MC908QB8CPE [NXP]

8-BIT, FLASH, 8MHz, MICROCONTROLLER, PDIP16, LEAD FREE, PLASTIC, DIP-16;
MC908QB8CPE
型号: MC908QB8CPE
厂家: NXP    NXP
描述:

8-BIT, FLASH, 8MHz, MICROCONTROLLER, PDIP16, LEAD FREE, PLASTIC, DIP-16

时钟 微控制器 光电二极管 外围集成电路
文件: 总232页 (文件大小:1282K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Addendum to MC68HC908QB8, rev. 3  
This addendum introduces a change to this data sheet.  
Chapter 17 Development Support, Section 17.3.2 Security  
A security feature discourages unauthorized reading of FLASH locations while in monitor mode. The host  
can bypass the security feature at monitor mode entry by sending eight security bytes that match the  
bytes at locations $FFF6–$FFFD. Locations $FFF6–$FFFD contain user-defined data.  
NOTE  
Do not leave locations $FFF6–$FFFD blank. For security reasons, program  
locations $FFF6–$FFFD even if they are not used for vectors.  
Changes to:  
Chapter 17 Development Support, Section 17.3.2 Security  
A security feature discourages unauthorized reading of FLASH locations while in monitor mode. The host  
can bypass the security feature at monitor mode entry by sending eight security bytes that match the  
bytes at locations $FFF6–$FFFD. Locations $FFF6–$FFFD contain user-defined data.  
NOTE  
Do not leave locations $FFF6–$FFFD blank. For security reasons, program  
locations $FFF6–$FFFD even if they are not used for vectors. An improved  
security function denies monitor mode entry if five or more of the eight  
security bytes are $00 (zero bytes).  
MC68HC908QB8 Data Sheet, Addendum 5/2012  
Freescale Semiconductor  
1
This page intentionally blank.  
MC68HC908QB8 Data Sheet, Addendum 5/2012  
2
Freescale Semiconductor  
MC68HC908QB8  
MC68HC908QB4  
MC68HC908QY8  
Data Sheet  
M68HC08  
Microcontrollers  
MC68HC908QB8  
Rev. 3  
04/2010  
freescale.com  
MC68HC908QB8  
MC68HC908QB4  
MC68HC908QY8  
Data Sheet  
To provide the most up-to-date information, the revision of our documents on the World Wide Web will be  
the most current. Your printed copy may be an earlier revision. To verify you have the latest information  
available, refer to:  
http://freescale.com/  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
This product incorporates SuperFlash® technology licensed from SST.  
© Freescale Semiconductor, Inc., 2005–2010. All rights reserved.  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
3
Revision History  
The following revision history table summarizes changes contained in this document. For your  
convenience, the page number designators have been linked to the appropriate location.  
Revision History  
Revision  
Level  
Page  
Number(s)  
Date  
Description  
September,  
2005  
1
Initial full release  
N/A  
37  
Chapter 3 Analog-to-Digital Converter (ADC10) Module — Renamed ADCSC  
register to ADSCR to be consistent with development tools.  
Figure 4-1. Auto Wakeup Interrupt Request Generation Logic — Changed  
BUSCLK4 to BUSCLK2 and removed reference to CGMXCLK  
51  
4.3 Functional Description — Reworked for clarity  
52  
55  
4.6.4 Configuration Register 2 — Changed BUSCLK4 to BUSCLK2  
4.6.5 Configuration Register 1 — Changed BUSCLK4 to BUSCLK2, added  
bit description for SSREC, and removed SSREC from the note  
56  
57  
April,  
2007  
2
Chapter 5 Configuration Register (CONFIG) — Changed CGMXCLK to  
BUSCLKX4  
Chapter 13 Enhanced Serial Communications Interface (ESCI) Module —  
Changed SCIBDSRC to ESCIBDSRC, CGMXCLK to BUSCLKX4, and  
BUS_CLK to BUS CLOCK  
109  
Table 13-5. ESCI LIN Control Bits — Corrected Functionality column  
130  
136  
13.9.3 Bit Time Measurement — Corrected first sentence of listing number 1  
Figure 17-18. Monitor Mode Entry Timing — Changed CGMXCLK to  
BUSCLKX4  
206  
April,  
2010  
29, 36, 96,  
101  
3
Clarify internal oscillator trim register information.  
MC68HC908QB8 Data Sheet, Rev. 3  
4
Freescale Semiconductor  
List of Chapters  
Chapter 1  
General Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
Chapter 2  
Chapter 3  
Chapter 4  
Chapter 5  
Chapter 6  
Chapter 7  
Chapter 8  
Chapter 9  
Chapter 10  
Chapter 11  
Chapter 12  
Chapter 13  
Chapter 14  
Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
Analog-to-Digital Converter (ADC10) Module. . . . . . . . . . . . . . . . . . . . . . . . .37  
Auto Wakeup Module (AWU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51  
Configuration Register (CONFIG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
Computer Operating Properly (COP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
Central Processor Unit (CPU). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
External Interrupt (IRQ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77  
Keyboard Interrupt Module (KBI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83  
Low-Voltage Inhibit (LVI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89  
Oscillator Module (OSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93  
Input/Output Ports (PORTS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103  
Enhanced Serial Communications Interface (ESCI) Module . . . . . . . . . . . .109  
System Integration Module (SIM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
5
List of Chapters  
Chapter 15  
Serial Peripheral Interface (SPI) Module . . . . . . . . . . . . . . . . . . . . . . . . . . . .155  
Timer Interface Module (TIM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175  
Development Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191  
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .207  
Ordering Information and Mechanical Specifications . . . . . . . . . . . . . . . . .227  
Chapter 16  
Chapter 17  
Chapter 18  
Chapter 19  
MC68HC908QB8 Data Sheet, Rev. 3  
6
Freescale Semiconductor  
Table of Contents  
Chapter 1  
General Description  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Pin Function Priority. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Chapter 2  
Memory  
2.1  
2.2  
2.3  
2.4  
2.5  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Unimplemented Memory Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Reserved Memory Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Direct Page Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Random-Access Memory (RAM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
2.6  
FLASH Memory (FLASH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
FLASH Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
FLASH Page Erase Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
FLASH Mass Erase Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
FLASH Program Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
FLASH Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
FLASH Block Protect Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
2.6.1  
2.6.2  
2.6.3  
2.6.4  
2.6.5  
2.6.6  
Chapter 3  
Analog-to-Digital Converter (ADC10) Module  
3.1  
3.2  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
3.3  
3.3.1  
3.3.2  
3.3.3  
3.3.3.1  
3.3.3.2  
3.3.3.3  
3.3.3.4  
3.3.4  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Clock Select and Divide Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Input Select and Pin Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Conversion Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Initiating Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Completing Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Aborting Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Total Conversion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Sources of Error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Sampling Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
3.3.4.1  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
7
Table of Contents  
3.3.4.2  
3.3.4.3  
3.3.4.4  
3.3.4.5  
3.3.4.6  
Pin Leakage Error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Noise-Induced Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Code Width and Quantization Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Linearity Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Code Jitter, Non-Monotonicity and Missing Codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
3.4  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
3.5  
3.5.1  
3.5.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
3.6  
ADC10 During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
3.7  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
ADC10 Analog Power Pin (VDDA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
ADC10 Analog Ground Pin (VSSA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
ADC10 Voltage Reference High Pin (VREFH). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
ADC10 Voltage Reference Low Pin (VREFL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
ADC10 Channel Pins (ADn). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
3.7.1  
3.7.2  
3.7.3  
3.7.4  
3.7.5  
3.8  
Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
ADC10 Status and Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
ADC10 Result High Register (ADRH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
ADC10 Result Low Register (ADRL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
ADC10 Clock Register (ADCLK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
3.8.1  
3.8.2  
3.8.3  
3.8.4  
Chapter 4  
Auto Wakeup Module (AWU)  
4.1  
4.2  
4.3  
4.4  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
4.5  
4.5.1  
4.5.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
4.6  
Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Port A I/O Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Keyboard Status and Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Keyboard Interrupt Enable Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Configuration Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Configuration Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
4.6.1  
4.6.2  
4.6.3  
4.6.4  
4.6.5  
Chapter 5  
Configuration Register (CONFIG)  
5.1  
5.2  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Chapter 6  
Computer Operating Properly (COP)  
MC68HC908QB8 Data Sheet, Rev. 3  
8
Freescale Semiconductor  
6.1  
6.2  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
6.3  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
BUSCLKX4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
STOP Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
COPCTL Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Power-On Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Internal Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
COPD (COP Disable). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
COPRS (COP Rate Select) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
6.3.1  
6.3.2  
6.3.3  
6.3.4  
6.3.5  
6.3.6  
6.3.7  
6.4  
6.5  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Monitor Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
6.6  
6.6.1  
6.6.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
6.7  
6.8  
COP Module During Break Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Chapter 7  
Central Processor Unit (CPU)  
7.1  
7.2  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
7.3  
CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Condition Code Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
7.3.1  
7.3.2  
7.3.3  
7.3.4  
7.3.5  
7.4  
Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
7.5  
7.5.1  
7.5.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
7.6  
7.7  
7.8  
CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Chapter 8  
External Interrupt (IRQ)  
8.1  
8.2  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
8.3  
8.3.1  
8.3.2  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
MODE = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
MODE = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
8.4  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
9
Table of Contents  
8.5  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
8.5.1  
8.5.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
8.6  
IRQ Module During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
8.7  
8.7.1  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
IRQ Input Pins (IRQ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
8.8  
Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Chapter 9  
Keyboard Interrupt Module (KBI)  
9.1  
9.2  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
9.3  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Keyboard Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
MODEK = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
MODEK = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Keyboard Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
9.3.1  
9.3.1.1  
9.3.1.2  
9.3.2  
9.4  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
9.5  
9.5.1  
9.5.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
9.6  
KBI During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
9.7  
9.7.1  
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
KBI Input Pins (KBIx:KBI0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
9.8  
Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Keyboard Status and Control Register (KBSCR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Keyboard Interrupt Enable Register (KBIER). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Keyboard Interrupt Polarity Register (KBIPR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
9.8.1  
9.8.2  
9.8.3  
Chapter 10  
Low-Voltage Inhibit (LVI)  
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
10.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
10.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
10.3.1  
10.3.2  
10.3.3  
10.3.4  
Polled LVI Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Forced Reset Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
LVI Hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
LVI Trip Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
10.4 LVI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
10.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
10.5.1  
10.5.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
10.6 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
MC68HC908QB8 Data Sheet, Rev. 3  
10  
Freescale Semiconductor  
Chapter 11  
Oscillator Module (OSC)  
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
11.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
11.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
11.3.1  
Internal Signal Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Oscillator Enable Signal (SIMOSCEN). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
XTAL Oscillator Clock (XTALCLK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
RC Oscillator Clock (RCCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Internal Oscillator Clock (INTCLK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Bus Clock Times 4 (BUSCLKX4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Bus Clock Times 2 (BUSCLKX2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Internal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Internal Oscillator Trimming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Internal to External Clock Switching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
External to Internal Clock Switching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
External Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
XTAL Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
RC Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
11.3.1.1  
11.3.1.2  
11.3.1.3  
11.3.1.4  
11.3.1.5  
11.3.1.6  
11.3.2  
11.3.2.1  
11.3.2.2  
11.3.2.3  
11.3.3  
11.3.4  
11.3.5  
11.4 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
11.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
11.5.1  
11.5.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
11.6 OSC During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
11.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
11.7.1  
11.7.2  
Oscillator Input Pin (OSC1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Oscillator Output Pin (OSC2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
11.8 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
11.8.1  
11.8.2  
Oscillator Status and Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Oscillator Trim Register (OSCTRIM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Chapter 12  
Input/Output Ports (PORTS)  
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
12.2 Port A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
12.2.1  
12.2.2  
12.2.3  
12.2.4  
Port A Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
Data Direction Register A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
Port A Input Pullup Enable Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Port A Summary Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
12.3 Port B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
12.3.1  
12.3.2  
