MC68HC908SR12CB [NXP]

IC,MICROCONTROLLER,8-BIT,68HC08 CPU,SDIP,42PIN,PLASTIC;
MC68HC908SR12CB
型号: MC68HC908SR12CB
厂家: NXP    NXP
描述:

IC,MICROCONTROLLER,8-BIT,68HC08 CPU,SDIP,42PIN,PLASTIC

时钟 微控制器 光电二极管 外围集成电路
文件: 总404页 (文件大小:1940K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MC68HC908SR12  
MC68HC08SR12  
Data Sheet  
M68HC08  
Microcontrollers  
MC68HC908SR12  
Rev. 5.0  
07/2004  
freescale.com  
MC68HC908SR12  
MC68HC08SR12  
Data Sheet  
To provide the most up-to-date information, the revision of our  
documents on the World Wide Web will be the most current. Your printed  
copy may be an earlier revision. To verify you have the latest information  
available, refer to:  
http://www.freescale.com  
The following revision history table summarizes changes contained in  
this document. For your convenience, the page number designators  
have been linked to the appropriate location.  
Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
This product incorporates SuperFlash® technology licensed from SST.  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor  
© Freescale Semiconductor, Inc., 2004  
Data Sheet  
3
Revision History  
Revision History  
Revision  
Level  
Page  
Number(s)  
Date  
Description  
Table 24-2 . Operating Range and Table 24-11 . 3V ADC  
Electrical Characteristics — changed minimum V for ADC  
operation to 3V.  
373, 381  
248  
DD  
July 2004  
5
15.8.4 ADC Auto-Scan Mode Data Registers (ADRL1–ADRL3)  
— Corrected ADRL–ADRL3 register bits.  
PTB0/SDA0, PTB1/SCL0, PTB2/SDA1/TxD, and  
PTB3/SCL1/RxD pins — clarified these open-drain pins  
throughout this document.  
323, 254, 293  
8.4.6 Programming the PLL — deleted redundant step in  
programming the PLL.  
120  
167  
169  
181  
Figure 10-1 . Monitor Mode Circuit — corrected connections for  
PTA1 and PTA2.  
Table 10-1 . Monitor Mode Signal Requirements and Options  
— clarified clock input requirements for monitor mode entry.  
Section 11. Timer Interface Module (TIM) — timer  
discrepancies corrected throughout this section.  
February,  
2002  
4
18.5.1 Port C Data Register (PTC) and 18.5.2 Data Direction  
Register C (DDRC) — added notes for PTC6 and PTC7 on  
42-pin package.  
327, 329  
338, 339  
374, 376  
Figure 19-3 . IRQ2 Block Diagram and 19.5 IRQ1 and IRQ2  
Pins — corrected IRQ2 for BIH and BIL instructions.  
Table 24-4 . 5V DC Electrical Characteristics and Table 24-5 .  
3V DC Electrical Characteristics — added additional I  
DD  
measurements.  
Table 24-13 . Current Detection Electrical Characteristics —  
updated trip point values.  
382  
393  
Appendix A. MC68HC08SR12 — added appendix for ROM part:  
MC68HC08SR12.  
Data Sheet  
4
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor  
Data Sheet — MC68HC908SR12•MC68HC08SR12  
List of Sections  
Section 1. General Description . . . . . . . . . . . . . . . . . . . .35  
Section 2. Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . .45  
Section 3. Random-Access Memory (RAM) . . . . . . . . . .61  
Section 4. FLASH Memory . . . . . . . . . . . . . . . . . . . . . . . .63  
Section 5. Configuration and Mask Option Registers  
(CONFIG & MOR). . . . . . . . . . . . . . . . . . . . . .73  
Section 6. Central Processor Unit (CPU) . . . . . . . . . . . .81  
Section 7. Oscillator (OSC) . . . . . . . . . . . . . . . . . . . . . .101  
Section 8. Clock Generator Module (CGM). . . . . . . . . .111  
Section 9. System Integration Module (SIM) . . . . . . . .141  
Section 10. Monitor ROM (MON) . . . . . . . . . . . . . . . . . .165  
Section 11. Timer Interface Module (TIM) . . . . . . . . . . .181  
Section 12. Timebase Module (TBM). . . . . . . . . . . . . . .205  
Section 13. Pulse Width Modulator (PWM). . . . . . . . . .211  
Section 14. Analog Module . . . . . . . . . . . . . . . . . . . . . .221  
Section 15. Analog-to-Digital Converter (ADC) . . . . . .231  
Section 16. Serial Communications Interface (SCI). . .251  
Section 17. Multi-Master IIC Interface (MMIIC) . . . . . . .291  
Section 18. Input/Output (I/O) Ports . . . . . . . . . . . . . . .317  
Section 19. External Interrupt (IRQ) . . . . . . . . . . . . . . .335  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor  
Data Sheet  
5
List of Sections  
List of Sections  
Section 20. Keyboard Interrupt Module (KBI). . . . . . . .343  
Section 21. Computer Operating Properly (COP) . . . .351  
Section 22. Low-Voltage Inhibit (LVI) . . . . . . . . . . . . . .357  
Section 23. Break Module (BRK) . . . . . . . . . . . . . . . . . .363  
Section 24. Electrical Specifications. . . . . . . . . . . . . . .371  
Section 25. Mechanical Specifications . . . . . . . . . . . . .387  
Section 26. Ordering Information . . . . . . . . . . . . . . . . .391  
Appendix A. MC68HC08SR12 . . . . . . . . . . . . . . . . . . . .393  
Data Sheet  
6
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
List of Sections  
Freescale Semiconductor  
Data Sheet — MC68HC908SR12•MC68HC08SR12  
Table of Contents  
Section 1. General Description  
1.1  
1.2  
1.3  
1.4  
1.5  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
1.6  
1.6.1  
1.6.2  
1.6.3  
1.6.4  
1.6.5  
1.6.6  
1.6.7  
1.6.8  
1.6.9  
Power Supply Pins (V and V ). . . . . . . . . . . . . . . . . . . .42  
DD SS  
Oscillator Pins (OSC1 and OSC2) . . . . . . . . . . . . . . . . . . . .42  
External Reset Pin (RST). . . . . . . . . . . . . . . . . . . . . . . . . . .43  
External Interrupt Pin (IRQ1) . . . . . . . . . . . . . . . . . . . . . . . .43  
Analog Power Supply Pin (V  
). . . . . . . . . . . . . . . . . . . . .43  
DDA  
Analog Ground Pin (V  
) . . . . . . . . . . . . . . . . . . . . . . . . . .43  
SSA  
ADC Voltage Low Reference Pin (V  
) . . . . . . . . . . . . . .43  
REFL  
ADC Voltage High Reference Pin (V  
). . . . . . . . . . . . . .43  
REFH  
External Filter Capacitor Pin (CGMXFC) . . . . . . . . . . . . . . .43  
) . . .44  
1.6.10 Analog Input Pins (OPIN1/ATD0, OPIN2/ATD1, V  
SSAM  
1.6.11 Port A Input/Output (I/O) Pins (PTA7–PTA0). . . . . . . . . . . .44  
1.6.12 Port B I/O Pins (PTB6–PTB0) . . . . . . . . . . . . . . . . . . . . . . .44  
1.6.13 Port C I/O Pins (PTC7–PTC0) . . . . . . . . . . . . . . . . . . . . . . .44  
1.6.14 Port D I/O Pins (PTD7/KBI7–PTD0/KBI0) . . . . . . . . . . . . . .44  
Section 2. Memory Map  
2.1  
2.2  
2.3  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
Unimplemented Memory Locations . . . . . . . . . . . . . . . . . . . . .45  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor  
Data Sheet  
7
Table of Contents  
Table of Contents  
2.4  
2.5  
Reserved Memory Locations . . . . . . . . . . . . . . . . . . . . . . . . . .46  
Input/Output (I/O) Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
Section 3. Random-Access Memory (RAM)  
3.1  
3.2  
3.3  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
Section 4. FLASH Memory  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
FLASH Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
FLASH Page Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . .66  
FLASH Mass Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . .67  
FLASH Program Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . .68  
4.8  
4.8.1  
FLASH Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70  
FLASH Block Protect Register . . . . . . . . . . . . . . . . . . . . . . .70  
Section 5. Configuration and Mask Option Registers  
(CONFIG & MOR)  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74  
Configuration Register 1 (CONFIG1) . . . . . . . . . . . . . . . . . . . .75  
Configuration Register 2 (CONFIG2) . . . . . . . . . . . . . . . . . . . .77  
Mask Option Register (MOR) . . . . . . . . . . . . . . . . . . . . . . . . . .79  
Data Sheet  
8
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Table of Contents  
Freescale Semiconductor  
Table of Contents  
Section 6. Central Processor Unit (CPU)  
6.1  
6.2  
6.3  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82  
6.4  
CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82  
Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83  
Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84  
Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84  
Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85  
Condition Code Register . . . . . . . . . . . . . . . . . . . . . . . . . . .85  
6.4.1  
6.4.2  
6.4.3  
6.4.4  
6.4.5  
6.5  
Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . .88  
6.6  
6.6.1  
6.6.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89  
6.7  
6.8  
6.9  
CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . .89  
Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . .89  
Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89  
Section 7. Oscillator (OSC)  
7.1  
7.2  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102  
7.3  
7.3.1  
7.3.2  
Clock Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103  
CGM Reference Clock Selection . . . . . . . . . . . . . . . . . . . .104  
TBM Reference Clock Selection . . . . . . . . . . . . . . . . . . . .105  
7.4  
7.5  
7.6  
Internal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105  
RC Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106  
X-tal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107  
7.7  
7.7.1  
7.7.2  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108  
Crystal Amplifier Input Pin (OSC1). . . . . . . . . . . . . . . . . . .108  
Crystal Amplifier Output Pin (OSC2) . . . . . . . . . . . . . . . . .109  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor  
Data Sheet  
9
Table of Contents  
Table of Contents  
7.7.3  
7.7.4  
7.7.5  
7.7.6  
Oscillator Enable Signal (SIMOSCEN). . . . . . . . . . . . . . . .109  
CGM Oscillator Clock (CGMXCLK) . . . . . . . . . . . . . . . . . .109  
CGM Reference Clock (CGMRCLK) . . . . . . . . . . . . . . . . .109  
Oscillator Clock to Time Base Module (OSCCLK) . . . . . . .109  
7.8  
7.8.1  
7.8.2  
Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110  
7.9  
Oscillator During Break Mode. . . . . . . . . . . . . . . . . . . . . . . . .110  
Section 8. Clock Generator Module (CGM)  
8.1  
8.2  
8.3  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113  
8.4  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113  
Oscillator Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116  
Phase-Locked Loop Circuit (PLL) . . . . . . . . . . . . . . . . . . .116  
PLL Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116  
Acquisition and Tracking Modes . . . . . . . . . . . . . . . . . . . .118  
Manual and Automatic PLL Bandwidth Modes. . . . . . . . . .118  
Programming the PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . .120  
Special Programming Exceptions . . . . . . . . . . . . . . . . . . .124  
Base Clock Selector Circuit . . . . . . . . . . . . . . . . . . . . . . . .124  
CGM External Connections . . . . . . . . . . . . . . . . . . . . . . . .125  
8.4.1  
8.4.2  
8.4.3  
8.4.4  
8.4.5  
8.4.6  
8.4.7  
8.4.8  
8.4.9  
8.5  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125  
External Filter Capacitor Pin (CGMXFC) . . . . . . . . . . . . . .126  
8.5.1  
8.5.2  
8.5.3  
8.5.4  
8.5.5  
8.5.6  
8.5.7  
8.5.8  
PLL Analog Power Pin (V  
) . . . . . . . . . . . . . . . . . . . . . .126  
DDA  
PLL Analog Ground Pin (V  
) . . . . . . . . . . . . . . . . . . . . .126  
SSA  
Oscillator Output Frequency Signal (CGMXCLK) . . . . . . .126  
CGM Reference Clock (CGMRCLK) . . . . . . . . . . . . . . . . .126  
CGM VCO Clock Output (CGMVCLK) . . . . . . . . . . . . . . . .127  
CGM Base Clock Output (CGMOUT). . . . . . . . . . . . . . . . .127  
CGM CPU Interrupt (CGMINT) . . . . . . . . . . . . . . . . . . . . .127  
8.6  
8.6.1  
CGM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127  
PLL Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .128  
Data Sheet  
10  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Table of Contents  
Freescale Semiconductor  
Table of Contents  
8.6.2  
8.6.3  
8.6.4  
8.6.5  
PLL Bandwidth Control Register . . . . . . . . . . . . . . . . . . . .130  
PLL Multiplier Select Registers . . . . . . . . . . . . . . . . . . . . .132  
PLL VCO Range Select Register . . . . . . . . . . . . . . . . . . . .133  
PLL Reference Divider Select Register . . . . . . . . . . . . . . .134  
8.7  
Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135  
8.8  
Special Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136  
CGM During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . .136  
8.8.1  
8.8.2  
8.8.3  
8.9  
Acquisition/Lock Time Specifications . . . . . . . . . . . . . . . . . . .137  
Acquisition/Lock Time Definitions. . . . . . . . . . . . . . . . . . . .137  
Parametric Influences on Reaction Time . . . . . . . . . . . . . .137  
Choosing a Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139  
8.9.1  
8.9.2  
8.9.3  
Section 9. System Integration Module (SIM)  
9.1  
9.2  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .142  
9.3  
SIM Bus Clock Control and Generation . . . . . . . . . . . . . . . . .144  
Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145  
Clock Start-up from POR or LVI Reset. . . . . . . . . . . . . . . .145  
Clocks in Stop Mode and Wait Mode . . . . . . . . . . . . . . . . .146  
9.3.1  
9.3.2  
9.3.3  
9.4  
9.4.1  
9.4.2  
9.4.2.1  
9.4.2.2  
9.4.2.3  
9.4.2.4  
9.4.2.5  
9.4.2.6  
Reset and System Initialization. . . . . . . . . . . . . . . . . . . . . . . .146  
External Pin Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147  
Active Resets from Internal Sources . . . . . . . . . . . . . . . . .147  
Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .148  
Computer Operating Properly (COP) Reset. . . . . . . . . .149  
Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . .150  
Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . .150  
Low-Voltage Inhibit (LVI) Reset . . . . . . . . . . . . . . . . . . .150  
Monitor Mode Entry Module Reset. . . . . . . . . . . . . . . . .150  
9.5  
SIM Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .151  
SIM Counter During Power-On Reset . . . . . . . . . . . . . . . .151  
SIM Counter During Stop Mode Recovery. . . . . . . . . . . . .151  
SIM Counter and Reset States. . . . . . . . . . . . . . . . . . . . . .151  
9.5.1  
9.5.2  
9.5.3  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor  
Data Sheet  
11  
Table of Contents  
Table of Contents  
9.6  
9.6.1  
Exception Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .152  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .152  
Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . .154  
SWI Instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155  
Interrupt Status Registers . . . . . . . . . . . . . . . . . . . . . . .155  
Interrupt Status Register 1. . . . . . . . . . . . . . . . . . . . . . .155  
Interrupt Status Register 2. . . . . . . . . . . . . . . . . . . . . . .157  
Interrupt Status Register 3. . . . . . . . . . . . . . . . . . . . . . .157  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158  
Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158  
Status Flag Protection in Break Mode . . . . . . . . . . . . . . . .158  
9.6.1.1  
9.6.1.2  
9.6.1.3  
9.6.1.4  
9.6.1.5  
9.6.1.6  
9.6.2  
9.6.3  
9.6.4  
9.7  
9.7.1  
9.7.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160  
9.8  
SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161  
SIM Break Status Register. . . . . . . . . . . . . . . . . . . . . . . . .162  
SIM Reset Status Register . . . . . . . . . . . . . . . . . . . . . . . .163  
SIM Break Flag Control Register . . . . . . . . . . . . . . . . . . . .164  
9.8.1  
9.8.2  
9.8.3  
Section 10. Monitor ROM (MON)  
10.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165  
10.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165  
10.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166  
10.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166  
10.4.1 Entering Monitor Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . .168  
10.4.2 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .172  
10.4.3 Break Signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .172  
10.4.4 Baud Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173  
10.4.5 Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173  
10.5 Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .178  
Data Sheet  
12  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Table of Contents  
Freescale Semiconductor  
Table of Contents  
Section 11. Timer Interface Module (TIM)  
11.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181  
11.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .182  
11.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .182  
11.4 Pin Name Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183  
11.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183  
11.5.1 TIM Counter Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . .187  
11.5.2 Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187  
11.5.3 Output Compare. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .188  
11.5.3.1  
11.5.3.2  
Unbuffered Output Compare . . . . . . . . . . . . . . . . . . . . .188  
Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . .189  
11.5.4 Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . .189  
11.5.4.1  
11.5.4.2  
11.5.4.3  
Unbuffered PWM Signal Generation . . . . . . . . . . . . . . .190  
Buffered PWM Signal Generation . . . . . . . . . . . . . . . . .191  
PWM Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192  
11.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193  
11.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193  
11.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .194  
11.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .194  
11.8 TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . .194  
11.9 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .195  
11.10 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .195  
11.10.1 TIM Status and Control Register . . . . . . . . . . . . . . . . . . . .196  
11.10.2 TIM Counter Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . .198  
11.10.3 TIM Counter Modulo Registers . . . . . . . . . . . . . . . . . . . . .199  
11.10.4 TIM Channel Status and Control Registers . . . . . . . . . . . .200  
11.10.5 TIM Channel Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . .203  
Section 12. Timebase Module (TBM)  
12.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205  
12.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Table of Contents  
Data Sheet  
13  
Table of Contents  
12.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205  
12.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .206  
12.5 Timebase Register Description. . . . . . . . . . . . . . . . . . . . . . . .207  
12.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .208  
12.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .209  
12.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .209  
12.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .209  
Section 13. Pulse Width Modulator (PWM)  
13.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211  
13.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211  
13.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .212  
13.4 PWM Period and Resolution. . . . . . . . . . . . . . . . . . . . . . . . . .214  
13.5 PWM Automatic Phase Control . . . . . . . . . . . . . . . . . . . . . . .215  
13.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .216  
13.7 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .216  
13.8 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .216  
13.9 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .217  
13.10 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .217  
13.10.1 PWM Control Register (PWMCR) . . . . . . . . . . . . . . . . . . .217  
13.10.2 PWM Clock Control Register (PWMCCR) . . . . . . . . . . . . .218  
13.10.3 PWM Data Registers (PWMDR0–PWMDR2) . . . . . . . . . .219  
13.10.4 PWM Phase Control Register . . . . . . . . . . . . . . . . . . . . . .220  
Section 14. Analog Module  
14.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .221  
14.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .221  
14.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .222  
14.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .223  
Data Sheet  
14  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Table of Contents  
Freescale Semiconductor  
Table of Contents  
14.4.1 On-Chip Temperature Sensor . . . . . . . . . . . . . . . . . . . . . .223  
14.4.2 Two-Stage Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .224  
14.4.3 Amplifier Response Time . . . . . . . . . . . . . . . . . . . . . . . . . .224  
14.4.4 Current Flow Detection Amplifier . . . . . . . . . . . . . . . . . . . .225  
14.4.5 Current Flow Detect Output . . . . . . . . . . . . . . . . . . . . . . . .225  
14.5 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .225  
14.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .225  
14.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .225  
14.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .225  
14.7 Analog Module I/O Registers . . . . . . . . . . . . . . . . . . . . . . . . .226  
14.7.1 Analog Module Control Register (AMCR) . . . . . . . . . . . . .226  
14.7.2 Analog Module Gain Control Register (AMGCR). . . . . . . .227  
14.7.3 Analog Module Status and Control Register (AMSCR) . . .228  
Section 15. Analog-to-Digital Converter (ADC)  
15.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .231  
15.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .232  
15.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .232  
15.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .234  
15.4.1 ADC Port I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .234  
15.4.2 Voltage Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .235  
15.4.3 Conversion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .236  
15.4.4 Continuous Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . .237  
15.4.5 Auto-scan Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .237  
15.4.6 Result Justification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .238  
15.4.7 Data Register Interlocking . . . . . . . . . . . . . . . . . . . . . . . . .239  
15.4.8 Monotonicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .239  
15.5 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .239  
15.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .239  
15.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .239  
15.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .240  
15.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .240  
15.7.1 ADC Voltage In (V  
) . . . . . . . . . . . . . . . . . . . . . . . . . . .240  
ADIN  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Table of Contents  
Data Sheet  
15  
Table of Contents  
15.7.2 ADC Analog Power Pin (V  
) . . . . . . . . . . . . . . . . . . . . .240  
DDA  
15.7.3 ADC Analog Ground Pin (V  
). . . . . . . . . . . . . . . . . . . . .240  
SSA  
15.7.4 ADC Voltage Reference High Pin (V  
). . . . . . . . . . . . .241  
REFH  
15.7.5 ADC Voltage Reference Low Pin (V  
) . . . . . . . . . . . . .241  
REFL  
15.8 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .241  
15.8.1 ADC Status and Control Register. . . . . . . . . . . . . . . . . . . .242  
15.8.2 ADC Clock Control Register. . . . . . . . . . . . . . . . . . . . . . . .244  
15.8.3 ADC Data Register 0 (ADRH0 and ADRL0). . . . . . . . . . . .246  
15.8.4 ADC Auto-Scan Mode Data Registers (ADRL1–ADRL3). .248  
15.8.5 ADC Auto-Scan Control Register (ADASCR). . . . . . . . . . .248  
Section 16. Serial Communications Interface (SCI)  
16.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .251  
16.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .252  
16.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .252  
16.4 Pin Name Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .254  
16.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .254  
16.5.1 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .257  
16.5.2 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .257  
16.5.2.1  
16.5.2.2  
16.5.2.3  
16.5.2.4  
16.5.2.5  
16.5.2.6  
Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .259  
Character Transmission. . . . . . . . . . . . . . . . . . . . . . . . .259  
Break Characters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .260  
Idle Characters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .260  
Inversion of Transmitted Output. . . . . . . . . . . . . . . . . . .261  
Transmitter Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . .261  
16.5.3 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .262  
16.5.3.1  
16.5.3.2  
16.5.3.3  
16.5.3.4  
16.5.3.5  
16.5.3.6  
16.5.3.7  
16.5.3.8  
Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .262  
Character Reception . . . . . . . . . . . . . . . . . . . . . . . . . . .262  
Data Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .264  
Framing Errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .266  
Baud Rate Tolerance. . . . . . . . . . . . . . . . . . . . . . . . . . .266  
Receiver Wakeup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .269  
Receiver Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . .270  
Error Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .270  
Data Sheet  
16  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Table of Contents  
Freescale Semiconductor  
Table of Contents  
16.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .271  
16.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .271  
16.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .271  
16.7 SCI During Break Module Interrupts. . . . . . . . . . . . . . . . . . . .272  
16.8 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .272  
16.8.1 TxD (Transmit Data). . . . . . . . . . . . . . . . . . . . . . . . . . . . . .272  
16.8.2 RxD (Receive Data) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .273  
16.9 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .273  
16.9.1 SCI Control Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . .273  
16.9.2 SCI Control Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . .276  
16.9.3 SCI Control Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . .279  
16.9.4 SCI Status Register 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . .282  
16.9.5 SCI Status Register 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . .286  
16.9.6 SCI Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .287  
16.9.7 SCI Baud Rate Register. . . . . . . . . . . . . . . . . . . . . . . . . . .288  
Section 17. Multi-Master IIC Interface (MMIIC)  
17.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .291  
17.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .292  
17.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .293  
17.4 I/O Pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .293  
17.5 Multi-Master IIC System Configuration. . . . . . . . . . . . . . . . . .295  
17.6 Multi-Master IIC Bus Protocol. . . . . . . . . . . . . . . . . . . . . . . . .295  
17.6.1 START Signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .296  
17.6.2 Slave Address Transmission . . . . . . . . . . . . . . . . . . . . . . .296  
17.6.3 Data Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .296  
17.6.4 Repeated START Signal . . . . . . . . . . . . . . . . . . . . . . . . . .297  
17.6.5 STOP Signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .297  
17.6.6 Arbitration Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . .297  
17.6.7 Clock Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . .298  
17.6.8 Handshaking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .298  
17.6.9 Packet Error Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .299  
17.7 MMIIC I/O Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .299  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Table of Contents  
Data Sheet  
17  
Table of Contents  
17.7.1 MMIIC Address Register (MMADR) . . . . . . . . . . . . . . . . . .299  
17.7.2 MMIIC Control Register 1 (MMCR1) . . . . . . . . . . . . . . . . .301  
17.7.3 MMIIC Control Register 2 (MMCR2) . . . . . . . . . . . . . . . . .303  
17.7.4 MMIIC Status Register (MMSR). . . . . . . . . . . . . . . . . . . . .305  
17.7.5 MMIIC Data Transmit Register (MMDTR) . . . . . . . . . . . . .307  
17.7.6 MMIIC Data Receive Register (MMDRR). . . . . . . . . . . . . .308  
17.7.7 MMIIC CRC Data Register (MMCRCDR). . . . . . . . . . . . . .309  
17.7.8 MMIIC Frequency Divider Register (MMFDR) . . . . . . . . . .310  
17.8 Program Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .311  
17.8.1 Data Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .312  
17.9 SMBus Protocols with PEC and without PEC. . . . . . . . . . . . .313  
17.9.1 Quick Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .313  
17.9.2 Send Byte. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .313  
17.9.3 Receive Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .313  
17.9.4 Write Byte/Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .314  
17.9.5 Read Byte/Word. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .314  
17.9.6 Process Call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .315  
17.9.7 Block Read/Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .315  
17.10 SMBus Protocol Implementation . . . . . . . . . . . . . . . . . . . . . .316  
Section 18. Input/Output (I/O) Ports  
18.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .317  
18.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .317  
18.3 Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .320  
18.3.1 Port A Data Register (PTA) . . . . . . . . . . . . . . . . . . . . . . . .320  
18.3.2 Data Direction Register A (DDRA) . . . . . . . . . . . . . . . . . . .321  
18.3.3 Port A LED Control Register (LEDA) . . . . . . . . . . . . . . . . .323  
18.4 Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .323  
18.4.1 Port B Data Register (PTB) . . . . . . . . . . . . . . . . . . . . . . . .324  
18.4.2 Data Direction Register B (DDRB) . . . . . . . . . . . . . . . . . . .325  
18.5 Port C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .327  
18.5.1 Port C Data Register (PTC) . . . . . . . . . . . . . . . . . . . . . . . .327  
18.5.2 Data Direction Register C (DDRC). . . . . . . . . . . . . . . . . . .329  
18.5.3 Port C LED Control Register (LEDC) . . . . . . . . . . . . . . . . .330  
Data Sheet  
18  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Table of Contents  
Freescale Semiconductor  
Table of Contents  
18.6 Port D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .331  
18.6.1 Port D Data Register (PTD) . . . . . . . . . . . . . . . . . . . . . . . .331  
18.6.2 Data Direction Register D (DDRD). . . . . . . . . . . . . . . . . . .332  
Section 19. External Interrupt (IRQ)  
19.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .335  
19.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .335  
19.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .335  
19.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .336  
19.5 IRQ1 and IRQ2 Pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .338  
19.6 IRQ Module During Break Interrupts . . . . . . . . . . . . . . . . . . .339  
19.7 IRQ Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .340  
19.7.1 IRQ1 Status and Control Register . . . . . . . . . . . . . . . . . . .340  
19.7.2 IRQ2 Status and Control Register . . . . . . . . . . . . . . . . . . .341  
Section 20. Keyboard Interrupt Module (KBI)  
20.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .343  
20.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .343  
20.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .344  
20.4 I/O Pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .344  
20.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .345  
20.5.1 Keyboard Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . .347  
20.6 Keyboard Interrupt Registers . . . . . . . . . . . . . . . . . . . . . . . . .347  
20.6.1 Keyboard Status and Control Register. . . . . . . . . . . . . . . .348  
20.6.2 Keyboard Interrupt Enable Register. . . . . . . . . . . . . . . . . .349  
20.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .349  
20.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .349  
20.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .349  
20.10 Keyboard Module During Break Interrupts . . . . . . . . . . . . . . .350  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Table of Contents  
Data Sheet  
19  
Table of Contents  
Section 21. Computer Operating Properly (COP)  
21.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .351  
21.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .351  
21.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .352  
21.4 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .353  
21.4.1 ICLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .353  
21.4.2 STOP Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .353  
21.4.3 COPCTL Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .353  
21.4.4 Power-On Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .353  
21.4.5 Internal Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .354  
21.4.6 Reset Vector Fetch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .354  
21.4.7 COPD (COP Disable). . . . . . . . . . . . . . . . . . . . . . . . . . . . .354  
21.4.8 COPRS (COP Rate Select) . . . . . . . . . . . . . . . . . . . . . . . .354  
21.5 COP Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .355  
21.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .355  
21.7 Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .355  
21.8 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .355  
21.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .356  
21.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .356  
21.9 COP Module During Break Mode . . . . . . . . . . . . . . . . . . . . . .356  
Section 22. Low-Voltage Inhibit (LVI)  
22.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .357  
22.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .357  
22.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .357  
22.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .358  
22.4.1 Polled LVI Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .359  
22.4.2 Forced Reset Operation. . . . . . . . . . . . . . . . . . . . . . . . . . .360  
22.4.3 Voltage Hysteresis Protection . . . . . . . . . . . . . . . . . . . . . .360  
22.4.4 LVI Trip Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .360  
22.5 LVI Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .361  
Data Sheet  
20  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Table of Contents  
Freescale Semiconductor  
Table of Contents  
22.6 LVI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .361  
22.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .361  
22.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .362  
22.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .362  
Section 23. Break Module (BRK)  
23.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .363  
23.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .363  
23.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .364  
23.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .364  
23.4.1 Flag Protection During Break Interrupts. . . . . . . . . . . . . . .366  
23.4.2 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .366  
23.4.3 TIM1 and TIM2 During Break Interrupts. . . . . . . . . . . . . . .366  
23.4.4 COP During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .366  
23.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .366  
23.5.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .366  
23.5.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .367  
23.6 Break Module Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . .367  
23.6.1 Break Status and Control Register. . . . . . . . . . . . . . . . . . .367  
23.6.2 Break Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . .368  
23.6.3 SIM Break Status Register. . . . . . . . . . . . . . . . . . . . . . . . .368  
23.6.4 SIM Break Flag Control Register . . . . . . . . . . . . . . . . . . . .370  
Section 24. Electrical Specifications  
24.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .371  
24.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .372  
24.3 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . .372  
24.4 Functional Operating Range. . . . . . . . . . . . . . . . . . . . . . . . . .373  
24.5 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .373  
24.6 5.0V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . .374  
24.7 3.0V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . .376  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Table of Contents  
Data Sheet  
21  
Table of Contents  
24.8 5.0V Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .377  
24.9 3.0V Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .377  
24.10 5.0V Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . .378  
24.11 3.0V Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . .379  
24.12 5.0V ADC Electrical Characteristics . . . . . . . . . . . . . . . . . . . .380  
24.13 3.0V ADC Electrical Characteristics . . . . . . . . . . . . . . . . . . . .381  
24.14 Analog Module Electrical Characteristics . . . . . . . . . . . . . . . .382  
24.14.1 Temperature Sensor Electrical Characteristics . . . . . . . . .382  
24.14.2 Current Detection Electrical Characteristics. . . . . . . . . . . .382  
24.14.3 Two-Stage Amplifier Electrical Characteristics. . . . . . . . . .382  
24.15 Timer Interface Module Characteristics . . . . . . . . . . . . . . . . .383  
24.16 MMIIC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . .383  
24.17 CGM Electrical Specifications. . . . . . . . . . . . . . . . . . . . . . . . .385  
24.18 FLASH Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . .386  
Section 25. Mechanical Specifications  
25.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .387  
25.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .387  
25.3 48-Pin Plastic Low Quad Flat Pack (LQFP) . . . . . . . . . . . . . .388  
25.4 42-Pin Shrink Dual In-Line Package (SDIP). . . . . . . . . . . . . .389  
Section 26. Ordering Information  
26.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .391  
26.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .391  
26.3 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .391  
Data Sheet  
22  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Table of Contents  
Freescale Semiconductor  
Table of Contents  
Appendix A. MC68HC08SR12  
A.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .393  
A.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .394  
A.3 MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .394  
A.4 Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .394  
A.5 Mask Option Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .397  
A.6 Reserved Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .397  
A.7 Monitor ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .397  
A.8 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . .397  
A.8.1  
A.8.2  
A.8.3  
5.0V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . .398  
3.0V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . .399  
Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . .401  
A.9 ROM Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .401  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Table of Contents  
Data Sheet  
23  
Table of Contents  
Data Sheet  
24  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor  
Table of Contents  
Data Sheet — MC68HC908SR12•MC68HC08SR12  
List of Figures  
Figure  
Title  
Page  
1-1  
1-2  
1-3  
1-4  
MC68HC908SR12 Block Diagram . . . . . . . . . . . . . . . . . . . . . .39  
48-Pin LQFP Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . .40  
42-Pin SDIP Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . .41  
Power Supply Bypassing . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
2-1  
2-2  
Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47  
Control, Status, and Data Registers . . . . . . . . . . . . . . . . . . . . .48  
4-1  
4-2  
4-3  
4-4  
4-5  
FLASH I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . .64  
FLASH Control Register (FLCR) . . . . . . . . . . . . . . . . . . . . . . .65  
FLASH Programming Flowchart. . . . . . . . . . . . . . . . . . . . . . . .69  
FLASH Block Protect Register (FLBPR). . . . . . . . . . . . . . . . . .70  
FLASH Block Protect Start Address . . . . . . . . . . . . . . . . . . . . .70  
5-1  
5-2  
5-3  
5-4  
CONFIG and MOR Register Summary. . . . . . . . . . . . . . . . . . .74  
Configuration Register 1 (CONFIG1) . . . . . . . . . . . . . . . . . . . .75  
Configuration Register 2 (CONFIG2) . . . . . . . . . . . . . . . . . . . .77  
Mask Option Register (MOR) . . . . . . . . . . . . . . . . . . . . . . . . . .79  
6-1  
6-2  
6-3  
6-4  
6-5  
6-6  
CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83  
Accumulator (A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83  
Index Register (H:X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84  
Stack Pointer (SP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85  
Program Counter (PC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85  
Condition Code Register (CCR) . . . . . . . . . . . . . . . . . . . . . . . .86  
7-1  
7-2  
7-3  
7-4  
Oscillator Module Block Diagram . . . . . . . . . . . . . . . . . . . . . .103  
Mask Option Register (MOR) . . . . . . . . . . . . . . . . . . . . . . . . .104  
Configuration Register 2 (CONFIG2) . . . . . . . . . . . . . . . . . . .105  
Internal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor  
Data Sheet  
25  
List of Figures  
List of Figures  
Figure  
Title  
Page  
7-5  
7-6  
RC Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107  
Crystal Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108  
8-1  
8-2  
8-3  
8-4  
8-5  
8-6  
8-7  
8-8  
8-9  
CGM Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114  
CGM I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . .115  
CGM External Connections . . . . . . . . . . . . . . . . . . . . . . . . . .125  
PLL Control Register (PCTL) . . . . . . . . . . . . . . . . . . . . . . . . .128  
PLL Bandwidth Control Register (PBWCR) . . . . . . . . . . . . . .131  
PLL Multiplier Select Register High (PMSH) . . . . . . . . . . . . .132  
PLL Multiplier Select Register Low (PMSL) . . . . . . . . . . . . . .132  
PLL VCO Range Select Register (PMRS) . . . . . . . . . . . . . . .133  
PLL Reference Divider Select Register (PMDS) . . . . . . . . . .134  
8-10 PLL Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139  
9-1  
9-2  
9-3  
9-4  
9-5  
9-6  
9-7  
9-8  
9-9  
SIM Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143  
SIM I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . .144  
CGM Clock Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145  
External Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147  
Internal Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .148  
Sources of Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . .148  
POR Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149  
Interrupt Entry Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .152  
Interrupt Recovery Timing . . . . . . . . . . . . . . . . . . . . . . . . . . .152  
9-10 Interrupt Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153  
9-11 Interrupt Recognition Example . . . . . . . . . . . . . . . . . . . . . . . .154  
9-12 Interrupt Status Register 1 (INT1). . . . . . . . . . . . . . . . . . . . . .155  
9-13 Interrupt Status Register 2 (INT2). . . . . . . . . . . . . . . . . . . . . .157  
9-14 Interrupt Status Register 3 (INT3). . . . . . . . . . . . . . . . . . . . . .157  
9-15 Wait Mode Entry Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159  
9-16 Wait Recovery from Interrupt or Break . . . . . . . . . . . . . . . . . .160  
9-17 Wait Recovery from Internal Reset. . . . . . . . . . . . . . . . . . . . .160  
9-18 Stop Mode Entry Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161  
9-19 Stop Mode Recovery from Interrupt or Break. . . . . . . . . . . . .161  
9-20 SIM Break Status Register (SBSR) . . . . . . . . . . . . . . . . . . . .162  
9-21 SIM Reset Status Register (SRSR) . . . . . . . . . . . . . . . . . . . .163  
9-22 SIM Break Flag Control Register (SBFCR) . . . . . . . . . . . . . .164  
Data Sheet  
26  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
List of Figures  
Freescale Semiconductor  
List of Figures  
Figure  
Title  
Page  
10-1 Monitor Mode Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167  
10-2 Low-Voltage Monitor Mode Entry Flowchart. . . . . . . . . . . . . .171  
10-3 Monitor Data Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .172  
10-4 Break Transaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .172  
10-5 Read Transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .174  
10-6 Write Transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .174  
10-7 Stack Pointer at Monitor Mode Entry . . . . . . . . . . . . . . . . . . .178  
10-8 Monitor Mode Entry Timing. . . . . . . . . . . . . . . . . . . . . . . . . . .179  
11-1 TIM Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .184  
11-2 TIM I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . .185  
11-3 PWM Period and Pulse Width . . . . . . . . . . . . . . . . . . . . . . . .190  
11-4 TIM Status and Control Register (TSC) . . . . . . . . . . . . . . . . .196  
11-5 TIM Counter Registers High (TCNTH) . . . . . . . . . . . . . . . . . .198  
11-6 TIM Counter Registers Low (TCNTL). . . . . . . . . . . . . . . . . . .198  
11-7 TIM Counter Modulo Register High (TMODH) . . . . . . . . . . . .199  
11-8 TIM Counter Modulo Register Low (TMODL). . . . . . . . . . . . .199  
11-9 TIM Channel 0 Status and Control Register (TSC0) . . . . . . .200  
11-10 TIM Channel 1 Status and Control Register (TSC1) . . . . . . .200  
11-11 CHxMAX Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .203  
11-12 TIM Channel 0 Register High (TCH0H) . . . . . . . . . . . . . . . . .204  
11-13 TIM Channel 0 Register Low (TCH0L) . . . . . . . . . . . . . . . . . .204  
11-14 TIM Channel 1 Register High (TCH1H) . . . . . . . . . . . . . . . . .204  
11-15 TIM Channel 1 Register Low (TCH1L) . . . . . . . . . . . . . . . . . .204  
12-1 Timebase Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . .206  
12-2 Timebase Control Register (TBCR) . . . . . . . . . . . . . . . . . . . .207  
13-1 PWM I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . .212  
13-2 PWM Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .213  
13-3 PWM Output Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . .214  
13-4 PWM Automatic Phase Control . . . . . . . . . . . . . . . . . . . . . . .215  
13-5 PWM Control Register (PWMCR). . . . . . . . . . . . . . . . . . . . . .217  
13-6 PWM Clock Control Register (PWMCCR) . . . . . . . . . . . . . . .218  
13-7 PWM Data Register 0 (PWMDR0) . . . . . . . . . . . . . . . . . . . . .219  
13-8 PWM Data Register 1 (PWMDR1) . . . . . . . . . . . . . . . . . . . . .219  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor  
Data Sheet  
27  
List of Figures  
List of Figures  
Figure  
Title  
Page  
13-9 PWM Data Register 2 (PWMDR2) . . . . . . . . . . . . . . . . . . . . .219  
13-10 PWM Phase Control Register (PWMPCR). . . . . . . . . . . . . . .220  
14-1 Analog Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . .222  
14-2 Analog Module I/O Register Summary . . . . . . . . . . . . . . . . . .223  
14-3 Analog Module Control Register (AMCR). . . . . . . . . . . . . . . .226  
14-4 Analog Module Gain Control Register (AMGCR) . . . . . . . . . .227  
14-5 Analog Module Status and Control Register (AMSCR) . . . . .229  
15-1 ADC I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . .233  
15-2 ADC Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .235  
15-3 ADC Status and Control Register (ADSCR). . . . . . . . . . . . . .242  
15-4 ADC Clock Control Register (ADICLK). . . . . . . . . . . . . . . . . .244  
15-5 ADRH0 and ADRL0 in 8-Bit Truncated Mode. . . . . . . . . . . . .246  
15-6 ADRH0 and ADRL0 in Right Justified Mode. . . . . . . . . . . . . .246  
15-7 ADRH0 and ADRL0 in Left Justified Mode. . . . . . . . . . . . . . .247  
15-8 ADRH0 and ADRL0 in Left Justified Sign Data Mode . . . . . .247  
15-9 ADC Data Register Low 1 to 3 (ADRL1–ADRL3). . . . . . . . . .248  
15-10 ADC Scan Control Register (ADASCR) . . . . . . . . . . . . . . . . .248  
16-1 SCI Module Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . .255  
16-2 SCI I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . .256  
16-3 SCI Data Formats. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .257  
16-4 SCI Transmitter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .258  
16-5 SCI Receiver Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . .263  
16-6 Receiver Data Sampling. . . . . . . . . . . . . . . . . . . . . . . . . . . . .264  
16-7 Slow Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .267  
16-8 Fast Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .268  
16-9 SCI Control Register 1 (SCC1). . . . . . . . . . . . . . . . . . . . . . . .274  
16-10 SCI Control Register 2 (SCC2). . . . . . . . . . . . . . . . . . . . . . . .277  
16-11 SCI Control Register 3 (SCC3). . . . . . . . . . . . . . . . . . . . . . . .279  
16-12 SCI Status Register 1 (SCS1) . . . . . . . . . . . . . . . . . . . . . . . .282  
16-13 Flag Clearing Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . .285  
16-14 SCI Status Register 2 (SCS2) . . . . . . . . . . . . . . . . . . . . . . . .286  
16-15 SCI Data Register (SCDR) . . . . . . . . . . . . . . . . . . . . . . . . . . .287  
16-16 SCI Baud Rate Register (SCBR) . . . . . . . . . . . . . . . . . . . . . .288  
Data Sheet  
28  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
List of Figures  
Freescale Semiconductor  
List of Figures  
Figure  
Title  
Page  
17-1 MMIIC I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . .294  
17-2 Multi-Master IIC Bus Transmission Signal Diagram . . . . . . . .295  
17-3 Clock Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .298  
17-4 MMIIC Address Register (MMADR) . . . . . . . . . . . . . . . . . . . .299  
17-5 MMIIC Control Register 1 (MMCR1). . . . . . . . . . . . . . . . . . . .301  
17-6 MMIIC Control Register 2 (MMCR2). . . . . . . . . . . . . . . . . . . .303  
17-7 MMIIC Status Register (MMSR) . . . . . . . . . . . . . . . . . . . . . . .305  
17-8 MMIIC Data Transmit Register (MMDTR) . . . . . . . . . . . . . . .307  
17-9 MMIIC Data Receive Register (MMDRR). . . . . . . . . . . . . . . .308  
17-10 MMIIC CRC Data Register (MMCRCDR). . . . . . . . . . . . . . . .309  
17-11 MMIIC Frequency Divider Register (MMFDR) . . . . . . . . . . . .310  
17-12 Data Transfer Sequences for Master/Slave  
Transmit/Receive Modes. . . . . . . . . . . . . . . . . . . . . . . . . .312  
17-13 Quick Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .313  
17-14 Send Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .313  
17-15 Receive Byte. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .313  
17-16 Write Byte/Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .314  
17-17 Read Byte/Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .314  
17-18 Process Call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .315  
17-19 Block Read/Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .315  
17-20 SMBus Protocol Implementation . . . . . . . . . . . . . . . . . . . . . .316  
18-1 I/O Port Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . .318  
18-2 Port A Data Register (PTA) . . . . . . . . . . . . . . . . . . . . . . . . . .320  
18-3 Data Direction Register A (DDRA) . . . . . . . . . . . . . . . . . . . . .321  
18-4 Port A I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .322  
18-5 Port A LED Control Register (LEDA) . . . . . . . . . . . . . . . . . . .323  
18-6 Port B Data Register (PTB) . . . . . . . . . . . . . . . . . . . . . . . . . .324  
18-7 Data Direction Register B (DDRB) . . . . . . . . . . . . . . . . . . . . .325  
18-8 Port B I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .326  
18-9 Port C Data Register (PTC) . . . . . . . . . . . . . . . . . . . . . . . . . .327  
18-10 Data Direction Register B (DDRB) . . . . . . . . . . . . . . . . . . . . .329  
18-11 Port C I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .329  
18-12 Port A LED Control Register (LEDA) . . . . . . . . . . . . . . . . . . .330  
18-13 Port D Data Register (PTD) . . . . . . . . . . . . . . . . . . . . . . . . . .331  
18-14 Data Direction Register D (DDRD) . . . . . . . . . . . . . . . . . . . . .332  
18-15 Port D I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .332  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor  
Data Sheet  
29  
List of Figures  
List of Figures  
Figure  
Title  
Page  
19-1 External Interrupt I/O Register Summary . . . . . . . . . . . . . . . .336  
19-2 IRQ1 Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .337  
19-3 IRQ2 Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .338  
19-4 IRQ1 Status and Control Register (INTSCR1) . . . . . . . . . . . .340  
19-5 IRQ2 Status and Control Register (INTSCR2) . . . . . . . . . . . .341  
20-1 KBI I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . .344  
20-2 Keyboard Interrupt Block Diagram . . . . . . . . . . . . . . . . . . . . .345  
20-3 Keyboard Status and Control Register (KBSCR) . . . . . . . . . .348  
20-4 Keyboard Interrupt Enable Register (KBIER) . . . . . . . . . . . . .349  
21-1 COP Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .352  
21-2 Configuration Register 1 (CONFIG1) . . . . . . . . . . . . . . . . . . .354  
21-3 COP Control Register (COPCTL). . . . . . . . . . . . . . . . . . . . . .355  
22-1 LVI I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . .358  
22-2 LVI Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . .358  
22-3 LVI Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .361  
23-1 Break Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . .365  
23-2 Break Module I/O Register Summary. . . . . . . . . . . . . . . . . . .365  
23-3 Break Status and Control Register (BRKSCR). . . . . . . . . . . .367  
23-4 Break Address Register High (BRKH) . . . . . . . . . . . . . . . . . .368  
23-5 Break Address Register Low (BRKL) . . . . . . . . . . . . . . . . . . .368  
23-6 SIM Break Status Register (SBSR) . . . . . . . . . . . . . . . . . . . .369  
23-7 SIM Break Flag Control Register (SBFCR) . . . . . . . . . . . . . .370  
24-1 RC vs. Bus Frequency (5V @25°C). . . . . . . . . . . . . . . . . . . .378  
24-2 RC vs. Bus Frequency (3V @25°C). . . . . . . . . . . . . . . . . . . .379  
24-3 MMIIC Signal Timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .383  
25-1 48-Pin LQFP (Case #932-02). . . . . . . . . . . . . . . . . . . . . . . . .388  
25-2 42-Pin SDIP (Case #858-01) . . . . . . . . . . . . . . . . . . . . . . . . .389  
A-1 MC68HC08SR12 Block Diagram . . . . . . . . . . . . . . . . . . . . . 395  
A-2 MC68HC08SR12 Memory Map . . . . . . . . . . . . . . . . . . . . . . 396  
Data Sheet  
30  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
List of Figures  
Freescale Semiconductor  
Data Sheet — MC68HC908SR12•MC68HC08SR12  
List of Tables  
Table  
Title  
Page  
2-1  
Vector Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
CGMXCLK Clock Selection . . . . . . . . . . . . . . . . . . . . . . . . . . .80  
5-1  
6-1  
6-2  
Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90  
Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99  
7-1  
7-2  
CGMXCLK Clock Selection . . . . . . . . . . . . . . . . . . . . . . . . . .104  
Timebase Module Reference Clock Selection . . . . . . . . . . . .105  
8-1  
8-3  
8-2  
Numeric Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123  
VPR1 and VPR0 Programming . . . . . . . . . . . . . . . . . . . . . . .130  
PRE1 and PRE0 Programming . . . . . . . . . . . . . . . . . . . . . . .130  
9-1  
9-2  
9-3  
Signal Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . .143  
PIN Bit Set Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147  
Interrupt Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156  
10-1 Monitor Mode Signal Requirements and Options. . . . . . . . . .169  
10-2 Mode Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .172  
10-3 Monitor Baud Rate Selection . . . . . . . . . . . . . . . . . . . . . . . . .173  
10-4 READ (Read Memory) Command . . . . . . . . . . . . . . . . . . . . .175  
10-5 WRITE (Write Memory) Command. . . . . . . . . . . . . . . . . . . . .175  
10-7 IWRITE (Indexed Write) Command . . . . . . . . . . . . . . . . . . . .176  
10-6 IREAD (Indexed Read) Command . . . . . . . . . . . . . . . . . . . . .176  
10-8 READSP (Read Stack Pointer) Command. . . . . . . . . . . . . . .177  
10-9 RUN (Run User Program) Command. . . . . . . . . . . . . . . . . . .177  
11-1 Pin Name Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183  
11-2 Prescaler Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .197  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor  
Data Sheet  
31  
List of Tables  
List of Tables  
Table  
Title  
Page  
11-3 Mode, Edge, and Level Selection. . . . . . . . . . . . . . . . . . . . . .202  
12-1 Timebase Rate Selection for OSCCLK = 32.768 kHz . . . . . .207  
13-1 PTC0 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . .218  
13-2 PWM Counter Clock Prescaler Selection . . . . . . . . . . . . . . . .219  
14-1 Analog Module Power Control . . . . . . . . . . . . . . . . . . . . . . . .226  
14-2 Amplifier Channel Select Control bits . . . . . . . . . . . . . . . . . . .227  
14-3 Analog Module Gain Values . . . . . . . . . . . . . . . . . . . . . . . . . .228  
14-4 Analog Module Clock Divider Select. . . . . . . . . . . . . . . . . . . .229  
15-1 MUX Channel Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .243  
15-2 ADC Clock Divide Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . .244  
15-3 ADC Mode Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .245  
15-4 Auto-scan Mode Channel Select . . . . . . . . . . . . . . . . . . . . . .248  
16-1 Pin Name Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .254  
16-2 Start Bit Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .265  
16-3 Data Bit Recovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .265  
16-4 Stop Bit Recovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .266  
16-5 Character Format Selection . . . . . . . . . . . . . . . . . . . . . . . . . .276  
16-6 SCI Baud Rate Prescaling . . . . . . . . . . . . . . . . . . . . . . . . . . .288  
16-7 SCI Baud Rate Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . .289  
16-8 SCI Baud Rate Selection Examples . . . . . . . . . . . . . . . . . . . .290  
17-1 Pin Name Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .294  
17-2 MMIIC Baud Rate Selection . . . . . . . . . . . . . . . . . . . . . . . . . .310  
18-1 Port Control Register Bits Summary. . . . . . . . . . . . . . . . . . . .319  
18-2 Port A Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .322  
18-3 PTB2 and PTB3 Pin Configurations . . . . . . . . . . . . . . . . . . . .325  
18-4 Port B Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .326  
18-5 PTC0 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . .328  
18-6 Port C Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .330  
18-7 Port D Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .333  
Data Sheet  
32  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
List of Tables  
Freescale Semiconductor  
List of Tables  
Table  
Title  
Page  
20-1 Pin Name Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .344  
22-1 LVIOUT Bit Indication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .361  
24-1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . .372  
24-2 Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .373  
24-3 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .373  
24-4 5V DC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . .374  
24-5 3V DC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . .376  
24-6 5V Control Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .377  
24-7 3V Control Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .377  
24-8 5V Oscillator Specifications . . . . . . . . . . . . . . . . . . . . . . . . . .378  
24-9 3V Oscillator Specifications . . . . . . . . . . . . . . . . . . . . . . . . . .379  
24-10 5V ADC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . .380  
24-11 3V ADC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . .381  
24-12 Temperature Sensor Electrical Characteristics . . . . . . . . . . .382  
24-13 Current Detection Electrical Characteristics . . . . . . . . . . . . . .382  
24-14 Two-Stage Amplifier Electrical Characteristics. . . . . . . . . . . .382  
24-15 MMIIC DC Electrical Characteristics. . . . . . . . . . . . . . . . . . . .383  
24-16 MMIIC Interface Input/Output Signal Timing. . . . . . . . . . . . . .384  
24-17 FLASH Memory Electrical Characteristics . . . . . . . . . . . . . . .386  
26-1 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .391  
A-1 Summary of MC68HC08SR12 and  
MC68HC908SR12 Differences . . . . . . . . . . . . . . . . . . . . .394  
A-2 5V DC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . .398  
A-3 3V DC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . .399  
A-4 MC68HC08SR12 Order Numbers . . . . . . . . . . . . . . . . . . . . .401  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor  
Data Sheet  
33  
List of Tables  
List of Tables  
Data Sheet  
34  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor  
List of Tables  
Data Sheet — MC68HC908SR12•MC68HC08SR12  
Section 1. General Description  
1.1 Contents  
1.2  
1.3  
1.4  
1.5  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
1.6  
1.6.1  
1.6.2  
1.6.3  
1.6.4  
1.6.5  
1.6.6  
1.6.7  
1.6.8  
1.6.9  
Power Supply Pins (V and V ). . . . . . . . . . . . . . . . . . . .42  
DD SS  
Oscillator Pins (OSC1 and OSC2) . . . . . . . . . . . . . . . . . . . .42  
External Reset Pin (RST). . . . . . . . . . . . . . . . . . . . . . . . . . .43  
External Interrupt Pin (IRQ1) . . . . . . . . . . . . . . . . . . . . . . . .43  
Analog Power Supply Pin (V  
). . . . . . . . . . . . . . . . . . . . .43  
DDA  
Analog Ground Pin (V  
) . . . . . . . . . . . . . . . . . . . . . . . . . .43  
SSA  
ADC Voltage Low Reference Pin (V  
) . . . . . . . . . . . . . .43  
REFL  
ADC Voltage High Reference Pin (V  
). . . . . . . . . . . . . .43  
REFH  
External Filter Capacitor Pin (CGMXFC) . . . . . . . . . . . . . . .43  
) . . .44  
1.6.10 Analog Input Pins (OPIN1/ATD0, OPIN2/ATD1, V  
SSAM  
1.6.11 Port A Input/Output (I/O) Pins (PTA7–PTA0). . . . . . . . . . . .44  
1.6.12 Port B I/O Pins (PTB6–PTB0) . . . . . . . . . . . . . . . . . . . . . . .44  
1.6.13 Port C I/O Pins (PTC7–PTC0) . . . . . . . . . . . . . . . . . . . . . . .44  
1.6.14 Port D I/O Pins (PTD7/KBI7–PTD0/KBI0) . . . . . . . . . . . . . .44  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor General Description  
Data Sheet  
35  
General Description  
1.2 Introduction  
The MC68HC908SR12 is a member of the low-cost, high-performance  
M68HC08 Family of 8-bit microcontroller units (MCUs). The M68HC08  
Family is based on the customer-specified integrated circuit (CSIC)  
design strategy. All MCUs in the family use the enhanced M68HC08  
central processor unit (CPU08) and are available with a variety of  
modules, memory sizes and types, and package types.  
1.3 Features  
Features of the MC68HC908SR12 include the following:  
• High-performance M68HC08 architecture  
• Fully upward-compatible object code with M6805, M146805, and  
M68HC05 Families  
• Maximum internal bus frequency:  
– 8-MHz at 5V operating voltage  
– 4-MHz at 3V operating voltage  
• Clock input options:  
– RC-oscillator  
– 32kHz crystal-oscillator with 32MHz internal phase-lock-loop  
1
• 12k-bytes user program FLASH memory with security feature  
• 512 bytes of on-chip RAM  
• Two 16-bit, 2-channel timer interface modules (TIM1 and TIM2)  
with selectable input capture, output compare, and PWM  
capability on each channel  
• Timebase module  
• 3-channel, 8-bit high speed PWM (125kHz) with independent  
counters and automatic phase control  
• Serial communications interface module (SCI)  
1. No security feature is absolutely secure. However, Freescale’s strategy is to make reading or  
copying the FLASH difficult for unauthorized users.  
Data Sheet  
36  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
General Description  
Freescale Semiconductor  
General Description  
Features  
• System Management Bus (SMBus), version 1.0/1.1  
(Multi-master IIC bus)  
• 14-channel, 10-bit analog-to-digital converter (ADC), with  
auto-scan mode for 4 channels  
• Current sensor with programmable amplifier  
• Temperature sensor (–20°C to +70°C)  
• IRQ1 external interrupt pin with integrated pullup  
• IRQ2 external interrupt pin with programmable pullup  
• 8-bit keyboard wakeup port with integrated pullup  
• 31 general-purpose input/output (I/O) pins and 2 dedicated pins:  
– 31 shared-function I/O pins  
– Two dedicated analog input pins  
• Low-power design (fully static with Stop and Wait modes)  
• Master reset pin (with integrated pullup) and power-on reset  
• System protection features  
– Optional computer operating properly (COP) reset  
– Low-voltage detection with optional reset  
– Illegal opcode detection with reset  
– Illegal address detection with reset  
• 48-pin low quad flat pack (LQFP) and 42-pin shrink dual-in-line  
package (SDIP)  
• Specific features of the MC68HC908SR12 in 42-pin SDIP are:  
– 29 general-purpose l/Os only  
– 11-channel ADC only  
Features of the CPU08 include the following:  
• Enhanced HC05 programming model  
• Extensive loop control functions  
• 16 addressing modes (eight more than the HC05)  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor General Description  
Data Sheet  
37  
General Description  
• 16-bit Index register and stack pointer  
• Memory-to-memory data transfers  
• Fast 8 × 8 multiply instruction  
• Fast 16/8 divide instruction  
• Binary-coded decimal (BCD) instructions  
• Optimization for controller applications  
• Efficient C language support  
1.4 MCU Block Diagram  
Figure 1-1 shows the structure of the MC68HC908SR12.  
Data Sheet  
38  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
General Description Freescale Semiconductor  
INTERNAL BUS  
M68HC08 CPU  
PTA7/T1CH1  
PTA6/T1CH0  
CPU  
REGISTERS  
ARITHMETIC/LOGIC  
UNIT (ALU)  
2-CHANNEL TIMER INTERFACE  
MODULE 1  
PTA5/ATD7 – PTA0/ATD2 ‡  
CONTROL AND STATUS REGISTERS — 96 BYTES  
USER FLASH — 12,288 BYTES  
2-CHANNEL TIMER INTERFACE  
MODULE 2  
PTB6/IRQ2  
TIMEBASE  
MODULE  
PTB5/T2CH1  
USER RAM — 512 BYTES  
PTB4/T2CH0  
PTB3//SCL1/RxD †  
PTB2/SDA1/TxD †  
PTB1/SCL0 †  
PTB0/SDA0 †  
MONITOR ROM — 368 BYTES  
SERIAL COMMUNICATIONS  
INTERFACE MODULE  
USER FLASH VECTORS — 38 BYTES  
MULTI-MASTER IIC (SMBUS)  
INTERFACE MODULE  
OSCILLATORS AND  
CLOCK GENERATOR MODULE  
PTC7/ATD12 ‡ #  
PTC6/ATD11 ‡ #  
PTC5/ATD10 ‡  
PTC4/ATD9 ‡  
PTC3/ATD8 ‡  
PTC2/PWM2  
INTERNAL OSCILLATOR  
PULSE WIDTH MODULATOR  
MODULE  
RC OSCILLATOR  
OSC1  
X-TAL OSCILLATOR  
OSC2  
8-BIT KEYBOARD  
INTERRUPT MODULE  
PHASE-LOCKED LOOP  
PTC1/PWM1  
CGMXFC  
* RST  
PTC0/PWM0/CD  
SYSTEM INTEGRATION  
MODULE  
COMPUTER OPERATING  
PROPERLY MODULE  
PTD7/KBI7 – PTD0/KBI0 ***  
* IRQ1  
EXTERNAL IRQ  
MODULE  
LOW-VOLTAGE  
INHIBIT MODULE  
** IRQ2  
OPIN1/ATD0  
# OPIN2/ATD1  
VSSAM  
ANALOG  
MODULE  
POWER-ON RESET  
MODULE  
VREFH  
VREFL  
10-BIT ANALOG-TO-DIGITAL  
CONVERTER MODULE  
* Pin contains integrated pullup device.  
** Pin contains configurable pullup device.  
*** Pin contains integrated pullup device for KBI functions.  
† Pin is open-drain when configured as output.  
‡ High current drive pin (for LED).  
VDD  
VSS  
VDDA  
POWER  
VSSA  
# Pin not bonded on 42-pin SDIP.  
Figure 1-1. MC68HC908SR12 Block Diagram  
General Description  
1.5 Pin Assignments  
1
36  
VREFH  
PTC3/ATD8  
2
NC  
PTD0/KBI0  
VDD  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
VREFL  
3
OPIN2/ATD1  
PTC7/ATD12  
PTA0/ATD2  
VSSAM  
4
5
OSC1  
6
OSC2  
7
OPIN1/ATD0  
PTB4/T2CH0  
PTB5/T2CH1  
PTB6/IRQ2  
PTA6/T1CH0  
VSS  
8
PTD1/KBI1  
IRQ1  
9
10  
11  
PTD2/KBI2  
RST  
25 PTD7/KBI7  
PTD3/KBI3 12  
NC: No connection  
Figure 1-2. 48-Pin LQFP Pin Assignments  
Data Sheet  
40  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
General Description Freescale Semiconductor  
General Description  
Pin Functions  
VDDA  
1
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
VSSA  
PTC5/ATD10  
2
PTA4/ATD6  
PTA3/ATD5  
PTA2/ATD4  
PTA1/ATD3  
VREFH  
3
PTC4/ATD9  
PTA5/ATD7  
4
5
CGMXFC  
PTC3/ATD8  
PTD0/KBI0  
VDD  
6
7
VREFL  
8
PTA0/ATD2  
VSSAM  
OSC1  
9
OSC2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
OPIN1/ATD0  
PTB4/T2CH0  
PTB5/T2CH1  
PTB6/IRQ2  
PTA6/T1CH0  
PTD7/KBI7  
PTA7/T1CH1  
PTC2/PWM2  
PTC1/PWM1  
PTC0/PWM0/CD  
PTD6/KBI6  
PTD5/KBI5  
VSS  
PTD1/KBI1  
IRQ1  
PTD2/KBI2  
RST  
PTD3/KBI3  
PTB0/SDA0  
PTB1/SCL0  
PTB2/SDA1/TxD  
PTB3/SCL1/RxD  
PTD4/KBI4  
Pins not available on 42-pin package  
OPIN2/ATD1  
Internal connection  
Unconnected  
PTC6/ATD11  
Unconnected  
PTC7/ATD12  
Unconnected  
Figure 1-3. 42-Pin SDIP Pin Assignment  
1.6 Pin Functions  
Description of pin functions are provided here.  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor General Description  
Data Sheet  
41  
General Description  
1.6.1 Power Supply Pins (V and V )  
DD  
SS  
V
and V are the power supply and ground pins. The MCU operates  
SS  
DD  
from a single power supply.  
Fast signal transitions on MCU pins place high, short-duration current  
demands on the power supply. To prevent noise problems, take special  
care to provide power supply bypassing at the MCU as Figure 1-4  
shows. Place the C1 bypass capacitor as close to the MCU as possible.  
Use a high-frequency-response ceramic capacitor for C1. C2 is an  
optional bulk current bypass capacitor for use in applications that require  
the port pins to source high current levels.  
MCU  
VDD  
VSS  
C1  
0.1 µF  
+
C2  
VDD  
NOTE: Component values shown  
represent typical applications.  
Figure 1-4. Power Supply Bypassing  
V
must be grounded for proper MCU operation.  
SS  
1.6.2 Oscillator Pins (OSC1 and OSC2)  
The OSC1 and OSC2 pins are the connections for the on-chip oscillator  
circuit. See Section 7. Oscillator (OSC) and Section 8. Clock  
Generator Module (CGM).  
Data Sheet  
42  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
General Description  
Freescale Semiconductor  
General Description  
Pin Functions  
1.6.3 External Reset Pin (RST)  
A logic 0 on the RST pin forces the MCU to a known start-up state. RST  
is bidirectional, allowing a reset of the entire system. It is driven low when  
any internal reset source is asserted. This pin contains an internal pullup  
resistor. See Section 9. System Integration Module (SIM).  
1.6.4 External Interrupt Pin (IRQ1)  
IRQ1 is an asynchronous external interrupt pin. This pin contains an  
internal pullup resistor. See Section 19. External Interrupt (IRQ).  
1.6.5 Analog Power Supply Pin (V  
)
DDA  
V
is the power supply pin for the analog circuits of the MCU.  
DDA  
1.6.6 Analog Ground Pin (V  
)
SSA  
V
is the power supply ground pin for the analog circuits of the MCU.  
SSA  
It should be decoupled as per the V digital ground pin.  
SS  
1.6.7 ADC Voltage Low Reference Pin (V  
)
REFL  
V
is the voltage input pin for the ADC voltage low reference. See  
REFL  
Section 15. Analog-to-Digital Converter (ADC).  
1.6.8 ADC Voltage High Reference Pin (V  
)
REFH  
V
is the voltage input pin for the ADC voltage high reference. See  
REFH  
Section 15. Analog-to-Digital Converter (ADC).  
1.6.9 External Filter Capacitor Pin (CGMXFC)  
CGMXFC is an external filter capacitor connection for the CGM. See  
Section 8. Clock Generator Module (CGM).  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor General Description  
Data Sheet  
43  
General Description  
1.6.10 Analog Input Pins (OPIN1/ATD0, OPIN2/ATD1, V  
)
SSAM  
OPIN1/ATD0 and OPIN2/ATD1 are input pins to the analog module and  
ADC and V is the negative reference input. See Section 14.  
SSAM  
Analog Module and Section 15. Analog-to-Digital Converter (ADC).  
1.6.11 Port A Input/Output (I/O) Pins (PTA7PTA0)  
PTA7–PTA0 are special function, bidirectional port pins.  
PTA7/T1CH1–PTA6/T1CH0 are shared with the TIM1, and  
PTA5/ATD7–PTA0/ATD2 are shared with the ADC. See Section 18.  
Input/Output (I/O) Ports, Section 11. Timer Interface Module (TIM),  
and Section 15. Analog-to-Digital Converter (ADC).  
1.6.12 Port B I/O Pins (PTB6–PTB0)  
PTB6–PTB0 are special function, bidirectional port pins. PTB6/IRQ2 is  
shared with the IRQ2 input, PTB5/T2CH1–PTB4/T2CH0 are shared with  
the TIM2, PTB3/SCL1/RxD–PTB2/SDA1/TxD are shared with the  
MMIIC and SCI, and PTB1/SCL0–PTB0/SDA0 are shared with the  
MMIIC. See Section 18. Input/Output (I/O) Ports, Section 19.  
External Interrupt (IRQ), Section 11. Timer Interface Module (TIM),  
Section 16. Serial Communications Interface (SCI), and Section 17.  
Multi-Master IIC Interface (MMIIC).  
1.6.13 Port C I/O Pins (PTC7–PTC0)  
PTC7–PTC0 are special function, bidirectional port pins.  
PTC7/ATD12–PTC3/ATD8 are shared with the ADC,  
PTC2/PWM2–PTC1/PWM1 are shared with the PWM, and  
PTC0/PWM0/CD is shared with the PWM and analog module. See  
Section 18. Input/Output (I/O) Ports, Section 15. Analog-to-Digital  
Converter (ADC), Section 13. Pulse Width Modulator (PWM), and  
Section 14. Analog Module.  
1.6.14 Port D I/O Pins (PTD7/KBI7–PTD0/KBI0)  
PTD7–PTD0 are general-purpose bidirectional port pins with keyboard  
wakeup function. See Section 18. Input/Output (I/O) Ports and  
Section 20. Keyboard Interrupt Module (KBI).  
Data Sheet  
44  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
General Description  
Freescale Semiconductor  
Data Sheet — MC68HC908SR12•MC68HC08SR12  
Section 2. Memory Map  
2.1 Contents  
2.2  
2.3  
2.4  
2.5  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
Unimplemented Memory Locations . . . . . . . . . . . . . . . . . . . . .45  
Reserved Memory Locations . . . . . . . . . . . . . . . . . . . . . . . . . .46  
Input/Output (I/O) Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
2.2 Introduction  
The CPU08 can address 64k-bytes of memory space. The memory  
map, shown in Figure 2-1, includes:  
• 12,288 bytes of user FLASH memory  
• 512 bytes of random-access memory (RAM)  
• 38 bytes of user-defined vectors  
• 368 bytes of monitor ROM  
2.3 Unimplemented Memory Locations  
Accessing an unimplemented location can cause an illegal address  
reset. In the memory map (Figure 2-1) and in register figures in this  
document, unimplemented locations are shaded.  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor  
Data Sheet  
45  
Memory Map  
Memory Map  
2.4 Reserved Memory Locations  
Accessing a reserved location can have unpredictable effects on MCU  
operation. In the Figure 2-1 and in register figures in this document,  
reserved locations are marked with the word Reserved or with the  
letter R.  
2.5 Input/Output (I/O) Section  
Most of the control, status, and data registers are in the zero page  
$0000–$005F. Additional I/O registers have the following addresses:  
• $FE00; SIM break status register, SBSR  
• $FE01; SIM reset status register, SRSR  
• $FE03; SIM break flag control register, SBFCR  
• $FE04; Interrupt status register 1, INT1  
• $FE05; Interrupt status register 2, INT2  
• $FE06; Interrupt status register 3, INT3  
• $FE07; Reserved  
• $FE08; FLASH control register, FLCR  
• $FE09; FLASH block protect register, FLBPR  
• $FE0A; Reserved  
• $FE0B; Reserved  
• $FE0C; break address register high, BRKH  
• $FE0D; break address register low, BRKL  
• $FE0E; break status and control register, BRKSCR  
• $FE0F; LVI status register, LVISR  
• $FF80; Mask option register, MOR  
• $FFFF; COP control register, COPCTL  
Data registers are shown in Figure 2-2, Table 2-1 is a list of vector  
locations.  
Data Sheet  
46  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Memory Map  
Freescale Semiconductor  
Memory Map  
Input/Output (I/O) Section  
$0000  
I/O Registers  
96 Bytes  
$005F  
$0060  
RAM  
512 Bytes  
$025F  
$0260  
Unimplemented  
48,544 Bytes  
$BFFF  
$C000  
$EFFF  
FLASH Memory  
12,288 Bytes  
$F000  
$FDFF  
Unimplemented  
3,584 Bytes  
$FE00  
$FE01  
$FE02  
$FE03  
$FE04  
$FE05  
$FE06  
$FE07  
$FE08  
$FE09  
$FE0A  
$FE0B  
$FE0C  
$FE0D  
$FE0E  
$FE0F  
SIM Break Status Register (SBSR)  
SIM Reset Status Register (SRSR)  
Reserved  
SIM Break Flag Control Register (SBFCR)  
Interrupt Status Register 1 (INT1)  
Interrupt Status Register 2 (INT2)  
Interrupt Status Register 3 (INT3)  
Reserved  
FLASH Control Register (FLCR)  
FLASH Block Protect Register (FLBPR)  
Reserved  
Reserved  
Break Address Register High (BRKH)  
Break Address Register Low (BRKL)  
Break Status and Control Register (BRKSCR)  
LVI Status Register (LVISR)  
$FE10  
$FF7F  
Monitor ROM  
368 Bytes  
$FF80  
Mask Option Register  
$FF81  
$FFD9  
Reserved  
89 Bytes  
$FFDA  
$FFFF  
FLASH Vectors  
38 Bytes  
Figure 2-1. Memory Map  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor  
Data Sheet  
47  
Memory Map  
Memory Map  
Addr.  
Register Name  
Bit 7  
6
PTA6  
U
5
PTA5  
U
4
PTA4  
U
3
PTA3  
U
2
PTA2  
U
1
PTA1  
U
Bit 0  
PTA0  
U
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
PTA7  
Port A Data Register  
(PTA)  
$0000  
U
0
PTB6  
U
PTB5  
U
PTB4  
U
PTB3  
U
PTB2  
U
PTB1  
U
PTB0  
U
Port B Data Register  
(PTB)  
$0001  
$0002  
$0003  
$0004  
$0005  
$0006  
$0007  
$0008  
$0009  
0
PTC7  
U
PTC6  
U
PTC5  
U
PTC4  
U
PTC3  
U
PTC2  
U
PTC1  
U
PTC0  
U
Port C Data Register  
(PTC)  
PTD7  
U
PTD6  
U
PTD5  
U
PTD4  
U
PTD3  
U
PTD2  
U
PTD1  
U
PTD0  
U
Port D Data Register  
(PTD)  
DDRA7  
DDRA6  
0
DDRA5  
0
DDRA4  
0
DDRA3  
0
DDRA2  
0
DDRA1  
0
DDRA0  
0
Data Direction Register A  
(DDRA)  
0
0
DDRB6  
0
DDRB5  
0
DDRB4  
0
DDRB3  
0
DDRB2  
0
DDRB1  
0
DDRB0  
0
Data Direction Register B  
(DDRB)  
0
DDRC7  
0
DDRC6  
0
DDRC5  
0
DDRC4  
0
DDRC3  
0
DDRC2  
0
DDRC1  
0
DDRC0  
0
Data Direction Register C  
(DDRC)  
DDRD7  
0
DDRD6  
0
DDRD5  
0
DDRD4  
0
DDRD3  
0
DDRD2  
0
DDRD1  
0
DDRD0  
0
Data Direction Register D  
(DDRD)  
Unimplemented Write:  
Reset:  
Read:  
Unimplemented Write:  
Reset:  
U = Unaffected  
X = Indeterminate  
= Unimplemented  
R
= Reserved  
Figure 2-2. Control, Status, and Data Registers (Sheet 1 of 12)  
Data Sheet  
48  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor  
Memory Map  
Memory Map  
Input/Output (I/O) Section  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
$000A  
Unimplemented Write:  
Reset:  
Read:  
$000B  
$000C  
$000D  
$000E  
$000F  
$0010  
$0011  
$0012  
$0013  
Unimplemented Write:  
Reset:  
Read:  
0
0
Port-A LED Control  
LEDA5  
LEDA4  
LEDA3  
LEDA2  
LEDA1  
LEDA0  
Register Write:  
(LEDA)  
Reset:  
0
LEDC7  
0
0
LEDC6  
0
0
LEDC5  
0
0
LEDC4  
0
0
LEDC3  
0
0
0
0
0
0
0
Read:  
Port-C LED Control  
Register Write:  
(LEDC)  
Reset:  
0
DO2  
0
0
DO1  
0
0
DO0  
0
Read:  
Analog Module Control  
PWR1  
0
PWR0  
0
OPCH1  
0
OPCH0  
0
AMIEN  
0
Register Write:  
(AMCR)  
Reset:  
Read:  
Analog Module Gain  
Control Register Write:  
GAINB3 GAINB2 GAINB1 GAINB0 GAINA3 GAINA2 GAINA1 GAINA0  
(AMGCR)  
Reset:  
0
0
0
0
0
0
0
0
0
Read:  
0
OPIFR  
U
OPIF  
DOF  
0
CDIFR  
U
CDIF  
Analog Module Status and  
AMCDIV1 AMCDIV0  
Control Register Write:  
(AMSCR)  
Reset:  
0
0
0
0
0
0
Read:  
Unimplemented Write:  
Reset:  
Read:  
Unimplemented Write:  
Reset:  
Read:  
SCI Control Register 1  
Write:  
LOOPS  
0
ENSCI  
0
TXINV  
0
M
0
WAKE  
0
ILTY  
0
PEN  
0
PTY  
0
(SCC1)  
Reset:  
U = Unaffected  
X = Indeterminate  
= Unimplemented  
R
= Reserved  
Figure 2-2. Control, Status, and Data Registers (Sheet 2 of 12)  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor  
Data Sheet  
49  
Memory Map  
Memory Map  
Addr.  
Register Name  
Bit 7  
6
TCIE  
0
5
SCRIE  
0
4
ILIE  
0
3
TE  
2
RE  
0
1
Bit 0  
SBK  
0
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
SCTIE  
RWU  
0
SCI Control Register 2  
(SCC2)  
$0014  
0
0
R8  
T8  
DMARE DMATE  
ORIE  
NEIE  
FEIE  
PEIE  
SCI Control Register 3  
(SCC3)  
$0015  
$0016  
$0017  
$0018  
$0019  
$001A  
$001B  
$001C  
$001D  
U
U
0
0
0
0
0
0
Read: SCTE  
Write:  
TC  
SCRF  
IDLE  
OR  
NF  
FE  
PE  
SCI Status Register 1  
(SCS1)  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
1
0
1
0
0
0
0
0
0
0
0
0
0
0
BKF  
RPF  
SCI Status Register 2  
(SCS2)  
0
R7  
T7  
U
0
R6  
T6  
U
0
R5  
T5  
U
0
R4  
T4  
U
0
R3  
T3  
U
0
R2  
T2  
U
0
R1  
T1  
U
0
R0  
T0  
U
SCI Data Register  
(SCDR)  
0
0
SCP1  
SCP0  
R
SCR2  
SCR1  
0
SCR0  
0
SCI Baud Rate Register  
(SCBR)  
0
0
0
0
0
0
0
0
0
Keyboard Status and Read:  
KEYF  
0
ACKK  
0
IMASKK MODEK  
Control Register  
Write:  
(KBSCR)  
Reset:  
0
0
KBIE6  
0
0
0
0
0
KBIE1  
0
0
KBIE0  
0
Read:  
Keyboard Interrupt Enable  
KBIE7  
KBIE5  
KBIE4  
KBIE3  
KBIE2  
Register Write:  
