2  
48  
50  
51  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
129  
Table 8-3 GPIO External Signals Map (Continued)  
Pins in shaded rows are not available in 56F8355 / 56F8155  
Pins in italics are NOT available in the 56F8155 device  
Reset Function  
Functional Signal  
Package Pin #  
GPIO Port  
GPIO Bit  
0
1
Peripheral  
Peripheral  
N/A  
TXD0  
RXD0  
7
8
2
3
N/A  
4
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
SCLK0  
MOSI0  
MISO0  
SS0  
124  
126  
125  
123  
111  
113  
107  
108  
109  
110  
22  
5
6
GPIOE  
7
8
TC0  
9
TC1  
10  
11  
12  
13  
0
TD0  
TD1  
TD2  
TD3  
D71  
D81  
1
2
3
Peripheral  
Peripheral  
Peripheral  
23  
24  
26  
D91  
D101  
4
5
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
6
7
GPIOF  
8
9
10  
11  
12  
13  
14  
15  
56F8355 Technical Data, Rev. 17  
130  
Freescale Semiconductor  
Preliminary  
56F8355 Information  
1. Not useful in reset configuration in this package - reconfigure as GPIO  
2. See Part 6.5.8 to determine how to select peripherals from this set; DEC1 is the selected peripheral at reset  
Part 9 Joint Test Action Group (JTAG)  
9.1 56F8355 Information  
Please contact your Freescale marketing representative or authorized distributor for  
device/package-specific BSDL information.  
Part 10 Specifications  
10.1 General Characteristics  
The 56F8355/56F8155 are fabricated in high-density CMOS with 5V-tolerant TTL-compatible digital  
inputs. The term “5V-tolerant” refers to the capability of an I/O pin, built on a 3.3V-compatible process  
technology, to withstand a voltage up to 5.5V without damaging the device. Many systems have a mixture  
of devices designed for 3.3V and 5V power supplies. In such sytems, a bus may carry both 3.3V- and  
5V-compatible I/O voltage levels (a standard 3.3V I/O is designed to receive a maximum voltage of 3.3V  
10% during normal operation without causing damage). This 5V-tolerant capability therefore offers the  
power savings of 3.3V I/O levels combined with the ability to receive 5V levels without damage.  
Absolute maximum ratings in Table 10-1 are stress ratings only, and functional operation at the maximum  
is not guaranteed. Stress beyond these ratings may affect device reliability or cause permanent damage to  
the device.  
Note: All specifications meet both Automotive and Industrial requirements unless individual  
specifications are listed.  
Note: The 56F8155 device is guaranteed to 40MHz and specified to meet Industrial requirements only.  
CAUTION  
This device contains protective circuitry to guard  
against damage due to high static voltage or electrical  
fields. However, normal precautions are advised to  
avoid application of any voltages higher than  
maximum-rated voltages to this high-impedance circuit.  
Reliability of operation is enhanced if unused inputs are  
tied to an appropriate voltage level.  
Note: The 56F8155 device is specified to meet Industrial requirements only; CAN is NOT available on the  
56F8155 device.  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
131  
Table 10-1 Absolute Maximum Ratings  
(VSS = VSSA_ADC = 0)  
Characteristic  
Supply voltage  
Symbol  
VDD_IO  
Notes  
Min  
- 0.3  
- 0.3  
Max  
4.0  
Unit  
V
ADC Supply Voltage  
V
DDA_ADC, VREFH  
VREFH must be less than or  
equal to VDDA_ADC  
4.0  
V
Oscillator / PLL Supply Voltage  
Internal Logic Core Supply Voltage  
Input Voltage (digital)  
VDDA_OSC_PLL  
VDD_CORE  
VIN  
- 0.3  
- 0.3  
-0.3  
-0.3  
-0.3  
4.0  
3.0  
6.0  
4.0  
V
V
V
V
V
OCR_DIS is High  
Pin Groups 1, 2, 5, 6, 9, 10  
Pin Groups 11, 12, 13  
Input Voltage (analog)  
VINA  
Pin Groups 1, 2, 3, 4, 5, 6, 7, 8  
Output Voltage  
VOUT  
4.0  
6.01  
Pin Group 4  
Output Voltage (open drain)  
VOD  
TA  
-0.3  
-40  
-40  
-40  
-40  
-55  
-55  
6.0  
125  
105  
150  
125  
150  
150  
V
Ambient Temperature (Automotive)  
Ambient Temperature (Industrial)  
°C  
°C  
°C  
°C  
°C  
°C  
TA  
Junction Temperature (Automotive)  
Junction Temperature (Industrial)  
TJ  
TJ  
Storage Temperature (Automotive)  
Storage Temperature (Industrial)  
TSTG  
TSTG  
1. If corresponding GPIO pin is configured as open drain.  
Note: Pins in italics are NOT available on the 56F8155 device.  
Pin Group 1: TXD0-1, RXD0-1, SS0, MISO0, MOSI0  
Pin Group 2: PHASEA0, PHASEA1, PHASEB0, PHASEB1, INDEX0, INDEX1, HOME0, HOME1, ISB0-2, ISA0-2, TD2-3, TC0-1, TDO,  
SCLK0  
Pin Group 3: RSTO, TDO  
Pin Group 4: CAN_TX  
Pin Group 5: D0-15, GPIOD0-5  
Pin Group 6: A8-15, GPIOB0-4, TD0-1  
Pin Group 7: CLKO  
Pin Group 8: PWMA0-5, PWMB0-5  
Pin Group 9: IRQA, IRQB, RESET, EXTBOOT, TRST, TMS, TDI, CAN_RX, EMI_MODE, FAULTA0-3, FAULTB0-3  
Pin Group 10: TCK  
Pin Group 11: XTAL, EXTAL  
Pin Group 12: ANA0-7, ANB0-7  
Pin Group 13: OCR_DIS, CLKMODE  
56F8355 Technical Data, Rev. 17  
132  
Freescale Semiconductor  
Preliminary  
 
General Characteristics  
Table 10-2 56F8355/56F8155 ElectroStatic Discharge (ESD) Protection  
Characteristic  
Min  
2000  
200  
Typ  
Max  
Unit  
V
ESD for Human Body Model (HBM)  
ESD for Machine Model (MM)  
V
500  
V
ESD for Charge Device Model (CDM)  
6
Table 10-3 Thermal Characteristics  
Value  
Characteristic  
Symbol  
Unit  
Notes  
Comments  
128-pin LQFP  
R
Junction to ambient  
50.8  
°C/W  
2
θJA  
Natural convection  
R
Junction to ambient (@1m/sec)  
46.5  
43.9  
°C/W  
°C/W  
2
θJMA  
R
Junction to ambient  
Natural convection  
Four layer board (2s2p)  
Four layer board (2s2p)  
1,2  
θJMA  
(2s2p)  
R
Junction to ambient (@1m/sec)  
Junction to case  
41.7  
13.9  
°C/W  
°C/W  
°C/W  
W
1,2  
3
θJMA  
R
θJC  
Ψ
Junction to center of case  
I/O pin power dissipation  
Power dissipation  
1.2  
4, 5  
JT  
P
User-determined  
P D = (IDD x VDD + P I/O  
I/O  
P
)
W
D
(TJ - TA) / RθJA7  
P
Maximum allowed PD  
W
DMAX  
1. Theta-JA determined on 2s2p test boards is frequently lower than would be observed in an application. Determined on 2s2p ther-  
mal test board.  
2. Junction to ambient thermal resistance, Theta-JA (R ) was simulated to be equivalent to the JEDEC specification JESD51-2  
θJA  
in a horizontal configuration in natural convection. Theta-JA was also simulated on a thermal test board with two internal planes  
(2s2p where “s” is the number of signal layers and “p” is the number of planes) per JESD51-6 and JESD51-7. The correct name  
for Theta-JA for forced convection or with the non-single layer boards is Theta-JMA.  
3. Junction to case thermal resistance, Theta-JC (R  
), was simulated to be equivalent to the measured values using the cold  
θJC  
plate technique with the cold plate temperature used as the "case" temperature. The basic cold plate measurement technique is  
described by MIL-STD 883D, Method 1012.1. This is the correct thermal metric to use to calculate thermal performance when  
the package is being used with a heat sink.  
4. Thermal Characterization Parameter, Psi-JT (Ψ ), is the "resistance" from junction to reference point thermocouple on top cen-  
JT  
ter of case as defined in JESD51-2. Ψ is a useful value to use to estimate junction temperature in steady state customer envi-  
JT  
ronments.  
5. Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board) temperature,  
ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.  
6. See Part 12.1 for more details on thermal design considerations.  
7. TJ = Junction temperature  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
133  
TA = Ambient temperature  
Note: The 56F8155 device is guaranteed to 40MHz and specified to meet Industrial requirements only;  
CAN is NOT available on the 56F8155 device.  
Table 10-4 Recommended Operating Conditions  
(VREFLO = 0V, VSS = VSSA_ADC = 0V, VDDA = VDDA_ADC = VDDA_OSC_PLL  
)
Characteristic  
Supply voltage  
Symbol  
Notes  
Min  
3
Typ  
3.3  
3.3  
Max  
3.6  
Unit  
V
V
DD_IO  
V
V
V
must be less  
REFH  
ADC Supply Voltage  
3
3.6  
DDA_ADC,  
than or equal to  
VDDA_ADC  
V
REFH  
V
V
V
Oscillator / PLL Supply Voltage  
Internal Logic Core Supply Voltage  
Device Clock Frequency  
3
2.25  
0
3.3  
2.5  
3.6  
2.75  
60  
DDA_OSC_PLL  
OCR_DIS is High  
V
DD_CORE  
MHz  
V
FSYSCLK  
Pin Groups  
1, 2, 5, 6, 9, 10  
V
Input High Voltage (digital)  
2
5.5  
IN  
Pin Group 13  
Pin Group 11  
V
V
V
Input High Voltage (analog)  
2
VDDA+0.3  
VDDA+0.3  
IHA  
V
Input High Voltage (XTAL/EXTAL,  
XTAL is not driven by an external clock)  
VDDA - 0.8  
IHC  
Pin Group 11  
V
V
V
Input high voltage (XTAL/EXTAL,  
XTAL is driven by an external clock)  
2
VDDA+0.3  
.8  
IHC  
Pin Groups  
1, 2, 5, 6, 9, 10, 11, 13  
V
Input Low Voltage  
-0.3  
IL  
Pin Groups 1, 2, 3  
Pin Groups 5, 6, 7  
Pin Groups 8  
mA  
I
Output High Source Current  
VOH = 2.4V (VOH min.)  
-40  
-4  
-8  
OH  
-12  
4
Pin Groups 1, 2, 3, 4  
Pin Groups 5, 6, 7  
Pin Group 8  
mA  
I
Output Low Sink Current  
VOL = 0.4V (VOL max)  
OL  
8
12  
125  
°C  
T
Ambient Operating Temperature  
(Automotive)  
A
105  
°C  
T
Ambient Operating Temperature  
(Industrial)  
-40  
10,000  
10,000  
15  
A
TA = -40°C to 125°C  
TA = -40°C to 105°C  
TJ <= 85°C avg  
Cycles  
Cycles  
Years  
N
Flash Endurance (Automotive)  
(Program Erase Cycles)  
F
N
Flash Endurance (Industrial)  
(Program Erase Cycles)  
F
T
Flash Data Retention (Automotive)  
R
Note: Total chip source or sink current cannot exceed 200mA.  
See Pin Groups in Table 10-1.  
56F8355 Technical Data, Rev. 17  
134  
Freescale Semiconductor  
Preliminary  
 