12.3.3  
12.3.4  
Port B Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Data Direction Register B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Port B Input Pullup Enable Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
Port B Summary Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
Chapter 13  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
11  
Table of Contents  
Enhanced Serial Communications Interface (ESCI) Module  
13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
13.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
13.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
13.3.1  
13.3.2  
Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Transmitter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Character Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Break Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
Idle Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Inversion of Transmitted Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Receiver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Character Reception. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Data Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
Framing Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
Baud Rate Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
Receiver Wakeup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
13.3.2.1  
13.3.2.2  
13.3.2.3  
13.3.2.4  
13.3.2.5  
13.3.3  
13.3.3.1  
13.3.3.2  
13.3.3.3  
13.3.3.4  
13.3.3.5  
13.3.3.6  
13.4 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
13.4.1  
13.4.2  
13.4.3  
Transmitter Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
Receiver Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
Error Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
13.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
13.5.1  
13.5.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
13.6 ESCI During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
13.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
13.7.1  
13.7.2  
ESCI Transmit Data (TxD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
ESCI Receive Data (RxD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
13.8 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
13.8.1  
13.8.2  
13.8.3  
13.8.4  
13.8.5  
13.8.6  
13.8.7  
13.8.8  
ESCI Control Register 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
ESCI Control Register 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
ESCI Control Register 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
ESCI Status Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
ESCI Status Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
ESCI Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
ESCI Baud Rate Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  
ESCI Prescaler Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
13.9 ESCI Arbiter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
13.9.1  
13.9.2  
13.9.3  
13.9.4  
ESCI Arbiter Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  
ESCI Arbiter Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
Bit Time Measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
Arbitration Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
Chapter 14  
System Integration Module (SIM)  
MC68HC908QB8 Data Sheet, Rev. 3  
12  
Freescale Semiconductor  
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
14.2 RST and IRQ Pins Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
14.3 SIM Bus Clock Control and Generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
14.3.1  
14.3.2  
14.3.3  
Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
Clock Start-Up from POR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
Clocks in Stop Mode and Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
14.4 Reset and System Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
14.4.1  
14.4.2  
External Pin Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141  
Active Resets from Internal Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142  
Power-On Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
Computer Operating Properly (COP) Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
Low-Voltage Inhibit (LVI) Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
14.4.2.1  
14.4.2.2  
14.4.2.3  
14.4.2.4  
14.4.2.5  
14.5 SIM Counter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
14.5.1  
14.5.2  
14.5.3  
SIM Counter During Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
SIM Counter During Stop Mode Recovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
SIM Counter and Reset States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
14.6 Exception Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
14.6.1  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145  
SWI Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
Interrupt Status Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
Interrupt Status Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149  
Interrupt Status Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149  
Interrupt Status Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
Status Flag Protection in Break Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
14.6.1.1  
14.6.1.2  
14.6.2  
14.6.2.1  
14.6.2.2  
14.6.2.3  
14.6.3  
14.6.4  
14.6.5  
14.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
14.7.1  
14.7.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
14.8 SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
14.8.1  
14.8.2  
SIM Reset Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
Break Flag Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153  
Chapter 15  
Serial Peripheral Interface (SPI) Module  
15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
15.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  
15.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157  
15.3.1  
15.3.2  
15.3.3  
15.3.3.1  
15.3.3.2  
Master Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
Slave Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
Transmission Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
Clock Phase and Polarity Controls. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
Transmission Format When CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
13  
Table of Contents  
15.3.3.3  
15.3.3.4  
15.3.4  
15.3.5  
15.3.6  
Transmission Format When CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160  
Transmission Initiation Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
Queuing Transmission Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
Resetting the SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
Error Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
Overflow Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
Mode Fault Error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166  
15.3.6.1  
15.3.6.2  
15.4 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167  
15.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168  
15.5.1  
15.5.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168  
15.6 SPI During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168  
15.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
15.7.1  
15.7.2  
15.7.3  
15.7.4  
MISO (Master In/Slave Out). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
MOSI (Master Out/Slave In). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
SPSCK (Serial Clock) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
SS (Slave Select). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  
15.8 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170  
15.8.1  
15.8.2  
15.8.3  
SPI Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
SPI Status and Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172  
SPI Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174  
Chapter 16  
Timer Interface Module (TIM)  
16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
16.2 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
16.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
16.3.1  
16.3.2  
16.3.3  
16.3.3.1  
16.3.3.2  
16.3.4  
16.3.4.1  
16.3.4.2  
16.3.4.3  
TIM Counter Prescaler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176  
Output Compare. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177  
Unbuffered Output Compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179  
Unbuffered PWM Signal Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179  
Buffered PWM Signal Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180  
PWM Initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181  
16.4 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182  
16.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182  
16.5.1  
16.5.2  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182  
16.6 TIM During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182  
16.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183  
16.7.1  
16.7.2  
TIM Channel I/O Pins (TCH3:TCH0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183  
TIM Clock Pin (TCLK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183  
16.8 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183  
16.8.1  
TIM Status and Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183  
MC68HC908QB8 Data Sheet, Rev. 3  
14  
Freescale Semiconductor  
16.8.2  
16.8.3  
16.8.4  
16.8.5  
TIM Counter Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185  
TIM Counter Modulo Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185  
TIM Channel Status and Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186  
TIM Channel Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188  
Chapter 17  
Development Support  
17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191  
17.2 Break Module (BRK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191  
17.2.1  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191  
Flag Protection During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193  
TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193  
COP During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193  
Break Module Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194  
Break Status and Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194  
Break Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194  
Break Auxiliary Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195  
Break Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195  
Break Flag Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196  
17.2.1.1  
17.2.1.2  
17.2.1.3  
17.2.2  
17.2.2.1  
17.2.2.2  
17.2.2.3  
17.2.2.4  
17.2.2.5  
17.2.3  
17.3 Monitor Module (MON) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196  
17.3.1  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196  
Normal Monitor Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200  
Forced Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201  
Monitor Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201  
Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202  
Break Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202  
Baud Rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202  
Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202  
Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206  
17.3.1.1  
17.3.1.2  
17.3.1.3  
17.3.1.4  
17.3.1.5  
17.3.1.6  
17.3.1.7  
17.3.2  
Chapter 18  
Electrical Specifications  
18.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207  
18.2 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207  
18.3 Functional Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208  
18.4 Thermal Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208  
18.5 5-V DC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209  
18.6 Typical 5-V Output Drive Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210  
18.7 5-V Control Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211  
18.8 3-V DC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212  
18.9 Typical 3-V Output Drive Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213  
18.10 3-V Control Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214  
18.11 Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215  
18.12 Supply Current Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
15  
Table of Contents  
18.13 ADC10 Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219  
18.14 5.0-Volt SPI Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221  
18.15 3.0-Volt SPI Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222  
18.16 Timer Interface Module Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225  
18.17 Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226  
Chapter 19  
Ordering Information and Mechanical Specifications  
19.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227  
19.2 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227  
19.3 Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227  
MC68HC908QB8 Data Sheet, Rev. 3  
16  
Freescale Semiconductor  
Chapter 1  
General Description  
1.1 Introduction  
The MC68HC908QB8 is a member of the low-cost, high-performance M68HC08 Family of 8-bit  
microcontroller units (MCUs). All MCUs in the family use the enhanced M68HC08 central processor unit  
(CPU08) and are available with a variety of modules, memory sizes and types, and package types.  
0.4  
Table 1-1. Summary of Device Variations  
FLASH/RAM  
Memory Size  
16-Bit Timer  
Channels  
Pin  
Count  
Device  
ADC  
ESCI  
SPI  
MC68HC908QB8  
MC68HC908QB4  
MC68HC908QY8  
8K/256 bytes  
4K/128 bytes  
8K/256 bytes  
10 channel, 10 bit  
10 channel, 10 bit  
4 channel, 10 bit  
4
4
2
Yes  
Yes  
No  
Yes  
Yes  
No  
16 pins  
16 pins  
16 pins  
1.2 Features  
Features include:  
High-performance M68HC08 CPU core  
Fully upward-compatible object code with M68HC05 Family  
5-V and 3-V operating voltages (VDD  
8-MHz internal bus operation at 5 V, 4-MHz at 3 V  
Trimmable internal oscillator  
)
Software selectable 1 MHz, 2 MHz, or 3.2 MHz internal bus operation  
8-bit trim capability  
25% untrimmed  
Trimmable to approximately 0.4%(1)  
Software selectable crystal oscillator range, 32–100 kHz, 1–8 MHz, and 8–32 MHz  
Software configurable input clock from either internal or external source  
Auto wakeup from STOP capability using dedicated internal 32-kHz RC or bus clock source  
On-chip in-application programmable FLASH memory  
Internal program/erase voltage generation  
Monitor ROM containing user callable program/erase routines  
FLASH security(2)  
1. See 18.11 Oscillator Characteristics for internal oscillator specifications  
2. No security feature is absolutely secure. However, Freescale’s strategy is to make reading or copying the FLASH difficult for  
unauthorized users.  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
17  
General Description  
On-chip random-access memory (RAM)  
Enhanced serial communications interface (ESCI) module  
Serial peripheral interface (SPI) module  
4-channel, 16-bit timer interface (TIM) module  
10-channel, 10-bit analog-to-digital converter (ADC) with internal bandgap reference channel  
(ADC10)  
Up to 13 bidirectional input/output (I/O) lines and one input only:  
Six shared with KBI  
Ten shared with ADC  
Four shared with TIM  
Two shared with ESCI  
Four shared with SPI  
One input only shared with IRQ  
High current sink/source capability on all port pins  
Selectable pullups on all ports, selectable on an individual bit basis  
Three-state ability on all port pins  
6-bit keyboard interrupt with wakeup feature (KBI)  
Programmable for rising/falling or high/low level detect  
Low-voltage inhibit (LVI) module features:  
Software selectable trip point  
System protection features:  
Computer operating properly (COP) watchdog  
Low-voltage detection with reset  
Illegal opcode detection with reset  
Illegal address detection with reset  
External asynchronous interrupt pin with internal pullup (IRQ) shared with general-purpose input  
pin  
Master asynchronous reset pin with internal pullup (RST) shared with general-purpose input/output  
(I/O) pin  
Memory mapped I/O registers  
Power saving stop and wait modes  
MC68HC908QB8, MC68HC908QB4 and MC68HC908QY8 are available in these packages:  
16-pin plastic dual in-line package (PDIP)  
16-pin small outline integrated circuit (SOIC) package  
16-pin thin shrink small outline packages (TSSOP)  
Features of the CPU08 include the following:  
Enhanced HC05 programming model  
Extensive loop control functions  
16 addressing modes (eight more than the HC05)  
16-bit index register and stack pointer  
Memory-to-memory data transfers  
Fast 8 × 8 multiply instruction  
Fast 16/8 divide instruction  
Binary-coded decimal (BCD) instructions  
Optimization for controller applications  
Efficient C language support  
MC68HC908QB8 Data Sheet, Rev. 3  
18  
Freescale Semiconductor  
MCU Block Diagram  
1.3 MCU Block Diagram  
Figure 1-1 shows the structure of the MC68HC908QB8.  
