MC56F826XXDS [NXP]

The following table is the comparsion of features among members of the family.;
MC56F826XXDS
型号: MC56F826XXDS
厂家: NXP    NXP
描述:

The following table is the comparsion of features among members of the family.

文件: 总60页 (文件大小:1094K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number MC56F826XXDS  
Rev. 0, 08/2018  
NXP Semiconductors  
Data Sheet: Technical Data  
MC56F826XXDS  
MC56F826xx  
Supports MC56F82646VLF,  
MC56F82643VLC, MC56F82623VLC  
Features  
• Timers  
– One 16-bit quad timer (1 x 4 16-bit timer)  
– Two Periodic Interval Timers (PITs)  
• This family of digital signal controllers (DSCs) is  
based on the 32-bit 56800EX core. On a single chip,  
each device combines the processing power of a DSP  
and the functionality of an MCU, with a flexible set of  
peripherals to support many target applications:  
– Industrial control  
• Security and integrity  
– Cyclic Redundancy Check (CRC) generator  
– Windowed Computer operating properly (COP)  
watchdog  
– Home appliances  
– External Watchdog Monitor (EWM)  
– Motor control (ACIM, BLDC, PMSM, SR, stepper)  
• Clocks  
• DSC based on 32-bit 56800EX core  
– Up to 100 MIPS at 100 MHz core frequency in fast  
mode  
– Two on-chip relaxation oscillators: 8 MHz (400 kHz  
at standby mode) and 200 kHz  
– Crystal / resonator oscillator  
– DSP and MCU functionality in a unified, C-efficient  
architecture  
• System  
– DMA controller  
• On-chip memory  
– Integrated power-on reset (POR) and low-voltage  
interrupt (LVI) and brown-out reset module  
– Inter-module crossbar connection  
– JTAG/enhanced on-chip emulation (EOnCE) for  
unobtrusive, real-time debugging  
– Up to 64 KB flash memory  
– 8 KB data/program RAM  
– On-chip flash memory and RAM can be mapped  
into both program and data memory spaces  
• Analog  
• Operating characteristics  
– Two high-speed, 5-channel, 12-bit ADCs with  
dynamic x1, x2, and x4 programmable amplifier  
– Four analog comparators with integrated 6-bit DAC  
references  
– Single supply: 3.0 V to 3.6 V  
– 5 V–tolerant I/O (except for RESETB pin which is a  
3.3 V pin only)  
– Operation ambient temperature: V temperature  
option: -40°C to 105°C  
• One FlexPWM module with up to 6 PWM outputs  
• 48-pin LQFP, and 32-pin LQFP packages  
• Communication interfaces  
– Up to two high-speed queued SCI (QSCI) modules  
with LIN slave functionality  
NXP reserves the right to change the production detail specifications as may be  
required to permit improvements in the design of its products.  
Table of Contents  
1
Overview............................................................................................3  
6.1 Thermal handling ratings........................................................ 25  
6.2 Moisture handling ratings........................................................25  
6.3 ESD handling ratings.............................................................. 25  
6.4 Voltage and current operating ratings..................................... 26  
General............................................................................................... 27  
7.1 General characteristics............................................................ 27  
7.2 AC electrical characteristics....................................................28  
7.3 Nonswitching electrical specifications....................................29  
7.4 Switching specifications..........................................................35  
7.5 Thermal specifications............................................................ 36  
Peripheral operating requirements and behaviors..............................37  
8.1 Core modules...........................................................................37  
8.2 System modules.......................................................................38  
8.3 Clock modules.........................................................................39  
8.4 Memories and memory interfaces...........................................41  
8.5 Analog..................................................................................... 43  
8.6 Timer....................................................................................... 48  
8.7 Communication interfaces.......................................................49  
Design Considerations....................................................................... 50  
9.1 Thermal design considerations................................................50  
9.2 Electrical design considerations..............................................51  
9.3 Power-on Reset design considerations....................................53  
1.1 MC56F826xx Product Family.................................................3  
1.2 56800EX 32-bit Digital Signal Controller (DSC) core...........3  
1.3 Operation Parameters.............................................................. 4  
1.4 On-Chip Memory and Memory Protection............................. 5  
1.5 Interrupt Controller................................................................. 5  
1.6 Peripheral highlights............................................................... 6  
1.7 Block diagrams........................................................................10  
MC56F826xx signal and pin descriptions..........................................13  
2.1 Signal groups...........................................................................18  
Ordering parts.....................................................................................19  
3.1 Determining valid orderable parts...........................................19  
Part identification...............................................................................19  
4.1 Description.............................................................................. 19  
4.2 Format..................................................................................... 19  
4.3 Fields....................................................................................... 19  
4.4 Example...................................................................................20  
Terminology and guidelines...............................................................20  
5.1 Definition: Operating requirement..........................................20  
5.2 Definition: Operating behavior............................................... 21  
5.3 Definition: Attribute................................................................21  
5.4 Definition: Rating....................................................................21  
5.5 Result of exceeding a rating....................................................22  
5.6 Relationship between ratings and operating requirements......22  
5.7 Guidelines for ratings and operating requirements................. 23  
5.8 Definition: Typical value........................................................ 23  
5.9 Typical value conditions......................................................... 24  
Ratings................................................................................................25  
7
2
3
4
8
5
9
10 Obtaining package dimensions.......................................................... 55  
11 Pinout................................................................................................. 55  
11.1 Signal Multiplexing and Pin Assignments..............................55  
11.2 Pinout diagrams.......................................................................57  
12 Product documentation.......................................................................59  
6
MC56F826xx, Rev. 0, 08/2018  
2
NXP Semiconductors  
Overview  
1 Overview  
1.1 MC56F826xx Product Family  
The following table is the comparsion of features among members of the family.  
Table 1. MC56F826xx Family  
Feature  
Part Number  
MC56F82  
646VLF  
643VLC  
623VLC  
Core frequency (MHz)  
Flash memory (KB)  
RAM (KB)  
100/50  
100/50  
100/50  
64  
8
64  
8
32  
8
Interrupt Controller  
Yes  
1
Yes  
1
Yes  
1
Windowed Computer Operating Properly (WCOP)  
External Watchdog Monitor (EWM)  
Periodic Interrupt Timer (PIT)  
Cyclic Redundancy Check (CRC)  
Quad Timer (TMR)  
1
1
1
2
2
2
1
1
1
1x4  
2x5  
1x4  
2x3  
1x4  
2x3  
12-bit Cyclic ADC channels  
PWM Module:  
Input capture channels1  
6
6
6
Standard channels  
6
6
6
DMA  
Yes  
Yes  
Yes  
Analog Comparators (CMP)  
QSCI  
4
3
3
2
39  
1
26  
1
26  
GPIO  
Package pin count  
48 LQFP  
32 LQFP  
32 LQFP  
1. Input capture shares the pin with cooresponding PWM channels.  
1.2 56800EX 32-bit Digital Signal Controller (DSC) core  
• Efficient 32-bit 56800EX Digital Signal Processor (DSP) engine with modified dual  
Harvard architecture:  
• Three internal address buses  
• Four internal data buses: two 32-bit primary buses, one 16-bit secondary data  
bus, and one 16-bit instruction bus  
• 32-bit data accesses  
MC56F826xx, Rev. 0, 08/2018  
NXP Semiconductors  
3
Overview  
• Supports concurrent instruction fetches in the same cycle, and dual data accesses  
in the same cycle  
• 20 addressing modes  
• As many as 100 million instructions per second (MIPS) at 100 MHz core frequency  
• 162 basic instructions  
• Instruction set supports both fractional arithmetic and integer arithmetic  
• 32-bit internal primary data buses support 8-bit, 16-bit, and 32-bit data movement,  
plus addition, subtraction, and logical operations  
• Single-cycle 16 × 16-bit -> 32-bit and 32 x 32-bit -> 64-bit multiplier-accumulator  
(MAC) with dual parallel moves  
• 32-bit arithmetic and logic multi-bit shifter  
• Four 36-bit accumulators, including extension bits  
• Parallel instruction set with unique DSP addressing modes  
• Hardware DO and REP loops  
• Bit reverse address mode, which effectively supports DSP and Fast Fourier  
Transform algorithms  
• Full shadowing of the register stack for zero-overhead context saves and restores:  
nine shadow registers correspond to nine address registers (R0, R1, R2, R3, R4, R5,  
N, N3, M01)  
• Instruction set supports both DSP and controller functions  
• Controller-style addressing modes and instructions enable compact code  
• Enhanced bit manipulation instruction set  
• Efficient C compiler and local variable support  
• Software subroutine and interrupt stack, with the stack's depth limited only by  
memory  
• Priority level setting for interrupt levels  
• JTAG/Enhanced On-Chip Emulation (OnCE) for unobtrusive, real-time debugging  
that is independent of processor speed  
1.3 Operation Parameters  
• Up to 50 MHz operation in normal mode and 100 MHz operation in fast mode  
• Operation ambient temperature:  
-40 oC to 105oC  
• Single 3.3 V power supply  
• Supply range: VDD - VSS = 2.7 V to 3.6 V, VDDA - VSSA = 2.7 V to 3.6 V  
MC56F826xx, Rev. 0, 08/2018  
4
NXP Semiconductors  
Overview  
1.4 On-Chip Memory and Memory Protection  
• Dual Harvard architecture permits as many as three simultaneous accesses to  
program and data memory  
• Internal flash memory with security and protection to prevent unauthorized access  
• Memory resource protection (MRP) unit to protect supervisor programs and  
resources from user programs  
• Programming code can reside in flash memory during flash programming  
• The dual-port RAM controller supports concurrent instruction fetches and data  
accesses, or dual data accesses by the core.  
• Concurrent accesses provide increased performance.  
• The data and instruction arrive at the core in the same cycle, reducing latency.  
• On-chip memory  
• Up to 64 KB program/data flash memory  
• 8 KB dual port data/program RAM  
1.5 Interrupt Controller  
• Five interrupt priority levels  
• Three user-programmable priority levels for each interrupt source: level 0, level  
1, level 2  
• Unmaskable level 3 interrupts include illegal instruction, hardware stack  
overflow, misaligned data access, SWI3 instruction  
• Interrupt level 3 is highest priority and non-maskable. Its sources include:  
• Illegal instructions  
• Hardware stack overflow  
• SWI instruction  
• EOnce interrupts  
• Misaligned data accesses  
• Lowest-priority software interrupt: level LP  
• Support for nested interrupts, so that a higher priority level interrupt request can  
interrupt lower priority interrupt subroutine  
• Masking of interrupt priority level is managed by the 56800EX core  
• Two programmable fast interrupts that can be assigned to any interrupt source  
• Notification to System Integration Module (SIM) to restart clock when in wait and  
stop states  
• Ability to relocate interrupt vector table  
MC56F826xx, Rev. 0, 08/2018  
NXP Semiconductors  
5
Peripheral highlights  
1.6 Peripheral highlights  
1.6.1 Flex Pulse Width Modulator (FlexPWM)  
• Up to 100 MHz operation clock with PWM Resolution as fine as 10 ns  
• PWM module contains four identical submodules, with two outputs per submodule  
• 16 bits of resolution for center, edge-aligned, and asymmetrical PWMs  
• PWM outputs can be configured as complementary output pairs or independent  
outputs  
• Dedicated time-base counter with period and frequency control per submodule  
• Independent top and bottom deadtime insertion for each complementary pair  
• Independent control of both edges of each PWM output  
• Enhanced input capture and output compare functionality on each input:  
• Channels not used for PWM generation can be used for buffered output compare  
functions.  
• Channels not used for PWM generation can be used for input capture functions.  
• Enhanced dual edge capture functionality  
• Synchronization of submodule to external hardware (or other PWM) is supported.  
• Double-buffered PWM registers  
• Integral reload rates from 1 to 16  
• Half-cycle reload capability  
• Multiple output trigger events can be generated per PWM cycle via hardware.  
• Support for double-switching PWM outputs  
• Up to eight fault inputs can be assigned to control multiple PWM outputs  
• Programmable filters for fault inputs  
• Independently programmable PWM output polarity  
• Individual software control of each PWM output  
• All outputs can be programmed to change simultaneously via a FORCE_OUT event.  
