MC56F84789VLL [NXP]

32-bit DSC, 56800EX core, 256KB Flash, 100MHz, QFP 100;
MC56F84789VLL
型号: MC56F84789VLL
厂家: NXP    NXP
描述:

32-bit DSC, 56800EX core, 256KB Flash, 100MHz, QFP 100

时钟 微控制器 外围集成电路
文件: 总87页 (文件大小:1360K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: MC56F847XX  
Rev. 3.1, 06/2014  
Freescale Semiconductor  
Data Sheet: Technical Data  
MC56F847XX  
MC56F847XX  
Supports the 56F84789VLL,  
56F84786VLK, 56F84769VLL,  
56F84766VLK, 56F84763VLH  
Features  
Analog  
This family of digital signal controllers (DSCs) is  
based on the 32-bit 56800EX core. Each device  
combines, on a single chip, the processing power of a  
DSP and the functionality of an MCU with a flexible  
set of peripherals to support many target applications:  
– Industrial control  
– Two high-speed, 8-channel, 12-bit ADCs with  
dynamic x2, x4 programmable amplifier  
– One 20-channel, 16-bit ADC  
– Four analog comparators with integrated 6-bit DAC  
references  
– One 12-bit DAC  
– Home appliances  
– Smart sensors  
PWMs and timers  
– Two eFlexPWM modules with up to 24 PWM  
outputs, one including 8 channels with high  
resolution NanoEdge placement  
– Fire and security systems  
– Switched-mode power supply and power  
management  
– Two 16-bit quad timer (2 x 4 16-bit timers)  
– Two Periodic Interval Timers (PITs)  
– One Quadrature Decoder  
– Uninterruptible Power Supply (UPS)  
– Solar and wind power generator  
– Power metering  
– Motor control (ACIM, BLDC, PMSM, SR, stepper)  
– Handheld power tools  
– Circuit breaker  
– Medical device/equipment  
– Instrumentation  
– Lighting  
– Two Programmable Delay Blocks (PDBs)  
Communication interfaces  
– Three high-speed queued SCI (QSCI) modules with  
LIN slave functionality  
– Up to three queued SPI (QSPI) modules  
– Two SMBus-compatible I2C ports  
– One flexible controller area network (FlexCAN)  
module  
DSC based on 32-bit 56800EX core  
– Up to 100 MIPS at 100 MHz core frequency  
– DSP and MCU functionality in a unified, C-efficient  
architecture  
Security and integrity  
– Cyclic Redundancy Check (CRC) generator  
– Computer operating properly (COP) watchdog  
– External Watchdog Monitor (EWM)  
On-chip memory  
– Up to 288 KB (256 KB + 32 KB) flash memory,  
including up to 32 KB FlexNVM  
Clocks  
– Up to 32 KB RAM  
– Two on-chip relaxation oscillators: 8 MHz (400 kHz  
at standby mode) and 32 kHz  
– Crystal / resonator oscillator  
– Up to 2 KB FlexRAM with EEE capability  
– 100 MHz program execution from both internal  
flash memory and RAM  
– On-chip flash memory and RAM can be mapped  
into both program and data memory spaces  
System  
– DMA controller  
– Integrated power-on reset (POR) and low-voltage  
interrupt (LVI) and brown-out reset module  
– Inter-module crossbar connection  
– JTAG/enhanced on-chip emulation (EOnCE) for  
unobtrusive, real-time debugging  
Freescale reserves the right to change the detail specifications as may be  
required to permit improvements in the design of its products.  
© 2011–2014 Freescale Semiconductor, Inc.  
Operating characteristics  
– Single supply: 3.0 V to 3.6 V  
– 5 V–tolerant I/O (except RESETB pin)  
LQFP packages:  
– 64-pin  
– 80-pin  
– 100-pin  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
2
Freescale Semiconductor, Inc.  
Table of Contents  
1
Overview.................................................................................4  
7
Ratings....................................................................................41  
1.1 MC56F844xx/5xx/7xx product family............................4  
1.2 56800EX 32-bit Digital Signal Controller (DSC) core....5  
1.3 Operation parameters...................................................6  
1.4 On-chip memory and memory protection......................6  
1.5 Interrupt Controller........................................................7  
1.6 Peripheral highlights......................................................7  
1.7 Block diagrams..............................................................13  
MC56F847xx signal and pin descriptions...............................16  
Signal groups..........................................................................34  
Ordering parts.........................................................................35  
4.1 Determining valid orderable parts.................................35  
Part identification.....................................................................35  
5.1 Description....................................................................35  
5.2 Format...........................................................................35  
5.3 Fields.............................................................................35  
5.4 Example........................................................................36  
Terminology and guidelines....................................................36  
6.1 Definition: Operating requirement.................................36  
6.2 Definition: Operating behavior.......................................37  
6.3 Definition: Attribute........................................................37  
6.4 Definition: Rating...........................................................37  
6.5 Result of exceeding a rating..........................................38  
6.6 Relationship between ratings and operating  
7.1 Thermal handling ratings...............................................41  
7.2 Moisture handling ratings..............................................41  
7.3 ESD handling ratings.....................................................41  
7.4 Voltage and current operating ratings...........................42  
General...................................................................................43  
8.1 General characteristics..................................................43  
8.2 AC electrical characteristics..........................................43  
8.3 Nonswitching electrical specifications...........................44  
8.4 Switching specifications................................................50  
8.5 Thermal specifications...................................................51  
Peripheral operating requirements and behaviors..................53  
9.1 Core modules................................................................53  
9.2 System modules............................................................54  
9.3 Clock modules...............................................................54  
9.4 Memories and memory interfaces.................................57  
9.5 Analog...........................................................................60  
9.6 PWMs and timers..........................................................69  
9.7 Communication interfaces.............................................70  
8
2
3
4
9
5
6
10 Design Considerations............................................................76  
10.1 Thermal design considerations.....................................76  
10.2 Electrical design considerations....................................78  
11 Obtaining package dimensions...............................................79  
12 Pinout......................................................................................80  
12.1 Signal Multiplexing and Pin Assignments......................80  
12.2 Pinout diagrams............................................................83  
13 Product documentation...........................................................86  
14 Revision history.......................................................................86  
requirements.................................................................38  
6.7 Guidelines for ratings and operating requirements.......39  
6.8 Definition: Typical value................................................39  
6.9 Typical value conditions................................................40  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
Freescale Semiconductor, Inc.  
3
Overview  
1 Overview  
1.1 MC56F844xx/5xx/7xx product family  
The following table lists major features, including features that differ among members of  
the family. Features not listed are shared by all members of the family.  
Table 1. 56F844xx/5xx/7xx family  
Part  
MC56F84  
Number  
789 786 769 766 763 553 550 543 540 587 585 567 565 462 452 451 442 441  
Core freq. 100 100 100 100 100 80  
(MHz)  
80  
80  
80  
80  
80  
80  
80  
60  
60  
60  
60  
60  
Flash  
memory  
(KB)  
256 256 128 128 128 96  
96  
64  
64 256 256 128 128 128 96  
96  
64  
64  
FlevNVM/ 32/2 32/2 32/2 32/2 32/2 32/2 32/2 32/2 32/2 32/2 32/2 32/2 32/2 32/2 32/2 32/2 32/2 32/2  
FlexRAM  
(KB)  
Total flash 288 288 160 160 160 128 128 96  
96 288 288 160 160 160 128 128 96  
96  
memory  
(KB)1  
RAM (KB) 32  
32  
24  
24  
24  
16  
16  
8
8
32  
32  
24  
24  
24  
16  
16  
8
8
Memory  
resource  
protection  
Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes  
External  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Watchdog  
12-bit  
2x8 2x8 2x8 2x8 2x8 2x8 2x5 2x8 2x5 2x8 2x8 2x8 2x8 2x8 2x8 2x5 2x8 2x5  
Cyclic ADC  
Channels  
(ADCA and  
ADCB)  
12-bit  
300 300 300 300 300 300 300 300 300 600 600 600 600 600 600 600 600 600  
Cyclic ADC ns  
Conversion  
time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(ADCA and  
ADCB)  
16-bit SAR 16  
ADC (with  
Temperatu  
re Sensor)  
channels  
10  
16  
10  
8
8
̶
8
̶
16  
10  
16  
10  
̶
8
̶
8
̶
(ADCC)  
PWMA  
High-res  
channels  
8
8
8
8
8
8
6
8
6
0
0
0
0
0
0
0
0
0
Table continues on the next page...  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
4
Freescale Semiconductor, Inc.  
 
 
Overview  
Table 1. 56F844xx/5xx/7xx family (continued)  
Part  
MC56F84  
Number  
789 786 769 766 763 553 550 543 540 587 585 567 565 462 452 451 442 441  
PWMA Std  
channels  
4
1
4
1
1
1
0
1
0
12  
12  
12  
12  
9
9
6
9
6
PWMA  
Input  
12  
9
12  
9
9
9
6
9
6
12  
12  
12  
12  
9
9
6
9
6
capture  
channels  
PWMB Std 12  
channels  
9 2  
7
12  
12  
9 2  
7
̶
̶
̶
̶
̶
̶
̶
̶
̶
̶
12  
12  
9 2  
7
12  
12  
9 2  
7
̶
̶
̶
̶
̶
̶
̶
̶
̶
̶
PWMB  
Input  
12  
capture  
channels  
12-bit DAC  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
̶
̶
1
1
̶
̶
̶
̶
Quad  
1
1
1
1
1
1
Decoder  
DMA  
CMP  
Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes  
4
3
3
2
1
4
3
2
2
1
4
3
3
2
1
4
3
2
2
1
4
2
4
2
3
2
4
2
3
2
1
2
1
4
3
3
2
1
4
3
2
2
1
4
3
3
2
1
4
3
2
2
1
4
2
4
2
3
2
4
2
3
2
QSCI  
QSPI  
1
1
1
1
1
1
1
1
1
I2C/SMBus  
FlexCAN  
2
2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
0
0
LQFP  
100 80 100 80  
64  
64  
48  
64  
48 100 80 100 80  
64  
64  
48  
64  
48  
package  
pin count  
1. This total includes FlexNVM and assumes no FlexNVM is used with FlexRAM for EEPROM.  
2. The outputs of PWMB_3A and PWM_3B are available through the on-chip inter-module crossbar.  
1.2 56800EX 32-bit Digital Signal Controller (DSC) core  
• Efficient 32-bit 56800EX Digital Signal Processor (DSP) engine with modified dual  
Harvard architecture:  
• Three internal address buses  
• Four internal data buses: two 32-bit primary buses, one 16-bit secondary data  
bus, and one 16-bit instruction bus  
• 32-bit data accesses  
• Supports concurrent instruction fetches in the same cycle, and dual data accesses  
in the same cycle  
• 20 addressing modes  
• As many as 100 million instructions per second (MIPS) at 100 MHz core frequency  
• 162 basic instructions  
• Instruction set supports both fractional arithmetic and integer arithmetic  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
Freescale Semiconductor, Inc.  
5
 
 
 
Overview  
• 32-bit internal primary data buses support 8-bit, 16-bit, and 32-bit data movement,  
plus addition, subtraction, and logical operations  
• Single-cycle 16 × 16-bit -> 32-bit and 32 x 32-bit -> 64-bit multiplier-accumulator  
(MAC) with dual parallel moves  
• 32-bit arithmetic and logic multi-bit shifter  
• Four 36-bit accumulators, including extension bits  
• Parallel instruction set with unique DSP addressing modes  
• Hardware DO and REP loops  
• Bit reverse address mode, which effectively supports DSP and Fast Fourier  
Transform algorithms  
• Full shadowing of the register stack for zero-overhead context saves and restores:  
nine shadow registers correspond to nine address registers (R0, R1, R2, R3, R4, R5,  
N, N3, M01)  
• Instruction set supports both DSP and controller functions  
• Controller-style addressing modes and instructions enable compact code  
• Enhanced bit manipulation instruction set  
• Efficient C compiler and local variable support  
• Software subroutine and interrupt stack, with the stack's depth limited only by  
memory  
• Priority level setting for interrupt levels  
• JTAG/Enhanced On-Chip Emulation (OnCE) for unobtrusive, real-time debugging  
that is independent of processor speed  
1.3 Operation parameters  
• Up to 100 MHz operation at -40 °C to 105 °C ambient temperature  
• Single 3.3 V power supply  
• Supply range: VDD - VSS = 2.7 V to 3.6 V, VDDA - VSSA = 2.7 V to 3.6 V  
1.4 On-chip memory and memory protection  
• Modified dual Harvard architecture permits as many as three simultaneous accesses  
to program and data memory  
• Internal flash memory with security and protection to prevent unauthorized access  
• Memory resource protection (MRP) unit to protect supervisor programs and  
resources from user programs  
• Programming code can reside in flash memory during flash programming  
• The dual-ported RAM controller supports concurrent instruction fetches and data  
accesses, or dual data accesses, by the DSC core.  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
6
Freescale Semiconductor, Inc.  
 
 
Peripheral highlights  
• Concurrent accesses provide increased performance.  
• The data and instruction arrive at the core in the same cycle, reducing latency.  
• On-chip memory  
• Up to 144 KW program/data flash memory, including FlexNVM  
• Up to 16 KW dual port data/program RAM  
• Up to 16 KW FlexNVM, which can be used as additional program or data flash  
memory  
• Up to 1 KW FlexRAM, which can be configured as enhanced EEPROM (used in  
conjunction with FlexNVM) or used as additional RAM  
1.5 Interrupt Controller  
• Five interrupt priority levels  
• Three user-programmable priority levels for each interrupt source: level 0, level  
1, level 2  
• Unmaskable level 3 interrupts include illegal instruction, hardware stack  
overflow, misaligned data access, SWI3 instruction  
• Interrupt level 3 is highest priority and non-maskable. Its sources include:  
• Illegal instructions  
• Hardware stack overflow  
• SWI instruction  
• EOnce interrupts  
• Misaligned data accesses  
• Lowest-priority software interrupt: level LP  
• Support for nested interrupts, so that a higher priority level interrupt request can  
interrupt lower priority interrupt subroutine  
• Masking of interrupt priority level is managed by the 56800EX core  
• Two programmable fast interrupts that can be assigned to any interrupt source  
• Notification to System Integration Module (SIM) to restart clock when in wait and  
stop states  
• Ability to relocate interrupt vector table  
1.6 Peripheral highlights  
1.6.1 Enhanced Flex Pulse Width Modulator (eFlexPWM)  
• Two PWM modules contain 4 identical submodules, each with up to 3 outputs per  
submodule, and up to 100 MHz PWM operating clock  
• 16 bits of resolution for center, edge-aligned, and asymmetrical PWMs  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
Freescale Semiconductor, Inc.  
7
 
 
Peripheral highlights  
• PWMA with NanoEdge high resolution  
• Fractional delay for enhanced resolution of the PWM period and edge placement  
• Arbitrary PWM edge placement  
• 390 ps PWM frequency and duty-cycle resolution when NanoEdge functionality  
is enabled.  
• Fractional clock digital dithering: 5-bit digital fractional clock accumulation for  
enhanced resolution of PWM period and edge placement, which is effectively  
equivalent to 390 ps resolution in the overall accumulative period.  
• PWM outputs can be configured as complementary output pairs or independent  
outputs  
• PWMB with 10 ns resolution at 100 MHz PWM operation clock  
• Dedicated time-base counter with period and frequency control per submodule  
• Independent top and bottom deadtime insertion for each complementary pair  
• Independent control of both edges of each PWM output  
• Enhanced input capture and output compare functionality on each input:  
• Channels not used for PWM generation can be used for buffered output compare  
functions.  
• Channels not used for PWM generation can be used for input capture functions.  
• Enhanced dual edge capture functionality  
• Synchronization of submodule to external hardware (or other PWM) is supported.  
• Double-buffered PWM registers  
• Integral reload rates from 1 to 16  
• Half-cycle reload capability  
• Multiple output trigger events can be generated per PWM cycle via hardware.  
• Support for double-switching PWM outputs  
• Up to eight fault inputs can be assigned to control multiple PWM outputs  
• Programmable filters for fault inputs  
• Independently programmable PWM output polarity  
• Individual software control of each PWM output  
• All outputs can be programmed to change simultaneously via a FORCE_OUT event.  
• PWMX pin can optionally output a third PWM signal from each submodule  
• Option to supply the source for each complementary PWM signal pair from any of  
the following:  
• Crossbar module outputs  
• External ADC input, taking into account values set in ADC high and low limit  
registers  
1.6.2 12-bit Analog-to-Digital Converter (Cyclic type)  
• Two independent 12-bit analog-to-digital converters (ADCs):  
• 2 x 8-channel external inputs  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
8
Freescale Semiconductor, Inc.  
Peripheral highlights  
• Built-in x1, x2, x4 programmable gain pre-amplifier  
• Maximum ADC clock frequency up to 20 MHz, having period as low as a 50-ns  
• Single conversion time of 8.5 ADC clock cycles  
• Additional conversion time of 6 ADC clock cycles  
• Support of analog inputs for single-ended and differential conversions  
• Sequential, parallel, and independent scan mode  
• First 8 samples have offset, limit and zero-crossing calculation supported  
• ADC conversions can be synchronized by any module connected to the internal  
crossbar module, such as PWM, timer, GPIO, and comparator modules.  
• Support for simultaneous triggering and software-triggering conversions  
• Support for a multi-triggering mode with a programmable number of conversions on  
each trigger  
• Each ADC has ability to scan and store up to 8 conversion results.  
• Current injection protection  
1.6.3 Inter-Module Crossbar and AND-OR-INVERT logic  
• Provides generalized connections between and among on-chip peripherals: ADCs,  
12-bit DAC, comparators, quad-timers, eFlexPWMs, PDBs, EWM, quadrature  
decoder, and select I/O pins  
• User-defined input/output pins for all modules connected to the crossbar  
• DMA request and interrupt generation from the crossbar  
• Write-once protection for all registers  
• AND-OR-INVERT function provides a universal Boolean function generator that  
uses a four-term sum-of-products expression, with each product term containing true  
or complement values of the four selected inputs (A, B, C, D).  
1.6.4 Comparator  
• Full rail-to-rail comparison range  
• Support for high and low speed modes  
• Selectable input source includes external pins and internal DACs  
• Programmable output polarity  
• 6-bit programmable DAC as a voltage reference per comparator  
• Three programmable hysteresis levels  
• Selectable interrupt on rising-edge, falling-edge, or toggle of a comparator output  
1.6.5 12-bit Digital-to-Analog Converter  
• 12-bit resolution  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
Freescale Semiconductor, Inc.  
9
Peripheral highlights  
• Powerdown mode  
• Automatic mode allows the DAC to automatically generate pre-programmed output  
waveforms, including square, triangle, and sawtooth waveforms (for applications like  
slope compensation)  
• Programmable period, update rate, and range  
• Output can be routed to an internal comparator, ADC, or optionally to an off-chip  
destination  
1.6.6 Quad Timer  
• Four 16-bit up/down counters, with a programmable prescaler for each counter  
• Operation modes: edge count, gated count, signed count, capture, compare, PWM,  
signal shot, single pulse, pulse string, cascaded, quadrature decode  
• Programmable input filter  
• Counting start can be synchronized across counters  
1.6.7 Queued Serial Communications Interface (QSCI) modules  
• Operating clock can be up to two times the CPU operating frequency  
• Four-word-deep FIFOs available on both transmit and receive buffers  
• Standard mark/space non-return-to-zero (NRZ) format  
• 13-bit integer and 3-bit fractional baud rate selection  
• Full-duplex or single-wire operation  
• Programmable 8-bit or 9-bit data format  
• Error detection capability  
• Two receiver wakeup methods:  
• Idle line  
• Address mark  
• 1/16 bit-time noise detection  
1.6.8 Queued Serial Peripheral Interface (QSPI) modules  
• Maximum 25 Mbit/s baud rate  
• Selectable baud rate clock sources for low baud rate communication  
• Baud rate as low as Baudrate_Freq_in / 8192  
• Full-duplex operation  
• Master and slave modes  
• Double-buffered operation with separate transmit and receive registers  
• Four-word-deep FIFOs available on transmit and receive buffers  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
10  
Freescale Semiconductor, Inc.  
Peripheral highlights  
• Programmable length transmissions (2 bits to 16 bits)  
• Programmable transmit and receive shift order (MSB as first bit transmitted)  
1.6.9 Inter-Integrated Circuit (I2C)/System Management Bus (SMBus)  
modules  
• Compatible with I2C bus standard  
• Support for System Management Bus (SMBus) specification, version 2  
• Multi-master operation  
• General call recognition  
• 10-bit address extension  
• Start/Repeat and Stop indication flags  
• Support for dual slave addresses or configuration of a range of slave addresses  
• Programmable glitch input filter  
1.6.10 Flex Controller Area Network (FlexCAN) module  
• Clock source from PLL or XOSC/CLKIN  
• Implementation of CAN protocol Version 2.0 A/B  
• Standard and extended data frames  
• Data length of 0 to 8 bytes  
• Programmable bit rate up to 1 Mbps  
• Support for remote frames  
• Sixteen Message Buffers: each Message Buffer can be configured as receive or  
transmit, and supports standard and extended messages  
• Individual Rx Mask Registers per Message Buffer  
• Internal timer for time-stamping of received and transmitted messages  
• Listen-only mode capability  
• Programmable loopback mode, supporting self-test operation  
• Programmable transmission priority scheme: lowest ID, lowest buffer number, or  
highest priority  
• Global network time, synchronized by a specific message  
• Low power modes, with programmable wakeup on bus activity  
1.6.11 Computer Operating Properly (COP) watchdog  
• Programmable timeout period  
• Support for operation in all power modes: run mode, wait mode, stop mode  
• Causes loss of reference reset 128 cycles after loss of reference clock to the PLL is  
detected  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
Freescale Semiconductor, Inc.  
11  
Clock sources  
• Selectable reference clock source in support of EN60730 and IEC61508  
• Selectable clock sources:  
• External crystal oscillator/external clock source  
• On-chip low-power 32 kHz oscillator  
• System bus (IPBus up to 100 MHz)  
• 8 MHz / 400 kHz ROSC  
• Support for interrupt triggered when the counter reaches the timeout value  
1.6.12 Power supervisor  
• Power-on reset (POR) to reset CPU, peripherals, and JTAG/EOnCE controllers (VDD  
> 2.1 V)  
• Brownout reset (VDD < 1.9 V)  
• Critical warn low-voltage interrupt (LVI2.0)  
• Peripheral low-voltage interrupt (LVI2.7)  
1.6.13 Phase-locked loop  
• Wide programmable output frequency: 240 MHz to 400 MHz  
• Input reference clock frequency: 8 MHz to 16 MHz  
• Detection of loss of lock and loss of reference clock  
• Ability to power down  
1.6.14 Clock sources  
1.6.14.1 On-chip oscillators  
• Tunable 8 MHz relaxation oscillator with 400 kHz at standby mode (divide-by-two  
output)  
• 32 kHz low frequency clock as secondary clock source for COP, EWM, PIT  
1.6.14.2 Crystal oscillator  
• Support for both high ESR crystal oscillator (ESR greater than 100 ) and ceramic  
resonator  
• Operating frequency: 4–16 MHz  
1.6.15 Cyclic Redundancy Check (CRC) generator  
• Hardware 16/32-bit CRC generator  
• High-speed hardware CRC calculation  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
12  
Freescale Semiconductor, Inc.  
Clock sources  
• Programmable initial seed value  
• Programmable 16/32-bit polynomial  
• Error detection for all single, double, odd, and most multi-bit errors  
• Option to transpose input data or output data (CRC result) bitwise or bytewise,1  
which is required for certain CRC standards  
• Option for inversion of final CRC result  
1.6.16 General Purpose I/O (GPIO)  
• 5 V tolerance (except RESETB pin)  
• Individual control of peripheral mode or GPIO mode for each pin  
• Programmable push-pull or open drain output  
• Configurable pullup or pulldown on all input pins  
• All pins (except JTAG and RESETB) default to be GPIO inputs  
• 2 mA / 9 mA source/sink capability  
• Controllable output slew rate  
1.7 Block diagrams  
The 56800EX core is based on a modified dual Harvard-style architecture, consisting of  
three execution units operating in parallel, and allowing as many as six operations per  
instruction cycle. The MCU-style programming model and optimized instruction set  
enable straightforward generation of efficient and compact code for the DSP and control  
functions. The instruction set is also efficient for C compilers, to enable rapid  
development of optimized control applications.  
The device's basic architecture appears in Figure 1 and Figure 2. Figure 1 shows how the  
56800EX system buses communicate with internal memories, and the IPBus interface  
and the internal connections among the units of the 56800EX core. Figure 2 shows the  
peripherals and control blocks connected to the IPBus bridge. See the specific device’s  
Reference Manual for details.  
1. A bytewise transposition is not possible when accessing the CRC data register via 8-bit accesses. In this case, user  
software must perform the bytewise transposition.  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
Freescale Semiconductor, Inc.  
13  
 