(KBIER)  
Reset:  
0
0
0
0
0
0
0
0
Read:  
IRQ2F  
0
ACK2  
0
IRQ2 Status and Control  
PTBPUE6  
IMASK2 MODE2  
Register Write:  
(INTSCR2)  
Reset:  
0
0
0
0
0
0
0
Read:  
0
STOP_ STOP_  
ICLKEN RCLKEN XCLKEN  
STOP_  
OSCCLK1 OSCCLK0  
CDOEN SCIBDSRC  
Configuration Register 2  
Write:  
(CONFIG2)  
Reset:  
0
0
0
0
0
0
0
0
U = Unaffected  
X = Indeterminate  
= Unimplemented  
R
= Reserved  
Figure 2-2. Control, Status, and Data Registers (Sheet 3 of 12)  
Data Sheet  
50  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor  
Memory Map  
Memory Map  
Input/Output (I/O) Section  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
0
1
Bit 0  
Read:  
0
0
0
0
IRQ1F  
IRQ1 Status and Control  
IMASK1 MODE1  
$001E  
Register Write:  
(INTSCR1)  
Reset:  
ACK1  
0
0
0
0
0
0
0
STOP  
0
0
COPD  
0
Read:  
COPRS LVISTOP LVIRSTD LVIPWRD LVI5OR3 SSREC  
Configuration Register 1  
$001F  
Write:  
(CONFIG1)  
Reset:  
0
0
0
0
0
0
0
† One-time writable register after each reset.  
Read:  
TOF  
0
0
TRST  
0
Timer 1 Status and  
Control Register Write:  
TOIE  
TSTOP  
PS2  
PS1  
PS0  
$0020  
$0021  
$0022  
$0023  
$0024  
$0025  
$0026  
(T1SC)  
Reset:  
0
0
1
0
0
0
9
0
Read: Bit 15  
14  
13  
12  
11  
10  
Bit 8  
Timer 1 Counter  
Register High Write:  
(T1CNTH)  
Reset:  
0
0
6
0
5
0
4
0
3
0
2
0
1
0
Read:  
Bit 7  
Bit 0  
Timer 1 Counter  
Register Low Write:  
(T1CNTL)  
Reset:  
0
Bit 15  
1
0
0
0
0
0
0
0
Read:  
Timer 1 Counter Modulo  
14  
13  
12  
11  
10  
9
Bit 8  
Register High Write:  
(T1MODH)  
Reset:  
1
1
1
1
1
1
1
Read:  
Timer 1 Counter Modulo  
Bit 7  
6
5
1
4
1
3
2
1
Bit 0  
Register Low Write:  
(T1MODL)  
Reset:  
1
1
CH0IE  
0
1
ELS0B  
0
1
ELS0A  
0
1
1
Read: CH0F  
Timer 1 Channel 0 Status  
and Control Register Write:  
MS0B  
0
MS0A  
0
TOV0  
CH0MAX  
0
0
(T1SC0)  
Reset:  
0
9
X
0
Bit 8  
X
Read:  
Timer 1 Channel 0  
Bit 15  
X
14  
13  
X
12  
X
11  
10  
Register High Write:  
(T1CH0H)  
Reset:  
X
X
X
U = Unaffected  
X = Indeterminate  
= Unimplemented  
R
= Reserved  
Figure 2-2. Control, Status, and Data Registers (Sheet 4 of 12)  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor  
Data Sheet  
51  
Memory Map  
Memory Map  
Addr.  
Register Name  
Timer 1 Channel 0  
Bit 7  
Bit 7  
X
6
5
4
3
2
1
Bit 0  
Bit 0  
X
Read:  
6
5
4
3
2
1
X
$0027  
Register Low Write:  
(T1CH0L)  
Reset:  
X
CH1IE  
0
X
0
X
MS1A  
0
X
X
Read: CH1F  
Timer 1 Channel 1 Status  
and Control Register Write:  
ELS1B  
ELS1A  
TOV1  
0
CH1MAX  
0
$0028  
$0029  
$002A  
$002B  
$002C  
$002D  
$002E  
$002F  
$0030  
0
0
(T1SC1)  
Reset:  
0
0
11  
X
0
10  
X
Read:  
Timer 1 Channel 1  
Bit 15  
X
14  
13  
12  
X
9
Bit 8  
X
Register High Write:  
(T1CH1H)  
Reset:  
X
X
X
Read:  
Timer 1 Channel 1  
Bit 7  
6
5
X
4
3
2
1
Bit 0  
X
Register Low Write:  
(T1CH1L)  
Reset:  
X
TOF  
0
X
X
0
X
0
X
X
Read:  
Timer 2 Status and  
Control Register Write:  
TOIE  
TSTOP  
PS2  
PS1  
PS0  
TRST  
0
(T2SC)  
Reset:  
0
0
1
0
0
0
9
0
Read: Bit 15  
14  
13  
12  
11  
10  
Bit 8  
Timer 2 Counter  
Register High Write:  
(T2CNTH)  
Reset:  
0
0
6
0
5
0
4
0
3
0
2
0
1
0
Read:  
Bit 7  
Bit 0  
Timer 2 Counter  
Register Low Write:  
(T2CNTL)  
Reset:  
0
Bit 15  
1
0
0
0
0
0
0
0
Read:  
Timer 2 Counter Modulo  
14  
13  
12  
11  
10  
9
Bit 8  
Register High Write:  
(T2MODH)  
Reset:  
1
1
1
1
1
1
1
Read:  
Timer 2 Counter Modulo  
Bit 7  
1
6
5
4
3
2
1
1
Bit 0  
Register Low Write:  
(T2MODL)  
Reset:  
1
CH0IE  
0
1
MS0B  
0
1
MS0A  
0
1
ELS0B  
0
1
ELS0A  
0
1
CH0MAX  
0
Read: CH0F  
Timer 2 Channel 0 Status  
and Control Register Write:  
TOV0  
0
0
0
(T2SC0)  
Reset:  
U = Unaffected  
X = Indeterminate  
= Unimplemented  
R
= Reserved  
Figure 2-2. Control, Status, and Data Registers (Sheet 5 of 12)  
Data Sheet  
52  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor  
Memory Map  
Memory Map  
Input/Output (I/O) Section  
Addr.  
Register Name  
Bit 7  
Bit 15  
X
6
5
13  
X
4
12  
X
3
2
1
Bit 0  
Read:  
Timer 2 Channel 0  
14  
11  
10  
9
Bit 8  
$0031  
Register High Write:  
(T2CH0H)  
Reset:  
X
X
X
X
X
Read:  
Timer 2 Channel 0  
Bit 7  
6
5
4
3
2
1
Bit 0  
$0032  
$0033  
$0034  
$0035  
$0036  
$0037  
$0038  
$0039  
$003A  
Register Low Write:  
(T2CH0L)  
Reset:  
X
X
X
0
X
X
X
X
X
Read: CH1F  
Timer 2 Channel 1 Status  
and Control Register Write:  
CH1IE  
MS1A  
0
ELS1B  
ELS1A  
TOV1  
CH1MAX  
0
0
(T2SC1)  
Reset:  
0
14  
X
0
0
11  
X
0
10  
X
0
0
Bit 8  
X
Read:  
Timer 2 Channel 1  
Bit 15  
X
13  
12  
X
9
Register High Write:  
(T2CH1H)  
Reset:  
X
X
1
Read:  
Timer 2 Channel 1  
Bit 7  
X
6
5
X
4
3
2
Bit 0  
X
Register Low Write:  
(T2CH1L)  
Reset:  
X
X
X
X
X
Read:  
PLL Control Register  
Write:  
PLLF  
PLLIE  
0
PLLON  
1
BCS  
PRE1  
PRE0  
VPR1  
VPR0  
0
(PTCL)  
Reset:  
0
0
0
0
0
0
0
0
0
Read:  
LOCK  
PLL Bandwidth Control  
AUTO  
ACQ  
R
Register Write:  
(PBWC)  
Reset:  
0
0
0
0
0
0
0
0
0
MUL11  
0
0
MUL10  
0
0
MUL9  
0
Read:  
PLL Multiplier Select  
MUL8  
Register High Write:  
(PMSH)  
Reset:  
0
MUL7  
0
0
MUL6  
1
0
MUL5  
0
0
MUL4  
0
0
MUL0  
0
Read:  
PLL Multiplier Select  
MUL3  
0
MUL2  
0
MUL1  
0
Register Low Write:  
(PMSL)  
Reset:  
Read:  
PLL VCO Range Select  
VRS7  
0
VRS6  
1
VRS5  
0
VRS4  
0
VRS3  
0
VRS2  
0
VRS1  
0
VRS0  
0
Register Write:  
(PMRS)  
Reset:  
U = Unaffected  
X = Indeterminate  
= Unimplemented  
R
= Reserved  
Figure 2-2. Control, Status, and Data Registers (Sheet 6 of 12)  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor  
Data Sheet  
53  
Memory Map  
Memory Map  
Addr.  
Register Name  
PLL Reference Divider  
Bit 7  
6
5
4
3
RDS3  
0
2
RDS2  
0
1
RDS1  
0
Bit 0  
RDS0  
1
Read:  
0
0
0
0
$003B  
Select Register Write:  
(PMDS)  
Reset:  
0
0
0
0
Read:  
$003C  
$003D  
$003E  
$003F  
$0040  
$0041  
$0042  
$0043  
$0044  
Unimplemented Write:  
Reset:  
Read:  
Unimplemented Write:  
Reset:  
Read:  
Unimplemented Write:  
Reset:  
Read:  
Unimplemented Write:  
Reset:  
Read:  
Unimplemented Write:  
Reset:  
Read:  
Unimplemented Write:  
Reset:  
Read:  
Unimplemented Write:  
Reset:  
Read:  
Unimplemented Write:  
Reset:  
Read:  
Unimplemented Write:  
Reset:  
U = Unaffected  
X = Indeterminate  
= Unimplemented  
R
= Reserved  
Figure 2-2. Control, Status, and Data Registers (Sheet 7 of 12)  
Data Sheet  
54  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor  
Memory Map  
Memory Map  
Input/Output (I/O) Section  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
$0045  
Unimplemented Write:  
Reset:  
Read: TBIF  
0
TACK  
0
Timebase Control  
Register Write:  
TBR2  
0
TBR1  
0
TBR0  
0
TBIE  
0
TBON  
0
R
$0046  
$0047  
$0048  
$0049  
$004A  
$004B  
$004C  
$004D  
$004E  
(TBCR)  
Reset:  
Read:  
0
Unimplemented Write:  
Reset:  
Read:  
MMEXTAD  
0
MMAD7 MMAD6 MMAD5 MMAD4 MMAD3 MMAD2 MMAD1  
MMIIC Address Register  
(MMADR)  
Write:  
Reset:  
Read:  
Write:  
Reset:  
1
MMEN  
0
0
MMIEN  
0
1
0
0
0
0
0
0
MMCLRBB  
0
MMCRCBYTE  
MMTXAK REPSEN  
SDASCL1  
0
MMIIC Control Register 1  
(MMCR1)  
0
0
0
0
0
0
Read: MMALIF MMNAKIF MMBB  
MMCRCEF  
MMAST MMRW  
MMIIC Control Register 2  
(MMCR2)  
Write:  
0
0
0
0
Unaffected  
Reset:  
0
0
0
0
0
MMCRCBF  
Read: MMRXIF MMTXIF MMATCH MMSRW MMRXAK  
MMTXBE MMRXBF  
MMIIC Status Register  
(MMSR)  
Write:  
Reset:  
Read:  
0
0
0
0
0
0
1
0
1
0
MMIIC Data Transmit  
MMTD7 MMTD6 MMTD5 MMTD4 MMTD3 MMTD2 MMTD1 MMTD0  
Register Write:  
(MMDTR)  
Reset:  
0
0
0
0
0
0
0
0
Read: MMRD7 MMRD6 MMRD5 MMRD4 MMRD3 MMRD2 MMRD1 MMRD0  
MMIIC Data Receive  
Register Write:  
(MDDRR)  
Reset:  
Read:  
Write:  
Reset:  
0
0
0
0
0
0
0
0
MMCRCD7 MMCRCD6 MMCRCD5 MMCRCD4 MMCRCD3 MMCRCD2 MMCRCD1 MMCRCD0  
MMIIC CRC Data Register  
(MMCRDR)  
0
0
0
0
0
0
0
0
U = Unaffected  
X = Indeterminate  
= Unimplemented  
R
= Reserved  
Figure 2-2. Control, Status, and Data Registers (Sheet 8 of 12)  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor  
Data Sheet  
55  
Memory Map  
Memory Map  
Addr.  
Register Name  
MMIIC Frequency Divider  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
0
0
0
0
0
MMBR2 MMBR1 MMBR0  
$004F  
Register Write:  
(MMFDR)  
Reset:  
0
0
0
0
0
1
0
0
Read:  
Reserved Write:  
Reset:  
R
R
R
R
R
R
R
R
$0050  
$0051  
$0052  
$0053  
$0054  
$0055  
$0056  
$0057  
$0058  
Read:  
0
0
PWMEN2 PWMEN1 PWMEN0  
PCH2  
PCH1  
PCH0  
PWM Control Register  
(PWMCR)  
Write:  
Reset:  
Read:  
0
PCLKSEL  
0
0
0
0
0
0
0
0
0
0
0
0
PCLK1  
0
0
PCLK0  
0
PWM Clock Control  
Register Write:  
(PWMCCR)  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
0
0
0
0
0
0PWMD7 0PWMD6 0PWMD5 0PWMD4 0PWMD3 0PWMD2 0PWMD1 0PWMD0  
PWM Data Register 0  
(PWMDR0)  
0
0
0
0
0
0
0
0
1PWMD7 1PWMD6 1PWMD5 1PWMD4 1PWMD3 1PWMD2 1PWMD1 1PWMD0  
PWM Data Register 1  
(PWMDR1)  
0
0
0
0
0
0
0
0
2PWMD7 2PWMD6 2PWMD5 2PWMD4 2PWMD3 2PWMD2 2PWMD1 2PWMD0  
PWM Data Register 2  
(PWMDR2)  
0
PHEN  
0
0
PHD6  
0
0
PHD5  
0
0
PHD4  
0
0
PHD3  
0
0
PHD2  
0
0
PHD1  
0
0
PHD0  
0
PWM Phase Control  
Register Write:  
(PWMPCR)  
Reset:  
Read: COCO  
ADC Status and Control  
Register Write:  
AIEN  
0
ADCO  
0
ADCH4  
1
ADCH3  
1
ADCH2  
1
ADCH1  
ADCH0  
(ADSCR)  
Reset:  
Read:  
0
ADIV2  
0
1
0
1
0
ADC Clock Control  
ADIV1  
0
ADIV0  
0
ADICLK MODE1 MODE0  
Register Write:  
(ADICLK)  
Reset:  
R
0
0
0
1
0
U = Unaffected  
X = Indeterminate  
= Unimplemented  
R
= Reserved  
Figure 2-2. Control, Status, and Data Registers (Sheet 9 of 12)  
Data Sheet  
56  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor  
Memory Map  
Memory Map  
Input/Output (I/O) Section  
Addr.  
Register Name  
Bit 7  
ADx  
R
6
ADx  
R
5
ADx  
R
4
ADx  
R
3
ADx  
R
2
ADx  
R
1
ADx  
R
Bit 0  
ADx  
R
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
ADC Data Register High 0  
(ADRH0)  
$0059  
0
0
0
0
0
0
0
0
ADx  
R
ADx  
R
ADx  
R
ADx  
R
ADx  
R
ADx  
R
ADx  
R
ADx  
R
ADC Data Register Low 0  
(ADRL0)  
$005A  
$005B  
$005C  
$005D  
$005E  
$005F  
0
0
0
0
0
0
0
0
AD9  
R
AD8  
R
AD7  
R
AD6  
R
AD5  
R
AD4  
R
AD3  
R
AD2  
R
ADC Data Register Low 1  
(ADRL1)  
0
0
0
0
0
0
0
0
AD9  
R
AD8  
R
AD7  
R
AD6  
R
AD5  
R
AD4  
R
AD3  
R
AD2  
R
ADC Data Register Low 2  
(ADRL3)  
0
0
0
0
0
0
0
0
AD9  
R
AD8  
R
AD7  
R
AD6  
R
AD5  
R
AD4  
R
AD3  
R
AD2  
R
ADC Data Register Low 3  
(ADRL3)  
0
0
0
0
0
0
0
0
0
0
0
0
0
ADC Auto-scan Control  
AUTO1  
0
AUTO0  
0
ASCAN  
0
Register Write:  
(ADASCR)  
Reset:  
0
0
0
0
0
Read:  
Unimplemented Write:  
Reset:  
Read:  
SBSW  
Note  
0
R
R
R
R
R
R
R
SIM Break Status Register  
(SBSR)  
$FE00  
Write:  
Reset:  
Note: Writing a logic 0 clears SBSW.  
Read: POR  
Write:  
PIN  
0
COP  
0
ILOP  
0
ILAD  
0
0
0
LVI  
0
0
SIM Reset Status Register  
(SRSR)  
$FE01  
POR:  
1
0
U = Unaffected  
X = Indeterminate  
= Unimplemented  
R
= Reserved  
Figure 2-2. Control, Status, and Data Registers (Sheet 10 of 12)  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor  
Data Sheet  
57  
Memory Map  
Memory Map  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Reserved Write:  
Reset:  
R
R
R
R
R
R
R
R
$FE02  
Read:  
SIM Break Flag Control  
BCFE  
R
R
R
R
R
R
R
$FE03  
$FE04  
$FE05  
$FE06  
$FE07  
$FE08  
$FE09  
$FE0A  
$FE0B  
Register Write:  
(SBFCR)  
Reset:  
0
IF6  
R
Read:  
IF5  
R
IF4  
R
IF3  
R
IF2  
R
IF1  
R
0
R
0
R
Interrupt Status Register 1  
(INT1)  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
0
0
0
0
0
0
0
0
IF14  
R
IF13  
R
IF12  
R
IF11  
R
IF10  
R
IF9  
R
IF8  
R
IF7  
R
Interrupt Status Register 2  
(INT2)  
0
0
0
0
0
0
0
0
0
0
0
0
0
IF17  
R
IF16  
R
IF15  
R
Interrupt Status Register 3  
(INT3)  
R
R
R
R
R
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
Reserved Write:  
Reset:  
Read:  
0
0
0
0
HVEN  
MASS  
ERASE  
PGM  
FLASH Control Register  
(FLCR)  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
0
BPR7  
0
0
BPR6  
0
0
BPR5  
0
0
BPR4  
0
0
BPR3  
0
0
BPR2  
0
0
BPR1  
0
0
BPR0  
0
FLASH Block Protect  
Register (FLBPR)  
R
R
R
R
R
R
R
R
Reserved Write:  
Reset:  
Read:  
R
R
R
R
R
R
R
R
Reserved Write:  
Reset:  
U = Unaffected  
X = Indeterminate  
= Unimplemented  
R
= Reserved  
Figure 2-2. Control, Status, and Data Registers (Sheet 11 of 12)  
Data Sheet  
58  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor  
Memory Map  
Memory Map  
Input/Output (I/O) Section  
Addr.  
Register Name  
Bit 7  
Bit 15  
0
6
5
13  
0
4
12  
0
3
11  
0
2
10  
0
1
9
0
1
Bit 0  
Bit 8  
0
Read:  
Break Address Register  
14  
$FE0C  
High Write:  
(BRKH)  
Reset:  
Read:  
0
Break Address Register  
Bit 7  
0
6
0
5
4
3
2
Bit 0  
$FE0D  
$FE0E  
$FE0F  
Low Write:  
(BRKL)  
Reset:  
Read:  
0
0
0
0
0
0
0
0
0
0
0
0
Break Status and Control  
BRKE  
BRKA  
Register Write:  
(BRKSCR)  
Reset:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Read: LVIOUT  
Low-Voltage Inhibit Status  
Register Write:  
(LVISR)  
Reset:  
0
0
0
0
0
0
0
0
Read:  
Write:  
Mask Option Register  
(MOR)*  
OSCSEL1 OSCSEL0  
R
R
R
R
R
R
$FF80  
Erased:  
Reset:  
1
1
1
1
1
1
1
1
U
U
U
U
U
U
U
U
* MOR is a non-volatile FLASH register; write by programming.  
Read:  
Low byte of reset vector  
Writing clears COP counter (any value)  
COP Control Register  
(COPCTL)  
$FFFF  
Write:  
Reset:  
U
U
U
U
U
U
U
U
U = Unaffected  
X = Indeterminate  
= Unimplemented  
R
= Reserved  
Figure 2-2. Control, Status, and Data Registers (Sheet 12 of 12)  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor  
Data Sheet  
59  
Memory Map  
Memory Map  
.
Table 2-1. Vector Addresses  
Vector Priority Vector Address  
Lowest  
Vector  
$FFDA  
$FFDB  
$FFDC  
$FFDD  
$FFDE  
$FFDF  
$FFE0  
$FFE1  
$FFE2  
$FFE3  
$FFE4  
$FFE5  
$FFE6  
$FFE7  
$FFE8  
$FFE9  
$FFEA  
$FFEB  
$FFEC  
$FFED  
$FFEE  
$FFEF  
$FFF0  
$FFF1  
$FFF2  
$FFF3  
$FFF4  
$FFF5  
$FFF6  
$FFF7  
$FFF8  
$FFF9  
$FFFA  
$FFFB  
$FFFC  
$FFFD  
$FFFE  
$FFFF  
Timebase Module Interrupt Vector (High)  
Timebase Module Interrupt Vector (Low)  
Analog Module Interrupt Vector (High)  
Analog Module Interrupt Vector (Low)  
ADC Conversion Complete Vector (High)  
ADC Conversion Complete Vector (Low)  
Keyboard Vector (High)  
IF17  
IF16  
IF15  
IF14  
IF13  
IF12  
IF11  
IF10  
IF9  
Keyboard Vector (Low)  
SCI Transmit Vector (High)  
SCI Transmit Vector (Low)  
SCI Receive Vector (High)  
SCI Receive Vector (Low)  
SCI Error Vector (High)  
SCI Error Vector (Low)  
MMIIC Interrupt Vector (High)  
MMIIC Interrupt Vector (Low)  
TIM2 Overflow Vector (High)  
TIM2 Overflow Vector (Low)  
TIM2 Channel 1 Vector (High)  
TIM2 Channel 1 Vector (Low)  
TIM2 Channel 0 Vector (High)  
TIM2 Channel 0 Vector (Low)  
TIM1 Overflow Vector (High)  
TIM1 Overflow Vector (Low)  
TIM1 Channel 1 Vector (High)  
TIM1 Channel 1 Vector (Low)  
TIM1 Channel 0 Vector (High)  
TIM1 Channel 0 Vector (Low)  
PLL Vector (High)  
IF8  
IF7  
IF6  
IF5  
IF4  
IF3  
PLL Vector (Low)  
IRQ2 Vector (High)  
IF2  
IRQ2 Vector (Low)  
IRQ1 Vector (High)  
IF1  
IRQ1 Vector (Low)  
SWI Vector (High)  
SWI Vector (Low)  
Reset Vector (High)  
Highest  
Reset Vector (Low)  
Data Sheet  
60  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor  
Memory Map  
Data Sheet — MC68HC908SR12•MC68HC08SR12  
Section 3. Random-Access Memory (RAM)  
3.1 Contents  
3.2  
3.3  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
3.2 Introduction  
This section describes the 512 bytes of RAM (random-access memory).  
3.3 Functional Description  
Addresses $0060 through $025F are RAM locations. The location of the  
stack RAM is programmable. The 16-bit stack pointer allows the stack to  
be anywhere in the 64K-byte memory space.  
NOTE: For correct operation, the stack pointer must point only to RAM  
locations.  
Within page zero are 160 bytes of RAM. Because the location of the  
stack RAM is programmable, all page zero RAM locations can be used  
for I/O control and user data or code. When the stack pointer is moved  
from its reset location at $00FF out of page zero, direct addressing mode  
instructions can efficiently access all page zero RAM locations. Page  
zero RAM, therefore, provides ideal locations for frequently accessed  
global variables.  
Before processing an interrupt, the CPU uses five bytes of the stack to  
save the contents of the CPU registers.  
NOTE: For M6805 compatibility, the H register is not stacked.  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Random-Access Memory (RAM)  
Data Sheet  
61  
Random-Access Memory (RAM)  
During a subroutine call, the CPU uses two bytes of the stack to store  
the return address. The stack pointer decrements during pushes and  
increments during pulls.  
NOTE: Be careful when using nested subroutines. The CPU may overwrite data  
in the RAM during a subroutine or during the interrupt stacking  
operation.  
Data Sheet  
62  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Random-Access Memory (RAM)  
Freescale Semiconductor  
Data Sheet — MC68HC908SR12•MC68HC08SR12  
Section 4. FLASH Memory  
4.1 Contents  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
FLASH Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
FLASH Page Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . .66  
FLASH Mass Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . .67  
FLASH Program Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . .68  
4.8  
4.8.1  
FLASH Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70  
FLASH Block Protect Register . . . . . . . . . . . . . . . . . . . . . . .70  
4.2 Introduction  
This section describes the operation of the embedded FLASH memory.  
This memory can be read, programmed, and erased from a single  
external supply. The program and erase operations are enabled through  
the use of an internal charge pump.  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor  
Data Sheet  
63  
FLASH Memory  
FLASH Memory  
Addr.  
Register Name  
Bit 7  
6
5
4
3
HVEN  
0
2
MASS  
0
1
ERASE  
0
Bit 0  
PGM  
0
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
0
0
0
0
FLASH Control Register  
(FLCR)  
$FE08  
0
BPR7  
0
0
BPR6  
0
0
BPR5  
0
0
BPR4  
0
BPR3  
0
BPR2  
0
BPR1  
0
BPR0  
0
FLASH Block Protect  
Register (FLBPR)  
$FE09  
= Unimplemented  
Figure 4-1. FLASH I/O Register Summary  
4.3 Functional Description  
The FLASH memory consists of an array of 12,288 bytes for user  
memory plus a block of 38 bytes for user interrupt vectors and one byte  
for the mask option register. An erased bit reads as logic 1 and a  
programmed bit reads as a logic 0. The FLASH memory page size is  
defined as 128 bytes, and is the minimum size that can be erased in a  
page erase operation. Program and erase operations are facilitated  
through control bits in FLASH control register (FLCR). The address  
ranges for the FLASH memory are:  
• $C000–$EFFF; user memory, 12,288 bytes  
• $FFDA–$FFFF; user interrupt vectors, 38 bytes  
• $FF80; mask option register  
Programming tools are available from Freescale. Contact your local  
Freescale representative for more information.  
1
NOTE: A security feature prevents viewing of the FLASH contents.  
1. No security feature is absolutely secure. However, Freescale’s strategy is to make reading or  
copying the FLASH difficult for unauthorized users.  
Data Sheet  
64  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
FLASH Memory  
Freescale Semiconductor  
FLASH Memory  
FLASH Control Register  
4.4 FLASH Control Register  
The FLASH control register (FLCR) controls FLASH program and erase  
operations.  
Address: $FE08  
Bit 7  
0
6
0
5
0
4
0
3
HVEN  
0
2
MASS  
0
1
ERASE  
0
Bit 0  
PGM  
0
Read:  
Write:  
Reset:  
0
0
0
0
Figure 4-2. FLASH Control Register (FLCR)  
HVEN — High Voltage Enable Bit  
This read/write bit enables the charge pump to drive high voltages for  
program and erase operations in the array. HVEN can only be set if  
either PGM = 1 or ERASE = 1 and the proper sequence for program  
or erase is followed.  
1 = High voltage enabled to array and charge pump on  
0 = High voltage disabled to array and charge pump off  
MASS — Mass Erase Control Bit  
This read/write bit configures the memory for mass erase operation or  
block erase operation when the ERASE bit is set.  
1 = Mass Erase operation selected  
0 = Block Erase operation selected  
ERASE — Erase Control Bit  
This read/write bit configures the memory for erase operation.  
ERASE is interlocked with the PGM bit such that both bits cannot be  
equal to 1 or set to 1 at the same time.  
1 = Erase operation selected  
0 = Erase operation not selected  
PGM — Program Control Bit  
This read/write bit configures the memory for program operation.  
PGM is interlocked with the ERASE bit such that both bits cannot be  
equal to 1 or set to 1 at the same time.  
1 = Program operation selected  
0 = Program operation not selected  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor  
Data Sheet  
65  
FLASH Memory  
FLASH Memory  
4.5 FLASH Page Erase Operation  
Use the following procedure to erase a page of FLASH memory. A page  
consists of 128 consecutive bytes starting from addresses $xx00 or  
$xx80. The 38-byte user interrupt vectors area also forms a page. The  
38-byte user interrupt vectors cannot be erased by the page erase  
operation because of security reasons. Mass erase is required to erase  
this page.  
1. Set the ERASE bit and clear the MASS bit in the FLASH control  
register.  
2. Write any data to any FLASH address within the page address  
range desired.  
3. Wait for a time, t  
(10µs).  
nvs  
4. Set the HVEN bit.  
5. Wait for a time, t  
(1ms).  
Erase  
6. Clear the ERASE bit.  
7. Wait for a time, t (5µs).  
nvh  
8. Clear the HVEN bit.  
9. After time, t (1µs), the memory can be accessed again in read  
rcv  
mode.  
NOTE: Programming and erasing of FLASH locations cannot be performed by  
executing code from the FLASH memory; the code must be executed  
from RAM. While these operations must be performed in the order as  
shown, but other unrelated operations may occur between the steps.  
Data Sheet  
66  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
FLASH Memory  
Freescale Semiconductor  
FLASH Memory  
FLASH Mass Erase Operation  
4.6 FLASH Mass Erase Operation  
Use the following procedure to erase the entire FLASH memory to read  
as logic 1:  
1. Set both the ERASE bit and the MASS bit in the FLASH control  
register.  
2. Write any data to any FLASH address within the FLASH memory  
address range.  
3. Wait for a time, t  
(10µs).  
nvs  
4. Set the HVEN bit.  
5. Wait for a time t  
(4ms).  
MErase  
6. Clear the ERASE bit.  
7. Wait for a time, t (100µs).  
nvhl  
8. Clear the HVEN bit.  
9. After time, t (1µs), the memory can be accessed again in read  
rcv  
mode.  
NOTE: Programming and erasing of FLASH locations cannot be performed by  
executing code from the FLASH memory; the code must be executed  
from RAM. While these operations must be performed in the order as  
shown, but other unrelated operations may occur between the steps.  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor  
Data Sheet  
67  
FLASH Memory  
FLASH Memory  
4.7 FLASH Program Operation  
Programming of the FLASH memory is done on a row basis. A row  
consists of 64 consecutive bytes starting from addresses $xx00, $xx40,  
$xx80, or $xxC0. The procedure for programming a row of the FLASH  
memory is outlined below:  
1. Set the PGM bit. This configures the memory for program  
operation and enables the latching of address and data for  
programming.  
2. Write any data to any FLASH address within the row address  
range desired.  
3. Wait for a time, t  
(10µs).  
nvs  
4. Set the HVEN bit.  
5. Wait for a time, t  
(5µs).  
pgs  
6. Write data to the FLASH address to be programmed.  
7. Wait for time, t (30µs).  
Prog  
8. Repeat step 6 and 7 until all the bytes within the row are  
programmed.  
9. Clear the PGM bit.  
10. Wait for time, t  
(5µs).  
nvh  
11. Clear the HVEN bit.  
12. After time, t (1µs), the memory can be accessed again in read  
rcv  
mode.  
This program sequence is repeated throughout the memory until all data  
is programmed.  
NOTE: Programming and erasing of FLASH locations cannot be performed by  
executing code from the FLASH memory; the code must be executed  
from RAM. While these operations must be performed in the order as  
shown, but other unrelated operations may occur between the steps. Do  
not exceed t  
maximum. See 24.18 FLASH Memory  
Prog  
Characteristics.  
Data Sheet  
68  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor  
FLASH Memory  
FLASH Memory  
FLASH Program Operation  
Figure 4-3 shows a flowchart representation for programming the  
FLASH memory.  
1
Set PGM bit  
Algorithm for programming  
a row (64 bytes) of FLASH memory  
2
Write any data to any FLASH address  
within the row address range desired  
3
4
5
Wait for a time, tnvs  
Set HVEN bit  
Wait for a time, tpgs  
6
7
Write data to the FLASH address  
to be programmed  
Wait for a time, tProg  
Completed  
Y
programming  
this row?  
N
9
Clear PGM bit  
Wait for a time, tnvh  
Clear HVEN bit  
NOTE:  
The time between each FLASH address change (step 6 to step 6), or  
the time between the last FLASH address programmed  
to clearing PGM bit (step 6 to step 9)  
10  
11  
12  
must not exceed the maximum programming  
time, tProg max.  
This row program algorithm assumes the row/s  
to be programmed are initially erased.  
Wait for a time, trcv  
End of Programming  
Figure 4-3. FLASH Programming Flowchart  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor  
Data Sheet  
69  
FLASH Memory  
FLASH Memory  
4.8 FLASH Protection  
Due to the ability of the on-board charge pump to erase and program the  
FLASH memory in the target application, provision is made to protect  
pages of memory from unintentional erase or program operations due to  
system malfunction. This protection is done by use of a FLASH block  
protect register (FLBPR). The FLBPR determines the range of the  
FLASH memory which is to be protected. The range of the protected  
area starts from a location defined by FLBPR and ends to the bottom of  
the FLASH memory ($FFFF). When the memory is protected, the HVEN  
bit cannot be set in either ERASE or PROGRAM operations.  
NOTE: When the FLBPR is cleared (all 0’s), the entire FLASH memory is  
protected from being programmed and erased. When all the bits are set,  
the entire FLASH memory is accessible for program and erase.  
4.8.1 FLASH Block Protect Register  
The FLASH block protect register is implemented as an 8-bit I/O register.  
The content of this register determine the starting location of the  
protected range within the FLASH memory.  
Address: $FE09  
Bit 7  
BPR7  
0
6
BPR6  
0
5
BPR5  
0
4
BPR4  
0
3
BPR3  
0
2
BPR2  
0
1
BPR1  
0
Bit 0  
BPR0  
0
Read:  
Write:  
Reset:  
Figure 4-4. FLASH Block Protect Register (FLBPR)  
BPR[7:0] — FLASH Block Protect Register Bit7 to Bit 0  
BPR[7:1] represent bits [13:7] of a 16-bit memory address. Bits  
[15:14] are logic 1s and bits [6:0] are logic 0s.  
16-bit memory address  
Start address of FLASH block protect 1 1  
0 0 0 0 0 0 0  
BPR[7:1]  
Figure 4-5. FLASH Block Protect Start Address  
Data Sheet  
70  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor  
FLASH Memory  
FLASH Memory  
FLASH Protection  
BPR0 is used only for BPR[7:0] = $FF, for no block protection.  
The resultant 16-bit address is used for specifying the start address  
of the FLASH memory for block protection. The FLASH is protected  
from this start address to the end of FLASH memory, at $FFFF. With  
this mechanism, the protect start address can be XX00 or XX80 (at  
page boundaries) within the FLASH memory.  
Examples of protect start address:  
BPR[7:0]  
Start of Address of Protect Range  
$C000 (1100 0000 0000 0000)  
The entire FLASH memory is protected.  
$00 or $01  
$02 or $03  
$04 or $05  
$06 or $07  
$08 or $09  
$C080 (1100 0000 1000 0000)  
$C100 (1100 0001 0000 0000)  
$C180 (1100 0001 1000 0000)  
$C200 (1100 0010 0000 0000)  
and so on...  
$F8 or $F9  
$FA or $FB  
$FC or $FD  
$FE  
$FE00 (1111 1110 0000 0000)  
$FE80 (1111 1110 1000 0000)  
$FF00 (1111 1111 0000 0000)  
$FF80 (1111 1111 1000 0000)  
$FF  
The entire FLASH memory is not protected.  
Note:  
The end address of the protected range is always $FFFF.  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor  
Data Sheet  
71  
FLASH Memory  
FLASH Memory  
Data Sheet  
72  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor  
FLASH Memory  
Data Sheet — MC68HC908SR12•MC68HC08SR12  
Section 5. Configuration and Mask Option Registers  
(CONFIG & MOR)  
5.1 Contents  
5.2  
5.3  
5.4  
5.5  
5.6  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74  
Configuration Register 1 (CONFIG1) . . . . . . . . . . . . . . . . . . . .75  
Configuration Register 2 (CONFIG2) . . . . . . . . . . . . . . . . . . . .77  
Mask Option Register (MOR) . . . . . . . . . . . . . . . . . . . . . . . . . .79  
5.2 Introduction  
This section describes the configuration registers, CONFIG1 and  
CONFIG2; and the mask option register, MOR.  
The configuration registers enable or disable these options:  
• Computer operating properly module (COP)  
18  
4
13  
4
• COP timeout period (2 – 2 or 2 – 2 ICLK cycles)  
• Low-voltage inhibit (LVI) module power  
• LVI module reset  
• LVI module in stop mode  
• LVI module voltage trip point selection  
• STOP instruction  
• Stop mode recovery time (32 ICLK cycles or 4096 ICLK cycles)  
• Oscillator (internal, RC, and crystal) during stop mode  
• Serial communications interface clock source (CGMXCLK or f  
• Current detect output pin  
)
BUS  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Data Sheet  
73  
Freescale Semiconductor Configuration and Mask Option Registers (CONFIG & MOR)  
Configuration and Mask Option  
The mask option register selects one of the following oscillator options  
as the MCU reference clock:  
• Internal oscillator  
• RC oscillator  
• Crystal oscillator  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
0
STOP_  
STOP_  
STOP_  
ICLKEN RCLKEN XCLKEN  
OSCCLK1 OSCCLK0  
CDOEN SCIBDSRC  
Configuration Register 2  
$001D  
(CONFIG2)  
Reset:  
Read:  
Write:  
0
0
0
0
0
0
0
STOP  
0
0
COPD  
0
COPRS LVISTOP LVIRSTD LVIPWRD LVI5OR3 SSREC  
Configuration Register 1  
$001F  
$FF80  
(CONFIG1)  
††  
Reset:  
Read:  
Write:  
0
0
0
0
0
0
Mask Option Register  
(MOR)*  
OSCSEL1 OSCSEL0  
R
R
R
R
R
R
Erased:  
Reset:  
1
1
1
1
1
1
1
1
* FLASH register.  
U
U
U
U
U
U
U
U
† One-time writable register after each reset.  
†† Reset by POR only.  
= Unimplemented  
R
= Reserved  
Figure 5-1. CONFIG and MOR Register Summary  
5.3 Functional Description  
The configuration registers and the mask option register are used in the  
initialization of various options. These two types of registers are  
configured differently:  
• Configuration registers — Write-once registers after reset  
• Mask option register — FLASH register (write by programming)  
The configuration registers can be written once after each reset. All of  
the configuration register bits are cleared during reset. Since the various  
options affect the operation of the MCU, it is recommended that these  
registers be written immediately after reset. The configuration registers  
are located at $001D and $001F. The configurations register may be  
read at anytime.  
Data Sheet  
74  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Configuration and Mask Option Registers (CONFIG & MOR) Freescale Semiconductor  
Configuration and Mask Option Registers (CONFIG & MOR)  
Configuration Register 1 (CONFIG1)  
NOTE: The options except LVI5OR3 are one-time writable by the user after  
each reset. The LVI5OR3 bit is one-time writable by the user only after  
each POR (power-on reset). The CONFIG registers are not in the  
FLASH memory but are special registers containing one-time writable  
latches after each reset. Upon a reset, the CONFIG registers default to  
predetermined settings as shown in Figure 5-2 and Figure 5-3.  
The mask option register (MOR) is used for selecting one of the three  
clock options for the MCU. The MOR is a byte located in FLASH  
memory, and is written to by a FLASH programming routine.  
5.4 Configuration Register 1 (CONFIG1)  
Address: $001F  
Bit 7  
6
5
4
3
2
1
STOP  
0
Bit 0  
COPD  
0
Read:  
COPRS LVISTOP LVIRSTD LVIPWRD LVI5OR3 SSREC  
Write:  
Reset:  
0
0
0
0
0*  
0
* Reset by POR only.  
Figure 5-2. Configuration Register 1 (CONFIG1)  
COPRS — COP Rate Select  
COPRS selects the COP time-out period. Reset clears COPRS. (See  
Section 21. Computer Operating Properly (COP).)  
13  
4
1 = COP time out period = 2 – 2 ICLK cycles  
18  
4
0 = COP time out period = 2 – 2 ICLK cycles  
LVISTOP — LVI Enable in Stop Mode  
When the LVIPWRD bit is clear, setting the LVISTOP bit enables the  
LVI to operate during stop mode. Reset clears LVISTOP. (See  
Section 22. Low-Voltage Inhibit (LVI).)  
1 = LVI enabled during stop mode  
0 = LVI disabled during stop mode  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Configuration and Mask Option Registers (CONFIG & MOR)  
Data Sheet  
75  
Configuration and Mask Option  
LVIRSTD — LVI Reset Disable  
LVIRSTD disables the reset signal from the LVI module. (See  
Section 22. Low-Voltage Inhibit (LVI).)  
1 = LVI module resets disabled  
0 = LVI module resets enabled  
LVIPWRD — LVI Power Disable Bit  
LVIPWRD disables the LVI module. (See Section 22. Low-Voltage  
Inhibit (LVI).)  
1 = LVI module power disabled  
0 = LVI module power enabled  
LVI5OR3 — LVI 5V or 3V Operating Mode  
LVI5OR3 selects the voltage operating mode of the LVI module. (See  
Section 22. Low-Voltage Inhibit (LVI).) The voltage mode selected  
for the LVI should match the operating V . See Section 24.  
DD  
Electrical Specifications for the LVI voltage trip points for each of  
the modes.  
1 = LVI operates in 5V mode  
0 = LVI operates in 3V mode  
SSREC — Short Stop Recovery  
SSREC enables the CPU to exit stop mode with a delay of 32 ICLK  
cycles instead of a 4096 ICLK cycle delay.  
1 = Stop mode recovery after 32 ICLK cycles  
0 = Stop mode recovery after 4096 ICLK cycles  
NOTE: Exiting stop mode by pulling reset will result in the long stop recovery.  
If using an external crystal oscillator, and it is disabled during stop mode  
(STOP_XCLKEN=0), do not set the SSREC bit.  
NOTE: When the LVI is disabled in stop mode (LVISTOP=0), the system  
stabilization time for long stop recovery (4096 ICLK cycles) gives a delay  
longer than the LVI’s turn-on time. There is no period where the MCU is  
not protected from a low power condition. However, when using the  
short stop recovery configuration option, the 32 ICLK delay is less than  
the LVI’s turn-on time and there exists a period in start-up where the LVI  
is not protecting the MCU.  
Data Sheet  
76  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Configuration and Mask Option Registers (CONFIG & MOR) Freescale Semiconductor  
Configuration and Mask Option Registers (CONFIG & MOR)  
Configuration Register 2 (CONFIG2)  
STOP — STOP Instruction Enable  
STOP enables the STOP instruction.  
1 = STOP instruction enabled  
0 = STOP instruction treated as illegal opcode  
COPD — COP Disable Bit  
COPD disables the COP module. (See Section 21. Computer  
Operating Properly (COP).)  
1 = COP module disabled  
0 = COP module enabled  
5.5 Configuration Register 2 (CONFIG2)  
Address: $001D  
Bit 7  
6
5
4
3
2
0
1
CDOEN  
0
Bit 0  
SCIBDSRC  
0
Read:  
STOP_ STOP_  
ICLKEN RCLKEN XCLKEN  
STOP_  
OSCCLK1 OSCCLK0  
Write:  
Reset:  
0
0
0
0
0
0
Figure 5-3. Configuration Register 2 (CONFIG2)  
STOP_ICLKEN — Internal Oscillator Stop Mode Disable  
STOP_ICLKEN disables the internal oscillator during stop mode.  
Setting the STOP_ICLKEN bit disables the oscillator during stop  
mode. (See 7.4 Internal Oscillator).  
Reset clears this bit.  
1 = Internal oscillator disabled during stop mode  
0 = Internal oscillator enabled to operate during stop mode  
STOP_RCLKEN — RC Oscillator Stop Mode Enable  
STOP_RCLKEN enables the RC oscillator to continue operating  
during stop mode. Setting the STOP_RCLKEN bit allows the  
oscillator to operate continuously even during stop mode. This is  
useful for driving the timebase module to allow it to generate periodic  
wake up while in stop mode. (See Section 8. Clock Generator  
Module (CGM) and subsection 8.8.2 Stop Mode.)  
Reset clears this bit.  
1 = RC oscillator enabled to operate during stop mode  
0 = RC oscillator disabled during stop mode  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Configuration and Mask Option Registers (CONFIG & MOR)  
Data Sheet  
77  
Configuration and Mask Option  
STOP_XCLKEN — Crystal Oscillator Stop Mode Enable  
STOP_XCLKEN enables the crystal (x-tal) oscillator to continue  
operating during stop mode. Setting the STOP_XCLKEN bit allows  
the x-tal oscillator to operate continuously even during stop mode.  
This is useful for driving the timebase module to allow it to generate  
periodic wake up while in stop mode. (See Section 8. Clock  
Generator Module (CGM) and subsection 8.8.2 Stop Mode.)  
Reset clears this bit.  
1 = X-tal oscillator enabled to operate during stop mode  
0 = X-tal oscillator disabled during stop mode  
OSCCLK1, OSCCLK0 — Oscillator Output Control Bits  
OSCCLK1 and OSCCLK0 select which oscillator output to be driven  
out as OSCCLK to the timebase module (TBM). Reset clears these  
two bits.  
OSCCLK1  
OSCCLK0  
Timebase Clock Source  
Internal oscillator (ICLK)  
RC oscillator (RCCLK)  
X-tal oscillator (XTAL)  
Not used  
0
0
1
1
0
1
0
1
CDOEN — Current-Flow Detect Output Enable  
CDOEN enables the port pin PC0/PWM0/CD as the CD output pin for  
the current detect flag (CDIF) from the analog module. Reset clears  
the CDOEN bit.  
1 = PCO/PWMO/CD pin enabled as CD output pin,  
PTC0 and PWM0 functions are disabled.  
0 = PTC0/PWM/CD pin disabled as CD output pin,  
PTC0 or PWM0 functions are available; see 18.5.1 Port C  
Data Register (PTC).  
Data Sheet  
78  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Configuration and Mask Option Registers (CONFIG & MOR) Freescale Semiconductor  
Configuration and Mask Option Registers (CONFIG & MOR)  
Mask Option Register (MOR)  
SCIBDSRC — SCI Baud Rate Clock Source  
SCIBDSRC selects the clock source used for the SCI. The setting of  
this bit affects the frequency at which the SCI operates.  
1 = Internal data bus clock, f  
, is used as clock source for SCI  
BUS  
0 = Oscillator clock, CGMXCLK, is used as clock source for SCI  
5.6 Mask Option Register (MOR)  
The mask option register (MOR) is used for selecting one of the three  
clock options for the MCU. The MOR is a byte located in FLASH  
memory, and is written to by a FLASH programming routine.  
Address: $FF80  
Bit 7  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
OSCSEL1 OSCSEL0  
R
R
R
R
R
Erased:  
Reset:  
1
U
R
1
1
1
1
1
1
1
U
U
U
U
U
U
U
= Reserved  
Figure 5-4. Mask Option Register (MOR)  
OSCSEL1, OSCSEL0 — Oscillator Selection Bits  
OSCSEL1 and OSCSEL0 select which oscillator is used for the MCU  
CGMXCLK clock. The erase state of these two bits is logic 1. These  
bits are unaffected by reset. (See Table 5-1).  
Bits 5–0 — Should be left as 1’s.  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Configuration and Mask Option Registers (CONFIG & MOR)  
Data Sheet  
79  
Configuration and Mask Option  
Table 5-1. CGMXCLK Clock Selection  
OSCSEL1  
OSCSEL0  
CGMXCLK  
OSC2 pin  
Comments  
0
0
0
1
Not used  
ICLK  
f
f
Internal oscillator generates the CGMXCLK.  
BUS  
RC oscillator generates the CGMXCLK.  
Internal oscillator is available after each POR  
or reset.  
1
1
0
1
RCCLK  
X-TAL  
BUS  
Inverting  
output of  
XTAL  
X-tal oscillator generates the CGMXCLK.  
Internal oscillator is available after each POR  
or reset.  
NOTE: The internal oscillator is a free running oscillator and is available after  
each POR or reset. It is turned-off in stop mode by clearing the  
STOP_ICLKEN bit in CONFIG2.  
Data Sheet  
80  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Configuration and Mask Option Registers (CONFIG & MOR) Freescale Semiconductor  
Data Sheet — MC68HC908SR12•MC68HC08SR12  
Section 6. Central Processor Unit (CPU)  
6.1 Contents  
6.2  
6.3  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82  
6.4  
CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82  
Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83  
Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84  
Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84  
Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85  
Condition Code Register . . . . . . . . . . . . . . . . . . . . . . . . . . .85  
6.4.1  
6.4.2  
6.4.3  
6.4.4  
6.4.5  
6.5  
Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . .88  
6.6  
6.6.1  
6.6.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89  
6.7  
6.8  
6.9  
CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . .89  
Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . .89  
Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89  
6.2 Introduction  
The M68HC08 CPU (central processor unit) is an enhanced and fully  
object-code-compatible version of the M68HC05 CPU. The CPU08  
Reference Manual (Freescale document order number CPU08RM/AD)  
contains a description of the CPU instruction set, addressing modes,  
and architecture.  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Central Processor Unit (CPU)  
Data Sheet  
81  
Central Processor Unit (CPU)  
6.3 Features  
• Object code fully upward-compatible with M68HC05 Family  
• 16-bit stack pointer with stack manipulation instructions  
• 16-bit index register with x-register manipulation instructions  
• 8-MHz CPU internal bus frequency  
• 64K-byte program/data memory space  
• 16 addressing modes  
• Memory-to-memory data moves without using accumulator  
• Fast 8-bit by 8-bit multiply and 16-bit by 8-bit divide instructions  
• Enhanced binary-coded decimal (BCD) data handling  
• Modular architecture with expandable internal bus definition for  
extension of addressing range beyond 64K-bytes  
• Low-power stop and wait modes  
6.4 CPU Registers  
Figure 6-1 shows the five CPU registers. CPU registers are not part of  
the memory map.  
Data Sheet  
82  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Central Processor Unit (CPU)  
Freescale Semiconductor  
Central Processor Unit (CPU)  
CPU Registers  
7
0
0
0
0
ACCUMULATOR (A)  
15  
15  
15  
H
X
INDEX REGISTER (H:X)  
STACK POINTER (SP)  
PROGRAM COUNTER (PC)  
CONDITION CODE REGISTER (CCR)  
7
0
V
1
1
H
I
N
Z
C
CARRY/BORROW FLAG  
ZERO FLAG  
NEGATIVE FLAG  
INTERRUPT MASK  
HALF-CARRY FLAG  
TWO’S COMPLEMENT OVERFLOW FLAG  
Figure 6-1. CPU Registers  
6.4.1 Accumulator  
The accumulator is a general-purpose 8-bit register. The CPU uses the  
accumulator to hold operands and the results of arithmetic/logic  
operations.  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Unaffected by reset  
Figure 6-2. Accumulator (A)  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Central Processor Unit (CPU)  
Data Sheet  
83  
Central Processor Unit (CPU)  
6.4.2 Index Register  
The 16-bit index register allows indexed addressing of a 64K-byte  
memory space. H is the upper byte of the index register, and X is the  
lower byte. H:X is the concatenated 16-bit index register.  
In the indexed addressing modes, the CPU uses the contents of the  
index register to determine the conditional address of the operand.  
The index register can serve also as a temporary data storage location.  
Bit  
15  
Bit  
0
14 13 12 11 10  
9
8
7
6
5
4
3
2
1
Read:  
Write:  
Reset:  
0
0
0
0
0
0
0
0
X
X
X
X
X
X
X
X
X = Indeterminate  
Figure 6-3. Index Register (H:X)  
6.4.3 Stack Pointer  
The stack pointer is a 16-bit register that contains the address of the next  
location on the stack. During a reset, the stack pointer is preset to  
$00FF. The reset stack pointer (RSP) instruction sets the least  
significant byte to $FF and does not affect the most significant byte. The  
stack pointer decrements as data is pushed onto the stack and  
increments as data is pulled from the stack.  
In the stack pointer 8-bit offset and 16-bit offset addressing modes, the  
stack pointer can function as an index register to access data on the  
stack. The CPU uses the contents of the stack pointer to determine the  
conditional address of the operand.  
Data Sheet  
84  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Central Processor Unit (CPU)  
Freescale Semiconductor  
Central Processor Unit (CPU)  
CPU Registers  
Bit  
15  
Bit  
0
14 13 12 11 10  
9
8
7
6
5
4
3
2
1
Read:  
Write:  
Reset:  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
Figure 6-4. Stack Pointer (SP)  
NOTE: The location of the stack is arbitrary and may be relocated anywhere in  
RAM. Moving the SP out of page 0 ($0000 to $00FF) frees direct  
address (page 0) space. For correct operation, the stack pointer must  
point only to RAM locations.  
6.4.4 Program Counter  
The program counter is a 16-bit register that contains the address of the  
next instruction or operand to be fetched.  
Normally, the program counter automatically increments to the next  
sequential memory location every time an instruction or operand is  
fetched. Jump, branch, and interrupt operations load the program  
counter with an address other than that of the next sequential location.  
During reset, the program counter is loaded with the reset vector  
address located at $FFFE and $FFFF. The vector address is the  
address of the first instruction to be executed after exiting the reset state.  
Bit  
15  
Bit  
0
14 13 12 11 10  
9
8
7
6
5
4
3
2
1
Read:  
Write:  
Reset:  
Loaded with Vector from $FFFE and $FFFF  
Figure 6-5. Program Counter (PC)  
6.4.5 Condition Code Register  
The 8-bit condition code register contains the interrupt mask and five  
flags that indicate the results of the instruction just executed. Bits 6 and  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Central Processor Unit (CPU)  
Data Sheet  
85  
Central Processor Unit (CPU)  
5 are set permanently to logic 1. The following paragraphs describe the  
functions of the condition code register.  
Bit 7  
6
1
1
5
1
1
4
H
X
3
I
2
N
X
1
Z
X
Bit 0  
Read:  
Write:  
Reset:  
V
C
X
X
1
X = Indeterminate  
Figure 6-6. Condition Code Register (CCR)  
V — Overflow Flag  
The CPU sets the overflow flag when a two's complement overflow  
occurs. The signed branch instructions BGT, BGE, BLE, and BLT use  
the overflow flag.  
1 = Overflow  
0 = No overflow  
H — Half-Carry Flag  
The CPU sets the half-carry flag when a carry occurs between  
accumulator bits 3 and 4 during an add-without-carry (ADD) or add-  
with-carry (ADC) operation. The half-carry flag is required for binary-  
coded decimal (BCD) arithmetic operations. The DAA instruction uses  
the states of the H and C flags to determine the appropriate correction  
factor.  
1 = Carry between bits 3 and 4  
0 = No carry between bits 3 and 4  
Data Sheet  
86  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Central Processor Unit (CPU)  
Freescale Semiconductor  
Central Processor Unit (CPU)  
CPU Registers  
I — Interrupt Mask  
When the interrupt mask is set, all maskable CPU interrupts are  
disabled. CPU interrupts are enabled when the interrupt mask is  
cleared. When a CPU interrupt occurs, the interrupt mask is set  
automatically after the CPU registers are saved on the stack, but  
before the interrupt vector is fetched.  
1 = Interrupts disabled  
0 = Interrupts enabled  
NOTE: To maintain M6805 Family compatibility, the upper byte of the index  
register (H) is not stacked automatically. If the interrupt service routine  
modifies H, then the user must stack and unstack H using the PSHH and  
PULH instructions.  
After the I bit is cleared, the highest-priority interrupt request is  
serviced first.  
A return-from-interrupt (RTI) instruction pulls the CPU registers from  
the stack and restores the interrupt mask from the stack. After any  
reset, the interrupt mask is set and can be cleared only by the clear  
interrupt mask software instruction (CLI).  
N — Negative flag  
The CPU sets the negative flag when an arithmetic operation, logic  
operation, or data manipulation produces a negative result, setting bit  
7 of the result.  
1 = Negative result  
0 = Non-negative result  
Z — Zero flag  
The CPU sets the zero flag when an arithmetic operation, logic  
operation, or data manipulation produces a result of $00.  
1 = Zero result  
0 = Non-zero result  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Central Processor Unit (CPU)  
Data Sheet  
87  
Central Processor Unit (CPU)  
C — Carry/Borrow Flag  
The CPU sets the carry/borrow flag when an addition operation  
produces a carry out of bit 7 of the accumulator or when a subtraction  
operation requires a borrow. Some instructions — such as bit test and  
branch, shift, and rotate — also clear or set the carry/borrow flag.  
1 = Carry out of bit 7  
0 = No carry out of bit 7  
6.5 Arithmetic/Logic Unit (ALU)  
The ALU performs the arithmetic and logic operations defined by the  
instruction set.  
Refer to the CPU08 Reference Manual (Freescale document order  
number CPU08RM/AD) for a description of the instructions and  
addressing modes and more detail about the architecture of the CPU.  
6.6 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption  
standby modes.  
6.6.1 Wait Mode  
The WAIT instruction:  
• Clears the interrupt mask (I bit) in the condition code register,  
enabling interrupts. After exit from wait mode by interrupt, the I bit  
remains clear. After exit by reset, the I bit is set.  
• Disables the CPU clock  
Data Sheet  
88  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Central Processor Unit (CPU)  
Freescale Semiconductor  
Central Processor Unit (CPU)  
CPU During Break Interrupts  
6.6.2 Stop Mode  
The STOP instruction:  
• Clears the interrupt mask (I bit) in the condition code register,  
enabling external interrupts. After exit from stop mode by external  
interrupt, the I bit remains clear. After exit by reset, the I bit is set.  
• Disables the CPU clock  
After exiting stop mode, the CPU clock begins running after the oscillator  
stabilization delay.  
6.7 CPU During Break Interrupts  
If a break module is present on the MCU, the CPU starts a break  
interrupt by:  
• Loading the instruction register with the SWI instruction  
• Loading the program counter with $FFFC:$FFFD or with  
$FEFC:$FEFD in monitor mode  
The break interrupt begins after completion of the CPU instruction in  
progress. If the break address register match occurs on the last cycle of  
a CPU instruction, the break interrupt begins immediately.  
A return-from-interrupt instruction (RTI) in the break routine ends the  
break interrupt and returns the MCU to normal operation if the break  
interrupt has been deasserted.  
6.8 Instruction Set Summary  
6.9 Opcode Map  
See Table 6-2.  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Central Processor Unit (CPU)  
Data Sheet  
89  
Central Processor Unit (CPU)  
Table 6-1. Instruction Set Summary  
Effect on  
CCR  
Source  
Operation  
Form  
Description  
V H  
I
N Z C  
ADC #opr  
ADC opr  
ADC opr  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
A9  
B9  
C9  
D9  
E9  
F9  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
ADC opr,X  
Add with Carry  
ADC opr,X  
A (A) + (M) + (C)  
R
R
R R R  
ADC ,X  
ADC opr,SP  
ADC opr,SP  
SP1  
SP2  
9EE9 ff  
9ED9 ee ff  
ADD #opr  
ADD opr  
ADD opr  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
AB  
BB  
CB  
DB  
EB  
FB  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
ADD opr,X  
Add without Carry  
ADD opr,X  
A (A) + (M)  
R
R
R R R  
ADD ,X  
ADD opr,SP  
ADD opr,SP  
SP1  
SP2  
9EEB ff  
9EDB ee ff  
AIS #opr  
AIX #opr  
Add Immediate Value (Signed) to SP  
Add Immediate Value (Signed) to H:X  
SP (SP) + (16 « M)  
H:X (H:X) + (16 « M)  
– IMM  
– IMM  
A7  
AF  
ii  
ii  
2
2
AND #opr  
AND opr  
AND opr  
AND opr,X  
AND opr,X  
AND ,X  
AND opr,SP  
AND opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
SP1  
SP2  
A4  
B4  
C4  
D4  
E4  
F4  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
Logical AND  
A (A) & (M)  
0
R
R
R
R
9EE4 ff  
9ED4 ee ff  
ASL opr  
ASLA  
ASLX  
ASL opr,X  
ASL ,X  
ASL opr,SP  
DIR  
INH  
INH  
IX1  
IX  
38  
48  
58  
68  
78  
dd  
ff  
4
1
1
4
3
5
Arithmetic Shift Left  
(Same as LSL)  
R
R
C
0
b7  
b7  
b0  
b0  
SP1  
9E68 ff  
ASR opr  
ASRA  
ASRX  
ASR opr,X  
ASR opr,X  
ASR opr,SP  
DIR  
INH  
INH  
IX1  
IX  
37  
47  
57  
67  
77  
dd  
4
1
1
4
3
5
C
Arithmetic Shift Right  
R
R
R
R
ff  
SP1  
9E67 ff  
BCC rel  
Branch if Carry Bit Clear  
PC (PC) + 2 + rel ? (C) = 0  
– REL  
24  
rr  
3
DIR (b0)  
11  
13  
15  
17  
19  
1B  
1D  
1F  
dd  
dd  
dd  
dd  
dd  
dd  
dd  
dd  
4
4
4
4
4
4
4
4
DIR (b1)  
DIR (b2)  
DIR (b3)  
DIR (b4)  
DIR (b5)  
DIR (b6)  
DIR (b7)  
BCLR n, opr  
Clear Bit n in M  
Mn 0  
Data Sheet  
90  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Central Processor Unit (CPU) Freescale Semiconductor  
Central Processor Unit (CPU)  
Opcode Map  
Table 6-1. Instruction Set Summary (Continued)  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H  
I
N Z C  
BCS rel  
Branch if Carry Bit Set (Same as BLO)  
Branch if Equal  
PC (PC) + 2 + rel ? (C) = 1  
PC (PC) + 2 + rel ? (Z) = 1  
– REL  
– REL  
25  
27  
rr  
rr  
3
3
BEQ rel  
BGE opr  
Branch if Greater Than or Equal To  
(Signed Operands)  
PC (PC) + 2 + rel ? (N V) = 0  
– REL  
– REL  
90  
92  
rr  
rr  
3
Branch if Greater Than (Signed  
Operands)  
BGT opr  
PC (PC) + 2 +rel ? (Z) | (N V) = 0 –  
3
3
BHCC rel  
BHCS rel  
BHI rel  
Branch if Half Carry Bit Clear  
Branch if Half Carry Bit Set  
Branch if Higher  
PC (PC) + 2 + rel ? (H) = 0  
PC (PC) + 2 + rel ? (H) = 1  
PC (PC) + 2 + rel ? (C) | (Z) = 0  
– REL  
– REL  
– REL  
28  
29  
22  
rr  
rr  
rr  
3
3
3
Branch if Higher or Same  
(Same as BCC)  
BHS rel  
PC (PC) + 2 + rel ? (C) = 0  
– REL  
24  
rr  
BIH rel  
BIL rel  
Branch if IRQ Pin High  
Branch if IRQ Pin Low  
PC (PC) + 2 + rel ? IRQ = 1  
PC (PC) + 2 + rel ? IRQ = 0  
– REL  
– REL  
2F  
2E  
rr  
rr  
3
3
BIT #opr  
BIT opr  
BIT opr  
BIT opr,X  
BIT opr,X  
BIT ,X  
BIT opr,SP  
BIT opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
SP1  
SP2  
A5  
B5  
C5  
D5  
E5  
F5  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
Bit Test  
(A) & (M)  
0
R
R
9EE5 ff  
9ED5 ee ff  
Branch if Less Than or Equal To  
(Signed Operands)  
BLE opr  
PC (PC) + 2 +rel ? (Z) | (N V) = 1 –  
– REL  
93  
rr  
3
BLO rel  
BLS rel  
BLT opr  
BMC rel  
BMI rel  
BMS rel  
BNE rel  
BPL rel  
BRA rel  
Branch if Lower (Same as BCS)  
Branch if Lower or Same  
PC (PC) + 2 + rel ? (C) = 1  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
25  
23  
91  
2C  
2B  
2D  
26  
2A  
20  
rr  
rr  
rr  
rr  
rr  
rr  
rr  
rr  
rr  
3
3
3
3
3
3
3
3
3
PC (PC) + 2 + rel ? (C) | (Z) = 1  
Branch if Less Than (Signed Operands) PC (PC) + 2 + rel ? (N V) =1  
Branch if Interrupt Mask Clear  
Branch if Minus  
PC (PC) + 2 + rel ? (I) = 0  
PC (PC) + 2 + rel ? (N) = 1  
PC (PC) + 2 + rel ? (I) = 1  
PC (PC) + 2 + rel ? (Z) = 0  
PC (PC) + 2 + rel ? (N) = 0  
PC (PC) + 2 + rel  
Branch if Interrupt Mask Set  
Branch if Not Equal  
Branch if Plus  
Branch Always  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Central Processor Unit (CPU)  
Data Sheet  
91  
Central Processor Unit (CPU)  
Table 6-1. Instruction Set Summary (Continued)  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H  
I
N Z C  
DIR (b0)  
DIR (b1)  
DIR (b2)  
DIR (b3)  
DIR (b4)  
DIR (b5)  
DIR (b6)  
DIR (b7)  
01  
03  
05  
07  
09  
0B  
0D  
0F  
dd rr  
dd rr  
dd rr  
dd rr  
dd rr  
dd rr  
dd rr  
dd rr  
5
5
5
5
5
5
5
5
BRCLR n,opr,rel Branch if Bit n in M Clear  
PC (PC) + 3 + rel ? (Mn) = 0  
R
BRN rel  
Branch Never  
PC (PC) + 2  
– REL  
21  
rr  
3
DIR (b0)  
00  
02  
04  
06  
08  
0A  
0C  
0E  
dd rr  
dd rr  
dd rr  
dd rr  
dd rr  
dd rr  
dd rr  
dd rr  
5
5
5
5
5
5
5
5
DIR (b1)  
DIR (b2)  
DIR (b3)  
DIR (b4)  
DIR (b5)  
DIR (b6)  
DIR (b7)  
BRSET n,opr,rel Branch if Bit n in M Set  
PC (PC) + 3 + rel ? (Mn) = 1  
R
DIR (b0)  
DIR (b1)  
DIR (b2)  
DIR (b3)  
DIR (b4)  
DIR (b5)  
DIR (b6)  
DIR (b7)  
10  
12  
14  
16  
18  
1A  
1C  
1E  
dd  
dd  
dd  
dd  
dd  
dd  
dd  
dd  
4
4
4
4
4
4
4
4
BSET n,opr  
Set Bit n in M  
Mn 1  
PC (PC) + 2; push (PCL)  
SP (SP) – 1; push (PCH)  
SP (SP) – 1  
BSR rel  
Branch to Subroutine  
– REL  
AD  
rr  
4
PC (PC) + rel  
CBEQ opr,rel  
PC (PC) + 3 + rel ? (A) – (M) = $00  
PC (PC) + 3 + rel ? (A) – (M) = $00  
PC (PC) + 3 + rel ? (X) – (M) = $00  
PC (PC) + 3 + rel ? (A) – (M) = $00  
PC (PC) + 2 + rel ? (A) – (M) = $00  
PC (PC) + 4 + rel ? (A) – (M) = $00  
DIR  
IMM  
31  
41  
51  
61  
71  
dd rr  
ii rr  
ii rr  
ff rr  
rr  
5
4
4
5
4
6
CBEQA #opr,rel  
CBEQX #opr,rel  
CBEQ opr,X+,rel  
CBEQ X+,rel  
IMM  
IX1+  
Compare and Branch if Equal  
IX+  
SP1  
CBEQ opr,SP,rel  
9E61 ff rr  
CLC  
CLI  
Clear Carry Bit  
C 0  
I 0  
0
0 INH  
– INH  
98  
9A  
1
2
Clear Interrupt Mask  
CLR opr  
CLRA  
CLRX  
CLRH  
CLR opr,X  
CLR ,X  
M $00  
A $00  
X $00  
H $00  
M $00  
M $00  
M $00  
DIR  
INH  
INH  
– INH  
IX1  
IX  
3F  
4F  
5F  
8C  
6F  
7F  
dd  
ff  
3
1
1
1
3
2
4
Clear  
0
0
1
CLR opr,SP  
SP1  
9E6F ff  
Data Sheet  
92  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Central Processor Unit (CPU) Freescale Semiconductor  
Central Processor Unit (CPU)  
Opcode Map  
Table 6-1. Instruction Set Summary (Continued)  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H  
I
N Z C  
CMP #opr  
CMP opr  
CMP opr  
CMP opr,X  
CMP opr,X  
CMP ,X  
CMP opr,SP  
CMP opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
A1  
B1  
C1  
D1  
E1  
F1  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
Compare A with M  
(A) – (M)  
R
R
R
R
SP1  
SP2  
9EE1 ff  
9ED1 ee ff  
COM opr  
COMA  
COMX  
COM opr,X  
COM ,X  
COM opr,SP  
M (M) = $FF – (M)  
A (A) = $FF – (M)  
X (X) = $FF – (M)  
M (M) = $FF – (M)  
M (M) = $FF – (M)  
M (M) = $FF – (M)  
DIR  
INH  
INH  
IX1  
IX  
33  
43  
53  
63  
73  
dd  
ff  
4
1
1
4
3
5
Complement (One’s Complement)  
Compare H:X with M  
0
R
R
R
R
1
SP1  
9E63 ff  
CPHX #opr  
CPHX opr  
IMM  
DIR  
65  
75  
ii ii+1  
dd  
3
4
(H:X) – (M:M + 1)  
R
R
CPX #opr  
CPX opr  
CPX opr  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
A3  
B3  
C3  
D3  
E3  
F3  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
CPX ,X  
Compare X with M  
(X) – (M)  
R
R
R
R
CPX opr,X  
CPX opr,X  
CPX opr,SP  
CPX opr,SP  
SP1  
SP2  
9EE3 ff  
9ED3 ee ff  
DAA  
Decimal Adjust A  
(A)10  
U –  
R
R
R INH  
72  
2
A (A) –1 or M (M) –1 or X(X) –1  
PC (PC) + 3 + rel ? (result) 0  
PC (PC) + 2 + rel ? (result) 0  
PC (PC) + 2 + rel ? (result) 0  
PC (PC) + 3 + rel ? (result) 0  
PC (PC) + 2 + rel ? (result) 0  
PC (PC) + 4 + rel ? (result) 0  
5
3
3
5
4
6
DBNZ opr,rel  
DBNZA rel  
DBNZX rel  
DBNZ opr,X,rel  
DBNZ X,rel  
DBNZ opr,SP,rel  
DIR  
INH  
– INH  
IX1  
IX  
SP1  
3B  
4B  
5B  
6B  
7B  
dd rr  
rr  
rr  
ff rr  
rr  
Decrement and Branch if Not Zero  
9E6B ff rr  
DEC opr  
DECA  
DECX  
DEC opr,X  
DEC ,X  
DEC opr,SP  
M (M) – 1  
A (A) – 1  
X (X) – 1  
M (M) – 1  
M (M) – 1  
M (M) – 1  
DIR  
INH  
INH  
IX1  
IX  
3A  
4A  
5A  
6A  
7A  
dd  
ff  
4
1
1
4
3
5
Decrement  
Divide  
R
R
R
R
SP1  
9E6A ff  
A (H:A)/(X)  
H Remainder  
DIV  
R INH  
52  
7
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Central Processor Unit (CPU)  
Data Sheet  
93  
Central Processor Unit (CPU)  
Table 6-1. Instruction Set Summary (Continued)  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H  
I
N Z C  
EOR #opr  
EOR opr  
EOR opr  
EOR opr,X  
EOR opr,X  
EOR ,X  
EOR opr,SP  
EOR opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
A8  
B8  
C8  
D8  
E8  
F8  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
Exclusive OR M with A  
A (A M)  
0
R
R
R
R
SP1  
SP2  
9EE8 ff  
9ED8 ee ff  
INC opr  
INCA  
INCX  
INC opr,X  
INC ,X  
INC opr,SP  
M (M) + 1  
A (A) + 1  
X (X) + 1  
M (M) + 1  
M (M) + 1  
M (M) + 1  
DIR  
INH  
INH  
IX1  
IX  
3C  
4C  
5C  
6C  
7C  
dd  
ff  
4
1
1
4
3
5
Increment  
R
SP1  
9E6C ff  
JMP opr  
JMP opr  
JMP opr,X  
JMP opr,X  
JMP ,X  
DIR  
EXT  
– IX2  
IX1  
IX  
BC  
CC  
DC  
EC  
FC  
dd  
2
3
4
3
2
hh ll  
ee ff  
ff  
Jump  
PC Jump Address  
JSR opr  
JSR opr  
JSR opr,X  
JSR opr,X  
JSR ,X  
DIR  
EXT  
– IX2  
IX1  
BD  
CD  
DD  
ED  
FD  
dd  
4
5
6
5
4
PC (PC) + n (n = 1, 2, or 3)  
Push (PCL); SP (SP) – 1  
Push (PCH); SP (SP) – 1  
PC Unconditional Address  
hh ll  
ee ff  
ff  
Jump to Subroutine  
IX  
LDA #opr  
LDA opr  
LDA opr  
LDA opr,X  
LDA opr,X  
LDA ,X  
LDA opr,SP  
LDA opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
SP1  
SP2  
A6  
B6  
C6  
D6  
E6  
F6  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
Load A from M  
Load H:X from M  
Load X from M  
A (M)  
H:X ← (M:M + 1)  
X (M)  
0
0
0
R
R
R
R
R
R
9EE6 ff  
9ED6 ee ff  
LDHX #opr  
LDHX opr  
IMM  
45  
55  
ii jj  
dd  
3
4
DIR  
LDX #opr  
LDX opr  
LDX opr  
LDX opr,X  
LDX opr,X  
LDX ,X  
LDX opr,SP  
LDX opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
SP1  
SP2  
AE  
BE  
CE  
DE  
EE  
FE  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
9EEE ff  
9EDE ee ff  
LSL opr  
LSLA  
LSLX  
LSL opr,X  
LSL ,X  
LSL opr,SP  
DIR  
INH  
INH  
IX1  
IX  
38  
48  
58  
68  
78  
dd  
ff  
4
1
1
4
3
5
Logical Shift Left  
(Same as ASL)  
C
0
R
R
R
R
b7  
b0  
SP1  
9E68 ff  
Data Sheet  
94  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Central Processor Unit (CPU) Freescale Semiconductor  
Central Processor Unit (CPU)  
Opcode Map  
Table 6-1. Instruction Set Summary (Continued)  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H  
I
N Z C  
LSR opr  
LSRA  
LSRX  
LSR opr,X  
LSR ,X  
DIR  
INH  
INH  
IX1  
IX  
34  
44  
54  
64  
74  
dd  
ff  
4
1
1
4
3
5
0
C
Logical Shift Right  
R
0
R
R
b7  
b0  
LSR opr,SP  
SP1  
9E64 ff  
MOV opr,opr  
MOV opr,X+  
MOV #opr,opr  
MOV X+,opr  
DD  
4E  
5E  
6E  
7E  
dd dd  
dd  
ii dd  
dd  
5
4
4
4
(M)Destination (M)Source  
DIX+  
IMD  
IX+D  
Move  
0
0
R
R
H:X (H:X) + 1 (IX+D, DIX+)  
MUL  
Unsigned multiply  
X:A (X) × (A)  
0 INH  
42  
5
NEG opr  
NEGA  
NEGX  
NEG opr,X  
NEG ,X  
NEG opr,SP  
DIR  
INH  
INH  
IX1  
IX  
30  
40  
50  
60  
70  
dd  
ff  
4
1
1
4
3
5
M –(M) = $00 – (M)  
A –(A) = $00 – (A)  
X –(X) = $00 – (X)  
M –(M) = $00 – (M)  
M –(M) = $00 – (M)  
Negate (Two’s Complement)  
R
R
R
R
SP1  
9E60 ff  
NOP  
NSA  
No Operation  
Nibble Swap A  
None  
– INH  
– INH  
9D  
1
3
A (A[3:0]:A[7:4])  
62  
ORA #opr  
ORA opr  
ORA opr  
ORA opr,X  
ORA opr,X  
ORA ,X  
ORA opr,SP  
ORA opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
SP1  
SP2  
AA  
BA  
CA  
DA  
EA  
FA  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
Inclusive OR A and M  
A (A) | (M)  
0
R
R
9EEA ff  
9EDA ee ff  
PSHA  
PSHH  
PSHX  
PULA  
PULH  
PULX  
Push A onto Stack  
Push H onto Stack  
Push X onto Stack  
Pull A from Stack  
Pull H from Stack  
Pull X from Stack  
Push (A); SP (SP) – 1  
Push (H); SP (SP) – 1  
Push (X); SP (SP) – 1  
SP (SP + 1); Pull (A)  
SP (SP + 1); Pull (H)  
SP (SP + 1); Pull (X)  
– INH  
– INH  
– INH  
– INH  
– INH  
– INH  
87  
8B  
89  
86  
8A  
88  
2
2
2
2
2
2
ROL opr  
ROLA  
ROLX  
ROL opr,X  
ROL ,X  
ROL opr,SP  
DIR  
INH  
INH  
IX1  
IX  
39  
49  
59  
69  
79  
dd  
ff  
4
1
1
4
3
5
C
Rotate Left through Carry  
R
R
R
R
b7  
b0  
SP1  
9E69 ff  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Central Processor Unit (CPU)  
Data Sheet  
95  
Central Processor Unit (CPU)  
Table 6-1. Instruction Set Summary (Continued)  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H  
I
N Z C  
ROR opr  
RORA  
RORX  
ROR opr,X  
ROR ,X  
DIR  
INH  
INH  
IX1  
IX  
36  
46  
56  
66  
76  
dd  
ff  
4
1
1
4
3
5
C
Rotate Right through Carry  
R
R
R
R
b7  
b0  
ROR opr,SP  
SP1  
9E66 ff  
RSP  
Reset Stack Pointer  
Return from Interrupt  
SP $FF  
– INH  
9C  
1
SP (SP) + 1; Pull (CCR)  
SP (SP) + 1; Pull (A)  
SP (SP) + 1; Pull (X)  
SP (SP) + 1; Pull (PCH)  
SP (SP) + 1; Pull (PCL)  
RTI  
R
R
R
R
R
R INH  
80  
81  
7
SP SP + 1; Pull (PCH)  
SP SP + 1; Pull (PCL)  
RTS  
Return from Subroutine  
Subtract with Carry  
– INH  
4
SBC #opr  
SBC opr  
SBC opr  
SBC opr,X  
SBC opr,X  
SBC ,X  
SBC opr,SP  
SBC opr,SP  
IMM  
DIR  
EXT  
A2  
B2  
C2  
D2  
E2  
F2  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
IX2  
IX1  
A (A) – (M) – (C)  
R
R
R
R
IX  
SP1  
SP2  
9EE2 ff  
9ED2 ee ff  
SEC  
SEI  
Set Carry Bit  
C 1  
I 1  
1
1 INH  
– INH  
99  
9B  
1
2
Set Interrupt Mask  
STA opr  
STA opr  
DIR  
EXT  
IX2  
– IX1  
IX  
B7  
C7  
D7  
E7  
F7  
dd  
3
4
4
3
2
4
5
hh ll  
ee ff  
ff  
STA opr,X  
STA opr,X  
STA ,X  
STA opr,SP  
STA opr,SP  
Store A in M  
M (A)  
0
R
R
SP1  
SP2  
9EE7 ff  
9ED7 ee ff  
STHX opr  
Store H:X in M  
(M:M + 1) (H:X)  
0
0
R
R
– DIR  
– INH  
35  
dd  
4
1
STOP  
Enable IRQ Pin; Stop Oscillator  
I 0; Stop Oscillator  
8E  
STX opr  
STX opr  
DIR  
EXT  
IX2  
– IX1  
IX  
BF  
CF  
DF  
EF  
FF  
dd  
3
4
4
3
2
4
5
hh ll  
ee ff  
ff  
STX opr,X  
STX opr,X  
STX ,X  
STX opr,SP  
STX opr,SP  
Store X in M  
M (X)  
0
R
R
SP1  
SP2  
9EEF ff  
9EDF ee ff  
Data Sheet  
96  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Central Processor Unit (CPU) Freescale Semiconductor  
Central Processor Unit (CPU)  
Opcode Map  
Table 6-1. Instruction Set Summary (Continued)  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H  
I
N Z C  
SUB #opr  
SUB opr  
SUB opr  
SUB opr,X  
SUB opr,X  
SUB ,X  
SUB opr,SP  
SUB opr,SP  
IMM  
DIR  
EXT  
IX2  
IX1  
IX  
A0  
B0  
C0  
D0  
E0  
F0  
ii  
2
3
4
4
3
2
4
5
dd  
hh ll  
ee ff  
ff  
Subtract  
A (A) – (M)  
R
R
R
R
SP1  
SP2  
9EE0 ff  
9ED0 ee ff  
PC (PC) + 1; Push (PCL)  
SP (SP) – 1; Push (PCH)  
SP (SP) – 1; Push (X)  
SP (SP) – 1; Push (A)  
SP (SP) – 1; Push (CCR)  
SP (SP) – 1; I 1  
SWI  
Software Interrupt  
1
– INH  
83  
9
PCH Interrupt Vector High Byte  
PCL Interrupt Vector Low Byte  
TAP  
TAX  
TPA  
Transfer A to CCR  
Transfer A to X  
CCR (A)  
X (A)  
R
R
R
R
R
R INH  
– INH  
– INH  
84  
97  
85  
2
1
1
Transfer CCR to A  
A (CCR)  
TST opr  
TSTA  
TSTX  
TST opr,X  
TST ,X  
TST opr,SP  
DIR  
INH  
INH  
IX1  
IX  
3D  
4D  
5D  
6D  
7D  
dd  
ff  
3
1
1
3
2
4
Test for Negative or Zero  
(A) – $00 or (X) – $00 or (M) – $00  
0
R
R
SP1  
9E6D ff  
TSX  
TXA  
TXS  
Transfer SP to H:X  
Transfer X to A  
H:X (SP) + 1  
A (X)  
– INH  
– INH  
– INH  
95  
9F  
94  
2
1
2
Transfer H:X to SP  
(SP) (H:X) – 1  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Central Processor Unit (CPU)  
Data Sheet  
97  
Central Processor Unit (CPU)  
Table 6-1. Instruction Set Summary (Continued)  
Effect on  
CCR  
Source  
Form  
Operation  
Description  
V H  
Any bit  
opr Operand (one or two bytes)  
PC Program counter  
PCH Program counter high byte  
PCL Program counter low byte  
REL Relative addressing mode  
I N Z C  
A
C
Accumulator  
Carry/borrow bit  
n
CCR Condition code register  
dd Direct address of operand  
dd rr Direct address of operand and relative offset of branch instruction  
DD Direct to direct addressing mode  
DIR Direct addressing mode  
rel  
rr  
Relative program counter offset byte  
Relative program counter offset byte  
DIX+ Direct to indexed with post increment addressing mode  
ee ff High and low bytes of offset in indexed, 16-bit offset addressing  
EXT Extended addressing mode  
SP1 Stack pointer, 8-bit offset addressing mode  
SP2 Stack pointer 16-bit offset addressing mode  
SP Stack pointer  
U
V
X
Z
ff  
H
H
Offset byte in indexed, 8-bit offset addressing  
Half-carry bit  
Index register high byte  
Undefined  
Overflow bit  
Index register low byte  
Zero bit  
hh ll High and low bytes of operand address in extended addressing  
I
Interrupt mask  
ii  
Immediate operand byte  
&
|
( )  
Logical AND  
Logical OR  
Logical EXCLUSIVE OR  
Contents of  
IMD Immediate source to direct destination addressing mode  
IMM Immediate addressing mode  
INH Inherent addressing mode  
IX  
Indexed, no offset addressing mode  
–( ) Negation (two’s complement)  
IX+  
Indexed, no offset, post increment addressing mode  
#
Immediate value  
Sign extend  
Loaded with  
If  
IX+D Indexed with post increment to direct addressing mode  
IX1 Indexed, 8-bit offset addressing mode  
IX1+ Indexed, 8-bit offset, post increment addressing mode  
«
?
IX2  
M
N
Indexed, 16-bit offset addressing mode  
Memory location  
Negative bit  
:
R
Concatenated with  
Set or cleared  
Not affected  
Data Sheet  
98  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Central Processor Unit (CPU) Freescale Semiconductor  
Table 6-2. Opcode Map  
Bit Manipulation Branch  
Read-Modify-Write  
Control  
Register/Memory  
DIR  
DIR  
REL  
DIR  
3
INH  
4
INH  
IX1  
SP1  
9E6  
IX  
7
INH  
INH  
IMM  
A
DIR  
B
EXT  
C
IX2  
SP2  
IX1  
E
SP1  
9EE  
IX  
F
MSB  
0
1
2
5
6
8
9
D
9ED  
LSB  
5
4
3
4
1
NEGA  
INH  
1
NEGX  
INH  
4
5
3
7
3
2
3
4
4
5
3
4
2
0
BRSET0 BSET0  
BRA  
NEG  
NEG  
NEG  
NEG  
RTI  
BGE  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
3
DIR  
5
2
DIR  
4
2
2
2
2
2
2
2
2
REL 2 DIR  
1
1
2
IX1 3 SP1 1 IX  
5
1
1
INH  
2
2
2
2
1
1
REL 2 IMM 2 DIR  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
EXT 3 IX2  
4
4
4
4
4
4
4
4
4
4
4
4
SP2 2 IX1  
3
3
3
3
3
3
3
3
3
3
3
3
SP1 1 IX  
3
BRN  
REL 3 DIR  
5
4
4
6
4
4
3
BLT  
2
3
4
4
5
3
4
2
1
2
BRCLR0 BCLR0  
CBEQ CBEQA CBEQX CBEQ  
CBEQ  
CBEQ  
RTS  
CMP  
CMP  
CMP  
CMP  
CMP  
CMP  
CMP  
CMP  
3
DIR  
5
2
DIR  
4
3
IMM 3 IMM 3 IX1+  
4
SP1 2 IX+  
INH  
REL 2 IMM 2 DIR  
EXT 3 IX2  
SP2 2 IX1  
SP1 1 IX  
3
5
7
3
2
DAA  
3
BGT  
2
SBC  
3
SBC  
4
SBC  
EXT 3 IX2  
4
CPX  
EXT 3 IX2  
4
AND  
EXT 3 IX2  
4
BIT  
EXT 3 IX2  
4
LDA  
EXT 3 IX2  
4
STA  
EXT 3 IX2  
4
EOR  
EXT 3 IX2  
4
ADC  
EXT 3 IX2  
4
ORA  
EXT 3 IX2  
4
ADD  
EXT 3 IX2  
3
JMP  
EXT 3 IX2  
5
JSR  
EXT 3 IX2  
4
LDX  
EXT 3 IX2  
4
STX  
EXT 3 IX2  
4
SBC  
5
SBC  
SP2 2 IX1  
5
CPX  
SP2 2 IX1  
5
AND  
SP2 2 IX1  
5
BIT  
SP2 2 IX1  
5
LDA  
SP2 2 IX1  
5
STA  
SP2 2 IX1  
5
EOR  
SP2 2 IX1  
5
ADC  
SP2 2 IX1  
3
SBC  
4
SBC  
SP1 1 IX  
4
CPX  
SP1 1 IX  
4
AND  
SP1 1 IX  
4
BIT  
SP1 1 IX  
4
LDA  
SP1 1 IX  
4
STA  
SP1 1 IX  
4
EOR  
SP1 1 IX  
4
ADC  
SP1 1 IX  
2
SBC  
BRSET1 BSET1  
BHI  
MUL  
INH  
DIV  
INH  
NSA  
3
DIR  
5
2
DIR  
4
REL  
1
1
1
2
2
3
2
2
2
2
2
INH  
1
INH  
3
REL 2 IMM 2 DIR  
3
BLS  
REL 2 DIR  
3
BCC  
REL 2 DIR  
3
BCS  
REL 2 DIR  
3
BNE  
REL 2 DIR  
4
1
1
4
COM  
IX1  
4
LSR  
IX1  
3
CPHX  
IMM  
4
ROR  
IX1  
4
ASR  
IX1  
4
LSL  
IX1  
4
ROL  
IX1  
4
DEC  
IX1  
5
9
3
BLE  
2
CPX  
3
CPX  
4
CPX  
3
CPX  
2
CPX  
3
BRCLR1 BCLR1  
COM  
COMA  
COMX  
COM  
COM  
SWI  
3
DIR  
5
2
DIR  
4
1
INH  
1
INH  
3
3
SP1 1 IX  
1
1
1
1
1
1
1
1
1
1
INH  
REL 2 IMM 2 DIR  
4
LSR  
1
LSRA  
INH  
1
LSRX  
INH  
5
LSR  
SP1 1 IX  
3
LSR  
2
2
2
AND  
IMM 2 DIR  
3
AND  
4
AND  
3
AND  
2
AND  
4
BRSET2 BSET2  
TAP  
TXS  
3
DIR  
5
2
DIR  
4
1
3
1
INH  
INH  
2
2
2
2
2
2
2
2
4
3
4
4
1
2
2
BIT  
3
BIT  
4
BIT  
3
BIT  
2
BIT  
5
BRCLR2 BCLR2  
STHX  
LDHX  
LDHX  
CPHX  
TPA  
TSX  
3
DIR  
5
2
DIR  
4
IMM 2 DIR  
2
DIR  
3
INH  
INH  
IMM 2 DIR  
4
ROR  
1
1
5
2
PULA  
INH  
2
PSHA  
INH  
2
PULX  
INH  
2
PSHX  
INH  
2
PULH  
INH  
2
PSHH  
INH  
1
CLRH  
INH  
2
LDA  
IMM 2 DIR  
2
AIS  
IMM 2 DIR  
2
EOR  
IMM 2 DIR  
2
ADC  
IMM 2 DIR  
2
ORA  
IMM 2 DIR  
2
ADD  
IMM 2 DIR  
3
LDA  
4
LDA  
3
LDA  
2
LDA  
6
BRSET3 BSET3  
RORA  
RORX  
ROR  
SP1 1 IX  
5
ASR  
SP1 1 IX  
5
LSL  
SP1 1 IX  
5
ROL  
SP1 1 IX  
ROR  
3
DIR  
5
2
DIR  
4
1
INH  
1
INH  
3
3
3
3
3
4
3
3
3
BEQ  
REL 2 DIR  
3
4
ASR  
1
ASRA  
INH  
1
LSLA  
INH  
1
ROLA  
INH  
1
DECA  
INH  
1
ASRX  
INH  
1
LSLX  
INH  
1
ROLX  
INH  
1
DECX  
INH  
3
ASR  
1
3
STA  
4
STA  
3
STA  
2
STA  
7
BRCLR3 BCLR3  
TAX  
3
DIR  
5
2
DIR  
4
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
INH  
4
LSL  
3
LSL  
1
3
EOR  
4
EOR  
3
EOR  
2
EOR  
8
BRSET4 BSET4 BHCC  
CLC  
3
DIR  
5
2
DIR  
4
2
REL 2 DIR  
3
INH  
4
ROL  
3
ROL  
1
3
ADC  
4
ADC  
3
ADC  
2
ADC  
9
BRCLR4 BCLR4 BHCS  
SEC  
3
DIR  
5
2
DIR  
4
2
2
2
2
2
2
2
REL 2 DIR  
INH  
3
BPL  
REL 2 DIR  
3
BMI  
REL 3 DIR  
3
BMC  
REL 2 DIR  
4
DEC  
5
DEC  
SP1 1 IX  
3
DEC  
2
3
ORA  
4
ORA  
5
ORA  
SP2 2 IX1  
5
ADD  
SP2 2 IX1  
3
ORA  
4
ORA  
SP1 1 IX  
4
ADD  
SP1 1 IX  
2
ORA  
A
B
C
D
E
F
BRSET5 BSET5  
CLI  
3
DIR  
5
2
DIR  
4
INH  
5
3
3
5
6
4
2
3
ADD  
4
ADD  
3
ADD  
2
ADD  
BRCLR5 BCLR5  
DBNZ DBNZA DBNZX DBNZ  
DBNZ  
DBNZ  
SEI  
3
DIR  
5
2
DIR  
4
2
1
1
3
1
INH  
1
2
1
1
2
1
INH  
1
3
2
2
3
2
IX1  
4
SP1 2 IX  
INH  
4
INC  
5
INC  
SP1 1 IX  
4
TST  
SP1 1 IX  
3
INC  
1
2
JMP  
4
JMP  
3
JMP  
2
BRSET6 BSET6  
INCA  
INCX  
INC  
RSP  
JMP  
3
DIR  
5
2
DIR  
4
INH  
1
INH  
1
IX1  
3
INH  
2
DIR  
4
2
2
IX1  
5
1
1
IX  
3
BMS  
3
TST  
2
TST  
1
4
BSR  
REL 2 DIR  
2
LDX  
IMM 2 DIR  
2
AIX  
IMM 2 DIR  
6
JSR  
4
JSR  
IX  
2
LDX  
BRCLR6 BCLR6  
TSTA  
TSTX  
TST  
NOP  
JSR  
JSR  
3
DIR  
5
2
DIR  
4
REL 2 DIR  
3
INH  
5
INH  
4
IX1  
4
INH  
2
2
2
IX1  
3
4
1
STOP  
INH  
1
WAIT  
INH  
3
LDX  
4
LDX  
5
LDX  
SP2 2 IX1  
5
STX  
SP2 2 IX1  
4
LDX  
SP1 1 IX  
4
STX  
SP1 1 IX  
BRSET7 BSET7  
BIL  
MOV  
MOV  
MOV  
MOV  
LDX  
*
1
TXA  
INH  
3
DIR  
5
2
DIR  
4
REL  
3
DD  
DIX+  
IMD  
3
2
IX+D  
1
1
4
4
3
3
3
CLR  
1
CLRA  
INH  
1
CLRX  
INH  
4
CLR  
SP1 1 IX  
2
CLR  
3
STX  
4
STX  
3
STX  
2
STX  
BRCLR7 BCLR7  
BIH  
CLR  
IX1  
3
DIR  
2
DIR  
REL 2 DIR  
3
1
INH Inherent  
REL Relative  
SP1 Stack Pointer, 8-Bit Offset  
SP2 Stack Pointer, 16-Bit Offset  
IX+ Indexed, No Offset with  
Post Increment  
IX1+ Indexed, 1-Byte Offset with  
Post Increment  
MSB  
LSB  
0
High Byte of Opcode in Hexadecimal  
Cycles  
IMM Immediate  
DIR Direct  
IX  
Indexed, No Offset  
IX1 Indexed, 8-Bit Offset  
IX2 Indexed, 16-Bit Offset  
IMD Immediate-Direct  
EXT Extended  
DD Direct-Direct  
IX+D Indexed-Direct DIX+ Direct-Indexed  
*Pre-byte for stack pointer indexed instructions  
5
Low Byte of Opcode in Hexadecimal  
0
BRSET0 Opcode Mnemonic  
DIR Number of Bytes / Addressing Mode  
3
Central Processor Unit (CPU)  
Data Sheet  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Central Processor Unit (CPU) Freescale Semiconductor  
100  
Data Sheet — MC68HC908SR12•MC68HC08SR12  
Section 7. Oscillator (OSC)  
7.1 Contents  
7.2  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102  
7.3  
7.3.1  
7.3.2  
Clock Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103  
CGM Reference Clock Selection . . . . . . . . . . . . . . . . . . . .104  
TBM Reference Clock Selection . . . . . . . . . . . . . . . . . . . .105  
7.4  
7.5  
7.6  
Internal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105  
RC Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106  
X-tal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107  
7.7  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108  
Crystal Amplifier Input Pin (OSC1). . . . . . . . . . . . . . . . . . .108  
Crystal Amplifier Output Pin (OSC2) . . . . . . . . . . . . . . . . .109  
Oscillator Enable Signal (SIMOSCEN). . . . . . . . . . . . . . . .109  
CGM Oscillator Clock (CGMXCLK) . . . . . . . . . . . . . . . . . .109  
CGM Reference Clock (CGMRCLK) . . . . . . . . . . . . . . . . .109  
Oscillator Clock to Time Base Module (OSCCLK) . . . . . . .109  
7.7.1  
7.7.2  
7.7.3  
7.7.4  
7.7.5  
7.7.6  
7.8  
7.8.1  
7.8.2  
Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110  
7.9  
Oscillator During Break Mode. . . . . . . . . . . . . . . . . . . . . . . . .110  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor  
Data Sheet  
101  
Oscillator (OSC)  
Oscillator (OSC)  
7.2 Introduction  
The oscillator module provides the reference clock for the clock  
generator module (CGM), the timebase module (TBM), and other MCU  
sub-systems.  
The oscillator module consist of three types of oscillator circuits:  
• Internal oscillator  
• RC oscillator  
• Crystal (x-tal) oscillator  
The reference clock for the CGM and other MCU sub-systems is  
selected by:  
• MC68HC908SR12 — FLASH device — oscillator selected by  
programming the mask option register located at $FF80.  
• MC68HC08SR12 — ROM device — oscillator selected by ROM-  
mask layer at factory.  
The reference clock for the timebase module (TBM) is selected by the  
two bits, OSCCLK1 and OSCCLK0, in the CONFIG2 register.  
The internal oscillator runs continuously after a POR or reset, and is  
always available. The RC and crystal oscillator cannot run concurrently;  
one is disabled while the other is selected; because the RC and x-tal  
circuits share the same OSC1 pin.  
Figure 7-1. shows the block diagram of the oscillator module.  
Data Sheet  
102  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Oscillator (OSC)  
Freescale Semiconductor  
Oscillator (OSC)  
Clock Selection  
To CGM and others To CGM PLL  
CGMXCLK CGMRCLK  
To TBM  
OSCCLK  
MOR  
CONFIG2  
OSCCLK1  
OSCCLK0  
OSCSEL1  
OSCSEL0  
MUX  
MUX  
X
RC  
I
X
RC  
I
To SIM  
(and COP)  
XCLK  
ICLK  
RCCLK  
X-TAL OSCILLATOR  
RC OSCILLATOR  
INTERNAL OSCILLATOR  
BUS CLOCK  
From SIM  
OSC1  
OSC2  
Figure 7-1. Oscillator Module Block Diagram  
7.3 Clock Selection  
Reference clocks are selectable for the following sub-systems:  
• CGMXCLK and CGMRCLK — Reference clock for clock  
generator module (CGM) and other MCU sub-systems other than  
TBM and COP. This is the main reference clock for the MCU.  
• OSCCLK — Reference clock for timebase module (TBM).  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor  
Data Sheet  
103  
Oscillator (OSC)  
Oscillator (OSC)  
7.3.1 CGM Reference Clock Selection  
The clock generator module (CGM) reference clock (CGMXCLK) is the  
reference clock input to the MCU. It is selected by programming two bits  
in a FLASH memory location; the mask option register (MOR), at $FF80.  
See 5.6 Mask Option Register (MOR).  
NOTE: On the ROM device, the oscillator is selected by a ROM-mask layer at  
factory.  
Address: $FF80  
Bit 7  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
OSCSEL1 OSCSEL0  
R
R
R
R
R
Erased:  
Reset:  
1
U
R
1
1
1
1
1
1
1
U
U
U
U
U
U
U
= Reserved  
Figure 7-2. Mask Option Register (MOR)  
Table 7-1. CGMXCLK Clock Selection  
OSCSEL1  
OSCSEL0  
CGMXCLK  
OSC2 Pin  
Comments  
0
0
0
1
Not used  
ICLK  
f
f
Internal oscillator generates the CGMXCLK.  
BUS  
RC oscillator generates the CGMXCLK.  
Internal oscillator is available after each POR  
or reset.  
1
1
0
1
RCCLK  
XCLK  
BUS  
Inverting  
output of  
X-TAL  
X-tal oscillator generates the CGMXCLK.  
Internal oscillator is available after each POR  
or reset.  
NOTE: The internal oscillator is a free running oscillator and is available after  
each POR or reset. It is turned-off in stop mode by clearing the  
STOP_ICLKEN bit in CONFIG2.  
Data Sheet  
104  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Oscillator (OSC)  
Freescale Semiconductor  
Oscillator (OSC)  
Internal Oscillator  
7.3.2 TBM Reference Clock Selection  
The timebase module reference clock (OSCCLK) is selected by  
configuring two bits in the CONFIG2 register, at $001D. See 5.5  
Configuration Register 2 (CONFIG2).  
Address: $001D  
Bit 7  
6
5
4
3
2
0
1
CDOEN  
0
Bit 0  
SCIBDSRC  
0
Read:  
Write:  
Reset:  
STOP_ STOP_  
ICLKEN RCLKEN XCLKEN  
STOP_  
OSCCLK1 OSCCLK0  
0
0
0
0
0
0
Figure 7-3. Configuration Register 2 (CONFIG2)  
Table 7-2. Timebase Module Reference Clock Selection  
OSCCLK1  
OSCCLK0  
Timebase Clock Source  
Internal oscillator (ICLK)  
RC oscillator (RCCLK)  
X-tal oscillator (XCLK)  
Not used  
0
0
1
1
0
1
0
1
NOTE: The RCCLK or XCLK is only available if that clock is selected as the  
CGM reference clock, whereas the ICLK is always available.  
7.4 Internal Oscillator  
The internal oscillator clock (ICLK) is a free running 24kHz clock that  
requires no external components. It can be selected as the CGMXCLK  
for the CGM and MCU sub-systems; and the OSCCLK clock for the  
TBM. The ICLK is also the reference clock input to the computer  
operating properly (COP) module.  
Due to the simplicity of the internal oscillator, it does not have the  
accuracy and stability of the RC oscillator or the x-tal oscillator.  
Therefore, the ICLK is not suitable where an accurate bus clock is  
required and it should not be used as the CGMRCLK to the CGM PLL.  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor  
Data Sheet  
105  
Oscillator (OSC)  
Oscillator (OSC)  
The internal oscillator by default is always available and is free running  
after POR or reset. It can be stopped in Stop mode by setting the  
STOP_ICLKEN bit before executing the STOP instruction.  
Figure 7-4 shows the logical representation of components of the  
internal oscillator circuitry.  
From SIM  
SIMOSCEN  
From SIM  
BUS CLOCK  
To Clock Selection MUX  
and COP  
ICLK  
CONFIG2  
EN  
INTERNAL OSCILLATOR  
STOP_ICLKEN  
MCU  
OSC2  
Figure 7-4. Internal Oscillator  
7.5 RC Oscillator  
The RC oscillator circuit is designed for use with external R and C to  
provide a clock source with tolerance less than 10%.  
In its typical configuration, the RC oscillator requires two external  
components, one R and one C. Component values should have a  
tolerance of 1% or less, to obtain a clock source with less than 10%  
