MC68HC08JK8MP [NXP]

8-BIT, FLASH, 8MHz, MICROCONTROLLER, PDIP20, PLASTIC, DIP-20;
MC68HC08JK8MP
型号: MC68HC08JK8MP
厂家: NXP    NXP
描述:

8-BIT, FLASH, 8MHz, MICROCONTROLLER, PDIP20, PLASTIC, DIP-20

时钟 光电二极管 外围集成电路
文件: 总212页 (文件大小:2027K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MC68HC908JL8  
MC68HC908JK8  
MC68HC908KL8  
MC68HC08JL8  
MC68HC08JK8  
Data Sheet  
M68HC08  
Microcontrollers  
MC68HC908JL8  
Rev. 3.1  
3/2005  
freescale.com  
MC68HC908JL8  
MC68HC908JK8  
MC68HC908KL8  
MC68HC08JL8  
MC68HC08JK8  
Data Sheet  
To provide the most up-to-date information, the revision of our documents on the World Wide Web will be  
the most current. Your printed copy may be an earlier revision. To verify you have the latest information  
available, refer to:  
http://www.freescale.com  
The following revision history table summarizes changes contained in this document. For your  
convenience, the page number designators have been linked to the appropriate location.  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
This product incorporates SuperFlash® technology licensed from SST.  
© Freescale Semiconductor, Inc., 2005. All rights reserved.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
3
Revision History  
Revision  
Level  
Page  
Number(s)  
Date  
Description  
Added IRQ timing to Table 17-5 . Control Timing (5V) and Table 17-8 .  
Control Timing (3V)  
Mar 2005  
3.1  
188, 190  
121–206  
168  
Chapter 9 Serial Communications Interface (SCI) — Corrected SCI  
module clock source from OSCCLK to Bus Clock throughout.  
Figure 13-2 . Keyboard Interrupt Block Diagram —  
Removed incorrect Schmitt trigger in block diagram.  
Nov 2004  
Nov 2002  
3
2
14.7.2 Stop Mode — STOP_ICLKDIS bit does not affect stop mode  
conditions for COP. Replaced section with new text.  
176  
Added Appendix A MC68HC08JL8 — ROM parts.  
Added Appendix B MC68HC908KL8.  
First general release.  
201  
207  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
4
List of Chapters  
Chapter 1 General Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
Chapter 2 Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
Chapter 3 Configuration and Mask Option Registers (CONFIG & MOR) . . . . . . . . . . . . . .41  
Chapter 4 Central Processor Unit (CPU). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
Chapter 5 System Integration Module (SIM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
Chapter 6 Oscillator (OSC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79  
Chapter 7 Monitor ROM (MON) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85  
Chapter 8 Timer Interface Module (TIM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105  
Chapter 9 Serial Communications Interface (SCI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121  
Chapter 10 Analog-to-Digital Converter (ADC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145  
Chapter 11 Input/Output (I/O) Ports. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .151  
Chapter 12 External Interrupt (IRQ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163  
Chapter 13 Keyboard Interrupt Module (KBI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167  
Chapter 14 Computer Operating Properly (COP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173  
Chapter 15 Low Voltage Inhibit (LVI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .177  
Chapter 16 Break Module (BREAK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .179  
Chapter 17 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185  
Chapter 18 Mechanical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .195  
Chapter 19 Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .199  
Appendix A MC68HC08JL8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .201  
Appendix B MC68HC908KL8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .207  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
5
List of Chapters  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
6
Table of Contents  
Chapter 1  
General Description  
1.1  
1.2  
1.3  
1.4  
1.5  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Chapter 2  
Memory  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
I/O Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Monitor ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Random-Access Memory (RAM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
FLASH Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
FLASH Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
FLASH Page Erase Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
FLASH Mass Erase Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
2.10 FLASH Program Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
2.11 FLASH Block Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
2.12 FLASH Block Protect Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Chapter 3  
Configuration and Mask Option Registers (CONFIG & MOR)  
3.1  
3.2  
3.3  
3.4  
3.5  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Configuration Register 1 (CONFIG1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Configuration Register 2 (CONFIG2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Mask Option Register (MOR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Chapter 4  
Central Processor Unit (CPU)  
4.1  
4.2  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
4.3  
CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
4.3.1  
4.3.2  
4.3.3  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
7
Table of Contents  
4.3.4  
4.3.5  
Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Condition Code Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
4.4  
Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
4.5  
4.5.1  
4.5.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
4.6  
4.7  
4.8  
CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Chapter 5  
System Integration Module (SIM)  
5.1  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
5.2  
SIM Bus Clock Control and Generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Clock Start-Up from POR or LVI Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Clocks in Stop Mode and Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
5.2.1  
5.2.2  
5.2.3  
5.3  
5.3.1  
5.3.2  
5.3.2.1  
5.3.2.2  
5.3.2.3  
5.3.2.4  
5.3.2.5  
Reset and System Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
External Pin Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Active Resets from Internal Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Power-On Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Computer Operating Properly (COP) Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Low-Voltage Inhibit (LVI) Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
5.4  
SIM Counter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
SIM Counter During Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
SIM Counter During Stop Mode Recovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
SIM Counter and Reset States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
5.4.1  
5.4.2  
5.4.3  
5.5  
5.5.1  
Exception Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
SWI Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Interrupt Status Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Interrupt Status Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Interrupt Status Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Interrupt Status Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Status Flag Protection in Break Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
5.5.1.1  
5.5.1.2  
5.5.2  
5.5.2.1  
5.5.2.2  
5.5.2.3  
5.5.3  
5.5.4  
5.5.5  
5.6  
5.6.1  
5.6.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
5.7  
SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Break Status Register (BSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Reset Status Register (RSR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Break Flag Control Register (BFCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
5.7.1  
5.7.2  
5.7.3  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
8
Freescale Semiconductor  
Chapter 6  
Oscillator (OSC)  
6.1  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
6.2  
6.2.1  
6.2.2  
Oscillator Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
XTAL Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
RC Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
6.3  
Internal Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
6.4  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Crystal Amplifier Input Pin (OSC1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Crystal Amplifier Output Pin (OSC2/RCCLK/PTA6/KBI6) . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Oscillator Enable Signal (SIMOSCEN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
XTAL Oscillator Clock (XTALCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
RC Oscillator Clock (RCCLK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Oscillator Out 2 (2OSCOUT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Oscillator Out (OSCOUT). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Internal Oscillator Clock (ICLK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
6.4.1  
6.4.2  
6.4.3  
6.4.4  
6.4.5  
6.4.6  
6.4.7  
6.4.8  
6.5  
6.5.1  
6.5.2  
Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
6.6  
Oscillator During Break Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Chapter 7  
Monitor ROM (MON)  
7.1  
7.2  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
7.3  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Entering Monitor Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Baud Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Echoing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Break Signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
7.3.1  
7.3.2  
7.3.3  
7.3.4  
7.3.5  
7.3.6  
7.4  
Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
7.5  
ROM-Resident Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
PRGRNGE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
ERARNGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
LDRNGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
MON_PRGRNGE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
MON_ERARNGE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
MON_LDRNGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
EE_WRITE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
EE_READ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
7.5.1  
7.5.2  
7.5.3  
7.5.4  
7.5.5  
7.5.6  
7.5.7  
7.5.8  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
9
Table of Contents  
Chapter 8  
Timer Interface Module (TIM)  
8.1  
8.2  
8.3  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
8.4  
8.4.1  
8.4.2  
8.4.3  
8.4.3.1  
8.4.3.2  
8.4.4  
8.4.4.1  
8.4.4.2  
8.4.4.3  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
TIM Counter Prescaler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
Output Compare. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
Unbuffered Output Compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Unbuffered PWM Signal Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
Buffered PWM Signal Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
PWM Initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
8.5  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
8.6  
8.6.1  
8.6.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
8.7  
TIM During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
8.8  
8.8.1  
8.8.2  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
TIM Clock Pin (ADC12/T2CLK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
TIM Channel I/O Pins (PTD4/T1CH0, PTD5/T1CH1, PTE0/T2CH0, PTE1/T2CH1) . . . . . 113  
8.9  
I/O Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
TIM Status and Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
TIM Counter Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
TIM Counter Modulo Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
TIM Channel Status and Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
TIM Channel Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
8.9.1  
8.9.2  
8.9.3  
8.9.4  
8.9.5  
Chapter 9  
Serial Communications Interface (SCI)  
9.1  
9.2  
9.3  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
9.4  
9.4.1  
9.4.2  
9.4.2.1  
9.4.2.2  
9.4.2.3  
9.4.2.4  
9.4.2.5  
9.4.2.6  
9.4.3  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
Transmitter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
Character Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
Break Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
Idle Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
Inversion of Transmitted Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
Transmitter Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
Receiver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
9.4.3.1  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
10  
Freescale Semiconductor  
9.4.3.2  
9.4.3.3  
9.4.3.4  
9.4.3.5  
9.4.3.6  
9.4.3.7  
9.4.3.8  
Character Reception. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
Data Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
Framing Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
Baud Rate Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
Receiver Wakeup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
Receiver Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
Error Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
9.5  
9.5.1  
9.5.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
9.6  
SCI During Break Module Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
9.7  
9.7.1  
9.7.2  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
TxD (Transmit Data). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
RxD (Receive Data) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
9.8  
I/O Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
SCI Control Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
SCI Control Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
SCI Control Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
SCI Status Register 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
SCI Status Register 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
SCI Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
SCI Baud Rate Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
9.8.1  
9.8.2  
9.8.3  
9.8.4  
9.8.5  
9.8.6  
9.8.7  
Chapter 10  
Analog-to-Digital Converter (ADC)  
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
10.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
10.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
10.3.1  
10.3.2  
10.3.3  
10.3.4  
10.3.5  
ADC Port I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  
Voltage Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
Conversion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
Continuous Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
Accuracy and Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
10.4 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
10.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
10.5.1  
10.5.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
10.6 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
10.6.1 ADC Voltage In (ADCVIN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
10.7 I/O Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
10.7.1  
10.7.2  
10.7.3  
ADC Status and Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
ADC Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
ADC Input Clock Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
11  
Table of Contents  
Chapter 11  
Input/Output (I/O) Ports  
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
11.2 Port A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
11.2.1  
11.2.2  
11.2.3  
Port A Data Register (PTA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
Data Direction Register A (DDRA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
Port A Input Pull-Up Enable Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
11.3 Port B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
11.3.1  
11.3.2  
Port B Data Register (PTB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
Data Direction Register B (DDRB). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  
11.4 Port D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157  
11.4.1  
11.4.2  
11.4.3  
Port D Data Register (PTD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
Data Direction Register D (DDRD). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
Port D Control Register (PDCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160  
11.5 Port E. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160  
11.5.1  
11.5.2  
Port E Data Register (PTE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160  
Data Direction Register E (DDRE). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
Chapter 12  
External Interrupt (IRQ)  
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
12.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
12.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
12.3.1  
IRQ Pin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
12.4 IRQ Module During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165  
12.5 IRQ Status and Control Register (INTSCR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166  
Chapter 13  
Keyboard Interrupt Module (KBI)  
13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167  
13.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167  
13.3 I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167  
13.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168  
13.4.1  
Keyboard Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
13.5 Keyboard Interrupt Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
13.5.1  
13.5.2  
Keyboard Status and Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
Keyboard Interrupt Enable Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170  
13.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
13.6.1  
13.6.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
13.7 Keyboard Module During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
Chapter 14  
Computer Operating Properly (COP)  
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173  
14.2 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
12  
Freescale Semiconductor  
14.3 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174  
14.3.1  
14.3.2  
14.3.3  
14.3.4  
14.3.5  
14.3.6  
14.3.7  
ICLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174  
COPCTL Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174  
Power-On Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174  
Internal Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174  
Reset Vector Fetch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174  
COPD (COP Disable). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174  
COPRS (COP Rate Select) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
14.4 COP Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
14.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
14.6 Monitor Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
14.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
14.7.1  
14.7.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176  
14.8 COP Module During Break Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176  
Chapter 15  
Low Voltage Inhibit (LVI)  
15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177  
15.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177  
15.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177  
15.4 LVI Control Register (CONFIG2/CONFIG1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
15.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
15.5.1  
15.5.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
Chapter 16  
Break Module (BREAK)  
16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179  
16.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179  
16.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179  
16.3.1  
16.3.2  
16.3.3  
16.3.4  
Flag Protection During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180  
CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180  
TIM During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180  
COP During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180  
16.4 Break Module Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181  
16.4.1  
16.4.2  
16.4.3  
16.4.4  
Break Status and Control Register (BRKSCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181  
Break Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181  
Break Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182  
Break Flag Control Register (BFCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183  
16.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183  
16.5.1  
16.5.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
13  
Table of Contents  
Chapter 17  
Electrical Specifications  
17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185  
17.2 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185  
17.3 Functional Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186  
17.4 Thermal Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186  
17.5 5V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187  
17.6 5V Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188  
17.7 5V Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188  
17.8 3V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189  
17.9 3V Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190  
17.10 3V Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191  
17.11 Typical Supply Currents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192  
17.12 Timer Interface Module Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193  
17.13 ADC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193  
17.14 Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194  
Chapter 18  
Mechanical Specifications  
18.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195  
18.2 20-Pin Plastic Dual In-Line Package (PDIP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195  
18.3 20-Pin Small Outline Integrated Circuit Package (SOIC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196  
18.4 28-Pin Plastic Dual In-Line Package (PDIP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196  
18.5 28-Pin Small Outline Integrated Circuit Package (SOIC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197  
18.6 32-Pin Shrink Dual In-Line Package (SDIP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197  
18.7 32-Pin Low-Profile Quad Flat Pack (LQFP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198  
Chapter 19  
Ordering Information  
19.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199  
19.2 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199  
Appendix A  
MC68HC08JL8  
A.1  
A.2  
A.3  
A.4  
A.5  
A.6  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201  
MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201  
Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201  
Reserved Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202  
Mask Option Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204  
Monitor ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204  
A.7  
A.7.1  
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204  
DC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204  
A.8  
A.9  
Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205  
MC68HC08JL8 Order Numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
14  
Freescale Semiconductor  
Appendix B  
MC68HC908KL8  
B.1  
B.2  
B.3  
B.4  
B.5  
B.6  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207  
MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207  
Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207  
Reserved Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210  
Reserved Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210  
MC68HC908KL8 Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
15  
Table of Contents  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
16  
Chapter 1  
General Description  
1.1 Introduction  
The MC68HC908JL8 is a member of the low-cost, high-performance M68HC08 Family of 8-bit  
microcontroller units (MCUs). All MCUs in the family use the enhanced M68HC08 central processor unit  
(CPU08) and are available with a variety of modules, memory sizes and types, and package types.  
Table 1-1. Summary of Devices  
Generic Part  
MC68HC908JL8  
Description  
FLASH part  
Pin Count  
28 or 32  
20  
MC68HC908JK8  
MC68HC08JL8  
MC68HC08JK8  
MC68HC908KL8  
FLASH part  
ROM part for MC68HC908JL8  
ROM part for MC68HC908JK8  
ADC-less MC68HC908JL8  
28 or 32  
20  
28 or 32  
1.2 Features  
Features of the MC68HC908JL8 include the following:  
High-performance M68HC08 architecture  
Fully upward-compatible object code with M6805, M146805, and M68HC05 Families  
Low-power design; fully static with stop and wait modes  
Maximum internal bus frequency:  
8-MHz at 5V operating voltage  
4-MHz at 3V operating voltage  
Oscillator options:  
Crystal or resonator  
RC oscillator  
8,192 bytes user program FLASH memory with security(1) feature  
256 bytes of on-chip RAM  
Two 16-bit, 2-channel timer interface modules (TIM1 and TIM2) with selectable input capture,  
output compare, and PWM capability on each channel; external clock input option on TIM2  
13-channel, 8-bit analog-to-digital converter (ADC)  
Serial communications interface module (SCI)  
26 general-purpose input/output (I/O) ports:  
8 keyboard interrupt with internal pull-up  
1. No security feature is absolutely secure. However, Motorola’s strategy is to make reading or copying the FLASH difficult for  
unauthorized users.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
17  
General Description  
11 LED drivers (sink)  
2 × 25mA open-drain I/O with pull-up  
Resident routines for in-circuit programming and EEPROM emulation  
System protection features:  
Optional computer operating properly (COP) reset, driven by internal RC oscillator  
Optional low-voltage detection with reset and selectable trip points for 3V and 5V operation  
Illegal opcode detection with reset  
Illegal address detection with reset  
Master reset pin with internal pull-up and power-on reset  
IRQ with schmitt-trigger input and programmable pull-up  
20-pin dual in-line package (PDIP), 20-pin small outline integrated package (SOIC), 28-pin PDIP,  
28-pin SOIC, 32-pin shrink dual in-line package (SDIP), and 32-pin low-profile quad flat pack  
(LQFP)  
Specific features of the MC68HC908JL8 in 28-pin packages are:  
23 general-purpose I/Os only  
7 keyboard interrupt with internal pull-up  
10 LED drivers (sink)  
12-channel ADC  
Timer I/O pins on TIM1 only  
Specific features of the MC68HC908JL8 in 20-pin packages are:  
15 general-purpose I/Os only  
1 keyboard interrupt with internal pull-up  
4 LED drivers (sink)  
10-channel ADC  
Timer I/O pins on TIM1 only  
Features of the CPU08 include the following:  
Enhanced HC05 programming model  
Extensive loop control functions  
16 addressing modes (eight more than the HC05)  
16-bit index register and stack pointer  
Memory-to-memory data transfers  
Fast 8 × 8 multiply instruction  
Fast 16/8 divide instruction  
Binary-coded decimal (BCD) instructions  
Optimization for controller applications  
Efficient C language support  
1.3 MCU Block Diagram  
Figure 1-1 shows the structure of the MC68HC908JL8.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
18  
MCU Block Diagram  
INTERNAL BUS  
M68HC08 CPU  
PTA7/KBI7**‡  
#
KEYBOARD INTERRUPT  
MODULE  
CPU  
REGISTERS  
ARITHMETIC/LOGIC  
UNIT (ALU)  
PTA6/KBI6**¥  
PTA5/KBI5**‡  
PTA4/KBI4**‡  
PTA3/KBI3**‡  
PTA2/KBI2**‡  
PTA1/KBI1**‡  
PTA0/KBI0**‡  
8-BIT ANALOG-TO-DIGITAL  
CONVERTER MODULE  
##  
CONTROL AND STATUS REGISTERS — 64 BYTES  
USER FLASH — 8,192 BYTES  
2-CHANNEL TIMER INTERFACE  
MODULE 1  
PTB7/ADC7  
PTB6/ADC6  
PTB5/ADC5  
PTB4/ADC4  
PTB3/ADC3  
PTB2/ADC2  
PTB1/ADC1  
PTB0/ADC0  
USER RAM — 256 BYTES  
2-CHANNEL TIMER INTERFACE  
MODULE 2  
MONITOR ROM — 959 BYTES  
BREAK  
MODULE  
USER FLASH VECTORS — 36 BYTES  
#
ADC12/T2CLK  
CRYSTAL OSCILLATOR  
OSC1  
SERIAL COMMUNICATIONS  
INTERFACE MODULE  
PTD7/RxD**†‡  
PTD6/TxD**†‡  
PTD5/T1CH1  
PTD4/T1CH0  
PTD3/ADC8‡  
PTD2/ADC9‡  
PTD1/ADC10  
PTD0/ADC11  
¥ OSC2/RCCLK  
RC OSCILLATOR  
POWER-ON RESET  
MODULE  
INTERNAL OSCILLATOR  
##  
#
LOW-VOLTAGE INHIBIT  
MODULE  
SYSTEM INTEGRATION  
MODULE  
* RST  
* IRQ  
PTE1/T2CH1  
PTE0/T2CH0  
EXTERNAL INTERRUPT  
MODULE  
COMPUTER OPERATING  
PROPERLY MODULE  
* Pin contains integrated pull-up device.  
** Pin contains programmable pull-up device.  
25mA open-drain if output pin.  
VDD  
VSS  
POWER  
LED direct sink pin.  
¥ Shared pin: OSC2/RCCLK/PTA6/KBI6.  
# Pins available on 32-pin packages only.  
## Pins available on 28-pin and 32-pin packages only.  
ADC REFERENCE  
Figure 1-1. MC68HC908JL8 Block Diagram  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
19  
General Description  
1.4 Pin Assignments  
1
24  
OSC1  
PTD5/T1CH1  
PTD2/ADC9  
PTA4/KBI4  
2
3
4
5
6
7
23  
22  
21  
20  
19  
18  
OSC2/RCCLK/PTA6/KBI6  
PTA1/KBI1  
VDD  
PTD3/ADC8  
PTB0/ADC0  
PTB1/ADC1  
PTD1/ADC10  
PTB2/ADC2  
PTA2/KBI2  
PTA3/KBI3  
PTB7/ADC7  
PTB6/ADC6  
8
17  
Figure 1-2. 32-Pin LQFP Pin Assignment  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
1
IRQ  
PTA0/KBI0  
ADC12/T2CLK  
PTA7/KBI7  
RST  
2
3
VSS  
4
OSC1  
PTA5/KBI5  
PTD4/T1CH0  
PTD5/T1CH1  
PTD2/ADC9  
PTA4/KBI4  
PTD3/ADC8  
PTB0/ADC0  
PTB1/ADC1  
PTD1/ADC10  
PTB2/ADC2  
PTB3/ADC3  
PTD0/ADC11  
PTB4/ADC4  
5
OSC2/RCCLK/PTA6/KBI6  
PTA1/KBI1  
6
7
VDD  
8
PTA2/KBI2  
9
PTA3/KBI3  
10  
11  
12  
13  
14  
15  
16  
PTB7/ADC7  
PTB6/ADC6  
PTB5/ADC5  
PTD7/RxD  
PTD6/TxD  
PTE0/T2CH0  
PTE1/T2CH1  
Figure 1-3. 32-Pin SDIP Pin Assignment  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
20  
Freescale Semiconductor  
Pin Functions  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
IRQ  
PTA0/KBI0  
VSS  
RST  
1
PTA5/KBI5  
PTD4/T1CH0  
PTD5/T1CH1  
PTD2/ADC9  
PTA4/KBI4  
PTD3/ADC8  
PTB0/ADC0  
PTB1/ADC1  
PTD1/ADC10  
PTB2/ADC2  
PTB3/ADC3  
PTD0/ADC11  
PTB4/ADC4  
2
3
OSC1  
4
OSC2/RCCLK/PTA6/KBI6  
PTA1/KBI1  
VDD  
5
6
7
PTA2/KBI2  
PTA3/KBI3  
PTB7/ADC7  
PTB6/ADC6  
PTB5/ADC5  
PTD7/RxD  
8
9
Pins not available on 28-pin packages  
PTE0/T2CH0  
10  
11  
12  
13  
14  
PTE1/T2CH1  
ADC12/T2CLK  
PTA7/KBI7  
PTD6/TxD  
Internal pads are unconnected.  
Set these unused port I/Os to output low.  
Figure 1-4. 28-Pin PDIP/SOIC Pin Assignment  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
1
IRQ  
VSS  
RST  
2
PTD4/T1CH0  
PTD5/T1CH1  
PTD2/ADC9  
PTD3/ADC8  
PTB0/ADC0  
PTB1/ADC1  
PTB2/ADC2  
PTB3/ADC3  
PTB4/ADC4  
Pins not available on 20-pin packages  
3
OSC1  
PTA0/KBI0  
PTA1/KBI1  
PTA2/KBI2  
PTA3/KBI3  
PTA4/KBI4  
PTA5/KBI5  
PTD0/ADC11  
PTD1/ADC10  
4
OSC2/RCCLK/PTA6/KBI6  
VDD  
5
6
PTB7/ADC7  
PTB6/ADC6  
PTB5/ADC5  
PTD7/RxD  
PTE0/T2CH0  
PTE1/T2CH1  
7
8
9
ADC12/T2CLK  
10  
PTA7/KBI7  
PTD6/TxD  
Internal pads are unconnected.  
Set these unused port I/Os to output low.  
The 20-pin MC68HC908JL8 is designated MC68HC908JK8.  
Figure 1-5. 20-Pin PDIP/SOIC Pin Assignment  
1.5 Pin Functions  
Description of the pin functions are provided in Table 1-2.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
21  
General Description  
Table 1-2. Pin Functions  
VOLTAGE  
LEVEL  
PIN NAME  
PIN DESCRIPTION  
IN/OUT  
VDD  
VSS  
Power supply.  
In  
5V or 3V  
0V  
Power supply ground.  
Reset input, active low;  
Out  
RST  
In/Out  
In  
VDD  
with internal pull-up and schmitt trigger input.  
External IRQ pin; with programmable internal pull-up and schmitt  
trigger input.  
VDD  
IRQ  
VDD to VTST  
Used for monitor mode entry.  
In  
In  
OSC1  
Crystal or RC oscillator input.  
VDD  
VDD  
OSC2: crystal oscillator output; inverted OSC1 signal.  
RCCLK: RC oscillator clock output.  
Pin as PTA6/KBI6 (see PTA0–PTA7).  
ADC12: channel-12 input of ADC.  
T2CLK: external input clock for TIM2.  
8-bit general purpose I/O port.  
Out  
Out  
In/Out  
In  
OSC2/RCCLK  
ADC12/T2CLK  
VDD  
VDD  
VSS to VDD  
VDD  
In  
In/Out  
VDD  
Each pin has programmable internal pull-up when configured as  
input.  
In  
VDD  
PTA0–PTA7  
PTB0–PTB7  
Pins as keyboard interrupts, KBI0–KBI7.  
PTA0–PTA5 and PTA7 have LED direct sink capability.  
PTA6 as OSC2/RCCLK.  
In  
Out  
Out  
In/Out  
In  
VDD  
VSS  
VDD  
8-bit general purpose I/O port.  
VDD  
Pins as ADC input channels, ADC0–ADC7.  
VSS to VDD  
8-bit general purpose I/O port;  
with programmable internal pull-ups on PTD6–PTD7.  
In/Out  
VDD  
PTD0–PTD3 as ADC input channels, ADC11–ADC8.  
PTD2–PTD3 and PTD6–PTD7 have LED direct sink capability  
PTD4 as T1CH0 of TIM1.  
Input  
Out  
VSS to VDD  
VSS  
In/Out  
In/Out  
Out  
VDD  
PTD0–PTD7  
PTD5 as T1CH1 of TIM1.  
VDD  
PTD6–PTD7 have configurable 25mA open-drain output.  
PTD6 as TxD of SCI.  
VSS  
Out  
VDD  
PTD7 as RxD of SCI.  
In  
VDD  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
22  
Pin Functions  
Table 1-2. Pin Functions (Continued)  
VOLTAGE  
LEVEL  
PIN NAME  
PIN DESCRIPTION  
IN/OUT  
2-bit general purpose I/O port.  
In/Out  
In/Out  
In/Out  
VDD  
VDD  
VDD  
PTE0–PTE1  
PTE0 as T2CH0 of TIM2.  
PTE1 as T2CH1 of TIM2.  
NOTE  
Devices in 28-pin packages, the following pins are not available:  
PTA7/KBI7, PTE0/T2CH0, PTE1/T2CH1, and ADC12/T2CLK.  
Devices in 20-pin packages, the following pins are not available:  
PTA0/KBI0–PTA5/KBI5, PTD0/ADC11, PTD1/ADC10,  
PTA7/KBI7, PTE0/T2CH0, PTE1/T2CH1, and ADC12/T2CLK.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
23  
General Description  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
24  
Chapter 2  
Memory  
2.1 Introduction  
The CPU08 can address 64-kbytes of memory space. The memory map, shown in Figure 2-1, includes:  
8,192 bytes of user FLASH memory  
36 bytes of user-defined vectors  
959 bytes of monitor ROM  
2.2 I/O Section  
Addresses $0000–$003F, shown in Figure 2-2, contain most of the control, status, and data registers.  
Additional I/O registers have the following addresses:  
$FE00; Break Status Register, BSR  
$FE01; Reset Status Register, RSR  
$FE02; Reserved  
$FE03; Break Flag Control Register, BFCR  
$FE04; Interrupt Status Register 1, INT1  
$FE05; Interrupt Status Register 2, INT2  
$FE06; Interrupt Status Register 3, INT3  
$FE07; Reserved  
$FE08; FLASH Control Register, FLCR  
$FE09; Reserved  
$FE0A; Reserved  
$FE0B; Reserved  
$FE0C; Break Address Register High, BRKH  
$FE0D; Break Address Register Low, BRKL  
$FE0E; Break Status and Control Register, BRKSCR  
$FE0F; Reserved  
$FFCF; FLASH Block Protect Register, FLBPR (FLASH register)  
$FFD0; Mask Option Register, MOR (FLASH register)  
$FFFF; COP Control Register, COPCTL  
2.3 Monitor ROM  
The 959 bytes at addresses $FC00–$FDFF and $FE10–$FFCE are reserved ROM addresses that  
contain the instructions for the monitor functions. (See Chapter 7 Monitor ROM (MON).)  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
25  
Memory  
$0000  
$003F  
I/O REGISTERS  
64 BYTES  
$0040  
$005F  
RESERVED  
32 BYTES  
$0060  
$015F  
RAM  
256 BYTES  
$0160  
$DBFF  
UNIMPLEMENTED  
55,968 BYTES  
$DC00  
$FBFF  
FLASH MEMORY  
8,192 BYTES  
$FC00  
$FDFF  
MONITOR ROM  
512 BYTES  
$FE00  
$FE01  
$FE02  
$FE03  
$FE04  
$FE05  
$FE06  
$FE07  
$FE08  
BREAK STATUS REGISTER (BSR)  
RESET STATUS REGISTER (RSR)  
RESERVED  
BREAK FLAG CONTROL REGISTER (BFCR)  
INTERRUPT STATUS REGISTER 1 (INT1)  
INTERRUPT STATUS REGISTER 2 (INT2)  
INTERRUPT STATUS REGISTER 3 (INT3)  
RESERVED  
FLASH CONTROL REGISTER (FLCR)  
$FE09  
RESERVED  
$FF0B  
$FE0C  
$FE0D  
$FE0E  
$FE0F  
BREAK ADDRESS HIGH REGISTER (BRKH)  
BREAK ADDRESS LOW REGISTER (BRKL)  
BREAK STATUS AND CONTROL REGISTER (BRKSCR)  
RESERVED  
$FE10  
$FFCE  
MONITOR ROM  
447 BYTES  
$FFCF  
$FFD0  
FLASH BLOCK PROTECT REGISTER (FLBPR)  
MASK OPTION REGISTER (MOR)  
$FFD1  
$FFDB  
RESERVED  
11 BYTES  
$FFDC  
$FFFF  
USER FLASH VECTORS  
36 BYTES  
Figure 2-1. Memory Map  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
26  
Monitor ROM  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
PTA7  
PTA6  
PTA5  
PTA4  
PTA3  
PTA2  
PTA1  
PTA0  
$0000 Port A Data Register (PTA) Write:  
Reset:  
Unaffected by reset  
PTB4 PTB3  
Unaffected by reset  
Read:  
PTB7  
PTD7  
PTB6  
PTD6  
PTB5  
PTD5  
PTB2  
PTD2  
PTB1  
PTB0  
$0001 Port B Data Register (PTB) Write:  
Reset:  
Read:  
$0002  
Unimplemented Write:  
Read:  
PTD4  
PTD3  
PTD1  
PTD0  
$0003 Port D Data Register (PTD) Write:  
Reset:  
Unaffected by reset  
Read:  
DDRA7  
DDRA6  
DDRA5  
DDRA4  
DDRA3  
DDRA2  
DDRA1  
DDRA0  
Data Direction Register A  
(DDRA)  
$0004  
$0005  
$0006  
$0007  
$0008  
$0009  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
0
DDRB7  
0
0
DDRB6  
0
0
DDRB5  
0
0
DDRB4  
0
0
DDRB3  
0
0
DDRB2  
0
0
DDRB1  
0
0
DDRB0  
0
Data Direction Register B  
(DDRB)  
Unimplemented Write:  
Read:  
DDRD7  
0
DDRD6  
0
DDRD5  
0
DDRD4  
0
DDRD3  
0
DDRD2  
0
DDRD1  
0
DDRD0  
0
Data Direction Register D  
(DDRD)  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
PTE1  
PTE0  
Port E Data Register  
(PTE)  
Unaffected by reset  
Unimplemented Write:  
Read:  
0
0
0
0
0
0
0
SLOWD7 SLOWD6 PTDPU7 PTDPU6  
Port D Control Register  
(PDCR)  
$000A  
Write:  
Reset:  
Read:  
0
0
0
0
0
$000B  
$000C  
Unimplemented Write:  
Read:  
DDRE1  
0
DDRE0  
0
Data Direction Register E  
(DDRE)  
Write:  
Reset:  
Read:  
0
0
0
0
0
0
Port A Input Pull-up  
PTA6EN PTAPUE6 PTAPUE5 PTAPUE4 PTAPUE3 PTAPUE2 PTAPUE1 PTAPUE0  
$000D  
$000E  
Enable Register Write:  
(PTAPUE)  
Reset:  
0
0
0
0
0
0
0
0
0
0
0
0
Read:  
PTA7 Input Pull-up  
Enable Register Write:  
PTAPUE7  
0
(PTA7PUE)  
Reset:  
0
0
0
Read:  
$000F  
Unimplemented Write:  
$0012  
U = Unaffected  
X = Indeterminate  
= Unimplemented  
R
= Reserved  
Figure 2-2. Control, Status, and Data Registers (Sheet 1 of 5)  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
27  
Memory  
Addr.  
Register Name  
Bit 7  
LOOPS  
0
6
ENSCI  
0
5
TXINV  
0
4
3
WAKE  
0
2
ILTY  
0
1
PEN  
0
Bit 0  
PTY  
0
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
M
0
SCI Control Register 1  
(SCC1)  
$0013  
SCTIE  
TCIE  
0
SCRIE  
0
ILIE  
0
TE  
RE  
0
RWU  
0
SBK  
0
SCI Control Register 2  
(SCC2)  
$0014  
$0015  
0
0
R8  
T8  
DMARE  
DMATE  
ORIE  
NEIE  
FEIE  
PEIE  
SCI Control Register 3  
(SCC3)  
U
U
0
0
0
0
0
0
SCTE  
TC  
SCRF  
IDLE  
OR  
NF  
FE  
PE  
$0016 SCI Status Register 1 (SCS1) Write:  
Reset:  
1
1
0
0
0
0
0
0
Read:  
$0017 SCI Status Register 2 (SCS2) Write:  
Reset:  
BKF  
RPF  
0
0
0
0
0
0
0
0
Read:  
R7  
T7  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
R0  
T0  
SCI Data Register  
(SCDR)  
$0018  
$0019  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Unaffected by reset  
SCP1  
SCP0  
R
SCR2  
SCR1  
0
SCR0  
0
SCI Baud Rate Register  
(SCBR)  
0
0
0
0
0
0
0
0
0
0
KEYF  
0
ACKK  
0
Keyboard Status and  
IMASKK MODEK  
$001A  
Control Register Write:  
(KBSCR)  
Reset:  
Read:  
0
KBIE7  
0
0
KBIE6  
0
0
KBIE5  
0
0
KBIE4  
0
0
KBIE3  
0
0
KBIE1  
0
0
KBIE0  
0
Keyboard Interrupt  
Enable Register Write:  
(KBIER)  
KBIE2  
0
$001B  
$001C  
Reset:  
Read:  
Unimplemented Write:  
Read:  
0
0
0
0
IRQF  
0
ACK  
0
IRQ Status and Control  
IMASK  
MODE  
0
$001D  
$001E  
$001F  
Register Write:  
(INTSCR)  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
0
0
R
0
0
R
0
0
LVIT1  
0*  
0
LVIT0  
0*  
0
STOP_  
ICLKDIS  
IRQPUD  
R
R
Configuration Register 2  
(CONFIG2)†  
0
COPRS  
0
0
SSREC  
0
0
STOP  
0
0
COPD  
0
R
R
LVID  
R
Configuration Register 1  
(CONFIG1)†  
0
0
0
0
† One-time writable register after each reset. * LVIT1 and LVIT0 reset to logic 0 by a power-on reset (POR) only.  
Read:  
TOF  
0
0
TIM1 Status and Control  
TOIE  
TSTOP  
PS2  
PS1  
PS0  
$0020  
$0021  
Register Write:  
(T1SC)  
Reset:  
0
0
TRST  
0
0
1
0
0
0
0
Read: Bit15  
Bit14  
Bit13  
Bit12  
Bit11  
Bit10  
Bit9  
Bit8  
TIM1 Counter Register  
High Write:  
(T1CNTH)  
0
0
0
0
0
0
0
0
Reset:  
U = Unaffected  
X = Indeterminate  
= Unimplemented  
R
= Reserved  
Figure 2-2. Control, Status, and Data Registers (Sheet 2 of 5)  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
28  
Freescale Semiconductor  
Monitor ROM  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
TIM1 Counter Register  
$0022  
Low Write:  
(T1CNTL)  
0
Bit15  
1
0
Bit14  
1
0
Bit13  
1
0
Bit12  
1
0
Bit11  
1
0
Bit10  
1
0
Bit9  
1
0
Bit8  
1
Reset:  
Read:  
TIM Counter Modulo  
$0023  
$0024  
$0025  
$0026  
$0027  
$0028  
$0029  
$002A  
Register High Write:  
(TMODH)  
Reset:  
Read:  
TIM1 Counter Modulo  
Bit7  
1
Bit6  
1
Bit5  
1
Bit4  
1
Bit3  
1
Bit2  
1
Bit1  
1
Bit0  
1
Register Low Write:  
(T1MODL)  
Reset:  
Read: CH0F  
TIM1 Channel 0 Status  
and Control Register Write:  
(T1SC0)  
CH0IE  
0
MS0B  
0
MS0A  
0
ELS0B  
0
ELS0A  
0
TOV0  
0
CH0MAX  
0
0
Reset:  
Read:  
0
TIM1 Channel 0  
Register High Write:  
(T1CH0H)  
Bit15  
Bit14  
Bit13  
Bit12  
Bit11  
Bit10  
Bit9  
Bit8  
Reset:  
Read:  
Indeterminate after reset  
Bit4 Bit3  
Indeterminate after reset  
TIM1 Channel 0  
Register Low Write:  
(T1CH0L)  
Bit7  
Bit6  
Bit5  
0
Bit2  
Bit1  
Bit0  
Reset:  
Read: CH1F  
TIM1 Channel 1 Status  
and Control Register Write:  
(T1SC1)  
CH1IE  
0
MS1A  
0
ELS1B  
0
ELS1A  
0
TOV1  
0
CH1MAX  
0
0
Reset:  
Read:  
0
0
TIM1 Channel 1  
Register High Write:  
(T1CH1H)  
Bit15  
Bit14  
Bit13  
Bit12  
Bit11  
Bit10  
Bit9  
Bit8  
Reset:  
Read:  
Indeterminate after reset  
Bit4 Bit3  
Indeterminate after reset  
TIM1 Channel 1  
Register Low Write:  
(T1CH1L)  
Bit7  
Bit6  
Bit5  
Bit2  
PS2  
Bit1  
PS1  
Bit0  
PS0  
Reset:  
Read:  
$002B  
$002F  
Unimplemented Write:  
Read:  
TOF  
0
0
TIM2 Status and Control  
TOIE  
TSTOP  
$0030  
$0031  
$0032  
$0033  
$0034  
Register Write:  
(T2SC)  
Reset:  
0
0
TRST  
0
0
1
0
0
0
0
Read: Bit15  
Bit14  
Bit13  
Bit12  
Bit11  
Bit10  
Bit9  
Bit8  
TIM2 Counter Register  
High Write:  
(T2CNTH)  
0
0
0
0
0
0
0
0
Reset:  
Read:  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
TIM2 Counter Register  
Low Write:  
(T2CNTL)  
0
Bit15  
1
0
Bit14  
1
0
Bit13  
1
0
Bit12  
1
0
Bit11  
1
0
Bit10  
1
0
0
Bit8  
1
Reset:  
Read:  
TIM2 Counter Modulo  
Bit9  
1
Register High Write:  
(T2MODH)  
Reset:  
Read:  
TIM2 Counter Modulo  
Bit7  
1
Bit6  
1
Bit5  
1
Bit4  
1
Bit3  
1
Bit2  
Bit1  
Bit0  
1
Register Low Write:  
(T2MODL)  
Reset:  
1
1
U = Unaffected  
X = Indeterminate  
= Unimplemented  
R
= Reserved  
Figure 2-2. Control, Status, and Data Registers (Sheet 3 of 5)  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
29  
Memory  
Addr.  
Register Name  
Bit 7  
6
CH0IE  
0
5
4
3
ELS0B  
0
2
ELS0A  
0
1
TOV0  
0
Bit 0  
CH0MAX  
0
Read: CH0F  
TIM2 Channel 0 Status  
and Control Register Write:  
MS0B  
0
MS0A  
0
$0035  
0
0
(T2SC0)  
Reset:  
Read:  
TIM2 Channel 0  
Register High Write:  
(T2CH0H)  
Bit15  
Bit14  
Bit13  
Bit12  
Bit11  
Bit10  
Bit9  
Bit8  
$0036  
$0037  
$0038  
$0039  
Reset:  
Read:  
Indeterminate after reset  
Bit4 Bit3  
Indeterminate after reset  
TIM2 Channel 0  
Register Low Write:  
(T2CH0L)  
Bit7  
Bit6  
Bit5  
0
Bit2  
Bit1  
Bit0  
Reset:  
Read: CH1F  
TIM2 Channel 1 Status  
and Control Register Write:  
(T2SC1)  
CH1IE  
0
MS1A  
0
ELS1B  
0
ELS1A  
0
TOV1  
0
CH1MAX  
0
0
Reset:  
Read:  
0
0
TIM2 Channel 1  
Register High Write:  
(T2CH1H)  
Bit15  
Bit14  
Bit13  
Bit12  
Bit11  
Bit10  
Bit9  
Bit8  
Reset:  
Read:  
Indeterminate after reset  
Bit4 Bit3  
Indeterminate after reset  
TIM2 Channel 1  
Register Low Write:  
(T2CH1L)  
Bit7  
Bit6  
Bit5  
Bit2  
Bit1  
Bit0  
$003A  
$003B  
Reset:  
Read:  
Unimplemented Write:  
Read: COCO  
ADC Status and Control  
AIEN  
ADCO  
ADCH4  
ADCH3  
ADCH2  
ADCH1  
ADCH0  
$003C  
$003D  
Register Write:  
(ADSCR)  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
0
0
0
1
1
1
1
1
AD7  
AD6  
AD5  
AD4  
AD3  
AD2  
AD1  
AD0  
ADC Data Register  
(ADR)  
Indeterminate after reset  
0
0
0
0
0
0
0
0
ADIV2  
0
ADIV1  
0
ADIV0  
0
ADC Input Clock Register  
(ADICLK)  
$003E  
$003F  
0
0
Unimplemented Write:  
Read:  
SBSW  
See note  
0
R
R
R
R
R
R
R
0
$FE00 Break Status Register (BSR) Write:  
Reset:  
Note: Writing a logic 0 clears SBSW.  
Read:  
POR  
PIN  
COP  
ILOP  
ILAD  
MODRST  
LVI  
$FE01 Reset Status Register (RSR) Write:  
POR:  
Read:  
1
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
$FE02  
$FE03  
Reserved Write:  
Read:  
Break Flag Control  
Register Write:  
(BFCR)  
BCFE  
0
R
R
R
R
R
R
R
R
Reset:  
U = Unaffected  
X = Indeterminate  
= Unimplemented  
= Reserved  
Figure 2-2. Control, Status, and Data Registers (Sheet 4 of 5)  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
30  
Freescale Semiconductor  
Monitor ROM  
Addr.  
Register Name  
Bit 7  
IF6  
R
6
IF5  
R
5
IF4  
R
4
IF3  
R
3
0
2
IF1  
R
0
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Interrupt Status Register 1  
(INT1)  
$FE04  
R
0
R
0
R
0
0
0
0
0
IF14  
R
IF13  
R
IF12  
R
IF11  
R
0
0
IF8  
R
0
IF7  
R
Interrupt Status Register 2  
(INT2)  
$FE05  
$FE06  
$FE07  
$FE08  
R
0
R
0
0
0
0
0
0
0
0
0
0
0
0
0
IF15  
R
Interrupt Status Register 3  
(INT3)  
R
R
R
R
R
0
R
0
R
0
0
0
0
0
0
R
R
R
R
R
R
R
R
Reserved Write:  
Read:  
0
0
0
0
HVEN  
MASS  
ERASE  
PGM  
FLASH Control Register  
(FLCR)  
