MC56F83683VLH [NXP]

Digital Signal Processor;
MC56F83683VLH
型号: MC56F83683VLH
厂家: NXP    NXP
描述:

Digital Signal Processor

外围集成电路
文件: 总60页 (文件大小:1069K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number MC56F836XXDS  
Rev. 1.6, 09/2019  
NXP Semiconductors  
Data Sheet: Technical Data  
MC56F836XXDS  
MC56F836xx  
Supports MC56F836xx  
Features  
• Communication interfaces  
– Up to three high-speed queued SCI (QSCI) modules  
with LIN slave functionality  
– Up to two queued SPI (QSPI) modules  
– Two I2C/SMBus ports  
– One FlexCAN module, with Flexible Data-rate  
(CAN-FD) supported  
– One USB2.0 controller with integrated PHY  
• This family of digital signal controllers (DSCs) is  
based on the 32-bit 56800EX core. On a single chip,  
each device combines the processing power of a DSP  
and the functionality of an MCU, with a flexible set of  
peripherals to support many target applications:  
– Industrial control  
– Home appliances  
– General-purpose inverters  
• Timers  
– Smart sensors, fire and security systems  
– Switched-mode power supply and power  
management  
– Two 16-bit quad timer (2 x 4 16-bit timer)  
– Two Periodic Interval Timers (PITs)  
• Security and integrity  
– Power distribution systems  
– Cyclic Redundancy Check (CRC) generator  
– Windowed Computer operating properly (COP)  
watchdog  
– Motor control (ACIM, BLDC, PMSM, SR, stepper)  
– Uninterruptible power supplies (UPS)  
– Solar inverter  
– External Watchdog Monitor (EWM)  
– Medical monitoring applications  
• Clocks  
• DSC based on 32-bit 56800EX core  
– Up to 100 MIPS at 100 MHz core frequency  
– DSP and MCU functionality in a unified, C-efficient  
architecture  
– On-chip relaxation oscillators: 200 kHz, and 48  
MHz IRC  
– Crystal / resonator oscillator  
• System  
• On-chip memory  
– Integrated power-on reset (POR) and low-voltage  
interrupt (LVI) and brown-out reset module  
– Inter-Module Crossbar and Event Generator  
– JTAG/enhanced on-chip emulation (EOnCE) for  
unobtrusive, real-time debugging  
– Up to 2×128 KB dual partition flash memory with  
ECC protection  
– Up to 64 KB data/program RAM  
– Both on-chip flash memory and RAM can be  
mapped into both program and data memory spaces  
– 32 KB boot ROM supports boot from SCI, I2C and  
CAN  
• Operating characteristics  
– Single supply: 2.7 V to 3.6 V  
– 5 V–tolerant I/O (except for 3.3 V RESETB and  
USB_DP/USB_DM pins)  
– Operation ambient temperature: V temperature  
option: -40°C to 105°C  
• Analog  
– Two high-speed, 8-ch external and 2-ch internal, 12-  
bit ADCs with dynamic x1, x2, and x4  
programmable amplifier  
– Four analog comparators with integrated 8-bit DAC  
references  
• 100-pin LQFP, 80-pin LQFP, and 64-pin LQFP  
packages  
• Two standard FlexPWM modules with up to 2x8 PWM  
outputs  
NXP reserves the right to change the production detail specifications as may be  
required to permit improvements in the design of its products.  
Table of Contents  
1
Overview............................................................................................3  
5.2 Moisture handling ratings........................................................20  
5.3 ESD handling ratings.............................................................. 20  
5.4 Voltage and current operating ratings..................................... 20  
General............................................................................................... 22  
6.1 General characteristics............................................................ 22  
6.2 AC electrical characteristics....................................................23  
6.3 Nonswitching electrical specifications....................................23  
6.4 Switching specifications..........................................................29  
6.5 Thermal specifications............................................................ 30  
Peripheral operating requirements and behaviors..............................31  
7.1 Core modules...........................................................................31  
7.2 System modules.......................................................................33  
7.3 Clock modules.........................................................................33  
7.4 Memories and memory interfaces...........................................35  
7.5 Analog..................................................................................... 37  
7.6 PWMs and timers....................................................................42  
7.7 Communication interfaces.......................................................42  
Design Considerations....................................................................... 48  
8.1 Thermal design considerations................................................48  
8.2 Electrical design considerations..............................................50  
8.3 Power-on Reset design considerations....................................51  
Obtaining package dimensions.......................................................... 52  
1.1 Product Family........................................................................ 3  
1.2 56800EX 32-bit Digital Signal Controller (DSC) core...........4  
1.3 Operation Parameters.............................................................. 4  
1.4 Interrupt Controller................................................................. 5  
1.5 Peripheral highlights............................................................... 5  
1.6 Block diagrams........................................................................11  
Ordering parts.....................................................................................13  
2.1 Determining valid orderable parts...........................................14  
2.2 Part number list....................................................................... 14  
Part identification...............................................................................14  
3.1 Description.............................................................................. 14  
3.2 Format..................................................................................... 14  
3.3 Fields....................................................................................... 14  
3.4 Example...................................................................................15  
Terminology and guidelines...............................................................15  
4.1 Definition: Operating requirement..........................................15  
4.2 Definition: Operating behavior............................................... 16  
4.3 Definition: Attribute................................................................16  
4.4 Definition: Rating....................................................................16  
4.5 Result of exceeding a rating....................................................17  
4.6 Relationship between ratings and operating requirements......17  
4.7 Guidelines for ratings and operating requirements................. 18  
4.8 Definition: Typical value........................................................ 18  
4.9 Typical value conditions......................................................... 19  
Ratings................................................................................................19  
5.1 Thermal handling ratings........................................................ 19  
6
2
3
7
4
8
9
10 Pinout................................................................................................. 52  
10.1 Signal Multiplexing and Pin Assignments..............................52  
10.2 Pinout diagrams.......................................................................55  
11 Product documentation.......................................................................58  
12 Revision history................................................................................. 59  
5
MC56F836xx, Rev. 1.6, 09/2019  
2
NXP Semiconductors  
Overview  
1 Overview  
1.1 Product Family  
The following table lists major features, including features that differ among members of  
the family. Features not listed are shared by all members of the family.  
Table 1. MC56F836xx Family  
Feature  
MC56F83  
686 683  
689  
663  
Core frequency (MHz)  
Flash memory (KB)  
RAM (KB)  
100  
256  
64  
256  
64  
256  
64  
128  
48  
ROM (KB)  
32  
Yes  
4
Inter-module Xbar  
Event Generator  
Windowed Watchdog  
External Watchdog Monitor  
eDMA  
1
1
4-Ch  
Internal OSC  
200 kHz / 48 MHz  
External Crystal Oscillator  
Comparator  
Yes (4 MHz ~ 16 MHz)  
4
Cyclic ADC channels (External + Internal)  
Standard PWM  
Timers  
2 x (8+2)  
2 x 8 1  
2 x 8  
1 x 8 + 1 x 6 2  
2 x 4  
Periodic Interval Timers  
CAN-FD  
2
1
2
I2C/SMBus  
QSCI  
3
2
3
2
2
1
QSPI  
USB 2.0 FS/LS  
GPIO  
1
82  
68  
54  
Operating Temperature  
LQFP package pin count  
105℃  
100 LQFP  
80 LQFP  
64 LQFP  
1. The outputs of PWMB_3A and PWMB_3B are available through the on-chip inter-module crossbar (XBAR).  
2. The outputs of PWMB are available through XBAR. PWMA_3A/PWMB_3B coupled with XB_OUT10/XB_OUT11.  
MC56F836xx, Rev. 1.6, 09/2019  
NXP Semiconductors  
3
Overview  
1.2 56800EX 32-bit Digital Signal Controller (DSC) core  
• Efficient 32-bit 56800EX Digital Signal Processor (DSP) engine with modified dual  
Harvard architecture:  
• Three internal address buses  
• Four internal data buses: two 32-bit primary buses, one 16-bit secondary data  
bus, and one 16-bit instruction bus  
• 32-bit data accesses  
• Supports concurrent instruction fetches in the same cycle, and dual data accesses  
in the same cycle  
• 20 addressing modes  
• 162 basic instructions  
• Instruction set supports both fractional arithmetic and integer arithmetic  
• 32-bit internal primary data buses support 8-bit, 16-bit, and 32-bit data movement,  
plus addition, subtraction, and logical operations  
• Single-cycle 16 × 16-bit -> 32-bit and 32 x 32-bit -> 64-bit multiplier-accumulator  
(MAC) with dual parallel moves  
• 32-bit arithmetic and logic multi-bit shifter  
• Four 36-bit accumulators, including extension bits  
• Parallel instruction set with unique DSP addressing modes  
• Hardware DO and REP loops  
• Bit reverse address mode, which effectively supports DSP and Fast Fourier  
Transform algorithms  
• Full shadowing of the register stack for zero-overhead context saves and restores:  
nine shadow registers correspond to nine address registers (R0, R1, R2, R3, R4, R5,  
N, N3, M01)  
• Instruction set supports both DSP and controller functions  
• Controller-style addressing modes and instructions enable compact code  
• Enhanced bit manipulation instruction set  
• Efficient C compiler and local variable support  
• Software subroutine and interrupt stack, with the stack's depth limited only by  
memory  
• Priority level setting for interrupt levels  
• JTAG/Enhanced On-Chip Emulation (OnCE) for unobtrusive, real-time debugging  
that is independent of processor speed  
1.3 Operation Parameters  
• Up to 100 MHz operation mode  
• Operation ambient temperature:  
MC56F836xx, Rev. 1.6, 09/2019  
4
NXP Semiconductors  
Peripheral highlights  
-40 oC to 105oC  
• Single 3.3 V power supply  
• Supply range: VDD - VSS = 2.7 V to 3.6 V, VDDA - VSSA = 2.7 V to 3.6 V  
1.4 Interrupt Controller  
• Five interrupt priority levels  
• Three user-programmable priority levels for each interrupt source: level 0, level  
1, level 2  
• Unmaskable level 3 interrupts include illegal instruction, hardware stack  
overflow, misaligned data access, SWI3 instruction  
• Interrupt level 3 is highest priority and non-maskable. Its sources include:  
• Illegal instructions  
• Hardware stack overflow  
• SWI instruction  
• EOnce interrupts  
• Misaligned data accesses  
• Lowest-priority software interrupt: level LP  
• Support for nested interrupts, so that a higher priority level interrupt request can  
interrupt lower priority interrupt subroutine  
• Masking of interrupt priority level is managed by the 56800EX core  
• Two programmable fast interrupts that can be assigned to any interrupt source  
• Notification to System Integration Module (SIM) to restart clock when in wait and  
stop states  
• Ability to relocate interrupt vector table  
1.5 Peripheral highlights  
1.5.1 Flex Pulse Width Modulator (FlexPWM)  
• 16 bits of resolution for center, edge-aligned, and asymmetrical PWMs  
• PWMA with accumulative fractional clock calculation  
• Arbitrary PWM edge placement  
• PWM outputs can be configured as complementary output pairs or independent  
outputs  
• Dedicated time-base counter with period and frequency control per submodule  
• Independent top and bottom deadtime insertion for each complementary pair  
• Independent control of both edges of each PWM output  
• Enhanced input capture and output compare functionality on each input:  
MC56F836xx, Rev. 1.6, 09/2019  
NXP Semiconductors  
5
Peripheral highlights  
• Channels not used for PWM generation can be used for buffered output compare  
functions.  
• Channels not used for PWM generation can be used for input capture functions.  
• Enhanced dual edge capture functionality  
• Synchronization of submodule to external hardware (or other PWM) is supported.  
• Double-buffered PWM registers  
• Integral reload rates from 1 to 16  
• Half-cycle reload capability  
• Multiple output trigger events can be generated per PWM cycle via hardware.  
• Support for double-switching PWM outputs  
• Up to eight fault inputs can be assigned to control multiple PWM outputs  
• Programmable filters for fault inputs  
• Independently programmable PWM output polarity  
• Individual software control of each PWM output  
• All outputs can be programmed to change simultaneously via a FORCE_OUT event.  
• PWMX pin can optionally output a third PWM signal from each submodule  
• Option to supply the source for each complementary PWM signal pair from any of  
the following:  
• Crossbar module outputs  
• External ADC input, taking into account values set in ADC high and low limit  
registers  
• Direct phase shift controls among each submodule  
• Trigger signal can share the same load frequency as reload signal in each submodule  
1.5.2 12-bit Analog-to-Digital Converter (Cyclic type)  
• Two independent 12-bit analog-to-digital converters (ADCs):  
• 2 x 8-channel external inputs  
• Built-in x1, x2, x4 programmable gain pre-amplifier  
• Maximum ADC clock frequency up to 25 MHz, having period as low as 40 ns  
• Single conversion time of 10 ADC clock cycles  
• Additional conversion time of 8 ADC clock cycles  
• Support of analog inputs for single-ended and differential (including unipolar  
differential) conversions  
• Sequential and parallel scan modes. Parallel mode includes simultaneous and  
independent scan modes.  
• Samples of each ADC have offset, limit and zero-crossing calculation supported  
• ADC conversions can be synchronized by any module connected to the internal  
crossbar module, such as PWM, timer, GPIO, and comparator modules.  
• Support for hardware-triggering and software-triggering conversions  
MC56F836xx, Rev. 1.6, 09/2019  
6