DC Electrical Characteristics  
10.2 DC Electrical Characteristics  
Note: The 56F8155 device is specified to meet Industrial requirements only; CAN is NOT available on the  
56F8155 device.  
Table 10-5 DC Electrical Characteristics  
At Recommended Operating Conditions; see Table 10-4  
Test  
Conditions  
Characteristic  
Symbol  
Notes  
Min  
Typ  
Max  
Unit  
V
V
IOH = IOHmax  
V
Output High Voltage  
Output Low Voltage  
2.4  
0
0.4  
OH  
IOL = IOLmax  
V
OL  
Pin Groups 1, 2, 5, 6, 9  
Pin Group 10  
V
V
IN = 3.0V to 5.5V  
I
Digital Input Current High  
pullup enabled or disabled  
+/- 2.5  
μA  
IH  
IN = 3.0V to 5.5V  
I
Digital Input Current High  
with pull-down  
40  
80  
160  
μA  
IH  
Pin Group 13  
Pin Group 12  
V
V
IN = VDDA  
IN = VDDA  
I
Analog Input Current High  
ADC Input Current High  
0
0
+/- 2.5  
+/- 3.5  
-50  
μA  
μA  
μA  
IHA  
I
IHADC  
Pin Groups 1, 2, 5, 6, 9  
V
IN = 0V  
IN = 0V  
IN = 0V  
I
Digital Input Current Low  
pullup enabled  
-200  
-100  
IL  
Pin Groups 1, 2, 5, 6, 9  
Pin Group 10  
V
V
I
Digital Input Current Low  
pullup disabled  
0
0
+/- 2.5  
+/- 2.5  
μA  
μA  
IL  
I
Digital Input Current Low with  
pull-down  
IL  
Pin Group 13  
Pin Group 12  
V
V
IN = 0V  
IN = 0V  
I
Analog Input Current Low  
ADC Input Current Low  
0
0
0
+/- 2.5  
+/- 3.5  
+/- 2.5  
μA  
μA  
μA  
ILA  
I
ILADC  
V
IN = VDD or 0V  
I
EXTAL Input Current Low  
clock input  
EXTAL  
CLKMODE = High  
CLKMODE = Low  
V
IN = VDDA or 0V  
I
XTAL Input Current Low  
clock input  
0
0
+/- 2.5  
200  
μA  
μA  
μA  
XTAL  
VIN = VDDA or 0V  
Pin Groups 1, 2, 3, 4, 5,  
6, 7, 8  
V
OUT = 3.0V to  
5.5V or 0V  
I
Output Current  
High Impedance State  
+/- 2.5  
OZ  
Pin Groups 2, 6, 9,10  
V
V
Schmitt Trigger Input  
Hysteresis  
0.3  
4.5  
5.5  
HYS  
pF  
pF  
C
Input Capacitance  
(EXTAL/XTAL)  
INC  
C
Output Capacitance  
(EXTAL/XTAL)  
OUTC  
pF  
pF  
C
Input Capacitance  
Output Capacitance  
6
6
IN  
C
OUT  
See Pin Groups in Table 10-1.  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
135  
 