 
Clock sources  
DSP56800EX Core  
Program Control Unit  
ALU1  
ALU2  
Address  
Generation  
Unit  
PC  
LA  
LA2  
HWS0  
HWS1  
FIRA  
Instruction  
Decoder  
R0  
R1  
(AGU)  
R2  
Interrupt  
Unit  
Program  
Memory  
M01  
N3  
R3  
OMR  
R4  
SR  
LC  
LC2  
R5  
Looping  
Unit  
N
SP  
FISR  
XAB1  
XAB2  
PAB  
Data/  
Program  
RAM  
PDB  
CDBW  
CDBR  
XDB2  
A2  
B2  
C2  
D2  
A1  
B1  
C1  
D1  
Y1  
Y0  
X0  
A0  
B0  
C0  
D0  
Bit-  
Manipulation  
Unit  
IPBus  
Interface  
Data  
Y
Enhanced  
OnCE™  
Arithmetic  
Logic Unit  
(ALU)  
JTAG TAP  
MAC and ALU Multi-Bit Shifter  
Figure 1. 56800EX basic block diagram  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
14  
Freescale Semiconductor, Inc.  
 
Clock sources  
JTAG  
Program Bus  
Core Data Bus  
EOnCE  
Program/Data Flash  
56800EX CPU  
Up to 256KB  
Program  
Controller  
(PC)  
Address  
Generation  
Unit (AGU)  
Data Flash  
32KB  
FlexRAM  
4
Secondary Data Bus  
Arithmetic  
Logic Unit  
(ALU)  
Bit  
Manipulation  
Unit  
2KB  
Data/Program RAM  
Up to 32KB  
DMA Controller  
Interrupt Controller  
Crystal OSC  
Power Management  
Controller (PMC)  
Internal 8 MHz  
Watchdog (COP)  
Internal 32 kHz  
PLL  
System Integration  
Module (SIM)  
Periodic Interrupt  
Timer (PIT) 0, 1  
CRC  
Peripheral Bus  
QSCI  
0, 1, 2  
Quad Timer eFlexPWM A eFlexPWM B  
I2C  
0, 1  
QSPI  
0, 1, 2  
Quadrature  
Decoder  
FlexCAN  
A & B  
NanoEdge  
Inter Module CrossbarInputs
Inter Module Crossbar Outputs  
Inter-Module  
Crossbar B  
AND-OR-INV  
Logic  
GPIO & Peripheral MUX  
Inter-Module  
Crossbar A  
Inter Module Crossbar Outputs  
Inter Module Crossbar Inputs  
Comparators with  
6-bit DAC A,B,C,D  
Package  
Pins  
ADC C  
16-bit  
ADC B  
12-bit  
DAC  
12-bit  
ADC A  
12-bit  
PDB  
0, 1  
EWM  
Peripheral Bus  
Figure 2. System diagram  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
Freescale Semiconductor, Inc.  
15  
 
MC56F847xx signal and pin descriptions  
2 MC56F847xx signal and pin descriptions  
After reset, each pin is configured for its primary function (listed first). Any alternative  
functionality, shown in parentheses, must be programmed through the GPIO module  
peripheral enable registers (GPIO_x_PER) and the SIM module GPIO peripheral select  
(GPSx) registers. All GPIO ports can be individually programmed as an input or output  
(using bit manipulation).  
• There are 2 PWM modules: PWMA, PWMB. Each PWM module has 4 submodules:  
PWMA has PWMA_0, PWMA_1, PWMA_2, PWMA_3; PWMB has PWMB_0,  
PWMB_1, PWMB_2, PWMB_3. Each PWM module's submodules have 3 pins (A,  
B, X) each, with the syntax for the pins being PWMA_0A, PWMA_0B, PWMA_0X,  
and PWMA_1A, PWMA_1B, PWMA_1X, and so on. Each submodule pin can be  
configured as a PWM output or as a capture input.  
• PWMA_FAULT0, PWMA_FAULT1, and similar signals are inputs used to disable  
selected PWMA (or PWMB) outputs, in cases where the fault conditions originate  
off-chip.  
• EWM_OUT_B is the output of the External Watchdog Module (EWM), and is active  
low (denoted by the "_B" part of the syntax).  
For the MC56F847XX products, which use 64-pin LQFP, 80-pin LQFP, and 100-pin  
LQFP packages:  
Table 2. Signal descriptions  
Signal Name  
100  
80  
64  
Type  
State  
During  
Reset1  
Signal Description  
LQFP LQFP LQFP  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VDDA  
7
-
-
Supply  
Supply  
I/O Power — Supplies 3.3 V power to the  
chip I/O interface.  
43  
67  
96  
8
35  
54  
76  
-
29  
44  
60  
-
Supply  
Supply  
I/O Ground — Provide ground for the  
device I/O interface.  
15  
44  
66  
97  
31  
11  
36  
53  
77  
26  
-
30  
43  
61  
22  
Supply  
Supply  
Supply  
Supply  
Analog Power — Supplies 3.3 V power to  
the analog modules. It must be connected  
to a clean analog power supply.  
VSSA  
32  
27  
23  
Analog Ground — Supplies an analog  
ground to the analog modules. It must be  
connected to a clean power supply.  
Table continues on the next page...  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
16  
Freescale Semiconductor, Inc.  
 