NXP Semiconductors  
Peripheral highlights  
• Support for a multi-triggering mode with a programmable number of conversions on  
each trigger  
• Each ADC has ability to scan and store up to 8 conversion results.  
• Current injection protection  
1.5.3 Periodic Interrupt Timer (PIT) Modules  
• 16-bit counter with programmable count modulo  
• PIT0 is master and PIT1 is slave (if synchronizing both PITs)  
• The output signals of both PIT0 and PIT1 are internally connected to a peripheral  
crossbar module  
• Can run when the CPU is in Wait/Stop modes. Can also wake up the CPU from  
Wait/Stop modes.  
• In addition to its existing bus clock (up to 100 MHz), 3 alternate clock sources for  
the counter clock are available:  
• Crystal oscillator output  
• 48 MHz/6  
• On-chip low-power 200 kHz oscillator  
1.5.4 Inter-Module Crossbar and Event Generator (EVTG) logic  
• Provides generalized connections between and among on-chip peripherals: ADCs,  
comparators, quad-timers, FlexPWMs, EWM, and select I/O pins  
• User-defined input/output pins for all modules connected to the crossbar  
• DMA request and interrupt generation from the crossbar  
• Write-once protection for all registers  
• The EVTG module mainly includes two parts: Two AND/OR/INVERT (known  
simply as the AOI) modules and one configurable Flip-Flop. It supports the  
generation of a configurable number of EVENT signals. The inputs are from crossbar  
(XBAR) outputs, and the outputs feed to XBAR inputs.  
1.5.5 Comparator  
• Full rail-to-rail comparison range  
• Support for high and low speed modes  
• Selectable input source includes external pins and internal DACs  
• Programmable output polarity  
• 8-bit programmable DAC as a voltage reference per comparator  
• Three programmable hysteresis levels  
• Selectable interrupt on rising-edge, falling-edge, or toggle of a comparator output  
MC56F836xx, Rev. 1.6, 09/2019  
NXP Semiconductors  
7
Peripheral highlights  
1.5.6 Quad Timer  
• Four 16-bit up/down counters, with a programmable prescaler for each counter  
• Operation modes: edge count, gated count, signed count, capture, compare, PWM,  
signal shot, single pulse, pulse string, cascaded, quadrature decode  
• Programmable input filter  
• Counting start can be synchronized across counters  
1.5.7 Queued Serial Communications Interface (QSCI) modules with  
LIN Slave Functionality  
• Operating clock can be up to two times the CPU operating frequency  
• Four-word-deep FIFOs available on both transmit and receive buffers  
• Standard mark/space non-return-to-zero (NRZ) format  
• 16-bit integer and 3-bit fractional baud rate selection  
• Full-duplex or single-wire operation  
• Programmable 8-bit or 9-bit data format  
• Error detection capability  
• Two receiver wakeup methods:  
• Idle line  
• Address mark  
• 1/16 bit-time noise detection  
• Support for Local Interconnect Network (LIN) slave operation  
1.5.8 Queued Serial Peripheral Interface (QSPI) modules  
• Maximum 25 Mbit/s baud rate  
• Selectable baud rate clock sources for low baud rate communication  
• Baud rate as low as the maximum Baud rate / 4096  
• Full-duplex operation  
• Master and slave modes  
• Double-buffered operation with separate transmit and receive registers  
• Four-word-deep FIFOs available on transmit and receive buffers  
• Programmable length transmissions (2 bits to 16 bits)  
• Programmable transmit and receive shift order (MSB or LSB as first bit transmitted)  
1.5.9 Inter-Integrated Circuit (I2C)/System Management Bus (SMBus)  
modules  
• Compatible with I2C bus standard  
MC56F836xx, Rev. 1.6, 09/2019  
8
NXP Semiconductors  
Peripheral highlights  
• Support for System Management Bus (SMBus) specification, version 2  
• Multi-master operation  
• General call recognition  
• 10-bit address extension  
• Start/Repeat and Stop indication flags  
• Support for dual slave addresses or configuration of a range of slave addresses  
• Programmable glitch input filter  
1.5.10 Flexiable Controller Area Network (FlexCAN) module  
This device utilizes the FlexCAN which is configured with 32 message buffers and DMA  
support as well as CAN-FD (Flexible Data-rate). The FlexCAN module is a  
communication controller implementing the CAN protocol according to the CAN 2.0B  
protocol specification. The interface between CAN engine and CPU is done via a  
mailbox system (Message Buffers) stored in embedded RAM.  
• Full implementation of the CAN with Flexible Data Rate (CAN FD) protocol  
specification and CAN protocol specification, Version 2.0 B  
• Supports DMA request  
• Flexible message buffers (MBs), totaling 32 message buffers of 8 bytes data length  
each, configurable as Rx or Tx  
• SRAM array for 32 message buffer and individual mask registers.  
1.5.11 Universal Serial Bus (USB) 2.0 controller  
• Low Speed (1.5 Mbit/s) / Full Speed (12 Mbit/s)  
• Device mode only in this device  
• IRC48M with clock recovery block to eliminate the on-board crystal  
• USB1.1 PHY included  
1.5.12 Windowed Computer Operating Properly (COP) watchdog  
• Programmable windowed timeout period  
• Support for operation in all power modes: run mode, wait mode, stop mode  
• Causes loss of reference reset 128 cycles after loss of reference clock to the PLL is  
detected  
• Selectable reference clock source in support of EN60730 and IEC61508  
• Selectable clock sources:  
• External crystal oscillator  
• On-chip low-power 200 kHz oscillator  
MC56F836xx, Rev. 1.6, 09/2019  
NXP Semiconductors  
9
Clock sources  
• System bus (IPBus up to 100 MHz)  
• 48 MHz/6  
• Support for interrupt generation  
1.5.13 External Watchdog Monitor (EWM)  
• Monitors external circuit as well as the software flow  
• Programmable timeout period  
• Interrupt capability prior to timeout  
• Independent output (EWM_OUT_b) that places external circuit (but not CPU and  
peripheral) in a safe mode when EWM timeout occurs  
• Selectable reference clock source in support of EN60730 and IEC61508  
• Wait mode and Stop mode operation is not supported.  
• Selectable clock sources:  
• External crystal oscillator  
• On-chip low-power 200 kHz oscillator  
• System bus (IPBus up to 100 MHz)  
• 48 MHz/6  
1.5.14 Power supervisor  
• Power-on reset (POR) is released after VDD > 2.7 V during supply is ramped up;  
CPU, peripherals, and JTAG/EOnCE controllers exit RESET state  
• Brownout reset (VDD < 2.0 V)  
• Critical warn low-voltage interrupt (LVI 2.2 V)  
• Peripheral low-voltage warning interrupt (LVI 2.7 V)  
1.5.15 Phase-locked loop  
• Output frequency range is optimized from 150 MHz to 450 MHz  
• Input reference clock frequency: 8 MHz to 16 MHz  
• Detection of loss of lock and loss of reference clock  
• Ability to power down  
1.5.16 Clock sources  
1.5.16.1 On-chip oscillators  
• IRC48M  
• 200 kHz low frequency clock as secondary clock source for COP, EWM, PIT  
MC56F836xx, Rev. 1.6, 09/2019  
10  
NXP Semiconductors  
Clock sources  
1.5.16.2 Crystal oscillator  
• Support for both high ESR crystal oscillator (ESR greater than 100 Ω) and ceramic  
resonator  
• Operating frequency: 4–16 MHz  
1.5.17 Cyclic Redundancy Check (CRC) generator  
• Hardware 16/32-bit CRC generator  
• High-speed hardware CRC calculation  
• Programmable initial seed value  
• Programmable 16/32-bit polynomial  
• Error detection for all single, double, odd, and most multi-bit errors  
• Option to transpose input data or output data (CRC result) bitwise or bytewise,1  
which is required for certain CRC standards  
• Option for inversion of final CRC result  
1.5.18 General Purpose I/O (GPIO)  
• 5 V tolerance (except RESETB and USB_DP/USB_DM pins)  
• Individual control of peripheral mode or GPIO mode for each pin  
• Programmable push-pull or open drain output  
• Configurable pullup or pulldown on all input pins  
• All pins (except JTAG, RESETB and USB_DP/USB_DM pins) default to be GPIO  
inputs  
• 2 mA / 9 mA capability  
• Controllable output slew rate  
1.6 Block diagrams  
The 56800EX core is based on a modified dual Harvard-style architecture, consisting of  
three execution units operating in parallel, and allowing as many as six operations per  
instruction cycle. The MCU-style programming model and optimized instruction set  
enable straightforward generation of efficient and compact code for the DSP and control  
functions. The instruction set is also efficient for C compilers, to enable rapid  
development of optimized control applications.  
1. A bytewise transposition is not possible when accessing the CRC data register via 8-bit accesses. In this case, user  
software must perform the bytewise transposition.  
MC56F836xx, Rev. 1.6, 09/2019  
NXP Semiconductors  
11  
Clock sources  
The device's basic architecture appears in Figure 1 and Figure 2. Figure 1 shows how the  
56800EX system buses communicate with internal memories, and the IPBus interface  
and the internal connections among the units of the 56800EX core. Figure 2 shows the  
peripherals and control blocks connected to the IPBus bridge. See the specific device’s  
Reference Manual for details.  
DSP56800EX Core  
Program Control Unit  
ALU1  
ALU2  
Address  
Generation  
Unit  
PC  
LA  
LA2  
HWS0  
HWS1  
FIRA  
Instruction  
Decoder  
R0  
R1  
(AGU)  
R2  
Interrupt  
Unit  
Program  
Memory  
M01  
N3  
R3  
OMR  
R4  
SR  
LC  
LC2  
R5  
Looping  
Unit  
N
SP  
FISR  
XAB1  
XAB2  
PAB  
Data/  
Program  
RAM  
PDB  
CDBW  
CDBR  
XDB2  
A2  
B2  
C2  
D2  
A1  
B1  
C1  
D1  
Y1  
Y0  
X0  
A0  
B0  
C0  
D0  
Bit-  
Manipulation  
Unit  
IPBus  
Interface  
Data  
Y
Enhanced  
OnCE™  
Arithmetic  
Logic Unit  
(ALU)  
JTAG TAP  
MAC and ALU Multi-Bit Shifter  
Figure 1. 56800EX basic block diagram  
MC56F836xx, Rev. 1.6, 09/2019  
12  
NXP Semiconductors  
Ordering parts  
USB RAM  
2KB  
Boot ROM  
32KB  
JTAG  
Program Bus  
Core Data Bus  
EOnCE  
S3b  
M0  
56800EX CPU  
Program/Data Flash  
Up to 256KB  
Program  
Controller  
(PC)  
Address  
Generation  
Unit (AGU)  
S0  
S1  
M1  
M2  
Secondary Data Bus  
dual partition flash  
memory with ECC  
4
Arithmetic  
Logic Unit  
(ALU)  
Bit  
Manipulation  
Unit  
M4  
M3  
Data/Program RAM  
Up to 64KB  
S3a S2  
eDMA Controller  
Watchdog (COP)  
Interrupt Controller  
Internal 48MHz  
Crysral OSC  
Power Management  
Controller (PMC)  
Internal 200kHz  
PLL  
System Integration  
Module (SIM)  
Periodic Interrupt  
Timer (PIT) 0,1  
CRC  
Peripheral Bus  
QSCI  
0,1,2  
I2C  
0,1  
QSPI  
0,1  
Quad Timer  
A & B  
USB  
2.0  
FlexPWM B  
FlexCAN  
FlexPWM A  
Inter ModuleCrossbarInputs
Inter Module Crossbar Outputs  
Event  
Generator  
GPIO & Peripheral MUX  
Inter-Module  
Crossbar  
Inter Module Crossbar Outputs  
Inter Module Crossbar Inputs  
Package  
Pins  
Compartors With  
8bit DAC A,B,C,D  
ADC B  
12Bit  
ADC A  
12Bit  
EWM  
Peripheral Bus  
Figure 2. System diagram  
2 Ordering parts  
MC56F836xx, Rev. 1.6, 09/2019  
NXP Semiconductors  
13  
Part identification  
2.1 Determining valid orderable parts  
Valid orderable part numbers are provided on the web. To determine the orderable part  
numbers for this device, go to nxp.com and perform a part number search for the  
following device numbers: MC56F83  
2.2 Part number list  
The following table shows a part number list for this device.  
Table 2. Part numbers  
Part Number  
MC56F83689VLL  
Flash Size  
Temperature  
Package  
256 KB  
256 KB  
256 KB  
128 KB  
105℃  
105℃  
105℃  
105℃  
100 LQFP  
80 LQFP  
64 LQFP  
64 LQFP  
MC56F83686VLK  
MC56F83683VLH  
MC56F83663VLH  
3 Part identification  
3.1 Description  
Part numbers for the chip have fields that identify the specific part. You can use the  
values of these fields to determine the specific part you have received.  
3.2 Format  
Part numbers for this device have the following format: Q 56F8 3 C F P T PP N  
3.3 Fields  
This table lists the possible values for each field in the part number (not all combinations  
are valid):  
MC56F836xx, Rev. 1.6, 09/2019  
14  
NXP Semiconductors  
Terminology and guidelines  
Values  
Field  
Description  
Q
Qualification status  
• MC = Fully qualified, general market flow  
• PC = Prequalification  
56F8  
DSC family with flash memory and DSP56800/  
DSP56800E/DSP56800EX core  
• 56F8  
3
DSC subfamily  
• 3  
C
F
Maximum CPU frequency (MHz)  
Primary program flash memory size  
• 6 = 100 MHz  
• 6 = 128 KB  
• 8 = 256 KB  
P
Pin count  
• 3 = 64  
• 6 = 80  
• 9 = 100  
T
Temperature range (°C)  
Package identifier  
• V = –40 to 105  
PP  
• LH = 64LQFP  
• LK = 80LQFP  
• LL = 100LQFP  
N
Packaging type  
• R = Tape and reel  
• (Blank) = Trays  
3.4 Example  
This is an example part number: MC56F83689VLL  
4 Terminology and guidelines  
4.1 Definition: Operating requirement  
An operating requirement is a specified value or range of values for a technical  
characteristic that you must guarantee during operation to avoid incorrect operation and  
possibly decreasing the useful life of the chip.  
4.1.1 Example  
This is an example of an operating requirement:  
Symbol  
Description  
Min.  
Max.  
Unit  
VDD  
1.0 V core supply  
voltage  
0.9  
1.1  
V
MC56F836xx, Rev. 1.6, 09/2019  
NXP Semiconductors  
15  
Terminology and guidelines  
4.2 Definition: Operating behavior  
Unless otherwise specified, an operating behavior is a specified value or range of values  
for a technical characteristic that are guaranteed during operation if you meet the  
operating requirements and any other specified conditions.  
4.2.1 Example  
This is an example of an operating behavior:  
Symbol  
Description  
Min.  
Max.  
Unit  
IWP  
Digital I/O weak pullup/ 10  
pulldown current  
130  
µA  
4.3 Definition: Attribute  
An attribute is a specified value or range of values for a technical characteristic that are  
guaranteed, regardless of whether you meet the operating requirements.  
4.3.1 Example  
This is an example of an attribute:  
Symbol  
Description  
Min.  
Max.  
Unit  
CIN_D  
Input capacitance:  
digital pins  
7
pF  
4.4 Definition: Rating  
A rating is a minimum or maximum value of a technical characteristic that, if exceeded,  
may cause permanent chip failure:  
Operating ratings apply during operation of the chip.  
Handling ratings apply when the chip is not powered.  
MC56F836xx, Rev. 1.6, 09/2019  
16  
NXP Semiconductors  
Terminology and guidelines  
4.4.1 Example  
This is an example of an operating rating:  
Symbol  
Description  
Min.  
Max.  
Unit  
VDD  
1.0 V core supply  
voltage  
–0.3  
1.2  
V
4.5 Result of exceeding a rating  
40  
30  
The likelihood of permanent chip failure increases rapidly as  
soon as a characteristic begins to exceed one of its operating ratings.  
20  
10  
0
Operating rating  
Measured characteristic  
4.6 Relationship between ratings and operating requirements  
Fatal range  
Degraded operating range  
Normal operating range  
Degraded operating range  
Fatal range  
Expected permanent failure  
- No permanent failure  
- No permanent failure  
- Correct operation  
- No permanent failure  
Expected permanent failure  
- Possible decreased life  
- Possible incorrect operation  
- Possible decreased life  
- Possible incorrect operation  
 