PTA0/TCH0/AD0/KBI0  
PTA1/TCH1/AD1/KBI1  
PTA2/IRQ/KBI2/TCLK  
PTA3/RST/KBI3  
CLOCK  
GENERATOR  
KEYBOARD INTERRUPT  
MODULE  
PTA4/OSC2/AD2/KBI4  
PTA5/OSC1/AD3/KBI5  
M68HC08 CPU  
SINGLE INTERRUPT  
MODULE  
PTB0/SPSCK/AD4  
PTB1/MOSI/AD5  
PTB2/MISO/AD6  
PTB3/SS/AD7  
PTB4/RxD/AD8  
PTB5/TxD/AD9  
PTB6/TCH2  
AUTO WAKEUP  
MODULE  
LOW-VOLTAGE  
INHIBIT  
PTB7/TCH3  
4-CHANNEL 16-BIT  
TIMER MODULE  
COP  
MODULE  
MC68HC908QB8  
MC68HC908QB8  
8192 BYTES  
256 BYTES  
10-CHANNEL  
10-BIT ADC  
USER RAM  
USER FLASH  
ENHANCED SERIAL  
COMMUNICATIONS  
INTERFACE MODULE  
VDD  
VSS  
POWER SUPPLY  
SERIAL PERIPHERAL  
INTERFACE  
DEVELOPMENT SUPPORT  
MONITOR ROM  
BREAK MODULE  
RST, IRQ: Pins have internal pull up device  
All port pins have programmable pull up device  
PTA[0:5]: Higher current sink and source capability  
Figure 1-1. Block Diagram  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
19  
 
General Description  
1.4 Pin Assignments  
The MC68HC908QB8, MC68HC908QB4, and MC68HC908QY8 are available in 16-pin packages.  
Figure 1-2 shows the pin assignment for these packages.  
VDD  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
VSS  
PTB7  
PTB6  
PTB0  
PTB1  
PTA5/OSC1/AD3/KBI5  
PTA4/OSC2/AD2/KBI4  
PTA0/TCH0/AD0/KBI0  
PTA1/TCH1/AD1/KBI1  
PTA0/TCH0/AD0/KBI0  
PTA1/TCH1/AD1/KBI1  
PTB2  
PTB3  
PTA2/IRQ/KBI2/TCLK  
PTA3/RST/KBI3  
PTB4  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
PTB1  
PTB0  
VSS  
VDD  
PTB7  
PTB6  
PTB5  
PTB4  
PTB2  
PTB3  
PTB5  
PTA2/IRQ/KBI2/TCLK  
PTA3/RST/KBI3  
PTA4/OSC2/AD2/KBI4  
PTA5/OSC1/AD3/KBI5  
16-PIN ASSIGNMENT  
16-PIN ASSIGNMENT  
MC68HC908QY8 PDIP/SOIC  
MC68HC908QY8 TSSOP  
VDD  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
VSS  
PTB7/TCH3  
PTB6/TCH2  
PTB0/SCK/AD4  
PTB1/MOSI/AD5  
PTA0/TCH0/AD0/KBI0  
PTA1/TCH1/AD1/KBI1  
PTA5/OSC1/AD3/KBI5  
PTA4/OSC2/AD2/KBI4  
PTA0/TCH0/AD0/KBI0  
PTB1/MOSI/AD5  
PTB0/SCK/AD4  
VSS  
PTA1/TCH1/AD1/KBI1  
PTB2/MISO/AD6  
PTB3/SS/AD7  
PTA2/IRQ/KBI2/TCLK  
PTA3/RST/KBI3  
PTB4//Rx/AD8  
PTB5/Tx/AD9  
PTA4/OSC2/AD2/KBI4  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
PTB5/Tx/AD9  
PTB4/Rx/AD8  
PTB2/MISO/AD6  
PTB3/SS/AD7  
VDD  
PTB7/TCH3  
PTB6/TCH2  
PTA2/IRQ/KBI2/TCLK  
PTA3/RST/KBI3  
PTA5/OSC1/AD3/KBI5  
16-PIN ASSIGNMENT  
MC68HC908QB8/MC68HC908QB4 PDIP/SOIC  
16-PIN ASSIGNMENT  
MC68HC908QB8/MC68HC908QB4 TSSOP  
Figure 1-2. MCU Pin Assignments  
1.5 Pin Functions  
Table 1-2 provides a description of the pin functions.  
MC68HC908QB8 Data Sheet, Rev. 3  
20  
Freescale Semiconductor  
 
Pin Functions  
Table 1-2. Pin Functions  
Pin  
Name  
Description  
Input/Output  
VDD  
VSS  
Power supply  
Power  
Power supply ground  
Power  
Input/Output  
Input/Output  
Input  
PTA0 — General purpose I/O port  
TCH0 — Timer Channel 0 I/O  
PTA0  
PTA1  
AD0 — A/D channel 0 input  
KBI0 — Keyboard interrupt input 0  
PTA1 — General purpose I/O port  
Input  
Input/Output  
Input/Output  
Input  
TCH1 — Timer Channel 1 I/O  
AD1 — A/D channel 1 input  
KBI1 — Keyboard interrupt input 1  
PTA2 — General purpose input-only port  
IRQ — External interrupt with programmable pullup and Schmitt trigger input  
KBI2 — Keyboard interrupt input 2  
TCLK — Timer clock input  
Input  
Input  
Input  
PTA2  
PTA3  
Input  
Input  
PTA3 — General purpose I/O port  
Input/Output  
Input  
RST — Reset input, active low with internal pullup and Schmitt trigger  
KBI3 — Keyboard interrupt input 3  
PTA4 — General purpose I/O port  
Input  
Input/Output  
OSC2 —XTAL oscillator output (XTAL option only)  
Output  
Output  
RC or internal oscillator output (OSC2EN = 1 in PTAPUE register)  
PTA4  
PTA5  
AD2 — A/D channel 2 input  
Input  
Input  
KBI4 — Keyboard interrupt input 4  
PTA5 — General purpose I/O port  
OSC1 — XTAL, RC, or external oscillator input  
AD3 — A/D channel 3 input  
Input/Output  
Input  
Input  
KBI5 — Keyboard interrupt input 5  
PTB0 — General-purpose I/O port  
SPSCK — SPI serial clock  
Input  
Input/Output  
Input/Output  
Input  
PTB0  
PTB1  
PTB2  
PTB3  
AD4 — A/D channel 4 input  
PTB1 — General-purpose I/O port  
MOSI — SPI Master out Slave in  
AD5 — A/D channel 5 input  
Input/Output  
Input/Output  
Input  
PTB2 — General-purpose I/O port  
MISO — SPI Master in Slave out  
AD6 — A/D channel 6 input  
Input/Output  
Input/Output  
Input  
PTB3 — General-purpose I/O port  
SS — SPI slave select  
Input/Output  
Input  
AD7 — A/D channel 7 input  
Input  
— Continued on next page  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
21  
General Description  
Table 1-2. Pin Functions (Continued)  
Pin  
Name  
Description  
Input/Output  
PTB4 — General-purpose I/O port  
Input/Output  
Input/Output  
Input  
RxD — ESCI receive data I/O  
AD8 — A/D channel 8 input  
PTB4  
PTB5  
PTB5 — General-purpose I/O port  
TxD — ESCI transmit data I/O  
AD9 — A/D channel 9 input  
Input/Output  
Output  
Input  
PTB6 — General-purpose I/O port  
TCH2 — Timer channel 2 I/O  
PTB7 — General-purpose I/O port  
TCH3 — Timer channel 3 I/O  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
PTB6  
PTB7  
1.6 Pin Function Priority  
Table 1-3 is meant to resolve the priority if multiple functions are enabled on a single pin.  
NOTE  
Upon reset all pins come up as input ports regardless of the priority table.  
Table 1-3. Function Priority in Shared Pins  
Pin Name  
Highest-to-Lowest Priority Sequence  
AD0 TCH0 KBI0 PTA0  
PTA0(1)  
PTA1(1)  
PTA2  
AD1 TCH1 KBI1 PTA1  
IRQ TCLK KBI2 PTA2  
RST KBI3 PTA3  
PTA3  
PTA4(1)  
PTA5(1)  
PTB0(1)  
PTB1(1)  
PTB2(1)  
PTB3(1)  
PTB4(1)  
OSC2 AD2 KBI4 PTA4  
OSC1 AD3 KBI5 PTA5  
AD4 SPSCK PTB0  
AD5 MOSI PTB1  
AD6 MISO PTB2  
AD7 SS PTB3  
AD8 RxD PTB4  
PTB5(1)  
PTB6  
AD9 TxD PTB5  
TCH2 PTB6  
PTB7  
TCH3 PTB7  
1. When a pin is to be used as an ADC pin, the I/O port function should be left as  
an input and all other shared modules should be disabled. The ADC does not  
override additional modules using the pin.  
MC68HC908QB8 Data Sheet, Rev. 3  
22  
Freescale Semiconductor  
 
Chapter 2  
Memory  
2.1 Introduction  
The central processor unit (CPU08) can address 64 Kbytes of memory space. The memory map, shown  
in Figure 2-1.  
2.2 Unimplemented Memory Locations  
Executing code from an unimplemented location will cause an illegal address reset. In Figure 2-1,  
unimplemented locations are shaded.  
2.3 Reserved Memory Locations  
Accessing a reserved location can have unpredictable effects on MCU operation. In Figure 2-1, register  
locations are marked with the word Reserved or with the letter R.  