MC56F847xx signal and pin descriptions  
Table 2. Signal descriptions (continued)  
Signal Name  
100  
80  
64  
Type  
State  
During  
Reset1  
Signal Description  
LQFP LQFP LQFP  
VCAP  
VCAP  
VCAP  
16  
35  
93  
12  
30  
73  
-
On-chip  
regulator  
output  
On-chip  
regulator  
output  
Connect a 2.2uF or greater bypass  
capacitor between this pin and VSS to  
stabilize the core voltage regulator output  
required for proper device operation.  
V<sub>CAP</sub> is used to observe core  
voltage.  
26  
57  
voltage  
voltage  
TDI  
100  
80  
64  
Input  
Input,  
internal  
pullup  
Test Data Input — Provides a serial input  
data stream to the JTAG/EOnCE port. It is  
sampled on the rising edge of TCK and has  
an internal pullup resistor. After reset, the  
default state is TDI.  
enabled  
(GPIOD0)  
Input/  
Input,  
GPIO Port D0  
Output  
internal  
pullup  
enabled  
TDO  
98  
78  
62  
Output  
Output  
Test Data Output — This tri-stateable pin  
provides a serial output data stream from  
the JTAG/EOnCE port. It is driven in the  
shift-IR and shift-DR controller states, and it  
changes on the falling edge of TCK. After  
reset, the default state is TDO.  
(GPIOD1)  
Input/  
Input,  
GPIO Port D1  
Output  
internal  
pullup  
enabled  
TCK  
1
1
1
Input  
Input,  
internal  
pullup  
Test Clock Input — This input pin provides  
a gated clock to synchronize the test logic  
and shift serial data to the JTAG/EOnCE  
port. The pin is connected internally to a  
pullup resistor. A Schmitt-trigger input is  
used for noise immunity. After reset, the  
default state is TCK.  
enabled  
(GPIOD2)  
Input/  
Input,  
GPIO Port D2  
Output  
internal  
pullup  
enabled  
Table continues on the next page...  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
Freescale Semiconductor, Inc.  
17  
MC56F847xx signal and pin descriptions  
Table 2. Signal descriptions (continued)  
Signal Name  
100  
80  
64  
Type  
State  
During  
Reset1  
Signal Description  
LQFP LQFP LQFP  
TMS  
99  
79  
63  
Input  
Input,  
Test Mode Select Input — Used to  
internal  
pullup  
enabled  
sequence the JTAG TAP controller state  
machine. It is sampled on the rising edge of  
TCK and has an internal pullup resistor.  
After reset, the default state is TMS.  
NOTE: Always tie the TMS pin to VDD  
through a 2.2K resistor, if needed  
to keep an on-board debug  
capability. Otherwise, tie the TMS  
pin directly to VDD  
.
(GPIOD3)  
Input/  
Input,  
GPIO Port D3  
Output  
internal  
pullup  
enabled  
RESETor RESETB  
2
2
2
Input  
Input,  
internal  
pullup  
Reset — A direct hardware reset on the  
processor. When RESET is asserted low,  
the device is initialized and placed in the  
reset state. A Schmitt-trigger input is used  
enabled  
(This pin is for noise immunity. The internal reset signal  
3.3V only.) is deasserted synchronously with the  
internal clocks after a fixed number of  
internal clocks. After reset, the default state  
is RESET. To filter noise on the RESETB  
pin, install a capacitor (up to 0.1 uF) on it.  
(GPIOD4)  
Input/  
Open-drain internal  
Output  
Input,  
GPIO Port D4 — Can be individually  
programmed as an input or open-drain  
output pin. RESET functionality is disabled  
in this mode and the device can be reset  
only through Power-On Reset (POR), COP  
reset, or software reset.  
pullup  
enabled  
GPIOA0  
22  
17  
13  
Input/  
Output  
Input  
GPIO Port A0; after reset, the default state  
is GPIOA0.  
(ANA0&CMPA_IN3)  
Input  
ANA0 is input to channel 0 of ADCA;  
CMPA_IN3 is input 3 of analog comparator  
A. When used as an analog input, the  
signal goes to both places (ANA0 and  
CMPA_IN3), but the glitch on this pin  
during ADC sampling may interfere with  
other analog inputs shared on this pin.  
(CMPC_O)  
Output  
Analog comparator C output  
GPIOA1  
23  
18  
14  
Input/  
Output  
Input  
GPIO Port A1: After reset, the default state  
is GPIOA1.  
(ANA1&CMPA_IN0)  
Input  
ANA1 is input to channel 1 of ADCA;  
CMPA_IN0 is input 0 of analog comparator  
A. When used as an analog input, the  
signal goes to both places (ANA1 and  
CMPA_IN0), but the glitch on this pin  
during ADC sampling may interfere with  
other analog inputs shared on this pin.  
Table continues on the next page...  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
18  
Freescale Semiconductor, Inc.  
MC56F847xx signal and pin descriptions  
Table 2. Signal descriptions (continued)  
Signal Name  
100  
80  
64  
Type  
State  
During  
Reset1  
Signal Description  
LQFP LQFP LQFP  
GPIOA2  
24  
19  
15  
Input/  
Output  
Input  
GPIO Port A2: After reset, the default state  
is GPIOA2.  
(ANA2&VREFHA&CMPA_I  
N1)  
Input  
ANA2 is input to channel 2 of ADCA;  
VREFHA is the reference high of ADCA;  
CMPA_IN1 is input 1 of analog comparator  
A. When used as an analog input, the  
signal goes to both places (ANA2 and  
CMPA_IN1), but the glitch on this pin  
during ADC sampling may interfere with  
other analog inputs shared on this pin. This  
input can be configured as either ANA2 or  
VREFHA using the ADCA control register.  
GPIOA3  
25  
20  
16  
Input/  
Output  
Input  
GPIO Port A3: After reset, the default state  
is GPIOA3.  
(ANA3&VREFLA&CMPA_I  
N2)  
Input  
ANA3 is input to channel 3 of ADCA;  
VREFLA is the reference low of ADCA;  
CMPA_IN2 is input 2 of analog comparator  
A. When used as an analog input, the  
signal goes to both places (ANA3 and  
CMPA_IN2), but the glitch on this pin  
during ADC sampling may interfere with  
other analog inputs shared on this pin. This  
input can be configured as either ANA3 or  
VREFLA using the ADCA control register.  
GPIOA4  
21  
16  
12  
Input/  
Output  
Input  
GPIO Port A4: After reset, the default state  
is GPIOA4.  
(ANA4&ANC8&CMPD_IN0  
)
Input  
ANA4 is input to channel 4 of ADCA; ANC8  
is input to channel 8 of ADCC; CMPD_IN0  
is input 0 of analog comparator D. When  
used as an analog input, the signal goes to  
all three places (ANA4 and ANC8 and  
CMPA_IN0), but the glitch on this pin  
during ADC sampling may interfere with  
other analog inputs shared on this pin.  
GPIOA5  
20  
15  
11  
Input/  
Output  
Input  
GPIO Port A5: After reset, the default state  
is GPIOA5.  
(ANA5&ANC9)  
Input  
ANA5 is input to channel 5 of ADCA; ANC9  
is input to channel 9 of ADCC. When used  
as an analog input, the signal goes to both  
places (ANA5 and ANC9), but the glitch on  
this pin during ADC sampling may interfere  
with other analog inputs shared on this pin.  
Table continues on the next page...  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
Freescale Semiconductor, Inc.  
19  
MC56F847xx signal and pin descriptions  
Table 2. Signal descriptions (continued)  
Signal Name  
100  
80  
64  
Type  
State  
During  
Reset1  
Signal Description  
LQFP LQFP LQFP  
GPIOA6  
19  
17  
18  
14  
13  
14  
13  
-
10  
9
-
Input/  
Output  
Input  
GPIO Port A6: After reset, the default state  
is GPIOA6.  
(ANA6&ANC10)  
Input  
ANA6 is input to channel 6 of ADCA;  
ANC10 is input to channel 10 of ADCC.  
When used as an analog input, the signal  
goes to both places (ANA6 and ANC10),  
but the glitch on this pin during ADC  
sampling may interfere with other analog  
inputs shared on this pin.  
GPIOA7  
Input/  
Output  
Input  
Input  
Input  
Input  
GPIO Port A7: After reset, the default state  
is GPIOA7.  
(ANA7&ANC11)  
Input  
ANA7 is input to channel 7 of ADCA;  
ANC11 is input to channel 11 of ADCC.  
When used as an analog input, the signal  
goes to both places (ANA7 and ANC11),  
but the glitch on this pin during ADC  
sampling may interfere with other analog  
inputs shared on this pin.  
GPIOA8  
Input/  
Output  
GPIO Port A8: After reset, the default state  
is GPIOA8.  
(ANC16&CMPD_IN1)  
Input  
ANC16 is input to channel 16 of ADCC;  
CMPD_IN1 is input 1 of analog comparator  
D. When used as an analog input, the  
signal goes to both places (ANC16 and  
CMPD_IN1), but the glitch on this pin  
during ADC sampling may interfere with  
other analog inputs shared on this pin.  
GPIOA9  
-
-
Input/  
Output  
GPIO Port A9: After reset, the default state  
is GPIOA9.  
(ANC17&CMPD_IN2)  
Input  
ANC17 is input to channel 17 of ADCC;  
CMPD_IN2 is input 2 of analog comparator  
D. When used as an analog input, the  
signal goes to both places (ANC17 and  
CMPD_IN2), but the glitch on this pin  
during ADC sampling may interfere with  
other analog inputs shared on this pin.  
GPIOA10  
-
-
Input/  
Output  
GPIO Port A10: After reset, the default  
state is GPIOA10.  
(ANC18&CMPD_IN3)  
Input  
ANC18 is input to channel 18 of ADCC;  
CMPD_IN3 is input 3 of analog comparator  
D. When used as an analog input, the  
signal goes to both places (ANC18 and  
CMPD_IN3), but the glitch on this pin  
during ADC sampling may interfere with  
other analog inputs shared on this pin.  
Table continues on the next page...  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
20  
Freescale Semiconductor, Inc.  
MC56F847xx signal and pin descriptions  
Table 2. Signal descriptions (continued)  
Signal Name  
100  
80  
64  
Type  
State  
During  
Reset1  
Signal Description  
LQFP LQFP LQFP  
GPIOA11  
37  
33  
32  
28  
-
Input/  
Output  
Input  
GPIO Port A11: After reset, the default  
state is GPIOA11.  
(ANC19&VREFHC)  
Input  
ANC19 is input to channel 19 of ADCC.  
VREFHC is the analog reference high of  
ADCC.  
GPIOB0  
24  
Input/  
Output  
Input  
Input  
Input  
GPIO Port B0: After reset, the default state  
is GPIOB0.  
(ANB0&CMPB_IN3)  
Input  
ANB0 is input to channel 0 of ADCB;  
CMPB_IN3 is input 3 of analog comparator  
B. When used as an analog input, the  
signal goes to both places (ANB0 and  
CMPB_IN3), but the glitch on this pin  
during ADC sampling may interfere with  
other analog inputs shared on this pin.  
GPIOB1  
34  
29  
25  
Input/  
Output  
GPIO Port B1: After reset, the default state  
is GPIOB1.  
(ANB1&CMPB_IN0)  
Input  
ANB1 is input to channel 1 of ADCB;  
CMPB_IN0 is input 0 of analog comparator  
B. When used as an analog input, the  
signal goes to both places (ANB1 and  
CMPB_IN0), but the glitch on this pin  
during ADC sampling may interfere with  
other analog inputs shared on this pin.  
GPIOB2  
36  
31  
27  
Input/  
Output  
GPIO Port B2: After reset, the default state  
is GPIOB2.  
(ANB2&VREFHB&CMPC_I  
N3)  
Input  
ANB2 is input to channel 2 of ADCB;  
VREFHB is the reference high of ADCB;  
CMPC_IN3 is input 3 of analog comparator  
C. When used as an analog input, the  
signal goes to both places (ANB2 and  
CMPC_IN3), but the glitch during ADC  
sampling on this pin may interfere with  
other analog inputs shared on this pin. This  
input can be configured as either ANB2 or  
VREFHB using the ADCB control register.  
GPIOB3  
42  
34  
28  
Input/  
Output  
Input  
GPIO Port B3: After reset, the default state  
is GPIOB3.  
(ANB3&VREFLB&CMPC_I  
N0)  
Input  
ANB3 is input to channel 3 of ADCB;  
VREFLB is the reference low of ADCB;  
CMPC_IN0 is input 0 of analog comparator  
C. When used as an analog input, the  
signal goes to both places (ANB3 and  
CMPC_IN0), but the glitch during ADC  
sampling on this pin may interfere with  
other analog inputs shared on this pin. This  
input can be configured as either ANB3 or  
VREFLB using the ADCB control register.  
Table continues on the next page...  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
Freescale Semiconductor, Inc.  
21  
MC56F847xx signal and pin descriptions  
Table 2. Signal descriptions (continued)  
Signal Name  
100  
80  
64  
Type  
State  
During  
Reset1  
Signal Description  
LQFP LQFP LQFP  
GPIOB4  
30  
29  
28  
26  
38  
25  
24  
23  
21  
33  
21  
20  
19  
17  
33  
Input/  
Output  
Input  
GPIO Port B4: After reset, the default state  
is GPIOB4.  
(ANB4&ANC12&CMPC_IN  
1)  
Input  
ANB4 is input to channel 4 of ADCB;  
ANC12 is input to channel 12 of ADCC;  
CMPC_IN1 is input 1 of analog comparator  
C. When used as an analog input, the  
signal goes to all three places (ANB4 and  
ANC12 and CMPC_IN1), but the glitch  
during ADC sampling on this pin may  
interfere with other analog inputs shared on  
this pin.  
GPIOB5  
Input/  
Output  
Input  
Input  
Input  
Input  
GPIO Port B5: After reset, the default state  
is GPIOB5.  
(ANB5&ANC13&CMPC_IN  
2)  
Input  
ANB5 is input to channel 5 of ADCB;  
ANC13 is input to channel 13 of ADCC;  
CMPC_IN2 is input 2 of analog comparator  
C. When used as an analog input, the  
signal goes to all three places (ANB5 and  
ANC13 and CMPC_IN2), but the glitch  
during ADC sampling on this pin may  
interfere with other analog inputs shared on  
this pin.  
GPIOB6  
Input/  
Output  
GPIO Port B6: After reset, the default state  
is GPIOB6.  
(ANB6&ANC14&CMPB_IN  
1)  
Input  
ANB6 is input to channel 6 of ADCB;  
ANC14 is input to channel 14 of ADCC;  
CMPB_IN1 is input 1 of analog comparator  
B. When used as an analog input, the  
signal goes to all three places (ANB6 and  
ANC14 and CMPB_IN1), but the glitch  
during ADC sampling on this pin may  
interfere with other analog inputs shared on  
this pin.  
GPIOB7  
Input/  
Output  
GPIO Port B7: After reset, the default state  
is GPIOB7.  
(ANB7&ANC15&CMPB_IN  
2)  
Input  
ANB7 is input to channel 7 of ADCB;  
ANC15 is input to channel 14 of ADCC;  
CMPB_IN2 is input 2 of analog comparator  
B. When used as an analog input, the  
signal goes to all three places (ANB7 and  
ANC15 and CMPB_IN2), but the glitch  
during ADC sampling on this pin may  
interfere with other analog inputs shared on  
this pin.  
GPIOB8  
Input/  
Output  
GPIO Port B8: After reset, the default state  
is GPIOB8.  
(ANC20&VREFLC)  
Input  
ANC20 is input to channel 20 of ADCC;  
VREFLC is the reference low of ADCC .  
Table continues on the next page...  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
22  
Freescale Semiconductor, Inc.  
MC56F847xx signal and pin descriptions  
Table 2. Signal descriptions (continued)  
Signal Name  
100  
80  
64  
Type  
State  
During  
Reset1  
Signal Description  
LQFP LQFP LQFP  
GPIOB9  
39  
-
-
Input/  
Output  
Input  
GPIO Port B9: After reset, the default state  
is GPIOB9.  
(ANC21)  
(XB_IN9)  
(MISO2)  
Input  
Input to channel 21 of ADCC  
Crossbar module input 9  
Input  
Input/  
Output  
Master in/slave out for SPI2 —In master  
mode, MISO2 pin is the data input. In slave  
mode, MISO2 pin is the data output. The  
MISO line of a slave device is placed in the  
high-impedance state if the slave device is  
not selected.  
GPIOB10  
40  
-
-
Input/  
Output  
Input  
GPIO Port B10: After reset, the default  
state is GPIOB10.  
(ANC22)  
(XB_IN8)  
(MOSI2)  
Input  
Input  
Input to channel 22 of ADCC  
Crossbar module input 8  
Input/  
Output  
Master out/slave in for SPI2— In master  
mode, MOSI2 pin is the data output. In  
slave mode, MOSI2 pin is the data input.  
GPIOB11  
41  
-
-
Input/  
Output  
Input  
GPIO Port B11: After reset, the default  
state is GPIOB11.  
(ANC23)  
(XB_IN7)  
(SCLK2)  
Input  
Input  
Input to channel 23 of ADCC  
Crossbar module input 7  
Input/  
Output  
SPI2 serial clock — In master mode,  
SCLK2 pin is an output, clocking slaved  
listeners. In slave mode, SCLK2 pin is the  
data clock input.  
GPIOC0  
3
4
3
4
3
4
Input/  
Output  
Input  
Input  
GPIO Port C0: After reset, the default state  
is GPIOC0.  
(EXTAL)  
Analog  
Input  
The external crystal oscillator input  
(EXTAL) connects the internal crystal  
oscillator input to an external crystal or  
ceramic resonator.  
(CLKIN0)  
Input  
External clock input.2  
GPIOC1  
Input/  
Output  
GPIO Port C1: After reset, the default state  
is GPIOC1.  
(XTAL)  
Analog  
Output  
The external crystal oscillator output  
(XTAL) connects the internal crystal  
oscillator output to an external crystal or  
ceramic resonator.  
Table continues on the next page...  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
Freescale Semiconductor, Inc.  
23  
MC56F847xx signal and pin descriptions  
Table 2. Signal descriptions (continued)  
Signal Name  
100  
80  
64  
Type  
State  
During  
Reset1  
Signal Description  
LQFP LQFP LQFP  
GPIOC2  
5
5
5
Input/  
Output  
Input  
GPIO Port C2: After reset, the default state  
is GPIOC2.  
(TXD0)  
(TB0)  
Output  
SCI0 transmit data output or transmit/  
receive in single-wire operation  
Input/  
Output  
Quad timer module B channel 0 input/  
output  
(XB_IN2)  
(CLKO0)  
Input  
Crossbar module input 2  
Output  
Buffered clock output 0: the clock source is  
selected by clockout select (CLKOSEL) bits  
in the clock output select register  
(CLKOUT) of the SIM.  
GPIOC3  
11  
9
7
Input/  
Output  
Input  
GPIO Port C3: After reset, the default state  
is GPIOC3.  
(TA0)  
Input/  
Output  
Quad timer module A channel 0 input/  
output  
(CMPA_O)  
(RXD0)  
Output  
Input  
Analog comparator A output  
SCI0 receive data input  
External clock input 1  
(CLKIN1)  
GPIOC4  
Input  
12  
10  
8
Input/  
Output  
Input  
GPIO Port C4: After reset, the default state  
is GPIOC4.  
(TA1)  
Input/  
Output  
Quad timer module A channel 1 input/  
output  
(CMPB_O)  
(XB_IN8)  
Output  
Input  
Analog comparator B output  
Crossbar module input 8  
(EWM_OUT_B)  
GPIOC5  
Output  
External Watchdog Module output  
27  
49  
22  
39  
18  
31  
Input/  
Output  
Input  
Input  
GPIO Port C5: After reset, the default state  
is GPIOC5.  
(DACO)  
Analog  
Output  
12-bit digital-to-analog output  
(XB_IN7)  
Input  
Crossbar module input 7  
GPIOC6  
Input/  
Output  
GPIO Port C6: After reset, the default state  
is GPIOC6  
(TA2)  
Input/  
Output  
Quad timer module A channel 2 input/  
output  
(XB_IN3)  
Input  
Crossbar module input 3  
(CMP_REF)  
Analog  
Input  
Input 5 of analog comparator A and B and  
C and D.  
Table continues on the next page...  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
24  
Freescale Semiconductor, Inc.  
MC56F847xx signal and pin descriptions  
Table 2. Signal descriptions (continued)  
Signal Name  
100  
80  
64  
Type  
State  
During  
Reset1  
Signal Description  
LQFP LQFP LQFP  
GPIOC7  
50  
52  
40  
32  
Input/  
Output  
Input  
GPIO Port C7: After reset, the default state  
is GPIOC7.  
(SS0_B)  
Input/  
Output  
In slave mode, SS0_B indicates to the SPI  
module that the current transfer is to be  
received.  
(TXD0)  
Output  
SCI0 transmit data output or transmit/  
receive in single-wire operation  
GPIOC8  
(MISO0)  
41  
33  
Input/  
Output  
Input  
GPIO Port C8: After reset, the default state  
is GPIOC8.  
Input/  
Output  
Master in/slave out —In master mode,  
MISO0 pin is the data input. In slave mode,  
MISO0 pin is the data output. The MISO0  
line of a slave device is placed in the high-  
impedance state if the slave device is not  
selected.  
(RXD0)  
Input  
Input  
SCI0 receive data input.  
Crossbar module input 9  
(XB_IN9)  
GPIOC9  
53  
54  
42  
43  
34  
35  
Input/  
Output  
Input  
Input  
GPIO Port C9: After reset, the default state  
is GPIOC9.  
(SCLK0)  
Input/  
Output  
SPI0 serial clock — In master mode,  
SCLK0 pin is an output, clocking slaved  
listeners. In slave mode, SCLK0 pin is the  
data clock input.  
(XB_IN4)  
Input  
Crossbar module input 4  
GPIOC10  
Input/  
Output  
GPIO Port C10: After reset, the default  
state is GPIOC10.  
(MOSI0)  
Input/  
Output  
Master out/slave in — In master mode,  
MOSI0 pin is the data output. In slave  
mode, MOSI0 pin is the data input.  
(XB_IN5)  
(MISO0)  
Input  
Crossbar module input 5  
Input/  
Output  
Master in/slave out — In master mode,  
MISO0 pin is the data input. In slave mode,  
MISO0 pin is the data output. The MISO0  
line of a slave device is placed in the high-  
impedance state if the slave device is not  
selected.  
GPIOC11  
(CANTX)  
(SCL1)  
58  
47  
37  
Input/  
Output  
Input  
GPIO Port C11: After reset, the default  
state is GPIOC11.  
Open-drain  
Output  
CAN transmit data output  
Input/  
I2C1 serial clock  
Open-drain  
Output  
(TXD1)  
Output  
SCI1 transmit data output or transmit/  
receive in single wire operation  
Table continues on the next page...  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
Freescale Semiconductor, Inc.  
25  
MC56F847xx signal and pin descriptions  
Table 2. Signal descriptions (continued)  
Signal Name  
100  
80  
64  
Type  
State  
During  
Reset1  
Signal Description  
LQFP LQFP LQFP  
GPIOC12  
59  
48  
38  
Input/  
Output  
Input  
GPIO Port C12: After reset, the default  
state is GPIOC12.  
(CANRX)  
(SDA1)  
Input  
CAN receive data input  
I2C1 serial data line  
Input/  
Open-drain  
Output  
(RXD1)  
Input  
SCI1 receive data input  
GPIOC13  
76  
61  
49  
Input/  
Output  
Input  
GPIO Port C13: After reset, the default  
state is GPIOC13.  
(TA3)  
Input/  
Output  
Quad timer module A channel 3 input/  
output  
(XB_IN6)  
Input  
Crossbar module input 6  
(EWM_OUT_B)  
GPIOC14  
Output  
External Watchdog Module output  
87  
88  
70  
71  
55  
56  
Input/  
Output  
Input  
Input  
GPIO Port C14: After reset, the default  
state is GPIOC14.  
I2C0 serial data line  
(SDA0)  
Input/  
Open-drain  
Output  
(XB_OUT4)  
Output  
Crossbar module output 4  
GPIOC15  
Input/  
Output  
GPIO Port C15: After reset, the default  
state is GPIOC15.  
(SCL0)  
Input/  
I2C0 serial clock  
Open-drain  
Output  
(XB_OUT5)  
Input  
Crossbar module output 5  
GPIOD5  
10  
8
7
-
-
Input/  
Output  
Input  
Input  
GPIO Port D5: After reset, the default state  
is GPIOD5.  
(RXD2)  
Input  
SCI2 receive data input  
Crossbar module input 5  
Crossbar module output 9  
(XB_IN5)  
(XB_OUT9)  
GPIOD6  
Input  
Output  
9
Input/  
Output  
GPIO Port D6: After reset, the default state  
is GPIOD6.  
(TXD2)  
Output  
SCI2 transmit data output or transmit/  
receive in single-wire operation  
(XB_IN4)  
Input  
Crossbar module input 4  
Crossbar module output 8  
(XB_OUT8)  
Output  
Table continues on the next page...  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
26  
Freescale Semiconductor, Inc.  
MC56F847xx signal and pin descriptions  
Table 2. Signal descriptions (continued)  
Signal Name  
100  
80  
64  
Type  
State  
During  
Reset1  
Signal Description  
LQFP LQFP LQFP  
GPIOD7  
47  
37  
-
Input/  
Input  
GPIO Port D7: After reset, the default state  
is GPIOD7.  
Output  
Output  
Input  
(XB_OUT11)  
(XB_IN7)  
Crossbar module output 11  
Crossbar module input 7  
(MISO1)  
Input/  
Output  
Master in/slave out for SPI1 —In master  
mode, MISO1 pin is the data input. In slave  
mode, MISO1 pin is the data output. The  
MISO line of a slave device is placed in the  
high-impedance state if the slave device is  
not selected.  
GPIOE0  
68  
69  
74  
75  
82  
55  
56  
59  
60  
65  
45  
46  
47  
48  
51  
Input/  
Output  
Input  
Input  
Input  
Input  
Input  
GPIO Port E0: After reset, the default state  
is GPIOE0.  
PWMA_0B  
GPIOE1  
Input/  
Output  
PWM module A (NanoEdge), submodule 0,  
output B or input capture B  
Input/  
Output  
GPIO Port E1: After reset, the default state  
is GPIOE1.  
(PWMA_0A)  
GPIOE2  
Input/  
Output  
PWM module A (NanoEdge), submodule 0,  
output A or input capture A  
Input/  
Output  
GPIO Port E2: After reset, the default state  
is GPIOE2.  
(PWMA_1B)  
GPIOE3  
Input/  
Output  
PWM module A (NanoEdge), submodule 1,  
output B or input capture B  
Input/  
Output  
GPIO Port E3: After reset, the default state  
is GPIOE3.  
(PWMA_1A)  
GPIOE4  
Input/  
Output  
PWM module A (NanoEdge), submodule 1,  
output A or input capture A  
Input/  
Output  
GPIO Port E4: After reset, the default state  
is GPIOE4.  
(PWMA_2B)  
Input/  
Output  
PWM module A (NanoEdge), submodule 2,  
output B or input capture B  
(XB_IN2)  
Input  
Crossbar module input 2  
GPIOE5  
83  
84  
66  
67  
52  
53  
Input/  
Output  
Input  
Input  
GPIO Port E5: After reset, the default state  
is GPIOE5.  
(PWMA_2A)  
Input/  
Output  
PWM module A (NanoEdge), submodule 2,  
output A or input capture A  
(XB_IN3)  
Input  
Crossbar module input 3  
GPIOE6  
Input/  
Output  
GPIO Port E6: After reset, the default state  
is GPIOE6.  
(PWMA_3B)  
Input/  
Output  
PWM module A (NanoEdge), submodule 3,  
output B or input capture B  
(XB_IN4)  
Input  
Crossbar module input 4  
(PWMB_2B)  
Input/  
Output  
Note: PWMB_2B is not available on  
64LQFP devices.  
Table continues on the next page...  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
Freescale Semiconductor, Inc.  
27  
MC56F847xx signal and pin descriptions  
Table 2. Signal descriptions (continued)  
Signal Name  
100  
80  
64  
Type  
State  
During  
Reset1  
Signal Description  
LQFP LQFP LQFP  
GPIOE7  
85  
68  
54  
Input/  
Output  
Input  
GPIO Port E7: After reset, the default state  
is GPIOE7.  
(PWMA_3A)  
Input/  
Output  
PWM module A (NanoEdge), submodule 3,  
output A or input capture A  
(XB_IN5)  
Input  
Crossbar module input 5  
(PWMB_2A)  
Input/  
Output  
PWM module B, submodule 2, output A or  
input capture A. Note: PWMB_2A is not  
available on 64LQFP devices.  
GPIOE8  
72  
73  
55  
-
-
Input/  
Output  
Input  
Input  
Input  
GPIO Port E8: After reset, the default state  
is GPIOE8.  
(PWMB_2B)  
(PWMA_FAULT0)  
Input/  
Output  
PWM module B, submodule 2, output B or  
input capture B  
Input  
PWM module A fault input 0 is used for  
disabling selected PWM module A outputs  
in cases where fault conditions originate  
off-chip  
GPIOE9  
-
-
Input/  
Output  
GPIO Port E9: After reset, the default state  
is GPIOE9.  
(PWMB_2A)  
(PWMA_FAULT1)  
Input/  
Output  
PWM module B, submodule 2, output A or  
input capture A  
Input  
PWM module A fault input 1 is used for  
disabling selected PWM module A outputs  
in cases where fault conditions originate  
off-chip  
GPIOF0  
44  
36  
Input/  
Output  
GPIO Port F0: After reset, the default state  
is GPIOF0.  
(XB_IN6)  
(TB2)  
Input  
Crossbar module input 6  
Input/  
Output  
Quad timer module B channel 2 input/  
output  
(SCLK1)  
Input/  
Output  
SPI1 serial clock — In master mode,  
SCLK1 pin is an output, clocking slaved  
listeners. In slave mode, SCLK1 pin is the  
data clock input. Note: SCLK1 is not  
available on 64LQFP and 48LQFP devices.  
GPIOF1  
77  
62  
50  
Input/  
Output  
Input  
GPIO Port F1: After reset, the default state  
is GPIOF1.  
(CLKO1)  
Output  
Buffered clock output 1: the clock source is  
selected by clockout select (CLKOSEL) bits  
in the clock output select register  
(CLKOUT) of the SIM.  
(XB_IN7)  
Input  
Crossbar module input 6  
(CMPD_O)  
Output  
Analog comparator D output  
Table continues on the next page...  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
28  
Freescale Semiconductor, Inc.  
MC56F847xx signal and pin descriptions  
Table 2. Signal descriptions (continued)  
Signal Name  
100  
80  
64  
Type  
State  
During  
Reset1  
Signal Description  
LQFP LQFP LQFP  
GPIOF2  
60  
61  
62  
49  
50  
51  
39  
40  
41  
Input/  
Output  
Input  
GPIO Port F2: After reset, the default state  
is GPIOF2.  
I2C1 serial clock  
(SCL1)  
Input/  
Open-drain  
Output  
(XB_OUT6)  
Output  
Crossbar module output 6  
GPIOF3  
Input/  
Output  
Input  
Input  
GPIO Port F3: After reset, the default state  
is GPIOF3.  
I2C1 serial data line  
(SDA1)  
Input/  
Open-drain  
Output  
(XB_OUT7)  
Output  
Crossbar module output 7  
GPIOF4  
Input/  
Output  
GPIO Port F4: After reset, the default state  
is GPIOF4.  
(TXD1)  
Output  
SCI1 transmit data output or transmit/  
receive in single wire operation  
(XB_OUT8)  
Output  
Crossbar module output 8  
GPIOF5  
63  
94  
52  
74  
42  
58  
Input/  
Output  
Input  
Input  
GPIO Port F5: After reset, the default state  
is GPIOF5.  
(RXD1)  
Input  
SCI1 receive data input  
(XB_OUT9)  
GPIOF6  
Output  
Crossbar module output 9  
Input/  
Output  
GPIO Port F6: After reset, the default state  
is GPIOF6.  
(TB2)  
Input/  
Output  
Quad timer module B Channel 2 input/  
output  
(PWMA_3X)  
(PWMB_3X)  
Input/  
Output  
PWM module A, submodule 3, output X or  
input capture X  
Input/  
Output  
PWM module B, submodule 3, output X or  
input capture X. Note: PWMB_3X is not  
available on 64LQFP devices.  
(XB_IN2)  
Input  
Crossbar module input 2  
GPIOF7  
95  
75  
59  
Input/  
Output  
Input  
GPIO Port F7: After reset, the default state  
is GPIOF7.  
(TB3)  
Input/  
Output  
Quad timer module B Channel 3 input/  
output  
(CMPC_O)  
(SS1_B)  
Output  
Analog comparator C output  
Input/  
Output  
In slave mode, SS1_B indicates to the SPI1  
module that the current transfer is to be  
received. Note: SS1_B is not available on  
64LQFP devices.  
(XB_IN3)  
Input  
Crossbar module input 3  
Table continues on the next page...  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
Freescale Semiconductor, Inc.  
29  
MC56F847xx signal and pin descriptions  
Table 2. Signal descriptions (continued)  
Signal Name  
100  
80  
64  
Type  
State  
During  
Reset1  
Signal Description  
LQFP LQFP LQFP  
GPIOF8  
6
6
6
Input/  
Output  
Input  
GPIO Port F8: After reset, the default state  
is GPIOF8.  
(RXD0)  
(TB1)  
Input  
SCI0 receive data input  
Input/  
Output  
Quad timer module B channel 1 input/  
output  
(CMPD_O)  
Output  
Analog comparator D output  
GPIOF9  
57  
46  
-
Input/  
Output  
Input  
GPIO Port F9: After reset, the default state  
is GPIOF9.  
(RXD2)  
Input  
Input  
SCI2 receive data input  
(PWMA_FAULT7)  
PWM module A fault input 7 is used for  
disabling selected PWM module A outputs  
in cases where fault conditions originate  
off-chip  
(PWMB_FAULT7)  
Input  
PWM module B fault input 7 is used for  
disabling selected PWM module B outputs  
in cases where fault conditions originate  
off-chip  
(XB_OUT11)  
Output  
Crossbar module output 11  
GPIOF10  
56  
45  
-
Input/  
Output  
Input  
GPIO Port F10: After reset, the default  
state is GPIOF10.  
(TXD2)  
Input/  
Output  
SCI2 transmit data output or transmit/  
receive in single-wire operation  
(PWMA_FAULT6)  
Input  
PWM module A fault input 6 is used for  
disabling selected PWM module A outputs  
in cases where fault conditions originate  
off-chip  
(PWMB_FAULT6)  
Input  
PWM module B fault input 6 is used for  
disabling selected PWM module B outputs  
in cases where fault conditions originate  
off-chip  
(XB_OUT10)  
Output  
Crossbar module output 10  
GPIOF11  
45  
-
-
Input/  
Output  
Input  
GPIO Port F11: After reset, the default  
state is GPIOF11.  
(TXD0)  
Output  
Input  
SCI0 transmit data output or transmit/  
receive in single-wire operation  
(XB_IN11)  
Crossbar module input 11  
Table continues on the next page...  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
30  
Freescale Semiconductor, Inc.  
MC56F847xx signal and pin descriptions  
Table 2. Signal descriptions (continued)  
Signal Name  
100  
80  
64  
Type  
State  
During  
Reset1  
Signal Description  
LQFP LQFP LQFP  
GPIOF12  
89  
-
-
Input/  
Output  
Input  
GPIO Port F12: After reset, the default  
state is GPIOF12.  
(MISO1)  
Input/  
Output  
Master in/slave out for SPI1 —In master  
mode, MISO1 pin is the data input. In slave  
mode, MISO1 pin is the data output. The  
MISO line of a slave device is placed in the  
high-impedance state if the slave device is  
not selected.  
(PWMB_FAULT2)  
Input  
PWM module B fault input 2 is used for  
disabling selected PWM module B outputs  
in cases where fault conditions originate  
off-chip  
GPIOF13  
90  
91  
-
-
-
-
Input/  
Output  
Input  
Input  
GPIO Port F13: After reset, the default  
state is GPIOF13.  
(MOSI1)  
(PWMB_FAULT1)  
Input  
PWM module B fault input 1 is used for  
disabling selected PWM module B outputs  
in cases where fault conditions originate  
off-chip  
GPIOF14  
Input/  
Output  
GPIO Port F14: After reset, the default  
state is GPIOF14.  
(SCLK1)  
Input/  
Output  
SPI1 serial clock — In master mode,  
SCLK1 pin is an output, clocking slaved  
listeners. In slave mode, SCLK1 pin is the  
data clock input. Note: SCLK1 is not  
available on 48LQFP and 64LQFP devices.  
(PWMB_FAULT0)  
Input  
PWM module B fault input 0 is used for  
disabling selected PWM module B outputs  
in cases where fault conditions originate  
off-chip  
GPIOF15  
46  
78  
-
-
-
Input/  
Output  
Input  
Input  
GPIO Port F15: After reset, the default  
state is GPIOF15.  
(RXD0)  
Input  
Input  
SCI0 receive data input  
(XB_IN10)  
GPIOG0  
Crossbar module input 10  
63  
Input/  
Output  
GPIO Port G0: After reset, the default state  
is GPIOG0.  
(PWMB_1B)  
Input/  
Output  
PWM module B, submodule 1, output B or  
input capture B  
(XB_OUT6)  
Output  
Crossbar module output 6  
GPIOG1  
79  
64  
-
Input/  
Output  
Input  
GPIO Port G1: After reset, the default state  
is GPIOG1.  
(PWMB_1A)  
(XB_OUT7)  
Input/  
Output  
PWM module B, submodule 1, output A or  
input capture A  
Output  
Crossbar module output 7  
Table continues on the next page...  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
Freescale Semiconductor, Inc.  
31  
MC56F847xx signal and pin descriptions  
Table 2. Signal descriptions (continued)  
Signal Name  
100  
80  
64  
Type  
State  
During  
Reset1  
Signal Description  
LQFP LQFP LQFP  
GPIOG2  
70  
71  
80  
57  
58  
-
-
-
-
Input/  
Output  
Input  
GPIO Port G2: After reset, the default state  
is GPIOG2.  
(PWMB_0B)  
Input/  
Output  
PWM module B, submodule 0, output B or  
input capture B  
(XB_OUT4)  
Output  
Crossbar module output 4  
GPIOG3  
Input/  
Output  
Input  
Input  
GPIO Port G3: After reset, the default state  
is GPIOG3.  
(PWMB_0A)  
Input/  
Output  
PWM module B, submodule 0, output A or  
input capture A  
(XB_OUT5)  
Output  
Crossbar module output 5  
GPIOG4  
Input/  
Output  
GPIO Port G4: After reset, the default state  
is GPIOG4.  
(PWMB_3B)  
Input/  
Output  
PWM module B, submodule 3, output B or  
input capture B  
(PWMA_FAULT2)  
Input  
PWM module A fault input 2 is used for  
disabling selected PWM module A outputs  
in cases where fault conditions originate  
off-chip  
GPIOG5  
81  
-
-
Input/  
Output  
Input  
GPIO Port G5: After reset, the default state  
is GPIOG5.  
(PWMB_3A)  
(PWMA_FAULT3)  
Input/  
Output  
PWM module B, submodule 3, output A or  
input capture A  
Input  
PWM module A fault input 3 is used for  
disabling selected PWM module A outputs  
in cases where fault conditions originate  
off-chip  
GPIOG6  
86  
69  
-
Input/  
Output  
Input  
GPIO Port G6: After reset, the default state  
is GPIOG6.  
(PWMA_FAULT4)  
Input  
PWM module A fault input 4 is used for  
disabling selected PWM module A outputs  
in cases where fault conditions originate  
off-chip  
(PWMB_FAULT4)  
Input  
PWM module B fault input 4 is used for  
disabling selected PWM module B outputs  
in cases where fault conditions originate  
off-chip  
(TB2)  
Input/  
Output  
Quad timer module B channel 2 input/  
output  
(XB_OUT8)  
Output  
Crossbar module output 8  
Table continues on the next page...  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
32  
Freescale Semiconductor, Inc.  
MC56F847xx signal and pin descriptions  
Table 2. Signal descriptions (continued)  
Signal Name  
100  
80  
64  
Type  
State  
During  
Reset1  
Signal Description  
LQFP LQFP LQFP  
GPIOG7  
92  
72  
-
Input/  
Output  
Input  
GPIO Port G7: After reset, the default state  
is GPIOG7.  
(PWMA_FAULT5)  
Input  
PWM module A fault input 5 is used for  
disabling selected PWM module A outputs  
in cases where fault conditions originate  
off-chip  
(PWMB_FAULT5)  
Input  
PWM module B fault input 5 is used for  
disabling selected PWM module B outputs  
in cases where fault conditions originate  
off-chip  
(XB_OUT9)  
Output  
Crossbar module output 9  
GPIOG8  
64  
65  
51  
-
-
-
-
-
-
Input/  
Output  
Input  
Input  
Input  
GPIO Port G8: After reset, the default state  
is GPIOG8.  
(PWMB_0X)  
(PWMA_0X)  
(TA2)  
Input/  
Output  
PWM module B, submodule 0, output X or  
input capture X  
Input/  
Output  
PWM module A, submodule 0, output X or  
input capture X  
Input/  
Output  
Quad timer module A channel 2 input/  
output  
(XB_OUT10)  
Output  
Crossbar module output 10  
GPIOG9  
Input/  
Output  
GPIO Port G9: After reset, the default state  
is GPIOG9.  
(PWMB_1X)  
(PWMA_1X)  
(TA3)  
Input/  
Output  
PWM module B, submodule 1, output X or  
input capture X  
Input/  
Output  
PWM module A, submodule 1, output X or  
input capture X  
Input/  
Output  
Quad timer module A channel 3 input/  
output  
(XB_OUT11)  
Output  
Crossbar module output 11  
GPIOG10  
Input/  
Output  
GPIO Port G10: After reset, the default  
state is GPIOG10.  
(PWMB_2X)  
(PWMA_2X)  
Input/  
Output  
PWM module B, submodule 2, output X or  
input capture X  
Input/  
Output  
PWM module A, submodule 2, output X or  
input capture X  
(XB_IN8)  
(SS2_B)  
Input  
Crossbar module input 8  
Input/  
Output  
In slave mode, SS2_B indicates to the SPI2  
module that the current transfer is to be  
received.  
Table continues on the next page...  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
Freescale Semiconductor, Inc.  
33  
Signal groups  
Table 2. Signal descriptions (continued)  
Signal Name  
100  
80  
64  
Type  
State  
During  
Reset1  
Signal Description  
LQFP LQFP LQFP  
GPIOG11  
(TB3)  
48  
38  
-
Input/  
Output  
Input  
GPIO Port G11: After reset, the default  
state is GPIOG11.  
Input/  
Output  
Quad timer module B channel 3 input/  
output  
(CLKO0)  
Output  
Buffered clock output 0: the clock source is  
selected by clockout select (CLKOSEL) bits  
in the clock output select register  
(CLKOUT) of the SIM.  
(MOSI1)  
Input/  
Output  
Master out/slave in for SPI1— In master  
mode, MOSI1 pin is the data output. In  
slave mode, MOSI1 pin is the data input.  
1. For all GPIO except GPIOD0 - GPIOD4, input only after reset (internal pullup and pull-down are disabled).  
2. If CLKIN is selected as the device’s external clock input, then both the GPS_C0 bit (in GPS1) and the EXT_SEL bit (in the  
OCCS oscillator control register (OSCTL)) must be set. Also, the crystal oscillator should be powered down.  
3 Signal groups  
The input and output signals of the MC56F84xxx are organized into functional groups, as  
listed in Table 3. Note that some package sizes may not be available for your specific  
product. See MC56F844xx/5xx/7xx product family.  
Table 3. Functional Group Pin Allocations  
Functional Group  
Number of Pins  
64 LQFP 80 LQFP 100 LQFP  
48 LQFP  
Power Inputs (VDD, VDDA), Power Outputs (VCAP  
)
5
4
6
7
5
8
6
Ground (VSS, VSSA  
Reset  
)
4
1
1
1
1
eFlexPWM with NanoEdge ports, not including fault pins  
eFlexPWM without NanoEdge ports, not including fault pins  
Queued Serial Peripheral Interface (QSPI) ports  
Queued Serial Communications Interface (QSCI) ports  
Inter-Integrated Circuit (I2C) interface ports  
12-bit Analog-to-Digital Converter (Cyclic ADC) inputs  
16-bit Analog-to-Digital Converter (SAR ADC) inputs  
Analog Comparator inputs/outputs  
6
8
8
8
0
1
8
16  
15  
15  
6
4
4
8
6
9
9
4
6
6
10  
2
16  
8
16  
10  
13/6  
1
16  
16  
16/6  
1
10/4  
1
13/6  
1
12-bit Digital-to-Analog output  
Quad Timer Module (TMR) ports  
6
9
11  
2
13  
2
Controller Area Network (FlexCAN)  
2
2
Inter-Module Crossbar inputs/outputs  
12/2  
16/6  
19/17  
25/19  
Table continues on the next page...  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
34  
Freescale Semiconductor, Inc.  
 