Operating (power on)  
Fatal range  
Handling range  
Fatal range  
Expected permanent failure  
No permanent failure  
Expected permanent failure  
∞  
Handling (power off)  
MC56F836xx, Rev. 1.6, 09/2019  
NXP Semiconductors  
17  
Terminology and guidelines  
4.7 Guidelines for ratings and operating requirements  
Follow these guidelines for ratings and operating requirements:  
• Never exceed any of the chip’s ratings.  
• During normal operation, don’t exceed any of the chip’s operating requirements.  
• If you must exceed an operating requirement at times other than during normal  
operation (for example, during power sequencing), limit the duration as much as  
possible.  
4.8 Definition: Typical value  
A typical value is a specified value for a technical characteristic that:  
• Lies within the range of values specified by the operating behavior  
• Given the typical manufacturing process, is representative of that characteristic  
during operation when you meet the typical-value conditions or other specified  
conditions  
Typical values are provided as design guidelines and are neither tested nor guaranteed.  
4.8.1 Example 1  
This is an example of an operating behavior that includes a typical value:  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
IWP  
Digital I/O weak  
pullup/pulldown  
current  
10  
70  
130  
µA  
4.8.2 Example 2  
This is an example of a chart that shows typical values for various voltage and  
temperature conditions:  
MC56F836xx, Rev. 1.6, 09/2019  
18  
NXP Semiconductors  
Ratings  
5000  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
TJ  
150 °C  
105 °C  
25 °C  
–40 °C  
0
0.90  
0.95  
1.00  
1.05  
1.10  
VDD (V)  
4.9 Typical value conditions  
Typical values assume you meet the following conditions (or other conditions as  
specified):  
Symbol  
Description  
Ambient temperature  
3.3 V supply voltage  
Value  
Unit  
TA  
25  
°C  
V
VDD  
3.3  
5 Ratings  
5.1 Thermal handling ratings  
Symbol  
TSTG  
Description  
Min.  
–55  
Max.  
150  
Unit  
°C  
Notes  
Storage temperature  
Solder temperature, lead-free  
1
2
TSDR  
260  
°C  
1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.  
2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
MC56F836xx, Rev. 1.6, 09/2019  
NXP Semiconductors  
19  
Ratings  
5.2 Moisture handling ratings  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
MSL  
Moisture sensitivity level  
3
1
1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
5.3 ESD handling ratings  
Although damage from electrostatic discharge (ESD) is much less common on these  
devices than on early CMOS circuits, use normal handling precautions to avoid exposure  
to static discharge. Qualification tests are performed to ensure that these devices can  
withstand exposure to reasonable levels of static without suffering any permanent  
damage.  
A device is defined as a failure if after exposure to ESD pulses, the device no longer  
meets the device specification. Complete DC parametric and functional testing is  
performed as per the applicable device specification at room temperature followed by hot  
temperature, unless specified otherwise in the device specification.  
Table 3. ESD/Latch-up Protection  
Characteristic1  
Min  
Max  
Unit  
Notes  
ESD for Human Body  
–2000  
+2000  
V
2
5
Model (VHBM  
ESD for Charge Device  
Model (VCDM  
)
–500  
–750  
–100  
+500 3  
+750 4  
+100  
V
)
Latch-up current at TA=  
85°C (ILAT) (V part)  
mA  
6
1. Parameter is achieved by design characterization on a small sample size from typical devices under typical conditions  
unless otherwise noted.  
2. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body  
Model (HBM).  
3. All pins except the corner pins  
4. Corner pins only  
5. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for  
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.  
6. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.  
MC56F836xx, Rev. 1.6, 09/2019  
20  
NXP Semiconductors  
Ratings  
5.4 Voltage and current operating ratings  
Absolute maximum ratings are stress ratings only, and functional operation at the  
maxima is not guaranteed. Stress beyond the limits specified in Table 4 may affect device  
reliability or cause permanent damage to the device.  
NOTE  
If the voltage difference between VDD and VDDA or VSS and  
VSSA is too large, then the device can malfunction or be  
permanently damaged. The restrictions are:  
At all times, it is recommended that the voltage  
difference of VDD - VSS be within +/-200 mV of the  
voltage difference of VDDA - VSSA, including power  
ramp up and ramp down; see additional requirements in  
Table 5. Failure to do this recommendation may result in a  
harmful leakage current through the substrate, between the  
VDD/VSS and VDDA/VSSA pad cells. This harmful  
leakage current could prevent the device from operating  
after power up.  
At all times, to avoid permanent damage to the part, the  
voltage difference between VDD and VDDA must  
absolutely be limited to 0.3 V; see Table 4.  
At all times, to avoid permanent damage to the part, the  
voltage difference between VSS and VSSA must  
absolutely be limited to 0.3 V; see Table 4.  
Table 4. Absolute Maximum Ratings (VSS = 0 V, VSSA = 0 V)  
Characteristic  
Supply Voltage Range  
Symbol  
VDD  
Notes1  
Min  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.4  
-0.3  
Max  
4.0  
4.0  
4.0  
0.3  
0.3  
5.5  
4.0  
4.0  
4.0  
-5.0  
20.0  
25  
Unit  
V
Analog Supply Voltage Range  
ADC High Voltage Reference  
Voltage difference VDD to VDDA  
Voltage difference VSS to VSSA  
Digital Input Voltage Range  
VDDA  
VREFHx  
ΔVDD  
ΔVSS  
VIN  
V
V
V
V
Pin Group 1  
Pin Group 2  
Pin Group 4  
Pin Group 3  
V
RESET Input Voltage Range  
VIN_RESET  
VOSC  
VINA  
V
Oscillator Input Voltage Range  
V
Analog Input Voltage Range  
V
Input clamp current, per pin (VIN < VSS - 0.3 V), 2, 3  
Output clamp current, per pin4  
VIC  
mA  
mA  
mA  
VOC  
Contiguous pin DC injection current—regional limit sum  
of 16 contiguous pins  
IICont  
-25  
Output Voltage Range (normal push-pull mode)  
VOUT  
Pin Group 1, 2  
-0.3  
4.0  
V
Table continues on the next page...  
MC56F836xx, Rev. 1.6, 09/2019  
NXP Semiconductors  
21  
General  
Table 4. Absolute Maximum Ratings (VSS = 0 V, VSSA = 0 V) (continued)  
Characteristic  
Symbol  
Notes1  
Min  
-0.3  
-0.3  
Max  
5.5  
Unit  
V
Output Voltage Range (open drain mode)  
RESET Output Voltage Range  
VOUTOD  
Pin Group 1  
Pin Group 2  
VOUTOD_RE  
4.0  
V
SET  
Ambient Temperature  
TA  
V temperature  
V temperature  
-40  
-40  
-55  
105  
125  
150  
°C  
°C  
°C  
Junction Temperature  
Tj  
Storage Temperature Range (Extended Industrial)  
TSTG  
1. Default Mode  
• Pin Group 1: GPIO, TDI, TDO, TMS, TCK  
• Pin Group 2: RESET  
• Pin Group 3: ADC and Comparator Analog Inputs  
• Pin Group 4: XTAL, EXTAL  
2. Continuous clamp current  
3. All 5 volt tolerant digital I/O pins are internally clamped to VSS through a ESD protection diode. There is no diode  
connection to VDD. If VIN greater than VDIO_MIN (= VSS–0.3 V) is observed, then there is no need to provide current  
limiting resistors at the pads. If this limit cannot be observed, then a current limiting resistor is required.  
4. I/O is configured as push-pull mode.  
6 General  
6.1 General characteristics  
The device is fabricated in high-density, low-power CMOS with 5 V–tolerant TTL-  
compatible digital inputs, except 3.3 V for RESET, USB_DP/USB_DM pins. The term  
“5 V–tolerant” refers to the capability of an I/O pin, built on a 3.3 V–compatible process  
technology, to withstand a voltage up to 5.5 V without damaging the device.  
5 V–tolerant I/O is desirable because many systems have a mixture of devices designed  
for 3.3 V and 5 V power supplies. In such systems, a bus may carry both 3.3 V– and 5 V–  
compatible I/O voltage levels . This 5 V–tolerant capability therefore offers the power  
savings of 3.3 V I/O levels combined with the ability to receive 5 V levels without  
damage.  
Absolute maximum ratings in Table 4 are stress ratings only, and functional operation at  
the maximum is not guaranteed. Stress beyond these ratings may affect device reliability  
or cause permanent damage to the device.  
Unless otherwise stated, all specifications within this chapter apply to the temperature  
range specified in Table 4 over the following supply ranges: VSS=VSSA=0V,  
VDD=VDDA=3.0V to 3.6V, CL≤50 pF, fOP=100MHz.  
MC56F836xx, Rev. 1.6, 09/2019  
22  
NXP Semiconductors  
General  
CAUTION  
This device contains protective circuitry to guard against  
damage due to high static voltage or electrical fields. However,  
normal precautions are advised to avoid application of any  
voltages higher than maximum-rated voltages to this high-  
impedance circuit. Reliability of operation is enhanced if  
unused inputs are tied to an appropriate voltage level.  
6.2 AC electrical characteristics  
Tests are conducted using the input levels specified in Table 7. Unless otherwise  
specified, propagation delays are measured from the 50% to the 50% point, and rise and  
fall times are measured between the 10% and 90% points, as shown in Figure 3.  
Low  
High  
V
IH  
90%  
50%  
10%  
Midpoint1  
Fall Time  
Input Signal  
V
IL  
Rise Time  
The midpoint is V + (V – V )/2.  
IL  
IH  
IL  
Figure 3. Input signal measurement references  
Figure 4 shows the definitions of the following signal states:  
• Active state, when a bus or signal is driven, and enters a low impedance state  
• Tri-stated, when a bus or signal is placed in a high impedance state  
• Data Valid state, when a signal level has reached VOL or VOH  
• Data Invalid state, when a signal level is in transition between VOL and VOH  
Data1 Valid  
Data1  
Data2 Valid  
Data2  
Data3 Valid  
Data3  
Data  
Data Invalid State  
Tri-stated  
Data Active  
Data Active  
Figure 4. Signal states  
6.3 Nonswitching electrical specifications  
MC56F836xx, Rev. 1.6, 09/2019  
NXP Semiconductors  
23  
General  
6.3.1 Voltage and current operating requirements  
This section includes information about recommended operating conditions.  
NOTE  
Recommended VDD ramp rate is monotonically and greater  
than 100 μs.  
Table 5. Recommended Operating Conditions (VREFLx=0V, VSSA=0V, VSS=0V)  
Characteristic  
Symbol  
VDD, VDDA  
VREFHA  
VREFHB  
ΔVDD  
ΔVSS  
Notes1  
Min  
Typ  
Max  
3.6  
Unit  
V
Supply voltage  
2.7  
3.3  
ADC (Cyclic) Reference Voltage High  
VDDA  
V
Voltage difference VDD to VDDA  
Voltage difference VSS to VSSA  
Input Voltage High (digital inputs)  
RESET Input Voltage High  
-0.2  
0
0
0.2  
0.2  
V
V
V
V
V
V
-0.2  
VIH  
Pin Group 1  
Pin Group 2  
0.7 x VDD  
0.7 x VDD  
5.5  
VIH_RESET  
VIL  
VDD  
Input Voltage Low (digital inputs)  
Oscillator Input Voltage High  
XTAL driven by an external clock source  
Oscillator Input Voltage Low  
Pin Groups 1, 2  
Pin Group 4  
0.3 x VDD  
VDD + 0.3  
VIHOSC  
2.0  
VILOSC  
IOH  
Pin Group 4  
-0.3  
0.8  
V
Output Source Current High (at VOH min.)  
• Programmed for low drive strength  
Pin Group 1  
Pin Group 1  
-2  
-9  
mA  
• Programmed for high drive strength  
Output Source Current Low (at VOL max.)2, 3  
• Programmed for low drive strength  