Write:  
Reset:  
Read:  
0
0
0
0
0
0
0
0
$FE09  
$FE0B  
R
R
R
R
R
R
R
R
Reserved Write:  
Read:  
Break Address High  
Bit15  
0
Bit14  
0
Bit13  
0
Bit12  
0
Bit11  
0
Bit10  
0
Bit9  
0
Bit8  
0
$FE0C  
$FE0D  
$FE0E  
Register Write:  
(BRKH)  
Reset:  
Read:  
Break Address low  
Bit7  
0
Bit6  
0
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Register Write:  
(BRKL)  
Reset:  
Read:  
0
0
0
0
0
0
0
0
0
0
0
0
Break Status and Control  
BRKE  
0
BRKA  
0
Register Write:  
(BRKSCR)  
Reset:  
0
0
0
0
0
0
Read:  
FLASH Block Protect  
BPR7  
BPR6  
R
BPR5  
BPR4  
BPR3  
BPR2  
BPR1  
BPR0  
$FFCF  
$FFD0  
Register Write:  
(FLBPR)#  
Reset:  
Unaffected by reset; $FF when blank  
Read:  
OSCSEL  
R
R
R
R
R
R
Mask Option Register  
(MOR)#  
Write:  
Reset:  
Unaffected by reset; $FF when blank  
# Non-volatile FLASH registers; write by programming.  
Read:  
Low byte of reset vector  
COP Control Register  
(COPCTL)  
$FFFF  
Write:  
Writing clears COP counter (any value)  
Unaffected by reset  
Reset:  
U = Unaffected  
X = Indeterminate  
= Unimplemented  
R
= Reserved  
Figure 2-2. Control, Status, and Data Registers (Sheet 5 of 5)  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
31  
Memory  
.
Table 2-1. Vector Addresses  
Vector Priority  
INT Flag  
Address  
Vector  
Lowest  
$FFD0  
Not Used  
$FFDD  
$FFDE  
$FFDF  
$FFE0  
$FFE1  
$FFE2  
$FFE3  
$FFE4  
$FFE5  
$FFE6  
$FFE7  
ADC Conversion Complete Vector (High)  
ADC Conversion Complete Vector (Low)  
Keyboard Interrupt Vector (High)  
Keyboard Interrupt Vector (Low)  
SCI Transmit Vector (High)  
IF15  
IF14  
IF13  
IF12  
IF11  
SCI Transmit Vector (Low)  
SCI Receive Vector (High)  
SCI Receive Vector (Low)  
SCI Error Vector (High)  
SCI Error Vector (Low)  
IF10  
Not Used  
IF9  
$FFEC  
$FFED  
$FFEE  
$FFEF  
$FFF0  
$FFF1  
$FFF2  
$FFF3  
$FFF4  
$FFF5  
$FFF6  
$FFF7  
TIM2 Overflow Vector (High)  
TIM2 Overflow Vector (Low)  
TIM2 Channel 1 Vector (High)  
TIM2 Channel 1 Vector (Low)  
TIM2 Channel 0 Vector (High)  
TIM2 Channel 0 Vector (Low)  
TIM1 Overflow Vector (High)  
TIM1 Overflow Vector (Low)  
TIM1 Channel 1 Vector (High)  
TIM1 Channel 1 Vector (Low)  
TIM1 Channel 0 Vector (High)  
TIM1 Channel 0 Vector (Low)  
Not Used  
IF8  
IF7  
IF6  
IF5  
IF4  
IF3  
IF2  
IF1  
$FFFA  
$FFFB  
$FFFC  
$FFFD  
$FFFE  
IRQ Vector (High)  
IRQ Vector (Low)  
SWI Vector (High)  
SWI Vector (Low)  
Reset Vector (High)  
$FFFF  
Reset Vector (Low)  
Highest  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
32  
Random-Access Memory (RAM)  
2.4 Random-Access Memory (RAM)  
Addresses $0060 through $015F are RAM locations. The location of the stack RAM is programmable.  
The 16-bit stack pointer allows the stack to be anywhere in the 64-Kbyte memory space.  
NOTE  
For correct operation, the stack pointer must point only to RAM locations.  
Within page zero are 160 bytes of RAM. Because the location of the stack RAM is programmable, all page  
zero RAM locations can be used for I/O control and user data or code. When the stack pointer is moved  
from its reset location at $00FF, direct addressing mode instructions can access efficiently all page zero  
RAM locations. Page zero RAM, therefore, provides ideal locations for frequently accessed global  
variables.  
Before processing an interrupt, the CPU uses five bytes of the stack to save the contents of the CPU  
registers.  
NOTE  
For M6805 compatibility, the H register is not stacked.  
During a subroutine call, the CPU uses two bytes of the stack to store the return address. The stack  
pointer decrements during pushes and increments during pulls.  
NOTE  
Be careful when using nested subroutines. The CPU may overwrite data in  
the RAM during a subroutine or during the interrupt stacking operation.  
2.5 FLASH Memory  
This sub-section describes the operation of the embedded FLASH memory. The FLASH memory can be  
read, programmed, and erased from a single external supply. The program and erase operations are  
enabled through the use of an internal charge pump.  
2.6 Functional Description  
The FLASH memory consists of an array of 8,192 bytes for user memory plus a block of 36 bytes for user  
interrupt vectors. An erased bit reads as logic 1 and a programmed bit reads as a logic 0. The FLASH  
memory page size is defined as 64 bytes, and is the minimum size that can be erased in a page erase  
operation. Program and erase operations are facilitated through control bits in FLASH control register  
(FLCR).  
The address ranges for the FLASH memory are:  
$DC00–$FBFF; user memory; 12,288 bytes  
$FFDC–$FFFF; user interrupt vectors; 36 bytes  
Programming tools are available from Freescale. Contact your local Freescale representative for more  
information.  
NOTE  
A security feature prevents viewing of the FLASH contents.(1)  
1. No security feature is absolutely secure. However, Motorola’s strategy is to make reading or copying the FLASH difficult for  
unauthorized users.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
33  
Memory  
2.7 FLASH Control Register  
The FLASH control register (FCLR) controls FLASH program and erase operations.  
Address:  
$FE08  
Bit 7  
0
6
0
5
0
4
0
3
HVEN  
0
2
MASS  
0
1
ERASE  
0
Bit 0  
PGM  
0
Read:  
Write:  
Reset:  
0
0
0
0
Figure 2-3. FLASH Control Register (FLCR)  
HVEN — High Voltage Enable Bit  
This read/write bit enables the charge pump to drive high voltages for program and erase operations  
in the array. HVEN can only be set if either PGM = 1 or ERASE = 1 and the proper sequence for  
program or erase is followed.  
1 = High voltage enabled to array and charge pump on  
0 = High voltage disabled to array and charge pump off  
MASS — Mass Erase Control Bit  
This read/write bit configures the memory for mass erase operation or page erase operation when the  
ERASE bit is set.  
1 = Mass erase operation selected  
0 = Page erase operation selected  
ERASE — Erase Control Bit  
This read/write bit configures the memory for erase operation. ERASE is interlocked with the PGM bit  
such that both bits cannot be equal to 1 or set to 1 at the same time.  
1 = Erase operation selected  
0 = Erase operation not selected  
PGM — Program Control Bit  
This read/write bit configures the memory for program operation. PGM is interlocked with the ERASE  
bit such that both bits cannot be equal to 1 or set to 1 at the same time.  
1 = Program operation selected  
0 = Program operation not selected  
2.8 FLASH Page Erase Operation  
Use the following procedure to erase a page of FLASH memory. A page consists of 64 consecutive bytes  
starting from addresses $XX00, $XX40, $XX80 or $XXC0. The 36-byte user interrupt vectors area also  
forms a page. Any page within the 8,192 bytes user memory area ($DC00–$FBFF) can be erased alone.  
The 36-byte user interrupt vectors cannot be erased by the page erase operation because of security  
reasons. Mass erase is required to erase this page.  
1. Set the ERASE bit and clear the MASS bit in the FLASH control register.  
2. Read the FLASH block protect register.  
3. Write any data to any FLASH address within the page address range desired.  
4. Wait for a time, tnvs (10µs).  
5. Set the HVEN bit.  
6. Wait for a time terase (4ms).  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
34  
Freescale Semiconductor  
FLASH Mass Erase Operation  
7. Clear the ERASE bit.  
8. Wait for a time, tnvh (5µs).  
9. Clear the HVEN bit.  
10. After time, trcv (1µs), the memory can be accessed in read mode again.  
NOTE  
Programming and erasing of FLASH locations cannot be performed by  
code being executed from the FLASH memory. While these operations  
must be performed in the order as shown, but other unrelated operations  
may occur between the steps.  
2.9 FLASH Mass Erase Operation  
Use the following procedure to erase the entire FLASH memory:  
1. Set both the ERASE bit and the MASS bit in the FLASH control register.  
2. Read the FLASH block protect register.  
3. Write any data to any FLASH location within the FLASH memory address range.  
4. Wait for a time, tnvs (10µs).  
5. Set the HVEN bit.  
6. Wait for a time tmerase (4ms).  
7. Clear the ERASE bit.  
8. Wait for a time, tnvh1 (100µs).  
9. Clear the HVEN bit.  
10. After time, trcv (1µs), the memory can be accessed in read mode again.  
NOTE  
Programming and erasing of FLASH locations cannot be performed by  
code being executed from the FLASH memory. While these operations  
must be performed in the order as shown, but other unrelated operations  
may occur between the steps.  
2.10 FLASH Program Operation  
Programming of the FLASH memory is done on a row basis. A row consists of 32 consecutive bytes  
starting from addresses $XX00, $XX20, $XX40, $XX60, $XX80, $XXA0, $XXC0 or $XXE0. Use this  
step-by-step procedure to program a row of FLASH memory:  
(Figure 2-4 shows a flowchart of the programming algorithm.)  
1. Set the PGM bit. This configures the memory for program operation and enables the latching of  
address and data for programming.  
2. Read the FLASH block protect register.  
3. Write any data to any FLASH location within the address range of the row to be programmed.  
4. Wait for a time, tnvs (10µs).  
5. Set the HVEN bit.  
6. Wait for a time, tpgs (5µs).  
7. Write data to the FLASH address to be programmed.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
35  
Memory  
8. Wait for time, tprog (30µs).  
9. Repeat steps 7 and 8 until all bytes within the row are programmed.  
10. Clear the PGM bit.  
11. Wait for time, tnvh (5µs).  
12. Clear the HVEN bit.  
13. After time, trcv (1µs), the memory can be accessed in read mode again.  
This program sequence is repeated throughout the memory until all data is programmed.  
NOTE  
The time between each FLASH address change (step 7 to step 7), or the  
time between the last FLASH addressed programmed to clearing the PGM  
bit (step 7 to step 10), must not exceed the maximum programming time,  
t
prog max.  
NOTE  
Programming and erasing of FLASH locations cannot be performed by  
code being executed from the FLASH memory. While these operations  
must be performed in the order shown, other unrelated operations may  
occur between the steps.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
36  
Freescale Semiconductor  
FLASH Program Operation  
1
2
3
Set PGM bit  
Algorithm for programming  
a row (32 bytes) of FLASH memory  
Read the FLASH block protect register  
Write any data to any FLASH location  
within the address range of the row to  
be programmed  
4
5
6
Wait for a time, tnvs  
Set HVEN bit  
Wait for a time, tpgs  
7
8
Write data to the FLASH address  
to be programmed  
Wait for a time, tprog  
Completed  
Y
programming  
this row?  
N
10  
Clear PGM bit  
Wait for a time, tnvh  
Clear HVEN bit  
NOTE:  
The time between each FLASH address change (step 7 to step 7), or  
the time between the last FLASH address programmed  
to clearing PGM bit (step 7 to step 10)  
11  
12  
13  
must not exceed the maximum programming  
time, tprog max.  
This row program algorithm assumes the row/s  
to be programmed are initially erased.  
Wait for a time, trcv  
End of programming  
Figure 2-4. FLASH Programming Flowchart  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
37  
Memory  
2.11 FLASH Block Protection  
Due to the ability of the on-board charge pump to erase and program the FLASH memory in the target  
application, provision is made to protect blocks of memory from unintentional erase or program operations  
due to system malfunction. This protection is done by use of a FLASH block protect register (FLBPR).  
The FLBPR determines the range of the FLASH memory which is to be protected. The range of the  
protected area starts from a location defined by FLBPR and ends to the bottom of the FLASH memory  
($FFFF). When the memory is protected, the HVEN bit cannot be set in either erase or program  
operations.  
NOTE  
In performing a program or erase operation, the FLASH block protect register must be read after setting  
the PGM or ERASE bit and before asserting the HVEN bit  
When the FLBPR is program with all 0’s, the entire memory is protected from being programmed and  
erased. When all the bits are erased  
(all 1’s), the entire memory is accessible for program and erase.  
When bits within the FLBPR are programmed, they lock a block of memory, address ranges as shown in  
2.12 FLASH Block Protect Register. Once the FLBPR is programmed with a value other than $FF, any  
erase or program of the FLBPR or the protected block of FLASH memory is prohibited. The FLBPR itself  
can be erased or programmed only with an external voltage, VTST, present on the IRQ pin. This voltage  
also allows entry from reset into the monitor mode.  
2.12 FLASH Block Protect Register  
The FLASH block protect register (FLBPR) is implemented as a byte within the FLASH memory, and  
therefore can only be written during a programming sequence of the FLASH memory. The value in this  
register determines the starting location of the protected range within the FLASH memory.  
Address: $FFCF  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
BPR7  
BPR6  
BPR5  
BPR4  
BPR3  
BPR2  
BPR1  
BPR0  
Unaffected by reset; $FF when blank  
Non-volatile FLASH register; write by programming.  
Figure 2-5. FLASH Block Protect Register (FLBPR)  
BPR[7:0] — FLASH Block Protect Bits  
BPR[7:0] represent bits [13:6] of a 16-bit memory address. Bits [15:14] are logic 1’s and bits [5:0] are  
logic 0’s.  
16-bit memory address  
Start address of FLASH block protect  
1 1  
0 0 0 0 0 0  
BPR[7:0]  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
38  
FLASH Block Protect Register  
The resultant 16-bit address is used for specifying the start address of the FLASH memory for block  
protection. The FLASH is protected from this start address to the end of FLASH memory, at $FFFF.  
With this mechanism, the protect start address can be XX00, XX40, XX80, or XXC0 (at page  
boundaries — 64 bytes) within the FLASH memory.  
Examples of protect start address:  
Start of Address of Protect Range (1)  
BPR[7:0]  
$00–$70  
The entire FLASH memory is protected.  
$71  
(0111 0001)  
$DC40 (1101 1100 0100 0000)  
$72  
(0111 0010)  
$DC80 (1101 1100 1000 0000)  
$DCC0 (1101 1100 1100 0000)  
$73  
(0111 0011)  
and so on...  
$FD  
(1111 1101)  
$FF40 (1111 1111 0100 0000)  
$FE  
(1111 1110)  
$FF80 (1111 1111 1000 0000)  
$FF  
The entire FLASH memory is not protected.  
1. The end address of the protected range is always $FFFF.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
39  
Memory  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
40  
Chapter 3  
Configuration and Mask Option Registers (CONFIG & MOR)  
3.1 Introduction  
This section describes the configuration registers, CONFIG1 and CONFIG2; and the mask option register  
(MOR).  
The configuration registers enable or disable these options:  
Computer operating properly module (COP)  
COP timeout period (213–24 or 218–24 ICLK cycles)  
Internal oscillator during stop mode  
Low voltage inhibit (LVI) module  
LVI module voltage trip point selection  
STOP instruction  
Stop mode recovery time (32 or 4096 ICLK cycles)  
Pull-up on IRQ pin  
The mask option register selects the oscillator option:  
Crystal or RC  
3.2 Functional Description  
The configuration registers are used in the initialization of various options. The configuration registers can  
be written once after each reset. All of the configuration register bits are cleared during reset. Since the  
various options affect the operation of the MCU, it is recommended that these registers be written  
immediately after reset. The configuration registers are located at $001E and $001F. The configuration  
registers may be read at anytime.  
NOTE  
The options except LVIT[1:0] are one-time writable by the user after each  
reset. The LVIT[1:0] bits are one-time writable by the user only after each  
POR (power-on reset). The CONFIG registers are not in the FLASH  
memory but are special registers containing one-time writable latches after  
each reset. Upon a reset, the CONFIG registers default to predetermined  
settings as shown in Figure 3-1 and Figure 3-2.  
The mask option register (MOR) is used to select the oscillator option for the MCU: crystal oscillator or  
RC oscillator. The MOR is implemented as a byte in FLASH memory. Hence, writing to the MOR requires  
programming the byte.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
41  
Configuration and Mask Option Registers (CONFIG & MOR)  
3.3 Configuration Register 1 (CONFIG1)  
Address:  
$001F  
Bit 7  
6
5
R
0
4
LVID  
0
3
R
0
2
SSREC  
0
1
STOP  
0
Bit 0  
COPD  
0
Read:  
Write:  
Reset:  
COPRS  
R
0
0
R
= Reserved  
Figure 3-1. Configuration Register 1 (CONFIG1)  
COPRS — COP Rate Select Bit  
COPRS selects the COP time-out period. Reset clears COPRS.  
(See Chapter 14 Computer Operating Properly (COP).)  
1 = COP timeout period is (213 – 24) ICLK cycles  
0 = COP timeout period is (218 – 24) ICLK cycles  
LVID — Low Voltage Inhibit Disable Bit  
LVID disables the LVI module. Reset clears LVID.  
(See Chapter 15 Low Voltage Inhibit (LVI).)  
1 = Low voltage inhibit disabled  
0 = Low voltage inhibit enabled  
SSREC — Short Stop Recovery Bit  
SSREC enables the CPU to exit stop mode with a delay of  
32 ICLK cycles instead of a 4096 ICLK cycle delay.  
1 = Stop mode recovery after 32 ICLK cycles  
0 = Stop mode recovery after 4096 ICLK cycles  
NOTE  
Exiting stop mode by pulling reset will result in the long stop recovery.  
If using an external crystal, do not set the SSREC bit.  
STOP — STOP Instruction Enable Bit  
STOP enables the STOP instruction.  
1 = STOP instruction enabled  
0 = STOP instruction treated as illegal opcode  
COPD — COP Disable Bit  
COPD disables the COP module. Reset clears COPD.  
(See Chapter 14 Computer Operating Properly (COP).)  
1 = COP module disabled  
0 = COP module enabled  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
42  
Configuration Register 2 (CONFIG2)  
3.4 Configuration Register 2 (CONFIG2)  
Address:  
$001E  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
POR:  
STOP_  
ICLKDIS  
IRQPUD  
R
R
LVIT1  
LVIT0  
R
R
0
0
0
0
0
Not affected Not affected  
0
0
0
0
0
0
0
0
0
R
= Reserved  
One-time writable register after each reset. LVIT1 and LVIT0 reset to logic 0 by a power-on reset (POR) only.  
Figure 3-2. Configuration Register 2 (CONFIG2)  
IRQPUD — IRQ Pin Pull-Up Disable Bit  
IRQPUD disconnects the internal pull-up on the IRQ pin.  
1 = Internal pull-up is disconnected  
0 = Internal pull-up is connected between IRQ pin and VDD  
LVIT1, LVIT0 — LVI Trip Voltage Selection Bits  
Detail description of trip voltage selection is given in Chapter 15 Low Voltage Inhibit (LVI).  
STOP_ICLKDIS — Internal Oscillator Stop Mode Disable Bit  
Setting STOP_ICLKDIS disables the internal oscillator during stop mode. When this bit is cleared, the  
internal oscillator continues to operate in stop mode. Reset clears this bit.  
1 = Internal oscillator disabled during stop mode  
0 = Internal oscillator enabled during stop mode  
3.5 Mask Option Register (MOR)  
The mask option register (MOR) is implemented as a byte within the FLASH memory, and therefore can  
only be written during a programming sequence of the FLASH memory. This register is read after a  
power-on reset to determine the type of oscillator selected. (See Chapter 6 Oscillator (OSC).)  
Address: $FFD0  
Bit 7  
OSCSEL  
1
6
R
1
5
R
1
4
R
1
3
R
1
2
R
1
1
R
1
Bit 0  
R
Read:  
Write:  
Erased:  
Reset:  
1
Unaffected by reset  
Non-volatile FLASH register; write by programming.  
= Reserved  
R
Figure 3-3. Mask Option Register (MOR)  
OSCSEL — Oscillator Select Bit  
OSCSEL selects the oscillator type for the MCU. The erased or unprogrammed state of this bit is  
logic 1, selecting the crystal oscillator option. This bit is unaffected by reset.  
1 = Crystal oscillator  
0 = RC oscillator  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
43  
Configuration and Mask Option Registers (CONFIG & MOR)  
Bits 6–0 — Should be left as logic 1’s.  
NOTE  
When Crystal oscillator is selected, the OSC2/RCCLK/PTA6/KBI6 pin is  
used as OSC2; other functions such as PTA6/KBI6 will not be available.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
44  
Freescale Semiconductor  
Chapter 4  
Central Processor Unit (CPU)  
4.1 Introduction  
The M68HC08 CPU (central processor unit) is an enhanced and fully object-code-compatible version of  
the M68HC05 CPU. The CPU08 Reference Manual (Freescale document order number CPU08RM/AD)  
contains a description of the CPU instruction set, addressing modes, and architecture.  
4.2 Features  
Object code fully upward-compatible with M68HC05 Family  
16-bit stack pointer with stack manipulation instructions  
16-Bit Index Register with X-Register Manipulation Instructions  
8-MHz CPU Internal Bus Frequency  
64-Kbyte Program/Data Memory Space  
16 Addressing Modes  
Memory-to-Memory Data Moves without Using Accumulator  
Fast 8-Bit by 8-Bit Multiply and 16-Bit by 8-Bit Divide Instructions  
Enhanced Binary-Coded Decimal (BCD) Data Handling  
Modular Architecture with Expandable Internal Bus Definition for Extension of Addressing Range  
beyond 64 Kbytes  
Low-Power Stop and Wait Modes  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
45  
Central Processor Unit (CPU)  
4.3 CPU Registers  
Figure 4-1 shows the five CPU registers. CPU registers are not part of the memory map.  
7
0
0
0
0
ACCUMULATOR (A)  
15  
15  
15  
H
X
INDEX REGISTER (H:X)  
STACK POINTER (SP)  
PROGRAM COUNTER (PC)  
CONDITION CODE REGISTER (CCR)  
7
0
V
1
1
H
I
N
Z
C
CARRY/BORROW FLAG  
ZERO FLAG  
NEGATIVE FLAG  
INTERRUPT MASK  
HALF-CARRY FLAG  
TWO’S COMPLEMENT OVERFLOW FLAG  
Figure 4-1. CPU Registers  
4.3.1 Accumulator  
The accumulator is a general-purpose 8-bit register. The CPU uses the accumulator to hold operands and  
the results of arithmetic/logic operations.  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Unaffected by reset  
Figure 4-2. Accumulator (A)  
4.3.2 Index Register  
The 16-bit index register allows indexed addressing of a 64-Kbyte memory space. H is the upper byte of  
the index register, and X is the lower byte. H:X is the concatenated 16-bit index register.  
In the indexed addressing modes, the CPU uses the contents of the index register to determine the  
conditional address of the operand.  
The index register can serve also as a temporary data storage location.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
46  
Freescale Semiconductor  
CPU Registers  
Bit  
15  
14 13 12 11 10  
9
0
8
0
7
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
0
0
0
0
0
0
X
X
X
X
X
X
X
X
X = Indeterminate  
Figure 4-3. Index Register (H:X)  
4.3.3 Stack Pointer  
The stack pointer is a 16-bit register that contains the address of the next location on the stack. During a  
reset, the stack pointer is preset to $00FF. The reset stack pointer (RSP) instruction sets the least  
significant byte to $FF and does not affect the most significant byte. The stack pointer decrements as data  
is pushed onto the stack and increments as data is pulled from the stack.  
In the stack pointer 8-bit offset and 16-bit offset addressing modes, the stack pointer can function as an  
index register to access data on the stack. The CPU uses the contents of the stack pointer to determine  
the conditional address of the operand.  
Bit  
15  
14 13 12 11 10  
9
8
7
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
Figure 4-4. Stack Pointer (SP)  
NOTE  
The location of the stack is arbitrary and may be relocated anywhere in  
RAM. Moving the SP out of page 0 ($0000 to $00FF) frees direct address  
(page 0) space. For correct operation, the stack pointer must point only to  
RAM locations.  
4.3.4 Program Counter  
The program counter is a 16-bit register that contains the address of the next instruction or operand to be  
fetched.  
Normally, the program counter automatically increments to the next sequential memory location every  
time an instruction or operand is fetched. Jump, branch, and interrupt operations load the program  
counter with an address other than that of the next sequential location.  
During reset, the program counter is loaded with the reset vector address located at $FFFE and $FFFF.  
The vector address is the address of the first instruction to be executed after exiting the reset state.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
47  
Central Processor Unit (CPU)  
Bit  
15  
14 13 12 11 10  
9
8
7
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Loaded with Vector from $FFFE and $FFFF  
Figure 4-5. Program Counter (PC)  
4.3.5 Condition Code Register  
The 8-bit condition code register contains the interrupt mask and five flags that indicate the results of the  
instruction just executed. Bits 6 and 5 are set permanently to logic 1. The following paragraphs describe  
the functions of the condition code register.  
Bit 7  
V
6
1
1
5
1
1
4
H
X
3
I
2
N
X
1
Z
X
Bit 0  
C
Read:  
Write:  
Reset:  
X
1
X
X = Indeterminate  
Figure 4-6. Condition Code Register (CCR)  
V — Overflow Flag  
The CPU sets the overflow flag when a two's complement overflow occurs. The signed branch  
instructions BGT, BGE, BLE, and BLT use the overflow flag.  
1 = Overflow  
0 = No overflow  
H — Half-Carry Flag  
The CPU sets the half-carry flag when a carry occurs between accumulator bits 3 and 4 during an  
add-without-carry (ADD) or add-with-carry (ADC) operation. The half-carry flag is required for  
binary-coded decimal (BCD) arithmetic operations. The DAA instruction uses the states of the H and  
C flags to determine the appropriate correction factor.  
1 = Carry between bits 3 and 4  
0 = No carry between bits 3 and 4  
I — Interrupt Mask  
When the interrupt mask is set, all maskable CPU interrupts are disabled. CPU interrupts are enabled  
when the interrupt mask is cleared. When a CPU interrupt occurs, the interrupt mask is set  
automatically after the CPU registers are saved on the stack, but before the interrupt vector is fetched.  
1 = Interrupts disabled  
0 = Interrupts enabled  
NOTE  
To maintain M6805 Family compatibility, the upper byte of the index  
register (H) is not stacked automatically. If the interrupt service routine  
modifies H, then the user must stack and unstack H using the PSHH and  
PULH instructions.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
48  
Freescale Semiconductor  
Arithmetic/Logic Unit (ALU)  
After the I bit is cleared, the highest-priority interrupt request is serviced first.  
A return-from-interrupt (RTI) instruction pulls the CPU registers from the stack and restores the  
interrupt mask from the stack. After any reset, the interrupt mask is set and can be cleared only by the  
clear interrupt mask software instruction (CLI).  
N — Negative flag  
The CPU sets the negative flag when an arithmetic operation, logic operation, or data manipulation  
produces a negative result, setting bit 7 of the result.  
1 = Negative result  
0 = Non-negative result  
Z — Zero flag  
The CPU sets the zero flag when an arithmetic operation, logic operation, or data manipulation  
produces a result of $00.  
1 = Zero result  
0 = Non-zero result  
C — Carry/Borrow Flag  
The CPU sets the carry/borrow flag when an addition operation produces a carry out of bit 7 of the  
accumulator or when a subtraction operation requires a borrow. Some instructions — such as bit test  
and branch, shift, and rotate — also clear or set the carry/borrow flag.  
1 = Carry out of bit 7  
0 = No carry out of bit 7  
4.4 Arithmetic/Logic Unit (ALU)  
The ALU performs the arithmetic and logic operations defined by the instruction set.  
Refer to the CPU08 Reference Manual (Freescale document order number CPU08RM/AD) for a  
description of the instructions and addressing modes and more detail about the architecture of the CPU.  
4.5 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.  
4.5.1 Wait Mode  
The WAIT instruction:  
Clears the interrupt mask (I bit) in the condition code register, enabling interrupts. After exit from  
wait mode by interrupt, the I bit remains clear. After exit by reset, the I bit is set.  
Disables the CPU clock  
4.5.2 Stop Mode  
The STOP instruction:  
Clears the interrupt mask (I bit) in the condition code register, enabling external interrupts. After  
exit from stop mode by external interrupt, the I bit remains clear. After exit by reset, the I bit is set.  
Disables the CPU clock  
After exiting stop mode, the CPU clock begins running after the oscillator stabilization delay.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
49  
Central Processor Unit (CPU)  
4.6 CPU During Break Interrupts  
If a break module is present on the MCU, the CPU starts a break interrupt by:  
Loading the instruction register with the SWI instruction  
Loading the program counter with $FFFC:$FFFD or with $FEFC:$FEFD in monitor mode  
The break interrupt begins after completion of the CPU instruction in progress. If the break address  
register match occurs on the last cycle of a CPU instruction, the break interrupt begins immediately.  
A return-from-interrupt instruction (RTI) in the break routine ends the break interrupt and returns the MCU  
to normal operation if the break interrupt has been deasserted.  
4.7 Instruction Set Summary  
Table 4-1 provides a summary of the M68HC08 instruction set.  
4.8 Opcode Map  
The opcode map is provided in Table 4-2.  
Table 4-1. Instruction Set Summary  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
ADC #opr  
ADC opr  
ADC opr  
ADC opr,X  
ADC opr,X  
ADC ,X  
ADC opr,SP  
ADC opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
A9  
B9  
C9  
D9  
E9  
F9  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
Add with Carry  
A (A) + (M) + (C)  
R R R R R  
SP1  
SP2  
9EE9 ff  
9ED9 ee ff  
ADD #opr  
ADD opr  
ADD opr  
ADD opr,X  
ADD opr,X  
ADD ,X  
ADD opr,SP  
ADD opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
AB  
BB  
CB  
DB  
EB  
FB  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
Add without Carry  
A (A) + (M)  
R R R R R  
SP1  
SP2  
9EEB ff  
9EDB ee ff  
AIS #opr  
AIX #opr  
Add Immediate Value (Signed) to SP  
Add Immediate Value (Signed) to H:X  
SP (SP) + (16 « M)  
H:X (H:X) + (16 « M)  
– IMM  
– IMM  
A7  
AF  
ii  
ii  
2
2
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
50  
Opcode Map  
Table 4-1. Instruction Set Summary  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
AND #opr  
AND opr  
AND opr  
AND opr,X  
AND opr,X  
AND ,X  
AND opr,SP  
AND opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
A4  
B4  
C4  
D4  
E4  
F4  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
Logical AND  
A (A) & (M)  
0
R
R
R
R
SP1  
SP2  
9EE4 ff  
9ED4 ee ff  
ASL opr  
ASLA  
ASLX  
ASL opr,X  
ASL ,X  
ASL opr,SP  
DIR  
INH  
INH  
IX1  
IX  
38  
48  
58  
68  
78  
dd  
ff  
4
1
1
4
3
5
Arithmetic Shift Left  
(Same as LSL)  
R
R
R
C
0
b7  
b0  
b0  
SP1  
9E68 ff  
ASR opr  
ASRA  
ASRX  
ASR opr,X  
ASR opr,X  
ASR opr,SP  
DIR  
INH  
INH  
IX1  
IX  
37  
47  
57  
67  
77  
dd  
4
1
1
4
3
5
C
Arithmetic Shift Right  
R
R
R
ff  
b7  
SP1  
9E67 ff  
BCC rel  
Branch if Carry Bit Clear  
PC (PC) + 2 + rel ? (C) = 0  
– REL  
DIR (b0)  
24  
rr  
3
11  
13  
15  
17  
19  
1B  
1D  
1F  
dd  
dd  
dd  
dd  
dd  
dd  
dd  
dd  
4
4
4
4
4
4
4
4
DIR (b1)  
DIR (b2)  
DIR (b3)  
DIR (b4)  
DIR (b5)  
DIR (b6)  
DIR (b7)  
BCLR n, opr  
Clear Bit n in M  
Mn 0  
BCS rel  
BEQ rel  
Branch if Carry Bit Set (Same as BLO)  
Branch if Equal  
PC (PC) + 2 + rel ? (C) = 1  
PC (PC) + 2 + rel ? (Z) = 1  
– REL  
– REL  
25  
27  
rr  
rr  
3
3
Branch if Greater Than or Equal To  
(Signed Operands)  
BGE opr  
BGT opr  
PC (PC) + 2 + rel ? (N V) = 0  
– REL  
– REL  
90  
92  
rr  
rr  
3
Branch if Greater Than (Signed  
Operands)  
PC (PC) + 2 +rel ? (Z) | (N V)=0 –  
3
3
BHCC rel  
BHCS rel  
BHI rel  
Branch if Half Carry Bit Clear  
Branch if Half Carry Bit Set  
Branch if Higher  
PC (PC) + 2 + rel ? (H) = 0  
PC (PC) + 2 + rel ? (H) = 1  
PC (PC) + 2 + rel ? (C) | (Z) = 0  
– REL  
– REL  
– REL  
28  
29  
22  
rr  
rr  
rr  
3
3
3
Branch if Higher or Same  
(Same as BCC)  
BHS rel  
PC (PC) + 2 + rel ? (C) = 0  
– REL  
24  
rr  
BIH rel  
BIL rel  
Branch if IRQ Pin High  
Branch if IRQ Pin Low  
PC (PC) + 2 + rel ? IRQ = 1  
PC (PC) + 2 + rel ? IRQ = 0  
– REL  
– REL  
2F  
2E  
rr  
rr  
3
3
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
51  
Central Processor Unit (CPU)  
Table 4-1. Instruction Set Summary  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
BIT #opr  
BIT opr  
BIT opr  
BIT opr,X  
BIT opr,X  
BIT ,X  
BIT opr,SP  
BIT opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
A5  
B5  
C5  
D5  
E5  
F5  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
Bit Test  
(A) & (M)  
0
R
R
SP1  
SP2  
9EE5 ff  
9ED5 ee ff  
Branch if Less Than or Equal To  
(Signed Operands)  
BLE opr  
PC (PC) + 2 + rel ? (Z) | (N V)=1 –  
– REL  
93  
rr  
3
BLO rel  
BLS rel  
BLT opr  
BMC rel  
BMI rel  
BMS rel  
BNE rel  
BPL rel  
BRA rel  
Branch if Lower (Same as BCS)  
Branch if Lower or Same  
PC (PC) + 2 + rel ? (C) = 1  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
25  
23  
91  
2C  
2B  
2D  
26  
2A  
20  
rr  
rr  
rr  
rr  
rr  
rr  
rr  
rr  
rr  
3
3
3
3
3
3
3
3
3
PC (PC) + 2 + rel ? (C) | (Z) = 1  
Branch if Less Than (Signed Operands) PC (PC) + 2 + rel ? (N V) = 1  
Branch if Interrupt Mask Clear  
Branch if Minus  
PC (PC) + 2 + rel ? (I) = 0  
PC (PC) + 2 + rel ? (N) = 1  
PC (PC) + 2 + rel ? (I) = 1  
PC (PC) + 2 + rel ? (Z) = 0  
PC (PC) + 2 + rel ? (N) = 0  
PC (PC) + 2 + rel  
Branch if Interrupt Mask Set  
Branch if Not Equal  
Branch if Plus  
Branch Always  
DIR (b0)  
01  
03  
05  
07  
09  
0B  
0D  
0F  
dd rr  
dd rr  
dd rr  
dd rr  
dd rr  
dd rr  
dd rr  
dd rr  
5
5
5
5
5
5
5
5
DIR (b1)  
DIR (b2)  
DIR (b3)  
DIR (b4)  
DIR (b5)  
DIR (b6)  
DIR (b7)  
BRCLR n,opr,rel Branch if Bit n in M Clear  
PC (PC) + 3 + rel ? (Mn) = 0  
R
BRN rel  
Branch Never  
PC (PC) + 2  
– REL  
21  
rr  
3
DIR (b0)  
00  
02  
04  
06  
08  
0A  
0C  
0E  
dd rr  
dd rr  
dd rr  
dd rr  
dd rr  
dd rr  
dd rr  
dd rr  
5
5
5
5
5
5
5
5
DIR (b1)  
DIR (b2)  
DIR (b3)  
DIR (b4)  
DIR (b5)  
DIR (b6)  
DIR (b7)  
BRSET n,opr,rel Branch if Bit n in M Set  
PC (PC) + 3 + rel ? (Mn) = 1  
R
DIR (b0)  
DIR (b1)  
DIR (b2)  
DIR (b3)  
DIR (b4)  
DIR (b5)  
DIR (b6)  
DIR (b7)  
10  
12  
14  
16  
18  
1A  
1C  
1E  
dd  
dd  
dd  
dd  
dd  
dd  
dd  
dd  
4
4
4
4
4
4
4
4
BSET n,opr  
Set Bit n in M  
Mn 1  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
52  
Opcode Map  
Table 4-1. Instruction Set Summary  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
PC (PC) + 2; push (PCL)  
SP (SP) – 1; push (PCH)  
SP (SP) – 1  
BSR rel  
Branch to Subroutine  
– REL  
AD  
rr  
4
PC (PC) + rel  
CBEQ opr,rel  
PC (PC) + 3 + rel ? (A) – (M) = $00  
PC (PC) + 3 + rel ? (A) – (M) = $00  
PC (PC) + 3 + rel ? (X) – (M) = $00  
PC (PC) + 3 + rel ? (A) – (M) = $00  
PC (PC) + 2 + rel ? (A) – (M) = $00  
PC (PC) + 4 + rel ? (A) – (M) = $00  
DIR  
IMM  
31  
41  
51  
61  
71  
dd rr  
ii rr  
ii rr  
ff rr  
rr  
5
4
4
5
4
6
CBEQA #opr,rel  
CBEQX #opr,rel  
CBEQ opr,X+,rel  
CBEQ X+,rel  
IMM  
IX1+  
Compare and Branch if Equal  
IX+  
SP1  
CBEQ opr,SP,rel  
9E61 ff rr  
CLC  
CLI  
Clear Carry Bit  
C 0  
I 0  
0
0 INH  
– INH  
98  
9A  
1
2
Clear Interrupt Mask  
CLR opr  
CLRA  
CLRX  
CLRH  
CLR opr,X  
CLR ,X  
M $00  
A $00  
X $00  
H $00  
M $00  
M $00  
M $00  
DIR  
INH  
INH  
– INH  
IX1  
IX  
3F  
4F  
5F  
8C  
6F  
7F  
dd  
ff  
3
1
1
1
3
2
4
Clear  
0
0
1
CLR opr,SP  
SP1  
9E6F ff  
CMP #opr  
CMP opr  
CMP opr  
CMP opr,X  
CMP opr,X  
CMP ,X  
CMP opr,SP  
CMP opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
SP1  
SP2  
A1  
B1  
C1  
D1  
E1  
F1  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
Compare A with M  
(A) – (M)  
R
R
R
R
9EE1 ff  
9ED1 ee ff  
COM opr  
COMA  
COMX  
COM opr,X  
COM ,X  
COM opr,SP  
M (M) = $FF – (M)  
A (A) = $FF – (M)  
X (X) = $FF – (M)  
M (M) = $FF – (M)  
M (M) = $FF – (M)  
M (M) = $FF – (M)  
DIR  
INH  
INH  
IX1  
IX  
33  
43  
53  
63  
73  
dd  
ff  
4
1
1
4
3
5
Complement (One’s Complement)  
Compare H:X with M  
0
R
R
R
R
1
SP1  
9E63 ff  
CPHX #opr  
CPHX opr  
IMM  
R
65  
75  
ii ii+1  
dd  
3
4
(H:X) – (M:M + 1)  
R
DIR  
CPX #opr  
CPX opr  
CPX opr  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
SP1  
SP2  
A3  
B3  
C3  
D3  
E3  
F3  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
CPX ,X  
Compare X with M  
Decimal Adjust A  
(X) – (M)  
R
R
R
R
R
R
CPX opr,X  
CPX opr,X  
CPX opr,SP  
CPX opr,SP  
9EE3 ff  
9ED3 ee ff  
DAA  
(A)10  
U –  
R INH  
72  
2
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
53  
Central Processor Unit (CPU)  
Table 4-1. Instruction Set Summary  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
A (A)–1 or M (M)–1 or X (X)–1  
PC (PC) + 3 + rel ? (result) 0  
PC (PC) + 2 + rel ? (result) 0  
PC (PC) + 2 + rel ? (result) 0  
PC (PC) + 3 + rel ? (result) 0  
PC (PC) + 2 + rel ? (result) 0  
PC (PC) + 4 + rel ? (result) 0  
5
3
3
5
4
6
DBNZ opr,rel  
DBNZA rel  
DBNZX rel  
DBNZ opr,X,rel  
DBNZ X,rel  
DBNZ opr,SP,rel  
DIR  
INH  
– INH  
IX1  
IX  
SP1  
3B  
4B  
5B  
6B  
7B  
dd rr  
rr  
rr  
ff rr  
rr  
Decrement and Branch if Not Zero  
9E6B ff rr  
DEC opr  
DECA  
DECX  
DEC opr,X  
DEC ,X  
DEC opr,SP  
M (M) – 1  
A (A) – 1  
X (X) – 1  
M (M) – 1  
M (M) – 1  
M (M) – 1  
DIR  
INH  
INH  
IX1  
IX  
3A  
4A  
5A  
6A  
7A  
dd  
ff  
4
1
1
4
3
5
Decrement  
Divide  
R
R
R
R
SP1  
9E6A ff  
A (H:A)/(X)  
H Remainder  
DIV  
R INH  
52  
7
EOR #opr  
EOR opr  
EOR opr  
EOR opr,X  
EOR opr,X  
EOR ,X  
EOR opr,SP  
EOR opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
SP1  
SP2  
A8  
B8  
C8  
D8  
E8  
F8  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
Exclusive OR M with A  
A (A M)  
0
R
R
R
R
9EE8 ff  
9ED8 ee ff  
INC opr  
INCA  
INCX  
INC opr,X  
INC ,X  
INC opr,SP  
M (M) + 1  
A (A) + 1  
X (X) + 1  
M (M) + 1  
M (M) + 1  
M (M) + 1  
DIR  
INH  
INH  
IX1  
IX  
3C  
4C  
5C  
6C  
7C  
dd  
ff  
4
1
1
4
3
5
Increment  
R
SP1  
9E6C ff  
JMP opr  
JMP opr  
JMP opr,X  
JMP opr,X  
JMP ,X  
DIR  
EXT  
– IX2  
IX1  
BC  
CC  
DC  
EC  
FC  
dd  
2
3
4
3
2
hh ll  
ee ff  
ff  
Jump  
PC Jump Address  
IX  
JSR opr  
JSR opr  
JSR opr,X  
JSR opr,X  
JSR ,X  
DIR  
EXT  
– IX2  
IX1  
BD  
CD  
DD  
ED  
FD  
dd  
4
5
6
5
4
PC (PC) + n (n = 1, 2, or 3)  
Push (PCL); SP (SP) – 1  
Push (PCH); SP (SP) – 1  
PC Unconditional Address  
hh ll  
ee ff  
ff  
Jump to Subroutine  
IX  
LDA #opr  
LDA opr  
LDA opr  
LDA opr,X  
LDA opr,X  
LDA ,X  
LDA opr,SP  
LDA opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
SP1  
SP2  
A6  
B6  
C6  
D6  
E6  
F6  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
Load A from M  
A (M)  
0
0
R
R
R
R
9EE6 ff  
9ED6 ee ff  
LDHX #opr  
LDHX opr  
IMM  
45  
55  
ii jj  
dd  
3
4
Load H:X from M  
H:X (M:M + 1)  
DIR  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
54  
Opcode Map  
Table 4-1. Instruction Set Summary  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
LDX #opr  
LDX opr  
LDX opr  
LDX opr,X  
LDX opr,X  
LDX ,X  
LDX opr,SP  
LDX opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
AE  
BE  
CE  
DE  
EE  
FE  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
Load X from M  
X (M)  
0
R
R
SP1  
SP2  
9EEE ff  
9EDE ee ff  
LSL opr  
LSLA  
LSLX  
LSL opr,X  
LSL ,X  
LSL opr,SP  
DIR  
INH  
INH  
IX1  
IX  
38  
48  
58  
68  
78  
dd  
ff  
4
1
1
4
3
5
Logical Shift Left  
(Same as ASL)  
C
0
R
R
R
R
R
R
b7  
b0  
SP1  
9E68 ff  
LSR opr  
LSRA  
LSRX  
LSR opr,X  
LSR ,X  
LSR opr,SP  
DIR  
INH  
INH  
IX1  
IX  
34  
44  
54  
64  
74  
dd  
4
1
1
4
3
5
0
C
Logical Shift Right  
0
R
ff  
b7  
b0  
SP1  
9E64 ff  
MOV opr,opr  
MOV opr,X+  
MOV #opr,opr  
MOV X+,opr  
DD  
4E  
5E  
6E  
7E  
dd dd  
dd  
ii dd  
dd  
5
4
4
4
(M)Destination (M)Source  
DIX+  
IMD  
IX+D  
Move  
0
0
R
R
H:X (H:X) + 1 (IX+D, DIX+)  
MUL  
Unsigned multiply  
X:A (X) × (A)  
0 INH  
42  
5
NEG opr  
NEGA  
NEGX  
NEG opr,X  
NEG ,X  
NEG opr,SP  
DIR  
INH  
INH  
IX1  
IX  
30  
40  
50  
60  
70  
dd  
ff  
4
1
1
4
3
5
M –(M) = $00 – (M)  
A –(A) = $00 – (A)  
X –(X) = $00 – (X)  
M –(M) = $00 – (M)  
M –(M) = $00 – (M)  
Negate (Two’s Complement)  
R
R
R
R
SP1  
9E60 ff  
NOP  
NSA  
No Operation  
Nibble Swap A  
None  
– INH  
– INH  
9D  
1
3
A (A[3:0]:A[7:4])  
62  
ORA #opr  
ORA opr  
ORA opr  
ORA opr,X  
ORA opr,X  
ORA ,X  
ORA opr,SP  
ORA opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
SP1  
SP2  
AA  
BA  
CA  
DA  
EA  
FA  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
Inclusive OR A and M  
A (A) | (M)  
0
R
R
9EEA ff  
9EDA ee ff  
PSHA  
PSHH  
PSHX  
PULA  
Push A onto Stack  
Push H onto Stack  
Push X onto Stack  
Pull A from Stack  
Push (A); SP (SP) – 1  
Push (H); SP (SP) – 1  
Push (X); SP (SP) – 1  
SP (SP + 1); Pull (A)  
– INH  
– INH  
– INH  
– INH  
87  
8B  
89  
86  
2
2
2
2
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
55  
Central Processor Unit (CPU)  
Table 4-1. Instruction Set Summary  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
PULH  
Pull H from Stack  
Pull X from Stack  
SP (SP + 1); Pull (H)  
SP (SP + 1); Pull (X)  
– INH  
– INH  
8A  
88  
2
2
PULX  
ROL opr  
ROLA  
ROLX  
ROL opr,X  
ROL ,X  
ROL opr,SP  
DIR  
INH  
INH  
IX1  
IX  
39  
49  
59  
69  
79  
dd  
ff  
4
1
1
4
3
5
C
Rotate Left through Carry  
Rotate Right through Carry  
R
R
R
R
R
R
R
b7  
b0  
SP1  
9E69 ff  
ROR opr  
RORA  
RORX  
ROR opr,X  
ROR ,X  
ROR opr,SP  
DIR  
INH  
INH  
IX1  
IX  
36  
46  
56  
66  
76  
dd  
4
1
1
4
3
5
C
R
ff  
b7  
b0  
SP1  
9E66 ff  
RSP  
Reset Stack Pointer  
Return from Interrupt  
SP $FF  
– INH  
9C  
1
SP (SP) + 1; Pull (CCR)  
SP (SP) + 1; Pull (A)  
SP (SP) + 1; Pull (X)  
SP (SP) + 1; Pull (PCH)  
SP (SP) + 1; Pull (PCL)  
RTI  
R
R
R
R
R
R INH  
80  
81  
7
SP SP + 1; Pull (PCH)  
SP SP + 1; Pull (PCL)  
RTS  
Return from Subroutine  
Subtract with Carry  
– INH  
4
SBC #opr  
SBC opr  
SBC opr  
SBC opr,X  
SBC opr,X  
SBC ,X  
SBC opr,SP  
SBC opr,SP  
IMM  
DIR  
EXT  
A2  
B2  
C2  
D2  
E2  
F2  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
IX2  
IX1  
A (A) – (M) – (C)  
R
R
R
R
IX  
SP1  
SP2  
9EE2 ff  
9ED2 ee ff  
SEC  
SEI  
Set Carry Bit  
C 1  
I 1  
1
1 INH  
– INH  
99  
9B  
1
2
Set Interrupt Mask  
STA opr  
STA opr  
DIR  
EXT  
IX2  
– IX1  
IX  
B7  
C7  
D7  
E7  
F7  
dd  
3
4
4
3
2
4
5
hh ll  
ee ff  
ff  
STA opr,X  
STA opr,X  
STA ,X  
STA opr,SP  
STA opr,SP  
Store A in M  
M (A)  
0
R
R
SP1  
SP2  
9EE7 ff  
9ED7 ee ff  
STHX opr  
Store H:X in M  
(M:M + 1) (H:X)  
0
0
R
R
– DIR  
– INH  
35  
dd  
4
1
STOP  
Enable IRQ Pin; Stop Oscillator  
I 0; Stop Oscillator  
8E  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
56  
Opcode Map  
Table 4-1. Instruction Set Summary  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
STX opr  
STX opr  
DIR  
EXT  
IX2  
– IX1  
IX  
BF  
CF  
DF  
EF  
FF  
dd  
3
4
4
3
2
4
5
hh ll  
ee ff  
ff  
STX opr,X  
STX opr,X  
STX ,X  
STX opr,SP  
STX opr,SP  
Store X in M  
M (X)  
0
R
R
SP1  
SP2  
9EEF ff  
9EDF ee ff  
SUB #opr  
SUB opr  
SUB opr  
SUB opr,X  
SUB opr,X  
SUB ,X  
SUB opr,SP  
SUB opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
SP1  
SP2  
A0  
B0  
C0  
D0  
E0  
F0  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
Subtract  
A (A) – (M)  
R
R R R  
9EE0 ff  
9ED0 ee ff  
PC (PC) + 1; Push (PCL)  
SP (SP) – 1; Push (PCH)  
SP (SP) – 1; Push (X)  
SP (SP) – 1; Push (A)  
SP (SP) – 1; Push (CCR)  
SP (SP) – 1; I 1  
SWI  
Software Interrupt  
1
– INH  
83  
9
PCH Interrupt Vector High Byte  
PCL Interrupt Vector Low Byte  
TAP  
TAX  
TPA  
Transfer A to CCR  
Transfer A to X  
CCR (A)  
X (A)  
R
R
R
R
R
R INH  
– INH  
– INH  
84  
97  
85  
2
1
1
Transfer CCR to A  
A (CCR)  
TST opr  
TSTA  
TSTX  
TST opr,X  
TST ,X  
TST opr,SP  
DIR  
INH  
INH  
IX1  
IX  
3D  
4D  
5D  
6D  
7D  
dd  
ff  
3
1
1
3
2
4
Test for Negative or Zero  
(A) – $00 or (X) – $00 or (M) – $00  
0
R
R
SP1  
9E6D ff  
TSX  
TXA  
TXS  
Transfer SP to H:X  
Transfer X to A  
H:X (SP) + 1  
A (X)  
– INH  
– INH  
– INH  
95  
9F  
94  
2
1
2
Transfer H:X to SP  
(SP) (H:X) – 1  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
57  
Central Processor Unit (CPU)  
Table 4-1. Instruction Set Summary  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
A
C
Accumulator  
Carry/borrow bit  
n
opr  
PC  
Any bit  
Operand (one or two bytes)  
Program counter  
CCR Condition code register  
dd Direct address of operand  
dd rr Direct address of operand and relative offset of branch instruction  
DD  
DIR  
DIX+ Direct to indexed with post increment addressing mode  
ee ff High and low bytes of offset in indexed, 16-bit offset addressing  
EXT Extended addressing mode  
PCH Program counter high byte  
PCL Program counter low byte  
REL Relative addressing mode  
rel  
rr  
Direct to direct addressing mode  
Direct addressing mode  
Relative program counter offset byte  
Relative program counter offset byte  
SP1 Stack pointer, 8-bit offset addressing mode  
SP2 Stack pointer 16-bit offset addressing mode  
ff  
H
H
Offset byte in indexed, 8-bit offset addressing  
Half-carry bit  
Index register high byte  
SP  
U
V
Stack pointer  
Undefined  
Overflow bit  
hh ll  
I