μA  
0
–10  
–30  
–50  
–70  
–90  
0
1
2
3
Volts  
Figure 10-1 Maximum Current — Schmitt Input DC Response –40 °C, 3.6 V  
Table 10-6 Power-On Reset Low Voltage Parameters  
Characteristic  
POR Trip Point  
Symbol  
Min  
Typ  
Max  
Units  
POR  
1.75  
1.8  
1.9  
V
V
LVI, 2.5 volt Supply, trip point1  
VEI2.5  
2.14  
LVI, 3.3 volt supply, trip point2  
Bias Current  
VEI3.3  
I bias  
2.7  
V
110  
130  
μA  
1. When V  
2. When V  
drops below V  
drops below V  
, an interrupt is generated.  
, an interrupt is generated.  
DD_CORE  
DD_CORE  
EI2.5  
EI3.3  
Table 10-7 Current Consumption per Power Supply Pin (Typical)  
On-Chip Regulator Enabled (OCR_DIS = Low)  
1
IDD_ADC  
IDD_OSC_PLL  
Mode  
Test Conditions  
60MHz Device Clock  
IDD_IO  
RUN1_MAC  
155mA  
50mA  
2.5mA  
All peripheral clocks are enabled  
All peripherals running  
Continuous MAC instructions with fetches from  
Data RAM  
ADC powered on and clocked  
60MHz Device Clock  
Wait3  
91mA  
70uA  
2.5mA  
All peripheral clocks are enabled  
ADC powered off  
56F8355 Technical Data, Rev. 17  
136  
Freescale Semiconductor  
Preliminary  
DC Electrical Characteristics  
Table 10-7 Current Consumption per Power Supply Pin (Typical)  
On-Chip Regulator Enabled (OCR_DIS = Low)  
1
IDD_ADC  
IDD_OSC_PLL  
Mode  
Stop1  
Test Conditions  
8MHz Device Clock  
IDD_IO  
6mA  
0uA  
155uA  
All peripheral clocks are off  
ADC powered off  
PLL powered off  
External Clock is off  
All peripheral clocks are off  
ADC powered off  
Stop2  
5.1mA  
0uA  
145uA  
PLL powered off  
1. No Output Switching  
2. Includes Processor Core current supplied by internal voltage regulator  
Table 10-8 Current Consumption per Power Supply Pin (Typical)  
On-Chip Regulator Disabled (OCR_DIS = High)  
1
IDD_Core  
IDD_ADC  
IDD_OSC_PLL  
Mode  
Test Conditions  
60MHz Device Clock  
IDD_IO  
RUN1_MAC  
150 mA  
13μA  
50mA  
2.5mA  
All peripheral clocks are enabled  
All peripherals running  
Continuous MAC instructions with  
fetches from Data RAM  
ADC powered on and clocked  
60MHz Device Clock  
Wait3  
Stop1  
86mA  
13μA  
13μA  
70μA  
0μA  
2.5mA  
All peripheral clocks are enabled  
ADC powered off  
8MHz Device Clock  
All peripheral clocks are off  
ADC powered off  
900μA  
155μA  
PLL powered off  
External Clock is off  
All peripheral clocks are off  
ADC powered off  
Stop2  
100μA  
13μA  
0μA  
145μA  
PLL powered off  
1. No Output Switching  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
137  
Table 10-9. Regulator Parameters  
Characteristic  
Symbol  
Min  
Typical  
Max  
Unit  
Unloaded Output Voltage  
(0mA Load)  
VRNL  
2.25  
2.75  
V
Loaded Output Voltage  
(200mA load)  
VRL  
2.25  
2.25  
2.75  
2.75  
V
V
Line Regulation @ 250mA load  
(VDD33 ranges from 3.0V to 3.6V)  
VR  
Short Circuit Current  
Iss  
700  
mA  
(output shorted to ground)  
Bias Current  
I bias  
Ipd  
5.8  
0
7
2
mA  
μA  
Power-down Current  
Short-Circuit Tolerance  
TRSC  
30  
minutes  
(output shorted to ground)  
Table 10-10. PLL Parameters  
Characteristics  
PLL Start-up time  
Symbol  
TPS  
Min  
0.3  
0.1  
120  
Typical  
0.5  
Max  
10  
Unit  
ms  
ms  
ps  
Resonator Start-up time  
Min-Max Period Variation  
Peak-to-Peak Jitter  
TRS  
0.18  
1
TPV  
200  
175  
2
TPJ  
ps  
Bias Current  
IBIAS  
IPD  
1.5  
mA  
μA  
Quiescent Current, power-down mode  
100  
150  
10.2.1 Temperature Sense  
Note: Temperature Sensor is NOT available in the 56F8155 device.  
Table 10-11 Temperature Sense Parametrics  
Characteristics  
Slope (Gain)1  
Symbol  
Min  
Typical  
Max  
Unit  
m
7.762  
mV/°C  
56F8355 Technical Data, Rev. 17  
138  
Freescale Semiconductor  
Preliminary  
AC Electrical Characteristics  
Table 10-11 Temperature Sense Parametrics  
Characteristics  
Room Trim Temp. 1, 2  
Symbol  
TRT  
Min  
24  
Typical  
26  
Max  
28  
Unit  
°C  
°C  
°C  
V
Hot Trim Temp. (Industrial)1,2  
THT  
122  
147  
125  
128  
153  
Hot Trim Temp. (Automotive)1,2  
THT  
150  
Output Voltage @  
VTS0  
1.370  
V
DDA_ADC = 3.3V, TJ =0°C1  
Supply Voltage  
VDDA_ADC  
IDD-OFF  
IDD-ON  
3.0  
3.3  
0
3.6  
10  
V
Supply Current - OFF  
Supply Current - ON  
μA  
μA  
°C  
250  
6.7  
Accuracy3,1 from -40°C to 150°C  
Using VTS = mT + VTS0  
TACC  
-6.7  
Resolution4, 5,1  
RES  
0.104  
°C / bit  
1. Includes the ADC conversion of the analog Temperature Sense voltage.  
2. The ADC is not calibrated for the conversion of the Temperature Sensor trim value stored in the Flash Memory at  
FMOPT0 and FMOPT1.  
3. See Application Note, AN1980, for methods to increase accuracy.  
4. Assuming a 12-bit range from 0V to 3.3V.  
5. Typical resolution calculated using equation,  
10.3 AC Electrical Characteristics  
Tests are conducted using the input levels specified in Table 10-5. Unless otherwise specified,  
propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured  
between the 10% and 90% points, as shown in Figure 10-2.  
Low  
VIL  
High  
VIH  
90%  
50%  
10%  
Input Signal  
Midpoint1  
Fall Time  
Note: The midpoint is VIL + (VIH – VIL)/2.  
Rise Time  
Figure 10-2 Input Signal Measurement References  
Figure 10-3 shows the definitions of the following signal states:  
Active state, when a bus or signal is driven, and enters a low impedance state  
Tri-stated, when a bus or signal is placed in a high impedance state  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
139  
 
Data Valid state, when a signal level has reached VOL or VOH  
Data Invalid state, when a signal level is in transition between VOL and VOH  
Data2 Valid  
Data2  
Data1 Valid  
Data1  
Data3 Valid  
Data3  
Data  
Tri-stated  
Data Invalid State  
Data Active  
Data Active  
Figure 10-3 Signal States  
10.4 Flash Memory Characteristics  
Table 10-12 Flash Timing Parameters  
Characteristic  
Symbol  
Tprog  
Terase  
Tme  
Min  
20  
Typ  
Max  
Unit  
μs  
Program time1  
Erase time2  
20  
ms  
ms  
Mass erase time  
100  
1. There is additional overhead which is part of the programming sequence. See the 56F8300 Peripheral User Manual  
for details. Program time is per 16-bit word in Flash memory. Two words at a time can be programmed within the Pro-  
gram Flash module, as it contains two interleaved memories.  
2. Specifies page erase time. There are 512 bytes per page in the Data and Boot Flash memories. The Program Flash  
module uses two interleaved Flash memories, increasing the effective page size to 1024 bytes.  
10.5 External Clock Operation Timing  
1
Table 10-13 External Clock Operation Timing Requirements  
Characteristic  
Symbol  
fosc  
Min  
0
Typ  
Max  
120  
Unit  
MHz  
ns  
Frequency of operation (external clock driver)2  
Clock Pulse Width3  
tPW  
3.0  
External clock input rise time4  
trise  
10  
ns  
External clock input fall time5  
tfall  
10  
ns  
1. Parameters listed are guaranteed by design.  
2. See Figure 10-4 for details on using the recommended connection of an external clock driver.  
3. The high or low pulse width must be no smaller than 8.0ns or the chip will not function.  
4. External clock input rise time is measured from 10% to 90%.  
5. External clock input fall time is measured from 90% to 10%.  
56F8355 Technical Data, Rev. 17  
140  
Freescale Semiconductor  
Preliminary  
Phase Locked Loop Timing  
VIH  
External  
Clock  
90%  
50%  
10%  
90%  
50%  
10%  
VIL  
tfall  
trise  
tPW  
tPW  
Note: The midpoint is VIL + (VIH – VIL)/2.  
Figure 10-4 External Clock Timing  
10.6 Phase Locked Loop Timing  
Table 10-14 PLL Timing  
Characteristic  
Symbol  
fosc  
Min  
4
Typ  
8
Max  
8.4  
Unit  
MHz  
MHz  
External reference crystal frequency for the PLL1  
PLL output frequency2 (fOUT  
)
fop  
160  
260  
10  
PLL stabilization time3 -40° to +125°C  
tplls  
1
ms  
1. An externally supplied reference clock should be as free as possible from any phase jitter for the PLL to work  
correctly. The PLL is optimized for 8MHz input crystal.  
2. ZCLK may not exceed 60MHz. For additional information on ZCLK and (f  
/2), please refer to the OCCS chapter in  
OUT  
the 56F8300 Peripheral User Manual.  
3. This is the minimum time required after the PLL set up is changed to ensure reliable operation.  
10.7 Crystal Oscillator Timing  
Table 10-15 Crystal Oscillator Parameters  
Characteristic  
Crystal Start-up time  
Symbol  
TCS  
Min  
4
Typ  
5
Max  
10  
Unit  
ms  
ms  
ohms  
ps  
Resonator Start-up time  
TRS  
0.1  
0.18  
1
Crystal ESR  
RESR  
TD  
120  
250  
1.5  
300  
300  
Crystal Peak-to-Peak Jitter  
Crystal Min-Max Period Variation  
Resonator Peak-to-Peak Jitter  
Resonator Min-Max Period Variation  
70  
TPV  
0.12  
ns  
TRJ  
ps  
TRP  
ps  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
141  
Table 10-15 Crystal Oscillator Parameters  
Characteristic  
Bias Current, high-drive mode  
Bias Current, low-drive mode  
Quiescent Current, power-down mode  
Symbol  
IBIASH  
IBIASL  
IPD  
Min  
Typ  
250  
80  
Max  
290  
110  
1
Unit  
μA  
μA  
0
μA  
10.8 Reset, Stop, Wait, Mode Select, and Interrupt Timing  
1,2  
Table 10-16 Reset, Stop, Wait, Mode Select, and Interrupt Timing  
Typical  
Min  
Typical  
Max  
Characteristic  
Symbol  
Unit  
See Figure  
Minimum RESET Assertion Duration  
Edge-sensitive Interrupt Request Width  
tRA  
tIRW  
16T  
1.5T  
18T  
14T  
1.5T  
ns  
ns  
ns  
10-5  
10-6  
10-7  
IRQA, IRQB Assertion to General Purpose  
Output Valid, caused by first instruction  
execution in the interrupt service routine  
tIG  
t
IG - FAST  
tIW  
IRQA Width Assertion to Recover from Stop  
State3  
ns  
10-9  
1. In the formulas, T = clock cycle. For an operating frequency of 60MHz, T = 16.67ns. At 8MHz (used during Reset and  
Stop modes), T = 125ns.  
2. Parameters listed are guaranteed by design.  
3. The interrupt instruction fetch is visible on the pins only in Mode 3.  
RESET  
tRA  
tRAZ  
tRDA  
First Fetch  
A0–A15,  
D0–D15  
Figure 10-5 Asynchronous Reset Timing  
56F8355 Technical Data, Rev. 17  
142  
Freescale Semiconductor  
Preliminary  
 