2.4 Direct Page Registers  
Figure 2-2 shows the memory mapped registers of the MC68HC908QB8. Registers with addresses  
between $0000 and $00FF are considered direct page registers and all instructions including those with  
direct page addressing modes can access them. Registers between $0100 and $FFFF require non-direct  
page addressing modes. See Chapter 7 Central Processor Unit (CPU) for more information on  
addressing modes.  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
23  
Memory  
$0000  
$003F  
IDIRECT PAGE REGISTERS  
64 BYTES  
$0040  
$013F  
$0040  
$007F  
RAM  
256 BYTES  
RESERVED  
64 BYTES  
$0080  
$00FF  
$0140  
$27FF  
RAM  
128 BYTES  
UNIMPLEMENTED  
9920 BYTES  
$0100  
$013F  
$2800  
$2A1F  
AUXILIARY ROM  
544 BYTES  
RESERVED  
64 BYTES  
$2A20  
$2F7D  
UNIMPLEMENTED  
1374 BYTES  
$2F7E  
$2FFF  
AUXILIARY ROM  
130 BYTES  
$3000  
$DDFF  
UNIMPLEMENTED  
44,544 BYTES  
$DE00  
$FDFF  
$DE00  
$EDFF  
FLASH MEMORY  
8192 BYTES  
RESERVED  
4096 BYTES  
$EE00  
$FDFF  
$FE00  
$FE1F  
MISCELLANEOUS REGISTERS  
32 BYTES  
FLASH MEMORY  
4096 BYTES  
$FE20  
$FF7D  
MONITOR ROM  
350 BYTES  
$FF7E  
$FFAF  
UNIMPLEMENTED  
50BYTES  
$FFB0  
$FFBD  
FLASH  
14 BYTES  
$FFBE  
$FFC1  
MISCELLANEOUS REGISTERS  
4 BYTES  
$FFC2  
$FFCF  
FLASH  
14 BYTES  
$FFD0  
$FFFF  
USER VECTORS  
48 BYTES  
MC68HC908QB8 and MC68HC908QY8  
Memory Map  
MC68HC908QB4  
Memory Map  
Figure 2-1. Memory Map  
MC68HC908QB8 Data Sheet, Rev. 3  
24  
Freescale Semiconductor  
 
Direct Page Registers  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
(PTA) Write:  
AWUL  
PTA2  
Port A Data Register  
R
PTA5  
PTA4  
PTA3  
PTA1  
PTA0  
$0000  
See page 104.  
Reset:  
Read:  
Unaffected by reset  
PTB4 PTB3  
Unaffected by reset  
Port B Data Register  
PTB7  
PTB6  
PTB5  
PTB2  
PTB1  
PTB0  
$0001  
(PTB) Write:  
See page 106.  
Reset:  
$0002  
Reserved  
$0003  
Read:  
(DDRA) Write:  
0
Data Direction Register A  
R
R
DDRA5  
DDRA4  
DDRA3  
DDRA1  
DDRA0  
$0004  
$0005  
See page 104.  
Reset:  
Read:  
0
DDRB7  
0
0
DDRB6  
0
0
DDRB5  
0
0
DDRB4  
0
0
DDRB3  
0
0
DDRB2  
0
0
DDRB1  
0
0
DDRB0  
0
Data Direction Register B  
(DDRB) Write:  
See page 107.  
Reset:  
$0006  
Reserved  
$000A  
Read:  
0
0
Port A Input Pullup Enable  
OSC2EN  
0
PTAPUE5 PTAPUE4 PTAPUE3 PTAPUE2 PTAPUE1 PTAPUE0  
$000B  
$000C  
$000D  
$000E  
$000F  
$0010  
$0011  
$0012  
$0013  
Register (PTAPUE) Write:  
See page 105.  
Reset:  
Read:  
0
0
0
0
0
0
Port B Input Pullup Enable  
PTBPUE7 PTBPUE6 PTBPUE5 PTBPUE4 PTBPUE3 PTBPUE2 PTBPUE1 PTBPUE0  
Register (PTBPUE) Write:  
See page 108.  
Reset:  
Read:  
0
0
0
0
0
0
0
SPE  
0
0
SPI Control Register  
SPRIE  
R
0
SPMSTR  
CPOL  
CPHA  
SPWOM  
0
SPTIE  
0
(SPCR) Write:  
See page 171.  
Reset:  
Read:  
0
1
0
1
SPRF  
OVRF  
MODF  
SPTE  
SPI Status and Control  
ERRIE  
MODFEN  
SPR1  
SPR0  
Register (SPSCR) Write:  
See page 172.  
Reset:  
Read:  
0
R7  
T7  
0
R6  
T6  
0
R5  
T5  
0
R4  
T4  
1
R3  
T3  
0
R2  
T2  
0
R1  
T1  
0
R0  
T0  
SPI Data Register  
(SPDR) Write:  
See page 174.  
Reset:  
Read:  
Unaffected by reset  
ESCI Control Register 1  
LOOPS  
0
ENSCI  
TXINV  
M
0
WAKE  
0
ILTY  
0
PEN  
0
PTY  
0
(SCC1) Write:  
See page 122.  
Reset:  
Read:  
0
TCIE  
0
0
ESCI Control Register 2  
SCTIE  
SCRIE  
ILIE  
0
TE  
RE  
0
RWU  
0
SBK  
0
(SCC2) Write:  
See page 124.  
Reset:  
Read:  
0
R8  
0
0
ESCI Control Register 3  
T8  
R
R
ORIE  
NEIE  
FEIE  
PEIE  
(SCC3) Write:  
See page 125.  
Reset:  
Read:  
U
SCTE  
0
TC  
0
0
IDLE  
0
OR  
0
NF  
0
FE  
0
PE  
SCRF  
ESCI Status Register 1  
(SCS1) Write:  
See page 126.  
Reset:  
1
1
0
0
0
0
0
0
= Unimplemented  
R
= Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 1 of 5)  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
25  
Memory  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
0
0
0
0
0
0
BKF  
RPF  
ESCI Status Register 2  
$0014  
(SCS2) Write:  
See page 129.  
Reset:  
Read:  
0
R7  
T7  
0
R6  
T6  
0
R5  
T5  
0
R4  
T4  
0
R3  
T3  
0
R2  
T2  
0
R1  
T1  
0
R0  
T0  
ESCI Data Register  
$0015  
$0016  
$0017  
$0018  
$0019  
(SCDR) Write:  
See page 129.  
Reset:  
Read:  
Unaffected by reset  
ESCI Baud Rate Register  
LINT  
0
LINR  
0
SCP1  
0
SCP0  
0
R
0
SCR2  
0
SCR1  
0
SCR0  
0
(SCBR) Write:  
See page 130.  
Reset:  
Read:  
ESCI Prescaler Register  
PDS2  
0
PDS1  
PDS0  
0
PSSB4  
0
PSSB3  
PSSB2  
PSSB1  
PSSB0  
(SCPSC) Write:  
See page 131.  
Reset:  
Read:  
0
0
0
0
0
ALOST  
AFIN  
ARUN  
AROVFL  
ARD8  
ESCI Arbiter Control  
Register (SCIACTL) Write:  
AM1  
AM0  
ACLK  
See page 135.  
Reset:  
Read:  
0
0
0
0
0
0
0
0
ARD7  
ARD6  
ARD5  
ARD4  
ARD3  
ARD2  
ARD1  
ARD0  
ESCI Arbiter Data Register  
(SCIADAT) Write:  
See page 136.  
Reset:  
Read:  
0
0
0
0
0
0
0
0
0
0
0
0
MODEK  
0
KEYF  
0
ACKK  
0
Keyboard Status and  
$001A Control Register (KBSCR) Write:  
IMASKK  
See page 87.  
Reset:  
Read:  
0
0
0
0
0
0
0
KBIE1  
0
Keyboard Interrupt  
Enable Register (KBIER) Write:  
AWUIE  
KBIE5  
0
KBIE4  
0
KBIE3  
0
KBIE2  
0
KBIE0  
0
$001B  
$001C  
$001D  
$001E  
See page 88.  
Reset:  
Read:  
0
0
0
0
Keyboard Interrupt Polarity  
KBIP5  
KBIP4  
KBIP3  
KBIP2  
KBIP1  
0
KBIP0  
0
Register (KBIPR) Write:  
See page 88.  
Reset:  
Read:  
0
0
0
0
0
0
0
0
0
0
0
ACK  
0
IRQF  
IRQ Status and Control  
IMASK  
0
OSCENIN-  
STOP  
MODE  
0
Register (INTSCR) Write:  
See page 81.  
Reset:  
Read:  
0
IRQPUD  
0
0
IRQEN  
0
0
R
0
0
R
0
0
R
0
Configuration Register 2  
ESCIBDSRC  
0
RSTEN  
0(2)  
(CONFIG2)(1) Write:  
See page 57.  
Reset:  
0
1. One-time writable register after each reset.  
2. RSTEN reset to 0 by a power-on reset (POR) only.  
Read:  
Configuration Register 1  
COPRS  
0
LVISTOP LVIRSTD LVIPWRD LVITRIP  
0(2)  
SSREC  
0
STOP  
0
COPD  
0
$001F  
(CONFIG1)(1) Write:  
See page 58.  
Reset:  
0
0
0
1. One-time writable register after each reset.  
2. LVITRIP reset to 0 by a power-on reset (POR) only.  
Read:  
Register (TSC) Write:  
TOF  
0
0
0
0
TIM Status and Control  
TOIE  
TSTOP  
PS2  
PS1  
PS0  
$0020  
$0021  
TRST  
0
Bit 12  
See page 183.  
Reset:  
Read:  
0
1
0
0
0
Bit 9  
0
Bit 8  
Bit 15  
Bit 14  
Bit 13  
Bit 11  
Bit 10  
TIM Counter Register High  
(TCNTH) Write:  
See page 185.  
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
R
= Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 2 of 5)  
MC68HC908QB8 Data Sheet, Rev. 3  
26  
Freescale Semiconductor  
Direct Page Registers  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TIM Counter Register Low  
$0022  
(TCNTL) Write:  
See page 185.  
Reset:  
Read:  
0
Bit 15  
1
0
Bit 14  
1
0
Bit 13  
1
0
Bit 12  
1
0
Bit 11  
1
0
Bit 10  
1
0
Bit 9  
1
0
TIM Counter Modulo  
Register High (TMODH) Write:  
Bit 8  
$0023  
$0024  
$0025  
$0026  
$0027  
$0028  
$0029  
$002A  
See page 185.  
Reset:  
Read:  
1
Bit 0  
1
TIM Counter Modulo  
Register Low (TMODL) Write:  
Bit 7  
Bit 6  
1
Bit 5  
1
Bit 4  
1
Bit 3  
1
Bit 2  
1
Bit 1  
1
See page 185.  
Reset:  
Read:  
1
CH0F  
0
TIM Channel 0 Status and  
Control Register (TSC0) Write:  
CH0IE  
0
MS0B  
0
MS0A  
0
ELS0B  
0
ELS0A  
0
TOV0  
0
CH0MAX  
0
See page 186.  
Reset:  
Read:  
0
TIM Channel 0  
Register High (TCH0H) Write:  
Bit 15  
Bit 7  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
See page 189.  