• Option to supply the source for each complementary PWM signal pair from any of  
the following:  
• Crossbar module outputs  
• External ADC input, taking into account values set in ADC high and low limit  
registers  
1.6.2 12-bit Analog-to-Digital Converter (Cyclic type)  
• Two independent 12-bit analog-to-digital converters (ADCs):  
• 2 x 5-channel external inputs  
• Built-in x1, x2, x4 programmable gain pre-amplifier  
MC56F826xx, Rev. 0, 08/2018  
6
NXP Semiconductors  
Peripheral highlights  
• Maximum ADC clock frequency up to 10 MHz, having period as low as 100-ns  
• Single conversion time of 10 ADC clock cycles  
• Additional conversion time of 8 ADC clock cycles  
• Support of analog inputs for single-ended and differential, including unipolar  
differential, conversions  
• Sequential, parallel, and independent scan mode  
• First 8 samples have offset, limit and zero-crossing calculation supported  
• ADC conversions can be synchronized by any module connected to the internal  
crossbar module, such as PWM, timer, GPIO, and comparator modules.  
• Support for simultaneous triggering and software-triggering conversions  
• Support for a multi-triggering mode with a programmable number of conversions on  
each trigger  
• Each ADC has ability to scan and store up to 8 conversion results.  
• Current injection protection  
1.6.3 Periodic Interrupt Timer (PIT) Modules  
• 16-bit counter with programmable count modulo  
• PIT0 is master and PIT1 is slave (if synchronizing both PITs)  
• The output signals of both PIT0 and PIT1 are internally connected to a peripheral  
crossbar module  
• Can run when the CPU is in Wait/Stop modes. Can also wake up the CPU from  
Wait/Stop modes.  
• In addition to its existing bus clock (up to 50 MHz), 3 alternate clock sources for the  
counter clock are available:  
• Crystal oscillator output  
• 8 MHz / 400 kHz ROSC (relaxation oscillator output)  
• On-chip low-power 200 kHz oscillator  
1.6.4 Inter-Module Crossbar and AND-OR-INVERT logic  
• Provides generalized connections between and among on-chip peripherals: ADCs,  
comparators, quad-timers, FlexPWMs, EWM, and select I/O pins  
• User-defined input/output pins for all modules connected to the crossbar  
• DMA request and interrupt generation from the crossbar  
• Write-once protection for all registers  
• AND-OR-INVERT function provides a universal Boolean function generator that  
uses a four-term sum-of-products expression, with each product term containing true  
or complement values of the four selected inputs (A, B, C, D).  
MC56F826xx, Rev. 0, 08/2018  
NXP Semiconductors  
7
Peripheral highlights  
1.6.5 Comparator  
• Full rail-to-rail comparison range  
• Support for high and low speed modes  
• Selectable input source includes external pins and internal DACs  
• Programmable output polarity  
• 6-bit programmable DAC as a voltage reference per comparator  
• Three programmable hysteresis levels  
• Selectable interrupt on rising-edge, falling-edge, or toggle of a comparator output  
1.6.6 Quad Timer  
• Four 16-bit up/down counters, with a programmable prescaler for each counter  
• Operation modes: edge count, gated count, signed count, capture, compare, PWM,  
signal shot, single pulse, pulse string, cascaded, quadrature decode  
• Programmable input filter  
• Counting start can be synchronized across counters  
• Up to 100 MHz operation clock  
1.6.7 Queued Serial Communications Interface (QSCI) modules  
• Operating clock can be up to two times the CPU operating frequency  
• Four-word-deep FIFOs available on both transmit and receive buffers  
• Standard mark/space non-return-to-zero (NRZ) format  
• 16-bit integer and 3-bit fractional baud rate selection  
• Full-duplex or single-wire operation  
• Programmable 8-bit or 9-bit data format  
• Error detection capability  
• Two receiver wakeup methods:  
• Idle line  
• Address mark  
• 1/16 bit-time noise detection  
• Up to 6.25 Mbit/s baud rate at 100 MHz operation clock  
1.6.8 Windowed Computer Operating Properly (COP) watchdog  
• Programmable windowed timeout period  
• Support for operation in all power modes: run mode, wait mode, stop mode  
MC56F826xx, Rev. 0, 08/2018  
8
NXP Semiconductors  
Peripheral highlights  
• Causes loss of reference reset 128 cycles after loss of reference clock to the PLL is  
detected  
• Selectable reference clock source in support of EN60730 and IEC61508  
• Selectable clock sources:  
• External crystal oscillator/external clock source  
• On-chip low-power 200 kHz oscillator  
• System bus (IPBus up to 50 MHz)  
• 8 MHz / 400 kHz ROSC  
• Support for interrupt triggered when the counter reaches the timeout value  
1.6.9 External Watchdog Monitor (EWM)  
• Monitors external circuit as well as the software flow  
• Programmable timeout period  
• Interrupt capability prior to timeout  
• Independent output (EWM_OUT_b) that places external circuit (but not CPU and  
peripheral) in a safe mode when EWM timeout occurs  
• Selectable reference clock source in support of EN60730 and IEC61508  
• Wait mode and Stop mode operation is not supported.  
• Selectable clock sources:  
• External crystal oscillator/external clock source  
• On-chip low-power 200 kHz oscillator  
• System bus (IPBus up to 50 MHz)  
• 8 MHz / 400 kHz ROSC  
1.6.10 Power supervisor  
• Power-on reset (POR) is released after VDD > 2.7 V during supply is ramped up;  
CPU, peripherals, and JTAG/EOnCE controllers exit RESET state  
• Brownout reset (VDD < 2.0 V)  
• Critical warn low-voltage interrupt (LVI 2.2 V)  
• Peripheral low-voltage warning interrupt (LVI 2.7 V)  
1.6.11 Phase-locked loop  
• Wide programmable output frequency: 200 MHz to 400 MHz  
• Input reference clock frequency: 8 MHz to 16 MHz  
• Detection of loss of lock and loss of reference clock  
• Ability to power down  
MC56F826xx, Rev. 0, 08/2018  
NXP Semiconductors  
9
Clock sources  
1.6.12 Clock sources  
1.6.12.1 On-chip oscillators  
• Tunable 8 MHz relaxation oscillator with 400 kHz at standby mode (divide-by-two  
output)  
• 200 kHz low frequency clock as secondary clock source for COP, EWM, PIT  
1.6.12.2 Crystal oscillator  
• Support for both high ESR crystal oscillator (ESR greater than 100 Ω) and ceramic  
resonator  
• Operating frequency: 4–16 MHz  
1.6.13 Cyclic Redundancy Check (CRC) Generator  
• Hardware CRC generator circuit with 16-bit shift register  
• High-speed hardware CRC calculation  
• Programmable initial seed value  
• CRC16-CCITT compliancy with x16 + x12 + x5 + 1 polynomial  
• Error detection for all single, double, odd, and most multibit errors  
• Option to transpose input data or output data (CRC result) bitwise, which is required  
for certain CRC standards  
1.6.14 General Purpose I/O (GPIO)  
• 5 V tolerance (except RESETB pin)  
• Individual control of peripheral mode or GPIO mode for each pin  
• Programmable push-pull or open drain output  
• Configurable pullup or pulldown on all input pins  
• All pins (except JTAG and RESETB) default to be GPIO inputs  
• 2 mA / 9 mA source/sink capability  
• Controllable output slew rate  
1.7 Block diagrams  
The 56800EX core is based on a modified dual Harvard-style architecture, consisting of  
three execution units operating in parallel, and allowing as many as six operations per  
instruction cycle. The MCU-style programming model and optimized instruction set  
MC56F826xx, Rev. 0, 08/2018  
10  
NXP Semiconductors  
Clock sources  
enable straightforward generation of efficient and compact code for the DSP and control  
functions. The instruction set is also efficient for C compilers, to enable rapid  
development of optimized control applications.  
The device's basic architecture appears in Figure 1 and Figure 2. Figure 1 shows how the  
56800EX system buses communicate with internal memories, and the IPBus interface  
and the internal connections among the units of the 56800EX core. Figure 2 shows the  
peripherals and control blocks connected to the IPBus bridge. See the specific device’s  
Reference Manual for details.  
DSP56800EX Core  
Program Control Unit  
ALU1  
ALU2  
Address  
Generation  
Unit  
PC  
LA  
LA2  
HWS0  
HWS1  
FIRA  
Instruction  
Decoder  
R0  
R1  
(AGU)  
R2  
Interrupt  
Unit  
Program  
Memory  
M01  
N3  
R3  
OMR  
R4  
SR  
LC  
LC2  
R5  
Looping  
Unit  
N
SP  
FISR  
XAB1  
XAB2  
PAB  
Data/  
Program  
RAM  
PDB  
CDBW  
CDBR  
XDB2  
A2  
B2  
C2  
D2  
A1  
B1  
C1  
D1  
Y1  
Y0  
X0  
A0  
B0  
C0  
D0  
Bit-  
Manipulation  
Unit  
IPBus  
Interface  
Data  
Y
Enhanced  
OnCE™  
Arithmetic  
Logic Unit  
(ALU)  
JTAG TAP  
MAC and ALU Multi-Bit Shifter  
Figure 1. 56800EX basic block diagram  
MC56F826xx, Rev. 0, 08/2018  
NXP Semiconductors  
11  
Clock sources  
JTAG  
Program Bus  
Core Data Bus  
EOnCE  
56800EX CPU  
Program  
Controller  
(PC)  
Address  
Generation  
Unit (AGU)  
Program/Data Flash  
Up to 64KB  
4
Secondary Data Bus  
Arithmetic  
Logic Unit  
(ALU)  
Bit  
Manipulation  
Unit  
Data/Program RAM  
8KB  
DMA Controller  
Interrupt Controller  
Crystal OSC  
Internal  
8 MHz  
Internal  
200 kHz  
Windowed  
Watchdog (WCOP)  
Power Management  
Controller (PMC)  
System Integration  
Module (SIM)  
Periodic Interrupt  
Timer (PIT) 0, 1  
CRC  
PLL  
Peripheral Bus  
QSCI  
0,1  
Quad Timer  
FlexPWM  
EWM  
Inter-Module  
Crossbar B  
AND-OR-INV  
Logic  
GPIO & Peripheral MUX  
Inter-Module  
Crossbar A  
Package  
Pins  
Comparators with  
6bit DAC A,B,C,D  
ADC B  
12bit  
ADC A  
12bit  
Peripheral Bus  
Figure 2. System diagram  
MC56F826xx, Rev. 0, 08/2018  
12  
NXP Semiconductors  
MC56F826xx signal and pin descriptions  
2 MC56F826xx signal and pin descriptions  
After reset, each pin is configured for its primary function (listed first). Any alternative  
functionality, shown in parentheses, must be programmed through the GPIO module  
peripheral enable registers (GPIOx_PER) and the SIM module GPIO peripheral select  
(GPSx) registers. All GPIO ports can be individually programmed as an input or output  
(using bit manipulation).  
• PWMA_FAULT0, PWMA_FAULT1, and similar signals are inputs used to disable  
selected PWMA outputs, in cases where the fault conditions originate off-chip.  
For the MC56F826xx products, which use 48-pin LQFP and 32-pin packages:  
Table 2. Signal descriptions  
Signal Name  
VDD  
48 LQFP 32 LQFP  
Type  
State During  
Reset  
Signal Description  
32  
28  
14  
29  
9
Supply  
Supply  
I/O Power — Supplies 3.3 V power to the  
chip I/O interface.  
44  
22  
31  
45  
15  
VSS  
Supply  
Supply  
I/O Ground — Provide ground for the device  
I/O interface.  
VDDA  
VSSA  
VCAP  
Supply  
Supply  
Supply  
Supply  
On-chip  
Analog Power — Supplies 3.3 V power to  
the analog modules. It must be connected to  
a clean analog power supply.  
16  
10  
Analog Ground — Supplies an analog  
ground to the analog modules. It must be  
connected to a clean power supply.  
19  
43  
On-chip  
regulator  
output  
Connect a 2.2 µF bypass capacitor between  
regulator output this pin and VSS to stabilize the core voltage  
regulator output required for proper device  
operation.  
27  
NOTE: The total bypass capacitor value  
between all VCAP pin and VSS  
should not exceed 4.7 µF.  
TDI  
48  
46  
32  
30  
Input  
Input, internal  
pullup enabled  
Test Data Input — It is sampled on the rising  
edge of TCK and has an internal pullup  
resistor. After reset, the default state is TDI.  
(GPIOD0)  
Input/Output  
Output  
GPIO Port D0  
TDO  
Output  
Test Data Output — It is driven in the shift-IR  
and shift-DR controller states, and it changes  
on the falling edge of TCK. After reset, the  
default state is TDO  
(GPIOD1)  
Input/Output Output  
Input Input, internal  
GPIO Port D1  
TCK  
1
1
Test Clock Input — The pin is connected  
internally to a pulldown resistor. A Schmitt-  
trigger input is used for noise immunity. After  
reset, the default state is TCK  
pulldown  
enabled  
Table continues on the next page...  
MC56F826xx, Rev. 0, 08/2018  
NXP Semiconductors  
13  
MC56F826xx signal and pin descriptions  
Table 2. Signal descriptions (continued)  
Signal Name  
(GPIOD2)  
48 LQFP 32 LQFP  
Type  
State During  
Reset  
Signal Description  
Input/Output  
Input  
GPIO Port D2  
TMS  
47  
31  
Input, internal  
pullup enabled  
Test Mode Select Input — It is sampled on  
the rising edge of TCK and has an internal  
pullup resistor. After reset, the default state  
is TMS.  
NOTE: Always tie the TMS pin to VDD  
through a 2.2 kΩ resistor if need to  
keep on-board debug capability.  
Otherwise, directly tie to VDD  
.
(GPIOD3)  
Input/Output  
Input  
GPIO Port D3  
RESET or RESETB 2  
2
Input, internal  
pullup enabled  
Reset — A direct hardware reset on the  
processor. When RESET is asserted low,  
the device is initialized and placed in the  
reset state. A Schmitt-trigger input is used  
for noise immunity. The internal reset signal  
is deasserted synchronous with the internal  
clocks after a fixed number of internal clocks.  
After reset, the default state is RESET.  
Recommended a capacitor of up to 0.1 µF  
for filtering noise.  
(GPIOD4)  
Input/  
Opendrain  
Output  
GPIO Port D4 RESET functionality is  
disabled in this mode and the device can be  
reset only through POR, COP reset, or  
software reset.  
GPIOA0  
9
6
7
Input/Output Input  
Input  
GPIO Port A0  
(ANA0&CMPA_IN3)  
ANA0 is analog input to channel 0 of ADCA;  
CMPA_IN3 is positive input 3 of analog  
comparator A. After reset, the default state is  
GPIOA0.  
(CMPC_O)  
Output  
Analog comparator C output  
GPIOA1  
10  
Input/Output Input  
GPIO Port A1: After reset, the default state is  
GPIOA1.  
(ANA1&CMPA_IN0)  
Input  
ANA1 is analog input to channel 1 of ADCA;  
CMPA_IN0 is negative input 0 of analog  
comparator A. When used as an analog  
input, the signal goes to ANA1 and  
CMPA_IN0. The ADC control register  
configures this input as ANA1 or CMPA_IN0.  
GPIOA2  
11  
8
Input/Output Input  
Input  
GPIO Port A2: After reset, the default state is  
GPIOA2.  
(ANA2&VREFHA&C  
MPA_IN1)  
ANA2 is analog input to channel 2 of ADCA;  
VREFHA is analog reference high of ADCA;  