tolerance. The oscillator configuration uses two components:  
• C  
• R  
EXT  
EXT  
Data Sheet  
106  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor  
Oscillator (OSC)  
Oscillator (OSC)  
X-tal Oscillator  
To Clock Selection MUX  
RCCLK  
From SIM  
SIMOSCEN  
From SIM  
BUS CLOCK  
CONFIG2  
EN  
STOP_RCLKEN  
RC OSCILLATOR  
MCU  
OSC1  
OSC2  
See Section 24. for component value requirements.  
VDD  
REXT  
CEXT  
Figure 7-5. RC Oscillator  
7.6 X-tal Oscillator  
The X-tal oscillator circuit is designed for use with an external crystal or  
ceramic resonator to provide an accurate clock source.  
In its typical configuration, the X-tal oscillator is connected in a Pierce  
oscillator configuration, as shown in Figure 7-6. This figure shows only  
the logical representation of the internal components and may not  
represent actual circuitry. The oscillator configuration uses five  
components:  
• Crystal, X  
1
• Fixed capacitor, C  
1
• Tuning capacitor, C (can also be a fixed capacitor)  
2
• Feedback resistor, RB  
• Series resistor, RS (optional)  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor  
Data Sheet  
107  
Oscillator (OSC)  
Oscillator (OSC)  
From SIM  
SIMOSCEN  
To Clock Selection MUX  
XCLK  
CONFIG2  
STOP_XCLKEN  
MCU  
OSC1  
OSC2  
RB  
RS*  
*RS can be zero (shorted) when used with higher-frequency crystals.  
Refer to manufacturer’s data.  
X1  
See Section 24. for component value requirements.  
C1  
C2  
Figure 7-6. Crystal Oscillator  
The series resistor (RS) is included in the diagram to follow strict Pierce  
oscillator guidelines and may not be required for all ranges of operation,  
especially with high frequency crystals. Refer to the crystal  
manufacturer’s data for more information.  
7.7 I/O Signals  
The following paragraphs describe the oscillator I/O signals.  
7.7.1 Crystal Amplifier Input Pin (OSC1)  
OSC1 pin is an input to the crystal oscillator amplifier or the input to the  
RC oscillator circuit.  
Data Sheet  
108  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor  
Oscillator (OSC)  
Oscillator (OSC)  
Low Power Modes  
7.7.2 Crystal Amplifier Output Pin (OSC2)  
When the x-tal oscillator is selected, OSC2 pin is the output of the crystal  
oscillator inverting amplifier.  
When the RC oscillator or internal oscillator is selected, OSC2 pin is the  
output of the internal bus clock.  
7.7.3 Oscillator Enable Signal (SIMOSCEN)  
The SIMOSCEN signal from the system integration module (SIM)  
enables/disables the x-tal oscillator, the RC-oscillator, or the internal  
oscillator circuit.  
7.7.4 CGM Oscillator Clock (CGMXCLK)  
The CGMXCLK clock is output from the x-tal oscillator, RC oscillator or  
the internal oscillator. This clock drives to CGM and other MCU sub-  
systems.  
7.7.5 CGM Reference Clock (CGMRCLK)  
This is buffered signal of CGMXCLK, it is used by the CGM as the  
phase-locked-loop (PLL) reference clock.  
7.7.6 Oscillator Clock to Time Base Module (OSCCLK)  
The OSCCLK is the reference clock that drives the timebase module.  
See Section 12. Timebase Module (TBM).  
7.8 Low Power Modes  
The WAIT and STOP instructions put the MCU in low-power  
consumption standby modes.  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor  
Data Sheet  
109  
Oscillator (OSC)  
Oscillator (OSC)  
7.8.1 Wait Mode  
The WAIT instruction has no effect on the oscillator module. CGMXCLK  
continues to drive to the clock generator module, and OSCCLK  
continues to drive the timebase module.  
7.8.2 Stop Mode  
The STOP instruction disables the x-tal or the RC oscillator circuit, and  
hence the CGMXCLK clock stops running. For continuous x-tal or RC  
oscillator operation in stop mode, set the STOP_XCLKEN (for x-tal) or  
STOP_RCLKEN (for RC) bit to logic 1 before entering stop mode.  
The internal oscillator clock continues operation in stop mode. It can be  
disabled by setting the STOP_ICLKEN bit to logic 1 before entering stop  
mode.  
7.9 Oscillator During Break Mode  
The oscillator continues to drive CGMXCLK when the device enters the  
break state.  
Data Sheet  
110  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor  
Oscillator (OSC)  
Data Sheet — MC68HC908SR12•MC68HC08SR12  
Section 8. Clock Generator Module (CGM)  
8.1 Contents  
8.2  
8.3  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113  
8.4  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113  
Oscillator Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116  
Phase-Locked Loop Circuit (PLL) . . . . . . . . . . . . . . . . . . .116  
PLL Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116  
Acquisition and Tracking Modes . . . . . . . . . . . . . . . . . . . .118  
Manual and Automatic PLL Bandwidth Modes. . . . . . . . . .118  
Programming the PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . .120  
Special Programming Exceptions . . . . . . . . . . . . . . . . . . .124  
Base Clock Selector Circuit . . . . . . . . . . . . . . . . . . . . . . . .124  
CGM External Connections . . . . . . . . . . . . . . . . . . . . . . . .125  
8.4.1  
8.4.2  
8.4.3  
8.4.4  
8.4.5  
8.4.6  
8.4.7  
8.4.8  
8.4.9  
8.5  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125  
External Filter Capacitor Pin (CGMXFC) . . . . . . . . . . . . . .126  
8.5.1  
8.5.2  
8.5.3  
8.5.4  
8.5.5  
8.5.6  
8.5.7  
8.5.8  
PLL Analog Power Pin (V  
) . . . . . . . . . . . . . . . . . . . . . .126  
DDA  
PLL Analog Ground Pin (V  
) . . . . . . . . . . . . . . . . . . . . .126  
SSA  
Oscillator Output Frequency Signal (CGMXCLK) . . . . . . .126  
CGM Reference Clock (CGMRCLK) . . . . . . . . . . . . . . . . .126  
CGM VCO Clock Output (CGMVCLK) . . . . . . . . . . . . . . . .127  
CGM Base Clock Output (CGMOUT). . . . . . . . . . . . . . . . .127  
CGM CPU Interrupt (CGMINT) . . . . . . . . . . . . . . . . . . . . .127  
8.6  
CGM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127  
PLL Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .128  
PLL Bandwidth Control Register . . . . . . . . . . . . . . . . . . . .130  
PLL Multiplier Select Registers . . . . . . . . . . . . . . . . . . . . .132  
PLL VCO Range Select Register . . . . . . . . . . . . . . . . . . . .133  
PLL Reference Divider Select Register . . . . . . . . . . . . . . .134  
8.6.1  
8.6.2  
8.6.3  
8.6.4  
8.6.5  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Clock Generator Module (CGM)  
Data Sheet  
111  
Clock Generator Module (CGM)  
8.7  
Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135  
8.8  
Special Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136  
CGM During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . .136  
8.8.1  
8.8.2  
8.8.3  
8.9  
Acquisition/Lock Time Specifications . . . . . . . . . . . . . . . . . . .137  
Acquisition/Lock Time Definitions. . . . . . . . . . . . . . . . . . . .137  
Parametric Influences on Reaction Time . . . . . . . . . . . . . .137  
Choosing a Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139  
8.9.1  
8.9.2  
8.9.3  
8.2 Introduction  
This section describes the clock generator module (CGM). The CGM  
generates the base clock signal, CGMOUT, which is based on either the  
oscillator clock divided by two or the divided phase-locked loop (PLL)  
clock, CGMPCLK, divided by two. CGMOUT is the clock from which the  
SIM derives the system clocks, including the bus clock, which is at a  
frequency of CGMOUT÷2. The PLL clock, CGMVCLK (an integer  
multiple of CGMPCLK) provides clock reference for the PWM and  
analog modules.  
The PLL is a frequency generator designed for use with a low frequency  
crystal (typically 32.768kHz) to generate a base frequency and dividing  
to a maximum bus frequency of 8MHz.  
Data Sheet  
112  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Clock Generator Module (CGM)  
Freescale Semiconductor  
Clock Generator Module (CGM)  
Features  
8.3 Features  
Features of the CGM include:  
• Phase-locked loop with output frequency in integer multiples of an  
integer dividend of the crystal reference  
• Low-frequency crystal operation with low-power operation and  
high-output frequency resolution  
• Programmable prescaler for power-of-two increases in frequency  
• Programmable hardware voltage-controlled oscillator (VCO) for  
low-jitter operation  
• Automatic bandwidth control mode for low-jitter operation  
• Automatic frequency lock detector  
• CPU interrupt on entry or exit from locked condition  
• Configuration register bit to allow oscillator operation during stop  
mode  
8.4 Functional Description  
The CGM consists of three major sub-modules:  
• Oscillator module — The oscillator module generates the constant  
reference frequency clock, CGMRCLK (buffered CGMXCLK).  
• Phase-locked loop (PLL) — The PLL generates the  
programmable VCO frequency clock, CGMVCLK, and the divided,  
CGMPCLK. The CGMVCLK provides the input reference clock to  
the PWM and analog modules.  
• Base clock selector circuit — This software-controlled circuit  
selects either CGMXCLK divided by two or the divided VCO clock,  
CGMPCLK, divided by two as the base clock, CGMOUT. The SIM  
derives the system clocks from either CGMOUT or CGMXCLK.  
Figure 8-1 shows the structure of the CGM.  
Figure 8-2 is a summary of the CGM registers.  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Clock Generator Module (CGM)  
Data Sheet  
113  
Clock Generator Module (CGM)  
OSCILLATOR (OSC) MODULE  
OSC2  
See Section 7. Oscillator (OSC).  
ICLK  
To SIM (and COP)  
OSCCLK  
CGMXCLK  
CGMRCLK  
INTERNAL OSCILLATOR  
RC OSCILLATOR  
OSC1  
To Timebase Module (TBM)  
T0 ADC, Analog Module  
MUX  
OSCSEL[1:0]  
OSCCLK[1:0]  
CRYSTAL OSCILLATOR  
SIMOSCEN  
From SIM  
PHASE-LOCKED LOOP (PLL)  
CGMRDV  
CGMRCLK  
CGMXFC  
REFERENCE  
DIVIDER  
CGMOUT  
To SIM  
A
B1  
CLOCK  
SELECT  
CIRCUIT  
÷ 2  
BCS  
S*  
R
SIMDIV2  
From SIM  
*WHEN S = 1,  
CGMOUT = B  
RDS[3:0]  
VDDA  
VSSA  
VPR[1:0]  
2E  
VRS[7:0]  
L
CGMPCLK  
VOLTAGE  
CONTROLLED  
OSCILLATOR  
CGMVCLK  
PHASE  
DETECTOR  
LOOP  
FILTER  
To PWM,  
Analog Module  
PLL ANALOG  
AUTOMATIC  
MODE  
CONTROL  
CGMINT  
To SIM  
LOCK  
DETECTOR  
INTERRUPT  
CONTROL  
LOCK  
AUTO  
ACQ  
PLLIE  
PLLF  
MUL[11:0]  
PRE[1:0]  
2P  
N
CGMVDV  
FREQUENCY  
DIVIDER  
FREQUENCY  
DIVIDER  
Figure 8-1. CGM Block Diagram  
Data Sheet  
114  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Clock Generator Module (CGM) Freescale Semiconductor  
Clock Generator Module (CGM)  
Functional Description  
Addr.  
Register Name  
Bit 7  
PLLIE  
0
6
5
PLLON  
1
4
3
2
1
Bit 0  
VPR0  
0
Read:  
Write:  
Reset:  
Read:  
PLLF  
BCS  
PRE1  
PRE0  
VPR1  
PLL Control Register  
(PTCL)  
$0036  
0
0
0
0
0
0
0
0
0
LOCK  
PLL Bandwidth Control  
AUTO  
ACQ  
R
$0037  
$0038  
$0039  
$003A  
$003B  
NOTES:  
Register Write:  
(PBWC)  
Reset:  
0
0
0
0
0
0
0
0
0
MUL11  
0
0
MUL10  
0
0
MUL9  
0
Read:  
PLL Multiplier Select  
MUL8  
Register High Write:  
(PMSH)  
Reset:  
0
0
0
0
0
MUL0  
0
Read:  
PLL Multiplier Select  
MUL7  
0
MUL6  
1
MUL5  
0
MUL4  
0
MUL3  
0
MUL2  
0
MUL1  
0
Register Low Write:  
(PMSL)  
Reset:  
Read:  
PLL VCO Range Select  
VRS7  
VRS6  
VRS5  
VRS4  
VRS3  
0
VRS2  
0
VRS1  
0
VRS0  
0
Register Write:  
(PMRS)  
Reset:  
0
0
1
0
0
0
0
0
Read:  
PLL Reference Divider  
RDS3  
RDS2  
RDS1  
0
RDS0  
1
Select Register Write:  
(PMDS)  
Reset:  
0
0
0
0
0
0
= Unimplemented  
R
= Reserved  
1. When AUTO = 0, PLLIE is forced clear and is read-only.  
2. When AUTO = 0, PLLF and LOCK read as clear.  
3. When AUTO = 1, ACQ is read-only.  
4. When PLLON = 0 or VRS7:VRS0 = $0, BCS is forced clear and is read-only.  
5. When PLLON = 1, the PLL programming register is read-only.  
6. When BCS = 1, PLLON is forced set and is read-only.  
Figure 8-2. CGM I/O Register Summary  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Clock Generator Module (CGM)  
Data Sheet  
115  
Clock Generator Module (CGM)  
8.4.1 Oscillator Module  
The oscillator module provides two clock outputs CGMXCLK and  
CGMRCLK to the CGM module. CGMXCLK when selected, is driven to  
SIM module to generate the system bus clock. CGMRCLK is used by the  
phase-lock-loop to provide a higher frequency system bus clock and the  
reference clock for the PWM and analog modules. The oscillator module  
also provides the reference clock for the timebase module (TBM). See  
Section 7. Oscillator (OSC) for detailed oscillator circuit description.  
See Section 12. Timebase Module (TBM) for detailed description on  
TBM. See Section 13. Pulse Width Modulator (PWM) for detailed  
description on PWM module.  
8.4.2 Phase-Locked Loop Circuit (PLL)  
The PLL is a frequency generator that can operate in either acquisition  
mode or tracking mode, depending on the accuracy of the output  
frequency. The PLL can change between acquisition and tracking  
modes either automatically or manually.  
8.4.3 PLL Circuits  
The PLL consists of these circuits:  
• Voltage-controlled oscillator (VCO)  
• Reference divider  
• Frequency pre-scaler  
• Modulo VCO frequency divider  
• Phase detector  
• Loop filter  
• Lock detector  
Data Sheet  
116  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Clock Generator Module (CGM)  
Freescale Semiconductor  
Clock Generator Module (CGM)  
Functional Description  
The operating range of the VCO is programmable for a wide range of  
frequencies and for maximum immunity to external noise, including  
supply and CGMXFC noise. The VCO frequency is bound to a range  
from roughly one-half to twice the center-of-range frequency, f  
.
VRS  
Modulating the voltage on the CGMXFC pin changes the frequency  
within this range. By design, f is equal to the nominal center-of-range  
VRS  
frequency, f  
factor, E, or (L × 2 )f  
, (38.4 kHz) times a linear factor, L, and a power-of-two  
NOM  
E
.
NOM  
CGMRCLK is the PLL reference clock, a buffered version of CGMXCLK.  
CGMRCLK runs at a frequency, f , and is fed to the PLL through a  
RCLK  
programmable modulo reference divider, which divides f  
by a  
RCLK  
factor, R. The divider’s output is the final reference clock, CGMRDV,  
running at a frequency, f = f /R. With an external crystal  
RDV  
RCLK  
(30kHz–100kHz), always set R = 1 for specified performance. With an  
external high-frequency clock source, use R to divide the external  
frequency to between 30kHz and 100kHz.  
The VCO’s output clock, CGMVCLK, running at a frequency, f  
fed back through a programmable pre-scaler divider and a  
, is  
VCLK  
programmable modulo divider. The pre-scaler divides the VCO clock by  
a power-of-two factor P (the CGMPCLK) and the modulo divider reduces  
the VCO clock by a factor, N. The dividers’ output is the VCO feedback  
P
clock, CGMVDV, running at a frequency, f  
= f  
/(N × 2 ). (See  
VDV  
VCLK  
8.4.6 Programming the PLL for more information.)  
The phase detector then compares the VCO feedback clock, CGMVDV,  
with the final reference clock, CGMRDV. A correction pulse is generated  
based on the phase difference between the two signals. The loop filter  
then slightly alters the DC voltage on the external capacitor connected  
to CGMXFC based on the width and direction of the correction pulse.  
The filter can make fast or slow corrections depending on its mode,  
described in 8.4.4 Acquisition and Tracking Modes. The value of the  
external capacitor and the reference frequency determines the speed of  
the corrections and the stability of the PLL.  
The lock detector compares the frequencies of the VCO feedback clock,  
CGMVDV, and the final reference clock, CGMRDV. Therefore, the  
speed of the lock detector is directly proportional to the final reference  
frequency, f  
. The circuit determines the mode of the PLL and the lock  
RDV  
condition based on this comparison.  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Clock Generator Module (CGM)  
Data Sheet  
117  
Clock Generator Module (CGM)  
8.4.4 Acquisition and Tracking Modes  
The PLL filter is manually or automatically configurable into one of two  
operating modes:  
• Acquisition mode — In acquisition mode, the filter can make large  
frequency corrections to the VCO. This mode is used at PLL start  
up or when the PLL has suffered a severe noise hit and the VCO  
frequency is far off the desired frequency. When in acquisition  
mode, the ACQ bit is clear in the PLL bandwidth control register.  
(See 8.6.2 PLL Bandwidth Control Register.)  
• Tracking mode — In tracking mode, the filter makes only small  
corrections to the frequency of the VCO. PLL jitter is much lower  
in tracking mode, but the response to noise is also slower. The  
PLL enters tracking mode when the VCO frequency is nearly  
correct, such as when the PLL is selected as the base clock  
source. (See 8.4.8 Base Clock Selector Circuit.) The PLL is  
automatically in tracking mode when not in acquisition mode or  
when the ACQ bit is set.  
8.4.5 Manual and Automatic PLL Bandwidth Modes  
The PLL can change the bandwidth or operational mode of the loop filter  
manually or automatically. Automatic mode is recommended for most  
users.  
In automatic bandwidth control mode (AUTO = 1), the lock detector  
automatically switches between acquisition and tracking modes.  
Automatic bandwidth control mode also is used to determine when the  
VCO clock, CGMVCLK, is safe to use as the source for the base clock,  
CGMOUT. (See 8.6.2 PLL Bandwidth Control Register.) If PLL  
interrupts are enabled, the software can wait for a PLL interrupt request  
and then check the LOCK bit. If interrupts are disabled, software can poll  
the LOCK bit continuously (during PLL start-up, usually) or at periodic  
intervals. In either case, when the LOCK bit is set, the VCO clock is safe  
to use as the source for the base clock. (See 8.4.8 Base Clock Selector  
Circuit.) If the VCO is selected as the source for the base clock and the  
LOCK bit is clear, the PLL has suffered a severe noise hit and the  
software must take appropriate action, depending on the application.  
(See 8.7 Interrupts for information and precautions on using interrupts.)  
Data Sheet  
118  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Clock Generator Module (CGM)  
Freescale Semiconductor  
Clock Generator Module (CGM)  
Functional Description  
The following conditions apply when the PLL is in automatic bandwidth  
control mode:  
• The ACQ bit (See 8.6.2 PLL Bandwidth Control Register.) is a  
read-only indicator of the mode of the filter. (See 8.4.4  
Acquisition and Tracking Modes.)  
• The ACQ bit is set when the VCO frequency is within a certain  
tolerance and is cleared when the VCO frequency is out of a  
certain tolerance. (See 8.9 Acquisition/Lock Time  
Specifications for more information.)  
• The LOCK bit is a read-only indicator of the locked state of the  
PLL.  
• The LOCK bit is set when the VCO frequency is within a certain  
tolerance and is cleared when the VCO frequency is out of a  
certain tolerance. (See 8.9 Acquisition/Lock Time  
Specifications for more information.)  
• CPU interrupts can occur if enabled (PLLIE = 1) when the PLL’s  
lock condition changes, toggling the LOCK bit. (See 8.6.1 PLL  
Control Register.)  
The PLL also may operate in manual mode (AUTO = 0). Manual mode  
is used by systems that do not require an indicator of the lock condition  
for proper operation. Such systems typically operate well below  
f
.
BUSMAX  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Clock Generator Module (CGM)  
Data Sheet  
119  
Clock Generator Module (CGM)  
The following conditions apply when in manual mode:  
• ACQ is a writable control bit that controls the mode of the filter.  
Before turning on the PLL in manual mode, the ACQ bit must be  
clear.  
• Before entering tracking mode (ACQ = 1), software must wait a  
given time, tACQ (See 8.9 Acquisition/Lock Time  
Specifications.), after turning on the PLL by setting PLLON in the  
PLL control register (PCTL).  
• Software must wait a given time, tAL, after entering tracking mode  
before selecting the PLL as the clock source to CGMOUT  
(BCS = 1).  
• The LOCK bit is disabled.  
• CPU interrupts from the CGM are disabled.  
8.4.6 Programming the PLL  
The following procedure shows how to program the PLL.  
NOTE: The round function in the following equations means that the real  
number should be rounded to the nearest integer number.  
1. Choose the desired bus frequency, f  
, or the desired VCO  
BUSDES  
frequency, f  
; and then solve for the other.  
VCLKDES  
The relationship between f  
and f  
is governed by the  
BUS  
VCLK  
equation:  
P
P
f
= 2 × f  
= 2 × 4 × f  
VCLK  
CGMPCLK  
BUS  
where P is the power of two multiplier, and can be 0, 1, 2, or 3  
2. Choose a practical PLL reference frequency, f , and the  
RCLK  
reference clock divider, R. Typically, the reference is 32.768kHz  
and R = 1.  
Frequency errors to the PLL are corrected at a rate of f  
/R. For  
RCLK  
stability and lock time reduction, this rate must be as fast as  
possible. The VCO frequency must be an integer multiple of this  
rate.  
Data Sheet  
120  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Clock Generator Module (CGM)  
Freescale Semiconductor  
Clock Generator Module (CGM)  
Functional Description  
The relationship between the VCO frequency, f  
, and the  
VCLK  
reference frequency, f  
, is  
RCLK  
P
2 N  
= ----------- (f  
f
)
RCLK  
VCLK  
R
where N is the integer range multiplier, between 1 and 4095.  
In cases where desired bus frequency has some tolerance,  
choose f  
to a value determined either by other module  
RCLK  
requirements (such as modules which are clocked by CGMXCLK),  
cost requirements, or ideally, as high as the specified range  
allows. See Section 24. Electrical Specifications. Choose the  
reference divider, R = 1.  
When the tolerance on the bus frequency is tight, choose f  
to  
RCLK  
an integer divisor of f  
, and R = 1. If f  
cannot meet this  
RCLK  
BUSDES  
requirement, use the following equation to solve for R with  
practical choices of f  
, and choose the f  
that gives the  
RCLK  
RCLK  
lowest R.  
f
f
VCLKDES  
VCLKDES  
-------------------------  
-------------------------  
R = round R  
×
integer  
MAX  
f
f
RCLK  
RCLK  
3. Calculate N:  
R × f  
VCLKDES  
------------------------------------  
N = round  
P
f
× 2  
RCLK  
4. Calculate and verify the adequacy of the VCO and bus  
frequencies f  
and f  
.
VCLK  
BUS  
P
2 N  
R
f
= ----------- (f  
)
RCLK  
VCLK  
f
VCLK  
P
f
=
-----------  
BUS  
2 × 4  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Data Sheet  
121  
Freescale Semiconductor  
Clock Generator Module (CGM)  
Clock Generator Module (CGM)  
5. Select the VCO’s power-of-two range multiplier E, according to  
this table:  
Frequency Range  
E
0
1
2
0 < f  
< 9,830,400  
VCLK  
9,830,400 f  
< 19,660,800  
VCLK  
19,660,800 f  
< 39,321,600  
VCLK  
NOTE: Do not program E to a value of 3.  
6. Select a VCO linear range multiplier, L, where f  
= 38.4kHz  
NOM  
f
VCLK  
--------------------------  
L = round  
E
2 × f  
NOM  
7. Calculate and verify the adequacy of the VCO programmed  
center-of-range frequency, f . The center-of-range frequency is  
VRS  
the midpoint between the minimum and maximum frequencies  
attainable by the PLL.  
E
f
= (L × 2 )f  
VRS  
NOM  
For proper operation,  
E
f
× 2  
NOM  
--------------------------  
f
f  
VCLK  
VRS  
2
8. Verify the choice of P, R, N, E, and L by comparing f  
to f  
VRS  
VCLK  
and f  
. For proper operation, f  
must be within the  
VCLKDES  
VCLK  
application’s tolerance of f  
, and f  
must be as close as  
VCLKDES  
VRS  
possible to f  
VCLK.  
NOTE: Exceeding the recommended maximum bus frequency or VCO  
frequency can crash the MCU.  
Data Sheet  
122  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Clock Generator Module (CGM)  
Freescale Semiconductor  
Clock Generator Module (CGM)  
Functional Description  
9. Program the PLL registers accordingly:  
a. In the PRE bits of the PLL control register (PCTL), program  
the binary equivalent of P.  
b. In the VPR bits of the PLL control register (PCTL), program  
the binary equivalent of E.  
c. In the PLL multiplier select register low (PMSL) and the PLL  
multiplier select register high (PMSH), program the binary  
equivalent of N.  
d. In the PLL VCO range select register (PMRS), program the  
binary coded equivalent of L.  
e. In the PLL reference divider select register (PMDS), program  
the binary coded equivalent of R.  
NOTE: The values for P, E, N, L, and R can only be programmed when the PLL  
is off (PLLON = 0).  
Table 8-1 provides numeric examples (numbers are in hexadecimal  
notation):  
Table 8-1. Numeric Examples  
f
f
RCLK  
CGMVCLK  
8.0 MHz  
CGMPCLK  
8.0 MHz  
R
1
1
1
1
1
1
1
1
1
1
1
N
P
0
0
0
0
0
0
0
0
1
2
3
E
0
1
1
1
2
2
2
2
2
2
2
L
BUS  
2.0 MHz  
32.768 kHz  
F5  
D1  
80  
83  
D1  
80  
82  
C0  
D0  
D0  
D0  
D0  
9.8304 MHz  
10.0 MHz  
16 MHz  
9.8304 MHz  
10.0 MHz  
16 MHz  
2.4576 MHz 32.768 kHz  
12C  
132  
1E9  
258  
263  
384  
3D1  
1E9  
F5  
2.5 MHz  
4.0 MHz  
32.768 kHz  
32.768 kHz  
19.6608 MHz 19.6608 MHz 4.9152 MHz 32.768 kHz  
20 MHz 20 MHz 5.0 MHz 32.768 kHz  
29.4912 MHz 29.4912 MHz 7.3728 MHz 32.768 kHz  
32 MHz  
32 MHz  
32 MHz  
32 MHz  
32 MHz  
16 MHz  
8 MHz  
4 MHz  
8.0 MHz  
4.0 MHz  
2.0 MHz  
1.0 MHz  
32.768 kHz  
32.768 kHz  
32.768 kHz  
32.768 kHz  
7B  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Clock Generator Module (CGM)  
Data Sheet  
123  
Clock Generator Module (CGM)  
8.4.7 Special Programming Exceptions  
The programming method described in 8.4.6 Programming the PLL  
does not account for three possible exceptions. A value of 0 for R, N, or  
L is meaningless when used in the equations given. To account for these  
exceptions:  
• A 0 value for R or N is interpreted exactly the same as a value of 1.  
• A 0 value for L disables the PLL and prevents its selection as the  
source for the base clock.  
(See 8.4.8 Base Clock Selector Circuit.)  
8.4.8 Base Clock Selector Circuit  
This circuit is used to select either the oscillator clock, CGMXCLK, or the  
divided VCO clock, CGMPCLK, as the source of the base clock,  
CGMOUT. The two input clocks go through a transition control circuit  
that waits up to three CGMXCLK cycles and three CGMPCLK cycles to  
change from one clock source to the other. During this time, CGMOUT  
is held in stasis. The output of the transition control circuit is then divided  
by two to correct the duty cycle. Therefore, the bus clock frequency,  
which is one-half of the base clock frequency, is one-fourth the  
frequency of the selected clock (CGMXCLK or CGMPCLK).  
The BCS bit in the PLL control register (PCTL) selects which clock drives  
CGMOUT. The divided VCO clock cannot be selected as the base clock  
source if the PLL is not turned on. The PLL cannot be turned off if the  
divided VCO clock is selected. The PLL cannot be turned on or off  
simultaneously with the selection or deselection of the divided VCO  
clock. The divided VCO clock also cannot be selected as the base clock  
source if the factor L is programmed to a 0. This value would set up a  
condition inconsistent with the operation of the PLL, so that the PLL  
would be disabled and the oscillator clock would be forced as the source  
of the base clock.  
Data Sheet  
124  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Clock Generator Module (CGM)  
Freescale Semiconductor  
Clock Generator Module (CGM)  
I/O Signals  
8.4.9 CGM External Connections  
In its typical configuration, the CGM requires up to four external  
components.  
Figure 8-3 shows the external components for the PLL:  
• Bypass capacitor, C  
• Filter network  
BYP  
Care should be taken with PCB routing in order to minimize signal cross  
talk and noise. (See 8.9 Acquisition/Lock Time Specifications for  
routing information, filter network and its effects on PLL performance.)  
MCU  
CGMXFC  
VSSA  
VDDA  
VDD  
10 kΩ  
CBYP  
0.1 µF  
0.01 µF  
0.033 µF  
Note: Filter network in box can be replaced with a 0.47µF capacitor, but will degrade stability.  
Figure 8-3. CGM External Connections  
8.5 I/O Signals  
The following paragraphs describe the CGM I/O signals.  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Clock Generator Module (CGM)  
Data Sheet  
125  
Clock Generator Module (CGM)  
8.5.1 External Filter Capacitor Pin (CGMXFC)  
The CGMXFC pin is required by the loop filter to filter out phase  
corrections. An external filter network is connected to this pin. (See  
Figure 8-3.)  
NOTE: To prevent noise problems, the filter network should be placed as close  
to the CGMXFC pin as possible, with minimum routing distances and no  
routing of other signals across the network.  
8.5.2 PLL Analog Power Pin (V  
)
DDA  
V
V
is a power pin used by the analog portions of the PLL. Connect the  
DDA  
DDA  
pin to the same voltage potential as the V pin.  
DD  
NOTE: Route V  
carefully for maximum noise immunity and place bypass  
DDA  
capacitors as close as possible to the package.  
8.5.3 PLL Analog Ground Pin (V  
)
SSA  
V
is a ground pin used by the analog portions of the PLL. Connect  
SSA  
the V  
pin to the same voltage potential as the V pin.  
SSA  
SS  
NOTE: Route V  
carefully for maximum noise immunity and place bypass  
SSA  
capacitors as close as possible to the package.  
8.5.4 Oscillator Output Frequency Signal (CGMXCLK)  
CGMXCLK is the oscillator output signal. It runs at the full speed of the  
oscillator, and is generated directly from the crystal oscillator circuit, the  
RC oscillator circuit, or the internal oscillator circuit.  
8.5.5 CGM Reference Clock (CGMRCLK)  
CGMRCLK is a buffered version of CGMXCLK, this clock is the  
reference clock for the phase-locked-loop circuit.  
Data Sheet  
126  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Clock Generator Module (CGM)  
Freescale Semiconductor  
Clock Generator Module (CGM)  
CGM Registers  
8.5.6 CGM VCO Clock Output (CGMVCLK)  
CGMVCLK is the clock output from the VCO. This clock can be used by  
the pulse width modulator (PWM) module to generate high frequency  
PWM signals. This clock is also used by the analog module as a  
reference for signal sampling.  
8.5.7 CGM Base Clock Output (CGMOUT)  
CGMOUT is the clock output of the CGM. This signal goes to the SIM,  
which generates the MCU clocks. CGMOUT is a 50 percent duty cycle  
clock running at twice the bus frequency. CGMOUT is software  
programmable to be either the oscillator output, CGMXCLK, divided by  
two or the divided VCO clock, CGMPCLK, divided by two.  
8.5.8 CGM CPU Interrupt (CGMINT)  
CGMINT is the interrupt signal generated by the PLL lock detector.  
The following registers control and monitor operation of the CGM:  
8.6 CGM Registers  
• PLL control register (PCTL)  
(See 8.6.1 PLL Control Register.)  
• PLL bandwidth control register (PBWC)  
(See 8.6.2 PLL Bandwidth Control Register.)  
• PLL multiplier select registers (PMSH and PMSL)  
(See 8.6.3 PLL Multiplier Select Registers.)  
• PLL VCO range select register (PMRS)  
(See 8.6.4 PLL VCO Range Select Register.)  
• PLL reference divider select register (PMDS)  
(See 8.6.5 PLL Reference Divider Select Register.)  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Clock Generator Module (CGM)  
Data Sheet  
127  
Clock Generator Module (CGM)  
8.6.1 PLL Control Register  
The PLL control register (PCTL) contains the interrupt enable and flag  
bits, the on/off switch, the base clock selector bit, the prescaler bits, and  
the VCO power-of-two range selector bits.  
Address: $0036  
Bit 7  
PLLIE  
0
6
5
PLLON  
1
4
BCS  
0
3
PRE1  
0
2
PRE0  
0
1
VPR1  
0
Bit 0  
VPR0  
0
Read:  
Write:  
Reset:  
PLLF  
0
= Unimplemented  
Figure 8-4. PLL Control Register (PCTL)  
PLLIE — PLL Interrupt Enable Bit  
This read/write bit enables the PLL to generate an interrupt request  
when the LOCK bit toggles, setting the PLL flag, PLLF. When the  
AUTO bit in the PLL bandwidth control register (PBWC) is clear,  
PLLIE cannot be written and reads as logic 0. Reset clears the PLLIE  
bit.  
1 = PLL interrupts enabled  
0 = PLL interrupts disabled  
PLLF — PLL Interrupt Flag Bit  
This read-only bit is set whenever the LOCK bit toggles. PLLF  
generates an interrupt request if the PLLIE bit also is set. PLLF  
always reads as logic 0 when the AUTO bit in the PLL bandwidth  
control register (PBWC) is clear. Clear the PLLF bit by reading the  
PLL control register. Reset clears the PLLF bit.  
1 = Change in lock condition  
0 = No change in lock condition  
NOTE: Do not inadvertently clear the PLLF bit. Any read or read-modify-write  
operation on the PLL control register clears the PLLF bit.  
Data Sheet  
128  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Clock Generator Module (CGM)  
Freescale Semiconductor  
Clock Generator Module (CGM)  
CGM Registers  
PLLON — PLL On Bit  
This read/write bit activates the PLL and enables the VCO clock,  
CGMVCLK. PLLON cannot be cleared if the VCO clock is driving the  
base clock, CGMOUT (BCS = 1). (See 8.4.8 Base Clock Selector  
Circuit.) Reset sets this bit so that the loop can stabilize as the MCU  
is powering up.  
1 = PLL on  
0 = PLL off  
BCS — Base Clock Select Bit  
This read/write bit selects either the oscillator output, CGMXCLK, or  
the divided VCO clock, CGMPCLK, as the source of the CGM output,  
CGMOUT. CGMOUT frequency is one-half the frequency of the  
selected clock. BCS cannot be set while the PLLON bit is clear. After  
toggling BCS, it may take up to three CGMXCLK and three  
CGMPCLK cycles to complete the transition from one source clock to  
the other. During the transition, CGMOUT is held in stasis. (See 8.4.8  
Base Clock Selector Circuit.) Reset clears the BCS bit.  
1 = CGMPCLK divided by two drives CGMOUT  
0 = CGMXCLK divided by two drives CGMOUT  
NOTE: PLLON and BCS have built-in protection that prevents the base clock  
selector circuit from selecting the VCO clock as the source of the base  
clock if the PLL is off. Therefore, PLLON cannot be cleared when BCS  
is set, and BCS cannot be set when PLLON is clear. If the PLL is off  
(PLLON = 0), selecting CGMPCLK requires two writes to the PLL control  
register. (See 8.4.8 Base Clock Selector Circuit.)  
PRE1 and PRE0 — Prescaler Program Bits  
These read/write bits control a prescaler that selects the prescaler  
power-of-two multiplier, P. (See 8.4.3 PLL Circuits and 8.4.6  
Programming the PLL.) PRE1 and PRE0 cannot be written when  
the PLLON bit is set. Reset clears these bits.  
These prescaler bits affects the relationship between the VCO clock  
and the final system bus clock.  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Clock Generator Module (CGM)  
Data Sheet  
129  
Clock Generator Module (CGM)  
Table 8-2. PRE1 and PRE0 Programming  
PRE1 and PRE0  
P
0
1
2
3
Prescaler Multiplier  
00  
01  
10  
11  
1
2
4
8
VPR1 and VPR0 — VCO Power-of-Two Range Select Bits  
These read/write bits control the VCO’s hardware power-of-two range  
multiplier E that, in conjunction with L (See 8.4.3 PLL Circuits, 8.4.6  
Programming the PLL, and 8.6.4 PLL VCO Range Select  
Register.) controls the hardware center-of-range frequency, fVRS  
.
VPR1:VPR0 cannot be written when the PLLON bit is set. Reset  
clears these bits.  
Table 8-3. VPR1 and VPR0 Programming  
VCO Power-of-Two  
Range Multiplier  
VPR1 and VPR0  
E
00  
01  
10  
0
1
2
1
2
4
NOTE: Do not program E to a value of 3.  
8.6.2 PLL Bandwidth Control Register  
The PLL bandwidth control register (PBWC):  
• Selects automatic or manual (software-controlled) bandwidth  
control mode  
• Indicates when the PLL is locked  
• In automatic bandwidth control mode, indicates when the PLL is in  
acquisition or tracking mode  
• In manual operation, forces the PLL into acquisition or tracking  
mode  
Data Sheet  
130  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Clock Generator Module (CGM)  
Freescale Semiconductor  
Clock Generator Module (CGM)  
CGM Registers  
Address: $0037  
Bit 7  
6
5
ACQ  
0
4
0
3
0
2
0
1
0
Bit 0  
R
Read:  
AUTO  
Write:  
LOCK  
Reset:  
0
0
0
0
0
0
= Unimplemented  
R
= Reserved  
Figure 8-5. PLL Bandwidth Control Register (PBWCR)  
AUTO — Automatic Bandwidth Control Bit  
This read/write bit selects automatic or manual bandwidth control.  
When initializing the PLL for manual operation (AUTO = 0), clear the  
ACQ bit before turning on the PLL. Reset clears the AUTO bit.  
1 = Automatic bandwidth control  
0 = Manual bandwidth control  
LOCK — Lock Indicator Bit  
When the AUTO bit is set, LOCK is a read-only bit that becomes set  
when the VCO clock, CGMVCLK, is locked (running at the  
programmed frequency). When the AUTO bit is clear, LOCK reads as  
logic 0 and has no meaning. The write one function of this bit is  
reserved for test, so this bit must always be written a 0. Reset clears  
the LOCK bit.  
1 = VCO frequency correct or locked  
0 = VCO frequency incorrect or unlocked  
ACQ — Acquisition Mode Bit  
When the AUTO bit is set, ACQ is a read-only bit that indicates  
whether the PLL is in acquisition mode or tracking mode. When the  
AUTO bit is clear, ACQ is a read/write bit that controls whether the  
PLL is in acquisition or tracking mode.  
In automatic bandwidth control mode (AUTO = 1), the last-written  
value from manual operation is stored in a temporary location and is  
recovered when manual operation resumes. Reset clears this bit,  
enabling acquisition mode.  
1 = Tracking mode  
0 = Acquisition mode  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Clock Generator Module (CGM)  
Data Sheet  
131  
Clock Generator Module (CGM)  
8.6.3 PLL Multiplier Select Registers  
The PLL multiplier select registers (PMSH and PMSL) contain the  
programming information for the modulo feedback divider.  
Address: $0038  
Bit 7  
0
6
0
5
0
4
0
3
MUL11  
0
2
MUL10  
0
1
MUL9  
0
Bit 0  
MUL8  
0
Read:  
Write:  
Reset:  
0
0
0
0
= Unimplemented  
Figure 8-6. PLL Multiplier Select Register High (PMSH)  
Address: $0039  
Bit 7  
6
MUL6  
1
5
MUL5  
0
4
MUL4  
0
3
MUL3  
0
2
MUL2  
0
1
MUL1  
0
Bit 0  
MUL0  
0
Read:  
MUL7  
Write:  
Reset:  
0
Figure 8-7. PLL Multiplier Select Register Low (PMSL)  
MUL[11:0] — Multiplier Select Bits  
These read/write bits control the modulo feedback divider that selects  
the VCO frequency multiplier N. (See 8.4.3 PLL Circuits and 8.4.6  
Programming the PLL.) A value of $0000 in the multiplier select  
registers configure the modulo feedback divider the same as a value  
of $0001. Reset initializes the registers to $0040 for a default multiply  
value of 64.  
NOTE: The multiplier select bits have built-in protection such that they cannot  
be written when the PLL is on (PLLON = 1).  
Data Sheet  
132  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Clock Generator Module (CGM)  
Freescale Semiconductor  
Clock Generator Module (CGM)  
CGM Registers  
8.6.4 PLL VCO Range Select Register  
The PLL VCO range select register (PMRS) contains the programming  
information required for the hardware configuration of the VCO.  
Address: $003A  
Bit 7  
VRS7  
0
6
VRS6  
1
5
VRS5  
0
4
VRS4  
0
3
VRS3  
0
2
VRS2  
0
1
VRS1  
0
Bit 0  
VRS0  
0
Read:  
Write:  
Reset:  
Figure 8-8. PLL VCO Range Select Register (PMRS)  
VRS[7:0] — VCO Range Select Bits  
These read/write bits control the hardware center-of-range linear  
multiplier L which, in conjunction with E (See 8.4.3 PLL Circuits,  
8.4.6 Programming the PLL, and 8.6.1 PLL Control Register.),  
controls the hardware center-of-range frequency, f  
. VRS[7:0]  
VRS  
cannot be written when the PLLON bit in the PCTL is set. (See 8.4.7  
Special Programming Exceptions.) A value of $00 in the VCO  
range select register disables the PLL and clears the BCS bit in the  
PLL control register (PCTL). (See 8.4.8 Base Clock Selector Circuit  
and 8.4.7 Special Programming Exceptions.). Reset initializes the  
register to $40 for a default range multiply value of 64.  
NOTE: The VCO range select bits have built-in protection such that they cannot  
be written when the PLL is on (PLLON = 1) and such that the VCO clock  
cannot be selected as the source of the base clock (BCS = 1) if the VCO  
range select bits are all clear.  
The PLL VCO range select register must be programmed correctly.  
Incorrect programming can result in failure of the PLL to achieve lock.  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Clock Generator Module (CGM)  
Data Sheet  
133  
Clock Generator Module (CGM)  
8.6.5 PLL Reference Divider Select Register  
The PLL reference divider select register (PMDS) contains the  
programming information for the modulo reference divider.  
Address: $003B  
Bit 7  
0
6
0
5
0
4
0
3
RDS3  
0
2
RDS2  
0
1
RDS1  
0
Bit 0  
RDS0  
1
Read:  
Write:  
Reset:  
0
0
0
0
= Unimplemented  
Figure 8-9. PLL Reference Divider Select Register (PMDS)  
RDS[3:0] — Reference Divider Select Bits  
These read/write bits control the modulo reference divider that selects  
the reference division factor, R. (See 8.4.3 PLL Circuits and 8.4.6  
Programming the PLL.) RDS[3:0] cannot be written when the  
PLLON bit in the PCTL is set. A value of $00 in the reference divider  
select register configures the reference divider the same as a value of  
$01. (See 8.4.7 Special Programming Exceptions.) Reset  
initializes the register to $01 for a default divide value of 1.  
NOTE: The reference divider select bits have built-in protection such that they  
cannot be written when the PLL is on (PLLON = 1).  
NOTE: The default divide value of 1 is recommended for all applications.  
Data Sheet  
134  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Clock Generator Module (CGM)  
Freescale Semiconductor  
Clock Generator Module (CGM)  
Interrupts  
8.7 Interrupts  
When the AUTO bit is set in the PLL bandwidth control register (PBWC),  
the PLL can generate a CPU interrupt request every time the LOCK bit  
changes state. The PLLIE bit in the PLL control register (PCTL) enables  
CPU interrupts from the PLL. PLLF, the interrupt flag in the PCTL,  
becomes set whether interrupts are enabled or not. When the AUTO bit  
is clear, CPU interrupts from the PLL are disabled and PLLF reads as  
logic 0.  
Software should read the LOCK bit after a PLL interrupt request to see  
if the request was due to an entry into lock or an exit from lock. When the  
PLL enters lock, the divided VCO clock, CGMPCLK, divided by two can  
be selected as the CGMOUT source by setting BCS in the PCTL. When  
the PLL exits lock, the VCO clock frequency is corrupt, and appropriate  
precautions should be taken. If the application is not frequency sensitive,  
interrupts should be disabled to prevent PLL interrupt service routines  
from impeding software performance or from exceeding stack  
limitations.  
NOTE: Software can select the CGMPCLK divided by two as the CGMOUT  
source even if the PLL is not locked (LOCK = 0). Therefore, software  
should make sure the PLL is locked before setting the BCS bit.  
8.8 Special Modes  
The WAIT instruction puts the MCU in low power-consumption standby  
modes.  
8.8.1 Wait Mode  
The WAIT instruction does not affect the CGM. Before entering wait  
mode, software can disengage and turn off the PLL by clearing the BCS  
and PLLON bits in the PLL control register (PCTL) to save power. Less  
power-sensitive applications can disengage the PLL without turning it  
off, so that the PLL clock is immediately available at WAIT exit. This  
would be the case also when the PLL is to wake the MCU from wait  
mode, such as when the PLL is first enabled and waiting for LOCK or  
LOCK is lost.  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Clock Generator Module (CGM)  
Data Sheet  
135  
Clock Generator Module (CGM)  
8.8.2 Stop Mode  
If the oscillator stop mode enable bit (STOP_ICLKEN, STOP_RCLKEN,  
or STOP_XCLKEN in CONFIG2 register) for the selected oscillator is  
configured to disabled the oscillator in stop mode, then the STOP  
instruction disables the CGM (oscillator and phase locked loop) and  
holds low all CGM outputs (CGMOUT, CGMVCLK, CGMPCLK, and  
CGMINT).  
If the STOP instruction is executed with the divided VCO clock,  
CGMPCLK, divided by two driving CGMOUT, the PLL automatically  
clears the BCS bit in the PLL control register (PCTL), thereby selecting  
the oscillator clock, CGMXCLK, divided by two as the source of  
CGMOUT. When the MCU recovers from STOP, the crystal clock  
divided by two drives CGMOUT and BCS remains clear.  
If the oscillator stop mode enable bit is configured for continuous  
oscillator operation in stop mode, then the phase locked loop is shut off  
but the CGMXCLK will continue to drive the SIM and other MCU sub-  
systems.  
8.8.3 CGM During Break Interrupts  
The system integration module (SIM) controls whether status bits in  
other modules can be cleared during the break state. The BCFE bit in  
the SIM break flag control register (SBFCR) enables software to clear  
status bits during the break state. (See 9.8.3 SIM Break Flag Control  
Register.)  
To allow software to clear status bits during a break interrupt, write a  
logic 1 to the BCFE bit. If a status bit is cleared during the break state, it  
remains cleared when the MCU exits the break state.  
To protect the PLLF bit during the break state, write a logic 0 to the BCFE  
bit. With BCFE at logic 0 (its default state), software can read and write  
the PLL control register during the break state without affecting the PLLF  
bit.  
Data Sheet  
136  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Clock Generator Module (CGM)  
Freescale Semiconductor  
Clock Generator Module (CGM)  
Acquisition/Lock Time Specifications  
8.9 Acquisition/Lock Time Specifications  
The acquisition and lock times of the PLL are, in many applications, the  
most critical PLL design parameters. Proper design and use of the PLL  
ensures the highest stability and lowest acquisition/lock times.  
8.9.1 Acquisition/Lock Time Definitions  
Typical control systems refer to the acquisition time or lock time as the  
reaction time, within specified tolerances, of the system to a step input.  
In a PLL, the step input occurs when the PLL is turned on or when it  
suffers a noise hit. The tolerance is usually specified as a percent of the  
step input or when the output settles to the desired value plus or minus  
a percent of the frequency change. Therefore, the reaction time is  
constant in this definition, regardless of the size of the step input. For  
example, consider a system with a 5 percent acquisition time tolerance.  
If a command instructs the system to change from 0Hz to 1MHz, the  
acquisition time is the time taken for the frequency to reach  
1MHz ±50kHz. 50kHz = 5% of the 1MHz step input. If the system is  
operating at 1MHz and suffers a –100kHz noise hit, the acquisition time  
is the time taken to return from 900kHz to 1MHz ±5kHz. 5kHz = 5% of  
the 100kHz step input.  
Other systems refer to acquisition and lock times as the time the system  
takes to reduce the error between the actual output and the desired  
output to within specified tolerances. Therefore, the acquisition or lock  
time varies according to the original error in the output. Minor errors may  
not even be registered. Typical PLL applications prefer to use this  
definition because the system requires the output frequency to be within  
a certain tolerance of the desired frequency regardless of the size of the  
initial error.  
8.9.2 Parametric Influences on Reaction Time  
Acquisition and lock times are designed to be as short as possible while  
still providing the highest possible stability. These reaction times are not  
constant, however. Many factors directly and indirectly affect the  
acquisition time.  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Clock Generator Module (CGM)  
Data Sheet  
137  
Clock Generator Module (CGM)  
The most critical parameter which affects the reaction times of the PLL  
is the reference frequency, f . This frequency is the input to the phase  
RDV  
detector and controls how often the PLL makes corrections. For stability,  
the corrections must be small compared to the desired frequency, so  
several corrections are required to reduce the frequency error.  
Therefore, the slower the reference the longer it takes to make these  
corrections. This parameter is under user control via the choice of crystal  
frequency f  
and the R value programmed in the reference divider.  
XCLK  
(See 8.4.3 PLL Circuits, 8.4.6 Programming the PLL, and 8.6.5 PLL  
Reference Divider Select Register.)  
Another critical parameter is the external filter network. The PLL  
modifies the voltage on the VCO by adding or subtracting charge from  
capacitors in this network. Therefore, the rate at which the voltage  
changes for a given frequency error (thus change in charge) is  
proportional to the capacitance. The size of the capacitor also is related  
to the stability of the PLL. If the capacitor is too small, the PLL cannot  
make small enough adjustments to the voltage and the system cannot  
lock. If the capacitor is too large, the PLL may not be able to adjust the  
voltage in a reasonable time. (See 8.9.3 Choosing a Filter.)  
Also important is the operating voltage potential applied to V  
. The  
DDA  
power supply potential alters the characteristics of the PLL. A fixed value  
is best. Variable supplies, such as batteries, are acceptable if they vary  
within a known range at very slow speeds. Noise on the power supply is  
not acceptable, because it causes small frequency errors which  
continually change the acquisition time of the PLL.  
Temperature and processing also can affect acquisition time because  
the electrical characteristics of the PLL change. The part operates as  
specified as long as these influences stay within the specified limits.  
External factors, however, can cause drastic changes in the operation of  
the PLL. These factors include noise injected into the PLL through the  
filter capacitor, filter capacitor leakage, stray impedances on the circuit  
board, and even humidity or circuit board contamination.  
Data Sheet  
138  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Clock Generator Module (CGM)  
Freescale Semiconductor  
Clock Generator Module (CGM)  
Acquisition/Lock Time Specifications  
8.9.3 Choosing a Filter  
As described in 8.9.2 Parametric Influences on Reaction Time, the  
external filter network is critical to the stability and reaction time of the  
PLL. The PLL is also dependent on reference frequency and supply  
voltage.  
Either of the filter networks in Figure 8-10 is recommended when using  
a 32.768kHz reference clock (CGMRCLK). Figure 8-10 (a) is used for  
applications requiring better stability. Figure 8-10 (b) is used in low-cost  
applications where stability is not critical.  
CGMXFC  
CGMXFC  
10 kΩ  
0.01 µF  
0.47 µF  
0.033 µF  
VSSA  
VSSA  
(a)  
(b)  
Figure 8-10. PLL Filter  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Clock Generator Module (CGM)  
Data Sheet  
139  
Clock Generator Module (CGM)  
Data Sheet  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Clock Generator Module (CGM) Freescale Semiconductor  
140  
Data Sheet — MC68HC908SR12•MC68HC08SR12  
Section 9. System Integration Module (SIM)  
9.1 Contents  
9.2  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .142  
9.3  
SIM Bus Clock Control and Generation . . . . . . . . . . . . . . . . .144  
Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145  
Clock Start-up from POR or LVI Reset. . . . . . . . . . . . . . . .145  
Clocks in Stop Mode and Wait Mode . . . . . . . . . . . . . . . . .146  
9.3.1  
9.3.2  
9.3.3  
9.4  
9.4.1  
9.4.2  
9.4.2.1  
9.4.2.2  
9.4.2.3  
9.4.2.4  
9.4.2.5  
9.4.2.6  
Reset and System Initialization. . . . . . . . . . . . . . . . . . . . . . . .146  
External Pin Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147  
Active Resets from Internal Sources . . . . . . . . . . . . . . . . .147  
Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .148  
Computer Operating Properly (COP) Reset. . . . . . . . . .149  
Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . .150  
Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . .150  
Low-Voltage Inhibit (LVI) Reset . . . . . . . . . . . . . . . . . . .150  
Monitor Mode Entry Module Reset. . . . . . . . . . . . . . . . .150  
9.5  
SIM Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .151  
SIM Counter During Power-On Reset . . . . . . . . . . . . . . . .151  
SIM Counter During Stop Mode Recovery. . . . . . . . . . . . .151  
SIM Counter and Reset States. . . . . . . . . . . . . . . . . . . . . .151  
9.5.1  
9.5.2  
9.5.3  
9.6  
9.6.1  
Exception Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .152  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .152  
Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . .154  
SWI Instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155  
Interrupt Status Registers . . . . . . . . . . . . . . . . . . . . . . .155  
Interrupt Status Register 1. . . . . . . . . . . . . . . . . . . . . . .155  
Interrupt Status Register 2. . . . . . . . . . . . . . . . . . . . . . .157  
Interrupt Status Register 3. . . . . . . . . . . . . . . . . . . . . . .157  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158  
Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158  
9.6.1.1  
9.6.1.2  
9.6.1.3  
9.6.1.4  
9.6.1.5  
9.6.1.6  
9.6.2  
9.6.3  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor System Integration Module (SIM)  
Data Sheet  
141  
System Integration Module (SIM)  
9.6.4  
Status Flag Protection in Break Mode . . . . . . . . . . . . . . . .158  
9.7  
9.7.1  
9.7.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160  
9.8  
SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161  
SIM Break Status Register. . . . . . . . . . . . . . . . . . . . . . . . .162  
SIM Reset Status Register . . . . . . . . . . . . . . . . . . . . . . . .163  
SIM Break Flag Control Register . . . . . . . . . . . . . . . . . . . .164  
9.8.1  
9.8.2  
9.8.3  
9.2 Introduction  
This section describes the system integration module (SIM). Together  
with the CPU, the SIM controls all MCU activities. A block diagram of the  
SIM is shown in Figure 9-1. Table 9-1 is a summary of the SIM  
input/output (I/O) registers. The SIM is a system state controller that  
coordinates CPU and exception timing. The SIM is responsible for:  
• Bus clock generation and control for CPU and peripherals:  
– Stop/wait/reset/break entry and recovery  
– Internal clock control  
• Master reset control, including power-on reset (POR) and COP  
timeout  
• Interrupt control:  
– Acknowledge timing  
– Arbitration control timing  
– Vector address generation  
• CPU enable/disable timing  
• Modular architecture expandable to 128 interrupt sources  
Table 9-1 shows the internal signal names used in this section.  
Data Sheet  
142  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
System Integration Module (SIM)  
Freescale Semiconductor  
System Integration Module (SIM)  
Introduction  
MODULE STOP  
MODULE WAIT  
CPU STOP (FROM CPU)  
CPU WAIT (FROM CPU)  
STOP/WAIT  
CONTROL  
SIMOSCEN (TO CGM, OSC)  
SIM  
COUNTER  
COP CLOCK  
ICLK (FROM OSC)  
CGMOUT (FROM CGM)  
÷ 2  
CLOCK  
CONTROL  
VDD  
CLOCK GENERATORS  
INTERNAL CLOCKS  
INTERNAL  
PULLUP  
DEVICE  
LVI (FROM LVI MODULE)  
RESET  
PIN LOGIC  
POR CONTROL  
MASTER  
ILLEGAL OPCODE (FROM CPU)  
ILLEGAL ADDRESS (FROM ADDRESS  
MAP DECODERS)  
RESET  
RESET PIN CONTROL  
CONTROL  
SIM RESET STATUS REGISTER  
COP (FROM COP MODULE)  
RESET  
INTERRUPT SOURCES  
CPU INTERFACE  
INTERRUPT CONTROL  
AND PRIORITY DECODE  
Figure 9-1. SIM Block Diagram  
Table 9-1. Signal Name Conventions  
Signal Name  
Description  
Internal oscillator clock  
ICLK  
CGMXCLK  
Selected oscillator clock from oscillator module  
PLL output and the divided PLL output  
CGMVCLK, CGMPCLK  
CGMPCLK-based or oscillator-based clock output from CGM module  
(Bus clock = CGMOUT ÷ 2)  
CGMOUT  
IAB  
IDB  
Internal address bus  
Internal data bus  
PORRST  
IRST  
Signal from the power-on reset module to the SIM  
Internal reset signal  
R/W  
Read/write signal  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor System Integration Module (SIM)  
Data Sheet  
143  
System Integration Module (SIM)  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
SBSW  
Note  
0
Bit 0  
Read:  
Write:  
Reset:  
R
R
R
R
R
R
R
SIM Break Status Register  
(SBSR)  
$FE00  
Note: Writing a logic 0 clears SBSW.  
Read: POR  
Write:  
PIN  
COP  
ILOP  
ILAD  
0
LVI  
0
SIM Reset Status Register  
(SRSR)  
$FE01  
POR:  
Read:  
1
0
0
0
0
0
0
0
SIM Break Flag Control  
BCFE  
R
R
R
R
R
R
R
$FE03  
$FE04  
$FE05  
$FE06  
Register Write:  
(SBFCR)  
Reset:  
0
IF6  
R
Read:  
IF5  
R
IF4  
R
IF3  
R
IF2  
R
IF1  
0
R
0
R
Interrupt Status Register 1  
(INT1)  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
R
0
0
0
0
0
0
0
0
IF14  
R
IF13  
R
IF12  
R
IF11  
R
IF10  
R
IF9  
IF8  
R
IF7  
R
Interrupt Status Register 2  
(INT2)  
R
0
0
0
0
0
0
0
0
0
0
0
0
0
IF17  
IF16  
R
IF15  
R
Interrupt Status Register 3  
(INT3)  
R
R
R
R
R
R
0
0
0
0
0
0
0
0
= Unimplemented  
R
= Reserved  
Figure 9-2. SIM I/O Register Summary  
9.3 SIM Bus Clock Control and Generation  
The bus clock generator provides system clock signals for the CPU and  
peripherals on the MCU. The system clocks are generated from an  
incoming clock, CGMOUT, as shown in Figure 9-3. This clock can come  
from either the oscillator module or from the on-chip PLL. (See Section  
8. Clock Generator Module (CGM).)  
Data Sheet  
144  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
System Integration Module (SIM)  
Freescale Semiconductor  
System Integration Module (SIM)  
SIM Bus Clock Control and Generation  
OSC2  
OSC1  
OSCCLK  
TO TBM  
OSCILLATOR (OSC) MODULE  
CGMXCLK  
TO TIM, ADC  
ICLK  
SIM COUNTER  
SIMOSCEN  
STOP MODE CLOCK  
ENABLE SIGNALS  
FROM CONFIG2  
SYSTEM INTEGRATION MODULE  
IT12  
TO REST  
OF MCU  
CGMRCLK  
CGMOUT  
BUS CLOCK  
GENERATORS  
IT23  
TO REST  
OF MCU  
÷ 2  
PHASE-LOCKED LOOP (PLL)  
PTC1  
SIMDIV2  
MONITOR MODE  
USER MODE  
CGMVCLK  
TO PWM  
Figure 9-3. CGM Clock Signals  
9.3.1 Bus Timing  
In user mode, the internal bus frequency is either the oscillator output  
(CGMXCLK) divided by four or the divided PLL output (CGMPCLK)  
divided by four.  
9.3.2 Clock Start-up from POR or LVI Reset  
When the power-on reset module or the low-voltage inhibit module  
generates a reset, the clocks to the CPU and peripherals are inactive  
and held in an inactive phase until after the 4096 ICLK cycle POR  
timeout has completed. The RST pin is driven low by the SIM during this  
entire period. The IBUS clocks start upon completion of the timeout.  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor System Integration Module (SIM)  
Data Sheet  
145  
System Integration Module (SIM)  
9.3.3 Clocks in Stop Mode and Wait Mode  
Upon exit from stop mode by an interrupt, break, or reset, the SIM allows  
ICLK to clock the SIM counter. The CPU and peripheral clocks do not  
become active until after the stop delay timeout. This timeout is  
selectable as 4096 or 32 ICLK cycles. (See 9.7.2 Stop Mode.)  
In wait mode, the CPU clocks are inactive. The SIM also produces two  
sets of clocks for other modules. Refer to the wait mode subsection of  
each module to see if the module is active or inactive in wait mode.  
Some modules can be programmed to be active in wait mode.  
9.4 Reset and System Initialization  
The MCU has these reset sources:  
• Power-on reset module (POR)  
• External reset pin (RST)  
• Computer operating properly module (COP)  
• Low-voltage inhibit module (LVI)  
• Illegal opcode  
• Illegal address  
All of these resets produce the vector $FFFE:$FFFF ($FEFE:$FEFF in  
monitor mode) and assert the internal reset signal (IRST). IRST causes  
all registers to be returned to their default values and all modules to be  
returned to their reset states.  
An internal reset clears the SIM counter (see 9.5 SIM Counter), but an  
external reset does not. Each of the resets sets a corresponding bit in  
the SIM reset status register (SRSR). (See 9.8 SIM Registers.)  
Data Sheet  
146  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
System Integration Module (SIM)  
Freescale Semiconductor  
System Integration Module (SIM)  
Reset and System Initialization  
9.4.1 External Pin Reset  
The RST pin circuit includes an internal pull-up device. Pulling the  
asynchronous RST pin low halts all processing. The PIN bit of the SIM  
reset status register (SRSR) is set as long as RST is held low for a  
minimum of 67 ICLK cycles, assuming that neither the POR nor the LVI  
was the source of the reset. See Table 9-2 for details.  
Figure 9-4 shows the relative timing.  
Table 9-2. PIN Bit Set Timing  
Reset Type  
POR/LVI  
Number of Cycles Required to Set PIN  
4163 (4096 + 64 + 3)  
All others  
67 (64 + 3)  
ICLK  
RST  
IAB  
VECT H VECT L  
PC  
Figure 9-4. External Reset Timing  
9.4.2 Active Resets from Internal Sources  
All internal reset sources actively pull the RST pin low for 32 ICLK cycles  
to allow resetting of external peripherals. The internal reset signal IRST  
continues to be asserted for an additional 32 cycles (see Figure 9-5). An  
internal reset can be caused by an illegal address, illegal opcode, COP  
timeout, LVI, or POR (see Figure 9-6).  
NOTE: For LVI or POR resets, the SIM cycles through 4096 + 32 ICLK cycles  
during which the SIM forces the RST pin low. The internal reset signal  
then follows the sequence from the falling edge of RST shown in  
Figure 9-5.  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor System Integration Module (SIM)  
Data Sheet  
147  
System Integration Module (SIM)  
IRST  
RST  
ICLK  
RST PULLED LOW BY MCU  
32 CYCLES  
32 CYCLES  
IAB  
VECTOR HIGH  
Figure 9-5. Internal Reset Timing  
The COP reset is asynchronous to the bus clock.  
ILLEGAL ADDRESS RST  
ILLEGAL OPCODE RST  
COPRST  
LVI  
INTERNAL RESET  
POR  
Figure 9-6. Sources of Internal Reset  
The active reset feature allows the part to issue a reset to peripherals  
and other chips within a system built around the MCU.  
9.4.2.1 Power-On Reset  
When power is first applied to the MCU, the power-on reset module  
(POR) generates a pulse to indicate that power-on has occurred. The  
external reset pin (RST) is held low while the SIM counter counts out  
4096 + 32 ICLK cycles. Thirty-two ICLK cycles later, the CPU and  
memories are released from reset to allow the reset vector sequence to  
occur.  
At power-on, these events occur:  
• A POR pulse is generated.  
• The internal reset signal is asserted.  
• The SIM enables CGMOUT.  
• Internal clocks to the CPU and modules are held inactive for 4096  
ICLK cycles to allow stabilization of the oscillator.  
• The RST pin is driven low during the oscillator stabilization time.  
• The POR bit of the SIM reset status register (SRSR) is set and all  
other bits in the register are cleared.  
Data Sheet  
148  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
System Integration Module (SIM)  
Freescale Semiconductor  
System Integration Module (SIM)  
Reset and System Initialization  
OSC1  
PORRST  
4096  
CYCLES  
32  
CYCLES  
32  
CYCLES  
ICLK  
CGMOUT  
RST  
IRST  
IAB  
$FFFE  
$FFFF  
Figure 9-7. POR Recovery  
9.4.2.2 Computer Operating Properly (COP) Reset  
An input to the SIM is reserved for the COP reset signal. The overflow of  
the COP counter causes an internal reset and sets the COP bit in the  
SIM reset status register (SRSR). The SIM actively pulls down the RST  
pin for all internal reset sources.  
To prevent a COP module timeout, write any value to location $FFFF.  
Writing to location $FFFF clears the COP counter and bits 12 through 5  
of the SIM counter. The SIM counter output, which occurs at least every  
13  
4
2 – 2 ICLK cycles, drives the COP counter. The COP should be  
serviced as soon as possible out of reset to guarantee the maximum  
amount of time before the first timeout.  
The COP module is disabled if the RST pin or the IRQ1 pin is held at  
V
while the MCU is in monitor mode. The COP module can be  
TST  
disabled only through combinational logic conditioned with the high  
voltage signal on the RST or the IRQ1 pin. This prevents the COP from  
becoming disabled as a result of external noise. During a break state,  
V
on the RST pin disables the COP module.  
TST  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor System Integration Module (SIM)  
Data Sheet  
149  
System Integration Module (SIM)  
9.4.2.3 Illegal Opcode Reset  
The SIM decodes signals from the CPU to detect illegal instructions. An  
illegal instruction sets the ILOP bit in the SIM reset status register  
(SRSR) and causes a reset.  
If the stop enable bit, STOP, in the mask option register is logic 0, the  
SIM treats the STOP instruction as an illegal opcode and causes an  
illegal opcode reset. The SIM actively pulls down the RST pin for all  
internal reset sources.  
9.4.2.4 Illegal Address Reset  
An opcode fetch from an unmapped address generates an illegal  
address reset. The SIM verifies that the CPU is fetching an opcode prior  
to asserting the ILAD bit in the SIM reset status register (SRSR) and  
resetting the MCU. A data fetch from an unmapped address does not  
generate a reset. The SIM actively pulls down the RST pin for all internal  
reset sources.  
9.4.2.5 Low-Voltage Inhibit (LVI) Reset  
The low-voltage inhibit module (LVI) asserts its output to the SIM when  
the V voltage falls to the LVI voltage. The LVI bit in the SIM reset  
DD  
TRIPF  
status register (SRSR) is set, and the external reset pin (RST) is held low  
while the SIM counter counts out 4096 + 32 ICLK cycles. Thirty-two ICLK  
cycles later, the CPU is released from reset to allow the reset vector  
sequence to occur. The SIM actively pulls down the RST pin for all  
internal reset sources.  
9.4.2.6 Monitor Mode Entry Module Reset  
The monitor mode entry module reset asserts its output to the SIM when  
monitor mode is entered in the condition where the reset vectors are  
blank ($FF). (See Section 10. Monitor ROM (MON).) When MODRST  
gets asserted, an internal reset occurs. The SIM actively pulls down the  
RST pin for all internal reset sources.  
Data Sheet  
150  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
System Integration Module (SIM)  
Freescale Semiconductor  
System Integration Module (SIM)  
SIM Counter  
9.5 SIM Counter  
The SIM counter is used by the power-on reset module (POR) and in  
stop mode recovery to allow the oscillator time to stabilize before  
enabling the internal bus (IBUS) clocks. The SIM counter also serves as  
a prescaler for the computer operating properly module (COP). The SIM  
counter overflow supplies the clock for the COP module. The SIM  
counter is 12 bits long and is clocked by the falling edge of ICLK.  
9.5.1 SIM Counter During Power-On Reset  
The power-on reset module (POR) detects power applied to the MCU.  
At power-on, the POR circuit asserts the signal PORRST. Once the SIM  
is initialized, it enables the clock generation module (CGM) to drive the  
bus clock state machine.  
9.5.2 SIM Counter During Stop Mode Recovery  
The SIM counter also is used for stop mode recovery. The STOP  
instruction clears the SIM counter. After an interrupt, break, or reset, the  
SIM senses the state of the short stop recovery bit, SSREC, in the  
configuration register 1 (CONFIG1). If the SSREC bit is a logic 1, then  
the stop recovery is reduced from the normal delay of 4096 ICLK cycles  
down to 32 ICLK cycles. This is ideal for applications using canned  
oscillators that do not require long start-up times from stop mode.  
External crystal applications should use the full stop recovery time, that  
is, with SSREC cleared.  
9.5.3 SIM Counter and Reset States  
External reset has no effect on the SIM counter. (See 9.7.2 Stop Mode  
for details.) The SIM counter is free-running after all reset states. (See  
9.4.2 Active Resets from Internal Sources for counter control and  
internal reset recovery sequences.)  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor System Integration Module (SIM)  
Data Sheet  
151  
System Integration Module (SIM)  
9.6 Exception Control  
Normal, sequential program execution can be changed in three different  
ways:  
• Interrupts:  
– Maskable hardware CPU interrupts  
– Non-maskable software interrupt instruction (SWI)  
• Reset  
• Break interrupts  
9.6.1 Interrupts  
At the beginning of an interrupt, the CPU saves the CPU register  
contents on the stack and sets the interrupt mask (I bit) to prevent  
additional interrupts. At the end of an interrupt, the RTI instruction  
recovers the CPU register contents from the stack so that normal  
processing can resume. Figure 9-8 shows interrupt entry timing, and  
Figure 9-9 shows interrupt recovery timing.  
MODULE  
INTERRUPT  
I-BIT  
IAB  
DUMMY  
SP  
SP – 1  
SP – 2  
SP – 3  
SP – 4  
VECT H  
VECT L START ADDR  
IDB  
DUMMY PC – 1[7:0] PC – 1[15:8]  
X
A
CCR  
V DATA H V DATA L OPCODE  
R/W  
Figure 9-8. Interrupt Entry Timing  
MODULE  
INTERRUPT  
I-BIT  
IAB  
SP – 4  
SP – 3  
SP – 2  
SP – 1  
SP  
PC  
PC + 1  
IDB  
CCR  
A
X
PC – 1[15:8] PC – 1[7:0] OPCODE OPERAND  
R/W  
Figure 9-9. Interrupt Recovery Timing  
Data Sheet  
152  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
System Integration Module (SIM) Freescale Semiconductor  
System Integration Module (SIM)  
Exception Control  
Interrupts are latched, and arbitration is performed in the SIM at the start  
of interrupt processing. The arbitration result is a constant that the CPU  
uses to determine which vector to fetch. Once an interrupt is latched by  
the SIM, no other interrupt can take precedence, regardless of priority,  
until the latched interrupt is serviced (or the I bit is cleared).  
(See Figure 9-10.)  
FROM RESET  
BREAK  
YES  
INTERRUPT?  
NO  
YES  
I-BIT SET?  
NO  
IRQ1  
INTERRUPT?  
YES  
NO  
STACK CPU REGISTERS  
SET I-BIT  
LOAD PC WITH INTERRUPT VECTOR  
AS MANY INTERRUPTS  
AS EXIST ON CHIP  
FETCH NEXT  
INSTRUCTION  
SWI  
INSTRUCTION?  
YES  
NO  
RTI  
YES  
UNSTACK CPU REGISTERS  
EXECUTE INSTRUCTION  
INSTRUCTION?  
NO  
Figure 9-10. Interrupt Processing  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor System Integration Module (SIM)  
Data Sheet  
153  
System Integration Module (SIM)  
9.6.1.1 Hardware Interrupts  
A hardware interrupt does not stop the current instruction. Processing of  
a hardware interrupt begins after completion of the current instruction.  
When the current instruction is complete, the SIM checks all pending  
hardware interrupts. If interrupts are not masked (I bit clear in the  
condition code register) and if the corresponding interrupt enable bit is  
set, the SIM proceeds with interrupt processing; otherwise, the next  
instruction is fetched and executed.  
If more than one interrupt is pending at the end of an instruction  
execution, the highest priority interrupt is serviced first. Figure 9-11  
demonstrates what happens when two interrupts are pending. If an  
interrupt is pending upon exit from the original interrupt service routine,  
the pending interrupt is serviced before the LDA instruction is executed.  
CLI  
BACKGROUND  
LDA #$FF  
ROUTINE  
INT1  
PSHH  
INT1 INTERRUPT SERVICE ROUTINE  
PULH  
RTI  
INT2  
PSHH  
INT2 INTERRUPT SERVICE ROUTINE  
PULH  
RTI  
Figure 9-11. Interrupt Recognition Example  
The LDA opcode is prefetched by both the INT1 and INT2 RTI  
instructions. However, in the case of the INT1 RTI prefetch, this is a  
redundant operation.  
NOTE: To maintain compatibility with the M6805 Family, the H register is not  
pushed on the stack during interrupt entry. If the interrupt service routine  
modifies the H register or uses the indexed addressing mode, software  
should save the H register and then restore it prior to exiting the routine.  
Data Sheet  
154  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
System Integration Module (SIM)  
Freescale Semiconductor  
System Integration Module (SIM)  
Exception Control  
9.6.1.2 SWI Instruction  
The SWI instruction is a non-maskable instruction that causes an  
interrupt regardless of the state of the interrupt mask (I bit) in the  
condition code register.  
NOTE: A software interrupt pushes PC onto the stack. A software interrupt does  
not push PC – 1, as a hardware interrupt does.  
9.6.1.3 Interrupt Status Registers  
The flags in the interrupt status registers identify maskable interrupt  
sources. Table 9-3 summarizes the interrupt sources and the interrupt  
status register flags that they set. The interrupt status registers can be  
useful for debugging.  
9.6.1.4 Interrupt Status Register 1  
Address: $FE04  
Bit 7  
6
5
IF4  
R
4
IF3  
R
3
IF2  
R
2
IF1  
R
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
IF6  
R
IF5  
R
R
0
R
0
0
0
0
0
0
0
R
= Reserved  
Figure 9-12. Interrupt Status Register 1 (INT1)  
IF6–IF1 — Interrupt Flags 6–1  
These flags indicate the presence of interrupt requests from the  
sources shown in Table 9-3.  
1 = Interrupt request present  
0 = No interrupt request present  
Bit 0 and Bit 1 — Always read 0  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor System Integration Module (SIM)  
Data Sheet  
155  
System Integration Module (SIM)  
Table 9-3. Interrupt Sources  
INT  
Vector  
Priority  
Interrupt Source  
Timebase Module  
Flag  
Address  
Lowest  
$FFDA  
$FFDB  
$FFDC  
$FFDD  
$FFDE  
$FFDF  
$FFE0  
$FFE1  
$FFE2  
$FFE3  
$FFE4  
$FFE5  
$FFE6  
$FFE7  
$FFE8  
$FFE9  
$FFEA  
$FFEB  
$FFEC  
$FFED  
$FFEE  
$FFEF  
$FFF0  
$FFF1  
$FFF2  
$FFF3  
$FFF4  
$FFF5  
$FFF6  
$FFF7  
$FFF8  
$FFF9  
$FFFA  
$FFFB  
$FFFC  
$FFFD  
$FFFE  
$FFFF  
IF17  
IF16  
IF15  
IF14  
IF13  
IF12  
IF11  
IF10  
IF9  
Analog Module  
ADC Conversion Complete  
Keyboard  
SCI Transmit  
SCI Receive  
SCI Error  
MMIIC  
TIM2 Overflow  
TIM2 Channel 1  
TIM2 Channel 0  
TIM1 Overflow  
TIM1 Channel 1  
TIM1 Channel 0  
PLL  
IF8  
IF7  
IF6  
IF5  
IF4  
IF3  
IF2  
IRQ2  
IF1  
IRQ1  
SWI  
Reset  
Highest  
Data Sheet  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
System Integration Module (SIM) Freescale Semiconductor  
156  
System Integration Module (SIM)  
Exception Control  
9.6.1.5 Interrupt Status Register 2  
Address: $FE05  
Bit 7  
6
5
IF12  
R
4
IF11  
R
3
IF10  
R
2
IF9  
R
1
IF8  
R
Bit 0  
IF7  
R
Read:  
Write:  
Reset:  
IF14  
R
IF13  
R
0
0
0
0
0
0
0
0
R
= Reserved  
Figure 9-13. Interrupt Status Register 2 (INT2)  
IF14–IF7 — Interrupt Flags 14–7  
These flags indicate the presence of interrupt requests from the  
sources shown in Table 9-3.  
1 = Interrupt request present  
0 = No interrupt request present  
9.6.1.6 Interrupt Status Register 3  
Address: $FE06  
Bit 7  
6
5
0
4
0
3
0
2
IF17  
R
1
IF16  
R
Bit 0  
IF15  
R
Read:  
Write:  
Reset:  
0
R
0
0
R
R
0
R
0
R
0
0
0
0
0
R
= Reserved  
Figure 9-14. Interrupt Status Register 3 (INT3)  
IF17–IF15 — Interrupt Flags 17–15  
These flags indicate the presence of an interrupt request from the  
source shown in Table 9-3.  
1 = Interrupt request present  
0 = No interrupt request present  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor System Integration Module (SIM)  
Data Sheet  
157  
System Integration Module (SIM)  
9.6.2 Reset  
All reset sources always have equal and highest priority and cannot be  
arbitrated.  
9.6.3 Break Interrupts  
The break module can stop normal program flow at a software-  
programmable break point by asserting its break interrupt output. (See  
Section 23. Break Module (BRK).) The SIM puts the CPU into the  
break state by forcing it to the SWI vector location. Refer to the break  
interrupt subsection of each module to see how each module is affected  
by the break state.  
9.6.4 Status Flag Protection in Break Mode  
The SIM controls whether status flags contained in other modules can  
be cleared during break mode. The user can select whether flags are  
protected from being cleared by properly initializing the break clear flag  
enable bit (BCFE) in the SIM break flag control register (SBFCR).  
Protecting flags in break mode ensures that set flags will not be cleared  
while in break mode. This protection allows registers to be freely read  
and written during break mode without losing status flag information.  
Setting the BCFE bit enables the clearing mechanisms. Once cleared in  
break mode, a flag remains cleared even when break mode is exited.  
Status flags with a 2-step clearing mechanism — for example, a read of  
one register followed by the read or write of another — are protected,  
even when the first step is accomplished prior to entering break mode.  
Upon leaving break mode, execution of the second step will clear the flag  
as normal.  
Data Sheet  
158  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
System Integration Module (SIM)  
Freescale Semiconductor  
System Integration Module (SIM)  
Low-Power Modes  
9.7 Low-Power Modes  
Executing the WAIT or STOP instruction puts the MCU in a low power-  
consumption mode for standby situations. The SIM holds the CPU in a  
non-clocked state. The operation of each of these modes is described in  
the following subsections. Both STOP and WAIT clear the interrupt mask  
(I) in the condition code register, allowing interrupts to occur.  
9.7.1 Wait Mode  
In wait mode, the CPU clocks are inactive while the peripheral clocks  
continue to run. Figure 9-15 shows the timing for wait mode entry.  
A module that is active during wait mode can wake up the CPU with an  
interrupt if the interrupt is enabled. Stacking for the interrupt begins one  
cycle after the WAIT instruction during which the interrupt occurred. In  
wait mode, the CPU clocks are inactive. Refer to the wait mode  
subsection of each module to see if the module is active or inactive in  
wait mode. Some modules can be programmed to be active in wait  
mode.  
Wait mode also can be exited by a reset or break. A break interrupt  
during wait mode sets the SIM break stop/wait bit, SBSW, in the SIM  
break status register (SBSR). If the COP disable bit, COPD, in the mask  
option register is logic 0, then the computer operating properly module  
(COP) is enabled and remains active in wait mode.  
IAB  
IDB  
WAIT ADDR  
WAIT ADDR + 1  
SAME  
SAME  
PREVIOUS DATA  
NEXT OPCODE  
SAME  
SAME  
R/W  
NOTE: Previous data can be operand data or the WAIT opcode, depending on the  
last instruction.  
Figure 9-15. Wait Mode Entry Timing  
Figure 9-16 and Figure 9-17 show the timing for WAIT recovery.  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor System Integration Module (SIM)  
Data Sheet  
159  
System Integration Module (SIM)  
IAB  
$6E0B  
$A6  
$6E0C  
$00FF  
$00FE  
$00FD  
$00FC  
IDB  
$A6  
$A6  
$01  
$0B  
$6E  
EXITSTOPWAIT  
NOTE: EXITSTOPWAIT = RST pin OR CPU interrupt OR break interrupt  
Figure 9-16. Wait Recovery from Interrupt or Break  
32  
CYCLES  
32  
CYCLES  
IAB  
$6E0B  
$A6  
RST VCT H RST VCT L  
IDB $A6  
RST  
$A6  
ICLK  
Figure 9-17. Wait Recovery from Internal Reset  
9.7.2 Stop Mode  
In stop mode, the SIM counter is reset and the system clocks are  
disabled. An interrupt request from a module can cause an exit from stop  
mode. Stacking for interrupts begins after the selected stop recovery  
time has elapsed. Reset or break also causes an exit from stop mode.  
The SIM disables the clock generator module output (CGMOUT) in stop  
mode, stopping the CPU and peripherals. Stop recovery time is  
selectable using the SSREC bit in the configuration register 1  
(CONFIG1). If SSREC is set, stop recovery is reduced from the normal  
delay of 4096 ICLK cycles down to 32. This is ideal for applications using  
canned oscillators that do not require long start-up times from stop  
mode.  
NOTE: External crystal applications should use the full stop recovery time by  
clearing the SSREC bit.  
Data Sheet  
160  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
System Integration Module (SIM)  
Freescale Semiconductor  
System Integration Module (SIM)  
SIM Registers  
A break interrupt during stop mode sets the SIM break stop/wait bit  
(SBSW) in the SIM break status register (SBSR).  
The SIM counter is held in reset from the execution of the STOP  
instruction until the beginning of stop recovery. It is then used to time the  
recovery period. Figure 9-18 shows stop mode entry timing.  
NOTE: To minimize stop current, all pins configured as inputs should be driven  
to a logic 1 or logic 0.  
CPUSTOP  
IAB  
IDB  
STOP ADDR  
STOP ADDR + 1  
SAME  
SAME  
PREVIOUS DATA  
NEXT OPCODE  
SAME  
SAME  
R/W  
NOTE: Previous data can be operand data or the STOP opcode, depending on the last  
instruction.  
Figure 9-18. Stop Mode Entry Timing  
STOP RECOVERY PERIOD  
ICLK  
INT/BREAK  
IAB  
STOP + 2 STOP + 2  
SP  
SP – 1  
SP – 2  
SP – 3  
STOP +1  
Figure 9-19. Stop Mode Recovery from Interrupt or Break  
9.8 SIM Registers  
The SIM has three memory-mapped registers:  
• SIM Break Status Register (SBSR) — $FE00  
• SIM Reset Status Register (SRSR) — $FE01  
• SIM Break Flag Control Register (SBFCR) — $FE03  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor System Integration Module (SIM)  