Reset:  
Read:  
Indeterminate after reset  
Bit 4 Bit 3  
Indeterminate after reset  
TIM Channel 0  
Register Low (TCH0L) Write:  
Bit 6  
Bit 5  
0
Bit 2  
Bit 1  
Bit 0  
See page 189.  
Reset:  
Read:  
CH1F  
0
0
TIM Channel 1 Status and  
Control Register (TSC1) Write:  
CH1IE  
0
MS1A  
0
ELS1B  
0
ELS1A  
0
TOV1  
0
CH1MAX  
See page 186.  
Reset:  
Read:  
0
0
TIM Channel 1  
Register High (TCH1H) Write:  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
See page 189.  
Reset:  
Read:  
Indeterminate after reset  
Bit 4 Bit 3  
Indeterminate after reset  
TIM Channel 1  
Register Low (TCH1L) Write:  
Bit 7  
Bit 6  
Bit 5  
Bit 2  
Bit 1  
Bit 0  
See page 189.  
Reset:  
$002B  
Reserved  
$002F  
Read:  
CH2F  
0
0
0
TIM Channel 2 Status and  
CH2IE  
0
MS2A  
0
ELS2B  
0
ELS2A  
0
TOV2  
0
CH2MAX  
$0030  
$0031  
$0032  
$0033  
$0034  
$0035  
Control Register (TSC2) Write:  
See page 186.  
Reset:  
Read:  
0
0
TIM Channel 2  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Register High (TCH2H) Write:  
See page 189.  
Reset:  
Read:  
Indeterminate after reset  
Bit 4 Bit 3  
Indeterminate after reset  
TIM Channel 2  
Register Low (TCH2L) Write:  
Bit 7  
Bit 6  
Bit 5  
0
Bit 2  
Bit 1  
Bit 0  
See page 189.  
Reset:  
Read:  
CH3F  
0
0
TIM Channel 3 Status and  
Control Register (TSC3) Write:  
CH3IE  
0
MS3A  
0
ELS3B  
0
ELS3A  
0
TOV3  
0
CH3MAX  
See page 186.  
Reset:  
Read:  
0
0
TIM Channel 3  
Register High (TCH3H) Write:  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
See page 189.  
Reset:  
Read:  
Indeterminate after reset  
Bit 4 Bit 3  
Indeterminate after reset  
= Reserved  
TIM Channel 3  
Register Low (TCH3L) Write:  
See page 189.  
Bit 7  
Bit 6  
Bit 5  
Bit 2  
Bit 1  
Bit 0  
Reset:  
= Unimplemented  
R
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 3 of 5)  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
27  
Memory  
Addr.  
Register Name  
Oscillator Status and  
Bit 7  
6
5
ICFS1  
0
4
ICFS0  
0
3
ECFS1  
0
2
ECFS0  
0
1
ECGON  
0
Bit 0  
ECGST  
Read:  
OSCOPT1 OSCOPT0  
$0036 Control Register (OSCSC) Write:  
See page 100.  
Reset:  
0
0
0
$0037  
$0038  
Reserved  
Oscillator Trim Register Read:  
TRIM7  
1
TRIM6  
0
TRIM5  
0
TRIM4  
0
TRIM3  
0
TRIM2  
0
TRIM1  
0
TRIM0  
0
(OSCTRIM)  
See page 101.  
Write:  
Reset:  
$0039  
Reserved  
$003B  
Read: COCO  
Register (ADSCR) Write:  
ADC10 Status and Control  
AIEN  
ADCO  
ADCH4  
ADCH3  
ADCH2  
ADCH1  
ADCH0  
$003C  
$003D  
$003E  
$003F  
$FE00  
$FE01  
$FE02  
$FE03  
$FE04  
$FE05  
$FE06  
See page 46.  
Reset:  
Read:  
0
0
R
0
AD7  
R
0
0
R
0
AD6  
R
0
0
R
0
AD5  
R
1
0
R
0
AD4  
R
1
0
R
0
AD3  
R
1
0
R
0
AD2  
R
1
AD9  
R
0
AD1  
R
1
AD8  
R
0
AD0  
R
ADC10 Data Register High  
(ADRH) Write:  
See page 48.  
Reset:  
Read:  
ADC10 Data Register Low  
(ADRL) Write:  
See page 48.  
Reset:  
Read:  
0
0
0
0
0
0
0
0
ADC10 Clock Register  
ADLPC  
ADIV1  
ADIV0  
ADICLK  
MODE1  
MODE0  
ADLSMP  
ACLKEN  
(ADCLK) Write:  
See page 49.  
Reset:  
Read:  
0
0
0
0
0
0
0
SBSW  
0
0
LVI  
0
Break Status Register  
R
R
R
R
R
R
R
(BSR) Write:  
See page 195.  
Reset:  
Read:  
POR  
PIN  
COP  
ILOP  
ILAD  
MODRST  
0
SIM Reset Status Register  
(SRSR) Write:  
See page 152.  
POR:  
Read:  
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Break Auxiliary  
Register (BRKAR) Write:  
BDCOP  
See page 195.  
Reset:  
Read:  
0
0
0
0
0
0
0
0
Break Flag Control  
Register (BFCR) Write:  
BCFE  
R
R
R
R
R
R
R
See page 195.  
Reset:  
Read:  
0
IF6  
R
0
IF14  
R
0
IF22  
R
IF5  
R
0
IF13  
R
0
IF21  
R
0
IF4  
R
0
IF12  
R
0
IF20  
R
0
IF3  
R
0
IF11  
R
0
IF19  
R
0
IF2  
R
0
IF10  
R
0
IF18  
R
0
IF1  
R
0
IF9  
R
0
IF17  
R
0
0
R
0
IF8  
R
0
IF16  
R
0
0
R
0
IF7  
R
0
IF15  
R
0
Interrupt Status Register 1  
(INT1) Write:  
See page 149.  
Reset:  
Read:  
Interrupt Status Register 2  
(INT2) Write:  
See page 149.  
Reset:  
Read:  
Interrupt Status Register 3  
(INT3) Write:  
See page 149.  
Reset:  
0
= Unimplemented  
R
= Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 4 of 5)  
MC68HC908QB8 Data Sheet, Rev. 3  
28  
Freescale Semiconductor  
Direct Page Registers  
Addr.  
Register Name  
Reserved  
Bit 7  
6
5
4
3
2
1
Bit 0  
$FE07  
Read:  
(FLCR) Write:  
0
0
0
0
FLASH Control Register  
HVEN  
0
MASS  
0
ERASE  
0
PGM  
0
$FE08  
$FE09  
$FE0A  
$FE0B  
$FE0C  
See page 31.  
Reset:  
Read:  
0
Bit 15  
0
0
Bit 14  
0
0
Bit 13  
0
0
Bit 12  
0
Break Address High  
Bit 11  
0
Bit 10  
0
Bit 9  
0
Bit 8  
0
Register (BRKH) Write:  
See page 194.  
Reset:  
Read:  
Break Address low  
Bit 7  
0
Bit 6  
0
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Register (BRKL) Write:  
See page 194.  
Reset:  
Read:  
0
0
0
0
0
0
0
0
0
0
0
0
Break Status and Control  
BRKE  
0
BRKA  
Register (BRKSCR) Write:  
See page 194.  
Reset:  
0
0
0
0
0
0
0
0
0
0
0
0
0
R
Read: LVIOUT  
LVI Status Register  
(LVISR) Write:  
See page 91.  
Reset:  
0
0
0
0
0
0
0
0
$FE0D  
Reserved  
$FE0F  
Read:  
FLASH Block Protect  
BPR7  
BPR6  
BPR5  
BPR4  
BPR3  
BPR2  
BPR1  
BPR0  
$FFBE  
$FFBF  
Register (FLBPR) Write:  
See page 36.  
Reset:  
Unaffected by reset  
Reserved  
Read:  
Internal Oscillator Trim  
TRIM7  
TRIM6  
TRIM5  
TRIM4  
TRIM3  
TRIM2  
TRIM1  
TRIM0  
$FFC0  
$FFC1  
(Factory Programmed, Write:  
VDD = 3.0 V)  
Reset:  
Resets to factory programmed value  
Reserved  
Read:  
LOW BYTE OF RESET VECTOR  
WRITING CLEARS COP COUNTER (ANY VALUE)  
Unaffected by reset  
COP Control Register  
$FFFF  
(COPCTL) Write:  
See page 63.  
Reset:  
= Unimplemented  
R
= Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 5 of 5)  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
29  
Memory  
Table 2-1. Vector Addresses  
Vector Priority  
Vector  
Address  
Vector  
IF22–  
IF16  
$FFD0–  
Not used  
$FFDC  
Lowest  
IF15  
IF14  
IF13  
IF12  
IF11  
IF10  
IF9  
$FFDE,F  
$FFE0,1  
$FFE2,3  
$FFE4,5  
$FFE6,7  
$FFE8,9  
$FFEA,B  
ADC conversion complete vector  
Keyboard vector  
SPI transmit vector  
SPI receive vector  
ESCI transmit vector  
ESCI receive vector  
ESCI error vector  
Not used  
IF8  
IF7  
$FFEE,F  
$FFF0,1  
$FFF2,3  
$FFF4,5  
$FFF6,7  
TIM1 Channel 3 vector  
TIM1 Channel 2 vector  
TIM1 overflow vector  
TIM1 Channel 1 vector  
TIM1 Channel 0 vector  
Not used  
IF6  
IF5  
IF4  
IF3  
IF2  
IF1  
$FFFA,B  
$FFFC,D  
$FFFE,F  
IRQ vector  
SWI vector  
Highest  
Reset vector  
2.5 Random-Access Memory (RAM)  
This MCU includes static RAM. The locations in RAM below $0100 can be accessed using the more  
efficient direct addressing mode, and any single bit in this area can be accessed with the bit manipulation  
instructions (BCLR, BSET, BRCLR, and BRSET). Locating the most frequently accessed program  
variables in this area of RAM is preferred.  
The RAM retains data when the MCU is in low-power wait or stop mode. At power-on, the contents of  
RAM are uninitialized. RAM data is unaffected by any reset provided that the supply voltage does not drop  
below the minimum value for RAM retention.  
For compatibility with older M68HC05 MCUs, the HC08 resets the stack pointer to $00FF. In the devices  
that have RAM above $00FF, it is usually best to reinitialize the stack pointer to the top of the RAM so the  
direct page RAM can be used for frequently accessed RAM variables and bit-addressable program  
variables. Include the following 2-instruction sequence in your reset initialization routine (where RamLast  
is equated to the highest address of the RAM).  
LDHX  
TXS  
#RamLast+1  
;point one past RAM  
;SP<-(H:X-1)  
MC68HC908QB8 Data Sheet, Rev. 3  
30  
Freescale Semiconductor  
FLASH Memory (FLASH)  
2.6 FLASH Memory (FLASH)  
The FLASH memory is intended primarily for program storage. In-circuit programming allows the  
operating program to be loaded into the FLASH memory after final assembly of the application product.  