CMPA_IN1 is negative input 1 of analog  
comparator A. When used as an analog  
input, the signal goes to both ANA2,  
VREFHA, and CMPA_IN1.  
GPIOA3  
12  
Input/Output Input  
GPIO Port A3: After reset, the default state is  
GPIOA3.  
Table continues on the next page...  
MC56F826xx, Rev. 0, 08/2018  
14  
NXP Semiconductors  
MC56F826xx signal and pin descriptions  
Table 2. Signal descriptions (continued)  
Signal Name  
48 LQFP 32 LQFP  
Type  
State During  
Reset  
Signal Description  
(ANA3&VREFLA&C  
MPA_IN2)  
Input  
ANA3 is analog input to channel 3 of ADCA;  
VREFLA is analog reference low of ADCA;  
CMPA_IN2 is negative input 2 of analog  
comparator A.  
GPIOA4  
8
Input/Output Input  
Input  
GPIO Port A4: After reset, the default state is  
GPIOA4.  
(ANA4&CMPD_IN0)  
GPIOB0  
ANA4 is Analog input to channel 4 of ADCA;  
CMPD_IN0 is input 0 to comparator D.  
17  
18  
20  
21  
11  
12  
13  
Input/Output Input  
Input  
GPIO Port B0: After reset, the default state is  
GPIOB0.  
(ANB0&CMPB_IN3)  
ANB0 is analog input to channel 0 of ADCB;  
CMPB_IN3 is positive input 3 of analog  
comparator B. When used as an analog  
input, the signal goes to ANB0 and  
CMPB_IN3. The ADC control register  
configures this input as ANB0.  
GPIOB1  
Input/Output Input  
Input  
GPIO Port B1: After reset, the default state is  
GPIOB1.  
(ANB1&CMPB_IN0)  
ANB1 is analog input to channel 1 of ADCB;  
CMPB_IN0 is negative input 0 of analog  
comparator B. When used as an analog  
input, the signal goes to ANB1 and  
CMPB_IN0. The ADC control register  
configures this input as ANB1.  
GPIOB2  
Input/Output Input  
Input  
GPIO Port B2: After reset, the default state is  
GPIOB2.  
(ANB2&VERFHB&C  
MPC_IN3)  
ANB2 is analog input to channel 2 of ADCB;  
VREFHB is analog reference high of ADCB;  
CMPC_IN3 is positive input 3 of analog  
comparator C. When used as an analog  
input, the signal goes to both ANB2 and  
CMPC_IN3.  
GPIOB3  
Input/Output Input  
Input  
GPIO Port B3: After reset, the default state is  
GPIOB3.  
(ANB3&VREFLB&C  
MPC_IN0)  
ANB3 is analog input to channel 3 of ADCB;  
VREFLB is analog reference low of ADCB;  
CMPC_IN0 is negative input 0 of analog  
comparator C.  
GPIOB4  
14  
3
Input/Output Input  
Input  
GPIO Port B4: After reset, the default state is  
GPIOB4.  
(ANB4&CMPC_IN1)  
ANB4 is analog input to channel 4 of ADCB;  
CMPC_IN1 is negative input 1 of analog  
comparator C.  
GPIOC0  
Input/Output Input  
Analog Input  
GPIO Port C0: After reset, the default state  
is GPIOC0.  
(EXTAL)  
The external crystal oscillator input (EXTAL)  
connects the internal crystal oscillator input  
to an external crystal or ceramic resonator.  
Table continues on the next page...  
MC56F826xx, Rev. 0, 08/2018  
NXP Semiconductors  
15  
MC56F826xx signal and pin descriptions  
Table 2. Signal descriptions (continued)  
Signal Name  
(CLKIN0)  
48 LQFP 32 LQFP  
Type  
State During  
Reset  
Signal Description  
Input  
External clock input 01  
GPIOC1  
4
5
Input/Output Input  
Input  
GPIO Port C1: After reset, the default state  
is GPIOC1.  
(XTAL)  
The external crystal oscillator output (XTAL)  
connects the internal crystal oscillator output  
to an external crystal or ceramic resonator.  
GPIOC2  
3
Input/Output Input  
Output  
GPIO Port C2: After reset, the default state  
is GPIOC2.  
(TXD0)  
SCI0 transmit data output or transmit/receive  
in single wire operation  
(XB_OUT11)  
(XB_IN2)  
Output  
Input  
Crossbar module output 11  
Crossbar module input 2  
(CLKO0)  
Output  
Buffered clock output 0: the clock source is  
selected by clockout select (CLKOSEL) bits  
in the clock output select register (CLKOUT)  
of the SIM.  
GPIOC3  
6
7
4
5
Input/Output Input  
GPIO Port C3: After reset, the default state  
is GPIOC3.  
(TA0)  
Input/Output  
Output  
Quad timer module A channel 0 input/output  
Analog comparator A output  
SCI0 receive data input  
(CMPA_O)  
(RXD0)  
Input  
(CLKIN1)  
GPIOC4  
Input  
External clock input 1  
Input/Output Input  
GPIO Port C4: After reset, the default state  
is GPIOC4.  
(TA1)  
Input/Output  
Output  
Quad timer module A channel 1 input/output  
Analog comparator B output  
(CMPB_O)  
(XB_IN6)  
(EWM_OUT_B)  
GPIOC5  
Input  
Crossbar module input 6  
Output  
External Watchdog Module output  
13  
23  
Input/Output Input  
GPIO Port C5: After reset, the default state  
is GPIOC5.  
(XB_IN7)  
Input  
Crossbar module input 7  
GPIOC6  
15  
Input/Output Input  
GPIO Port C6: After reset, the default state  
is GPIOC6.  
(TA2)  
Input/Output  
Input  
Quad timer module A channel 2 input/output  
Crossbar module input 3  
(XB_IN3)  
(CMP_REF)  
Analog Input  
Positive input 3 of analog comparator A and  
B and C.  
GPIOC7  
(TXD0)  
24  
Input/Output Input  
Output  
GPIO Port C7: After reset, the default state  
is GPIOC7.  
SCI0 transmit data output or transmit/receive  
in single wire operation  
(XB_IN8)  
Input  
Crossbar module input 8  
Table continues on the next page...  
MC56F826xx, Rev. 0, 08/2018  
16  
NXP Semiconductors  
MC56F826xx signal and pin descriptions  
Table 2. Signal descriptions (continued)  
Signal Name  
GPIOC8  
48 LQFP 32 LQFP  
Type  
State During  
Reset  
Signal Description  
25  
16  
Input/Output Input  
GPIO Port C8: After reset, the default state  
is GPIOC8.  
(RXD0)  
Input  
SCI0 receive data input  
Crossbar module input 9  
Crossbar module output 6  
(XB_IN9)  
(XB_OUT6)  
GPIOC9  
Input  
Output  
26  
17  
Input/Output Input  
GPIO Port C9: After reset, the default state  
is GPIOC9.  
(XB_IN4)  
(TXD0)  
Input  
Crossbar module input 4  
Output  
SCI0 transmit data output or transmit/receive  
in single wire operation  
(XB_OUT8)  
Output  
Crossbar module output 8  
GPIOC10  
27  
29  
18  
Input/Output Input  
GPIO Port C10: After reset, the default state  
is GPIOC10.  
(XB_IN5)  
Input  
Crossbar module input 4  
Crossbar module output 9  
(XB_OUT9)  
GPIOC11  
Output  
Input/Output Input  
GPIO Port C11: After reset, the default state  
is GPIOC11.  
(TXD1)  
Output  
SCI1 transmit data output or transmit/receive  
in single wire operation  
GPIOC12  
30  
37  
Input/Output Input  
GPIO Port C12: After reset, the default state  
is GPIOC12.  
(RXD1)  
Input  
SCI1 receive data input  
GPIOC13  
Input/Output Input  
GPIO Port C13: After reset, the default state  
is GPIOC13.  
(TA3)  
Input/Output  
Input  
Quad timer module A channel 3 input/output  
Crossbar module input 6  
(XB_IN6)  
(EWM_OUT_B)  
GPIOC14  
Output  
External Watchdog Module output  
41  
42  
Input/Output Input  
GPIO Port C14: After reset, the default state  
is GPIOC14.  
(XB_OUT4)  
(PWM_FAULT4)  
GPIOC15  
Output  
Crossbar module output 4  
Disable PWMA output 4  
Input  
Input/Output Input  
GPIO Port C15: After reset, the default state  
is GPIOC15.  
(XB_OUT5)  
(PWM_FAULT5)  
GPIOE0  
Output  
Crossbar module output 5  
Disable PWMA output 5  
Input  
33  
34  
21  
22  
Input/Output Input  
GPIO Port E0: After reset, the default state is  
GPIOE0.  
(PWM_0B)  
GPIOE1  
Input/Output  
PWM module A , submodule 0, output B or  
input capture B  
Input/Output Input  
Input/Output  
GPIO Port E1: After reset, the default state is  
GPIOE1.  
(PWM_0A)  
PWM module A , submodule 0, output A or  
input capture A  
Table continues on the next page...  
MC56F826xx, Rev. 0, 08/2018  
NXP Semiconductors  
17  
MC56F826xx signal and pin descriptions  
Table 2. Signal descriptions (continued)  
Signal Name  
GPIOE2  
48 LQFP 32 LQFP  
Type  
State During  
Reset  
Signal Description  
35  
23  
24  
25  
Input/Output Input  
GPIO Port E2: After reset, the default state is  
GPIOE2.  
(PWMA_1B)  
GPIOE3  
Input/Output  
PWM module A , submodule 1, output B or  
input capture B  
36  
39  
Input/Output Input  
Input/Output  
GPIO Port E3: After reset, the default state is  
GPIOE3.  
(PWMA_1A)  
GPIOE4  
PWM module A , submodule 1, output A or  
input capture A  
Input/Output Input  
Input/Output  
GPIO Port E4: After reset, the default state is  
GPIOE4.  
(PWMA_2B)  
PWM module A , submodule 2, output B or  
input capture B  
(XB_IN2)  
Input  
Crossbar module input 2  
GPIOE5  
40  
26  
Input/Output Input  
GPIO Port E5: After reset, the default state is  
GPIOE5.  
(PWMA_2A)  
Input/Output  
PWM module A , submodule 2, output A or  
input capture A  
(XB_IN3)  
Input  
Crossbar module input 3  
GPIOF0  
28  
38  
Input/Output Input  
GPIO Port F0: After reset, the default state is  
GPIOF0.  
(XB_IN6)  
Input  
Crossbar module input 6  
GPIOF1  
Input/Output Input  
GPIO Port F1: After reset, the default state is  
GPIOF1.  
(CLKO1)  
Output  
Buffered clock output 1: the clock source is  
selected by clockout select (CLKOSEL) bits  
in the clock output select register (CLKOUT)  
of the SIM.  
(XB_IN7)  
(CMPD_O)  
GPIOF2  
Input  
Crossbar module input 7  
Output  
Analog comparator D output  
19  
20  
Input/Output Input  
GPIO Port F2: After reset, the default state is  
GPIOF2.  
(XB_OUT6)  
Output  
Crossbar module output 6  
GPIOF3  
Input/Output Input  
GPIO Port F3: After reset, the default state is  
GPIOF3.  
(XB_OUT7)  
Output  
Crossbar module output 7  
1. If CLKIN is selected as the device’s external clock input, then both the GPS_C0 bit (in GPS1) and the EXT_SEL bit (in  
OCCS oscillator control register (OSCTL)) must be set. Also, the crystal oscillator should be powered down.  
2.1 Signal groups  
The input and output signals of the MC56F826xx are organized into functional groups, as  
detailed in the following table.  
MC56F826xx, Rev. 0, 08/2018  
18  
NXP Semiconductors  
Ordering parts  
Table 3. Functional Group Pin Allocations  
Functional Group  
Number of Pins  
32LQFP  
48LQFP  
Power Inputs (VDD, VDDA), Power output( VCAP  
)
3
3
5
4
Ground (VSS, VSSA  
Reset  
)
1
1
FlexPWM ports not including fault pins  
6
6
Queued Serial Communications Interface (QSCI0 and QSCI1) ports  
12-bit Analog-to-Digital Converter inputs  
Analog Comparator inputs/outputs  
4
7
6
10  
11/4  
4
7/3  
3
Quad Timer Module (TMRA and TMRB) ports  
Inter-Module Crossbar inputs/outputs  
8/4  
1/1  
4
12/6  
2/2  
4
Clock inputs/outputs  
JTAG / Enhanced On-Chip Emulation (EOnCE)  
3 Ordering parts  
3.1 Determining valid orderable parts  
Valid orderable part numbers are provided on the web. To determine the orderable part  
numbers for this device, go to nxp.com and perform a part number search for the  
following device numbers: MC56F82  
4 Part identification  
4.1 Description  
Part numbers for the chip have fields that identify the specific part. You can use the  
values of these fields to determine the specific part you have received.  
4.2 Format  
Part numbers for this device have the following format: Q 56F8 2 C F P T PP N  
MC56F826xx, Rev. 0, 08/2018  
NXP Semiconductors  
19  
Terminology and guidelines  
4.3 Fields  
This table lists the possible values for each field in the part number (not all combinations  
are valid):  
Field  
Description  
Values  
Q
Qualification status  
• MC = Fully qualified, general market flow  
• PC = Prequalification  
56F8  
DSC family with flash memory and DSP56800/  
DSP56800E/DSP56800EX core  
• 56F8  
2
DSC subfamily  
• 2  
C
F
Maximum CPU frequency (MHz)  
Primary program flash memory size  
• 6 = 100 MHz  
• 2 = 32 KB  
• 4 = 64 KB  
P
Pin count  
• 3 = 32  
• 6 = 48  
T
Temperature range (°C)  
Package identifier  
• V = –40 to 105  
PP  
• LC = 32LQFP  
• LF = 48LQFP  
N
Packaging type  
• R = Tape and reel  
• (Blank) = Trays  
4.4 Example  
This is an example part number: MC56F82646VLF  
5 Terminology and guidelines  
5.1 Definition: Operating requirement  
An operating requirement is a specified value or range of values for a technical  
characteristic that you must guarantee during operation to avoid incorrect operation and  
possibly decreasing the useful life of the chip.  
5.1.1 Example  
This is an example of an operating requirement:  
MC56F826xx, Rev. 0, 08/2018  
20  
NXP Semiconductors  
Terminology and guidelines  
Symbol  
Description  
Min.  
Max.  
Unit  
VDD  
1.0 V core supply  
voltage  
0.9  
1.1  
V
5.2 Definition: Operating behavior  
Unless otherwise specified, an operating behavior is a specified value or range of values  
for a technical characteristic that are guaranteed during operation if you meet the  
operating requirements and any other specified conditions.  
5.2.1 Example  
This is an example of an operating behavior:  
Symbol  
Description  
Min.  
Max.  
Unit  
IWP  
Digital I/O weak pullup/ 10  
pulldown current  
130  
µA  
5.3 Definition: Attribute  
An attribute is a specified value or range of values for a technical characteristic that are  
guaranteed, regardless of whether you meet the operating requirements.  
5.3.1 Example  
This is an example of an attribute:  
Symbol  
Description  
Min.  
Max.  
Unit  
CIN_D  
Input capacitance:  
digital pins  
7
pF  
5.4 Definition: Rating  
A rating is a minimum or maximum value of a technical characteristic that, if exceeded,  
may cause permanent chip failure:  
MC56F826xx, Rev. 0, 08/2018  
NXP Semiconductors  
21  
Terminology and guidelines  
Operating ratings apply during operation of the chip.  
Handling ratings apply when the chip is not powered.  
5.4.1 Example  
This is an example of an operating rating:  
Symbol  
Description  
Min.  
Max.  
Unit  
VDD  
1.0 V core supply  
voltage  
–0.3  
1.2  
V
5.5 Result of exceeding a rating  
40  
30  
The likelihood of permanent chip failure increases rapidly as  
soon as a characteristic begins to exceed one of its operating ratings.  
20  
10  
0
Operating rating  
Measured characteristic  
MC56F826xx, Rev. 0, 08/2018  
22  
NXP Semiconductors  
Terminology and guidelines  
5.6 Relationship between ratings and operating requirements  
Fatal range  
Degraded operating range  
Normal operating range  
Degraded operating range  
Fatal range  
Expected permanent failure  
- No permanent failure  
- No permanent failure  
- Correct operation  
- No permanent failure  
Expected permanent failure  
- Possible decreased life  
- Possible incorrect operation  
- Possible decreased life  
- Possible incorrect operation  
 