Data Sheet  
161  
System Integration Module (SIM)  
9.8.1 SIM Break Status Register  
The SIM break status register (SBSR) contains a flag to indicate that a  
break caused an exit from stop mode or wait mode.  
Address: $FE00  
Bit 7  
R
6
5
4
3
2
1
SBSW  
Note  
0
Bit 0  
R
Read:  
Write:  
Reset:  
R
R
R
R
R
Note: Writing a logic 0 clears SBSW.  
R
= Reserved  
Figure 9-20. SIM Break Status Register (SBSR)  
SBSW — Break Wait Bit  
This status bit is set when a break interrupt causes an exit from wait  
mode or stop mode. Clear SBSW by writing a logic 0 to it. Reset clears  
SBSW.  
1 = Stop mode or wait mode was exited by break interrupt  
0 = Stop mode or wait mode was not exited by break interrupt  
SBSW can be read within the break interrupt routine. The user can  
modify the return address on the stack by subtracting 1 from it. The  
following code is an example.  
This code works if the H register has been pushed onto the stack in the break  
service routine software. This code should be executed at the end of the break  
service routine software.  
HIBYTE  
LOBYTE  
EQU  
EQU  
If not SBSW, do RTI  
BRCLR  
SBSW,SBSR, RETURN  
;See if wait mode or stop mode was exited by  
;break.  
TST  
BNE  
DEC  
DEC  
LOBYTE,SP  
DOLO  
;If RETURNLO is not zero,  
;then just decrement low byte.  
;Else deal with high byte, too.  
;Point to WAIT/STOP opcode.  
;Restore H register.  
HIBYTE,SP  
LOBYTE,SP  
DOLO  
RETURN  
PULH  
RTI  
Data Sheet  
162  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
System Integration Module (SIM)  
Freescale Semiconductor  
System Integration Module (SIM)  
SIM Registers  
9.8.2 SIM Reset Status Register  
This register contains six flags that show the source of the last reset  
provided all previous reset status bits have been cleared. Clear the SIM  
reset status register by reading it. A power-on reset sets the POR bit and  
clears all other bits in the register.  
Address: $FE01  
Bit 7  
POR  
6
5
4
3
2
0
1
Bit 0  
0
Read:  
Write:  
Reset:  
PIN  
COP  
ILOP  
ILAD  
LVI  
1
0
0
0
0
0
0
0
= Unimplemented  
Figure 9-21. SIM Reset Status Register (SRSR)  
POR — Power-On Reset Bit  
1 = Last reset caused by POR circuit  
0 = Read of SRSR  
PIN — External Reset Bit  
1 = Last reset caused by external reset pin (RST)  
0 = POR or read of SRSR  
COP — Computer Operating Properly Reset Bit  
1 = Last reset caused by COP counter  
0 = POR or read of SRSR  
ILOP — Illegal Opcode Reset Bit  
1 = Last reset caused by an illegal opcode  
0 = POR or read of SRSR  
ILAD — Illegal Address Reset Bit (opcode fetches only)  
1 = Last reset caused by an opcode fetch from an illegal address  
0 = POR or read of SRSR  
LVI — Low-Voltage Inhibit Reset Bit  
1 = Last reset caused by the LVI circuit  
0 = POR or read of SRSR  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor System Integration Module (SIM)  
Data Sheet  
163  
System Integration Module (SIM)  
9.8.3 SIM Break Flag Control Register  
The SIM break control register contains a bit that enables software to  
clear status bits while the MCU is in a break state.  
Address: $FE03  
Bit 7  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
BCFE  
R
R
R
R
R
R
0
R
= Reserved  
Figure 9-22. SIM Break Flag Control Register (SBFCR)  
BCFE — Break Clear Flag Enable Bit  
This read/write bit enables software to clear status bits by accessing  
status registers while the MCU is in a break state. To clear status bits  
during the break state, the BCFE bit must be set.  
1 = Status bits clearable during break  
0 = Status bits not clearable during break  
Data Sheet  
164  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
System Integration Module (SIM)  
Freescale Semiconductor  
Data Sheet — MC68HC908SR12•MC68HC08SR12  
Section 10. Monitor ROM (MON)  
10.1 Contents  
10.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165  
10.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166  
10.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166  
10.4.1 Entering Monitor Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . .168  
10.4.2 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .172  
10.4.3 Break Signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .172  
10.4.4 Baud Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173  
10.4.5 Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173  
10.5 Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .178  
10.2 Introduction  
This section describes the monitor ROM (MON) and the monitor mode  
entry methods. The monitor ROM allows complete testing of the MCU  
through a single-wire interface with a host computer. Monitor mode entry  
can be achieved without use of the higher test voltage, V  
, as long as  
TST  
vector addresses $FFFE and $FFFF are blank, thus reducing the  
hardware requirements for in-circuit programming.  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Monitor ROM (MON)  
Data Sheet  
165  
Monitor ROM (MON)  
10.3 Features  
Features of the monitor ROM include:  
• Normal user-mode pin functionality  
• One pin dedicated to serial communication between monitor ROM  
and host computer  
• Standard mark/space non-return-to-zero (NRZ) communication  
with host computer  
• Execution of code in RAM or FLASH  
1
• FLASH memory security feature  
• FLASH memory programming interface  
• Enhanced PLL (phase-locked loop) option to allow use of external  
32.768-kHz crystal to generate internal frequency of 2.4576 MHz  
• 368 bytes monitor ROM code size ($FE10 to $FF7F)  
• Monitor mode entry without high voltage, V  
blank ($FFFE and $FFFF contain $FF)  
, if reset vector is  
TST  
• Standard monitor mode entry if high voltage, V  
IRQ1  
, is applied to  
TST  
10.4 Functional Description  
The monitor ROM receives and executes commands from a host  
computer. Figure 10-1 shows an example circuit used to enter monitor  
mode and communicate with a host computer via a standard RS-232  
interface.  
Simple monitor commands can access any memory address. In monitor  
mode, the MCU can execute code downloaded into RAM by a host  
computer while most MCU pins retain normal operating mode functions.  
All communication between the host computer and the MCU is through  
the PTA0 pin. A level-shifting and multiplexing interface is required  
between PTA0 and the host computer. PTA0 is used in a wired-OR  
configuration and requires a pullup resistor.  
1. No security feature is absolutely secure. However, Freescale’s strategy is to make reading or  
copying the FLASH difficult for unauthorized users.  
Data Sheet  
166  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Monitor ROM (MON)  
Freescale Semiconductor  
Monitor ROM (MON)  
Functional Description  
68HC908SR12  
RST  
0.1 µF  
VTST  
(SEE NOTE 3)  
RESET VECTORS  
$FFFE  
10 kΩ  
(SEE NOTES 2  
AND 3)  
$FFFF  
C
D
SW2  
IRQ1  
CGMXFC  
4.9152MHz/9.8304MHz  
10 k  
0.033 µF  
SW3  
C
C
OSC1  
OSC2  
(SEE NOTE 2)  
6–30 pF  
1
20  
MC145407  
D
+
+
+
+
10  
10  
µ
F
F
10 µF  
SW4  
(SEE NOTE 2)  
3
4
18  
17  
VSS  
32.768 kHz XTAL  
VSSA  
VSSAM  
VREFL  
330 k  
D
VDD  
6–30 pF  
10 µF  
µ
2
19  
VDD  
DB-25  
2
5
6
16  
15  
VDD  
3
7
VDDA  
VREFH  
0.1 µF  
VDD  
VDD  
10 k  
1
2
6
4
14  
3
MC74HC125  
PTA0  
PTC1  
5
VDD  
VDD  
7
A
(SEE NOTE 1)  
PTA1  
PTA2  
SW1  
B
Notes:  
1. For monitor mode entry when SW2 at position C (IRQ1 = VTST):  
SW1: Position A — Bus clock = CGMXCLK ÷ 4  
SW1: Position B — Bus clock = CGMXCLK ÷ 2  
2. SW2, SW3, and SW4: Position C — Enter monitor mode using off-chip oscillator only.  
SW2, SW3, and SW4: Position D — Enter monitor mode using 32.768kHz XTAL and internal PLL.  
3. See Table 24-5 for IRQ1 voltage level requirements.  
4. See Table 10-1 for other monitor mode entry configurations.  
Figure 10-1. Monitor Mode Circuit  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Monitor ROM (MON)  
Data Sheet  
167  
Monitor ROM (MON)  
The monitor code allows enabling the PLL to generate the internal clock,  
provided the reset vector is blank ($FF), when the device is being  
clocked by a low-frequency crystal. This entry method, which is enabled  
when IRQ1 is held low out of reset, is intended to support serial  
communication/programming at 9600 baud in monitor mode by stepping  
up the external frequency (assumed to be 32.768 kHz) by a fixed amount  
to generate the desired internal frequency (2.4576 MHz).  
If the reset vector is not blank (not $FF), the frequency stepping feature  
is not supported, because IRQ1 cannot be held low for monitor mode  
entry. With a non-blank reset vector, entry into monitor mode requires  
V
on IRQ1.  
TST  
10.4.1 Entering Monitor Mode  
Table 10-1 shows the pin conditions for entering monitor mode. As  
specified in the table, monitor mode may be entered after a POR and will  
allow communication at 9600 baud provided one of the following sets of  
conditions is met:  
1. If $FFFE and $FFFF do not contain $FF (programmed state):  
– The external clock is 4.9152 MHz with PTC1 low or  
9.8304 MHz with PTC1 high  
– IRQ1 = V  
(PLL off)  
TST  
2. If $FFFE and $FFFF both contain $FF (erased state):  
– The external clock is 9.8304 MHz  
– IRQ1 = V (this can be implemented through the internal  
DD  
IRQ1 pullup; PLL off)  
3. If $FFFE and $FFFF both contain $FF (erased state):  
– The external clock is 32.768 kHz (crystal)  
– IRQ1 = V (this setting initiates the PLL to boost the external  
SS  
32.768 kHz to an internal bus frequency of 2.4576 MHz)  
Data Sheet  
168  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Monitor ROM (MON)  
Freescale Semiconductor  
Table 10-1. Monitor Mode Signal Requirements and Options  
Address  
$FFFE/  
$FFFF  
External  
Clock  
Bus  
Frequency  
Baud  
Rate  
IRQ1  
RST  
PTA2  
PTA1 PTA0(1) PTC1  
PLL  
COP  
Comment  
X
GND  
X
X
X
1
X
1
X
0
X
0
X
Disabled  
0
No operation until  
reset goes high  
VTST  
VDD  
X
0
0
4.9152  
MHz(2)  
2.4576  
MHz  
OFF  
OFF  
Disabled  
Disabled  
9600  
PTA1 and PTA2  
voltages only  
required if  
or  
VTST  
IRQ1 = VTST  
;
PTC1 determines  
frequency divider  
VTST  
VDD  
X
1
1
1
9.8304  
MHz(2)  
2.4576  
MHz  
9600  
PTA1 and PTA2  
voltages only  
required if  
or  
VTST  
IRQ1 = VTST  
;
PTC1 determines  
frequency divider  
VDD  
VDD  
Blank  
"$FFFF"  
X
X
X
X
1
1
X
X
9.8304  
MHz(3)  
2.4576  
MHz  
OFF  
ON  
Disabled  
Disabled  
9600  
9600  
External frequency  
always divided by 4  
GND  
VDD  
Blank  
"$FFFF"  
32.768  
kHz(3)  
2.4576  
MHz  
PLL enabled  
(BCS set)  
in monitor code  
VDD  
or  
VTST  
Blank  
"$FFFF"  
X
X
X
X
X
X
X
X
X
OFF  
OFF  
Enabled  
Enabled  
Enters user  
mode — will  
encounter an illegal  
address reset  
GND  
VDD  
VDD  
Not Blank  
X
Enters user mode  
or  
or  
GND  
VTST  
Notes:  
1. PTA0 = 1 if serial communication; PTA0 = 0 if parallel communication (factory use only)  
2. When IRQ1 = VTST, external clock must be derived by a 4.9152MHz or 9.8304MHz off-chip oscillator.  
3. External clock is derived by a crystal or an off-chip oscillator.  
Monitor ROM (MON)  
If V  
is applied to IRQ1 and PTC1 is low upon monitor mode entry  
TST  
(above condition set 1), the bus frequency is a divide-by-two of the input  
clock. If PTC1 is high with V applied to IRQ1 upon monitor mode  
TST  
entry, the bus frequency will be a divide-by-four of the input clock.  
Holding the PTC1 pin low when entering monitor mode causes a bypass  
of a divide-by-two stage at the oscillator only if V  
is applied to IRQ1.  
TST  
In this event, the CGMOUT frequency is equal to the CGMXCLK  
frequency, and the OSC1 input directly generates internal bus clocks. In  
this case, the OSC1 signal must have a 50% duty cycle at maximum bus  
frequency.  
If entering monitor mode without high voltage on IRQ1 (above condition  
set 2 or 3, where applied voltage is either V or V ), then all port A pin  
DD  
SS  
requirements and conditions, including the PTC1 frequency divisor  
selection, are not in effect. This is to reduce circuit requirements when  
performing in-circuit programming.  
NOTE: If the reset vector is blank and monitor mode is entered, the chip will see  
an additional reset cycle after the initial POR reset. Once the part has  
been programmed, the traditional method of applying a voltage, V  
IRQ1 must be used to enter monitor mode.  
, to  
TST  
The COP module is disabled in monitor mode based on these  
conditions:  
• If monitor mode was entered as a result of the reset vector being  
blank (above condition set 2 or 3), the COP is always disabled  
regardless of the state of IRQ1 or RST.  
• If monitor mode was entered with V  
on IRQ1 (condition set 1),  
TST  
then the COP is disabled as long as V  
or RST.  
is applied to either IRQ1  
TST  
The second condition states that as long as V  
is maintained on the  
TST  
IRQ1 pin after entering monitor mode, or if V  
is applied to RST after  
TST  
the initial reset to get into monitor mode (when V  
was applied to  
TST  
IRQ1), then the COP will be disabled. In the latter situation, after V  
is  
TST  
applied to the RST pin, V  
can be removed from the IRQ1 pin in the  
TST  
interest of freeing the IRQ1 for normal functionality in monitor mode.  
Data Sheet  
170  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Monitor ROM (MON) Freescale Semiconductor  
Monitor ROM (MON)  
Functional Description  
Figure 10-2 shows a simplified diagram of the monitor mode entry when  
the reset vector is blank and just 1 x V voltage is applied to the IRQ1  
DD  
pin. An external oscillator of 9.8304 MHz is required for a baud rate of  
9600, as the internal bus frequency is automatically set to the external  
frequency divided by four.  
POR RESET  
NO  
NORMAL USER  
MODE  
IS VECTOR  
BLANK?  
YES  
MONITOR MODE  
EXECUTE  
MONITOR  
CODE  
POR  
TRIGGERED?  
NO  
YES  
Figure 10-2. Low-Voltage Monitor Mode Entry Flowchart  
Enter monitor mode with pin configuration shown in Figure 10-1 by  
pulling RST low and then high. The rising edge of RST latches monitor  
mode. Once monitor mode is latched, the values on the specified pins  
can change.  
Once out of reset, the MCU waits for the host to send eight security  
bytes. (See 10.5 Security.) After the security bytes, the MCU sends a  
break signal (10 consecutive logic 0s) to the host, indicating that it is  
ready to receive a command.  
In monitor mode, the MCU uses different vectors for reset, SWI  
(software interrupt), and break interrupt than those for user mode. The  
alternate vectors are in the $FE page instead of the $FF page and allow  
code execution from the internal monitor firmware instead of user code.  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Monitor ROM (MON)  
Data Sheet  
171  
Monitor ROM (MON)  
NOTE: Exiting monitor mode after it has been initiated by having a blank reset  
vector requires a power-on reset (POR). Pulling RST low will not exit  
monitor mode in this situation.  
Table 10-2 summarizes the differences between user mode and monitor  
mode.  
Table 10-2. Mode Differences  
Functions  
Modes  
Reset  
Vector  
High  
Reset  
Vector  
Low  
Break  
Vector  
High  
Break  
Vector  
Low  
SWI  
Vector  
High  
SWI  
Vector  
Low  
User  
$FFFE  
$FEFE  
$FFFF  
$FEFF  
$FFFC  
$FEFC  
$FFFD  
$FEFD  
$FFFC  
$FEFC  
$FFFD  
$FEFD  
Monitor  
10.4.2 Data Format  
Communication with the monitor ROM is in standard non-return-to-zero  
(NRZ) mark/space data format. Transmit and receive baud rates must  
be identical.  
NEXT  
START  
BIT  
START  
BIT  
STOP  
BIT  
BIT 0 BIT 1 BIT 2 BIT 3 BIT 4 BIT 5 BIT 6 BIT 7  
Figure 10-3. Monitor Data Format  
10.4.3 Break Signal  
A start bit (logic 0) followed by nine logic 0 bits is a break signal. When  
the monitor receives a break signal, it drives the PTA0 pin high for the  
duration of two bits and then echoes back the break signal.  
MISSING STOP BIT  
2-STOP BIT DELAY BEFORE ZERO ECHO  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
Figure 10-4. Break Transaction  
Data Sheet  
172  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Monitor ROM (MON) Freescale Semiconductor  
Monitor ROM (MON)  
Functional Description  
10.4.4 Baud Rate  
The communication baud rate is controlled by the crystal frequency and  
the state of the PTC1 pin (when IRQ1 is set to V  
) upon entry into  
TST  
monitor mode. When PTC1 is high, the divide by ratio is 1024. If the  
PTC1 pin is at logic 0 upon entry into monitor mode, the divide by ratio  
is 512.  
If monitor mode was entered with V on IRQ1, then the divide by ratio  
DD  
is set at 1024, regardless of PTC1. If monitor mode was entered with V  
SS  
on IRQ, then the internal PLL steps up the external frequency, presumed  
to be 32.768 kHz, to 2.4576 MHz. These latter two conditions for monitor  
mode entry require that the reset vector is blank.  
Table 10-3 lists external frequencies required to achieve a standard  
baud rate of 9600 BPS. Other standard baud rates can be accomplished  
using proportionally higher or lower frequency generators. If using a  
crystal as the clock source, be aware of the upper frequency limit that the  
internal clock module can handle. See 24.6 5.0V DC Electrical  
Characteristics and 24.8 5.0V Control Timing for this limit.  
Table 10-3. Monitor Baud Rate Selection  
External  
Frequency  
Internal  
Frequency  
Baud Rate  
(BPS)  
IRQ1  
PTC1  
V
4.9152 MHz  
9.8304 MHz  
9.8304 MHz  
32.768 kHz  
0
1
2.4576 MHz  
2.4576 MHz  
2.4576 MHz  
2.4576 MHz  
9600  
9600  
9600  
9600  
TST  
V
TST  
V
X
X
DD  
V
SS  
10.4.5 Commands  
The monitor ROM firmware uses these commands:  
• READ (read memory)  
• WRITE (write memory)  
• IREAD (indexed read)  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Monitor ROM (MON)  
Data Sheet  
173  
Monitor ROM (MON)  
• IWRITE (indexed write)  
• READSP (read stack pointer)  
• RUN (run user program)  
The monitor ROM firmware echoes each received byte back to the PTA0  
pin for error checking. An 11-bit delay at the end of each command  
allows the host to send a break character to cancel the command. A  
delay of two bit times occurs before each echo and before READ,  
IREAD, or READSP data is returned. The data returned by a read  
command appears after the echo of the last byte of the command.  
NOTE: Wait one bit time after each echo before sending the next byte.  
FROM  
HOST  
ADDRESS  
HIGH  
ADDRESS  
HIGH  
ADDRESS  
LOW  
ADDRESS  
LOW  
READ  
READ  
DATA  
4
4
1
1
4
1
3, 2  
4
ECHO  
RETURN  
Notes:  
1 = Echo delay, 2 bit times  
2 = Data return delay, 2 bit times  
3 = Cancel command delay, 11 bit times  
4 = Wait 1 bit time before sending next byte.  
Figure 10-5. Read Transaction  
FROM  
HOST  
ADDRESS  
HIGH  
ADDRESS  
HIGH  
ADDRESS  
LOW  
ADDRESS  
LOW  
DATA  
DATA  
WRITE  
WRITE  
3
3
1
1
3
1
3
1
2, 3  
ECHO  
Notes:  
1 = Echo delay, 2 bit times  
2 = Cancel command delay, 11 bit times  
3 = Wait 1 bit time before sending next byte.  
Figure 10-6. Write Transaction  
Data Sheet  
174  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Monitor ROM (MON) Freescale Semiconductor  
Monitor ROM (MON)  
Functional Description  
A brief description of each monitor mode command is given in  
Table 10-4 through Table 10-9.  
Table 10-4. READ (Read Memory) Command  
Description Read byte from memory  
Operand  
2-byte address in high-byte:low-byte order  
Data  
Returned  
Returns contents of specified address  
Opcode  
$4A  
Command Sequence  
SENT TO  
MONITOR  
ADDRESS  
HIGH  
ADDRESS  
HIGH  
ADDRESS  
LOW  
ADDRESS  
LOW  
READ  
READ  
DATA  
ECHO  
RETURN  
Table 10-5. WRITE (Write Memory) Command  
Description Write byte to memory  
2-byte address in high-byte:low-byte order; low byte followed by  
data byte  
Operand  
Data  
Returned  
None  
Opcode  
$49  
Command Sequence  
FROM  
HOST  
ADDRESS  
HIGH  
ADDRESS  
HIGH  
ADDRESS  
LOW  
ADDRESS  
LOW  
DATA  
DATA  
WRITE  
ECHO  
WRITE  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Monitor ROM (MON)  
Data Sheet  
175  
Monitor ROM (MON)  
Table 10-6. IREAD (Indexed Read) Command  
Description Read next 2 bytes in memory from last address accessed  
Operand  
2-byte address in high byte:low byte order  
Returns contents of next two addresses  
Data  
Returned  
Opcode  
$1A  
Command Sequence  
FROM  
HOST  
IREAD  
IREAD  
DATA  
DATA  
ECHO  
RETURN  
Table 10-7. IWRITE (Indexed Write) Command  
Description Write to last address accessed + 1  
Operand  
Single data byte  
Data  
None  
$19  
Returned  
Opcode  
Command Sequence  
FROM  
HOST  
DATA  
DATA  
IWRITE  
IWRITE  
ECHO  
Data Sheet  
176  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Monitor ROM (MON) Freescale Semiconductor  
Monitor ROM (MON)  
Functional Description  
A sequence of IREAD or IWRITE commands can access a block of  
memory sequentially over the full 64k-byte memory map.  
Table 10-8. READSP (Read Stack Pointer) Command  
Description Reads stack pointer  
Operand  
None  
Returns incremented stack pointer value (SP + 1) in high-byte:low-  
byte order  
Data  
Returned  
Opcode  
$0C  
Command Sequence  
FROM  
HOST  
SP  
HIGH  
SP  
LOW  
READSP  
READSP  
ECHO  
RETURN  
Table 10-9. RUN (Run User Program) Command  
Description Executes PULH and RTI instructions  
Operand  
None  
None  
$28  
Data  
Returned  
Opcode  
Command Sequence  
FROM  
HOST  
RUN  
RUN  
ECHO  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Monitor ROM (MON)  
Data Sheet  
177  
Monitor ROM (MON)  
The MCU executes the SWI and PSHH instructions when it enters  
monitor mode. The RUN command tells the MCU to execute the PULH  
and RTI instructions. Before sending the RUN command, the host can  
modify the stacked CPU registers to prepare to run the host program.  
The READSP command returns the incremented stack pointer value,  
SP + 1. The high and low bytes of the program counter are at addresses  
SP + 5 and SP + 6.  
SP  
HIGH BYTE OF INDEX REGISTER  
CONDITION CODE REGISTER  
ACCUMULATOR  
SP + 1  
SP + 2  
SP + 3  
SP + 4  
LOW BYTE OF INDEX REGISTER  
HIGH BYTE OF PROGRAM COUNTER SP + 5  
LOW BYTE OF PROGRAM COUNTER SP + 6  
SP + 7  
Figure 10-7. Stack Pointer at Monitor Mode Entry  
10.5 Security  
A security feature discourages unauthorized reading of FLASH locations  
while in monitor mode. The host can bypass the security feature at  
monitor mode entry by sending eight security bytes that match the bytes  
at locations $FFF6–$FFFD. Locations $FFF6–$FFFD contain user-  
defined data.  
NOTE: Do not leave locations $FFF6–$FFFD blank. For security reasons,  
program locations $FFF6–$FFFD even if they are not used for vectors.  
During monitor mode entry, the MCU waits after the power-on reset for  
the host to send the eight security bytes on pin PTA0. If the received  
bytes match those at locations $FFF6–$FFFD, the host bypasses the  
security feature and can read all FLASH locations and execute code  
from FLASH. Security remains bypassed until a power-on reset occurs.  
If the reset was not a power-on reset, security remains bypassed and  
security code entry is not required. (See Figure 10-8.)  
Data Sheet  
178  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Monitor ROM (MON)  
Freescale Semiconductor  
Monitor ROM (MON)  
Security  
VDD  
RST  
4096 + 32 ICLK CYCLES  
256 BUS CYCLES (MINIMUM)  
FROM HOST  
FROM MCU  
PTA0  
1
1
4
1
4
2
1
NOTES:  
1 = Echo delay, 2 bit times.  
2 = Data return delay, 2 bit times.  
4 = Wait 1 bit time before sending next byte.  
Figure 10-8. Monitor Mode Entry Timing  
Upon power-on reset, if the received bytes of the security code do not  
match the data at locations $FFF6–$FFFD, the host fails to bypass the  
security feature. The MCU remains in monitor mode, but reading a  
FLASH location returns an invalid value and trying to execute code from  
FLASH causes an illegal address reset. After receiving the eight security  
bytes from the host, the MCU transmits a break character, signifying that  
it is ready to receive a command.  
NOTE: The MCU does not transmit a break character until after the host sends  
the eight security bits.  
To determine whether the security code entered is correct, check to see  
if bit 6 of RAM address $40 is set. If it is, then the correct security code  
has been entered and FLASH can be accessed.  
If the security sequence fails, the device should be reset by a power-on  
reset and brought up in monitor mode to attempt another entry. After  
failing the security sequence, the FLASH module can also be mass  
erased by executing an erase routine that was downloaded into internal  
RAM. The mass erase operation clears the security code locations so  
that all eight security bytes become $FF (blank).  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Monitor ROM (MON)  
Data Sheet  
179  
Monitor ROM (MON)  
Data Sheet  
180  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Monitor ROM (MON) Freescale Semiconductor  
Data Sheet — MC68HC908SR12•MC68HC08SR12  
Section 11. Timer Interface Module (TIM)  
11.1 Contents  
11.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .182  
11.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .182  
11.4 Pin Name Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183  
11.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183  
11.5.1 TIM Counter Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . .187  
11.5.2 Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187  
11.5.3 Output Compare. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .188  
11.5.3.1  
11.5.3.2  
Unbuffered Output Compare . . . . . . . . . . . . . . . . . . . . .188  
Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . .189  
11.5.4 Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . .189  
11.5.4.1  
11.5.4.2  
11.5.4.3  
Unbuffered PWM Signal Generation . . . . . . . . . . . . . . .190  
Buffered PWM Signal Generation . . . . . . . . . . . . . . . . .191  
PWM Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192  
11.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193  
11.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193  
11.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .194  
11.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .194  
11.8 TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . .194  
11.9 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .195  
11.10 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .195  
11.10.1 TIM Status and Control Register . . . . . . . . . . . . . . . . . . . .196  
11.10.2 TIM Counter Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . .198  
11.10.3 TIM Counter Modulo Registers . . . . . . . . . . . . . . . . . . . . .199  
11.10.4 TIM Channel Status and Control Registers . . . . . . . . . . . .200  
11.10.5 TIM Channel Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . .203  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Timer Interface Module (TIM)  
Data Sheet  
181  
Timer Interface Module (TIM)  
11.2 Introduction  
This section describes the timer interface (TIM) module. The TIM is a  
two-channel timer that provides a timing reference with input capture,  
output compare, and pulse-width-modulation functions. Figure 11-1 is a  
block diagram of the TIM.  
This particular MCU has two timer interface modules which are denoted  
as TIM1 and TIM2.  
11.3 Features  
Features of the TIM include:  
• Two input capture/output compare channels:  
– Rising-edge, falling-edge, or any-edge input capture trigger  
– Set, clear, or toggle output compare action  
• Buffered and unbuffered pulse-width-modulation (PWM) signal  
generation  
• Programmable TIM clock input with 7-frequency internal bus clock  
prescaler selection  
• Free-running or modulo up-count operation  
• Toggle any channel pin on overflow  
• TIM counter stop and reset bits  
Data Sheet  
182  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Timer Interface Module (TIM)  
Freescale Semiconductor  
Timer Interface Module (TIM)  
Pin Name Conventions  
11.4 Pin Name Conventions  
The text that follows describes both timers, TIM1 and TIM2. The TIM  
input/output (I/O) pin names are T[1,2]CH0 (timer channel 0) and  
T[1,2]CH1 (timer channel 1), where “1” is used to indicate TIM1 and “2”  
is used to indicate TIM2. The two TIMs share four I/O pins with four I/O  
port pins. The full names of the TIM I/O pins are listed in  
Table 11-1. The generic pin names appear in the text that follows.  
Table 11-1. Pin Name Conventions  
TIM Generic Pin Names:  
T[1,2]CH0  
PTA6/T1CH0  
PTB4/T2CH0  
T[1,2]CH1  
PTA7/T1CH1  
PTB5/T2CH1  
TIM1  
Full TIM  
Pin Names:  
TIM2  
NOTE: References to either timer 1 or timer 2 may be made in the following text  
by omitting the timer number. For example, TCH0 may refer generically  
to T1CH0 and T2CH0, and TCH1 may refer to T1CH1 and T2CH1.  
11.5 Functional Description  
Figure 11-1 shows the structure of the TIM. The central component of  
the TIM is the 16-bit TIM counter that can operate as a free-running  
counter or a modulo up-counter. The TIM counter provides the timing  
reference for the input capture and output compare functions. The TIM  
counter modulo registers, TMODH:TMODL, control the modulo value of  
the TIM counter. Software can read the TIM counter value at any time  
without affecting the counting sequence.  
The two TIM channels (per timer) are programmable independently as  
input capture or output compare channels.  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Timer Interface Module (TIM)  
Data Sheet  
183  
Timer Interface Module (TIM)  
PRESCALER SELECT  
INTERNAL  
PRESCALER  
BUS CLOCK  
TSTOP  
TRST  
PS2  
PS1  
PS0  
16-BIT COUNTER  
TOF  
INTERRUPT  
LOGIC  
TOIE  
16-BIT COMPARATOR  
TMODH:TMODL  
TOV0  
CH0MAX  
ELS0B  
ELS0A  
PORT  
LOGIC  
CHANNEL 0  
T[1,2]CH0  
16-BIT COMPARATOR  
TCH0H:TCH0L  
CH0F  
INTERRUPT  
LOGIC  
16-BIT LATCH  
MS0A  
CH0IE  
MS0B  
CH1F  
TOV1  
ELS1B  
ELS1A  
PORT  
LOGIC  
CHANNEL 1  
16-BIT COMPARATOR  
TCH1H:TCH1L  
CH1MAX  
T[1,2]CH1  
INTERRUPT  
LOGIC  
16-BIT LATCH  
MS1A  
CH1IE  
Figure 11-1. TIM Block Diagram  
Figure 11-2 summarizes the timer registers.  
NOTE: References to either timer 1 or timer 2 may be made in the following text  
by omitting the timer number. For example, TSC may generically refer to  
both T1SC and T2SC.  
Data Sheet  
184  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Timer Interface Module (TIM)  
Freescale Semiconductor  
Timer Interface Module (TIM)  
Functional Description  
Addr.  
Register Name  
Bit 7  
TOF  
0
6
5
4
0
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
0
TOIE  
TSTOP  
PS2  
PS1  
PS0  
Timer 1 Status and Control  
Register (T1SC)  
$0020  
TRST  
0
0
0
1
0
0
0
9
0
Read: Bit 15  
Write:  
14  
13  
12  
11  
10  
Bit 8  
Timer 1 Counter Register  
High (T1CNTH)  
$0021  
$0022  
$0023  
$0024  
$0025  
$0026  
$0027  
$0028  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
0
0
6
0
5
0
4
0
3
0
2
0
1
0
Bit 7  
Bit 0  
Timer 1 Counter Register  
Low (T1CNTL)  
0
Bit 15  
1
0
0
0
0
0
0
0
14  
13  
12  
11  
10  
9
Bit 8  
Timer 1 Counter Modulo  
Register High (T1MODH)  
1
1
1
1
1
1
1
Bit 0  
1
Bit 7  
1
6
1
5
1
4
1
3
2
1
Timer 1 Counter Modulo  
Register Low (T1MODL)  
1
ELS0B  
0
1
ELS0A  
0
1
TOV0  
0
Read: CH0F  
Timer 1 Channel 0 Status  
and Control Register Write:  
CH0IE  
0
MS0B  
0
MS0A  
0
CH0MAX  
0
0
0
(T1SC0)  
Reset:  
Read:  
Bit 15  
14  
13  
12  
11  
10  
9
Bit 8  
Timer 1 Channel 0  
Write:  
Register High (T1CH0H)  
Reset:  
Read:  
Indeterminate after reset  
Bit 7  
6
5
4
3
2
1
Bit 0  
Timer 1 Channel 0  
Write:  
Register Low (T1CH0L)  
Reset:  
Indeterminate after reset  
Read: CH1F  
Timer 1 Channel 1 Status  
and Control Register Write:  
0
0
CH1IE  
0
MS1A  
0
ELS1B  
0
ELS1A  
0
TOV1  
0
CH1MAX  
0
0
0
(T1SC1)  
Reset:  
= Unimplemented  
Figure 11-2. TIM I/O Register Summary (Sheet 1 of 3)  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Timer Interface Module (TIM)  
Data Sheet  
185  
Timer Interface Module (TIM)  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Bit 15  
14  
13  
12  
11  
10  
9
Bit 8  
Timer 1 Channel 1  
Register High (T1CH1H)  
$0029  
Indeterminate after reset  
Bit 7  
6
5
4
3
2
1
Bit 0  
PS0  
Timer 1 Channel 1  
Register Low (T1CH1L)  
$002A  
$002B  
$002C  
$002D  
$002E  
$002F  
$0030  
$0031  
Indeterminate after reset  
TOF  
0
TRST  
0
0
TOIE  
TSTOP  
PS2  
PS1  
Timer 2 Status and Control  
Register (T2SC)  
0
0
0
1
0
0
0
9
0
Read: Bit 15  
Write:  
14  
13  
12  
11  
10  
Bit 8  
Timer 2 Counter Register  
High (T2CNTH)  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
0
0
6
0
5
0
4
0
3
0
2
0
1
0
Bit 7  
Bit 0  
Timer 2 Counter Register  
Low (T2CNTL)  
0
Bit 15  
1
0
0
0
0
0
0
0
14  
13  
12  
11  
10  
9
Bit 8  
Timer 2 Counter Modulo  
Register High (T2MODH)  
1
1
1
1
1
1
1
Bit 0  
1
Bit 7  
1
6
1
5
1
4
1
3
2
1
Timer 2 Counter Modulo  
Register Low (T2MODL)  
1
ELS0B  
0
1
ELS0A  
0
1
TOV0  
0
Read: CH0F  
Timer 2 Channel 0 Status  
and Control Register Write:  
CH0IE  
0
MS0B  
0
MS0A  
0
CH0MAX  
0
0
0
(T2SC0)  
Reset:  
Read:  
Bit 15  
14  
13  
12  
11  
10  
9
Bit 8  
Timer 2 Channel 0  
Write:  
Register High (T2CH0H)  
Reset:  
Indeterminate after reset  
= Unimplemented  
Figure 11-2. TIM I/O Register Summary (Sheet 2 of 3)  
Data Sheet  
186  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Timer Interface Module (TIM) Freescale Semiconductor  
Timer Interface Module (TIM)  
Functional Description  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Bit 7  
6
5
4
3
2
1
Bit 0  
Timer 2 Channel 0  
Register Low (T2CH0L)  
$0032  
Indeterminate after reset  
Read: CH1F  
0
Timer 2 Channel 1 Status  
and Control Register Write:  
CH1IE  
MS1A  
0
ELS1B  
ELS1A  
TOV1  
CH1MAX  
$0033  
$0034  
$0035  
0
0
(T2SC1)  
Reset:  
0
0
0
0
0
9
0
Read:  
Bit 15  
14  
13  
12  
11  
10  
Bit 8  
Timer 2 Channel 1  
Write:  
Register High (T2CH1H)  
Reset:  
Indeterminate after reset  
Read:  
Bit 7  
6
5
4
3
2
1
Bit 0  
Timer 2 Channel 1  
Write:  
Register Low (T2CH1L)  
Reset:  
Indeterminate after reset  
= Unimplemented  
Figure 11-2. TIM I/O Register Summary (Sheet 3 of 3)  
11.5.1 TIM Counter Prescaler  
The TIM clock source can be one of the seven prescaler outputs. The  
prescaler generates seven clock rates from the internal bus clock. The  
prescaler select bits, PS[2:0], in the TIM status and control register  
select the TIM clock source.  
11.5.2 Input Capture  
With the input capture function, the TIM can capture the time at which an  
external event occurs. When an active edge occurs on the pin of an input  
capture channel, the TIM latches the contents of the TIM counter into the  
TIM channel registers, TCHxH:TCHxL. The polarity of the active edge is  
programmable. Input captures can generate TIM CPU interrupt  
requests.  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Timer Interface Module (TIM)  
Data Sheet  
187  
Timer Interface Module (TIM)  
11.5.3 Output Compare  
With the output compare function, the TIM can generate a periodic pulse  
with a programmable polarity, duration, and frequency. When the  
counter reaches the value in the registers of an output compare channel,  
the TIM can set, clear, or toggle the channel pin. Output compares can  
generate TIM CPU interrupt requests.  
11.5.3.1 Unbuffered Output Compare  
Any output compare channel can generate unbuffered output compare  
pulses as described in 11.5.3 Output Compare. The pulses are  
unbuffered because changing the output compare value requires writing  
the new value over the old value currently in the TIM channel registers.  
An unsynchronized write to the TIM channel registers to change an  
output compare value could cause incorrect operation for up to two  
counter overflow periods. For example, writing a new value before the  
counter reaches the old value but after the counter reaches the new  
value prevents any compare during that counter overflow period. Also,  
using a TIM overflow interrupt routine to write a new, smaller output  
compare value may cause the compare to be missed. The TIM may pass  
the new value before it is written.  
Use the following methods to synchronize unbuffered changes in the  
output compare value on channel x:  
• When changing to a smaller value, enable channel x output  
compare interrupts and write the new value in the output compare  
interrupt routine. The output compare interrupt occurs at the end  
of the current output compare pulse. The interrupt routine has until  
the end of the counter overflow period to write the new value.  
• When changing to a larger output compare value, enable TIM  
overflow interrupts and write the new value in the TIM overflow  
interrupt routine. The TIM overflow interrupt occurs at the end of  
the current counter overflow period. Writing a larger value in an  
output compare interrupt routine (at the end of the current pulse)  
could cause two output compares to occur in the same counter  
overflow period.  
Data Sheet  
188  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Timer Interface Module (TIM)  
Freescale Semiconductor  
Timer Interface Module (TIM)  
Functional Description  
11.5.3.2 Buffered Output Compare  
Channels 0 and 1 can be linked to form a buffered output compare  
channel whose output appears on the TCH0 pin. The TIM channel  
registers of the linked pair alternately control the output.  
Setting the MS0B bit in TIM channel 0 status and control register (TSC0)  
links channel 0 and channel 1. The output compare value in the TIM  
channel 0 registers initially controls the output on the TCH0 pin. Writing  
to the TIM channel 1 registers enables the TIM channel 1 registers to  
synchronously control the output after the TIM overflows. At each  
subsequent overflow, the TIM channel registers (0 or 1) that control the  
output are the ones written to last. TSC0 controls and monitors the  
buffered output compare function, and TIM channel 1 status and control  
register (TSC1) is unused. While the MS0B bit is set, the channel 1 pin,  
TCH1, is available as a general-purpose I/O pin.  
NOTE: In buffered output compare operation, do not write new output compare  
values to the currently active channel registers. User software should  
track the currently active channel to prevent writing a new value to the  
active channel. Writing to the active channel registers is the same as  
generating unbuffered output compares.  
11.5.4 Pulse Width Modulation (PWM)  
By using the toggle-on-overflow feature with an output compare channel,  
the TIM can generate a PWM signal. The value in the TIM counter  
modulo registers determines the period of the PWM signal. The channel  
pin toggles when the counter reaches the value in the TIM counter  
modulo registers. The time between overflows is the period of the PWM  
signal.  
As Figure 11-3 shows, the output compare value in the TIM channel  
registers determines the pulse width of the PWM signal. The time  
between overflow and output compare is the pulse width. Program the  
TIM to clear the channel pin on output compare if the state of the PWM  
pulse is logic 1. Program the TIM to set the pin if the state of the PWM  
pulse is logic 0.  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Timer Interface Module (TIM)  
Data Sheet  
189  
Timer Interface Module (TIM)  
The value in the TIM counter modulo registers and the selected  
prescaler output determines the frequency of the PWM output. The  
frequency of an 8-bit PWM signal is variable in 256 increments. Writing  
$00FF (255) to the TIM counter modulo registers produces a PWM  
period of 256 times the internal bus clock period if the prescaler select  
value is $000. See 11.10.1 TIM Status and Control Register.  
OVERFLOW  
OVERFLOW  
OVERFLOW  
PERIOD  
PULSE  
WIDTH  
TCHx  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
Figure 11-3. PWM Period and Pulse Width  
The value in the TIM channel registers determines the pulse width of the  
PWM output. The pulse width of an 8-bit PWM signal is variable in 256  
increments. Writing $0080 (128) to the TIM channel registers produces  
a duty cycle of 128/256 or 50%.  
11.5.4.1 Unbuffered PWM Signal Generation  
Any output compare channel can generate unbuffered PWM pulses as  
described in 11.5.4 Pulse Width Modulation (PWM). The pulses are  
unbuffered because changing the pulse width requires writing the new  
pulse width value over the old value currently in the TIM channel  
registers.  
An unsynchronized write to the TIM channel registers to change a pulse  
width value could cause incorrect operation for up to two PWM periods.  
For example, writing a new value before the counter reaches the old  
value but after the counter reaches the new value prevents any compare  
during that PWM period. Also, using a TIM overflow interrupt routine to  
write a new, smaller pulse width value may cause the compare to be  
missed. The TIM may pass the new value before it is written.  
Data Sheet  
190  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Timer Interface Module (TIM)  
Freescale Semiconductor  
Timer Interface Module (TIM)  
Functional Description  
Use the following methods to synchronize unbuffered changes in the  
PWM pulse width on channel x:  
• When changing to a shorter pulse width, enable channel x output  
compare interrupts and write the new value in the output compare  
interrupt routine. The output compare interrupt occurs at the end  
of the current pulse. The interrupt routine has until the end of the  
PWM period to write the new value.  
• When changing to a longer pulse width, enable TIM overflow  
interrupts and write the new value in the TIM overflow interrupt  
routine. The TIM overflow interrupt occurs at the end of the current  
PWM period. Writing a larger value in an output compare interrupt  
routine (at the end of the current pulse) could cause two output  
compares to occur in the same PWM period.  
NOTE: In PWM signal generation, do not program the PWM channel to toggle  
on output compare. Toggling on output compare prevents reliable 0%  
duty cycle generation and removes the ability of the channel to self-  
correct in the event of software error or noise. Toggling on output  
compare also can cause incorrect PWM signal generation when  
changing the PWM pulse width to a new, much larger value.  
11.5.4.2 Buffered PWM Signal Generation  
Channels 0 and 1 can be linked to form a buffered PWM channel whose  
output appears on the TCH0 pin. The TIM channel registers of the linked  
pair alternately control the pulse width of the output.  
Setting the MS0B bit in TIM channel 0 status and control register (TSC0)  
links channel 0 and channel 1. The TIM channel 0 registers initially  
control the pulse width on the TCH0 pin. Writing to the TIM channel 1  
registers enables the TIM channel 1 registers to synchronously control  
the pulse width at the beginning of the next PWM period. At each  
subsequent overflow, the TIM channel registers (0 or 1) that control the  
pulse width are the ones written to last. TSC0 controls and monitors the  
buffered PWM function, and TIM channel 1 status and control register  
(TSC1) is unused. While the MS0B bit is set, the channel 1 pin, TCH1,  
is available as a general-purpose I/O pin.  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Timer Interface Module (TIM)  
Data Sheet  
191  
Timer Interface Module (TIM)  
NOTE: In buffered PWM signal generation, do not write new pulse width values  
to the currently active channel registers. User software should track the  
currently active channel to prevent writing a new value to the active  
channel. Writing to the active channel registers is the same as  
generating unbuffered PWM signals.  
11.5.4.3 PWM Initialization  
To ensure correct operation when generating unbuffered or buffered  
PWM signals, use the following initialization procedure:  
1. In the TIM status and control register (TSC):  
a. Stop the TIM counter by setting the TIM stop bit, TSTOP.  
b. Reset the TIM counter and prescaler by setting the TIM reset  
bit, TRST.  
2. In the TIM counter modulo registers (TMODH:TMODL), write the  
value for the required PWM period.  
3. In the TIM channel x registers (TCHxH:TCHxL), write the value for  
the required pulse width.  
4. In TIM channel x status and control register (TSCx):  
a. Write 0:1 (for unbuffered output compare or PWM signals) or  
1:0 (for buffered output compare or PWM signals) to the  
mode select bits, MSxB:MSxA. (See Table 11-3.)  
b. Write 1 to the toggle-on-overflow bit, TOVx.  
c. Write 1:0 (to clear output on compare) or 1:1 (to set output on  
compare) to the edge/level select bits, ELSxB:ELSxA. The  
output action on compare must force the output to the  
complement of the pulse width level. (See Table 11-3.)  
NOTE: In PWM signal generation, do not program the PWM channel to toggle  
on output compare. Toggling on output compare prevents reliable 0%  
duty cycle generation and removes the ability of the channel to self-  
correct in the event of software error or noise. Toggling on output  
compare can also cause incorrect PWM signal generation when  
changing the PWM pulse width to a new, much larger value.  
5. In the TIM status control register (TSC), clear the TIM stop bit,  
TSTOP.  
Data Sheet  
192  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Timer Interface Module (TIM)  
Freescale Semiconductor  
Timer Interface Module (TIM)  
Interrupts  
Setting MS0B links channels 0 and 1 and configures them for buffered  
PWM operation. The TIM channel 0 registers (TCH0H:TCH0L) initially  
control the buffered PWM output. TIM status control register 0 (TSCR0)  
controls and monitors the PWM signal from the linked channels.  
Clearing the toggle-on-overflow bit, TOVx, inhibits output toggles on TIM  
overflows. Subsequent output compares try to force the output to a state  
it is already in and have no effect. The result is a 0% duty cycle output.  
Setting the channel x maximum duty cycle bit (CHxMAX) and setting the  
TOVx bit generates a 100% duty cycle output. (See 11.10.4 TIM  
Channel Status and Control Registers.)  
11.6 Interrupts  
The following TIM sources can generate interrupt requests:  
• TIM overflow flag (TOF) — The TOF bit is set when the TIM  
counter reaches the modulo value programmed in the TIM counter  
modulo registers. The TIM overflow interrupt enable bit, TOIE,  
enables TIM overflow CPU interrupt requests. TOF and TOIE are  
in the TIM status and control register.  
• TIM channel flags (CH1F:CH0F) — The CHxF bit is set when an  
input capture or output compare occurs on channel x. Channel x  
TIM CPU interrupt requests are controlled by the channel x  
interrupt enable bit, CHxIE. Channel x TIM CPU interrupt requests  
are enabled when CHxIE = 1. CHxF and CHxIE are in the TIM  
channel x status and control register.  
11.7 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-  
consumption standby modes.  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Timer Interface Module (TIM)  
Data Sheet  
193  
Timer Interface Module (TIM)  
11.7.1 Wait Mode  
The TIM remains active after the execution of a WAIT instruction. In wait  
mode, the TIM registers are not accessible by the CPU. Any enabled  
CPU interrupt request from the TIM can bring the MCU out of wait mode.  
If TIM functions are not required during wait mode, reduce power  
consumption by stopping the TIM before executing the WAIT instruction.  
11.7.2 Stop Mode  
The TIM is inactive after the execution of a STOP instruction. The STOP  
instruction does not affect register conditions or the state of the TIM  
counter. TIM operation resumes when the MCU exits stop mode after an  
external interrupt.  
11.8 TIM During Break Interrupts  
A break interrupt stops the TIM counter.  
The system integration module (SIM) controls whether status bits in  
other modules can be cleared during the break state. The BCFE bit in  
the SIM break flag control register (SBFCR) enables software to clear  
status bits during the break state. (See 9.8.3 SIM Break Flag Control  
Register.)  
To allow software to clear status bits during a break interrupt, write a  
logic 1 to the BCFE bit. If a status bit is cleared during the break state, it  
remains cleared when the MCU exits the break state.  
To protect status bits during the break state, write a logic 0 to the BCFE  
bit. With BCFE at logic 0 (its default state), software can read and write  
I/O registers during the break state without affecting status bits. Some  
status bits have a 2-step read/write clearing procedure. If software does  
the first step on such a bit before the break, the bit cannot change during  
the break state as long as BCFE is at logic 0. After the break, doing the  
second step clears the status bit.  
Data Sheet  
194  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Timer Interface Module (TIM)  
Freescale Semiconductor  
Timer Interface Module (TIM)  
I/O Signals  
11.9 I/O Signals  
Port A and port B each shares two of its pins with the TIM. The four TIM  
channel I/O pins are T1CH0, T1CH1, T2CH0, and T2CH1 as described  
in 11.4 Pin Name Conventions.  
Each channel I/O pin is programmable independently as an input  
capture pin or an output compare pin. T1CH0 and T2CH0 can be  
configured as buffered output compare or buffered PWM pins.  
11.10 I/O Registers  
NOTE: References to either timer 1 or timer 2 may be made in the following text  
by omitting the timer number. For example, TSC may generically refer to  
both T1SC AND T2SC.  
These I/O registers control and monitor operation of the TIM:  
• TIM status and control register (TSC)  
• TIM counter registers (TCNTH:TCNTL)  
• TIM counter modulo registers (TMODH:TMODL)  
• TIM channel status and control registers (TSC0, TSC1)  
• TIM channel registers (TCH0H:TCH0L, TCH1H:TCH1L)  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Timer Interface Module (TIM)  
Data Sheet  
195  
Timer Interface Module (TIM)  
11.10.1 TIM Status and Control Register  
The TIM status and control register (TSC):  
• Enables TIM overflow interrupts  
• Flags TIM overflows  
• Stops the TIM counter  
• Resets the TIM counter  
• Prescales the TIM counter clock  
Address: T1SC, $0020 and T2SC, $002B  
Bit 7  
TOF  
0
6
TOIE  
0
5
TSTOP  
1
4
0
3
0
2
PS2  
0
1
PS1  
0
Bit 0  
PS0  
0
Read:  
Write:  
Reset:  
TRST  
0
0
0
= Unimplemented  
Figure 11-4. TIM Status and Control Register (TSC)  
TOF — TIM Overflow Flag Bit  
This read/write flag is set when the TIM counter reaches the modulo  
value programmed in the TIM counter modulo registers. Clear TOF by  
reading the TIM status and control register when TOF is set and then  
writing a logic 0 to TOF. If another TIM overflow occurs before the  
clearing sequence is complete, then writing logic 0 to TOF has no  
effect. Therefore, a TOF interrupt request cannot be lost due to  
inadvertent clearing of TOF. Reset clears the TOF bit. Writing a logic  
1 to TOF has no effect.  
1 = TIM counter has reached modulo value  
0 = TIM counter has not reached modulo value  
TOIE — TIM Overflow Interrupt Enable Bit  
This read/write bit enables TIM overflow interrupts when the TOF bit  
becomes set. Reset clears the TOIE bit.  
1 = TIM overflow interrupts enabled  
0 = TIM overflow interrupts disabled  
Data Sheet  
196  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Timer Interface Module (TIM)  
Freescale Semiconductor  
Timer Interface Module (TIM)  
I/O Registers  
TSTOP — TIM Stop Bit  
This read/write bit stops the TIM counter. Counting resumes when  
TSTOP is cleared. Reset sets the TSTOP bit, stopping the TIM  
counter until software clears the TSTOP bit.  
1 = TIM counter stopped  
0 = TIM counter active  
NOTE: Do not set the TSTOP bit before entering wait mode if the TIM is required  
to exit wait mode.  
TRST — TIM Reset Bit  
Setting this write-only bit resets the TIM counter and the TIM  
prescaler. Setting TRST has no effect on any other registers.  
Counting resumes from $0000. TRST is cleared automatically after  
the TIM counter is reset and always reads as logic 0. Reset clears the  
TRST bit.  
1 = Prescaler and TIM counter cleared  
0 = No effect  
NOTE: Setting the TSTOP and TRST bits simultaneously stops the TIM counter  
at a value of $0000.  
PS[2:0] — Prescaler Select Bits  
These read/write bits select one of the seven prescaler outputs as the  
input to the TIM counter as Table 11-2 shows. Reset clears the  
PS[2:0] bits.  
Table 11-2. Prescaler Selection  
PS2  
0
PS1  
0
PS0  
0
TIM Clock Source  
Internal bus clock ÷ 1  
Internal bus clock ÷ 2  
Internal bus clock ÷ 4  
Internal bus clock ÷ 8  
Internal bus clock ÷ 16  
Internal bus clock ÷ 32  
Internal bus clock ÷ 64  
Not available  
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Timer Interface Module (TIM)  
Data Sheet  
197  
Timer Interface Module (TIM)  
11.10.2 TIM Counter Registers  
The two read-only TIM counter registers contain the high and low bytes  
of the value in the TIM counter. Reading the high byte (TCNTH) latches  
the contents of the low byte (TCNTL) into a buffer. Subsequent reads of  
TCNTH do not affect the latched TCNTL value until TCNTL is read.  
Reset clears the TIM counter registers. Setting the TIM reset bit (TRST)  
also clears the TIM counter registers.  
NOTE: If you read TCNTH during a break interrupt, be sure to unlatch TCNTL  
by reading TCNTL before exiting the break interrupt. Otherwise, TCNTL  
retains the value latched during the break.  
Address: T1CNTH, $0021 and T2CNTH, $002C  
Bit 7  
Read: Bit 15  
Write:  
6
5
4
3
2
1
9
Bit 0  
Bit 8  
14  
13  
12  
11  
10  
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 11-5. TIM Counter Registers High (TCNTH)  
Address: T1CNTL, $0022 and T2CNTL, $002D  
Bit 7  
Bit 7  
6
6
5
5
4
4
3
3
2
2
1
1
Bit 0  
Bit 0  
Read:  
Write:  
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 11-6. TIM Counter Registers Low (TCNTL)  
Data Sheet  
198  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Timer Interface Module (TIM) Freescale Semiconductor  
Timer Interface Module (TIM)  
I/O Registers  
11.10.3 TIM Counter Modulo Registers  
The read/write TIM modulo registers contain the modulo value for the  
TIM counter. When the TIM counter reaches the modulo value, the  
overflow flag (TOF) becomes set, and the TIM counter resumes counting  
from $0000 at the next timer clock. Writing to the high byte (TMODH)  
inhibits the TOF bit and overflow interrupts until the low byte (TMODL) is  
written. Reset sets the TIM counter modulo registers.  
Address: T1MODH, $0023 and T2MODH, $002E  
Bit 7  
Bit 15  
1
6
14  
1
5
13  
1
4
12  
1
3
11  
1
2
10  
1
1
9
1
Bit 0  
Bit 8  
1
Read:  
Write:  
Reset:  
Figure 11-7. TIM Counter Modulo Register High (TMODH)  
Address: T1MODL, $0024 and T2MODL, $002F  
Bit 7  
Bit 7  
1
6
6
1
5
5
1
4
4
1
3
3
1
2
2
1
1
1
1
Bit 0  
Bit 0  
1
Read:  
Write:  
Reset:  
Figure 11-8. TIM Counter Modulo Register Low (TMODL)  
NOTE: Reset the TIM counter before writing to the TIM counter modulo registers.  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Timer Interface Module (TIM)  
Data Sheet  
199  
Timer Interface Module (TIM)  
11.10.4 TIM Channel Status and Control Registers  
Each of the TIM channel status and control registers:  
• Flags input captures and output compares  
• Enables input capture and output compare interrupts  
• Selects input capture, output compare, or PWM operation  
• Selects high, low, or toggling output on output compare  
• Selects rising edge, falling edge, or any edge as the active input  
capture trigger  
• Selects output toggling on TIM overflow  
• Selects 0% and 100% PWM duty cycle  
• Selects buffered or unbuffered output compare/PWM operation  
Address: T1SC0, $0025 and T2SC0, $0030  
Bit 7  
6
CH0IE  
0
5
MS0B  
0
4
MS0A  
0
3
ELS0B  
0
2
ELS0A  
0
1
TOV0  
0
Bit 0  
CH0MAX  
0
Read: CH0F  
Write:  
0
0
Reset:  
Figure 11-9. TIM Channel 0 Status and Control Register (TSC0)  
Address: T1SC1, $0028 and T2SC1, $0033  
Bit 7  
6
CH1IE  
0
5
0
4
MS1A  
0
3
ELS1B  
0
2
ELS1A  
0
1
TOV1  
0
Bit 0  
CH1MAX  
0
Read: CH1F  
Write:  
0
0
Reset:  
0
Figure 11-10. TIM Channel 1 Status and Control Register (TSC1)  
Data Sheet  
200  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Timer Interface Module (TIM)  
Freescale Semiconductor  
Timer Interface Module (TIM)  
I/O Registers  
CHxF — Channel x Flag Bit  
When channel x is an input capture channel, this read/write bit is set  
when an active edge occurs on the channel x pin. When channel x is  
an output compare channel, CHxF is set when the value in the TIM  
counter registers matches the value in the TIM channel x registers.  
When TIM CPU interrupt requests are enabled (CHxIE = 1), clear  
CHxF by reading TIM channel x status and control register with CHxF  
set and then writing a logic 0 to CHxF. If another interrupt request  
occurs before the clearing sequence is complete, then writing logic 0  
to CHxF has no effect. Therefore, an interrupt request cannot be lost  
due to inadvertent clearing of CHxF.  
Reset clears the CHxF bit. Writing a logic 1 to CHxF has no effect.  
1 = Input capture or output compare on channel x  
0 = No input capture or output compare on channel x  
CHxIE — Channel x Interrupt Enable Bit  
This read/write bit enables TIM CPU interrupt service requests on  
channel x.  
Reset clears the CHxIE bit.  
1 = Channel x CPU interrupt requests enabled  
0 = Channel x CPU interrupt requests disabled  
MSxB — Mode Select Bit B  
This read/write bit selects buffered output compare/PWM operation.  
MSxB exists only in the TIM1 channel 0 and TIM2 channel 0 status  
and control registers.  
Setting MS0B disables the channel 1 status and control register and  
reverts TCH1 to general-purpose I/O.  
Reset clears the MSxB bit.  
1 = Buffered output compare/PWM operation enabled  
0 = Buffered output compare/PWM operation disabled  
MSxA — Mode Select Bit A  
When ELSxB:ELSxA 0:0, this read/write bit selects either input  
capture operation or unbuffered output compare/PWM operation.  
See Table 11-3.  
1 = Unbuffered output compare/PWM operation  
0 = Input capture operation  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Timer Interface Module (TIM)  
Data Sheet  
201  
Timer Interface Module (TIM)  
When ELSxB:ELSxA = 0:0, this read/write bit selects the initial output  
level of the TCHx pin. See Table 11-3. Reset clears the MSxA bit.  
1 = Initial output level low  
0 = Initial output level high  
NOTE: Before changing a channel function by writing to the MSxB or MSxA bit,  
set the TSTOP and TRST bits in the TIM status and control register  
(TSC).  
ELSxB and ELSxA — Edge/Level Select Bits  
When channel x is an input capture channel, these read/write bits  
control the active edge-sensing logic on channel x.  
When channel x is an output compare channel, ELSxB and ELSxA  
control the channel x output behavior when an output compare  
occurs.  
When ELSxB and ELSxA are both clear, channel x is not connected  
to an I/O port, and pin TCHx is available as a general-purpose I/O pin.  
Table 11-3 shows how ELSxB and ELSxA work. Reset clears the  
ELSxB and ELSxA bits.  
Table 11-3. Mode, Edge, and Level Selection  
MSxB:MSxA ELSxB:ELSxA  
Mode  
Configuration  
Pin under port control;  
initial output level high  
X0  
X1  
00  
00  
Output preset  
Pin under port control;  
initial output level low  
00  
00  
01  
10  
Capture on rising edge only  
Capture on falling edge only  
Input capture  
Capture on rising or  
falling edge  
00  
11  
01  
01  
01  
1X  
1X  
1X  
01  
10  
11  
01  
10  
11  
Toggle output on compare  
Clear output on compare  
Set output on compare  
Toggle output on compare  
Clear output on compare  
Set output on compare  
Output  
compare or  
PWM  
Buffered  
output  
compare or  
buffered PWM  
Data Sheet  
202  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Timer Interface Module (TIM) Freescale Semiconductor  
Timer Interface Module (TIM)  
I/O Registers  
NOTE: Before enabling a TIM channel register for input capture operation, make  
sure that the TCHx pin is stable for at least two bus clocks.  
TOVx — Toggle On Overflow Bit  
When channel x is an output compare channel, this read/write bit  
controls the behavior of the channel x output when the TIM counter  
overflows. When channel x is an input capture channel, TOVx has no  
effect.  
Reset clears the TOVx bit.  
1 = Channel x pin toggles on TIM counter overflow  
0 = Channel x pin does not toggle on TIM counter overflow  
NOTE: When TOVx is set, a TIM counter overflow takes precedence over a  
channel x output compare if both occur at the same time.  
CHxMAX — Channel x Maximum Duty Cycle Bit  
When the TOVx bit is at logic 1, setting the CHxMAX bit forces the  
duty cycle of buffered and unbuffered PWM signals to 100%. As  
Figure 11-11 shows, the CHxMAX bit takes effect in the cycle after it  
is set or cleared. The output stays at the 100% duty cycle level until  
the cycle after CHxMAX is cleared.  
OVERFLOW  
OVERFLOW  
OVERFLOW  
OVERFLOW  
OVERFLOW  
PERIOD  
TCHx  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
CHxMAX  
Figure 11-11. CHxMAX Latency  
11.10.5 TIM Channel Registers  
These read/write registers contain the captured TIM counter value of the  
input capture function or the output compare value of the output  
compare function. The state of the TIM channel registers after reset is  
unknown.  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Timer Interface Module (TIM)  
Data Sheet  
203  
Timer Interface Module (TIM)  
In input capture mode (MSxB:MSxA = 0:0), reading the high byte of the  
TIM channel x registers (TCHxH) inhibits input captures until the low  
byte (TCHxL) is read.  
In output compare mode (MSxB:MSxA 0:0), writing to the high byte of  
the TIM channel x registers (TCHxH) inhibits output compares until the  
low byte (TCHxL) is written.  
Address: T1CH0H, $0026 and T2CH0H, $0031  
Bit 7  
6
5
4
3
2
1
9
Bit 0  
Bit 8  
Read:  
Write:  
Reset:  
Bit 15  
14  
13  
12  
11  
10  
Indeterminate after reset  
Figure 11-12. TIM Channel 0 Register High (TCH0H)  
Address: T1CH0L, $0027 and T2CH0L $0032  
Bit 7  
Bit 7  
6
6
5
5
4
4
3
3
2
2
1
1
Bit 0  
Bit 0  
Read:  
Write:  
Reset:  
Indeterminate after reset  
Figure 11-13. TIM Channel 0 Register Low (TCH0L)  
Address: T1CH1H, $0029 and T2CH1H, $0034  
Bit 7  
6
5
4
3
2
1
9
Bit 0  
Bit 8  
Read:  
Write:  
Reset:  
Bit 15  
14  
13  
12  
11  
10  
Indeterminate after reset  
Figure 11-14. TIM Channel 1 Register High (TCH1H)  
Address: T1CH1L, $002A and T2CH1L, $0035  
Bit 7  
Bit 7  
6
6
5
5
4
4
3
3
2
2
1
1
Bit 0  
Bit 0  
Read:  
Write:  
Reset:  
Indeterminate after reset  
Figure 11-15. TIM Channel 1 Register Low (TCH1L)  
Data Sheet  
204  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Timer Interface Module (TIM) Freescale Semiconductor  
Data Sheet — MC68HC908SR12•MC68HC08SR12  
Section 12. Timebase Module (TBM)  
12.1 Contents  
12.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205  
12.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205  
12.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .206  
12.5 Timebase Register Description. . . . . . . . . . . . . . . . . . . . . . . .207  
12.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .208  
12.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .209  
12.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .209  
12.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .209  
12.2 Introduction  
This section describes the timebase module (TBM). The TBM will  
generate periodic interrupts at user selectable rates using a counter  
clocked by the selected OSCCLK clock from the oscillator module. This  
TBM version uses 18 divider stages, eight of which are user selectable.  
12.3 Features  
Features of the TBM module include:  
• Software programmable 8s, 4s, 2s, 1s, 2ms, 1ms, 0.5ms, and  
0.25ms periodic interrupt using 32.768-kHz OSCCLK clock  
• User selectable oscillator clock source enable during stop mode to  
allow periodic wake-up from stop  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Timebase Module (TBM)  
Data Sheet  
205  
Timebase Module (TBM)  
12.4 Functional Description  
This module can generate a periodic interrupt by dividing the oscillator  
clock frequency, OSCCLK. The counter is initialized to all 0s when  
TBON bit is cleared. The counter, shown in Figure 12-1, starts counting  
when the TBON bit is set. When the counter overflows at the tap  
selected by TBR2:TBR0, the TBIF bit gets set. If the TBIE bit is set, an  
interrupt request is sent to the CPU. The TBIF flag is cleared by writing  
a 1 to the TACK bit. The first time the TBIF flag is set after enabling the  
timebase module, the interrupt is generated at approximately half of the  
overflow period. Subsequent events occur at the exact period.  
The reference clock OSCCLK is derived from the oscillator module, see  
7.3.2 TBM Reference Clock Selection.  
TBON  
÷ 2 ÷ 2 ÷ 2  
÷ 2  
÷ 2  
÷ 16  
÷ 2  
÷ 32  
÷ 2 ÷ 2 ÷ 2 ÷ 2 ÷ 2  
÷ 64  
OSCCLK  
From OSC module  
(See Section 7. Oscillator (OSC).)  
÷ 8  
÷ 2048  
TBMINT  
÷ 2 ÷ 2 ÷ 2 ÷ 2  
÷ 2  
÷ 2  
÷ 2  
÷ 32768 ÷ 65536 ÷ 131072  
÷ 262144  
TBIF  
TBIE  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
R
SEL  
Figure 12-1. Timebase Block Diagram  
Data Sheet  
206  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Timebase Module (TBM) Freescale Semiconductor  
Timebase Module (TBM)  
Timebase Register Description  
12.5 Timebase Register Description  
The timebase has one register, the TBCR, which is used to enable the  
timebase interrupts and set the rate.  
Address: $0046  
Bit 7  
TBIF  
6
TBR2  
0
5
TBR1  
0
4
TBR0  
0
3
2
1
TBON  
0
Bit 0  
R
Read:  
Write:  
Reset:  
0
TACK  
0
TBIE  
0
0
0
R
= Unimplemented  
= Reserved  
Figure 12-2. Timebase Control Register (TBCR)  
TBIF — Timebase Interrupt Flag  
This read-only flag bit is set when the timebase counter has rolled  
over.  
1 = Timebase interrupt pending  
0 = Timebase interrupt not pending  
TBR2–TBR0 — Timebase Rate Selection  
These read/write bits are used to select the rate of timebase interrupts  
as shown in Table 12-1.  
Table 12-1. Timebase Rate Selection for OSCCLK = 32.768 kHz  
Timebase Interrupt Rate  
TBR2  
TBR1  
TBR0  
Divider  
Hz  
0.125  
0.25  
0.5  
ms  
8000  
4000  
2000  
1000  
~2  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
262144  
131072  
65536  
32768  
64  
1
512  
32  
1024  
2048  
4096  
~1  
16  
~0.5  
~0.24  
8
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Timebase Module (TBM)  
Data Sheet  
207  
Timebase Module (TBM)  
NOTE: Do not change TBR2–TBR0 bits while the timebase is enabled  
(TBON = 1).  
TACK — Timebase ACKnowledge  
The TACK bit is a write-only bit and always reads as 0. Writing a logic  
1 to this bit clears TBIF, the timebase interrupt flag bit. Writing a logic  
0 to this bit has no effect.  
1 = Clear timebase interrupt flag  
0 = No effect  
TBIE — Timebase Interrupt Enabled  
This read/write bit enables the timebase interrupt when the TBIF bit  
becomes set. Reset clears the TBIE bit.  
1 = Timebase interrupt enabled  
0 = Timebase interrupt disabled  
TBON — Timebase Enabled  
This read/write bit enables the timebase. Timebase may be turned off  
to reduce power consumption when its function is not necessary. The  
counter can be initialized by clearing and then setting this bit. Reset  
clears the TBON bit.  
1 = Timebase enabled  
0 = Timebase disabled and the counter initialized to 0s  
12.6 Interrupts  
The timebase module can interrupt the CPU on a regular basis with a  
rate defined by TBR2–TBR0. When the timebase counter chain rolls  
over, the TBIF flag is set. If the TBIE bit is set, enabling the timebase  
interrupt, the counter chain overflow will generate a CPU interrupt  
request. The interrupt vector is defined in Table 2-1 . Vector  
Addresses.  
Interrupts must be acknowledged by writing a logic 1 to the TACK bit.  
Data Sheet  
208  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Timebase Module (TBM)  
Freescale Semiconductor  
Timebase Module (TBM)  
Low-Power Modes  
12.7 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-  
consumption standby modes.  
12.7.1 Wait Mode  
The timebase module remains active after execution of the WAIT  
instruction. In wait mode, the timebase register is not accessible by the  
CPU.  
If the timebase functions are not required during wait mode, reduce the  
power consumption by stopping the timebase before enabling the WAIT  
instruction.  
12.7.2 Stop Mode  
The timebase module may remain active after execution of the STOP  
instruction if the oscillator has been enabled to operate during stop mode  
through the stop mode oscillator enable bit (STOP_ICLKEN,  
STOP_RCLKEN, or STOP_XCLKEN) for the selected oscillator in the  
CONFIG2 register. The timebase module can be used in this mode to  
generate a periodic walk-up from stop mode.  
If the oscillator has not been enabled to operate in stop mode, the  
timebase module will not be active during STOP mode. In stop mode the  
timebase register is not accessible by the CPU.  
If the timebase functions are not required during stop mode, reduce the  
power consumption by stopping the timebase before enabling the STOP  
instruction.  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Timebase Module (TBM)  
Data Sheet  
209  
Timebase Module (TBM)  
Data Sheet  
210  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Timebase Module (TBM) Freescale Semiconductor  
Data Sheet — MC68HC908SR12•MC68HC08SR12  
Section 13. Pulse Width Modulator (PWM)  
13.1 Contents  
13.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211  
13.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .212  
13.4 PWM Period and Resolution. . . . . . . . . . . . . . . . . . . . . . . . . .214  
13.5 PWM Automatic Phase Control . . . . . . . . . . . . . . . . . . . . . . .215  
13.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .216  
13.7 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .216  
13.8 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .216  
13.9 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .217  
13.10 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .217  
13.10.1 PWM Control Register (PWMCR) . . . . . . . . . . . . . . . . . . .217  
13.10.2 PWM Clock Control Register (PWMCCR) . . . . . . . . . . . . .218  
13.10.3 PWM Data Registers (PWMDR0–PWMDR2) . . . . . . . . . .219  
13.10.4 PWM Phase Control Register . . . . . . . . . . . . . . . . . . . . . .220  
13.2 Introduction  
This section describes the pulse width modulator (PWM) module. The  
PWM module provides three 8-bit PWM output channels, with an  
independent 8-bit counter for each channel. The PWM period is equal to  
1
PCLK  
---------------  
256 ×  
seconds, where P  
is the PWM counter clock.  
CLK  
For a 32MHz PWM counter clock, the PWM period is 8µs (a PWM  
frequency of 125kHz). The automatic phase control feature allows  
phase delays between the channels.  
Figure 13-2 shows the structure of the PWM module.  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Pulse Width Modulator (PWM)  
Data Sheet  
211  
Pulse Width Modulator (PWM)  
NOTE: The CGM’s PLL must be running (enabled by setting PLLON bit in the  
PLL control register) if the CGMVCLK is selected for the PWM module  
input clock. (See Section 8. Clock Generator Module (CGM).)  
13.3 Features  
Features of the PWM include the following:  
• Three independent PWM channels with independent counters  
• PWM input clock select  
• PWM input clock prescaler  
• Automatic phase control  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
PCH1  
0
Bit 0  
PCH0  
0
Read:  
Write:  
Reset:  
Read:  
0
0
PWMEN2 PWMEN1 PWMEN0  
PCH2  
PWM Control Register  
(PWMCR)  
$0051  
0
PCLKSEL  
0
0
0
0
0
0
0
0
0
0
0
PWM Clock Control  
PCLK1  
0
PCLK0  
0
$0052  
$0053  
$0054  
$0055  
$0056  
Register Write:  
(PWMCCR)  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
0
0
0
0
0
0PWMD7 0PWMD6 0PWMD5 0PWMD4 0PWMD3 0PWMD2 0PWMD1 0PWMD0  
PWM Data Register 0  
(PWMDR0)  
0
0
0
0
0
0
0
0
1PWMD7 1PWMD6 1PWMD5 1PWMD4 1PWMD3 1PWMD2 1PWMD1 1PWMD0  
PWM Data Register 1  
(PWMDR1)  
0
0
0
0
0
0
0
0
2PWMD7 2PWMD6 2PWMD5 2PWMD4 2PWMD3 2PWMD2 2PWMD1 2PWMD0  
PWM Data Register 2  
(PWMDR2)  
0
PHEN  
0
0
PHD6  
0
0
PHD5  
0
0
PHD4  
0
0
PHD3  
0
0
PHD2  
0
0
PHD1  
0
0
PHD0  
0
PWM Phase Control  
Register Write:  
(PWMPCR)  
Reset:  
= Unimplemented  
Figure 13-1. PWM I/O Register Summary  
Data Sheet  
212  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Pulse Width Modulator (PWM) Freescale Semiconductor  
Pulse Width Modulator (PWM)  
Features  
INTERNAL BUS  
CGMOUT  
PWMCLK  
A
CHANNEL 0  
FROM CGM  
÷
2
÷
2
÷ 2  
B1  
CGMVCLK  
PWMCR  
S
8-BIT PWM  
DATA REGISTER  
PCLK1  
PCLK0  
WHEN PCLKSEL=0,  
PWMCLK=CGMOUT.  
IF CGMVCLK IS SELECTED,  
MUX  
PCLKSEL  
PWMCCR  
PWMR0  
CGM’S PLL MUST BE RUNNING.  
PCLK  
8-BIT  
DATA REGISTER  
BUFFER  
8-BIT COUNTER  
8-BIT COUNTER  
8-BIT COUNTER  
TO  
TO  
CHANNEL 2  
CHANNEL 1  
ZERO  
DETECTOR  
COMPARATOR  
CHANNEL 0 OUTPUT LOGIC  
B1  
S
PWM0  
LATCH  
R
Q
A
PTC0/PWM0/CD  
PIN  
A
S
B1  
S
A IS SELECTED  
WHEN S=0  
TO/FROM  
PTC0  
PCH0  
CDIF  
CDOEN  
LOGIC  
PWMCR FROM  
CONFIG2  
ANALOG  
MODULE  
CHANNEL 1 OUTPUT LOGIC  
CHANNEL 2 OUTPUT LOGIC  
B1  
B1  
PWM1  
PWM2  
PTC1/PWM1  
PIN  
PTC2/PWM2  
PIN  
A
A
TO/FROM  
PTC1  
TO/FROM  
PTC2  
S
S
LOGIC  
LOGIC  
A IS SELECTED  
WHEN S=0  
A IS SELECTED  
WHEN S=0  
PCH1  
PCH2  
PWMCR  
PWMCR  
Figure 13-2. PWM Block Diagram  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Pulse Width Modulator (PWM)  
Data Sheet  
213  
Pulse Width Modulator (PWM)  
13.4 PWM Period and Resolution  
1
PCLK  
1
PCLK  
---------------  
The PWM period is equal to 256 ×  
, resolution is --------------- , where  
P
is the PWM counter clock. The value in the PWM data register  
CLK  
(PWMDR) defines the period where the PWM output is high, the low  
period is equal to 256 minus that value. Each PWM channel has its own  
counter and I/O control bits so it can be turned on and off independently.  
Figure 13-3 shows the PWM output waveforms for a channel with  
different values in the PWM data register.  
PWM PERIOD = 256 × T  
PWMDR = 256  
PWMDR = 1  
T
255 × T  
128 × T  
128 × T  
PWMDR = 128  
255 × T  
T
PWMDR = 255  
NOTE: T =  
1
PCLK  
Figure 13-3. PWM Output Waveforms  
Data Sheet  
214  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Pulse Width Modulator (PWM) Freescale Semiconductor  
Pulse Width Modulator (PWM)  
PWM Automatic Phase Control  
13.5 PWM Automatic Phase Control  
The automatic phase control function allows precise phase difference  
between the PWM output signals.  
Figure 13-4 shows the phase delays between the PWM output signals.  
256 × T  
256 × T  
PWM2  
PWM1  
PWM0  
256 × T  
PHASE VALUE 1  
256 × T  
PHASE VALUE 2  
Figure 13-4. PWM Automatic Phase Control  
Use the following steps to generate phase difference on PWM channels:  
1. Clear PWM enable bits, PWMEN[0:2], to logic 0.  
2. Write delay value in PHD[0:6].  
3. Set PWM automatic phase control enable bit, PHEN, to logic 1.  
4. Set the PWM channel enable bits, PCH[0:2], to logic 1.  
5. Set the PWM enable bits, PWMEN[0:2], to logic 1, to enable the  
PWM counters.  
When phase control is enabled, the PWM2 counter will start counting  
immediately, but the PWM1 and PWM0 counters will be held at zero.  
After the PWM2 counter reaches the phase value, PH[0:6], the PWM1  
counter is released and starts counting. Finally, when the PMW1 counter  
reaches the phase value, PH[0:6], PWM0 is released and starts  
counting. It is possible to change the value of PH[0:6] after the PWM1  
counter has started and before the start of the PWM0 counter. This way,  
difference phases can be set between PWM2 and PWM1; PWM1 and  
PWM0.  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Pulse Width Modulator (PWM)  
Data Sheet  
215  
Pulse Width Modulator (PWM)  
The PH[0:6] value is used once to determine the start-up time of the  
different PWM counters. After that, all PWM counters become free  
running counters and the phase between the counters will remain  
unchanged. Changing the value of PH[0:6] after all PWM counters are  
running has no effect. The counters must first be disabled by clearing the  
PWM enable bits, PWMEN[0:2], to logic 0, before a new phase value is  
effective.  
Automatic phase control is only available with two (PWM2–PWM1) or  
three (PWM2–PWM0) PWM channels.  
13.6 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-  
consumption standby modes.  
13.7 Wait Mode  
The PWM module remains active after the execution of a WAIT  
instruction. In wait mode, the PWM registers are not accessible by the  
CPU.  
If PWM functions are not required during wait mode, reduce power  
consumption by disabling the PWM before executing the WAIT  
instruction.  
13.8 Stop Mode  
The PWM is inactive after the execution of a STOP instruction. The  
STOP instruction does not affect register conditions or the state of the  
PWM counters and outputs. PWM operation resumes when the MCU  
exits stop mode after an external interrupt.  
Data Sheet  
216  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Pulse Width Modulator (PWM)  
Freescale Semiconductor  
Pulse Width Modulator (PWM)  
I/O Signals  
13.9 I/O Signals  
The PWM module has three output pins shared with port C:  
PTC0/PWM0/CD, PWM1/PTC1, and PTC2/PWM2. PTC0 is also shared  
with current flow detect output, CD, of the analog module, see (see 18.5  
Port C).  
13.10 I/O Registers  
These I/O registers control PWM operation:  
• PWM control register (PWMCR)  
• PWM clock control register (PWMCCR)  
• PWM phase control register (PWMPCR)  
• Three PWM data registers (PWMDR0–PWMDR2)  
13.10.1 PWM Control Register (PWMCR)  
The PWM control register (PWMCR) enables/disables the independent  
PWM counters and port pins used for the PWM channels.  
Address: $0051  
Read:  
Write:  
Reset:  
0
0
0
0
PWMEN2 PWMEN1 PWMEN0  
PCH2  
0
PCH1  
0
PCH0  
0
0
0
0
= Unimplemented  
Figure 13-5. PWM Control Register (PWMCR)  
PWMEN2–PWMEN0 — PWM Enable Bits  
Writing a 0 to the PWMENx bit clears the corresponding PWM counter  
and force the PWM channel x output to 0. Reset clears these bits.  
1 = PWM channel x enabled  
0 = PWM channel x is disabled; PWM counter cleared to zero and  
PWM channel x output forced to zero  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Pulse Width Modulator (PWM)  
Data Sheet  
217  
Pulse Width Modulator (PWM)  
PCH2–PCH0 — PWM Channel Enable Bits  
Setting a bit will enable the corresponding port pin to be a PWM  
output pin. When a bit is set, the DDR bit has no effect on the port  
function.  
1 = Port pin is enabled for PWM output  
0 = Port pin is standard I/O pin  
Exception for PTC0/PWM0/CD control:  
Table 13-1. PTC0 Pin Configuration  
CDOEN Bit  
($001D)  
PCH0 Bit  
($0051)  
Pin  
Pin function  
0
0
1
0
1
X
PTC0  
PWM0  
CD  
PTC0/PWM0/CD  
13.10.2 PWM Clock Control Register (PWMCCR)  
The PWM clock control register (PWMCCR) selects and defines the  
clock to the PWM counter, P  
.
CLK  
Address: $0052  
Read:  
Write:  
Reset:  
0
0
0
0
0
0
0
0
0
0
PCLKSEL  
0
PCLK1  
0
PCLK0  
0
= Unimplemented  
Figure 13-6. PWM Clock Control Register (PWMCCR)  
PCLKSEL — PWM Input Clock Select Bit  
This bit selects either the CGMOUT or CGMVCLK clock as the input  
clock to the PWM counters. Reset clears this bit.  
1 = Select CGMVCLK as PWM input clock  
0 = Select CGMOUT (CPU bus clock) as PWM input clock  
Data Sheet  
218  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Pulse Width Modulator (PWM)  
Freescale Semiconductor  
Pulse Width Modulator (PWM)  
I/O Registers  
PCLK1–PCLK0 — PWM Clock Prescaler Bits  
These two bits select the divide ratio used to divide the PWM input  
clock. Table 13-2 shows the available clock divisions.  
Table 13-2. PWM Counter Clock Prescaler Selection  
PWM Clock, PCLK  
Source clock ÷ 1  
Source clock ÷ 2  
Source clock ÷ 4  
Source clock ÷ 8  
PCLK1  
PCLK0  
0
0
1
1
0
1
0
1
13.10.3 PWM Data Registers (PWMDR0–PWMDR2)  
The three PWM data registers (PWMDR0–PWMDR2) defines the high  
period for corresponding PWM channels.  
Address: $0053  
Read:  
0PWMD7 0PWMD6 0PWMD5 0PWMD4 0PWMD3 0PWMD2 0PWMD1 0PWMD0  
Write:  
Reset:  
0
0
0
0
0
0
0
0
Figure 13-7. PWM Data Register 0 (PWMDR0)  
Address: $0054  
Read:  
1PWMD7 1PWMD6 1PWMD5 1PWMD4 1PWMD3 1PWMD2 1PWMD1 1PWMD0  
Write:  
Reset:  
0
0
0
0
0
0
0
0
Figure 13-8. PWM Data Register 1 (PWMDR1)  
Address: $0055  
Read:  
2PWMD7 2PWMD6 2PWMD5 2PWMD4 2PWMD3 2PWMD2 2PWMD1 2PWMD0  
Write:  
Reset:  
0
0
0
0
0
0
0
0
Figure 13-9. PWM Data Register 2 (PWMDR2)  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Pulse Width Modulator (PWM)  
Data Sheet  
219  
Pulse Width Modulator (PWM)  
The value of each PWM data register is continuously compared with the  
content of a PWM counter to determine the state of each PWM channel  
output pin.  
A value of $00 loaded into these register results in a continuously low  
output on the corresponding PWM output pin. A value of $80 results in a  
50% duty cycle output and so on. The maximum value, $FF correspond  
to an output which is a "1" for 255/256 of the PWM cycle.  
A new value written to the PWM data register will not be effective until  
the end of the current PWM period. Upon the end of the current PWM  
period, the contain of the PWM data register is loaded into the PWM data  