High and low bytes of operand address in extended addressing  
Interrupt mask  
X
Z
Index register low byte  
Zero bit  
ii  
Immediate operand byte  
&
Logical AND  
IMD  
Immediate source to direct destination addressing mode  
|
Logical OR  
IMM Immediate addressing mode  
Logical EXCLUSIVE OR  
Contents of  
INH  
IX  
IX+  
Inherent addressing mode  
Indexed, no offset addressing mode  
Indexed, no offset, post increment addressing mode  
( )  
–( ) Negation (two’s complement)  
#
«
?
Immediate value  
Sign extend  
Loaded with  
If  
IX+D Indexed with post increment to direct addressing mode  
IX1 Indexed, 8-bit offset addressing mode  
IX1+ Indexed, 8-bit offset, post increment addressing mode  
IX2  
M
N
Indexed, 16-bit offset addressing mode  
Memory location  
Negative bit  
:
R
Concatenated with  
Set or cleared  
Not affected  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
58  
Table 4-2. Opcode Map  
Bit Manipulation Branch  
Read-Modify-Write  
Control  
Register/Memory  
DIR  
DIR  
REL  
DIR  
3
INH  
4
INH  
IX1  
SP1  
9E6  
IX  
7
INH  
INH  
IMM  
A
DIR  
B
EXT  
C
IX2  
SP2  
IX1  
E
SP1  
9EE  
IX  
F
MSB  
0
1
2
5
6
8
9
D
9ED  
LSB  
5
4
3
4
1
NEGA  
INH  
1
NEGX  
INH  
4
5
3
7
3
2
3
4
4
5
3
4
2
0
BRSET0 BSET0  
BRA  
NEG  
NEG  
NEG  
NEG  
RTI  
BGE  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
3
DIR  
5
2
DIR  
4
2
2
2
2
2
2
2
2
REL 2 DIR  
1
1
2
IX1 3 SP1 1 IX  
5
1
1
INH  
2
2
2
2
1
1
REL 2 IMM 2 DIR  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
EXT 3 IX2  
4
4
4
4
4
4
4
4
4
4
4
4
SP2 2 IX1  
3
3
3
3
3
3
3
3
3
3
3
3
SP1 1 IX  
3
BRN  
REL 3 DIR  
5
4
4
6
4
4
3
BLT  
2
3
4
4
5
3
4
2
1
2
BRCLR0 BCLR0  
CBEQ CBEQA CBEQX CBEQ  
CBEQ  
CBEQ  
RTS  
CMP  
CMP  
CMP  
CMP  
CMP  
CMP  
CMP  
CMP  
3
DIR  
5
2
DIR  
4
3
1
IMM 3 IMM 3 IX1+  
4
SP1 2 IX+  
INH  
REL 2 IMM 2 DIR  
EXT 3 IX2  
SP2 2 IX1  
SP1 1 IX  
3
5
7
3
2
DAA  
3
BGT  
2
SBC  
3
SBC  
4
SBC  
EXT 3 IX2  
4
CPX  
EXT 3 IX2  
4
AND  
EXT 3 IX2  
4
BIT  
EXT 3 IX2  
4
LDA  
EXT 3 IX2  
4
STA  
EXT 3 IX2  
4
EOR  
EXT 3 IX2  
4
ADC  
EXT 3 IX2  
4
ORA  
EXT 3 IX2  
4
ADD  
EXT 3 IX2  
3
JMP  
EXT 3 IX2  
5
JSR  
EXT 3 IX2  
4
LDX  
EXT 3 IX2  
4
STX  
EXT 3 IX2  
4
SBC  
5
SBC  
SP2 2 IX1  
5
CPX  
SP2 2 IX1  
5
AND  
SP2 2 IX1  
5
BIT  
SP2 2 IX1  
5
LDA  
SP2 2 IX1  
5
STA  
SP2 2 IX1  
5
EOR  
SP2 2 IX1  
5
ADC  
SP2 2 IX1  
3
SBC  
4
SBC  
SP1 1 IX  
4
CPX  
SP1 1 IX  
4
AND  
SP1 1 IX  
4
BIT  
SP1 1 IX  
4
LDA  
SP1 1 IX  
4
STA  
SP1 1 IX  
4
EOR  
SP1 1 IX  
4
ADC  
SP1 1 IX  
2
SBC  
BRSET1 BSET1  
BHI  
MUL  
DIV  
INH  
NSA  
3
DIR  
5
2
DIR  
4
REL  
INH  
1
1
2
2
3
2
2
2
2
2
INH  
1
INH  
3
REL 2 IMM 2 DIR  
3
BLS  
REL 2 DIR  
3
BCC  
REL 2 DIR  
3
BCS  
REL 2 DIR  
3
BNE  
REL 2 DIR  
4
1
1
4
COM  
IX1  
4
LSR  
IX1  
3
CPHX  
IMM  
4
ROR  
IX1  
4
ASR  
IX1  
4
LSL  
IX1  
4
ROL  
IX1  
4
DEC  
IX1  
5
9
3
BLE  
2
CPX  
3
CPX  
4
CPX  
3
CPX  
2
CPX  
3
BRCLR1 BCLR1  
COM  
COMA  
COMX  
COM  
COM  
SWI  
3
DIR  
5
2
DIR  
4
1
INH  
1
INH  
3
3
SP1 1 IX  
1
1
1
1
1
1
1
1
1
1
INH  
REL 2 IMM 2 DIR  
4
LSR  
1
LSRA  
INH  
1
LSRX  
INH  
5
LSR  
SP1 1 IX  
3
LSR  
2
2
2
AND  
IMM 2 DIR  
3
AND  
4
AND  
3
AND  
2
AND  
4
BRSET2 BSET2  
TAP  
TXS  
3
DIR  
5
2
DIR  
4
1
3
1
INH  
INH  
2
2
2
2
2
2
2
2
4
3
4
4
1
2
2
BIT  
3
BIT  
4
BIT  
3
BIT  
2
BIT  
5
BRCLR2 BCLR2  
STHX  
LDHX  
LDHX  
CPHX  
TPA  
TSX  
3
DIR  
5
2
DIR  
4
IMM 2 DIR  
2
DIR  
3
INH  
INH  
IMM 2 DIR  
4
ROR  
1
1
5
2
PULA  
INH  
2
PSHA  
INH  
2
PULX  
INH  
2
PSHX  
INH  
2
PULH  
INH  
2
PSHH  
INH  
1
CLRH  
INH  
2
LDA  
IMM 2 DIR  
2
AIS  
IMM 2 DIR  
2
EOR  
IMM 2 DIR  
2
ADC  
IMM 2 DIR  
2
ORA  
IMM 2 DIR  
2
ADD  
IMM 2 DIR  
3
LDA  
4
LDA  
3
LDA  
2
LDA  
6
BRSET3 BSET3  
RORA  
RORX  
ROR  
SP1 1 IX  
5
ASR  
SP1 1 IX  
5
LSL  
SP1 1 IX  
5
ROL  
SP1 1 IX  
ROR  
3
DIR  
5
2
DIR  
4
1
INH  
1
INH  
3
3
3
3
3
4
3
3
3
BEQ  
REL 2 DIR  
3
4
ASR  
1
ASRA  
INH  
1
LSLA  
INH  
1
ROLA  
INH  
1
DECA  
INH  
1
ASRX  
INH  
1
LSLX  
INH  
1
ROLX  
INH  
1
DECX  
INH  
3
ASR  
1
3
STA  
4
STA  
3
STA  
2
STA  
7
BRCLR3 BCLR3  
TAX  
3
DIR  
5
2
DIR  
4
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
INH  
4
LSL  
3
LSL  
1
3
EOR  
4
EOR  
3
EOR  
2
EOR  
8
BRSET4 BSET4 BHCC  
CLC  
3
DIR  
5
2
DIR  
4
2
REL 2 DIR  
3
INH  
4
ROL  
3
ROL  
1
3
ADC  
4
ADC  
3
ADC  
2
ADC  
9
BRCLR4 BCLR4 BHCS  
SEC  
3
DIR  
5
2
DIR  
4
2
2
2
2
2
2
2
REL 2 DIR  
INH  
3
BPL  
REL 2 DIR  
3
BMI  
REL 3 DIR  
3
BMC  
REL 2 DIR  
4
DEC  
5
DEC  
SP1 1 IX  
3
DEC  
2
3
ORA  
4
ORA  
5
ORA  
SP2 2 IX1  
5
ADD  
SP2 2 IX1  
3
ORA  
4
ORA  
SP1 1 IX  
4
ADD  
SP1 1 IX  
2
ORA  
A
B
C
D
E
F
BRSET5 BSET5  
CLI  
3
DIR  
5
2
DIR  
4
INH  
5
3
3
5
6
4
2
3
ADD  
4
ADD  
3
ADD  
2
ADD  
BRCLR5 BCLR5  
DBNZ DBNZA DBNZX DBNZ  
DBNZ  
DBNZ  
SEI  
3
DIR  
5
2
DIR  
4
2
1
1
3
1
INH  
1
2
1
1
2
1
INH  
1
3
2
2
3
2
IX1  
4
SP1 2 IX  
INH  
4
INC  
5
INC  
SP1 1 IX  
4
TST  
SP1 1 IX  
3
INC  
1
2
JMP  
4
JMP  
3
JMP  
2
BRSET6 BSET6  
INCA  
INCX  
INC  
RSP  
JMP  
3
DIR  
5
2
DIR  
4
INH  
1
INH  
1
IX1  
3
INH  
2
DIR  
4
2
2
IX1  
5
1
1
IX  
3
BMS  
3
TST  
2
TST  
1
4
BSR  
REL 2 DIR  
2
LDX  
IMM 2 DIR  
2
AIX  
IMM 2 DIR  
6
JSR  
4
JSR  
IX  
2
LDX  
BRCLR6 BCLR6  
TSTA  
TSTX  
TST  
NOP  
JSR  
JSR  
3
DIR  
5
2
DIR  
4
REL 2 DIR  
3
INH  
5
INH  
4
IX1  
4
INH  
2
2
2
IX1  
3
4
1
STOP  
INH  
1
WAIT  
INH  
3
LDX  
4
LDX  
5
LDX  
SP2 2 IX1  
5
STX  
SP2 2 IX1  
4
LDX  
SP1 1 IX  
4
STX  
SP1 1 IX  
BRSET7 BSET7  
BIL  
MOV  
MOV  
MOV  
MOV  
LDX  
*
1
TXA  
INH  
3
DIR  
5
2
DIR  
4
REL  
3
DD  
DIX+  
IMD  
3
2
IX+D  
1
1
4
4
3
3
3
CLR  
1
CLRA  
INH  
1
CLRX  
INH  
4
CLR  
SP1 1 IX  
2
CLR  
3
STX  
4
STX  
3
STX  
2
STX  
BRCLR7 BCLR7  
BIH  
CLR  
3
DIR  
2
DIR  
REL 2 DIR  
IX1  
3
1
INH Inherent  
REL Relative  
SP1 Stack Pointer, 8-Bit Offset  
SP2 Stack Pointer, 16-Bit Offset  
IX+ Indexed, No Offset with  
Post Increment  
IX1+ Indexed, 1-Byte Offset with  
Post Increment  
MSB  
LSB  
0
High Byte of Opcode in Hexadecimal  
Cycles  
IMM Immediate  
DIR Direct  
IX  
Indexed, No Offset  
IX1 Indexed, 8-Bit Offset  
IX2 Indexed, 16-Bit Offset  
IMD Immediate-Direct  
EXT Extended  
DD Direct-Direct  
IX+D Indexed-Direct DIX+ Direct-Indexed  
*Pre-byte for stack pointer indexed instructions  
5
Low Byte of Opcode in Hexadecimal  
0
BRSET0 Opcode Mnemonic  
DIR Number of Bytes / Addressing Mode  
3
Central Processor Unit (CPU)  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
60  
Chapter 5  
System Integration Module (SIM)  
5.1 Introduction  
This section describes the system integration module (SIM), which supports up to 24 external and/or  
internal interrupts. Together with the CPU, the SIM controls all MCU activities. A block diagram of the SIM  
is shown in Figure 5-1. Figure 5-2 is a summary of the SIM I/O registers. The SIM is a system state  
controller that coordinates CPU and exception timing.  
The SIM is responsible for:  
Bus clock generation and control for CPU and peripherals  
Stop/wait/reset/break entry and recovery  
Internal clock control  
Master reset control, including power-on reset (POR) and COP timeout  
Interrupt control:  
Acknowledge timing  
Arbitration control timing  
Vector address generation  
CPU enable/disable timing  
Modular architecture expandable to 128 interrupt sources  
Table 5-1 shows the internal signal names used in this section.  
Table 5-1. Signal Name Conventions  
Signal Name  
Description  
ICLK  
Internal oscillator clock  
The XTAL or RC frequency divided by two. This signal is again divided by two in the SIM  
to generate the internal bus clocks. (Bus clock = OSCOUT ÷ 2)  
OSCOUT  
IAB  
IDB  
Internal address bus  
Internal data bus  
PORRST  
IRST  
Signal from the power-on reset module to the SIM  
Internal reset signal  
R/W  
Read/write signal  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
61  
System Integration Module (SIM)  
MODULE STOP  
MODULE WAIT  
CPU STOP (FROM CPU)  
CPU WAIT (FROM CPU)  
STOP/WAIT  
CONTROL  
SIMOSCEN (TO OSCILLATOR)  
SIM  
COUNTER  
COP CLOCK  
ICLK (FROM OSCILLATOR)  
OSCOUT (FROM OSCILLATOR)  
÷2  
VDD  
CLOCK  
CONTROL  
CLOCK GENERATORS  
INTERNAL CLOCKS  
INTERNAL  
PULL-UP  
ILLEGAL OPCODE (FROM CPU)  
ILLEGAL ADDRESS (FROM ADDRESS  
MAP DECODERS)  
RESET  
PIN LOGIC  
POR CONTROL  
RESET PIN CONTROL  
MASTER  
RESET  
CONTROL  
COP TIMEOUT (FROM COP MODULE)  
USB RESET (FROM USB MODULE)  
SIM RESET STATUS REGISTER  
RESET  
INTERRUPT SOURCES  
CPU INTERFACE  
INTERRUPT CONTROL  
AND PRIORITY DECODE  
Figure 5-1. SIM Block Diagram  
Addr.  
Register Name  
Bit 7  
R
6
R
0
5
R
0
4
R
0
3
R
0
2
R
0
1
Bit 0  
R
Read:  
SBSW  
NOTE  
0
$FE00 Break Status Register (BSR) Write:  
Reset:  
0
0
Note: Writing a logic 0 clears SBSW.  
Read:  
POR  
PIN  
COP  
ILOP  
ILAD  
MODRST  
LVI  
0
$FE01 Reset Status Register (RSR) Write:  
POR:  
Read:  
1
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
$FE02  
$FE03  
Reserved Write:  
Reset:  
Read:  
Break Flag Control  
Register Write:  
(BFCR)  
BCFE  
0
R
R
R
R
R
R
R
Reset:  
Figure 5-2. SIM I/O Register Summary  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
62  
SIM Bus Clock Control and Generation  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
IF6  
R
IF5  
R
IF4  
R
IF3  
R
0
R
0
IF1  
0
R
0
0
R
Interrupt Status Register 1  
(INT1)  
$FE04  
$FE05  
$FE06  
R
0
0
0
0
0
0
IF14  
R
IF13  
R
IF12  
R
IF11  
R
0
0
IF8  
R
0
IF7  
R
Interrupt Status Register 2  
(INT2)  
R
0
R
0
0
0
0
0
0
0
0
0
0
0
0
0
IF15  
R
Interrupt Status Register 3  
(INT3)  
R
R
R
R
R
0
R
R
0
0
0
0
0
0
0
= Unimplemented  
R
= Reserved  
Figure 5-2. SIM I/O Register Summary  
5.2 SIM Bus Clock Control and Generation  
The bus clock generator provides system clock signals for the CPU and peripherals on the MCU. The  
system clocks are generated from an incoming clock, OSCOUT, as shown in Figure 5-3.  
From  
OSCILLATOR  
ICLK  
SIM COUNTER  
OSCOUT  
From  
OSCILLATOR  
BUS CLOCK  
GENERATORS  
÷ 2  
OSCOUT is OSC frequency divided by 2  
SIM  
Figure 5-3. SIM Clock Signals  
5.2.1 Bus Timing  
In user mode, the internal bus frequency is the oscillator frequency divided by four.  
5.2.2 Clock Start-Up from POR or LVI Reset  
When the power-on reset module or the low-voltage inhibit module generates a reset, the clocks to the  
CPU and peripherals are inactive and held in an inactive phase until after the 4096 ICLK cycle POR  
timeout has completed. The RST pin is driven low by the SIM during this entire period. The IBUS clocks  
start upon completion of the timeout.  
5.2.3 Clocks in Stop Mode and Wait Mode  
Upon exit from stop mode by an interrupt, break, or reset, the SIM allows ICLK to clock the SIM counter.  
The CPU and peripheral clocks do not become active until after the stop delay time-out. This time-out is  
selectable as 4096 or 32 ICLK cycles. (See 5.6.2 Stop Mode.)  
In wait mode, the CPU clocks are inactive. The SIM also produces two sets of clocks for other modules.  
Refer to the wait mode subsection of each module to see if the module is active or inactive in wait mode.  
Some modules can be programmed to be active in wait mode.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
63  
System Integration Module (SIM)  
5.3 Reset and System Initialization  
The MCU has these reset sources:  
Power-on reset module (POR)  
External reset pin (RST)  
Computer operating properly module (COP)  
Low-voltage inhibit module (LVI)  
Illegal opcode  
Illegal address  
All of these resets produce the vector $FFFE–$FFFF ($FEFE–$FEFF in Monitor mode) and assert the  
internal reset signal (IRST). IRST causes all registers to be returned to their default values and all  
modules to be returned to their reset states.  
An internal reset clears the SIM counter (see 5.4 SIM Counter), but an external reset does not. Each of  
the resets sets a corresponding bit in the reset status register (RSR). (See 5.7 SIM Registers.)  
5.3.1 External Pin Reset  
The RST pin circuits include an internal pull-up device. Pulling the asynchronous RST pin low halts all  
processing. The PIN bit of the reset status register (RSR) is set as long as RST is held low for a minimum  
of 67 ICLK cycles, assuming that the POR was not the source of the reset. See Table 5-2 for details.  
Figure 5-4 shows the relative timing.  
Table 5-2. PIN Bit Set Timing  
Reset Type  
POR  
Number of Cycles Required to Set PIN  
4163 (4096 + 64 + 3)  
All others  
67 (64 + 3)  
ICLK  
RST  
IAB  
VECT H  
VECT L  
PC  
Figure 5-4. External Reset Timing  
5.3.2 Active Resets from Internal Sources  
All internal reset sources actively pull the RST pin low for 32 ICLK cycles to allow resetting of external  
peripherals. The internal reset signal IRST continues to be asserted for an additional 32 cycles  
(Figure 5-5). An internal reset can be caused by an illegal address, illegal opcode, COP time-out, or POR.  
(See Figure 5-6 . Sources of Internal Reset.) Note that for POR resets, the SIM cycles through 4096 ICLK  
cycles during which the SIM forces the RST pin low. The internal reset signal then follows the sequence  
from the falling edge of RST shown in Figure 5-5.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
64  
Freescale Semiconductor  
Reset and System Initialization  
IRST  
RST  
ICLK  
RST PULLED LOW BY MCU  
32 CYCLES  
32 CYCLES  
IAB  
VECTOR HIGH  
Figure 5-5. Internal Reset Timing  
The COP reset is asynchronous to the bus clock.  
ILLEGAL ADDRESS RST  
ILLEGAL OPCODE RST  
COPRST  
POR  
INTERNAL RESET  
LVI  
Figure 5-6. Sources of Internal Reset  
The active reset feature allows the part to issue a reset to peripherals and other chips within a system  
built around the MCU.  
5.3.2.1 Power-On Reset  
When power is first applied to the MCU, the power-on reset module (POR) generates a pulse to indicate  
that power-on has occurred. The external reset pin (RST) is held low while the SIM counter counts out  
4096 ICLK cycles. Sixty-four ICLK cycles later, the CPU and memories are released from reset to allow  
the reset vector sequence to occur.  
At power-on, the following events occur:  
A POR pulse is generated.  
The internal reset signal is asserted.  
The SIM enables OSCOUT.  
Internal clocks to the CPU and modules are held inactive for 4096 ICLK cycles to allow stabilization  
of the oscillator.  
The RST pin is driven low during the oscillator stabilization time.  
The POR bit of the reset status register (RSR) is set and all other bits in the register are cleared.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
65  
System Integration Module (SIM)  
OSC1  
PORRST  
4096  
CYCLES  
32  
CYCLES  
32  
CYCLES  
ICLK  
OSCOUT  
RST  
IAB  
$FFFE  
$FFFF  
Figure 5-7. POR Recovery  
5.3.2.2 Computer Operating Properly (COP) Reset  
An input to the SIM is reserved for the COP reset signal. The overflow of the COP counter causes an  
internal reset and sets the COP bit in the reset status register (RSR). The SIM actively pulls down the  
RST pin for all internal reset sources.  
To prevent a COP module time-out, write any value to location $FFFF. Writing to location $FFFF clears  
the COP counter and stages 12 through 5 of the SIM counter. The SIM counter output, which occurs at  
least every (212 – 24) ICLK cycles, drives the COP counter. The COP should be serviced as soon as  
possible out of reset to guarantee the maximum amount of time before the first time-out.  
The COP module is disabled if the RST pin or the IRQ pin is held at VTST while the MCU is in monitor  
mode. The COP module can be disabled only through combinational logic conditioned with the high  
voltage signal on the RST or the IRQ pin. This prevents the COP from becoming disabled as a result of  
external noise. During a break state, VTST on the RST pin disables the COP module.  
5.3.2.3 Illegal Opcode Reset  
The SIM decodes signals from the CPU to detect illegal instructions. An illegal instruction sets the ILOP  
bit in the reset status register (RSR) and causes a reset.  
If the stop enable bit, STOP, in the mask option register is logic zero, the SIM treats the STOP instruction  
as an illegal opcode and causes an illegal opcode reset. The SIM actively pulls down the RST pin for all  
internal reset sources.  
5.3.2.4 Illegal Address Reset  
An opcode fetch from an unmapped address generates an illegal address reset. The SIM verifies that the  
CPU is fetching an opcode prior to asserting the ILAD bit in the reset status register (RSR) and resetting  
the MCU. A data fetch from an unmapped address does not generate a reset. The SIM actively pulls down  
the RST pin for all internal reset sources.  
5.3.2.5 Low-Voltage Inhibit (LVI) Reset  
The low-voltage inhibit module (LVI) asserts its output to the SIM when the VDD voltage falls to the LVI  
trip voltage VTRIP. The LVI bit in the reset status register (RSR) is set, and the external reset pin (RST) is  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
66  
Freescale Semiconductor  
SIM Counter  
held low while the SIM counter counts out 4096 ICLK cycles. Sixty-four ICLK cycles later, the CPU and  
memories are released from reset to allow the reset vector sequence to occur. The SIM actively pulls  
down the RST pin for all internal reset sources.  
5.4 SIM Counter  
The SIM counter is used by the power-on reset module (POR) and in stop mode recovery to allow the  
oscillator time to stabilize before enabling the internal bus (IBUS) clocks. The SIM counter also serves as  
a prescaler for the computer operating properly module (COP). The SIM counter uses 12 stages for  
counting, followed by a 13th stage that triggers a reset of SIM counters and supplies the clock for the COP  
module. The SIM counter is clocked by the falling edge of ICLK.  
5.4.1 SIM Counter During Power-On Reset  
The power-on reset module (POR) detects power applied to the MCU. At power-on, the POR circuit  
asserts the signal PORRST. Once the SIM is initialized, it enables the oscillator to drive the bus clock  
state machine.  
5.4.2 SIM Counter During Stop Mode Recovery  
The SIM counter also is used for stop mode recovery. The STOP instruction clears the SIM counter. After  
an interrupt, break, or reset, the SIM senses the state of the short stop recovery bit, SSREC, in the mask  
option register. If the SSREC bit is a logic one, then the stop recovery is reduced from the normal delay  
of 4096 ICLK cycles down to 32 ICLK cycles. This is ideal for applications using canned oscillators that  
do not require long start-up times from stop mode. External crystal applications should use the full stop  
recovery time, that is, with SSREC cleared in the configuration register 1 (CONFIG1).  
5.4.3 SIM Counter and Reset States  
External reset has no effect on the SIM counter. (See 5.6.2 Stop Mode for details.) The SIM counter is  
free-running after all reset states. (See 5.3.2 Active Resets from Internal Sources for counter control and  
internal reset recovery sequences.)  
5.5 Exception Control  
Normal, sequential program execution can be changed in three different ways:  
Interrupts  
Maskable hardware CPU interrupts  
Non-maskable software interrupt instruction (SWI)  
Reset  
Break interrupts  
5.5.1 Interrupts  
An interrupt temporarily changes the sequence of program execution to respond to a particular event.  
Figure 5-8 flow charts the handling of system interrupts.  
Interrupts are latched, and arbitration is performed in the SIM at the start of interrupt processing. The  
arbitration result is a constant that the CPU uses to determine which vector to fetch. Once an interrupt is  
latched by the SIM, no other interrupt can take precedence, regardless of priority, until the latched  
interrupt is serviced (or the I bit is cleared).  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
67  
System Integration Module (SIM)  
FROM RESET  
YES  
BREAK INTERRUPT?  
NO  
YES  
I BIT SET?  
NO  
YES  
YES  
IRQ  
INTERRUPT?  
NO  
TIMER 1  
INTERRUPT?  
NO  
STACK CPU REGISTERS.  
SET I BIT.  
LOAD PC WITH INTERRUPT VECTOR.  
(As many interrupts as exist on chip)  
FETCH NEXT  
INSTRUCTION  
SWI  
INSTRUCTION?  
YES  
YES  
NO  
RTI  
INSTRUCTION?  
UNSTACK CPU REGISTERS.  
EXECUTE INSTRUCTION.  
NO  
Figure 5-8. Interrupt Processing  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
68  
Exception Control  
At the beginning of an interrupt, the CPU saves the CPU register contents on the stack and sets the  
interrupt mask (I bit) to prevent additional interrupts. At the end of an interrupt, the RTI instruction recovers  
the CPU register contents from the stack so that normal processing can resume. Figure 5-9 shows  
interrupt entry timing.  
Figure 5-10 shows interrupt recovery timing.  
MODULE  
INTERRUPT  
I BIT  
IAB  
IDB  
DUMMY  
SP  
SP – 1  
SP – 2  
SP – 3  
SP – 4  
VECT H  
VECT L START ADDR  
DUMMY PC – 1[7:0] PC – 1[15:8]  
X
A
CCR  
V DATA H V DATA L OPCODE  
R/W  
Figure 5-9. Interrupt Entry  
MODULE  
INTERRUPT  
I BIT  
IAB  
SP – 4  
SP – 3  
SP – 2  
SP – 1  
SP  
PC  
PC + 1  
IDB  
CCR  
A
X
PC – 1[15:8] PC – 1[7:0] OPCODE OPERAND  
R/W  
Figure 5-10. Interrupt Recovery  
5.5.1.1 Hardware Interrupts  
A hardware interrupt does not stop the current instruction. Processing of a hardware interrupt begins after  
completion of the current instruction. When the current instruction is complete, the SIM checks all pending  
hardware interrupts. If interrupts are not masked (I bit clear in the condition code register), and if the  
corresponding interrupt enable bit is set, the SIM proceeds with interrupt processing; otherwise, the next  
instruction is fetched and executed.  
If more than one interrupt is pending at the end of an instruction execution, the highest priority interrupt is  
serviced first. Figure 5-11 demonstrates what happens when two interrupts are pending. If an interrupt is  
pending upon exit from the original interrupt service routine, the pending interrupt is serviced before the  
LDA instruction is executed.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
69  
System Integration Module (SIM)  
CLI  
LDA #$FF  
BACKGROUND ROUTINE  
INT1  
PSHH  
INT1 INTERRUPT SERVICE ROUTINE  
PULH  
RTI  
INT2  
PSHH  
INT2 INTERRUPT SERVICE ROUTINE  
PULH  
RTI  
Figure 5-11. Interrupt Recognition Example  
The LDA opcode is prefetched by both the INT1 and INT2 RTI instructions. However, in the case of the  
INT1 RTI prefetch, this is a redundant operation.  
NOTE  
To maintain compatibility with the M6805 Family, the H register is not  
pushed on the stack during interrupt entry. If the interrupt service routine  
modifies the H register or uses the indexed addressing mode, software  
should save the H register and then restore it prior to exiting the routine.  
5.5.1.2 SWI Instruction  
The SWI instruction is a non-maskable instruction that causes an interrupt regardless of the state of the  
interrupt mask (I bit) in the condition code register.  
NOTE  
A software interrupt pushes PC onto the stack. A software interrupt does  
not push PC – 1, as a hardware interrupt does.  
5.5.2 Interrupt Status Registers  
The flags in the interrupt status registers identify maskable interrupt sources. Table 5-3 summarizes the  
interrupt sources and the interrupt status register flags that they set. The interrupt status registers can be  
useful for debugging.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
70  
Freescale Semiconductor  
Exception Control  
Table 5-3. Interrupt Sources  
Mask (1)  
Flag  
Priority  
Source  
INT Flag  
Vector Address  
$FFFE–$FFFF  
$FFFC–$FFFD  
$FFFA–$FFFB  
$FFF6–$FFF7  
$FFF4–$FFF5  
$FFF2–$FFF3  
$FFF0–$FFF1  
$FFEE–$FFEF  
$FFEC–$FFED  
Highest  
Reset  
SWI Instruction  
IRQ Pin  
IRQF  
CH0F  
CH1F  
TOF  
IMASK  
CH0IE  
CH1IE  
TOIE  
CH0IE  
CH1IE  
TOIE  
IF1  
Timer 1 Channel 0 Interrupt  
Timer 1 Channel 1 Interrupt  
Timer 1 Overflow Interrupt  
Timer 2 Channel 0 Interrupt  
Timer 2 Channel 1 Interrupt  
Timer 2 Overflow Interrupt  
IF3  
IF4  
IF5  
CH0F  
CH1F  
TOF  
IF6  
IF7  
IF8  
OR  
NF  
FE  
PE  
ORIE  
NEIE  
FEIE  
PEIE  
SCI Error  
IF11  
$FFE6–$FFE7  
SCRF  
IDLE  
SCRIE  
ILIE  
SCI Receive  
SCI Transmit  
IF12  
IF13  
$FFE4–$FFE5  
$FFE2–$FFE3  
SCTE  
TC  
SCTIE  
TCIE  
Keyboard Interrupt  
KEYF  
IMASKK  
AIEN  
IF14  
IF15  
$FFE0–$FFE1  
$FFDE–$FFDF  
Lowest  
ADC Conversion Complete Interrupt  
COCO  
1. The I bit in the condition code register is a global mask for all interrupts sources except the SWI instruction.  
5.5.2.1 Interrupt Status Register 1  
Address:  
$FE04  
Bit 7  
IF6  
R
6
5
IF4  
R
4
IF3  
R
3
0
2
IF1  
R
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
IF5  
R
R
0
R
0
R
0
0
0
0
0
0
R
= Reserved  
Figure 5-12. Interrupt Status Register 1 (INT1)  
IF1, IF3 to IF6 — Interrupt Flags  
These flags indicate the presence of interrupt requests from the sources shown in Table 5-3.  
1 = Interrupt request present  
0 = No interrupt request present  
Bit 0, 1, and 3 — Always read 0  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
71  
System Integration Module (SIM)  
5.5.2.2 Interrupt Status Register 2  
Address:  
$FE05  
Bit 7  
IF14  
R
6
5
IF12  
R
4
IF11  
R
3
0
2
0
1
IF8  
R
Bit 0  
IF7  
R
Read:  
Write:  
Reset:  
IF13  
R
R
0
R
0
0
0
0
0
0
0
R
= Reserved  
Figure 5-13. Interrupt Status Register 2 (INT2)  
IF7, IF8, IF11 to F14 — Interrupt Flags  
This flag indicates the presence of interrupt requests from the sources shown in Table 5-3.  
1 = Interrupt request present  
0 = No interrupt request present  
Bit 2 and 3 — Always read 0  
5.5.2.3 Interrupt Status Register 3  
Address:  
$FE06  
Bit 7  
0
6
5
0
4
0
3
0
2
0
1
0
Bit 0  
IF15  
R
Read:  
Write:  
Reset:  
0
R
R
R
0
R
0
R
0
R
0
R
0
0
0
0
R
= Reserved  
Figure 5-14. Interrupt Status Register 3 (INT3)  
IF15 — Interrupt Flags  
These flags indicate the presence of interrupt requests from the sources shown in Table 5-3.  
1 = Interrupt request present  
0 = No interrupt request present  
Bit 1 to 7 — Always read 0  
5.5.3 Reset  
All reset sources always have equal and highest priority and cannot be arbitrated.  
5.5.4 Break Interrupts  
The break module can stop normal program flow at a software-programmable break point by asserting its  
break interrupt output. (See Chapter 16 Break Module (BREAK).) The SIM puts the CPU into the break  
state by forcing it to the SWI vector location. Refer to the break interrupt subsection of each module to  
see how each module is affected by the break state.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
72  
Freescale Semiconductor  
Low-Power Modes  
5.5.5 Status Flag Protection in Break Mode  
The SIM controls whether status flags contained in other modules can be cleared during break mode. The  
user can select whether flags are protected from being cleared by properly initializing the break clear flag  
enable bit (BCFE) in the break flag control register (BFCR).  
Protecting flags in break mode ensures that set flags will not be cleared while in break mode. This  
protection allows registers to be freely read and written during break mode without losing status flag  
information.  
Setting the BCFE bit enables the clearing mechanisms. Once cleared in break mode, a flag remains  
cleared even when break mode is exited. Status flags with a two-step clearing mechanism — for example,  
a read of one register followed by the read or write of another — are protected, even when the first step  
is accomplished prior to entering break mode. Upon leaving break mode, execution of the second step  
will clear the flag as normal.  
5.6 Low-Power Modes  
Executing the WAIT or STOP instruction puts the MCU in a low-power-consumption mode for standby  
situations. The SIM holds the CPU in a non-clocked state. The operation of each of these modes is  
described below. Both STOP and WAIT clear the interrupt mask (I) in the condition code register, allowing  
interrupts to occur.  
5.6.1 Wait Mode  
In wait mode, the CPU clocks are inactive while the peripheral clocks continue to run. Figure 5-15 shows  
the timing for wait mode entry.  
A module that is active during wait mode can wake up the CPU with an interrupt if the interrupt is enabled.  
Stacking for the interrupt begins one cycle after the WAIT instruction during which the interrupt occurred.  
In wait mode, the CPU clocks are inactive. Refer to the wait mode subsection of each module to see if the  
module is active or inactive in wait mode. Some modules can be programmed to be active in wait mode.  
Wait mode can also be exited by a reset or break. A break interrupt during wait mode sets the SIM break  
stop/wait bit, SBSW, in the break status register (BSR). If the COP disable bit, COPD, in the mask option  
register is logic zero, then the computer operating properly module (COP) is enabled and remains active  
in wait mode.  
IAB  
IDB  
R/W  
WAIT ADDR  
WAIT ADDR + 1  
SAME  
SAME  
PREVIOUS DATA  
NEXT OPCODE  
SAME  
SAME  
NOTE: Previous data can be operand data or the WAIT opcode, depending on the  
last instruction.  
Figure 5-15. Wait Mode Entry Timing  
Figure 5-16 and Figure 5-17 show the timing for WAIT recovery.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
73  
System Integration Module (SIM)  
IAB  
IDB $A6  
$6E0B  
$A6  
$6E0C  
$00FF  
$00FE  
$00FD  
$00FC  
$A6  
$01  
$0B  
$6E  
EXITSTOPWAIT  
NOTE: EXITSTOPWAIT = RST pin OR CPU interrupt OR break interrupt  
Figure 5-16. Wait Recovery from Interrupt or Break  
32  
Cycles  
32  
Cycles  
IAB  
IDB  
$6E0B  
$A6  
RSTVCTH RSTVCTL  
$A6  
$A6  
RST  
ICLK  
Figure 5-17. Wait Recovery from Internal Reset  
5.6.2 Stop Mode  
In stop mode, the SIM counter is reset and the system clocks are disabled. An interrupt request from a  
module can cause an exit from stop mode. Stacking for interrupts begins after the selected stop recovery  
time has elapsed. Reset or break also causes an exit from stop mode.  
The SIM disables the oscillator signals (OSCOUT) in stop mode, stopping the CPU and peripherals. Stop  
recovery time is selectable using the SSREC bit in the configuration register 1 (CONFIG1). If SSREC is  
set, stop recovery is reduced from the normal delay of 4096 ICLK cycles down to 32. This is ideal for  
applications using canned oscillators that do not require long start-up times from stop mode.  
NOTE  
External crystal applications should use the full stop recovery time by  
clearing the SSREC bit.  
A break interrupt during stop mode sets the SIM break stop/wait bit (SBSW) in the break status register  
(BSR).  
The SIM counter is held in reset from the execution of the STOP instruction until the beginning of stop  
recovery. It is then used to time the recovery period. Figure 5-18 shows stop mode entry timing.  
NOTE  
To minimize stop current, all pins configured as inputs should be driven to  
a logic 1 or logic 0.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
74  
Freescale Semiconductor  
SIM Registers  
CPUSTOP  
IAB  
STOP ADDR  
STOP ADDR + 1  
SAME  
SAME  
IDB  
PREVIOUS DATA  
NEXT OPCODE  
SAME  
SAME  
R/W  
NOTE: Previous data can be operand data or the STOP opcode, depending on the last  
instruction.  
Figure 5-18. Stop Mode Entry Timing  
STOP RECOVERY PERIOD  
ICLK  
INT/BREAK  
IAB  
STOP + 2  
STOP + 2  
SP  
SP – 1  
SP – 2  
SP – 3  
STOP +1  
Figure 5-19. Stop Mode Recovery from Interrupt or Break  
5.7 SIM Registers  
The SIM has three memory mapped registers.  
Break Status Register (BSR)  
Reset Status Register (RSR)  
Break Flag Control Register (BFCR)  
5.7.1 Break Status Register (BSR)  
The break status register contains a flag to indicate that a break caused an exit from stop or wait mode.  
Address:  
$FE00  
Bit 7  
6
5
R
0
4
R
0
3
R
0
2
R
0
1
Bit 0  
R
Read:  
Write:  
Reset:  
SBSW  
Note(1)  
0
R
R
0
0
0
R
= Reserved  
1. Writing a logic zero clears SBSW.  
Figure 5-20. Break Status Register (BSR)  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
75  
System Integration Module (SIM)  
SBSW — SIM Break Stop/Wait  
This status bit is useful in applications requiring a return to wait or stop mode after exiting from a break  
interrupt. Clear SBSW by writing a logic zero to it. Reset clears SBSW.  
1 = Stop mode or wait mode was exited by break interrupt  
0 = Stop mode or wait mode was not exited by break interrupt  
SBSW can be read within the break state SWI routine. The user can modify the return address on the  
stack by subtracting one from it. The following code is an example of this. Writing zero to the SBSW bit  
clears it.  
; This code works if the H register has been pushed onto the stack in the break  
; service routine software. This code should be executed at the end of the  
; break service routine software.  
HIBYTE EQU  
LOBYTE EQU  
5
6
;
If not SBSW, do RTI  
BRCLR SBSW,BSR, RETURN ; See if wait mode or stop mode was exited  
; by break.  
TST  
BNE  
DEC  
DEC  
LOBYTE,SP  
DOLO  
; If RETURNLO is not zero,  
; then just decrement low byte.  
; Else deal with high byte, too.  
; Point to WAIT/STOP opcode.  
; Restore H register.  
HIBYTE,SP  
LOBYTE,SP  
DOLO  
RETURN PULH  
RTI  
5.7.2 Reset Status Register (RSR)  
This register contains six flags that show the source of the last reset. Clear the SIM reset status register  
by reading it. A power-on reset sets the POR bit and clears all other bits in the register.  
Address:  
$FE01  
Bit 7  
6
5
4
3
2
1
Bit 0  
0
Read:  
Write:  
POR:  
POR  
PIN  
COP  
ILOP  
ILAD  
MODRST  
LVI  
1
0
0
0
0
0
0
0
= Unimplemented  
Figure 5-21. Reset Status Register (RSR)  
POR — Power-On Reset Bit  
1 = Last reset caused by POR circuit  
0 = Read of RSR  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
76  
SIM Registers  
PIN — External Reset Bit  
1 = Last reset caused by external reset pin (RST)  
0 = POR or read of RSR  
COP — Computer Operating Properly Reset Bit  
1 = Last reset caused by COP counter  
0 = POR or read of RSR  
ILOP — Illegal Opcode Reset Bit  
1 = Last reset caused by an illegal opcode  
0 = POR or read of RSR  
ILAD — Illegal Address Reset Bit (opcode fetches only)  
1 = Last reset caused by an opcode fetch from an illegal address  
0 = POR or read of RSR  
MODRST — Monitor Mode Entry Module Reset bit  
1 = Last reset caused by monitor mode entry when vector locations $FFFE and $FFFF are $FF after  
POR while IRQ = VDD  
0 = POR or read of RSR  
LVI — Low Voltage Inhibit Reset bit  
1 = Last reset caused by LVI circuit  
0 = POR or read of RSR  
5.7.3 Break Flag Control Register (BFCR)  
The break control register contains a bit that enables software to clear status bits while the MCU is in a  
break state.  
Address:  
$FE03  
Bit 7  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
BCFE  
R
R
R
R
R
R
0
R
= Reserved  
Figure 5-22. Break Flag Control Register (BFCR)  
BCFE — Break Clear Flag Enable Bit  
This read/write bit enables software to clear status bits by accessing status registers while the MCU is  
in a break state. To clear status bits during the break state, the BCFE bit must be set.  
1 = Status bits clearable during break  
0 = Status bits not clearable during break  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
77  
System Integration Module (SIM)  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
78  
Chapter 6  
Oscillator (OSC)  
6.1 Introduction  
The oscillator module provides the reference clocks for the MCU system and bus. Two oscillators are  
running on the device:  
Selectable oscillator — for bus clock  
Crystal oscillator (XTAL) — built-in oscillator that requires an external crystal or ceramic-resonator.  
This option also allows an external clock that can be driven directly into OSC1.  
RC oscillator (RC) — built-in oscillator that requires an external resistor-capacitor connection only.  
The selected oscillator is used to drive the bus clock, the SIM, and other modules on the MCU. The  
oscillator type is selected by programming a bit FLASH memory. The RC and crystal oscillator cannot run  
concurrently; one is disabled while the other is selected; because the RC and XTAL circuits share the  
same OSC1 pin.  
Non-selectable oscillator — for COP  
Internal oscillator — built-in RC oscillator that requires no external components.  
This internal oscillator is used to drive the computer operating properly (COP) module and the SIM. The  
internal oscillator runs continuously after a POR or reset, and is always available.  
6.2 Oscillator Selection  
The oscillator type is selected by programming a bit in a FLASH memory location; the mask option register  
(MOR), at $FFD0.  
(See 3.5 Mask Option Register (MOR).)  
NOTE  
On the ROM device, the oscillator is selected by a ROM-mask layer at  
factory.  
Address: $FFD0  
Bit 7  
OSCSEL  
1
6
R
1
5
R
1
4
R
1
3
R
1
2
R
1
1
R
1
Bit 0  
R
Read:  
Write:  
Erased:  
Reset:  
1
Unaffected by reset  
Non-volatile FLASH register; write by programming.  
= Reserved  
R
Figure 6-1. Mask Option Register (MOR)  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
79  
Oscillator (OSC)  
OSCSEL — Oscillator Select Bit  
OSCSEL selects the oscillator type for the MCU. The erased or unprogrammed state of this bit is  
logic 1, selecting the crystal oscillator option. This bit is unaffected by reset.  
1 = Crystal oscillator  
0 = RC oscillator  
Bits 6–0 — Should be left as logic 1’s.  
NOTE  
When Crystal oscillator is selected, the OSC2/RCCLK/PTA6/KBI6 pin is  
used as OSC2; other functions such as PTA6/KBI6 will not be available.  
6.2.1 XTAL Oscillator  
The XTAL oscillator circuit is designed for use with an external crystal or ceramic resonator to provide  
accurate clock source.  
In its typical configuration, the XTAL oscillator is connected in a Pierce oscillator configuration, as shown  
in Figure 6-2. This figure shows only the logical representation of the internal components and may not  
represent actual circuitry. The oscillator configuration uses five components:  
Crystal, X1  
Fixed capacitor, C1  
Tuning capacitor, C2 (can also be a fixed capacitor)  
Feedback resistor, RB  
Series resistor, RS (optional)  
From SIM  
To SIM  
2OSCOUT  
To SIM  
OSCOUT  
XTALCLK  
÷ 2  
SIMOSCEN  
MCU  
OSC1  
OSC2  
RB  
RS*  
X1  
*RS can be zero (shorted) when used with higher-frequency crystals.  
Refer to manufacturer’s data.  
See Chapter 17 for component value requirements.  
C1  
C2  
Figure 6-2. XTAL Oscillator External Connections  
The series resistor (RS) is included in the diagram to follow strict Pierce oscillator guidelines and may not  
be required for all ranges of operation, especially with high frequency crystals. Refer to the crystal  
manufacturer’s data for more information.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
80  
Freescale Semiconductor  
Internal Oscillator  
6.2.2 RC Oscillator  
The RC oscillator circuit is designed for use with external resistor and capacitor to provide a clock source  
with tolerance less than 10%.  
In its typical configuration, the RC oscillator requires two external components, one R and one C.  
Component values should have a tolerance of 1% or less, to obtain a clock source with less than 10%  
tolerance. The oscillator configuration uses two components:  
CEXT  
REXT  
From SIM  
To SIM  
2OSCOUT  
To SIM  
OSCOUT  
SIMOSCEN  
EXT-RC  
RCCLK  
EN  
÷ 2  
OSCILLATOR  
0
1
PTA6  
I/O  
PTA6  
PTA6EN  
MCU  
OSC1  
RCCLK/PTA6 (OSC2)  
VDD  
See Chapter 17 for component value requirements.  
REXT  
CEXT  
Figure 6-3. RC Oscillator External Connections  
6.3 Internal Oscillator  
The internal oscillator clock (ICLK) is a free running 50-kHz clock that requires no external components.  
It is used as the reference clock input to the computer operating properly (COP) module and the SIM.  
The internal oscillator by default is always available and is free running after POR or reset. It can be  
stopped in stop mode by setting the STOP_ICLKDIS bit before executing the STOP instruction.  
Figure 6-4 shows the logical representation of components of the internal oscillator circuitry.  
From SIM  
SIMOSCEN  
To SIM and COP  
ICLK  
CONFIG2  
EN  
STOP_ICLKDIS  
INTERNAL  
OSCILLATOR  
Figure 6-4. Internal Oscillator  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
81  
Oscillator (OSC)  
NOTE  
The internal oscillator is a free running oscillator and is available after each  
POR or reset. It is turned-off in stop mode by setting the STOP_ICLKDIS  
bit in CONFIG2 (see 3.4 Configuration Register 2 (CONFIG2)).  
6.4 I/O Signals  
The following paragraphs describe the oscillator I/O signals.  
6.4.1 Crystal Amplifier Input Pin (OSC1)  
OSC1 pin is an input to the crystal oscillator amplifier or the input to the RC oscillator circuit.  
6.4.2 Crystal Amplifier Output Pin (OSC2/RCCLK/PTA6/KBI6)  
For the XTAL oscillator, OSC2 pin is the output of the crystal oscillator inverting amplifier.  
For the RC oscillator, OSC2 pin can be configured as a general purpose I/O pin PTA6, or the output of  
the RC oscillator, RCCLK.  
Oscillator  
OSC2 pin function  
XTAL  
Inverting OSC1  
Controlled by PTA6EN bit in PTAPUE ($000D)  
PTA6EN = 0: RCCLK output  
RC  
PTA6EN = 1: PTA6/KBI6  
6.4.3 Oscillator Enable Signal (SIMOSCEN)  
The SIMOSCEN signal comes from the system integration module (SIM) and enables/disables the XTAL  
oscillator circuit or the RC-oscillator.  
6.4.4 XTAL Oscillator Clock (XTALCLK)  
XTALCLK is the XTAL oscillator output signal. It runs at the full speed of the crystal (fXCLK) and comes  
directly from the crystal oscillator circuit. Figure 6-2 shows only the logical relation of XTALCLK to OSC1  
and OSC2 and may not represent the actual circuitry. The duty cycle of XTALCLK is unknown and may  
depend on the crystal and other external factors. Also, the frequency and amplitude of XTALCLK can be  
unstable at start-up.  
6.4.5 RC Oscillator Clock (RCCLK)  
RCCLK is the RC oscillator output signal. Its frequency is directly proportional to the time constant of the  
external R and C. Figure 6-3 shows only the logical relation of RCCLK to OSC1 and may not represent  
the actual circuitry.  
6.4.6 Oscillator Out 2 (2OSCOUT)  
2OSCOUT is same as the input clock (XTALCLK or RCCLK). This signal is driven to the SIM module.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
82  
Freescale Semiconductor  
Low Power Modes  
6.4.7 Oscillator Out (OSCOUT)  
The frequency of this signal is equal to half of the 2OSCOUT, this signal is driven to the SIM for generation  
of the bus clocks used by the CPU and other modules on the MCU. OSCOUT will be divided again in the  
SIM and results in the internal bus frequency being one fourth of the XTALCLK or RCCLK frequency.  
6.4.8 Internal Oscillator Clock (ICLK)  
ICLK is the internal oscillator output signal (typically 50-kHz), for the COP module and the SIM. Its  
frequency depends on the VDD voltage. (See Chapter 17 Electrical Specifications for ICLK parameters.)  
6.5 Low Power Modes  
The WAIT and STOP instructions put the MCU in low-power consumption standby modes.  
6.5.1 Wait Mode  
The WAIT instruction has no effect on the oscillator logic. OSCOUT, 2OSCOUT, and ICLK continues to  
drive to the SIM module.  
6.5.2 Stop Mode  
The STOP instruction disables the XTALCLK or the RCCLK output, hence, OSCOUT and 2OSCOUT are  
disabled.  
The STOP instruction also turns off the ICLK input to the COP module if the STOP_ICLKDIS bit is set in  
configuration register 2 (CONFIG2). After reset, the STOP_ICLKDIS bit is clear by default and ICLK is  
enabled during stop mode.  
6.6 Oscillator During Break Mode  
The OSCOUT, 2OSCOUT, and ICLK clocks continue to be driven out when the device enters the break  
state.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
83  
Oscillator (OSC)  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
84  
Chapter 7  
Monitor ROM (MON)  
7.1 Introduction  
This section describes the monitor ROM (MON) and the monitor mode entry methods. The monitor ROM  
allows complete testing of the MCU through a single-wire interface with a host computer. This mode is  
also used for programming and erasing of FLASH memory in the MCU. Monitor mode entry can be  
achieved without use of the higher test voltage, VTST, as long as vector addresses $FFFE and $FFFF are  
blank, thus reducing the hardware requirements for in-circuit programming.  
7.2 Features  
Features of the monitor ROM include the following:  
Normal user-mode pin functionality  
One pin dedicated to serial communication between monitor ROM and host computer  
Standard mark/space non-return-to-zero (NRZ) communication with host computer  
Execution of code in RAM or FLASH  
FLASH memory security feature(1)  
FLASH memory programming interface  
959 bytes monitor ROM code size  
Monitor mode entry without high voltage, VTST, if reset vector is blank ($FFFE and $FFFF contain  
$FF)  
Standard monitor mode entry if high voltage, VTST, is applied to IRQ  
Resident routines for FLASH programming and EEPROM emulation  
7.3 Functional Description  
The monitor ROM receives and executes commands from a host computer. Figure 7-1 shows a example  
circuit used to enter monitor mode and communicate with a host computer via a standard RS-232  
interface.  
Simple monitor commands can access any memory address. In monitor mode, the MCU can execute  
host-computer code in RAM while most MCU pins retain normal operating mode functions. All  
communication between the host computer and the MCU is through the PTB0 pin. A level-shifting and  
multiplexing interface is required between PTB0 and the host computer. PTB0 is used in a wired-OR  
configuration and requires a pull-up resistor.  
1. No security feature is absolutely secure. However, Motorola’s strategy is to make reading or copying the FLASH difficult for  