Operating (power on)  
Fatal range  
Handling range  
Fatal range  
Expected permanent failure  
No permanent failure  
Expected permanent failure  
∞  
Handling (power off)  
5.7 Guidelines for ratings and operating requirements  
Follow these guidelines for ratings and operating requirements:  
• Never exceed any of the chip’s ratings.  
• During normal operation, don’t exceed any of the chip’s operating requirements.  
• If you must exceed an operating requirement at times other than during normal  
operation (for example, during power sequencing), limit the duration as much as  
possible.  
5.8 Definition: Typical value  
A typical value is a specified value for a technical characteristic that:  
• Lies within the range of values specified by the operating behavior  
• Given the typical manufacturing process, is representative of that characteristic  
during operation when you meet the typical-value conditions or other specified  
conditions  
Typical values are provided as design guidelines and are neither tested nor guaranteed.  
MC56F826xx, Rev. 0, 08/2018  
NXP Semiconductors  
23  
Terminology and guidelines  
5.8.1 Example 1  
This is an example of an operating behavior that includes a typical value:  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
IWP  
Digital I/O weak  
pullup/pulldown  
current  
10  
70  
130  
µA  
5.8.2 Example 2  
This is an example of a chart that shows typical values for various voltage and  
temperature conditions:  
5000  
4500  
4000  
TJ  
3500  
150 °C  
3000  
105 °C  
2500  
25 °C  
2000  
–40 °C  
1500  
1000  
500  
0
0.90  
0.95  
1.00  
1.05  
1.10  
VDD (V)  
5.9 Typical value conditions  
Typical values assume you meet the following conditions (or other conditions as  
specified):  
Symbol  
Description  
Ambient temperature  
3.3 V supply voltage  
Value  
Unit  
TA  
25  
°C  
V
VDD  
3.3  
MC56F826xx, Rev. 0, 08/2018  
24  
NXP Semiconductors  
Ratings  
6 Ratings  
6.1 Thermal handling ratings  
Symbol  
TSTG  
Description  
Min.  
–55  
Max.  
150  
Unit  
°C  
Notes  
Storage temperature  
Solder temperature, lead-free  
1
2
TSDR  
260  
°C  
1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.  
2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
6.2 Moisture handling ratings  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
MSL  
Moisture sensitivity level  
3
1
1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
6.3 ESD handling ratings  
Although damage from electrostatic discharge (ESD) is much less common on these  
devices than on early CMOS circuits, use normal handling precautions to avoid exposure  
to static discharge. Qualification tests are performed to ensure that these devices can  
withstand exposure to reasonable levels of static without suffering any permanent  
damage.  
All ESD testing is in conformity with AEC-Q100 Stress Test Qualification. During the  
device qualification ESD stresses were performed for the human body model (HBM), the  
machine model (MM), and the charge device model (CDM).  
All latch-up testing is in conformity with AEC-Q100 Stress Test Qualification.  
A device is defined as a failure if after exposure to ESD pulses, the device no longer  
meets the device specification. Complete DC parametric and functional testing is  
performed as per the applicable device specification at room temperature followed by hot  
temperature, unless specified otherwise in the device specification.  
MC56F826xx, Rev. 0, 08/2018  
NXP Semiconductors  
25  
Ratings  
Table 4. ESD/Latch-up Protection  
Characteristic1  
Min  
–2000  
–200  
–500  
–100  
Max  
+2000  
+200  
+500  
+100  
Unit  
V
ESD for Human Body Model (HBM)  
ESD for Machine Model (MM)  
V
ESD for Charge Device Model (CDM)  
V
Latch-up current at TA= 85°C (ILAT  
)
mA  
1. Parameter is achieved by design characterization on a small sample size from typical devices under typical conditions  
unless otherwise noted.  
6.4 Voltage and current operating ratings  
Absolute maximum ratings are stress ratings only, and functional operation at the  
maxima is not guaranteed. Stress beyond the limits specified in Table 5 may affect device  
reliability or cause permanent damage to the device.  
NOTE  
If the voltage difference between VDD and VDDA or VSS and  
VSSA is too large, then the device can malfunction or be  
permanently damaged. The restrictions are:  
At all times, it is recommended that the voltage  
difference of VDD - VSS be within +/-200 mV of the  
voltage difference of VDDA - VSSA, including power  
ramp up and ramp down; see additional requirements in  
Table 6. Failure to do this recommendation may result in a  
harmful leakage current through the substrate, between the  
VDD/VSS and VDDA/VSSA pad cells. This harmful  
leakage current could prevent the device from operating  
after power up.  
At all times, to avoid permanent damage to the part, the  
voltage difference between VDD and VDDA must  
absolutely be limited to 0.3 V; see Table 5.  
At all times, to avoid permanent damage to the part, the  
voltage difference between VSS and VSSA must  
absolutely be limited to 0.3 V; see Table 5.  
Table 5. Absolute Maximum Ratings (VSS = 0 V, VSSA = 0 V)  
Characteristic  
Supply Voltage Range  
Analog Supply Voltage Range  
Symbol  
VDD  
Notes1  
Min  
-0.3  
-0.3  
Max  
4.0  
Unit  
V
VDDA  
4.0  
V
Table continues on the next page...  
MC56F826xx, Rev. 0, 08/2018  
26  
NXP Semiconductors  
General  
Table 5. Absolute Maximum Ratings (VSS = 0 V, VSSA = 0 V) (continued)  
Characteristic  
ADC High Voltage Reference  
Symbol  
VREFHx  
ΔVDD  
ΔVSS  
VIN  
Notes1  
Min  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.4  
-0.3  
Max  
4.0  
0.3  
0.3  
5.5  
4.0  
4.0  
4.0  
-5.0  
20.0  
25  
Unit  
V
Voltage difference VDD to VDDA  
Voltage difference VSS to VSSA  
Digital Input Voltage Range  
V
V
Pin Group 1  
Pin Group 2  
Pin Group 4  
Pin Group 3  
V
RESET Input Voltage Range  
VIN_RESET  
VOSC  
VINA  
V
Oscillator Input Voltage Range  
V
Analog Input Voltage Range  
V
Input clamp current, per pin (VIN < VSS - 0.3 V), 2, 3  
Output clamp current, per pin4  
VIC  
mA  
mA  
mA  
VOC  
Contiguous pin DC injection current—regional limit sum  
of 16 contiguous pins  
IICont  
-25  
Output Voltage Range (normal push-pull mode)  
Output Voltage Range (open drain mode)  
RESET Output Voltage Range  
VOUT  
Pin Group 1, 2  
Pin Group 1  
Pin Group 2  
-0.3  
-0.3  
-0.3  
4.0  
5.5  
4.0  
V
V
V
VOUTOD  
VOUTOD_RE  
SET  
Ambient Temperature  
TA  
V temperature  
V temperature  
-40  
-40  
-55  
105  
115  
150  
°C  
°C  
°C  
Junction Temperature  
Tj  
Storage Temperature Range (Extended Industrial)  
TSTG  
1. Default Mode  
• Pin Group 1: GPIO, TDI, TDO, TMS, TCK  
• Pin Group 2: RESET  
• Pin Group 3: ADC and Comparator Analog Inputs  
• Pin Group 4: XTAL, EXTAL  
2. Continuous clamp current  
3. All 5 volt tolerant digital I/O pins are internally clamped to VSS through a ESD protection diode. There is no diode  
connection to VDD. If VIN greater than VDIO_MIN (= VSS–0.3 V) is observed, then there is no need to provide current  
limiting resistors at the pads. If this limit cannot be observed, then a current limiting resistor is required.  
4. I/O is configured as push-pull mode.  
7 General  
7.1 General characteristics  
The device is fabricated in high-density, low-power CMOS with 5 V–tolerant TTL-  
compatible digital inputs, except for the RESET pin which is 3.3V only. The term “5 V–  
tolerant” refers to the capability of an I/O pin, built on a 3.3 V–compatible process  
technology, to withstand a voltage up to 5.5 V without damaging the device.  
MC56F826xx, Rev. 0, 08/2018  
NXP Semiconductors  
27  
General  
5 V–tolerant I/O is desirable because many systems have a mixture of devices designed  
for 3.3 V and 5 V power supplies. In such systems, a bus may carry both 3.3 V– and 5 V–  
compatible I/O voltage levels (a standard 3.3 V I/O is designed to receive a maximum  
voltage of 3.3 V 10ꢀ during normal operation without causing damage). This 5 V–  
tolerant capability therefore offers the power savings of 3.3 V I/O levels combined with  
the ability to receive 5 V levels without damage.  
Absolute maximum ratings in Table 5 are stress ratings only, and functional operation at  
the maximum is not guaranteed. Stress beyond these ratings may affect device reliability  
or cause permanent damage to the device.  
Unless otherwise stated, all specifications within this chapter apply to the temperature  
range specified in Table 5 over the following supply ranges: VSS=VSSA=0V,  
VDD=VDDA=3.0V to 3.6V, CL≤50 pF, fOP=50MHz.  
CAUTION  
This device contains protective circuitry to guard against  
damage due to high static voltage or electrical fields. However,  
normal precautions are advised to avoid application of any  
voltages higher than maximum-rated voltages to this high-  
impedance circuit. Reliability of operation is enhanced if  
unused inputs are tied to an appropriate voltage level.  
7.2 AC electrical characteristics  
Tests are conducted using the input levels specified in Table 8. Unless otherwise  
specified, propagation delays are measured from the 50ꢀ to the 50ꢀ point, and rise and  
fall times are measured between the 10ꢀ and 90ꢀ points, as shown in Figure 3.  
Low  
High  
V
IH  
90%  
50%  
10%  
Midpoint1  
Fall Time  
Input Signal  
V
IL  
Rise Time  
The midpoint is V + (V – V )/2.  
IL  
IH  
IL  
Figure 3. Input signal measurement references  
Figure 4 shows the definitions of the following signal states:  
• Active state, when a bus or signal is driven, and enters a low impedance state  
• Tri-stated, when a bus or signal is placed in a high impedance state  
• Data Valid state, when a signal level has reached VOL or VOH  
• Data Invalid state, when a signal level is in transition between VOL and VOH  
MC56F826xx, Rev. 0, 08/2018  
28  
NXP Semiconductors  
General  
Data1 Valid  
Data1  
Data2 Valid  
Data2  
Data3 Valid  
Data3  
Data  
Data Invalid State  
Tri-stated  
Data Active  
Data Active  
Figure 4. Signal states  
7.3 Nonswitching electrical specifications  
7.3.1 Voltage and current operating requirements  
This section includes information about recommended operating conditions.  
NOTE  
Recommended VDD ramp rate is less than 200 ms.  
Table 6. Recommended Operating Conditions (VREFLx=0V, VSSA=0V, VSS=0V)  
Characteristic  
Symbol  
VDD, VDDA  
VREFHA  
VREFHB  
ΔVDD  
ΔVSS  
Notes1  
Min  
2.7  
Typ  
Max  
3.6  
Unit  
V
Supply voltage  
3.3  
ADC (Cyclic) Reference Voltage High  
VDDA-0.6  
VDDA  
V
Voltage difference VDD to VDDA  
Voltage difference VSS to VSSA  
Input Voltage High (digital inputs)  
RESET Voltage High  
-0.1  
0
0
0.1  
0.1  
V
V
V
V
V
V
-0.1  
VIH  
Pin Group 1  
Pin Group 2  
0.7 x VDD  
0.7 x VDD  
5.5  
VIH_RESET  
VIL  
VDD  
Input Voltage Low (digital inputs)  
Oscillator Input Voltage High  
XTAL driven by an external clock source  
Oscillator Input Voltage Low  
Pin Groups 1, 2  
Pin Group 4  
0.35 x VDD  
VDD + 0.3  
VIHOSC  
2.0  
VILOSC  
IOH  
Pin Group 4  
-0.3  
0.8  
V
Output Source Current High (at VOH min.)  
• Programmed for low drive strength  
Pin Group 1  
Pin Group 1  
-2  
-9  
mA  
• Programmed for high drive strength  
Output Source Current Low (at VOL max.)2, 3  
• Programmed for low drive strength  
IOL  
Pin Groups 1, 2  
Pin Groups 1, 2  
2
9
mA  
• Programmed for high drive strength  
1. Default Mode  
• Pin Group 1: GPIO, TDI, TDO, TMS, TCK  
• Pin Group 2: RESET  
• Pin Group 3: ADC and Comparator Analog Inputs  
• Pin Group 4: XTAL, EXTAL  
2. Total IO sink current and total IO source current are limited to 75 mA each  
MC56F826xx, Rev. 0, 08/2018  
NXP Semiconductors  
29  
General  
3. Contiguous pin DC injection current of regional limit—including sum of negative injection currents or sum of positive  
injection currents of 16 contiguous pins—is 25 mA.  
7.3.2 LVD and POR operating requirements  
Table 7. PMC Low-Voltage Detection (LVD) and Power-On Reset (POR) Parameters  
Characteristic  
Symbol  
POR  
Min  
Typ  
2.0  
Max  
Unit  
V
POR Assert Voltage1  
POR Release Voltage2  
LVI_2p7 Threshold Voltage  
LVI_2p2 Threshold Voltage  
POR  
2.7  
V
2.73  
2.23  
V
V
1. During 3.3-volt VDD power supply ramp down  
2. During 3.3-volt VDD power supply ramp up (gated by LVI_2p7)  
7.3.3 Voltage and current operating behaviors  
The following table provides information about power supply requirements and I/O pin  
characteristics.  
Table 8. DC Electrical Characteristics at Recommended Operating Conditions  
Characteristic  
Output Voltage High  
Output Voltage Low  
Symbol  
VOH  
Notes 1  
Min  
VDD - 0.5  
Typ  
Max  
Unit  
V
Test Conditions  
IOH = IOHmax  
Pin Group 1  
VOL  
Pin Groups  
1, 2  
0.5  
V
IOL = IOLmax  
Digital Input Current High  
IIH  
Pin Group 1  
Pin Group 2  
0
+/- 2.5  
µA  
VIN = 2.4 V to 5.5 V  
VIN = 2.4 V to VDD  
pull-up enabled or  
disabled  
Comparator Input Current  
High  
IIHC  
IIHOSC  
IIL  
Pin Group 3  
Pin Group 3  
0
0
+/- 2  
+/- 2  
µA  
µA  
µA  
VIN = VDDA  
VIN = VDDA  
VIN = 0V  
Oscillator Input Current  
High  
Digital Input Current Low  
Pin Groups  
1, 2  
0
+/- 0.5  
2, 3  
pull-up disabled  
Internal Pull-Up  
Resistance  
RPull-Up  
RPull-Down  
IILC  
20  
20  
0
50  
50  
kΩ  
kΩ  
µA  
µA  
Internal Pull-Down  
Resistance  
Comparator Input Current  
Low  
Pin Group 3  
Pin Group 3  
+/- 2  
+/- 2  
VIN = 0V  
VIN = 0V  
Oscillator Input Current  
Low  
IILOSC  
0
Table continues on the next page...  
MC56F826xx, Rev. 0, 08/2018  
30  
NXP Semiconductors  
General  
Table 8. DC Electrical Characteristics at Recommended Operating Conditions (continued)  
Characteristic  
Output Current 2, 3  
Symbol  
Notes 1  
Min  
Typ  
Max  
Unit  
Test Conditions  
IOZ  
Pin Groups  
1, 2  
0
+/- 1  
µA  
High Impedance State  
Schmitt Trigger Input  
Hysteresis  
VHYS  
Pin Groups 0.06 × VDD  
1, 2  
V
1. Default Mode  
• Pin Group 1: GPIO, TDI, TDO, TMS, TCK  
• Pin Group 2: RESET  
• Pin Group 3: ADC and Comparator Analog Inputs  
• Pin Group 4: XTAL, EXTAL  
2. See the following figure "IIN/IOZ vs. VIN (typical; pull-up disabled)" .  
3. To minimize the excessive leakage current from digital pin, input signal should not stay between 1.1 V and 0.7 × VDD for  
prolonged time.  
Figure 5. IIN/IOZ vs. VIN (typical; pull-up disabled) (design simulation)  
7.3.4 Power mode transition operating behaviors  
Parameters listed are guaranteed by design.  
NOTE  
All address and data buses described here are internal.  
MC56F826xx, Rev. 0, 08/2018  
NXP Semiconductors  
31  
General  
Table 9. Reset, stop, wait, and interrupt timing  
Characteristic  
Symbol  
Typical Min  
Typical  
Max  
Unit  
See  
Figure  
Minimum RESET Assertion Duration  