buffer, the value of the PWM data buffer controls the PWM output.  
13.10.4 PWM Phase Control Register  
The PWM phase control register (PWMPCR) enables the automatic  
phase control and sets the phase values between the PWM channels.  
Address: $0056  
Read:  
PHEN  
PHD6  
0
PHD5  
0
PHD4  
0
PHD3  
0
PHD2  
0
PHD1  
0
PHD0  
0
Write:  
Reset:  
0
Figure 13-10. PWM Phase Control Register (PWMPCR)  
PHEN — PWM Automatic Phase Control Enable Bit  
Setting this bit to 1 will enable the automatic phase control function.  
Reset clears this bit.  
1 = Automatic phase control enabled  
0 = Automatic phase control disabled  
PHD6–PHD0 — PWM Phase Value Bits  
This 7-bit phase value is used to determined the start-up time of the  
different PWM counters when PHEN bit is set. Reset clears these bits.  
Data Sheet  
220  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Pulse Width Modulator (PWM)  
Freescale Semiconductor  
Data Sheet — MC68HC908SR12•MC68HC08SR12  
Section 14. Analog Module  
14.1 Contents  
14.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .221  
14.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .222  
14.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .223  
14.4.1 On-Chip Temperature Sensor . . . . . . . . . . . . . . . . . . . . . .223  
14.4.2 Two-Stage Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .224  
14.4.3 Amplifier Response Time . . . . . . . . . . . . . . . . . . . . . . . . . .224  
14.4.4 Current Flow Detection Amplifier . . . . . . . . . . . . . . . . . . . .225  
14.4.5 Current Flow Detect Output . . . . . . . . . . . . . . . . . . . . . . . .225  
14.5 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .225  
14.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .225  
14.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .225  
14.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .225  
14.7 Analog Module I/O Registers . . . . . . . . . . . . . . . . . . . . . . . . .226  
14.7.1 Analog Module Control Register (AMCR) . . . . . . . . . . . . .226  
14.7.2 Analog Module Gain Control Register (AMGCR). . . . . . . .227  
14.7.3 Analog Module Status and Control Register (AMSCR) . . .228  
14.2 Introduction  
This section describes the analog module. The analog module is  
designed to be use in conjunction with the analog-to-digital converter  
module for monitoring temperature, charge and discharge currents in  
smart battery applications.  
NOTE: The analog module uses clock signals from the CGM’s PLL, therefore  
the PLL must be running — PLLON bit in the PLL control register must  
be set. (See Section 8. Clock Generator Module (CGM).)  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor  
Data Sheet  
221  
Analog Module  
Analog Module  
14.3 Features  
The features of the analog module include the following:  
• Temperature sensor  
• Current flow detection amplifier  
• Two-stage amplifier  
ATD1  
BATT +  
ANALOG MODULE  
TO ADC  
ATD0  
ADCICLK  
FROM ADC  
OPIN2/  
ATD1  
DO[2:0]  
CLOCK  
DIVIDER  
AMCDIV[1:0]  
AMCLK  
GAINA[3:0]  
GAINB[3:0]  
EXTERNAL  
THERMISTOR  
INTERNAL  
TEMPERATURE  
SENSOR  
BATT –  
BATT +  
INTERNAL  
REFERENCE  
+
DOF  
OPCH[1:0]  
CGMVCLK  
FROM CGM  
IN3  
IN2  
IN1  
IN0  
OPOUT  
2-STAGE  
AMP  
TO ADC  
OPIN1/  
ATD0  
ISENSE  
RSENSE  
OPIF  
OPIF  
0.01Ω  
OPIFR  
CGMXCLK  
ANALOG MODULE  
INTERRUPT REQUEST  
VSSAM  
BATT –  
VDD  
TO IRQ  
LOGIC  
D
Q
–9mV  
+
CDIF  
VSSA  
VDET  
R
CDIFR  
CDIF  
AMIEN  
PTC0/  
PWM0/  
CD  
PTC0  
LOGIC  
FROM CONFIG2  
CDOEN  
Figure 14-1. Analog Module Block Diagram  
Data Sheet  
222  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor  
Analog Module  
Analog Module  
Functional Description  
Addr.  
Register Name  
Bit 7  
PWR1  
0
6
PWR0  
0
5
OPCH1  
0
4
OPCH0  
0
3
AMIEN  
0
2
DO2  
0
1
DO1  
0
Bit 0  
DO0  
0
Read:  
Analog Module Control  
$000E  
Register Write:  
(AMCR)  
Reset:  
Read:  
Analog Module Gain  
Control Register Write:  
GAINB3 GAINB2 GAINB1 GAINB0 GAINA3 GAINA2 GAINA1 GAINA0  
$000F  
$0010  
(AMGCR)  
Reset:  
0
0
0
0
0
0
0
0
0
Read:  
0
OPIFR  
U
OPIF  
DOF  
0
CDIFR  
U
CDIF  
Analog Module Status and  
AMCDIV1 AMCDIV0  
Control Register Write:  
(AMSCR)  
Reset:  
0
0
0
0
0
0
= Unimplemented  
U = Unaffected  
Figure 14-2. Analog Module I/O Register Summary  
14.4 Functional Description  
Figure 14-1 shows the block diagram of the analog module. The central  
component of the analog module is the two-stage gain amplifier used for  
amplifying the small signals on the analog input pins, OPIN1 and OPIN2.  
These two signals feed into a multiplexer together with the signal from  
the internal temperature sensor and a reference input. The selected  
signal is then fed into the two-stage gain amplifier before going into the  
analog-to-digital converter (ADC) as OPOUT. The OPIN1 and OPIN2  
pins can also feed directly into the ADC as channels ATD0 and ATD1  
respectively, without any amplification.  
14.4.1 On-Chip Temperature Sensor  
The on-chip temperature sensor is designed to measure temperatures  
from –20°C to 70 °C. The output of the internal temperature sensor  
TSOUT is amplified by the two-stage amplifier. The amplified  
temperature sensor signal is routed to the analog-to-digital converter for  
analog-to-digital conversion (see Figure 14-1).  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor  
Data Sheet  
223  
Analog Module  
Analog Module  
14.4.2 Two-Stage Amplifier  
The two-stage amplifier is used to amplify small input signals from the  
on-chip temperature sensor or external voltage sources such as external  
thermistor and current sensing resistor, for temperature and current  
monitoring. The amplified signal, OPOUT, is fed to the ADC module for  
analog-to-digital conversion. The gain of the two-stage amplifier is  
defined by the GAINAx and GAINBx bits in the analog module gain  
control register (AMGCR) (see Figure 14-1).  
14.4.3 Amplifier Response Time  
The two-stage amplifier requires the input signal to be stable for  
sampling. This signal hold-time varies with gain setting for stage-1 of the  
two-stage amplifier, and is determined by the formula:  
10 + [(Gain of stage-1 amplifier – 1) × 2] AMCLK cycles  
The AMCLK clock is the analog amplifier clock, which is divided from the  
ADC clock, ADCICLK.  
The time for the two-stage amplifier to amplify the input signal to the  
desired output is dependent on the gain setting in both stages of the two-  
stage amplifier. The amplifier response time is determined by the  
formula:  
70 + (8 × Gain of stage-1) + (6 × Gain of stage-2) AMCLK cycles  
This amplifier response time should be added to the ADC conversion  
time to obtain the total time for the small-signal conversion.  
Therefore, conversion time for OPINx signals, with amplification is:  
Amplifier response time + ADC conversion time  
Data Sheet  
224  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Analog Module  
Freescale Semiconductor  
Analog Module  
Interrupts  
14.4.4 Current Flow Detection Amplifier  
The current flow detection amplifier is used to detect charge and  
discharge current flowing through an external sensing resistor, R  
.
SENSE  
The current flow detection flag CDIF is set when the voltage at OPIN1  
exceeds –9mV (typical) (0.9 ampere when R = 0.01). When set,  
SENSE  
CDIF can generate an interrupt request to the CPU when the analog  
module interrupt enable bit AMIEN is set (see Figure 14-1).  
14.4.5 Current Flow Detect Output  
The current detect flag, CDIF, can be configured for direct control to  
other external circuitry. When the CDOEN bit in CONFIG2 is set, the  
status of CDIF is reflected on the PTC0/PWM0/CD pin. (See 5.5  
Configuration Register 2 (CONFIG2) and 18.5 Port C.)  
14.5 Interrupts  
When the AMIEN bit is set, the analog module is capable of generating  
CPU interrupt requests. The interrupt vector is defined in Table 2-1 .  
Vector Addresses.  
14.6 Low-Power Modes  
The STOP and WAIT instructions put the MCU in low power-  
consumption standby modes.  
14.6.1 Wait Mode  
14.6.2 Stop Mode  
In wait mode the analog module if enabled, continues to operate and  
may generate an interrupt to trigger the MCU out of wait mode.  
In stop mode, the temperature sensor and the two-stage amplifier are  
disabled, but the current flow detection amplifier (when enabled)  
continues to operate if the oscillator is enabled in stop mode. When  
AMIEN is set, CDIF can be used to wake-up the MCU from the stop  
mode.  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor  
Data Sheet  
225  
Analog Module  
Analog Module  
14.7 Analog Module I/O Registers  
Three registers control and monitor the operation of the analog module:  
• Analog module control register (AMCR) — $000E  
• Analog module gain control register (AMGCR) — $000F  
• Analog module status and control register (AMSCR) — $0010  
14.7.1 Analog Module Control Register (AMCR)  
The analog module control register (AMCR):  
• Powers on and off analog sub-modules  
• Selects the input signal to the two-stage amplifier  
• Enables analog module interrupt requests  
• Offset adjustment for calibration  
Address: $000E  
Bit 7  
PWR1  
0
6
PWR0  
0
5
OPCH1  
0
4
OPCH0  
0
3
AMIEN  
0
2
DO2  
0
1
DO1  
0
Bit 0  
DO0  
0
Read:  
Write:  
Reset:  
Figure 14-3. Analog Module Control Register (AMCR)  
PWR1–PWR0 — Analog Module Power Control Bits  
These read/write bits power on/off the different functions within the  
analog module. Reset clears the PWR1 and PWR0 bits.  
Table 14-1. Analog Module Power Control  
Current Detect  
Module  
Temperature  
Sensor  
Two-Stage  
Amplifier  
PWR1  
PWR0  
0
0
1
1
0
1
0
1
Off  
On  
Off  
On  
Off  
Off  
Off  
On  
Off  
Off  
On  
On  
Data Sheet  
226  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor  
Analog Module  
Analog Module  
Analog Module I/O Registers  
OPCH1–OPCH0 — Amplifier Channel Select Control Bits  
These read/write bits select the input source to be amplified by the  
two-stage amplifier. Reset clears the OPCH1 and OPCH0 bits.  
Table 14-2. Amplifier Channel Select Control bits  
OPCH1  
OPCH0  
Input Source  
Comments  
External negative reference  
External pin  
V
0
0
1
1
0
1
0
1
SSAM  
OPIN1/ATD0  
OPIN2/ATD1  
External pin  
TSOUT (internal)  
Internal temperature sensor  
AMIEN — Analog Module Interrupt Enable  
Setting this bit will enable the CDIF and OPIF flags to generate an  
CPU interrupt requests. Reset clears the AMIEN bit.  
1 = Analog module CPU interrupt requests enabled  
0 = Analog module CPU interrupt requests disabled  
DO[2:0] — DC Offset Control Bits  
Set these bits to zero for optimum analog module performance.  
14.7.2 Analog Module Gain Control Register (AMGCR)  
The analog module gain control register (AMGCR) selects the two gains  
for the two-stage amplifier.  
Address: $000F  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
GAINB3 GAINB2 GAINB1 GAINB0 GAINA3 GAINA2 GAINA1 GAINA0  
0
0
0
0
0
0
0
0
Figure 14-4. Analog Module Gain Control Register (AMGCR)  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor  
Data Sheet  
227  
Analog Module  
Analog Module  
GAINB[3:0] — Analog Module 2nd-stage Gain Control Bits  
These read/write bits define the 2nd-stage gain of the two-stage  
amplifier. The overall gain of the amplifier equals the 1st-stage gain  
multiplied by the 2nd-stage gain. Reset clears the GAINB[3:0] bits.  
GAINA[3:0] — Analog Module 1st-stage Gain Control Bits  
These read/write bits define the 1st-stage gain of the two-stage  
amplifier. The overall gain of the amplifier equals the 1st-stage gain  
multiplied by the 2nd-stage gain. Reset clears the GAINA[3:0] bits.  
Table 14-3. Analog Module Gain Values  
GAINx3  
GAINx2  
GAINx1  
GAINx0  
Amplifier Gain  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
14.7.3 Analog Module Status and Control Register (AMSCR)  
The analog module status and control register (AMSCR):  
• Selects input clock divider value  
• Monitors and clears the amplifier ready interrupt flag  
• Monitors DC offset flag  
• Monitors and clears the current detect interrupt flag  
Data Sheet  
228  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor  
Analog Module  
Analog Module  
Analog Module I/O Registers  
Address: $0010  
Bit 7  
6
5
4
3
0
2
1
Bit 0  
Read:  
0
OPIFR  
U
OPIF  
DOF  
0
CDIFR  
U
CDIF  
AMCDIV1 AMCDIV0  
Write:  
Reset:  
0
0
0
0
0
0
= Unimplemented  
U = Unaffected  
Figure 14-5. Analog Module Status and Control Register (AMSCR)  
AMCDIV[1:0] — Analog Module Clock Divider Control Bits  
These read/write bits select the analog module input clock divider  
value. The ADC clock, ADICLK, is divided by this value to obtain the  
AMCLK. Reset clears the AMCDIV[1:0] bits.  
Table 14-4. Analog Module Clock Divider Select  
AMCDIV1  
AMCDIV0  
Divider Value  
0
0
1
1
0
1
0
1
2
4
8
16  
Set AMCDIV1 and AMCDIV0 bits to zero for optimum analog module  
performance.  
OPIFR — Amplifier Ready Interrupt Flag Reset  
Writing a logic 1 to this write-only bit clears the OPIF bit. OPIFR  
always reads as a logic 0. Reset does not affect OPIFR.  
1 = Clear OPIF bit  
0 = No affect on OPIF bit  
OPIF — Amplifier Ready Interrupt Flag  
This read-only bit is set when the output of the two-stage amplifier is  
ready. A CPU interrupt request will be generated if the AMIEN bit is  
also set. Reset clears OPIF bit.  
1 = Two-stage amplifier output is ready  
0 = Two-stage amplifier output is not ready  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor  
Data Sheet  
229  
Analog Module  
Analog Module  
DOF — DC Offset Flag  
This is a reserved bit.  
CDIFR — Current Detect Interrupt Flag Reset  
Writing a logic 1 to this write-only bit clears the CDIF bit. CDIFR  
always reads as a logic 0. Reset does not affect CDIFR.  
1 = Clear CDIF bit  
0 = No affect on CDIF bit  
CDIF — Current Detect Interrupt Flag  
This read-only bit is set when the voltage developed across the sense  
resistor, R  
is equal to or greater than V  
(the current sense  
DET  
SENSE  
amplifier comparator trip voltage, typically –9mV). CDIF generates an  
CPU interrupt request if AMIEN bit is also set. The CDIF bit is cleared  
by writing a logic 1 to the CDIFR bit. Reset clears CDIF bit.  
1 = Current detect interrupt has occurred  
0 = No current detect interrupt since CDIF last cleared  
Data Sheet  
230  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Analog Module  
Freescale Semiconductor  
Data Sheet — MC68HC908SR12•MC68HC08SR12  
Section 15. Analog-to-Digital Converter (ADC)  
15.1 Contents  
15.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .232  
15.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .232  
15.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .234  
15.4.1 ADC Port I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .234  
15.4.2 Voltage Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .235  
15.4.3 Conversion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .236  
15.4.4 Continuous Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . .237  
15.4.5 Auto-scan Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .237  
15.4.6 Result Justification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .238  
15.4.7 Data Register Interlocking . . . . . . . . . . . . . . . . . . . . . . . . .239  
15.4.8 Monotonicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .239  
15.5 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .239  
15.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .239  
15.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .239  
15.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .240  
15.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .240  
15.7.1 ADC Voltage In (V  
) . . . . . . . . . . . . . . . . . . . . . . . . . . .240  
ADIN  
15.7.2 ADC Analog Power Pin (V  
) . . . . . . . . . . . . . . . . . . . . .240  
DDA  
15.7.3 ADC Analog Ground Pin (V  
). . . . . . . . . . . . . . . . . . . . .240  
SSA  
15.7.4 ADC Voltage Reference High Pin (V  
). . . . . . . . . . . . .241  
REFH  
15.7.5 ADC Voltage Reference Low Pin (V  
) . . . . . . . . . . . . .241  
REFL  
15.8 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .241  
15.8.1 ADC Status and Control Register. . . . . . . . . . . . . . . . . . . .242  
15.8.2 ADC Clock Control Register. . . . . . . . . . . . . . . . . . . . . . . .244  
15.8.3 ADC Data Register 0 (ADRH0 and ADRL0). . . . . . . . . . . .246  
15.8.4 ADC Auto-Scan Mode Data Registers (ADRL1–ADRL3). .248  
15.8.5 ADC Auto-Scan Control Register (ADASCR). . . . . . . . . . .248  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Analog-to-Digital Converter (ADC)  
Data Sheet  
231  
Analog-to-Digital Converter (ADC)  
15.2 Introduction  
This section describes the analog-to-digital converter (ADC). The ADC  
is a 14-channel 10-bit linear successive approximation ADC.  
15.3 Features  
Features of the ADC module include:  
• Fourteen channels with multiplexed input  
• High impedance buffered input  
• Linear successive approximation with monotonicity  
• 10-bit resolution  
• Single or continuous conversion  
• Auto-scan conversion on four channels  
• Conversion complete flag or conversion complete interrupt  
• Selectable ADC clock  
• Conversion result justification  
– 8-bit truncated mode  
– Right justified mode  
– Left justified mode  
– Left justified sign mode  
Data Sheet  
232  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Analog-to-Digital Converter (ADC)  
Freescale Semiconductor  
Analog-to-Digital Converter (ADC)  
Features  
Addr.  
Register Name  
Bit 7  
6
AIEN  
0
5
4
ADCH4  
1
3
ADCH3  
1
2
ADCH2  
1
1
Bit 0  
Read: COCO  
ADC Status and Control  
ADCO  
0
ADCH1  
ADCH0  
$0057  
Register Write:  
(ADSCR)  
Reset:  
Read:  
0
1
0
1
0
ADC Clock Control  
ADIV2  
ADIV1  
ADIV0  
ADICLK MODE1 MODE0  
$0058  
$0059  
$005A  
$005B  
$005C  
$005D  
$005E  
Register Write:  
(ADICLK)  
Reset:  
R
0
ADx  
R
0
ADx  
R
0
ADx  
R
0
ADx  
R
0
ADx  
R
1
ADx  
R
0
ADx  
R
0
Read:  
ADx  
R
ADC Data Register High 0  
(ADRH0)  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
0
0
0
0
0
0
0
0
ADx  
R
ADx  
R
ADx  
R
ADx  
R
ADx  
R
ADx  
R
ADx  
R
ADx  
R
ADC Data Register Low 0  
(ADRL0)  
0
0
0
0
0
0
0
0
AD9  
R
AD8  
R
AD7  
R
AD6  
R
AD5  
R
AD4  
R
AD3  
R
AD2  
R
ADC Data Register Low 1  
(ADRL1)  
0
0
0
0
0
0
0
0
AD9  
R
AD8  
R
AD7  
R
AD6  
R
AD5  
R
AD4  
R
AD3  
R
AD2  
R
ADC Data Register Low 2  
(ADRL3)  
0
0
0
0
0
0
0
0
AD9  
R
AD8  
R
AD7  
R
AD6  
R
AD5  
R
AD4  
R
AD3  
R
AD2  
R
ADC Data Register Low 3  
(ADRL3)  
0
0
0
0
0
0
0
0
0
0
0
0
0
ADC Auto-scan Control  
AUTO1  
AUTO0  
0
ASCAN  
0
Register Write:  
(ADASCR)  
Reset:  
0
0
0
0
0
0
= Unimplemented  
R
= Reserved  
Figure 15-1. ADC I/O Register Summary  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Analog-to-Digital Converter (ADC)  
Data Sheet  
233  
Analog-to-Digital Converter (ADC)  
15.4 Functional Description  
The ADC provides thirteen pins for sampling external sources at pins  
PTA0/ATD2–PTA5/ATD7, PTC3/ATD8–PTC7/ATD12, and  
OPIN1–OPIN2; one internal source from the analog module. An analog  
multiplexer allows the single ADC converter to select one of fourteen  
ADC channels as ADC voltage in (V  
). V  
is converted by the  
ADIN  
ADIN  
successive approximation register-based analog-to-digital converter.  
When the conversion is completed, ADC places the result in the ADC  
data register, high and low byte (ADRH0 and ADRL0), and sets a flag or  
generates an interrupt.  
An additional three ADC data registers (ADRL1–ADRL3) are available to  
store the individual converted data for ADC channels ATD1–ATD3 when  
the auto-scan mode is enabled. Data from channel ATD0 is stored in  
ADRL0 in the auto-scan mode.  
Figure 15-2 shows the structure of the ADC module.  
15.4.1 ADC Port I/O Pins  
PTA0–PTA5 and PTC3–PTC7 are general-purpose I/O pins that are  
shared with the ADC channels, OPIN1 and OPIN2 are two analog inputs  
that are always connected to the ADC channel select multiplexer. The  
channel select bits, ADCH[4:0], define which ADC channel/port pin will  
be used as the input signal. The ADC overrides the port I/O logic by  
forcing that pin as input to the ADC. The remaining ADC channels/port  
pins are controlled by the port I/O logic and can be used as general-  
purpose I/O pins. Writes to the port data register or data direction  
register will not have any affect on the port pin that is selected by the  
ADC. Read of a port pin which is in use by the ADC will return the pin  
condition if the corresponding DDR bit is at logic 0. If the DDR bit is at  
logic 1, the value in the port data latch is read.  
Data Sheet  
234  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Analog-to-Digital Converter (ADC)  
Freescale Semiconductor  
Analog-to-Digital Converter (ADC)  
Functional Description  
15.4.2 Voltage Conversion  
When the input voltage to the ADC equals V  
, the ADC converts the  
REFH  
signal to $3FF (full scale). If the input voltage equals V  
, the ADC  
REFL  
converts it to $000. Input voltages between V  
and V  
is a  
REFH  
REFL  
straight-line linear conversion. All other input voltages will result in $3FF  
if greater than V and $000 if less than V  
.
REFL  
REFH  
NOTE: Input voltage should not exceed the analog supply voltages.  
INTERNAL  
DATA BUS  
READ DDRAx/DDRCx  
DISABLE  
WRITE DDRAx/DDRCx  
DDRAx/DDRCx  
RESET  
WRITE PTAx/PTCx  
PTAx/PTCx  
PTAx/PTCx  
READ PTAx/PTCx  
ATD2–ATD12  
(11 CHANNELS)  
DISABLE  
ADC DATA REGISTERS  
OPIN1  
OPIN2  
ADRH0 ADRL0  
ADRL1  
ADRL2  
VREFH  
ADRL3  
VREFL  
OPOUT  
FROM  
ANALOG MODULE  
ADC  
VOLTAGE IN  
CONVERSION  
COMPLETE  
(VADIN  
)
CHANNEL  
SELECT  
INTERRUPT  
LOGIC  
ADC  
ADCICLK  
AIEN  
COCO  
MUX  
ASCAN  
CGMXCLK  
CLOCK  
GENERATOR  
BUS CLOCK  
ADCH[4:0]  
ADIV[2:0] ADICLK  
2-BIT UP-COUNTER  
AUTO[1:0]  
Figure 15-2. ADC Block Diagram  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Analog-to-Digital Converter (ADC)  
Data Sheet  
235  
Analog-to-Digital Converter (ADC)  
15.4.3 Conversion Time  
Conversion starts after a write to the ADSCR. One conversion will take  
between 16 and 17 ADC clock cycles, therefore:  
16 to17 ADC cycles  
Conversion time =  
ADC frequency  
Number of bus cycles = conversion time × bus frequency  
The ADC conversion time is determined by the clock source chosen and  
the divide ratio selected. The clock source is either the bus clock or  
CGMXCLK and is selectable by the ADICLK bit located in the ADC clock  
register. The divide ratio is selected by the ADIV[2:0] bits.  
For example, if a 4MHz CGMXCLK is selected as the ADC input clock  
source, with a divide-by-four prescale, and the bus speed is set at 2MHz:  
16 to17 ADC cycles  
Conversion time =  
= 16 to 17 µs  
4MHz ÷ 4  
Number of bus cycles = 16 µs × 2MHz = 32 to 34 cycles  
NOTE: The ADC frequency must be between f minimum and f  
ADIC  
ADIC  
maximum to meet ADC specifications. (See 24.12 5.0V ADC Electrical  
Characteristics.)  
Since an ADC cycle may comprised of several bus cycles (two in the  
previous example) and the start of a conversion is initiated by a bus cycle  
write to the ADSCR, from zero to two additional bus cycles may occur  
before the start of the initial ADC cycle. This results in a fractional ADC  
cycle and is represented as the 17th cycle.  
NOTE: When OPOUT is selected as the ADC input, V  
, the conversion time  
ADIN  
is the accumulation of the op-amp settling time and the normal ADC  
conversion time. After writing to the ADSCR to initiate a conversion  
cycle, the ADC module sends a signal to the analog module for a  
OPOUT output. A signal will be sent back to the ADC by the analog  
module to indicate that OPOUT signal is ready for sampling. Upon  
receiving this signal, the ADC module starts its normal conversion cycle.  
(See 24.12 5.0V ADC Electrical Characteristics.)  
Data Sheet  
236  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Analog-to-Digital Converter (ADC)  
Freescale Semiconductor  
Analog-to-Digital Converter (ADC)  
Functional Description  
15.4.4 Continuous Conversion  
In the continuous conversion mode, the ADC continuously converts the  
selected channel, filling the ADC data register with new data after each  
conversion. Data from the previous conversion will be overwritten  
whether that data has been read or not. Conversions will continue until  
the ADCO bit is cleared. The COCO bit is set after each conversion and  
can be cleared by writing to the ADC status and control register or  
reading of the ADRL0 data register.  
15.4.5 Auto-scan Mode  
In auto-scan mode, the ADC input channel is selected by the value of the  
2-bit up-counter, instead of the channel select bits, ADCH[4:0]. The  
value of the counter also defines the data register ADRLx to be used to  
store the conversion result. When ASCAN bit is set, a write to ADC  
status and control register (ADSCR) will reset the auto-scan up-counter  
and ADC conversion will start on the channel 0 up to the channel number  
defined by the integer value of AUTO[1:0]. After a channel conversion is  
completed, data is stored in ADRLx and the COCO-bit will be set. The  
counter value will be incremented by 1 and a new conversion will start.  
This process will continue until the counter value reaches the value of  
AUTO[1:0]. When this happens, it indicates that the current channel is  
the last channel to be converted. Upon the completion on the last  
channel, the counter value will not be incremented and no further  
conversion will be performed. To start another auto-scan cycle, a write  
to ADSCR must be performed.  
NOTE: The system only provides 8-bit data storage in auto-scan code, user  
must clear MODE[1:0] bits to select 8-bit truncation mode before  
entering auto-scan mode.  
It is recommended that user should disable the auto-scan function  
before switching channel and also before entering STOP mode.  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Analog-to-Digital Converter (ADC)  
Data Sheet  
237  
Analog-to-Digital Converter (ADC)  
15.4.6 Result Justification  
The conversion result may be formatted in four different ways.  
• Left justified  
• Right justified  
• Left justified sign data mode  
• 8-bit truncation  
All four of these modes are controlled using MODE0 and MODE1 bits  
located in the ADC clock control register (ADICLK).  
Left justification will place the eight most significant bits (MSB) in the  
corresponding ADC data register high (ADRH). This may be useful if the  
result is to be treated as an 8-bit result where the least significant two  
bits, located in the ADC data register low (ADRL) can be ignored.  
However, you must read ADRL after ADRH or else the interlocking will  
prevent all new conversions from being stored.  
Right justification will place only the two MSBs in the corresponding ADC  
data register high (ADRH) and the eight LSB bits in ADC data register  
low (ADRL). This mode of operation typically is used when a 10-bit  
unsigned result is desired.  
Left justified sign data mode is similar to left justified mode with one  
exception. The MSB of the 10-bit result, AD9 located in ADRH is  
complemented. This mode of operation is useful when a result,  
represented as a signed magnitude from mid-scale, is needed.  
Finally, 8-bit truncation mode will place the eight MSBs in ADC data  
register low (ADRL). The two LSBs are dropped. This mode of operation  
is used when compatibility with 8-bit ADC designs are required. No  
interlocking between ADRH and ADRL is present.  
Data Sheet  
238  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Analog-to-Digital Converter (ADC)  
Freescale Semiconductor  
Analog-to-Digital Converter (ADC)  
Interrupts  
15.4.7 Data Register Interlocking  
Reading ADRH in any 10-bit mode latches the contents of ADRL until  
ADRL is read. Until ADRL is read all subsequent ADC results will be lost.  
This register interlocking can also be reset by a write to the ADC status  
and control register, or ADC clock control register. A power-on reset or  
reset will also clear the interlocking. Note that an external conversion  
request will not reset the lock.  
15.4.8 Monotonicity  
The conversion process is monotonic and has no missing codes.  
15.5 Interrupts  
When the AIEN bit is set, the ADC module is capable of generating a  
CPU interrupt after each ADC conversion or after an auto-scan  
conversion cycle. A CPU interrupt is generated if the COCO bit is at  
logic 0. The COCO bit is not used as a conversion complete flag when  
interrupts are enabled. The interrupt vector is defined in Table 2-1 .  
Vector Addresses.  
15.6 Low-Power Modes  
The STOP and WAIT instructions put the MCU in low power-  
consumption standby modes.  
15.6.1 Wait Mode  
The ADC continues normal operation in wait mode. Any enabled CPU  
interrupt request from the ADC can bring the MCU out of wait mode. If  
the ADC is not required to bring the MCU out of wait mode, power down  
the ADC by setting the ADCH[4:0] bits to logic 1’s before executing the  
WAIT instruction.  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Analog-to-Digital Converter (ADC)  
Data Sheet  
239  
Analog-to-Digital Converter (ADC)  
15.6.2 Stop Mode  
The ADC module is inactive after the execution of a STOP instruction.  
Any pending conversion is aborted. ADC conversions resume when the  
MCU exits stop mode. Allow one conversion cycle to stabilize the analog  
circuitry before attempting a new ADC conversion after exiting stop  
mode.  
15.7 I/O Signals  
The ADC module has fourteen channels, eleven channels are shared  
with port A and port C I/O pins; two channels are analog pins, OPIN1 and  
OPIN2, that are shared with the analog module; and one channel,  
OPOUT, from the analog module.  
15.7.1 ADC Voltage In (V  
)
ADIN  
V
is the input voltage signal from one of the fourteen channels to the  
ADIN  
ADC module.  
15.7.2 ADC Analog Power Pin (V  
)
DDA  
The ADC analog portion uses V  
as its power pin. Connect the V  
DDA  
DDA  
pin to the same voltage potential as V . External filtering may be  
DD  
necessary to ensure clean V  
for good results.  
DDA  
NOTE: Route V  
carefully for maximum noise immunity and place bypass  
DDA  
capacitors as close as possible to the package.  
15.7.3 ADC Analog Ground Pin (V  
)
SSA  
The ADC analog portion uses V  
as its ground pin. Connect the V  
SSA  
SSA  
pin to the same voltage potential as V .  
SS  
Data Sheet  
240  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Analog-to-Digital Converter (ADC) Freescale Semiconductor  
Analog-to-Digital Converter (ADC)  
I/O Registers  
15.7.4 ADC Voltage Reference High Pin (V  
)
REFH  
V
is the power supply for setting the reference voltage V  
.
REFH  
REFH  
Connect the V  
pin to the same voltage potential as V  
. There will  
REFH  
DDA  
be a finite current associated with V  
(see Section 24. Electrical  
REFH  
Specifications).  
NOTE: Route V  
carefully for maximum noise immunity and place bypass  
REFH  
capacitors as close as possible to the package.  
15.7.5 ADC Voltage Reference Low Pin (V  
)
REFL  
V
is the lower reference supply for the ADC. Connect the V  
pin  
REFL  
REFL  
to the same voltage potential as V  
. There will be a finite current  
SSA  
associated with V  
(see Section 24. Electrical Specifications).  
REFL  
15.8 I/O Registers  
These I/O registers control and monitor ADC operation:  
• ADC status and control register (ADSCR) — $0057  
• ADC clock control register (ADICLK) — $0058  
• ADC data register high 0 (ADRH0) — $0059  
• ADC data register low 0 (ADRL0) — $005A  
• ADC data register low 1 (ADRL1) — $005B  
• ADC data register low 2 (ADRL2) — $005C  
• ADC data register low 3 (ADRL3) — $005D  
• ADC auto-scan control register (ADASCR) — $005E  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Analog-to-Digital Converter (ADC)  
Data Sheet  
241  
Analog-to-Digital Converter (ADC)  
15.8.1 ADC Status and Control Register  
Function of the ADC status and control register is described here.  
Address: $0057  
Read: COCO  
Write:  
AIEN  
0
ADCO  
0
ADCH4  
1
ADCH3  
1
ADCH2  
1
ADCH1  
1
ADCH0  
1
Reset:  
0
= Unimplemented  
Figure 15-3. ADC Status and Control Register (ADSCR)  
COCO — Conversions Complete Bit  
When the AIEN bit is a logic 0, the COCO is a read-only bit which is  
set each time a conversion is completed. This bit is cleared whenever  
the ADSCR is written, or whenever the ADC clock control register is  
written, or whenever the ADC data register low, ADRLx, is read.  
If the AIEN bit is logic 1, the COCO bit always read as logic 0. ADC  
interrupt will be generated at the end if an ADC conversion. Reset  
clears the COCO bit.  
1 = Conversion completed (AIEN = 0)  
0 = Conversion not completed (AIEN = 0)/CPU interrupt (AIEN=1)  
AIEN — ADC Interrupt Enable Bit  
When this bit is set, an interrupt is generated at the end of an ADC  
conversion. The interrupt signal is cleared when the data register,  
ADR0, is read or the ADSCR is written. Reset clears the AIEN bit.  
1 = ADC interrupt enabled  
0 = ADC interrupt disabled  
ADCO — ADC Continuous Conversion Bit  
When set, the ADC will convert samples continuously and update the  
ADC data register at the end of each conversion. Only one conversion  
is allowed when this bit is cleared. Reset clears the ADCO bit.  
1 = Continuous ADC conversion  
0 = One ADC conversion  
This bit should not be set when auto-scan mode is enabled; i.e. when  
ASCAN=1.  
Data Sheet  
242  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Analog-to-Digital Converter (ADC)  
Freescale Semiconductor  
Analog-to-Digital Converter (ADC)  
I/O Registers  
ADCH[4:0] — ADC Channel Select Bits  
ADCH[4:0] form a 5-bit field which is used to select one of the ADC  
channels when not in auto-scan mode. The five channel select bits  
are detailed in Table 15-1.  
NOTE: Care should be taken when using a port pin as both an analog and a  
digital input simultaneously to prevent switching noise from corrupting  
the analog signal.  
NOTE: Recovery from the disabled state requires one conversion cycle to  
stabilize.  
Table 15-1. MUX Channel Select  
ADCH4  
ADCH3  
ADCH2  
ADCH1  
ADCH0  
ADC Channel  
ATD0  
Input Select  
OPIN1  
OPIN2  
PTA0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
1
ATD1  
ATD2  
ATD3  
PTA1  
ATD4  
PTA2  
ATD5  
PTA3  
ATD6  
PTA4  
ATD7  
PTA5  
ATD8  
PTC3  
ATD9  
PTC4  
ATD10  
ATD11  
ATD12  
ATD13  
PTC5  
PTC6  
PTC7  
OPOUT  
ATD14  
ATD28  
Reserved  
V
(see Note 2)  
ATD29  
ATD30  
REFH  
V
(see Note 2)  
1
1
1
1
1
1
1
0
1
REFL  
1
ADC powered-off  
NOTES:  
1. If any unused channels are selected, the resulting ADC conversion will be unknown.  
2. The voltage levels supplied from internal reference nodes as specified in the table are used to verify the operation of  
the ADC converter both in production test and for user applications.  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Analog-to-Digital Converter (ADC)  
Data Sheet  
243  
Analog-to-Digital Converter (ADC)  
15.8.2 ADC Clock Control Register  
The ADC clock control register (ADICLK) selects the clock frequency for  
the ADC.  
Address: $0058  
Read:  
ADIV2  
Write:  
0
0
0
R
0
ADIV1  
0
ADIV0  
0
ADICLK MODE1 MODE0  
Reset:  
0
0
0
1
= Unimplemented  
R
= Reserved  
Figure 15-4. ADC Clock Control Register (ADICLK)  
ADIV[2:0] — ADC Clock Prescaler Bits  
ADIV2, ADIV1, and ADIV0 form a 3-bit field which selects the divide  
ratio used by the ADC to generate the internal ADC clock.  
Table 15-2 shows the available clock configurations. The ADC clock  
should be set to between 500kHz and 2MHz.  
Table 15-2. ADC Clock Divide Ratio  
ADIV2  
ADIV1  
ADIV0  
ADC Clock Rate  
ADC input clock ÷ 1  
ADC input clock ÷ 2  
ADC input clock ÷ 4  
ADC input clock ÷ 8  
ADC input clock ÷ 16  
0
0
0
0
1
0
0
1
1
X
0
1
0
1
X
X = don’t care  
ADICLK — ADC Input Clock Select Bit  
ADICLK selects either bus clock or CGMXCLK as the input clock  
source to generate the internal ADC clock. Reset selects CGMXCLK  
as the ADC clock source.  
Data Sheet  
244  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Analog-to-Digital Converter (ADC)  
Freescale Semiconductor  
Analog-to-Digital Converter (ADC)  
I/O Registers  
If the external clock (CGMXCLK) is equal to or greater than 1MHz,  
CGMXCLK can be used as the clock source for the ADC. If  
CGMXCLK is less than 1MHz, use the PLL-generated bus clock as  
the clock source. As long as the internal ADC clock is at f  
operation can be guaranteed.  
, correct  
ADIC  
1 = Internal bus clock  
0 = External clock, CGMXCLK  
CGMXCLK or bus frequency  
f
=
ADIC  
ADIV[2:0]  
MODE1 and MODE0 — Modes of Result Justification  
MODE1 and MODE0 selects between four modes of operation. The  
manner in which the ADC conversion results will be placed in the ADC  
data registers is controlled by these modes of operation. Reset  
returns right-justified mode.  
Table 15-3. ADC Mode Select  
MODE1  
MODE0  
Justification Mode  
8-bit truncated mode  
Right justified mode  
0
0
1
1
0
1
0
1
Left justified mode  
Left justified sign data mode  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Analog-to-Digital Converter (ADC)  
Data Sheet  
245  
Analog-to-Digital Converter (ADC)  
15.8.3 ADC Data Register 0 (ADRH0 and ADRL0)  
The ADC data register 0 consist of a pair of 8-bit registers: high byte  
(ADRH0), and low byte (ADRL0). This pair form a 16-bit register to store  
the 10-bit ADC result for the selected ADC result justification mode.  
In 8-bit truncated mode, the ADRL0 holds the eight most significant bits  
(MSBs) of the 10-bit result. The ADRL0 is updated each time an ADC  
conversion completes. In 8-bit truncated mode, ADRL0 contains no  
interlocking with ADRH0. (See Figure 15-5 . ADRH0 and ADRL0 in 8-  
Bit Truncated Mode.)  
Addr.  
Register Name  
Bit 7  
0
6
0
5
0
4
0
3
0
2
0
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
ADC Data Register High 0  
(ADRH0)  
$0059  
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
AD9  
R
AD8  
R
AD7  
R
AD6  
R
AD5  
R
AD4  
R
AD3  
R
AD2  
R
ADC Data Register Low 0  
(ADRL0)  
$005A  
0
0
0
0
0
0
0
0
Figure 15-5. ADRH0 and ADRL0 in 8-Bit Truncated Mode  
In right justified mode the ADRH0 holds the two MSBs, and the ADRL0  
holds the eight least significant bits (LSBs), of the 10-bit result. ADRH0  
and ADRL0 are updated each time a single channel ADC conversion  
completes. Reading ADRH0 latches the contents of ADRL0. Until  
ADRL0 is read all subsequent ADC results will be lost.  
(See Figure 15-6 . ADRH0 and ADRL0 in Right Justified Mode.)  
Addr.  
Register Name  
Bit 7  
0
6
0
5
0
4
0
3
0
2
0
1
AD9  
R
Bit 0  
AD8  
R
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
ADC Data Register High 0  
(ADRH0)  
$0059  
R
R
R
R
R
R
0
0
0
0
0
0
0
0
AD7  
R
AD6  
R
AD5  
R
AD4  
R
AD3  
R
AD2  
R
AD1  
R
AD0  
R
ADC Data Register Low 0  
(ADRL0)  
$005A  
0
0
0
0
0
0
0
0
Figure 15-6. ADRH0 and ADRL0 in Right Justified Mode  
Data Sheet  
246  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Analog-to-Digital Converter (ADC) Freescale Semiconductor  
Analog-to-Digital Converter (ADC)  
I/O Registers  
In left justified mode the ADRH0 holds the eight most significant bits  
(MSBs), and the ADRL0 holds the two least significant bits (LSBs), of the  
10-bit result. The ADRH0 and ADRL0 are updated each time a single  
channel ADC conversion completes. Reading ADRH0 latches the  
contents of ADRL0. Until ADRL0 is read all subsequent ADC results will  
be lost. (See Figure 15-7 . ADRH0 and ADRL0 in Left Justified Mode.)  
Addr.  
Register Name  
Bit 7  
AD9  
R
6
AD8  
R
5
AD7  
R
4
AD6  
R
3
AD5  
R
2
AD4  
R
1
AD3  
R
Bit 0  
AD2  
R
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
ADC Data Register High 0  
(ADRH0)  
$0059  
0
0
0
0
0
0
0
0
AD1  
R
AD0  
R
0
0
0
0
0
0
ADC Data Register Low 0  
(ADRL0)  
$005A  
R
R
R
R
R
R
0
0
0
0
0
0
0
0
Figure 15-7. ADRH0 and ADRL0 in Left Justified Mode  
In left justified sign mode the ADRH0 holds the eight MSBs with the MSB  
complemented, and the ADRL0 holds the two least significant bits  
(LSBs), of the 10-bit result. The ADRH0 and ADRL0 are updated each  
time a single channel ADC conversion completes. Reading ADRH0  
latches the contents of ADRL0. Until ADRL0 is read all subsequent ADC  
results will be lost. (See Figure 15-8 . ADRH0 and ADRL0 in Left  
Justified Sign Data Mode.)  
Addr.  
Register Name  
Bit 7  
AD9  
R
6
AD8  
R
5
AD7  
R
4
AD6  
R
3
AD5  
R
2
AD4  
R
1
AD3  
R
Bit 0  
AD2  
R
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
ADC Data Register High 0  
(ADRH0)  
$0059  
0
0
0
0
0
0
0
0
AD1  
R
AD0  
R
0
0
0
0
0
0
ADC Data Register Low 0  
(ADRL0)  
$005A  
R
R
R
R
R
R
0
0
0
0
0
0
0
0
Figure 15-8. ADRH0 and ADRL0 in Left Justified Sign Data Mode  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Analog-to-Digital Converter (ADC)  
Data Sheet  
247  
Analog-to-Digital Converter (ADC)  
15.8.4 ADC Auto-Scan Mode Data Registers (ADRL1–ADRL3)  
The ADC data registers 1 to 3 (ADRL1–ADRL3), are 8-bit registers for  
conversion results in 8-bit truncated mode, for channels ATD1 to ATD3,  
when the ADC is operating in auto-scan mode (MODE[1:0] = 00).  
Address: ADRL1, $005B; ADRL2, $005C; and ADRL3, $005D  
Read:  
Write:  
Reset:  
AD9  
R
AD8  
AD7  
R
AD6  
R
AD5  
R
AD4  
R
AD3  
R
AD2  
R
R
0
0
0
0
0
0
0
0
R
= Reserved  
Figure 15-9. ADC Data Register Low 1 to 3 (ADRL1–ADRL3)  
15.8.5 ADC Auto-Scan Control Register (ADASCR)  
The ADC auto-scan control register (ADASCR) enables and controls the  
ADC auto-scan function.  
Address: $005E  
Read:  
Write:  
Reset:  
0
0
0
0
0
0
0
0
0
AUTO1  
AUTO0  
0
ASCAN  
0
0
0
= Unimplemented  
R
= Reserved  
Figure 15-10. ADC Scan Control Register (ADASCR)  
AUTO[1:0] — Auto-scan Mode Channel Select Bits  
AUTO1 and AUTO0 form a 2-bit field which is used to define the  
number of auto-scan channels used when in auto-scan mode.  
Reset clears these bits.  
Table 15-4. Auto-scan Mode Channel Select  
AUTO1  
AUTO0  
Auto-Scan Channels  
ATD0 only  
0
0
1
1
0
1
0
1
ATD0 to ATD1  
ATD0 to ATD2  
ATD0 to ATD3  
Data Sheet  
248  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Analog-to-Digital Converter (ADC)  
Freescale Semiconductor  
Analog-to-Digital Converter (ADC)  
I/O Registers  
ASCAN — Auto-scan Mode Enable Bit  
This bit enable/disable the Auto-scan mode. Reset clears this bit.  
1 = Auto-scan mode is enabled  
0 = Auto-scan mode is disabled  
Auto-scan mode should not be enabled when ADC continuous  
conversion is enabled; i.e. when ADCO=1.  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Analog-to-Digital Converter (ADC)  
Data Sheet  
249  
Analog-to-Digital Converter (ADC)  
Data Sheet  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Analog-to-Digital Converter (ADC) Freescale Semiconductor  
250  
Data Sheet — MC68HC908SR12•MC68HC08SR12  
Section 16. Serial Communications Interface (SCI)  
16.1 Contents  
16.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .252  
16.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .252  
16.4 Pin Name Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .254  
16.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .254  
16.5.1 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .257  
16.5.2 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .257  
16.5.2.1  
16.5.2.2  
16.5.2.3  
16.5.2.4  
16.5.2.5  
16.5.2.6  
Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .259  
Character Transmission. . . . . . . . . . . . . . . . . . . . . . . . .259  
Break Characters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .260  
Idle Characters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .260  
Inversion of Transmitted Output. . . . . . . . . . . . . . . . . . .261  
Transmitter Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . .261  
16.5.3 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .262  
16.5.3.1  
16.5.3.2  
16.5.3.3  
16.5.3.4  
16.5.3.5  
16.5.3.6  
16.5.3.7  
16.5.3.8  
Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .262  
Character Reception . . . . . . . . . . . . . . . . . . . . . . . . . . .262  
Data Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .264  
Framing Errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .266  
Baud Rate Tolerance. . . . . . . . . . . . . . . . . . . . . . . . . . .266  
Receiver Wakeup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .269  
Receiver Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . .270  
Error Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .270  
16.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .271  
16.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .271  
16.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .271  
16.7 SCI During Break Module Interrupts. . . . . . . . . . . . . . . . . . . .272  
16.8 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .272  
16.8.1 TxD (Transmit Data). . . . . . . . . . . . . . . . . . . . . . . . . . . . . .272  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Serial Communications Interface (SCI)  
Data Sheet  
251  
Serial Communications Interface (SCI)  
16.8.2 RxD (Receive Data) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .273  
16.9 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .273  
16.9.1 SCI Control Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . .273  
16.9.2 SCI Control Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . .276  
16.9.3 SCI Control Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . .279  
16.9.4 SCI Status Register 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . .282  
16.9.5 SCI Status Register 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . .286  
16.9.6 SCI Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .287  
16.9.7 SCI Baud Rate Register. . . . . . . . . . . . . . . . . . . . . . . . . . .288  
16.2 Introduction  
This section describes the serial communications interface (SCI)  
module, which allows high-speed asynchronous communications with  
peripheral devices and other MCUs.  
NOTE: When the SCI is enabled, the TxD pin is an open-drain output and  
requires a pullup resistor to be connected for proper SCI operation.  
NOTE: References to DMA (direct-memory access) and associated functions  
are only valid if the MCU has a DMA module. This MCU does not have  
the DMA function. Any DMA-related register bits should be left in their  
reset state for normal MCU operation.  
16.3 Features  
Features of the SCI module include the following:  
• Full-duplex operation  
• Standard mark/space non-return-to-zero (NRZ) format  
• 32 programmable baud rates  
• Programmable 8-bit or 9-bit character length  
• Separately enabled transmitter and receiver  
• Separate receiver and transmitter CPU interrupt requests  
• Programmable transmitter output polarity  
Data Sheet  
252  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Serial Communications Interface (SCI)  
Freescale Semiconductor  
Serial Communications Interface (SCI)  
Features  
• Two receiver wakeup methods:  
– Idle line wakeup  
– Address mark wakeup  
• Interrupt-driven operation with eight interrupt flags:  
– Transmitter empty  
– Transmission complete  
– Receiver full  
– Idle receiver input  
– Receiver overrun  
– Noise error  
– Framing error  
– Parity error  
• Receiver framing error detection  
• Hardware parity checking  
• 1/16 bit-time noise detection  
• Configuration register bit, SCIBDSRC, to allow selection of baud  
rate clock source  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Serial Communications Interface (SCI)  
Data Sheet  
253  
Serial Communications Interface (SCI)  
16.4 Pin Name Conventions  
The generic names of the SCI I/O pins are:  
• RxD (receive data)  
• TxD (transmit data)  
SCI I/O (input/output) lines are implemented by sharing parallel I/O port  
pins. The full name of an SCI input or output reflects the name of the  
shared port pin. Table 16-1 shows the full names and the generic names  
of the SCI I/O pins. The generic pin names appear in the text of this  
section.  
Table 16-1. Pin Name Conventions  
Generic Pin Names:  
Full Pin Names:  
RxD  
TxD  
PTB3/SCL1/RxD  
PTB2/SDA1/TxD  
NOTE: When the SCI is enabled, the TxD pin is an open-drain output and  
requires a pullup resistor to be connected for proper SCI operation.  
16.5 Functional Description  
Figure 16-1 shows the structure of the SCI module. The SCI allows full-  
duplex, asynchronous, NRZ serial communication among the MCU and  
remote devices, including other MCUs. The transmitter and receiver of  
the SCI operate independently, although they use the same baud rate  
generator. During normal operation, the CPU monitors the status of the  
SCI, writes the data to be transmitted, and processes received data.  
The baud rate clock source for the SCI can be selected via the  
configuration bit, SCIBDSRC, of the CONFIG2 register ($001D). Source  
selection values are shown in Figure 16-1.  
Data Sheet  
254  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Serial Communications Interface (SCI)  
Freescale Semiconductor  
Serial Communications Interface (SCI)  
Functional Description  
INTERNAL BUS  
SCI DATA  
REGISTER  
SCI DATA  
REGISTER  
RECEIVE  
SHIFT REGISTER  
TRANSMIT  
TxD  
RxD  
SHIFT REGISTER  
TXINV  
SCTIE  
TCIE  
SCRIE  
ILIE  
R8  
T8  
DMARE  
DMATE  
TE  
SCTE  
TC  
RE  
RWU  
SBK  
SCRF  
IDLE  
OR  
NF  
FE  
PE  
ORIE  
NEIE  
FEIE  
PEIE  
LOOPS  
LOOPS  
ENSCI  
RECEIVE  
CONTROL  
FLAG  
CONTROL  
TRANSMIT  
CONTROL  
WAKEUP  
CONTROL  
SCIBDSRC  
FROM  
CONFIG  
M
BKF  
RPF  
ENSCI  
WAKE  
ILTY  
PEN  
PTY  
SL  
A
PRE-  
SCALER  
BAUD  
DIVIDER  
CGMXCLK  
IT12  
÷ 4  
X
B
SL = 0 => X = A  
SL = 1 => X = B  
DATA SELECTION  
CONTROL  
÷ 16  
CGMXCLK is from CGM module  
IT12 = fBUS  
Figure 16-1. SCI Module Block Diagram  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Serial Communications Interface (SCI)  
Data Sheet  
255  
Serial Communications Interface (SCI)  
Addr.  
Register Name  
Bit 7  
LOOPS  
0
6
ENSCI  
0
5
TXINV  
0
4
M
3
WAKE  
0
2
ILTY  
0
1
PEN  
0
Bit 0  
PTY  
0
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
SCI Control Register 1  
(SCC1)  
$0013  
0
SCTIE  
TCIE  
0
SCRIE  
0
ILIE  
0
TE  
RE  
0
RWU  
0
SBK  
0
SCI Control Register 2  
(SCC2)  
$0014  
$0015  
$0016  
$0017  
$0018  
$0019  
0
0
R8  
T8  
DMARE DMATE  
ORIE  
NEIE  
FEIE  
PEIE  
SCI Control Register 3  
(SCC3)  
U
U
0
0
0
0
0
0
Read: SCTE  
Write:  
TC  
SCRF  
IDLE  
OR  
NF  
FE  
PE  
SCI Status Register 1  
(SCS1)  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
1
1
0
0
0
0
0
0
BKF  
RPF  
SCI Status Register 2  
(SCS2)  
0
0
0
0
0
0
0
0
R7  
T7  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
R0  
T0  
SCI Data Register  
(SCDR)  
Unaffected by reset  
0
0
0
0
SCP1  
0
SCP0  
R
0
SCR2  
0
SCR1  
0
SCR0  
0
SCI Baud Rate Register  
(SCBR)  
0
= Unimplemented  
R = Reserved  
U = Unaffected  
Figure 16-2. SCI I/O Register Summary  
Data Sheet  
256  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Serial Communications Interface (SCI) Freescale Semiconductor  
Serial Communications Interface (SCI)  
Functional Description  
16.5.1 Data Format  
The SCI uses the standard non-return-to-zero mark/space data format  
illustrated in Figure 16-3.  
8-BIT DATA FORMAT  
BIT M IN SCC1 CLEAR  
PARITY  
BIT  
NEXT  
START  
BIT  
START  
BIT  
STOP  
BIT  
BIT 0  
BIT 1  
BIT 2  
BIT 3  
BIT 4  
BIT 5  
BIT 6  
BIT 7  
9-BIT DATA FORMAT  
BIT M IN SCC1 SET  
PARITY  
BIT  
NEXT  
START  
BIT  
START  
BIT  
BIT 0  
BIT 1  
BIT 2  
BIT 3  
BIT 4  
BIT 5  
BIT 6  
BIT 7  
BIT 8  
STOP  
BIT  
Figure 16-3. SCI Data Formats  
16.5.2 Transmitter  
Figure 16-4 shows the structure of the SCI transmitter.  
The baud rate clock source for the SCI can be selected via the  
configuration bit, SCIBDSRC. Source selection values are shown in  
Figure 16-4.  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Serial Communications Interface (SCI)  
Data Sheet  
257  
Serial Communications Interface (SCI)  
SCIBDSRC  
FROM  
CONFIG2  
SL  
X
CGMXCLK  
IT12  
A
B
SL = 0 => X = A  
SL = 1 => X = B  
INTERNAL BUS  
PRE- BAUD  
SCALER DIVIDER  
÷ 16  
÷ 4  
SCI DATA REGISTER  
SCP1  
SCP0  
SCR1  
SCR2  
SCR0  
11-BIT  
TRANSMIT  
SHIFT REGISTER  
H
8
7
6
5
4
3
2
1
0
L
TxD  
TXINV  
M
PEN  
PTY  
PARITY  
GENERATION  
T8  
DMATE  
TRANSMITTER  
CONTROL LOGIC  
DMATE  
SCTIE  
SCTE  
SCTE  
SBK  
DMATE  
SCTE  
LOOPS  
ENSCI  
TE  
SCTIE  
SCTIE  
TC  
TC  
TCIE  
TCIE  
Figure 16-4. SCI Transmitter  
Data Sheet  
258  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Serial Communications Interface (SCI) Freescale Semiconductor  
Serial Communications Interface (SCI)  
Functional Description  
16.5.2.1 Character Length  
The transmitter can accommodate either 8-bit or 9-bit data. The state of  
the M bit in SCI control register 1 (SCC1) determines character length.  
When transmitting 9-bit data, bit T8 in SCI control register 3 (SCC3) is  
the ninth bit (bit 8).  
16.5.2.2 Character Transmission  
During an SCI transmission, the transmit shift register shifts a character  
out to the TxD pin. The SCI data register (SCDR) is the write-only buffer  
between the internal data bus and the transmit shift register. To initiate  
an SCI transmission:  
1. Enable the SCI by writing a logic 1 to the enable SCI bit (ENSCI)  
in SCI control register 1 (SCC1).  
2. Enable the transmitter by writing a logic 1 to the transmitter enable  
bit (TE) in SCI control register 2 (SCC2).  
3. Clear the SCI transmitter empty bit by first reading SCI status  
register 1 (SCS1) and then writing to the SCDR.  
4. Repeat step 3 for each subsequent transmission.  
At the start of a transmission, transmitter control logic automatically  
loads the transmit shift register with a preamble of logic 1s. After the  
preamble shifts out, control logic transfers the SCDR data into the  
transmit shift register. A logic 0 start bit automatically goes into the least  
significant bit position of the transmit shift register. A logic 1 stop bit goes  
into the most significant bit position.  
The SCI transmitter empty bit, SCTE, in SCS1 becomes set when the  
SCDR transfers a byte to the transmit shift register. The SCTE bit  
indicates that the SCDR can accept new data from the internal data bus.  
If the SCI transmit interrupt enable bit, SCTIE, in SCC2 is also set, the  
SCTE bit generates a transmitter CPU interrupt request.  
When the transmit shift register is not transmitting a character, the TxD  
pin goes to the idle condition, logic 1. If at any time software clears the  
ENSCI bit in SCI control register 1 (SCC1), the transmitter and receiver  
relinquish control of the port pin.  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Serial Communications Interface (SCI)  
Data Sheet  
259  
Serial Communications Interface (SCI)  
16.5.2.3 Break Characters  
Writing a logic 1 to the send break bit, SBK, in SCC2 loads the transmit  
shift register with a break character. A break character contains all logic  
0s and has no start, stop, or parity bit. Break character length depends  
on the M bit in SCC1. As long as SBK is at logic 1, transmitter logic  
continuously loads break characters into the transmit shift register. After  
software clears the SBK bit, the shift register finishes transmitting the  
last break character and then transmits at least one logic 1. The  
automatic logic 1 at the end of a break character guarantees the  
recognition of the start bit of the next character.  
The SCI recognizes a break character when a start bit is followed by  
eight or nine logic 0 data bits and a logic 0 where the stop bit should be.  
Receiving a break character has these effects on SCI registers:  
• Sets the framing error bit (FE) in SCS1  
• Sets the SCI receiver full bit (SCRF) in SCS1  
• Clears the SCI data register (SCDR)  
• Clears the R8 bit in SCC3  
• Sets the break flag bit (BKF) in SCS2  
• May set the overrun (OR), noise flag (NF), parity error (PE), or  
reception in progress flag (RPF) bits  
16.5.2.4 Idle Characters  
An idle character contains all logic 1s and has no start, stop, or parity bit.  
Idle character length depends on the M bit in SCC1. The preamble is a  
synchronizing idle character that begins every transmission.  
If the TE bit is cleared during a transmission, the TxD pin becomes idle  
after completion of the transmission in progress. Clearing and then  
setting the TE bit during a transmission queues an idle character to be  
sent after the character currently being transmitted.  
Data Sheet  
260  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Serial Communications Interface (SCI)  
Freescale Semiconductor  
Serial Communications Interface (SCI)  
Functional Description  
NOTE: When queueing an idle character, return the TE bit to logic 1 before the  
stop bit of the current character shifts out to the TxD pin. Setting TE after  
the stop bit appears on TxD causes data previously written to the SCDR  
to be lost.  
Toggle the TE bit for a queued idle character when the SCTE bit  
becomes set and just before writing the next byte to the SCDR.  
16.5.2.5 Inversion of Transmitted Output  
The transmit inversion bit (TXINV) in SCI control register 1 (SCC1)  
reverses the polarity of transmitted data. All transmitted values, including  
idle, break, start, and stop bits, are inverted when TXINV is at logic 1.  
(See 16.9.1 SCI Control Register 1.)  
16.5.2.6 Transmitter Interrupts  
These conditions can generate CPU interrupt requests from the SCI  
transmitter:  
• SCI transmitter empty (SCTE) — The SCTE bit in SCS1 indicates  
that the SCDR has transferred a character to the transmit shift  
register. SCTE can generate a transmitter CPU interrupt request.  
Setting the SCI transmit interrupt enable bit, SCTIE, in SCC2  
enables the SCTE bit to generate transmitter CPU interrupt  
requests.  
• Transmission complete (TC) — The TC bit in SCS1 indicates that  
the transmit shift register and the SCDR are empty and that no  
break or idle character has been generated. The transmission  
complete interrupt enable bit, TCIE, in SCC2 enables the TC bit to  
generate transmitter CPU interrupt requests.  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Serial Communications Interface (SCI)  
Data Sheet  
261  
Serial Communications Interface (SCI)  
16.5.3 Receiver  
Figure 16-5 shows the structure of the SCI receiver.  
16.5.3.1 Character Length  
The receiver can accommodate either 8-bit or 9-bit data. The state of the  
M bit in SCI control register 1 (SCC1) determines character length.  
When receiving 9-bit data, bit R8 in SCI control register 2 (SCC2) is the  
ninth bit (bit 8). When receiving 8-bit data, bit R8 is a copy of the eighth  
bit (bit 7).  
16.5.3.2 Character Reception  
During an SCI reception, the receive shift register shifts characters in  
from the RxD pin. The SCI data register (SCDR) is the read-only buffer  
between the internal data bus and the receive shift register.  
After a complete character shifts into the receive shift register, the data  
portion of the character transfers to the SCDR. The SCI receiver full bit,  
SCRF, in SCI status register 1 (SCS1) becomes set, indicating that the  
received byte can be read. If the SCI receive interrupt enable bit, SCRIE,  
in SCC2 is also set, the SCRF bit generates a receiver CPU interrupt  
request.  
Data Sheet  
262  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Serial Communications Interface (SCI)  
Freescale Semiconductor  
Serial Communications Interface (SCI)  
Functional Description  
INTERNAL BUS  
SCIBDSRC  
FROM  
CONFIG2  
SCR1  
SCR2  
SCR0  
SCP1  
SCP0  
SCI DATA REGISTER  
SL  
A
B
CGMXCLK  
IT12  
PRE- BAUD  
SCALER DIVIDER  
X
÷ 4  
÷ 16  
11-BIT  
RECEIVE SHIFT REGISTER  
SL = 0 => X = A  
SL = 1 => X = B  
DATA  
RECOVERY  
H
8
7
6
5
4
3
2
1
0
L
RxD  
ALL 0s  
BKF  
RPF  
M
RWU  
SCRF  
IDLE  
WAKE  
ILTY  
WAKEUP  
LOGIC  
PEN  
PTY  
R8  
PARITY  
CHECKING  
IDLE  
ILIE  
ILIE  
DMARE  
SCRF  
SCRIE  
DMARE  
SCRIE  
SCRF  
SCRIE  
DMARE  
DMARE  
OR  
OR  
ORIE  
ORIE  
NF  
NF  
NEIE  
NEIE  
FE  
FE  
FEIE  
FEIE  
PE  
PE  
PEIE  
PEIE  
Figure 16-5. SCI Receiver Block Diagram  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Serial Communications Interface (SCI)  
Data Sheet  
263  
Serial Communications Interface (SCI)  
16.5.3.3 Data Sampling  
The receiver samples the RxD pin at the RT clock rate. The RT clock is  
an internal signal with a frequency 16 times the baud rate. To adjust for  
baud rate mismatch, the RT clock is resynchronized at the following  
times (see Figure 16-6):  
• After every start bit  
• After the receiver detects a data bit change from logic 1 to logic 0  
(after the majority of data bit samples at RT8, RT9, and RT10  
returns a valid logic 1 and the majority of the next RT8, RT9, and  
RT10 samples returns a valid logic 0)  
To locate the start bit, data recovery logic does an asynchronous search  
for a logic 0 preceded by three logic 1s. When the falling edge of a  
possible start bit occurs, the RT clock begins to count to 16.  
START BIT  
LSB  
RxD  
START BIT  
QUALIFICATION  
START BIT  
DATA  
SAMPLES  
VERIFICATION SAMPLING  
RT  
CLOCK  
RT CLOCK  
STATE  
RT CLOCK  
RESET  
Figure 16-6. Receiver Data Sampling  
Data Sheet  
264  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Serial Communications Interface (SCI) Freescale Semiconductor  
Serial Communications Interface (SCI)  
Functional Description  
To verify the start bit and to detect noise, data recovery logic takes  
samples at RT3, RT5, and RT7. Table 16-2 summarizes the results of  
the start bit verification samples.  
Table 16-2. Start Bit Verification  
RT3, RT5, and RT7  
Samples  
Start Bit  
Verification  
Noise Flag  
000  
001  
010  
011  
100  
101  
110  
111  
Yes  
Yes  
Yes  
No  
0
1
1
0
1
0
0
0
Yes  
No  
No  
No  
Start bit verification is not successful if any two of the three verification  
samples are logic 1s. If start bit verification is not successful, the RT  
clock is reset and a new search for a start bit begins.  
To determine the value of a data bit and to detect noise, recovery logic  
takes samples at RT8, RT9, and RT10. Table 16-3 summarizes the  
results of the data bit samples.  
Table 16-3. Data Bit Recovery  
RT8, RT9, and RT10  
Samples  
Data Bit  
Determination  
Noise Flag  
000  
001  
010  
011  
100  
101  
110  
111  
0
0
0
1
0
1
1
1
0
1
1
1
1
1
1
0
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Serial Communications Interface (SCI)  
Data Sheet  
265  
Serial Communications Interface (SCI)  
NOTE: The RT8, RT9, and RT10 samples do not affect start bit verification. If  
any or all of the RT8, RT9, and RT10 start bit samples are logic 1s  
following a successful start bit verification, the noise flag (NF) is set and  
the receiver assumes that the bit is a start bit.  
To verify a stop bit and to detect noise, recovery logic takes samples at  
RT8, RT9, and RT10. Table 16-4 summarizes the results of the stop bit  
samples.  
Table 16-4. Stop Bit Recovery  
RT8, RT9, and RT10  
Samples  
Framing  
Error Flag  
Noise Flag  
000  
001  
010  
011  
100  
101  
110  
111  
1
1
1
0
1
0
0
0
0
1
1
1
1
1
1
0
16.5.3.4 Framing Errors  
If the data recovery logic does not detect a logic 1 where the stop bit  
should be in an incoming character, it sets the framing error bit, FE, in  
SCS1. A break character also sets the FE bit because a break character  
has no stop bit. The FE bit is set at the same time that the SCRF bit is  
set.  
16.5.3.5 Baud Rate Tolerance  
A transmitting device may be operating at a baud rate below or above  
the receiver baud rate. Accumulated bit time misalignment can cause  
one of the three stop bit data samples to fall outside the actual stop bit.  
Then a noise error occurs. If more than one of the samples is outside the  
stop bit, a framing error occurs. In most applications, the baud rate  
Data Sheet  
266  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Serial Communications Interface (SCI)  
Freescale Semiconductor  
Serial Communications Interface (SCI)  
Functional Description  
tolerance is much more than the degree of misalignment that is likely to  
occur.  
As the receiver samples an incoming character, it resynchronizes the RT  
clock on any valid falling edge within the character. Resynchronization  
within characters corrects misalignments between transmitter bit times  
and receiver bit times.  
Slow Data Tolerance  
Figure 16-7 shows how much a slow received character can be  
misaligned without causing a noise error or a framing error. The slow  
stop bit begins at RT8 instead of RT1 but arrives in time for the stop bit  
data samples at RT8, RT9, and RT10.  
MSB  
STOP  
RECEIVER  
RT CLOCK  
DATA  
SAMPLES  
Figure 16-7. Slow Data  
For an 8-bit character, data sampling of the stop bit takes the receiver  
9 bit times × 16 RT cycles + 10 RT cycles = 154 RT cycles.  
With the misaligned character shown in Figure 16-7, the receiver counts  
154 RT cycles at the point when the count of the transmitting device is  
9 bit times × 16 RT cycles + 3 RT cycles = 147 RT cycles.  
The maximum percent difference between the receiver count and the  
transmitter count of a slow 8-bit character with no errors is  
154 147  
× 100 = 4.54%  
-------------------------  
154  
For a 9-bit character, data sampling of the stop bit takes the receiver  
10 bit times × 16 RT cycles + 10 RT cycles = 170 RT cycles.  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Serial Communications Interface (SCI)  
Data Sheet  
267  
Serial Communications Interface (SCI)  
With the misaligned character shown in Figure 16-7, the receiver counts  
170 RT cycles at the point when the count of the transmitting device is  
10 bit times × 16 RT cycles + 3 RT cycles = 163 RT cycles.  
The maximum percent difference between the receiver count and the  
transmitter count of a slow 9-bit character with no errors is  
170 163  
× 100 = 4.12%  
-------------------------  
170  
Fast Data Tolerance  
Figure 16-8 shows how much a fast received character can be  
misaligned without causing a noise error or a framing error. The fast stop  
bit ends at RT10 instead of RT16 but is still there for the stop bit data  
samples at RT8, RT9, and RT10.  
STOP  
IDLE OR NEXT CHARACTER  
RECEIVER  
RT CLOCK  
DATA  
SAMPLES  
Figure 16-8. Fast Data  
For an 8-bit character, data sampling of the stop bit takes the receiver  
9 bit times × 16 RT cycles + 10 RT cycles = 154 RT cycles.  
With the misaligned character shown in Figure 16-8, the receiver counts  
154 RT cycles at the point when the count of the transmitting device is  
10 bit times × 16 RT cycles = 160 RT cycles.  
The maximum percent difference between the receiver count and the  
transmitter count of a fast 8-bit character with no errors is  
·
154 160  
× 100 = 3.90%  
-------------------------  
154  
Data Sheet  
268  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Serial Communications Interface (SCI) Freescale Semiconductor  
Serial Communications Interface (SCI)  
Functional Description  
For a 9-bit character, data sampling of the stop bit takes the receiver  
10 bit times × 16 RT cycles + 10 RT cycles = 170 RT cycles.  
With the misaligned character shown in Figure 16-8, the receiver counts  
170 RT cycles at the point when the count of the transmitting device is  
11 bit times × 16 RT cycles = 176 RT cycles.  
The maximum percent difference between the receiver count and the  
transmitter count of a fast 9-bit character with no errors is  
170 176  
× 100 = 3.53%  
-------------------------  
170  
16.5.3.6 Receiver Wakeup  
So that the MCU can ignore transmissions intended only for other  
receivers in multiple-receiver systems, the receiver can be put into a  
standby state. Setting the receiver wakeup bit, RWU, in SCC2 puts the  
receiver into a standby state during which receiver interrupts are  
disabled.  
Depending on the state of the WAKE bit in SCC1, either of two  
conditions on the RxD pin can bring the receiver out of the standby state:  
• Address mark — An address mark is a logic 1 in the most  
significant bit position of a received character. When the WAKE bit  
is set, an address mark wakes the receiver from the standby state  
by clearing the RWU bit. The address mark also sets the SCI  
receiver full bit, SCRF. Software can then compare the character  
containing the address mark to the user-defined address of the  
receiver. If they are the same, the receiver remains awake and  
processes the characters that follow. If they are not the same,  
software can set the RWU bit and put the receiver back into the  
standby state.  
• Idle input line condition — When the WAKE bit is clear, an idle  
character on the RxD pin wakes the receiver from the standby  
state by clearing the RWU bit. The idle character that wakes the  
receiver does not set the receiver idle bit, IDLE, or the SCI receiver  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Serial Communications Interface (SCI)  
Data Sheet  
269  
Serial Communications Interface (SCI)  
full bit, SCRF. The idle line type bit, ILTY, determines whether the  
receiver begins counting logic 1s as idle character bits after the  
start bit or after the stop bit.  
NOTE: With the WAKE bit clear, setting the RWU bit after the RxD pin has been  
idle may cause the receiver to wake up immediately.  
16.5.3.7 Receiver Interrupts  
The following sources can generate CPU interrupt requests from the SCI  
receiver:  
• SCI receiver full (SCRF) — The SCRF bit in SCS1 indicates that  
the receive shift register has transferred a character to the SCDR.  
SCRF can generate a receiver CPU interrupt request. Setting the  
SCI receive interrupt enable bit, SCRIE, in SCC2 enables the  
SCRF bit to generate receiver CPU interrupts.  
• Idle input (IDLE) — The IDLE bit in SCS1 indicates that 10 or 11  
consecutive logic 1s shifted in from the RxD pin. The idle line  
interrupt enable bit, ILIE, in SCC2 enables the IDLE bit to generate  
CPU interrupt requests.  
16.5.3.8 Error Interrupts  
The following receiver error flags in SCS1 can generate CPU interrupt  
requests:  
• Receiver overrun (OR) — The OR bit indicates that the receive  
shift register shifted in a new character before the previous  
character was read from the SCDR. The previous character  
remains in the SCDR, and the new character is lost. The overrun  
interrupt enable bit, ORIE, in SCC3 enables OR to generate SCI  
error CPU interrupt requests.  
• Noise flag (NF) — The NF bit is set when the SCI detects noise on  
incoming data or break characters, including start, data, and stop  
bits. The noise error interrupt enable bit, NEIE, in SCC3 enables  
NF to generate SCI error CPU interrupt requests.  
Data Sheet  
270  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Serial Communications Interface (SCI)  
Freescale Semiconductor  
Serial Communications Interface (SCI)  
Low-Power Modes  
• Framing error (FE) — The FE bit in SCS1 is set when a logic 0  
occurs where the receiver expects a stop bit. The framing error  
interrupt enable bit, FEIE, in SCC3 enables FE to generate SCI  
error CPU interrupt requests.  
• Parity error (PE) — The PE bit in SCS1 is set when the SCI  
detects a parity error in incoming data. The parity error interrupt  
enable bit, PEIE, in SCC3 enables PE to generate SCI error CPU  
interrupt requests.  
16.6 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-  
consumption standby modes.  
16.6.1 Wait Mode  
The SCI module remains active after the execution of a WAIT  
instruction. In wait mode, the SCI module registers are not accessible by  
the CPU. Any enabled CPU interrupt request from the SCI module can  
bring the MCU out of wait mode.  
If SCI module functions are not required during wait mode, reduce power  
consumption by disabling the module before executing the WAIT  
instruction.  
Refer to 9.7 Low-Power Modes for information on exiting wait mode.  
16.6.2 Stop Mode  
The SCI module is inactive after the execution of a STOP instruction.  
The STOP instruction does not affect SCI register states. SCI module  
operation resumes after an external interrupt.  
Because the internal clock is inactive during stop mode, entering stop  
mode during an SCI transmission or reception results in invalid data.  
Refer to 9.7 Low-Power Modes for information on exiting stop mode.  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Serial Communications Interface (SCI)  
Data Sheet  
271  
Serial Communications Interface (SCI)  
16.7 SCI During Break Module Interrupts  
The system integration module (SIM) controls whether status bits in  
other modules can be cleared during the break state. The BCFE bit in  
the SIM break flag control register (SBFCR) enables software to clear  
status bits during the break state.  
To allow software to clear status bits during a break interrupt, write a  
logic 1 to the BCFE bit. If a status bit is cleared during the break state, it  
remains cleared when the MCU exits the break state.  
To protect status bits during the break state, write a logic 0 to the BCFE  
bit. With BCFE at logic 0 (its default state), software can read and write  
I/O registers during the break state without affecting status bits. Some  
status bits have a 2-step read/write clearing procedure. If software does  
the first step on such a bit before the break, the bit cannot change during  
the break state as long as BCFE is at logic 0. After the break, doing the  
second step clears the status bit.  
16.8 I/O Signals  
Port B shares two of its pins with the SCI module.  
The two SCI I/O pins are:  
• PTB2/SDA1/TxD — Transmit data  
• PTB3/SCL1/RxD — Receive data  
16.8.1 TxD (Transmit Data)  
When the SCI is enabled (ENSCI=1), the PTB2/SDA1/TxD pin becomes  
the serial data output, TxD, from the SCI transmitter regardless of the  
state of the DDRB2 bit in data direction register B (DDRB). The TxD pin  
is an open-drain output and requires a pullup resistor to be connected for  
proper SCI operation.  
NOTE: The PTB2/SDA1/TxD pin is an open-drain pin when configured as an  
output. Therefore, when configured as a general purpose output pin  
(PTB2), a pullup resistor must be connected to this pin.  
Data Sheet  
272  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Serial Communications Interface (SCI)  
Freescale Semiconductor  
Serial Communications Interface (SCI)  
I/O Registers  
16.8.2 RxD (Receive Data)  
When the SCI is enabled (ENSCI=1), the PTB3/SCL1/RxD pin becomes  
the serial data input, RxD, to the SCI receiver regardless of the state of  
the DDRB3 bit in data direction register B (DDRB).  
NOTE: The PTB3/SCL1/RxD pin is an open-drain pin when configured as an  
output. Therefore, when configured as a general purpose output pin  
(PTB3), a pullup resistor must be connected to this pin.  
16.9 I/O Registers  
These I/O registers control and monitor SCI operation:  
• SCI control register 1 (SCC1)  
• SCI control register 2 (SCC2)  
• SCI control register 3 (SCC3)  
• SCI status register 1 (SCS1)  
• SCI status register 2 (SCS2)  
• SCI data register (SCDR)  
• SCI baud rate register (SCBR)  
16.9.1 SCI Control Register 1  
SCI control register 1:  
• Enables loop mode operation  
• Enables the SCI  
• Controls output polarity  
• Controls character length  
• Controls SCI wakeup method  
• Controls idle character detection  
• Enables parity function  
• Controls parity type  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Serial Communications Interface (SCI)  
Data Sheet  
273  
Serial Communications Interface (SCI)  
Address: $0013  
Bit 7  
LOOPS  
0
6
ENSCI  
0
5
TXINV  
0
4
M
0
3
WAKE  
0
2
ILTY  
0
1
PEN  
0
Bit 0  
PTY  
0
Read:  
Write:  
Reset:  
Figure 16-9. SCI Control Register 1 (SCC1)  
LOOPS — Loop Mode Select Bit  
This read/write bit enables loop mode operation. In loop mode the  
RxD pin is disconnected from the SCI, and the transmitter output goes  
into the receiver input. Both the transmitter and the receiver must be  
enabled to use loop mode. Reset clears the LOOPS bit.  
1 = Loop mode enabled  
0 = Normal operation enabled  
ENSCI — Enable SCI Bit  
This read/write bit enables the SCI and the SCI baud rate generator.  
Clearing ENSCI sets the SCTE and TC bits in SCI status register 1  
and disables transmitter interrupts. Reset clears the ENSCI bit.  
1 = SCI enabled  
0 = SCI disabled  
TXINV — Transmit Inversion Bit  
This read/write bit reverses the polarity of transmitted data. Reset  
clears the TXINV bit.  
1 = Transmitter output inverted  
0 = Transmitter output not inverted  
NOTE: Setting the TXINV bit inverts all transmitted values, including idle, break,  
start, and stop bits.  
Data Sheet  
274  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Serial Communications Interface (SCI)  
Freescale Semiconductor  
Serial Communications Interface (SCI)  
I/O Registers  
M — Mode (Character Length) Bit  
This read/write bit determines whether SCI characters are eight or  
nine bits long. (See Table 16-5.) The ninth bit can serve as an extra  
stop bit, as a receiver wakeup signal, or as a parity bit. Reset clears  
the M bit.  
1 = 9-bit SCI characters  
0 = 8-bit SCI characters  
WAKE — Wakeup Condition Bit  
This read/write bit determines which condition wakes up the SCI: a  
logic 1 (address mark) in the most significant bit position of a received  
character or an idle condition on the RxD pin. Reset clears the WAKE  
bit.  
1 = Address mark wakeup  
0 = Idle line wakeup  
ILTY — Idle Line Type Bit  
This read/write bit determines when the SCI starts counting logic 1s  
as idle character bits. The counting begins either after the start bit or  
after the stop bit. If the count begins after the start bit, then a string of  
logic 1s preceding the stop bit may cause false recognition of an idle  
character. Beginning the count after the stop bit avoids false idle  
character recognition, but requires properly synchronized  
transmissions. Reset clears the ILTY bit.  
1 = Idle character bit count begins after stop bit  
0 = Idle character bit count begins after start bit  
PEN — Parity Enable Bit  
This read/write bit enables the SCI parity function. (See Table 16-5.)  
When enabled, the parity function inserts a parity bit in the most  
significant bit position. (See Figure 16-3.) Reset clears the PEN bit.  
1 = Parity function enabled  
0 = Parity function disabled  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Serial Communications Interface (SCI)  
Data Sheet  
275  
Serial Communications Interface (SCI)  
PTY — Parity Bit  
This read/write bit determines whether the SCI generates and checks  
for odd parity or even parity. (See Table 16-5.) Reset clears the PTY  
bit.  
1 = Odd parity  
0 = Even parity  
NOTE: Changing the PTY bit in the middle of a transmission or reception can  
generate a parity error.  
Table 16-5. Character Format Selection  
Control Bits  
PEN and  
Character Format  
Start  
Bits  
Data  
Bits  
Stop  
Parity  
Character  
Length  
M
PTY  
0X  
0X  
10  
Bits  
0
1
0
0
1
1
1
1
1
1
1
1
8
9
7
7
8
8
None  
None  
Even  
Odd  
1
1
1
1
1
1
10 bits  
11 bits  
10 bits  
10 bits  
11 bits  
11 bits  
11  
10  
Even  
Odd  
11  
16.9.2 SCI Control Register 2  
SCI control register 2:  
• Enables the following CPU interrupt requests:  
– Enables the SCTE bit to generate transmitter CPU interrupt  
requests  
– Enables the TC bit to generate transmitter CPU interrupt  
requests  
– Enables the SCRF bit to generate receiver CPU interrupt  
requests  
– Enables the IDLE bit to generate receiver CPU interrupt  
requests  
Data Sheet  
276  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Serial Communications Interface (SCI)  
Freescale Semiconductor  
Serial Communications Interface (SCI)  
I/O Registers  
• Enables the transmitter  
• Enables the receiver  
• Enables SCI wakeup  
• Transmits SCI break characters  
Address: $0014  
Bit 7  
6
TCIE  
0
5
SCRIE  
0
4
ILIE  
0
3
TE  
0
2
RE  
0
1
RWU  
0
Bit 0  
SBK  
0
Read:  
Write:  
Reset:  
SCTIE  
0
Figure 16-10. SCI Control Register 2 (SCC2)  
SCTIE — SCI Transmit Interrupt Enable Bit  
This read/write bit enables the SCTE bit to generate SCI transmitter  
CPU interrupt requests. Reset clears the SCTIE bit.  
1 = SCTE enabled to generate CPU interrupt  
0 = SCTE not enabled to generate CPU interrupt  
TCIE — Transmission Complete Interrupt Enable Bit  
This read/write bit enables the TC bit to generate SCI transmitter CPU  
interrupt requests. Reset clears the TCIE bit.  
1 = TC enabled to generate CPU interrupt requests  
0 = TC not enabled to generate CPU interrupt requests  
SCRIE — SCI Receive Interrupt Enable Bit  
This read/write bit enables the SCRF bit to generate SCI receiver  
CPU interrupt requests. Reset clears the SCRIE bit.  
1 = SCRF enabled to generate CPU interrupt  
0 = SCRF not enabled to generate CPU interrupt  
ILIE — Idle Line Interrupt Enable Bit  
This read/write bit enables the IDLE bit to generate SCI receiver CPU  
interrupt requests. Reset clears the ILIE bit.  
1 = IDLE enabled to generate CPU interrupt requests  
0 = IDLE not enabled to generate CPU interrupt requests  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Serial Communications Interface (SCI)  
Data Sheet  
277  
Serial Communications Interface (SCI)  
TE — Transmitter Enable Bit  
Setting this read/write bit begins the transmission by sending a  
preamble of 10 or 11 logic 1s from the transmit shift register to the  