It is possible to program the entire array through the single-wire monitor mode interface. Because no  
special voltages are needed for FLASH erase and programming operations, in-application programming  
is also possible through other software-controlled communication paths.  
This subsection describes the operation of the embedded FLASH memory. The FLASH memory can be  
read, programmed, and erased from the internal VDD supply. The program and erase operations are  
enabled through the use of an internal charge pump.  
The minimum size of FLASH memory that can be erased is 64 bytes; and the maximum size of FLASH  
memory that can be programmed in a program cycle is 32 bytes (a row). Program and erase operations  
are facilitated through control bits in the FLASH control register (FLCR). Details for these operations  
appear later in this section.  
NOTE  
An erased bit reads as a 1 and a programmed bit reads as a 0. A security  
feature prevents viewing of the FLASH contents.(1)  
2.6.1 FLASH Control Register  
The FLASH control register (FLCR) controls FLASH program and erase operations.  
Bit 7  
0
6
0
5
0
4
0
3
HVEN  
0
2
MASS  
0
1
ERASE  
0
Bit 0  
PGM  
0
Read:  
Write:  
Reset:  
0
0
0
0
= Unimplemented  
Figure 2-3. FLASH Control Register (FLCR)  
HVEN — High Voltage Enable Bit  
This read/write bit enables high voltage from the charge pump to the memory for either program or  
erase operation. It can only be set if either PGM =1 or ERASE =1 and the proper sequence for  
program or erase is followed.  
1 = High voltage enabled to array and charge pump on  
0 = High voltage disabled to array and charge pump off  
MASS — Mass Erase Control Bit  
This read/write bit configures the memory for mass erase operation.  
1 = Mass erase operation selected  
0 = Mass erase operation unselected  
1. No security feature is absolutely secure. However, Freescale’s strategy is to make reading or copying the FLASH difficult  
for unauthorized users.  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
31  
Memory  
ERASE — Erase Control Bit  
This read/write bit configures the memory for erase operation. ERASE is interlocked with the PGM bit  
such that both bits cannot be equal to 1 or set to 1 at the same time.  
1 = Erase operation selected  
0 = Erase operation unselected  
PGM — Program Control Bit  
This read/write bit configures the memory for program operation. PGM is interlocked with the ERASE  
bit such that both bits cannot be equal to 1 or set to 1 at the same time.  
1 = Program operation selected  
0 = Program operation unselected  
2.6.2 FLASH Page Erase Operation  
Use the following procedure to erase a page of FLASH memory. A page consists of 64 consecutive bytes  
starting from addresses $XX00, $XX40, $XX80, or $XXC0. The 48-byte user interrupt vectors area also  
forms a page. Any FLASH memory page can be erased alone.  
1. Set the ERASE bit and clear the MASS bit in the FLASH control register.  
2. Read the FLASH block protect register.  
3. Write any data to any FLASH location within the address range of the block to be erased.  
4. Wait for a time, tNVS  
5. Set the HVEN bit.  
.
6. Wait for a time, tErase  
7. Clear the ERASE bit.  
.
8. Wait for a time, tNVH  
9. Clear the HVEN bit.  
.
10. After time, tRCV, the memory can be accessed in read mode again.  
NOTE  
The COP register at location $FFFF should not be written between steps  
5-9, when the HVEN bit is set. Since this register is located at a valid  
FLASH address, unpredictable behavior may occur if this location is written  
while HVEN is set.  
NOTE  
Programming and erasing of FLASH locations cannot be performed by  
code being executed from the FLASH memory. While these operations  
must be performed in the order as shown, other unrelated operations may  
occur between the steps.  
CAUTION  
A page erase of the vector page will erase the internal oscillator trim value  
at $FFC0.  
MC68HC908QB8 Data Sheet, Rev. 3  
32  
Freescale Semiconductor  
FLASH Memory (FLASH)  
2.6.3 FLASH Mass Erase Operation  
Use the following procedure to erase the entire FLASH memory to read as a 1:  
1. Set both the ERASE bit and the MASS bit in the FLASH control register.  
2. Read the FLASH block protect register.  
3. Write any data to any FLASH address(1) within the FLASH memory address range.  
4. Wait for a time, tNVS  
5. Set the HVEN bit.  
.
6. Wait for a time, tMErase  
.
7. Clear the ERASE and MASS bits.  
NOTE  
Mass erase is disabled whenever any block is protected (FLBPR does not  
equal $FF).  
8. Wait for a time, tNVHL  
9. Clear the HVEN bit.  
.
10. After time, tRCV, the memory can be accessed in read mode again.  
NOTE  
Programming and erasing of FLASH locations cannot be performed by  
code being executed from the FLASH memory. While these operations  
must be performed in the order as shown, other unrelated operations may  
occur between the steps.  
CAUTION  
A mass erase will erase the internal oscillator trim value at $FFC0.  
2.6.4 FLASH Program Operation  
Programming of the FLASH memory is done on a row basis. A row consists of 32 consecutive bytes  
starting from addresses $XX00, $XX20, $XX40, $XX60, $XX80, $XXA0, $XXC0, or $XXE0. Use the  
following step-by-step procedure to program a row of FLASH memory  
Figure 2-4 shows a flowchart of the programming algorithm.  
NOTE  
Do not program any byte in the FLASH more than once after a successful  
erase operation. Reprogramming bits to a byte which is already  
programmed is not allowed without first erasing the page in which the byte  
resides or mass erasing the entire FLASH memory. Programming without  
first erasing may disturb data stored in the FLASH.  
1. Set the PGM bit. This configures the memory for program operation and enables the latching of  
address and data for programming.  
2. Read the FLASH block protect register.  
3. Write any data to any FLASH location within the address range desired.  
4. Wait for a time, tNVS  
5. Set the HVEN bit.  
.
1. When in monitor mode, with security sequence failed (see 17.3.2 Security), write to the FLASH block protect register in-  
stead of any FLASH address.  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
33  
Memory  
6. Wait for a time, tPGS  
7. Write data to the FLASH address being programmed(1).  
8. Wait for time, tPROG  
9. Repeat step 7 and 8 until all desired bytes within the row are programmed.  
10. Clear the PGM bit (1)  
11. Wait for time, tNVH  
12. Clear the HVEN bit.  
.
.
.
.
13. After time, tRCV, the memory can be accessed in read mode again.  
NOTE  
The COP register at location $FFFF should not be written between steps  
5-12, when the HVEN bit is set. Since this register is located at a valid  
FLASH address, unpredictable behavior may occur if this location is written  
while HVEN is set.  
This program sequence is repeated throughout the memory until all data is programmed.  
NOTE  
Programming and erasing of FLASH locations cannot be performed by  
code being executed from the FLASH memory. While these operations  
must be performed in the order shown, other unrelated operations may  
occur between the steps. Do not exceed tPROG maximum, see 18.17  
Memory Characteristics.  
2.6.5 FLASH Protection  
Due to the ability of the on-board charge pump to erase and program the FLASH memory in the target  
application, provision is made to protect blocks of memory from unintentional erase or program operations  
due to system malfunction. This protection is done by use of a FLASH block protect register (FLBPR).  
The FLBPR determines the range of the FLASH memory which is to be protected. The range of the  
protected area starts from a location defined by FLBPR and ends to the bottom of the FLASH memory  
($FFFF). When the memory is protected, the HVEN bit cannot be set in either ERASE or PROGRAM  
operations.  
NOTE  
In performing a program or erase operation, the FLASH block protect  
register must be read after setting the PGM or ERASE bit and before  
asserting the HVEN bit.  
When the FLBPR is programmed with all 0 s, the entire memory is protected from being programmed and  
erased. When all the bits are erased (all 1’s), the entire memory is accessible for program and erase.  
When bits within the FLBPR are programmed, they lock a block of memory. The address ranges are  
shown in 2.6.6 FLASH Block Protect Register. Once the FLBPR is programmed with a value other than  
$FF, any erase or program of the FLBPR or the protected block of FLASH memory is prohibited. Mass  
erase is disabled whenever any block is protected (FLBPR does not equal $FF). The FLBPR itself can be  
erased or programmed only with an external voltage, VTST, present on the IRQ pin. This voltage also  
allows entry from reset into the monitor mode.  
1. The time between each FLASH address change, or the time between the last FLASH address programmed to clearing  
PGM bit, must not exceed the maximum programming time, tPROG maximum.  
MC68HC908QB8 Data Sheet, Rev. 3  
34  
Freescale Semiconductor  
FLASH Memory (FLASH)  
Algorithm for Programming  
a Row (32 Bytes) of FLASH Memory  
1
2
3
SET PGM BIT  
READ THE FLASH BLOCK PROTECT REGISTER  
WRITE ANY DATA TO ANY FLASH ADDRESS  
WITHIN THE ROW ADDRESS RANGE DESIRED  
4
5
6
WAIT FOR A TIME, tNVS  
SET HVEN BIT  
WAIT FOR A TIME, tPGS  
7
8
WRITE DATA TO THE FLASH ADDRESS  
TO BE PROGRAMMED  
WAIT FOR A TIME, tPROG  
COMPLETED  
Y
9
PROGRAMMING  
THIS ROW?  
N
10  
CLEAR PGM BIT  
WAIT FOR A TIME, tNVH  
CLEAR HVEN BIT  
11  
12  
13  
NOTES:  
The time between each FLASH address change (step 7 to step 7 loop),  
or the time between the last FLASH address programmed  
to clearing PGM bit (step 7 to step 10)  
must not exceed the maximum programming  
time, tPROG max.  
WAIT FOR A TIME, tRCV  
END OF PROGRAMMING  
This row program algorithm assumes the row/s  
to be programmed are initially erased.  
Figure 2-4. FLASH Programming Flowchart  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
35  
Memory  
2.6.6 FLASH Block Protect Register  
The FLASH block protect register is implemented as a byte within the FLASH memory, and therefore can  
only be written during a programming sequence of the FLASH memory. The value in this register  
determines the starting address of the protected range within the FLASH memory.  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
BPR7  
BPR6  
BPR5  
BPR4  
BPR3  
BPR2  
BPR1  
BPR0  
Unaffected by reset. Initial value from factory is 1.  
Write to this register is by a programming sequence to the FLASH memory.  
Figure 2-5. FLASH Block Protect Register (FLBPR)  
BPR[7:0] — FLASH Protection Register Bits [7:0]  
These eight bits in FLBPR represent bits [13:6] of a 16-bit memory address. Bits [15:14] are 1s and  
bits [5:0] are 0s.  
The resultant 16-bit address is used for specifying the start address of the FLASH memory for block  
protection. The FLASH is protected from this start address to the end of FLASH memory, at $FFFF.  
With this mechanism, the protect start address can be XX00, XX40, XX80, or XXC0 within the FLASH  
memory. See Figure 2-6 and Table 2-2.  