 
 
 
Ordering parts  
Table 3. Functional Group Pin Allocations  
(continued)  
Functional Group  
Number of Pins  
48 LQFP  
64 LQFP  
80 LQFP 100 LQFP  
Clock inputs/outputs  
2/2  
4
2/2  
4
2/3  
4
2/3  
4
JTAG / Enhanced On-Chip Emulation (EOnCE)  
4 Ordering parts  
4.1 Determining valid orderable parts  
Valid orderable part numbers are provided on the web. To determine the orderable part  
numbers for this device, go to freescale.com and perform a part number search for the  
following device numbers: MC56F84  
5 Part identification  
5.1 Description  
Part numbers for the chip have fields that identify the specific part. You can use the  
values of these fields to determine the specific part you have received.  
5.2 Format  
Part numbers for this device have the following format: Q 56F8 4 C F P T PP N  
5.3 Fields  
This table lists the possible values for each field in the part number (not all combinations  
are valid):  
Field  
Description  
Values  
Q
Qualification status  
• MC = Fully qualified, general market flow  
• PC = Prequalification  
Table continues on the next page...  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
Freescale Semiconductor, Inc.  
35  
 
 
 
 
 
 
Terminology and guidelines  
Field  
Description  
Values  
56F8  
DSC family with flash memory and DSP56800/  
DSP56800E/DSP56800EX core  
• 56F8  
• 4  
4
DSC subfamily  
C
Maximum CPU frequency (MHz)  
• 4 = 60 MHz  
• 5 = 80 MHz  
• 7 = 100 MHz  
F
P
Primary program flash memory size  
Pin count  
• 4 = 64 KB  
• 5 = 96 KB  
• 6 = 128 KB  
• 8 = 256 KB  
• 0 and 1 = 48  
• 2 and 3 = 64  
• 4, 5, and 6 = 80  
• 7, 8, and 9 = 100  
T
Temperature range (°C)  
Package identifier  
• V = –40 to 105  
PP  
• LF = 48LQFP  
• LH = 64LQFP  
• LK = 80LQFP  
• LL = 100LQFP  
N
Packaging type  
• R = Tape and reel  
• (Blank) = Trays  
5.4 Example  
This is an example part number: MC56F84789VLL  
6 Terminology and guidelines  
6.1 Definition: Operating requirement  
An operating requirement is a specified value or range of values for a technical  
characteristic that you must guarantee during operation to avoid incorrect operation and  
possibly decreasing the useful life of the chip.  
6.1.1 Example  
This is an example of an operating requirement:  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
36  
Freescale Semiconductor, Inc.  
 
 
 
Terminology and guidelines  
Symbol  
Description  
Min.  
Max.  
Unit  
VDD  
1.0 V core supply  
voltage  
0.9  
1.1  
V
6.2 Definition: Operating behavior  
An operating behavior is a specified value or range of values for a technical  
characteristic that are guaranteed during operation if you meet the operating requirements  
and any other specified conditions.  
6.2.1 Example  
This is an example of an operating behavior:  
Symbol  
Description  
Min.  
Max.  
Unit  
IWP  
Digital I/O weak pullup/ 10  
pulldown current  
130  
µA  
6.3 Definition: Attribute  
An attribute is a specified value or range of values for a technical characteristic that are  
guaranteed, regardless of whether you meet the operating requirements.  
6.3.1 Example  
This is an example of an attribute:  
Symbol  
Description  
Min.  
Max.  
Unit  
CIN_D  
Input capacitance:  
digital pins  
7
pF  
6.4 Definition: Rating  
A rating is a minimum or maximum value of a technical characteristic that, if exceeded,  
may cause permanent chip failure:  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
Freescale Semiconductor, Inc.  
37  
 
 
 
Terminology and guidelines  
Operating ratings apply during operation of the chip.  
Handling ratings apply when the chip is not powered.  
6.4.1 Example  
This is an example of an operating rating:  
Symbol  
Description  
Min.  
Max.  
Unit  
VDD  
1.0 V core supply  
voltage  
–0.3  
1.2  
V
6.5 Result of exceeding a rating  
40  
30  
The likelihood of permanent chip failure increases rapidly as  
soon as a characteristic begins to exceed one of its operating ratings.  
20  
10  
0
Operating rating  
Measured characteristic  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
38  
Freescale Semiconductor, Inc.  
 
 
Terminology and guidelines  
6.6 Relationship between ratings and operating requirements  
Fatal range  
Degraded operating range  
Normal operating range  
Degraded operating range  
Fatal range  
Expected permanent failure  
- No permanent failure  
- Possible decreased life  
- Possible incorrect operation  
- No permanent failure  
- Correct operation  
- No permanent failure  
- Possible decreased life  
- Possible incorrect operation  
Expected permanent failure  
 
Operating (power on)  
Fatal range  
Handling range  
Fatal range  
Expected permanent failure  
No permanent failure  
Expected permanent failure  
∞  
Handling (power off)  
6.7 Guidelines for ratings and operating requirements  
Follow these guidelines for ratings and operating requirements:  
• Never exceed any of the chip’s ratings.  
• During normal operation, don’t exceed any of the chip’s operating requirements.  
• If you must exceed an operating requirement at times other than during normal  
operation (for example, during power sequencing), limit the duration as much as  
possible.  
6.8 Definition: Typical value  
A typical value is a specified value for a technical characteristic that:  
• Lies within the range of values specified by the operating behavior  
• Given the typical manufacturing process, is representative of that characteristic  
during operation when you meet the typical-value conditions or other specified  
conditions  
Typical values are provided as design guidelines and are neither tested nor guaranteed.  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
Freescale Semiconductor, Inc.  
39  
 
 
Terminology and guidelines  
6.8.1 Example 1  
This is an example of an operating behavior that includes a typical value:  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
IWP  
Digital I/O weak  
pullup/pulldown  
current  
10  
70  
130  
µA  
6.8.2 Example 2  
This is an example of a chart that shows typical values for various voltage and  
temperature conditions:  
5000  
4500  
4000  
TJ  
3500  
150 °C  
3000  
105 °C  
2500  
25 °C  
2000  
–40 °C  
1500  
1000  
500  
0
0.90  
0.95  
1.00  
1.05  
1.10  
VDD (V)  
6.9 Typical value conditions  
Typical values assume you meet the following conditions (or other conditions as  
specified):  
Symbol  
Description  
Ambient temperature  
3.3 V supply voltage  
Value  
Unit  
TA  
25  
°C  
V
VDD  
3.3  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
40  
Freescale Semiconductor, Inc.  
 
Ratings  
7 Ratings  
7.1 Thermal handling ratings  
Symbol  
TSTG  
Description  
Min.  
–55  
Max.  
150  
Unit  
°C  
Notes  
Storage temperature  
Solder temperature, lead-free  
1
2
TSDR  
260  
°C  
1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.  
2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
7.2 Moisture handling ratings  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
MSL  
Moisture sensitivity level  
3
1
1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
7.3 ESD handling ratings  
Although damage from electrostatic discharge (ESD) is much less common on these  
devices than on early CMOS circuits, use normal handling precautions to avoid exposure  
to static discharge. Qualification tests are performed to ensure that these devices can  
withstand exposure to reasonable levels of static without suffering any permanent  
damage.  
All ESD testing is in conformity with AEC-Q100 Stress Test Qualification. During the  
device qualification ESD stresses were performed for the human body model (HBM), the  
machine model (MM), and the charge device model (CDM).  
All latch-up testing is in conformity with AEC-Q100 Stress Test Qualification.  
A device is defined as a failure if after exposure to ESD pulses, the device no longer  
meets the device specification. Complete DC parametric and functional testing is  
performed as per the applicable device specification at room temperature followed by hot  
temperature, unless specified otherwise in the device specification.  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
Freescale Semiconductor, Inc.  
41  
 
 
 
 
 
 
 
Ratings  
Table 4. ESD/Latch-up Protection  
Characteristic1  
Min  
–2000  
–200  
–500  
–100  
Max  
+2000  
+200  
+500  
+100  
Unit  
V
ESD for Human Body Model (HBM)  
ESD for Machine Model (MM)  
V
ESD for Charge Device Model (CDM)  
V
Latch-up current at TA= 85°C (ILAT  
)
mA  
1. Parameter is achieved by design characterization on a small sample size from typical devices under typical conditions  
unless otherwise noted.  
7.4 Voltage and current operating ratings  
Absolute maximum ratings are stress ratings only, and functional operation at the  
maxima is not guaranteed. Stress beyond the limits specified in Table 5 may affect device  
reliability or cause permanent damage to the device.  
Table 5. Absolute Maximum Ratings (VSS = 0 V, VSSA = 0 V)  
Characteristic  
Supply Voltage Range  
Symbol  
VDD  
Notes1  
Min  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.4  
-0.3  
Max  
4.0  
4.0  
4.0  
0.3  
0.3  
5.5  
4.0  
4.0  
4.0  
-5.0  
20.0  
25  
Unit  
V
Analog Supply Voltage Range  
ADC High Voltage Reference  
Voltage difference VDD to VDDA  
Voltage difference VSS to VSSA  
Digital Input Voltage Range  
VDDA  
VREFHx  
ΔVDD  
ΔVSS  
VIN  
V
V
V
V
Pin Group 1  
Pin Group 2  
Pin Group 4  
Pin Group 3  
V
RESET Input Voltage Range  
Oscillator Input Voltage Range  
Analog Input Voltage Range  
Input clamp current, per pin (VIN < VSS - 0.3 V)2, 3  
Output clamp current, per pin4  
VIN_RESET  
VOSC  
VINA  
V
V
V
VIC  
mA  
mA  
mA  
VOC  
Contiguous pin DC injection current—regional limit sum  
of 16 contiguous pins  
IICont  
-25  
Output Voltage Range (normal push-pull mode)  
Output Voltage Range (open drain mode)  
RESET Output Voltage Range  
VOUT  
Pin Group 1, 2  
Pin Group 1  
Pin Group 2  
-0.3  
-0.3  
-0.3  
4.0  
5.5  
4.0  
V
V
V
VOUTOD  
VOUTOD_RE  
SET  
DAC Output Voltage Range  
VOUT_DAC  
Pin Group 5  
-0.3  
-40  
-40  
-55  
4.0  
105105  
125  
V
Ambient Temperature Industrial  
Junction Temperature  
TA  
Tj  
°C  
°C  
°C  
Storage Temperature Range (Extended Industrial)  
TSTG  
150  
1. Default Mode  
• Pin Group 1: GPIO, TDI, TDO, TMS, TCK  
• Pin Group 2: RESET  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
42  
Freescale Semiconductor, Inc.  
 