unauthorized users.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
85  
Monitor ROM (MON)  
RST  
0.1 µF  
HC908JL8  
VDD  
VDD  
VDD  
EXT OSC (50% DUTY)  
0.1 µF  
OSC1  
VSS  
EXT OSC CONNECTION TO OSC1, WITH OSC2  
UNCONNECTED, CAN REPLACE XTAL CIRCUIT.  
9.8304MHz  
20 pF  
OSC1  
OSC2  
20 pF  
MAX232  
VDD  
1
16  
15  
VCC  
C1+  
XTAL CIRCUIT  
+
+
1 µF  
1 µF  
3
1 µF  
C1–  
GND  
+
VTST  
A
2
6
SW1  
10 k  
4
V+  
V–  
C2+  
(SEE NOTE 1)  
VDD  
VDD  
+
1 k  
IRQ  
1 µF  
8.5 V  
B
5
C2–  
1 µF  
10 k  
+
74HC125  
6
DB9  
5
10  
9
2
3
7
8
PTB0  
74HC125  
3
4
VDD  
2
VDD  
10 k  
1
5
10 k  
PTB1  
PTB3  
PTB2  
SW2  
C
D
(SEE NOTE 2)  
NOTES:  
1. Monitor mode entry method:  
SW1: Position A — High voltage entry (VTST  
Bus clock depends on SW2.  
10 k  
)
10 k  
SW1: Position B — Reset vector must be blank ($FFFE = $FFFF = $FF)  
Bus clock = OSC1 ÷ 4.  
2. Affects high voltage entry to monitor mode only (SW1 at position A):  
SW2: Position C — Bus clock = OSC1 ÷ 4  
SW2: Position D — Bus clock = OSC1 ÷ 2  
5. See Table 17-4 for VTST voltage level requirements.  
Figure 7-1. Monitor Mode Circuit  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
86  
Functional Description  
7.3.1 Entering Monitor Mode  
Table 7-1 shows the pin conditions for entering monitor mode. As specified in the table, monitor mode  
may be entered after a POR.  
Communication at 9600 baud will be established provided one of the following sets of conditions is met:  
1. If IRQ = VTST  
:
Clock on OSC1 is 4.9125MHz  
PTB3 = low  
2. If IRQ = VTST  
:
Clock on OSC1 is 9.8304MHz  
PTB3 = high  
3. If $FFFE and $FFFF are blank (contain $FF):  
Clock on OSC1 is 9.8304MHz  
IRQ = VDD  
Table 7-1. Monitor Mode Entry Requirements and Options  
$FFFE  
and  
$FFFF  
OSC1 Clock(1)  
IRQ  
Bus Frequency  
Comments  
(2)  
High voltage entry to monitor  
mode.  
9600 baud communication on  
PTB0. COP disabled.  
X
X
0
1
0
0
1
1
1
1
4.9152MHz  
9.8304MHz  
2.4576MHz  
2.4576MHz  
VTST  
(1)  
VTST  
Blank reset vector  
BLANK  
(contain  
$FF)  
(low-voltage) entry to monitor  
mode.  
9600 baud communication on  
PTB0. COP disabled.  
VDD  
X
X
X
1
9.8304MHz  
2.4576MHz  
NOT  
BLANK  
VDD  
X
X
X
X
X
OSC1 ÷ 4  
Enters User mode.  
1. RC oscillator cannot be used for monitor mode; must use either external oscillator or XTAL oscillator circuit.  
2. See Table 17-4 for VTST voltage level requirements.  
If VTST is applied to IRQ and PTB3 is low upon monitor mode entry (Table 7-1 condition set 1), the bus  
frequency is a divide-by-two of the clock input to OSC1. If PTB3 is high with VTST applied to IRQ upon  
monitor mode entry (Table 7-1 condition set 2), the bus frequency is a divide-by-four of the clock input to  
OSC1. Holding the PTB3 pin low when entering monitor mode causes a bypass of a divide-by-two stage  
at the oscillator only if VTST is applied to IRQ. In this event, the OSCOUT frequency is equal to the  
2OSCOUT frequency, and OSC1 input directly generates internal bus clocks. In this case, the OSC1  
signal must have a 50% duty cycle at maximum bus frequency.  
Entering monitor mode with VTST on IRQ, the COP is disabled as long as VTST is applied to either IRQ or  
RST. (See Chapter 5 System Integration Module (SIM) for more information on modes of operation.)  
If entering monitor mode without high voltage on IRQ and reset vector being blank ($FFFE and $FFFF)  
(Table 7-1 condition set 3, where applied voltage is VDD), then all port B pin requirements and conditions,  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
87  
Monitor ROM (MON)  
including the PTB3 frequency divisor selection, are not in effect. This is to reduce circuit requirements  
when performing in-circuit programming.  
Entering monitor mode with the reset vector being blank, the COP is always disabled regardless of the  
state of IRQ or the RST.  
Figure 7-2. shows a simplified diagram of the monitor mode entry when the reset vector is blank and IRQ  
= VDD. An OSC1 frequency of 9.8304MHz is required for a baud rate of 9600.  
POR RESET  
NO  
IS VECTOR  
BLANK?  
NORMAL USER  
MODE  
YES  
MONITOR MODE  
EXECUTE  
MONITOR  
CODE  
NO  
POR  
TRIGGERED?  
YES  
Figure 7-2. Low-Voltage Monitor Mode Entry Flowchart  
Enter monitor mode with the pin configuration shown above by pulling RST low and then high. The rising  
edge of RST latches monitor mode. Once monitor mode is latched, the values on the specified pins can  
change.  
Once out of reset, the MCU waits for the host to send eight security bytes. (See 7.4 Security.) After the  
security bytes, the MCU sends a break signal (10 consecutive logic zeros) to the host, indicating that it is  
ready to receive a command. The break signal also provides a timing reference to allow the host to  
determine the necessary baud rate.  
In monitor mode, the MCU uses different vectors for reset, SWI, and break interrupt. The alternate vectors  
are in the $FE page instead of the $FF page and allow code execution from the internal monitor firmware  
instead of user code.  
Table 7-2 is a summary of the vector differences between user mode and monitor mode.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
88  
Freescale Semiconductor  
Functional Description  
Table 7-2. Monitor Mode Vector Differences  
Functions  
Reset  
Vector  
High  
Reset  
Vector  
Low  
Break  
Vector  
High  
Break  
Vector  
Low  
SWI  
Vector  
High  
SWI  
Vector  
Low  
Modes  
COP  
User  
Monitor  
Notes:  
Enabled  
$FFFE  
$FEFE  
$FFFF  
$FEFF  
$FFFC  
$FEFC  
$FFFD  
$FEFD  
$FFFC  
$FEFC  
$FFFD  
$FEFD  
Disabled(1)  
1. If the high voltage (VTST) is removed from the IRQ pin or the RST pin, the SIM asserts  
its COP enable output. The COP is a mask option enabled or disabled by the COPD bit  
in the configuration register.  
When the host computer has completed downloading code into the MCU RAM, the host then sends a  
RUN command, which executes an RTI, which sends control to the address on the stack pointer.  
7.3.2 Baud Rate  
The communication baud rate is dependant on oscillator frequency. The state of PTB3 also affects baud  
rate if entry to monitor mode is by IRQ = VTST. When PTB3 is high, the divide by ratio is 1024. If the PTB3  
pin is at logic zero upon entry into monitor mode, the divide by ratio is 512.  
Table 7-3. Monitor Baud Rate Selection  
Monitor Mode  
Entry By:  
OSC1 Clock  
Frequency  
PTB3  
Baud Rate  
4.9152 MHz  
9.8304 MHz  
4.9152 MHz  
9.8304 MHz  
4.9152 MHz  
0
1
9600 bps  
9600 bps  
4800 bps  
9600 bps  
4800 bps  
IRQ = VTST  
1
X
X
Blank reset vector,  
IRQ = VDD  
7.3.3 Data Format  
Communication with the monitor ROM is in standard non-return-to-zero (NRZ) mark/space data format.  
(See Figure 7-3 and Figure 7-4.)  
NEXT  
START  
BIT  
START  
BIT  
STOP  
BIT  
BIT 0  
BIT 1  
BIT 2  
BIT 3  
BIT 4  
BIT 5  
BIT 6  
BIT 7  
Figure 7-3. Monitor Data Format  
NEXT  
START  
BIT  
START  
BIT  
STOP  
BIT  
$A5  
BIT 0  
BIT 1  
BIT 1  
BIT 2  
BIT 2  
BIT 3  
BIT 3  
BIT 4  
BIT 4  
BIT 5  
BIT 5  
BIT 6  
BIT 6  
BIT 7  
BIT 7  
STOP  
BIT  
START  
BIT  
NEXT  
START  
BIT  
BREAK  
BIT 0  
Figure 7-4. Sample Monitor Waveforms  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
89  
Monitor ROM (MON)  
The data transmit and receive rate can be anywhere from 4800 baud to 28.8k-baud. Transmit and receive  
baud rates must be identical.  
7.3.4 Echoing  
As shown in Figure 7-5, the monitor ROM immediately echoes each received byte back to the PTB0 pin  
for error checking.  
SENT TO  
MONITOR  
READ  
READ  
ADDR. HIGH ADDR. HIGH ADDR. LOW ADDR. LOW  
DATA  
ECHO  
RESULT  
Figure 7-5. Read Transaction  
Any result of a command appears after the echo of the last byte of the command.  
7.3.5 Break Signal  
A start bit followed by nine low bits is a break signal. (See Figure 7-6.) When the monitor receives a break  
signal, it drives the PTB0 pin high for the duration of two bits before echoing the break signal.  
MISSING STOP BIT  
TWO-STOP-BIT DELAY BEFORE ZERO ECHO  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
Figure 7-6. Break Transaction  
7.3.6 Commands  
The monitor ROM uses the following commands:  
READ (read memory)  
WRITE (write memory)  
IREAD (indexed read)  
IWRITE (indexed write)  
READSP (read stack pointer)  
RUN (run user program)  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
90  
Functional Description  
Table 7-4. READ (Read Memory) Command  
Description  
Read byte from memory  
Operand  
Specifies 2-byte address in high byte:low byte order  
Returns contents of specified address  
$4A  
Data Returned  
Opcode  
Command Sequence  
SENT TO  
MONITOR  
READ  
READ  
ADDR. HIGH  
ADDR. HIGH  
ADDR. LOW  
ADDR. LOW  
DATA  
ECHO  
RESULT  
Table 7-5. WRITE (Write Memory) Command  
Description  
Write byte to memory  
Operand  
Specifies 2-byte address in high byte:low byte order; low byte followed by data byte  
Data Returned  
Opcode  
None  
$49  
Command Sequence  
SENT TO  
MONITOR  
WRITE  
WRITE  
ADDR. HIGH  
ADDR. HIGH  
ADDR. LOW  
ADDR. LOW  
DATA  
DATA  
ECHO  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
91  
Monitor ROM (MON)  
Table 7-6. IREAD (Indexed Read) Command  
Description  
Read next 2 bytes in memory from last address accessed  
Specifies 2-byte address in high byte:low byte order  
Returns contents of next two addresses  
$1A  
Operand  
Data Returned  
Opcode  
Command Sequence  
SENT TO  
MONITOR  
IREAD  
IREAD  
DATA  
DATA  
RESULT  
ECHO  
Table 7-7. IWRITE (Indexed Write) Command  
Description  
Write to last address accessed + 1  
Operand  
Specifies single data byte  
Data Returned  
Opcode  
None  
$19  
Command Sequence  
SENT TO  
MONITOR  
IWRITE  
IWRITE  
DATA  
DATA  
ECHO  
NOTE  
A sequence of IREAD or IWRITE commands can sequentially access a  
block of memory over the full 64-Kbyte memory map.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
92  
Freescale Semiconductor  
Security  
Table 7-8. READSP (Read Stack Pointer) Command  
Description  
Reads stack pointer  
Operand  
None  
Data Returned  
Opcode  
Returns stack pointer in high byte:low byte order  
$0C  
Command Sequence  
SENT TO  
MONITOR  
READSP  
READSP  
SP HIGH  
SP LOW  
RESULT  
ECHO  
Table 7-9. RUN (Run User Program) Command  
Description  
Executes RTI instruction  
Operand  
None  
None  
$28  
Data Returned  
Opcode  
Command Sequence  
SENT TO  
MONITOR  
RUN  
RUN  
ECHO  
7.4 Security  
A security feature discourages unauthorized reading of FLASH locations while in monitor mode. The host  
can bypass the security feature at monitor mode entry by sending eight security bytes that match the  
bytes at locations $FFF6–$FFFD. Locations $FFF6–$FFFD contain user-defined data.  
NOTE  
Do not leave locations $FFF6–$FFFD blank. For security reasons, program  
locations $FFF6–$FFFD even if they are not used for vectors.  
During monitor mode entry, the MCU waits after the power-on reset for the host to send the eight security  
bytes on pin PTB0. If the received bytes match those at locations $FFF6–$FFFD, the host bypasses the  
security feature and can read all FLASH locations and execute code from FLASH. Security remains  
bypassed until a power-on reset occurs. If the reset was not a power-on reset, security remains bypassed  
and security code entry is not required. (See Figure 7-7.)  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
93  
Monitor ROM (MON)  
VDD  
4096 + 32 ICLK CYCLES  
24 BUS CYCLES  
RST  
FROM HOST  
PTB0  
1
4
1
1
2
4
1
FROM MCU  
NOTES:  
1 = Echo delay, 2 bit times  
2 = Data return delay, 2 bit times  
4 = Wait 1 bit time before sending next byte.  
Figure 7-7. Monitor Mode Entry Timing  
Upon power-on reset, if the received bytes of the security code do not match the data at locations  
$FFF6–$FFFD, the host fails to bypass the security feature. The MCU remains in monitor mode, but  
reading a FLASH location returns an invalid value and trying to execute code from FLASH causes an  
illegal address reset. After receiving the eight security bytes from the host, the MCU transmits a break  
character, signifying that it is ready to receive a command.  
NOTE  
The MCU does not transmit a break character until after the host sends the  
eight security bytes.  
To determine whether the security code entered is correct, check to see if bit 6 of RAM address $60 is  
set. If it is, then the correct security code has been entered and FLASH can be accessed.  
If the security sequence fails, the device should be reset by a power-on reset and brought up in monitor  
mode to attempt another entry. After failing the security sequence, the FLASH module can also be mass  
erased by executing an erase routine that was downloaded into internal RAM. The mass erase operation  
clears the security code locations so that all eight security bytes become $FF (blank).  
7.5 ROM-Resident Routines  
Eight routines stored in the monitor ROM area (thus ROM-resident) are provided for FLASH memory  
manipulation. Six of the eight routines are intended to simplify FLASH program, erase, and load  
operations. The other two routines are intended to simplify the use of the FLASH memory as EEPROM.  
Table 7-10 shows a summary of the ROM-resident routines.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
94  
Freescale Semiconductor  
ROM-Resident Routines  
Table 7-10. Summary of ROM-Resident Routines  
Stack Used(1)  
(bytes)  
Routine Name  
Routine Description  
Call Address  
PRGRNGE  
ERARNGE  
LDRNGE  
Program a range of locations  
$FC06  
$FCBE  
$FF30  
15  
9
Erase a page or the entire array  
Loads data from a range of locations  
9
Program a range of locations in monitor  
mode  
MON_PRGRNGE  
MON_ERARNGE  
MON_LDRNGE  
EE_WRITE  
$FF28  
$FF2C  
$FF24  
$FD3F  
$FDD0  
17  
11  
11  
24  
16  
Erase a page or the entire array in monitor  
mode  
Loads data from a range of locations in  
monitor mode  
Emulated EEPROM write. Data size ranges  
from 2 to 15 bytes at a time.  
Emulated EEPROM read. Data size ranges  
from 2 to 15 bytes at a time.  
EE_READ  
1. The listed stack size excludes the 2 bytes used by the calling instruction, JSR.  
The routines are designed to be called as stand-alone subroutines in the user program or monitor mode.  
The parameters that are passed to a routine are in the form of a contiguous data block, stored in RAM.  
The index register (H:X) is loaded with the address of the first byte of the data block (acting as a pointer),  
and the subroutine is called (JSR). Using the start address as a pointer, multiple data blocks can be used,  
any area of RAM be used. A data block has the control and data bytes in a defined order, as shown in  
Figure 7-8.  
During the software execution, it does not consume any dedicated RAM location, the run-time heap will  
extend the system stack, all other RAM location will not be affected.  
R
A
M
FILE_PTR  
$XXXX  
BUS SPEED (BUS_SPD)  
DATA SIZE (DATASIZE)  
START ADDRESS HIGH (ADDRH)  
START ADDRESS LOW (ADDRL)  
DATA 0  
ADDRESS AS POINTER  
DATA  
DATA 1  
BLOCK  
DATA  
ARRAY  
DATA N  
Figure 7-8. Data Block Format for ROM-Resident Routines  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
95  
Monitor ROM (MON)  
The control and data bytes are described below.  
Bus speed — This one byte indicates the operating bus speed of the MCU. The value of this byte  
should be equal to 4 times the bus speed, and should not be set to less than 4 (i.e. minimum bus  
speed is 1MHz).  
Data size — This one byte indicates the number of bytes in the data array that are to be  
manipulated. The maximum data array size is 128. Routines EE_WRITE and EE_READ are  
restricted to manipulate a data array between 2 to 15 bytes. Whereas routines ERARNGE and  
MON_ERARNGE do not manipulate a data array, thus, this data size byte has no meaning.  
Start address — These two bytes, high byte followed by low byte, indicate the start address of the  
FLASH memory to be manipulated.  
Data array — This data array contains data that are to be manipulated. Data in this array are  
programmed to FLASH memory by the programming routines: PRGRNGE, MON_PRGRNGE,  
EE_WRITE. For the read routines: LDRNGE, MON_LDRNGE, and EE_READ, data is read from  
FLASH and stored in this array.  
7.5.1 PRGRNGE  
PRGRNGE is used to program a range of FLASH locations with data loaded into the data array.  
Table 7-11. PRGRNGE Routine  
Routine Name  
PRGRNGE  
Routine Description  
Calling Address  
Stack Used  
Program a range of locations  
$FC06  
15 bytes  
Data Block Format  
Bus speed (BUS_SPD)  
Data size (DATASIZE)  
Start address high (ADDRH)  
Start address (ADDRL)  
Data 1 (DATA1)  
:
Data N (DATAN)  
The start location of the FLASH to be programmed is specified by the address ADDRH:ADDRL and the  
number of bytes from this location is specified by DATASIZE. The maximum number of bytes that can be  
programmed in one routine call is 128 bytes (max. DATASIZE is 128).  
ADDRH:ADDRL do not need to be at a page boundary, the routine handles any boundary misalignment  
during programming. A check to see that all bytes in the specified range are erased is not performed by  
this routine prior programming. Nor does this routine do a verification after programming, so there is no  
return confirmation that programming was successful. User must assure that the range specified is first  
erased.  
The coding example below is to program 32 bytes of data starting at FLASH location $EF00, with a bus  
speed of 4.9152 MHz. The coding assumes the data block is already loaded in RAM, with the address  
pointer, FILE_PTR, pointing to the first byte of the data block.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
96  
Freescale Semiconductor  
ROM-Resident Routines  
ORG  
RAM  
:
FILE_PTR:  
BUS_SPD  
DATASIZE  
START_ADDR  
DATAARRAY  
DS.B  
DS.B  
DS.W  
DS.B  
1; Indicates 4x bus frequency  
1; Data size to be programmed  
1; FLASH start address  
32; Reserved data array  
PRGRNGE  
FLASH_START  
EQU  
EQU  
$FC06  
$EF00  
ORG  
FLASH  
INITIALISATION:  
MOV  
MOV  
#20,  
#32,  
BUS_SPD  
DATASIZE  
LDHX  
STHX  
RTS  
#FLASH_START  
START_ADDR  
MAIN:  
BSR  
:
INITIALISATION  
:
LDHX  
JSR  
#FILE_PTR  
PRGRNGE  
7.5.2 ERARNGE  
ERARNGE is used to erase a range of locations in FLASH.  
Table 7-12. ERARNGE Routine  
Routine Name  
ERARNGE  
Routine Description  
Calling Address  
Stack Used  
Erase a page or the entire array  
$FCBE  
9 bytes  
Data Block Format  
Bus speed (BUS_SPD)  
Data size (DATASIZE)  
Starting address (ADDRH)  
Starting address (ADDRL)  
There are two sizes of erase ranges: a page or the entire array. The ERARNGE will erase the page (64  
consecutive bytes) in FLASH specified by the address ADDRH:ADDRL. This address can be any address  
within the page. Calling ERARNGE with ADDRH:ADDRL equal to $FFFF will erase the entire FLASH  
array (mass erase). Therefore, care must be taken when calling this routine to prevent an accidental mass  
erase. To avoid undesirable routine return addresses after a mass erase, the ERARNGE routine should  
not be called from code executed from FLASH memory. Load the code into an area of RAM before calling  
the ERARNGE routine.  
The ERARNGE routine do not use a data array. The DATASIZE byte is a dummy byte that is also not  
used.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
97  
Monitor ROM (MON)  
The coding example below is to perform a page erase, from $EF00–$EF3F. The Initialization subroutine  
is the same as the coding example for PRGRNGE (see 7.5.1 PRGRNGE).  
ERARNGE  
MAIN:  
EQU  
$FCBE  
BSR  
:
INITIALISATION  
:
LDHX  
JSR  
:
#FILE_PTR  
ERARNGE  
7.5.3 LDRNGE  
LDRNGE is used to load the data array in RAM with data from a range of FLASH locations.  
Table 7-13. LDRNGE Routine  
Routine Name  
LDRNGE  
Routine Description  
Calling Address  
Stack Used  
Loads data from a range of locations  
$FF30  
9 bytes  
Data Block Format  
Bus speed (BUS_SPD)  
Data size (DATASIZE)  
Starting address (ADDRH)  
Starting address (ADDRL)  
Data 1  
:
Data N  
The start location of FLASH from where data is retrieved is specified by the address ADDRH:ADDRL and  
the number of bytes from this location is specified by DATASIZE. The maximum number of bytes that can  
be retrieved in one routine call is 128 bytes. The data retrieved from FLASH is loaded into the data array  
in RAM. Previous data in the data array will be overwritten. User can use this routine to retrieve data from  
FLASH that was previously programmed.  
The coding example below is to retrieve 32 bytes of data starting from $EF00 in FLASH. The Initialization  
subroutine is the same as the coding example for PRGRNGE (see 7.5.1 PRGRNGE).  
LDRNGE  
MAIN:  
EQU  
$FF30  
BSR  
:
INITIALIZATION  
:
LDHX  
JSR  
:
#FILE_PTR  
LDRNGE  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
98  
Freescale Semiconductor  
ROM-Resident Routines  
7.5.4 MON_PRGRNGE  
In monitor mode, MON_PRGRNGE is used to program a range of FLASH locations with data loaded into  
the data array.  
Table 7-14. MON_PRGRNGE Routine  
Routine Name  
MON_PRGRNGE  
Routine Description  
Calling Address  
Stack Used  
Program a range of locations, in monitor mode  
$FC28  
17 bytes  
Data Block Format  
Bus speed  
Data size  
Starting address (high byte)  
Starting address (low byte)  
Data 1  
:
Data N  
The MON_PRGRNGE routine is designed to be used in monitor mode. It performs the same function as  
the PRGRNGE routine (see 7.5.1 PRGRNGE), except that MON_PRGRNGE returns to the main program  
via an SWI instruction. After a MON_PRGRNGE call, the SWI instruction will return the control back to  
the monitor code.  
7.5.5 MON_ERARNGE  
In monitor mode, ERARNGE is used to erase a range of locations in FLASH.  
Table 7-15. MON_ERARNGE Routine  
Routine Name  
MON_ERARNGE  
Routine Description  
Calling Address  
Stack Used  
Erase a page or the entire array, in monitor mode  
$FF2C  
11 bytes  
Data Block Format  
Bus speed  
Data size  
Starting address (high byte)  
Starting address (low byte)  
The MON_ERARNGE routine is designed to be used in monitor mode. It performs the same function as  
the ERARNGE routine (see 7.5.2 ERARNGE), except that MON_ERARNGE returns to the main program  
via an SWI instruction. After a MON_ERARNGE call, the SWI instruction will return the control back to the  
monitor code.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
99  
Monitor ROM (MON)  
7.5.6 MON_LDRNGE  
In monitor mode, LDRNGE is used to load the data array in RAM with data from a range of FLASH  
locations.  
Table 7-16. ICP_LDRNGE Routine  
Routine Name  
MON_LDRNGE  
Routine Description  
Calling Address  
Stack Used  
Loads data from a range of locations, in monitor mode  
$FF24  
11 bytes  
Data Block Format  
Bus speed  
Data size  
Starting address (high byte)  
Starting address (low byte)  
Data 1  
:
Data N  
The MON_LDRNGE routine is designed to be used in monitor mode. It performs the same function as the  
LDRNGE routine (see 7.5.3 LDRNGE), except that MON_LDRNGE returns to the main program via an  
SWI instruction. After a MON_LDRNGE call, the SWI instruction will return the control back to the monitor  
code.  
7.5.7 EE_WRITE  
EE_WRITE is used to write a set of data from the data array to FLASH.  
Table 7-17. EE_WRITE Routine  
Routine Name  
EE_WRITE  
Emulated EEPROM write. Data size ranges from 2 to 15 bytes at  
a time.  
Routine Description  
Calling Address  
Stack Used  
$FD3F  
24 bytes  
Data Block Format  
Bus speed (BUS_SPD)  
Data size (DATASIZE)(1)  
Starting address (ADDRH)(2)  
Starting address (ADDRL)(1)  
Data 1  
:
Data N  
1. The minimum data size is 2 bytes. The maximum data size is 15 bytes.  
2. The start address must be a page boundary start address: $xx00, $xx40, $xx80, or $00C0.  
The start location of the FLASH to be programmed is specified by the address ADDRH:ADDRL and the  
number of bytes in the data array is specified by DATASIZE. The minimum number of bytes that can be  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
100  
Freescale Semiconductor  
ROM-Resident Routines  
programmed in one routine call is 2 bytes, the maximum is 15 bytes. ADDRH:ADDRL must always be the  
start of boundary address (the page start address: $XX00, $XX40, $XX80, or $00C0) and DATASIZE  
must be the same size when accessing the same page.  
In some applications, the user may want to repeatedly store and read a set of data from an area of  
non-volatile memory. This is easily possible when using an EEPROM array. As the write and erase  
operations can be executed on a byte basis. For FLASH memory, the minimum erase size is the page —  
64 bytes per page for MC68HC908JL8. If the data array size is less than the page size, writing and erasing  
to the same page cannot fully utilize the page. Unused locations in the page will be wasted. The  
EE_WRITE routine is designed to emulate the properties similar to the EEPROM. Allowing a more  
efficient use of the FLASH page for data storage.  
When the user dedicates a page of FLASH for data storage, and the size of the data array defined, each  
call of the EE_WRTIE routine will automatically transfer the data in the data array (in RAM) to the next  
blank block of locations in the FLASH page. Once a page is filled up, the EE_WRITE routine automatically  
erases the page, and starts to reuse the page again. In the 64-byte page, an 4-byte control block is used  
by the routine to monitor the utilization of the page. In effect, only 60 bytes are used for data storage. (see  
Figure 7-9). The page control operations are transparent to the user.  
F L A S H  
PAGE BOUNDARY  
CONTROL: 8 BYTES  
DATA ARRAY  
$XX00, $XX40, $XX80, OR $XXC0  
DATA ARRAY  
DATA ARRAY  
ONE PAGE = 64 BYTES  
PAGE BOUNDARY  
Figure 7-9. EE_WRITE FLASH Memory Usage  
When using this routine to store a 3-byte data array, the FLASH page can be programmed 20 times before  
the an erase is required. In effect, the write/erase endurance is increased by 20 times. When a 15-byte  
data array is used, the write/erase endurance is increased by 5 times. Due to the FLASH page size  
limitation, the data array is limited from 2 bytes to 15 bytes.  
The coding example below uses the $EF00–$EE3F page for data storage. The data array size is 15 bytes,  
and the bus speed is 4.9152 MHz. The coding assumes the data block is already loaded in RAM, with the  
address pointer, FILE_PTR, pointing to the first byte of the data block.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
101  
Monitor ROM (MON)  
ORG  
RAM  
:
FILE_PTR:  
BUS_SPD  
DATASIZE  
START_ADDR  
DATAARRAY  
DS.B  
DS.B  
DS.W  
DS.B  
1; Indicates 4x bus frequency  
1; Data size to be programmed  
1; FLASH starting address  
15; Reserved data array  
EE_WRITE  
FLASH_START  
EQU  
EQU  
$FD3F  
$EF00  
ORG  
FLASH  
INITIALISATION:  
MOV  
MOV  
#20,  
#15,  
BUS_SPD  
DATASIZE  
LDHX  
STHX  
RTS  
#FLASH_START  
START_ADDR  
MAIN:  
BSR  
:
INITIALISATION  
:
LHDX  
JSR  
#FILE_PTR  
EE_WRITE  
NOTE  
The EE_WRITE routine is unable to check for incorrect data blocks, such  
as the FLASH page boundary address and data size. It is the responsibility  
of the user to ensure the starting address indicated in the data block is at  
the FLASH page boundary and the data size is 2 to 15. If the FLASH page  
is already programmed with a data array with a different size, the  
EE_WRITE call will be ignored.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
102  
Freescale Semiconductor  
ROM-Resident Routines  
7.5.8 EE_READ  
EE_READ is used to load the data array in RAM with a set of data from FLASH.  
Table 7-18. EE_READ Routine  
Routine Name  
EE_READ  
Emulated EEPROM read. Data size ranges from 2 to 15 bytes at  
a time.  
Routine Description  
Calling Address  
Stack Used  
$FDD0  
16 bytes  
Data Block Format  
Bus speed (BUS_SPD)  
Data size (DATASIZE)  
Starting address (ADDRH)(1)  
Starting address (ADDRL)(1)  
Data 1  
:
Data N  
1. The start address must be a page boundary start address: $xx00, $xx40, $xx80, or $00C0.  
The EE_READ routine reads data stored by the EE_WRITE routine. An EE_READ call will retrieve the  
last data written to a FLASH page and loaded into the data array in RAM. Same as EE_WRITE, the data  
size indicated by DATASIZE is 2 to 15, and the start address ADDRH:ADDRL must the FLASH page  
boundary address.  
The coding example below uses the data stored by the EE_WRITE coding example (see 7.5.7  
EE_WRITE). It loads the 15-byte data set stored in the $EF00–$EE7F page to the data array in RAM. The  
initialization subroutine is the same as the coding example for EE_WRITE (see 7.5.7 EE_WRITE).  
EE_READ  
EQU  
$FDD0  
MAIN:  
BSR  
:
INITIALIZATION  
:
LDHX  
JSR  
:
FILE_PTR  
EE_READ  
NOTE  
The EE_READ routine is unable to check for incorrect data blocks, such as  
the FLASH page boundary address and data size. It is the responsibility of  
the user to ensure the starting address indicated in the data block is at the  
FLASH page boundary and the data size is 2 to 15. If the FLASH page is  
programmed with a data array with a different size, the EE_READ call will  
be ignored.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
103  
Monitor ROM (MON)  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
104  
Chapter 8  
Timer Interface Module (TIM)  
8.1 Introduction  
This section describes the timer interface (TIM) module. The TIM is a two-channel timer that provides a  
timing reference with Input capture, output compare, and pulse-width-modulation functions. Figure 8-1 is  
a block diagram of the TIM.  
This particular MCU has two timer interface modules which are denoted as TIM1 and TIM2.  
8.2 Features  
Features of the TIM include:  
Two input capture/output compare channels:  
Rising-edge, falling-edge, or any-edge input capture trigger  
Set, clear, or toggle output compare action  
Buffered and unbuffered pulse-width-modulation (PWM) signal generation  
Programmable TIM clock input  
7-frequency internal bus clock prescaler selection  
External clock input on timer 2 (bus frequency ÷2 maximum)  
Free-running or modulo up-count operation  
Toggle any channel pin on overflow  
TIM counter stop and reset bits  
8.3 Pin Name Conventions  
The text that follows describes both timers, TIM1 and TIM2. The TIM input/output (I/O) pin names are  
T[1,2]CH0 (timer channel 0) and T[1,2]CH1 (timer channel 1), where “1” is used to indicate TIM1 and “2”  
is used to indicate TIM2. The two TIMs share four I/O pins with four I/O port pins. The external clock input  
for TIM2 is shared with the an ADC channel pin. The full names of the TIM I/O pins are listed in Table 8-1.  
The generic pin names appear in the text that follows.  
Table 8-1. Pin Name Conventions  
TIM Generic Pin Names:  
T[1,2]CH0  
PTD4/T1CH0  
PTE0/T2CH0  
T[1,2]CH1  
PTD5/T1CH1  
PTE1/T2CH1  
T2CLK  
TIM1  
Full TIM  
Pin Names:  
TIM2  
ADC12/T2CLK  
NOTE  
References to either timer 1 or timer 2 may be made in the following text by  
omitting the timer number. For example, TCH0 may refer generically to  
T1CH0 and T2CH0, and TCH1 may refer to T1CH1 and T2CH1.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
105  
Timer Interface Module (TIM)  
8.4 Functional Description  
Figure 8-1 shows the structure of the TIM. The central component of the TIM is the 16-bit TIM counter  
that can operate as a free-running counter or a modulo up-counter. The TIM counter provides the timing  
reference for the input capture and output compare functions. The TIM counter modulo registers,  
TMODH:TMODL, control the modulo value of the TIM counter. Software can read the TIM counter value  
at any time without affecting the counting sequence.  
The two TIM channels (per timer) are programmable independently as input capture or output compare  
channels.  
T2CLK  
(FOR TIM2 ONLY)  
PRESCALER SELECT  
INTERNAL  
PRESCALER  
BUS CLOCK  
TSTOP  
PS2  
PS1  
PS0  
TRST  
16-BIT COUNTER  
TOF  
INTERRUPT  
LOGIC  
TOIE  
16-BIT COMPARATOR  
TMODH:TMODL  
TOV0  
CH0MAX  
ELS0B  
ELS0A  
PORT  
LOGIC  
CHANNEL 0  
16-BIT COMPARATOR  
TCH0H:TCH0L  
T[1,2]CH0  
CH0F  
INTERRUPT  
LOGIC  
16-BIT LATCH  
MS0A  
CH0IE  
MS0B  
CH1F  
TOV1  
ELS0B  
ELS0A  
PORT  
LOGIC  
CHANNEL 1  
16-BIT COMPARATOR  
TCH1H:TCH1L  
CH1MAX  
T[1,2]CH1  
INTERRUPT  
LOGIC  
CH01IE  
CH1IE  
16-BIT LATCH  
MS0A  
Figure 8-1. TIM Block Diagram  
Figure 8-2 summarizes the timer registers.  
NOTE  
References to either timer 1 or timer 2 may be made in the following text by  
omitting the timer number. For example, TSC may generically refer to both  
T1SC and T2SC.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
106  
Freescale Semiconductor  
Functional Description  
Addr.  
Register Name  
TIM1 Status and Control  
Register  
Bit 7  
TOF  
0
6
5
4
0
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
0
TOIE  
TSTOP  
PS2  
PS1  
PS0  
TRST  
0
$0020  
0
0
1
0
0
0
9
0
(T1SC)  
Bit 15  
14  
13  
12  
11  
10  
Bit 8  
TIM1 Counter Register  
High  
(T1CNTH)  
$0021  
$0022  
$0023  
$0024  
$0025  
$0026  
$0027  
$0028  
$0029  
$002A  
$0030  
$0031  
$0032  
$0033  
0
0
6
0
5
0
4
0
3
0
2
0
1
0
Bit 7  
Bit 0  
TIM1 Counter Register  
Low  
(T1CNTL)  
0
Bit 15  
1
0
0
0
0
0
0
0
Bit 8  
1
TIM Counter Modulo  
Register High  
14  
13  
12  
11  
10  
9
(TMODH) Reset:  
1
1
1
1
1
1
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
TIM1 Counter Modulo  
Register Low  
(T1MODL)  
Bit 7  
6
1
5
1
4
1
3
2
1
Bit 0  
1
1
CH0F  
0
1
ELS0B  
0
1
ELS0A  
0
1
TOV0  
0
TIM1 Channel 0 Status  
and Control Register  
(T1SC0)  
CH0IE  
0
MS0B  
0
MS0A  
0
CH0MAX  
0
0
TIM1 Channel 0  
Register High  
Bit 15  
Bit 7  
14  
13  
12  
11  
10  
9
Bit 8  
(T1CH0H) Reset:  
Indeterminate after reset  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
TIM1 Channel 0  
Register Low  
(T1CH0L)  
6
5
0
4
3
2
1
Bit 0  
Indeterminate after reset  
CH1F  
TIM1 Channel 1 Status  
and Control Register  
(T1SC1)  
CH1IE  
MS1A  
0
ELS1B  
ELS1A  
TOV1  
CH1MAX  
0
0
0
0
0
0
0
9
0
TIM1 Channel 1  
Register High  
Bit 15  
14  
13  
12  
11  
10  
Bit 8  
(T1CH1H) Reset:  
Indeterminate after reset  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
TIM1 Channel 1  
Register Low  
(T1CH1L)  
Bit 7  
6
5
4
3
2
1
Bit 0  
PS0  
Indeterminate after reset  
TOF  
0
0
TRST  
0
0
TIM2 Status and Control  
Register  
(T2SC)  
TOIE  
TSTOP  
PS2  
PS1  
0
0
1
0
0
0
9
0
Bit 15  
14  
13  
12  
11  
10  
Bit 8  
TIM2 Counter Register  
High  
(T2CNTH)  
0
0
6
0
5
0
4
0
3
0
2
0
1
0
Bit 7  
Bit 0  
TIM2 Counter Register  
Low  
(T2CNTL)  
0
Bit 15  
1
0
14  
1
0
13  
1
0
12  
1
0
11  
1
0
10  
1
0
9
1
0
Bit 8  
1
TIM2 Counter Modulo  
Register High  
(T2MODH)  
= Unimplemented  
Figure 8-2. TIM I/O Register Summary (Sheet 1 of 2)  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
107  
Timer Interface Module (TIM)  
Addr.  
Register Name  
TIM2 Counter Modulo  
Register Low  
Bit 7  
6
5
4
3
2
1
Bit 0  
Bit 0  
1
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Bit 7  
6
1
5
1
4
1
3
2
1
$0034  
1
CH0F  
0
1
ELS0B  
0
1
ELS0A  
0
1
TOV0  
0
(T2MODL)  
TIM2 Channel 0 Status  
and Control Register  
(T2SC0)  
CH0IE  
0
MS0B  
0
MS0A  
0
CH0MAX  
0
$0035  
$0036  
$0037  
$0038  
$0039  
$003A  
0
TIM2 Channel 0  
Register High  
Bit 15  
Bit 7  
14  
13  
12  
11  
10  
9
Bit 8  
(T2CH0H) Reset:  
Indeterminate after reset  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
TIM2 Channel 0  
Register Low  
(T2CH0L)  
6
5
0
4
3
2
1
Bit 0  
Indeterminate after reset  
CH1F  
TIM2 Channel 1 Status  
and Control Register  
(T2SC1)  
CH1IE  
MS1A  
0
ELS1B  
ELS1A  
TOV1  
CH1MAX  
0
0
0
0
0
0
0
9
0
TIM2 Channel 1  
Register High  
Bit 15  
14  
13  
12  
11  
10  
Bit 8  
(T2CH1H) Reset:  
Indeterminate after reset  
Read:  
Write:  
Reset:  
TIM2 Channel 1  
Register Low  
(T2CH1L)  
Bit 7  
6
5
4
3
2
1
Bit 0  
Indeterminate after reset  
= Unimplemented  
Figure 8-2. TIM I/O Register Summary (Sheet 2 of 2)  
8.4.1 TIM Counter Prescaler  
The TIM1 clock source can be one of the seven prescaler outputs; TIM2 clock source can be one of the  
seven prescaler outputs or the TIM2 clock pin, T2CLK. The prescaler generates seven clock rates from  
the internal bus clock. The prescaler select bits, PS[2:0], in the TIM status and control register select the  
TIM clock source.  
8.4.2 Input Capture  
With the input capture function, the TIM can capture the time at which an external event occurs. When an  
active edge occurs on the pin of an input capture channel, the TIM latches the contents of the TIM counter  
into the TIM channel registers, TCHxH:TCHxL. The polarity of the active edge is programmable. Input  
captures can generate TIM CPU interrupt requests.  
8.4.3 Output Compare  
With the output compare function, the TIM can generate a periodic pulse with a programmable polarity,  
duration, and frequency. When the counter reaches the value in the registers of an output compare  
channel, the TIM can set, clear, or toggle the channel pin. Output compares can generate TIM CPU  
interrupt requests.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
108  
Freescale Semiconductor  
Functional Description  
8.4.3.1 Unbuffered Output Compare  
Any output compare channel can generate unbuffered output compare pulses as described in 8.4.3  
Output Compare. The pulses are unbuffered because changing the output compare value requires writing  
the new value over the old value currently in the TIM channel registers.  
An unsynchronized write to the TIM channel registers to change an output compare value could cause  
incorrect operation for up to two counter overflow periods. For example, writing a new value before the  
counter reaches the old value but after the counter reaches the new value prevents any compare during  
that counter overflow period. Also, using a TIM overflow interrupt routine to write a new, smaller output  
compare value may cause the compare to be missed. The TIM may pass the new value before it is written.  
Use the following methods to synchronize unbuffered changes in the output compare value on channel x:  
When changing to a smaller value, enable channel x output compare interrupts and write the new  
value in the output compare interrupt routine. The output compare interrupt occurs at the end of  
the current output compare pulse. The interrupt routine has until the end of the counter overflow  
period to write the new value.  
When changing to a larger output compare value, enable TIM overflow interrupts and write the new  
value in the TIM overflow interrupt routine. The TIM overflow interrupt occurs at the end of the  
current counter overflow period. Writing a larger value in an output compare interrupt routine (at  
the end of the current pulse) could cause two output compares to occur in the same counter  
overflow period.  
8.4.3.2 Buffered Output Compare  
Channels 0 and 1 can be linked to form a buffered output compare channel whose output appears on the  
TCH0 pin. The TIM channel registers of the linked pair alternately control the output.  
Setting the MS0B bit in TIM channel 0 status and control register (TSC0) links channel 0 and channel 1.  
The output compare value in the TIM channel 0 registers initially controls the output on the TCH0 pin.  
Writing to the TIM channel 1 registers enables the TIM channel 1 registers to synchronously control the  
output after the TIM overflows. At each subsequent overflow, the TIM channel registers (0 or 1) that  
control the output are the ones written to last. TSC0 controls and monitors the buffered output compare  
function, and TIM channel 1 status and control register (TSC1) is unused. While the MS0B bit is set, the  
channel 1 pin, TCH1, is available as a general-purpose I/O pin.  
NOTE  
In buffered output compare operation, do not write new output compare  
values to the currently active channel registers. User software should track  
the currently active channel to prevent writing a new value to the active  
channel. Writing to the active channel registers is the same as generating  
unbuffered output compares.  
8.4.4 Pulse Width Modulation (PWM)  
By using the toggle-on-overflow feature with an output compare channel, the TIM can generate a PWM  
signal. The value in the TIM counter modulo registers determines the period of the PWM signal. The  
channel pin toggles when the counter reaches the value in the TIM counter modulo registers. The time  
between overflows is the period of the PWM signal.  
As Figure 8-3 shows, the output compare value in the TIM channel registers determines the pulse width  
of the PWM signal. The time between overflow and output compare is the pulse width. Program the TIM  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
109  
Timer Interface Module (TIM)  
to clear the channel pin on output compare if the state of the PWM pulse is logic 1. Program the TIM to  
set the pin if the state of the PWM pulse is logic 0.  
The value in the TIM counter modulo registers and the selected prescaler output determines the  
frequency of the PWM output. The frequency of an 8-bit PWM signal is variable in 256 increments. Writing  
$00FF (255) to the TIM counter modulo registers produces a PWM period of 256 times the internal bus  
clock period if the prescaler select value is $000. See 8.9.1 TIM Status and Control Register.  
OVERFLOW  
OVERFLOW  
OVERFLOW  
PERIOD  
PULSE  
WIDTH  
TCHx  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
Figure 8-3. PWM Period and Pulse Width  
The value in the TIM channel registers determines the pulse width of the PWM output. The pulse width of  
an 8-bit PWM signal is variable in 256 increments. Writing $0080 (128) to the TIM channel registers  
produces a duty cycle of 128/256 or 50%.  
8.4.4.1 Unbuffered PWM Signal Generation  
Any output compare channel can generate unbuffered PWM pulses as described in 8.4.4 Pulse Width  
Modulation (PWM). The pulses are unbuffered because changing the pulse width requires writing the new  
pulse width value over the old value currently in the TIM channel registers.  
An unsynchronized write to the TIM channel registers to change a pulse width value could cause incorrect  
operation for up to two PWM periods. For example, writing a new value before the counter reaches the  
old value but after the counter reaches the new value prevents any compare during that PWM period.  
Also, using a TIM overflow interrupt routine to write a new, smaller pulse width value may cause the  
compare to be missed. The TIM may pass the new value before it is written.  
Use the following methods to synchronize unbuffered changes in the PWM pulse width on channel x:  
When changing to a shorter pulse width, enable channel x output compare interrupts and write the  
new value in the output compare interrupt routine. The output compare interrupt occurs at the end  
of the current pulse. The interrupt routine has until the end of the PWM period to write the new  
value.  
When changing to a longer pulse width, enable TIM overflow interrupts and write the new value in  
the TIM overflow interrupt routine. The TIM overflow interrupt occurs at the end of the current PWM  
period. Writing a larger value in an output compare interrupt routine (at the end of the current pulse)  
could cause two output compares to occur in the same PWM period.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
110  
Freescale Semiconductor  
Functional Description  
NOTE  
In PWM signal generation, do not program the PWM channel to toggle on  
output compare. Toggling on output compare prevents reliable 0% duty  
cycle generation and removes the ability of the channel to self-correct in the  
event of software error or noise. Toggling on output compare also can  
cause incorrect PWM signal generation when changing the PWM pulse  
width to a new, much larger value.  
8.4.4.2 Buffered PWM Signal Generation  
Channels 0 and 1 can be linked to form a buffered PWM channel whose output appears on the TCH0 pin.  
The TIM channel registers of the linked pair alternately control the pulse width of the output.  
Setting the MS0B bit in TIM channel 0 status and control register (TSC0) links channel 0 and channel 1.  
The TIM channel 0 registers initially control the pulse width on the TCH0 pin. Writing to the TIM channel  
1 registers enables the TIM channel 1 registers to synchronously control the pulse width at the beginning  
of the next PWM period. At each subsequent overflow, the TIM channel registers (0 or 1) that control the  
pulse width are the ones written to last. TSC0 controls and monitors the buffered PWM function, and TIM  
channel 1 status and control register (TSC1) is unused. While the MS0B bit is set, the channel 1 pin,  
TCH1, is available as a general-purpose I/O pin.  
NOTE  
In buffered PWM signal generation, do not write new pulse width values to  
the currently active channel registers. User software should track the  
currently active channel to prevent writing a new value to the active  
channel. Writing to the active channel registers is the same as generating  
unbuffered PWM signals.  
8.4.4.3 PWM Initialization  
To ensure correct operation when generating unbuffered or buffered PWM signals, use the following  
initialization procedure:  
1. In the TIM status and control register (TSC):  
a. Stop the TIM counter by setting the TIM stop bit, TSTOP.  
b. Reset the TIM counter and prescaler by setting the TIM reset bit, TRST.  
2. In the TIM counter modulo registers (TMODH:TMODL), write the value for the required PWM  
period.  
3. In the TIM channel x registers (TCHxH:TCHxL), write the value for the required pulse width.  