TxD pin. If software clears the TE bit, the transmitter completes any  
transmission in progress before the TxD returns to the idle condition  
(logic 1). Clearing and then setting TE during a transmission queues  
an idle character to be sent after the character currently being  
transmitted. Reset clears the TE bit.  
1 = Transmitter enabled  
0 = Transmitter disabled  
NOTE: Writing to the TE bit is not allowed when the enable SCI bit (ENSCI) is  
clear. ENSCI is in SCI control register 1.  
RE — Receiver Enable Bit  
Setting this read/write bit enables the receiver. Clearing the RE bit  
disables the receiver but does not affect receiver interrupt flag bits.  
Reset clears the RE bit.  
1 = Receiver enabled  
0 = Receiver disabled  
NOTE: Writing to the RE bit is not allowed when the enable SCI bit (ENSCI) is  
clear. ENSCI is in SCI control register 1.  
RWU — Receiver Wakeup Bit  
This read/write bit puts the receiver in a standby state during which  
receiver interrupts are disabled. The WAKE bit in SCC1 determines  
whether an idle input or an address mark brings the receiver out of the  
standby state and clears the RWU bit. Reset clears the RWU bit.  
1 = Standby state  
0 = Normal operation  
Data Sheet  
278  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Serial Communications Interface (SCI)  
Freescale Semiconductor  
Serial Communications Interface (SCI)  
I/O Registers  
SBK — Send Break Bit  
Setting and then clearing this read/write bit transmits a break  
character followed by a logic 1. The logic 1 after the break character  
guarantees recognition of a valid start bit. If SBK remains set, the  
transmitter continuously transmits break characters with no logic 1s  
between them. Reset clears the SBK bit.  
1 = Transmit break characters  
0 = No break characters being transmitted  
NOTE: Do not toggle the SBK bit immediately after setting the SCTE bit.  
Toggling SBK before the preamble begins causes the SCI to send a  
break character instead of a preamble.  
16.9.3 SCI Control Register 3  
SCI control register 3:  
• Stores the ninth SCI data bit received and the ninth SCI data bit to  
be transmitted  
• Enables these interrupts:  
– Receiver overrun interrupts  
– Noise error interrupts  
– Framing error interrupts  
• Parity error interrupts  
Address: $0015  
Bit 7  
R8  
6
T8  
U
5
4
3
ORIE  
0
2
NEIE  
0
1
FEIE  
0
Bit 0  
PEIE  
0
Read:  
Write:  
Reset:  
DMARE DMATE  
U
0
0
= Unimplemented  
U = Unaffected  
Figure 16-11. SCI Control Register 3 (SCC3)  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Serial Communications Interface (SCI)  
Data Sheet  
279  
Serial Communications Interface (SCI)  
R8 — Received Bit 8  
When the SCI is receiving 9-bit characters, R8 is the read-only ninth  
bit (bit 8) of the received character. R8 is received at the same time  
that the SCDR receives the other 8 bits.  
When the SCI is receiving 8-bit characters, R8 is a copy of the eighth  
bit (bit 7). Reset has no effect on the R8 bit.  
T8 — Transmitted Bit 8  
When the SCI is transmitting 9-bit characters, T8 is the read/write  
ninth bit (bit 8) of the transmitted character. T8 is loaded into the  
transmit shift register at the same time that the SCDR is loaded into  
the transmit shift register. Reset has no effect on the T8 bit.  
DMARE — DMA Receive Enable Bit  
CAUTION: The DMA module is not included on this MCU. Writing a logic 1 to  
DMARE or DMATE may adversely affect MCU performance.  
1 = DMA not enabled to service SCI receiver DMA service requests  
generated by the SCRF bit (SCI receiver CPU interrupt  
requests enabled)  
0 = DMA not enabled to service SCI receiver DMA service requests  
generated by the SCRF bit (SCI receiver CPU interrupt  
requests enabled)  
DMATE — DMA Transfer Enable Bit  
CAUTION: The DMA module is not included on this MCU. Writing a logic 1 to  
DMARE or DMATE may adversely affect MCU performance.  
1 = SCTE DMA service requests enabled; SCTE CPU interrupt  
requests disabled  
0 = SCTE DMA service requests disabled; SCTE CPU interrupt  
requests enabled  
Data Sheet  
280  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Serial Communications Interface (SCI) Freescale Semiconductor  
Serial Communications Interface (SCI)  
I/O Registers  
ORIE — Receiver Overrun Interrupt Enable Bit  
This read/write bit enables SCI error CPU interrupt requests  
generated by the receiver overrun bit, OR.  
1 = SCI error CPU interrupt requests from OR bit enabled  
0 = SCI error CPU interrupt requests from OR bit disabled  
NEIE — Receiver Noise Error Interrupt Enable Bit  
This read/write bit enables SCI error CPU interrupt requests  
generated by the noise error bit, NE. Reset clears NEIE.  
1 = SCI error CPU interrupt requests from NE bit enabled  
0 = SCI error CPU interrupt requests from NE bit disabled  
FEIE — Receiver Framing Error Interrupt Enable Bit  
This read/write bit enables SCI error CPU interrupt requests  
generated by the framing error bit, FE. Reset clears FEIE.  
1 = SCI error CPU interrupt requests from FE bit enabled  
0 = SCI error CPU interrupt requests from FE bit disabled  
PEIE — Receiver Parity Error Interrupt Enable Bit  
This read/write bit enables SCI receiver CPU interrupt  
requests generated by the parity error bit, PE. (See 16.9.4 SCI Status  
Register 1.) Reset clears PEIE.  
1 = SCI error CPU interrupt requests from PE bit enabled  
0 = SCI error CPU interrupt requests from PE bit disabled  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Serial Communications Interface (SCI)  
Data Sheet  
281  
Serial Communications Interface (SCI)  
16.9.4 SCI Status Register 1  
SCI status register 1 (SCS1) contains flags to signal these conditions:  
• Transfer of SCDR data to transmit shift register complete  
• Transmission complete  
• Transfer of receive shift register data to SCDR complete  
• Receiver input idle  
• Receiver overrun  
• Noisy data  
• Framing error  
• Parity error  
Address: $0016  
Bit 7  
6
5
4
3
2
1
Bit 0  
PE  
Read: SCTE  
Write:  
TC  
SCRF  
IDLE  
OR  
NF  
FE  
Reset:  
1
1
0
0
0
0
0
0
= Unimplemented  
Figure 16-12. SCI Status Register 1 (SCS1)  
SCTE — SCI Transmitter Empty Bit  
This clearable, read-only bit is set when the SCDR transfers a  
character to the transmit shift register. SCTE can generate an SCI  
transmitter CPU interrupt request. When the SCTIE bit in SCC2 is set,  
SCTE generates an SCI transmitter CPU interrupt request. In normal  
operation, clear the SCTE bit by reading SCS1 with SCTE set and  
then writing to SCDR. Reset sets the SCTE bit.  
1 = SCDR data transferred to transmit shift register  
0 = SCDR data not transferred to transmit shift register  
Data Sheet  
282  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Serial Communications Interface (SCI)  
Freescale Semiconductor  
Serial Communications Interface (SCI)  
I/O Registers  
TC — Transmission Complete Bit  
This read-only bit is set when the SCTE bit is set, and no data,  
preamble, or break character is being transmitted. TC generates an  
SCI transmitter CPU interrupt request if the TCIE bit in SCC2 is also  
set. TC is automatically cleared when data, preamble or break is  
queued and ready to be sent. There may be up to 1.5 transmitter  
clocks of latency between queueing data, preamble, and break and  
the transmission actually starting. Reset sets the TC bit.  
1 = No transmission in progress  
0 = Transmission in progress  
SCRF — SCI Receiver Full Bit  
This clearable, read-only bit is set when the data in the receive shift  
register transfers to the SCI data register. SCRF can generate an SCI  
receiver CPU interrupt request. When the SCRIE bit in SCC2 is set,  
SCRF generates a CPU interrupt request. In normal operation, clear  
the SCRF bit by reading SCS1 with SCRF set and then reading the  
SCDR. Reset clears SCRF.  
1 = Received data available in SCDR  
0 = Data not available in SCDR  
IDLE — Receiver Idle Bit  
This clearable, read-only bit is set when 10 or 11 consecutive logic 1s  
appear on the receiver input. IDLE generates an SCI error CPU  
interrupt request if the ILIE bit in SCC2 is also set. Clear the IDLE bit  
by reading SCS1 with IDLE set and then reading the SCDR. After the  
receiver is enabled, it must receive a valid character that sets the  
SCRF bit before an idle condition can set the IDLE bit. Also, after the  
IDLE bit has been cleared, a valid character must again set the SCRF  
bit before an idle condition can set the IDLE bit. Reset clears the IDLE  
bit.  
1 = Receiver input idle  
0 = Receiver input active (or idle since the IDLE bit was cleared)  
OR — Receiver Overrun Bit  
This clearable, read-only bit is set when software fails to read the  
SCDR before the receive shift register receives the next character.  
The OR bit generates an SCI error CPU interrupt request if the ORIE  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Serial Communications Interface (SCI)  
Data Sheet  
283  
Serial Communications Interface (SCI)  
bit in SCC3 is also set. The data in the shift register is lost, but the data  
already in the SCDR is not affected. Clear the OR bit by reading SCS1  
with OR set and then reading the SCDR. Reset clears the OR bit.  
1 = Receive shift register full and SCRF = 1  
0 = No receiver overrun  
Software latency may allow an overrun to occur between reads of  
SCS1 and SCDR in the flag-clearing sequence. Figure 16-13 shows  
the normal flag-clearing sequence and an example of an overrun  
caused by a delayed flag-clearing sequence. The delayed read of  
SCDR does not clear the OR bit because OR was not set when SCS1  
was read. Byte 2 caused the overrun and is lost. The next flag-  
clearing sequence reads byte 3 in the SCDR instead of byte 2.  
In applications that are subject to software latency or in which it is  
important to know which byte is lost due to an overrun, the flag-  
clearing routine can check the OR bit in a second read of SCS1 after  
reading the data register.  
NF — Receiver Noise Flag Bit  
This clearable, read-only bit is set when the SCI detects noise on the  
RxD pin. NF generates an NF CPU interrupt request if the NEIE bit in  
SCC3 is also set. Clear the NF bit by reading SCS1 and then reading  
the SCDR. Reset clears the NF bit.  
1 = Noise detected  
0 = No noise detected  
FE — Receiver Framing Error Bit  
This clearable, read-only bit is set when a logic 0 is accepted as the  
stop bit. FE generates an SCI error CPU interrupt request if the FEIE  
bit in SCC3 also is set. Clear the FE bit by reading SCS1 with FE set  
and then reading the SCDR. Reset clears the FE bit.  
1 = Framing error detected  
0 = No framing error detected  
Data Sheet  
284  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Serial Communications Interface (SCI)  
Freescale Semiconductor  
Serial Communications Interface (SCI)  
I/O Registers  
NORMAL FLAG CLEARING SEQUENCE  
BYTE 1  
BYTE 2  
BYTE 3  
BYTE 4  
READ SCS1  
SCRF = 1  
OR = 0  
READ SCS1  
SCRF = 1  
OR = 0  
READ SCS1  
SCRF = 1  
OR = 0  
READ SCDR  
BYTE 1  
READ SCDR  
BYTE 2  
READ SCDR  
BYTE 3  
DELAYED FLAG CLEARING SEQUENCE  
BYTE 1  
BYTE 2  
BYTE 3  
BYTE 4  
READ SCS1  
SCRF = 1  
OR = 0  
READ SCS1  
SCRF = 1  
OR = 1  
READ SCDR  
BYTE 1  
READ SCDR  
BYTE 3  
Figure 16-13. Flag Clearing Sequence  
PE — Receiver Parity Error Bit  
This clearable, read-only bit is set when the SCI detects a parity error  
in incoming data. PE generates a PE CPU interrupt request if the  
PEIE bit in SCC3 is also set. Clear the PE bit by reading SCS1 with  
PE set and then reading the SCDR. Reset clears the PE bit.  
1 = Parity error detected  
0 = No parity error detected  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Serial Communications Interface (SCI)  
Data Sheet  
285  
Serial Communications Interface (SCI)  
16.9.5 SCI Status Register 2  
SCI status register 2 contains flags to signal the following conditions:  
• Break character detected  
• Incoming data  
Address: $0017  
Bit 7  
6
5
4
0
3
0
2
0
1
Bit 0  
RPF  
Read:  
Write:  
Reset:  
BKF  
0
0
0
0
0
= Unimplemented  
Figure 16-14. SCI Status Register 2 (SCS2)  
BKF — Break Flag Bit  
This clearable, read-only bit is set when the SCI detects a break  
character on the RxD pin. In SCS1, the FE and SCRF bits are also  
set. In 9-bit character transmissions, the R8 bit in SCC3 is cleared.  
BKF does not generate a CPU interrupt request. Clear BKF by  
reading SCS2 with BKF set and then reading the SCDR. Once  
cleared, BKF can become set again only after logic 1s again appear  
on the RxD pin followed by another break character. Reset clears the  
BKF bit.  
1 = Break character detected  
0 = No break character detected  
RPF — Reception in Progress Flag Bit  
This read-only bit is set when the receiver detects a logic 0 during the  
RT1 time period of the start bit search. RPF does not generate an  
interrupt request. RPF is reset after the receiver detects false start bits  
(usually from noise or a baud rate mismatch) or when the receiver  
detects an idle character. Polling RPF before disabling the SCI  
module or entering stop mode can show whether a reception is in  
progress.  
1 = Reception in progress  
0 = No reception in progress  
Data Sheet  
286  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Serial Communications Interface (SCI)  
Freescale Semiconductor  
Serial Communications Interface (SCI)  
I/O Registers  
16.9.6 SCI Data Register  
The SCI data register (SCDR) is the buffer between the internal data bus  
and the receive and transmit shift registers. Reset has no effect on data  
in the SCI data register.  
Address: $0018  
Bit 7  
R7  
6
5
4
3
2
1
Bit 0  
R0  
Read:  
Write:  
Reset:  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
T7  
T0  
Unaffected by reset  
Figure 16-15. SCI Data Register (SCDR)  
R7/T7–R0/T0 — Receive/Transmit Data Bits  
Reading the SCI data register (SCDR) accesses the read-only  
received data bits, R7:R0. Writing to the SCDR writes the data to be  
transmitted, T7:T0. Reset has no effect on the SCDR.  
NOTE: Do not use read/modify/write instructions on the SCI data register.  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Serial Communications Interface (SCI)  
Data Sheet  
287  
Serial Communications Interface (SCI)  
16.9.7 SCI Baud Rate Register  
The baud rate register (SCBR) selects the baud rate for both the receiver  
and the transmitter.  
Address: $0019  
Bit 7  
0
6
0
5
SCP1  
0
4
SCP0  
0
3
2
1
SCR1  
0
Bit 0  
SCR0  
0
Read:  
Write:  
Reset:  
R
SCR2  
0
0
0
0
= Unimplemented  
R
= Reserved  
Figure 16-16. SCI Baud Rate Register (SCBR)  
SCP1 and SCP0 — SCI Baud Rate Prescaler Bits  
These read/write bits select the baud rate prescaler divisor as shown  
in Table 16-6. Reset clears SCP1 and SCP0.  
Table 16-6. SCI Baud Rate Prescaling  
SCP1 and SCP0  
Prescaler Divisor (PD)  
00  
01  
10  
11  
1
3
4
13  
SCR2–SCR0 — SCI Baud Rate Select Bits  
These read/write bits select the SCI baud rate divisor as shown in  
Table 16-7. Reset clears SCR2–SCR0.  
Data Sheet  
288  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Serial Communications Interface (SCI)  
Freescale Semiconductor  
Serial Communications Interface (SCI)  
I/O Registers  
Table 16-7. SCI Baud Rate Selection  
SCR2, SCR1, and SCR0  
Baud Rate Divisor (BD)  
000  
001  
010  
011  
100  
101  
110  
111  
1
2
4
8
16  
32  
64  
128  
Use this formula to calculate the SCI baud rate:  
SCI clock source  
baud rate = --------------------------------------------  
64 × PD × BD  
where:  
SCI clock source = f  
or CGMXCLK  
BUS  
(selected by SCIBDSRC bit in CONFIG2 register)  
PD = prescaler divisor  
BD = baud rate divisor  
Table 16-8 shows the SCI baud rates that can be generated with a  
4.9152-MHz bus clock when f  
is selected as SCI clock source.  
BUS  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Serial Communications Interface (SCI)  
Data Sheet  
289  
Serial Communications Interface (SCI)  
Table 16-8. SCI Baud Rate Selection Examples  
Baud Rate  
BUS  
SCP1 and  
SCP0  
Prescaler  
Divisor (PD)  
SCR2, SCR1,  
and SCR0  
Baud Rate  
Divisor (BD)  
(f  
= 4.9152 MHz)  
00  
00  
00  
00  
00  
00  
00  
00  
01  
01  
01  
01  
01  
01  
01  
01  
10  
10  
10  
10  
10  
10  
10  
10  
11  
11  
11  
11  
11  
11  
11  
11  
1
1
000  
001  
010  
011  
100  
101  
110  
111  
000  
001  
010  
011  
100  
101  
110  
111  
000  
001  
010  
011  
100  
101  
110  
111  
000  
001  
010  
011  
100  
101  
110  
111  
1
2
76,800  
38,400  
19,200  
9600  
4800  
2400  
1200  
600  
1
4
1
8
1
16  
32  
64  
128  
1
1
1
1
3
25,600  
12,800  
6400  
3200  
1600  
800  
3
2
3
4
3
8
3
16  
32  
64  
128  
1
3
3
400  
3
200  
4
19,200  
9600  
4800  
2400  
1200  
600  
4
2
4
4
4
8
4
16  
32  
64  
128  
1
4
4
300  
4
150  
13  
13  
13  
13  
13  
13  
13  
13  
5908  
2954  
1477  
739  
2
4
8
16  
32  
64  
128  
369  
185  
92  
46  
Data Sheet  
290  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Serial Communications Interface (SCI) Freescale Semiconductor  
Data Sheet — MC68HC908SR12•MC68HC08SR12  
Section 17. Multi-Master IIC Interface (MMIIC)  
17.1 Contents  
17.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .292  
17.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .293  
17.4 I/O Pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .293  
17.5 Multi-Master IIC System Configuration. . . . . . . . . . . . . . . . . .295  
17.6 Multi-Master IIC Bus Protocol. . . . . . . . . . . . . . . . . . . . . . . . .295  
17.6.1 START Signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .296  
17.6.2 Slave Address Transmission . . . . . . . . . . . . . . . . . . . . . . .296  
17.6.3 Data Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .296  
17.6.4 Repeated START Signal . . . . . . . . . . . . . . . . . . . . . . . . . .297  
17.6.5 STOP Signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .297  
17.6.6 Arbitration Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . .297  
17.6.7 Clock Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . .298  
17.6.8 Handshaking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .298  
17.6.9 Packet Error Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .299  
17.7 MMIIC I/O Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .299  
17.7.1 MMIIC Address Register (MMADR) . . . . . . . . . . . . . . . . . .299  
17.7.2 MMIIC Control Register 1 (MMCR1) . . . . . . . . . . . . . . . . .301  
17.7.3 MMIIC Control Register 2 (MMCR2) . . . . . . . . . . . . . . . . .303  
17.7.4 MMIIC Status Register (MMSR). . . . . . . . . . . . . . . . . . . . .305  
17.7.5 MMIIC Data Transmit Register (MMDTR) . . . . . . . . . . . . .307  
17.7.6 MMIIC Data Receive Register (MMDRR). . . . . . . . . . . . . .308  
17.7.7 MMIIC CRC Data Register (MMCRCDR). . . . . . . . . . . . . .309  
17.7.8 MMIIC Frequency Divider Register (MMFDR) . . . . . . . . . .310  
17.8 Program Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .311  
17.8.1 Data Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .312  
17.9 SMBus Protocols with PEC and without PEC. . . . . . . . . . . . .313  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Multi-Master IIC Interface (MMIIC)  
Data Sheet  
291  
Multi-Master IIC Interface (MMIIC)  
17.9.1 Quick Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .313  
17.9.2 Send Byte. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .313  
17.9.3 Receive Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .313  
17.9.4 Write Byte/Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .314  
17.9.5 Read Byte/Word. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .314  
17.9.6 Process Call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .315  
17.9.7 Block Read/Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .315  
17.10 SMBus Protocol Implementation . . . . . . . . . . . . . . . . . . . . . .316  
17.2 Introduction  
The multi-master IIC (MMIIC) interface is a two wire, bidirectional serial  
bus which provides a simple, efficient way for data exchange between  
devices. The interface is designed for internal serial communication  
between the MCU and other IIC devices. It has hardware generated  
START and STOP signals; and byte by byte interrupt driven software  
algorithm.  
This bus is suitable for applications which need frequent  
communications over a short distance between a number of devices. It  
also provides a flexibility that allows additional devices to be connected  
to the bus. The maximum data rate is 100k-bps, and the maximum  
communication distance and number of devices that can be connected  
is limited by a maximum bus capacitance of 400pF.  
This MMIIC interface is also SMBus (System Management Bus) version  
1.0 and 1.1 compatible, with hardware cyclic redundancy code (CRC)  
generation, making it suitable for smart battery applications.  
For connection flexibility, two channels are available:  
• Channel 0 — SDA0 and SCL0  
• Channel 1 — SDA1 and SCL1  
The two channels are multiplexed; only one channel is active at any one  
time.  
Data Sheet  
292  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Multi-Master IIC Interface (MMIIC)  
Freescale Semiconductor  
Multi-Master IIC Interface (MMIIC)  
Features  
17.3 Features  
Features of the MMIC module include:  
• Full SMBus version 1.0/1.1 compliance  
• Multi-master IIC bus standard  
• Software programmable for one of eight different serial clock  
frequencies  
• Software controllable acknowledge bit generation  
• Interrupt driven byte by byte data transfer  
• Calling address identification interrupt  
• Arbitration loss detection and no-ACK awareness in master mode  
and automatic mode switching from master to slave  
• Auto detection of R/W bit and switching of transmit or receive  
mode accordingly  
• Detection of START, repeated START, and STOP signals  
• Auto generation of START and STOP condition in master mode  
• Repeated start generation  
• Master clock generator with eight selectable baud rates  
• Automatic recognition of the received acknowledge bit  
• Busy detection  
• Software enabled 8-bit CRC generation/decoding  
17.4 I/O Pins  
The MMIIC module uses four I/O pins, shared with standard port I/O  
pins. The full name of the MMIIC I/O pins are listed in Table 17-1. The  
generic pin name appear in the text that follows.  
The SDA0/SCL0 and SDA1/SCL1 pins are open-drain. When configured  
as general purpose output pins (PTB0–PTB3), pullup resistors must be  
connected to these pins.  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Multi-Master IIC Interface (MMIIC)  
Data Sheet  
293  
Multi-Master IIC Interface (MMIIC)  
Table 17-1. Pin Name Conventions  
MMIIC Generic Pin Names:  
Full MCU Pin Names:  
PTB0/SDA0  
Pin Selected for MMIIC Function By:  
SDA0  
SCL0  
SDA1  
SCL1  
MMEN and SDASCL1 bits in MMCR1 ($0049)  
PTB1/SCL0  
PTB2/SDA1/TxD  
PTB3/SCL1/RxD  
ENSCI bit in SCC1 ($0013);  
MMEN and SDASCL1 bits in MMCR1 ($0049)  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
MMEXTAD  
0
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
MMAD7 MMAD6 MMAD5 MMAD4 MMAD3 MMAD2 MMAD1  
MMIIC Address Register  
(MMADR)  
$0048  
1
MMEN  
0
0
MMIEN  
0
1
0
0
0
0
0
0
MMCLRBB  
0
MMCRCBYTE  
MMTXAK REPSEN  
SDASCL1  
0
MMIIC Control Register 1  
(MMCR1)  
$0049  
$004A  
$004B  
$004C  
$004D  
$004E  
$004F  
0
0
0
0
0
0
Read: MMALIF MMNAKIF MMBB  
MMCRCEF  
MMAST MMRW  
MMIIC Control Register 2  
(MMCR2)  
Write:  
0
0
0
0
Unaffected  
Reset:  
0
0
0
0
0
MMCRCBF  
Read: MMRXIF MMTXIF MMATCH MMSRW MMRXAK  
MMTXBE MMRXBF  
MMIIC Status Register  
(MMSR)  
Write:  
Reset:  
Read:  
0
0
0
0
0
0
1
0
1
0
MMIIC Data Transmit  
MMTD7 MMTD6 MMTD5 MMTD4 MMTD3 MMTD2 MMTD1 MMTD0  
Register Write:  
(MMDTR)  
Reset:  
0
0
0
0
0
0
0
0
Read: MMRD7 MMRD6 MMRD5 MMRD4 MMRD3 MMRD2 MMRD1 MMRD0  
MMIIC Data Receive  
Register Write:  
(MDDRR)  
Reset:  
Read:  
Write:  
Reset:  
Read:  
0
0
0
0
0
0
0
0
MMCRCD7 MMCRCD6 MMCRCD5 MMCRCD4 MMCRCD3 MMCRCD2 MMCRCD1 MMCRCD0  
MMIIC CRC Data Register  
(MMCRDR)  
0
0
0
0
0
0
0
0
0
0
0
0
0
MMIIC Frequency Divider  
MMBR2 MMBR1 MMBR0  
Register Write:  
(MMFDR)  
Reset:  
0
0
0
0
0
1
0
0
= Unimplemented  
Figure 17-1. MMIIC I/O Register Summary  
Data Sheet  
294  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Multi-Master IIC Interface (MMIIC) Freescale Semiconductor  
Multi-Master IIC Interface (MMIIC)  
Multi-Master IIC System Configuration  
17.5 Multi-Master IIC System Configuration  
The multi-master IIC system uses a serial data line SDA and a serial  
clock line SCL for data transfer. All devices connected to it must have  
open collector (drain) outputs and the logical-AND function is performed  
on both lines by two pull-up resistors.  
17.6 Multi-Master IIC Bus Protocol  
Normally a standard communication is composed of four parts:  
1. START signal,  
2. slave address transmission,  
3. data transfer, and  
4. STOP signal.  
These are described briefly in the following sections and illustrated in  
Figure 17-2.  
9th clock pulse  
LSB  
9th clock pulse  
LSB  
MSB  
1
MSB  
1
SCL  
SDA  
1
0
0
0
0
1
1
1
0
1
0
0
1
1
ACK  
Data must be stable  
when SCL is HIGH  
No ACK  
START  
signal  
STOP  
signal  
MSB  
1
LSB  
1
MSB  
1
LSB  
1
SCL  
SDA  
1
0
0
0
0
1
1
0
1
0
0
1
ACK  
No ACK  
Repeated  
START  
signal  
START  
signal  
STOP  
signal  
Figure 17-2. Multi-Master IIC Bus Transmission Signal Diagram  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Multi-Master IIC Interface (MMIIC)  
Data Sheet  
295  
Multi-Master IIC Interface (MMIIC)  
17.6.1 START Signal  
When the bus is free, (i.e. no master device is engaging the bus — both  
SCL and SDA lines are at logic high) a master may initiate  
communication by sending a START signal. As shown in Figure 17-2, a  
START signal is defined as a high to low transition of SDA while SCL is  
high. This signal denotes the beginning of a new data transfer (each data  
transfer may contain several bytes of data) and wakes up all slaves.  
17.6.2 Slave Address Transmission  
The first byte transferred immediately after the START signal is the slave  
address transmitted by the master. This is a 7-bit calling address  
followed by a R/W-bit. The R/W-bit dictates to the slave the desired  
direction of the data transfer. A logic 0 indicates that the master wishes  
to transmit data to the slave; a logic 1 indicates that the master wishes  
to receive data from the slave.  
Only the slave with a matched address will respond by sending back an  
acknowledge bit by pulling SDA low on the 9th clock cycle.  
(See Figure 17-2.)  
17.6.3 Data Transfer  
Once a successful slave addressing is achieved, the data transfer can  
proceed byte by byte in the direction specified by the R/W-bit sent by the  
calling master.  
Each data byte is 8 bits. Data can be changed only when SCL is low and  
must be held stable when SCL is high as shown in Figure 17-2. The  
MSB is transmitted first and each byte has to be followed by an  
acknowledge bit. This is signalled by the receiving device by pulling the  
SDA low on the 9th clock cycle. Therefore, one complete data byte  
transfer requires 9 clock cycles.  
If the slave receiver does not acknowledge the master, the SDA line  
should be left high by the slave. The master can then generate a STOP  
signal to abort the data transfer or a START signal (repeated START) to  
commence a new transfer.  
Data Sheet  
296  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Multi-Master IIC Interface (MMIIC)  
Freescale Semiconductor  
Multi-Master IIC Interface (MMIIC)  
Multi-Master IIC Bus Protocol  
If the master receiver does not acknowledge the slave transmitter after  
a byte has been transmitted, it means an “end of data” to the slave. The  
slave should release the SDA line for the master to generate a STOP or  
START signal.  
17.6.4 Repeated START Signal  
As shown in Figure 17-2, a repeated START signal is used to generate  
START signal without first generating a STOP to terminate the  
communication. This is used by the master to communicate with another  
slave or with the same slave in a different mode (transmit/receive mode)  
without releasing the bus.  
17.6.5 STOP Signal  
The master can terminate the communication by generating a STOP  
signal to free the bus. However, the master may generate a START  
signal followed by a calling command without first generating a STOP  
signal. This is called repeat START. A STOP signal is defined as a low  
to high transition of SDA while SCL is at logic high (see Figure 17-2).  
17.6.6 Arbitration Procedure  
The interface circuit is a multi-master system which allows more than  
one master to be connected. If two or more masters try to control the bus  
at the same time, a clock synchronization procedure determines the bus  
clock. The clock low period is equal to the longest clock low period and  
the clock high period is equal to the shortest one among the masters. A  
data arbitration procedure determines the priority. A master will lose  
arbitration if it transmits a logic 1 while another transmits a logic 0. The  
losing master will immediately switch over to slave receive mode and  
stops its data and clock outputs. The transition from master to slave will  
not generate a STOP condition. Meanwhile a software bit will be set by  
hardware to indicates loss of arbitration.  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Multi-Master IIC Interface (MMIIC)  
Data Sheet  
297  
Multi-Master IIC Interface (MMIIC)  
17.6.7 Clock Synchronization  
Since wired-AND logic is performed on SCL line, a high to low transition  
on the SCL line will affect the devices connected to the bus. The devices  
start counting their low period once a device’s clock has gone low, it will  
hold the SCL line low until the clock high state is reached. However, the  
change of low to high in this device clock may not change the state of the  
SCL line if another device clock is still in its low period. Therefore the  
synchronized clock SCL will be held low by the device which last  
releases SCL to logic high. Devices with shorter low periods enter a high  
wait state during this time. When all devices concerned have counted off  
their low period, the synchronized SCL line will be released and go high,  
and all devices will start counting their high periods. The first device to  
complete its high period will again pull the SCL line low. Figure 17-3  
illustrates the clock synchronization waveforms.  
Start counting high period  
WAIT  
SCL1  
SCL2  
SCL  
Internal counter reset  
Figure 17-3. Clock Synchronization  
17.6.8 Handshaking  
The clock synchronization mechanism can be used as a handshake in  
data transfer. A slave device may hold the SCL low after completion of  
one byte data transfer and will halt the bus clock, forcing the master  
clock into a wait state until the slave releases the SCL line.  
Data Sheet  
298  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Multi-Master IIC Interface (MMIIC)  
Freescale Semiconductor  
Multi-Master IIC Interface (MMIIC)  
MMIIC I/O Registers  
17.6.9 Packet Error Code  
The packet error code (PEC) for the MMIIC interface is in the form a  
cyclic redundancy code (CRC). The PEC is generated by hardware for  
every transmitted and received byte of data. The transmission of the  
generated PEC is controlled by user software.  
The CRC data register, MMCRCDR, contains the generated PEC byte,  
with three other bits in the MMIIC control registers and status register  
monitoring and controlling the PEC byte.  
17.7 MMIIC I/O Registers  
These I/O registers control and monitor MMIIC operation:  
• MMIIC address register (MMADR) — $0048  
• MMIIC control register 1 (MMCR1) — $0049  
• MMIIC control register 2 (MMCR2) — $004A  
• MMIIC status register (MMSR) — $004B  
• MMIIC data transmit register (MMDTR) — $004C  
• MMIIC data receive register (MMDRR) — $004D  
• MMIIC CRC data register (MMCRCDR) — $004E  
• MMIIC frequency divide register (MMFDR) — $004F  
17.7.1 MMIIC Address Register (MMADR)  
Address: $0048  
Bit 7  
6
5
4
3
2
1
Bit 0  
MMEXTAD  
0
Read:  
MMAD7 MMAD6 MMAD5 MMAD4 MMAD3 MMAD2 MMAD1  
Write:  
Reset:  
1
0
1
0
0
0
0
Figure 17-4. MMIIC Address Register (MMADR)  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Multi-Master IIC Interface (MMIIC)  
Data Sheet  
299  
Multi-Master IIC Interface (MMIIC)  
MMAD[7:1] — Multi-Master Address  
These seven bits represent the MMIIC interface’s own specific slave  
address when in slave mode, and the calling address when in master  
mode. Software must update MMAD[7:1] as the calling address while  
entering master mode and restore its own slave address after master  
mode is relinquished. This register is cleared as $A0 upon reset.  
MMEXTAD — Multi-Master Expanded Address  
This bit is set to expand the address of the MMIIC in slave mode.  
When set, the MMIIC will acknowledge the following addresses from  
a calling master: $MMAD[7:1], 0000000, and 0001100.  
Reset clears this bit.  
1 = MMIIC responds to the following calling addresses:  
$MMAD[7:1], 0000000, and 0001100.  
0 = MMIIC responds to address $MMAD[7:1]  
For example, when MMADR is configured as:  
MMAD7 MMAD6 MMAD5 MMAD4 MMAD3 MMAD2 MMAD1 MMEXTAD  
1
1
0
1
0
1
0
1
The MMIIC module will respond to the calling address:  
Bit 7  
1
6
1
5
0
4
1
3
0
2
1
Bit 1  
0
or the general calling address:  
0
0
0
0
0
0
0
or the calling address:  
Bit 7  
0
6
0
5
0
4
1
3
1
2
0
Bit 1  
0
Note that bit-0 of the 8-bit calling address is the MMRW bit from the  
calling master.  
Data Sheet  
300  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Multi-Master IIC Interface (MMIIC)  
Freescale Semiconductor  
Multi-Master IIC Interface (MMIIC)  
MMIIC I/O Registers  
17.7.2 MMIIC Control Register 1 (MMCR1)  
Address: $0049  
Bit 7  
MMEN  
0
6
MMIEN  
0
5
4
0
3
2
1
MMCRCBYTE  
0
Bit 0  
SDASCL1  
0
Read:  
Write:  
Reset:  
0
MMCLRBB  
0
MMTXAK REPSEN  
0
0
0
= Unimplemented  
Figure 17-5. MMIIC Control Register 1 (MMCR1)  
MMEN — MMIIC Enable  
This bit is set to enable the Multi-master IIC module. When  
MMEN = 0, module is disabled and all flags will restore to its power-  
on default states. Reset clears this bit.  
1 = MMIIC module enabled  
0 = MMIIC module disabled  
MMIEN — MMIIC Interrupt Enable  
When this bit is set, the MMTXIF, MMRXIF, MMALIF, and MMNAKIF  
flags are enabled to generate an interrupt request to the CPU. When  
MMIEN is cleared, the these flags are prevented from generating an  
interrupt request. Reset clears this bit.  
1 = MMTXIF, MMRXIF, MMALIF, and/or MMNAKIF bit set will  
generate interrupt request to CPU  
0 = MMTXIF, MMRXIF, MMALIF, and/or MMNAKIF bit set will not  
generate interrupt request to CPU  
MMCLRBB — MMIIC Clear Busy Flag  
Writing a logic 1 to this write-only bit clears the MMBB flag.  
MMCLRBB always reads as a logic 0. Reset clears this bit.  
1 = Clear MMBB flag  
0 = No affect on MMBB flag  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Multi-Master IIC Interface (MMIIC)  
Data Sheet  
301  
Multi-Master IIC Interface (MMIIC)  
MMTXAK — MMIIC Transmit Acknowledge Enable  
This bit is set to disable the MMIIC from sending out an acknowledge  
signal to the bus at the 9th clock bit after receiving 8 data bits. When  
MMTXAK is cleared, an acknowledge signal will be sent at the 9th  
clock bit. Reset clears this bit.  
1 = MMIIC does not send acknowledge signals at 9th clock bit  
0 = MMIIC sends acknowledge signal at 9th clock bit  
REPSEN — Repeated Start Enable  
This bit is set to enable repeated START signal to be generated when  
in master mode transfer (MMAST = 1). The REPSEN bit is cleared by  
hardware after the completion of repeated START signal or when the  
MMAST bit is cleared. Reset clears this bit.  
1 = Repeated START signal will be generated if MMAST bit is set  
0 = No repeated START signal will be generated  
MMCRCBYTE — MMIIC CRC Byte  
In receive mode, this bit is set by software to indicate that the next  
receiving byte will be the packet error checking (PEC) data.  
In master receive mode, after completion of CRC generation on the  
received PEC data, an acknowledge signal is sent if MMTXAK = 0; no  
acknowledge is sent If MMTXAK = 1.  
In slave receive mode, no acknowledge signal is sent if a CRC error  
is detected on the received PEC data. If no CRC error is detected, an  
acknowledge signal is sent if MMTXAK = 0; no acknowledge is sent If  
MMTXAK = 1.  
Under normal operation, the user software should clear MMTXAK bit  
before setting MMCRCBYTE bit to ensure that an acknowledge signal  
is sent when no CRC error is detected.  
The MMCRCBYTE bit should not be set in transmit mode. This bit is  
cleared by the next START signal. Reset also clears this bit.  
1 = Next receiving byte is the packet error checking (PEC) data  
0 = Next receiving byte is not PEC data  
Data Sheet  
302  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Multi-Master IIC Interface (MMIIC)  
Freescale Semiconductor  
Multi-Master IIC Interface (MMIIC)  
MMIIC I/O Registers  
SDASCL1 — SDA and SCL I/O Pin Select  
This bit selects either SDA0 and SCL0, or SDA1 and SCL1, for MMIIC  
I/O pins when MMIIC module is enabled (MMEN = 1). If the SCI  
module is enabled (ENSCI = 0), the SDA1 and SCL1 pins are not  
available for MMIIC.  
Reset clears SDASCL1 bit.  
1 = MMIIC module uses SDA1 and SCL1 I/O pins  
0 = MMIIC module uses SDA0 and SCL0 I/O pins  
17.7.3 MMIIC Control Register 2 (MMCR2)  
Address: $004A  
Bit 7  
6
5
4
3
2
0
1
0
Bit 0  
Read: MMALIF MMNAKIF MMBB  
MMCRCEF  
Unaffected  
MMAST MMRW  
Write:  
0
0
0
0
Reset:  
0
0
0
0
0
= Unimplemented  
Figure 17-6. MMIIC Control Register 2 (MMCR2)  
MMALIF — Arbitration Loss Interrupt Flag  
This flag is set when software attempt to set MMAST but the MMBB  
has been set by detecting the start condition on the lines or when the  
MMIIC is transmitting a "1" to SDA line but detected a "0" from SDA  
line in master mode — an arbitration loss. This bit generates an  
interrupt request to the CPU if the MMIEN bit in MMCR1 is set. This  
bit is cleared by writing "0" to it or by reset.  
1 = Lost arbitration in master mode  
0 = No arbitration lost  
MMNAKIF — No AcKnowledge Interrupt Flag (Master Mode)  
This flag is only set in master mode (MMAST = 1) when there is no  
acknowledge bit detected after one data byte or calling address is  
transferred. This flag also clears MMAST. MMNAKIF generates an  
interrupt request to CPU if the MMIEN bit in MMCR1 is set. This bit is  
cleared by writing "0" to it or by reset.  
1 = No acknowledge bit detected  
0 = Acknowledge bit detected  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Multi-Master IIC Interface (MMIIC)  
Data Sheet  
303  
Multi-Master IIC Interface (MMIIC)  
MMBB — MMIIC Bus Busy Flag  
This flag is set after a start condition is detected (bus busy), and is  
cleared when a stop condition (bus idle) is detected or the MMIIC is  
disabled. Reset clears this bit.  
1 = Start condition detected  
0 = Stop condition detected or MMIIC is disabled  
MMAST — MMIIC Master Control  
This bit is set to initiate a master mode transfer. In master mode, the  
module generates a start condition to the SDA and SCL lines,  
followed by sending the calling address stored in MMADR.  
When the MMAST bit is cleared by MMNAKIF set (no acknowledge)  
or by software, the module generates the stop condition to the lines  
after the current byte is transmitted.  
If an arbitration loss occurs (MMALIF = 1), the module reverts to slave  
mode by clearing MMAST, and releasing SDA and SCL lines  
immediately.  
This bit is cleared by writing "0" to it or by reset.  
1 = Master mode operation  
0 = Slave mode operation  
MMRW — MMIIC Master Read/Write  
This bit is transmitted out as bit 0 of the calling address when the  
module sets the MMAST bit to enter master mode. The MMRW bit  
determines the transfer direction of the data bytes that follows. When  
it is "1", the module is in master receive mode. When it is "0", the  
module is in master transmit mode. Reset clears this bit.  
1 = Master mode receive  
0 = Master mode transmit  
MMCRCEF — MMIIC CRC Error Flag  
This flag is set when a CRC error is detected, and cleared when no  
CRC error is detected. The MMCRCEF is only meaningful after  
receiving a PEC data. This flag is unaffected by reset.  
1 = CRC error detected on PEC byte  
0 = No CRC error detected on PEC byte  
Data Sheet  
304  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Multi-Master IIC Interface (MMIIC)  
Freescale Semiconductor  
Multi-Master IIC Interface (MMIIC)  
MMIIC I/O Registers  
17.7.4 MMIIC Status Register (MMSR)  
Address: $004B  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read: MMRXIF MMTXIF MMATCH MMSRW MMRXAK MMCRCBF MMTXBE MMRXBF  
Write:  
0
0
0
0
Reset:  
0
0
1
0
1
0
= Unimplemented  
Figure 17-7. MMIIC Status Register (MMSR)  
MMRXIF — MMIIC Receive Interrupt Flag  
This flag is set after the data receive register (MMDRR) is loaded with  
a new received data. Once the MMDRR is loaded with received data,  
no more received data can be loaded to the MMDRR register until the  
CPU reads the data from the MMDRR to clear MMRXBF flag.  
MMRXIF generates an interrupt request to CPU if the MMIEN bit in  
MMCR is also set. This bit is cleared by writing "0" to it or by reset; or  
when the MMEN = 0.  
1 = New data in data receive register (MMDRR)  
0 = No data received  
MMTXIF — MMIIC Transmit Interrupt Flag  
This flag is set when data in the data transmit register (MMDTR) is  
downloaded to the output circuit, and that new data can be written to  
the MMDTR. MMTXIF generates an interrupt request to CPU if the  
MMIEN bit in MMCR is also set. This bit is cleared by writing "0" to it  
or when the MMEN = 0.  
1 = Data transfer completed  
0 = Data transfer in progress  
MMATCH — MMIIC Address Match Flag  
This flag is set when the received data in the data receive register  
(MMDRR) is a calling address which matches with the address or its  
extended addresses (MMEXTAD = 1) specified in the address  
register (MMADR). The MMATCH flag is set at the 9th clock of the  
calling address and will be cleared on the 9th clock of the next  
receiving data. Note: slave transmits do not clear MMATCH.  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Multi-Master IIC Interface (MMIIC)  
Data Sheet  
305  
Multi-Master IIC Interface (MMIIC)  
1 = Received address matches MMADR  
0 = Received address does not match  
MMSRW — MMIIC Slave Read/Write Select  
This bit indicates the data direction when the module is in slave mode.  
It is updated after the calling address is received from a master  
device. MMSRW = 1 when the calling master is reading data from the  
module (slave transmit mode). MMSRW = 0 when the master is  
writing data to the module (receive mode).  
1 = Slave mode transmit  
0 = Slave mode receive  
MMRXAK — MMIIC Receive Acknowledge  
When this bit is cleared, it indicates an acknowledge signal has been  
received after the completion of eight data bits transmission on the  
bus. When MMRXAK is set, it indicates no acknowledge signal has  
been detected at the 9th clock; the module will release the SDA line  
for the master to generate STOP or repeated START condition. Reset  
sets this bit.  
1 = No acknowledge signal received at 9th clock  
0 = Acknowledge signal received at 9th clock  
MMCRCBF — CRC Data Buffer Full Flag  
This flag is set when the CRC data register (MMCRCDR) is loaded  
with a CRC byte for the current received or transmitted data.  
In transmit mode, after a byte of data has been sent (MMTXIF = 1),  
the MMCRCBF will be set when the CRC byte has been generated  
and ready in the MMCRCDR. The content of the MMCRCDR should  
be copied to the MMDTR for transmission.  
In receive mode, the MMCRCBF is set when the CRC byte has been  
generated and ready in MMCRCDR, for the current byte of received  
data.  
The MMCRCBF bit is cleared when the CRC data register is read.  
Reset also clears this bit.  
1 = Data ready in CRC data register (MMCRCDR)  
0 = Data not ready in CRC data register (MMCRCDR)  
Data Sheet  
306  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Multi-Master IIC Interface (MMIIC)  
Freescale Semiconductor  
Multi-Master IIC Interface (MMIIC)  
MMIIC I/O Registers  
MMTXBE — MMIIC Transmit Buffer Empty  
This flag indicates the status of the data transmit register (MMDTR).  
When the CPU writes the data to the MMDTR, the MMTXBE flag will  
be cleared. MMTXBE is set when MMDTR is emptied by a transfer of  
its data to the output circuit. Reset sets this bit.  
1 = Data transmit register empty  
0 = Data transmit register full  
MMRXBF — MMIIC Receive Buffer Full  
This flag indicates the status of the data receive register (MMDRR).  
When the CPU reads the data from the MMDRR, the MMRXBF flag  
will be cleared. MMRXBF is set when MMDRR is full by a transfer of  
data from the input circuit to the MMDRR. Reset clears this bit.  
1 = Data receive register full  
0 = Data receive register empty  
17.7.5 MMIIC Data Transmit Register (MMDTR)  
Address: $004C  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
MMTD7 MMTD6 MMTD5 MMTD4 MMTD3 MMTD2 MMTD1 MMTD0  
Write:  
Reset:  
0
0
0
0
0
0
0
0
Figure 17-8. MMIIC Data Transmit Register (MMDTR)  
When the MMIIC module is enabled, MMEN = 1, data written into this  
register depends on whether module is in master or slave mode.  
In slave mode, the data in MMDTR will be transferred to the output circuit  
when:  
• the module detects a matched calling address (MMATCH = 1),  
with the calling master requesting data (MMSRW = 1); or  
• the previous data in the output circuit has be transmitted and the  
receiving master returns an acknowledge bit, indicated by a  
received acknowledge bit (MMRXAK = 0).  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Multi-Master IIC Interface (MMIIC)  
Data Sheet  
307  
Multi-Master IIC Interface (MMIIC)  
If the calling master does not return an acknowledge bit (MMRXAK = 1),  
the module will release the SDA line for master to generate a STOP or  
repeated START condition. The data in the MMDTR will not be  
transferred to the output circuit until the next calling from a master. The  
transmit buffer empty flag remains cleared (MMTXBE = 0).  
In master mode, the data in MMDTR will be transferred to the output  
circuit when:  
• the module receives an acknowledge bit (MMRXAK = 0), after  
setting master transmit mode (MMRW = 0), and the calling  
address has been transmitted; or  
• the previous data in the output circuit has be transmitted and the  
receiving slave returns an acknowledge bit, indicated by a  
received acknowledge bit (MMRXAK = 0).  
If the slave does not return an acknowledge bit (MMRXAK = 1), the  
master will generate a STOP or repeated START condition. The data in  
the MMDTR will not be transferred to the output circuit. The transmit  
buffer empty flag remains cleared (MMTXBE = 0).  
The sequence of events for slave transmit and master transmit are  
illustrated in Figure 17-12.  
17.7.6 MMIIC Data Receive Register (MMDRR)  
Address: $004D  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read: MMRD7 MMRD6 MMRD5 MMRD4 MMRD3 MMRD2 MMRD1 MMRD0  
Write:  
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 17-9. MMIIC Data Receive Register (MMDRR)  
When the MMIIC module is enabled, MMEN = 1, data in this read-only  
register depends on whether module is in master or slave mode.  
In slave mode, the data in MMDRR is:  
Data Sheet  
308  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Multi-Master IIC Interface (MMIIC)  
Freescale Semiconductor  
Multi-Master IIC Interface (MMIIC)  
MMIIC I/O Registers  
• the calling address from the master when the address match flag  
is set (MMATCH = 1); or  
• the last data received when MMATCH = 0.  
In master mode, the data in the MMDRR is:  
• the last data received.  
When the MMDRR is read by the CPU, the receive buffer full flag is  
cleared (MMRXBF = 0), and the next received data is loaded to the  
MMDRR. Each time when new data is loaded to the MMDRR, the  
MMRXIF interrupt flag is set, indicating that new data is available in  
MMDRR.  
The sequence of events for slave receive and master receive are  
illustrated in Figure 17-12.  
17.7.7 MMIIC CRC Data Register (MMCRCDR)  
Address: $004E  
Bit 7  
6
5
4
3
2
1
Bit 0  
MMCRCD7 MMCRCD6 MMCRCD5 MMCRCD4 MMCRCD3 MMCRCD2 MMCRCD1 MMCRCD0  
Read:  
Write:  
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 17-10. MMIIC CRC Data Register (MMCRCDR)  
When the MMIIC module is enabled, MMEN = 1, and the CRC buffer full  
flag is set (MMCRCBF = 1), data in this read-only register contains the  
generated CRC byte for the last byte of received or transmitted data.  
A CRC byte is generated for each received and transmitted data byte  
and loaded to the CRC data register. The MMCRCBF bit will be set to  
indicate the CRC byte is ready in the CRC data register.  
Reading the CRC data register clears the MMCRCBF bit. If the CRC  
data register is not read, the MMCRCBF bit will be cleared by hardware  
before the next CRC byte is loaded.  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Multi-Master IIC Interface (MMIIC)  
Data Sheet  
309  
Multi-Master IIC Interface (MMIIC)  
17.7.8 MMIIC Frequency Divider Register (MMFDR)  
Address: $004F  
Bit 7  
0
6
0
5
0
4
0
3
0
2
1
Bit 0  
Read:  
Write:  
Reset:  
MMBR2 MMBR1 MMBR0  
0
0
0
0
0
1
0
0
= Unimplemented  
Figure 17-11. MMIIC Frequency Divider Register (MMFDR)  
The three bits in the frequency divider register (MMFDR) selects the  
divider to divide the bus clock to the desired baud rate for the MMIIC data  
transfer.  
Table 17-2 shows the divider values for MMBR[2:0].  
Table 17-2. MMIIC Baud Rate Selection  
MMIIC Baud Rates for Bus Clocks:  
MMBR2  
MMBR1  
MMBR0  
Divider  
8MHz  
400kHz  
200kHz  
100kHz  
50kHz  
4MHz  
200kHz  
100kHz  
50kHz  
2MHz  
100kHz  
1MHz  
50kHz  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
20  
40  
50kHz  
25kHz  
80  
25kHz  
12.5kHz  
6.25kHz  
3.125kHz  
1.5625kHz  
0.78125kHz  
0.3906kHz  
160  
320  
640  
1280  
2560  
25kHz  
12.5kHz  
6.25kHz  
3.125kHz  
1.5625kHz  
0.78125kHz  
25kHz  
12.5kHz  
6.25kHz  
3.125kHz  
1.5625kHz  
12.5kHz  
6.25kHz  
3.125kHz  
NOTE: The frequency of the MMIIC baud rate is only guaranteed for 100kHz to  
10kHz. The divider is available for the flexibility on bus frequency  
selection.  
Data Sheet  
310  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Multi-Master IIC Interface (MMIIC)  
Freescale Semiconductor  
Multi-Master IIC Interface (MMIIC)  
Program Algorithm  
17.8 Program Algorithm  
When the MMIIC module detects an arbitration loss in master mode, it  
releases both SDA and SCL lines immediately. But if there are no further  
STOP conditions detected, the module will hang up. Therefore, it is  
recommended to have time-out software to recover from this condition.  
The software can start the time-out counter by looking at the MMBB (bus  
busy) flag and reset the counter on the completion of one byte  
transmission. If a time-out has occurred, software can clear the MMEN  
bit (disable MMIIC module) to release the bus, and hence clear the  
MMBB flag. This is the only way to clear the MMBB flag by software if  
the module hangs up due to a no STOP condition received. The MMIIC  
can resume operation again by setting the MMEN bit.  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Multi-Master IIC Interface (MMIIC)  
Data Sheet  
311  
Multi-Master IIC Interface (MMIIC)  
17.8.1 Data Sequence  
(a) Master Transmit Mode  
TX Data1  
START  
Address  
0
ACK  
ACK  
TX DataN  
ACK  
STOP  
MMTXBE=0  
MMRW=0  
MMAST=1  
Data1 MMDTR  
MMTXBE=1  
MMTXIF=1  
Data2 MMDTR  
MMTXBE=1  
MMTXIF=1  
Data3 MMDTR  
MMNAKIF=1  
MMAST=0  
MMTXBE=0  
MMTXBE=1  
MMTXIF=1  
DataN+2 MMDTR  
(b) Master Receive Mode  
RX Data1  
START  
Address  
1
ACK  
ACK  
RX DataN  
NAK  
STOP  
MMRXBF=0  
MMRW=1  
MMAST=1  
MMTXBE=0  
MMNAKIF=1  
MMAST=0  
Data1 MMDRR  
MMRXIF=1  
MMRXBF=1  
DataN MMDRR  
MMRXIF=1  
MMRXBF=1  
(dummy data MMDTR)  
(c) Slave Transmit Mode  
TX Data1  
START  
Address  
1
ACK  
ACK  
TX DataN  
NAK  
STOP  
MMTXBE=1  
MMRXBF=0  
MMRXIF=1  
MMNAKIF=1  
MMTXBE=0  
MMTXBE=1  
MMTXIF=1  
Data2 MMDTR  
MMTXBE=1  
MMTXIF=1  
MMRXBF=1  
MMATCH=1  
MMSRW=1  
DataN+2 MMDTR  
Data1 MMDTR  
(d) Slave Receive Mode  
RX Data1  
START  
Address  
0
ACK  
ACK  
RX DataN  
ACK  
STOP  
Data1 MMDRR  
MMRXIF=1  
MMRXBF=1  
DataN MMDRR  
MMRXIF=1  
MMRXBF=1  
MMTXBE=0  
MMRXBF=0  
MMRXIF=1  
MMRXBF=1  
MMATCH=1  
MMSRW=0  
Shaded data packets indicate transmissions by the MCU  
Figure 17-12. Data Transfer Sequences for Master/Slave Transmit/Receive Modes  
Data Sheet  
312  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Multi-Master IIC Interface (MMIIC) Freescale Semiconductor  
Multi-Master IIC Interface (MMIIC)  
SMBus Protocols with PEC and without PEC  
17.9 SMBus Protocols with PEC and without PEC  
Following is a description of the various MMIIC bus protocols with and  
without a packet error code (PEC).  
17.9.1 Quick Command  
1
7
1
1
1
Master to Slave  
Slave to Master  
START  
Slave Address RW ACK  
STOP  
Start Condition  
Command Bit  
Acknowledge  
Stop Condition  
Figure 17-13. Quick Command  
17.9.2 Send Byte  
Command Code  
Command Code  
START  
Slave Address  
W
W
ACK  
ACK  
ACK  
ACK  
STOP  
(a) Send Byte Protocol  
PEC  
START  
Slave Address  
ACK  
STOP  
(b) Send Byte Protocol with PEC  
Figure 17-14. Send Byte  
17.9.3 Receive Byte  
Data Byte  
Data Byte  
START  
Slave Address  
R
R
ACK  
ACK  
NAK  
ACK  
STOP  
(a) Receive Byte Protocol  
PEC  
START  
Slave Address  
NAK  
STOP  
(b) Receive Byte Protocol with PEC  
Figure 17-15. Receive Byte  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Multi-Master IIC Interface (MMIIC)  
Data Sheet  
313  
Multi-Master IIC Interface (MMIIC)  
17.9.4 Write Byte/Word  
Command Code  
Command Code  
Command Code  
Command Code  
Data Byte  
Data Byte  
START  
Slave Address  
W
W
W
W
ACK  
ACK  
ACK  
ACK  
ACK  
ACK  
ACK  
ACK  
ACK  
ACK  
ACK  
ACK  
STOP  
(a) Write Byte Protocol  
PEC  
START  
Slave Address  
ACK  
ACK  
ACK  
STOP  
STOP  
(b) Write Byte Protocol with PEC  
Data Byte Low  
Data Byte Low  
Data Byte High  
Data Byte High  
START  
Slave Address  
(c) Write Word Protocol  
START  
Slave Address  
PEC  
(d) Write Word Protocol with PEC  
ACK  
STOP  
Figure 17-16. Write Byte/Word  
17.9.5 Read Byte/Word  
Command Code  
Command Code  
Data Byte  
START  
Slave Address  
W
ACK  
ACK  
ACK  
START  
START  
Slave Address  
Slave Address  
R
R
ACK  
ACK  
NAK  
STOP  
(a) Read Byte Protocol  
Data Byte  
START  
Slave Address  
W
ACK  
ACK  
ACK  
ACK  
PEC  
(b) Read Byte Protocol with PEC  
NAK  
STOP  
Command Code  
Command Code  
Data Byte Low  
START  
Slave Address  
W
ACK  
ACK  
ACK  
START  
START  
Slave Address  
R
ACK  
ACK  
Data Byte High  
NAK  
STOP  
(c) Read Word Protocol  
Data Byte Low  
START  
Slave Address  
W
ACK  
PEC  
Slave Address  
R
Data Byte High  
ACK  
NAK  
STOP  
(d) Read Word Protocol with PEC  
Figure 17-17. Read Byte/Word  
Data Sheet  
314  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Multi-Master IIC Interface (MMIIC) Freescale Semiconductor  
Multi-Master IIC Interface (MMIIC)  
SMBus Protocols with PEC and without PEC  
17.9.6 Process Call  
Command Code  
Data Byte Low  
Data Byte Low  
Data Byte High  
Data Byte High  
STOP  
START  
Slave Address  
Slave Address  
W
R
ACK  
ACK  
ACK  
ACK  
ACK  
NAK  
ACK  
START  
(a) Process Call  
Command Code  
Data Byte Low  
Data Byte Low  
Data Byte High  
Data Byte High  
STOP  
START  
START  
Slave Address  
Slave Address  
W
R
ACK  
ACK  
ACK  
ACK  
ACK  
ACK  
ACK  
PEC  
NAK  
STOP  
(b) Process Call with PEC  
Figure 17-18. Process Call  
17.9.7 Block Read/Write  
Command Code  
ACK  
Data Byte N  
Byte Count = N  
STOP  
Data Byte 1  
START  
Slave Address  
ACK  
W
ACK  
ACK  
ACK  
ACK  
ACK  
ACK  
Data Byte 2  
(a) Block Read  
Command Code  
Byte Count = N  
PEC  
Data Byte 1  
START  
Slave Address  
ACK  
W
ACK  
ACK  
Data Byte 2  
Data Byte N  
ACK  
ACK  
STOP  
(b) Block Read with PEC  
Command Code  
ACK  
Byte Count = N  
START  
Slave Address  
W
ACK  
ACK  
START  
Data Byte N  
Slave Address  
R
ACK  
ACK  
ACK  
Data Byte 1  
Data Byte 2  
ACK  
NAK  
STOP  
(c) Block Write  
Command Code  
ACK  
Byte Count = N  
NAK  
STOP  
START  
Slave Address  
ACK  
W
ACK  
ACK  
START  
Slave Address  
R
ACK  
Data Byte 1  
Data Byte 2  
Data Byte N  
PEC  
ACK  
(d) Block Write with PEC  
Figure 17-19. Block Read/Write  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Multi-Master IIC Interface (MMIIC)  
Data Sheet  
315  
Multi-Master IIC Interface (MMIIC)  
17.10 SMBus Protocol Implementation  
Shaded data packets indicate transmissions by the MCU  
MASTER MODE  
Command  
RX Data1  
RX DataN  
START Address 0 ACK  
ACK START Address 1 ACK  
ACK  
ACK  
NAK STOP  
OPERATION:  
OPERATION:  
OPERATION:  
OPERATION:  
Read received data  
Prepare for repeated START  
Generate STOP  
Get ready to receive data  
FLAGS:  
FLAGS:  
FLAGS:  
FLAGS:  
MMRXIF set  
MMTXIF set  
MMRXAK clear  
MMRXIF set  
MMTXIF set  
MMRXAK clear  
ACTION:  
ACTION:  
ACTION:  
Read DataN from MMDRR  
Read Data1 from MMDRR  
ACTION:  
1. Set MMRW  
2. Set REPSEN  
3. Clear MMTXAK  
Load dummy ($FF) to MMDTR  
4. Load dummy ($FF) to MMDTR  
OPERATION:  
Read received data and prepare for STOP  
OPERATION:  
Prepare for Master mode  
FLAGS:  
MMRXIF set  
ACTION:  
1. Load slave address to MMADR  
2. Clear MMRW  
ACTION:  
1. Set MMTXAK  
3. Load command to MMDTR  
4. Set MMAST  
2. Read Data(N-1) from MMDRR  
3. Clear MMAST  
SLAVE MODE  
Command  
TX Data1  
TX DataN  
START Address 0 ACK  
ACK START Address 1 ACK  
ACK  
ACK  
NAK STOP  
OPERATION:  
OPERATION:  
OPERATION:  
OPERATION:  
Transmit data  
Slave address match and  
check for data direction  
Slave address match and  
get ready to transmit data  
Last data sent  
FLAGS:  
FLAGS:  
FLAGS:  
FLAGS:  
MMTXIF set  
MMRXAK clear  
MMTXIF set  
MMRXAK set  
MMRXIF set  
MMATCH set  
MMRXIF set  
MMATCH set  
ACTION:  
ACTION:  
MMSRW depends on 8th  
bit of calling address byte  
MMSRW depends on 8th  
bit of calling address byte  
Load dummy ($FF) to MMDTR  
Load Data3 to MMDTR  
ACTION:  
ACTION:  
1. Check MMSRW  
2. Read Slave address  
Check MMSRW  
OPERATION:  
OPERATION:  
Read and decode received command  
Last data is going to be sent  
OPERATION:  
OPERATION:  
Transmit data  
FLAGS:  
FLAGS:  
Prepare for Slave mode  
MMRXIF set  
MMATCH clear  
MMTXIF set  
MMRXAK clear  
FLAGS:  
ACTION:  
MMTXIF set  
1. Load slave address to MMADR  
2. Clear MMTXAK  
3. Clear MMAST  
ACTION:  
ACTION:  
ACTION:  
Load Data1 to MMDTR  
Load dummy ($FF) to MMDTR  
Load Data2 to MMDTR  
Figure 17-20. SMBus Protocol Implementation  
Data Sheet  
316  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Multi-Master IIC Interface (MMIIC) Freescale Semiconductor  
Data Sheet — MC68HC908SR12•MC68HC08SR12  
Section 18. Input/Output (I/O) Ports  
18.1 Contents  
18.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .317  
18.3 Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .320  
18.3.1 Port A Data Register (PTA) . . . . . . . . . . . . . . . . . . . . . . . .320  
18.3.2 Data Direction Register A (DDRA) . . . . . . . . . . . . . . . . . . .321  
18.3.3 Port A LED Control Register (LEDA) . . . . . . . . . . . . . . . . .323  
18.4 Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .323  
18.4.1 Port B Data Register (PTB) . . . . . . . . . . . . . . . . . . . . . . . .324  
18.4.2 Data Direction Register B (DDRB) . . . . . . . . . . . . . . . . . . .325  
18.5 Port C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .327  
18.5.1 Port C Data Register (PTC) . . . . . . . . . . . . . . . . . . . . . . . .327  
18.5.2 Data Direction Register C (DDRC). . . . . . . . . . . . . . . . . . .329  
18.5.3 Port C LED Control Register (LEDC) . . . . . . . . . . . . . . . . .330  
18.6 Port D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .331  
18.6.1 Port D Data Register (PTD) . . . . . . . . . . . . . . . . . . . . . . . .331  
18.6.2 Data Direction Register D (DDRD). . . . . . . . . . . . . . . . . . .332  
18.2 Introduction  
Thirty-one (31) bidirectional input-output (I/O) pins form four parallel  
ports. All I/O pins are programmable as inputs or outputs.  
NOTE: Connect any unused I/O pins to an appropriate logic level, either VDD or  
VSS. Although the I/O ports do not require termination for proper  
operation, termination reduces excess current consumption and the  
possibility of electrostatic damage.  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Input/Output (I/O) Ports  
Data Sheet  
317  
Input/Output (I/O) Ports  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
PTA7  
PTA6  
PTA5  
PTA4  
PTA3  
PTA2  
PTA1  
PTA0  
Port A Data Register  
(PTA)  
$0000  
Unaffected by reset  
PTB4 PTB3  
Unaffected by reset  
PTC4 PTC3  
Unaffected by reset  
PTD4 PTD3  
Unaffected by reset  
0
PTB6  
PTC6  
PTD6  
PTB5  
PTC5  
PTD5  
PTB2  
PTC2  
PTD2  
PTB1  
PTC1  
PTD1  
PTB0  
PTC0  
PTD0  
Port B Data Register  
(PTB)  
$0001  
$0002  
$0003  
$0004  
$0005  
$0006  
$0007  
$000C  
$000D  
PTC7  
PTD7  
Port C Data Register  
(PTC)  
Port D Data Register  
(PTD)  
DDRA7  
DDRA6  
0
DDRA5  
DDRA4  
DDRA3  
DDRA2  
DDRA1  
DDRA0  
Data Direction Register A  
(DDRA)  
0
0
0
0
0
0
DDRB2  
0
0
DDRB1  
0
0
DDRB0  
0
DDRB6  
0
DDRB5  
DDRB4  
DDRB3  
Data Direction Register B  
(DDRB)  
0
0
0
0
DDRC7  
0
DDRC6  
0
DDRC5  
DDRC4  
DDRC3  
DDRC2  
0
DDRC1  
0
DDRC0  
0
Data Direction Register C  
(DDRC)  
0
0
0
DDRD7  
DDRD6  
DDRD5  
DDRD4  
DDRD3  
DDRD2  
0
DDRD1  
0
DDRD0  
0
Data Direction Register D  
(DDRD)  
0
0
0
0
0
LEDA5  
0
0
LEDA4  
0
0
LEDA3  
0
Port-A LED Control  
LEDA2  
LEDA1  
LEDA0  
Register Write:  
(LEDA)  
Reset:  
0
LEDC7  
0
0
LEDC6  
0
0
0
0
0
0
0
Read:  
Port-C LED Control  
LEDC5  
0
LEDC4  
0
LEDC3  
0
Register Write:  
(LEDC)  
Reset:  
0
0
0
Figure 18-1. I/O Port Register Summary  
Data Sheet  
318  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Input/Output (I/O) Ports Freescale Semiconductor  
Input/Output (I/O) Ports  
Introduction  
Table 18-1. Port Control Register Bits Summary  
Module Control  
Port  
Bit  
DDR  
Pin  
Module  
Register  
Control Bit  
0
1
2
3
4
5
6
7
0
1
2
DDRA0  
DDRA1  
DDRA2  
DDRA3  
DDRA4  
DDRA5  
DDRA6  
DDRA7  
DDRB0  
DDRB1  
DDRB2  
PTA0/ATD2  
PTA1/ATD3  
PTA2/ATD4  
ADC  
ADSCR ($0057)  
ADCH[4:0]  
PTA3/ATD5  
A
PTA4/ATD6  
PTA5/ATD7  
T1SC0 ($0025)  
T1SC1 ($0028)  
ELS0B:ELS0A  
ELS1B:ELS1A  
PTA6/T1CH0  
PTA7/T1CH1  
PTB0/SDA0(1)  
PTB1/SCL0(1)  
PTB2/SDA1/TxD(1)  
TIM1  
MMEN  
SDASCL1  
MBUS  
MMCR1 ($0049)  
SCC1 ($0013)(2)  
MMCR1 ($0049)  
SCI  
ENSCI  
MMEN  
SDASCL1  
PTB3/SCL1/RxD(1)  
B
C
D
3
DDRB3  
MBUS  
4
5
6
DDRB4  
DDRB5  
DDRB6  
T2SC0 ($0030)  
T2SC1 ($0033)  
ELS0B:ELS0A  
ELS1B:ELS1A  
PTB4/T2CH0  
PTB5/T2CH1  
PTB6/IRQ2  
TIM2  
IRQ  
CONFIG2 ($001D)(1)  
ANALOG  
CDOEN  
PCH0  
0
DDRC0  
PTC0/PWM0/CD  
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
DDRC1  
DDRC2  
DDRC3  
DDRC4  
DDRC5  
DDRC6  
DDRC7  
DDRD0  
DDRD1  
DDRD2  
DDRD3  
DDRD4  
DDRD5  
DDRD6  
DDRD7  
PWM  
ADC  
PWMCR ($0051)  
PCH1  
PTC1/PWM1  
PTC2/PWM2  
PTC3/ATD8  
PTC4/ATD9  
PTC5/ATD10  
PTC6/ATD11  
PTC7/ATD12  
PTD0/KBI0  
PTD1/KBI1  
PTD2/KBI2  
PTD3/KBI3  
PTD4/KBI4  
PTD5/KBI5  
PTD6/KBI6  
PTD7/KBI7  
PCH2  
ADSCR ($0057)  
ADCH[4:0]  
KBIE0  
KBIE1  
KBIE2  
KBIE3  
KBIE4  
KBIE5  
KBIE6  
KBIE7  
KBI  
KBIER ($001B)  
Notes:  
1. Pins are open-drain when configured as outputs. Pullup resistors must be connected when configured as outputs.  
2. Register has the highest priority control on port pin.  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Input/Output (I/O) Ports  
Data Sheet  
319  
Input/Output (I/O) Ports  
18.3 Port A  
Port A is an 8-bit special function port that shares six of its port pins with  
the analog-to-digital converter (ADC) module and two of its port pins with  
the timer interface module 1 (TIM1). See Section 15. Analog-to-Digital  
Converter (ADC) and Section 11. Timer Interface Module (TIM).  
PTA5–PTA0 pins can be configured for direct LED drive.  
18.3.1 Port A Data Register (PTA)  
The port A data register contains a data latch for each of the eight port A  
pins.  
Address: $0000  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTA7  
PTA6  
PTA5  
PTA4  
PTA3  
PTA2  
PTA1  
PTA0  
Unaffected by Reset  
ATD6 ATD5  
Alternative Function: T1CH1  
Additional Function:  
T1CH0  
ATD7  
ATD4  
ATD3  
ATD2  
LED drive LED drive LED drive LED drive LED drive LED drive  
Figure 18-2. Port A Data Register (PTA)  
PTA[7:0] — Port A Data Bits  
These read/write bits are software programmable. Data direction of  
each port A pin is under the control of the corresponding bit in data  
direction register A. Reset has no effect on port A data.  
ATD[7:2] — ADC channels 2 to 7  
ATD[7:2] are pins used for the input channels to the analog-to-digital  
converter module. The channel select bits, ADCH[4:0], in the ADC  
status and control register define which port pin will be used as an  
ADC input and overrides any control from the port I/O logic. See  
Section 14. Analog Module.  
Data Sheet  
320  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Input/Output (I/O) Ports  
Freescale Semiconductor  
Input/Output (I/O) Ports  
Port A  
T1CH[1:0] — Timer 1 Channel I/O Bits  
The T1CH1 and T1CH0 pins are the TIM1 input capture/output  
compare pins. The edge/level select bits, ELSxB:ELSxA, determine  
whether the PTA7/T1CH1 and PTA6/T1CH0 pins are timer channel  
I/O pins or general-purpose I/O pins. See Section 11. Timer  
Interface Module (TIM).  
NOTE: Care must be taken when reading port A while applying analog voltages  
to ATD[7:2] pins. If the appropriate ADC channel is not enabled,  
excessive current drain may occur if analog voltages are applied to the  
PTAx/ATDx pin, while PTA is read as a digital input. Those ports not  
selected as analog input channels are considered digital I/O ports.  
LED drive — Direct LED drive Pins  
PTA5–PTA0 pins can be configured for direct LED drive. See 18.3.3  
Port A LED Control Register (LEDA).  
18.3.2 Data Direction Register A (DDRA)  
Data direction register A determines whether each port A pin is an input  
or an output. Writing a logic 1 to a DDRA bit enables the output buffer for  
the corresponding port A pin; a logic 0 disables the output buffer.  
Address: $0004  
Bit 7  
DDRA7  
0
6
DDRA6  
0
5
DDRA5  
0
4
DDRA4  
0
3
DDRA3  
0
2
DDRA2  
0
1
DDRA1  
0
Bit 0  
DDRA0  
0
Read:  
Write:  
Reset:  
Figure 18-3. Data Direction Register A (DDRA)  
DDRA[7:0] — Data Direction Register A Bits  
These read/write bits control port A data direction. Reset clears  
DDRA[7:0], configuring all port A pins as inputs.  
1 = Corresponding port A pin configured as output  
0 = Corresponding port A pin configured as input  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Input/Output (I/O) Ports  
Data Sheet  
321  
Input/Output (I/O) Ports  
NOTE: Avoid glitches on port A pins by writing to the port A data register before  
changing data direction register A bits from 0 to 1. Figure 18-4 shows  
the port A I/O logic.  
READ DDRA ($0004)  
WRITE DDRA ($0004)  
DDRAx  
RESET  
WRITE PTA ($0000)  
PTAx  
PTAx  
READ PTA ($0000)  
Figure 18-4. Port A I/O Circuit  
When DDRAx is a logic 1, reading address $0000 reads the PTAx data  
latch. When DDRAx is a logic 0, reading address $0000 reads the  
voltage level on the pin. The data latch can always be written, regardless  
of the state of its data direction bit.  
Table 18-2 summarizes the operation of the port A pins.  
Table 18-2. Port A Pin Functions  
Accesses to DDRA  
Read/Write  
Accesses to PTA  
DDRA  
Bit  
PTA Bit  
I/O Pin Mode  
Read  
Pin  
Write  
(1)  
(2)  
(3)  
0
1
X
Input, Hi-Z  
DDRA[7:0]  
PTA[7:0]  
X
Output  
DDRA[7:0]  
PTA[7:0]  
PTA[7:0]  
Notes:  
1. X = don’t care.  
2. Hi-Z = high impedance.  
3. Writing affects data register, but does not affect input.  
Data Sheet  
322  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Input/Output (I/O) Ports Freescale Semiconductor  
Input/Output (I/O) Ports  
Port B  
18.3.3 Port A LED Control Register (LEDA)  
The port-A LED control register (LEDA) controls the direct LED drive  
capability on PTA5–PTA0 pins. Each bit is individually configurable and  
requires that the data direction register, DDRA, bit be configured as an  
output.  
Address: $000C  
Bit 7  
0
6
0
5
LEDA5  
0
4
LEDA4  
0
3
LEDA3  
0
2
LEDA2  
0
1
LEDA1  
0
Bit 0  
LEDA0  
0
Read:  
Write:  
Reset:  
0
0
Figure 18-5. Port A LED Control Register (LEDA)  
LEDA[5:0] — Port A LED Drive Enable Bits  
These read/write bits are software programmable to enable the direct  
LED drive on an output port pin.  
1 = Corresponding port A pin configured for direct LED drive  
0 = Corresponding port A pin configured for standard drive  
18.4 Port B  
Port B is a 7-bit special function port that shares four of its port pins with  
the multi-master IIC (MMIIC) interface module, two of its port pins with  
the serial communications interface (SCI) module, two of its port pins  
with the timer interface module 2 (TIM2), and one of its port pins with the  
IRQ module. See Section 17. Multi-Master IIC Interface (MMIIC),  
Section 16. Serial Communications Interface (SCI), Section 11.  
Timer Interface Module (TIM), and Section 19. External Interrupt  
(IRQ).  
NOTE: PTB3–PTB0 are open-drain pins when configured as outputs regardless  
whether the pins are used as general purpose I/O pins, MMIIC pins, or  
SCI pins. Therefore, when configured as general purpose output pins,  
MMIIC pins, or SCI pins (the TxD pin), pullup resistors must be  
connected to these pins.  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Input/Output (I/O) Ports  
Data Sheet  
323  
Input/Output (I/O) Ports  
18.4.1 Port B Data Register (PTB)  
The port B data register contains a data latch for each of the eight port B  
pins.  
Address: $0001  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
0
PTB6  
PTB5  
PTB4  
PTB3  
PTB2  
PTB1  
PTB0  
Unaffected by reset  
RxD  
T2CH0  
SCL1  
TxD  
Alternative Functions:  
IRQ2  
T2CH1  
SCL0  
SDA0  
SDA1  
These four pins are open-drain when configured as  
output pins. Pullup resistors must be connected  
when configured as outputs.  
Figure 18-6. Port B Data Register (PTB)  
PTB[6:0] — Port B Data Bits  
These read/write bits are software programmable. Data direction of  
each port B pin is under the control of the corresponding bit in data  
direction register B. Reset has no effect on port B data.  
SDA0, SCL0, SDA1, SCL1 — MMIIC Channels 1 and 2  
SDAx and SCLx are the data and clock lines for the MMIIC module.  
The multi-master enable bit, MMEN, and the MMIIC channel select  
bit, SDASCL1, in the MMIIC control register 1 determine whether the  
PTB0/SDA0, PTB1/SCL0, PTB2/SDA1/TxD, and PTB3/SCL1/RxD  
pins are MMIIC I/O pins or general purpose I/O pins. See Section 17.  
Multi-Master IIC Interface (MMIIC).  
TxD, RxD — SCI Data I/O Pins  
The TxD and RxD pins are the transmit data output and receive data  
input for the SCI module. The enable SCI bit, ENSCI, in the SCI  
control register 1 enables the PTB2/SDA1/TxD and PTB3/SCL1/RxD  
pins as SCI TxD and RxD pins and overrides any control from the port  
I/O or MMIIC logic. See Section 16. Serial Communications  
Interface (SCI).  
Data Sheet  
324  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Input/Output (I/O) Ports  
Freescale Semiconductor  
Input/Output (I/O) Ports  
Port B  
Table 18-3. PTB2 and PTB3 Pin Configurations  
ENSCI  
Bit  
($0013)  
MMEN  
Bit  
($0049)  
SDASCL1  
Bit  
($0049)  
Pin  
Pin function  
0
0
0
1
0
1
1
X
X
0
PTB2, PTB3  
PTB2, PTB3  
SDA1, SCL1  
TxD, RxD  
PTB2/SDA1/TxD  
PTB3/SCL1/RxD  
1
X
T2CH[1:0] — Timer 2 Channel I/O Bits  
The T2CH1 and T2CH0 pins are the TIM2 input capture/output  
compare pins. The edge/level select bits, ELSxB:ELSxA, determine  
whether the PTB5/T2CH1 and PTB4/T2CH0 pins are timer channel  
I/O pins or general-purpose I/O pins.See Section 11. Timer  
Interface Module (TIM).  
IRQ2 — External Interrupt Pin 2  
IRQ2 pin is the second external interrupt input to the IRQ module.  
When PTB6/IRQ2 is configured as an input by the data direction bit  
bit, DDRB6, the pin is both a standard port input pin and an external  
interrupt pin. See Section 19. External Interrupt (IRQ).  
18.4.2 Data Direction Register B (DDRB)  
Data direction register B determines whether each port B pin is an input  
or an output. Writing a logic 1 to a DDRB bit enables the output buffer for  
the corresponding port B pin; a logic 0 disables the output buffer.  
Address: $0005  
Bit 7  
0
6
DDRB6  
0
5
DDRB5  
0
4
DDRB4  
0
3
DDRB3  
0
2
DDRB2  
0
1
DDRB1  
0
Bit 0  
DDRB0  
0
Read:  
Write:  
Reset:  
0
Figure 18-7. Data Direction Register B (DDRB)  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Input/Output (I/O) Ports  
Data Sheet  
325  
Input/Output (I/O) Ports  
DDRB[6:0] — Data Direction Register B Bits  
These read/write bits control port B data direction. Reset clears  
DDRB[6:0], configuring all port B pins as inputs.  
1 = Corresponding port B pin configured as output  
0 = Corresponding port B pin configured as input  
NOTE: Avoid glitches on port B pins by writing to the port B data register before  
changing data direction register B bits from 0 to 1. Figure 18-8 shows  
the port B I/O logic.  
READ DDRB ($0005)  
WRITE DDRB ($0005)  
DDRBx  
RESET  
WRITE PTB ($0001)  
PTBx #  
PTBx  
READ PTB ($0001)  
# PTB3–PTB0 are open-drain pins when configured as outputs.  
Figure 18-8. Port B I/O Circuit  
When DDRBx is a logic 1, reading address $0001 reads the PTBx data  
latch. When DDRBx is a logic 0, reading address $0001 reads the  
voltage level on the pin. The data latch can always be written, regardless  
of the state of its data direction bit.  
Table 18-4 summarizes the operation of the port B pins.  
Table 18-4. Port B Pin Functions  
Accesses to DDRB  
Read/Write  
Accesses to PTB  
DDRB  
Bit  
PTB Bit  
I/O Pin Mode  
Read  
Pin  
Write  
(1)  
(2)  
(3)  
0
1
X
Input, Hi-Z  
DDRB[6:0]  
PTB[6:0]  
X
Output  
DDRB[6:0]  
PTB[6:0]  
PTB[6:0]  
Notes:  
1. X = don’t care.  
2. Hi-Z = high impedance.  
3. Writing affects data register, but does not affect input.  
Data Sheet  
326  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Input/Output (I/O) Ports Freescale Semiconductor  
Input/Output (I/O) Ports  
Port C  
18.5 Port C  
Port C is an 8-bit special function port that shares three of its port pins  
with the pulse width modulator module, five of its port pins with the  
analog-to-digital converter module, and one of its pins with the analog  
module. See Section 13. Pulse Width Modulator (PWM), Section 15.  
Analog-to-Digital Converter (ADC), and Section 14. Analog Module.  
PTC7–PTC3 pins can be configured for direct LED drive.  
18.5.1 Port C Data Register (PTC)  
The port C data register contains a data latch for each of the six port C  
pins.  
NOTE: Bit 7 and bit 6 of PTC are not available in a 42-pin shrink dual in-line  
package.  
Address: $0002  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTC7  
PTC6  
PTC5  
PTC4  
PTC3  
PTC2  
PTC1  
PTC0  
Unaffected by reset  
ATD9 ATD8  
Alternative Function: ATD12  
ATD11  
ATD10  
PWM2  
PWM1  
PWM0  
CD  
Additional Function: LED drive LED drive LED drive LED drive LED drive  
Figure 18-9. Port C Data Register (PTC)  
PTC[7:0] — Port C Data Bits  
These read/write bits are software programmable. Data direction of  
each port C pin is under the control of the corresponding bit in data  
direction register C. Reset has no effect on port C data.  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Input/Output (I/O) Ports  
Data Sheet  
327  
Input/Output (I/O) Ports  
PWM[2:0] — PWM Channels 0 to 2  
PWM[2:0] are pins used for the output channels from the pulse width  
modulator (PWM) module. The PWM enables bit, PCH[2:0], in the  
PWM control register define which port pin will be used as a PWM  
output and overrides any control from the port I/O logic. The PWM0  
function on PCT0/PWM0/CD pin can be overrided by the CD output  
function. See Section 13. Pulse Width Modulator (PWM).  
ATD[12:8] — ADC channels 8 to 12  
ATD[12:8] are pins used for the input channels to the analog-to-digital  
converter module. The channel select bits, ADCH[4:0], in the ADC  
status and control register define which port pin will be used as an  
ADC input and overrides any control from the port I/O logic. See  
Section 15. Analog-to-Digital Converter (ADC).  
NOTE: Care must be taken when reading port C while applying analog voltages  
to ATD[12:8] pins. If the appropriate ADC channel is not enabled,  
excessive current drain may occur if analog voltages are applied to the  
PTCx/ATDx pin, while PTC is read as a digital input. Those ports not  
selected as analog input channels are considered digital I/O ports.  
CD — Current Detect Output Pin  
The CD pin is used for the current detect output from the analog  
module. The pin reflects the status of the current detect interrupt flag.  
The current detect output enable bit, CDOEN, in the configuration  
register 2 enables the PTC0/PWM0/CD pin as the CD output pin and  
overrides any control from the port I/O or PWM logic. See Section 14.  
Analog Module.  
Table 18-5. PTC0 Pin Configuration  
CDOEN Bit  
($001D)  
PCH0 Bit  
($0051)  
Pin  
Pin function  
0
0
1
0
1
X
PTC0  
PWM0  
CD  
PTC0/PWM0/CD  
LED drive — Direct LED drive Pins  
PTC7–PTC3 pins can be configured for direct LED drive. See 18.5.3  
Port C LED Control Register (LEDC).  
Data Sheet  
328  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Input/Output (I/O) Ports  
Freescale Semiconductor  
Input/Output (I/O) Ports  
Port C  
18.5.2 Data Direction Register C (DDRC)  
Data direction register C determines whether each port C pin is an input  
or an output. Writing a logic 1 to a DDRC bit enables the output buffer for  
the corresponding port C pin; a logic 0 disables the output buffer.  
Address: $0006  
Bit 7  
DDRC7  
0
6
DDRC6  
0
5
DDRC5  
0
4
DDRC4  
0
3
DDRC3  
0
2
DDRC2  
0
1
DDRC1  
0
Bit 0  
DDRC0  
0
Read:  
Write:  
Reset:  
Figure 18-10. Data Direction Register B (DDRB)  
DDRC[7:0] — Data Direction Register C Bits  
These read/write bits control port C data direction. Reset clears  
DDRC[7:0], configuring all port C pins as inputs.  
1 = Corresponding port C pin configured as output  
0 = Corresponding port C pin configured as input  
NOTE: Avoid glitches on port C pins by writing to the port C data register before  
changing data direction register C bits from 0 to 1. Figure 18-11 shows  
the port C I/O logic.  
NOTE: For those devices packaged in a 42-pin shrink dual in-line package,  
PTC6 and PTC7 are not connected. DDRC6 and DDRC7 should be set  
to a 1 to configure PTC6 and PTC7 as outputs.  
READ DDRC ($0006)  
WRITE DDRC ($0006)  
DDRCx  
RESET  
WRITE PTC ($0002)  
PTCx  
PTCx  
READ PTC ($0002)  
Figure 18-11. Port C I/O Circuit  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Data Sheet  
329  
Freescale Semiconductor  
Input/Output (I/O) Ports  
Input/Output (I/O) Ports  
When DDRCx is a logic 1, reading address $0002 reads the PTCx data  
latch. When DDRCx is a logic 0, reading address $0002 reads the  
voltage level on the pin. The data latch can always be written, regardless  
of the state of its data direction bit.  
Table 18-6 summarizes the operation of the port C pins.  
Table 18-6. Port C Pin Functions  
Accesses to DDRC  
Read/Write  
Accesses to PTC  
DDRC  
Bit  
PTC Bit  
I/O Pin Mode  
Read  
Pin  
Write  
(1)  
(2)  
(3)  
0
1
X
Input, Hi-Z  
DDRC[7:0]  
PTC[7:0]  
X
Output  
DDRC[7:0]  
PTC[7:0]  
PTC[7:0]  
Notes:  
1. X = don’t care.  
2. Hi-Z = high impedance.  
3. Writing affects data register, but does not affect input.  
18.5.3 Port C LED Control Register (LEDC)  
The port-C LED control register (LEDC) controls the direct LED drive  
capability on PTC7–PTC3 pins. Each bit is individually configurable and  
requires that the data direction register, DDRD, bit be configured as an  
output.  
Address: $000D  
Bit 7  
LEDC7  
0
6
LEDC6  
0
5
LEDC5  
0
4
LEDC4  
0
3
LEDC3  
0
2
0
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
0
0
0
Figure 18-12. Port A LED Control Register (LEDA)  
LEDC[7:3] — Port C LED Drive Enable Bits  
These read/write bits are software programmable to enable the direct  
LED drive on an output port pin.  
1 = Corresponding port C pin configured for direct LED drive  
0 = Corresponding port C pin configured for standard drive  
Data Sheet  
330  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Input/Output (I/O) Ports  
Freescale Semiconductor  
Input/Output (I/O) Ports  
Port D  
18.6 Port D  
Port D is an 8-bit special function port that shares all of its pins with the  
keyboard interrupt module. See Section 20. Keyboard Interrupt  
Module (KBI).  
18.6.1 Port D Data Register (PTD)  
The port D data register contains a data latch for each of the eight port D  
pins.  
Address: $0003  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
PTD7  
Write:  
PTD6  
PTD5  
PTD4  
PTD3  
PTD2  
PTD1  
PTD0  
Reset:  
Unaffected by reset  
KBI4 KBI3  
Alternative Function:  
KBI7  
KBI6  
KBI5  
KBI2  
KBI1  
KBI0  