 
 
 
General  
• Pin Group 3: ADC and Comparator Analog Inputs  
• Pin Group 4: XTAL, EXTAL  
• Pin Group 5: DAC analog output  
2. Continuous clamp current  
3. All 5 volt tolerant digital I/O pins are internally clamped to VSS through a ESD protection diode. There is no diode  
connection to VDD. If VIN greater than VDIO_MIN (= VSS–0.3 V) is observed, then there is no need to provide current  
limiting resistors at the pads. If this limit cannot be observed, then a current limiting resistor is required.  
4. I/O is configured as push-pull mode.  
8 General  
8.1 General characteristics  
The device is fabricated in high-density, low-power CMOS with 5 V–tolerant TTL-  
compatible digital inputs, except for the RESET pin which is 3.3V only. The term “5 V–  
tolerant” refers to the capability of an I/O pin, built on a 3.3 V–compatible process  
technology, to withstand a voltage up to 5.5 V without damaging the device.  
5 V–tolerant I/O is desirable because many systems have a mixture of devices designed  
for 3.3 V and 5 V power supplies. In such systems, a bus may carry both 3.3 V– and 5 V–  
compatible I/O voltage levels (a standard 3.3 V I/O is designed to receive a maximum  
voltage of 3.3 V 10ꢀ during normal operation without causing damage). This 5 V–  
tolerant capability therefore offers the power savings of 3.3 V I/O levels combined with  
the ability to receive 5 V levels without damage.  
Absolute maximum ratings in Table 5 are stress ratings only, and functional operation at  
the maximum is not guaranteed. Stress beyond these ratings may affect device reliability  
or cause permanent damage to the device.  
Unless otherwise stated, all specifications within this chapter apply over the temperature  
range of -40°C to 105°C ambient temperature over the following supply ranges:  
VSS=VSSA=0V, VDD=VDDA=3.0V to 3.6V, CL≤50 pF, fOP=100MHz.  
CAUTION  
This device contains protective circuitry to guard against  
damage due to high static voltage or electrical fields. However,  
normal precautions are advised to avoid application of any  
voltages higher than maximum-rated voltages to this high-  
impedance circuit. Reliability of operation is enhanced if  
unused inputs are tied to an appropriate voltage level.  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
Freescale Semiconductor, Inc.  
43  
 
 
 
 
 
 
General  
8.2 AC electrical characteristics  
Tests are conducted using the input levels specified in Table 8. Unless otherwise  
specified, propagation delays are measured from the 50ꢀ to the 50ꢀ point, and rise and  
fall times are measured between the 10ꢀ and 90ꢀ points, as shown in Figure 3.  
Low  
High  
V
IH  
90%  
50%  
10%  
Midpoint1  
Fall Time  
Input Signal  
V
IL  
Rise Time  
The midpoint is V + (V – V )/2.  
IL  
IH  
IL  
Figure 3. Input signal measurement references  
Figure 4 shows the definitions of the following signal states:  
• Active state, when a bus or signal is driven, and enters a low impedance state  
• Tri-stated, when a bus or signal is placed in a high impedance state  
• Data Valid state, when a signal level has reached VOL or VOH  
• Data Invalid state, when a signal level is in transition between VOL and VOH  
Data1 Valid  
Data1  
Data2 Valid  
Data2  
Data3 Valid  
Data3  
Data  
Data Invalid State  
Tri-stated  
Data Active  
Data Active  
Figure 4. Signal states  
8.3 Nonswitching electrical specifications  
8.3.1 Voltage and current operating requirements  
This section includes information about recommended operating conditions.  
NOTE  
Recommended VDD ramp rate is between 1 ms and 200 ms.  
Table 6. Recommended Operating Conditions (VREFLx=0V, VSSA=0V, VSS=0V)  
Characteristic  
Symbol  
Notes1  
Min  
Typ  
Max  
Unit  
Supply voltage2  
VDD, VDDA  
2.7  
3.3  
3.6  
V
Table continues on the next page...  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
44  
Freescale Semiconductor, Inc.  
 
 
 
General  
Table 6. Recommended Operating Conditions (VREFLx=0V, VSSA=0V, VSS=0V) (continued)  
Characteristic  
Symbol  
VREFHA  
VREFHB  
VREFHC  
ΔVDD  
ΔVSS  
VIH  
Notes1  
Min  
Typ  
Max  
Unit  
ADC (Cyclic) Reference Voltage High  
3.0  
VDDA  
V
ADC (SAR) Reference Voltage High  
Voltage difference VDD to VDDA  
Voltage difference VSS to VSSA  
Input Voltage High (digital inputs)  
RESET Voltage High  
2.0  
-0.1  
VDDA  
0.1  
V
V
V
V
V
V
V
0
0
-0.1  
0.1  
Pin Group 1  
Pin Group 2  
0.7 x VDD  
0.7 x VDD  
5.5  
VIH_RESET  
VIL  
VDD  
Input Voltage Low (digital inputs)  
Oscillator Input Voltage High  
XTAL driven by an external clock source  
Oscillator Input Voltage Low  
Output Source Current High (at VOH min.)3, 4  
• Programmed for low drive strength  
Pin Groups 1, 2  
Pin Group 4  
0.35 x VDD  
VDD + 0.3  
VIHOSC  
2.0  
VILOSC  
IOH  
Pin Group 4  
-0.3  
0.8  
V
Pin Group 1  
Pin Group 1  
-2  
-9  
mA  
• Programmed for high drive strength  
Output Source Current Low (at VOL max.)3, 4  
• Programmed for low drive strength  
IOL  
Pin Groups 1, 2  
Pin Groups 1, 2  
2
9
mA  
• Programmed for high drive strength  
1. Default Mode  
• Pin Group 1: GPIO, TDI, TDO, TMS, TCK  
• Pin Group 2: RESET  
• Pin Group 3: ADC and Comparator Analog Inputs  
• Pin Group 4: XTAL, EXTAL  
• Pin Group 5: DAC analog output  
2. ADC (Cyclic) specifications are not guaranteed when VDDA is below 3.0 V.  
3. Total IO sink current and total IO source current are limited to 75 mA each  
4. Contiguous pin DC injection current of regional limit—including sum of negative injection currents or sum of positive  
injection currents of 16 contiguous pins—is 25 mA.  
8.3.2 LVD and POR operating requirements  
Table 7. PMC Low-Voltage Detection (LVD) and Power-On Reset (POR)  
Parameters  
Characteristic  
Symbol  
POR  
Min  
Typ  
2.0  
Max  
Unit  
POR Assert Voltage1  
POR Release Voltage2  
LVI_2p7 Threshold Voltage  
LVI_2p2 Threshold Voltage  
V
V
V
V
POR  
2.7  
2.73  
2.23  
1. During 3.3-volt VDD power supply ramp down  
2. During 3.3-volt VDD power supply ramp up (gated by LVI_2p7)  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
Freescale Semiconductor, Inc.  
45  
 
 
 
 
 
 
General  
8.3.3 Voltage and current operating behaviors  
The following table provides information about power supply requirements and I/O pin  
characteristics.  
Table 8. DC Electrical Characteristics at Recommended Operating  
Conditions  
Characteristic  
Output Voltage High  
Output Voltage Low  
Symbol  
VOH  
Notes1  
Min  
VDD - 0.5  
Typ  
Max  
Unit  
V
Test Conditions  
IOH = IOHmax  
Pin Group 1  
VOL  
Pin Groups  
1, 2  
0.5  
V
IOL = IOLmax  
Digital Input Current High  
IIH  
Pin Group 1  
Pin Group 2  
0
+/- 2.5  
µA  
VIN = 2.4 V to 5.5 V  
VIN = 2.4 V to VDD  
pull-up enabled or  
disabled  
Comparator Input Current  
High  
IIHC  
IIHOSC  
RPull-Up  
RPull-Down  
IILC  
Pin Group 3  
Pin Group 3  
0
0
+/- 2  
+/- 2  
50  
µA  
µA  
kΩ  
kΩ  
µA  
µA  
V
VIN = VDDA  
Oscillator Input Current  
High  
VIN = VDDA  
Internal Pull-Up  
Resistance  
20  
0
Internal Pull-Down  
Resistance  
20  
50  
VIN = 0V  
Comparator Input Current  
Low  
Pin Group 3  
Pin Group 3  
Pin Group 5  
+/- 2  
+/- 2  
Typically  
Oscillator Input Current  
Low  
IILOSC  
VDAC  
0
VIN = 0V  
DAC Output Voltage  
Range  
Typically  
VSSA  
RLD = 3 kΩ || CLD = 400 pF  
+
VDDA -  
40mV  
40mV  
Output Current1  
IOZ  
Pin Groups  
1, 2  
0
+/- 1  
µA  
V
High Impedance State  
Schmitt Trigger Input  
Hysteresis  
VHYS  
Pin Groups 0.06 x VDD  
1, 2  
1. Default Mode  
• Pin Group 1: GPIO, TDI, TDO, TMS, TCK  
• Pin Group 2: RESET  
• Pin Group 3: ADC and Comparator Analog Inputs  
• Pin Group 4: XTAL, EXTAL  
• Pin Group 5: DAC  
8.3.4 Power mode operating behaviors  
Parameters listed are guaranteed by design.  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
46  
Freescale Semiconductor, Inc.  
 
 
General  
NOTE  
To filter noise on the RESETB pin, install a capacitor (up to 0.1  
uF) on it.  
Table 9. Reset, stop, wait, and interrupt timing  
Characteristic  
Symbol  
Typical Min  
Typical  
Max  
Unit  
See  
Figure  
Minimum RESET Assertion Duration  
tRA  
tRDA  
tIF  
161  
865 x TOSC + 8 x T  
361.3  
ns  
ns  
ns  
RESET deassertion to First Address Fetch  
Delay from Interrupt Assertion to Fetch of first  
instruction (exiting Stop)  
570.9  
1. If the RESET pin filter is enabled by setting the RST_FLT bit in the SIM_CTRL register to 1, the minimum pulse assertion  
must be greater than 21 ns.  
NOTE  
In the Table 9, T = system clock cycle and TOSC = oscillator  
clock cycle. For an operating frequency of 100MHz, T=10ns.  
At 4MHz (used coming out of reset and stop modes), T=250ns.  
Table 10. Power-On-Reset mode transition times  
Symbol  
Description  
Min  
Max  
Unit  
Notes  
TPOR  
After a POR event, the amount of delay from when VDD  
reaches 2.7V to when the first instruction executes (over the  
operating temperature range).  
199  
225  
us  
LPS mode to LPRUN mode  
VLPS mode to VLPRUN mode  
STOP mode to RUN mode  
240  
1424  
6.79  
551  
1500  
7.29  
0.620  
1500  
554  
us  
us  
us  
us  
us  
us  
4
5
3
2
5
4
WAIT mode to RUN mode  
0.570  
1413  
237.2  
VLPWAIT mode to VLPRUN mode  
LPWAIT mode to LPRUN mode  
1. Normal boot (FTFL_OPT[LPBOOT]=1)  
2. Clock configuration: CPU clock = 100 MHz, bus clock = 100 MHz, flash clock = 25  
MHz  
3. Clock configuration: CPU clock = 4 MHz, system clock source is 8 MHz IRC  
4. CPU Clock = 200 kHz and 8 Mhz IRC in standby mode  
5. Clock configuration: Using 64 kHz external clock source, CPU Clock = 32 kHz  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
Freescale Semiconductor, Inc.  
47  
 
 
General  
8.3.5 Power consumption operating behaviors  
Table 11. Current Consumption  
Mode  
Maximum Conditions  
Frequency  
Typical at 3.3 V, Maximum at 3.6  
25°C  
V, 105°C  
1
1
IDD  
IDDA  
IDD  
IDDA  
RUN  
100 MHz  
• 100 MHz Device Clock  
63.7 mA 16.7 mA 101 mA 32 mA  
• Regulators are in full regulation  
• Relaxation Oscillator on  
• PLL powered on  
• Continuous MAC instructions with fetches from  
Program Flash  
• All peripheral modules enabled.  
• TMRs and SCIs using 1X Clock  
• NanoEdge within PWMA using 1X clock  
• ADC/DAC powered on and clocked at 5 MHz2  
• Comparator powered on  
WAIT  
100 MHz  
• 100 MHz Device Clock  
43.5 mA 13.58 μA 80 mA 47.55 μA  
• Regulators are in full regulation  
• Relaxation Oscillator on  
• PLL powered on  
• Processor Core in WAIT state  
• All Peripheral modules enabled.  
• TMRs and SCIs using 1X Clock  
• NanoEdge within PWMA using 2X clock  
• ADC/DAC/Comparator powered off  
STOP  
4 MHz  
2 MHz  
• 4 MHz Device Clock  
• Regulators are in full regulation  
• Relaxation Oscillator on  
9.19 mA 13.20 μA 30.14 45.00 μA  
mA  
• PLL powered off  
• Processor Core in STOP state  
• All peripheral module and core clocks are off  
• ADC/DAC/Comparator powered off  
LPRUN  
(LsRUN)  
• 200 kHz Device Clock from Relaxation Oscillator  
(ROSC)  
1.86 mA 3.33 mA 16.69 5.37 mA  
mA  
• ROSC in standby mode  
• Regulators are in standby  
• PLL disabled  
• Repeat NOP instructions  
• All peripheral modules enabled, except NanoEdge  
and cyclic ADCs3  
• Simple loop with running from platform instruction  
buffer  
LPWAIT  
(LsWAIT)  
2 MHz  
• 200 kHz Device Clock from Relaxation Oscillator  
(ROSC)  
1.83 mA 2.67 mA 16.48 5.37 mA  
mA  
• ROSC in standby mode  
• Regulators are in standby  
• PLL disabled  
• All peripheral modules enabled, except NanoEdge  
and cyclic ADCs3  
• Processor core in wait mode  
Table continues on the next page...  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
48  
Freescale Semiconductor, Inc.  
General  
Table 11. Current Consumption (continued)  
Mode  
Maximum Conditions  
Frequency  
Typical at 3.3 V, Maximum at 3.6  
25°C  
V, 105°C  
1
1
IDD  
IDDA  
IDD  
IDDA  
LPSTOP  
2 MHz  
• 200 kHz Device Clock from Relaxation Oscillator  
1.07 mA 13.13 μA 15.76  
45 μA  
(LsSTOP)  
(ROSC)  
mA  
• ROSC in standby mode  
• Regulators are in standby  
• PLL disabled  
• Only PITs and COP enabled; other peripheral  
modules disabled and clocks gated off3  
• Processor core in stop mode  
VLPRUN  
200 kHz  
• 32 kHz Device Clock  
0.57 mA 13.04 μA 8.64 mA 18.15 μA  
• Clocked by a 32 kHz external clock source  
• Oscillator in power down  
• All ROSCs disabled  
• Large regulator is in standby  
• Small regulator is disabled  
• PLL disabled  
• Repeat NOP instructions  
• All peripheral modules, except COP and EWM,  
disabled and clocks gated off  
• Simple loop running from platform instruction  
buffer  
VLPWAIT  
200 kHz  
• 32 kHz Device Clock  
0.56 mA 12.02 μA 8.53 mA 16.50 μA  
• Clocked by a 32 kHz external clock source  
• Oscillator in power down  
• All ROSCs disabled  
• Large regulator is in standby  
• Small regulator is disabled  
• PLL disabled  
• All peripheral modules, except COP, disabled and  
clocks gated off  
• Processor core in wait mode  
VLPSTOP  
200 kHz  
• 32 kHz Device Clock  
0.56 mA 10.58 μA 8.50 mA 15.00 μA  
• Clocked by a 32 kHz external clock source  
• Oscillator in power down  
• All ROSCs disabled  
• Large regulator is in standby  
• Small regulator is disabled  
• PLL disabled  
• All peripheral modules, except COP, disabled and  
clocks gated off  
• Processor core in stop mode  
1. No output switching, all ports configured as inputs, all inputs low, no DC loads  
2. ADC power consumption at higher frequency can be found in Table 28  
3. In all chip LP modes and flash memory VLP modes, the maximum frequency for flash memory operation is 250 kHz,  
because of the fixed frequency ratio of 1:4 between the CPU clock and the flash clock (when using a 2 MHz external input  
clock and the CPU is operating at 1 MHz).  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
Freescale Semiconductor, Inc.  
49  
 
 
 
General  
8.3.6 Designing with radiated emissions in mind  
To find application notes that provide guidance on designing your system to minimize  
interference from radiated emissions:  
1. Go to www.freescale.com.  
2. Perform a keyword search for “EMC design.”  
8.3.7 Capacitance attributes  
Table 12. Capacitance attributes  
Description  
Symbol  
CIN  
Min.  
Typ.  
10  
Max.  
Unit  
pF  
Input capacitance  
Output capacitance  
COUT  
10  
pF  
8.4 Switching specifications  
8.4.1 Device clock specifications  
Table 13. Device clock specifications  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
Normal run mode  
fSYSCLK  
Device (system and core) clock frequency  
• using relaxation oscillator  
0.001  
0
100  
100  
100  
MHz  
MHz  
• using external clock source  
fIPBUS  
IP bus clock  
8.4.2 General switching timing  
Table 14. Switching timing  
Symbol Description  
GPIO pin interrupt pulse width1  
Min  
Max  
Unit  
Notes  
1.5  
IP Bus  
Clock  
Cycles  
2
Synchronous path  
Port rise and fall time (high drive strength), Slew disabled 2.7  
≤ VDD ≤ 3.6V.  
5.5  
1.5  
15.1  
6.8  
ns  
3
3
Port rise and fall time (high drive strength), Slew enabled 2.7  
≤ VDD ≤ 3.6V.  
ns  
Table continues on the next page...  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
50  
Freescale Semiconductor, Inc.  
 
General  
Table 14. Switching timing (continued)  
Symbol Description  
Min  
Max  
Unit  
Notes  
Port rise and fall time (low drive strength). Slew disabled . 2.7  
8.2  
17.8  
ns  
4
≤ VDD ≤ 3.6V  
Port rise and fall time (low drive strength). Slew enabled . 2.7  
≤ VDD ≤ 3.6V  
3.2  
9.2  
ns  
4
1. Applies to a pin only when it is configured as GPIO and configured to cause an interrupt by appropriately programming  
GPIOn_IPOLR and GPIOn_IENR.  
2. The greater synchronous and asynchronous timing must be met.  
3. 75 pF load  
4. 15 pF load  
8.5 Thermal specifications  
8.5.1 Thermal operating requirements  
Table 15. Thermal operating requirements  
Symbol  
TJ  
Description  
Min.  
–40  
–40  
Max.  
125  
Unit  
°C  
Die junction temperature  
Ambient temperature (extended industrial)  
TA  
105  
°C  
8.5.2 Thermal attributes  
This section provides information about operating temperature range, power dissipation,  
and package thermal resistance. Power dissipation on I/O pins is usually small compared  
to the power dissipation in on-chip logic and voltage regulator circuits, and it is user-  
determined rather than being controlled by the MCU design. To account for PI/O in power  
calculations, determine the difference between actual pin voltage and VSS or VDD and  
multiply by the pin current for each I/O pin. Except in cases of unusually high pin current  
(heavy loads), the difference between pin voltage and VSS or VDD is very small.  
See Thermal design considerations for more detail on thermal design considerations.  
Board type Symbol  
Description 64 LQFP  
80 LQFP  
100 LQFP  
Unit  
Notes  
Single-layer  
(1s)  
RθJA  
Thermal  
64  
55  
62  
°C/W  
1, 2  
resistance,  
junction to  
ambient  
(natural  
convection)  
Table continues on the next page...  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
Freescale Semiconductor, Inc.  
51  
 
 
 
 
 
General  
Board type Symbol  
Description 64 LQFP  
80 LQFP  
100 LQFP  
Unit  
Notes  
Four-layer  
(2s2p)  
RθJA  
Thermal  
46  
52  
39  
40  
49  
°C/W  
1, 3  
resistance,  
junction to  
ambient  
(natural  
convection)  
Single-layer  
(1s)  
RθJMA  
Thermal  
44  
34  
52  
43  
°C/W  
°C/W  
1,3  
1,3  
resistance,  
junction to  
ambient (200  
ft./min. air  
speed)  
Four-layer  
(2s2p)  
RθJMA  
Thermal  
resistance,  
junction to  
ambient (200  
ft./min. air  
speed)  
RθJB  
RθJC  
ΨJT  
Thermal  
resistance,  
junction to  
board  
28  
15  
3
24  
12  
3
35  
17  
3
°C/W  
°C/W  
°C/W  
4
5
6
Thermal  
resistance,  
junction to  
case  
Thermal  
characterizati  
on parameter,  
junction to  
package top  
outside  
center  
(natural  
convection)  
1.  
2.  
Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site  
(board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board  
thermal resistance.  
Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental  
Conditions—Natural Convection (Still Air) with the single layer board horizontal. For the LQFP, the board meets the  
JESD51-3 specification.  
3.  
4.  
5.  
Determined according to JEDEC Standard JESD51-6, Integrated Circuits Thermal Test Method Environmental  
Conditions—Forced Convection (Moving Air) with the board horizontal.  
Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental  
Conditions—Junction-to-Board. Board temperature is measured on the top surface of the board near the package.  
Determined according to Method 1012.1 of MIL-STD 883, Test Method Standard, Microcircuits, with the cold plate  
temperature used for the case temperature. The value includes the thermal resistance of the interface material  
between the top of the package and the cold plate.  
6.  
Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental  
Conditions—Natural Convection (Still Air).  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
52  
Freescale Semiconductor, Inc.  
 