tRA  
tRDA  
tIF  
161  
865 x TOSC + 8 x T  
361.3  
ns  
ns  
ns  
RESET deassertion to First Address Fetch  
Delay from Interrupt Assertion to Fetch of first  
instruction (exiting Stop)  
570.9  
1. If the RESET pin filter is enabled by setting the RST_FLT bit in the SIM_CTRL register to 1, the minimum pulse assertion  
must be greater than 21 ns. Recommended a capacitor of up to 0.1 µF on RESET.  
NOTE  
In Table 9, T = system clock cycle and TOSC = oscillator clock  
cycle. For an operating frequency of 50MHz, T=20 ns. At 4  
MHz (used coming out of reset and stop modes), T=250 ns.  
Table 10. Power mode transition behavior  
Symbol  
Description  
Min  
Max  
Unit Notes1  
TPOR  
After a POR event, the amount of delay from when VDD reaches  
2.7 V to when the first instruction executes (over the operating  
temperature range).  
199  
225  
µs  
STOP mode to RUN mode  
LPS mode to LPRUN mode  
VLPS mode to VLPRUN mode  
WAIT mode to RUN mode  
6.79  
240.9  
1424  
0.570  
237.2  
1413  
7.27.31  
551  
µs  
µs  
µs  
µs  
µs  
µs  
2
3
4
5
3
4
1459  
0.620  
554  
LPWAIT mode to LPRUN mode  
VLPWAIT mode to VLPRUN mode  
1500  
1. Wakeup times are measured from GPIO toggle for wakeup till GPIO toggle at the wakeup interrupt subroutine from  
respective stop/wait mode.  
2. Clock configuration: CPU clock=4 MHz. System clock source is 8 MHz IRC in normal mode.  
3. CPU clock = 200 KHz and 8 MHz IRC on standby. Exit by an interrupt on PORTC GPIO.  
4. Using 64 KHz external clock; CPU Clock = 32KHz. Exit by an interrupt on PortC GPIO.  
5. Clock configuration: CPU and system clocks= 100 MHz. Bus Clock = 50 MHz. .Exit by interrupt on PORTC GPIO  
7.3.5 Power consumption operating behaviors  
Table 11. Current Consumption (mA)  
Mode  
Maximum  
Frequency  
Conditions  
Typical at  
3.3 V, 25°C  
Maximum  
at 3.6 V,  
105°C  
1
1
IDD  
IDDA IDD  
IDDA  
RUN1  
100 MHz  
• 100 MHz Core  
38.1  
9.9  
53.5 13.2  
• 50 MHz Peripheral clock  
• Regulators are in full regulation  
Table continues on the next page...  
MC56F826xx, Rev. 0, 08/2018  
32  
NXP Semiconductors  
General  
Table 11. Current Consumption (mA) (continued)  
Mode  
Maximum  
Frequency  
Conditions  
Typical at  
3.3 V, 25°C  
Maximum  
at 3.6 V,  
105°C  
1
1
IDD  
IDDA IDD  
IDDA  
• Relaxation Oscillator on  
• PLL powered on  
• Continuous MAC instructions with fetches from Program  
Flash  
• All peripheral modules enabled. TMRs and SCIs using 1X  
peripheral clock  
• ADC/all 6-bit DACs) powered on and clocked  
• Comparator powered on  
RUN2  
50 MHz  
• 50 MHz Core and Peripheral clock  
• Regulators are in full regulation  
• Relaxation Oscillator on  
27.6  
9.9  
43.5 13.2  
• PLL powered on  
• Continuous MAC instructions with fetches from Program  
Flash  
• All peripheral modules enabled. TMRs and SCIs using 1X  
peripheral clock  
• ADC/all 6-bit DACs) powered on and clocked  
• Comparator powered on  
WAIT  
50 MHz  
• 50 MHz Core and Peripheral clock  
• Regulators are in full regulation  
• Relaxation Oscillator on  
24.0  
41.3  
• PLL powered on  
• Processor Core in WAIT state  
• All Peripheral modules enabled.  
• TMRs and SCIs using 1X Clock  
• ADC/all 6-bit DACs), Comparator powered off  
STOP  
4 MHz  
2 MHz  
• 4 MHz Device Clock  
• Regulators are in full regulation  
• Relaxation Oscillator on  
6.3  
19.4  
11.1  
• PLL powered off  
• Processor Core in STOP state  
• All peripheral module and core clocks are off  
• ADC/Comparator powered off  
LPRUN  
(LsRUN)  
• 200 kHz Device Clock from Relaxation Oscillator's (ROSC) 2.8  
low speed clock  
3.1  
4.0  
• ROSC in standby mode  
• Regulators are in standby  
• PLL disabled  
• Repeat NOP instructions  
• All peripheral modules enabled, except cyclic ADCs. all 6-  
bit DACs enabled.  
• Simple loop with running from platform instruction buffer  
LPWAIT  
(LsWAIT)  
2 MHz  
• 200 kHz Device Clock from Relaxation Oscillator's (ROSC) 2.7  
low speed clock  
3.1  
11.1  
4.0  
• ROSC in standby mode  
• Regulators are in standby  
• PLL disabled  
• All peripheral modules enabled, except cyclic ADCs. all 6-  
bit DACs enabled.1  
• Processor core in wait mode  
Table continues on the next page...  
MC56F826xx, Rev. 0, 08/2018  
NXP Semiconductors  
33  
General  
Table 11. Current Consumption (mA) (continued)  
Mode  
Maximum  
Frequency  
Conditions  
Typical at  
3.3 V, 25°C  
Maximum  
at 3.6 V,  
105°C  
1
1
IDD  
IDDA IDD  
IDDA  
LPSTOP  
(LsSTOP)  
2 MHz  
• 200 kHz Device Clock from Relaxation Oscillator's (ROSC) 1.2  
low speed clock  
9.1  
• ROSC in standby mode  
• Regulators are in standby  
• PLL disabled  
• Only PITs and COP enabled; other peripheral modules  
disabled and clocks gated off1  
• Processor core in stop mode  
VLPRUN  
200 kHz  
• 32 kHz Device Clock  
0.7  
7.5  
• Clocked by a 64 kHz external clock source  
• Oscillator in power down  
• All ROSCs disabled  
• Large regulator is in standby  
• Small regulator is disabled  
• PLL disabled  
• Repeat NOP instructions  
• All peripheral modules, except COP and EWM, disabled  
and clocks gated off  
• Simple loop running from platform instruction buffer  
VLPWAIT  
200 kHz  
• 32 kHz Device Clock  
0.7  
7.5  
• Clocked by a 64 kHz external clock source  
• Oscillator in power down  
• All ROSCs disabled  
• Large regulator is in standby  
• Small regulator is disabled  
• PLL disabled  
• All peripheral modules, except COP, disabled and clocks  
gated off  
• Processor core in wait mode  
VLPSTOP  
200 kHz  
• 32 kHz Device Clock  
0.7  
7.5  
• Clocked by a 64 kHz external clock source  
• Oscillator in power down  
• All ROSCs disabled  
• Large regulator is in standby.  
• Small regulator is disabled.  
• PLL disabled  
• All peripheral modules, except COP, disabled and clocks  
gated off  
• Processor core in stop mode  
1. No output switching, all ports configured as inputs, all inputs low, no DC loads.  
7.3.6 Designing with radiated emissions in mind  
To find application notes that provide guidance on designing your system to minimize  
interference from radiated emissions:  
1. Go to www.nxp.com.  
MC56F826xx, Rev. 0, 08/2018  
34  
NXP Semiconductors  
General  
2. Perform a keyword search for “EMC design.”  
7.3.7 Capacitance attributes  
Table 12. Capacitance attributes  
Description  
Symbol  
CIN  
Min.  
Typ.  
10  
Max.  
Unit  
Input capacitance  
Output capacitance  
pF  
pF  
COUT  
10  
7.4 Switching specifications  
7.4.1 Device clock specifications  
Table 13. Device clock specifications  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
Normal run mode  
fSYSCLK  
Device (system and core) clock frequency  
• using relaxation oscillator  
0.001  
0
100  
100  
50  
MHz  
MHz  
• using external clock source  
fBUS  
Bus clock  
7.4.2 General switching timing  
Table 14. Switching timing  
Symbol Description  
GPIO pin interrupt pulse width1  
Min  
Max  
Unit  
Notes  
1.5  
IP Bus  
Clock  
Cycles  
Synchronous path  
Port rise and fall time (high drive strength), Slew disabled 2.7  
≤ VDD ≤ 3.6V.  
5.5  
1.5  
8.2  
3.2  
15.1  
6.8  
ns  
ns  
ns  
ns  
Port rise and fall time (high drive strength), Slew enabled 2.7  
≤ VDD ≤ 3.6V.  
2
3
Port rise and fall time (low drive strength). Slew disabled . 2.7  
≤ VDD ≤ 3.6V  
17.8  
9.2  
Port rise and fall time (low drive strength). Slew enabled . 2.7  
≤ VDD ≤ 3.6V  
MC56F826xx, Rev. 0, 08/2018  
NXP Semiconductors  
35  
General  
1. Applies to a pin only when it is configured as GPIO and configured to cause an interrupt by appropriately programming  
GPIOn_IPOLR and GPIOn_IENR.  
2. 75 pF load  
3. 15 pF load  
7.5 Thermal specifications  
7.5.1 Thermal operating requirements  
Table 15. Thermal operating requirements  
Symbol  
TJ  
Description  
Min  
–40  
–40  
Max  
115  
105  
Unit  
°C  
Die junction temperature  
Ambient temperature  
V
V
TA  
°C  
7.5.2 Thermal attributes  
This section provides information about operating temperature range, power dissipation,  
and package thermal resistance. Power dissipation on I/O pins is usually small compared  
to the power dissipation in on-chip logic and voltage regulator circuits, and it is user-  
determined rather than being controlled by the MCU design. To account for PI/O in power  
calculations, determine the difference between actual pin voltage and VSS or VDD and  
multiply by the pin current for each I/O pin. Except in cases of unusually high pin current  
(heavy loads), the difference between pin voltage and VSS or VDD is very small.  
See Thermal design considerations for more detail on thermal design considerations.  
Board type  
Symbol  
Description  
32 LQFP  
48 LQFP  
Unit  
Notes  
Single-layer  
(1s)  
RθJA  
Thermal  
resistance,  
junction to  
ambient (natural  
convection)  
83  
55  
70  
70  
46  
57  
°C/W  
°C/W  
°C/W  
,
Four-layer  
(2s2p)  
RθJA  
Thermal  
resistance,  
junction to  
ambient (natural  
convection)  
1,  
1,2  
Single-layer  
(1s)  
RθJMA  
Thermal  
resistance,  
junction to  
ambient (200 ft./  
min. air speed)  
Table continues on the next page...  
MC56F826xx, Rev. 0, 08/2018  
36  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
Board type  
Symbol  
Description  
32 LQFP  
48 LQFP  
Unit  
Notes  
Four-layer  
(2s2p)  
RθJMA  
Thermal  
resistance,  
junction to  
ambient (200 ft./  
min. air speed)  
49  
31  
39  
23  
°C/W  
°C/W  
1,2  
RθJB  
Thermal  
resistance,  
junction to  
board  
RθJC  
Thermal  
resistance,  
junction to case  
22  
5
17  
3
°C/W  
°C/W  
ΨJT  
Thermal  
characterization  
parameter,  
junction to  
package top  
outside center  
(natural  
convection)  
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site  
(board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board  
thermal resistance.  
2. Determined according to JEDEC Standard JESD51-6, Integrated Circuits Thermal Test Method Environmental Conditions  
—Forced Convection (Moving Air) with the board horizontal.  
8 Peripheral operating requirements and behaviors  
8.1 Core modules  
8.1.1 JTAG timing  
Table 16. JTAG timing  
Characteristic  
Symbol  
Min  
Max  
Unit  
See  
Figure  
TCK frequency of operation  
TCK clock pulse width  
fOP  
tPW  
tDS  
tDH  
tDV  
tTS  
DC  
50  
5
SYS_CLK/ 8  
MHz  
ns  
Figure 6  
Figure 6  
Figure 7  
Figure 7  
Figure 7  
Figure 7  
30  
30  
TMS, TDI data set-up time  
TMS, TDI data hold time  
TCK low to TDO data valid  
TCK low to TDO tri-state  
ns  
5
ns  
ns  
ns  
MC56F826xx, Rev. 0, 08/2018  
NXP Semiconductors  
37  
System modules  
1/f  
OP  
t
t
PW  
PW  
V
IH  
V
V
V
M
M
TCK  
(Input)  
IL  
V
= V + (V – V )/2  
IL IH IL  
M
Figure 6. Test clock input timing diagram  
TCK  
(Input)  
t
t
DH  
DS  
TDI  
TMS  
Input Data Valid  
(Input)  
t
DV  
TDO  
(Output)  
Output Data Valid  
t
TS  
TDO  
(Output)  
Figure 7. Test access port timing diagram  
8.2 System modules  
8.2.1 Voltage regulator specifications  
The voltage regulator supplies approximately 1.2 V to the MC56F82xxx’s core logic. For  
proper operations, the voltage regulator requires an external 2.2 µF capacitor on each  
VCAP pin. Ceramic and tantalum capacitors tend to provide better performance  
tolerances. The output voltage can be measured directly on the VCAP pin. The  
specifications for this regulator are shown in Table 17.  
Table 17. Regulator 1.2 V parameters  
Characteristic  
Output Voltage1  
Short Circuit Current2  
Symbol  
VCAP  
ISS  
Min  
Typ  
1.22  
600  
Max  
Unit  
V
mA  
Short Circuit Tolerance (VCAP shorted to ground)  
TRSC  
30  
Minutes  
1. Value is after trim  
2. Guaranteed by design  
MC56F826xx, Rev. 0, 08/2018  
38  
NXP Semiconductors  
System modules  
Table 18. Bandgap electrical specifications  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Reference Voltage (after trim)  
VREF  
1.21  
V
8.3 Clock modules  
8.3.1 External clock operation timing  
Parameters listed are guaranteed by design.  
Table 19. External clock operation timing requirements  
Characteristic  
Symbol  
fosc  
Min  
Typ  
Max  
Unit  
MHz  
ns  
Frequency of operation (external clock driver)1  
Clock pulse width2  
External clock input rise time3  
50  
tPW  
8
trise  
1
1
ns  
External clock input fall time4  
tfall  
ns  
Input high voltage overdrive by an external clock  
Input low voltage overdrive by an external clock  
Vih  
0.85VDD  
V
Vil  
0.3VDD  
V
1. See Figure 1 for detail on using the recommended connection of an external clock driver.  
2. The chip may not function if the high or low pulse width is smaller than 6.25 ns.  
3. External clock input rise time is measured from 10% to 90%.  
4. External clock input fall time is measured from 90% to 10%.  
V
IH  
External  
Clock  
90%  
50%  
10%  
90%  
50%  
10%  
t
V
IL  
t
fall  
rise  
t
t
PW  
PW  
Note: The midpoint is V + (V – V )/2.  
IL  
IH  
IL  
Figure 8. External clock timing  
8.3.2 Phase-Locked Loop timing  
Table 20. Phase-Locked Loop timing  
Characteristic  
PLL input reference frequency1  
PLL output frequency2  
PLL lock time3  
Symbol  
fref  
Min  
8
Typ  
8
Max  
Unit  
MHz  
MHz  
µs  
16  
fop  
200  
35.5  
400  
73.2  
tplls  
Table continues on the next page...  
MC56F826xx, Rev. 0, 08/2018  
NXP Semiconductors  
39  
System modules  
Table 20. Phase-Locked Loop timing (continued)  
Characteristic  
Allowed Duty Cycle of input reference  
Symbol  
Min  
Typ  
Max  
Unit  
tdc  
40  
50  
60  
%
1. An externally supplied reference clock should be as free as possible from any phase jitter for the PLL to work correctly.  
The PLL is optimized for 8 MHz input.  
2. The frequency of the core system clock cannot exceed 100 MHz.  
3. This is the time required after the PLL is enabled to ensure reliable operation.  
8.3.3 External crystal or resonator requirement  
Table 21. Crystal or resonator requirement  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Frequency of operation  
fXOSC  
4
8
16  
MHz  
8.3.4 Relaxation Oscillator Timing  
Table 22. Relaxation Oscillator Electrical Specifications  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
8 MHz Output Frequency1  
Run Mode  
0°C to 105°C  
7.84  
7.76  
8
8
8.16  
8.24  
MHz  
MHz  
kHz  
-40°C to 105°C  
-40°C to 105°C  
Standby Mode (IRC  
trimmed @ 8 MHz)  
405  
8 MHz Frequency Variation over 25°C  
RUN Mode  
0°C to 105°C  
+/-1.5  
+/-1.5  
+/-2  
+/-3  
%
%
-40°C to 105°C  
-40°C to 105°C  
200 kHz Output Frequency1  
RUN Mode  
194  
200  
206  
%
200 kHz Output Frequency Variation over 25°C  
RUN Mode  
0°C to 85°C  
+/-1.5  
+/-1.5  
0.12  
10  
+/-2  
+/-3  
%
%
-40°C to 105°C  
8 MHz output2  
200 kHz output3  
Stabilization Time  
Output Duty Cycle  
tstab  
µs  
µs  
%
48  
50  
52  
1. Frequency after factory trim  
2. Standby to run mode transition  
3. Power down to run mode transition  