Figure 18-13. Port D Data Register (PTD)  
PTD[7:0] — Port D Data Bits  
These read/write bits are software programmable. Data direction of  
each port D pin is under the control of the corresponding bit in data  
direction register D. Reset has no effect on port D data.  
KBI[7:0] — Keyboard Interrupt Pins  
The keyboard interrupt enable bits, KBIE[7:0], in the keyboard  
interrupt enable register (KBIER), enable the port D pins as external  
interrupt pins. See Section 20. Keyboard Interrupt Module (KBI).  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Input/Output (I/O) Ports  
Data Sheet  
331  
Input/Output (I/O) Ports  
18.6.2 Data Direction Register D (DDRD)  
Data direction register D determines whether each port D pin is an input  
or an output. Writing a logic 1 to a DDRD bit enables the output buffer for  
the corresponding port D pin; a logic 0 disables the output buffer.  
Address: $0007  
Bit 7  
DDRD7  
0
6
DDRD6  
0
5
DDRD5  
0
4
DDRD4  
0
3
DDRD3  
0
2
DDRD2  
0
1
DDRD1  
0
Bit 0  
DDRD0  
0
Read:  
Write:  
Reset:  
Figure 18-14. Data Direction Register D (DDRD)  
DDRD[7:0] — Data Direction Register D Bits  
These read/write bits control port D data direction. Reset clears  
DDRD[7:0], configuring all port D pins as inputs.  
1 = Corresponding port D pin configured as output  
0 = Corresponding port D pin configured as input  
NOTE: Avoid glitches on port D pins by writing to the port D data register before  
changing data direction register D bits from 0 to 1. Figure 18-15 shows  
the port D I/O logic.  
READ DDRD ($0007)  
WRITE DDRD ($0007)  
DDRDx  
RESET  
WRITE PTD ($0003)  
PTDx  
PTDx  
READ PTD ($0003)  
Figure 18-15. Port D I/O Circuit  
Data Sheet  
332  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Input/Output (I/O) Ports Freescale Semiconductor  
Input/Output (I/O) Ports  
Port D  
When DDRDx is a logic 1, reading address $0003 reads the PTDx data  
latch. When DDRDx is a logic 0, reading address $0003 reads the  
voltage level on the pin. The data latch can always be written, regardless  
of the state of its data direction bit.  
Table 18-7 summarizes the operation of the port D pins.  
Table 18-7. Port D Pin Functions  
Accesses  
Accesses to PTD  
DDRD  
Bit  
I/O Pin  
Mode  
to DDRD  
Read/Write  
DDRD[7:0]  
DDRD[7:0]  
PTD Bit  
Read  
Pin  
Write  
(1)  
(2)  
(3)  
0
1
X
Input, Hi-Z  
Output  
PTD[7:0]  
X
PTD[7:0]  
PTD[7:0]  
Notes:  
1. X = don’t care.  
2. Hi-Z = high impedance.  
3. Writing affects data register, but does not affect the input.  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Input/Output (I/O) Ports  
Data Sheet  
333  
Input/Output (I/O) Ports  
Data Sheet  
334  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Input/Output (I/O) Ports Freescale Semiconductor  
Data Sheet — MC68HC908SR12•MC68HC08SR12  
Section 19. External Interrupt (IRQ)  
19.1 Contents  
19.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .335  
19.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .335  
19.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .336  
19.5 IRQ1 and IRQ2 Pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .338  
19.6 IRQ Module During Break Interrupts . . . . . . . . . . . . . . . . . . .339  
19.7 IRQ Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .340  
19.7.1 IRQ1 Status and Control Register . . . . . . . . . . . . . . . . . . .340  
19.7.2 IRQ2 Status and Control Register . . . . . . . . . . . . . . . . . . .341  
19.2 Introduction  
19.3 Features  
The external interrupt (IRQ) module provides two maskable interrupt  
inputs: IRQ1 and IRQ2.  
Features of the IRQ module include:  
• A dedicated external interrupt pin, IRQ1  
• An external interrupt pin shared with a port pin, IRQ2/PTB6  
• Separate IRQ interrupt control bits for IRQ1 and IRQ2  
• Hysteresis buffers  
• Programmable edge-only or edge and level interrupt sensitivity  
• Automatic interrupt acknowledge  
• Internal pullup resistor, with disable option on IRQ2  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor External Interrupt (IRQ)  
Data Sheet  
335  
External Interrupt (IRQ)  
NOTE: References to either IRQ1 or IRQ2 may be made in the following text by  
omitting the IRQ number. For example, IRQF may refer generically to  
IRQ1F and IRQ2F, and IMASK may refer to IMASK1 and IMASK2.  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
0
0
0
IRQ2F  
0
IRQ2 Status and Control  
PTBPUE6  
IMASK2 MODE2  
$001C  
Register Write:  
(INTSCR2)  
Reset:  
ACK2  
0
0
0
0
0
0
0
0
0
0
0
0
0
Read:  
IRQ1F  
IRQ1 Status and Control  
IMASK1 MODE1  
$001E  
Register Write:  
(INTSCR1)  
Reset:  
ACK1  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 19-1. External Interrupt I/O Register Summary  
19.4 Functional Description  
A logic 0 applied to the external interrupt pin can latch a CPU interrupt  
request. Figure 19-2 and Figure 19-3 shows the structure of the IRQ  
module.  
Interrupt signals on the IRQ pin are latched into the IRQ latch. An  
interrupt latch remains set until one of the following actions occurs:  
• Vector fetch — A vector fetch automatically generates an interrupt  
acknowledge signal that clears the latch that caused the vector  
fetch.  
• Software clear — Software can clear an interrupt latch by writing  
to the appropriate acknowledge bit in the interrupt status and  
control register (INTSCR). Writing a logic 1 to the ACK bit clears  
the IRQ latch.  
• Reset — A reset automatically clears the interrupt latch.  
The external interrupt pin is falling-edge-triggered and is software-  
configurable to be either falling-edge or falling-edge and low-level-  
triggered. The MODE bit in the INTSCR controls the triggering sensitivity  
of the IRQ pin.  
Data Sheet  
336  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
External Interrupt (IRQ)  
Freescale Semiconductor  
External Interrupt (IRQ)  
Functional Description  
When an interrupt pin is edge-triggered only, the interrupt remains set  
until a vector fetch, software clear, or reset occurs.  
When an interrupt pin is both falling-edge and low-level-triggered, the  
interrupt remains set until both of the following occur:  
• Vector fetch or software clear  
• Return of the interrupt pin to logic 1  
The vector fetch or software clear may occur before or after the interrupt  
pin returns to logic 1. As long as the pin is low, the interrupt request  
remains pending. A reset will clear the latch and the MODE1 control bit,  
thereby clearing the interrupt even if the pin stays low.  
When set, the IMASK bit in the INTSCR mask all external interrupt  
requests. A latched interrupt request is not presented to the interrupt  
priority logic unless the IMASK bit is clear.  
NOTE: The interrupt mask (I) in the condition code register (CCR) masks all  
interrupt requests, including external interrupt requests.  
ACK1  
RESET  
TO CPU FOR  
VECTOR  
BIL/BIH  
FETCH  
INSTRUCTIONS  
DECODER  
VDD  
VDD  
INTERNAL  
PULLUP  
DEVICE  
IRQ1F  
CLR  
D
Q
SYNCHRO-  
NIZER  
IRQ1  
INTERRUPT  
REQUEST  
CK  
IRQ1  
IRQ1  
FF  
IMASK1  
MODE1  
TO MODE  
SELECT  
LOGIC  
HIGH  
VOLTAGE  
DETECT  
Figure 19-2. IRQ1 Block Diagram  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor External Interrupt (IRQ)  
Data Sheet  
337  
External Interrupt (IRQ)  
ACK2  
RESET  
VECTOR  
FETCH  
DECODER  
VDD  
INTERNAL  
PULLUP  
DEVICE  
VDD  
IRQ2F  
PTBPUE6  
CLR  
D
Q
SYNCHRO-  
NIZER  
IRQ2  
INTERRUPT  
REQUEST  
CK  
IRQ2  
IRQ2  
FF  
IMASK2  
MODE2  
Figure 19-3. IRQ2 Block Diagram  
19.5 IRQ1 and IRQ2 Pins  
A logic 0 on the IRQ pin can latch an interrupt request into the IRQ latch.  
A vector fetch, software clear, or reset clears the IRQ latch.  
If the MODE bit is set, the IRQ pin is both falling-edge-sensitive and low-  
level-sensitive. With MODE set, both of the following actions must occur  
to clear IRQ:  
• Vector fetch or software clear — A vector fetch generates an  
interrupt acknowledge signal to clear the latch. Software may  
generate the interrupt acknowledge signal by writing a logic 1 to  
the ACK bit in the interrupt status and control register (INTSCR).  
The ACK bit is useful in applications that poll the IRQ pin and  
require software to clear the IRQ latch. Writing to the ACK bit prior  
to leaving an interrupt service routine can also prevent spurious  
interrupts due to noise. Setting ACK does not affect subsequent  
transitions on the IRQ pin. A falling edge that occurs after writing  
to the ACK bit another interrupt request. If the IRQ mask bit,  
IMASK, is clear, the CPU loads the program counter with the  
vector address at location defined in Table 2-1 . Vector  
Addresses.  
Data Sheet  
338  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
External Interrupt (IRQ)  
Freescale Semiconductor  
External Interrupt (IRQ)  
IRQ Module During Break Interrupts  
• Return of the IRQ pin to logic 1 — As long as the IRQ pin is at  
logic 0, IRQ remains active.  
The vector fetch or software clear and the return of the IRQ pin to logic 1  
may occur in any order. The interrupt request remains pending as long  
as the IRQ pin is at logic 0. A reset will clear the latch and the MODE  
control bit, thereby clearing the interrupt even if the pin stays low.  
If the MODE bit is clear, the IRQ pin is falling-edge-sensitive only. With  
MODE clear, a vector fetch or software clear immediately clears the IRQ  
latch.  
The IRQF bit in the INTSCR register can be used to check for pending  
interrupts. The IRQF bit is not affected by the IMASK bit, which makes it  
useful in applications where polling is preferred.  
Use the BIH or BIL instruction to read the logic level on the IRQ1 pin.  
NOTE: The BIH and BIL instructions do not read the logic level on the IRQ2 pin.  
NOTE: When using the level-sensitive interrupt trigger, avoid false interrupts by  
masking interrupt requests in the interrupt routine.  
The IRQ1 pin has a permanent internal pullup device connected, while  
the IRQ2 pin has an optional pullup device that can be enabled or  
disabled by the PTBPUE6 bit in the INTSCR2 register.  
19.6 IRQ Module During Break Interrupts  
The BCFE bit in the SIM break flag control register (SBFCR) enables  
software to clear the latch during the break state. (See Section 23.  
Break Module (BRK).)  
To allow software to clear the IRQ latch during a break interrupt, write a  
logic 1 to the BCFE bit. If a latch is cleared during the break state, it  
remains cleared when the MCU exits the break state.  
To protect CPU interrupt flags during the break state, write a logic 0 to  
the BCFE bit. With BCFE at logic 0 (its default state), writing to the ACK  
bit in the IRQ status and control register during the break state has no  
effect on the IRQ interrupt flags.  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor External Interrupt (IRQ)  
Data Sheet  
339  
External Interrupt (IRQ)  
19.7 IRQ Registers  
Each IRQ is controlled and monitored by an status and control register.  
• IRQ1 Status and Control Register — $001E  
• IRQ2 Status and Control Register — $001C  
19.7.1 IRQ1 Status and Control Register  
The IRQ1 status and control register (INTSCR1) controls and monitors  
operation of IRQ1. The INTSCR1 has the following functions:  
• Shows the state of the IRQ1 flag  
• Clears the IRQ1 latch  
• Masks IRQ1 interrupt request  
• Controls triggering sensitivity of the IRQ1 interrupt pin  
Address: $001E  
Bit 7  
0
6
0
5
0
4
0
3
2
0
1
Bit 0  
Read:  
Write:  
Reset:  
IRQ1F  
IMASK1 MODE1  
ACK1  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 19-4. IRQ1 Status and Control Register (INTSCR1)  
IRQ1F — IRQ1 Flag Bit  
This read-only status bit is high when the IRQ1 interrupt is pending.  
1 = IRQ1 interrupt pending  
0 = IRQ1 interrupt not pending  
ACK1 — IRQ1 Interrupt Request Acknowledge Bit  
Writing a logic 1 to this write-only bit clears the IRQ1 latch. ACK1  
always reads as logic 0. Reset clears ACK1.  
Data Sheet  
340  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
External Interrupt (IRQ)  
Freescale Semiconductor  
External Interrupt (IRQ)  
IRQ Registers  
IMASK1 — IRQ1 Interrupt Mask Bit  
Writing a logic 1 to this read/write bit disables IRQ1 interrupt requests.  
Reset clears IMASK1.  
1 = IRQ1 interrupt requests disabled  
0 = IRQ1 interrupt requests enabled  
MODE1 — IRQ1 Edge/Level Select Bit  
This read/write bit controls the triggering sensitivity of the IRQ1 pin.  
Reset clears MODE1.  
1 = IRQ1 interrupt requests on falling edges and low levels  
0 = IRQ1 interrupt requests on falling edges only  
19.7.2 IRQ2 Status and Control Register  
The IRQ2 status and control register (INTSCR2) controls and monitors  
operation of IRQ2. The INTSCR2 has the following functions:  
• Enables/disables the internal pullup device on IRQ2 pin  
• Shows the state of the IRQ2 flag  
• Clears the IRQ2 latch  
• Masks IRQ2 interrupt request  
• Controls triggering sensitivity of the IRQ2 interrupt pin  
Address: $001C  
Bit 7  
0
6
PTBPUE6  
0
5
0
4
0
3
2
0
1
Bit 0  
Read:  
Write:  
Reset:  
IRQ2F  
IMASK2 MODE2  
ACK2  
0
0
0
0
0
0
0
= Unimplemented  
Figure 19-5. IRQ2 Status and Control Register (INTSCR2)  
PTBPUE6 — IRQ2 Pin Pullup Enable Bit.  
Setting this bit to logic 1 disables the pullup on PTB6/IRQ2 pin.  
Reset clears this bit.  
1 = IRQ2 pin internal pull-up is disabled  
0 = IRQ2 pin internal pull-up is enabled  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor External Interrupt (IRQ)  
Data Sheet  
341  
External Interrupt (IRQ)  
IRQ2F — IRQ2 Flag Bit  
This read-only status bit is high when the IRQ2 interrupt is pending.  
1 = IRQ2 interrupt pending  
0 = IRQ2 interrupt not pending  
ACK2 — IRQ2 Interrupt Request Acknowledge Bit  
Writing a logic 1 to this write-only bit clears the IRQ2 latch. ACK2  
always reads as logic 0. Reset clears ACK2.  
IMASK2 — IRQ2 Interrupt Mask Bit  
Writing a logic 1 to this read/write bit disables IRQ2 interrupt requests.  
Reset clears IMASK2.  
1 = IRQ2 interrupt requests disabled  
0 = IRQ2 interrupt requests enabled  
MODE2 — IRQ2 Edge/Level Select Bit  
This read/write bit controls the triggering sensitivity of the IRQ2 pin.  
Reset clears MODE2.  
1 = IRQ2 interrupt requests on falling edges and low levels  
0 = IRQ2 interrupt requests on falling edges only  
Data Sheet  
342  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
External Interrupt (IRQ)  
Freescale Semiconductor  
Data Sheet — MC68HC908SR12•MC68HC08SR12  
Section 20. Keyboard Interrupt Module (KBI)  
20.1 Contents  
20.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .343  
20.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .344  
20.4 I/O Pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .344  
20.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .345  
20.5.1 Keyboard Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . .347  
20.6 Keyboard Interrupt Registers . . . . . . . . . . . . . . . . . . . . . . . . .347  
20.6.1 Keyboard Status and Control Register. . . . . . . . . . . . . . . .348  
20.6.2 Keyboard Interrupt Enable Register. . . . . . . . . . . . . . . . . .349  
20.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .349  
20.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .349  
20.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .349  
20.10 Keyboard Module During Break Interrupts . . . . . . . . . . . . . . .350  
20.2 Introduction  
The keyboard interrupt module (KBI) provides eight independently  
maskable external interrupts which are accessible via PTD0–PTD7.  
When a port pin is enabled for keyboard interrupt function, an internal  
30kpullup device is also enabled on the pin.  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Keyboard Interrupt Module (KBI)  
Data Sheet  
343  
Keyboard Interrupt Module (KBI)  
20.3 Features  
Features of the keyboard interrupt module include the following:  
• Eight keyboard interrupt pins with pullup devices  
• Separate keyboard interrupt enable bits and one keyboard  
interrupt mask  
• Programmable edge-only or edge- and level- interrupt sensitivity  
• Exit from low-lower modes  
Addr.  
Register Name  
Keyboard Status  
and Control Register Write:  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
0
0
0
0
KEYF  
0
ACKK  
0
IMASKK MODEK  
$001A  
(KBSCR)  
Reset:  
0
KBIE7  
0
0
KBIE6  
0
0
KBIE5  
0
0
KBIE4  
0
0
KBIE3  
0
0
KBIE1  
0
0
KBIE0  
0
Read:  
KBIE2  
0
Keyboard Interrupt Enable  
Write:  
$001B  
Register (KBIER)  
Reset:  
= Unimplemented  
Figure 20-1. KBI I/O Register Summary  
20.4 I/O Pins  
The eight keyboard interrupt pins are shared with standard port I/O pins.  
The full name of the KBI pins are listed in Table 20-1. The generic pin  
name appear in the text that follows.  
Table 20-1. Pin Name Conventions  
KBI  
Pin Selected for KBI Function by  
Full MCU Pin Name  
Generic Pin Name  
KBIEx Bit in KBIER  
KBI0–KBI7  
PTD0/KBI0–PTD7/KBI7  
KBIE0–KBIE7  
Data Sheet  
344  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Keyboard Interrupt Module (KBI)  
Freescale Semiconductor  
Keyboard Interrupt Module (KBI)  
Functional Description  
20.5 Functional Description  
INTERNAL BUS  
VECTOR FETCH  
DECODER  
KBI0  
ACKK  
VDD  
KEYF  
RESET  
CLR  
.
D
Q
SYNCHRONIZER  
Keyboard  
Interrupt  
Request  
KBIE0  
.
CK  
TO PULLUP ENABLE  
.
KEYBOARD  
INTERRUPT FF  
IMASKK  
KBI7  
MODEK  
KBIE7  
TO PULLUP ENABLE  
Figure 20-2. Keyboard Interrupt Block Diagram  
Writing to the KBIE7–KBIE0 bits in the keyboard interrupt enable register  
independently enables or disables each port D pin as a keyboard  
interrupt pin. Enabling a keyboard interrupt pin in port D also enables its  
internal pull-up device. A logic 0 applied to an enabled keyboard  
interrupt pin latches a keyboard interrupt request.  
A keyboard interrupt is latched when one or more keyboard pins goes  
low after all were high. The MODEK bit in the keyboard status and  
control register controls the triggering mode of the keyboard interrupt.  
• If the keyboard interrupt is edge-sensitive only, a falling edge on a  
keyboard pin does not latch an interrupt request if another  
keyboard pin is already low. To prevent losing an interrupt request  
on one pin because another pin is still low, software can disable  
the latter pin while it is low.  
• If the keyboard interrupt is falling edge- and low level-sensitive, an  
interrupt request is present as long as any keyboard pin is low.  
If the MODEK bit is set, the keyboard interrupt pins are both falling edge-  
and low level-sensitive, and both of the following actions must occur to  
clear a keyboard interrupt request:  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Keyboard Interrupt Module (KBI)  
Data Sheet  
345  
Keyboard Interrupt Module (KBI)  
• Vector fetch or software clear — A vector fetch generates an  
interrupt acknowledge signal to clear the interrupt request.  
Software may generate the interrupt acknowledge signal by  
writing a logic 1 to the ACKK bit in the keyboard status and control  
register KBSCR. The ACKK bit is useful in applications that poll  
the keyboard interrupt pins and require software to clear the  
keyboard interrupt request. Writing to the ACKK bit prior to leaving  
an interrupt service routine can also prevent spurious interrupts  
due to noise. Setting ACKK does not affect subsequent transitions  
on the keyboard interrupt pins. A falling edge that occurs after  
writing to the ACKK bit latches another interrupt request. If the  
keyboard interrupt mask bit, IMASKK, is clear, the CPU loads the  
program counter with the vector address at locations $FFE0 and  
$FFE1.  
• Return of all enabled keyboard interrupt pins to logic 1 — As long  
as any enabled keyboard interrupt pin is at logic 0, the keyboard  
interrupt remains set.  
The vector fetch or software clear and the return of all enabled keyboard  
interrupt pins to logic 1 may occur in any order.  
If the MODEK bit is clear, the keyboard interrupt pin is falling-edge-  
sensitive only. With MODEK clear, a vector fetch or software clear  
immediately clears the keyboard interrupt request.  
Reset clears the keyboard interrupt request and the MODEK bit, clearing  
the interrupt request even if a keyboard interrupt pin stays at logic 0.  
The keyboard flag bit (KEYF) in the keyboard status and control register  
can be used to see if a pending interrupt exists. The KEYF bit is not  
affected by the keyboard interrupt mask bit (IMASKK) which makes it  
useful in applications where polling is preferred.  
To determine the logic level on a keyboard interrupt pin, use the data  
direction register to configure the pin as an input and read the data  
register.  
NOTE: Setting a keyboard interrupt enable bit (KBIEx) forces the corresponding  
keyboard interrupt pin to be an input, overriding the data direction  
register. However, the data direction register bit must be a logic 0 for  
software to read the pin.  
Data Sheet  
346  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Keyboard Interrupt Module (KBI)  
Freescale Semiconductor  
Keyboard Interrupt Module (KBI)  
Keyboard Interrupt Registers  
20.5.1 Keyboard Initialization  
When a keyboard interrupt pin is enabled, it takes time for the internal  
pull-up to reach a logic 1. Therefore a false interrupt can occur as soon  
as the pin is enabled.  
To prevent a false interrupt on keyboard initialization:  
1. Mask keyboard interrupts by setting the IMASKK bit in the  
keyboard status and control register.  
2. Enable the KBI pins by setting the appropriate KBIEx bits in the  
keyboard interrupt enable register.  
3. Write to the ACKK bit in the keyboard status and control register  
to clear any false interrupts.  
4. Clear the IMASKK bit.  
An interrupt signal on an edge-triggered pin can be acknowledged  
immediately after enabling the pin. An interrupt signal on an edge- and  
level-triggered interrupt pin must be acknowledged after a delay that  
depends on the external load.  
Another way to avoid a false interrupt:  
1. Configure the keyboard pins as outputs by setting the appropriate  
DDR bits in data direction register.  
2. Write logic 1s to the appropriate data register bits.  
3. Enable the KBI pins by setting the appropriate KBIEx bits in the  
keyboard interrupt enable register.  
20.6 Keyboard Interrupt Registers  
Two registers control the operation of the keyboard interrupt module:  
• Keyboard Status and Control Register — $001A  
• Keyboard Interrupt Enable Register — $001B  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Keyboard Interrupt Module (KBI)  
Data Sheet  
347  
Keyboard Interrupt Module (KBI)  
20.6.1 Keyboard Status and Control Register  
• Flags keyboard interrupt requests  
• Acknowledges keyboard interrupt requests  
• Masks keyboard interrupt requests  
• Controls keyboard interrupt triggering sensitivity  
Address: $001A  
Bit 7  
6
0
5
0
4
0
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
0
KEYF  
0
ACKK  
0
IMASKK MODEK  
0
0
0
0
0
0
0
= Unimplemented  
Figure 20-3. Keyboard Status and Control Register (KBSCR)  
KEYF — Keyboard Flag Bit  
This read-only bit is set when a keyboard interrupt is pending.  
Reset clears the KEYF bit.  
1 = Keyboard interrupt pending  
0 = No keyboard interrupt pending  
ACKK — Keyboard Acknowledge Bit  
Writing a logic 1 to this write-only bit clears the keyboard interrupt  
request. ACKK always reads as logic 0. Reset clears ACKK.  
IMASKK — Keyboard Interrupt Mask Bit  
Writing a logic 1 to this read/write bit prevents the output of the  
keyboard interrupt mask from generating interrupt requests. Reset  
clears the IMASKK bit.  
1 = Keyboard interrupt requests masked  
0 = Keyboard interrupt requests not masked  
MODEK — Keyboard Triggering Sensitivity Bit  
This read/write bit controls the triggering sensitivity of the keyboard  
interrupt pins. Reset clears MODEK.  
1 = Keyboard interrupt requests on falling edges and low levels  
0 = Keyboard interrupt requests on falling edges only  
Data Sheet  
348  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Keyboard Interrupt Module (KBI)  
Freescale Semiconductor  
Keyboard Interrupt Module (KBI)  
Low-Power Modes  
20.6.2 Keyboard Interrupt Enable Register  
The port-D keyboard interrupt enable register enables or disables each  
port-D pin to operate as a keyboard interrupt pin.  
Address: $001B  
Bit 7  
KBIE7  
0
6
KBIE6  
0
5
KBIE5  
0
4
KBIE4  
0
3
KBIE3  
0
2
KBIE2  
0
1
KBIE1  
0
Bit 0  
KBIE0  
0
Read:  
Write:  
Reset:  
Figure 20-4. Keyboard Interrupt Enable Register (KBIER)  
KBIE7–KBIE0 — Keyboard Interrupt Enable Bits  
Each of these read/write bits enables the corresponding keyboard  
interrupt pin to latch interrupt requests. Reset clears the keyboard  
interrupt enable register.  
1 = KBIx pin enabled as keyboard interrupt pin  
0 = KBIx pin not enabled as keyboard interrupt pin  
20.7 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-  
consumption standby modes.  
20.7.1 Wait Mode  
20.7.2 Stop Mode  
The keyboard interrupt module remains active in wait mode. Clearing the  
IMASKK bit in the keyboard status and control register enables keyboard  
interrupt requests to bring the MCU out of wait mode.  
The keyboard interrupt module remains active in stop mode. Clearing  
the IMASKK bit in the keyboard status and control register enables  
keyboard interrupt requests to bring the MCU out of stop mode.  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Keyboard Interrupt Module (KBI)  
Data Sheet  
349  
Keyboard Interrupt Module (KBI)  
20.8 Keyboard Module During Break Interrupts  
The system integration module (SIM) controls whether the keyboard  
interrupt latch can be cleared during the break state. The BCFE bit in the  
SIM break flag control register (BFCR) enables software to clear status  
bits during the break state.  
To allow software to clear the keyboard interrupt latch during a break  
interrupt, write a logic 1 to the BCFE bit. If a latch is cleared during the  
break state, it remains cleared when the MCU exits the break state.  
To protect the latch during the break state, write a logic 0 to the BCFE  
bit. With BCFE at logic 0 (its default state), writing to the keyboard  
acknowledge bit (ACKK) in the keyboard status and control register  
during the break state has no effect.  
Data Sheet  
350  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Keyboard Interrupt Module (KBI)  
Freescale Semiconductor  
Data Sheet — MC68HC908SR12•MC68HC08SR12  
Section 21. Computer Operating Properly (COP)  
21.1 Contents  
21.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .351  
21.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .352  
21.4 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .353  
21.4.1 ICLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .353  
21.4.2 STOP Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .353  
21.4.3 COPCTL Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .353  
21.4.4 Power-On Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .353  
21.4.5 Internal Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .354  
21.4.6 Reset Vector Fetch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .354  
21.4.7 COPD (COP Disable). . . . . . . . . . . . . . . . . . . . . . . . . . . . .354  
21.4.8 COPRS (COP Rate Select) . . . . . . . . . . . . . . . . . . . . . . . .354  
21.5 COP Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .355  
21.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .355  
21.7 Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .355  
21.8 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .355  
21.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .356  
21.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .356  
21.9 COP Module During Break Mode . . . . . . . . . . . . . . . . . . . . . .356  
21.2 Introduction  
The computer operating properly (COP) module contains a free-running  
counter that generates a reset if allowed to overflow. The COP module  
helps software recover from runaway code. Prevent a COP reset by  
clearing the COP counter periodically. The COP module can be disabled  
through the COPD bit in the configuration register 1 (CONFIG1).  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Computer Operating Properly (COP)  
Data Sheet  
351  
Computer Operating Properly (COP)  
21.3 Functional Description  
Figure 21-1 shows the structure of the COP module.  
RESET CIRCUIT  
12-BIT COP PRESCALER  
ICLK  
RESET STATUS REGISTER  
STOP INSTRUCTION  
INTERNAL RESET SOURCES  
RESET VECTOR FETCH  
COPCTL WRITE  
COP CLOCK  
6-BIT COP COUNTER  
COPEN (FROM SIM)  
COP DISABLE  
(COPD FROM CONFIG1)  
RESET  
CLEAR  
COPCTL WRITE  
COP COUNTER  
COP RATE SEL  
(COPRS FROM CONFIG1)  
Figure 21-1. COP Block Diagram  
The COP counter is a free-running 6-bit counter preceded by a 12-bit  
prescaler counter. If not cleared by software, the COP counter overflows  
18  
4
13  
4
and generates an asynchronous reset after 2 – 2 or 2 – 2 ICLK  
cycles, depending on the state of the COP rate select bit, COPRS, in the  
13  
4
CONFIG1 register. With a 2 – 2 ICLK cycle overflow option, a 24-kHz  
ICLK gives a COP timeout period of 341ms. Writing any value to location  
$FFFF before an overflow occurs prevents a COP reset by clearing the  
COP counter and stages 12 through 5 of the prescaler.  
NOTE: Service the COP immediately after reset and before entering or after  
exiting STOP Mode to guarantee the maximum time before the first COP  
counter overflow.  
Data Sheet  
352  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Computer Operating Properly (COP)  
Freescale Semiconductor  
Computer Operating Properly (COP)  
I/O Signals  
A COP reset pulls the RST pin low for 32 ICLK cycles and sets the COP  
bit in the SIM reset status register (SRSR).  
In monitor mode, the COP is disabled if the RST pin or the IRQ1 is held  
at V  
. During the break state, V  
on the RST pin disables the COP.  
TST  
TST  
NOTE: Place COP clearing instructions in the main program and not in an  
interrupt subroutine. Such an interrupt subroutine could keep the COP  
from generating a reset even while the main program is not working  
properly.  
21.4 I/O Signals  
The following paragraphs describe the signals shown in Figure 21-1.  
21.4.1 ICLK  
ICLK is the internal oscillator output signal. ICLK frequency is  
approximately equal to 24kHz. See Section 24. Electrical  
Specifications for ICLK parameters.  
21.4.2 STOP Instruction  
The STOP instruction clears the COP prescaler.  
21.4.3 COPCTL Write  
Writing any value to the COP control register (COPCTL) (see 21.5 COP  
Control Register) clears the COP counter and clears bits 12 through 5  
of the prescaler. Reading the COP control register returns the low byte  
of the reset vector.  
21.4.4 Power-On Reset  
The power-on reset (POR) circuit clears the COP prescaler 4096 ICLK  
cycles after power-up.  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Data Sheet  
353  
Freescale Semiconductor  
Computer Operating Properly (COP)  
Computer Operating Properly (COP)  
21.4.5 Internal Reset  
An internal reset clears the COP prescaler and the COP counter.  
21.4.6 Reset Vector Fetch  
A reset vector fetch occurs when the vector address appears on the data  
bus. A reset vector fetch clears the COP prescaler.  
21.4.7 COPD (COP Disable)  
The COPD signal reflects the state of the COP disable bit (COPD) in the  
CONFIG1 register. (See Figure 21-2 and Section 5. Configuration  
and Mask Option Registers (CONFIG & MOR).)  
21.4.8 COPRS (COP Rate Select)  
The COPRS signal reflects the state of the COP rate select bit (COPRS)  
in the CONFIG1 register.  
Address: $001F  
Bit 7  
6
5
4
3
2
1
STOP  
0
Bit 0  
COPD  
0
Read:  
Write:  
Reset:  
COPRS LVISTOP LVIRSTD LVIPWRD LVI5OR3 SSREC  
0
0
0
0
0*  
0
* Reset by POR only.  
Figure 21-2. Configuration Register 1 (CONFIG1)  
COPRS — COP Rate Select  
COPRS selects the COP time-out period. Reset clears COPRS.  
13  
4
1 = COP time out period = 2 – 2 ICLK cycles  
18  
4
0 = COP time out period = 2 – 2 ICLK cycles  
COPD — COP Disable Bit  
COPD disables the COP module.  
1 = COP module disabled  
0 = COP module enabled  
Data Sheet  
354  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Computer Operating Properly (COP) Freescale Semiconductor  
Computer Operating Properly (COP)  
COP Control Register  
21.5 COP Control Register  
The COP control register is located at address $FFFF and overlaps the  
reset vector. Writing any value to $FFFF clears the COP counter and  
starts a new timeout period. Reading location $FFFF returns the low  
byte of the reset vector.  
Address: $FFFF  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Low byte of reset vector  
Clear COP counter  
Unaffected by reset  
Figure 21-3. COP Control Register (COPCTL)  
21.6 Interrupts  
The COP does not generate CPU interrupt requests.  
21.7 Monitor Mode  
When monitor mode is entered with V  
on the IRQ1 pin, the COP is  
TST  
disabled as long as V  
remains on the IRQ1 pin or the RST pin. When  
TST  
monitor mode is entered by having blank reset vectors and not having  
on the IRQ1 pin, the COP is automatically disabled until a POR  
V
TST  
occurs.  
21.8 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-  
consumption standby modes.  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Computer Operating Properly (COP)  
Data Sheet  
355  
Computer Operating Properly (COP)  
21.8.1 Wait Mode  
The COP remains active during wait mode. To prevent a COP reset  
during wait mode, periodically clear the COP counter in a CPU interrupt  
routine.  
21.8.2 Stop Mode  
Stop mode turns off the ICLK input to the COP and clears the COP  
prescaler. Service the COP immediately before entering or after exiting  
stop mode to ensure a full COP timeout period after entering or exiting  
stop mode.  
To prevent inadvertently turning off the COP with a STOP instruction, a  
configuration option is available that disables the STOP instruction.  
When the STOP bit in the configuration register has the STOP  
instruction is disabled, execution of a STOP instruction results in an  
illegal opcode reset.  
21.9 COP Module During Break Mode  
The COP is disabled during a break interrupt when V  
is present on  
TST  
the RST pin.  
Data Sheet  
356  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Computer Operating Properly (COP) Freescale Semiconductor  
Data Sheet — MC68HC908SR12•MC68HC08SR12  
Section 22. Low-Voltage Inhibit (LVI)  
22.1 Contents  
22.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .357  
22.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .357  
22.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .358  
22.4.1 Polled LVI Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .359  
22.4.2 Forced Reset Operation. . . . . . . . . . . . . . . . . . . . . . . . . . .360  
22.4.3 Voltage Hysteresis Protection . . . . . . . . . . . . . . . . . . . . . .360  
22.4.4 LVI Trip Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .360  
22.5 LVI Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .361  
22.6 LVI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .361  
22.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .361  
22.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .362  
22.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .362  
22.2 Introduction  
22.3 Features  
This section describes the low-voltage inhibit (LVI) module, which  
monitors the voltage on the V pin and can force a reset when the V  
DD  
DD  
voltage falls below the LVI trip falling voltage, V  
.
TRIPF  
Features of the LVI module include:  
• Programmable LVI reset  
• Selectable LVI trip voltage  
• Programmable stop mode operation  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Low-Voltage Inhibit (LVI)  
Data Sheet  
357  
Low-Voltage Inhibit (LVI)  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read: LVIOUT  
0
0
0
0
0
0
0
Low-Voltage Inhibit Status  
$FE0F  
Register Write:  
(LVISR)  
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 22-1. LVI I/O Register Summary  
22.4 Functional Description  
Figure 22-2 shows the structure of the LVI module. The LVI is enabled  
out of reset. The LVI module contains a bandgap reference circuit and  
comparator. Clearing the LVI power disable bit, LVIPWRD, enables the  
LVI to monitor V voltage. Clearing the LVI reset disable bit, LVIRSTD,  
DD  
enables the LVI module to generate a reset when V falls below a  
DD  
voltage, V  
. Setting the LVI enable in stop mode bit, LVISTOP,  
TRIPF  
enables the LVI to operate in stop mode. Setting the LVI 5V or 3V trip  
point bit, LVI5OR3, enables the trip point voltage, V , to be  
TRIPF  
configured for 5V operation. Clearing the LVI5OR3 bit enables the trip  
point voltage, V , to be configured for 3V operation. The actual trip  
TRIPF  
points are shown in Section 24. Electrical Specifications.  
VDD  
STOP INSTRUCTION  
LVISTOP  
FROM CONFIG1  
FROM CONFIG1  
LVIRSTD  
LVIPWRD  
FROM CONFIG  
VDD > VTRIPR = 0  
VDD VTRIPF = 1  
LVI RESET  
LOW VDD  
DETECTOR  
LVIOUT  
LVI5OR3  
TO LVISR  
FROM CONFIG1  
Figure 22-2. LVI Module Block Diagram  
Data Sheet  
358  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Low-Voltage Inhibit (LVI) Freescale Semiconductor  
Low-Voltage Inhibit (LVI)  
Functional Description  
NOTE: After a power-on reset (POR) the LVI’s default mode of operation is 3V.  
If a 5V system is used, the user must set the LVI5OR3 bit to raise the  
trip point to 5V operation. Note that this must be done after every power-  
on reset since the default will revert back to 3V mode after each power-  
on reset. If the V supply is below the 5V mode trip voltage but above  
DD  
the 3V mode trip voltage when POR is released, the MCU will operate  
because V  
defaults to 3V mode after a POR. So, in a 5V system  
TRIPF  
care must be taken to ensure that V is above the 5V mode trip voltage  
DD  
after POR is released.  
NOTE: If the user requires 5V mode and sets the LVI5OR3 bit after a power-on  
reset while the V supply is not above the V  
for 5V mode, the  
DD  
TRIPF  
MCU will immediately go into reset. The LVI in this case will hold the  
MCU in reset until either V goes above the rising 5V trip point, V  
,
TRIPR  
DD  
which will release reset or V decreases to approximately 0V which will  
DD  
re-trigger the power-on reset and reset the trip point to 3V operation.  
LVISTOP, LVIPWRD, LVI5OR3, and LVIRSTD are in the configuration  
register 1 (CONFIG1). See Section 5. Configuration and Mask Option  
Registers (CONFIG & MOR) for details of the LVI’s configuration bits.  
Once an LVI reset occurs, the MCU remains in reset until V rises  
DD  
above a voltage, V  
, which causes the MCU to exit reset. See  
TRIPR  
9.4.2.5 Low-Voltage Inhibit (LVI) Reset for details of the interaction  
between the SIM and the LVI. The output of the comparator controls the  
state of the LVIOUT flag in the LVI status register (LVISR).  
An LVI reset also drives the RST pin low to provide low-voltage  
protection to external peripheral devices.  
22.4.1 Polled LVI Operation  
In applications that can operate at V levels below the V  
level,  
TRIPF  
DD  
software can monitor V by polling the LVIOUT bit. In the configuration  
DD  
register 1 (CONFIG1), the LVIPWRD bit must be at logic 0 to enable the  
LVI module, and the LVIRSTD bit must be at logic 1 to disable LVI  
resets.  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Low-Voltage Inhibit (LVI)  
Data Sheet  
359  
Low-Voltage Inhibit (LVI)  
22.4.2 Forced Reset Operation  
In applications that require V to remain above the V  
level,  
DD  
TRIPF  
enabling LVI resets allows the LVI module to reset the MCU when V  
DD  
falls below the V  
level. In the configuration register 1 (CONFIG1),  
TRIPF  
the LVIPWRD and LVIRSTD bits must be at logic 0 to enable the LVI  
module and to enable LVI resets.  
22.4.3 Voltage Hysteresis Protection  
Once the LVI has triggered (by having V fall below V  
), the LVI  
TRIPF  
DD  
will maintain a reset condition until V rises above the rising trip point  
DD  
voltage, V  
. This prevents a condition in which the MCU is  
TRIPR  
continually entering and exiting reset if V is approximately equal to  
DD  
V
. V  
is greater than V  
by the hysteresis voltage, V  
.
TRIPF  
TRIPR  
TRIPF  
HYS  
22.4.4 LVI Trip Selection  
The LVI5OR3 bit in the CONFIG1 register selects whether the LVI is  
configured for 5V or 3V protection.  
NOTE: The MCU is guaranteed to operate at a minimum supply voltage. The trip  
point (V [5 V] or V [3 V]) may be lower than this.  
TRIPF  
TRIPF  
(See Section 24. Electrical Specifications for the actual trip point  
voltages.)  
Data Sheet  
360  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Low-Voltage Inhibit (LVI)  
Freescale Semiconductor  
Low-Voltage Inhibit (LVI)  
LVI Status Register  
22.5 LVI Status Register  
The LVI status register (LVISR) indicates if the V voltage was  
DD  
detected below the V  
level.  
TRIPF  
Address: $FE0F  
Bit 7  
Read: LVIOUT  
Write:  
6
0
5
0
4
0
3
0
2
0
1
0
Bit 0  
0
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 22-3. LVI Status Register  
LVIOUT — LVI Output Bit  
This read-only flag becomes set when the V voltage falls below the  
DD  
V
trip voltage (see Table 22-1). Reset clears the LVIOUT bit.  
TRIPF  
Table 22-1. LVIOUT Bit Indication  
V
LVIOUT  
DD  
V
> V  
< V  
0
DD  
TRIPR  
TRIPF  
V
1
DD  
V
< V < V  
DD TRIPR  
Previous value  
TRIPF  
22.6 LVI Interrupts  
The LVI module does not generate interrupt requests.  
22.7 Low-Power Modes  
The STOP and WAIT instructions put the MCU in low power-  
consumption standby modes.  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Low-Voltage Inhibit (LVI)  
Data Sheet  
361  
Low-Voltage Inhibit (LVI)  
22.7.1 Wait Mode  
If enabled, the LVI module remains active in wait mode. If enabled to  
generate resets, the LVI module can generate a reset and bring the MCU  
out of wait mode.  
22.7.2 Stop Mode  
If enabled in stop mode (LVISTOP = 1), the LVI module remains active  
in stop mode. If enabled to generate resets (LVIRSTD = 0), the LVI  
module can generate a reset and bring the MCU out of stop mode.  
Data Sheet  
362  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Low-Voltage Inhibit (LVI)  
Freescale Semiconductor  
Data Sheet — MC68HC908SR12•MC68HC08SR12  
Section 23. Break Module (BRK)  
23.1 Contents  
23.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .363  
23.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .364  
23.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .364  
23.4.1 Flag Protection During Break Interrupts. . . . . . . . . . . . . . .366  
23.4.2 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .366  
23.4.3 TIM1 and TIM2 During Break Interrupts. . . . . . . . . . . . . . .366  
23.4.4 COP During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .366  
23.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .366  
23.5.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .366  
23.5.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .367  
23.6 Break Module Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . .367  
23.6.1 Break Status and Control Register. . . . . . . . . . . . . . . . . . .367  
23.6.2 Break Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . .368  
23.6.3 SIM Break Status Register. . . . . . . . . . . . . . . . . . . . . . . . .368  
23.6.4 SIM Break Flag Control Register . . . . . . . . . . . . . . . . . . . .370  
23.2 Introduction  
This section describes the break module. The break module can  
generate a break interrupt that stops normal program flow at a defined  
address to enter a background program.  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Break Module (BRK)  
Data Sheet  
363  
Break Module (BRK)  
23.3 Features  
Features of the break module include:  
• Accessible input/output (I/O) registers during the break interrupt  
• CPU-generated break interrupts  
• Software-generated break interrupts  
• COP disabling during break interrupts  
23.4 Functional Description  
When the internal address bus matches the value written in the break  
address registers, the break module issues a breakpoint signal to the  
CPU. The CPU then loads the instruction register with a software  
interrupt instruction (SWI) after completion of the current CPU  
instruction. The program counter vectors to $FFFC and $FFFD ($FEFC  
and $FEFD in monitor mode).  
The following events can cause a break interrupt to occur:  
• A CPU-generated address (the address in the program counter)  
matches the contents of the break address registers.  
• Software writes a logic 1 to the BRKA bit in the break status and  
control register.  
When a CPU-generated address matches the contents of the break  
address registers, the break interrupt begins after the CPU completes its  
current instruction. A return-from-interrupt instruction (RTI) in the break  
routine ends the break interrupt and returns the MCU to normal  
operation. Figure 23-1 shows the structure of the break module.  
Data Sheet  
364  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Break Module (BRK)  
Freescale Semiconductor  
Break Module (BRK)  
Functional Description  
IAB15–IAB8  
BREAK ADDRESS REGISTER HIGH  
8-BIT COMPARATOR  
IAB15–IAB0  
CONTROL  
BREAK  
8-BIT COMPARATOR  
BREAK ADDRESS REGISTER LOW  
IAB7–IAB0  
Figure 23-1. Break Module Block Diagram  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
SBSW  
Note  
0
Bit 0  
Read:  
R
R
R
R
R
R
R
SIM Break Status Register  
(SBSR)  
$FE00  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
BCFE  
R
R
R
R
R
R
R
SIM Break Flag Control  
Register (SBFCR)  
$FE03  
$FE0C  
$FE0D  
$FE0E  
0
Bit 15  
0
14  
13  
0
12  
0
11  
0
10  
0
9
0
1
Bit 8  
0
Break Address Register  
High (BRKH)  
0
Bit 7  
0
6
5
4
3
2
Bit 0  
Break Address Register  
Low (BRKL)  
0
BRKA  
0
0
0
0
0
0
0
0
0
0
0
0
0
BRKE  
0
Break Status and Control  
Register (BRKSCR)  
0
0
0
0
0
0
Note: Writing a logic 0 clears SBSW.  
= Unimplemented  
R
= Reserved  
Figure 23-2. Break Module I/O Register Summary  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Break Module (BRK)  
Data Sheet  
365  
Break Module (BRK)  
23.4.1 Flag Protection During Break Interrupts  
The BCFE bit in the SIM break flag control register (SBFCR) enables  
software to clear status bits during the break state.  
23.4.2 CPU During Break Interrupts  
The CPU starts a break interrupt by:  
• Loading the instruction register with the SWI instruction  
• Loading the program counter with $FFFC and $FFFD  
($FEFC and $FEFD in monitor mode)  
The break interrupt begins after completion of the CPU instruction in  
progress. If the break address register match occurs on the last cycle of  
a CPU instruction, the break interrupt begins immediately.  
23.4.3 TIM1 and TIM2 During Break Interrupts  
A break interrupt stops the timer counters.  
23.4.4 COP During Break Interrupts  
The COP is disabled during a break interrupt when V  
the RST pin.  
is present on  
TST  
23.5 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-  
consumption standby modes.  
23.5.1 Wait Mode  
If enabled, the break module is active in wait mode. In the break routine,  
the user can subtract one from the return address on the stack if SBSW  
is set (see Section 9. System Integration Module (SIM)). Clear the  
SBSW bit by writing logic 0 to it.  
Data Sheet  
366  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Break Module (BRK)  
Freescale Semiconductor  
Break Module (BRK)  
Break Module Registers  
23.5.2 Stop Mode  
A break interrupt causes exit from stop mode and sets the SBSW bit in  
the break status register.  
23.6 Break Module Registers  
These registers control and monitor operation of the break module:  
• Break status and control register (BRKSCR)  
• Break address register high (BRKH)  
• Break address register low (BRKL)  
• SIM break status register (SBSR)  
• SIM break flag control register (SBFCR)  
23.6.1 Break Status and Control Register  
The break status and control register (BRKSCR) contains break module  
enable and status bits.  
Address: $FE0E  
Bit 7  
BRKE  
0
6
BRKA  
0
5
0
4
0
3
0
2
0
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
0
0
0
0
0
0
= Unimplemented  
Figure 23-3. Break Status and Control Register (BRKSCR)  
BRKE — Break Enable Bit  
This read/write bit enables breaks on break address register matches.  
Clear BRKE by writing a logic 0 to bit 7. Reset clears the BRKE bit.  
1 = Breaks enabled on 16-bit address match  
0 = Breaks disabled on 16-bit address match  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Break Module (BRK)  
Data Sheet  
367  
Break Module (BRK)  
BRKA — Break Active Bit  
This read/write status and control bit is set when a break address  
match occurs. Writing a logic 1 to BRKA generates a break interrupt.  
Clear BRKA by writing a logic 0 to it before exiting the break routine.  
Reset clears the BRKA bit.  
1 = (When read) Break address match  
0 = (When read) No break address match  
23.6.2 Break Address Registers  
The break address registers (BRKH and BRKL) contain the high and low  
bytes of the desired breakpoint address. Reset clears the break address  
registers.  
Address: $FE0C  
Bit 7  
Bit 15  
0
6
14  
0
5
13  
0
4
12  
0
3
11  
0
2
10  
0
1
9
0
Bit 0  
Bit 8  
0
Read:  
Write:  
Reset:  
Figure 23-4. Break Address Register High (BRKH)  
Address: $FE0D  
Bit 7  
6
6
0
5
5
0
4
4
0
3
3
0
2
2
0
1
1
0
Bit 0  
Bit 0  
0
Read:  
Bit 7  
Write:  
Reset:  
0
Figure 23-5. Break Address Register Low (BRKL)  
23.6.3 SIM Break Status Register  
The SIM break status register (SBSR) contains a flag to indicate that a  
break caused an exit from wait mode. The flag is useful in applications  
requiring a return to wait mode after exiting from a break interrupt.  
Data Sheet  
368  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Break Module (BRK)  
Freescale Semiconductor  
Break Module (BRK)  
Break Module Registers  
Address: $FE00  
Bit 7  
6
5
4
3
2
1
SBSW  
Note  
0
Bit 0  
R
Read:  
R
Write:  
R
R
R
R
R
Reset:  
Note: Writing a logic 0 clears SBSW.  
R
= Reserved  
Figure 23-6. SIM Break Status Register (SBSR)  
SBSW — Break Wait Bit  
This status bit is set when a break interrupt causes an exit from wait  
mode or stop mode. Clear SBSW by writing a logic 0 to it. Reset clears  
SBSW.  
1 = Stop mode or wait mode was exited by break interrupt  
0 = Stop mode or wait mode was not exited by break interrupt  
SBSW can be read within the break interrupt routine. The user can  
modify the return address on the stack by subtracting 1 from it. The  
following code is an example.  
;This code works if the H register has been pushed onto the stack in the break  
;service routine software. This code should be executed at the end of the break  
;service routine software.  
HIBYTE  
LOBYTE  
EQU  
EQU  
5
6
;
If not SBSW, do RTI  
BRCLR  
SBSW,SBSR, RETURN  
;See if wait mode or stop mode was exited by  
;break.  
TST  
BNE  
DEC  
DEC  
LOBYTE,SP  
DOLO  
;If RETURNLO is not zero,  
;then just decrement low byte.  
;Else deal with high byte, too.  
;Point to WAIT/STOP opcode.  
;Restore H register.  
HIBYTE,SP  
LOBYTE,SP  
DOLO  
RETURN  
PULH  
RTI  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor  
Data Sheet  
Break Module (BRK)  
369  
Break Module (BRK)  
23.6.4 SIM Break Flag Control Register  
The SIM break flag control register (SBFCR) contains a bit that enables  
software to clear status bits while the MCU is in a break state.  
Address: $FE03  
Bit 7  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
BCFE  
R
R
R
R
R
R
0
R
= Reserved  
Figure 23-7. SIM Break Flag Control Register (SBFCR)  
BCFE — Break Clear Flag Enable Bit  
This read/write bit enables software to clear status bits by accessing  
status registers while the MCU is in a break state. To clear status bits  
during the break state, the BCFE bit must be set.  
1 = Status bits clearable during break  
0 = Status bits not clearable during break  
Data Sheet  
370  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Break Module (BRK)  
Freescale Semiconductor  
Data Sheet — MC68HC908SR12•MC68HC08SR12  
Section 24. Electrical Specifications  
24.1 Contents  
24.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .372  
24.3 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . .372  
24.4 Functional Operating Range. . . . . . . . . . . . . . . . . . . . . . . . . .373  
24.5 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .373  
24.6 5.0V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . .374  
24.7 3.0V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . .376  
24.8 5.0V Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .377  
24.9 3.0V Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .377  
24.10 5.0V Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . .378  
24.11 3.0V Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . .379  
24.12 5.0V ADC Electrical Characteristics . . . . . . . . . . . . . . . . . . . .380  
24.13 3.0V ADC Electrical Characteristics . . . . . . . . . . . . . . . . . . . .381  
24.14 Analog Module Electrical Characteristics . . . . . . . . . . . . . . . .382  
24.14.1 Temperature Sensor Electrical Characteristics . . . . . . . . .382  
24.14.2 Current Detection Electrical Characteristics. . . . . . . . . . . .382  
24.14.3 Two-Stage Amplifier Electrical Characteristics. . . . . . . . . .382  
24.15 Timer Interface Module Characteristics . . . . . . . . . . . . . . . . .383  
24.16 MMIIC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . .383  
24.17 CGM Electrical Specifications. . . . . . . . . . . . . . . . . . . . . . . . .385  
24.18 FLASH Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . .386  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Electrical Specifications  
Data Sheet  
371  
Electrical Specifications  
24.2 Introduction  
This section contains electrical and timing specifications.  
24.3 Absolute Maximum Ratings  
Maximum ratings are the extreme limits to which the MCU can be  
exposed without permanently damaging it.  
NOTE: This device is not guaranteed to operate properly at the maximum  
ratings. Refer to 24.6 5.0V DC Electrical Characteristics for  
guaranteed operating conditions.  
(1)  
Table 24-1. Absolute Maximum Ratings  
Characteristic  
Supply voltage  
Symbol  
Value  
Unit  
V
–0.3 to +6.0  
V
DD  
Input voltage  
All pins (except IRQ1)  
IRQ1 pin  
V
–0.3 to V +0.3  
V
V
SS  
DD  
IN  
V
–0.3 to 8.5  
SS  
Maximum current per pin  
I
±25  
mA  
excluding V and V  
DD  
SS  
Maximum current out of V  
Maximum current into V  
I
100  
100  
mA  
mA  
°C  
SS  
MVSS  
I
DD  
MVDD  
T
Storage temperature  
–55 to +150  
STG  
Notes:  
1. Voltages referenced to VSS  
.
NOTE: This device contains circuitry to protect the inputs against damage due  
to high static voltages or electric fields; however, it is advised that normal  
precautions be taken to avoid application of any voltage higher than  
maximum-rated voltages to this high-impedance circuit. For proper  
operation, it is recommended that V and V  
be constrained to the  
IN  
OUT  
range V (V or V  
) V . Reliability of operation is enhanced if  
SS  
IN  
OUT  
DD  
unused inputs are connected to an appropriate logic voltage level (for  
example, either V or V .)  
SS  
DD  
Data Sheet  
372  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Electrical Specifications Freescale Semiconductor  
Electrical Specifications  
Functional Operating Range  
24.4 Functional Operating Range  
Table 24-2. Operating Range  
Characteristic  
Symbol  
Value  
Unit  
T
Operating temperature range  
40 to +125  
– 40 to +85  
°C  
A
(1)  
3V ± 10%  
5V ± 10%  
V
Operating voltage range  
V
DD  
5V ± 10%  
Notes:  
1. A minimum operating VDD of 3V is required to achieve the ADC module specifications  
stated in Table 24-11 . 3V ADC Electrical Characteristics.  
24.5 Thermal Characteristics  
Table 24-3. Thermal Characteristics  
Characteristic  
Symbol  
Value  
Unit  
Thermal resistance  
42-pin SDIP  
48-pin LQFP  
60  
80  
°C/W  
°C/W  
θ
JA  
P
I/O pin power dissipation  
User determined  
W
W
I/O  
P = (I × V ) + P =  
I/O  
D
DD  
DD  
(1)  
P
Power dissipation  
D
K/(T + 273 °C)  
J
P x (T + 273 °C)  
D
A
(2)  
K
W/°C  
°C  
Constant  
2
+ P × θ  
D
JA  
T
T + (P × θ )  
A D JA  
Average junction temperature  
J
Notes:  
1. Power dissipation is a function of temperature.  
2. K constant unique to the device. K can be determined for a known TA and measured PD.  
With this value of K, PD and TJ can be determined for any value of TA.  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Electrical Specifications  
Data Sheet  
373  
Electrical Specifications  
24.6 5.0V DC Electrical Characteristics  
Table 24-4. 5V DC Electrical Characteristics  
(1)  
(2)  
Characteristic  
Symbol  
Min  
–0.8  
Typ  
Max  
Unit  
Output high voltage (I = –2.0 mA)  
PTA[0:7], PTB[4:6], PTC[0:7], PTD[0:7]  
LOAD  
V
V
V
OH  
DD  
Output low voltage (I = 1.6mA)  
PTA[0:7], PTB[0:6], PTC[0:7], PTD[0:7]  
LOAD  
V
0.4  
V
OL  
LED sink current (V  
PTA[0:5], PTC[3:7]  
= 4.0V)  
Drain  
I
–15  
mA  
OL  
Input high voltage  
PTA[0:7], PTB[0:6], PTC[0:7], PTD[0:7], RST, IRQ1,  
IRQ2, OSC1.  
V
0.7 × V  
V
V
V
IH  
DD  
DD  
Input low voltage  
PTA[0:7], PTB[0:6], PTC[0:7], PTD[0:7], RST, IRQ1,  
IRQ2, OSC1  
V
V
0.3 × V  
DD  
IL  
SS  
V
supply current  
DD  
(3)  
Run , f  
= 8.0 MHz  
OP  
24  
18  
40  
30  
mA  
mA  
with ADC on  
with ADC off  
(4)  
7.5  
15  
mA  
Wait , f  
= 8.0 MHz  
OP  
(5)  
Stop  
50  
12  
9
150  
40  
30  
10  
180  
50  
40  
15  
200  
60  
50  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
25°C (with OSC, TBM, current sense, LVI)  
25°C (with OSC, TBM, current sense)  
25°C (with OSC, TBM)  
I
DD  
1
25°C  
–40°C to 85°C (with OSC, TBM, current sense, LVI)  
–40°C to 85°C (with OSC, TBM, current sense)  
–40°C to 85°C (with OSC, TBM)  
–40°C to 85°C  
–40°C to 125°C (with OSC, TBM, current sense, LVI)  
–40°C to 125°C (with OSC, TBM, current sense)  
–40°C to 125°C (with OSC, TBM)  
–40°C to 125°C  
25  
I
Digital I/O ports Hi-Z leakage current  
Input current  
± 10  
± 1  
µA  
µA  
IL  
I
IN  
C
C
IN  
Capacitance  
Ports (as input or output)  
12  
8
OUT  
pF  
(6)  
V
0
100  
mV  
POR re-arm voltage  
POR  
Data Sheet  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Electrical Specifications Freescale Semiconductor  
374  
Electrical Specifications  
5.0V DC Electrical Characteristics  
Table 24-4. 5V DC Electrical Characteristics  
(1)  
(2)  
Characteristic  
Symbol  
Min  
0.035  
Typ  
Max  
Unit  
V/ms  
V
(7)  
R
POR rise-time ramp rate  
POR  
V
1.4 × V  
Monitor mode entry voltage  
8
TST  
DD  
(8)  
Pullup resistors  
R
R
24  
24  
35  
35  
42  
42  
kΩ  
kΩ  
PU1  
PTD[0:7] configured as KBI[0:7]  
RST, IRQ1, IRQ2  
PU2  
V
Low-voltage inhibit, trip falling voltage  
Low-voltage inhibit, trip rising voltage  
3.80  
3.95  
4.15  
4.30  
4.45  
4.60  
V
V
LVII5  
V
LVII5  
Schmitt trigger input low level trip voltage  
RST, IRQ1, IRQ2, KBI[0:7]  
V
1.21  
1.65  
V
V
SCMTL  
Schmitt trigger input high level trip voltage  
RST, IRQ1, IRQ2, KBI[0:7]  
V
SCMTH  
Notes:  
1. VDD = 4.5 to 5.5 Vdc, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted.  
2. Typical values reflect average measurements at midpoint of voltage range, 25 °C only.  
3. Run (operating) IDD measured using external square wave clock source. All inputs 0.2 V from rail. No dc loads. Less than  
100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects run IDD  
.
Measured with all modules enabled.  
4. Wait IDD measured using external square wave clock source. All inputs 0.2 V from rail. No dc loads. Less than 100 pF on  
all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects wait IDD  
5. STOP IDD measured with OSC1 grounded, no port pins sourcing current.  
6. Maximum is highest voltage that POR is guaranteed.  
.
7. If minimum VDD is not reached before the internal POR reset is released, RST must be driven low externally until minimum  
VDD is reached.  
8. RPU1 and RPU2 are measured at VDD = 5.0V  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Data Sheet  
375  
Freescale Semiconductor  
Electrical Specifications  
Electrical Specifications  
24.7 3.0V DC Electrical Characteristics  
Table 24-5. 3V DC Electrical Characteristics  
(1)  
(2)  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Output high voltage (I = –1.0mA)  
PTA[0:7], PTB[4:6], PTC[0:7], PTD[0:7]  
LOAD  
V
V
–0.4  
–5  
V
OH  
DD  
Output low voltage (I = 0.8mA)  
LOAD  
V
0.4  
V
OL  
PTA[0:7], PTB[0:6], PTC[0:7], PTD[0:7]  
LED sink current (V  
PTA[0:5], PTC[3:7]  
= 2.0V)  
Drain  
V
mA  
OL  
Input high voltage  
PTA[0:7], PTB[0:6], PTC[0:7], PTD[0:7], RST, IRQ1,  
IRQ2, OSC1  
V
0.7 × V  
V
V
V
IH  
DD  
DD  
Input low voltage  
PTA[0:7], PTB[0:6], PTC[0:7], PTD[0:7], RST, IRQ1,  
IRQ2, OSC1  
V
V
0.3 × V  
DD  
IL  
SS  
V
supply current  
DD  
(3)  
Run , f  
= 4.0 MHz  
OP  
with ADC on  
with ADC off  
(4)  
7
5
16  
12  
mA  
mA  
Wait , f = 4.0 MHz  
2.5  
6
mA  
OP  
(5)  
I
Stop  
DD  
25°C (with OSC, TBM, LVI)  
25°C (with OSC, TBM)  
25°C  
–40°C to 85°C (with OSC, TBM, LVI)  
–40°C to 85°C (with OSC, TBM)  
–40°C to 85°C  
27  
5
0.5  
80  
12  
5
100  
15  
5
µA  
µA  
µA  
µA  
µA  
µA  
I
Digital I/O ports Hi-Z leakage current  
Input current  
± 10  
± 1  
µA  
µA  
IL  
I
IN  
C
C
IN  
Capacitance  
Ports (as input or output)  
12  
8
OUT  
pF  
(6)  
V
R
0
100  
mV  
V/ms  
V
POR re-arm voltage  
POR  
POR  
(7)  
0.035  
POR rise-time ramp rate  
V
1.4 × V  
2.0 × V  
DD  
Monitor mode entry voltage  
HI  
DD  
(8)  
Pullup resistors  
R
R
24  
24  
35  
35  
42  
42  
kΩ  
kΩ  
PU1  
PU2  
PTD[0:7] configured as KBI[0:7]  
RST, IRQ1, IRQ2  
Data Sheet  
376  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Electrical Specifications Freescale Semiconductor  
Electrical Specifications  
5.0V Control Timing  
Table 24-5. 3V DC Electrical Characteristics  
(1)  
(2)  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Low-voltage inhibit, trip voltage  
(No hysteresis implemented for 3V LVI)  
V
2.32  
2.49  
0.8  
2.68  
V
LVI3  
Schmitt trigger input low level trip voltage  
RST, IRQ1, IRQ2, KBI[0:7]  
V
V
V
SCMTL  
Schmitt trigger input high level trip voltage  
RST, IRQ1, IRQ2, KBI[0:7]  
V
1.2  
SCMTH  
Notes:  
1. VDD = 2.7 to 3.3 Vdc, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted.  
2. Typical values reflect average measurements at midpoint of voltage range, 25 °C only.  
3. Run (operating) IDD measured using external square wave clock source. All inputs 0.2 V from rail. No dc loads. Less than  
100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects run IDD  
.
Measured with all modules enabled.  
4. Wait IDD measured using external square wave clock source. All inputs 0.2 V from rail. No dc loads. Less than 100 pF on  
all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects wait IDD  
5. STOP IDD measured with OSC1 grounded, no port pins sourcing current.  
6. Maximum is highest voltage that POR is guaranteed.  
.
7. If minimum VDD is not reached before the internal POR reset is released, RST must be driven low externally until minimum  
VDD is reached.  
8. RPU1 and RPU2 are measured at VDD = 5.0V.  
24.8 5.0V Control Timing  
Table 24-6. 5V Control Timing  
(1)  
Characteristic  
Symbol  
Min  
Max  
8.0  
Unit  
MHz  
ns  
(2)  
f
Internal operating frequency  
OP  
(3)  
t
750  
RST input pulse width low  
IRL  
Notes:  
1. VSS = 0 Vdc; timing shown with respect to 20% VDD and 70% VDD, unless otherwise noted.  
2. Some modules may require a minimum frequency greater than dc for proper operation; see appropriate table for this  
information.  
3. Minimum pulse width reset is guaranteed to be recognized. It is possible for a smaller pulse width to cause a reset.  
24.9 3.0V Control Timing  
Table 24-7. 3V Control Timing  
(1)  
Characteristic  
Symbol  
Min  
Max  
4.0  
Unit  
MHz  
µs  
(2)  
f
Internal operating frequency  
OP  
(3)  
t
1.5  
RST input pulse width low  
IRL  
Notes:  
1. VSS = 0 Vdc; timing shown with respect to 20% VDD and 70% VDD, unless otherwise noted.  
2. Some modules may require a minimum frequency greater than dc for proper operation; see appropriate table for this  
information.  
3. Minimum pulse width reset is guaranteed to be recognized. It is possible for a smaller pulse width to cause a reset.  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Electrical Specifications  
Data Sheet  
377  
Electrical Specifications  
24.10 5.0V Oscillator Characteristics  
Table 24-8. 5V Oscillator Specifications  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
f
Internal oscillator clock frequency  
19.2k  
24k  
28.8k  
Hz  
ICLK  
(1)  
f
dc  
20M  
Hz  
Hz  
External reference clock to OSC1  
OSC  
(2)  
f
32.768k  
4.9152M  
Crystal reference frequency  
XCLK  
(3)  
C
Crystal load capacitance  
L
C
2 × C (25p)  
Crystal fixed capacitance  
Crystal tuning capacitance  
Feedback bias resistor  
F
F
1
L
C
2 × C (25p)  
2
L
R
10M  
B
(4)  
R
100k  
Series resistor  
S
f
External RC clock frequency  
External resistor  
External capacitor  
Notes:  
2M  
See Figure 24-1  
10  
18M  
Hz  
RCCLK  
R
EXT  
C
pF  
EXT  
1. No more than 10% duty cycle deviation from 50%.  
2. Fundamental mode crystals only.  
3. Consult crystal manufacturer’s data.  
4. Not Required for high frequency crystals.  
5
4
3
2
1
0
MCU  
C
= 10 pF  
EXT  
5V @ 25°C  
OSC1  
V
DD  
R
C
EXT  
EXT  
f
= f × 4  
OP  
RCCLK  
0
2
4
6
8
10  
Resistor R  
(k)  
EXT  
Figure 24-1. RC vs. Bus Frequency (5V @25°C)  
Data Sheet  
378  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Electrical Specifications Freescale Semiconductor  
Electrical Specifications  
3.0V Oscillator Characteristics  
24.11 3.0V Oscillator Characteristics  
Table 24-9. 3V Oscillator Specifications  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
f
Internal oscillator clock frequency  
13.8k  
17.2k  
20.6k  
Hz  
ICLK  
(1)  
f
dc  
16M  
Hz  
Hz  
External reference clock to OSC1  
OSC  
(2)  
f
32.768k  
4.9152M  
Crystal reference frequency  
XCLK  
(3)  
C
Crystal load capacitance  
L
C
2 × C (25p)  
Crystal fixed capacitance  
Crystal tuning capacitance  
Feedback bias resistor  
F
F
1
L
C
2 × C (25p)  
2
L
R
10M  
B
(4)  
R
100k  
Series resistor  
S
f
External RC clock frequency  
External resistor  
External capacitor  
Notes:  
2M  
See Figure 24-2  
10  
10M  
Hz  
RCCLK  
R
EXT  
C
pF  
EXT  
1. No more than 10% duty cycle deviation from 50%.  
2. Fundamental mode crystals only.  
3. Consult crystal manufacturer’s data.  
4. Not Required for high frequency crystals.  
3
2.5  
2
MCU  
C
= 10 pF  
EXT  
3V @ 25°C  
OSC1  
1.5  
1
V
DD  
R
C
EXT  
EXT  
0.5  
0
f
= f × 4  
OP  
RCCLK  
0
5
10  
15  
20  
Resistor R  
(k)  
EXT  
Figure 24-2. RC vs. Bus Frequency (3V @25°C)  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Electrical Specifications  
Data Sheet  
379  
Electrical Specifications  
24.12 5.0V ADC Electrical Characteristics  
Table 24-10. 5V ADC Electrical Characteristics  
Characteristic  
Symbol  
Min  
Max  
Unit  
Notes  
V
is an dedicated pin and  
DDA  
V
Supply voltage  
4.5  
5.5  
V
should be tied to V on the  
DDA  
DD  
PCB with proper decoupling.  
V
V
V
V  
Input range  
Resolution  
0
V
ADIN  
DDA  
ADIN DDA  
B
10  
10  
bits  
AD  
Includes quantization.  
±0.5 LSB = ±1 ADC step.  
A
Absolute accuracy  
± 1.5  
LSB  
AD  
f
t
= 1/f  
ADC internal clock  
Conversion range  
500k  
2M  
Hz  
V
ADIC  
ADIC ADIC  
R
V
V
REFH  
AD  
REFL  
ADC voltage  
reference high  
V
V
+ 0.1  
DDA  
V
V
REFH  
ADC voltage  
reference low  
V
V
– 0.1  
SSA  
17  
REFL  
t
ADIC  
cycles  
t
Conversion time  
Sample time  
16  
5
ADC  
t
ADIC  
cycles  
t
ADS  
M
Monotonicity  
Guaranteed  
AD  
Z
V
= V  
Zero input reading  
Full-scale reading  
Input capacitance  
Input impedance  
000  
3FD  
001  
3FF  
20  
HEX  
HEX  
pF  
ADI  
ADIN  
REFL  
REFH  
F
V
= V  
ADI  
ADIN  
C
Not tested.  
ADI  
R
20M  
ADI  
V
/V  
I
1.6  
mA  
Not tested.  
REFH REFL  
VREF  
Data Sheet  
380  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Electrical Specifications Freescale Semiconductor  
Electrical Specifications  
3.0V ADC Electrical Characteristics  
24.13 3.0V ADC Electrical Characteristics  
Table 24-11. 3V ADC Electrical Characteristics  
Characteristic  
Symbol  
Min  
Max  
Unit  
Notes  
V
is an dedicated pin and  
DDA  
V
Supply voltage  
3.0  
3.3  
V
should be tied to V on the  
DDA  
DD  
PCB with proper decoupling.  
V
V
V
V  
Input range  
Resolution  
0
V
ADIN  
DDA  
ADIN DDA  
B
10  
10  
bits  
AD  
Includes quantization.  
±0.5 LSB = ±1 ADC step.  
A
Absolute accuracy  
± 1.5  
LSB  
AD  
f
t
= 1/f  
ADC internal clock  
Conversion range  
500 k  
2 M  
Hz  
V
ADIC  
ADIC ADIC  
R
V
V
REFH  
AD  
REFL  
ADC voltage  
reference high  
V
V
+ 0.1  
DDA  
V
V
REFH  
ADC voltage  
reference low  
V
V
– 0.1  
SSA  
17  
REFL  
t
ADIC  
cycles  
t
Conversion time  
Sample time  
16  
ADC  
t
ADIC  
cycles  
t
5
ADS  
M
Monotonicity  
Guaranteed  
AD  
Z
V
= V  
Zero input reading  
Full-scale reading  
Input capacitance  
Input impedance  
000  
3FD  
001  
3FF  
20  
HEX  
HEX  
pF  
ADI  
ADIN  
REFL  
REFH  
F
V
= V  
ADI  
ADIN  
C
Not tested.  
ADI  
R
20M  
Measured at 5V  
Not tested.  
ADI  
V
/V  
I
1.6  
mA  
REFH REFL  
VREF  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Electrical Specifications  
Data Sheet  
381  
Electrical Specifications  
24.14 Analog Module Electrical Characteristics  
24.14.1 Temperature Sensor Electrical Characteristics  
Table 24-12. Temperature Sensor Electrical Characteristics  
Characteristic  
Temperature range  
Temperature slope  
Symbol  
Min  
Typ  
Max  
Unit  
–20  
70  
°C  
V
V
=5V 10%, GAINA=2, GAINB=6  
=3V 10%, GAINA=2, GAINB=4  
1.275  
1.048  
1.338  
1.089  
1.372  
1.146  
DD  
DD  
ADC steps/°C  
24.14.2 Current Detection Electrical Characteristics  
Table 24-13. Current Detection Electrical Characteristics  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
(1)  
V
–6  
+12  
mV  
Trip point  
DET  
Notes:  
1. The current detect comparator is designed for VDD=5V 10% only.  
24.14.3 Two-Stage Amplifier Electrical Characteristics  
Table 24-14. Two-Stage Amplifier Electrical Characteristics  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
(1)  
t
10 + [(GAINA – 1) × 2]  
Amplifier input signal hold time  
t
cycles  
AMH  
AM  
t
t
cycles  
Amplifier response time  
Amplifier gain tolerance  
70 + (8×GAINA) + (6×GAINB)  
AMR  
AM  
V
=5V 10%, GAINA=4, GAINB=16  
DD  
V
V
= 10mV to 30mV  
= 30mV to 65mV  
–3.5  
–1.5  
+3.5  
+1.5  
IN  
IN  
V
=5V 10%, GAINA=6, GAINB=16  
DD  
V
V
= 10mV to 30mV  
= 30mV to 44mV  
–3.5  
–1.5  
+3.5  
+1.5  
%
IN  
IN  
V
V
=3V 10%, GAINA=4, GAINB=16  
DD  
V
= 10mV to 38mV  
–3.5  
–3.5  
+3.5  
+3.5  
IN  
=3V 10%, GAINA=6, GAINB=16  
DD  
V
= 10mV to 24mV  
IN  
Notes:  
1. tAM is the AMCLK.  
Data Sheet  
382  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Electrical Specifications Freescale Semiconductor  
Electrical Specifications  
Timer Interface Module Characteristics  
24.15 Timer Interface Module Characteristics  
Characteristic  
Symbol  
, t  
Min  
Max  
Unit  
t
t
Input capture pulse width  
1
TIH TIL  
cyc  
24.16 MMIIC Electrical Characteristics  
Table 24-15. MMIIC DC Electrical Characteristics  
(1)  
Symbol  
Min  
–0.5  
2.1  
Typ  
Max  
0.8  
Unit  
V
Comments  
Data, clock input low.  
Data, clock input high.  
Data, clock output low;  
Characteristic  
V
Input low  
IL  
V
Input high  
5.5  
V
IH  
V
Output low  
Input leakage  
0.4  
V
OL  
@I  
PULLUP,MAX  
I
± 5  
µA  
Input leakage current  
LEAK  
Current through pull-up  
resistor or current source.  
I
Pullup current  
100  
350  
µA  
PULLUP  
(2)  
See note.  
Notes:  
1. VDD = 2.7 to 5.5Vdc, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted.  
2. The IPULLUP (max) specification is determined primarily by the need to accommodate a maximum of 1.1kequivalent se-  
ries resistor of removable SMBus devices, such as the smart battery, while maintaining the VOL (max) of the bus.  
SDA  
SCL  
t
t
t
t
t
t
t
SU.STO  
HD.STA  
LOW  
HIGH  
SU.DAT  
HD.DAT  
SU.STA  
Figure 24-3. MMIIC Signal Timings  
See Table 24-16 for MMIIC timing parameters.  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Electrical Specifications  
Data Sheet  
383  
Electrical Specifications  
Table 24-16. MMIIC Interface Input/Output Signal Timing  
Characteristic  
Symbol  
Min  
Typ  
Max Unit  
Comments  
f
Operating frequency  
10  
100  
kHz MMIIC operating frequency  
SMB  
Bus free time between STOP and  
START condition  
t
Bus free time  
4.7  
4.0  
4.7  
µs  
BUF  
Hold time after (repeated) START  
µs condition. After this period, the first  
clock is generated.  
t
Repeated start hold time.  
Repeated start setup time.  
HD.STA  
Repeated START condition setup  
time.  
t
µs  
SU.STA  
t
Stop setup time  
Hold time  
4.0  
300  
250  
25  
µs Stop condition setup time.  
SU.STO  
t
ns Data hold time.  
HD.DAT  
t
Setup time  
ns Data setup time.  
SU.DAT  
(1)  
t
Clock low time-out  
Clock low  
35  
ms  
Clock low time-out.  
TIMEOUT  
t
4.7  
4.0  
µs Clock low period  
LOW  
(2)  
t
Clock high  
µs  
Clock high period.  
HIGH  
Cumulative clock low extend time  
t
t
Slave clock low extend time  
25  
10  
ms  
LOW.SEXT  
(3)  
(slave device)  
Cumulative clock low extend time  
Master clock low extend time  
Fall time  
ms  
LOW.MEXT  
(4)  
(master device)  
(5)  
t
300  
ns  
ns  
Clock/Data Fall Time  
F
(5)  
t
Rise time  
1000  
Clock/Data Rise Time  
R
Notes:  
1. Devices participating in a transfer will timeout when any clock low exceeds the value of TTIMEOUT min. of 25ms. Devices  
that have detected a timeout condition must reset the communication no later than TTIMEOUT max of 35ms. The maximum  
value specified must be adhered to by both a master and a slave as it incorporates the cumulative limit for both a master  
(10 ms) and a slave (25 ms).  
Software should turn-off the MMIIC module to release the SDA and SCL lines.  
2. THIGH MAX provides a simple guaranteed method for devices to detect the idle conditions.  
3. TLOW.SEXT is the cumulative time a slave device is allowed to extend the clock cycles in one message from the initial start  
to the stop. If a slave device exceeds this time, it is expected to release both its clock and data lines and reset itself.  
4. TLOW.MEXT is the cumulative time a master device is allowed to extend its clock cycles within each byte of a message as  
defined from start-to-ack, ack-to-ack, or ack-to-stop.  
5. Rise and fall time is defined as follows: TR = (VILMAX – 0.15) to (VIHMIN + 0.15), TF = 0.9×VDD to (VILMAX – 0.15).  
Data Sheet  
384  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Electrical Specifications Freescale Semiconductor  
Electrical Specifications  
CGM Electrical Specifications  
24.17 CGM Electrical Specifications  
Characteristic  
Reference frequency  
Symbol  
Min  
30  
Typ  
32.768  
38.4  
Max  
100  
Unit  
kHz  
kHz  
Hz  
f
RDV  
f
Range nominal multiplies  
VCO center-of-range frequency  
VCO range linear range multiplier  
VCO power-of-two-range multiplier  
VCO multiply factor  
NOM  
f
38.4k  
1
40.0M  
255  
4
VRS  
L
E
1
2
N
1
4095  
8
P
VCO prescale multiplier  
Reference divider factor  
VCO operating frequency  
Manual acquisition time  
1
2
R
1
1
15  
f
t
38.4k  
40.0M  
50  
Hz  
ms  
ms  
VCLK  
LOCK  
LOCK  
t
t
Automatic lock time  
50  
Automatic lock time  
0
10  
15  
ms  
Hz  
LOCK  
(1)  
Wake up from stop with OSC enabled  
f
×
RCLK  
(2)  
f
0.025% ×  
PLL jitter  
J
P
2 N/4  
Notes:  
1. Test condition: VDD = 5.0Vdc / 3.0Vdc, VSS = 0 Vdc. Reference frequency = 32.768kHz, locking to 4MHz bus frequency.  
2. Deviation of average bus frequency over 2ms. N = VCO multiplier.  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Electrical Specifications  
Data Sheet  
385  
Electrical Specifications  
24.18 FLASH Memory Characteristics  
Table 24-17. FLASH Memory Electrical Characteristics  
Characteristic  
Data retention voltage  
Symbol  
Min.  
Max.  
Unit  
V
V
1.3  
RDR  
Number of rows per page  
Number of bytes per page  
2
Rows  
Bytes  
128  
(1)  
(2)  
Read bus clock frequency  
Page erase time  
32k  
1
8M  
Hz  
ms  
f
Read  
t
Erase  
(3)  
Mass erase time  
4
10  
5
40  
30  
30  
ms  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
µs  
t
MErase  
t
PGM/ERASE to HVEN setup time  
High-voltage hold time  
High-voltage hold time (mass erase)  
Program hold time  
nvs  
t
nvh  
t
100  
5
nvhl  
t
pgs  
t
Program time  
30  
1
Prog  
t
Address/data setup time  
Address/data hold time  
Recovery time  
ads  
t
adh  
(4)  
t
rcv  
(5)  
Cumulative HV period  
10k  
10k  
10  
25  
ms  
t
hv  
(6)  
Cycles  
Cycles  
Years  
Row erase endurance  
(7)  
Row program endurance  
(8)  
Data retention time  
Notes:  
1. fRead is defined as the frequency range for which the FLASH memory can be read.  
2. If the page erase time is longer than tErase (Min.), there is no erase-disturb, but it reduces the endurance of the FLASH  
memory.  
3. If the mass erase time is longer than tMErase (Min.), there is no erase-disturb, but is reduces the endurance of the FLASH  
memory.  
4. It is defined as the time it needs before the FLASH can be read after turning off the high voltage charge pump, by clearing  
HVEN to logic 0.  
5. thv is the cumulative high voltage programming time to the same row before next erase, and the same address can not be  
programmed twice before next erase.  
6. The minimum row endurance value specifies each row of the FLASH memory is guaranteed to work for at least this many  
erase/program cycles.  
7. The minimum row endurance value specifies each row of the FLASH memory is guaranteed to work for at least this many  
erase/program cycle.  
8. The FLASH is guaranteed to retain data over the entire operating temperature range for at least the minimum time  
specified.  
Data Sheet  
386  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Electrical Specifications Freescale Semiconductor  
Data Sheet — MC68HC908SR12•MC68HC08SR12  
Section 25. Mechanical Specifications  
25.1 Contents  
25.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .387  
25.3 48-Pin Plastic Low Quad Flat Pack (LQFP) . . . . . . . . . . . . . .388  
25.4 42-Pin Shrink Dual In-Line Package (SDIP). . . . . . . . . . . . . .389  
25.2 Introduction  
This section gives the dimensions for:  
• 48-pin plastic low quad flat pack (case #932-02)  
• 42-pin shrink dual in-line package (case #858-01)  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Mechanical Specifications  
Data Sheet  
387  
Mechanical Specifications  
25.3 48-Pin Plastic Low Quad Flat Pack (LQFP)  
4X  
NOTES:  
0.200 AB T–U  
Z
1. DIMENSIONING AND TOLERANCING PER ASME  
Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DATUM PLANE AB IS LOCATED AT BOTTOM OF  
LEAD AND IS COINCIDENT WITH THE LEAD  
WHERE THE LEAD EXITS THE PLASTIC BODY AT  
THE BOTTOM OF THE PARTING LINE.  
4. DATUMS T, U, AND Z TO BE DETERMINED AT  
DATUM PLANE AB.  
DETAIL Y  
9
A
P
A1  
48  
37  
5. DIMENSIONS S AND V TO BE DETERMINED AT  
SEATING PLANE AC.  
1
36  
6. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
PROTRUSION. ALLOWABLE PROTRUSION IS  
0.250 PER SIDE. DIMENSIONS A AND B DO  
INCLUDE MOLD MISMATCH AND ARE  
DETERMINED AT DATUM PLANE AB.  
7. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. DAMBAR PROTRUSION SHALL  
NOT CAUSE THE D DIMENSION TO EXCEED  
0.350.  
T
U
B
V
AE  
AE  
B1  
V1  
8. MINIMUM SOLDER PLATE THICKNESS SHALL BE  
0.0076.  
12  
25  
9. EXACT SHAPE OF EACH CORNER IS OPTIONAL.  
MILLIMETERS  
13  
24  
DIM  
A
MIN  
MAX  
Z
7.000 BSC  
A1  
B
B1  
C
D
E
3.500 BSC  
7.000 BSC  
3.500 BSC  
S1  
T, U, Z  
1.400  
1.600  
0.270  
1.450  
0.230  
S
0.170  
1.350  
0.170  
DETAIL Y  
4X  
F
G
0.200 AC T–U  
Z
0.500 BSC  
H
J
K
L
M
N
0.050  
0.090  
0.500  
1°  
0.150  
0.200  
0.700  
5°  
0.080 AC  
12° REF  
G
AB  
AC  
0.090  
0.160  
P
0.250 BSC  
R
0.150  
0.250  
S
9.000 BSC  
S1  
V
V1  
W
AA  
4.500 BSC  
9.000 BSC  
4.500 BSC  
0.200 REF  
1.000 REF  
AD  
M°  
BASE METAL  
TOP & BOTTOM  
R
N
J
E
C
H
F
D
M
0.080  
AC T–U Z  
SECTION AE–AE  
W
L°  
K
DETAIL AD  
AA  
Figure 25-1. 48-Pin LQFP (Case #932-02)  
Data Sheet  
388  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Mechanical Specifications Freescale Semiconductor  
Mechanical Specifications  
42-Pin Shrink Dual In-Line Package (SDIP)  
25.4 42-Pin Shrink Dual In-Line Package (SDIP)  
NOTES:  
–A–  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION L TO CENTER OF LEAD WHEN  
FORMED PARALLEL.  
4. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
FLASH. MAXIMUM MOLD FLASH 0.25 (0.010).  
42  
1
22  
21  
–B–  
INCHES  
MILLIMETERS  
DIM  
A
B
C
D
F
MIN  
MAX  
1.465  
0.560  
0.200  
0.022  
0.046  
MIN  
36.45  
13.72  
3.94  
0.36  
0.81  
MAX  
37.21  
14.22  
5.08  
0.56  
1.17  
L
1.435  
0.540  
0.155  
0.014  
0.032  
H
C
K
G
H
J
K
L
0.070 BSC  
0.300 BSC  
1.778 BSC  
7.62 BSC  
0.008  
0.115  
0.015  
0.135  
0.20  
2.92  
0.38  
3.43  
–T–  
SEATING  
PLANE  
0.600 BSC  
15.24 BSC  
N
G
M
N
0°  
0.020  
15°  
0.040  
0 °  
0.51  
15°  
1.02  
M
F
J 42 PL  
D 42 PL  
M
S
0.25 (0.010)  
T B  
M
S
0.25 (0.010)  
T A  
Figure 25-2. 42-Pin SDIP (Case #858-01)  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Mechanical Specifications  
Data Sheet  
389  
 