 
 
 
 
 
Peripheral operating requirements and behaviors  
9 Peripheral operating requirements and behaviors  
9.1 Core modules  
9.1.1 JTAG timing  
Table 16. JTAG timing  
Characteristic  
Symbol  
Min  
Max  
Unit  
See  
Figure  
TCK frequency of operation  
TCK clock pulse width  
fOP  
tPW  
tDS  
tDH  
tDV  
tTS  
DC  
50  
5
SYS_CLK/16  
MHz  
ns  
Figure 5  
Figure 5  
Figure 6  
Figure 6  
Figure 6  
Figure 6  
30  
30  
TMS, TDI data set-up time  
TMS, TDI data hold time  
TCK low to TDO data valid  
TCK low to TDO tri-state  
ns  
5
ns  
ns  
ns  
1/f  
OP  
t
t
PW  
PW  
V
IH  
V
V
V
M
M
TCK  
(Input)  
IL  
V
= V + (V – V )/2  
IL IH IL  
M
Figure 5. Test clock input timing diagram  
TCK  
(Input)  
t
t
DH  
DS  
TDI  
TMS  
Input Data Valid  
(Input)  
t
DV  
TDO  
(Output)  
Output Data Valid  
t
TS  
TDO  
(Output)  
Figure 6. Test access port timing diagram  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
Freescale Semiconductor, Inc.  
53  
 
 
 
 
System modules  
9.2 System modules  
9.2.1 Voltage regulator specifications  
The voltage regulator supplies approximately 1.2 V to the MC56F84xxx’s core logic. For  
proper operations, the voltage regulator requires an external 2.2 µF capacitor on each  
VCAP pin. Ceramic and tantalum capacitors tend to provide better performance  
tolerances. The output voltage can be measured directly on the VCAP pin. The  
specifications for this regulator are shown in Table 17.  
Table 17. Regulator 1.2 V parameters  
Characteristic  
Output Voltage1  
Short Circuit Current2  
Symbol  
VCAP  
ISS  
Min  
Typ  
1.22  
600  
Max  
Unit  
V
mA  
Short Circuit Tolerance (VCAP shorted to ground)  
TRSC  
30  
Minutes  
1. Value is after trim  
2. Guaranteed by design  
Table 18. Bandgap electrical specifications  
Characteristic  
Reference Voltage (after trim)  
Symbol  
Min  
Typ  
Max  
Unit  
VREF  
1.21  
V
9.3 Clock modules  
9.3.1 External clock operation timing  
Parameters listed are guaranteed by design.  
Table 19. External clock operation timing requirements  
Characteristic  
Symbol  
fosc  
Min  
Typ  
Max  
Unit  
MHz  
ns  
Frequency of operation (external clock driver)1  
Clock pulse width2  
External clock input rise time3  
50  
tPW  
8
trise  
1
1
ns  
External clock input fall time4  
tfall  
ns  
Input high voltage overdrive by an external clock  
Input low voltage overdrive by an external clock  
Vih  
0.85VDD  
V
Vil  
0.3VDD  
V
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
54  
Freescale Semiconductor, Inc.  
 
 
 
 
 
System modules  
1. See Figure 7 for detail on using the recommended connection of an external clock driver.  
2. The chip may not function if the high or low pulse width is smaller than 6.25 ns.  
3. External clock input rise time is measured from 10% to 90%.  
4. External clock input fall time is measured from 90% to 10%.  
V
IH  
External  
Clock  
90%  
50%  
10%  
90%  
50%  
10%  
t
V
IL  
t
fall  
rise  
t
t
PW  
PW  
Note: The midpoint is V + (V – V )/2.  
IL  
IH  
IL  
Figure 7. External clock timing  
9.3.2 Phase-Locked Loop timing  
Table 20. Phase-Locked Loop timing  
Characteristic  
PLL input reference frequency1  
PLL output frequency2  
Symbol  
fref  
Min  
8
Typ  
8
Max  
Unit  
MHz  
MHz  
µs  
16  
400  
73.2  
60  
fop  
240  
35.5  
40  
PLL lock time3  
tplls  
Allowed Duty Cycle of input reference  
tdc  
50  
%
1. An externally supplied reference clock should be as free as possible from any phase jitter for the PLL to work correctly.  
The PLL is optimized for 8 MHz input.  
2. The frequency of the core system clock cannot exceed 100 MHz. If the NanoEdge PWM is available, the PLL output must  
be set to 400 MHz.  
3. This is the time required after the PLL is enabled to ensure reliable operation.  
9.3.3 External crystal or resonator requirement  
Table 21. Crystal or resonator requirement  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Frequency of operation  
fXOSC  
4
8
16  
MHz  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
Freescale Semiconductor, Inc.  
55  
 
 
 
 
 
 
 
 
System modules  
9.3.4 Relaxation oscillator timing  
Table 22. Relaxation oscillator electrical specifications  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
MHz  
kHz  
8 MHz Output Frequency1  
7.84  
7.76  
8
8
8.16  
8.24  
RUN Mode  
• 0°C to 105°C  
• -40°C to 105°C  
266.8  
402  
554.3  
Standby Mode (IRC trimmed @ 8 MHz)  
• -40°C to 105°C  
8 MHz Frequency Variation  
RUN Mode  
+/- 1.5  
+/- 1.5  
+/-2  
+/-3  
%
Due to temperature  
• 0°C to 105°C  
• -40°C to 105°C  
32 kHz Output Frequency2  
30.1  
32  
33.9  
+/-4  
kHz  
%
RUN Mode  
• -40°C to 105°C  
32 kHz Output Frequency Variation  
RUN Mode  
+/-2.5  
Due to temperature  
• -40°C to 105°C  
Stabilization Time  
• 8 MHz output3  
• 32 kHz output4  
tstab  
0.12  
14.4  
50  
0.4  
16.2  
52  
µs  
%
Output Duty Cycle  
48  
1. Frequency after application of 8 MHz trim  
2. Frequency after application of 32 kHz trim  
3. Standby to run mode transition  
4. Power down to run mode transition  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
56  
Freescale Semiconductor, Inc.  
 
 
 
 
System modules  
Figure 8. Relaxation oscillator temperature variation (typical) after trim (preliminary)  
9.4 Memories and memory interfaces  
9.4.1 Flash electrical specifications  
This section describes the electrical characteristics of the flash memory module.  
9.4.1.1 Flash timing specifications — program and erase  
The following specifications represent the amount of time the internal charge pumps are  
active and do not include command overhead.  
Table 23. NVM program/erase timing specifications  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
thvpgm4  
Longword Program high-voltage time  
7.5  
18  
μs  
Table continues on the next page...  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
Freescale Semiconductor, Inc.  
57  
 
System modules  
Table 23. NVM program/erase timing specifications (continued)  
Symbol Description  
Min.  
Typ.  
13  
Max.  
113  
452  
904  
Unit  
ms  
Notes  
thversscr Sector Erase high-voltage time  
thversblk32k Erase Block high-voltage time for 32 KB  
thversblk256k Erase Block high-voltage time for 256 KB  
1
1
1
52  
ms  
104  
ms  
1. Maximum time based on expectations at cycling end-of-life.  
9.4.1.2 Flash timing specifications — commands  
Table 24. Flash command timing specifications  
Symbol Description  
Read 1s Block execution time  
Min.  
Typ.  
Max.  
Unit  
Notes  
trd1blk32k  
• 32 KB data flash  
0.5  
1.7  
ms  
ms  
trd1blk256k  
• 256 KB program flash  
trd1sec1k Read 1s Section execution time (data flash  
sector)  
60  
60  
μs  
μs  
1
1
trd1sec2k Read 1s Section execution time (program flash  
sector)  
tpgmchk  
trdrsrc  
Program Check execution time  
Read Resource execution time  
Program Longword execution time  
Erase Flash Block execution time  
• 32 KB data flash  
65  
45  
30  
μs  
μs  
μs  
1
1
tpgm4  
145  
2
tersblk32k  
55  
465  
985  
ms  
ms  
tersblk256k  
• 256 KB program flash  
122  
tersscr  
Erase Flash Sector execution time  
Program Section execution time  
• 512 B program flash  
• 512 B data flash  
14  
114  
ms  
2
tpgmsec512p  
tpgmsec512d  
tpgmsec1kp  
tpgmsec1kd  
2.4  
4.7  
4.7  
9.3  
ms  
ms  
ms  
ms  
• 1 KB program flash  
• 1 KB data flash  
trd1all  
Read 1s All Blocks execution time  
Read Once execution time  
1.8  
25  
ms  
μs  
μs  
ms  
μs  
1
trdonce  
tpgmonce Program Once execution time  
65  
175  
2
tersall  
Erase All Blocks execution time  
1500  
30  
tvfykey  
Verify Backdoor Access Key execution time  
Program Partition for EEPROM execution time  
• 32 KB FlexNVM  
1
tpgmpart32k  
70  
ms  
Table continues on the next page...  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
58  
Freescale Semiconductor, Inc.  
 
System modules  
Table 24. Flash command timing specifications (continued)  
Symbol Description  
Set FlexRAM Function execution time:  
Min.  
Typ.  
Max.  
Unit  
Notes  
tsetramff  
tsetram8k  
tsetram32k  
• Control Code 0xFF  
50  
0.3  
0.7  
μs  
ms  
ms  
• 8 KB EEPROM backup  
• 32 KB EEPROM backup  
0.5  
1.0  
Byte-write to FlexRAM for EEPROM operation  
teewr8bers Byte-write to erased FlexRAM location execution  
time  
175  
260  
μs  
3
Byte-write to FlexRAM execution time:  
teewr8b8k  
teewr8b16k  
teewr8b32k  
• 8 KB EEPROM backup  
• 16 KB EEPROM backup  
• 32 KB EEPROM backup  
340  
385  
475  
1700  
1800  
2000  
μs  
μs  
μs  
Word-write to FlexRAM for EEPROM operation  
teewr16bers Word-write to erased FlexRAM location  
execution time  
175  
260  
μs  
Word-write to FlexRAM execution time:  
teewr16b8k  
teewr16b16k  
teewr16b32k  
• 8 KB EEPROM backup  
• 16 KB EEPROM backup  
• 32 KB EEPROM backup  
340  
385  
475  
1700  
1800  
2000  
μs  
μs  
μs  
Longword-write to FlexRAM for EEPROM operation  
teewr32bers Longword-write to erased FlexRAM location  
execution time  
360  
540  
μs  
Longword-write to FlexRAM execution time:  
teewr32b8k  
teewr32b16k  
teewr32b32k  
• 8 KB EEPROM backup  
• 16 KB EEPROM backup  
• 32 KB EEPROM backup  
545  
630  
810  
1950  
2050  
2250  
μs  
μs  
μs  
1. Assumes 25 MHz flash clock frequency.  
2. Maximum times for erase parameters based on expectations at cycling end-of-life.  
3. For byte-writes to an erased FlexRAM location, the aligned word containing the byte must be erased.  
9.4.1.3 Flash high voltage current behaviors  
Table 25. Flash high voltage current behaviors  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
IDD_PGM  
Average current adder during high voltage  
flash programming operation  
2.5  
6.0  
mA  
IDD_ERS  
Average current adder during high voltage  
flash erase operation  
1.5  
4.0  
mA  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
Freescale Semiconductor, Inc.  
59  
 
 
 
System modules  
9.4.1.4 Reliability specifications  
Table 26. NVM reliability specifications  
Symbol Description  
Min.  
Program Flash  
Typ.1  
Max.  
Unit  
Notes  
tnvmretp10k Data retention after up to 10 K cycles  
tnvmretp1k Data retention after up to 1 K cycles  
nnvmcycp Cycling endurance  
5
50  
years  
years  
cycles  
2
20  
100  
50 K  
10 K  
Data Flash  
tnvmretd10k Data retention after up to 10 K cycles  
tnvmretd1k Data retention after up to 1 K cycles  
nnvmcycd Cycling endurance  
5
50  
years  
years  
cycles  
2
20  
10 K  
100  
50 K  
FlexRAM as EEPROM  
tnvmretee100 Data retention up to 100% of write endurance  
tnvmretee10 Data retention up to 10% of write endurance  
Write endurance  
5
50  
years  
years  
3
20  
100  
nnvmwree16  
nnvmwree128  
nnvmwree512  
nnvmwree4k  
nnvmwree8k  
• EEPROM backup to FlexRAM ratio = 16  
• EEPROM backup to FlexRAM ratio = 128  
• EEPROM backup to FlexRAM ratio = 512  
• EEPROM backup to FlexRAM ratio = 4096  
• EEPROM backup to FlexRAM ratio = 8192  
35 K  
315 K  
1.27 M  
10 M  
175 K  
1.6 M  
6.4 M  
50 M  
writes  
writes  
writes  
writes  
writes  
20 M  
100 M  
1. Typical data retention values are based on measured response accelerated at high temperature and derated to a constant  
25 °C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering  
Bulletin EB619.  
2. Cycling endurance represents number of program/erase cycles at -40 °C ≤ Tj ≤ 125 °C.  
3. Write endurance represents the number of writes to each FlexRAM location at -40 °C ≤Tj ≤ 125 °C influenced by the  
cycling endurance of the FlexNVM (same value as data flash) and the allocated EEPROM backup. Minimum and typical  
values assume all byte-writes to FlexRAM.  
9.5 Analog  
9.5.1 12-bit cyclic Analog-to-Digital Converter (ADC) parameters  
Table 27. 12-bit ADC electrical specifications  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Recommended Operating Conditions  
Supply Voltage1  
Vrefh Supply Voltage2  
ADC Conversion Clock3  
Conversion Range  
VDDA  
Vrefhx  
fADCCLK  
RAD  
2.7  
3.0  
3.3  
3.6  
VDDA  
20  
V
V
0.6  
MHz  
V
VREFL  
VREFH  
Table continues on the next page...  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
60  
Freescale Semiconductor, Inc.  
 
 
 
 
System modules  
Table 27. 12-bit ADC electrical specifications (continued)  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Input Voltage Range  
VADIN  
V
VREFL  
VSSA  
VREFH  
VDDA  
External Reference  
Internal Reference  
Timing and Power  
Conversion Time  
tADC  
tADS  
tADPU  
IADRUN  
6
ADC Clock Cycles  
ADC Clock Cycles  
ADC Clock Cycles  
mA  
Sample Time  
1
5
ADC Power-Up Time (from adc_pdn)  
ADC RUN Current (per ADC block)  
• at 600 kHz ADC Clock, LP mode  
• ≤ 8.33 MHz ADC Clock, 00 mode  
• ≤ 12.5 MHz ADC Clock, 01 mode  
• ≤ 16.67 MHz ADC Clock, 10 mode  
• ≤ 20 MHz ADC Clock, 11 mode  
13  
1
5.7  
10.5  
17.7  
22.6  
ADC Powerdown Current (adc_pdn enabled)  
VREFH Current  
IADPWRDWN  
IVREFH  
0.02  
µA  
µA  
0.001  
Accuracy (DC or Absolute)  
Integral non-Linearity4  
Differential non-Linearity4  
Monotonicity  
INL  
+/- 3  
+/- 5  
LSB5  
LSB5  
DNL  
+/- 0.6  
+/- 0.9  
Offset6  
VOFFSET  
LSB 4  
+/- 17  
+/- 20  
+/- 25  
• 1x gain mode  
• 2x gain mode  
• 4x gain mode  
Gain Error (normalized)  
EGAIN  
0.994 to  
1.004  
0.990 to  
1.010  
AC Specifications7  
Signal to Noise Ratio  
Total Harmonic Distortion  
Spurious Free Dynamic Range  
Signal to Noise plus Distortion  
Effective Number of Bits  
ADC Inputs  
SNR  
THD  
59  
64  
65  
59  
9.5  
dB  
dB  
dB  
dB  
bits  
SFDR  
SINAD  
ENOB  
Input Leakage Current  
Input Injection Current 8  
Input Capacitance  
IIN  
IINJ  
0
+/-2  
+/-3  
µA  
mA  
pF  
CADI  
-
Sampling Capacitor  
• 1x mode  
-
1.4  
2.8  
5.6  
• 2x mode  
• 4x mode  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
Freescale Semiconductor, Inc.  
61  
System modules  
1. If the ADC’s reference is from VDDA: When VDDA is below 3.0 V, then the ADC functions, but the ADC specifications are  
not guaranteed.  
2. When the input is at the Vrefl level, then the resulting output will be all zeros (hex 000), plus any error contribution due to  
offset and gain error. When the input is at the Vrefh level, then the output will be all ones (hex FFF), minus any error  
contribution due to offset and gain error.  
3. ADC clock duty cycle min/max is 45/55%  
4. INL measured from VIN = VREFL to VIN = V  
.
5. LSB = Least Significant Bit = 0.806 mV atR3EF.H3 V VDDA, x1 Gain Setting  
6. Offset over the conversion range of 0025 to 4080, with internal/external reference.  
7. Measured when converting a 1 kHz input Full Scale sine wave.  
8. The current that can be injected into or sourced from an unselected ADC input, without affecting the performance of the  
ADC.  
9.5.1.1 Equivalent circuit for ADC inputs  
The following figure shows the ADC input circuit during sample and hold. S1 and S2 are  
always opened/closed at non-overlapping phases, and both S1 and S2 operate at the ADC  
clock frequency. The following equation gives equivalent input impedance when the  
input is selected.  
1
100ohm + 125ohm  
+
-12  
(ADC ClockRate) x 1.4x10  
C1: Single Ended Mode  
2XC1: Differential Mode  
Channel Mux  
equivalent resistance  
100Ohms  
S1  
125ESD  
Resistor  
Analog Input  
C1  
C1  
S1  
S1  
S/H  
3
1
2
S1  
S2  
S2  
(VREFHx - VREFLx ) / 2  
C1: Single Ended Mode  
2XC1: Differential Mode  
1. Parasitic capacitance due to package, pin-to-pin and pin-to-package base coupling =  
1.8pF  
2. Parasitic capacitance due to the chip bond pad, ESD protection devices and signal  
routing = 2.04pF  
3. 8 pF noise damping capacitor  
4. Sampling capacitor at the sample and hold circuit. Capacitor C1 (4.8pF) is normally  
disconnected from the input, and is only connected to the input at sampling time.  
5. S1 and S2 switch phases are non-overlapping and operate at the ADC clock  
frequency  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
62  
Freescale Semiconductor, Inc.  
 
 
 
 
 
 
 
 
System modules  
S1  
S2  
Figure 9. Equivalent circuit for A/D loading  
9.5.2 16-bit SAR ADC electrical specifications  
9.5.2.1 16-bit ADC operating conditions  
Table 28. 16-bit ADC operating conditions  
Symbol Description  
Conditions  
Min.  
2.7  
Typ.1  
Max.  
3.6  
Unit  
Notes  
VDDA  
ΔVDDA  
ΔVSSA  
VREFH  
Supply voltage  
Supply voltage  
Ground voltage  
Absolute  
V
mV  
mV  
V
2
Delta to VDD (VDD – VDDA  
)
-100  
-100  
VDDA  
0
+100  
+100  
VDDA  
Delta to VSS (VSS – VSSA  
Absolute  
)
0
2
ADC reference  
voltage high  
VDDA  
3
VREFL  
ADC reference  
voltage low  
Absolute  
VSSA  
VSSA  
VSSA  
V
4
VADIN  
CADIN  
Input voltage  
VSSA  
8
VDDA  
10  
V
Input capacitance  
• 16-bit mode  
pF  
• 8-bit / 10-bit / 12-bit  
modes  
4
5
RADIN  
RAS  
Input series  
resistance  
2
5
5
kΩ  
kΩ  
5
Analog source  
resistance  
(external)  
12-bit modes  
fADCK < 4 MHz  
fADCK  
fADCK  
Crate  
ADC conversion ≤ 12-bit mode  
clock frequency  
1.0  
2.0  
18.0  
12.0  
MHz  
MHz  
6
6
7
ADC conversion 16-bit mode  
clock frequency  
ADC conversion ≤ 12-bit modes  
rate  
No ADC hardware averaging  
20.000  
37.037  
818.330  
461.467  
Ksps  
Ksps  
Continuous conversions  
enabled, subsequent  
conversion time  
Crate  
ADC conversion 16-bit mode  
7
rate  
No ADC hardware averaging  
Continuous conversions  
enabled, subsequent  
conversion time  
1. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 1.0 MHz, unless otherwise stated. Typical values are for  
reference only, and are not tested in production.  
2. DC potential difference.  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
Freescale Semiconductor, Inc.  
63  
 
 
 
System modules  
3. VREFH is internally tied to VDDA  
.
4. VREFL is internally tied to VSSA  
.
5. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as  
possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The RAS/CAS  
time constant should be kept to < 1 ns.  
6. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.  
7. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.  
SIMPLIFIED  
INPUT PIN EQUIVALENT  
ZADIN  
CIRCUIT  
SIMPLIFIED  
CHANNEL SELECT  
CIRCUIT  
Pad  
ZAS  
leakage  
due to  
input  
ADC SAR  
ENGINE  
RAS  
RADIN  
protection  
VADIN  
CAS  
VAS  
RADIN  
RADIN  
RADIN  
INPUT PIN  
INPUT PIN  
INPUT PIN  
CADIN  
Figure 10. ADC input impedance equivalency diagram  
9.5.2.2 16-bit ADC electrical characteristics  
Table 29. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA  
)
Symbol Description  
Conditions1  
Min.  
Typ.2  
Max.  
1.7  
3.9  
7.3  
6.1  
9.5  
Unit  
Notes  
IDDA_ADC Supply current  
mA  
3
ADC  
asynchronous  
• ADLPC=1, ADHSC=0  
• ADLPC=1, ADHSC=1  
• ADLPC=0, ADHSC=0  
• ADLPC=0, ADHSC=1  
1.2  
3.0  
2.4  
4.4  
2.4  
4.0  
5.2  
6.2  
tADACK = 1/  
fADACK  
MHz  
MHz  
MHz  
MHz  
clock source  
fADACK  
Sample Time  
See Reference Manual chapter for sample times  
TUE  
DNL  
Total unadjusted  
error  
• 12-bit modes  
• <12-bit modes  
4
6.8  
2.1  
LSB4  
LSB4  
5
5
1.4  
Differential non-  
linearity  
• 16-bit modes  
• 12-bit modes  
• <12-bit modes  
-1 to +4  
0.7  
0.2  
-0.3 to 0.5  
Table continues on the next page...  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
64  
Freescale Semiconductor, Inc.  
 