4. In TIM channel x status and control register (TSCx):  
a. Write 0:1 (for unbuffered output compare or PWM signals) or 1:0 (for buffered output compare  
or PWM signals) to the mode select bits, MSxB:MSxA. (See Table 8-3.)  
b. Write 1 to the toggle-on-overflow bit, TOVx.  
c. Write 1:0 (to clear output on compare) or 1:1 (to set output on compare) to the edge/level  
select bits, ELSxB:ELSxA. The output action on compare must force the output to the  
complement of the pulse width level. (See Table 8-3.)  
NOTE  
In PWM signal generation, do not program the PWM channel to toggle on  
output compare. Toggling on output compare prevents reliable 0% duty  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
111  
Timer Interface Module (TIM)  
cycle generation and removes the ability of the channel to self-correct in the  
event of software error or noise. Toggling on output compare can also  
cause incorrect PWM signal generation when changing the PWM pulse  
width to a new, much larger value.  
5. In the TIM status control register (TSC), clear the TIM stop bit, TSTOP.  
Setting MS0B links channels 0 and 1 and configures them for buffered PWM operation. The TIM channel  
0 registers (TCH0H:TCH0L) initially control the buffered PWM output. TIM status control register 0  
(TSCR0) controls and monitors the PWM signal from the linked channels.  
Clearing the toggle-on-overflow bit, TOVx, inhibits output toggles on TIM overflows. Subsequent output  
compares try to force the output to a state it is already in and have no effect. The result is a 0% duty cycle  
output.  
Setting the channel x maximum duty cycle bit (CHxMAX) and setting the TOVx bit generates a 100% duty  
cycle output. (See 8.9.4 TIM Channel Status and Control Registers.)  
8.5 Interrupts  
The following TIM sources can generate interrupt requests:  
TIM overflow flag (TOF) — The TOF bit is set when the TIM counter reaches the modulo value  
programmed in the TIM counter modulo registers. The TIM overflow interrupt enable bit, TOIE,  
enables TIM overflow CPU interrupt requests. TOF and TOIE are in the TIM status and control  
register.  
TIM channel flags (CH1F:CH0F) — The CHxF bit is set when an input capture or output compare  
occurs on channel x. Channel x TIM CPU interrupt requests are controlled by the channel x  
interrupt enable bit, CHxIE. Channel x TIM CPU interrupt requests are enabled when CHxIE = 1.  
CHxF and CHxIE are in the TIM channel x status and control register.  
8.6 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power- consumption standby modes.  
8.6.1 Wait Mode  
The TIM remains active after the execution of a WAIT instruction. In wait mode, the TIM registers are not  
accessible by the CPU. Any enabled CPU interrupt request from the TIM can bring the MCU out of wait  
mode.  
If TIM functions are not required during wait mode, reduce power consumption by stopping the TIM before  
executing the WAIT instruction.  
8.6.2 Stop Mode  
The TIM is inactive after the execution of a STOP instruction. The STOP instruction does not affect  
register conditions or the state of the TIM counter. TIM operation resumes when the MCU exits stop mode  
after an external interrupt.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
112  
Freescale Semiconductor  
TIM During Break Interrupts  
8.7 TIM During Break Interrupts  
A break interrupt stops the TIM counter.  
The system integration module (SIM) controls whether status bits in other modules can be cleared during  
the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear status  
bits during the break state. (See 5.7.3 Break Flag Control Register (BFCR).)  
To allow software to clear status bits during a break interrupt, write a logic 1 to the BCFE bit. If a status  
bit is cleared during the break state, it remains cleared when the MCU exits the break state.  
To protect status bits during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its  
default state), software can read and write I/O registers during the break state without affecting status bits.  
Some status bits have a 2-step read/write clearing procedure. If software does the first step on such a bit  
before the break, the bit cannot change during the break state as long as BCFE is at logic 0. After the  
break, doing the second step clears the status bit.  
8.8 I/O Signals  
Port D shares two of its pins with TIM1 and port E shares two of its pins with TIM2. The ADC12/T2CLK  
pin is an external clock input to TIM2. The four TIM channel I/O pins are T1CH0, T1CH1, T2CH0, and  
T2CH1.  
8.8.1 TIM Clock Pin (ADC12/T2CLK)  
ADC12/T2CLK is an external clock input that can be the clock source for the TIM2 counter instead of the  
prescaled internal bus clock. Select the ADC12/T2CLK input by writing logic 1’s to the three prescaler  
select bits, PS[2:0]. (See 8.9.1 TIM Status and Control Register.) The minimum T2CLK pulse width,  
T2CLKLMIN or T2CLKHMIN, is:  
1
------------------------------------- + t  
SU  
bus frequency  
The maximum T2CLK frequency is:  
bus frequency ÷ 2  
ADC12/T2CLK is available as a ADC input channel pin when not used as the TIM2 clock input.  
8.8.2 TIM Channel I/O Pins (PTD4/T1CH0, PTD5/T1CH1, PTE0/T2CH0, PTE1/T2CH1)  
Each channel I/O pin is programmable independently as an input capture pin or an output compare pin.  
T1CH0 and T2CH0 can be configured as buffered output compare or buffered PWM pins.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
113  
Timer Interface Module (TIM)  
8.9 I/O Registers  
NOTE  
References to either timer 1 or timer 2 may be made in the following text by  
omitting the timer number. For example, TSC may generically refer to both  
T1SC AND T2SC.  
These I/O registers control and monitor operation of the TIM:  
TIM status and control register (TSC)  
TIM counter registers (TCNTH:TCNTL)  
TIM counter modulo registers (TMODH:TMODL)  
TIM channel status and control registers (TSC0, TSC1)  
TIM channel registers (TCH0H:TCH0L, TCH1H:TCH1L)  
8.9.1 TIM Status and Control Register  
The TIM status and control register (TSC):  
Enables TIM overflow interrupts  
Flags TIM overflows  
Stops the TIM counter  
Resets the TIM counter  
Prescales the TIM counter clock  
Address: T1SC, $0020 and T2SC, $0030  
Bit 7  
TOF  
0
6
TOIE  
0
5
TSTOP  
1
4
0
3
0
2
PS2  
0
1
PS1  
0
Bit 0  
PS0  
0
Read:  
Write:  
Reset:  
TRST  
0
0
0
= Unimplemented  
Figure 8-4. TIM Status and Control Register (TSC)  
TOF — TIM Overflow Flag Bit  
This read/write flag is set when the TIM counter reaches the modulo value programmed in the TIM  
counter modulo registers. Clear TOF by reading the TIM status and control register when TOF is set  
and then writing a logic 0 to TOF. If another TIM overflow occurs before the clearing sequence is  
complete, then writing logic 0 to TOF has no effect. Therefore, a TOF interrupt request cannot be lost  
due to inadvertent clearing of TOF. Reset clears the TOF bit. Writing a logic 1 to TOF has no effect.  
1 = TIM counter has reached modulo value  
0 = TIM counter has not reached modulo value  
TOIE — TIM Overflow Interrupt Enable Bit  
This read/write bit enables TIM overflow interrupts when the TOF bit becomes set. Reset clears the  
TOIE bit.  
1 = TIM overflow interrupts enabled  
0 = TIM overflow interrupts disabled  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
114  
Freescale Semiconductor  
I/O Registers  
TSTOP — TIM Stop Bit  
This read/write bit stops the TIM counter. Counting resumes when TSTOP is cleared. Reset sets the  
TSTOP bit, stopping the TIM counter until software clears the TSTOP bit.  
1 = TIM counter stopped  
0 = TIM counter active  
NOTE  
Do not set the TSTOP bit before entering wait mode if the TIM is required  
to exit wait mode.  
TRST — TIM Reset Bit  
Setting this write-only bit resets the TIM counter and the TIM prescaler. Setting TRST has no effect on  
any other registers. Counting resumes from $0000. TRST is cleared automatically after the TIM  
counter is reset and always reads as logic 0. Reset clears the TRST bit.  
1 = Prescaler and TIM counter cleared  
0 = No effect  
NOTE  
Setting the TSTOP and TRST bits simultaneously stops the TIM counter at  
a value of $0000.  
PS[2:0] — Prescaler Select Bits  
These read/write bits select one of the seven prescaler outputs as the input to the TIM counter as  
Table 8-2 shows. Reset clears the PS[2:0] bits.  
Table 8-2. Prescaler Selection  
PS2  
0
PS1  
0
PS0  
0
TIM Clock Source  
Internal bus clock ÷ 1  
Internal bus clock ÷ 2  
Internal bus clock ÷ 4  
Internal bus clock ÷ 8  
Internal bus clock ÷ 16  
Internal bus clock ÷ 32  
Internal bus clock ÷ 64  
T2CLK (for TIM2 only)  
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
8.9.2 TIM Counter Registers  
The two read-only TIM counter registers contain the high and low bytes of the value in the TIM counter.  
Reading the high byte (TCNTH) latches the contents of the low byte (TCNTL) into a buffer. Subsequent  
reads of TCNTH do not affect the latched TCNTL value until TCNTL is read. Reset clears the TIM counter  
registers. Setting the TIM reset bit (TRST) also clears the TIM counter registers.  
NOTE  
If you read TCNTH during a break interrupt, be sure to unlatch TCNTL by  
reading TCNTL before exiting the break interrupt. Otherwise, TCNTL  
retains the value latched during the break.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
115  
Timer Interface Module (TIM)  
Address: T1CNTH, $0021 and T2CNTH, $0031  
Bit 7  
6
5
4
3
2
1
9
Bit 0  
Bit 8  
Read:  
Write:  
Reset:  
Bit 15  
14  
13  
12  
11  
10  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 8-5. TIM Counter Registers High (TCNTH)  
Address: T1CNTL, $0022 and T2CNTL, $0032  
Bit 7  
Bit 7  
6
6
5
5
4
4
3
3
2
2
1
1
Bit 0  
Bit 0  
Read:  
Write:  
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 8-6. TIM Counter Registers Low (TCNTL)  
8.9.3 TIM Counter Modulo Registers  
The read/write TIM modulo registers contain the modulo value for the TIM counter. When the TIM counter  
reaches the modulo value, the overflow flag (TOF) becomes set, and the TIM counter resumes counting  
from $0000 at the next timer clock. Writing to the high byte (TMODH) inhibits the TOF bit and overflow  
interrupts until the low byte (TMODL) is written. Reset sets the TIM counter modulo registers.  
Address: T1MODH, $0023 and T2MODH, $0033  
Bit 7  
Bit 15  
1
6
14  
1
5
13  
1
4
12  
1
3
11  
1
2
10  
1
1
9
1
Bit 0  
Bit 8  
1
Read:  
Write:  
Reset:  
Figure 8-7. TIM Counter Modulo Register High (TMODH)  
Address: T1MODL, $0024 and T2MODL, $0034  
Bit 7  
Bit 7  
1
6
6
1
5
5
1
4
4
1
3
3
1
2
2
1
1
1
1
Bit 0  
Bit 0  
1
Read:  
Write:  
Reset:  
Figure 8-8. TIM Counter Modulo Register Low (TMODL)  
NOTE  
Reset the TIM counter before writing to the TIM counter modulo registers.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
116  
I/O Registers  
8.9.4 TIM Channel Status and Control Registers  
Each of the TIM channel status and control registers:  
Flags input captures and output compares  
Enables input capture and output compare interrupts  
Selects input capture, output compare, or PWM operation  
Selects high, low, or toggling output on output compare  
Selects rising edge, falling edge, or any edge as the active input capture trigger  
Selects output toggling on TIM overflow  
Selects 0% and 100% PWM duty cycle  
Selects buffered or unbuffered output compare/PWM operation  
Address: T1SC0, $0025 and T2SC0, $0035  
Bit 7  
CH0F  
0
6
CH0IE  
0
5
MS0B  
0
4
MS0A  
0
3
ELS0B  
0
2
ELS0A  
0
1
TOV0  
0
Bit 0  
CH0MAX  
0
Read:  
Write:  
Reset:  
0
Figure 8-9. TIM Channel 0 Status and Control Register (TSC0)  
Address: T1SC1, $0028 and T2SC1, $0038  
Bit 7  
CH1F  
0
6
CH1IE  
0
5
0
4
MS1A  
0
3
ELS1B  
0
2
ELS1A  
0
1
TOV1  
0
Bit 0  
CH1MAX  
0
Read:  
Write:  
Reset:  
0
0
Figure 8-10. TIM Channel 1 Status and Control Register (TSC1)  
CHxF — Channel x Flag Bit  
When channel x is an input capture channel, this read/write bit is set when an active edge occurs on  
the channel x pin. When channel x is an output compare channel, CHxF is set when the value in the  
TIM counter registers matches the value in the TIM channel x registers.  
When TIM CPU interrupt requests are enabled (CHxIE = 1), clear CHxF by reading TIM channel x  
status and control register with CHxF set and then writing a logic 0 to CHxF. If another interrupt request  
occurs before the clearing sequence is complete, then writing logic 0 to CHxF has no effect. Therefore,  
an interrupt request cannot be lost due to inadvertent clearing of CHxF.  
Reset clears the CHxF bit. Writing a logic 1 to CHxF has no effect.  
1 = Input capture or output compare on channel x  
0 = No input capture or output compare on channel x  
CHxIE — Channel x Interrupt Enable Bit  
This read/write bit enables TIM CPU interrupt service requests on channel x.  
Reset clears the CHxIE bit.  
1 = Channel x CPU interrupt requests enabled  
0 = Channel x CPU interrupt requests disabled  
MSxB — Mode Select Bit B  
This read/write bit selects buffered output compare/PWM operation. MSxB exists only in the TIM1  
channel 0 and TIM2 channel 0 status and control registers.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
117  
Timer Interface Module (TIM)  
Setting MS0B disables the channel 1 status and control register and reverts TCH1 to general-purpose  
I/O.  
Reset clears the MSxB bit.  
1 = Buffered output compare/PWM operation enabled  
0 = Buffered output compare/PWM operation disabled  
MSxA — Mode Select Bit A  
When ELSxB:ELSxA 0:0, this read/write bit selects either input capture operation or unbuffered  
output compare/PWM operation.  
See Table 8-3.  
1 = Unbuffered output compare/PWM operation  
0 = Input capture operation  
When ELSxB:ELSxA = 0:0, this read/write bit selects the initial output level of the TCHx pin. See  
Table 8-3. Reset clears the MSxA bit.  
1 = Initial output level low  
0 = Initial output level high  
NOTE  
Before changing a channel function by writing to the MSxB or MSxA bit, set  
the TSTOP and TRST bits in the TIM status and control register (TSC).  
ELSxB and ELSxA — Edge/Level Select Bits  
When channel x is an input capture channel, these read/write bits control the active edge-sensing logic  
on channel x.  
When channel x is an output compare channel, ELSxB and ELSxA control the channel x output  
behavior when an output compare occurs.  
When ELSxB and ELSxA are both clear, channel x is not connected to an I/O port, and pin TCHx is  
available as a general-purpose I/O pin. Table 8-3 shows how ELSxB and ELSxA work. Reset clears  
the ELSxB and ELSxA bits.  
Table 8-3. Mode, Edge, and Level Selection  
MSxB:MSxA  
ELSxB:ELSxA  
Mode  
Configuration  
Pin under port control;  
initial output level high  
X0  
00  
Output preset  
Pin under port control;  
initial output level low  
X1  
00  
00  
00  
01  
10  
Capture on rising edge only  
Capture on falling edge only  
Input capture  
Capture on rising or  
falling edge  
00  
11  
01  
01  
01  
1X  
1X  
1X  
01  
10  
11  
01  
10  
11  
Toggle output on compare  
Clear output on compare  
Set output on compare  
Toggle output on compare  
Clear output on compare  
Set output on compare  
Outputcompare  
or PWM  
Buffered output  
compare or  
buffered PWM  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
118  
I/O Registers  
NOTE  
Before enabling a TIM channel register for input capture operation, make  
sure that the TCHx pin is stable for at least two bus clocks.  
TOVx — Toggle On Overflow Bit  
When channel x is an output compare channel, this read/write bit controls the behavior of the channel  
x output when the TIM counter overflows. When channel x is an input capture channel, TOVx has no  
effect.  
Reset clears the TOVx bit.  
1 = Channel x pin toggles on TIM counter overflow  
0 = Channel x pin does not toggle on TIM counter overflow  
NOTE  
When TOVx is set, a TIM counter overflow takes precedence over a  
channel x output compare if both occur at the same time.  
CHxMAX — Channel x Maximum Duty Cycle Bit  
When the TOVx bit is at logic 1, setting the CHxMAX bit forces the duty cycle of buffered and  
unbuffered PWM signals to 100%. As Figure 8-11 shows, the CHxMAX bit takes effect in the cycle  
after it is set or cleared. The output stays at the 100% duty cycle level until the cycle after CHxMAX is  
cleared.  
OVERFLOW  
OVERFLOW  
OVERFLOW  
OVERFLOW  
OVERFLOW  
PERIOD  
TCHx  
OUTPUT  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
COMPARE  
CHxMAX  
Figure 8-11. CHxMAX Latency  
8.9.5 TIM Channel Registers  
These read/write registers contain the captured TIM counter value of the input capture function or the  
output compare value of the output compare function. The state of the TIM channel registers after reset  
is unknown.  
In input capture mode (MSxB:MSxA = 0:0), reading the high byte of the TIM channel x registers (TCHxH)  
inhibits input captures until the low byte (TCHxL) is read.  
In output compare mode (MSxB:MSxA 0:0), writing to the high byte of the TIM channel x registers  
(TCHxH) inhibits output compares until the low byte (TCHxL) is written.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
119  
Timer Interface Module (TIM)  
Address: T1CH0H, $0026 and T2CH0H, $0036  
Bit 7  
6
5
4
3
2
1
9
Bit 0  
Bit 8  
Read:  
Write:  
Reset:  
Bit 15  
14  
13  
12  
11  
10  
Indeterminate after reset  
Figure 8-12. TIM Channel 0 Register High (TCH0H)  
Address: T1CH0L, $0027 and T2CH0L $0037  
Bit 7  
6
5
4
4
3
3
2
2
1
1
Bit 0  
Bit 0  
Read:  
Write:  
Reset:  
Bit 7  
6
5
Indeterminate after reset  
Figure 8-13. TIM Channel 0 Register Low (TCH0L)  
Address: T1CH1H, $0029 and T2CH1H, $0039  
Bit 7  
6
5
4
3
2
1
9
Bit 0  
Bit 8  
Read:  
Write:  
Reset:  
Bit 15  
14  
13  
12  
11  
10  
Indeterminate after reset  
Figure 8-14. TIM Channel 1 Register High (TCH1H)  
Address: T1CH1L, $002A and T2CH1L, $003A  
Bit 7  
6
5
4
4
3
3
2
2
1
1
Bit 0  
Bit 0  
Read:  
Write:  
Reset:  
Bit 7  
6
5
Indeterminate after reset  
Figure 8-15. TIM Channel 1 Register Low (TCH1L)  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
120  
Chapter 9  
Serial Communications Interface (SCI)  
9.1 Introduction  
This section describes the serial communications interface (SCI) module, which allows high-speed  
asynchronous communications with peripheral devices and other MCUs.  
9.2 Features  
Features of the SCI module include the following:  
Full-duplex operation  
Standard mark/space non-return-to-zero (NRZ) format  
32 programmable baud rates  
Programmable 8-bit or 9-bit character length  
Separately enabled transmitter and receiver  
Separate receiver and transmitter CPU interrupt requests  
Programmable transmitter output polarity  
Two receiver wakeup methods:  
Idle line wakeup  
Address mark wakeup  
Interrupt-driven operation with eight interrupt flags:  
Transmitter empty  
Transmission complete  
Receiver full  
Idle receiver input  
Receiver overrun  
Noise error  
Framing error  
Parity error  
Receiver framing error detection  
Hardware parity checking  
1/16 bit-time noise detection  
Bus clock as baud rate clock source  
9.3 Pin Name Conventions  
The generic names of the SCI I/O pins are:  
RxD (receive data)  
TxD (transmit data)  
The SCI I/O (input/output) lines are dedicated pins for the SCI module. Table 9-1 shows the full names  
and the generic names of the SCI I/O pins.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
121  
Serial Communications Interface (SCI)  
The generic pin names appear in the text of this section.  
Table 9-1. Pin Name Conventions  
Generic Pin Names:  
Full Pin Names:  
RxD  
TxD  
PTD7/RxD  
PTD6/TxD  
INTERNAL BUS  
SCI DATA  
REGISTER  
SCI DATA  
REGISTER  
RECEIVE  
SHIFT REGISTER  
TRANSMIT  
SHIFT REGISTER  
RxD  
TxD  
TXINV  
SCTIE  
TCIE  
SCRIE  
ILIE  
R8  
T8  
DMARE  
DMATE  
TE  
SCTE  
TC  
RE  
RWU  
SBK  
SCRF  
IDLE  
OR  
NF  
FE  
PE  
ORIE  
NEIE  
FEIE  
PEIE  
LOOPS  
ENSCI  
LOOPS  
RECEIVE  
CONTROL  
FLAG  
CONTROL  
TRANSMIT  
CONTROL  
WAKEUP  
CONTROL  
M
BKF  
RPF  
ENSCI  
PRE-  
WAKE  
ILTY  
PEN  
PTY  
BAUD  
DIVIDER  
÷ 4  
BUS CLOCK  
SCALER  
DATA SELECTION  
CONTROL  
÷ 16  
Figure 9-1. SCI Module Block Diagram  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
122  
Functional Description  
Addr.  
Register Name  
Bit 7  
LOOPS  
0
6
ENSCI  
0
5
TXINV  
0
4
3
WAKE  
0
2
ILTY  
0
1
PEN  
0
Bit 0  
PTY  
0
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
M
0
SCI Control Register 1  
(SCC1)  
$0013  
SCTIE  
TCIE  
0
SCRIE  
0
ILIE  
0
TE  
RE  
0
RWU  
0
SBK  
0
SCI Control Register 2  
(SCC2)  
$0014  
$0015  
0
0
R8  
T8  
DMARE  
DMATE  
ORIE  
NEIE  
FEIE  
PEIE  
SCI Control Register 3  
(SCC3)  
U
U
0
0
0
0
0
0
SCTE  
TC  
SCRF  
IDLE  
OR  
NF  
FE  
PE  
$0016 SCI Status Register 1 (SCS1) Write:  
Reset:  
1
1
0
0
0
0
0
0
Read:  
$0017 SCI Status Register 2 (SCS2) Write:  
Reset:  
BKF  
RPF  
0
0
0
0
0
0
0
0
Read:  
R7  
T7  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
R0  
T0  
SCI Data Register  
(SCDR)  
$0018  
$0019  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Unaffected by reset  
0
0
0
SCP1  
0
SCP0  
R
0
SCR2  
SCR1  
0
SCR0  
0
SCI Baud Rate Register  
(SCBR)  
0
0
0
= Unimplemented  
R = Reserved  
U = Unaffected  
Figure 9-2. SCI I/O Register Summary  
9.4 Functional Description  
Figure 9-1 shows the structure of the SCI module. The SCI allows full-duplex, asynchronous, NRZ serial  
communication among the MCU and remote devices, including other MCUs. The transmitter and receiver  
of the SCI operate independently, although they use the same baud rate generator. During normal  
operation, the CPU monitors the status of the SCI, writes the data to be transmitted, and processes  
received data. The baud rate clock source for the SCI is the bus clock.  
9.4.1 Data Format  
The SCI uses the standard non-return-to-zero mark/space data format illustrated in Figure 9-3.  
8-BIT DATA FORMAT  
BIT M IN SCC1 CLEAR  
PARITY  
BIT  
NEXT  
START  
BIT  
START  
BIT  
STOP  
BIT  
BIT 0  
BIT 1  
BIT 2  
BIT 3  
BIT 4  
BIT 5  
BIT 6  
BIT 7  
9-BIT DATA FORMAT  
BIT M IN SCC1 SET  
PARITY  
BIT  
NEXT  
START  
BIT  
START  
BIT  
BIT 0  
BIT 1  
BIT 2  
BIT 3  
BIT 4  
BIT 5  
BIT 6  
BIT 7  
BIT 8  
STOP  
BIT  
Figure 9-3. SCI Data Formats  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
123  
Serial Communications Interface (SCI)  
9.4.2 Transmitter  
Figure 9-4 shows the structure of the SCI transmitter.  
The baud rate clock source for the SCI is the bus clock.  
INTERNAL BUS  
PRE- BAUD  
SCALER DIVIDER  
BUS CLOCK  
÷ 4  
÷ 16  
SCI DATA REGISTER  
SCP1  
SCP0  
SCR1  
SCR2  
SCR0  
11-BIT  
TRANSMIT  
SHIFT REGISTER  
H
8
7
6
5
4
3
2
1
0
L
TxD  
TXINV  
M
PEN  
PTY  
PARITY  
GENERATION  
T8  
DMATE  
TRANSMITTER  
CONTROL LOGIC  
DMATE  
SCTIE  
SCTE  
SCTE  
SBK  
DMATE  
SCTE  
LOOPS  
ENSCI  
TE  
SCTIE  
SCTIE  
TC  
TC  
TCIE  
TCIE  
Figure 9-4. SCI Transmitter  
9.4.2.1 Character Length  
The transmitter can accommodate either 8-bit or 9-bit data. The state of the M bit in SCI control register  
1 (SCC1) determines character length. When transmitting 9-bit data, bit T8 in SCI control register 3  
(SCC3) is the ninth bit (bit 8).  
9.4.2.2 Character Transmission  
During an SCI transmission, the transmit shift register shifts a character out to the TxD pin. The SCI data  
register (SCDR) is the write-only buffer between the internal data bus and the transmit shift register. To  
initiate an SCI transmission:  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
124  
Freescale Semiconductor  
Functional Description  
1. Enable the SCI by writing a logic 1 to the enable SCI bit (ENSCI) in SCI control register 1 (SCC1).  
2. Enable the transmitter by writing a logic 1 to the transmitter enable bit (TE) in SCI control register  
2 (SCC2).  
3. Clear the SCI transmitter empty bit by first reading SCI status register 1 (SCS1) and then writing  
to the SCDR.  
4. Repeat step 3 for each subsequent transmission.  
At the start of a transmission, transmitter control logic automatically loads the transmit shift register with  
a preamble of logic 1s. After the preamble shifts out, control logic transfers the SCDR data into the  
transmit shift register. A logic 0 start bit automatically goes into the least significant bit position of the  
transmit shift register. A logic 1 stop bit goes into the most significant bit position.  
The SCI transmitter empty bit, SCTE, in SCS1 becomes set when the SCDR transfers a byte to the  
transmit shift register. The SCTE bit indicates that the SCDR can accept new data from the internal data  
bus. If the SCI transmit interrupt enable bit, SCTIE, in SCC2 is also set, the SCTE bit generates a  
transmitter CPU interrupt request.  
When the transmit shift register is not transmitting a character, the TxD pin goes to the idle condition, logic  
1. If at any time software clears the ENSCI bit in SCI control register 1 (SCC1), the transmitter and  
receiver relinquish control of the port pin.  
9.4.2.3 Break Characters  
Writing a logic 1 to the send break bit, SBK, in SCC2 loads the transmit shift register with a break  
character. A break character contains all logic 0s and has no start, stop, or parity bit. Break character  
length depends on the M bit in SCC1. As long as SBK is at logic 1, transmitter logic continuously loads  
break characters into the transmit shift register. After software clears the SBK bit, the shift register finishes  
transmitting the last break character and then transmits at least one logic 1. The automatic logic 1 at the  
end of a break character guarantees the recognition of the start bit of the next character.  
The SCI recognizes a break character when a start bit is followed by eight or nine logic 0 data bits and a  
logic 0 where the stop bit should be.  
Receiving a break character has these effects on SCI registers:  
Sets the framing error bit (FE) in SCS1  
Sets the SCI receiver full bit (SCRF) in SCS1  
Clears the SCI data register (SCDR)  
Clears the R8 bit in SCC3  
Sets the break flag bit (BKF) in SCS2  
May set the overrun (OR), noise flag (NF), parity error (PE), or reception in progress flag (RPF) bits  
9.4.2.4 Idle Characters  
An idle character contains all logic 1s and has no start, stop, or parity bit. Idle character length depends  
on the M bit in SCC1. The preamble is a synchronizing idle character that begins every transmission.  
If the TE bit is cleared during a transmission, the TxD pin becomes idle after completion of the  
transmission in progress. Clearing and then setting the TE bit during a transmission queues an idle  
character to be sent after the character currently being transmitted.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
125  
Serial Communications Interface (SCI)  
NOTE  
When queueing an idle character, return the TE bit to logic 1 before the stop  
bit of the current character shifts out to the TxD pin. Setting TE after the stop  
bit appears on TxD causes data previously written to the SCDR to be lost.  
Toggle the TE bit for a queued idle character when the SCTE bit becomes  
set and just before writing the next byte to the SCDR.  
9.4.2.5 Inversion of Transmitted Output  
The transmit inversion bit (TXINV) in SCI control register 1 (SCC1) reverses the polarity of transmitted  
data. All transmitted values, including idle, break, start, and stop bits, are inverted when TXINV is at logic  
1. (See 9.8.1 SCI Control Register 1.)  
9.4.2.6 Transmitter Interrupts  
These conditions can generate CPU interrupt requests from the SCI transmitter:  
SCI transmitter empty (SCTE) — The SCTE bit in SCS1 indicates that the SCDR has transferred  
a character to the transmit shift register. SCTE can generate a transmitter CPU interrupt request.  
Setting the SCI transmit interrupt enable bit, SCTIE, in SCC2 enables the SCTE bit to generate  
transmitter CPU interrupt requests.  
Transmission complete (TC) — The TC bit in SCS1 indicates that the transmit shift register and the  
SCDR are empty and that no break or idle character has been generated. The transmission  
complete interrupt enable bit, TCIE, in SCC2 enables the TC bit to generate transmitter CPU  
interrupt requests.  
9.4.3 Receiver  
Figure 9-5 shows the structure of the SCI receiver.  
9.4.3.1 Character Length  
The receiver can accommodate either 8-bit or 9-bit data. The state of the M bit in SCI control register 1  
(SCC1) determines character length. When receiving 9-bit data, bit R8 in SCI control register 2 (SCC2)  
is the ninth bit (bit 8). When receiving 8-bit data, bit R8 is a copy of the eighth bit (bit 7).  
9.4.3.2 Character Reception  
During an SCI reception, the receive shift register shifts characters in from the RxD pin. The SCI data  
register (SCDR) is the read-only buffer between the internal data bus and the receive shift register.  
After a complete character shifts into the receive shift register, the data portion of the character transfers  
to the SCDR. The SCI receiver full bit, SCRF, in SCI status register 1 (SCS1) becomes set, indicating that  
the received byte can be read. If the SCI receive interrupt enable bit, SCRIE, in SCC2 is also set, the  
SCRF bit generates a receiver CPU interrupt request.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
126  
Freescale Semiconductor  
Functional Description  
INTERNAL BUS  
SCR1  
SCR2  
SCR0  
SCP1  
SCP0  
SCI DATA REGISTER  
PRE- BAUD  
SCALER DIVIDER  
÷ 4  
÷ 16  
BUS CLOCK  
11-BIT  
RECEIVE SHIFT REGISTER  
DATA  
RECOVERY  
H
8
7
6
5
4
3
2
1
0
L
RxD  
ALL 0s  
BKF  
RPF  
M
RWU  
SCRF  
IDLE  
WAKE  
ILTY  
WAKEUP  
LOGIC  
PEN  
PTY  
R8  
PARITY  
CHECKING  
IDLE  
ILIE  
ILIE  
DMARE  
SCRF  
SCRIE  
DMARE  
SCRIE  
SCRF  
SCRIE  
DMARE  
DMARE  
OR  
OR  
ORIE  
ORIE  
NF  
NF  
NEIE  
NEIE  
FE  
FE  
FEIE  
FEIE  
PE  
PE  
PEIE  
PEIE  
Figure 9-5. SCI Receiver Block Diagram  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
127  
Serial Communications Interface (SCI)  
9.4.3.3 Data Sampling  
The receiver samples the RxD pin at the RT clock rate. The RT clock is an internal signal with a frequency  
16 times the baud rate. To adjust for baud rate mismatch, the RT clock is resynchronized at the following  
times (see Figure 9-6):  
After every start bit  
After the receiver detects a data bit change from logic 1 to logic 0 (after the majority of data bit  
samples at RT8, RT9, and RT10 returns a valid logic 1 and the majority of the next RT8, RT9, and  
RT10 samples returns a valid logic 0)  
To locate the start bit, data recovery logic does an asynchronous search for a logic 0 preceded by three  
logic 1s. When the falling edge of a possible start bit occurs, the RT clock begins to count to 16.  
START BIT  
LSB  
RxD  
START BIT  
QUALIFICATION  
START BIT  
DATA  
SAMPLES  
VERIFICATION SAMPLING  
RT  
CLOCK  
RT CLOCK  
STATE  
RT CLOCK  
RESET  
Figure 9-6. Receiver Data Sampling  
To verify the start bit and to detect noise, data recovery logic takes samples at RT3, RT5, and RT7.  
Table 9-2 summarizes the results of the start bit verification samples.  
Table 9-2. Start Bit Verification  
RT3, RT5, and RT7  
Samples  
Start Bit  
Verification  
Noise Flag  
000  
001  
010  
011  
100  
101  
110  
111  
Yes  
Yes  
Yes  
No  
0
1
1
0
1
0
0
0
Yes  
No  
No  
No  
Start bit verification is not successful if any two of the three verification samples are logic 1s. If start bit  
verification is not successful, the RT clock is reset and a new search for a start bit begins.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
128  
Freescale Semiconductor  
Functional Description  
To determine the value of a data bit and to detect noise, recovery logic takes samples at RT8, RT9, and  
RT10. Table 9-3 summarizes the results of the data bit samples.  
Table 9-3. Data Bit Recovery  
RT8, RT9, and RT10  
Samples  
Data Bit  
Determination  
Noise Flag  
000  
001  
010  
011  
100  
101  
110  
111  
0
0
0
1
0
1
1
1
0
1
1
1
1
1
1
0
NOTE  
The RT8, RT9, and RT10 samples do not affect start bit verification. If any  
or all of the RT8, RT9, and RT10 start bit samples are logic 1s following a  
successful start bit verification, the noise flag (NF) is set and the receiver  
assumes that the bit is a start bit.  
To verify a stop bit and to detect noise, recovery logic takes samples at RT8, RT9, and RT10. Table 9-4  
summarizes the results of the stop bit samples.  
Table 9-4. Stop Bit Recovery  
RT8, RT9, and RT10  
Samples  
Framing  
Error Flag  
Noise Flag  
000  
001  
010  
011  
100  
101  
110  
111  
1
1
1
0
1
0
0
0
0
1
1
1
1
1
1
0
9.4.3.4 Framing Errors  
If the data recovery logic does not detect a logic 1 where the stop bit should be in an incoming character,  
it sets the framing error bit, FE, in SCS1. A break character also sets the FE bit because a break character  
has no stop bit. The FE bit is set at the same time that the SCRF bit is set.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
129  
Serial Communications Interface (SCI)  
9.4.3.5 Baud Rate Tolerance  
A transmitting device may be operating at a baud rate below or above the receiver baud rate.  
Accumulated bit time misalignment can cause one of the three stop bit data samples to fall outside the  
actual stop bit. Then a noise error occurs. If more than one of the samples is outside the stop bit, a framing  
error occurs. In most applications, the baud rate tolerance is much more than the degree of misalignment  
that is likely to occur.  
As the receiver samples an incoming character, it resynchronizes the RT clock on any valid falling edge  
within the character. Resynchronization within characters corrects misalignments between transmitter bit  
times and receiver bit times.  
Slow Data Tolerance  
Figure 9-7 shows how much a slow received character can be misaligned without causing a noise error  
or a framing error. The slow stop bit begins at RT8 instead of RT1 but arrives in time for the stop bit data  
samples at RT8, RT9, and RT10.  
MSB  
STOP  
RECEIVER  
RT CLOCK  
DATA  
SAMPLES  
Figure 9-7. Slow Data  
For an 8-bit character, data sampling of the stop bit takes the receiver  
9 bit times × 16 RT cycles + 10 RT cycles = 154 RT cycles.  
With the misaligned character shown in Figure 9-7, the receiver counts 154 RT cycles at the point when  
the count of the transmitting device is  
9 bit times × 16 RT cycles + 3 RT cycles = 147 RT cycles.  
The maximum percent difference between the receiver count and the transmitter count of a slow 8-bit  
character with no errors is  
154 147  
× 100 = 4.54%  
-------------------------  
154  
For a 9-bit character, data sampling of the stop bit takes the receiver  
10 bit times × 16 RT cycles + 10 RT cycles = 170 RT cycles.  
With the misaligned character shown in Figure 9-7, the receiver counts 170 RT cycles at the point when  
the count of the transmitting device is  
10 bit times × 16 RT cycles + 3 RT cycles = 163 RT cycles.  
The maximum percent difference between the receiver count and the transmitter count of a slow 9-bit  
character with no errors is  
170 163  
× 100 = 4.12%  
-------------------------  
170  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
130  
Functional Description  
Fast Data Tolerance  
Figure 9-8 shows how much a fast received character can be misaligned without causing a noise error or  
a framing error. The fast stop bit ends at RT10 instead of RT16 but is still there for the stop bit data  
samples at RT8, RT9, and RT10.  
STOP  
IDLE OR NEXT CHARACTER  
RECEIVER  
RT CLOCK  
DATA  
SAMPLES  
Figure 9-8. Fast Data  
For an 8-bit character, data sampling of the stop bit takes the receiver  
9 bit times × 16 RT cycles + 10 RT cycles = 154 RT cycles.  
With the misaligned character shown in Figure 9-8, the receiver counts 154 RT cycles at the point when  
the count of the transmitting device is  
10 bit times × 16 RT cycles = 160 RT cycles.  
The maximum percent difference between the receiver count and the transmitter count of a fast 8-bit  
character with no errors is  
·
154 160  
× 100 = 3.90%  
-------------------------  
154  
For a 9-bit character, data sampling of the stop bit takes the receiver  
10 bit times × 16 RT cycles + 10 RT cycles = 170 RT cycles.  
With the misaligned character shown in Figure 9-8, the receiver counts 170 RT cycles at the point when  
the count of the transmitting device is  
11 bit times × 16 RT cycles = 176 RT cycles.  
The maximum percent difference between the receiver count and the transmitter count of a fast 9-bit  
character with no errors is  
170 176  
× 100 = 3.53%  
-------------------------  
170  
9.4.3.6 Receiver Wakeup  
So that the MCU can ignore transmissions intended only for other receivers in multiple-receiver systems,  
the receiver can be put into a standby state. Setting the receiver wakeup bit, RWU, in SCC2 puts the  
receiver into a standby state during which receiver interrupts are disabled.  
Depending on the state of the WAKE bit in SCC1, either of two conditions on the RxD pin can bring the  
receiver out of the standby state:  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
131  
Serial Communications Interface (SCI)  
Address mark — An address mark is a logic 1 in the most significant bit position of a received  
character. When the WAKE bit is set, an address mark wakes the receiver from the standby state  
by clearing the RWU bit. The address mark also sets the SCI receiver full bit, SCRF. Software can  
then compare the character containing the address mark to the user-defined address of the  
receiver. If they are the same, the receiver remains awake and processes the characters that  
follow. If they are not the same, software can set the RWU bit and put the receiver back into the  
standby state.  
Idle input line condition — When the WAKE bit is clear, an idle character on the RxD pin wakes the  
receiver from the standby state by clearing the RWU bit. The idle character that wakes the receiver  
does not set the receiver idle bit, IDLE, or the SCI receiver full bit, SCRF. The idle line type bit,  
ILTY, determines whether the receiver begins counting logic 1s as idle character bits after the start  
bit or after the stop bit.  
NOTE  
With the WAKE bit clear, setting the RWU bit after the RxD pin has been  
idle may cause the receiver to wake up immediately.  
9.4.3.7 Receiver Interrupts  
The following sources can generate CPU interrupt requests from the SCI receiver:  
SCI receiver full (SCRF) — The SCRF bit in SCS1 indicates that the receive shift register has  
transferred a character to the SCDR. SCRF can generate a receiver CPU interrupt request. Setting  
the SCI receive interrupt enable bit, SCRIE, in SCC2 enables the SCRF bit to generate receiver  
CPU interrupts.  
Idle input (IDLE) — The IDLE bit in SCS1 indicates that 10 or 11 consecutive logic 1s shifted in  
from the RxD pin. The idle line interrupt enable bit, ILIE, in SCC2 enables the IDLE bit to generate  
CPU interrupt requests.  
9.4.3.8 Error Interrupts  
The following receiver error flags in SCS1 can generate CPU interrupt requests:  
Receiver overrun (OR) — The OR bit indicates that the receive shift register shifted in a new  
character before the previous character was read from the SCDR. The previous character remains  
in the SCDR, and the new character is lost. The overrun interrupt enable bit, ORIE, in SCC3  
enables OR to generate SCI error CPU interrupt requests.  
Noise flag (NF) — The NF bit is set when the SCI detects noise on incoming data or break  
characters, including start, data, and stop bits. The noise error interrupt enable bit, NEIE, in SCC3  
enables NF to generate SCI error CPU interrupt requests.  
Framing error (FE) — The FE bit in SCS1 is set when a logic 0 occurs where the receiver expects  
a stop bit. The framing error interrupt enable bit, FEIE, in SCC3 enables FE to generate SCI error  
CPU interrupt requests.  
Parity error (PE) — The PE bit in SCS1 is set when the SCI detects a parity error in incoming data.  
The parity error interrupt enable bit, PEIE, in SCC3 enables PE to generate SCI error CPU interrupt  
requests.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
132  
Freescale Semiconductor  
Low-Power Modes  
9.5 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power- consumption standby modes.  
9.5.1 Wait Mode  
The SCI module remains active after the execution of a WAIT instruction. In wait mode, the SCI module  
registers are not accessible by the CPU. Any enabled CPU interrupt request from the SCI module can  
bring the MCU out of wait mode.  
If SCI module functions are not required during wait mode, reduce power consumption by disabling the  
module before executing the WAIT instruction.  
Refer to 5.6 Low-Power Modes for information on exiting wait mode.  
9.5.2 Stop Mode  
The SCI module is inactive after the execution of a STOP instruction. The STOP instruction does not  
affect SCI register states. SCI module operation resumes after an external interrupt.  
Because the internal clock is inactive during stop mode, entering stop mode during an SCI transmission  
or reception results in invalid data.  
Refer to 5.6 Low-Power Modes for information on exiting stop mode.  
9.6 SCI During Break Module Interrupts  
The system integration module (SIM) controls whether status bits in other modules can be cleared during  
the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear status  
bits during the break state.  
To allow software to clear status bits during a break interrupt, write a logic 1 to the BCFE bit. If a status  
bit is cleared during the break state, it remains cleared when the MCU exits the break state.  
To protect status bits during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its  
default state), software can read and write I/O registers during the break state without affecting status bits.  
Some status bits have a 2-step read/write clearing procedure. If software does the first step on such a bit  
before the break, the bit cannot change during the break state as long as BCFE is at logic 0. After the  
break, doing the second step clears the status bit.  
9.7 I/O Signals  
The two SCI I/O pins are:  
PTD6/TxD — Transmit data  
PTD7/RxD — Receive data  
9.7.1 TxD (Transmit Data)  
The PTD6/TxD pin is the serial data output from the SCI transmitter.  
9.7.2 RxD (Receive Data)  
The PTD7/RxD pin is the serial data input to the SCI receiver.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
133  
Serial Communications Interface (SCI)  
9.8 I/O Registers  
These I/O registers control and monitor SCI operation:  
SCI control register 1 (SCC1)  
SCI control register 2 (SCC2)  
SCI control register 3 (SCC3)  
SCI status register 1 (SCS1)  
SCI status register 2 (SCS2)  
SCI data register (SCDR)  
SCI baud rate register (SCBR)  
9.8.1 SCI Control Register 1  
SCI control register 1:  
Enables loop mode operation  
Enables the SCI  
Controls output polarity  
Controls character length  
Controls SCI wakeup method  
Controls idle character detection  
Enables parity function  
Controls parity type  
Address:  
$0013  
Bit 7  
6
ENSCI  
0
5
TXINV  
0
4
M
0
3
WAKE  
0
2
ILTY  
0
1
PEN  
0
Bit 0  
PTY  
0
Read:  
Write:  
Reset:  
LOOPS  
0
Figure 9-9. SCI Control Register 1 (SCC1)  
LOOPS — Loop Mode Select Bit  
This read/write bit enables loop mode operation. In loop mode the RxD pin is disconnected from the  
SCI, and the transmitter output goes into the receiver input. Both the transmitter and the receiver must  
be enabled to use loop mode. Reset clears the LOOPS bit.  
1 = Loop mode enabled  
0 = Normal operation enabled  
ENSCI — Enable SCI Bit  
This read/write bit enables the SCI and the SCI baud rate generator. Clearing ENSCI sets the SCTE  
and TC bits in SCI status register 1 and disables transmitter interrupts. Reset clears the ENSCI bit.  
1 = SCI enabled  
0 = SCI disabled  
TXINV — Transmit Inversion Bit  
This read/write bit reverses the polarity of transmitted data. Reset clears the TXINV bit.  
1 = Transmitter output inverted  
0 = Transmitter output not inverted  
NOTE  
Setting the TXINV bit inverts all transmitted values, including idle, break,  
start, and stop bits.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
134  
Freescale Semiconductor  
I/O Registers  
M — Mode (Character Length) Bit  
This read/write bit determines whether SCI characters are eight or nine bits long. (See Table 9-5.) The  
ninth bit can serve as an extra stop bit, as a receiver wakeup signal, or as a parity bit. Reset clears the  
M bit.  
1 = 9-bit SCI characters  
0 = 8-bit SCI characters  
WAKE — Wakeup Condition Bit  
This read/write bit determines which condition wakes up the SCI: a logic 1 (address mark) in the most  
significant bit position of a received character or an idle condition on the RxD pin. Reset clears the  
WAKE bit.  
1 = Address mark wakeup  
0 = Idle line wakeup  
ILTY — Idle Line Type Bit  
This read/write bit determines when the SCI starts counting logic 1s as idle character bits. The counting  
begins either after the start bit or after the stop bit. If the count begins after the start bit, then a string  
of logic 1s preceding the stop bit may cause false recognition of an idle character. Beginning the count  
after the stop bit avoids false idle character recognition, but requires properly synchronized  
transmissions. Reset clears the ILTY bit.  
1 = Idle character bit count begins after stop bit  
0 = Idle character bit count begins after start bit  
PEN — Parity Enable Bit  
This read/write bit enables the SCI parity function. (See Table 9-5.) When enabled, the parity function  