IOL  
Pin Groups 1, 2  
Pin Groups 1, 2  
2
9
mA  
• Programmed for high drive strength  
1. Default Mode  
• Pin Group 1: GPIO, TDI, TDO, TMS, TCK  
• Pin Group 2: RESET  
• Pin Group 3: ADC and Comparator Analog Inputs  
• Pin Group 4: XTAL, EXTAL  
2. Total IO sink current and total IO source current are limited to 75 mA each  
3. Contiguous pin DC injection current of regional limit—including sum of negative injection currents or sum of positive  
injection currents of 16 contiguous pins—is 25 mA.  
6.3.2 LVD and POR operating requirements  
Table 6. PMC Low-Voltage Detection (LVD) and Power-On Reset (POR) Parameters  
Characteristic  
Symbol  
POR  
Min  
Typ  
2.0  
Max  
Unit  
V
POR Assert Voltage1  
POR Release Voltage2  
LVI_2p7 Threshold Voltage  
POR  
2.7  
2.73 3  
V
V
Table continues on the next page...  
MC56F836xx, Rev. 1.6, 09/2019  
24  
NXP Semiconductors  
General  
Table 6. PMC Low-Voltage Detection (LVD) and Power-On Reset (POR) Parameters  
(continued)  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
LVI_2p2 Threshold Voltage  
2.23 3  
V
1. During 3.3-volt VDD power supply ramp down  
2. During 3.3-volt VDD power supply ramp up (gated by LVI_2p7)  
3. Value is based on the fact that the bandgap is trimmed.  
6.3.3 Voltage and current operating behaviors  
The following table provides information about power supply requirements and I/O pin  
characteristics.  
Table 7. DC Electrical Characteristics at Recommended Operating Conditions  
Characteristic  
Output Voltage High  
Output Voltage Low  
Symbol  
VOH  
Notes 1  
Min  
VDD - 0.5  
Typ  
Max  
Unit  
V
Test Conditions  
IOH = IOHmax  
Pin Group 1  
VOL  
Pin Groups  
1, 2  
0.5  
V
IOL = IOLmax  
Digital Input Current High  
IIH  
Pin Group 1  
Pin Group 2  
0
+/- 2.5  
µA  
VIN = 2.4 V to 5.5 V  
VIN = 2.4 V to VDD  
pull-up enabled or  
disabled  
Comparator Input Current  
High  
IIHC  
IIHOSC  
IIL  
Pin Group 3  
Pin Group 3  
0
0
+/- 2  
+/- 2  
µA  
µA  
µA  
VIN = VDDA  
VIN = VDDA  
VIN = 0V  
Oscillator Input Current  
High  
Digital Input Current Low  
Pin Groups  
1, 2  
0
+/- 0.5  
2, 3  
pull-up disabled  
Internal Pull-Up  
Resistance  
RPull-Up  
RPull-Down  
IILC  
20  
20  
0
50  
kΩ  
kΩ  
µA  
µA  
µA  
Internal Pull-Down  
Resistance  
50  
Comparator Input Current  
Low  
Pin Group 3  
Pin Group 3  
+/- 2  
+/- 2  
+/- 1  
VIN = 0V  
VIN = 0V  
Oscillator Input Current  
Low  
Output Current 2, 3  
IILOSC  
IOZ  
0
Pin Groups  
1, 2  
0
High Impedance State  
Schmitt Trigger Input  
Hysteresis  
VHYS  
Pin Groups 0.06 × VDD  
1, 2  
V
1. Default Mode  
• Pin Group 1: GPIO, TDI, TDO, TMS, TCK  
• Pin Group 2: RESET  
MC56F836xx, Rev. 1.6, 09/2019  
NXP Semiconductors  
25  
General  
• Pin Group 3: ADC and Comparator Analog Inputs  
• Pin Group 4: XTAL, EXTAL  
2. See the following figure "IIN/IOZ vs. VIN (typical; pull-up & pull-down disabled) (design simulation)" .  
3. To minimize the excessive leakage ( > 1 μA) current from digital pin, input signal should NOT stay between 1.1 V and 0.9  
× VDD for prolonged time.  
V (volt)  
Figure 5. IIN/IOZ vs. VIN (typical; pull-up & pull-down disabled) (design simulation)  
6.3.4 Power mode transition operating behaviors  
Parameters listed are guaranteed by design.  
NOTE  
All address and data buses described here are internal.  
Table 8. Reset, stop, wait, and interrupt timing  
Characteristic  
Symbol  
Typical Min  
Typical  
Max  
Unit  
See  
Figure  
Minimum RESET Assertion Duration  
tRA  
tRDA  
tIF  
16 1  
865 × TOSC + 8 × T  
361.3  
ns  
ns  
ns  
RESET deassertion to First Address Fetch  
Delay from Interrupt Assertion to Fetch of first  
instruction (exiting Stop)  
570.9  
1. If the RESET pin filter is enabled by setting the RST_FLT bit in the SIM_CTRL register to 1, the minimum pulse assertion  
must be greater than 21 ns. Recommended a capacitor of up to 0.1 µF on RESET.  
MC56F836xx, Rev. 1.6, 09/2019  
26  
NXP Semiconductors  
General  
NOTE  
In Table 8, T = system clock cycle and TOSC = oscillator clock  
cycle. For an operating frequency of 100MHz, T=10 ns. At 4  
MHz (used coming out of reset and stop modes), T=250 ns.  
Table 9. Power mode transition behavior  
Symbol  
Description  
Typical  
Max  
Unit Notes1  
TPOR  
After a POR event, the amount of delay from when VDD reaches  
2.7 V to when the first instruction executes (over the operating  
temperature range).  
430  
495  
µs  
STOP mode to RUN mode  
LPS mode to LPRUN mode  
VLPS mode to VLPRUN mode  
WAIT mode to RUN mode  
8.61  
358  
9.90  
411  
µs  
µs  
µs  
µs  
µs  
µs  
2
3
4
5
3
4
1090  
0.347  
351  
1254  
0.399  
404  
LPWAIT mode to LPRUN mode  
VLPWAIT mode to VLPRUN mode  
1070  
1231  
1. Wakeup times are measured from GPIO toggle for wakeup till GPIO toggle at the wakeup interrupt subroutine from  
respective stop/wait mode.  
2. Clock configuration: CPU clock=4 MHz. System clock source is from 48 MHz/6 in normal mode.  
3. CPU clock = 100 kHz . Exit by an interrupt on PORTA GPIO.  
4. Using 64 kHz external clock; CPU Clock = 32 kHz. Exit by an interrupt on PORTA GPIO.  
5. Clock configuration: CPU and system clocks= 100 MHz. Bus Clock = 100 MHz. Exit by interrupt on PORTA GPIO  
6.3.5 Power consumption operating behaviors  
Table 10. Current Consumption (mA)  
Mode  
Maximum  
Frequency  
Conditions1  
Typical at  
3.3 V, 25 °C  
Maximum  
at 3.6 V,  
105 °C  
1
1
IDD  
IDDA IDD  
6.1  
IDDA  
RUN  
100 MHz  
• 100 MHz Core and Peripheral clock  
• Regulators are in full regulation  
• Internal Oscillator on  
46.7  
65.6  
8.8  
• PLL powered on  
• Continuous MAC instructions with fetches from Program  
Flash  
• All peripheral modules enabled.  
• ADC/DAC ( all 8-bit DACs) powered on and clocked  
• Comparator powered on  
WAIT  
100 MHz  
• 100 MHz Core and Peripheral clock  
• Regulators are in full regulation  
• Internal Oscillator on  
21.8  
37.5  
• PLL powered on  
• Processor Core in WAIT state  
• All Peripheral modules enabled.  
• ADC/Comparator powered off  
Table continues on the next page...  
MC56F836xx, Rev. 1.6, 09/2019  
NXP Semiconductors  
27  
General  
Table 10. Current Consumption (mA) (continued)  
Mode  
Maximum  
Frequency  
Conditions1  
Typical at  
3.3 V, 25 °C  
Maximum  
at 3.6 V,  
105 °C  
1
1
IDD  
IDDA IDD  
IDDA  
STOP  
4 MHz  
• 4 MHz Core and Peripheral clock  
• Regulators are in full regulation  
• Internal Oscillator on  
5.2  
20.0  
• PLL powered off  
• Processor Core in STOP state  
• All peripheral module and core clocks are off  
• ADC/Comparator powered off  
LPRUN  
2 MHz  
• 100 kHz Core and Peripheral clock from Relaxation  
Oscillator's (ROSC) low speed clock  
• 48 MHz Internal Oscillator disabled  
• Regulators are in standby  
1.1  
15.0  
• PLL disabled  
• Repeat NOP instructions  
• All peripheral modules enabled, except cyclic ADCs. all 8-  
bit DACs enabled.  
• Simple loop with running from platform instruction buffer  
LPWAIT  
LPSTOP  
VLPRUN  
2 MHz  
• 100 kHz Core and Peripheral clock from Relaxation  
Oscillator's (ROSC) low speed clock  
• 48 MHz Internal Oscillator disabled  
• Regulators are in standby  
• PLL disabled  
• All peripheral modules enabled, except cyclic ADCs. all 8-  
bit DACs enabled.  
1.1  
1.0  
0.6  
15.0  
14.0  
12.0  
• Processor core in wait mode  
2 MHz  
• 100 kHz Core and Peripheral clock from Relaxation  
Oscillator's (ROSC) low speed clock  
• 48 MHz Internal Oscillator disabled  
• Regulators are in standby  
• PLL disabled  
• Only PITs and COP enabled; other peripheral modules  
disabled and clocks gated off  
• Processor core in stop mode  
200 kHz  
• 32 kHz Core and Peripheral clock from a 64 kHz external  
clock source  
• Oscillator in power down  
• All ROSCs disabled  
• Large regulator is in standby  
• Small regulator is disabled  
• PLL disabled  
• Repeat NOP instructions  
• All peripheral modules, except COP and EWM, disabled  
and clocks gated off  
• Simple loop running from platform instruction buffer  
VLPWAIT  
200 kHz  
• 32 kHz Core and Peripheral clock from a 64 kHz external  
clock source  
0.6  
12.0  
• Oscillator in power down  
• All ROSCs disabled  
• Large regulator is in standby  
• Small regulator is disabled  
• PLL disabled  
Table continues on the next page...  
MC56F836xx, Rev. 1.6, 09/2019  
28  
NXP Semiconductors  
General  
Table 10. Current Consumption (mA) (continued)  
Mode  
Maximum  
Frequency  
Conditions1  
Typical at  
3.3 V, 25 °C  
Maximum  
at 3.6 V,  
105 °C  
1
1
IDD  
IDDA IDD  
IDDA  
• All peripheral modules, except COP, disabled and clocks  
gated off  
• Processor core in wait mode  
VLPSTOP  
200 kHz  
• 32 kHz Core and Peripheral clock from a 64 kHz external  
clock source  
0.6  
12.0  
• Oscillator in power down  
• All ROSCs disabled  
• Large regulator is in standby.  
• Small regulator is disabled.  
• PLL disabled  
• All peripheral modules, except COP, disabled and clocks  
gated off  
• Processor core in stop mode  
1. No output switching, all ports configured as inputs, all inputs low, no DC loads.  
6.3.6 Designing with radiated emissions in mind  
To find application notes that provide guidance on designing your system to minimize  
interference from radiated emissions:  
1. Go to www.nxp.com.  
2. Perform a keyword search for “EMC design.”  
6.3.7 Capacitance attributes  
Table 11. Capacitance attributes  
Description  
Symbol  
CIN  
Min.  
Typ.  
10  
Max.  
Unit  
pF  
Input capacitance  
Output capacitance  
COUT  
10  
pF  
6.4 Switching specifications  
MC56F836xx, Rev. 1.6, 09/2019  
NXP Semiconductors  
29  
General  
6.4.1 Device clock specifications  
Table 12. Device clock specifications  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
Normal run mode  
fSYSCLK  
Device (system and core) clock frequency  
• using relaxation oscillator  
0.001  
0
100  
100  
100  
MHz  
MHz  
• using external clock source  
fBUS  
Bus clock  
6.4.2 General switching timing  
Table 13. Switching timing  
Symbol Description  
GPIO pin interrupt pulse width1  
Min  
Max  
Unit  
Notes  
1.5  
IP Bus  
Clock  
Cycles  
2
Synchronous path  
Port rise and fall time (high drive strength), slew disabled,  
2.7V ≤ VDD ≤ 3.6V  
5.5  
1.5  
8.2  
3.2  
15.1  
6.8  
ns  
ns  
ns  
ns  
3
4
3
4
Port rise and fall time (high drive strength), slew enabled,  
2.7V ≤ VDD ≤ 3.6V  
Port rise and fall time (low drive strength), slew disabled, 2.7V  
≤ VDD ≤ 3.6V  
17.8  
9.2  
Port rise and fall time (low drive strength), slew enabled, 2.7V  
≤ VDD ≤ 3.6V  
1. Applies to a pin only when it is configured as GPIO and configured to cause an interrupt by appropriately programming  
GPIOn_IPOLR and GPIOn_IENR.  
2. The greater synchronous and asynchronous timing must be met.  
3. 75 pF load  
4. 15 pF load  
6.5 Thermal specifications  
6.5.1 Thermal operating requirements  
Table 14. Thermal operating requirements  
Symbol  
TJ  
Description  
Grade  
Min  
–40  
–40  
Max  
125  
105  
Unit  
°C  
Die junction temperature  
Ambient temperature  
V
V
TA  
°C  
MC56F836xx, Rev. 1.6, 09/2019  
30  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
6.5.2 Thermal attributes  
This section provides information about operating temperature range, power dissipation,  