Reset, Stop, Wait, Mode Select, and Interrupt Timing  
IRQA,  
IRQB  
tIRW  
Figure 10-6 External Interrupt Timing (Negative-Edge-Sensitive)  
A0–A15  
First Interrupt Instruction Execution  
tIDM  
IRQA,  
IRQB  
a) First Interrupt Instruction Execution  
General  
Purpose  
I/O Pin  
tIG  
IRQA,  
IRQB  
b) General Purpose I/O  
Figure 10-7 External Level-Sensitive Interrupt Timing  
IRQA,  
IRQB  
tIRI  
A0–A15  
First Interrupt Vector  
Instruction Fetch  
Figure 10-8 Interrupt from Wait State Timing  
tIW  
IRQA  
tIF  
A0–A15  
First Instruction Fetch  
Not IRQA Interrupt Vector  
Figure 10-9 Recovery from Stop State Using Asynchronous Interrupt Timing  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
143  
10.9 Serial Peripheral Interface (SPI) Timing  
1
Table 10-17 SPI Timing  
Characteristic  
Symbol  
Min  
Max  
Unit  
See Figure  
Cycle time  
Master  
Slave  
tC  
10-10, 10-11,  
10-12, 10-13  
50  
50  
ns  
ns  
Enable lead time  
Master  
Slave  
tELD  
tELG  
tCH  
tCL  
10-13  
10-13  
25  
ns  
ns  
Enable lag time  
Master  
Slave  
100  
ns  
ns  
Clock (SCK) high time  
Master  
Slave  
10-10, 10-11,  
10-12, 10-13  
17.6  
25  
ns  
ns  
Clock (SCK) low time  
Master  
Slave  
10-13  
24.1  
25  
ns  
ns  
Data set up time required for inputs  
Master  
Slave  
tDS  
tDH  
tA  
10-10, 10-11,  
10-12, 10-13  
20  
0
ns  
ns  
Data hold time required for inputs  
Master  
Slave  
10-10, 10-11,  
10-12, 10-13  
0
2
ns  
ns  
Access time (time to data active from  
high-impedance state)  
Slave  
10-13  
10-13  
4.8  
3.7  
15  
ns  
ns  
Disable time (hold time to high-impedance state)  
Slave  
tD  
15.2  
Data Valid for outputs  
Master  
Slave (after enable edge)  
tDV  
10-10, 10-11,  
10-12, 10-13  
4.5  
20.4  
ns  
ns  
Data invalid  
Master  
Slave  
tDI  
tR  
tF  
10-10, 10-11,  
0
0
ns  
ns  
10-12  
Rise time  
Master  
Slave  
10-10, 10-11,  
10-12, 10-13  
11.5  
10.0  
ns  
ns  
Fall time  
Master  
Slave  
10-10, 10-11,  
10-12, 10-13  
9.7  
9.0  
ns  
ns  
1. Parameters listed are guaranteed by design.  
56F8355 Technical Data, Rev. 17  
144  
Freescale Semiconductor  
Preliminary  
Serial Peripheral Interface (SPI) Timing  
SS  
(Input)  
SS is held High on master  
tC  
tR  
tF  
tCL  
SCLK (CPOL = 0)  
(Output)  
tCH  
tF  
tR  
tCL  
SCLK (CPOL = 1)  
(Output)  
tDH  
tCH  
tDS  
MISO  
MSB in  
tDI  
Bits 14–1  
tDV  
Bits 14–1  
LSB in  
tDI(ref)  
(Input)  
MOSI  
(Output)  
Master MSB out  
tF  
Master LSB out  
tR  
Figure 10-10 SPI Master Timing (CPHA = 0)  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
145  
SS  
(Input)  
SS is held High on master  
tF  
tC  
tR  
tCL  
SCLK (CPOL = 0)  
(Output)  
tCH  
tF  
tCL  
SCLK (CPOL = 1)  
(Output)  
tCH  
tDS  
tR  
tDH  
MISO  
MSB in  
tDI  
Bits 14–1  
tDV  
Bits 14– 1  
LSB in  
tDI(ref)  
(Input)  
tDV(ref)  
MOSI  
(Output)  
Master MSB out  
tF  
Master LSB out  
tR  
Figure 10-11 SPI Master Timing (CPHA = 1)  
SS  
(Input)  
tC  
tF  
tELG  
tCL  
tR  
SCLK (CPOL = 0)  
(Input)  
tCH  
tELD  
tCL  
SCLK (CPOL = 1)  
(Input)  
tCH  
tF  
tA  
tR  
tD  
MISO  
(Output)  
Slave MSB out  
Bits 14–1  
tDV  
Slave LSB out  
tDI  
tDS  
tDI  
tDH  
MOSI  
(Input)  
MSB in  
Bits 14–1  
LSB in  
Figure 10-12 SPI Slave Timing (CPHA = 0)  
56F8355 Technical Data, Rev. 17  
146  
Freescale Semiconductor  
Preliminary  
Quad Timer Timing  
SS  
(Input)  
tF  
tC  
tR  
tCL  
SCLK (CPOL = 0)  
(Input)  
tCH  
tELG  
tELD  
tCL  
SCLK (CPOL = 1)  
(Input)  
tDV  
tCH  
tR  
tD  
Slave LSB out  
tDI  
tA  
tF  
MISO  
Slave MSB out  
MSB in  
Bits 14–1  
tDV  
(Output)  
tDS  
tDH  
MOSI  
(Input)  
Bits 14–1  
LSB in  
Figure 10-13 SPI Slave Timing (CPHA = 1)  
10.10 Quad Timer Timing  
1, 2  
Table 10-18 Timer Timing  
Characteristic  
Timer input period  
Symbol  
PIN  
Min  
Max  
Unit  
ns  
See Figure  
10-14  
2T + 6  
1T + 3  
1T - 3  
Timer input high / low period  
Timer output period  
PINHL  
POUT  
ns  
10-14  
ns  
10-14  
Timer output high / low period  
POUTHL  
0.5T - 3  
ns  
10-14  
1. In the formulas listed, T = the clock cycle. For 60MHz operation, T = 16.67ns.  
2. Parameters listed are guaranteed by design.  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
147  
Timer Inputs  
PINHL  
PINHL  
PIN  
Timer Outputs  
POUTHL  
POUTHL  
POUT  
Figure 10-14 Timer Timing  
10.11 Quadrature Decoder Timing  
1, 2  
Table 10-19 Quadrature Decoder Timing  
Characteristic  
Symbol  
PIN  
Min  
Max  
Unit  
ns  
See Figure  
Quadrature input period  
4T + 12  
10-15  
Quadrature input high / low period  
Quadrature phase period  
PHL  
PPH  
2T + 6  
1T + 3  
ns  
ns  
10-15  
10-15  
1. In the formulas listed, T = the clock cycle. For 60MHz operation, T=16.67ns.  
2. Parameters listed are guaranteed by design.  
PPH PPH PPH PPH  
Phase A  
(Input)  
PHL  
PIN  
PHL  
Phase B  
(Input)  
PHL  
PIN  
PHL  
Figure 10-15 Quadrature Decoder Timing  
56F8355 Technical Data, Rev. 17  
148  
Freescale Semiconductor  
Preliminary  
 
Serial Communication Interface (SCI) Timing  
10.12 Serial Communication Interface (SCI) Timing  
1
Table 10-20 SCI Timing  
Characteristic  
Baud Rate2  
Symbol  
BR  
Min  
Max  
Unit  
See Figure  
(fMAX/16)  
Mbps  
RXD3 Pulse Width  
TXD4 Pulse Width  
RXDPW  
TXDPW  
0.965/BR  
1.04/BR  
1.04/BR  
ns  
ns  
10-16  
0.965/BR  
10-17  
1. Parameters listed are guaranteed by design.  
2. f is the frequency of operation of the system clock, ZCLK, in MHz, which is 60MHz for the 56F8355 device and  
MAX  
40MHz for the 56F8155 device.  
3. The RXD pin in SCI0 is named RXD0 and the RXD pin in SCI1 is named RXD1.  
4. The TXD pin in SCI0 is named TXD0 and the TXD pin in SCI1 is named TXD1.  
RXD  
SCI receive  
data pin  
RXDPW  
(Input)  
Figure 10-16 RXD Pulse Width  
TXD  
SCI receive  
data pin  
TXDPW  
(Input)  
Figure 10-17 TXD Pulse Width  
10.13 Controller Area Network (CAN) Timing  
Note: CAN is NOT available in the 56F8155 device.  
1
Table 10-21 CAN Timing  
Characteristic  
Baud Rate  
Bus Wake Up detection  
Symbol  
BRCAN  
Min  
5
Max  
1
Unit  
See Figure  
Mbps  
T WAKEUP  
μs  
10-18  
1. Parameters listed are guaranteed by design  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
149  
 