inserts a parity bit in the most significant bit position. (See Figure 9-3.) Reset clears the PEN bit.  
1 = Parity function enabled  
0 = Parity function disabled  
PTY — Parity Bit  
This read/write bit determines whether the SCI generates and checks for odd parity or even parity.  
(See Table 9-5.) Reset clears the PTY bit.  
1 = Odd parity  
0 = Even parity  
NOTE  
Changing the PTY bit in the middle of a transmission or reception can  
generate a parity error.  
Table 9-5. Character Format Selection  
Control Bits  
PEN and PTY  
Character Format  
Start  
Bits  
Data  
Bits  
Stop  
Character  
Length  
M
Parity  
Bits  
0
1
0
0
1
1
0X  
0X  
10  
11  
10  
11  
1
1
1
1
1
1
8
9
7
7
8
8
None  
None  
Even  
Odd  
1
10 bits  
11 bits  
10 bits  
10 bits  
11 bits  
11 bits  
1
1
1
Even  
Odd  
1
1
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
135  
Serial Communications Interface (SCI)  
9.8.2 SCI Control Register 2  
SCI control register 2:  
Enables the following CPU interrupt requests:  
Enables the SCTE bit to generate transmitter CPU interrupt requests  
Enables the TC bit to generate transmitter CPU interrupt requests  
Enables the SCRF bit to generate receiver CPU interrupt requests  
Enables the IDLE bit to generate receiver CPU interrupt requests  
Enables the transmitter  
Enables the receiver  
Enables SCI wakeup  
Transmits SCI break characters  
Address:  
$0014  
Bit 7  
6
TCIE  
0
5
SCRIE  
0
4
ILIE  
0
3
TE  
0
2
RE  
0
1
RWU  
0
Bit 0  
SBK  
0
Read:  
Write:  
Reset:  
SCTIE  
0
Figure 9-10. SCI Control Register 2 (SCC2)  
SCTIE — SCI Transmit Interrupt Enable Bit  
This read/write bit enables the SCTE bit to generate SCI transmitter CPU interrupt requests. Reset  
clears the SCTIE bit.  
1 = SCTE enabled to generate CPU interrupt  
0 = SCTE not enabled to generate CPU interrupt  
TCIE — Transmission Complete Interrupt Enable Bit  
This read/write bit enables the TC bit to generate SCI transmitter CPU interrupt requests. Reset clears  
the TCIE bit.  
1 = TC enabled to generate CPU interrupt requests  
0 = TC not enabled to generate CPU interrupt requests  
SCRIE — SCI Receive Interrupt Enable Bit  
This read/write bit enables the SCRF bit to generate SCI receiver CPU interrupt requests. Reset clears  
the SCRIE bit.  
1 = SCRF enabled to generate CPU interrupt  
0 = SCRF not enabled to generate CPU interrupt  
ILIE — Idle Line Interrupt Enable Bit  
This read/write bit enables the IDLE bit to generate SCI receiver CPU interrupt requests. Reset clears  
the ILIE bit.  
1 = IDLE enabled to generate CPU interrupt requests  
0 = IDLE not enabled to generate CPU interrupt requests  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
136  
Freescale Semiconductor  
I/O Registers  
TE — Transmitter Enable Bit  
Setting this read/write bit begins the transmission by sending a preamble of 10 or 11 logic 1s from the  
transmit shift register to the TxD pin. If software clears the TE bit, the transmitter completes any  
transmission in progress before the TxD returns to the idle condition (logic 1). Clearing and then setting  
TE during a transmission queues an idle character to be sent after the character currently being  
transmitted. Reset clears the TE bit.  
1 = Transmitter enabled  
0 = Transmitter disabled  
NOTE  
Writing to the TE bit is not allowed when the enable SCI bit (ENSCI) is clear.  
ENSCI is in SCI control register 1.  
RE — Receiver Enable Bit  
Setting this read/write bit enables the receiver. Clearing the RE bit disables the receiver but does not  
affect receiver interrupt flag bits. Reset clears the RE bit.  
1 = Receiver enabled  
0 = Receiver disabled  
NOTE  
Writing to the RE bit is not allowed when the enable SCI bit (ENSCI) is  
clear. ENSCI is in SCI control register 1.  
RWU — Receiver Wakeup Bit  
This read/write bit puts the receiver in a standby state during which receiver interrupts are disabled.  
The WAKE bit in SCC1 determines whether an idle input or an address mark brings the receiver out  
of the standby state and clears the RWU bit. Reset clears the RWU bit.  
1 = Standby state  
0 = Normal operation  
SBK — Send Break Bit  
Setting and then clearing this read/write bit transmits a break character followed by a logic 1. The logic  
1 after the break character guarantees recognition of a valid start bit. If SBK remains set, the  
transmitter continuously transmits break characters with no logic 1s between them. Reset clears the  
SBK bit.  
1 = Transmit break characters  
0 = No break characters being transmitted  
NOTE  
Do not toggle the SBK bit immediately after setting the SCTE bit. Toggling  
SBK before the preamble begins causes the SCI to send a break character  
instead of a preamble.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
137  
Serial Communications Interface (SCI)  
9.8.3 SCI Control Register 3  
SCI control register 3:  
Stores the ninth SCI data bit received and the ninth SCI data bit to be transmitted  
Enables these interrupts:  
Receiver overrun interrupts  
Noise error interrupts  
Framing error interrupts  
Parity error interrupts  
Address:  
$0015  
Bit 7  
R8  
6
T8  
U
5
DMARE  
0
4
DMATE  
0
3
2
NEIE  
0
1
FEIE  
0
Bit 0  
PEIE  
0
Read:  
Write:  
Reset:  
ORIE  
U
0
= Unimplemented  
U = Unaffected  
Figure 9-11. SCI Control Register 3 (SCC3)  
R8 — Received Bit 8  
When the SCI is receiving 9-bit characters, R8 is the read-only ninth bit (bit 8) of the received character.  
R8 is received at the same time that the SCDR receives the other 8 bits.  
When the SCI is receiving 8-bit characters, R8 is a copy of the eighth bit (bit 7). Reset has no effect on  
the R8 bit.  
T8 — Transmitted Bit 8  
When the SCI is transmitting 9-bit characters, T8 is the read/write ninth bit (bit 8) of the transmitted  
character. T8 is loaded into the transmit shift register at the same time that the SCDR is loaded into  
the transmit shift register. Reset has no effect on the T8 bit.  
DMARE — DMA Receive Enable Bit  
CAUTION  
The DMA module is not included on this MCU. Writing a logic 1 to DMARE  
or DMATE may adversely affect MCU performance.  
1 = DMA not enabled to service SCI receiver DMA service requests generated by the SCRF bit (SCI  
receiver CPU interrupt requests enabled)  
0 = DMA not enabled to service SCI receiver DMA service requests generated by the SCRF bit (SCI  
receiver CPU interrupt requests enabled)  
DMATE — DMA Transfer Enable Bit  
CAUTION  
The DMA module is not included on this MCU. Writing a logic 1 to DMARE  
or DMATE may adversely affect MCU performance.  
1 = SCTE DMA service requests enabled; SCTE CPU interrupt requests disabled  
0 = SCTE DMA service requests disabled; SCTE CPU interrupt requests enabled  
ORIE — Receiver Overrun Interrupt Enable Bit  
This read/write bit enables SCI error CPU interrupt requests generated by the receiver overrun bit, OR.  
1 = SCI error CPU interrupt requests from OR bit enabled  
0 = SCI error CPU interrupt requests from OR bit disabled  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
138  
Freescale Semiconductor  
I/O Registers  
NEIE — Receiver Noise Error Interrupt Enable Bit  
This read/write bit enables SCI error CPU interrupt requests generated by the noise error bit, NE.  
Reset clears NEIE.  
1 = SCI error CPU interrupt requests from NE bit enabled  
0 = SCI error CPU interrupt requests from NE bit disabled  
FEIE — Receiver Framing Error Interrupt Enable Bit  
This read/write bit enables SCI error CPU interrupt requests generated by the framing error bit, FE.  
Reset clears FEIE.  
1 = SCI error CPU interrupt requests from FE bit enabled  
0 = SCI error CPU interrupt requests from FE bit disabled  
PEIE — Receiver Parity Error Interrupt Enable Bit  
This read/write bit enables SCI error CPU interrupt  
requests generated by the parity error bit, PE.  
(See 9.8.4 SCI Status Register 1.) Reset clears PEIE.  
1 = SCI error CPU interrupt requests from PE bit enabled  
0 = SCI error CPU interrupt requests from PE bit disabled  
9.8.4 SCI Status Register 1  
SCI status register 1 (SCS1) contains flags to signal these conditions:  
Transfer of SCDR data to transmit shift register complete  
Transmission complete  
Transfer of receive shift register data to SCDR complete  
Receiver input idle  
Receiver overrun  
Noisy data  
Framing error  
Parity error  
Address:  
$016  
Bit 7  
6
5
4
3
2
1
Bit 0  
PE  
Read:  
Write:  
Reset:  
SCTE  
TC  
SCRF  
IDLE  
OR  
NF  
FE  
1
1
0
0
0
0
0
0
= Unimplemented  
Figure 9-12. SCI Status Register 1 (SCS1)  
SCTE — SCI Transmitter Empty Bit  
This clearable, read-only bit is set when the SCDR transfers a character to the transmit shift register.  
SCTE can generate an SCI transmitter CPU interrupt request. When the SCTIE bit in SCC2 is set,  
SCTE generates an SCI transmitter CPU interrupt request. In normal operation, clear the SCTE bit by  
reading SCS1 with SCTE set and then writing to SCDR. Reset sets the SCTE bit.  
1 = SCDR data transferred to transmit shift register  
0 = SCDR data not transferred to transmit shift register  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
139  
Serial Communications Interface (SCI)  
TC — Transmission Complete Bit  
This read-only bit is set when the SCTE bit is set, and no data, preamble, or break character is being  
transmitted. TC generates an SCI transmitter CPU interrupt request if the TCIE bit in SCC2 is also set.  
TC is automatically cleared when data, preamble or break is queued and ready to be sent. There may  
be up to 1.5 transmitter clocks of latency between queueing data, preamble, and break and the  
transmission actually starting. Reset sets the TC bit.  
1 = No transmission in progress  
0 = Transmission in progress  
SCRF — SCI Receiver Full Bit  
This clearable, read-only bit is set when the data in the receive shift register transfers to the SCI data  
register. SCRF can generate an SCI receiver CPU interrupt request. When the SCRIE bit in SCC2 is  
set, SCRF generates a CPU interrupt request. In normal operation, clear the SCRF bit by reading  
SCS1 with SCRF set and then reading the SCDR. Reset clears SCRF.  
1 = Received data available in SCDR  
0 = Data not available in SCDR  
IDLE — Receiver Idle Bit  
This clearable, read-only bit is set when 10 or 11 consecutive logic 1s appear on the receiver input.  
IDLE generates an SCI receiver CPU interrupt request if the ILIE bit in SCC2 is also set. Clear the IDLE  
bit by reading SCS1 with IDLE set and then reading the SCDR. After the receiver is enabled, it must  
receive a valid character that sets the SCRF bit before an idle condition can set the IDLE bit. Also, after  
the IDLE bit has been cleared, a valid character must again set the SCRF bit before an idle condition  
can set the IDLE bit. Reset clears the IDLE bit.  
1 = Receiver input idle  
0 = Receiver input active (or idle since the IDLE bit was cleared)  
OR — Receiver Overrun Bit  
This clearable, read-only bit is set when software fails to read the SCDR before the receive shift  
register receives the next character. The OR bit generates an SCI error CPU interrupt request if the  
ORIE bit in SCC3 is also set. The data in the shift register is lost, but the data already in the SCDR is  
not affected. Clear the OR bit by reading SCS1 with OR set and then reading the SCDR. Reset clears  
the OR bit.  
1 = Receive shift register full and SCRF = 1  
0 = No receiver overrun  
Software latency may allow an overrun to occur between reads of SCS1 and SCDR in the flag-clearing  
sequence. Figure 9-13 shows the normal flag-clearing sequence and an example of an overrun  
caused by a delayed flag-clearing sequence. The delayed read of SCDR does not clear the OR bit  
because OR was not set when SCS1 was read. Byte 2 caused the overrun and is lost. The next  
flag-clearing sequence reads byte 3 in the SCDR instead of byte 2.  
In applications that are subject to software latency or in which it is important to know which byte is lost  
due to an overrun, the flag-clearing routine can check the OR bit in a second read of SCS1 after  
reading the data register.  
NF — Receiver Noise Flag Bit  
This clearable, read-only bit is set when the SCI detects noise on the RxD pin. NF generates an SCI  
error CPU interrupt request if the NEIE bit in SCC3 is also set. Clear the NF bit by reading SCS1 and  
then reading the SCDR. Reset clears the NF bit.  
1 = Noise detected  
0 = No noise detected  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
140  
Freescale Semiconductor  
I/O Registers  
FE — Receiver Framing Error Bit  
This clearable, read-only bit is set when a logic 0 is accepted as the stop bit. FE generates an SCI error  
CPU interrupt request if the FEIE bit in SCC3 also is set. Clear the FE bit by reading SCS1 with FE set  
and then reading the SCDR. Reset clears the FE bit.  
1 = Framing error detected  
0 = No framing error detected  
NORMAL FLAG CLEARING SEQUENCE  
BYTE 1  
BYTE 2  
BYTE 3  
BYTE 4  
READ SCS1  
SCRF = 1  
OR = 0  
READ SCS1  
SCRF = 1  
OR = 0  
READ SCS1  
SCRF = 1  
OR = 0  
READ SCDR  
BYTE 1  
READ SCDR  
BYTE 2  
READ SCDR  
BYTE 3  
DELAYED FLAG CLEARING SEQUENCE  
BYTE 1  
BYTE 2  
BYTE 3  
BYTE 4  
READ SCS1  
SCRF = 1  
OR = 0  
READ SCS1  
SCRF = 1  
OR = 1  
READ SCDR  
BYTE 1  
READ SCDR  
BYTE 3  
Figure 9-13. Flag Clearing Sequence  
PE — Receiver Parity Error Bit  
This clearable, read-only bit is set when the SCI detects a parity error in incoming data. PE generates  
an SCI error CPU interrupt request if the PEIE bit in SCC3 is also set. Clear the PE bit by reading SCS1  
with PE set and then reading the SCDR. Reset clears the PE bit.  
1 = Parity error detected  
0 = No parity error detected  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
141  
Serial Communications Interface (SCI)  
9.8.5 SCI Status Register 2  
SCI status register 2 contains flags to signal the following conditions:  
Break character detected  
Incoming data  
Address:  
$0017  
Bit 7  
6
5
0
4
0
3
0
2
0
1
Bit 0  
RPF  
Read:  
Write:  
Reset:  
BKF  
0
0
0
0
= Unimplemented  
Figure 9-14. SCI Status Register 2 (SCS2)  
BKF — Break Flag Bit  
This clearable, read-only bit is set when the SCI detects a break character on the RxD pin. In SCS1,  
the FE and SCRF bits are also set. In 9-bit character transmissions, the R8 bit in SCC3 is cleared. BKF  
does not generate a CPU interrupt request. Clear BKF by reading SCS2 with BKF set and then reading  
the SCDR. Once cleared, BKF can become set again only after logic 1s again appear on the RxD pin  
followed by another break character. Reset clears the BKF bit.  
1 = Break character detected  
0 = No break character detected  
RPF — Reception in Progress Flag Bit  
This read-only bit is set when the receiver detects a logic 0 during the RT1 time period of the start bit  
search. RPF does not generate an interrupt request. RPF is reset after the receiver detects false start  
bits (usually from noise or a baud rate mismatch) or when the receiver detects an idle character. Polling  
RPF before disabling the SCI module or entering stop mode can show whether a reception is in  
progress.  
1 = Reception in progress  
0 = No reception in progress  
9.8.6 SCI Data Register  
The SCI data register (SCDR) is the buffer between the internal data bus and the receive and transmit  
shift registers. Reset has no effect on data in the SCI data register.  
Address:  
$0018  
Bit 7  
R7  
6
5
4
3
2
1
Bit 0  
R0  
Read:  
Write:  
Reset:  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
T7  
T0  
Unaffected by reset  
Figure 9-15. SCI Data Register (SCDR)  
R7/T7–R0/T0 — Receive/Transmit Data Bits  
Reading the SCDR accesses the read-only received data bits, R[7:0]. Writing to the SCDR writes the  
data to be transmitted, T[7:0]. Reset has no effect on the SCDR.  
NOTE  
Do not use read/modify/write instructions on the SCI data register.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
142  
Freescale Semiconductor  
I/O Registers  
9.8.7 SCI Baud Rate Register  
The baud rate register (SCBR) selects the baud rate for both the receiver and the transmitter.  
Address:  
$0019  
Bit 7  
0
6
0
5
SCP1  
0
4
SCP0  
0
3
2
1
SCR1  
0
Bit 0  
SCR0  
0
Read:  
Write:  
Reset:  
R
SCR2  
0
0
0
0
= Unimplemented  
R
= Reserved  
Figure 9-16. SCI Baud Rate Register (SCBR)  
SCP1 and SCP0 — SCI Baud Rate Prescaler Bits  
These read/write bits select the baud rate prescaler divisor as shown in Table 9-6. Reset clears SCP1  
and SCP0.  
Table 9-6. SCI Baud Rate Prescaling  
SCP1 and SCP0  
Prescaler Divisor (PD)  
00  
01  
10  
11  
1
3
4
13  
SCR2–SCR0 — SCI Baud Rate Select Bits  
These read/write bits select the SCI baud rate divisor as shown in Table 9-7. Reset clears  
SCR2–SCR0.  
Table 9-7. SCI Baud Rate Selection  
SCR2, SCR1, and SCR0  
Baud Rate Divisor (BD)  
000  
001  
010  
011  
100  
101  
110  
111  
1
2
4
8
16  
32  
64  
128  
Use this formula to calculate the SCI baud rate:  
SCI clock source  
baud rate = --------------------------------------------  
64 × PD × BD  
where:  
SCI clock source = bus clock  
PD = prescaler divisor  
BD = baud rate divisor  
Table 9-8 shows the SCI baud rates that can be generated with a 4.9152MHz bus clock.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
143  
Serial Communications Interface (SCI)  
Table 9-8. SCI Baud Rate Selection Examples  
Prescaler  
Divisor (PD)  
SCR2, SCR1,  
and SCR0  
Baud Rate  
Divisor (BD)  
Baud Rate  
(BUS CLOCK=4.9152MHz)  
SCP1 and SCP0  
00  
00  
00  
00  
00  
00  
00  
00  
01  
01  
01  
01  
01  
01  
01  
01  
10  
10  
10  
10  
10  
10  
10  
10  
11  
11  
11  
11  
11  
11  
11  
11  
1
1
000  
001  
010  
011  
100  
101  
110  
111  
000  
001  
010  
011  
100  
101  
110  
111  
000  
001  
010  
011  
100  
101  
110  
111  
000  
001  
010  
011  
100  
101  
110  
111  
1
2
76,800  
38,400  
19,200  
9,600  
4,800  
2,400  
1,200  
600  
1
4
1
8
1
16  
32  
64  
128  
1
1
1
1
3
25,600  
12,800  
6,400  
3,200  
1,600  
800  
3
2
3
4
3
8
3
16  
32  
64  
128  
1
3
3
400  
3
200  
4
19,200  
9,600  
4,800  
2,400  
1,200  
600  
4
2
4
4
4
8
4
16  
32  
64  
128  
1
4
4
300  
4
150  
13  
13  
13  
13  
13  
13  
13  
13  
5,908  
2,954  
1,477  
739  
2
4
8
16  
32  
64  
128  
369  
185  
92  
46  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
144  
Chapter 10  
Analog-to-Digital Converter (ADC)  
10.1 Introduction  
This section describes the 13-channel, 8-bit linear successive approximation analog-to-digital converter  
(ADC).  
10.2 Features  
Features of the ADC module include:  
13 channels with multiplexed input  
Linear successive approximation with monotonicity  
8-bit resolution  
Single or continuous conversion  
Conversion complete flag or conversion complete interrupt  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read: COCO  
ADC Status and Control  
AIEN  
ADCO  
ADCH4  
ADCH3  
ADCH2  
ADCH1  
ADCH0  
$003C  
Register Write:  
(ADSCR)  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
0
0
0
1
1
1
1
1
AD7  
AD6  
AD5  
AD4  
AD3  
AD2  
AD1  
AD0  
ADC Data Register  
(ADR)  
$003D  
$003E  
Indeterminate after reset  
0
0
0
0
0
0
0
0
ADIV2  
0
ADIV1  
0
ADIV0  
0
ADC Input Clock Register  
(ADICLK)  
0
0
Figure 10-1. ADC I/O Register Summary  
10.3 Functional Description  
Thirteen ADC channels are available for sampling external sources at pins PTB0–PTB7, PTD0–PTD3,  
and ADC12/T2CLK. An analog multiplexer allows the single ADC converter to select one of the 13 ADC  
channels as ADC voltage input (ADCVIN). ADCVIN is converted by the successive approximation  
register-based counters. The ADC resolution is 8 bits. When the conversion is completed, ADC puts the  
result in the ADC data register and sets a flag or generates an interrupt.  
Figure 10-2 shows a block diagram of the ADC.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
145  
Analog-to-Digital Converter (ADC)  
INTERNAL  
DATA BUS  
READ DDRB/DDRD  
WRITE DDRB/DDRD  
DISABLE  
DDRBx/DDRDx  
PTBx/PTDx  
RESET  
WRITE PTB/PTD  
READ PTB/PTD  
ADCx  
DISABLE  
ADC CHANNEL x  
ADC DATA REGISTER  
ADC0–ADC11  
ADC12  
ADC VOLTAGE IN  
ADCVIN  
CONVERSION  
COMPLETE  
CHANNEL  
SELECT  
INTERRUPT  
LOGIC  
ADCH[4:0]  
ADC  
(1 OF 13 CHANNELS)  
ADC CLOCK  
AIEN  
COCO  
CLOCK  
GENERATOR  
BUS CLOCK  
ADIV[2:0]  
Figure 10-2. ADC Block Diagram  
10.3.1 ADC Port I/O Pins  
PTB0–PTB7 and PTD0–PTD3 are general-purpose I/O pins that are shared with the ADC channels. The  
channel select bits (ADC status and control register, $003C), define which ADC channel/port pin will be  
used as the input signal. The ADC overrides the port I/O logic by forcing that pin as input to the ADC. The  
remaining ADC channels/port pins are controlled by the port I/O logic and can be used as  
general-purpose I/O. Writes to the port register or DDR will not have any affect on the port pin that is  
selected by the ADC. Read of a port pin which is in use by the ADC will return a logic 0 if the corresponding  
DDR bit is at logic 0. If the DDR bit is at logic 1, the value in the port data latch is read.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
146  
Freescale Semiconductor  
Interrupts  
10.3.2 Voltage Conversion  
When the input voltage to the ADC equals VDD, the ADC converts the signal to $FF (full scale). If the input  
voltage equals VSS, the ADC converts it to $00. Input voltages between VDD and VSS are a straight-line  
linear conversion. All other input voltages will result in $FF if greater than VDD and $00 if less than VSS.  
NOTE  
Input voltage should not exceed the analog supply voltages.  
10.3.3 Conversion Time  
Fourteen ADC internal clocks are required to perform one conversion. The ADC starts a conversion on  
the first rising edge of the ADC internal clock immediately following a write to the ADSCR. If the ADC  
internal clock is selected to run at 1MHz, then one conversion will take 14µs to complete. With a 1MHz  
ADC internal clock the maximum sample rate is 71.43kHz.  
14 ADC Clock Cycles  
Conversion Time =  
ADC Clock Frequency  
Number of Bus Cycles = Conversion Time × Bus Frequency  
10.3.4 Continuous Conversion  
In the continuous conversion mode, the ADC continuously converts the selected channel filling the ADC  
data register with new data after each conversion. Data from the previous conversion will be overwritten  
whether that data has been read or not. Conversions will continue until the ADCO bit is cleared. The  
COCO bit (ADC status and control register, $003C) is set after each conversion and can be cleared by  
writing the ADC status and control register or reading of the ADC data register.  
10.3.5 Accuracy and Precision  
The conversion process is monotonic and has no missing codes.  
10.4 Interrupts  
When the AIEN bit is set, the ADC module is capable of generating a CPU interrupt after each ADC  
conversion. A CPU interrupt is generated if the COCO bit is at logic 0. The COCO bit is not used as a  
conversion complete flag when interrupts are enabled.  
10.5 Low-Power Modes  
The following subsections describe the ADC in low-power modes.  
10.5.1 Wait Mode  
The ADC continues normal operation during wait mode. Any enabled CPU interrupt request from the ADC  
can bring the MCU out of wait mode. If the ADC is not required to bring the MCU out of wait mode, power  
down the ADC by setting the ADCH[4:0] bits in the ADC status and control register to logic 1’s before  
executing the WAIT instruction.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
147  
Analog-to-Digital Converter (ADC)  
10.5.2 Stop Mode  
The ADC module is inactive after the execution of a STOP instruction. Any pending conversion is aborted.  
ADC conversions resume when the MCU exits stop mode. Allow one conversion cycle to stabilize the  
analog circuitry before attempting a new ADC conversion after exiting stop mode.  
10.6 I/O Signals  
The ADC module has 12 channels that are shared with I/O port B and port D, and one channel on  
ADC12/T2CLK pin.  
10.6.1 ADC Voltage In (ADCVIN)  
ADCVIN is the input voltage signal from one of the 13 ADC channels to the ADC module.  
10.7 I/O Registers  
These I/O registers control and monitor ADC operation:  
ADC status and control register (ADSCR)  
ADC data register (ADR)  
ADC clock register (ADICLK)  
10.7.1 ADC Status and Control Register  
The following paragraphs describe the function of the ADC status and control register.  
Address:  
$003C  
Bit 7  
6
AIEN  
0
5
4
ADCH4  
1
3
ADCH3  
1
2
ADCH2  
1
1
ADCH1  
1
Bit 0  
ADCH0  
1
Read:  
Write:  
Reset:  
COCO  
ADCO  
0
0
= Unimplemented  
Figure 10-3. ADC Status and Control Register (ADSCR)  
COCO — Conversions Complete Bit  
When the AIEN bit is a logic 0, the COCO is a read-only bit which is set each time a conversion is  
completed. This bit is cleared whenever the ADC status and control register is written or whenever the  
ADC data register is read. Reset clears this bit.  
1 = Conversion completed (AIEN = 0)  
0 = Conversion not completed (AIEN = 0)  
When the AIEN bit is a logic 1 (CPU interrupt enabled), the COCO is a read-only bit, and will always  
be logic 0 when read.  
AIEN — ADC Interrupt Enable Bit  
When this bit is set, an interrupt is generated at the end of an ADC conversion. The interrupt signal is  
cleared when the data register is read or the status/control register is written. Reset clears the AIEN bit.  
1 = ADC interrupt enabled  
0 = ADC interrupt disabled  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
148  
Freescale Semiconductor  
I/O Registers  
ADCO — ADC Continuous Conversion Bit  
When set, the ADC will convert samples continuously and update the ADR register at the end of each  
conversion. Only one conversion is allowed when this bit is cleared. Reset clears the ADCO bit.  
1 = Continuous ADC conversion  
0 = One ADC conversion  
ADCH[4:0] — ADC Channel Select Bits  
ADCH[4:0] form a 5-bit field which is used to select one of the ADC channels. The five channel select  
bits are detailed in the following table. Care should be taken when using a port pin as both an analog  
and a digital input simultaneously to prevent switching noise from corrupting the analog signal. (See  
Table 10-1.)  
The ADC subsystem is turned off when the channel select bits are all set to one. This feature allows  
for reduced power consumption for the MCU when the ADC is not used. Reset sets all of these bits to  
a logic 1.  
NOTE  
Recovery from the disabled state requires one conversion cycle to stabilize.  
Table 10-1. MUX Channel Select  
ADCH4  
ADCH3  
ADCH2  
ADCH1  
ADCH0  
ADC Channel  
Input Select  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
:
0
0
0
0
0
0
0
0
1
1
1
1
1
1
:
0
0
0
0
1
1
1
1
0
0
0
0
1
1
:
0
0
1
1
0
0
1
1
0
0
1
1
0
0
:
0
1
0
1
0
1
0
1
0
1
0
1
0
1
:
ADC0  
ADC1  
ADC2  
ADC3  
ADC4  
ADC5  
ADC6  
ADC7  
ADC8  
ADC9  
ADC10  
ADC11  
ADC12  
PTB0  
PTB1  
PTB2  
PTB3  
PTB4  
PTB5  
PTB6  
PTB7  
PTD3  
PTD2  
PTD1  
PTD0  
ADC12/T2CLK  
(1)  
Unused  
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
1
1
1
1
1
0
0
1
1
0
1
0
1
0
1
Reserved  
Reserved  
(2)  
V
DD  
(2)  
V
SS  
ADC power off  
1. If any unused channels are selected, the resulting ADC conversion will be unknown.  
2. The voltage levels supplied from internal reference nodes as specified in the table are used to verify the  
operation of the ADC converter both in production test and for user applications.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
149  
Analog-to-Digital Converter (ADC)  
10.7.2 ADC Data Register  
One 8-bit result register is provided. This register is updated each time an ADC conversion completes.  
Address:  
$003D  
Bit 7  
6
5
4
3
2
1
Bit 0  
AD0  
Read:  
Write:  
Reset:  
AD7  
AD6  
AD5  
AD4  
AD3  
AD2  
AD1  
Indeterminate after reset  
= Unimplemented  
Figure 10-4. ADC Data Register (ADR)  
10.7.3 ADC Input Clock Register  
This register selects the clock frequency for the ADC.  
Address:  
$003E  
Bit 7  
6
ADIV1  
0
5
4
0
3
0
2
0
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
ADIV2  
0
ADIV0  
0
0
0
0
0
0
= Unimplemented  
Figure 10-5. ADC Input Clock Register (ADICLK)  
ADIV[2:0] — ADC Clock Prescaler Bits  
ADIV[2:0] form a 3-bit field which selects the divide ratio used by the ADC to generate the internal ADC  
clock. Table 10-2 shows the available clock configurations. The ADC clock should be set to  
approximately 1MHz.  
Table 10-2. ADC Clock Divide Ratio  
ADIV2  
ADIV1  
ADIV0  
ADC Clock Rate  
Bus Clock ÷ 1  
Bus Clock ÷ 2  
Bus Clock ÷ 4  
Bus Clock ÷ 8  
Bus Clock ÷ 16  
0
0
0
1
1
X
0
1
0
1
X
0
0
0
1
X = don’t care  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
150  
Chapter 11  
Input/Output (I/O) Ports  
11.1 Introduction  
Twenty six (26) bidirectional input-output (I/O) pins form four parallel ports. All I/O pins are programmable  
as inputs or outputs.  
NOTE  
Connect any unused I/O pins to an appropriate logic level, either VDD or  
VSS. Although the I/O ports do not require termination for proper operation,  
termination reduces excess current consumption and the possibility of  
electrostatic damage.  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
PTA7  
PTA6  
PTA5  
PTA4  
PTA3  
PTA2  
PTA1  
PTA0  
$0000 Port A Data Register (PTA) Write:  
Reset:  
Unaffected by reset  
PTB4 PTB3  
Unaffected by reset  
PTD4 PTD3  
Unaffected by reset  
Read:  
PTB7  
PTD7  
PTB6  
PTD6  
PTB5  
PTD5  
PTB2  
PTD2  
PTB1  
PTD1  
PTB0  
PTD0  
$0001 Port B Data Register (PTB) Write:  
Reset:  
Read:  
$0003 Port D Data Register (PTD) Write:  
Reset:  
Read:  
DDRA7  
DDRA6  
DDRA5  
DDRA4  
DDRA3  
DDRA2  
DDRA1  
0
DDRA0  
0
Data Direction Register A  
(DDRA)  
$0004  
$0005  
$0007  
$0008  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
0
DDRB7  
0
0
DDRB6  
0
0
DDRB5  
0
0
DDRB4  
0
0
DDRB3  
0
0
DDRB2  
0
DDRB1  
0
DDRB0  
0
Data Direction Register B  
(DDRB)  
DDRD7  
0
DDRD6  
0
DDRD5  
0
DDRD4  
0
DDRD3  
0
DDRD2  
0
DDRD1  
0
DDRD0  
0
Data Direction Register D  
(DDRD)  
PTE1  
PTE0  
Port E Data Register  
(PTE)  
Unaffected by reset  
0
0
0
0
0
0
0
SLOWD7 SLOWD6 PTDPU7 PTDPU6  
Port D Control Register  
(PDCR)  
$000A  
$000C  
0
0
0
0
DDRE1  
0
0
DDRE0  
0
Data Direction Register E  
(DDRE)  
0
0
0
0
0
0
Figure 11-1. I/O Port Register Summary  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
151  
Input/Output (I/O) Ports  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Port A Input Pull-up Enable  
PTA6EN PTAPUE6 PTAPUE5 PTAPUE4 PTAPUE3 PTAPUE2 PTAPUE1 PTAPUE0  
$000D  
Register Write:  
(PTAPUE)  
Reset:  
Read:  
0
PTAPUE7  
0
0
0
0
0
0
0
0
0
0
0
PTA7 Input Pull-up  
Enable Register Write:  
(PTA7PUE)  
$000E  
Reset:  
0
0
0
0
Figure 11-1. I/O Port Register Summary  
Table 11-1. Port Control Register Bits Summary  
Module Control  
Port  
Bit  
DDR  
Pin  
Module  
Register  
Control Bit  
KBIE0  
0
1
2
3
4
5
DDRA0  
DDRA1  
DDRA2  
DDRA3  
DDRA4  
DDRA5  
PTA0/KBI0  
PTA1/KBI1  
PTA2/KBI2  
PTA3/KBI3  
PTA4/KBI4  
PTA5/KBI5  
KBIE1  
KBIE2  
KBI  
KBIER ($001B)  
KBIE3  
A
KBIE4  
KBIE5  
OSC  
KBI  
PTAPUE ($000D)  
KBIER ($001B)  
PTA6EN  
KBIE6  
6
DDRA6  
RCCLK/PTA6/KBI6(1)  
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
DDRA7  
DDRB0  
DDRB1  
DDRB2  
DDRB3  
DDRB4  
DDRB5  
DDRB6  
DDRB7  
DDRD0  
DDRD1  
DDRD2  
DDRD3  
DDRD4  
DDRD5  
DDRD6  
DDRD7  
DDRE0  
DDRE1  
KBI  
KBIER ($001B)  
KBIE7  
PTA7/KBI7  
PTB0/ADC0  
PTB1/ADC1  
PTB2/ADC2  
PTB3/ADC3  
PTB4/ADC4  
PTB5/ADC5  
PTB6/ADC6  
PTB7/ADC7  
PTD0/ADC11  
PTD1/ADC10  
PTD2/ADC9  
PTD3/ADC8  
PTD4/T1CH0  
PTD5/T1CH1  
PTD6/TxD  
B
ADC  
ADSCR ($003C)  
ADCH[4:0]  
ADC  
ADSCR ($003C)  
ADCH[4:0]  
D
E
T1SC0 ($0025)  
T1SC1 ($0028)  
ELS0B:ELS0A  
ELS1B:ELS1A  
TIM1  
SCI  
SCC1 ($0013)  
ENSCI  
PTD7/RxD  
T2SC0 ($0035)  
T2SC1 ($0038)  
ELS0B:ELS0A  
ELS1B:ELS1A  
PTE0/T2CH0  
PTE1/T2CH1  
TIM2  
1. RCCLK/PTA6/KBI6 pin is only available when OSCSEL=0 (RC option);  
PTAPUE register has priority control over the port pin.  
RCCLK/PTA6/KBI6 is the OSC2 pin when OSCSEL=1 (XTAL option).  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
152  
Port A  
11.2 Port A  
Port A is an 8-bit special function port that shares all of its pins with the keyboard interrupt (KBI) module  
(see Chapter 13 Keyboard Interrupt Module (KBI)). Each port A pin also has software configurable pull-up  
device if the corresponding port pin is configured as input port. PTA0–PTA5 and PTA7 has direct LED  
drive capability.  
NOTE  
PTA0–PTA5 pins are available on 28-pin and 32-pin packages only.  
PTA7 pin is available on 32-pin packages only.  
11.2.1 Port A Data Register (PTA)  
The port A data register (PTA) contains a data latch for each of the eight port A pins.  
Address:  
$0000  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTA7  
PTA6  
PTA5  
PTA4  
PTA3  
PTA2  
PTA1  
PTA0  
Unaffected by Reset  
LED  
(Sink)  
LED  
(Sink)  
LED  
(Sink)  
LED  
(Sink)  
LED  
(Sink)  
LED  
(Sink)  
LED  
(Sink)  
Additional Functions:  
pull-up  
pull-up  
pull-up  
pull-up  
pull-up  
pull-up  
pull-up  
pull-up  
Keyboard Keyboard Keyboard Keyboard Keyboard Keyboard Keyboard Keyboard  
Interrupt Interrupt Interrupt Interrupt Interrupt Interrupt Interrupt Interrupt  
Alternative Functions:  
Figure 11-2. Port A Data Register (PTA)  
PTA[7:0] — Port A Data Bits  
These read/write bits are software programmable. Data direction of each port A pin is under the control  
of the corresponding bit in data direction register A. Reset has no effect on port A data.  
KBI7–KBI0 — Port A Keyboard Interrupts  
The keyboard interrupt enable bits, KBIE[7:0], in the keyboard interrupt control register (KBIER) enable  
the port A pins as external interrupt pins, (see Chapter 13 Keyboard Interrupt Module (KBI)).  
11.2.2 Data Direction Register A (DDRA)  
Data direction register A determines whether each port A pin is an input or an output. Writing a logic 1 to  
a DDRA bit enables the output buffer for the corresponding port A pin; a logic 0 disables the output buffer.  
NOTE  
For those devices packaged in a 28-pin package, PTA7 is not connected.  
DDRA7 should be set to a 1 to configure PTA7 as an output.  
For those devices packaged in a 20-pin package, PTA0–PTA5 and PTA7  
are not connected. DDRA0–DDRA5 and DDRA7 should be set to a 1 to  
configure PTA0–PTA5 and PTA7 as outputs.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
153  
Input/Output (I/O) Ports  
Address:  
$0004  
Bit 7  
6
DDRA6  
0
5
DDRA5  
0
4
DDRA4  
0
3
DDRA3  
0
2
DDRA2  
0
1
DDRA1  
0
Bit 0  
DDRA0  
0
Read:  
Write:  
Reset:  
DDRA7  
0
Figure 11-3. Data Direction Register A (DDRA)  
DDRA[7:0] — Data Direction Register A Bits  
These read/write bits control port A data direction. Reset clears DDRA[7:0], configuring all port A pins  
as inputs.  
1 = Corresponding port A pin configured as output  
0 = Corresponding port A pin configured as input  
NOTE  
Avoid glitches on port A pins by writing to the port A data register before  
changing data direction register A bits from 0 to 1.  
Figure 11-4 shows the port A I/O logic.  
READ DDRA ($0004)  
PTAPUEx  
WRITE DDRA ($0004)  
DDRAx  
RESET  
WRITE PTA ($0000)  
PTAx  
PTAx  
READ PTA ($0000)  
To KBI  
Figure 11-4. Port A I/O Circuit  
When DDRAx is a logic 1, reading address $0000 reads the PTAx data latch. When DDRAx is a logic 0,  
reading address $0000 reads the voltage level on the pin. The data latch can always be written,  
regardless of the state of its data direction bit.  
Table 11-2 summarizes the operation of the port A pins.  
Table 11-2. Port A Pin Functions  
Accesses to DDRA  
Read/Write  
Accesses to PTA  
PTAPUE  
Bit  
DDRA Bit  
PTA Bit  
I/O Pin Mode  
Read  
Write  
(2)  
X(1)  
X
PTA[7:0](3)  
1
0
DDRA[7:0]  
Pin  
Input, VDD  
Input, Hi-Z(4)  
Output  
PTA[7:0](3)  
PTA[7:0]  
0
0
1
DDRA[7:0]  
DDRA[7:0]  
Pin  
X
X
PTA[7:0]  
1. X = Don’t care.  
2. Pin pulled to VDD by internal pull-up.  
3. Writing affects data register, but does not affect input.  
4. Hi-Z = High impedance.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
154  
Port A  
11.2.3 Port A Input Pull-Up Enable Registers  
The port A input pull-up enable registers contain a software configurable pull-up device for each of the  
eight port A pins. Each bit is individually configurable and requires the corresponding data direction  
register, DDRAx be configured as input. Each pull-up device is automatically disabled when its  
corresponding DDRAx bit is configured as output.  
Address:  
$000D  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTA6EN PTAPUE6 PTAPUE5 PTAPUE4 PTAPUE3 PTAPUE2 PTAPUE1 PTAPUE0  
0
0
0
0
0
0
0
0
Figure 11-5. Port A Input Pull-up Enable Register (PTAPUE)  
Address:  
$000E  
Bit 7  
PTAPUE7  
0
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
0
0
0
0
0
0
0
Figure 11-6. PTA7 Input Pull-up Enable Register (PTA7PUE)  
PTA6EN — Enable PTA6 on OSC2  
This read/write bit configures the OSC2 pin function when RC oscillator option is selected. This bit has  
no effect for XTAL oscillator option.  
1 = OSC2 pin configured for PTA6 I/O, and has all the interrupt and pull-up functions  
0 = OSC2 pin outputs the RC oscillator clock (RCCLK)  
PTAPUE[7:0] — Port A Input Pull-up Enable Bits  
These read/write bits are software programmable to enable pull-up devices on port A pins.  
1 = Corresponding port A pin configured to have internal pull-up if its DDRA bit is set to 0  
0 = Pull-up device is disconnected on the corresponding port A pin regardless of the state of its  
DDRA bit  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
155  
Input/Output (I/O) Ports  
11.3 Port B  
Port B is an 8-bit special function port that shares all of its port pins with the analog-to-digital converter  
(ADC) module, see Chapter 10  
11.3.1 Port B Data Register (PTB)  
The port B data register contains a data latch for each of the eight port B pins.  
Address:  
$0001  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
PTB7  
PTB6  
PTB5  
PTB4  
PTB3  
PTB2  
PTB1  
PTB0  
Reset:  
Unaffected by reset  
ADC4 ADC3  
Alternative Functions:  
ADC7  
ADC6  
ADC5  
ADC2  
ADC2  
ADC0  
Figure 11-7. Port B Data Register (PTB)  
PTB[7:0] — Port B Data Bits  
These read/write bits are software programmable. Data direction of each port B pin is under the control  
of the corresponding bit in data direction register B. Reset has no effect on port B data.  
ADC7–ADC0 — ADC channels 7 to 0  
ADC7–ADC0 are pins used for the input channels to the analog-to-digital converter module. The  
channel select bits, ADCH[4:0], in the ADC status and control register define which port pin will be used  
as an ADC input and overrides any control from the port I/O logic. See Chapter 10 Analog-to-Digital  
Converter (ADC).  
11.3.2 Data Direction Register B (DDRB)  
Data direction register B determines whether each port B pin is an input or an output. Writing a logic 1 to  
a DDRB bit enables the output buffer for the corresponding port B pin; a logic 0 disables the output buffer.  
Address:  
$0005  
Bit 7  
6
DDRB6  
0
5
DDRB5  
0
4
DDRB4  
0
3
DDRB3  
0
2
DDRB2  
0
1
DDRB1  
0
Bit 0  
DDRB0  
0
Read:  
Write:  
Reset:  
DDRB7  
0
Figure 11-8. Data Direction Register B (DDRB)  
DDRB[7:0] — Data Direction Register B Bits  
These read/write bits control port B data direction. Reset clears DDRB[7:0], configuring all port B pins  
as inputs.  
1 = Corresponding port B pin configured as output  
0 = Corresponding port B pin configured as input  
NOTE  
Avoid glitches on port B pins by writing to the port B data register before  
changing data direction register B bits from 0 to 1. Figure 11-9 shows the  
port B I/O logic.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
156  
Freescale Semiconductor  
Port D  
READ DDRB ($0005)  
WRITE DDRB ($0005)  
DDRBx  
PTBx  
RESET  
WRITE PTB ($0001)  
READ PTB ($0001)  
PTBx  
To Analog-To-Digital Converter  
Figure 11-9. Port B I/O Circuit  
When DDRBx is a logic 1, reading address $0001 reads the PTBx data latch. When DDRBx is a logic 0,  
reading address $0001 reads the voltage level on the pin. The data latch can always be written,  
regardless of the state of its data direction bit. Table 11-3 summarizes the operation of the port B pins.  
Table 11-3. Port B Pin Functions  
Accesses to DDRB  
Read/Write  
Accesses to PTB  
DDRB Bit  
PTB Bit  
I/O Pin Mode  
Read  
Pin  
Write  
0
1
X(1)  
X
Input, Hi-Z(2)  
Output  
DDRB[7:0]  
PTB[7:0](3)  
PTB[7:0]  
DDRB[7:0]  
PTB[7:0]  
1. X = don’t care.  
2. Hi-Z = high impedance.  
3. Writing affects data register, but does not affect the input.  
11.4 Port D  
Port D is an 8-bit special function port that shares two of its pins with the serial communications interface  
module (see Chapter 9), two of its pins with the timer 1 interface module, (see Chapter 8), and four of its  
pins with the analog-to-digital converter module (see Chapter 10). PTD6 and PTD7 each has high current  
sink (25mA) and programmable pull-up. PTD2, PTD3, PTD6 and PTD7 each has LED sink capability.  
NOTE  
PTD0–PTD1 are available on 28-pin and 32-pin packages only.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
157  
Input/Output (I/O) Ports  
11.4.1 Port D Data Register (PTD)  
The port D data register contains a data latch for each of the eight port D pins.  
Address:  
$0003  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTD7  
PTD6  
PTD5  
PTD4  
PTD3  
PTD2  
PTD1  
PTD0  
Unaffected by reset  
LED  
(Sink)  
LED  
(Sink)  
LED  
(Sink)  
LED  
(Sink)  
Additional Functions  
25mA sink  
25mA sink  
(Slow Edge) (Slow Edge)  
pull-up  
RxD  
pull-up  
TxD  
Alternative Functions:  
T1CH1  
T1CH0  
ADC8  
ADC9  
ADC10  
ADC11  
Figure 11-10. Port D Data Register (PTD)  
PTD[7:0] — Port D Data Bits  
These read/write bits are software programmable. Data direction of each port D pin is under the control  
of the corresponding bit in data direction register D. Reset has no effect on port D data.  
ADC11–ADC8 — ADC channels 11 to 8  
ADC[11:8] are pins used for the input channels to the analog-to-digital converter module. The channel  
select bits, ADCH[4:0], in the ADC status and control register define which port pin will be used as an  
ADC input and overrides any control from the port I/O logic. See Chapter 10 Analog-to-Digital  
Converter (ADC).  
T1CH1, T1CH0 — Timer 1 Channel I/Os  
The T1CH1 and T1CH0 pins are the TIM1 input capture/output compare pins. The edge/level select  
bits, ELSxB:ELSxA, determine whether the PTD4/T1CH0 and PTD5/T1CH1 pins are timer channel I/O  
pins or general-purpose I/O pins. See Chapter 8 Timer Interface Module (TIM).  
TxD, RxD — SCI Data I/O Pins  
The TxD and RxD pins are the transmit data output and receive data input for the SCI module. The  
enable SCI bit, ENSCI, in the SCI control register 1 enables the PTD6/TxD and PTD7/RxD pins as SCI  
TxD and RxD pins and overrides any control from the port I/O logic. See Chapter 9 Serial  
Communications Interface (SCI).  
11.4.2 Data Direction Register D (DDRD)  
Data direction register D determines whether each port D pin is an input or an output. Writing a logic 1 to  
a DDRD bit enables the output buffer for the corresponding port D pin; a logic 0 disables the output buffer.  
NOTE  
For those devices packaged in a 20-pin package, PTD0–PTD1 and are not connected. DDRD0–DDRD1  
should be set to a 1 to configure PTD0–PTD1 as outputs.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
158  
Freescale Semiconductor  
Port D  
Address:  
$0007  
Bit 7  
6
DDRD6  
0
5
DDRD5  
0
4
DDRD4  
0
3
DDRD3  
0
2
DDRD2  
0
1
DDRD1  
0
Bit 0  
DDRD0  
0
Read:  
Write:  
Reset:  
DDRD7  
0
Figure 11-11. Data Direction Register D (DDRD)  
DDRD[7:0] — Data Direction Register D Bits  
These read/write bits control port D data direction. Reset clears DDRD[7:0], configuring all port D pins  
as inputs.  
1 = Corresponding port D pin configured as output  
0 = Corresponding port D pin configured as input  
NOTE  
Avoid glitches on port D pins by writing to the port D data register before  
changing data direction register D bits from 0 to 1. Figure 11-12 shows the  
port D I/O logic.  
READ DDRD ($0007)  
PTDPU[6:7]  
WRITE DDRD ($0007)  
DDRDx  
RESET  
WRITE PTD ($0003)  
PTDx  
PTDx  
READ PTD ($0003)  
To ADC, TIM1, SCI  
Figure 11-12. Port D I/O Circuit  
When DDRDx is a logic 1, reading address $0003 reads the PTDx data latch. When DDRDx is a logic 0,  
reading address $0003 reads the voltage level on the pin. The data latch can always be written,  
regardless of the state of its data direction bit. Table 11-4 summarizes the operation of the port D pins.  
Table 11-4. Port D Pin Functions  
Accesses to DDRD  
Read/Write  
Accesses to PTD  
DDRD Bit  
PTD Bit  
I/O Pin Mode  
Read  
Pin  
Write  
PTD[7:0](3)  
0
1
X(1)  
X
Input, Hi-Z(2)  
Output  
DDRD[7:0]  
DDRD[7:0]  
PTD[7:0]  
PTD[7:0]  
1. X = don’t care.  
2. Hi-Z = high impedance.  
3. Writing affects data register, but does not affect the input.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
159  
Input/Output (I/O) Ports  
11.4.3 Port D Control Register (PDCR)  
The port D control register enables/disables the pull-up resistor and slow-edge high current capability of  
pins PTD6 and PTD7.  
Address:  
$000A  
Bit 7  
0
6
0
5
0
4
0
3
2
1
Bit 0  
PTDPU6  
0
Read:  
Write:  
Reset:  
SLOWD7 SLOWD6 PTDPU7  
0
0
0
0
0
0
0
Figure 11-13. Port D Control Register (PDCR)  
SLOWDx — Slow Edge Enable  
The SLOWD6 and SLOWD7 bits enable the slow-edge, open-drain, high current output (25mA sink)  
of port pins PTD6 and PTD7 respectively. DDRDx bit is not affected by SLOWDx.  
1 = Slow edge enabled; pin is open-drain output  
0 = Slow edge disabled; pin is push-pull (standard I/O)  