and package thermal resistance. Power dissipation on I/O pins is usually small compared  
to the power dissipation in on-chip logic and voltage regulator circuits, and it is user-  
determined rather than being controlled by the MCU design. To account for PI/O in power  
calculations, determine the difference between actual pin voltage and VSS or VDD and  
multiply by the pin current for each I/O pin. Except in cases of unusually high pin current  
(heavy loads), the difference between pin voltage and VSS or VDD is very small.  
See Thermal design considerations for more detail on thermal design considerations.  
Board type  
Symbol  
Description  
64 LQFP  
80 LQFP  
100 LQFP  
Unit  
Notes  
1
Four-layer  
(2s2p)  
RθJA  
Thermal  
44  
42  
46  
°C/W  
2
2
resistance,  
junction to  
ambient  
(natural  
convection)  
Single-layer  
(1s)  
RθJC  
Thermal  
resistance,  
junction to  
case  
14  
13  
16  
°C/W  
°C/W  
ΨJT  
Thermal  
1.2  
1.0  
1.4  
characterizati  
on parameter,  
junction to  
package top  
outside  
center  
(natural  
convection)  
1. Thermal test board meets JEDEC specification for this package (JESD51-9).  
2. Determined in accordance to JEDEC JESD51-2A natural convection environment. Thermal resistance data in this report is  
solely for a thermal performance comparison of one package to another in a standardized specified environment. It is not  
meant to predict the performance of a package in an application-specific environment.  
7 Peripheral operating requirements and behaviors  
7.1 Core modules  
MC56F836xx, Rev. 1.6, 09/2019  
NXP Semiconductors  
31  
Peripheral operating requirements and behaviors  
7.1.1 JTAG timing  
Table 15. JTAG timing  
Characteristic  
Symbol  
Min  
Max  
Unit  
See  
Figure  
TCK frequency of operation  
TCK clock pulse width  
fOP  
tPW  
tDS  
tDH  
tDV  
tTS  
DC  
50  
5
SYS_CLK/16  
MHz  
ns  
Figure 6  
Figure 6  
Figure 7  
Figure 7  
Figure 7  
Figure 7  
30  
30  
TMS, TDI data set-up time  
TMS, TDI data hold time  
TCK low to TDO data valid  
TCK low to TDO tri-state  
ns  
5
ns  
ns  
ns  
1/f  
OP  
t
t
PW  
PW  
V
IH  
V
V
V
M
M
TCK  
(Input)  
IL  
V
= V + (V – V )/2  
IL IH IL  
M
Figure 6. Test clock input timing diagram  
TCK  
(Input)  
t
t
DH  
DS  
TDI  
TMS  
Input Data Valid  
(Input)  
t
DV  
TDO  
(Output)  
Output Data Valid  
t
TS  
TDO  
(Output)  
Figure 7. Test access port timing diagram  
MC56F836xx, Rev. 1.6, 09/2019  
32  
NXP Semiconductors  
System modules  
7.2 System modules  
7.2.1 Voltage regulator specifications  
The voltage regulator supplies approximately 1.2 V to the device's core logic. For proper  
operations, the voltage regulator requires using at minimum 4.4 µF capacitors in total on  
each VCAP pin. Ceramic and tantalum capacitors tend to provide better performance  
tolerances. The output voltage can be measured directly on the VCAP pin. The  
specifications for this regulator are shown in Table 16.  
Table 16. Regulator 1.2 V parameters  
Characteristic  
Output Voltage 1  
Short Circuit Current 2  
Symbol  
VCAP  
ISS  
Min  
1.08  
Typ  
1.22  
600  
Max  
1.32  
Unit  
V
mA  
Short Circuit Tolerance (VCAP shorted to ground)  
TRSC  
1
minute  
1. Value is after trim  
2. Guaranteed by design  
Table 17. Bandgap electrical specifications  
Characteristic  
Reference Voltage (after trim)  
Symbol  
Min  
Typ  
Max  
Unit  
VREF  
1.221  
V
1. Typical value is trimmed at 25. There could be 50 mV variation due to temperature change.  
7.3 Clock modules  
7.3.1 External clock operation timing  
Parameters listed are guaranteed by design.  
Table 18. External clock operation timing requirements  
Characteristic  
Symbol  
fosc  
Min  
Typ  
Max  
Unit  
MHz  
ns  
Frequency of operation (external clock driver)1  
Clock pulse width2  
External clock input rise time3  
50  
tPW  
8
trise  
1
ns  
External clock input fall time4  
tfall  
1
ns  
Input high voltage overdrive by an external clock  
Input low voltage overdrive by an external clock  
Vih  
0.7×VDD  
V
Vil  
0.3×VDD  
V
MC56F836xx, Rev. 1.6, 09/2019  
NXP Semiconductors  
33  
System modules  
1. See the "External clock timing" figure for details on using the recommended connection of an external clock driver.  
2. The chip may not function if the high or low pulse width is smaller than 6.25 ns.  
3. External clock input rise time is measured from 10% to 90%.  
4. External clock input fall time is measured from 90% to 10%.  
V
IH  
External  
Clock  
90%  
50%  
10%  
90%  
50%  
10%  
t
V
IL  
t
fall  
rise  
t
t
PW  
PW  
Note: The midpoint is V + (V – V )/2.  
IL  
IH  
IL  
Figure 8. External clock timing  
7.3.2 Phase-Locked Loop timing  
Table 19. Phase-Locked Loop timing  
Characteristic  
PLL input reference frequency1  
PLL output frequency2  
Symbol  
fref  
Min  
8
Typ  
8
Max  
Unit  
MHz  
MHz  
µs  
16  
450  
81  
fop  
150  
30  
PLL lock time3  
tplls  
Allowed Duty Cycle of input reference  
tdc  
40  
50  
60  
%
1. An externally supplied reference clock should be as free as possible from any phase jitter for the PLL to work correctly.  
The PLL is optimized for 8 MHz input.  
2. The frequency of the core system clock cannot exceed 100 MHz.  
3. This is the time required after the PLL is enabled to ensure reliable operation.  
7.3.3 External crystal or resonator requirement  
Table 20. Crystal or resonator requirement  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Frequency of operation  
fXOSC  
4
8
16  
MHz  
7.3.4 200 kHz RC Oscillator Timing  
Table 21. 200 kHz RC Oscillator Oscillator Electrical Specifications  
Characteristic  
Symbol  
Min  
193  
48  
Typ  
Max  
206  
52  
Unit  
200 kHz Output Frequency1  
TA: -40°C to 105°C  
200 kHz output  
200  
10  
kHz  
µs  
Stabilization Time  
Output Duty Cycle  
tstab  
50  
%
MC56F836xx, Rev. 1.6, 09/2019  
34  
NXP Semiconductors  
System modules  
1. Frequency after factory trim  
7.3.5 IRC48M specifications  
Table 22. IRC48M specifications  
Symbol  
VDD  
Description  
Min.  
2.7  
Typ.  
Max.  
3.6  
Unit  
V
Notes  
Supply voltage  
IDD48M  
firc48m  
Supply current  
400  
48  
500  
μA  
Internal reference frequency  
MHz  
Δfirc48m_ol_hv Open loop total deviation of IRC48M frequency over  
temperature  
0.5  
1.0  
0.1  
%firc48m  
• Regulator enable  
(USB_CLK_RECOVER_IRC_EN[REG_EN]=1)  
Δfirc48m_cl Closed loop total deviation of IRC48M frequency over  
%fhost  
1
2
voltage and temperature  
Jcyc_irc48m Period Jitter (RMS)  
35  
2
150  
3
ps  
μs  
tirc48mst  
Startup time  
1. Closed loop operation of the IRC48M is only feasible for USB device operation; it is not usable for USB host operation. It is  
enabled by configuring for USB Device, selecting IRC48M as USB clock source, and enabling the clock recover function  
(USB_CLK_RECOVER_CTRL[CLOCK_RECOVER_EN]=1, USB_CLK_RECOVER_IRC_EN[IRC_EN]=1). Only applicable  
to devices/packages that contain USB.  
2. IRC48M startup time is defined as the time between clock enablement and clock availability for system use. Enable the  
clock by setting:  
• USB_CLK_RECOVER_IRC_EN[IRC_EN]=1  
7.4 Memories and memory interfaces  
7.4.1 Flash (FTFE) electrical specifications  
This section describes the electrical characteristics of the FTFE module.  
7.4.1.1 Flash timing specifications — program and erase  
The following specifications represent the amount of time the internal charge pumps are  
active and do not include command overhead.  
Table 23. NVM program/erase timing specifications  
Symbol Description  
Min.  
Typ.  
7.5  
Max.  
18  
Unit  
μs  
Notes  
thvpgm8  
Program Phrase high-voltage time  
thversscr Erase Flash Sector high-voltage time  
thversblk128k Erase Flash Block high-voltage time for 128 KB  
13  
113  
904  
ms  
ms  
1
1
104  
MC56F836xx, Rev. 1.6, 09/2019  
NXP Semiconductors  
35  
System modules  
1. Maximum time based on expectations at cycling end-of-life.  
7.4.1.2 Flash timing specifications — commands  
Table 24. Flash command timing specifications  
Symbol Description  
Read 1s Block execution time  
• 256 KB program flash  
Min.  
Typ.  
Max.  
Unit  
Notes  
trd1blk1k  
1.0  
ms  
trd1sec2k Read 1s Section execution time (2 KB flash)  
90  
75  
95  
μs  
μs  
μs  
μs  
1
1
1
tpgmchk  
trdrsrc  
Program Check execution time  
Read Resource execution time  
Program Phrase execution time  
Erase Flash Block execution time  
• 128 KB program flash  
40  
tpgm8  
150  
2
tersblk128k  
110  
925  
ms  
tersscr  
trd1all  
Erase Flash Sector execution time  
Read 1s All Blocks execution time  
Read Once execution time  
15  
115  
2.6  
ms  
ms  
μs  
2
1
trdonce  
30  
tpgmonce Program Once execution time  
90  
μs  
tersall  
tvfykey  
tersallu  
Erase All Blocks execution time  
225  
1850  
30  
ms  
μs  
2
1
2
Verify Backdoor Access Key execution time  
Erase All Blocks Unsecure execution time  
225  
1850  
ms  
1. Assumes 25MHz or greater flash clock frequency.  
2. Maximum times for erase parameters based on expectations at cycling end-of-life.  
7.4.1.3 Flash high voltage current behaviors  
Table 25. Flash high voltage current behaviors  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
IDD_PGM  
Average current adder during high voltage flash  
programming operation  
3.5  
7.5  
mA  
IDD_ERS  
Average current adder during high voltage flash  
erase operation  
1.5  
4.0  
mA  
7.4.1.4 Reliability specifications  
Table 26. NVM reliability specifications  
Symbol Description  
Min.  
Typ.1  
Max.  
Unit  
Notes  
Program Flash  
tnvmretp10k Data retention after up to 10 K cycles  
tnvmretp1k Data retention after up to 1 K cycles  
nnvmcycp Cycling endurance  
5
50  
years  
years  
cycles  
20  
100  
50 K  
10 K  
2
MC56F836xx, Rev. 1.6, 09/2019  
36  
NXP Semiconductors  
System modules  
1. Typical data retention values are based on measured response accelerated at high temperature and derated to a constant  
25 °C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering  
Bulletin EB619.  
2. Cycling endurance represents number of program/erase cycles at -40 °C ≤ Tj ≤ 125 °C.  
7.5 Analog  
7.5.1 12-bit Cyclic Analog-to-Digital Converter (ADC) Parameters  
Table 27. 12-bit ADC Electrical Specifications  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Recommended Operating Conditions  
Supply Voltage1  
VDDA  
Vrefhx  
fADCCLK  
RAD  
3
3.3  
3.6  
VDDA  
25  
V
V
VREFH (in external reference mode)  
ADC Conversion Clock2  
Conversion Range3  
VDDA-0.6  
0.6  
MHz  
V
VREFH – VREFL  
VREFH  
Fully Differential  
– (VREFH – VREFL  
VREFL  
)
Single Ended/Unipolar  
Input Voltage Range (per input)4  
External Reference  
VADIN  
V
VREFL  
VSSA  
VREFH  
VDDA  
Internal Reference  
Timing and Power  
Conversion Time5  
tADC  
8
ADC Clock  
Cycles  
ADC Power-Up Time (from adc_pdn)  
ADC RUN Current (per ADC block)  
tADPU  
60  
ADC Clock  
Cycles  
IADRUN  
2.45  
0.1  
mA  
µA  
ADC Powerdown Current (adc_pdn  
enabled)  
IADPWRDWN  
VREFH Current (in external mode)  
Accuracy (DC or Absolute)  
Integral non-Linearity6  
Differential non-Linearity6  
Monotonicity  
IVREFH  
190  
225  
µA  
INL  
1.5  
0.6  
2.2  
0.8  
LSB7  
LSB7  
DNL  
GUARANTEED  
Offset8  
VOFFSET  
mV  
5
5
Fully Differential  
Single Ended/Unipolar  
Gain Error  
EGAIN  
SNR  
0.996 to  
1.004  
0.990 to 1.010  