MC56F826xx, Rev. 0, 08/2018  
40  
NXP Semiconductors  
System modules  
Figure 9. Relaxation Oscillator Temperature Variation (Typical) After Trim (Preliminary)  
8.4 Memories and memory interfaces  
8.4.1 Flash electrical specifications  
This section describes the electrical characteristics of the flash memory module.  
8.4.1.1 Flash timing specifications — program and erase  
The following specifications represent the amount of time the internal charge pumps are  
active and do not include command overhead.  
Table 23. NVM program/erase timing specifications  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
thvpgm4  
Longword Program high-voltage time  
7.5  
18  
μs  
Table continues on the next page...  
MC56F826xx, Rev. 0, 08/2018  
NXP Semiconductors  
41  
System modules  
Table 23. NVM program/erase timing specifications (continued)  
Symbol Description  
Min.  
Typ.  
13  
Max.  
113  
Unit  
ms  
Notes  
thversscr Sector Erase high-voltage time  
1
1
thversall  
Erase All high-voltage time  
52  
452  
ms  
1. Maximum time based on expectations at cycling end-of-life.  
8.4.1.2 Flash timing specifications — commands  
Table 24. Flash command timing specifications  
Symbol Description  
Min.  
Typ.  
Max.  
60  
Unit  
μs  
Notes  
trd1sec1k Read 1s Section execution time (flash sector)  
1
1
tpgmchk  
trdrsrc  
tpgm4  
Program Check execution time  
Read Resource execution time  
Program Longword execution time  
Erase Flash Sector execution time  
Read 1s All Blocks execution time  
Read Once execution time  
45  
μs  
30  
μs  
1
65  
14  
145  
114  
0.9  
25  
μs  
2
tersscr  
trd1all  
ms  
ms  
μs  
1
trdonce  
1
tpgmonce Program Once execution time  
65  
70  
μs  
2
tersall  
Erase All Blocks execution time  
575  
30  
ms  
μs  
tvfykey  
Verify Backdoor Access Key execution time  
1
1. Assumes 25 MHz flash clock frequency.  
2. Maximum times for erase parameters based on expectations at cycling end-of-life.  
8.4.1.3 Flash high voltage current behaviors  
Table 25. Flash high voltage current behaviors  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
IDD_PGM  
Average current adder during high voltage  
flash programming operation  
2.5  
6.0  
mA  
IDD_ERS  
Average current adder during high voltage  
flash erase operation  
1.5  
4.0  
mA  
8.4.1.4 Reliability specifications  
Table 26. NVM reliability specifications  
Symbol Description  
Min.  
Program Flash  
Typ.1  
Max.  
Unit  
Notes  
tnvmretp10k Data retention after up to 10 K cycles  
tnvmretp1k Data retention after up to 1 K cycles  
nnvmcycp Cycling endurance  
5
50  
years  
years  
cycles  
2
20  
100  
50 K  
10 K  
MC56F826xx, Rev. 0, 08/2018  
42  
NXP Semiconductors  
System modules  
1. Typical data retention values are based on measured response accelerated at high temperature and derated to a constant  
25 °C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering  
Bulletin EB619.  
2. Cycling endurance represents number of program/erase cycles at –40 °C ≤ Tj ≤ 125 °C.  
8.5 Analog  
8.5.1 12-bit Cyclic Analog-to-Digital Converter (ADC) Parameters  
Table 27. 12-bit ADC Electrical Specifications  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Recommended Operating Conditions  
Supply Voltage1  
VDDA  
Vrefhx  
fADCCLK  
RAD  
3
3.3  
3.6  
VDDA  
10  
V
V
VREFH (in external reference mode)  
ADC Conversion Clock2  
Conversion Range3  
VDDA-0.6  
0.1  
MHz  
V
VREFH – VREFL  
VREFH  
Fully Differential  
– (VREFH – VREFL  
VREFL  
)
Single Ended/Unipolar  
Input Voltage Range (per input)4  
External Reference  
VADIN  
V
VREFL  
0
VREFH  
VDDA  
Internal Reference  
Timing and Power  
Conversion Time5  
tADC  
8
ADC Clock  
Cycles  
ADC Power-Up Time (from adc_pdn)  
ADC RUN Current (per ADC block)  
tADPU  
13  
ADC Clock  
Cycles  
IADRUN  
1.8  
0.1  
mA  
µA  
ADC Powerdown Current (adc_pdn  
enabled)  
IADPWRDWN  
VREFH Current (in external mode)  
Accuracy (DC or Absolute)  
Integral non-Linearity6  
Differential non-Linearity6  
Monotonicity  
IVREFH  
190  
225  
µA  
INL  
+/- 1.5  
+/- 0.5  
+/- 2.2  
+/- 0.8  
LSB7  
LSB7  
DNL  
GUARANTEED  
Offset8  
VOFFSET  
mV  
+/- 8  
Fully Differential  
+/- 12  
Single Ended/Unipolar  
Gain Error  
EGAIN  
0.996 to1.004 0.990 to 1.010  
AC Specifications9  
Signal to Noise Ratio  
Total Harmonic Distortion  
SNR  
THD  
66  
75  
dB  
dB  
Table continues on the next page...  
MC56F826xx, Rev. 0, 08/2018  
NXP Semiconductors  
43  
System modules  
Table 27. 12-bit ADC Electrical Specifications (continued)  
Characteristic  
Symbol  
SFDR  
Min  
Typ  
77  
Max  
Unit  
dB  
Spurious Free Dynamic Range  
Signal to Noise plus Distortion  
Effective Number of Bits  
Gain = 1x (Fully Differential/Unipolar)  
Gain = 2x (Fully Differential/Unipolar)  
Gain = 4x (Fully Differential/Unipolar)  
Gain = 1x (Single Ended)  
Gain = 2x (Single Ended)  
Gain = 4x (Single Ended)  
Variation across channels10  
ADC Inputs  
SINAD  
ENOB  
66  
dB  
bits  
10.6  
10.3  
10.6  
10.4  
10.2  
0.1  
Input Leakage Current  
IIN  
1
nA  
mV/°C  
V
Temperature sensor slope  
Temperature sensor voltage at 25 °C  
Disturbance  
TSLOPE  
VTEMP25  
1.7  
0.82  
Input Injection Current 11  
Channel to Channel Crosstalk12  
Memory Crosstalk13  
IINJ  
+/-3  
mA  
dB  
dB  
pF  
ISOXTLK  
MEMXTLK  
CADI  
-82  
-71  
Input Capacitance  
4.8  
Sampling Capacitor  
1. The ADC functions up to VDDA = 2.7 V. When VDDA is below 3.0 V, ADC specifications are not guaranteed  
2. ADC clock duty cycle is 45% ~ 55%  
3. Conversion range is defined for x1 gain setting. For x2 and x4 the range is 1/2 and 1/4, respectively.  
4. In unipolar mode, positive input must be ensured to be always greater than negative input.  
5. First conversion takes 10 clock cycles.  
6. INL/DNL is measured from VIN = VREFL to VIN = VREFH using Histogram method at x1 gain setting  
7. Least Significant Bit = 0.806 mV at 3.3 V VDDA, x1 gain Setting  
8. Offset measured at 2048 code  
9. Measured converting a 1 kHz input full scale sine wave  
10. When code runs from internal RAM  
11. The current that can be injected into or sourced from an unselected ADC input without affecting the performance of the  
ADC  
12. Any off-channel with 50 kHz full-scale input to the channel being sampled with DC input (isolation crosstalk)  
13. From a previously sampled channel with 50 kHz full-scale input to the channel being sampled with DC input (memory  
crosstalk).  
8.5.1.1 Equivalent circuit for ADC inputs  
The following figure shows the ADC input circuit during sample and hold. S1 and S2 are  
always opened/closed at non-overlapping phases, and both S1 and S2 are dependent on  
the ADC clock frequency. The following equation gives equivalent input impedance  
when the input is selected.  
MC56F826xx, Rev. 0, 08/2018  
44  
NXP Semiconductors  
System modules  
1
100 ohm  
+
ohm  
50  
+
-12  
(ADC ClockRate) x 4.8x10  
C1  
Channel Mux  
equivalent resistance  
100Ohms  
S1  
50 ESD  
Resistor  
Analog Input  
C1  
C1  
S1  
S1  
S/H  
1
2
S1  
S2  
S2  
(VREFHx - VREFLx ) / 2  
C1  
1. Parasitic capacitance due to package, pin-to-pin and pin-to-package base coupling =  
1.8pF  
2. Parasitic capacitance due to the chip bond pad, ESD protection devices and signal  
routing = 2.04pF  
3. S1 and S2 switch phases are non-overlapping and depend on the ADC clock  
frequency  
S1  
S2  
Figure 10. Equivalent circuit for A/D loading  
8.5.2 CMP and 6-bit DAC electrical specifications  
Table 28. Comparator and 6-bit DAC electrical specifications  
Symbol  
VDD  
Description  
Min.  
2.7  
Typ.  
Max.  
3.6  
Unit  
V
Supply voltage  
IDDHS  
IDDLS  
VAIN  
Supply current, High-speed mode (EN=1, PMODE=1)  
Supply current, low-speed mode (EN=1, PMODE=0)  
Analog input voltage  
300  
36  
μA  
μA  
V
VSS  
VDD  
20  
VAIO  
Analog input offset voltage  
Analog comparator hysteresis  
• CR0[HYSTCTR] = 001  
mV  
VH  
5
13  
48  
mV  
mV  
• CR0[HYSTCTR] = 01  
25  
Table continues on the next page...  
MC56F826xx, Rev. 0, 08/2018  
NXP Semiconductors  
45  
System modules  
Table 28. Comparator and 6-bit DAC electrical specifications (continued)  
Symbol  
Description  
• CR0[HYSTCTR] = 102  
• CR0[HYSTCTR] = 112  
Min.  
Typ.  
Max.  
Unit  
55  
105  
mV  
80  
148  
mV  
VCMPOh  
VCMPOl  
tDHS  
Output high  
VDD – 0.5  
25  
0.5  
50  
V
V
Output low  
Propagation delay, high-speed mode (EN=1,  
PMODE=1)  
ns  
tDLS  
Propagation delay, low-speed mode (EN=1,  
PMODE=0)3  
60  
200  
ns  
Analog comparator initialization delay4  
40  
7
μs  
μA  
V
IDAC6b  
6-bit DAC current adder (enabled)  
6-bit DAC reference inputs, Vin1 and Vin2  
VDDA  
VDD  
There are two reference input options selectable (via  
VRSEL control bit). The reference options must fall  
within this range.  
INL  
6-bit DAC integral non-linearity  
6-bit DAC differential non-linearity  
–0.5  
–0.3  
0.5  
0.3  
LSB5  
LSB  
DNL  
1. Measured with input voltage range limited to 0 to VDD  
2. Measured with input voltage range limited to 0.7≤Vin≤VDD-0.8  
3. Input voltage range: 0.1VDD≤Vin≤0.9VDD, step = 100mV, across all temperature. Does not include PCB and PAD delay.  
4. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to DACEN,  
VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level.  
5. 1 LSB = Vreference/64  
MC56F826xx, Rev. 0, 08/2018  
46  
NXP Semiconductors  
System modules  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
HYSTCTR  
Setting  
00  
01  
10  
11  
0.02  
0.01  
0
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
Vin level (V)  
Figure 11. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0)  
MC56F826xx, Rev. 0, 08/2018  
NXP Semiconductors  
47  
Timer  
0.18  
0.16  
0.14  
0.12  
HYSTCTR  
Setting  
0.1  
00  
01  
10  
11  
0.08  
0.06  
0.04  
0.02  
0
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
Vin level (V)  
Figure 12. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1)  
8.6 Timer  
8.6.1 Quad Timer timing  
Parameters listed are guaranteed by design.  
Table 29. Timer timing  
Characteristic  
Timer input period  
Symbol  
PIN  
Min1  
2T + 6  
1T + 3  
2T-2  
Max  
Unit  
ns  
See Figure  
Figure 13  
Figure 13  
Figure 13  
Figure 13  
Timer input high/low period  
Timer output period  
PINHL  
POUT  
ns  
ns  
Timer output high/low period  
POUTHL  
1T-2  
ns  
1. T = clock cycle. For 100 MHz operation, T = 10 ns.  
MC56F826xx, Rev. 0, 08/2018  
48  
NXP Semiconductors  
Timer  
Timer Inputs  
P
P
INHL  
INHL  
P
IN  
Timer Outputs  
P
P
OUTHL  
OUTHL  
P
OUT  
Figure 13. Timer timing  
8.7 Communication interfaces  
8.7.1 Queued Serial Communication Interface (SCI) timing  
Parameters listed are guaranteed by design.  
Table 30. SCI timing  
Characteristic  
Baud rate1  
Symbol  
BR  
Min  
Max  
Unit  
Mbit/s  
μs  
See Figure  
(fMAX/16)  
1.04/BR  
1.04/BR  
RXD pulse width  
TXD pulse width  
RXDPW  
TXDPW  
0.965/BR  
0.965/BR  
Figure 14  
Figure 15  
μs  
LIN Slave Mode  
Deviation of slave node clock from nominal FTOL_UNSYNCH  
clock rate before synchronization  
-14  
14  
2
%
%
Deviation of slave node clock relative to  
the master node clock after  
synchronization  
FTOL_SYNCH  
-2  
Minimum break character length  
TBREAK  
13  
11  
Master  
node bit  
periods  
Slave node  
bit periods  
1. fMAX is the frequency of operation of the SCI clock in MHz, which can be selected as the bus clock (max.50 MHz  
depending on part number) or 2x bus clock (max. 100 MHz) for the devices.  
RXD  
SCI receive  
data pin  
RXD  
PW  
(Input)  
Figure 14. RXD pulse width  
MC56F826xx, Rev. 0, 08/2018  
NXP Semiconductors  
49  
Design Considerations  
TXD  
SCI transmit  
data pin  
TXD  
PW  
(output)  
Figure 15. TXD pulse width  
9 Design Considerations  
9.1 Thermal design considerations  
An estimate of the chip junction temperature (TJ) can be obtained from the equation:  
TJ = TA + (RΘJA x PD)  
Where,  
TA = Ambient temperature for the package (°C)  
RΘJA = Junction-to-ambient thermal resistance (°C/W)  
PD = Power dissipation in the package (W)  
The junction-to-ambient thermal resistance is an industry-standard value that provides a  
quick and easy estimation of thermal performance. Unfortunately, there are two values in  
common usage: the value determined on a single-layer board and the value obtained on a  
board with two planes. For packages such as the PBGA, these values can be different by  
a factor of two. Which TJ value is closer to the application depends on the power  
dissipated by other components on the board.  
• The TJ value obtained on a single layer board is appropriate for a tightly packed  
printed circuit board.  
• The TJ value obtained on a board with the internal planes is usually appropriate if the  
board has low-power dissipation and if the components are well separated.  
When a heat sink is used, the thermal resistance is expressed as the sum of a junction-to-  
case thermal resistance and a case-to-ambient thermal resistance:  
RΘJA = RΘJC + RΘCA  
Where,  
RΘJA = Package junction-to-ambient thermal resistance (°C/W)  
RΘJC = Package junction-to-case thermal resistance (°C/W)  
RΘCA = Package case-to-ambient thermal resistance (°C/W)  
MC56F826xx, Rev. 0, 08/2018  
50  
NXP Semiconductors  
Design Considerations  
RΘJC is device related and cannot be adjusted. You control the thermal environment to  
change the case to ambient thermal resistance, RΘCA. For instance, you can change the  
size of the heat sink, the air flow around the device, the interface material, the mounting  
arrangement on printed circuit board, or change the thermal dissipation on the printed  
circuit board surrounding the device.  
To determine the junction temperature of the device in the application when heat  
sinks are not used, the thermal characterization parameter (YJT) can be used to  
determine the junction temperature with a measurement of the temperature at the top  
center of the package case using the following equation:  
TJ = TT + (ΨJT x PD)  
Where,  
TT = Thermocouple temperature on top of package (°C/W)  
ΨJT = hermal characterization parameter (°C/W)  
PD = Power dissipation in package (W)  
The thermal characterization parameter is measured per JESD51–2 specification using a  
40-gauge type T thermocouple epoxied to the top center of the package case. The  
thermocouple should be positioned so that the thermocouple junction rests on the  
package. A small amount of epoxy is placed over the thermocouple junction and over  
about 1 mm of wire extending from the junction. The thermocouple wire is placed flat  
against the package case to avoid measurement errors caused by cooling effects of the  
thermocouple wire.  
To determine the junction temperature of the device in the application when heat  