16-BIT MEMORY ADDRESS  
START ADDRESS OF  
1
1
FLBPR VALUE  
0
0
0
0
0
0
FLASH BLOCK PROTECT  
Figure 2-6. FLASH Block Protect Start Address  
Table 2-2. Examples of Protect Start Address  
BPR[7:0]  
Start of Address of Protect Range  
$00–$77  
The entire FLASH memory is protected.  
$DE00 (1101 1110 0000 0000)  
$DE40 (1101 1110 0100 0000)  
$DE80 (1101 1110 1000 0000)  
$DFC0 (1101 1110 1100 0000)  
and so on...  
$78 (0111 1000)  
$79 (0111 1001)  
$7A (0111 1010)  
$7B (0111 1011)  
$DE (1101 1110)  
$DF (1101 1111)  
$F780 (1111 0111 1000 0000)  
$F7C0 (1111 0111 1100 0000)  
$FF80 (1111 1111 1000 0000)  
$FE (1111 1110)  
FLBPR, internal oscillator trim value, and vectors are  
protected  
$FF  
The entire FLASH memory is not protected.  
MC68HC908QB8 Data Sheet, Rev. 3  
36  
Freescale Semiconductor  
 
 
Chapter 3  
Analog-to-Digital Converter (ADC10) Module  
3.1 Introduction  
This section describes the 10-bit successive approximation analog-to-digital converter (ADC10).  
The ADC10 module shares its pins with general-purpose input/output (I/O) port pins. See Figure 3-1 for  
port location of these shared pins. The ADC10 on this MCU uses VDD and VSS as its supply and reference  
pins. This MCU uses BUSCLKX4 as its alternate clock source for the ADC. This MCU does not have a  
hardware conversion trigger.  
3.2 Features  
Features of the ADC10 module include:  
Linear successive approximation algorithm with 10-bit resolution  
Output formatted in 10- or 8-bit right-justified format  
Single or continuous conversion (automatic power-down in single conversion mode)  
Configurable sample time and conversion speed (to save power)  
Conversion complete flag and interrupt  
Input clock selectable from up to three sources  
Operation in wait and stop modes for lower noise operation  
Selectable asynchronous hardware conversion trigger  
3.3 Functional Description  
The ADC10 uses successive approximation to convert the input sample taken from ADVIN to a digital  
representation. The approximation is taken and then rounded to the nearest 10- or 8-bit value to provide  
greater accuracy and to provide a more robust mechanism for achieving the ideal code-transition voltage.  
Figure 3-2 shows a block diagram of the ADC10  
For proper conversion, the voltage on ADVIN must fall between VREFH and VREFL. If ADVIN is equal to  
or exceeds VREFH, the converter circuit converts the signal to $3FF for a 10-bit representation or $FF for  
a 8-bit representation. If ADVIN is equal to or less than VREFL, the converter circuit converts it to $000.  
Input voltages between VREFH and VREFL are straight-line linear conversions.  
NOTE  
Input voltage must not exceed the analog supply voltages.  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
37  
 
 
Analog-to-Digital Converter (ADC10) Module  
PTA0/TCH0/AD0/KBI0  
PTA1/TCH1/AD1/KBI1  
PTA2/IRQ/KBI2/TCLK  
PTA3/RST/KBI3  
CLOCK  
GENERATOR  
KEYBOARD INTERRUPT  
MODULE  
PTA4/OSC2/AD2/KBI4  
PTA5/OSC1/AD3/KBI5  
M68HC08 CPU  
EXTERNAL INTERRUPT  
MODULE  
PTB0/SCK/AD4  
PTB1/MOSI/AD5  
PTB2/MISO/AD6  
PTB3/SS/AD7  
PTB4/RxD/AD8  
PTB5/TxD/AD9  
PTB6/TCH2  
AUTO WAKEUP  
MODULE  
LOW-VOLTAGE  
INHIBIT  
PTB7/TCH3  
4-CHANNEL 16-BIT  
TIMER MODULE  
COP  
MODULE  
MC68HC908QB8  
256 BYTES  
MC68HC908QB8  
8192 BYTES  
10-CHANNEL  
10-BIT ADC  
USER RAM  
USER FLASH  
ENHANCED SERIAL  
COMMUNICATIONS  
INTERFACE MODULE  
VDD  
POWER SUPPLY  
VSS  
SERIAL PERIPHERAL  
INTERFACE  
DEVELOPMENT SUPPORT  
MONITOR ROM  
BREAK MODULE  
RST, IRQ: Pins have internal pull up device  
All port pins have programmable pull up device  
PTA[0:5]: Higher current sink and source capability  
Figure 3-1. Block Diagram Highlighting ADC10 Block and Pins  
MC68HC908QB8 Data Sheet, Rev. 3  
38  
Freescale Semiconductor  
 
Functional Description  
ADSCR  
ADCLK  
ASYNC  
CLOCK  
GENERATOR  
ACLKEN  
ACLK  
1
2
ADCK  
MCU STOP  
ADHWT  
CLOCK  
DIVIDE  
BUS CLOCK  
CONTROL SEQUENCER  
ALTERNATE CLOCK SOURCE  
AD0  
ADn  
1
2
AIEN  
INTERRUPT  
COCO  
ADVIN  
SAR CONVERTER  
VREFH  
VREFL  
DATA REGISTERS ADRH:ADRL  
Figure 3-2. ADC10 Block Diagram  
The ADC10 can perform an analog-to-digital conversion on one of the software selectable channels. The  
output of the input multiplexer (ADVIN) is converted by a successive approximation algorithm into a 10-bit  
digital result. When the conversion is completed, the result is placed in the data registers (ADRH and  
ADRL). In 8-bit mode, the result is rounded to 8 bits and placed in ADRL. The conversion complete flag  
is then set and an interrupt is generated if the interrupt has been enabled.  
3.3.1 Clock Select and Divide Circuit  
The clock select and divide circuit selects one of three clock sources and divides it by a configurable value  
to generate the input clock to the converter (ADCK). The clock can be selected from one of the following  
sources:  
The asynchronous clock source (ACLK) — This clock source is generated from a dedicated clock  
source which is enabled when the ADC10 is converting and the clock source is selected by setting  
the ACLKEN bit. When the ADLPC bit is clear, this clock operates from 1–2 MHz; when ADLPC is  
set it operates at 0.5–1 MHz. This clock is not disabled in STOP and allows conversions in stop  
mode for lower noise operation.  
Alternate Clock Source — This clock source is equal to the external oscillator clock or a four times  
the bus clock. The alternate clock source is MCU specific, see 3.1 Introduction to determine source  
and availability of this clock source option. This clock is selected when ADICLK and ACLKEN are  
both low.  
The bus clock — This clock source is equal to the bus frequency. This clock is selected when  
ADICLK is high and ACLKEN is low.  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
39  
Analog-to-Digital Converter (ADC10) Module  
Whichever clock is selected, its frequency must fall within the acceptable frequency range for ADCK. If  
the available clocks are too slow, the ADC10 will not perform according to specifications. If the available  
clocks are too fast, then the clock must be divided to the appropriate frequency. This divider is specified  
by the ADIV[1:0] bits and can be divide-by 1, 2, 4, or 8.  
3.3.2 Input Select and Pin Control  
Only one analog input may be used for conversion at any given time. The channel select bits in ADSCR  
are used to select the input signal for conversion.  
3.3.3 Conversion Control  
Conversions can be performed in either 10-bit mode or 8-bit mode as determined by the MODE bits.  
Conversions can be initiated by either a software or hardware trigger. In addition, the ADC10 module can  
be configured for low power operation, long sample time, and continuous conversion.  
3.3.3.1 Initiating Conversions  
A conversion is initiated:  
Following a write to ADSCR (with ADCH bits not all 1s) if software triggered operation is selected.  
Following a hardware trigger event if hardware triggered operation is selected.  
Following the transfer of the result to the data registers when continuous conversion is enabled.  
If continuous conversions are enabled a new conversion is automatically initiated after the completion of  
the current conversion. In software triggered operation, continuous conversions begin after ADSCR is  
written and continue until aborted. In hardware triggered operation, continuous conversions begin after a  
hardware trigger event and continue until aborted.  
3.3.3.2 Completing Conversions  
A conversion is completed when the result of the conversion is transferred into the data result registers,  
ADRH and ADRL. This is indicated by the setting of the COCO bit. An interrupt is generated if AIEN is  
high at the time that COCO is set.  
A blocking mechanism prevents a new result from overwriting previous data in ADRH and ADRL if the  
previous data is in the process of being read while in 10-bit mode (ADRH has been read but ADRL has  
not). In this case the data transfer is blocked, COCO is not set, and the new result is lost. When a data  
transfer is blocked, another conversion is initiated regardless of the state of ADCO (single or continuous  
conversions enabled). If single conversions are enabled, this could result in several discarded  
conversions and excess power consumption. To avoid this issue, the data registers must not be read after  
initiating a single conversion until the conversion completes.  
3.3.3.3 Aborting Conversions  
Any conversion in progress will be aborted when:  
A write to ADSCR occurs (the current conversion will be aborted and a new conversion will be  
initiated, if ADCH are not all 1s).  
A write to ADCLK occurs.  
The MCU is reset.  
The MCU enters stop mode with ACLK not enabled.  
MC68HC908QB8 Data Sheet, Rev. 3  
40  
Freescale Semiconductor  
Functional Description  
When a conversion is aborted, the contents of the data registers, ADRH and ADRL, are not altered but  
continue to be the values transferred after the completion of the last successful conversion. In the case  
that the conversion was aborted by a reset, ADRH and ADRL return to their reset states.  
Upon reset or when a conversion is otherwise aborted, the ADC10 module will enter a low power, inactive  
state. In this state, all internal clocks and references are disabled. This state is entered asynchronously  
and immediately upon aborting of a conversion.  
3.3.3.4 Total Conversion Time  
The total conversion time depends on many factors such as sample time, bus frequency, whether  
ACLKEN is set, and synchronization time. The total conversion time is summarized in Table 3-1.  
Table 3-1. Total Conversion Time versus Control Conditions  
Conversion Mode  
ACLKEN  
Maximum Conversion Time  
8-Bit Mode (short sample — ADLSMP = 0):  
Single or 1st continuous  
Single or 1st continuous  
0
1
X
18 ADCK + 3 bus clock  
18 ADCK + 3 bus clock + 5 μs  
16 ADCK  
Subsequent continuous (fBus fADCK  
)
8-Bit Mode (long sample — ADLSMP = 1):  
Single or 1st continuous  
Single or 1st continuous  
0
1
X
38 ADCK + 3 bus clock  
38 ADCK + 3 bus clock + 5 μs  
36 ADCK  
Subsequent continuous (fBus fADCK  
)
10-Bit Mode (short sample — ADLSMP = 0):  
Single or 1st continuous  
Single or 1st continuous  
0
1
X
21 ADCK + 3 bus clock  
21 ADCK + 3 bus clock + 5 μs  
19 ADCK  
Subsequent continuous (fBus fADCK  
)
10-Bit Mode (long sample — ADLSMP = 1):  
Single or 1st continuous  
Single or 1st continuous  
0
1
X
41 ADCK + 3 bus clock  
41 ADCK + 3 bus clock + 5 μs  
39 ADCK  
Subsequent continuous (fBus fADCK  
)
The maximum total conversion time for a single conversion or the first conversion in continuous  
conversion mode is determined by the clock source chosen and the divide ratio selected. The clock  
source is selectable by the ADICLK and ACLKEN bits, and the divide ratio is specified by the ADIV bits.  