AC Specifications9  
Signal to Noise Ratio  
68  
dB  
Table continues on the next page...  
MC56F836xx, Rev. 1.6, 09/2019  
NXP Semiconductors  
37  
System modules  
Table 27. 12-bit ADC Electrical Specifications (continued)  
Characteristic  
Symbol  
THD  
Min  
Typ  
71  
Max  
Unit  
dB  
Total Harmonic Distortion  
Spurious Free Dynamic Range  
Signal to Noise plus Distortion  
Effective Number of Bits  
Gain = 1x (Fully Differential)  
Gain = 2x (Fully Differential)  
Gain = 4x (Fully Differential)  
Gain = 1x (Single Ended/Unipolar)  
Gain = 2x (Single Ended/Unipolar)  
Gain = 4x (Single Ended/Unipolar)  
Variation across channels10  
ADC Inputs  
SFDR  
SINAD  
ENOB  
72  
dB  
66  
dB  
bits  
10.7  
10.3  
9.9  
10.2  
10.0  
9.7  
0.1  
Input Leakage Current  
Temperature sensor slope  
Temperature sensor voltage at 25 °C  
Disturbance  
IIN  
1
nA  
mV/°C  
V
TSLOPE  
VTEMP25  
-2.96  
1.59  
Input Injection Current 11  
Channel to Channel Crosstalk12  
Memory Crosstalk13  
IINJ  
3
mA  
dB  
dB  
pF  
ISOXTLK  
MEMXTLK  
CADI  
-82  
-71  
Input Capacitance  
1.2  
2.4  
4.8  
Sampling Capacitor  
• 1x mode  
• 2x mode  
• 4x mode  
1. The ADC functions up to VDDA = 2.7 V. When VDDA is below 3.0 V, ADC specifications are not guaranteed  
2. ADC clock duty cycle is 45% ~ 55%  
3. Conversion range is defined for x1 gain setting. For x2 and x4 the range is 1/2 and 1/4, respectively.  
4. In unipolar mode, positive input must be ensured to be always greater than negative input.  
5. First conversion takes 10 clock cycles.  
6. INL/DNL is measured from VIN = VREFL to VIN = VREFH using Histogram method at x1 gain setting  
7. Least Significant Bit = 0.806 mV at 3.3 V VDDA, x1 gain Setting  
8. Offset measured at 2048 code  
9. Measured converting a 1 kHz input full scale sine wave; the measurement mode is Gain = 1x (Fully Differential).  
10. When code runs from internal RAM  
11. The current that can be injected into or sourced from an unselected ADC input without affecting the performance of the  
ADC  
12. Any off-channel with 50 kHz full-scale input to the channel being sampled with DC input (isolation crosstalk)  
13. From a previously sampled channel with 50 kHz full-scale input to the channel being sampled with DC input (memory  
crosstalk).  
MC56F836xx, Rev. 1.6, 09/2019  
38  
NXP Semiconductors  
System modules  
7.5.1.1 Equivalent circuit for ADC inputs  
The following figure shows the ADC input circuit during sample and hold. S1 and S2 are  
always opened/closed at non-overlapping phases, and both S1 and S2 are dependent on  
the ADC clock frequency. The following equation gives equivalent input impedance  
when the input is selected.  
1
+
ohm  
+Resistor  
50  
(ADC ClockRate) x CADI  
NOTE  
Resistor=1200 ohm@gain1×, or 730 ohm@gain2×, or 500  
ohm@gain4×  
C1  
Channel Mux  
equivalent resistance  
S1  
50 ESD  
Resistor  
Analog Input  
C1  
C1  
Resistor(value see the note)  
S1  
S1  
S/H  
1
2
S1  
S2  
S2  
(VREFHx - VREFLx ) / 2  
C1  
1. Parasitic capacitance due to package, pin-to-pin and pin-to-package base coupling =  
1.8pF  
2. Parasitic capacitance due to the chip bond pad, ESD protection devices and signal  
routing = 2.04pF  
3. S1 and S2 switch phases are non-overlapping and depend on the ADC clock  
frequency  
S1  
S2  
Figure 9. Equivalent circuit for A/D loading  
MC56F836xx, Rev. 1.6, 09/2019  
NXP Semiconductors  
39  
System modules  
7.5.2 CMP and 8-bit DAC electrical specifications  
Table 28. Comparator and 8-bit DAC electrical specifications  
Symbol  
VDD  
Description  
Min.  
3.0  
Typ.  
Max.  
3.6  
Unit  
V
Supply voltage  
IDDHS  
IDDLS  
VAIN  
Supply current, high-speed mode (EN=1, PMODE=1)  
Supply current, low-speed mode (EN=1, PMODE=0)  
Analog input voltage  
300  
36  
μA  
μA  
V
VSS  
VDD  
20  
VAIO  
Analog input offset voltage  
Analog comparator hysteresis  
• CR0[HYSTCTR] = 001  
mV  
VH  
5
13  
48  
mV  
mV  
mV  
mV  
• CR0[HYSTCTR] = 012  
25  
55  
80  
• CR0[HYSTCTR] = 102  
105  
148  
• CR0[HYSTCTR] = 112  
VCMPOh  
VCMPOl  
tDHS  
Output high  
Output low  
VDD – 0.5  
25  
0.5  
70  
V
V
Propagation delay, high-speed mode (EN=1,  
PMODE=1)3  
ns  
tDLS  
Propagation delay, low-speed mode (EN=1,  
PMODE=0)3  
60  
200  
ns  
Analog comparator initialization delay4  
40  
7
μs  
μA  
V
IDAC8b  
8-bit DAC current adder (enabled)  
Vreference 8-bit DAC reference inputs, Vin1 and Vin2  
VDD  
There are two reference input options selectable (via  
VRSEL control bit). The reference options must fall  
within this range.  
INL  
8-bit DAC integral non-linearity  
8-bit DAC differential non-linearity  
–1  
–1  
1
1
LSB5  
LSB  
DNL  
1. Measured with input voltage range limited to 0 to VDD  
2. Measured with input voltage range limited to 0.7≤Vin≤VDD-0.8  
3. Input voltage range: 0.1VDD≤Vin≤0.9VDD, step = 100mV, across all temperature. Does not include PCB and PAD delay.  
4. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to DACEN,  
VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level.  
5. 1 LSB = Vreference/256  
MC56F836xx, Rev. 1.6, 09/2019  
40  
NXP Semiconductors  
System modules  
Figure 10. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0)  
Figure 11. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1)  
MC56F836xx, Rev. 1.6, 09/2019  
NXP Semiconductors  
41  
PWMs and timers  
7.6 PWMs and timers  
7.6.1 PWM characteristics  
Table 29. PWM timing parameters  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
MHz  
ns  
PWM clock frequency  
100  
Delay for fault input activating to PWM output deactivated  
1
33  
7.6.2 Quad Timer timing  
Parameters listed are guaranteed by design.  
Table 30. Timer timing  
Characteristic  
Timer input period  
Symbol  
PIN  
Min1  
2T + 6  
1T + 3  
20  
Max  
Unit  
ns  
See Figure  
Figure 12  
Figure 12  
Figure 12  
Figure 12  
Timer input high/low period  
Timer output period  
PINHL  
POUT  
ns  
ns  
Timer output high/low period  
POUTHL  
10  
ns  
1. T = clock cycle. For 100 MHz operation, T = 10 ns.  
Timer Inputs  
P
P
INHL  
INHL  
P
IN  
Timer Outputs  
P
P
OUTHL  
OUTHL  
P
OUT  
Figure 12. Timer timing  
7.7 Communication interfaces  
MC56F836xx, Rev. 1.6, 09/2019  
42  
NXP Semiconductors  
PWMs and timers  
7.7.1 Queued Serial Peripheral Interface (SPI) timing  
Parameters listed are guaranteed by design.  
Table 31. SPI timing  
Characteristic  
Cycle time  
Master  
Symbol  
Min  
Max  
Unit  
See Figure  
tC  
Figure 13  
Figure 14  
Figure 15  
Figure 16  
Figure 16  
35  
35  
ns  
ns  
Slave  
Enable lead time  
Master  
tELD  
tELG  
tCH  
ns  
ns  
17.5  
Slave  
Enable lag time  
Master  
Figure 16  
ns  
ns  
17.5  
Slave  
Clock (SCK) high time  
Master  
Figure 13  
Figure 14  
Figure 15  
Figure 16  
Figure 16  
16.6  
16.6  
ns  
ns  
Slave  
Clock (SCK) low time  
tCL  
16.6  
16.6  
ns  
ns  
Master  
Slave  
Data set-up time required for inputs  
tDS  
Figure 13  
Figure 14  
Figure 15  
Figure 16  
Figure 13  
Figure 14  
Figure 15  
Figure 16  
Figure 16  
16.5  
1
ns  
ns  
Master  
Slave  
Data hold time required for inputs  
tDH  
1
3
ns  
ns  
Master  
Slave  
Access time (time to data active  
from high-impedance state)  
tA  
5
5
ns  
ns  
Slave  
Disable time (hold time to high-  
impedance state)  
tD  
Figure 16  
Slave  
Data valid for outputs  
Master  
tDV  
Figure 13  
Figure 14  
Figure 15  
Figure 16  
5
ns  
ns  
15  
Slave (after enable edge)  
Table continues on the next page...  
MC56F836xx, Rev. 1.6, 09/2019  
NXP Semiconductors  
43  
PWMs and timers  
Table 31. SPI timing (continued)  
Characteristic  
Symbol  
Min  
Max  
Unit  
See Figure  
Figure 13  
Figure 14  
Figure 15  
Figure 16  
Figure 13  
Figure 14  
Figure 15  
Figure 16  
Figure 13  
Figure 14  
Figure 15  
Figure 16  
Data invalid  
Master  
tDI  
0
0
ns  
ns  
Slave  
Rise time  
Master  
Slave  
tR  
1
1
ns  
ns  
Fall time  
Master  
Slave  
tF  
1
1
ns  
ns  
SS  
(Input)  
SS is held high on master  
t
C
t
R
t
F
t
CL  
SCLK (CPOL = 0)  
(Output)  
t
CH  
t
F
t
R
t
CL  
SCLK (CPOL = 1)  
(Output)  
t
t
DH  
CH  
t
DS  
MISO  
(Input)  
MSB in  
t
Bits 14–1  
LSB in  
t (ref)  
DI  
t
DI  
DV  
MOSI  
(Output)  
Master MSB out  
Bits 14–1  
Master LSB out  
t
t
R
F
Figure 13. SPI master timing (CPHA = 0)  
MC56F836xx, Rev. 1.6, 09/2019  
44  
NXP Semiconductors  
PWMs and timers  
SS  
(Input)  
SS is held High on master  
t
C
t
F
t
R
t
CL  
SCLK (CPOL = 0)  
(Output)  
t
CH  
t
F
t
CL  
SCLK (CPOL = 1)  
(Output)  
t
CH  
t
DS  
t
R
t
DH  
MISO  
(Input)  
MSB in  
t
Bits 14–1  
LSB in  
t
(ref)  
DI  
t
DV  
t (ref)  
DV  
DI  
MOSI  
(Output)  
Master MSB out  
Bits 14– 1  
Master LSB out  
t
t
R
F
Figure 14. SPI master timing (CPHA = 1)  
SS  
(Input)  
t
C
t
F
t
ELG  
t
CL  
t
R
SCLK (CPOL = 0)  
(Input)  
t
CH  
t
ELD  
t
CL  
SCLK (CPOL = 1)  
(Input)  
t
CH  
t
F
t
t
A
R
t
D
MISO  
(Output)  
Slave MSB out  
Bits 14–1  
Slave LSB out  
t
t
DS  
DV  
t
t
DI  
DI  
t
DH  
MOSI  
(Input)  
MSB in  
Bits 14–1  
LSB in  
Figure 15. SPI slave timing (CPHA = 0)  
MC56F836xx, Rev. 1.6, 09/2019  
NXP Semiconductors  
45  
PWMs and timers  
SS  
(Input)  
t
F
t
C
t
R
t
CL  
SCLK (CPOL = 0)  
(Input)  
t
CH  
t
ELG  
t
ELD  
t
CL  
SCLK (CPOL = 1)  
(Input)  
t
t
DV  
CH  
t
R
t
t
D
t
A
F
MISO  
(Output)  
Slave MSB out  
Bits 14–1  
Slave LSB out  
t
t
DV  
DS  
t
DI  
t
DH  
MOSI  
(Input)  
MSB in  
Bits 14–1  
LSB in  
Figure 16. SPI slave timing (CPHA = 1)  
7.7.2 Queued Serial Communication Interface (SCI) timing  
Parameters listed are guaranteed by design.  
Table 32. SCI timing  
Characteristic  
Baud rate1  
Symbol  
BR  
Min  
Max  
Unit  
Mbit/s  
μs  
See Figure  
(fMAX/16)  
1.04/BR  
1.04/BR  
RXD pulse width  
TXD pulse width  
RXDPW  
TXDPW  
0.965/BR  
0.965/BR  
Figure 17  
Figure 18  
μs  
LIN Slave Mode  
Deviation of slave node clock from nominal FTOL_UNSYNCH  
clock rate before synchronization  
-14  
14  
2
%
%
Deviation of slave node clock relative to  
the master node clock after  
synchronization  
FTOL_SYNCH  
-2  
Minimum break character length  
TBREAK  
13  
11  
Master  
node bit  
periods  
Slave node  
bit periods  
1. fMAX is the frequency of operation of the SCI clock in MHz, which can be selected as the bus clock (max.200 MHz  
depending on part number) or 2x bus clock (max. 200 MHz) for the devices.  
MC56F836xx, Rev. 1.6, 09/2019  
46  
NXP Semiconductors  
PWMs and timers  
RXD  
SCI receive  
data pin  
RXD  
PW  
(Input)  
Figure 17. RXD pulse width  
TXD  
SCI transmit  
data pin  
TXD  
PW  
(output)  
Figure 18. TXD pulse width  
7.7.3 Inter-Integrated Circuit Interface (I2C) timing  
Table 33. I 2C timing  
Characteristic  
Symbol  
Standard Mode  
Minimum Maximum  
100  
Fast Mode  
Minimum Maximum  
Unit  
SCL Clock Frequency  
fSCL  
0
0
400  
kHz  
µs  
Hold time (repeated) START condition.  
After this period, the first clock pulse is  
generated.  
tHD; STA  
4
0.6  
LOW period of the SCL clock  
HIGH period of the SCL clock  
tLOW  
tHIGH  
4.7  
4
1.3  
0.6  
0.6  
µs  
µs  
µs  
Set-up time for a repeated START  
condition  
tSU; STA  
4.7  
Data hold time for I2C bus devices  
tHD; DAT  
tSU; DAT  
tr  
01  
2504  
3.452  
03  
1002, 5  
0.91  
µs  
ns  
ns  
Data set-up time  
5,  
5,  