 
CAN_RX  
CAN receive  
data pin  
T WAKEUP  
(Input)  
Figure 10-18 Bus Wake Up Detection  
10.14 JTAG Timing  
Table 10-22 JTAG Timing  
Characteristic  
Symbol  
Min  
Max  
Unit  
See Figure  
10-19  
TCK frequency of operation  
using EOnCE1  
fOP  
DC  
SYS_CLK/8  
MHz  
TCK frequency of operation not  
using EOnCE1  
fOP  
DC  
SYS_CLK/4  
MHz  
10-19  
TCK clock pulse width  
TMS, TDI data set-up time  
TMS, TDI data hold time  
TCK low to TDO data valid  
TCK low to TDO tri-state  
TRST assertion time  
tPW  
tDS  
50  
5
30  
30  
ns  
ns  
ns  
ns  
ns  
ns  
10-19  
10-20  
10-20  
10-20  
10-20  
10-21  
tDH  
5
tDV  
tTS  
2T2  
tTRST  
1. TCK frequency of operation must be less than 1/8 the processor rate.  
2. T = processor clock period (nominally 1/60MHz)  
1/fOP  
tPW  
tPW  
VIH  
VM  
VM  
TCK  
(Input)  
VIL  
VM = VIL + (VIH – VIL)/2  
Figure 10-19 Test Clock Input Timing Diagram  
56F8355 Technical Data, Rev. 17  
150  
Freescale Semiconductor  
Preliminary  
 
Analog-to-Digital Converter (ADC) Parameters  
TCK  
(Input)  
tDS  
tDH  
TDI  
TMS  
Input Data Valid  
(Input)  
tDV  
TDO  
(Output)  
Output Data Valid  
tTS  
TDO  
(Output)  
tDV  
TDO  
(Output)  
Output Data Valid  
Figure 10-20 Test Access Port Timing Diagram  
TRST  
(Input)  
tTRST  
Figure 10-21 TRST Timing Diagram  
10.15 Analog-to-Digital Converter (ADC) Parameters  
Table 10-23 ADC Parameters  
Characteristic  
Input voltages  
Symbol  
VADIN  
RES  
Min  
VREFL  
12  
Typ  
Max  
VREFH  
12  
Unit  
V
Resolution  
Bits  
Integral Non-Linearity1  
Differential Non-Linearity  
LSB2  
LSB2  
INL  
— 1  
— 1  
+/- 2.4  
+/- 0.7  
+/- 3.2  
< +1  
DNL  
Monotonicity  
GUARANTEED  
ADC internal clock  
fADIC  
RAD  
0.5  
VREFL  
5
5
MHz  
V
Conversion range  
6
VREFH  
16  
tAIC cycles3  
ms  
ADC channel power-up time  
tADPU  
ADC reference circuit power-up time4  
tVREF  
25  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
151  
Table 10-23 ADC Parameters (Continued)  
Characteristic  
Conversion time  
Symbol  
Min  
Typ  
Max  
Unit  
tAIC cycles3  
tADC  
6
tAIC cycles3  
pF  
Sample time  
tADS  
1
Input capacitance  
CADI  
IADI  
5
3
Input injection current5, per pin  
Input injection current, total  
mA  
IADIT  
20  
mA  
VREFH current  
IVREFH  
IADCA  
IADCB  
IADCQ  
EGAIN  
VOFFSET  
AECAL  
CF1  
1.2  
3
mA  
ADC A current  
25  
mA  
ADC B current  
25  
mA  
Quiescent current  
0
+/- .004  
+/- 15  
10  
μA  
Uncalibrated Gain Error (ideal = 1)  
Uncalibrated Offset Voltage  
+/- .015  
+/- 35  
mV  
Calibrated Absolute Error6  
Calibration Factor 17  
See Figure 10-22  
TBD  
LSBs  
0.010380  
-31.7  
Calibration Factor 27  
CF2  
TBD  
Crosstalk between channels  
Common Mode Voltage  
-60  
dB  
V
Vcommon  
(VREFH - VREFLO) / 2  
Signal-to-noise ratio  
SNR  
SINAD  
THD  
64.6  
59.1  
60.6  
61.1  
9.6  
db  
db  
Signal-to-noise plus distortion ratio  
Total Harmonic Distortion  
Spurious Free Dynamic Range  
db  
SFDR  
ENOB  
db  
Effective Number Of Bits8  
Bits  
3
LSB  
Non-averaged DC drift of error over  
9
temperature from 27° C  
1. INL measured from V = .1V  
to V = .9V  
in REFH  
in  
REFH  
10% to 90% Input Signal Range  
2. LSB = Least Significant Bit  
3. ADC clock cycles  
4. Assumes each voltage reference pin is bypassed with 0.1μF ceramic capacitors to ground  
5. The current that can be injected or sourced from an unselected ADC signal input without impacting the performance of  
the ADC. This allows the ADC to operate in noisy industrial environments where inductive flyback is possible.  
6. Absolute error includes the effects of both gain error and offset error.  
7. Please see the 56F8300 Peripheral User’s Manual for additional information on ADC calibration.  
8. ENOB = (SINAD - 1.76)/6.02  
9. Temperature range –40° C to 150° C  
56F8355 Technical Data, Rev. 17  
152  
Freescale Semiconductor  
Preliminary  
Analog-to-Digital Converter (ADC) Parameters  
Figure 10-22 ADC Absolute Error Over Processing and Temperature Extremes Before  
and After Calibration for VDC = 0.60V and 2.70V  
in  
Note: The absolute error data shown in the graphs above reflects the effects of both gain error and offset  
error. The data was taken on 14 parts: three each from three processing corner lots and two from the fourth  
processing corner lot, as well as three from one nominally processed lot, each at three temperatures: -40°C,  
27°C, and 150°C (giving the 42 data points shown above), for two input DC voltages: 0.60V and 2.70V.  
The data indicates that for the given population of parts, calibration significantly reduced (by as much as  
28%) the collective variation (spread) of the absolute error of the population. It also significantly reduced  
(by as much as 80%) the mean (average) of the absolute error and thereby brought it significantly closer  
to the ideal value of zero. Although not guaranteed, it is believed that calibration will produce results  
similar to those shown above for any population of parts, including those which represent processing and  
temperature extremes.  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
153  
10.16 Equivalent Circuit for ADC Inputs  
Figure 10-23 illustrates the ADC input circuit during sample and hold. S1 and S2 are always open/closed  
at the same time that S3 is closed/open. When S1/S2 are closed and S3 is open, one input of the sample  
and hold circuit moves to V  
- V  
/ 2, while the other charges to the analog input voltage. When  
REFH  
REFH  
the switches are flipped, the charge on C1 and C2 are averaged via S3, with the result that a single-ended  
analog input is switched to a differential voltage centered about V - V / 2. The switches switch  
REFH  
REFH  
on every cycle of the ADC clock (open one-half ADC clock, closed one-half ADC clock). Note that there  
are additional capacitances associated with the analog input pad, routing, etc., but these do not filter into  
the S/H output voltage, as S1 provides isolation during the charge-sharing phase.  
One aspect of this circuit is that there is an on-going input current, which is a function of the analog input  
voltage, V  
and the ADC clock frequency.  
REF  
3
Analog Input  
4
S1  
C1  
C2  
S/H  
S3  
(VREFH - VREFLO) / 2  
S2  
2
1
C1 = C2 = 1pF  
1. Parasitic capacitance due to package, pin-to-pin and pin-to-package base coupling; 1.8pf  
2. Parasitic capacitance due to the chip bond pad, ESD protection devices and signal routing; 2.04pf  
3. Equivalent resistance for the ESD isolation resistor and the channel select mux; 500 ohms  
4. Sampling capacitor at the sample and hold circuit. Capacitor C1 is normally disconnected from the input and is only  
connected to it at sampling time; 1pf  
Figure 10-23 Equivalent Circuit for A/D Loading  
10.17 Power Consumption  
This section provides additional detail which can be used to optimize power consumption for a given  
application.  
Power consumption is given by the following equation:  
Total power =  
A: internal [static component]  
+B: internal [state-dependent component]  
+C: internal [dynamic component]  
+D: external [dynamic component]  
+E: external [static]  
A, the internal [static component], is comprised of the DC bias currents for the oscillator, leakage current,  
56F8355 Technical Data, Rev. 17  
154  
Freescale Semiconductor  
Preliminary  
 