sinks are used, the junction temperature is determined from a thermocouple inserted at  
the interface between the case of the package and the interface material. A clearance slot  
or hole is normally required in the heat sink. Minimizing the size of the clearance is  
important to minimize the change in thermal performance caused by removing part of the  
thermal interface to the heat sink. Because of the experimental difficulties with this  
technique, many engineers measure the heat sink temperature and then back-calculate the  
case temperature using a separate measurement of the thermal resistance of the interface.  
From this case temperature, the junction temperature is determined from the junction-to-  
case thermal resistance.  
9.2 Electrical design considerations  
CAUTION  
This device contains protective circuitry to guard against  
damage due to high static voltage or electrical fields. However,  
MC56F826xx, Rev. 0, 08/2018  
NXP Semiconductors  
51  
Design Considerations  
take normal precautions to avoid application of any voltages  
higher than maximum-rated voltages to this high-impedance  
circuit. Reliability of operation is enhanced if unused inputs are  
tied to an appropriate voltage level.  
Use the following list of considerations to assure correct operation of the device:  
• Provide a low-impedance path from the board power supply to each VDD pin on the  
device and from the board ground to each VSS (GND) pin.  
• The minimum bypass requirement is to place 0.01–0.1 µF capacitors positioned as  
near as possible to the package supply pins. The recommended bypass configuration  
is to place one bypass capacitor on each of the VDD/VSS pairs, including VDDA/VSSA  
Ceramic and tantalum capacitors tend to provide better tolerances.  
• Ensure that capacitor leads and associated printed circuit traces that connect to the  
chip VDD and VSS (GND) pins are as short as possible.  
.
• Bypass the VDD and VSS with approximately 100 µF, plus the number of 0.1 µF  
ceramic capacitors.  
• PCB trace lengths should be minimal for high-frequency signals.  
• Consider all device loads as well as parasitic capacitance due to PCB traces when  
calculating capacitance. This is especially critical in systems with higher capacitive  
loads that could create higher transient currents in the VDD and VSS circuits.  
• Take special care to minimize noise levels on the VREF, VDDA, and VSSA pins.  
• Using separate power planes for VDD and VDDA and separate ground planes for VSS  
and VSSA are recommended. Connect the separate analog and digital power and  
ground planes as near as possible to power supply outputs. If an analog circuit and  
digital circuit are powered by the same power supply, then connect a small inductor  
or ferrite bead in serial with VDDA. Traces of VSS and VSSA should be shorted  
together.  
• Physically separate analog components from noisy digital components by ground  
planes. Do not place an analog trace in parallel with digital traces. Place an analog  
ground trace around an analog signal trace to isolate it from digital traces.  
• Because the flash memory is programmed through the JTAG/EOnCE port, SCI, or  
I2C, the designer should provide an interface to this port if in-circuit flash  
programming is desired.  
• If desired, connect an external RC circuit to the RESET pin. The resistor value  
should be in the range of 4.7 kΩ–10 kΩ; the capacitor value should be in the range of  
0.22 µF–4.7 µF.  
• Configuring the RESET pin to GPIO output in normal operation in a high-noise  
environment may help to improve the performance of noise transient immunity.  
• Add a 2.2 kΩ external pullup on the TMS pin of the JTAG port to keep EOnCE in a  
restate during normal operation if JTAG converter is not present.  
MC56F826xx, Rev. 0, 08/2018  
52  
NXP Semiconductors  
Design Considerations  
• During reset and after reset but before I/O initialization, all I/O pins are at tri-state.  
• To eliminate PCB trace impedance effect, each ADC input should have a no less than  
33 pF 10Ω RC filter.  
9.3 Power-on Reset design considerations  
9.3.1 Improper power-up sequence between VDD/VSS and VDDA/  
VSSA:  
It is recommended that VDD be kept within 100 mV of VDDA at all times, including  
power ramp-up and ramp-down. Failure to keep VDDA within 100 mV of VDDA may  
cause a leakage current through the substrate, between the VDD and VDDA pad cells.  
This leakage current could prevent operation of the device after it powers up. The voltage  
difference between VDD and VDDA must be limited to below 0.3 V at all times, to avoid  
permanent damage to the part (See Table 5). Also see Table 6.  
9.3.2 Unnecessary protection circuit:  
In many circuit designs, it is a general practice to add external clamping diodes on each  
analog input pin; see diode D1 and D2 in Figure 16, to prevent the surge voltage from  
damaging the analog input.  
MC56F826xx, Rev. 0, 08/2018  
NXP Semiconductors  
53  
Design Considerations  
Reg3  
DC  
Reg1  
DC  
3.3V  
3.3V  
12V  
200V ~300V  
+
+
+
DC  
DC  
C4  
C2  
C3  
C5  
C6  
Reg2  
DC  
DC  
C1  
R6  
R5  
R4  
VDD  
VDDA  
MC56F8xxxx  
ADC_IN  
R2  
D1  
D2  
R1  
C7  
C8  
R3  
RESET  
VSS  
+
D1 and D2 are unnecessary,  
because all analog  
VSSA  
inputs already have the  
internal current injection  
protection circuit.  
Figure 16. Protection Circuit Example  
MC56F8xxxx DSC uses the 5V tolerance I/O. When the pin is configured to digital input,  
it can accept 5V input. See Table 5. When the pin is configured to analog input, the  
internal integrated current injection protection circuit is enabled. The current injection  
protection circuit performs the same functions as external clamp diode D1 and D2 in  
Figure 16. As long as the source or sink current for each analog pin is less than 3 mA,  
then there is no damage to the device. See Table 27. Therefore, D1 and D2 clamping  
diodes are not recommended to be used.  
9.3.3 Heavy capacitive load on power supply output:  
In some applications, the low cost DC/DC converter may not regulate the output voltage  
well before it reaches the regulation point, which is roughly around 2.5V to 2.7V.  
However, the MC56F8xxxx DSC will exit power-on reset at around 2.3V. If the  
initialization code enables the PLL to run the DSC at full speed right after reset, then the  
high current will be pulled by DSC from the supply, which can cause the supply voltage  
to drop below the operation voltage; see the captured graph (Figure 17). This can cause  
the DSC fail to start up.  
MC56F826xx, Rev. 0, 08/2018  
54  
NXP Semiconductors  
Obtaining package dimensions  
Figure 17. Supply Voltage Drop  
A recommended initialization sequence during power-up is:  
1. After POR is released, run a few hundred NOP instructions from the internal  
relaxation oscillator; this gives time for the supply voltage to stabilize.  
2. Configure the peripherals (except the ADC) to the desired settings; the ADC should  
stay in low power mode.  
3. Power up the PLL.  
4. After the PLL locks, switch the clock from PLL prescale to postscale.  
5. Configure the ADC.  
10 Obtaining package dimensions  
Package dimensions are provided in package drawings.  
To find a package drawing, go to nxp.com and perform a keyword search for the  
drawing's document number:  
Drawing for package  
32LQFP  
Document number to be used  
98ASH70029A  
48-pin LQFP  
98ASH00962A  
11 Pinout  
MC56F826xx, Rev. 0, 08/2018  
NXP Semiconductors  
55  
Pinout  
11.1 Signal Multiplexing and Pin Assignments  
The following table shows the signals available on each pin and the locations of these  
pins on the devices supported by this document. The SIM's GPS registers are responsible  
for selecting which ALT functionality is available on most pins.  
NOTE  
• The RESETB pin is a 3.3 V pin only.  
• If the GPIOC1 pin is used as GPIO, the XOSC should be  
powered down.  
• Not all CMPD pins are available on 48 LQFP, 32 LQFP  
packages.  
48  
32  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
LQFP LQFP  
1
19  
20  
1
GPIOF2  
GPIOF3  
TCK  
GPIOF2  
GPIOF3  
TCK  
XB_OUT6  
XB_OUT7  
GPIOD2  
GPIOD4  
EXTAL  
XTAL  
2
2
RESETB  
GPIOC0  
GPIOC1  
GPIOC2  
GPIOC3  
GPIOC4  
GPIOA4  
GPIOA0  
GPIOA1  
GPIOA2  
RESETB  
GPIOC0  
GPIOC1  
GPIOC2  
GPIOC3  
GPIOC4  
GPIOA4  
GPIOA0  
GPIOA1  
GPIOA2  
3
3
CLKIN0  
4
5
TXD0  
TA0  
XB_OUT11  
CMPA_O  
CMPB_O  
XB_IN2  
RXD0  
CLKO0  
CLKIN1  
6
4
7
5
TA1  
XB_IN6  
EWM_OUT_B  
8
6
ANA4&CMPD_IN0  
ANA0&CMPA_IN3  
ANA1&CMPA_IN0  
9
CMPC_O  
10  
11  
7
8
ANA2&VREFHA&CMPA_  
IN1  
12  
GPIOA3  
GPIOA3  
ANA3&VREFLA&CMPA_  
IN2  
13  
14  
15  
16  
17  
18  
19  
20  
9
GPIOC5  
GPIOB4  
VDDA  
GPIOC5  
GPIOB4  
VDDA  
XB_IN7  
ANB4&CMPC_IN1  
10  
11  
12  
13  
VSSA  
VSSA  
GPIOB0  
GPIOB1  
VCAP  
GPIOB0  
GPIOB1  
VCAP  
ANB0&CMPB_IN3  
ANB1&CMPB_IN0  
GPIOB2  
GPIOB2  
ANB2&VERFHB&CMPC_  
IN3  
21  
GPIOB3  
GPIOB3  
ANB3&VREFLB&CMPC_  
IN0  
22  
23  
14  
15  
VSS  
VSS  
GPIOC6  
GPIOC6  
TA2  
XB_IN3  
CMP_REF  
MC56F826xx, Rev. 0, 08/2018  
56  
NXP Semiconductors  
Pinout  
48  
32  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
LQFP LQFP  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
16  
17  
18  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
GPIOC7  
GPIOC8  
GPIOC9  
GPIOC7  
GPIOC8  
GPIOC9  
GPIOC10  
GPIOF0  
GPIOC11  
GPIOC12  
VSS  
TXD0  
XB_IN8  
XB_IN9  
TXD0  
RXD0  
XB_OUT6  
XB_OUT8  
XB_OUT9  
XB_IN4  
XB_IN5  
GPIOC10  
GPIOF0  
GPIOC11  
GPIOC12  
VSS  
XB_IN6  
TXD1  
RXD1  
VDD  
VDD  
GPIOE0  
GPIOE1  
GPIOE2  
GPIOE3  
GPIOC13  
GPIOF1  
GPIOE4  
GPIOE5  
GPIOC14  
GPIOC15  
VCAP  
GPIOE0  
GPIOE1  
GPIOE2  
GPIOE3  
GPIOC13  
GPIOF1  
GPIOE4  
GPIOE5  
GPIOC14  
GPIOC15  
VCAP  
PWM_0B  
PWM_0A  
PWM_1B  
PWM_1A  
TA3  
XB_IN6  
EWM_OUT_B  
CMPD_O  
CLKO1  
XB_IN7  
PWM_2B  
PWM_2A  
XB_IN2  
XB_IN3  
XB_OUT4  
XB_OUT5  
PWM_FAULT4  
PWM_FAULT5  
VDD  
VDD  
VSS  
VSS  
TDO  
TDO  
GPIOD1  
GPIOD3  
GPIOD0  
TMS  
TMS  
TDI  
TDI  
11.2 Pinout diagrams  
The following diagrams show pinouts for the packages. For each pin, the diagrams show  
the default function. However, many signals may be multiplexed onto a single pin.  
MC56F826xx, Rev. 0, 08/2018  
NXP Semiconductors  
57  
Pinout  
GPIOE3  
GPIOE2  
GPIOE1  
GPIOE0  
VDD  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
TCK  
RESETB  
GPIOC0  
GPIOC1  
GPIOC2  
GPIOC3  
GPIOC4  
GPIOA4  
GPIOA0  
GPIOA1  
GPIOA2  
GPIOA3  
1
2
3
4
5
VSS  
6
GPIOC12  
GPIOC11  
GPIOF0  
GPIOC10  
GPIOC9  
GPIOC8  
7
8
9
10  
11  
12  
Figure 18. 48-pin LQFP  
NOTE  
The RESETB pin is a 3.3 V pin only.  
MC56F826xx, Rev. 0, 08/2018  
58  
NXP Semiconductors  
Product documentation  
GPIOE3  
GPIOE2  
GPIOE1  
GPIOE0  
GPIOF3  
GPIOF2  
GPIOC10  
GPIOC9  
TCK  
RESETB  
GPIOC2  
GPIOC3  
GPIOC4  
GPIOA0  
GPIOA1  
GPIOA2  
24  
23  
22  
21  
20  
19  
1
2
3
4
5
6
7
8
18  
17  
Figure 19. 32-pin LQFP  
NOTE  
The RESETB pin is a 3.3 V pin only.  
12 Product documentation  
The documents listed in Table 31 are required for a complete description and to  
successfully design using the device. Documentation is available from local NXP  
distributors, NXP sales offices, or online at www.nxp.com.  
Table 31. Device documentation  
Topic  
Description  
Document Number  
DSP56800E/DSP56800EX  
Reference Manual  
Detailed description of the 56800EX family architecture, 32-bit  
digital signal controller core processor, and the instruction set  
DSP56800ERM  
MC56F826xx Reference Manual Detailed functional description and programming model  
MC56F826XXRM  
MC56F826XXDS  
MC56F826xx Data Sheet  
Electrical and timing specifications, pin descriptions, and  
package information (this document)  
MC56F82xxx Errata  
Details any chip issues that might be present  
MC56F82xxx_Errata  
MC56F826xx, Rev. 0, 08/2018  
NXP Semiconductors  
59  
Information in this document is provided solely to enable system and software implementers to use  
NXP products. There are no express or implied copyright licenses granted hereunder to design or  
fabricate any integrated circuits based on the information in this document. NXP reserves the right to  
make changes without further notice to any products herein.  
How to Reach Us:  
Home Page:  
nxp.com  
Web Support:  
nxp.com/support  
NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any  
particular purpose, nor does NXP assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without limitation  
consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets  
and/or specifications can and do vary in different applications, and actual performance may vary over  
time. All operating parameters, including "typicals," must be validated for each customer application  
by customer's technical experts. NXP does not convey any license under its patent rights nor the  
rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be  
found at the following address: nxp.com/SalesTermsandConditions.  
While NXP has implemented advanced security features, all products may be subject to unidentified  
vulnerabilities. Customers are responsible for the design and operation of their applications and  
products to reduce the effect of these vulnerabilities on customer's applications and products, and  
NXP accepts no liability for any vulnerability that is discovered. Customers should implement  
appropriate design and operating safeguards to minimize the risks associated with their applications  
and products.  
NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,  
EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE  
CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,  
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,  
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C5, CodeTEST, CodeWarrior,  
ColdFire, ColdFire+, CWare, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,  
mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure,  
the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet,  
Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS  
are trademarks of NXP B.V. All other product or service names are the property of their respective  
owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink,  
CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP,  
RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS,  
ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm Limited (or its  
subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of  
patents, copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered  
trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the  
Power and Power.org logos and related marks are trademarks and service marks licensed by  
Power.org.  
© 2018 NXP B.V.  
Document Number MC56F826XXDS  
Revision 0, 08/2018  