Rise time of SDA and SCL signals  
1000  
20 +0.1Cb  
300  
6
Fall time of SDA and SCL signals  
Set-up time for STOP condition  
tf  
300  
20 +0.1Cb  
300  
ns  
6
tSU; STO  
tBUF  
4
0.6  
1.3  
µs  
µs  
Bus free time between STOP and  
START condition  
4.7  
Pulse width of spikes that must be  
suppressed by the input filter  
tSP  
N/A  
N/A  
0
50  
ns  
1. The master mode I2C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves  
acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and SCL  
lines.  
2. The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal.  
3. Input signal Slew = 10 ns and Output Load = 50 pF.  
4. Set-up time in slave-transmitter mode is 1 IP Bus clock period, if the TX FIFO is empty.  
5. A Fast mode I2C bus device can be used in a Standard mode I2C bus system, but the requirement tSU; DAT ≥ 250 ns must  
then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a  
device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line trmax + tSU; DAT  
= 1000 + 250 = 1250 ns (according to the Standard mode I2C bus specification) before the SCL line is released.  
6. Cb = total capacitance of the one bus line in pF.  
MC56F836xx, Rev. 1.6, 09/2019  
NXP Semiconductors  
47  
Design Considerations  
SDA  
tSU; DAT  
tf  
tr  
tBUF  
tf  
tr  
tHD; STA  
tSP  
tLOW  
SCL  
tSU; STA  
tSU; STO  
HD; STA  
S
SR  
P
S
tHD; DAT  
tHIGH  
Figure 19. Timing definition for fast and standard mode devices on the I2C bus  
7.7.4 FlexCAN switching specifications  
See the "General switching timing" section.  
8 Design Considerations  
8.1 Thermal design considerations  
An estimate of the chip junction temperature (TJ) can be obtained from the equation:  
TJ = TA + (RΘJA × PD)  
where  
TA = Ambient temperature for the package (°C)  
RΘJA = Junction-to-ambient thermal resistance (°C/W)  
PD = Power dissipation in the package (W).  
The junction-to-ambient thermal resistance is an industry-standard value that provides a  
quick and easy estimation of thermal performance. Unfortunately, there are two values in  
common usage: the value determined on a single-layer board and the value obtained on a  
board with two planes. For packages such as the PBGA, these values can be different by  
a factor of two. Which TJ value is closer to the application depends on the power  
dissipated by other components on the board.  
• The TJ value obtained on a single layer board is appropriate for a tightly packed  
printed circuit board.  
• The TJ value obtained on a board with the internal planes is usually appropriate if the  
board has low-power dissipation and if the components are well separated.  
MC56F836xx, Rev. 1.6, 09/2019  
48  
NXP Semiconductors  
Design Considerations  
When a heat sink is used, the thermal resistance is expressed as the sum of a junction-to-  
case thermal resistance and a case-to-ambient thermal resistance:  
RΘJA = RΘJC + RΘCA  
where  
RΘJA = Package junction-to-ambient thermal resistance (°C/W)  
RΘJC = Package junction-to-case thermal resistance (°C/W)  
RΘCA = Package case-to-ambient thermal resistance (°C/W).  
RΘJC is device related and cannot be adjusted. You control the thermal environment to  
change the case to ambient thermal resistance, RΘCA. For instance, you can change the  
size of the heat sink, the air flow around the device, the interface material, the mounting  
arrangement on printed circuit board, or change the thermal dissipation on the printed  
circuit board surrounding the device.  
To determine the junction temperature of the device in the application when heat  
sinks are not used, the thermal characterization parameter (ΨJT) can be used to  
determine the junction temperature with a measurement of the temperature at the top  
center of the package case using the following equation:  
TJ = TT + (ΨJT × PD)  
where  
TT = Thermocouple temperature on top of package (°C/W)  
ΨJT = hermal characterization parameter (°C/W)  
PD = Power dissipation in package (W).  
The thermal characterization parameter is measured per JESD51–2 specification using a  
40-gauge type T thermocouple epoxied to the top center of the package case. The  
thermocouple should be positioned so that the thermocouple junction rests on the  
package. A small amount of epoxy is placed over the thermocouple junction and over  
about 1 mm of wire extending from the junction. The thermocouple wire is placed flat  
against the package case to avoid measurement errors caused by cooling effects of the  
thermocouple wire.  
To determine the junction temperature of the device in the application when heat  
sinks are used, the junction temperature is determined from a thermocouple inserted at  
the interface between the case of the package and the interface material. A clearance slot  
or hole is normally required in the heat sink. Minimizing the size of the clearance is  
important to minimize the change in thermal performance caused by removing part of the  
thermal interface to the heat sink. Because of the experimental difficulties with this  
technique, many engineers measure the heat sink temperature and then back-calculate the  
MC56F836xx, Rev. 1.6, 09/2019  
NXP Semiconductors  
49  
Design Considerations  
case temperature using a separate measurement of the thermal resistance of the interface.  
From this case temperature, the junction temperature is determined from the junction-to-  
case thermal resistance.  
8.2 Electrical design considerations  
CAUTION  
This device contains protective circuitry to guard against  
damage due to high static voltage or electrical fields. However,  
take normal precautions to avoid application of any voltages  
higher than maximum-rated voltages to this high-impedance  
circuit. Reliability of operation is enhanced if unused inputs are  
tied to an appropriate voltage level.  
Use the following list of considerations to assure correct operation of the device:  
• Provide a low-impedance path from the board power supply to each VDD pin on the  
device and from the board ground to each VSS (GND) pin.  
• The minimum bypass requirement is to place 0.01–0.1 µF capacitors positioned as  
near as possible to the package supply pins. The recommended bypass configuration  
is to place one bypass capacitor on each of the VDD/VSS pairs, including VDDA/VSSA  
Ceramic and tantalum capacitors tend to provide better tolerances.  
.
• Ensure that capacitor leads and associated printed circuit traces that connect to the  
chip VDD and VSS (GND) pins are as short as possible.  
• Bypass the VDD and VSS with approximately 100 µF, plus the number of 0.1 µF  
ceramic capacitors.  
• PCB trace lengths should be minimal for high-frequency signals.  
• Consider all device loads as well as parasitic capacitance due to PCB traces when  
calculating capacitance. This is especially critical in systems with higher capacitive  
loads that could create higher transient currents in the VDD and VSS circuits.  
• Take special care to minimize noise levels on the VREF, VDDA, and VSSA pins.  
• Using separate power planes for VDD and VDDA and separate ground planes for VSS  
and VSSA are recommended. Connect the separate analog and digital power and  
ground planes as near as possible to power supply outputs. If an analog circuit and  
digital circuit are powered by the same power supply, then connect a small inductor  
or ferrite bead in serial with VDDA. Traces of VSS and VSSA should be shorted  
together.  
• Physically separate analog components from noisy digital components by ground  
planes. Do not place an analog trace in parallel with digital traces. Place an analog  
ground trace around an analog signal trace to isolate it from digital traces.  
MC56F836xx, Rev. 1.6, 09/2019  
50  
NXP Semiconductors  
Design Considerations  
• Because the flash memory is programmed through the JTAG/EOnCE port, SPI, SCI,  
or I2C, the designer should provide an interface to this port if in-circuit flash  
programming is desired.  
• If desired, connect an external RC circuit to the RESET pin. The resistor value  
should be in the range of 4.7 kΩ–10 kΩ; the capacitor value should be in the range of  
0.1 µF–4.7 µF.  
• Configuring the RESET pin to GPIO output in normal operation in a high-noise  
environment may help to improve the performance of noise transient immunity.  
• Add a 2.2 kΩ external pullup on the TMS pin of the JTAG port to keep EOnCE in a  
reset state during normal operation if JTAG converter is not present. Furthermore,  
configure TMS, TDI, TDO and TCK to GPIO if operation environment is very noisy.  
• During reset and after reset but before I/O initialization, all the GPIO pins are at tri-  
state.  
• To eliminate PCB trace impedance effect, each ADC input should have a no less than  
33 pF 10Ω RC filter.  
8.3 Power-on Reset design considerations  
8.3.1 Improper power-up sequence between VDD/VSS and VDDA/  
VSSA:  
It is recommended that VDD be kept within 100 mV of VDDA at all times, including  
power ramp-up and ramp-down. Failure to keep VDD within 100 mV of VDDA may  
cause a leakage current through the substrate, between the VDD and VDDA pad cells.  
This leakage current could prevent operation of the device after it powers up. The voltage  
difference between VDD and VDDA must be limited to below 0.3 V at all times, to avoid  
permanent damage to the part (See Table 4). Also see Table 5.  
8.3.2 Heavy capacitive load on power supply output:  
In some applications, the low cost DC/DC converter may not regulate the output voltage  
well before it reaches the regulation point, which is roughly around 2.7V. However, the  
device might exit power-on reset at around 2.3V. If the initialization code enables the  
PLL to run the DSC at full speed right after reset, then the high current will be pulled by  
DSC from the supply, which can cause the supply voltage to drop below the operation  
voltage; see the captured graph (Figure 20). This can cause the DSC fail to start up.  
MC56F836xx, Rev. 1.6, 09/2019  
NXP Semiconductors  
51  
Obtaining package dimensions  
Figure 20. Supply Voltage Drop  
A recommended initialization sequence during power-up is:  
1. After POR is released, run a few hundred NOP instructions from the internal  
relaxation oscillator; this gives time for the supply voltage to stabilize.  
2. Configure the peripherals (except the ADC) to the desired settings; the ADC should  
stay in low power mode.  
3. Power up the PLL.  
4. After the PLL locks, switch the clock from PLL prescale to postscale.  
5. Configure the ADC.  
9 Obtaining package dimensions  
Package dimensions are provided in package drawings.  
To find a package drawing, go to nxp.com and perform a keyword search for the  
drawing's document number:  
Drawing for package  
64-pin LQFP  
Document number to be used  
98ASS23234W  
80-pin LQFP  
98ASS23174W  
100-pin LQFP  
98ASS23308W  
10 Pinout  
MC56F836xx, Rev. 1.6, 09/2019  
52  
NXP Semiconductors  
Pinout  
10.1 Signal Multiplexing and Pin Assignments  
The following table shows the signals available on each pin and the locations of these  
pins on the devices supported by this document. The SIM module is responsible for  
selecting which ALT functionality is available on each pin.  
100  
80  
64  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