Power Consumption  
PLL, and voltage references. These sources operate independently of processor state or operating  
frequency.  
B, the internal [state-dependent component], reflects the supply current required by certain on-chip  
resources only when those resources are in use. These include RAM, Flash memory and the ADCs.  
2
C, the internal [dynamic component], is classic C*V *F CMOS power dissipation corresponding to the  
56800E core and standard cell logic.  
D, the external [dynamic component], reflects power dissipated on-chip as a result of capacitive loading  
2
on the external pins of the chip. This is also commonly described as C*V *F, although simulations on two  
of the IO cell types used on the device reveal that the power-versus-load curve does have a non-zero  
Y-intercept.  
Table 10-24 IO Loading Coefficients at 10MHz  
Intercept  
Slope  
PDU08DGZ_ME  
PDU04DGZ_ME  
1.3  
0.11mW / pF  
0.11mW / pF  
1.15mW  
Power due to capacitive loading on output pins is (first order) a function of the capacitive load and  
frequency at which the outputs change. Table 10-24 provides coefficients for calculating power dissipated  
in the IO cells as a function of capacitive load. In these cases:  
TotalPower = Σ((Intercept +Slope*Cload)*frequency/10MHz)  
where:  
Summation is performed over all output pins with capacitive loads  
TotalPower is expressed in mW  
Cload is expressed in pF  
Because of the low duty cycle on most device pins, power dissipation due to capacitive loads was found  
to be fairly low when averaged over a period of time.  
E, the external [static component], reflects the effects of placing resistive loads on the outputs of the  
2
device. Sum the total of all V /R or IV to arrive at the resistive load contribution to power. Assume V = 0.5  
for the purposes of these rough calculations. For instance, if there is a total of eight PWM outputs driving  
10mA into LEDs, then P = 8*.5*.01 = 40mW.  
In previous discussions, power consumption due to parasitics associated with pure input pins is ignored,  
as it is assumed to be negligible.  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
155  
 
Part 11 Packaging  
11.1 56F8355 Package and Pin-Out Information  
This section contains package and pin-out information for the 56F8355. This device comes in a 128-pin  
low-profile quad flat pack (LQFP). Figure 11-1 shows the package outline for the 128-pin LQFP case,  
Figure 11-3 shows the mechanical parameters for the 128-pin LQFP case, and Table 11-1 lists the pin-out  
for the 128-pin LQFP.  
Orientation  
Mark  
INDEX0  
HOME0  
ANB6  
ANB5  
103  
PIN 1  
V
SS  
DD_IO  
ANB4  
ANB3  
ANB2  
ANB1  
ANB0  
V
V
2
PP  
CLKO  
TXD0  
RXD0  
PHASEA1  
PHASEB1  
INDEX1  
V
V
V
SSA_ADC  
DDA_ADC  
REFH  
V
REFP  
HOME1  
CAP  
V
V
V
REFMID  
REFN  
V
4
V
DD_IO  
REFLO  
GPIOA0  
GPIOA1  
GPIOA2  
GPIOA3  
GPIOA4  
GPIOA5  
TEMP_SENSE  
ANA7  
ANA6  
ANA5  
ANA4  
ANA3  
V
ANA2  
SS  
GPIOF0  
ANA1  
GPIOF1  
ANA0  
GPIOF2  
CLKMODE  
RESET  
RSTO  
V
DD_IO  
GPIOF3  
GPIOB0  
GPIOB1  
GPIOB2  
GPIOB3  
V
DD_IO  
V
3
CAP  
EXTAL  
XTAL  
GPIOB4  
V
DDA_OSC_PLL  
PWMB0  
PWMB1  
PWMB2  
OCR_DIS  
FAULTA3  
FAULTA2  
FAULTA1  
FAULTA0  
PWMA5  
V
SS  
V
DD_IO  
PWMB3  
PWMB4  
65  
V
SS  
39  
Figure 11-1 Top View, 56F8355 128-Pin LQFP Package  
56F8355 Technical Data, Rev. 17  
156  
Freescale Semiconductor  
Preliminary  
 
56F8355 Package and Pin-Out Information  
Table 11-1 56F8355 128-Pin LQFP Package Identification by Pin Number  
Pin No.  
Signal Name  
Pin No.  
Signal Name  
Pin No.  
Signal Name  
Pin No.  
Signal Name  
1
INDEX0  
33  
PWMB1  
65  
VSS  
97  
ANB1  
2
3
HOME0  
VSS  
34  
35  
PWMB2  
VSS  
66  
67  
PWMA5  
98  
99  
ANB2  
ANB3  
FAULTA0  
4
5
VDD_IO  
36  
37  
VDD_IO  
68  
69  
FAULTA1  
FAULTA2  
100  
101  
ANB4  
ANB5  
VPP2  
PWMB3  
6
7
8
CLKO  
TXD0  
RXD0  
38  
39  
40  
PWMB4  
PWMB5  
TXD1  
70  
71  
72  
FAULTA3  
OCR_DIS  
102  
103  
104  
ANB6  
ANB7  
ISA0  
VDDA_OSC_PLL  
9
PHASEA1  
PHASEB1  
INDEX1  
41  
42  
43  
RXD1  
73  
74  
75  
XTAL  
105  
106  
107  
ISA1  
ISA2  
TD0  
10  
11  
GPIOD0  
GPIOD1  
EXTAL  
VCAP  
3
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
220  
23  
24  
25  
26  
27  
28  
HOME1  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
GPIOD2  
GPIOD3  
GPIOD4  
GPIOD5  
ISB0  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
VDD_IO  
RSTO  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
TD1  
TD2  
VCAP  
4
VDD_IO  
RESET  
CLKMODE  
ANA0  
TD3  
GPIOA01  
GPIOA11  
GPIOA21  
GPIOA31  
GPIOA41  
TC0  
VDD_IO  
TC1  
VCAP  
1
ANA1  
ISB1  
ISB2  
ANA2  
TRST  
TCK  
TMS  
TDI  
ANA3  
GPIOA51  
VSS  
IRQA  
ANA4  
IRQB  
AN5  
GPIOF01  
GPIOF11  
FAULTB0  
FAULTB1  
FAULTB2  
FAULTB3  
PWMA0  
VSS  
ANA6  
TDO  
ANA7  
VPP1  
GPIOF21  
VDD_IO  
TEMP_SENSE  
VREFLO  
VREFN  
CAN_TX  
CAN_RX  
GPIOF31  
GPIOB0  
VCAP  
2
VREFMID  
VREFP  
SS0  
GPIOB1  
PWMA1  
SCLK0  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
157  
 