PTDPUx — Port D Pull-up Enable Bits  
The PTDPU6 and PTDPU7 bits enable the pull-up device on PTD6 and PTD7 respectively, regardless  
the status of DDRDx bit.  
1 = Enable pull-up device  
0 = Disable pull-up device  
11.5 Port E  
Port E is a 2-bit special function port that shares its pins with the timer 2 interface module (see Chapter 8).  
NOTE  
PTE0–PTE1 are available on 32-pin packages only.  
11.5.1 Port E Data Register (PTE)  
The port E data register contains a data latch for each of the two port E pins.  
Address:  
$0008  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
PTE1  
PTE0  
Reset:  
Unaffected by reset  
Alternative Functions:  
T2CH1  
T2CH0  
Figure 11-14. Port E Data Register (PTE)  
PTE[1:0] — Port E Data Bits  
These read/write bits are software programmable. Data direction of each port E pin is under the control  
of the corresponding bit in data direction register E. Reset has no effect on port D data.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
160  
Freescale Semiconductor  
Port E  
T2CH1, T2CH0 — Timer 2 Channel I/Os  
The T2CH1 and T2CH0 pins are the TIM2 input capture/output compare pins. The edge/level select  
bits, ELSxB:ELSxA, determine whether the PTE0/T2CH0 and PTE1/T2CH1 pins are timer channel I/O  
pins or general-purpose I/O pins. See Chapter 8 Timer Interface Module (TIM).  
11.5.2 Data Direction Register E (DDRE)  
Data direction register E determines whether each port E pin is an input or an output. Writing a logic 1 to  
a DDRE bit enables the output buffer for the corresponding port E pin; a logic 0 disables the output buffer.  
NOTE  
For those devices packaged in a 20-pin package and 28-pin package, PTE0–PTE1 are not connected.  
DDRE0–DDRE1 should be set to a 1 to configure PTE0–PTE1 as outputs.  
Address:  
$000C  
Bit 7  
6
5
4
3
2
1
DDRE1  
0
Bit 0  
DDRE0  
0
Read:  
Write:  
Reset:  
0
0
0
0
0
0
Figure 11-15. Data Direction Register E (DDRE)  
DDRE[1:0] — Data Direction Register E Bits  
These read/write bits control port E data direction. Reset clears DDRE[1:0], configuring all port E pins  
as inputs.  
1 = Corresponding port E pin configured as output  
0 = Corresponding port E pin configured as input  
NOTE  
Avoid glitches on port E pins by writing to the port E data register before  
changing data direction register E bits from 0 to 1. Figure 11-16 shows the  
port E I/O logic.  
READ DDRE ($000C)  
WRITE DDRE ($000C)  
DDREx  
RESET  
WRITE PTE ($0008)  
PTEx  
PTEx  
READ PTE ($0008)  
To TIM2  
Figure 11-16. Port E I/O Circuit  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
161  
Input/Output (I/O) Ports  
When DDREx is a logic 1, reading address $0008 reads the PTEx data latch. When DDREx is a logic 0,  
reading address $0008 reads the voltage level on the pin. The data latch can always be written,  
regardless of the state of its data direction bit. Table 11-5 summarizes the operation of the port E pins.  
Table 11-5. Port E Pin Functions  
Accesses to DDRE  
Read/Write  
Accesses to PTE  
DDRE Bit  
PTE Bit  
I/O Pin Mode  
Read  
Pin  
Write  
0
1
X(1)  
X
Input, Hi-Z(2)  
Output  
DDRE[1:0]  
PTE[1:0](3)  
PTE[1:0]  
DDRE[1:0]  
PTE[1:0]  
1. X = don’t care.  
2. Hi-Z = high impedance.  
3. Writing affects data register, but does not affect the input.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
162  
Chapter 12  
External Interrupt (IRQ)  
12.1 Introduction  
The external interrupt (IRQ) module provides a maskable interrupt input.  
12.2 Features  
Features of the IRQ module include the following:  
A dedicated external interrupt pin (IRQ)  
IRQ interrupt control bits  
Hysteresis buffer  
Programmable edge-only or edge and level interrupt sensitivity  
Automatic interrupt acknowledge  
Selectable internal pullup resistor  
12.3 Functional Description  
A logic zero applied to the external interrupt pin can latch a CPU interrupt request. Figure 12-1 shows the  
structure of the IRQ module.  
Interrupt signals on the IRQ pin are latched into the IRQ latch. An interrupt latch remains set until one of  
the following actions occurs:  
Vector fetch — A vector fetch automatically generates an interrupt acknowledge signal that clears  
the IRQ latch.  
Software clear — Software can clear the interrupt latch by writing to the acknowledge bit in the  
interrupt status and control register (INTSCR). Writing a logic one to the ACK bit clears the IRQ  
latch.  
Reset — A reset automatically clears the interrupt latch.  
The external interrupt pin is falling-edge-triggered and is software-configurable to be either falling-edge  
or falling-edge and low-level-triggered. The MODE bit in the INTSCR controls the triggering sensitivity of  
the IRQ pin.  
When the interrupt pin is edge-triggered only, the CPU interrupt request remains set until a vector fetch,  
software clear, or reset occurs.  
When the interrupt pin is both falling-edge and low-level-triggered, the CPU interrupt request remains set  
until both of the following occur:  
Vector fetch or software clear  
Return of the interrupt pin to logic one  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
163  
External Interrupt (IRQ)  
The vector fetch or software clear may occur before or after the interrupt pin returns to logic one. As long  
as the pin is low, the interrupt request remains pending. A reset will clear the latch and the MODE control  
bit, thereby clearing the interrupt even if the pin stays low.  
When set, the IMASK bit in the INTSCR mask all external interrupt requests. A latched interrupt request  
is not presented to the interrupt priority logic unless the IMASK bit is clear.  
NOTE  
The interrupt mask (I) in the condition code register (CCR) masks all  
interrupt requests, including external interrupt requests. (See 5.5 Exception  
Control.)  
RESET  
ACK  
TO CPU FOR  
BIL/BIH  
INSTRUCTIONS  
VECTOR  
FETCH  
DECODER  
VDD  
IRQPUD  
VDD  
INTERNAL  
PULLUP  
DEVICE  
IRQF  
CLR  
D
Q
IRQ  
INTERRUPT  
REQUEST  
SYNCHRONIZER  
CK  
IRQ  
IMASK  
MODE  
TO MODE  
SELECT  
LOGIC  
HIGH  
VOLTAGE  
DETECT  
Figure 12-1. IRQ Module Block Diagram  
Addr.  
Register Name  
IRQ Status and Control  
Register Write:  
(INTSCR)  
Bit 7  
6
5
4
3
2
1
Bit 0  
MODE  
0
Read:  
0
0
0
0
IRQF  
0
IMASK  
0
$001D  
ACK  
0
Reset:  
0
0
0
0
0
= Unimplemented  
Figure 12-2. IRQ I/O Register Summary  
12.3.1 IRQ Pin  
A logic zero on the IRQ pin can latch an interrupt request into the IRQ latch. A vector fetch, software clear,  
or reset clears the IRQ latch.  
If the MODE bit is set, the IRQ pin is both falling-edge-sensitive and low-level-sensitive. With MODE set,  
both of the following actions must occur to clear IRQ:  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
164  
Freescale Semiconductor  
IRQ Module During Break Interrupts  
Vector fetch or software clear — A vector fetch generates an interrupt acknowledge signal to clear  
the latch. Software may generate the interrupt acknowledge signal by writing a logic one to the ACK  
bit in the interrupt status and control register (INTSCR). The ACK bit is useful in applications that  
poll the IRQ pin and require software to clear the IRQ latch. Writing to the ACK bit prior to leaving  
an interrupt service routine can also prevent spurious interrupts due to noise. Setting ACK does  
not affect subsequent transitions on the IRQ pin. A falling edge that occurs after writing to the ACK  
bit latches another interrupt request. If the IRQ mask bit, IMASK, is clear, the CPU loads the  
program counter with the vector address at locations $FFFA and $FFFB.  
Return of the IRQ pin to logic one — As long as the IRQ pin is at logic zero, IRQ remains active.  
The vector fetch or software clear and the return of the IRQ pin to logic one may occur in any order. The  
interrupt request remains pending as long as the IRQ pin is at logic zero. A reset will clear the latch and  
the MODE control bit, thereby clearing the interrupt even if the pin stays low.  
If the MODE bit is clear, the IRQ pin is falling-edge-sensitive only. With MODE clear, a vector fetch or  
software clear immediately clears the IRQ latch.  
The IRQF bit in the INTSCR register can be used to check for pending interrupts. The IRQF bit is not  
affected by the IMASK bit, which makes it useful in applications where polling is preferred.  
Use the BIH or BIL instruction to read the logic level on the IRQ pin.  
NOTE  
When using the level-sensitive interrupt trigger, avoid false interrupts by  
masking interrupt requests in the interrupt routine.  
NOTE  
An internal pull-up resistor to VDD is connected to the IRQ pin; this can be  
disabled by setting the IRQPUD bit in the CONFIG2 register ($001E).  
12.4 IRQ Module During Break Interrupts  
The system integration module (SIM) controls whether the IRQ latch can be cleared during the break  
state. The BCFE bit in the break flag control register (BFCR) enables software to clear the latches during  
the break state. (See Chapter 5 System Integration Module (SIM).)  
To allow software to clear the IRQ latch during a break interrupt, write a logic one to the BCFE bit. If a  
latch is cleared during the break state, it remains cleared when the MCU exits the break state.  
To protect the latches during the break state, write a logic zero to the BCFE bit. With BCFE at logic zero  
(its default state), writing to the ACK bit in the IRQ status and control register during the break state has  
no effect on the IRQ latch.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
165  
External Interrupt (IRQ)  
12.5 IRQ Status and Control Register (INTSCR)  
The IRQ status and control register (INTSCR) controls and monitors operation of the IRQ module. The  
INTSCR has the following functions:  
Shows the state of the IRQ flag  
Clears the IRQ latch  
Masks IRQ and interrupt request  
Controls triggering sensitivity of the IRQ interrupt pin  
Address:  
$001D  
Bit 7  
0
6
0
5
0
4
0
3
2
1
IMASK  
0
Bit 0  
MODE  
0
Read:  
Write:  
Reset:  
IRQF  
ACK  
0
0
0
0
0
0
= Unimplemented  
Figure 12-3. IRQ Status and Control Register (INTSCR)  
IRQF — IRQ Flag Bit  
This read-only status bit is high when the IRQ interrupt is pending.  
1 = IRQ interrupt pending  
0 = IRQ interrupt not pending  
ACK — IRQ Interrupt Request Acknowledge Bit  
Writing a logic one to this write-only bit clears the IRQ latch. ACK always reads as logic zero. Reset  
clears ACK.  
IMASK — IRQ Interrupt Mask Bit  
Writing a logic one to this read/write bit disables IRQ interrupt requests. Reset clears IMASK.  
1 = IRQ interrupt requests disabled  
0 = IRQ interrupt requests enabled  
MODE — IRQ Edge/Level Select Bit  
This read/write bit controls the triggering sensitivity of the IRQ pin. Reset clears MODE.  
1 = IRQ interrupt requests on falling edges and low levels  
0 = IRQ interrupt requests on falling edges only  
Address:  
$001E  
Bit 7  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
POR:  
IRQPUD  
R
R
LVIT1  
LVIT0  
R
R
Not affected Not affected  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
R
= Reserved  
Figure 12-4. Configuration Register 2 (CONFIG2)  
IRQPUD — IRQ Pin Pull-Up Disable Bit  
IRQPUD disconnects the internal pull-up on the IRQ pin.  
1 = Internal pull-up is disconnected  
0 = Internal pull-up is connected between IRQ pin and VDD  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
166  
Chapter 13  
Keyboard Interrupt Module (KBI)  
13.1 Introduction  
The keyboard interrupt module (KBI) provides eight independently maskable external interrupts which are  
accessible via PTA0–PTA7. When a port pin is enabled for keyboard interrupt function, an internal pull-up  
device is also enabled on the pin.  
13.2 Features  
Features of the keyboard interrupt module include the following:  
Eight keyboard interrupt pins with pull-up devices  
Separate keyboard interrupt enable bits and one keyboard interrupt mask  
Programmable edge-only or edge- and level- interrupt sensitivity  
Exit from low-power modes  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
IMASKK  
0
Bit 0  
MODEK  
0
Read:  
0
0
0
0
KEYF  
0
ACKK  
0
Keyboard Status and  
Control Register Write:  
(KBSCR)  
$001A  
Reset:  
Read:  
0
KBIE7  
0
0
KBIE6  
0
0
KBIE5  
0
0
KBIE4  
0
0
KBIE3  
0
Keyboard Interrupt  
Enable Register Write:  
(KBIER)  
KBIE2  
0
KBIE1  
0
KBIE0  
0
$001B  
Reset:  
= Unimplemented  
Figure 13-1. KBI I/O Register Summary  
13.3 I/O Pins  
The eight keyboard interrupt pins are shared with standard port I/O pins. The full name of the KBI pins  
are listed in Table 13-1. The generic pin name appear in the text that follows.  
Table 13-1. Pin Name Conventions  
KBI  
Pin Selected for KBI Function by KBIEx  
Bit in KBIER  
Full MCU Pin Name  
Generic Pin Name  
KBI0–KBI5  
KBI6  
PTA0/KBI0–PTA5/KBI5  
KBIE0–KBIE5  
KBIE6  
OSC2/RCCLK/PTA6/KBI6(1)  
PTA7/KBI7  
KBI7  
KBIE7  
1. PTA6/KBI6 is only available when OSCSEL=0 at $FFD0 (RC option), and PTA6EN=1 at $000D.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
167  
Keyboard Interrupt Module (KBI)  
13.4 Functional Description  
INTERNAL BUS  
NOTE:  
To prevent false interrupts, user should use software  
to debounce keyboard interrupt inputs.  
VECTOR FETCH  
DECODER  
KBI0  
ACKK  
VDD  
KEYF  
RESET  
CLR  
.
D
Q
SYNCHRONIZER  
KEYBOARD  
INTERRUPT  
REQUEST  
KBIE0  
.
CK  
TO PULLUP ENABLE  
.
KEYBOARD  
INTERRUPT FF  
IMASKK  
KBI7  
MODEK  
KBIE7  
TO PULLUP ENABLE  
Figure 13-2. Keyboard Interrupt Block Diagram  
Writing to the KBIE7–KBIE0 bits in the keyboard interrupt enable register independently enables or  
disables each port A pin as a keyboard interrupt pin. Enabling a keyboard interrupt pin in port A also  
enables its internal pull-up device regardless of PTAPUEx bits in the port A input pull-up enable register  
(see 11.2.3 Port A Input Pull-Up Enable Registers). A logic 0 applied to an enabled keyboard interrupt pin  
latches a keyboard interrupt request.  
A keyboard interrupt is latched when one or more keyboard pins goes low after all were high. The MODEK  
bit in the keyboard status and control register controls the triggering mode of the keyboard interrupt.  
If the keyboard interrupt is edge-sensitive only, a falling edge on a keyboard pin does not latch an  
interrupt request if another keyboard pin is already low. To prevent losing an interrupt request on  
one pin because another pin is still low, software can disable the latter pin while it is low.  
If the keyboard interrupt is falling edge- and low level-sensitive, an interrupt request is present as  
long as any keyboard pin is low.  
If the MODEK bit is set, the keyboard interrupt pins are both falling edge- and low level-sensitive, and both  
of the following actions must occur to clear a keyboard interrupt request:  
Vector fetch or software clear — A vector fetch generates an interrupt acknowledge signal to clear  
the interrupt request. Software may generate the interrupt acknowledge signal by writing a logic 1  
to the ACKK bit in the keyboard status and control register KBSCR. The ACKK bit is useful in  
applications that poll the keyboard interrupt pins and require software to clear the keyboard  
interrupt request. Writing to the ACKK bit prior to leaving an interrupt service routine can also  
prevent spurious interrupts due to noise. Setting ACKK does not affect subsequent transitions on  
the keyboard interrupt pins. A falling edge that occurs after writing to the ACKK bit latches another  
interrupt request. If the keyboard interrupt mask bit, IMASKK, is clear, the CPU loads the program  
counter with the vector address at locations $FFE0 and $FFE1.  
Return of all enabled keyboard interrupt pins to logic 1 — As long as any enabled keyboard  
interrupt pin is at logic 0, the keyboard interrupt remains set.  
The vector fetch or software clear and the return of all enabled keyboard interrupt pins to logic 1 may occur  
in any order.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
168  
Freescale Semiconductor  
Keyboard Interrupt Registers  
If the MODEK bit is clear, the keyboard interrupt pin is falling-edge-sensitive only. With MODEK clear, a  
vector fetch or software clear immediately clears the keyboard interrupt request.  
Reset clears the keyboard interrupt request and the MODEK bit, clearing the interrupt request even if a  
keyboard interrupt pin stays at logic 0.  
The keyboard flag bit (KEYF) in the keyboard status and control register can be used to see if a pending  
interrupt exists. The KEYF bit is not affected by the keyboard interrupt mask bit (IMASKK) which makes  
it useful in applications where polling is preferred.  
To determine the logic level on a keyboard interrupt pin, disable the pull-up device, use the data direction  
register to configure the pin as an input and then read the data register.  
NOTE  
Setting a keyboard interrupt enable bit (KBIEx) forces the corresponding  
keyboard interrupt pin to be an input, overriding the data direction register.  
However, the data direction register bit must be a logic 0 for software to  
read the pin.  
13.4.1 Keyboard Initialization  
When a keyboard interrupt pin is enabled, it takes time for the internal pull-up to reach a logic 1. Therefore  
a false interrupt can occur as soon as the pin is enabled.  
To prevent a false interrupt on keyboard initialization:  
1. Mask keyboard interrupts by setting the IMASKK bit in the keyboard status and control register.  
2. Enable the KBI pins by setting the appropriate KBIEx bits in the keyboard interrupt enable register.  
3. Write to the ACKK bit in the keyboard status and control register to clear any false interrupts.  
4. Clear the IMASKK bit.  
An interrupt signal on an edge-triggered pin can be acknowledged immediately after enabling the pin. An  
interrupt signal on an edge- and level-triggered interrupt pin must be acknowledged after a delay that  
depends on the external load.  
Another way to avoid a false interrupt:  
1. Configure the keyboard pins as outputs by setting the appropriate DDRA bits in the data direction  
register A.  
2. Write logic 1’s to the appropriate port A data register bits.  
3. Enable the KBI pins by setting the appropriate KBIEx bits in the keyboard interrupt enable register.  
13.5 Keyboard Interrupt Registers  
Two registers control the operation of the keyboard interrupt module:  
Keyboard status and control register  
Keyboard interrupt enable register  
13.5.1 Keyboard Status and Control Register  
Flags keyboard interrupt requests  
Acknowledges keyboard interrupt requests  
Masks keyboard interrupt requests  
Controls keyboard interrupt triggering sensitivity  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
169  
Keyboard Interrupt Module (KBI)  
Address: $001A  
Bit 7  
6
0
5
0
4
0
3
2
1
IMASKK  
0
Bit 0  
MODEK  
0
Read:  
Write:  
Reset:  
0
KEYF  
0
ACKK  
0
0
0
0
0
0
= Unimplemented  
Figure 13-3. Keyboard Status and Control Register (KBSCR)  
KEYF — Keyboard Flag Bit  
This read-only bit is set when a keyboard interrupt is pending on port A. Reset clears the KEYF bit.  
1 = Keyboard interrupt pending  
0 = No keyboard interrupt pending  
ACKK — Keyboard Acknowledge Bit  
Writing a logic 1 to this write-only bit clears the keyboard interrupt request on port A. ACKK always  
reads as logic 0. Reset clears ACKK.  
IMASKK— Keyboard Interrupt Mask Bit  
Writing a logic 1 to this read/write bit prevents the output of the keyboard interrupt mask from  
generating interrupt requests on port A. Reset clears the IMASKK bit.  
1 = Keyboard interrupt requests masked  
0 = Keyboard interrupt requests not masked  
MODEK — Keyboard Triggering Sensitivity Bit  
This read/write bit controls the triggering sensitivity of the keyboard interrupt pins on port A. Reset  
clears MODEK.  
1 = Keyboard interrupt requests on falling edges and low levels  
0 = Keyboard interrupt requests on falling edges only  
13.5.2 Keyboard Interrupt Enable Register  
The port-A keyboard interrupt enable register enables or disables each port-A pin to operate as a  
keyboard interrupt pin  
Address:  
$001B  
Bit 7  
6
KBIE6  
0
5
KBIE5  
0
4
KBIE4  
0
3
KBIE3  
0
2
KBIE2  
0
1
KBIE1  
0
Bit 0  
KBIE0  
0
Read:  
Write:  
Reset:  
KBIE7  
0
Figure 13-4. Keyboard Interrupt Enable Register (KBIER)  
KBIE7–KBIE0 — Port-A Keyboard Interrupt Enable Bits  
Each of these read/write bits enables the corresponding keyboard interrupt pin on port-A to latch  
interrupt requests. Reset clears the keyboard interrupt enable register.  
1 = KBIx pin enabled as keyboard interrupt pin  
0 = KBIx pin not enabled as keyboard interrupt pin  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
170  
Freescale Semiconductor  
Low-Power Modes  
13.6 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.  
13.6.1 Wait Mode  
The keyboard modules remain active in wait mode. Clearing the IMASKK bit in the keyboard status and  
control register enables keyboard interrupt requests to bring the MCU out of wait mode.  
13.6.2 Stop Mode  
The keyboard module remains active in stop mode. Clearing the IMASKK bit in the keyboard status and  
control register enables keyboard interrupt requests to bring the MCU out of stop mode.  
13.7 Keyboard Module During Break Interrupts  
The system integration module (SIM) controls whether the keyboard interrupt latch can be cleared during  
the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear status  
bits during the break state.  
To allow software to clear the keyboard interrupt latch during a break interrupt, write a logic 1 to the BCFE  
bit. If a latch is cleared during the break state, it remains cleared when the MCU exits the break state.  
To protect the latch during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its default  
state), writing to the keyboard acknowledge bit (ACKK) in the keyboard status and control register during  
the break state has no effect.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
171  
Keyboard Interrupt Module (KBI)  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
172  
Chapter 14  
Computer Operating Properly (COP)  
14.1 Introduction  
The computer operating properly (COP) module contains a free-running counter that generates a reset if  
allowed to overflow. The COP module helps software recover from runaway code. Prevent a COP reset  
by clearing the COP counter periodically. The COP module can be disabled through the COPD bit in the  
CONFIG1 register.  
14.2 Functional Description  
Figure 14-1 shows the structure of the COP module.  
SIM  
SIM RESET CIRCUIT  
12-BIT SIM COUNTER  
ICLK  
RESET STATUS REGISTER  
INTERNAL RESET SOURCES(1)  
RESET VECTOR FETCH  
COPCTL WRITE  
COP CLOCK  
COP MODULE  
6-BIT COP COUNTER  
COPEN (FROM SIM)  
COPD (FROM CONFIG1)  
RESET  
CLEAR  
COP COUNTER  
COPCTL WRITE  
COP RATE SEL  
(COPRS FROM CONFIG1)  
NOTE: See SIM section for more details.  
Figure 14-1. COP Block Diagram  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
173  
Computer Operating Properly (COP)  
The COP counter is a free-running 6-bit counter preceded by the 12-bit system integration module (SIM)  
counter. If not cleared by software, the COP counter overflows and generates an asynchronous reset after  
218 – 24 or 213 – 24 ICLK cycles; depending on the state of the COP rate select bit, COPRS, in  
configuration register 1. Writing any value to location $FFFF before an overflow occurs prevents a COP  
reset by clearing the COP counter and stages 12 through 5 of the SIM counter.  
NOTE  
Service the COP immediately after reset and before entering or after exiting  
stop mode to guarantee the maximum time before the first COP counter  
overflow.  
A COP reset pulls the RST pin low for 32 × ICLK cycles and sets the COP bit in the reset status register  
(RSR). (See 5.7.2 Reset Status Register (RSR).).  
NOTE  
Place COP clearing instructions in the main program and not in an interrupt  
subroutine. Such an interrupt subroutine could keep the COP from  
generating a reset even while the main program is not working properly.  
14.3 I/O Signals  
The following paragraphs describe the signals shown in Figure 14-1.  
14.3.1 ICLK  
ICLK is the internal oscillator output signal, typically 50-kHz. The ICLK frequency varies depending on the  
supply voltage. See Chapter 17 Electrical Specifications for ICLK parameters.  
14.3.2 COPCTL Write  
Writing any value to the COP control register (COPCTL) (see 14.4 COP Control Register) clears the  
COP counter and clears bits 12 through 5 of the SIM counter. Reading the COP control register returns  
the low byte of the reset vector.  
14.3.3 Power-On Reset  
The power-on reset (POR) circuit in the SIM clears the SIM counter 4096 × ICLK cycles after power-up.  
14.3.4 Internal Reset  
An internal reset clears the SIM counter and the COP counter.  
14.3.5 Reset Vector Fetch  
A reset vector fetch occurs when the vector address appears on the data bus. A reset vector fetch clears  
the SIM counter.  
14.3.6 COPD (COP Disable)  
The COPD signal reflects the state of the COP disable bit (COPD) in the configuration register 1  
(CONFIG1). (See Chapter 3 Configuration and Mask Option Registers (CONFIG & MOR).)  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
174  
Freescale Semiconductor  
COP Control Register  
14.3.7 COPRS (COP Rate Select)  
The COPRS signal reflects the state of the COP rate select bit (COPRS) in the configuration register 1.  
Address:  
$001F  
Bit 7  
6
5
R
0
4
LVID  
0
3
R
0
2
SSREC  
0
1
STOP  
0
Bit 0  
COPD  
0
Read:  
Write:  
Reset:  
COPRS  
R
0
0
R
= Reserved  
Figure 14-2. Configuration Register 1 (CONFIG1)  
COPRS — COP Rate Select Bit  
COPRS selects the COP timeout period. Reset clears COPRS.  
1 = COP timeout period is (213 – 24) ICLK cycles  
0 = COP timeout period is (218 – 24) ICLK cycles  
COPD — COP Disable Bit  
COPD disables the COP module.  
1 = COP module disabled  
0 = COP module enabled  
14.4 COP Control Register  
The COP control register is located at address $FFFF and overlaps the reset vector. Writing any value to  
$FFFF clears the COP counter and starts a new timeout period. Reading location $FFFF returns the low  
byte of the reset vector.  
Address:  
$FFFF  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Low byte of reset vector  
Clear COP counter  
Unaffected by reset  
Figure 14-3. COP Control Register (COPCTL)  
14.5 Interrupts  
The COP does not generate CPU interrupt requests.  
14.6 Monitor Mode  
The COP is disabled in monitor mode when VTST is present on the IRQ pin or on the RST pin.  
14.7 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low-power consumption standby modes.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
175  
Computer Operating Properly (COP)  
14.7.1 Wait Mode  
The COP continues to operate during wait mode. To prevent a COP reset during wait mode, periodically  
clear the COP counter in a CPU interrupt routine.  
14.7.2 Stop Mode  
Stop mode turns off the ICLK input to the COP and clears the COP prescaler. Service the COP  
immediately before entering or after exiting stop mode to ensure a full COP timeout period after entering  
or exiting stop mode.  
To prevent inadvertently turning off the COP with a STOP instruction, a configuration option is available  
that disables the STOP instruction. When the STOP bit in the configuration register has the STOP  
instruction is disabled, execution of a STOP instruction results in an illegal opcode reset.  
14.8 COP Module During Break Mode  
The COP is disabled during a break interrupt when VTST is present on the RST pin.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
176  
Freescale Semiconductor  
Chapter 15  
Low Voltage Inhibit (LVI)  
15.1 Introduction  
This section describes the low-voltage inhibit module (LVI), which monitors the voltage on the VDD pin  
and generates a reset when the VDD voltage falls to the LVI trip (LVITRIP) voltage.  
15.2 Features  
Features of the LVI module include the following:  
Selectable LVI trip voltage  
Selectable LVI circuit disable  
15.3 Functional Description  
Figure 15-1 shows the structure of the LVI module. The LVI is enabled after a reset. The LVI module  
contains a bandgap reference circuit and comparator. Setting LVI disable bit (LVID) disables the LVI to  
monitor VDD voltage. The LVI trip voltage selection bits (LVIT1, LVIT0) determine at which VDD level the  
LVI module should take actions.  
The LVI module generates one output signal:  
LVI Reset — an reset signal will be generated to reset the CPU when VDD drops to below the set trip  
point.  
VDD  
LVID  
VDD > LVITRIP = 0  
LVI RESET  
VDD < LVITRIP = 1  
LOW VDD  
DETECTOR  
LVIT1  
LVIT0  
Figure 15-1. LVI Module Block Diagram  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
177  
Low Voltage Inhibit (LVI)  
15.4 LVI Control Register (CONFIG2/CONFIG1)  
The LVI module is controlled by three bits in the configuration registers, CONFIG1 and CONFIG2.  
Address:  
$001E  
Bit 7  
6
R
0
5
R
0
4
3
2
R
0
1
R
0
Bit 0  
Read:  
Write:  
Reset:  
STOP_  
ICLKDIS  
IRQPUD  
0
LVIT1  
LVIT0  
Cleared by POR only  
0
Figure 15-2. Configuration Register 2 (CONFIG2)  
Address:  
$001F  
Bit 7  
COPRS  
0
6
R
0
5
R
0
4
LVID  
0
3
R
0
2
SSREC  
0
1
STOP  
0
Bit 0  
COPD  
0
Read:  
Write:  
Reset:  
Figure 15-3. Configuration Register 1 (CONFIG1)  
LVID — Low Voltage Inhibit Disable Bit  
LVID disables the LVI module. Reset clears LVID.  
1 = Low voltage inhibit disabled  
0 = Low voltage inhibit enabled  
LVIT1, LVIT0 — LVI Trip Voltage Selection Bits  
These two bits determine at which level of VDD the LVI module will come into action. LVIT1 and LVIT0  
are cleared by a power-on reset only.  
Table 15-1. Trip Voltage Selection  
Trip Voltage(1)  
LVR3 (2.49V)  
LVIT1  
LVIT0  
Comments  
V
For VDD=3V operation  
For VDD=3V operation  
For VDD=5V operation  
0
0
1
1
0
1
0
1
VLVR3 (2.49V)  
VLVR5 (4.25V)  
Reserved  
1. See Chapter 17 Electrical Specifications for full parameters.  
15.5 Low-Power Modes  
The STOP and WAIT instructions put the MCU in low-power-consumption standby modes.  
15.5.1 Wait Mode  
The LVI module, when enabled, will continue to operate in wait mode.  
15.5.2 Stop Mode  
The LVI module, when enabled, will continue to operate in stop mode.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
178  
Freescale Semiconductor  
Chapter 16  
Break Module (BREAK)  
16.1 Introduction  
This section describes the break module. The break module can generate a break interrupt that stops  
normal program flow at a defined address to enter a background program.  
16.2 Features  
Features of the break module include the following:  
Accessible I/O registers during the break Interrupt  
CPU-generated break interrupts  
Software-generated break interrupts  
COP disabling during break interrupts  
16.3 Functional Description  
When the internal address bus matches the value written in the break address registers, the break module  
issues a breakpoint signal (BKPT) to the SIM. The SIM then causes the CPU to load the instruction  
register with a software interrupt instruction (SWI) after completion of the current CPU instruction. The  
program counter vectors to $FFFC and $FFFD ($FEFC and $FEFD in monitor mode).  
The following events can cause a break interrupt to occur:  
A CPU-generated address (the address in the program counter) matches the contents of the break  
address registers.  
Software writes a logic one to the BRKA bit in the break status and control register.  
When a CPU generated address matches the contents of the break address registers, the break interrupt  
begins after the CPU completes its current instruction. A return from interrupt instruction (RTI) in the break  
routine ends the break interrupt and returns the MCU to normal operation. Figure 16-1 shows the  
structure of the break module.  
IAB[15:8]  
BREAK ADDRESS REGISTER HIGH  
8-BIT COMPARATOR  
IAB[15:0]  
CONTROL  
BKPT  
(TO SIM)  
8-BIT COMPARATOR  
BREAK ADDRESS REGISTER LOW  
IAB[7:0]  
Figure 16-1. Break Module Block Diagram  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
179  
Break Module (BREAK)  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
SBSW  
See note  
0
Bit 0  
Read:  
R
R
R
R
R
R
R
$FE00 Break Status Register (BSR) Write:  
Reset:  
Read:  
Break Flag Control  
BCFE  
0
R
R
R
R
R
R
R
$FE03  
$FE0C  
$FE0D  
$FE0E  
Register Write:  
(BFCR)  
Reset:  
Read:  
Break Address High  
Bit15  
0
Bit14  
0
Bit13  
0
Bit12  
0
Bit11  
0
Bit10  
0
Bit9  
0
Bit8  
0
Register Write:  
(BRKH)  
Reset:  
Read:  
Break Address low  
Bit7  
0
Bit6  
0
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Register Write:  
(BRKL)  
Reset:  
Read:  
0
0
0
0
0
0
0
0
0
0
0
0
Break Status and Control  
BRKE  
0
BRKA  
0
Register Write:  
(BRKSCR)  
Reset:  
0
0
0
0
0
0
Note: Writing a logic 0 clears SBSW.  
= Unimplemented  
R
= Reserved  
Figure 16-2. Break I/O Register Summary  
16.3.1 Flag Protection During Break Interrupts  
The system integration module (SIM) controls whether or not module status bits can be cleared during  
the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear status  
bits during the break state. (See 5.7.3 Break Flag Control Register (BFCR) and see the Break Interrupts  
subsection for each module.)  
16.3.2 CPU During Break Interrupts  
The CPU starts a break interrupt by:  
Loading the instruction register with the SWI instruction  
Loading the program counter with $FFFC:$FFFD  
($FEFC:$FEFD in monitor mode)  
The break interrupt begins after completion of the CPU instruction in progress. If the break address  
register match occurs on the last cycle of a CPU instruction, the break interrupt begins immediately.  
16.3.3 TIM During Break Interrupts  
A break interrupt stops the timer counter.  
16.3.4 COP During Break Interrupts  
The COP is disabled during a break interrupt when VTST is present on the RST pin.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
180  
Freescale Semiconductor  
Break Module Registers  
16.4 Break Module Registers  
These registers control and monitor operation of the break module:  
Break status and control register (BRKSCR)  
Break address register high (BRKH)  
Break address register low (BRKL)  
Break status register (BSR)  
Break flag control register (BFCR)  
16.4.1 Break Status and Control Register (BRKSCR)  
The break status and control register contains break module enable and status bits.  
Address: $FE0E  
Bit 7  
BRKE  
0
6
BRKA  
0
5
0
4
0
3
0
2
0
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
0
0
0
0
0
0
= Unimplemented  
Figure 16-3. Break Status and Control Register (BRKSCR)  
BRKE — Break Enable Bit  
This read/write bit enables breaks on break address register matches. Clear BRKE by writing a logic  
zero to bit 7. Reset clears the BRKE bit.  
1 = Breaks enabled on 16-bit address match  
0 = Breaks disabled  
BRKA — Break Active Bit  
This read/write status and control bit is set when a break address match occurs. Writing a logic one to  
BRKA generates a break interrupt. Clear BRKA by writing a logic zero to it before exiting the break  
routine. Reset clears the BRKA bit.  
1 = Break address match  
0 = No break address match  
16.4.2 Break Address Registers  
The break address registers contain the high and low bytes of the desired breakpoint address. Reset  
clears the break address registers.  
Address: $FE0C  
Bit 7  
Bit 15  
0
6
14  
0
5
13  
0
4
12  
0
3
11  
0
2
10  
0
1
9
0
Bit 0  
Bit 8  
0
Read:  
Write:  
Reset:  
Figure 16-4. Break Address Register High (BRKH)  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
181  
Break Module (BREAK)  
Address: $FE0D  
Bit 7  
Bit 7  
0
6
6
0
5
5
0
4
4
0
3
3
0
2
2
0
1
1
0
Bit 0  
Bit 0  
0
Read:  
Write:  
Reset:  
Figure 16-5. Break Address Register Low (BRKL)  
16.4.3 Break Status Register  
The break status register contains a flag to indicate that a break caused an exit from stop or wait mode.  
Address:  
$FE00  
Bit 7  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
SBSW  
Note(1)  
0
R
R
R
R
R
R
R
= Reserved  
1. Writing a logic zero clears SBSW.  
Figure 16-6. Break Status Register (BSR)  
SBSW — SIM Break Stop/Wait  
This status bit is useful in applications requiring a return to wait or stop mode after exiting from a break  
interrupt. Clear SBSW by writing a logic zero to it. Reset clears SBSW.  
1 = Stop mode or wait mode was exited by break interrupt  
0 = Stop mode or wait mode was not exited by break interrupt  
SBSW can be read within the break state SWI routine. The user can modify the return address on the  
stack by subtracting one from it. The following code is an example of this.  
; This code works if the H register has been pushed onto the stack in the break  
; service routine software. This code should be executed at the end of the  
; break service routine software.  
HIBYTE EQU  
LOBYTE EQU  
5
6
;
If not SBSW, do RTI  
BRCLR SBSW,BSR, RETURN ; See if wait mode or stop mode was exited  
; by break.  
TST  
BNE  
DEC  
DEC  
LOBYTE,SP  
DOLO  
; If RETURNLO is not zero,  
; then just decrement low byte.  
; Else deal with high byte, too.  
; Point to WAIT/STOP opcode.  
; Restore H register.  
HIBYTE,SP  
LOBYTE,SP  
DOLO  
RETURN PULH  
RTI  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
182  
Low-Power Modes  
16.4.4 Break Flag Control Register (BFCR)  
The break control register contains a bit that enables software to clear status bits while the MCU is in a  
break state.  
Address:  
$FE03  
Bit 7  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
BCFE  
R
R
R
R
R
R
0
R
= Reserved  
Figure 16-7. Break Flag Control Register (BFCR)  
BCFE — Break Clear Flag Enable Bit  
This read/write bit enables software to clear status bits by accessing status registers while the MCU is  
in a break state. To clear status bits during the break state, the BCFE bit must be set.  
1 = Status bits clearable during break  
0 = Status bits not clearable during break  
16.5 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low-power-consumption standby modes.  
16.5.1 Wait Mode  
If enabled, the break module is active in wait mode. In the break routine, the user can subtract one from  
the return address on the stack if SBSW is set (see 5.6 Low-Power Modes). Clear the SBSW bit by writing  
logic zero to it.  
16.5.2 Stop Mode  
A break interrupt causes exit from stop mode and sets the SBSW bit in the break status register. See 5.7  
SIM Registers.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
183  
Break Module (BREAK)  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
184  
Chapter 17  
Electrical Specifications  
17.1 Introduction  
This section contains electrical and timing specifications.  
17.2 Absolute Maximum Ratings  
Maximum ratings are the extreme limits to which the MCU can be exposed without permanently damaging it.  
NOTE  
This device is not guaranteed to operate properly at the maximum ratings.  
Refer to Sections 17.5 and 17.8 for guaranteed operating conditions.  
Table 17-1. Absolute Maximum Ratings  
Characteristic(1)  
Supply voltage  
Symbol  
VDD  
Value  
Unit  
V
–0.3 to +6.0  
VIN  
VSS–0.3 to VDD +0.3  
VSS–0.3 to +8.5  
Input voltage  
V
VTST  
Mode entry voltage, IRQ pin  
V
Maximum current per pin excluding VDD  
and VSS  
I
±25  
mA  
TSTG  
IMVSS  
IMVDD  
Storage temperature  
–55 to +150  
100  
°C  
mA  
mA  
Maximum current out of VSS  
Maximum current into VDD  
100  
1. Voltages referenced to VSS  
.
NOTE  
This device contains circuitry to protect the inputs against damage due to  
high static voltages or electric fields; however, it is advised that normal  
precautions be taken to avoid application of any voltage higher than  
maximum-rated voltages to this high-impedance circuit. For proper  
operation, it is recommended that VIN and VOUT be constrained to the  
range VSS (VIN or VOUT) VDD. Reliability of operation is enhanced if  
unused inputs are connected to an appropriate logic voltage level (for  
example, either VSS or VDD.)  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
185  
Electrical Specifications  
17.3 Functional Operating Range  
Table 17-2. Operating Range  
Characteristic  
Symbol  
Value  
Unit  
TA  
Operating temperature range  
40 to +125  
40 to +85  
°C  
5 ±10%  
3 ±10%  
5 ±10%  
VDD  
Operating voltage range  
V
17.4 Thermal Characteristics  
Table 17-3. Thermal Characteristics  
Characteristic  
Symbol  
Value  
Unit  
Thermal resistance  
20-pin PDIP  
20-pin SOIC  
28-pin PDIP  
28-pin SOIC  
32-pin SDIP  
32-pin LQFP  
70  
70  
70  
70  
70  
95  
θJA  
°C/W  
PI/O  
PD  
I/O pin power dissipation  
User determined  
W
W
PD = (IDD × VDD) + PI/O  
K/(TJ + 273 °C)  
=
Power dissipation(1)  
PD x (TA + 273 °C)  
+ PD2 × θJA  
Constant(2)  
K
W/°C  
°C  
TJ  
TA + (PD × θJA)  
Average junction temperature  
1. Power dissipation is a function of temperature.  
2. K constant unique to the device. K can be determined for a known TA and measured PD.  
With this value of K, PD and TJ can be determined for any value of TA.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
186  
Freescale Semiconductor  
5V DC Electrical Characteristics  
17.5 5V DC Electrical Characteristics  
Table 17-4. DC Electrical Characteristics (5V)  
Characteristic(1)  
Output high voltage (ILOAD = –2.0mA)  
PTA0–PTA7, PTB0–PTB7, PTD0–PTD7, PTE0–PTE1  
Output low voltage (ILOAD = 1.6mA)  
Typ(2)  
Symbol  
Min  
Max  
Unit  
VOH  
VDD–0.8  
V
VOL  
0.4  
V
PTA6, PTB0–PTB7, PTD0, PTD1, PTD4, PTD5,  
PTE0–PTE1  
Output low voltage (ILOAD = 25mA)  
PTD6, PTD7  
VOL  
IOL  
0.5  
25  
V
LED drives (VOL = 3V)  
PTA0–PTA5, PTA7, PTD2, PTD3, PTD6, PTD7  
10  
16  
mA  
Input high voltage  
PTA0–PTA7, PTB0–PTB7, PTD0–PTD7, PTE0–PTE1, RST,  
IRQ, OSC1  
VIH  
VIL  
0.7 × VDD  
VDD  
V
V
Input low voltage  
PTA0–PTA7, PTB0–PTB7, PTD0–PTD7, PTE0–PTE1, RST,  
IRQ, OSC1  
VSS  
0.3 × VDD  
VDD supply current, fOP = 8MHz  
Run(3)  
XTAL oscillator option  
RC oscillator option  
Wait(4)  
XTAL oscillator option  
RC oscillator option  
Stop(5) (–40°C to 125°C)  
XTAL oscillator option  
RC oscillator option  
7.5  
11  
10  
13  
mA  
mA  
IDD  
3
3.5  
5.5  
6
mA  
mA  
1.5  
0.5  
8
3
µA  
µA  
IIL  
Digital I/O ports Hi-Z leakage current  
Input current  
± 10  
± 1  
µA  
µA  
IIN  
COUT  
CIN  
Capacitance  
Ports (as input or output)  
12  
8
pF  
POR rearm voltage(6)  
POR rise time ramp rate(7)  
VPOR  
RPOR  
VTST  
0
100  
mV  
V/ms  
V
0.035  
1.5 × VDD  
Monitor mode entry voltage  
8.5  
Pullup resistors(8)  
PTD6, PTD7  
RST, IRQ, PTA0–PTA7  
RPU1  
RPU2  
1.8  
16  
3.3  
26  
4.8  
36  
kΩ  
kΩ  
VTRIPF  
VTRIPR  
Low-voltage inhibit, trip falling voltage  
Low-voltage inhibit, trip rising voltage  
3.60  
3.75  
4.25  
4.40  
4.48  
4.63  
V
V
1. VDD = 4.5 to 5.5 Vdc, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted.  
2. Typical values reflect average measurements at midpoint of voltage range, 25 °C only.  
3. Run (operating) IDD measured using external square wave clock source (fOP = 8MHz). All inputs 0.2V from rail. No dc loads.  
Less than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects  
run IDD. Measured with all modules enabled.  
4. Wait IDD measured using external square wave clock source (fOP = 8MHz). All inputs 0.2V from rail. No dc loads. Less than  
100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects wait IDD  
5. Stop IDD measured with OSC1 grounded; no port pins sourcing current. LVI is disabled.  
6. Maximum is highest voltage that POR is guaranteed.  
.
7. If minimum VDD is not reached before the internal POR reset is released, RST must be driven low externally until minimum VDD is reached.  
8. RPU1 and RPU2 are measured at VDD = 5.0V.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
187  
Electrical Specifications  
17.6 5V Control Timing  
Table 17-5. Control Timing (5V)  
Characteristic(1)  
Symbol  
Min  
Max  
8
Unit  
MHz  
ns  
fOP  
tRL  
Internal operating frequency  
RST input pulse width low(2)  
TIM2 external clock input  
750  
4
fT2CLK  
tILIH  
tILIL  
MHz  
ns  
IRQ interrupt pulse width low (edge-triggered)(3)  
IRQ interrupt pulse period(3)  
100  
Note(4)  
tCYC  
1. VDD = 4.5 to 5.5 Vdc, VSS = 0 Vdc, TA = TL to TH; timing shown with respect to 20% VDD and 70% VSS, unless otherwise  
noted.  
2. Minimum pulse width reset is guaranteed to be recognized. It is possible for a smaller pulse width to cause a reset.  
3. Values are based on characterization results, not tested in production.  
4. The minimum period is the number of cycles it takes to execute the interrupt service routine plus 1 tCYC  
.
tRL  
RST  
tILIL  
tILIH  
IRQ  
Figure 17-1. RST and IRQ Timing  
17.7 5V Oscillator Characteristics  
Table 17-6. Oscillator Specifications (5V)  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
50k(1)  
fICLK  
Internal oscillator clock frequency  
Hz  
External reference clock to OSC1 (2)  
fOSC  
dc  
32M  
Hz  
Hz  
Crystal reference frequency (3)  
Crystal load capacitance (4)  
Crystal fixed capacitance (3)  
fXTALCLK  
CL  
32M  
C1  
2 × CL  
2 × CL  
10 MΩ  
Crystal tuning capacitance (3)  
Feedback bias resistor  
C2  
RB  
Series resistor (3), (5)  
RS  
fRCCLK  
REXT  
External RC clock frequency  
RC oscillator external R  
RC oscillator external C  
2M  
See Figure 17-2  
10  
12M  
Hz  
CEXT  
pF  
1. Typical value reflect average measurements at midpoint of voltage range, 25 °C only. See Figure 17-5 for plot.  
2. No more than 10% duty cycle deviation from 50%.  
3. Fundamental mode crystals only.  
4. Consult crystal vendor data sheet.  
5. Not required for high frequency crystals.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
188  
Freescale Semiconductor  
 