Mechanical Specifications  
Data Sheet  
390  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Mechanical Specifications Freescale Semiconductor  
Data Sheet — MC68HC908SR12•MC68HC08SR12  
Section 26. Ordering Information  
26.1 Contents  
26.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .391  
26.3 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .391  
26.2 Introduction  
This section contains ordering numbers for the MC68HC908SR12.  
26.3 MC Order Numbers  
Table 26-1. MC Order Numbers  
Operating  
temperature range  
MC order number  
Package  
MC68HC908SR12CB  
MC68HC908SR12MB(2)  
MC68HC908SR12CFA  
–40 °C to +85 °C  
–40 °C to +125 °C  
–40 °C to +85 °C  
42-Pin SDIP(1)  
48-pin LQFP(3)  
MC68HC908SR12MFA(2)  
–40 °C to +125 °C  
Notes:  
1. SDIP = Shrink Dual In-Line Package.  
2. Temperature grade "M" is available for 5V operating voltage only.  
3. LQFP = Low Quad Flat Pack.  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor Ordering Information  
Data Sheet  
391  
Ordering Information  
Data Sheet  
392  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Ordering Information Freescale Semiconductor  
Data Sheet — MC68HC908SR12•MC68HC08SR12  
Appendix A. MC68HC08SR12  
A.1 Contents  
A.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .394  
A.3 MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .394  
A.4 Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .394  
A.5 Mask Option Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .397  
A.6 Reserved Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .397  
A.7 Monitor ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .397  
A.8 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . .397  
A.8.1  
A.8.2  
A.8.3  
5.0V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . .398  
3.0V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . .399  
Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . .401  
A.9 ROM Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .401  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor  
Data Sheet  
393  
MC68HC08SR12  
MC68HC08SR12  
A.2 Introduction  
This section introduces the MC68HC08SR12, the ROM part equivalent  
to the MC68HC908SR12. The entire data book apply to this ROM  
device, with exceptions outlined in this appendix.  
Table A-1. Summary of MC68HC08SR12 and MC68HC908SR12 Differences  
MC68HC08SR12  
12,288 bytes ROM  
MC68HC908SR12  
12,288 bytes FLASH  
38 bytes FLASH  
Memory ($C000–$EFFF)  
User vectors ($FFDA–$FFFF)  
38 bytes ROM  
Mask option register; defined  
by programming FLASH  
location $FF80.  
Mask option register; defined  
by mask; read only.  
$FF80 — MOR  
Oscillator selection  
(Register at $FF80)  
$FF80 — MOR  
FLASH related registers.  
$FE08 — FLCR  
$FF09 — FLBPR  
Not used;  
locations are reserved.  
Registers at $FE08 and $FF09  
Monitor ROM ($FE10–$FF7F)  
Used for testing purposes  
only.  
Used for testing and FLASH  
programming/erasing.  
A.3 MCU Block Diagram  
Figure A-1 shows the block diagram of the MC68HC08SR12.  
A.4 Memory Map  
The MC68HC08SR12 has 12,288 bytes of user ROM from $C000 to  
$EFFF, and 38 bytes of user ROM vectors from $FFDA to $FFFF. On  
the MC68HC908SR12, these memory locations are FLASH memory.  
Figure A-2 shows the memory map of the MC68HC08SR12  
Data Sheet  
394  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
MC68HC08SR12  
Freescale Semiconductor  
INTERNAL BUS  
M68HC08 CPU  
PTA7/T1CH1  
PTA6/T1CH0  
CPU  
REGISTERS  
ARITHMETIC/LOGIC  
UNIT (ALU)  
2-CHANNEL TIMER INTERFACE  
MODULE 1  
PTA5/ATD7 – PTA0/ATD2 ‡  
CONTROL AND STATUS REGISTERS — 96 BYTES  
2-CHANNEL TIMER INTERFACE  
MODULE 2  
USER ROM — 12,288 BYTES  
USER RAM — 512 BYTES  
PTB6/IRQ2  
TIMEBASE  
MODULE  
PTB5/T2CH1  
PTB4/T2CH0  
PTB3//SCL1/RxD †  
PTB2/SDA1/TxD †  
PTB1/SCL0 †  
PTB0/SDA0 †  
MONITOR ROM — 368 BYTES  
SERIAL COMMUNICATIONS  
INTERFACE MODULE  
USER ROM VECTORS — 38 BYTES  
MULTI-MASTER IIC (SMBUS)  
INTERFACE MODULE  
OSCILLATORS AND  
CLOCK GENERATOR MODULE  
PTC7/ATD12 ‡ #  
PTC6/ATD11 ‡ #  
PTC5/ATD10 ‡  
PTC4/ATD9 ‡  
PTC3/ATD8 ‡  
PTC2/PWM2  
INTERNAL OSCILLATOR  
PULSE WIDTH MODULATOR  
MODULE  
RC OSCILLATOR  
OSC1  
X-TAL OSCILLATOR  
OSC2  
8-BIT KEYBOARD  
INTERRUPT MODULE  
PHASE-LOCKED LOOP  
PTC1/PWM1  
CGMXFC  
* RST  
PTC0/PWM0/CD  
SYSTEM INTEGRATION  
MODULE  
COMPUTER OPERATING  
PROPERLY MODULE  
PTD7/KBI7 – PTD0/KBI0 ***  
* IRQ1  
EXTERNAL IRQ  
MODULE  
LOW-VOLTAGE  
INHIBIT MODULE  
** IRQ2  
OPIN1/ATD0  
# OPIN2/ATD1  
VSSAM  
ANALOG  
MODULE  
POWER-ON RESET  
MODULE  
VREFH  
VREFL  
10-BIT ANALOG-TO-DIGITAL  
CONVERTER MODULE  
* Pin contains integrated pullup device.  
** Pin contains configurable pullup device.  
*** Pin contains integrated pullup device for KBI functions.  
† Pin is open-drain when configured as output.  
‡ High current drive pin (for LED).  
VDD  
VSS  
VDDA  
POWER  
# Pin not bonded on 42-pin SDIP.  
VSSA  
Shaded blocks indicate differences to MC68HC908SR12  
Figure A-1. MC68HC08SR12 Block Diagram  
MC68HC08SR12  
$0000  
I/O Registers  
96 Bytes  
$005F  
$0060  
RAM  
512 Bytes  
$025F  
$0260  
Unimplemented  
48,544 Bytes  
$BFFF  
$C000  
$EFFF  
ROM  
12,288 Bytes  
$F000  
$FDFF  
Unimplemented  
3,584 Bytes  
$FE00  
$FE01  
$FE02  
$FE03  
$FE04  
$FE05  
$FE06  
$FE07  
$FE08  
$FE09  
$FE0A  
$FE0B  
$FE0C  
$FE0D  
$FE0E  
$FE0F  
SIM Break Status Register (SBSR)  
SIM Reset Status Register (SRSR)  
Reserved  
SIM Break Flag Control Register (SBFCR)  
Interrupt Status Register 1 (INT1)  
Interrupt Status Register 2 (INT2)  
Interrupt Status Register 3 (INT3)  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Break Address Register High (BRKH)  
Break Address Register Low (BRKL)  
Break Status and Control Register (BRKSCR)  
LVI Status Register (LVISR)  
$FE10  
$FF7F  
Monitor ROM  
368 Bytes  
$FF80  
Mask Option Register  
$FF81  
$FFD9  
Reserved  
89 Bytes  
$FFDA  
$FFFF  
ROM Vectors  
38 Bytes  
Figure A-2. MC68HC08SR12 Memory Map  
Data Sheet  
396  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
MC68HC08SR12 Freescale Semiconductor  
MC68HC08SR12  
A.5 Mask Option Register  
The mask option register (MOR) is used for selecting one of the three  
clock options for the MCU. The MOR at $FF80 is a read-only register on  
the MC68HC08SR12. It is defined by a mask option (hard-wired  
connection) specified at the same time as the ROM code submission.  
On the MC68HC908SR12, the MOR is a byte located in FLASH  
memory, and is written by a FLASH programming routine.  
A.6 Reserved Registers  
The two registers at $FE08 and $FF09 are reserved locations on the  
MC68HC08SR12.  
On the MC68HC908SR12, these two locations are the FLASH control  
register and the FLASH block protect register respectively.  
A.7 Monitor ROM  
The monitor program (monitor ROM, $FE10–$FF7F) on the  
MC68HC08SR12 is for device testing only.  
A.8 Electrical Specifications  
Electrical specifications for the MC68HC908SR12 apply to the  
MC68HC08SR12, except for the parameters indicated below.  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor MC68HC08SR12  
Data Sheet  
397  
MC68HC08SR12  
A.8.1 5.0V DC Electrical Characteristics  
Table A-2. 5V DC Electrical Characteristics  
(1)  
(2)  
Characteristic  
Symbol  
Min  
–0.8  
Typ  
Max  
Unit  
Output high voltage (I = –2.0 mA)  
PTA[0:7], PTB[4:6], PTC[0:7], PTD[0:7]  
LOAD  
V
V
V
OH  
DD  
Output low voltage (I = 1.6mA)  
PTA[0:7], PTB[0:6], PTC[0:7], PTD[0:7]  
LOAD  
V
0.4  
V
OL  
LED sink current (V  
PTA[0:5], PTC[3:7]  
= 4.0V)  
Drain  
I
–15  
mA  
OL  
Input high voltage  
PTA[0:7], PTB[0:6], PTC[0:7], PTD[0:7], RST, IRQ1,  
IRQ2, OSC1.  
V
0.7 × V  
V
V
V
IH  
DD  
DD  
Input low voltage  
PTA[0:7], PTB[0:6], PTC[0:7], PTD[0:7], RST, IRQ1,  
IRQ2, OSC1  
V
V
0.3 × V  
DD  
IL  
SS  
V
supply current  
DD  
(3)  
Run , f  
= 8.0 MHz  
OP  
24  
18  
40  
30  
mA  
mA  
with ADC on  
with ADC off  
(4)  
7.5  
15  
mA  
Wait , f  
= 8.0 MHz  
OP  
(5)  
Stop  
50  
12  
9
150  
40  
30  
10  
180  
50  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
I
25°C (with OSC, TBM, current sense, LVI)  
25°C (with OSC, TBM, current sense)  
25°C (with OSC, TBM)  
DD  
2
25°C  
–40°C to 85°C (with OSC, TBM, current sense, LVI)  
–40°C to 85°C (with OSC, TBM, current sense)  
–40°C to 85°C (with OSC, TBM)  
–40°C to 85°C  
40  
15  
I
Digital I/O ports Hi-Z leakage current  
Input current  
± 10  
± 1  
µA  
µA  
IL  
I
IN  
C
C
IN  
Capacitance  
Ports (as input or output)  
12  
8
OUT  
pF  
(6)  
V
R
0
100  
8
mV  
V/ms  
V
POR re-arm voltage  
POR  
POR  
(7)  
0.035  
POR rise-time ramp rate  
V
1.4 × V  
Monitor mode entry voltage  
TST  
DD  
Data Sheet  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
MC68HC08SR12 Freescale Semiconductor  
398  
MC68HC08SR12  
Table A-2. 5V DC Electrical Characteristics  
(1)  
(2)  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
(8)  
Pullup resistors  
R
R
24  
24  
35  
35  
42  
42  
kΩ  
kΩ  
PU1  
PTD[0:7] configured as KBI[0:7]  
RST, IRQ1, IRQ2  
PU2  
V
Low-voltage inhibit, trip falling voltage  
Low-voltage inhibit, trip rising voltage  
3.80  
3.95  
4.15  
4.30  
4.45  
4.60  
V
V
LVII5  
V
LVII5  
Schmitt trigger input low level trip voltage  
RST, IRQ1, IRQ2, KBI[0:7]  
V
1.21  
1.65  
V
V
SCMTL  
Schmitt trigger input high level trip voltage  
RST, IRQ1, IRQ2, KBI[0:7]  
V
SCMTH  
Notes:  
1. VDD = 4.5 to 5.5 Vdc, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted.  
2. Typical values reflect average measurements at midpoint of voltage range, 25 °C only.  
3. Run (operating) IDD measured using external square wave clock source. All inputs 0.2 V from rail. No dc loads. Less than  
100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects run IDD  
.
Measured with all modules enabled.  
4. Wait IDD measured using external square wave clock source. All inputs 0.2 V from rail. No dc loads. Less than 100 pF on  
all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects wait IDD  
5. STOP IDD measured with OSC1 grounded, no port pins sourcing current.  
6. Maximum is highest voltage that POR is guaranteed.  
.
7. If minimum VDD is not reached before the internal POR reset is released, RST must be driven low externally until minimum  
VDD is reached.  
8. RPU1 and RPU2 are measured at VDD = 5.0V  
A.8.2 3.0V DC Electrical Characteristics  
Table A-3. 3V DC Electrical Characteristics  
(1)  
(2)  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Output high voltage (I = –1.0mA)  
PTA[0:7], PTB[4:6], PTC[0:7], PTD[0:7]  
LOAD  
V
V
–0.4  
–5  
V
OH  
DD  
Output low voltage (I = 0.8mA)  
LOAD  
V
0.4  
V
OL  
PTA[0:7], PTB[0:6], PTC[0:7], PTD[0:7]  
LED sink current (V  
PTA[0:5], PTC[3:7]  
= 2.0V)  
Drain  
V
mA  
OL  
Input high voltage  
PTA[0:7], PTB[0:6], PTC[0:7], PTD[0:7], RST, IRQ1,  
IRQ2, OSC1  
V
0.7 × V  
V
V
V
IH  
DD  
DD  
Input low voltage  
PTA[0:7], PTB[0:6], PTC[0:7], PTD[0:7], RST, IRQ1,  
IRQ2, OSC1  
V
V
0.3 × V  
DD  
IL  
SS  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Data Sheet  
399  
Freescale Semiconductor  
MC68HC08SR12  
MC68HC08SR12  
Table A-3. 3V DC Electrical Characteristics  
(1)  
(2)  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
V
supply current  
DD  
(3)  
Run , f  
= 4.0 MHz  
OP  
with ADC on  
with ADC off  
(4)  
7
5
16  
12  
mA  
mA  
Wait , f = 4.0 MHz  
2.5  
6
mA  
OP  
(5)  
I
Stop  
DD  
25°C (with OSC, TBM, LVI)  
25°C (with OSC, TBM)  
25°C  
–40°C to 85°C (with OSC, TBM, LVI)  
–40°C to 85°C (with OSC, TBM)  
–40°C to 85°C  
27  
5
1.5  
80  
12  
5
100  
15  
5
µA  
µA  
µA  
µA  
µA  
µA  
I
Digital I/O ports Hi-Z leakage current  
Input current  
± 10  
± 1  
µA  
µA  
IL  
I
IN  
C
C
IN  
Capacitance  
Ports (as input or output)  
12  
8
OUT  
pF  
(6)  
V
R
0
100  
mV  
V/ms  
V
POR re-arm voltage  
POR  
POR  
(7)  
0.035  
1.4 × V  
POR rise-time ramp rate  
V
2.0 × V  
DD  
Monitor mode entry voltage  
HI  
DD  
(8)  
Pullup resistors  
R
R
24  
24  
35  
35  
42  
42  
kΩ  
kΩ  
PU1  
PU2  
PTD[0:7] configured as KBI[0:7]  
RST, IRQ1, IRQ2  
Low-voltage inhibit, trip voltage  
(No hysteresis implemented for 3V LVI)  
V
2.32  
2.49  
0.8  
2.68  
V
V
V
LVI3  
Schmitt trigger input low level trip voltage  
RST, IRQ1, IRQ2, KBI[0:7]  
V
V
SCMTL  
Schmitt trigger input high level trip voltage  
RST, IRQ1, IRQ2, KBI[0:7]  
1.2  
SCMTH  
Notes:  
1. VDD = 2.7 to 3.3 Vdc, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted.  
2. Typical values reflect average measurements at midpoint of voltage range, 25 °C only.  
3. Run (operating) IDD measured using external square wave clock source. All inputs 0.2 V from rail. No dc loads. Less than  
100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects run IDD  
.
Measured with all modules enabled.  
4. Wait IDD measured using external square wave clock source. All inputs 0.2 V from rail. No dc loads. Less than 100 pF on  
all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects wait IDD  
5. STOP IDD measured with OSC1 grounded, no port pins sourcing current.  
6. Maximum is highest voltage that POR is guaranteed.  
.
7. If minimum VDD is not reached before the internal POR reset is released, RST must be driven low externally until minimum  
VDD is reached.  
8. RPU1 and RPU2 are measured at VDD = 5.0V.  
Data Sheet  
400  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor  
MC68HC08SR12  
MC68HC08SR12  
A.8.3 Memory Characteristics  
Characteristic  
RAM data retention voltage  
Notes:  
Symbol  
Min  
Max  
Unit  
V
1.3  
V
RDR  
Since MC68HC08SR12 is a ROM device, FLASH memory electrical characteristics do not apply.  
A.9 ROM Order Numbers  
These part numbers are generic numbers only. To place an order, ROM  
code must be submitted to the ROM Processing Center (RPC).  
Table A-4. MC68HC08SR12 Order Numbers  
Operating  
temperature range  
MC order number  
Package  
MC68HC08SR12CB  
MC68HC08SR12CFA  
Notes:  
42-Pin SDIP(1)  
48-pin LQFP(2)  
–40 to +85 °C  
–40 to +85 °C  
1. SDIP = Shrink Dual In-Line Package.  
2. LQFP = Low Quad Flat Pack.  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor MC68HC08SR12  
Data Sheet  
401  
MC68HC08SR12  
Data Sheet  
402  
MC68HC908SR12•MC68HC08SR12 — Rev. 5.0  
Freescale Semiconductor  
MC68HC08SR12  
How to Reach Us:  
USA/Europe/Locations Not Listed:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
1-800-521-6274 or 480-768-2130  
Japan:  
Freescale Semiconductor Japan Ltd.  
Technical Information Center  
3-20-1, Minami-Azabu, Minato-ku  
Tokyo 106-8573, Japan  
81-3-3440-3569  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
2 Dai King Street  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
852-26668334  
Home Page:  
www.freescale.com  
RoHS-compliant and/or Pb- free versions of Freescale products have the functionality  
and electrical characteristics of their non-RoHS-compliant and/or non-Pb- free  
counterparts. For further information, see http://www.freescale.com or contact your  
Freescale sales representative.  
For information on Freescale.s Environmental Products program, go to  
http://www.freescale.com/epp.  
Information in this document is provided solely to enable system and software implementers to use Freescale  
Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any  
integrated circuits or integrated circuits based on the information in this document.  
Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale  
Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular  
purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or  
circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages.  
“Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must  
be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any  
license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or  
authorized for use as components in systems intended for surgical implant into the body, or other applications intended to  
support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create  
a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for  
any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers,  
employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and  
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the  
design or manufacture of the part.  
Learn More: For more information about Freescale products, please visit www.freescale.com  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names  
are the property of their respective owners.  
© Freescale Semiconductor, Inc. 2004  
MC68HC908SR12  
Rev. 5  
07/2004  

相关型号:

MC68HC908SR12CFA

M68HC08 Microcontrollers
FREESCALE

MC68HC908SR12CFA

Microcontrollers
MOTOROLA

MC68HC908SR12MB

M68HC08 Microcontrollers
FREESCALE

MC68HC908SR12MB

Microcontrollers
MOTOROLA

MC68HC908SR12MFA

M68HC08 Microcontrollers
FREESCALE

MC68HC908SR12MFA

Microcontrollers
MOTOROLA

MC68HC908SR12MFA

8-BIT, FLASH, 8MHz, MICROCONTROLLER, PQFP48, PLASTIC, LQFP-48
NXP

MC68HC908TV24CFB

M68HC08 Microcontrollers
FREESCALE

MC68HC912B32

16-Bit Microcontroller
MOTOROLA

MC68HC912B32CFU

16-BIT, FLASH, 8MHz, MICROCONTROLLER, PQFP80, QFP-80
MOTOROLA

MC68HC912B32CFU

Microcontroller, 16-Bit, FLASH, CPU12 CPU, 8MHz, HCMOS, PQFP80, QFP-80
NXP

MC68HC912B32CFU8

16-Bit Microcontroller
MOTOROLA