Table 11-1 56F8355 128-Pin LQFP Package Identification by Pin Number (Continued)  
Pin No.  
29  
Signal Name  
GPIOB2  
Pin No.  
61  
Signal Name  
PWMA2  
VDD_IO  
Pin No.  
93  
Signal Name  
VREFH  
Pin No.  
125  
Signal Name  
MISO0  
30  
GPIOB3  
62  
94  
VDDA_ADC  
VSSA_ADC  
ANB0  
126  
MOSI0  
31  
GPIOB4  
63  
PWMA3  
PWMA4  
95  
127  
PHASEA0  
PHASEB0  
32  
PWMB0  
64  
96  
128  
1. Primary function is not available in this package configuration; GPIO function must be used instead.  
11.2 56F8155 Package and Pin-Out Information  
This section contains package and pin-out information for the 56F8155. This device comes in a 128-pin  
low-profile quad flat pack (LQFP). Figure 11-1 shows the package outline for the 128-pin LQFP case,  
Figure 11-3 shows the mechanical parameters for the 128-pin LQFP case, and Table 11-1 lists the pin-out  
for the 128-pin LQFP.  
56F8355 Technical Data, Rev. 17  
158  
Freescale Semiconductor  
Preliminary  
56F8155 Package and Pin-Out Information  
Orientation  
Mark  
INDEX0  
HOME0  
ANB6  
ANB5  
103  
PIN 1  
V
SS  
DD_IO  
ANB4  
ANB3  
ANB2  
ANB1  
ANB0  
V
V
2
PP  
CLKO  
TXD0  
RXD0  
SCLK1  
MOSI1  
MISO1  
V
V
V
SSA_ADC  
DDA_ADC  
REFH  
V
REFP  
SS1  
CAP  
V
V
V
REFMID  
REFN  
V
V
4
DD_IO  
REFLO  
GPIOA0  
GPIOA1  
GPIOA2  
GPIOA3  
GPIOA4  
GPIOA5  
NC  
ANA7  
ANA6  
ANA5  
ANA4  
ANA3  
ANA2  
V
SS  
GPIOF0  
ANA1  
GPIOF1  
ANA0  
GPIOF2  
CLKMODE  
RESET  
RSTO  
V
DD_IO  
GPIOF3  
GPIOB0  
GPIOB1  
GPIOB2  
GPIOB3  
V
DD_IO  
V
3
CAP  
EXTAL  
XTAL  
GPIOB4  
V
DDA_OSC_PLL  
PWMB0  
PWMB1  
PWMB2  
OCR_DIS  
NC  
NC  
NC  
NC  
NC  
V
SS  
V
DD_IO  
PWMB3  
PWMB4  
65  
V
SS  
39  
Figure 11-2 Top View, 56F8155 128-Pin LQFP Package  
Table 11-2 56F8155 128-Pin LQFP Package Identification by Pin Number  
Pin No.  
Signal Name  
INDEX0  
Pin No.  
33  
Signal Name  
PWMB1  
Pin No.  
65  
Signal Name  
Pin No.  
97  
Signal Name  
ANB1  
1
2
VSS  
NC  
HOME0  
34  
PWMB2  
66  
98  
ANB2  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
159  
Table 11-2 56F8155 128-Pin LQFP Package Identification by Pin Number (Continued)  
Pin No.  
Signal Name  
VSS  
Pin No.  
35  
Signal Name  
VSS  
Pin No.  
67  
Signal Name  
Pin No.  
99  
Signal Name  
ANB3  
3
4
5
NC  
NC  
NC  
VDD_IO  
36  
VDD_IO  
68  
100  
ANB4  
VPP2  
37  
PWMB3  
69  
101  
ANB5  
6
7
8
CLKO  
TXD0  
RXD0  
38  
39  
40  
PWMB4  
PWMB5  
TXD1  
70  
71  
72  
NC  
102  
103  
104  
ANB6  
ANB7  
OCR_DIS  
VDDA_OSC_PLL  
GPIOC8  
9
SCLK1  
MOSI1  
MISO1  
41  
42  
43  
RXD1  
73  
74  
75  
XTAL  
105  
106  
107  
GPIOC9  
GPIOC10  
GPIOE10  
10  
11  
GPIOD0  
GPIOD1  
EXTAL  
VCAP  
3
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
220  
23  
24  
25  
26  
27  
SS1  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
GPIOD2  
GPIOD3  
GPIOD4  
GPIOD5  
ISB0  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
VDD_IO  
RSTO  
RESET  
CLKMODE  
ANA0  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
GPIOE11  
GPIOE12  
GPIOE13  
TC0  
V
CAP4  
VDD_IO  
GPIOA01  
GPIOA11  
GPIOA21  
GPIOA31  
GPIOA41  
VDD_IO  
TC1  
VCAP  
1
ANA1  
ISB1  
ISB2  
ANA2  
TRST  
TCK  
ANA3  
GPIOA51  
VSS  
IRQA  
ANA4  
TMS  
IRQB  
AN5  
TDI  
GPIOF01  
GPIOF11  
FAULTB0  
FAULTB1  
FAULTB2  
FAULTB3  
NC  
ANA6  
TDO  
ANA7  
VPP1  
GPIOF21  
VDD_IO  
NC  
NC  
NC  
VREFLO  
VREFN  
VREFMID  
GPIOF31  
GPIOB0  
VCAP  
2
VSS  
SS0  
28  
29  
30  
31  
GPIOB1  
GPIOB2  
GPIOB3  
GPIOB4  
60  
61  
62  
63  
NC  
NC  
92  
93  
94  
95  
VREFP  
VREFH  
VDDA_ADC  
VSSA_ADC  
124  
125  
126  
127  
SCLK0  
MISO0  
VDD_IO  
NC  
MOSI0  
PHASEA0  
56F8355 Technical Data, Rev. 17  
160  
Freescale Semiconductor  
Preliminary  
56F8155 Package and Pin-Out Information  
Table 11-2 56F8155 128-Pin LQFP Package Identification by Pin Number (Continued)  
Pin No.  
Signal Name  
Pin No.  
Signal Name  
Pin No.  
Signal Name  
Pin No.  
Signal Name  
32  
PWMB0  
64  
NC  
96  
ANB0  
128  
PHASEB0  
1. Primary function is not available in this package configuration; GPIO function must be used instead.  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
161  
MILLIMETERS  
DIM  
MIN  
---  
MAX  
1.60  
0.15  
1.45  
0.27  
0.23  
0.20  
0.16  
A
A1  
A2  
b
b1  
c
0.05  
1.35  
0.17  
0.17  
0.09  
0.09  
c1  
D
22.00 BSC  
D1  
e
E
E1  
L
20.00BSC  
0.50 BSC  
16.00 BSC  
14.00 BSC  
NOTES:  
0.45  
0.75  
1. DIMENSIONING AND TOLERANCING PER ASME  
Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DATUM PLANE H IS LOCATED AT BOTTOM OF LEAD  
AND IS COINCIDENT WITH THE LEAD WHERE THE  
LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF  
THE PARTING LINE.  
4. DATUMS A, B, AND D TO BE DETERMINED AT DATUM  
PLANE H.  
5. DIMENSIONS D AND E TO BE DETERMINED AT  
L1  
L2  
S
R1  
R2  
0
1.00 REF  
0.50 REF  
0.20  
0.08  
---  
---  
0.08  
0.20  
7o  
---  
0o  
0o  
01  
02  
11o  
13o  
SEATING PLANE C.  
6. DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD  
PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 PER  
SIDE. DIMENSIONS D1 AND E1 DO INCLUDE MOLD  
MISMATCH AND ARE DETERMINED AT DATUM  
PLANE H.  
7. DIMENSION b DOES NOT INCLUDE DAMBAR  
PROTRUSION. DAMBAR PROTRUSION SHALL NOT  
CAUSE THE b DIMENSION TO EXCEED 0.35.  
Figure 11-3 128-pin LQFP Mechanical Information  
56F8355 Technical Data, Rev. 17  
162  
Freescale Semiconductor  
Preliminary  
Thermal Design Considerations  
Please see www.freescale.com for the most current case outline.  
Part 12 Design Considerations  
12.1 Thermal Design Considerations  
An estimation of the chip junction temperature, T , can be obtained from the equation:  
J
T = T + (R  
θJΑ x P )  
D
J
A
where:  
o
T
R
= Ambient temperature for the package ( C)  
A
o
= Junction-to-ambient thermal resistance ( C/W)  
θJΑ  
P
= Power dissipation in the package (W)  
D
The junction-to-ambient thermal resistance is an industry-standard value that provides a quick and easy  
estimation of thermal performance. Unfortunately, there are two values in common usage: the value  
determined on a single-layer board and the value obtained on a board with two planes. For packages such  
as the PBGA, these values can be different by a factor of two. Which value is closer to the application  
depends on the power dissipated by other components on the board. The value obtained on a single-layer  
board is appropriate for the tightly packed printed circuit board. The value obtained on the board with the  
internal planes is usually appropriate if the board has low-power dissipation and the components are well  
separated.  
When a heat sink is used, the thermal resistance is expressed as the sum of a junction-to-case thermal  
resistance and a case-to-ambient thermal resistance:  
R
R
R
θJΑ = θJC + θCΑ  
where:  
R
R
R
= Package junction-to-ambient thermal resistance °C/W  
= Package junction-to-case thermal resistance °C/W  
= Package case-to-ambient thermal resistance °C/W  
θJA  
θJC  
θCA  
R
is device-related and cannot be influenced by the user. The user controls the thermal environment to  
θJC  
change the case-to-ambient thermal resistance, R  
sink, the air flow around the device, the interface material, the mounting arrangement on printed circuit  
board, or change the thermal dissipation on the printed circuit board surrounding the device.  
. For instance, the user can change the size of the heat  
θCA  
To determine the junction temperature of the device in the application when heat sinks are not used, the  
Thermal Characterization Parameter (Ψ ) can be used to determine the junction temperature with a  
JT  
measurement of the temperature at the top center of the package case using the following equation:  
T = T + (Ψ x P )  
J
T
JT  
D
where:  
o
T
= Thermocouple temperature on top of package ( C)  
T
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
163  
o
Ψ
= Thermal characterization parameter ( C)/W  
JT  
P
= Power dissipation in package (W)  
D
The thermal characterization parameter is measured per JESD51-2 specification using a 40-gauge type T  
thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so  
that the thermocouple junction rests on the package. A small amount of epoxy is placed over the  
thermocouple junction and over about 1mm of wire extending from the junction. The thermocouple wire  
is placed flat against the package case to avoid measurement errors caused by cooling effects of the  
thermocouple wire.  
When heat sink is used, the junction temperature is determined from a thermocouple inserted at the  
interface between the case of the package and the interface material. A clearance slot or hole is normally  
required in the heat sink. Minimizing the size of the clearance is important to minimize the change in  
thermal performance caused by removing part of the thermal interface to the heat sink. Because of the  
experimental difficulties with this technique, many engineers measure the heat sink temperature and then  
back-calculate the case temperature using a separate measurement of the thermal resistance of the  
interface. From this case temperature, the junction temperature is determined from the junction-to-case  
thermal resistance.  
12.2 Electrical Design Considerations  
CAUTION  
This device contains protective circuitry to guard  
against damage due to high static voltage or electrical  
fields. However, normal precautions are advised to  
avoid application of any voltages higher than  
maximum-rated voltages to this high-impedance circuit.  
Reliability of operation is enhanced if unused inputs are  
tied to an appropriate voltage level.  
Use the following list of considerations to assure correct operation:  
Provide a low-impedance path from the board power supply to each VDD pin on the device, and from the  
board ground to each VSS (GND) pin  
The minimum bypass requirement is to place six 0.01–0.1μF capacitors positioned as close as possible to  
the package supply pins. The recommended bypass configuration is to place one bypass capacitor on each  
of the VDD/VSS pairs, including VDDA/VSSA. Ceramic and tantalum capacitors tend to provide better  
performance tolerances.  
Ensure that capacitor leads and associated printed circuit traces that connect to the chip VDD and VSS (GND)  
pins are less than 0.5 inch per capacitor lead  
Use at least a four-layer Printed Circuit Board (PCB) with two inner layers for VDD and VSS  
56F8355 Technical Data, Rev. 17  
164  
Freescale Semiconductor  
Preliminary  
Power Distribution and I/O Ring Implementation  
Bypass the VDD and VSS layers of the PCB with approximately 100μF, preferably with a high-grade  
capacitor such as a tantalum capacitor  
Because the device’s output signals have fast rise and fall times, PCB trace lengths should be minimal  
Consider all device loads as well as parasitic capacitance due to PCB traces when calculating capacitance.  
This is especially critical in systems with higher capacitive loads that could create higher transient currents  
in the VDD and VSS circuits.  
Take special care to minimize noise levels on the VREF, VDDA and VSSA pins  
Designs that utilize the TRST pin for JTAG port or EOnCE module functionality (such as development or  
debugging systems) should allow a means to assert TRST whenever RESET is asserted, as well as a means  
to assert TRST independently of RESET. Designs that do not require debugging functionality, such as  
consumer products, should tie these pins together.  
Because the Flash memory is programmed through the JTAG/EOnCE port, the designer should provide an  
interface to this port to allow in-circuit Flash programming  
12.3 Power Distribution and I/O Ring Implementation  
Figure 12-1 illustrates the general power control incorporated in the 56F8355/56F8155. This chip  
contains two internal power regulators. One of them is powered from the V  
pin and cannot  
DDA_OSC_PLL  
be turned off. This regulator controls power to the internal clock generation circuitry. The other regulator  
is powered from the V pins and provides power to all of the internal digital logic of the core, all  
DD_IO  
peripherals and the internal memories. This regulator can be turned off, if an external V  
voltage  
DD_CORE  
is externally applied to the V  
pins.  
CAP  
In summary, the entire chip can be supplied from a single 3.3 volt supply if the large core regulator is  
enabled. If the regulator is not enabled, a dual supply 3.3V/2.5V configuration can also be used.  
Notes:  
Flash, RAM and internal logic are powered from the core regulator output  
VPP1 and VPP2 are not connected in the customer system  
All circuitry, analog and digital, shares a common VSS bus  
V
DDA_OSC_PLL  
V
V
DDA_ADC  
DD  
V
V
V
V
V
REFH  
V
CAP  
REG  
REG  
REFP  
I/O  
ADC  
REFMID  
CORE  
REFN  
OSC  
REFLO  
V
V
SS  
SSA_ADC  
Figure 12-1 Power Management  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
165  
 