 
 
 
 
System modules  
Table 29. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)  
Symbol Description  
Conditions1  
Min.  
Typ.2  
Max.  
Unit  
Notes  
INL  
Integral non-  
linearity  
• 16-bit modes  
• 12-bit modes  
• <12-bit modes  
• 12-bit modes  
• <12-bit modes  
7.0  
LSB4  
5
1.0  
-2.7 to +1.9  
-0.7 to +0.5  
-5.4  
0.5  
EFS  
Full-scale error  
-4  
LSB4  
LSB4  
VADIN  
=
VDDA  
-1.4  
-1.8  
5
6
EQ  
Quantization  
error  
• 16-bit modes  
• 12-bit modes  
-1 to 0  
0.5  
ENOB  
Effective number 16-bit single-ended mode  
of bits  
• Avg=32  
12.2  
11.4  
13.9  
13.1  
bits  
bits  
• Avg=4  
12-bit single-ended mode  
• Avg=32  
10.8  
10.2  
bits  
bits  
• Avg=1  
Signal-to-noise  
plus distortion  
See ENOB  
SINAD  
THD  
6.02 × ENOB + 1.76  
dB  
Total harmonic  
distortion  
16-bit single-ended mode  
• Avg=32  
7
7
-85  
dB  
12-bit single-ended mode  
• Avg=32  
-74  
90  
dB  
dB  
SFDR  
Spurious free  
dynamic range  
16-bit single-ended mode  
• Avg=32  
78  
12-bit single-ended mode  
• Avg=32  
78  
dB  
EIL  
Input leakage  
error  
IIn × RAS  
mV  
IIn =  
leakage  
current  
(refer to  
the  
device's  
voltage  
and current  
operating  
ratings)  
Temp sensor  
slope  
–40°C to 105°C  
25°C  
1.715  
722  
mV/°C  
mV  
VTEMP25 Temp sensor  
voltage  
8
1. All accuracy numbers assume the ADC is calibrated with VREFH = VDDA  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
Freescale Semiconductor, Inc.  
65  
 
System modules  
2. Typical values assume VDDA = 3.0 V, Temp = 25°C, fADCK = 2.0 MHz, unless otherwise stated. Typical values are for  
reference only, and are not tested in production.  
3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and the ADLPC bit (low power).  
For lowest power operations: the ADLPC bit should be set, the HSC bit should be clear, with 1MHz ADC conversion clock  
speed.  
4. 1 LSB = (VREFH - VREFL)/2N  
5. ADC conversion clock <16MHz, Max hardware averaging (AVGE = %1, AVGS = %11)  
6. Input data is 100 Hz sine wave. ADC conversion clock <12MHz. When running 12-bit Cyclic ADC and 12-bit DAC, some  
degradation of ENOB (of 16-bit SAR ADC) may occur.  
7. Input data is 1 kHz sine wave. ADC conversion clock <12MHz.  
8. System Clock = 4 MHz, ADC Clock = 2 MHz, AVG = Max, Long Sampling = Max  
Typical ADC 16-bit Single-Ended ENOB vs ADC Clock  
100Hz, 90% FS Sine Input  
14.00  
13.75  
13.50  
13.25  
13.00  
12.75  
12.50  
12.25  
12.00  
11.75  
11.50  
11.25  
Averaging of 4 samples  
Averaging of 32 samples  
11.00  
1
2
3
4
5
6
7
8
9
10 11  
12  
ADC Clock Frequency (MHz)  
Figure 11. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode  
9.5.3 12-bit Digital-to-Analog Converter (DAC) parameters  
Table 30. DAC parameters  
Parameter  
Conditions/Comments  
Symbol  
Min  
Typ  
Max  
Unit  
DC Specifications  
Resolution  
Settling time1  
12  
12  
1
12  
bits  
µs  
At output load  
RLD = 3 kΩ  
CLD = 400 pF  
Power-up time  
Time from release of PWRDWN  
signal until DACOUT signal is valid  
tDAPU  
11  
µs  
Accuracy  
INL  
Integral non-linearity2  
Range of input digital words:  
410 to 3891 ($19A - $F33)  
+/- 3  
+/- 4  
LSB3  
Table continues on the next page...  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
66  
Freescale Semiconductor, Inc.  
 
 
 
 
 
 
 
System modules  
Table 30. DAC parameters (continued)  
Parameter  
Conditions/Comments  
Range of input digital words:  
410 to 3891 ($19A - $F33)  
> 6 sigma monotonicity,  
Symbol  
Min  
Typ  
Max  
Unit  
Differential non-  
linearity2  
DNL  
+/- 0.8  
+/- 0.9  
LSB3  
Monotonicity  
Offset error2  
Gain error2  
guaranteed  
+/- 25  
mV  
%
< 3.4 ppm non-monotonicity  
Range of input digital words:  
410 to 3891 ($19A - $F33)  
VOFFSET  
+/- 43  
Range of input digital words: 410 to  
3891 ($19A - $F33)  
EGAIN  
+/- 0.5  
+/- 1.5  
DAC Output  
Output voltage range Within 40 mV of either VSSA or VDDA  
VOUT  
VSSA  
0.04 V  
+
VDDA - 0.04  
V
V
AC Specifications  
SNR  
Signal-to-noise ratio  
85  
dB  
dB  
Spurious free dynamic  
range  
SFDR  
-72  
Effective number of bits  
ENOB  
11  
bits  
1. Settling time is swing range from VSSA to VDDA  
2. No guaranteed specification within 5% of VDDA or VSSA  
3. LSB = 0.806 mV  
9.5.4 CMP and 6-bit DAC electrical specifications  
Table 31. Comparator and 6-bit DAC electrical specifications  
Symbol  
VDD  
Description  
Min.  
2.7  
Typ.  
Max.  
3.6  
Unit  
V
Supply voltage  
IDDHS  
IDDLS  
VAIN  
Supply current, high-speed mode (EN=1, PMODE=1)  
Supply current, low-speed mode (EN=1, PMODE=0)  
Analog input voltage  
200  
20  
μA  
μA  
V
VSS – 0.3  
VDD  
20  
VAIO  
Analog input offset voltage  
Analog comparator hysteresis1  
• CR0[HYSTCTR] = 00  
mV  
VH  
5
13  
48  
mV  
mV  
mV  
mV  
• CR0[HYSTCTR] = 01  
10  
20  
30  
• CR0[HYSTCTR] = 10  
105  
148  
• CR0[HYSTCTR] = 11  
VCMPOh  
VCMPOl  
tDHS  
Output high  
Output low  
VDD – 0.5  
50  
V
V
0.5  
Propagation delay, high-speed mode (EN=1,  
PMODE=1)2  
ns  
Table continues on the next page...  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
Freescale Semiconductor, Inc.  
67  
 
 
 
System modules  
Table 31. Comparator and 6-bit DAC electrical specifications (continued)  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
tDLS  
Propagation delay, low-speed mode (EN=1,  
PMODE=0)  
250  
ns  
Analog comparator initialization delay3  
6-bit DAC current adder (enabled)  
6-bit DAC reference inputs: Vin1,Vin2  
7
40  
μs  
μA  
V
IDAC6b  
VDDA  
VDD  
There are two reference input options selectable (via  
VRSEL control bit). The reference options must fall  
within this range.  
INL  
6-bit DAC integral non-linearity  
6-bit DAC differential non-linearity  
–0.5  
–0.3  
0.5  
0.3  
LSB4  
LSB  
DNL  
1. Typical hysteresis is measured with input voltage range limited to 0.6 to VDD-0.6V.  
2. Signal swing is 100 mV  
3. Comparator initialization delay is defined as the time between software writes (to DACEN, VRSEL, PSEL, MSEL, VOSEL),  
to change the control inputs and for the comparator output to settle to a stable level.  
4. 1 LSB = Vreference/64  
0.08  
0.07  
0.06  
HYSTCTR  
Setting  
0.05  
00  
0.04  
01  
10  
11  
0.03  
0.02  
0.01  
0
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
Vin level (V)  
Figure 12. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0)  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
68  
Freescale Semiconductor, Inc.  
 
 
 
 
PWMs and timers  
0.18  
0.16  
0.14  
0.12  
HYSTCTR  
Setting  
0.1  
00  
01  
10  
11  
0.08  
0.06  
0.04  
0.02  
0
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
Vin level (V)  
Figure 13. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1)  
9.6 PWMs and timers  
9.6.1 Enhanced NanoEdge PWM characteristics  
Table 32. NanoEdge PWM timing parameters  
Characteristic  
Symbol  
pwmp  
tpu  
Min  
Typ  
100  
312  
Max  
Unit  
MHz  
ps  
PWM clock frequency  
NanoEdge Placement (NEP) Step Size1, 2  
Delay for fault input activating to PWM output deactivated  
Power-up Time3  
1
ns  
25  
µs  
1. Reference IPbus clock of 100 MHz in NanoEdge Placement mode.  
2. Temperature and voltage variations do not affect NanoEdge Placement step size.  
3. Powerdown to NanoEdge mode transition.  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
Freescale Semiconductor, Inc.  
69  
 
 
 
 
PWMs and timers  
9.6.2 Quad Timer timing  
Parameters listed are guaranteed by design.  
Table 33. Timer timing  
Characteristic  
Timer input period  
Symbol  
PIN  
Min1  
2T + 6  
1T + 3  
20  
Max  
Unit  
ns  
See Figure  
Figure 14  
Figure 14  
Figure 14  
Figure 14  
Timer input high/low period  
Timer output period  
PINHL  
POUT  
ns  
ns  
Timer output high/low period  
POUTHL  
10  
ns  
1. T = clock cycle. For 100 MHz operation, T = 10 ns.  
Timer Inputs  
P
P
INHL  
INHL  
P
IN  
Timer Outputs  
P
P
OUTHL  
OUTHL  
P
OUT  
Figure 14. Timer timing  
9.7 Communication interfaces  
9.7.1 Queued Serial Peripheral Interface (SPI) timing  
Parameters listed are guaranteed by design.  
Table 34. SPI timing  
Characteristic  
Cycle time  
Master  
Symbol  
Min  
Max  
Unit  
See Figure  
Figure 15  
Figure 16  
Figure 17  
Figure 18  
tC  
35  
35  
ns  
ns  
Slave  
Table continues on the next page...  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
70  
Freescale Semiconductor, Inc.  
 
 
 
PWMs and timers  
Table 34. SPI timing (continued)  
Characteristic  
Enable lead time  
Master  
Symbol  
Min  
Max  
Unit  
See Figure  
tELD  
Figure 18  
ns  
ns  
17.5  
Slave  
Enable lag time  
Master  
tELG  
Figure 18  
ns  
ns  
17.5  
Slave  
Clock (SCK) high time  
Master  
tCH  
Figure 15  
Figure 16  
Figure 17  
Figure 18  
Figure 18  
16.6  
16.6  
ns  
ns  
Slave  
Clock (SCK) low time  
tCL  
16.6  
16.6  
ns  
ns  
Master  
Slave  
Data set-up time required for inputs  
tDS  
Figure 15  
Figure 16  
Figure 17  
Figure 18  
Figure 15  
Figure 16  
Figure 17  
Figure 18  
Figure 18  
16.5  
1
ns  
ns  
Master  
Slave  
Data hold time required for inputs  
tDH  
1
3
ns  
ns  
Master  
Slave  
Access time (time to data active  
from high-impedance state)  
tA  
5
5
ns  
ns  
Slave  
Disable time (hold time to high-  
impedance state)  
tD  
Figure 18  
Slave  
Data valid for outputs  
Master  
tDV  
Figure 15  
Figure 16  
Figure 17  
Figure 18  
Figure 15  
Figure 16  
Figure 17  
Figure 18  
5
ns  
ns  
15  
Slave (after enable edge)  
Data invalid  
Master  
tDI  
0
0
ns  
ns  
Slave  
Table continues on the next page...  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
Freescale Semiconductor, Inc.  
71  
PWMs and timers  
Table 34. SPI timing (continued)  
Characteristic  
Symbol  
Min  
Max  
Unit  
See Figure  
Figure 15  
Figure 16  
Figure 17  
Figure 18  
Figure 15  
Figure 16  
Figure 17  
Figure 18  
Rise time  
Master  
Slave  
tR  
1
1
ns  
ns  
Fall time  
Master  
Slave  
tF  
1
1
ns  
ns  
SS  
(Input)  
SS is held high on master  
t
C
t
R
t
F
t
CL  
SCLK (CPOL = 0)  
(Output)  
t
CH  
t
F
t
R
t
CL  
SCLK (CPOL = 1)  
(Output)  
t
t
DH  
CH  
t
DS  
MISO  
(Input)  
MSB in  
t
Bits 14–1  
LSB in  
t (ref)  
DI  
t
DI  
DV  
MOSI  
(Output)  
Master MSB out  
Bits 14–1  
Master LSB out  
t
t
R
F
Figure 15. SPI master timing (CPHA = 0)  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
72  
Freescale Semiconductor, Inc.  
 
PWMs and timers  
SS  
(Input)  
SS is held High on master  
t
C
t
F
t
R
t
CL  
SCLK (CPOL = 0)  
(Output)  
t
CH  
t
F
t
CL  
SCLK (CPOL = 1)  
(Output)  
t
CH  
t
DS  
t
R
t
DH  
MISO  
(Input)  
MSB in  
t
Bits 14–1  
LSB in  
t
(ref)  
DI  
t
DV  
t (ref)  
DV  
DI  
MOSI  
(Output)  
Master MSB out  
Bits 14– 1  
Master LSB out  
t
t
R
F
Figure 16. SPI master timing (CPHA = 1)  
SS  
(Input)  
t
C
t
F
t
ELG  
t
CL  
t
R
SCLK (CPOL = 0)  
(Input)  
t
CH  
t
ELD  
t
CL  
SCLK (CPOL = 1)  
(Input)  
t
CH  
t
F
t
t
A
R
t
D
MISO  
(Output)  
Slave MSB out  
Bits 14–1  
Slave LSB out  
t
t
DS  
DV  
t
t
DI  
DI  
t
DH  
MOSI  
(Input)  
MSB in  
Bits 14–1  
LSB in  
Figure 17. SPI slave timing (CPHA = 0)  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
Freescale Semiconductor, Inc.  
73  
 
 
PWMs and timers  
SS  
(Input)  
t
F
t
C
t
R
t
CL  
SCLK (CPOL = 0)  
(Input)  
t
CH  
t
ELG  
t
ELD  
t
CL  
SCLK (CPOL = 1)  
(Input)  
t
t
DV  
CH  
t
R
t
t
D
t
A
F
MISO  
(Output)  
Slave MSB out  
Bits 14–1  
Slave LSB out  
t
t
DV  
DS  
t
DI  
t
DH  
MOSI  
(Input)  
MSB in  
Bits 14–1  
LSB in  
Figure 18. SPI slave timing (CPHA = 1)  
9.7.2 Queued Serial Communication Interface (SCI) timing  
Parameters listed are guaranteed by design.  
Table 35. SCI timing  
Characteristic  
Baud rate1  
Symbol  
BR  
Min  
Max  
Unit  
Mbit/s  
ns  
See Figure  
(fMAX/16)  
1.04/BR  
1.04/BR  
RXD pulse width  
TXD pulse width  
RXDPW  
TXDPW  
0.965/BR  
0.965/BR  
Figure 19  
Figure 20  
ns  
LIN Slave Mode  
Deviation of slave node clock from nominal FTOL_UNSYNCH  
clock rate before synchronization  
-14  
14  
2
%
%
Deviation of slave node clock relative to  
the master node clock after  
synchronization  
FTOL_SYNCH  
-2  
Minimum break character length  
TBREAK  
13  
11  
Master  
node bit  
periods  
Slave node  
bit periods  
1. fMAX is the frequency of operation of the SCI clock in MHz, which can be selected as the bus clock (max.200 MHz  
depending on part number) or 2x bus clock (max. 200 MHz) for the devices.  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
74  
Freescale Semiconductor, Inc.  
 
 
PWMs and timers  
RXD  
SCI receive  
data pin  
RXD  
PW  
(Input)  
Figure 19. RXD pulse width  
TXD  
SCI transmit  
data pin  
TXD  
PW  
(output)  
Figure 20. TXD pulse width  
9.7.3 Freescale’s Scalable Controller Area Network (FlexCAN)  
Table 36. FlexCAN Timing Parameters  
Characteristic  
Baud Rate  
Symbol  
BRCAN  
Min  
5
Max  
1
Unit  
Mbps  
µs  
CAN Wakeup dominant pulse filtered  
CAN Wakeup dominant pulse pass  
TWAKEUP  
TWAKEUP  
2
µs  
CAN_RX  
CAN receive  
data pin  
T
WAKEUP  
(Input)  
Figure 21. Bus Wake-up Detection  
9.7.4 Inter-Integrated Circuit Interface (I2C) timing  
Table 37. I 2C timing  
Characteristic  
Symbol  
Standard Mode  
Minimum Maximum  
100  
Fast Mode  
Unit  
Minimum  
Maximum  
400  
SCL Clock Frequency  
fSCL  
0
0
kHz  
µs  
Hold time (repeated) START condition.  
After this period, the first clock pulse is  
generated.  
tHD; STA  
4
0.6  
LOW period of the SCL clock  
HIGH period of the SCL clock  
tLOW  
tHIGH  
4.7  
4
1.3  
0.6  
0.6  
µs  
µs  
µs  
Set-up time for a repeated START  
condition  
tSU; STA  
4.7  
Data hold time for I2C bus devices  
tHD; DAT  
tSU; DAT  
tr  
01  
2504  
3.452  
03  
1002, 5  
0.91  
µs  
ns  
ns  
Data set-up time  
6
Rise time of SDA and SCL signals  
1000  
20 +0.1Cb  
300  
Table continues on the next page...  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
Freescale Semiconductor, Inc.  
75  
 
 
Design Considerations  
Table 37. I 2C timing (continued)  
Characteristic  
Symbol  
Standard Mode  
Minimum Maximum  
300  
Fast Mode  
Unit  
Minimum Maximum  
5
Fall time of SDA and SCL signals  
Set-up time for STOP condition  
tf  
20 +0.1Cb  
0.6  
300  
ns  
µs  
µs  
tSU; STO  
tBUF  
4
Bus free time between STOP and  
START condition  
4.7  
1.3  
Pulse width of spikes that must be  
suppressed by the input filter  
tSP  
N/A  
N/A  
0
50  
ns  
1. The master mode I2C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves  
acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and SCL  
lines.  
2. The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal.  
3. Input signal Slew = 10 ns and Output Load = 50 pF  
4. Set-up time in slave-transmitter mode is 1 IPBus clock period, if the TX FIFO is empty.  
5. A Fast mode I2C bus device can be used in a Standard mode I2C bus system, but the requirement tSU; DAT ≥ 250 ns must  
then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a  
device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line trmax + tSU; DAT  
= 1000 + 250 = 1250 ns (according to the Standard mode I2C bus specification) before the SCL line is released.  
6. Cb = total capacitance of the one bus line in pF.  
SDA  
tSU; DAT  
tf  
tr  
tBUF  
tf  
tr  
tHD; STA  
tSP  
tLOW  
SCL  
tSU; STA  
tHD; STA  
tSU; STO  
S
SR  
P
S
tHD; DAT  
tHIGH  
Figure 22. Timing definition for fast and standard mode devices on the I2C bus  
10 Design Considerations  
10.1 Thermal design considerations  
An estimate of the chip junction temperature (TJ) can be obtained from the equation:  
TJ = TA + (RΘJA x PD)  
Where,  
TA = Ambient temperature for the package (°C)  
RΘJA = Junction-to-ambient thermal resistance (°C/W)  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
76  
Freescale Semiconductor, Inc.  
 
 
 
 
 
 
 
 
Design Considerations  
PD = Power dissipation in the package (W)  
The junction-to-ambient thermal resistance is an industry-standard value that provides a  
quick and easy estimation of thermal performance. Unfortunately, there are two values in  
common usage: the value determined on a single-layer board and the value obtained on a  
board with two planes. For packages such as the PBGA, these values can be different by  
a factor of two. Which TJ value is closer to the application depends on the power  
dissipated by other components on the board.  
• The TJ value obtained on a single layer board is appropriate for a tightly packed  
printed circuit board.  
• The TJ value obtained on a board with the internal planes is usually appropriate if the  
board has low-power dissipation and if the components are well separated.  
When a heat sink is used, the thermal resistance is expressed as the sum of a junction-to-  
case thermal resistance and a case-to-ambient thermal resistance:  
RΘJA = RΘJC + RΘCA  
Where,  
RΘJA = Package junction-to-ambient thermal resistance (°C/W)  
RΘJC = Package junction-to-case thermal resistance (°C/W)  
RΘCA = Package case-to-ambient thermal resistance (°C/W)  
RΘJC is device related and cannot be adjusted. You control the thermal environment to  
change the case to ambient thermal resistance, RΘCA. For instance, you can change the  
size of the heat sink, the air flow around the device, the interface material, the mounting  
arrangement on printed circuit board, or change the thermal dissipation on the printed  
circuit board surrounding the device.  
To determine the junction temperature of the device in the application when heat  
sinks are not used, the thermal characterization parameter (YJT) can be used to  
determine the junction temperature with a measurement of the temperature at the top  
center of the package case using the following equation:  
TJ = TT + (ΨJT x PD)  
Where,  
TT = Thermocouple temperature on top of package (°C/W)  
ΨJT = hermal characterization parameter (°C/W)  
PD = Power dissipation in package (W)  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
Freescale Semiconductor, Inc.  
77  
Design Considerations  
The thermal characterization parameter is measured per JESD51–2 specification using a  
40-gauge type T thermocouple epoxied to the top center of the package case. The  
thermocouple should be positioned so that the thermocouple junction rests on the  
package. A small amount of epoxy is placed over the thermocouple junction and over  
about 1 mm of wire extending from the junction. The thermocouple wire is placed flat  
against the package case to avoid measurement errors caused by cooling effects of the  
thermocouple wire.  
To determine the junction temperature of the device in the application when heat  
sinks are used, the junction temperature is determined from a thermocouple inserted at  
the interface between the case of the package and the interface material. A clearance slot  
or hole is normally required in the heat sink. Minimizing the size of the clearance is  
important to minimize the change in thermal performance caused by removing part of the  
thermal interface to the heat sink. Because of the experimental difficulties with this  
technique, many engineers measure the heat sink temperature and then back-calculate the  
case temperature using a separate measurement of the thermal resistance of the interface.  
From this case temperature, the junction temperature is determined from the junction-to-  
case thermal resistance.  
10.2 Electrical design considerations  
CAUTION  
This device contains protective circuitry to guard against  
damage due to high static voltage or electrical fields. However,  
take normal precautions to avoid application of any voltages  
higher than maximum-rated voltages to this high-impedance  
circuit. Reliability of operation is enhanced if unused inputs are  
tied to an appropriate voltage level.  
Use the following list of considerations to assure correct operation of the device:  
• Provide a low-impedance path from the board power supply to each VDD pin on the  
device and from the board ground to each VSS (GND) pin.  
• The minimum bypass requirement is to place 0.01–0.1 µF capacitors positioned as  
near as possible to the package supply pins. The recommended bypass configuration  
is to place one bypass capacitor on each of the VDD/VSS pairs, including VDDA/VSSA  
Ceramic and tantalum capacitors tend to provide better tolerances.  
• Ensure that capacitor leads and associated printed circuit traces that connect to the  
chip VDD and VSS (GND) pins are as short as possible.  
.
• Bypass the VDD and VSS with approximately 100 µF, plus the number of 0.1 µF  
ceramic capacitors.  
• PCB trace lengths should be minimal for high-frequency signals.  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
78  
Freescale Semiconductor, Inc.  
 