相关型号:

MC56F826XXRM

The following table is the comparsion of features among members of the family.
NXP

MC56F82723VFM

This family of digital signal controllers (DSCs) is based on the 32-bit 56800EX core.
NXP

MC56F82723VLC

32-bit DSC, 56800EX core, 32KB Flash, 100MHz, QFP 32
NXP

MC56F82726VLF

This family of digital signal controllers (DSCs) is based on the 32-bit 56800EX core.
NXP

MC56F82728VLH

This family of digital signal controllers (DSCs) is based on the 32-bit 56800EX core.
NXP

MC56F82733MFM

This family of digital signal controllers (DSCs) is based on the 32-bit 56800EX core.
NXP

MC56F82733VFM

This family of digital signal controllers (DSCs) is based on the 32-bit 56800EX core.
NXP

MC56F82733VLC

This family of digital signal controllers (DSCs) is based on the 32-bit 56800EX core.
NXP

MC56F82736VLF

This family of digital signal controllers (DSCs) is based on the 32-bit 56800EX core.
NXP

MC56F82738VLH

This family of digital signal controllers (DSCs) is based on the 32-bit 56800EX core.
NXP

MC56F82743VFM

This family of digital signal controllers (DSCs) is based on the 32-bit 56800EX core.
NXP

MC56F82743VLC

This family of digital signal controllers (DSCs) is based on the 32-bit 56800EX core.
NXP