Part 13 Ordering Information  
Table 13-1 lists the pertinent information needed to place an order. Consult a Freescale Semiconductor  
sales office or authorized distributor to determine availability and to order parts.  
Table 13-1 Ordering Information  
Ambient  
Temperature  
Range  
Supply  
Voltage  
Pin  
Count  
Frequency  
(MHz)  
Part  
Package Type  
Order Number  
MC56F8355  
MC56F8355  
MC56F8155  
3.0–3.6 V  
3.0–3.6 V  
3.0–3.6 V  
128  
128  
128  
60  
60  
40  
-40° to + 105°C  
-40° to + 125°C  
-40° to + 105°C  
MC56F8355VFG60  
MC56F8355MFG60  
MC56F8155VFG  
Low-Profile Quad Flat Pack (LQFP)  
Low-Profile Quad Flat Pack (LQFP)  
Low-Profile Quad Flat Pack (LQFP)  
MC56F8355  
MC56F8355  
MC56F8155  
3.0–3.6 V  
3.0–3.6 V  
3.0–3.6 V  
128  
128  
128  
60  
60  
40  
-40° to + 105°C  
-40° to + 125°C  
-40° to + 105°C  
MC56F8355VFGE*  
MC56F8355MFGE*  
MC56F8155VFGE*  
Low-Profile Quad Flat Pack (LQFP)  
Low-Profile Quad Flat Pack (LQFP)  
Low-Profile Quad Flat Pack (LQFP)  
*This package is RoHS compliant.  
56F8355 Technical Data, Rev. 17  
166  
Freescale Semiconductor  
Preliminary  
 
Power Distribution and I/O Ring Implementation  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
167  
56F8355 Technical Data, Rev. 17  
168  
Freescale Semiconductor  
Preliminary  
Power Distribution and I/O Ring Implementation  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
169  
56F8355 Technical Data, Rev. 17  
170  
Freescale Semiconductor  
Preliminary  
Power Distribution and I/O Ring Implementation  
THIS PAGE IS INTENTIONALLY BLANK  
56F8355 Technical Data, Rev. 17  
Freescale Semiconductor  
Preliminary  
171  
How to Reach Us:  
Home Page:  
www.freescale.com  
E-mail:  
support@freescale.com  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor  
Technical Information Center, CH370  
1300 N. Alma School Road  
Chandler, Arizona 85224  
+1-800-521-6274 or +1-480-768-2130  
support@freescale.com  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
support@freescale.com  
RoHS-compliant and/or Pb-free versions of Freescale products have the  
functionality and electrical characteristics of their non-RoHS-compliant  
and/or non-Pb-free counterparts. For further information, see  
http://www.freescale.com or contact your Freescale sales representative.  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
For information on Freescale’s Environmental Products program, go to  
http://www.freescale.com/epp.  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064, Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Information in this document is provided solely to enable system and  
software implementers to use Freescale Semiconductor products. There are  
no express or implied copyright licenses granted hereunder to design or  
fabricate any integrated circuits or integrated circuits based on the  
information in this document.  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
+800 2666 8080  
Freescale Semiconductor reserves the right to make changes without further  
notice to any products herein. Freescale Semiconductor makes no warranty,  
representation or guarantee regarding the suitability of its products for any  
particular purpose, nor does Freescale Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation consequential or  
incidental damages. “Typical” parameters that may be provided in Freescale  
Semiconductor data sheets and/or specifications can and do vary in different  
applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer  
application by customer’s technical experts. Freescale Semiconductor does  
not convey any license under its patent rights nor the rights of others.  
Freescale Semiconductor products are not designed, intended, or authorized  
for use as components in systems intended for surgical implant into the body,  
or other applications intended to support or sustain life, or for any other  
application in which the failure of the Freescale Semiconductor product could  
create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended  
or unauthorized application, Buyer shall indemnify and hold Freescale  
Semiconductor and its officers, employees, subsidiaries, affiliates, and  
distributors harmless against all claims, costs, damages, and expenses, and  
reasonable attorney fees arising out of, directly or indirectly, any claim of  
personal injury or death associated with such unintended or unauthorized  
use, even if such claim alleges that Freescale Semiconductor was negligent  
regarding the design or manufacture of the part.  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
1-800-441-2447 or 303-675-2140  
Fax: 303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor,  
Inc. All other product or service names are the property of their respective owners.  
This product incorporates SuperFlash® technology licensed from SST.  
© Freescale Semiconductor, Inc. 2005, 2006, 2009. All rights reserved.  
MC56F8355  
Rev. 17  
08/2009  

相关型号:

MC56F8156

16-bit Digital Signal Controllers
FREESCALE

MC56F8156VFV

16-bit Digital Signal Controllers
FREESCALE

MC56F8156VFVE

16-bit Digital Signal Controllers
FREESCALE

MC56F8157

16-bit Digital Signal Controllers
FREESCALE

MC56F8157VPY

16-bit Digital Signal Controllers
FREESCALE

MC56F8157VPYE

16-bit Digital Signal Controllers
FREESCALE

MC56F81643VLC

DSC based on 32-bit 56800EX core
NXP

MC56F81646VLF

DSC based on 32-bit 56800EX core
NXP

MC56F81648VLH

DSC based on 32-bit 56800EX core
NXP

MC56F8165

16-bit Digital Signal Controllers
FREESCALE

MC56F8165E

16-bit Digital Signal Controllers
FREESCALE

MC56F8166

16-bit Digital Signal Controllers
FREESCALE