Obtaining package dimensions  
• Consider all device loads as well as parasitic capacitance due to PCB traces when  
calculating capacitance. This is especially critical in systems with higher capacitive  
loads that could create higher transient currents in the VDD and VSS circuits.  
• Take special care to minimize noise levels on the VREF, VDDA, and VSSA pins.  
• Using separate power planes for VDD and VDDA and separate ground planes for VSS  
and VSSA are recommended. Connect the separate analog and digital power and  
ground planes as near as possible to power supply outputs. If an analog circuit and  
digital circuit are powered by the same power supply, then connect a small inductor  
or ferrite bead in serial with VDDA. Traces of VSS and VSSA should be shorted  
together.  
• Physically separate analog components from noisy digital components by ground  
planes. Do not place an analog trace in parallel with digital traces. Place an analog  
ground trace around an analog signal trace to isolate it from digital traces.  
• Because the flash memory is programmed through the JTAG/EOnCE port, SPI, SCI,  
or I2C, the designer should provide an interface to this port if in-circuit flash  
programming is desired.  
• If desired, connect an external RC circuit to the RESET pin. The resistor value  
should be in the range of 4.7 kΩ–10 kΩ; the capacitor value should be in the range of  
0.22 µF–4.7 µF.  
• Configuring the RESET pin to GPIO output in normal operation in a high-noise  
environment may help to improve the performance of noise transient immunity.  
• Add a 2.2 kΩ external pullup on the TMS pin of the JTAG port to keep EOnCE in a  
restate during normal operation if JTAG converter is not present.  
• During reset and after reset but before I/O initialization, all I/O pins are at tri-state.  
• To eliminate PCB trace impedance effect, each ADC input should have a no less than  
33 pF 10Ω RC filter.  
11 Obtaining package dimensions  
Package dimensions are provided in package drawings.  
To find a package drawing, go to freescale.com and perform a keyword search for the  
drawing’s document number:  
Drawing for package  
64-pin LQFP  
Document number to be used  
98ASS23234W  
80-pin LQFP  
98ASS23174W  
100-pin LQFP  
98ASS23308W  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
Freescale Semiconductor, Inc.  
79  
 
Pinout  
12 Pinout  
12.1 Signal Multiplexing and Pin Assignments  
This section shows the signals available on each package pin and the locations of these  
pins on the devices supported by this document. The SIM's GPS registers are responsible  
for selecting which ALT functionality is available on most pins.  
NOTE  
The RESETB pin is a 3.3 V pin only.  
NOTE  
If the GPIOC1 pin is used as GPIO, the XOSC should be  
powered down.  
NOTE  
PWMB signals—including PWMB_2A, PWMB_2B, and  
PWMB_3X—are not available on the 64 LQFP package.  
100  
80  
64  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
LQFP LQFP LQFP  
1
2
1
2
1
2
TCK  
TCK  
GPIOD2  
GPIOD4  
EXTAL  
XTAL  
RESETB  
GPIOC0  
GPIOC1  
GPIOC2  
GPIOF8  
VDD  
RESETB  
GPIOC0  
GPIOC1  
GPIOC2  
GPIOF8  
VDD  
3
3
3
CLKIN0  
4
4
4
5
5
5
TXD0  
TB0  
TB1  
XB_IN2  
CLKO0  
6
6
6
RXD0  
CMPD_O  
7
7
7
8
VSS  
VSS  
9
GPIOD6  
GPIOD5  
GPIOC3  
GPIOC4  
GPIOA10  
GPIOA9  
VSS  
GPIOD6  
GPIOD5  
GPIOC3  
GPIOC4  
GPIOA10  
GPIOA9  
VSS  
TXD2  
RXD2  
TA0  
XB_IN4  
XB_OUT8  
XB_OUT9  
RXD0  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
8
XB_IN5  
9
CMPA_O  
CMPB_O  
CLKIN1  
EWM_OUT_B  
10  
11  
12  
13  
14  
15  
16  
8
TA1  
XB_IN8  
9
ANC18&CMPD_IN3  
ANC17&CMPD_IN2  
VCAP  
VCAP  
GPIOA7  
GPIOA8  
GPIOA6  
GPIOA5  
GPIOA4  
GPIOA7  
GPIOA8  
GPIOA6  
GPIOA5  
GPIOA4  
ANA7&ANC11  
10  
11  
12  
ANC16&CMPD_IN1  
ANA6&ANC10  
ANA5&ANC9  
ANA4&ANC8&CMPD_IN0  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
80  
Freescale Semiconductor, Inc.  
 
 
Pinout  
100  
80  
64  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
LQFP LQFP LQFP  
22  
23  
24  
17  
18  
19  
13  
14  
15  
GPIOA0  
GPIOA1  
GPIOA2  
GPIOA0  
GPIOA1  
GPIOA2  
ANA0&CMPA_IN3  
ANA1&CMPA_IN0  
CMPC_O  
ANA2&VREFHA&CMPA_  
IN1  
25  
20  
16  
GPIOA3  
GPIOA3  
ANA3&VREFLA&CMPA_  
IN2  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
GPIOB7  
GPIOC5  
GPIOB6  
GPIOB5  
GPIOB4  
VDDA  
GPIOB7  
GPIOC5  
GPIOB6  
GPIOB5  
GPIOB4  
VDDA  
ANB7&ANC15&CMPB_IN2  
DACO  
XB_IN7  
ANB6&ANC14&CMPB_IN1  
ANB5&ANC13&CMPC_IN2  
ANB4&ANC12&CMPC_IN1  
VSSA  
VSSA  
GPIOB0  
GPIOB1  
VCAP  
GPIOB0  
GPIOB1  
VCAP  
ANB0&CMPB_IN3  
ANB1&CMPB_IN0  
GPIOB2  
GPIOB2  
ANB2&VREFHB&CMPC_  
IN3  
37  
38  
39  
40  
41  
42  
32  
33  
34  
28  
GPIOA11  
GPIOB8  
GPIOB9  
GPIOB10  
GPIOB11  
GPIOB3  
GPIOA11  
GPIOB8  
GPIOB9  
GPIOB10  
GPIOB11  
GPIOB3  
ANC19&VREFHC  
ANC20&VREFLC  
ANC21  
XB_IN9  
XB_IN8  
XB_IN7  
MISO2  
MOSI2  
SCLK2  
ANC22  
ANC23  
ANB3&VREFLB&CMPC_  
IN0  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
VDD  
VDD  
VSS  
VSS  
GPIOF11  
GPIOF15  
GPIOD7  
GPIOF11  
GPIOF15  
GPIOD7  
GPIOG11  
GPIOC6  
GPIOC7  
GPIOG10  
GPIOC8  
GPIOC9  
GPIOC10  
GPIOF0  
GPIOF10  
GPIOF9  
GPIOC11  
GPIOC12  
TXD0  
XB_IN11  
XB_IN10  
XB_IN7  
CLKO0  
XB_IN3  
TXD0  
RXD0  
XB_OUT11  
TB3  
MISO1  
GPIOG11  
GPIOC6  
GPIOC7  
GPIOG10  
GPIOC8  
GPIOC9  
GPIOC10  
GPIOF0  
MOSI1  
TA2  
CMP_REF  
SS0_B  
PWMB_2X  
MISO0  
SCLK0  
MOSI0  
XB_IN6  
TXD2  
PWMA_2X  
RXD0  
XB_IN8  
XB_IN9  
SS2_B  
XB_IN4  
XB_IN5  
TB2  
MISO0  
SCLK1  
GPIOF10  
GPIOF9  
PWMA_FAULT6  
PWMA_FAULT7  
SCL1  
PWMB_FAULT6  
PWMB_FAULT7  
TXD1  
XB_OUT10  
XB_OUT11  
RXD2  
GPIOC11  
GPIOC12  
CANTX  
CANRX  
SDA1  
RXD1  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
Freescale Semiconductor, Inc.  
81  
Pinout  
100  
80  
64  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
LQFP LQFP LQFP  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
GPIOF2  
GPIOF3  
GPIOF4  
GPIOF5  
GPIOG8  
GPIOG9  
VSS  
GPIOF2  
GPIOF3  
GPIOF4  
GPIOF5  
GPIOG8  
GPIOG9  
VSS  
SCL1  
XB_OUT6  
XB_OUT7  
XB_OUT8  
XB_OUT9  
PWMA_0X  
PWMA_1X  
SDA1  
TXD1  
RXD1  
PWMB_0X  
PWMB_1X  
TA2  
TA3  
XB_OUT10  
XB_OUT11  
VDD  
VDD  
GPIOE0  
GPIOE1  
GPIOG2  
GPIOG3  
GPIOE8  
GPIOE9  
GPIOE2  
GPIOE3  
GPIOC13  
GPIOF1  
GPIOG0  
GPIOG1  
GPIOG4  
GPIOG5  
GPIOE4  
GPIOE5  
GPIOE6  
GPIOE7  
GPIOG6  
GPIOC14  
GPIOC15  
GPIOF12  
GPIOF13  
GPIOF14  
GPIOG7  
VCAP  
GPIOE0  
GPIOE1  
GPIOG2  
GPIOG3  
GPIOE8  
GPIOE9  
GPIOE2  
GPIOE3  
GPIOC13  
GPIOF1  
GPIOG0  
GPIOG1  
GPIOG4  
GPIOG5  
GPIOE4  
GPIOE5  
GPIOE6  
GPIOE7  
GPIOG6  
GPIOC14  
GPIOC15  
GPIOF12  
GPIOF13  
GPIOF14  
GPIOG7  
VCAP  
PWMA_0B  
PWMA_0A  
PWMB_0B  
PWMB_0A  
PWMB_2B  
PWMB_2A  
PWMA_1B  
PWMA_1A  
TA3  
XB_OUT4  
XB_OUT5  
PWMA_FAULT0  
PWMA_FAULT1  
XB_IN6  
EWM_OUT_B  
CMPD_O  
CLKO1  
XB_IN7  
PWMB_1B  
PWMB_1A  
PWMB_3B  
PWMB_3A  
PWMA_2B  
PWMA_2A  
PWMA_3B  
PWMA_3A  
XB_OUT6  
XB_OUT7  
PWMA_FAULT2  
PWMA_FAULT3  
XB_IN2  
XB_IN3  
XB_IN4  
PWMB_2B  
PWMB_2A  
TB2  
XB_IN5  
PWMA_FAULT4  
SDA0  
PWMB_FAULT4  
XB_OUT4  
XB_OUT8  
SCL0  
XB_OUT5  
MISO1  
PWMB_FAULT2  
PWMB_FAULT1  
PWMB_FAULT0  
PWMB_FAULT5  
MOSI1  
SCLK1  
PWMA_FAULT5  
XB_OUT9  
GPIOF6  
GPIOF7  
VDD  
GPIOF6  
GPIOF7  
VDD  
TB2  
TB3  
PWMA_3X  
CMPC_O  
PWMB_3X  
SS1_B  
XB_IN2  
XB_IN3  
VSS  
VSS  
TDO  
TDO  
GPIOD1  
GPIOD3  
GPIOD0  
TMS  
TMS  
TDI  
TDI  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
82  
Freescale Semiconductor, Inc.  
Pinout  
12.2 Pinout diagrams  
The following diagrams show pinouts for the packages. For each pin, the diagrams show  
the default function. However, many signals may be multiplexed onto a single pin.  
1
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
TCK  
RESETB  
GPIOC0  
GPIOC1  
GPIOC2  
GPIOF8  
VDD  
GPIOE3  
GPIOE2  
GPIOE9  
GPIOE8  
GPIOG3  
GPIOG2  
GPIOE1  
GPIOE0  
VDD  
2
3
4
5
6
7
8
VSS  
9
GPIOD6  
GPIOD5  
GPIOC3  
GPIOC4  
GPIOA10  
GPIOA9  
VSS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
VSS  
GPIOG9  
GPIOG8  
GPIOF5  
GPIOF4  
GPIOF3  
GPIOF2  
GPIOC12  
GPIOC11  
GPIOF9  
GPIOF10  
GPIOF0  
GPIOC10  
GPIOC9  
GPIOC8  
GPIOG10  
VCAP  
GPIOA7  
GPIOA8  
GPIOA6  
GPIOA5  
GPIOA4  
GPIOA0  
GPIOA1  
GPIOA2  
GPIOA3  
Figure 23. 100-pin LQFP  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
Freescale Semiconductor, Inc.  
83  
 
Pinout  
NOTE  
The RESETB pin is a 3.3 V pin only.  
1
TCK  
RESETB  
GPIOC0  
GPIOC1  
GPIOC2  
GPIOF8  
GPIOD6  
GPIOD5  
GPIOC3  
GPIOC4  
VSS  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
GPIOE3  
GPIOE2  
GPIOG3  
GPIOG2  
GPIOE1  
GPIOE0  
VDD  
2
3
4
5
6
7
8
VSS  
9
GPIOF5  
GPIOF4  
GPIOF3  
GPIOF2  
GPIOC12  
GPIOC11  
GPIOF9  
GPIOF10  
GPIOF0  
GPIOC10  
GPIOC9  
GPIOC8  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
VCAP  
GPIOA7  
GPIOA6  
GPIOA5  
GPIOA4  
GPIOA0  
GPIOA1  
GPIOA2  
GPIOA3  
Figure 24. 80-pin LQFP  
NOTE  
The RESETB pin is a 3.3 V pin only.  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
84  
Freescale Semiconductor, Inc.  
Pinout  
TCK  
RESETB  
GPIOC0  
GPIOC1  
GPIOC2  
GPIOF8  
GPIOC3  
GPIOC4  
GPIOA7  
GPIOA6  
GPIOA5  
GPIOA4  
GPIOA0  
GPIOA1  
GPIOA2  
GPIOA3  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
GPIOE3  
GPIOE2  
GPIOE1  
GPIOE0  
VDD  
2
3
4
5
6
VSS  
7
GPIOF5  
GPIOF4  
GPIOF3  
GPIOF2  
GPIOC12  
GPIOC11  
GPIOF0  
GPIOC10  
GPIOC9  
GPIOC8  
8
9
10  
11  
12  
13  
14  
15  
16  
Figure 25. 64-pin LQFP  
NOTE  
The RESETB pin is a 3.3 V pin only.  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
Freescale Semiconductor, Inc.  
85  
Product documentation  
13 Product documentation  
The documents listed in Table 38 are required for a complete description and proper  
design with the device. Documentation is available from local Freescale distributors,  
Freescale Semiconductor sales offices, or online at freescale.com.  
Table 38. Device documentation  
Topic  
Description  
Document Number  
DSP56800E/DSP56800EX  
Reference Manual  
Detailed description of the 56800EX family architecture, 32-bit  
digital signal controller core processor, and the instruction set  
DSP56800ERM  
MC56F847xx Reference Manual Detailed functional description and programming model  
MC56F847XXRM  
MC56F847XX  
MC56F847xx Data Sheet  
Electrical and timing specifications, pin descriptions, and  
package information (this document)  
MC56F84xxx Errata  
Details any chip issues that might be present  
MC56F84XXX_0N27E  
14 Revision history  
The following table summarizes changes to this document since the release of the  
previous version.  
Table 39. Revision history  
Rev.  
Date  
06/2014 Changes include:  
• Updates and corrections to "56F844xx/5xx/7xx family" table.  
Substantial Changes  
3.1  
• In "Signal groups" section, in "Functional Group Pin Allocations" table, made corrections to  
"Functional Group Pin Allocations" table.  
• For "Power mode transition operating behaviors" section,  
• Changed the name to "Power mode operating behaviors".  
• In "Power consumption operating behaviors" section, updated mode currrent values in  
"Current Consumption" table.  
• In "Memories and memory interfaces" section,  
• "Flash Memory Characteristics" section is now called "Flash electrical specifications"  
section.  
• Added new section "Flash timing specifications — program and erase", where the  
"Flash Timing Parameters" table (now called "NVM program/erase timing specifications"  
table, and table was updated.  
• Added new section "Flash high voltage current behaviors".  
• In "Pinout" section, in "Signal Multiplexing and Pin Assignments" section,  
• Added 3 notes.  
• In pin mux table, changed SCK0 to SCLK0, SCK1 to SCLK1, updates to 64LQFP[62-64]  
and 48LQFP[46-48].  
• In "64-pin LQFP" figure, made updates to pins 62-64, and added a note.  
MC56F847XX Data Sheet, Rev. 3.1, 06/2014.  
86  
Freescale Semiconductor, Inc.  
 
 
 
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductors products. There are no express or implied  
copyright licenses granted hereunder to design or fabricate any integrated circuits or  
integrated circuits based on the information in this document.  
How to Reach Us:  
Home Page:  
www.freescale.com  
Freescale Semiconductor reserves the right to make changes without further notice to any  
products herein. Freescale Semiconductor makes no warranty, representation, or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any liability, including without limitation  
consequential or incidental damages. "Typical" parameters that may be provided in  
Freescale Semiconductor data sheets and/or specifications can and do vary in different  
applications and actual performance may vary over time. All operating parameters,  
including "Typicals", must be validated for each customer application by customer's  
technical experts. Freescale Semiconductor does not convey any license under its patent  
rights nor the rights of others. Freescale Semiconductor products are not designed,  
intended, or authorized for use as components in systems intended for surgical implant  
into the body, or other applications intended to support or sustain life, or for any other  
application in which failure of the Freescale Semiconductor product could create a  
situation where personal injury or death may occur. Should Buyer purchase or use  
Freescale Semiconductor products for any such unintended or unauthorized application,  
Buyer shall indemnify Freescale Semiconductor and its officers, employees, subsidiaries,  
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and  
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury  
or death associated with such unintended or unauthorized use, even if such claims alleges  
that Freescale Semiconductor was negligent regarding the design or manufacture of  
the part.  
Web Support:  
http://www.freescale.com/support  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
+1-800-521-6274 or +1-480-768-2130  
www.freescale.com/support  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and  
electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts.  
For further information, see http://www.freescale.com or contact your Freescale  
sales representative.  
Japan:  
For information on Freescale's Environmental Products program, go to  
http://www.freescale.com/epp.  
Freescale Semiconductor Japan Ltd.  
Headquarters  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
© 2011–2014 Freescale Semiconductor, Inc.  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
Beijing 100022  
China  
+86 10 5879 8000  
support.asia@freescale.com  
Document Number: MC56F847XX  
Rev. 3.1, 06/2014  

相关型号:

MC56F84789VLLR

MICROCONTROLLER
NXP

MC56F847XX

MC56F847xx Advance
FREESCALE

MC56MS-14

Double Balanced Mixer, 3500MHz Min, 12000MHz Max, 9.5dB Conversion Loss-Max, MS3D, 3 PIN
SPECTRUM

MC56MS-15

Double Balanced Mixer, 3500MHz Min, 15000MHz Max, 9.5dB Conversion Loss-Max, MS3D, 3 PIN
APITECH

MC56MS-15

Double Balanced Mixer, 3500MHz Min, 15000MHz Max, 9.5dB Conversion Loss-Max, MS3D, 3 PIN
SPECTRUM

MC56MS-5

Double Balanced Mixer, 3500MHz Min, 12000MHz Max, 9.5dB Conversion Loss-Max, MS3C, 3 PIN
SPECTRUM

MC56MS-7

Double Balanced Mixer, 3500MHz Min, 15000MHz Max, 9.5dB Conversion Loss-Max, MS3C, 3 PIN
SPECTRUM

MC56SMD-14

Double Balanced Mixer, 3500MHz Min, 15000MHz Max, 9.5dB Conversion Loss-Max, SMMC4B, 3 PIN
SPECTRUM

MC56SMD-14

Double Balanced Mixer, 3500MHz Min, 15000MHz Max, 9.5dB Conversion Loss-Max, SMMC4B, 3 PIN
APITECH

MC56SMD-7

Double Balanced Mixer, 3500MHz Min, 15000MHz Max, 9.5dB Conversion Loss-Max, SMMC4A, 3 PIN
SPECTRUM

MC56SMH-14

Double Balanced Mixer, 3500MHz Min, 15000MHz Max, 9.5dB Conversion Loss-Max, SMMT4B, 3 PIN
SPECTRUM

MC56SMH-14

Double Balanced Mixer, 3500MHz Min, 15000MHz Max, 9.5dB Conversion Loss-Max, SMMT4B, 3 PIN
APITECH