3V DC Electrical Characteristics  
14  
12  
10  
8
C
= 10 pF  
EXT  
MCU  
5V @ 25°C  
OSC1  
6
V
DD  
4
R
C
EXT  
EXT  
2
0
0
10  
20  
30  
(k  
40  
50  
Resistor, R  
)  
EXT  
Figure 17-2. RC vs. Frequency (5V @25°C)  
17.8 3V DC Electrical Characteristics  
Table 17-7. DC Electrical Characteristics (3V)  
Characteristic(1)  
Output high voltage (ILOAD = –1.0mA)  
PTA0–PTA7, PTB0–PTB7, PTD0–PTD7, PTE0–PTE1  
Output low voltage (ILOAD = 0.8mA)  
Typ(2)  
Symbol  
Min  
Max  
Unit  
VOH  
VDD0.4  
V
VOL  
0.4  
V
PTA6, PTB0–PTB7, PTD0, PTD1, PTD4, PTD5,  
PTE0–PTE1  
Output low voltage (ILOAD = 20mA)  
PTD6, PTD7  
VOL  
IOL  
3
8
0.5  
12  
V
LED drives (VOL = 1.8V)  
PTA0–PTA5, PTA7, PTD2, PTD3, PTD6, PTD7  
mA  
Input high voltage  
PTA0–PTA7, PTB0–PTB7, PTD0–PTD7, PTE0–PTE1, RST,  
IRQ, OSC1  
VIH  
VIL  
0.7 × VDD  
VDD  
V
V
Input low voltage  
PTA0–PTA7, PTB0–PTB7, PTD0–PTD7, PTE0–PTE1,RST,  
IRQ, OSC1  
VSS  
0.3 × VDD  
VDD supply current, fOP = 4MHz  
Run(3)  
XTAL oscillator option  
RC oscillator option  
Wait(4)  
XTAL oscillator option  
RC oscillator option  
Stop(5) (–40°C to 85°C)  
XTAL oscillator option  
RC oscillator option  
3
4
8
10  
mA  
mA  
IDD  
1
2
4.5  
6
mA  
mA  
0.5  
0.3  
5
2
µA  
µA  
IIL  
Digital I/O ports Hi-Z leakage current  
Input current  
± 10  
± 1  
µA  
µA  
IIN  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
189  
Electrical Specifications  
Table 17-7. DC Electrical Characteristics (3V)  
Characteristic(1)  
Typ(2)  
Symbol  
Min  
Max  
Unit  
COUT  
CIN  
Capacitance  
Ports (as input or output)  
12  
8
pF  
POR rearm voltage(6)  
POR rise time ramp rate(7)  
VPOR  
RPOR  
VTST  
0
100  
mV  
V/ms  
V
0.035  
1.5 × VDD  
Monitor mode entry voltage  
8.5  
Pullup resistors(8)  
PTD6, PTD7  
RST, IRQ, PTA0–PTA7  
RPU1  
RPU2  
1.8  
16  
3.3  
26  
4.8  
36  
kΩ  
kΩ  
Low-voltage inhibit, trip voltage  
(No hysteresis implemented for 3V LVI)  
VLVI3  
2.18  
2.49  
2.68  
V
1. VDD = 2.7 to 3.3 Vdc, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted.  
2. Typical values reflect average measurements at midpoint of voltage range, 25 °C only.  
3. Run (operating) IDD measured using external square wave clock source (fOP = 4MHz). All inputs 0.2V from rail. No dc loads.  
Less than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects  
run IDD. Measured with all modules enabled.  
4. Wait IDD measured using external square wave clock source (fOP = 4MHz). All inputs 0.2V from rail. No dc loads. Less than  
100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects wait IDD  
5. Stop IDD measured with OSC1 grounded; no port pins sourcing current. LVI is disabled.  
6. Maximum is highest voltage that POR is guaranteed.  
.
7. If minimum VDD is not reached before the internal POR reset is released, RST must be driven low externally until minimum  
VDD is reached.  
8. RPU1 and RPU2 are measured at VDD = 5.0V.  
17.9 3V Control Timing  
Table 17-8. Control Timing (3V)  
Characteristic(1)  
Symbol  
fOP  
Min  
Max  
4
Unit  
MHz  
µs  
Internal operating frequency  
RST input pulse width low(2)  
TIM2 external clock input  
tRL  
1.5  
2
fT2CLK  
tILIH  
MHz  
ns  
IRQ interrupt pulse width low (edge-triggered)(3)  
IRQ interrupt pulse period(3)  
200  
Note(4)  
tILIL  
tCYC  
1. VDD = 2.7 to 3.3 Vdc, VSS = 0 Vdc, TA = TL to TH; timing shown with respect to 20% VDD and 70% VDD, unless otherwise  
noted.  
2. Minimum pulse width reset is guaranteed to be recognized. It is possible for a smaller pulse width to cause a reset.  
3. Values are based on characterization results, not tested in production.  
4. The minimum period is the number of cycles it takes to execute the interrupt service routine plus 1 tCYC  
.
tRL  
RST  
tILIL  
tILIH  
IRQ  
Figure 17-3. RST and IRQ Timing  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
190  
Freescale Semiconductor  
3V Oscillator Characteristics  
17.10 3V Oscillator Characteristics  
Table 17-9. Oscillator Specifications (3V)  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
45k(1)  
fICLK  
Internal oscillator clock frequency  
Hz  
External reference clock to OSC1 (2)  
fOSC  
dc  
16M  
Hz  
Hz  
Crystal reference frequency (3)  
Crystal load capacitance (4)  
Crystal fixed capacitance (3)  
fXTALCLK  
CL  
16M  
C1  
2 × CL  
2 × CL  
10 MΩ  
Crystal tuning capacitance (3)  
Feedback bias resistor  
C2  
RB  
Series resistor (3), (5)  
RS  
fRCCLK  
REXT  
External RC clock frequency  
RC oscillator external R  
RC oscillator external C  
2M  
See Figure 17-4  
10  
10M  
Hz  
CEXT  
pF  
1. Typical value reflect average measurements at midpoint of voltage range, 25 °C only. See Figure 17-5 for plot.  
2. No more than 10% duty cycle deviation from 50%.  
3. Fundamental mode crystals only.  
4. Consult crystal vendor data sheet.  
5. Not required for high frequency crystals.  
14  
12  
C
= 10 pF  
MCU  
EXT  
10  
8
3V @ 25°C  
OSC1  
6
V
DD  
R
C
4
EXT  
EXT  
2
0
0
10  
20  
30  
(k)  
40  
50  
Resistor, R  
EXT  
Figure 17-4. RC vs. Frequency (3V @25°C)  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
191  
Electrical Specifications  
70  
60  
50  
40  
30  
20  
–40  
+25  
°
°
C
C
+85  
+125  
°
°
C
C
2
3
4
5
6
Supply Voltage, V (V)  
DD  
Figure 17-5. Internal Oscillator Frequency  
17.11 Typical Supply Currents  
10  
XTAL oscillator option  
8
6
4
2
0
5.5 V  
3.3 V  
0
1
2
3
4
5
6
7
8
9
fOP or fBUS (MHz)  
Figure 17-6. Typical Operating IDD (XTAL osc),  
with All Modules Turned On (25 °C)  
5
4
3
2
1
0
XTAL oscillator option  
5.5 V  
3.3 V  
0
1
2
3
4
5
6
7
8
9
fOP or fBUS (MHz)  
Figure 17-7. Typical Wait Mode IDD (XTAL osc),  
with All Modules Turned Off (25 °C)  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
192  
Timer Interface Module Characteristics  
17.12 Timer Interface Module Characteristics  
Table 17-10. Timer Interface Module Characteristics (5V and 3V)  
Characteristic  
Input capture pulse width  
Symbol  
tTIH, TIL  
tLMIN, HMIN  
Min  
1/fOP  
(1/fOP) + 5ns  
Max  
Unit  
t
t
Input clock pulse width (T2CLK pulse width)  
17.13 ADC Characteristics  
Table 17-11. ADC Characteristics (5V and 3V)  
Characteristic  
Supply voltage  
Symbol  
Min  
Max  
Unit  
Comments  
2.7  
(VDD min)  
5.5  
(VDD max)  
VDDAD  
V
VADIN  
BAD  
VSS  
8
VDD  
8
Input voltages  
Resolution  
V
Bits  
LSB  
AAD  
Absolute accuracy  
± 0.5  
± 1.5  
Includes quantization  
t
AIC = 1/fADIC, tested only  
fADIC  
ADC internal clock  
0.5  
1.048  
VDD  
MHz  
at 1 MHz  
RAD  
tADPU  
tADC  
tADS  
ZADI  
FADI  
CADI  
VSS  
16  
14  
5
Conversion range  
Power-up time  
V
tAIC cycles  
tAIC cycles  
tAIC cycles  
Conversion time  
Sample time(1)  
Zero input reading(2)  
Full-scale reading(3)  
Input capacitance  
15  
VIN = VSS  
00  
FE  
01  
Hex  
Hex  
pF  
VIN = VDD  
FF  
(20) 8  
Not tested  
Input leakage(3)  
Port B/port D  
± 1  
µA  
1. Source impedances greater than 10 kadversely affect internal RC charging time during input sampling.  
2. Zero-input/full-scale reading requires sufficient decoupling measures for accurate conversions.  
3. The external system error caused by input leakage current is approximately equal to the product of R source and input  
current.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
193  
Electrical Specifications  
17.14 Memory Characteristics  
Table 17-12. Memory Characteristics  
Characteristic  
RAM data retention voltage  
Symbol  
Min  
1.3  
1
Max  
Unit  
V
V
RDR  
FLASH program bus clock frequency  
FLASH read bus clock frequency  
MHz  
(1)  
32k  
4
8M  
Hz  
ms  
f ead  
r
(2)  
FLASH page erase time  
t
rase  
e
(3)  
FLASH mass erase time  
t
me  
4
10  
5
40  
ms  
µs  
µs  
µs  
µs  
µs  
µs  
rase  
nvs  
nvh  
t
FLASH PGM/ERASE to HVEN set up time  
FLASH high-voltage hold time  
FLASH high-voltage hold time (mass erase)  
FLASH program hold time  
t
t
100  
5
nvhl  
t
pgs  
t
FLASH program time  
30  
1
prog  
(4)  
FLASH return to read time  
t
rcv  
(5)  
FLASH cumulative program hv period  
t
4
ms  
HV  
FLASH row erase endurance(6)  
FLASH row program endurance(7)  
FLASH data retention time(8)  
10k  
10k  
10  
cycles  
cycles  
years  
1. fread is defined as the frequency range for which the FLASH memory can be read.  
2. If the page erase time is longer than terase (Min), there is no erase-disturb, but it reduces the endurance of the FLASH  
memory.  
3. If the mass erase time is longer than tmerase (Min), there is no erase-disturb, but it reduces the endurance of the FLASH  
memory.  
4. trcv is defined as the time it needs before the FLASH can be read after turning off the high voltage charge pump, by clearing  
HVEN to logic 0.  
5. tHV is defined as the cumulative high voltage programming time to the same row before next erase.  
t
HV must satisfy this condition: tnvs + tnvh + tpgs + (tprog × 32) tHV max.  
6. The minimum row endurance value specifies each row of the FLASH memory is guaranteed to work for at least this many  
erase / program cycles.  
7. The minimum row endurance value specifies each row of the FLASH memory is guaranteed to work for at least this many  
erase / program cycles.  
8. The FLASH is guaranteed to retain data over the entire operating temperature range for at least the minimum time speci-  
fied.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
194  
Freescale Semiconductor  
Chapter 18  
Mechanical Specifications  
18.1 Introduction  
This section gives the dimensions for:  
20-pin plastic dual in-line package (case #738)  
20-pin small outline integrated circuit package (case #751D)  
28-pin plastic dual in-line package (case #710)  
28-pin small outline integrated circuit package (case #751F)  
32-pin shrink dual in-line package (case #1376)  
32-pin low-profile quad flat pack (case #873A)  
18.2 20-Pin Plastic Dual In-Line Package (PDIP)  
–A–  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION L TO CENTER OF LEAD WHEN  
FORMED PARALLEL.  
20  
1
11  
10  
B
4. DIMENSION B DOES NOT INCLUDE MOLD  
FLASH.  
L
C
INCHES  
DIM MIN MAX  
1.070 25.66  
MILLIMETERS  
MIN  
MAX  
27.17  
6.60  
4.57  
0.55  
A
B
C
D
E
F
1.010  
0.240  
0.150  
0.015  
0.260  
0.180  
0.022  
6.10  
3.81  
0.39  
–T–  
SEATING  
PLANE  
K
0.050 BSC  
1.27 BSC  
M
0.050  
0.070  
1.27  
1.77  
N
E
G
J
K
L
0.100 BSC  
2.54 BSC  
0.008  
0.110  
0.015  
0.140  
0.21  
2.80  
0.38  
3.55  
G
F
J 20 PL  
0.300 BSC  
7.62 BSC  
D 20 PL  
0.25 (0.010)  
M
M
T B  
0.25 (0.010)  
M
N
0
0.020  
15  
0.040  
0
0.51  
15  
1.01  
M
M
T A  
Figure 18-1. 20-Pin PDIP (Case #738)  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
195  
Mechanical Specifications  
18.3 20-Pin Small Outline Integrated Circuit Package (SOIC)  
NOTES:  
–A–  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
20  
11  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.150  
(0.006) PER SIDE.  
10X P  
–B–  
5. DIMENSION D DOES NOT INCLUDE  
DAMBAR PROTRUSION. ALLOWABLE  
DAMBAR PROTRUSION SHALL BE 0.13  
(0.005) TOTAL IN EXCESS OF D DIMENSION  
AT MAXIMUM MATERIAL CONDITION.  
M
M
B
0.010 (0.25)  
1
10  
MILLIMETERS  
INCHES  
20X D  
0.010 (0.25)  
DIM MIN  
MAX  
12.95  
7.60  
2.65  
0.49  
0.90  
MIN  
MAX  
0.510  
0.299  
0.104  
0.019  
0.035  
J
A
B
C
D
F
12.65  
7.40  
2.35  
0.35  
0.50  
0.499  
0.292  
0.093  
0.014  
0.020  
M
S
S
B
T A  
F
G
J
K
M
P
R
1.27 BSC  
0.050 BSC  
0.25  
0.10  
0
0.32  
0.25  
7
0.010  
0.004  
0
0.012  
0.009  
7
R X 45  
10.05  
0.25  
10.55  
0.75  
0.395  
0.010  
0.415  
0.029  
C
SEATING  
PLANE  
–T–  
M
18X G  
K
Figure 18-2. 20-Pin SOIC (Case #751D)  
18.4 28-Pin Plastic Dual In-Line Package (PDIP)  
NOTES:  
1. POSITIONAL TOLERANCE OF LEADS (D), SHALL  
BE WITHIN 0.25 (0.010) AT MAXIMUM MATERIAL  
CONDITION, IN RELATION TO SEATING PLANE  
AND EACH OTHER.  
2. DIMENSION L TO CENTER OF LEADS WHEN  
FORMED PARALLEL.  
28  
1
15  
14  
3. DIMENSION B DOES NOT INCLUDE MOLD FLASH.  
B
MILLIMETERS  
INCHES  
DIM  
A
B
C
D
F
MIN  
36.45  
13.72  
3.94  
0.36  
1.02  
MAX  
37.21  
14.22  
5.08  
0.56  
1.52  
MIN  
MAX  
1.465  
0.560  
0.200  
0.022  
0.060  
1.435  
0.540  
0.155  
0.014  
0.040  
L
C
A
N
G
H
J
K
L
2.54 BSC  
0.100 BSC  
1.65  
0.20  
2.92  
2.16  
0.38  
3.43  
0.065  
0.008  
0.115  
0.085  
0.015  
0.135  
J
G
H
F
M
K
15.24 BSC  
0.600 BSC  
D
SEATING  
M
N
0°  
0.51  
15°  
1.02  
0°  
0.020  
15°  
0.040  
PLANE  
Figure 18-3. 28-Pin PDIP (Case #710)  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
196  
28-Pin Small Outline Integrated Circuit Package (SOIC)  
18.5 28-Pin Small Outline Integrated Circuit Package (SOIC)  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
-A-  
ANSI Y14.5M, 1982.  
15  
28  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
14X P  
M
M
0.010 (0.25)  
B
-B-  
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE  
1
14  
DAMBAR PROTRUSION SHALL BE 0.13  
(0.005) TOTAL IN EXCESS OF D DIMENSION  
AT MAXIMUM MATERIAL CONDITION.  
28X D  
M
MILLIMETERS  
INCHES  
M
S
S
0.010 (0.25)  
T
A
B
DIM  
A
B
C
D
MIN  
17.80  
7.40  
2.35  
0.35  
0.41  
MAX  
18.05  
7.60  
2.65  
0.49  
0.90  
MIN  
MAX  
0.711  
0.299  
0.104  
0.019  
0.035  
R
X 45  
0.701  
0.292  
0.093  
0.014  
0.016  
C
-T-  
SEATING  
PLANE  
F
26X G  
G
J
K
M
P
R
1.27 BSC  
0.050 BSC  
0.23  
0.13  
0°  
0.32  
0.29  
8°  
10.55  
0.75  
0.009  
0.005  
0°  
0.013  
0.011  
8°  
0.415  
0.029  
K
F
10.01  
0.25  
0.395  
0.010  
J
Figure 18-4. 28-Pin SOIC (Case #751F)  
18.6 32-Pin Shrink Dual In-Line Package (SDIP)  
3
27.9  
27.8  
B
A
32  
17  
NOTES:  
1. ALL DIMENSIONS ARE IN MILLIMETERS.  
2. INTERPRET DIMENSIONS AND TOLERANCES  
PER ASME Y14.5, 1994.  
3. DIMENSIONS DO NOT INCLUDE MOLD FLASH OR  
PROTRUSIONS.  
10.46  
9.86  
8.9  
8.8  
3
4. DIMENSION DOES NOT INCLUDE DAMBAR  
PROTRUSION.  
1
16  
4.35  
4.05  
30X  
1.778  
0.75  
0.45  
2X 0.889  
C
C
2.49  
2.39  
°
10  
T
0.34  
0.22  
°
0
SEATING  
PLANE  
0.5  
0.4  
T
4
32X  
SECTION C–C  
M
0.13  
A B  
Figure 18-5. 32-Pin SDIP (Case #1376)  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
197  
Mechanical Specifications  
18.7 32-Pin Low-Profile Quad Flat Pack (LQFP)  
4X  
A
A1  
0.20 (0.008) AB T–U  
Z
32  
25  
1
–U–  
V
–T–  
B
AE  
AE  
P
B1  
DETAIL Y  
–Z–  
V1  
17  
8
DETAIL Y  
9
4X  
0.20 (0.008) AC T–U  
Z
9
NOTES:  
S1  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
S
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DATUM PLANE –AB– IS LOCATED AT BOTTOM  
OF LEAD AND IS COINCIDENT WITH THE LEAD  
WHERE THE LEAD EXITS THE PLASTIC BODY AT  
THE BOTTOM OF THE PARTING LINE.  
4. DATUMS –T–, –U–, AND –Z– TO BE DETERMINED  
AT DATUM PLANE –AB–.  
DETAIL AD  
G
5. DIMENSIONS S AND V TO BE DETERMINED AT  
SEATING PLANE –AC–.  
–AB–  
–AC–  
6. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
PROTRUSION. ALLOWABLE PROTRUSION IS  
0.250 (0.010) PER SIDE. DIMENSIONS A AND B  
DO INCLUDE MOLD MISMATCH AND ARE  
DETERMINED AT DATUM PLANE –AB–.  
7. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. DAMBAR PROTRUSION SHALL  
NOT CAUSE THE D DIMENSION TO EXCEED  
0.520 (0.020).  
SEATING  
PLANE  
0.10 (0.004) AC  
BASE  
METAL  
N
8. MINIMUM SOLDER PLATE THICKNESS SHALL BE  
0.0076 (0.0003).  
9. EXACT SHAPE OF EACH CORNER MAY VARY  
FROM DEPICTION.  
F
D
8X M  
MILLIMETERS  
MIN MAX  
7.000 BSC  
3.500 BSC  
7.000 BSC  
3.500 BSC  
INCHES  
MIN MAX  
0.276 BSC  
0.138 BSC  
0.276 BSC  
0.138 BSC  
R
J
DIM  
A
A1  
B
B1  
C
D
E
F
G
H
J
SECTION AE–AE  
E
C
1.400  
1.600  
0.450  
1.450  
0.400  
0.055  
0.063  
0.018  
0.057  
0.016  
0.300  
1.350  
0.300  
0.012  
0.053  
0.012  
W
0.800 BSC  
0.031 BSC  
Q
H
K
X
0.050  
0.090  
0.500  
0.150  
0.200  
0.700  
0.002  
0.004  
0.020  
0.006  
0.008  
0.028  
K
M
N
P
12 REF  
12 REF  
DETAIL AD  
0.090  
0.160  
0.004  
0.006  
0.400 BSC  
0.016 BSC  
Q
R
1
5
1
5
0.150  
0.250  
0.006  
0.010  
S
9.000 BSC  
0.354 BSC  
S1  
V
V1  
W
X
4.500 BSC  
9.000 BSC  
4.500 BSC  
0.200 REF  
1.000 REF  
0.177 BSC  
0.354 BSC  
0.177 BSC  
0.008 REF  
0.039 REF  
Figure 18-6. 32-Pin LQFP (Case #873A)  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
198  
Chapter 19  
Ordering Information  
19.1 Introduction  
This section contains ordering numbers for the MC68HC908JL8.  
19.2 MC Order Numbers  
Table 19-1. MC Order Numbers  
Operating  
MC Order Number  
Package  
Temperature Range  
MC68HC908JK8CP  
MC68HC908JK8MP  
MC68HC908JK8CDW  
MC68HC908JK8MDW  
MC68HC908JL8CP  
MC68HC908JL8MP  
MC68HC908JL8CDW  
MC68HC908JL8MDW  
MC68HC908JL8CSP  
MC68HC908JL8MSP  
MC68HC908JL8CFA  
MC68HC908JL8MFA  
–40 °C to +85 °C  
–40 °C to +125 °C  
–40 °C to +85 °C  
–40 °C to +125 °C  
–40 °C to +85 °C  
–40 °C to +125 °C  
–40 °C to +85 °C  
–40 °C to +125 °C  
–40 °C to +85 °C  
–40 °C to +125 °C  
–40 °C to +85 °C  
–40 °C to +125 °C  
20-pin PDIP  
20-pin SOIC  
28-pin PDIP  
28-pin SOIC  
32-pin SDIP  
32-pin LQFP  
NOTE: Temperature grade "M" is available for VDD = 5V only.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
199  
Ordering Information  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
200  
Appendix A  
MC68HC08JL8  
A.1 Introduction  
This section introduces the MC68HC08JL8, the ROM part equivalent to the MC68HC908JL8/JK8. The  
entire data book applies to this ROM device, with exceptions outlined in this appendix.  
Table A-1. Summary of MC68HC08JL8 and MC68HC908JL8 Differences  
MC68HC08JL8  
8,192 bytes ROM  
MC68HC908JL8  
8,192 bytes FLASH  
Memory ($DC00–$FBFF)  
User vectors ($FFDC–$FFFF)  
36 bytes ROM  
36 bytes FLASH  
FLASH related registers.  
$FE08 — FLCR  
$FFCF — FLBPR  
Not used;  
locations are reserved.  
Registers at $FE08 and $FFCF  
Mask option register ($FFD0)  
Defined by mask; read only.  
Read/write FLASH register.  
$FC00–$FDFF: Not used.  
$FE10–$FFCE: Used for testing  
purposes only.  
Monitor ROM  
($FC00–$FDFF and $FE10–$FFCE)  
Used for testing and FLASH  
programming/erasing.  
20-pin PDIP (MC68HC08JK8)  
20-pin SOIC (MC68HC08JK8)  
28-pin PDIP  
20-pin PDIP (MC68HC908JK8)  
20-pin SOIC (MC68HC908JK8)  
28-pin PDIP  
Available Packages  
28-pin SOIC  
28-pin SOIC  
32-pin SDIP  
32-pin SDIP  
32-pin LQFP  
32-pin LQFP  
A.2 MCU Block Diagram  
Figure A-1 shows the block diagram of the MC68HC08JL8.  
A.3 Memory Map  
The MC68HC08JL8 has 8,192 bytes of user ROM from $DC00 to $FBFF, and 36 bytes of user ROM  
vectors from $FFDC to $FFFF. On the MC68HC908JL8, these memory locations are FLASH memory.  
Figure A-2 shows the memory map of the MC68HC08JL8.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
201  
INTERNAL BUS  
M68HC08 CPU  
PTA7/KBI7**‡  
PTA6/KBI6**¥  
PTA5/KBI5**‡  
PTA4/KBI4**‡  
PTA3/KBI3**‡  
PTA2/KBI2**‡  
PTA1/KBI1**‡  
PTA0/KBI0**‡  
#
KEYBOARD INTERRUPT  
MODULE  
CPU  
REGISTERS  
ARITHMETIC/LOGIC  
UNIT (ALU)  
8-BIT ANALOG-TO-DIGITAL  
CONVERTER MODULE  
##  
CONTROL AND STATUS REGISTERS — 64 BYTES  
USER ROM — 8,192 BYTES  
2-CHANNEL TIMER INTERFACE  
MODULE 1  
PTB7/ADC7  
PTB6/ADC6  
PTB5/ADC5  
PTB4/ADC4  
PTB3/ADC3  
PTB2/ADC2  
PTB1/ADC1  
PTB0/ADC0  
USER RAM — 256 BYTES  
2-CHANNEL TIMER INTERFACE  
MODULE 2  
MONITOR ROM — 447 BYTES  
BREAK  
MODULE  
USER ROM VECTORS — 36 BYTES  
#
ADC12/T2CLK  
CRYSTAL OSCILLATOR  
OSC1  
SERIAL COMMUNICATIONS  
INTERFACE MODULE  
PTD7/RxD**†‡  
PTD6/TxD**†‡  
PTD5/T1CH1  
PTD4/T1CH0  
PTD3/ADC8‡  
PTD2/ADC9‡  
PTD1/ADC10  
PTD0/ADC11  
¥ OSC2/RCCLK  
RC OSCILLATOR  
POWER-ON RESET  
MODULE  
INTERNAL OSCILLATOR  
##  
#
LOW-VOLTAGE INHIBIT  
MODULE  
SYSTEM INTEGRATION  
MODULE  
* RST  
* IRQ  
PTE1/T2CH1  
PTE0/T2CH0  
EXTERNAL INTERRUPT  
MODULE  
COMPUTER OPERATING  
PROPERLY MODULE  
* Pin contains integrated pull-up device.  
** Pin contains programmable pull-up device.  
25mA open-drain if output pin.  
VDD  
VSS  
POWER  
LED direct sink pin.  
¥ Shared pin: OSC2/RCCLK/PTA6/KBI6.  
# Pins available on 32-pin packages only.  
## Pins available on 28-pin and 32-pin packages only.  
ADC REFERENCE  
Shaded blocks indicate differences to MC68HC908JL8  
Figure A-1. MC68HC08JL8 Block Diagram  
A.4 Reserved Registers  
The two registers at $FE08 and $FFCF are reserved locations on the MC68HC08JL8.  
On the MC68HC908JL8, these two locations are the FLASH control register and the FLASH block protect  
register respectively.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
202  
Freescale Semiconductor  
$0000  
$003F  
I/O REGISTERS  
64 BYTES  
$0040  
$005F  
RESERVED  
32 BYTES  
$0060  
$015F  
RAM  
256 BYTES  
$0160  
$DBFF  
UNIMPLEMENTED  
55,968 BYTES  
$DC00  
$FBFF  
ROM  
8,192 BYTES  
$FC00  
$FDFF  
UNIMPLEMENTED  
512 BYTES  
$FE00  
$FE01  
$FE02  
$FE03  
$FE04  
$FE05  
$FE06  
$FE07  
$FE08  
BREAK STATUS REGISTER (BSR)  
RESET STATUS REGISTER (RSR)  
RESERVED  
BREAK FLAG CONTROL REGISTER (BFCR)  
INTERRUPT STATUS REGISTER 1 (INT1)  
INTERRUPT STATUS REGISTER 2 (INT2)  
INTERRUPT STATUS REGISTER 3 (INT3)  
RESERVED  
RESERVED  
$FE09  
RESERVED  
$FF0B  
$FE0C  
$FE0D  
$FE0E  
$FE0F  
BREAK ADDRESS HIGH REGISTER (BRKH)  
BREAK ADDRESS LOW REGISTER (BRKL)  
BREAK STATUS AND CONTROL REGISTER (BRKSCR)  
RESERVED  
$FE10  
$FFCE  
MONITOR ROM  
447 BYTES  
$FFCF  
$FFD0  
RESERVED  
MASK OPTION REGISTER (MOR) — READ ONLY  
$FFD1  
$FFDB  
RESERVED  
11 BYTES  
$FFDC  
$FFFF  
USER ROM VECTORS  
36 BYTES  
Figure A-2. MC68HC08JL8 Memory Map  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
203  
A.5 Mask Option Register  
The mask option register at $FFD0 is read only. The value is defined by mask option (hard-wired  
connections) specified at the time as the ROM code submission.  
On the MC68HC908JL8, the MOR is implemented as a FLASH, which can be programmed, erased, and  
read.  
A.6 Monitor ROM  
The monitor program (monitor ROM: $FE10–$FFCE) on the MC68HC08JL8 is for device testing only.  
$FC00–$FDFF are unused.  
A.7 Electrical Specifications  
Electrical specifications for the MC68HC908JL8 apply to the MC68HC08JL8, except for the parameters  
indicated below.  
A.7.1 DC Electrical Characteristics  
Table A-2. DC Electrical Characteristics (5V)  
Characteristic(1)  
Typ(2)  
Symbol  
Min  
Max  
Unit  
VDD supply current, fOP = 8MHz  
RC oscillator option  
Values same as, and characterized from  
MC68HC908JL8, but not tested.  
IDD  
3.55 (3.60)(3)  
3.66 (3.75)  
VTRIPF  
VTRIPR  
Low-voltage inhibit, trip falling voltage  
Low-voltage inhibit, trip rising voltage  
4.02 (4.25)  
4.13 (4.40)  
4.48 (4.48)  
V
V
4.59 (4.63)  
1. VDD = 4.5 to 5.5 Vdc, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted.  
2. Typical values reflect average measurements at midpoint of voltage range, 25 °C only.  
3. The numbers in parenthesis are MC68HC908JL8 values.  
Table A-3. DC Electrical Characteristics (3V)  
Characteristic(1)  
Typ(2)  
Symbol  
Min  
Max  
Unit  
V
DD supply current, fOP = 4MHz  
RC oscillator option  
Values same as, and characterized from  
MC68HC908JL8, but not tested.  
IDD  
Low-voltage inhibit, trip voltage  
(No hysteresis implemented for 3V LVI)  
2.1 (2.18)(3)  
VLVI3  
2.4 (2.49)  
2.69 (2.68)  
V
1. VDD = 2.7 to 3.3 Vdc, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted.  
2. Typical values reflect average measurements at midpoint of voltage range, 25 °C only.  
3. The numbers in parenthesis are MC68HC908JL8 values.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
204  
Freescale Semiconductor  
14  
12  
10  
8
C
= 10 pF  
EXT  
MCU  
5V @ 25°C  
OSC1  
6
V
DD  
4
R
C
EXT  
EXT  
MC68HC908JL8  
MC68HC08JL8  
2
0
0
10  
20  
Resistor, R  
30  
(k  
40  
50  
)  
EXT  
Figure A-3. RC vs. Frequency (5V @25°C)  
14  
12  
10  
8
C
= 10 pF  
MCU  
EXT  
3V @ 25°C  
OSC1  
6
V
DD  
R
C
4
EXT  
EXT  
MC68HC908JL8  
MC68HC08JL8  
2
0
0
10  
20  
Resistor, R  
30  
(k)  
40  
50  
EXT  
Figure A-4. RC vs. Frequency (3V @25°C)  
A.8 Memory Characteristics  
Table A-4. Memory Characteristics  
Characteristic  
RAM data retention voltage  
Notes:  
Symbol  
Min  
Max  
Unit  
V
1.3  
V
RDR  
Since MC68HC08JL8 is a ROM device, FLASH memory electrical characteristics do not apply.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
205  
A.9 MC68HC08JL8 Order Numbers  
These part numbers are generic numbers only. To place an order, ROM code must be submitted to the  
ROM Processing Center (RPC).  
Table A-5. MC68HC08JL8 Order Numbers  
Operating  
MC Order Number  
MC68HC08JK8CP  
Package  
Temperature Range  
–40 °C to +85 °C  
–40 °C to +125 °C  
–40 °C to +85 °C  
–40 °C to +125 °C  
–40 °C to +85 °C  
–40 °C to +125 °C  
–40 °C to +85 °C  
–40 °C to +125 °C  
–40 °C to +85 °C  
–40 °C to +125 °C  
–40 °C to +85 °C  
–40 °C to +125 °C  
20-pin PDIP  
MC68HC08JK8MP  
MC68HC08JK8CDW  
MC68HC08JK8MDW  
MC68HC08JL8CP  
MC68HC08JL8MP  
MC68HC08JL8CDW  
MC68HC08JL8MDW  
MC68HC08JL8CSP  
MC68HC08JL8MSP  
MC68HC08JL8CFA  
MC68HC08JL8MFA  
20-pin SOIC  
28-pin PDIP  
28-pin SOIC  
32-pin SDIP  
32-pin LQFP  
NOTE: Temperature grade "M" is available for VDD = 5V only.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
206  
Appendix B  
MC68HC908KL8  
B.1 Introduction  
This appendix introduces the MC68HC908KL8, an ADC-less device of the MC68HC908JL8. The entire  
data book applies to this device, with exceptions outlined in this appendix.  
Table B-1. Summary of MC68HC908KL8 and MC68HC908JL8 Differences  
MC68HC908KL8  
MC68HC908JL8  
13-channel, 8-bit.  
Analog-to-Digital Converter (ADC)  
Registers at:  
$003C, $003E, and $003E  
Not used;  
locations are reserved.  
ADC registers.  
Interrupt Vector at:  
$FFDE and $FFDF  
Not used.  
ADC interrupt vector.  
20-pin PDIP (MC68HC908JK8)  
20-pin SOIC (MC68HC908JK8)  
28-pin PDIP  
28-pin SOIC  
32-pin SDIP  
28-pin PDIP  
28-pin SOIC  
32-pin SDIP  
Available Packages  
32-pin LQFP  
B.2 MCU Block Diagram  
Figure B-1 shows the block diagram of the MC68HC908KL8.  
B.3 Pin Assignments  
Figure B-2 and Figure B-3 show the pin assignments for the MC68HC908KL8.  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
207  
INTERNAL BUS  
M68HC08 CPU  
PTA7/KBI7**‡  
PTA6/KBI6**¥  
PTA5/KBI5**‡  
PTA4/KBI4**‡  
PTA3/KBI3**‡  
PTA2/KBI2**‡  
PTA1/KBI1**‡  
PTA0/KBI0**‡  
#
KEYBOARD INTERRUPT  
MODULE  
CPU  
REGISTERS  
ARITHMETIC/LOGIC  
UNIT (ALU)  
CONTROL AND STATUS REGISTERS — 64 BYTES  
USER FLASH — 8,192 BYTES  
2-CHANNEL TIMER INTERFACE  
MODULE 1  
PTB7  
PTB6  
PTB5  
PTB4  
PTB3  
PTB2  
PTB1  
PTB0  
USER RAM — 256 BYTES  
2-CHANNEL TIMER INTERFACE  
MODULE 2  
MONITOR ROM — 959 BYTES  
BREAK  
MODULE  
USER FLASH VECTORS — 36 BYTES  
#
T2CLK  
CRYSTAL OSCILLATOR  
OSC1  
SERIAL COMMUNICATIONS  
INTERFACE MODULE  
PTD7/RxD**†‡  
PTD6/TxD**†‡  
PTD5/T1CH1  
PTD4/T1CH0  
PTD3‡  
¥ OSC2/RCCLK  
RC OSCILLATOR  
POWER-ON RESET  
MODULE  
INTERNAL OSCILLATOR  
PTD2‡  
PTD1  
LOW-VOLTAGE INHIBIT  
MODULE  
SYSTEM INTEGRATION  
MODULE  
PTD0  
* RST  
* IRQ  
PTE1/T2CH1  
PTE0/T2CH0  
EXTERNAL INTERRUPT  
MODULE  
#
COMPUTER OPERATING  
PROPERLY MODULE  
* Pin contains integrated pull-up device.  
** Pin contains programmable pull-up device.  
25mA open-drain if output pin.  
LED direct sink pin.  
¥ Shared pin: OSC2/RCCLK/PTA6/KBI6.  
VDD  
VSS  
POWER  
# Pins available on 32-pin packages only.  
Figure B-1. MC68HC908KL8 Block Diagram  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
208  
Freescale Semiconductor  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
1
IRQ  
PTA0/KBI0  
VSS  
T2CLK  
PTA7/KBI7  
RST  
2
3
4
OSC1  
PTA5/KBI5  
PTD4/T1CH0  
PTD5/T1CH1  
PTD2  
5
OSC2/RCCLK/PTA6/KBI6  
PTA1/KBI1  
VDD  
6
7
8
PTA2/KBI2  
PTA3/KBI3  
PTB7  
PTA4/KBI4  
PTD3  
9
10  
11  
12  
13  
14  
15  
16  
PTB0  
PTB6  
PTB1  
PTB5  
PTD1  
PTD7/RxD  
PTD6/TxD  
PTE0/T2CH0  
PTE1/T2CH1  
PTB2  
PTB3  
PTD0  
PTB4  
Figure B-2. 32-Pin SDIP Pin Assignment  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
IRQ  
PTA0/KBI0  
VSS  
1
RST  
PTA5/KBI5  
PTD4/T1CH0  
PTD5/T1CH1  
PTD2  
2
3
OSC1  
4
OSC2/RCCLK/PTA6/KBI6  
PTA1/KBI1  
VDD  
5
PTA4/KBI4  
PTD3  
6
7
PTA2/KBI2  
PTA3/KBI3  
PTB7  
PTB0  
8
Pins not available on 28-pin packages  
PTE0/T2CH0  
PTB1  
9
PTD1  
10  
11  
12  
13  
14  
PTE1/T2CH1  
PTB6  
PTB2  
PTB5  
PTB3  
T2CLK  
PTD7/RxD  
PTD6/TxD  
PTD0  
PTA7/KBI7  
Internal pads are unconnected.  
Set these unused port I/Os to output low.  
PTB4  
Figure B-3. 28-Pin PDIP/SOIC Pin Assignment  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
209  
B.4 Reserved Registers  
The following registers are reserved location on the MC68HC908KL8.  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
R
R
R
R
R
R
R
R
$003C  
Reserved Write:  
Reset:  
Read:  
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
$003D  
$003E  
Reserved Write:  
Reset:  
Read:  
Reserved Write:  
Reset:  
Figure B-4. Reserved Registers  
B.5 Reserved Vectors  
The following are reserved interrupt vectors on the MC68HC908KL8.  
Table B-2. Reserved Vectors  
Vector Priority  
INT Flag  
Address  
$FFDE  
$FFDF  
Vector  
Reserved  
Reserved  
IF15  
B.6 MC68HC908KL8 Order Numbers  
Table B-3. MC68HC908KL8 Order Numbers  
Operating  
MC Order Number  
Package  
Temperature Range  
–40 °C to +85 °C  
–40 °C to +85 °C  
–40 °C to +85 °C  
MC68HC908KL8CP  
MC68HC908KL8CDW  
MC68HC908KL8CSP  
28-pin PDIP  
28-pin SOIC  
32-pin SDIP  
MC68HC908JL8/JK8 • MC68HC08JL8/JK8 • MC68HC908KL8 Data Sheet, Rev. 3.1  
Freescale Semiconductor  
210  
How to Reach Us:  
RoHS-compliant and/or Pb- free versions of Freescale products have the functionality  
and electrical characteristics of their non-RoHS-compliant and/or non-Pb- free  
counterparts. For further information, see http://www.freescale.com or contact your  
Freescale sales representative.  
Home Page:  
www.freescale.com  
E-mail:  
support@freescale.com  
For information on Freescale.s Environmental Products program, go to  
http://www.freescale.com/epp.  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor  
Technical Information Center, CH370  
1300 N. Alma School Road  
Chandler, Arizona 85224  
+1-800-521-6274 or +1-480-768-2130  
support@freescale.com  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
support@freescale.com  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
+800 2666 8080  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
1-800-441-2447 or 303-675-2140  
Fax: 303-675-2150  
Semiconductor was negligent regarding the design or manufacture of the part.  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
© Freescale Semiconductor, Inc. 2005. All rights reserved.  
LDCForFreescaleSemiconductor@hibbertgroup.com  
MC68HC908JL8  
Rev. 3.1, 3/2005  

相关型号:

MC68HC08JL3

HCMOS Microcontroller Unit
MOTOROLA

MC68HC08JL3

Microcontrollers
FREESCALE

MC68HC08JL3DW

8-BIT, MICROCONTROLLER, PDSO28, SOIC-28
MOTOROLA

MC68HC08JL3E

Microcontrollers
FREESCALE

MC68HC08JL3ECDW

Microcontrollers
FREESCALE

MC68HC08JL3ECDW

8-BIT, MROM, 4MHz, MICROCONTROLLER, PDSO28, MS-013AE, SOIC-28
NXP

MC68HC08JL3ECP

Microcontrollers
FREESCALE

MC68HC08JL3ECP

8-BIT, MROM, 4MHz, MICROCONTROLLER, PDIP28, PLASTIC, DIP-28
NXP

MC68HC08JL3EMDW

Microcontrollers
FREESCALE

MC68HC08JL3EMDW

8-BIT, MROM, 8 MHz, MICROCONTROLLER, PDSO28, MS-013AE, SOIC-28
NXP

MC68HC08JL3EMP

Microcontrollers
FREESCALE

MC68HC08JL3EMP

8-BIT, MROM, 8MHz, MICROCONTROLLER, PDIP28, PLASTIC, DIP-28
NXP