LQFP LQFP LQFP  
1
33  
1
1
GPIOB8  
TCK  
GPIOB8  
TCK  
CMPD_O  
GPIOD2  
GPIOD4  
EXTAL  
XTAL  
XB_IN8  
CLKIN0  
XB_OUT11  
2
2
2
RESETB  
GPIOC0  
GPIOC1  
GPIOC2  
GPIOF8  
VDD  
RESETB  
GPIOC0  
GPIOC1  
GPIOC2  
GPIOF8  
VDD  
3
3
3
4
4
4
5
5
5
TXD0  
TB0  
TB1  
XB_IN2  
CLKO0  
6
6
6
RXD0  
CMPD_O  
PWMA_2X  
7
7
7
8
VSS  
VSS  
9
GPIOD6  
GPIOD5  
GPIOC3  
GPIOC4  
GPIOA10  
GPIOA9  
VSS  
GPIOD6  
GPIOD5  
GPIOC3  
GPIOC4  
GPIOA10  
GPIOA9  
VSS  
TXD2  
RXD2  
TA0  
XB_IN4  
XB_OUT8  
XB_OUT9  
RXD0  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
8
XB_IN5  
9
CMPA_O  
CMPB_O  
CLKIN1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
8
TA1  
XB_IN8  
EWM_OUT_B  
9
CMPD_IN3  
CMPD_IN2  
VCAP  
VCAP  
GPIOA7  
GPIOA8  
GPIOA6  
GPIOA5  
GPIOA4  
GPIOA0  
GPIOA1  
GPIOA2  
GPIOA7  
GPIOA8  
GPIOA6  
GPIOA5  
GPIOA4  
GPIOA0  
GPIOA1  
GPIOA2  
ANA7  
10  
11  
12  
13  
14  
15  
CMPD_IN1  
ANA6  
ANA5  
ANA4+CMPD_IN0  
ANA0+CMPA_IN3  
ANA1+CMPA_IN0  
CMPC_O  
ANA2+VREFHA+CMPA_  
IN1  
25  
20  
16  
GPIOA3  
GPIOA3  
ANA3+VREFLA+CMPA_  
IN2  
26  
27  
28  
29  
30  
31  
32  
33  
21  
22  
23  
24  
25  
26  
27  
28  
17  
18  
19  
20  
21  
22  
23  
24  
GPIOB7  
GPIOC5  
GPIOB6  
GPIOB5  
GPIOB4  
VDDA  
GPIOB7  
GPIOC5  
GPIOB6  
GPIOB5  
GPIOB4  
VDDA  
ANB7+CMPB_IN2  
XB_IN7  
ANB6+CMPB_IN1  
ANB5+CMPC_IN2  
ANB4+CMPC_IN1  
VSSA  
VSSA  
GPIOB0  
GPIOB0  
ANB0+CMPB_IN3  
MC56F836xx, Rev. 1.6, 09/2019  
NXP Semiconductors  
53  
Pinout  
100  
80  
64  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
LQFP LQFP LQFP  
34  
35  
36  
29  
30  
31  
25  
26  
27  
GPIOB1  
VCAP  
GPIOB1  
VCAP  
ANB1+CMPB_IN0  
GPIOB2  
GPIOB2  
ANB2+VERFHB+CMPC_  
IN3  
37  
38  
39  
40  
41  
42  
32  
34  
28  
GPIOA11  
VSS_USB  
USB_DP  
USB_DM  
VDD_USB  
GPIOB3  
GPIOA11  
CMPC_O  
XB_IN9  
XB_OUT10  
USB_SOFOUT  
VSS_USB  
USB_DP  
USB_DM  
VDD_USB  
GPIOB3  
ANB3+VREFLB+CMPC_  
IN0  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
VDD  
VDD  
VSS  
VSS  
GPIOF11  
GPIOF15  
GPIOD7  
GPIOG11  
GPIOC6  
GPIOC7  
GPIOG10  
GPIOC8  
GPIOC9  
GPIOC10  
GPIOF0  
GPIOF10  
GPIOF9  
GPIOC11  
GPIOC12  
GPIOF2  
GPIOF3  
GPIOF4  
GPIOF5  
GPIOG8  
GPIOG9  
VSS  
GPIOF11  
GPIOF15  
GPIOD7  
GPIOG11  
GPIOC6  
GPIOC7  
GPIOG10  
GPIOC8  
GPIOC9  
GPIOC10  
GPIOF0  
GPIOF10  
GPIOF9  
GPIOC11  
GPIOC12  
GPIOF2  
GPIOF3  
GPIOF4  
GPIOF5  
GPIOG8  
GPIOG9  
VSS  
TXD0  
XB_IN11  
XB_IN10  
XB_IN7  
CLKO0  
XB_IN3  
TXD0  
RXD0  
XB_OUT11  
TB3  
MISO1  
MOSI1  
TA2  
CMP_REF  
XB_IN8  
XB_IN8  
XB_IN9  
TXD0  
SS0_B  
SS0_B  
PWMB_2X  
MISO0  
SCLK0  
MOSI0  
XB_IN6  
TXD2  
XB_OUT6  
PWMA_2X  
RXD0  
XB_IN4  
XB_OUT8  
XB_OUT9  
XB_IN5  
MISO0  
TB2  
SCLK1  
PWMA_FAULT6  
PWMA_FAULT7  
SCL1  
PWMB_FAULT6  
PWMB_FAULT7  
TXD1  
XB_OUT10  
XB_OUT11  
RXD2  
CANTX  
CANRX  
SCL1  
SDA1  
RXD1  
XB_OUT6  
XB_OUT7  
XB_OUT8  
XB_OUT9  
PWMA_0X  
PWMA_1X  
MISO1  
SDA1  
MOSI1  
TXD1  
PWMA_0X  
PWMA_1X  
TA2  
PWMA_FAULT6  
PWMA_FAULT7  
XB_OUT10  
RXD1  
PWMB_0X  
PWMB_1X  
TA3  
XB_OUT11  
VDD  
VDD  
GPIOE0  
GPIOE1  
GPIOG2  
GPIOG3  
GPIOE8  
GPIOE9  
GPIOE0  
GPIOE1  
GPIOG2  
GPIOG3  
GPIOE8  
GPIOE9  
PWMA_0B  
PWMA_0A  
PWMB_0B  
PWMB_0A  
PWMB_2B  
PWMB_2A  
XB_OUT4  
XB_OUT5  
XB_OUT4  
XB_OUT5  
PWMA_FAULT0  
PWMA_FAULT1  
XB_OUT8  
XB_OUT9  
MC56F836xx, Rev. 1.6, 09/2019  
54  
NXP Semiconductors  
Pinout  
100  
80  
64  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
LQFP LQFP LQFP  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
GPIOE2  
GPIOE3  
GPIOE2  
GPIOE3  
GPIOC13  
GPIOF1  
GPIOG0  
GPIOG1  
GPIOG4  
GPIOG5  
GPIOE4  
GPIOE5  
GPIOE6  
GPIOE7  
GPIOG6  
GPIOC14  
GPIOC15  
GPIOF12  
GPIOF13  
GPIOF14  
GPIOG7  
VCAP  
PWMA_1B  
XB_OUT6  
XB_OUT7  
PWMA_1A  
TA3  
GPIOC13  
GPIOF1  
GPIOG0  
GPIOG1  
GPIOG4  
GPIOG5  
GPIOE4  
GPIOE5  
GPIOE6  
GPIOE7  
GPIOG6  
GPIOC14  
GPIOC15  
GPIOF12  
GPIOF13  
GPIOF14  
GPIOG7  
VCAP  
XB_IN6  
EWM_OUT_B  
CLKO1  
XB_IN7  
CMPD_O  
PWMB_1B  
PWMB_1A  
PWMB_3B  
PWMB_3A  
PWMA_2B  
PWMA_2A  
PWMA_3B  
PWMA_3A  
PWMA_FAULT4  
SDA0  
XB_OUT6  
XB_OUT7  
PWMA_FAULT2  
PWMA_FAULT3  
XB_IN2  
XB_OUT10  
XB_OUT11  
XB_OUT8  
XB_OUT9  
XB_OUT10  
XB_OUT11  
XB_OUT8  
XB_IN3  
XB_IN4  
PWMB_2B  
PWMB_2A  
TB2  
XB_IN5  
PWMB_FAULT4  
XB_OUT4  
PWMA_FAULT4  
PWMA_FAULT5  
SCL0  
XB_OUT5  
MISO1  
PWMB_FAULT2  
PWMB_FAULT1  
PWMB_FAULT0  
PWMB_FAULT5  
MOSI1  
SCLK1  
PWMA_FAULT5  
XB_OUT9  
CLKIN2 (USB optional)  
GPIOF6  
GPIOF7  
VDD  
GPIOF6  
GPIOF7  
VDD  
TB2  
TB3  
PWMA_3X  
CMPC_O  
PWMB_3X  
SS1_B  
XB_IN2  
XB_IN3  
VSS  
VSS  
TDO  
TDO  
GPIOD1  
GPIOD3  
GPIOD0  
TMS  
TMS  
TDI  
TDI  
10.2 Pinout diagrams  
The following diagrams show pinouts for the packages. For each pin, the diagrams show  
the default function. However, many signals may be multiplexed onto a single pin.  
MC56F836xx, Rev. 1.6, 09/2019  
NXP Semiconductors  
55  
Pinout  
1
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
TCK  
RESETB  
GPIOC0  
GPIOC1  
GPIOC2  
GPIOF8  
VDD  
GPIOE3  
GPIOE2  
GPIOE9  
GPIOE8  
GPIOG3  
GPIOG2  
GPIOE1  
GPIOE0  
VDD  
2
3
4
5
6
7
8
VSS  
9
GPIOD6  
GPIOD5  
GPIOC3  
GPIOC4  
GPIOA10  
GPIOA9  
VSS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
VSS  
GPIOG9  
GPIOG8  
GPIOF5  
GPIOF4  
GPIOF3  
GPIOF2  
GPIOC12  
GPIOC11  
GPIOF9  
GPIOF10  
GPIOF0  
GPIOC10  
GPIOC9  
GPIOC8  
GPIOG10  
VCAP  
GPIOA7  
GPIOA8  
GPIOA6  
GPIOA5  
GPIOA4  
GPIOA0  
GPIOA1  
GPIOA2  
GPIOA3  
Figure 21. 100-pin LQFP  
MC56F836xx, Rev. 1.6, 09/2019  
56  
NXP Semiconductors  
Pinout  
1
TCK  
RESETB  
GPIOC0  
GPIOC1  
GPIOC2  
GPIOF8  
GPIOD6  
GPIOD5  
GPIOC3  
GPIOC4  
VSS  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
GPIOE3  
GPIOE2  
GPIOG3  
GPIOG2  
GPIOE1  
GPIOE0  
VDD  
2
3
4
5
6
7
8
VSS  
9
GPIOF5  
GPIOF4  
GPIOF3  
GPIOF2  
GPIOC12  
GPIOC11  
GPIOF9  
GPIOF10  
GPIOF0  
GPIOC10  
GPIOC9  
GPIOC8  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
VCAP  
GPIOA7  
GPIOA6  
GPIOA5  
GPIOA4  
GPIOA0  
GPIOA1  
GPIOA2  
GPIOA3  
Figure 22. 80-pin LQFP  
MC56F836xx, Rev. 1.6, 09/2019  
NXP Semiconductors  
57  
Product documentation  
TCK  
RESETB  
GPIOC0  
GPIOC1  
GPIOC2  
GPIOF8  
GPIOC3  
GPIOC4  
GPIOA7  
GPIOA6  
GPIOA5  
GPIOA4  
GPIOA0  
GPIOA1  
GPIOA2  
GPIOA3  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
GPIOE3  
GPIOE2  
GPIOE1  
GPIOE0  
VDD  
2
3
4
5
6
VSS  
7
GPIOF5  
GPIOF4  
GPIOF3  
GPIOF2  
GPIOC12  
GPIOC11  
GPIOF0  
GPIOC10  
GPIOC9  
GPIOC8  
8
9
10  
11  
12  
13  
14  
15  
16  
Figure 23. 64-pin LQFP  
11 Product documentation  
The documents listed in Table 34 are required for a complete description and to  
successfully design using the device. Documentation is available from local NXP  
distributors, NXP sales offices, or online at www.nxp.com.  
MC56F836xx, Rev. 1.6, 09/2019  
58  
NXP Semiconductors  
Revision history  
Table 34. Device documentation  
Topic  
Description  
Document Number  
DSP56800E/DSP56800EX  
Reference Manual  
Detailed description of the 56800EX family architecture, 32-bit  
digital signal controller core processor, and the instruction set  
DSP56800ERM  
MC56F83xxx Reference Manual Detailed functional description and programming model  
MC56F83XXXRM  
MC56F836XXDS  
MC56F836xx Data Sheet  
Electrical and timing specifications, pin descriptions, and  
package information (this document)  
MC56F83xxx Errata  
Details any chip issues that might be present  
MC56F83XXX_0N64Y  
12 Revision history  
The following table summarizes changes to this document since the release of the  
previous version.  
Table 35. Revision history  
Rev.  
Date  
Substantial Changes  
1.6  
09/2019 Initial public release  
MC56F836xx, Rev. 1.6, 09/2019  
NXP Semiconductors  
59  
Information in this document is provided solely to enable system and software implementers to use  
NXP products. There are no express or implied copyright licenses granted hereunder to design or  
fabricate any integrated circuits based on the information in this document. NXP reserves the right to  
make changes without further notice to any products herein.  
How to Reach Us:  
Home Page:  
nxp.com  
Web Support:  
nxp.com/support  
NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any  
particular purpose, nor does NXP assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without limitation  
consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets  
and/or specifications can and do vary in different applications, and actual performance may vary over  
time. All operating parameters, including "typicals," must be validated for each customer application  
by customer's technical experts. NXP does not convey any license under its patent rights nor the  
rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be  
found at the following address: nxp.com/SalesTermsandConditions.  
While NXP has implemented advanced security features, all products may be subject to unidentified  
vulnerabilities. Customers are responsible for the design and operation of their applications and  
products to reduce the effect of these vulnerabilities on customer's applications and products, and  
NXP accepts no liability for any vulnerability that is discovered. Customers should implement  
appropriate design and operating safeguards to minimize the risks associated with their applications  
and products.  
NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,  
EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE  
CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,  
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,  
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C5, CodeTEST, CodeWarrior,  
ColdFire, ColdFire+, CWare, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,  
mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure,  
the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet,  
Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, UMEMS, eIQ,  
Immersiv3D, EdgeLock, and EdgeScale are trademarks of NXP B.V. All other product or service  
names are the property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11,  
Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali,  
Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK,  
ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered  
trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related technology  
may be protected by any or all of patents, copyrights, designs and trade secrets. All rights reserved.  
Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and  
Power.org word marks and the Power and Power.org logos and related marks are trademarks and  
service marks licensed by Power.org.  
© 2019 NXP B.V.  
Document Number MC56F836XXDS  
Revision 1.6, 09/2019  

相关型号:

MC56F83686VLK

Digital Signal Processor
NXP

MC56F83689VLL

Digital Signal Processor
NXP

MC56F83763AMLHA

MC56F83xxx DSC FAMILY
NXP

MC56F83763AVLHA

MC56F83xxx DSC FAMILY
NXP

MC56F83763VLH

MC56F83xxx DSC FAMILY
NXP

MC56F83766VLK

MC56F83xxx DSC FAMILY
NXP

MC56F83769AMLLA

MC56F83xxx DSC FAMILY
NXP

MC56F83769AVLLA

MC56F83xxx DSC FAMILY
NXP

MC56F83769VLL

MC56F83xxx DSC FAMILY
NXP

MC56F83783AMLHA

MC56F83xxx DSC FAMILY
NXP

MC56F83783AVLHA

MC56F83xxx DSC FAMILY
NXP

MC56F83783VLH

MC56F83xxx DSC FAMILY
NXP