For example, if the alternate clock source is 16 MHz and is selected as the input clock source, the input  
clock divide-by-8 ratio is selected and the bus frequency is 4 MHz, then the conversion time for a single  
10-bit conversion is:  
21 ADCK cycles  
16 MHz/8  
3 bus cycles  
4 MHz  
= 11.25 μs  
Maximum Conversion time =  
+
Number of bus cycles = 11.25 μs x 4 MHz = 45 cycles  
NOTE  
The ADCK frequency must be between fADCK minimum and fADCK  
maximum to meet A/D specifications.  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
41  
 
Analog-to-Digital Converter (ADC10) Module  
3.3.4 Sources of Error  
Several sources of error exist for ADC conversions. These are discussed in the following sections.  
3.3.4.1 Sampling Error  
For proper conversions, the input must be sampled long enough to achieve the proper accuracy. Given  
the maximum input resistance of approximately 15 kΩ and input capacitance of approximately 10 pF,  
sampling to within 1/4LSB (at 10-bit resolution) can be achieved within the minimum sample window  
(3.5 cycles / 2 MHz maximum ADCK frequency) provided the resistance of the external analog source  
(RAS) is kept below 10 kΩ. Higher source resistances or higher-accuracy sampling is possible by setting  
ADLSMP (to increase the sample window to 23.5 cycles) or decreasing ADCK frequency to increase  
sample time.  
3.3.4.2 Pin Leakage Error  
Leakage on the I/O pins can cause conversion error if the external analog source resistance (RAS) is high.  
If this error cannot be tolerated by the application, keep RAS lower than VADVIN / (4096*ILeak) for less than  
1/4LSB leakage error (at 10-bit resolution).  
3.3.4.3 Noise-Induced Errors  
System noise which occurs during the sample or conversion process can affect the accuracy of the  
conversion. The ADC10 accuracy numbers are guaranteed as specified only if the following conditions  
are met:  
There is a 0.1μF low-ESR capacitor from VREFH to VREFL (if available).  
There is a 0.1μF low-ESR capacitor from VDDA to VSSA (if available).  
If inductive isolation is used from the primary supply, an additional 1μF capacitor is placed from  
VDDA to VSSA (if available).  
V
SSA and VREFL (if available) is connected to VSS at a quiet point in the ground plane.  
The MCU is placed in wait mode immediately after initiating the conversion (next instruction after  
write to ADSCR).  
There is no I/O switching, input or output, on the MCU during the conversion.  
There are some situations where external system activity causes radiated or conducted noise emissions  
or excessive VDD noise is coupled into the ADC10. In these cases, or when the MCU cannot be placed  
in wait or I/O activity cannot be halted, the following recommendations may reduce the effect of noise on  
the accuracy:  
Place a 0.01 μF capacitor on the selected input channel to VREFL or VSSA (if available). This will  
improve noise issues but will affect sample rate based on the external analog source resistance.  
Operate the ADC10 in stop mode by setting ACLKEN, selecting the channel in ADSCR, and  
executing a STOP instruction. This will reduce VDD noise but will increase effective conversion time  
due to stop recovery.  
Average the input by converting the output many times in succession and dividing the sum of the  
results. Four samples are required to eliminate the effect of a 1LSB, one-time error.  
Reduce the effect of synchronous noise by operating off the asynchronous clock (ACLKEN=1) and  
averaging. Noise that is synchronous to the ADCK cannot be averaged out.  
MC68HC908QB8 Data Sheet, Rev. 3  
42  
Freescale Semiconductor  
Functional Description  
3.3.4.4 Code Width and Quantization Error  
The ADC10 quantizes the ideal straight-line transfer function into 1024 steps (in 10-bit mode). Each step  
ideally has the same height (1 code) and width. The width is defined as the delta between the transition  
points from one code to the next. The ideal code width for an N bit converter (in this case N can be 8 or  
10), defined as 1LSB, is:  
1LSB = (VREFH–VREFL) / 2N  
Because of this quantization, there is an inherent quantization error. Because the converter performs a  
conversion and then rounds to 8 or 10 bits, the code will transition when the voltage is at the midpoint  
between the points where the straight line transfer function is exactly represented by the actual transfer  
function. Therefore, the quantization error will be 1/2LSB in 8- or 10-bit mode. As a consequence,  
however, the code width of the first ($000) conversion is only 1/2LSB and the code width of the last ($FF  
or $3FF) is 1.5LSB.  
3.3.4.5 Linearity Errors  
The ADC10 may also exhibit non-linearity of several forms. Every effort has been made to reduce these  
errors but the user should be aware of them because they affect overall accuracy. These errors are:  
Zero-Scale Error (EZS) (sometimes called offset) — This error is defined as the difference between  
the actual code width of the first conversion and the ideal code width (1/2LSB). Note, if the first  
conversion is $001, then the difference between the actual $001 code width and its ideal (1LSB) is  
used.  
Full-Scale Error (EFS) — This error is defined as the difference between the actual code width of  
the last conversion and the ideal code width (1.5LSB). Note, if the last conversion is $3FE, then the  
difference between the actual $3FE code width and its ideal (1LSB) is used.  
Differential Non-Linearity (DNL) — This error is defined as the worst-case difference between the  
actual code width and the ideal code width for all conversions.  
Integral Non-Linearity (INL) — This error is defined as the highest-value the (absolute value of the)  
running sum of DNL achieves. More simply, this is the worst-case difference of the actual transition  
voltage to a given code and its corresponding ideal transition voltage, for all codes.  
Total Unadjusted Error (TUE) — This error is defined as the difference between the actual transfer  
function and the ideal straight-line transfer function, and therefore includes all forms of error.  
3.3.4.6 Code Jitter, Non-Monotonicity and Missing Codes  
Analog-to-digital converters are susceptible to three special forms of error. These are code jitter,  
non-monotonicity, and missing codes.  
Code jitter is when, at certain points, a given input voltage converts to one of two values when  
sampled repeatedly. Ideally, when the input voltage is infinitesimally smaller than the transition  
voltage, the converter yields the lower code (and vice-versa). However, even very small amounts  
of system noise can cause the converter to be indeterminate (between two codes) for a range of  
input voltages around the transition voltage. This range is normally around 1/2LSB but will  
increase with noise.  
Non-monotonicity is defined as when, except for code jitter, the converter converts to a lower code  
for a higher input voltage.  
Missing codes are those which are never converted for any input value. In 8-bit or 10-bit mode, the  
ADC10 is guaranteed to be monotonic and to have no missing codes.  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
43  
Analog-to-Digital Converter (ADC10) Module  
3.4 Interrupts  
When AIEN is set, the ADC10 is capable of generating a CPU interrupt after each conversion. A CPU  
interrupt is generated when the conversion completes (indicated by COCO being set). COCO will set at  
the end of a conversion regardless of the state of AIEN.  
3.5 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.  
3.5.1 Wait Mode  
The ADC10 will continue the conversion process and will generate an interrupt following a conversion if  
AIEN is set. If the ADC10 is not required to bring the MCU out of wait mode, ensure that the ADC10 is not  
in continuous conversion mode by clearing ADCO in the ADC10 status and control register before  
executing the WAIT instruction. In single conversion mode the ADC10 automatically enters a low-power  
state when the conversion is complete. It is not necessary to set the channel select bits (ADCH[4:0]) to  
all 1s to enter a low power state.  
3.5.2 Stop Mode  
If ACLKEN is clear, executing a STOP instruction will abort the current conversion and place the ADC10  
in a low-power state. Upon return from stop mode, a write to ADSCR is required to resume conversions,  
and the result stored in ADRH and ADRL will represent the last completed conversion until the new  
conversion completes.  
If ACLKEN is set, the ADC10 continues normal operation during stop mode. The ADC10 will continue the  
conversion process and will generate an interrupt following a conversion if AIEN is set. If the ADC10 is  
not required to bring the MCU out of stop mode, ensure that the ADC10 is not in continuous conversion  
mode by clearing ADCO in the ADC10 status and control register before executing the STOP instruction.  
In single conversion mode the ADC10 automatically enters a low-power state when the conversion is  
complete. It is not necessary to set the channel select bits (ADCH[4:0]) to all 1s to enter a low-power state.  
If ACLKEN is set, a conversion can be initiated while in stop using the external hardware trigger  
ADEXTCO when in external convert mode. The ADC10 will operate in a low-power mode until the trigger  
is asserted, at which point it will perform a conversion and assert the interrupt when complete (if AIEN is  
set).  
3.6 ADC10 During Break Interrupts  
The system integration module (SIM) controls whether status bits in other modules can be cleared during  
the break state. BCFE in the break flag control register (BFCR) enables software to clear status bits during  
the break state. See BFCR in the SIM section of this data sheet.  
To allow software to clear status bits during a break interrupt, write a 1 to BCFE. If a status bit is cleared  
during the break state, it remains cleared when the MCU exits the break state.  
To protect status bits during the break state, write a 0 to BCFE. With BCFE cleared (its default state),  
software can read and write registers during the break state without affecting status bits. Some status bits  
have a two-step read/write clearing procedure. If software does the first step on such a bit before the  
MC68HC908QB8 Data Sheet, Rev. 3  
44  
Freescale Semiconductor  
I/O Signals  
break, the bit cannot change during the break state as long as BCFE is cleared. After the break, doing the  
second step clears the status bit.  
3.7 I/O Signals  
The ADC10 module shares its pins with general-purpose input/output (I/O) port pins. See Figure 3-1 for  
port location of these shared pins. The ADC10 on this MCU uses VDD and VSS as its supply and reference  
pins. This MCU does not have an external trigger source.  
3.7.1 ADC10 Analog Power Pin (V  
)
DDA  
The ADC10 analog portion uses VDDA as its power pin. In some packages, VDDA is connected internally  
to VDD. If externally available, connect the VDDA pin to the same voltage potential as VDD. External filtering  
may be necessary to ensure clean VDDA for good results.  
NOTE  
If externally available, route VDDA carefully for maximum noise immunity  
and place bypass capacitors as near as possible to the package.  
3.7.2 ADC10 Analog Ground Pin (V  
)
SSA  
The ADC10 analog portion uses VSSA as its ground pin. In some packages, VSSA is connected internally  
to VSS. If externally available, connect the VSSA pin to the same voltage potential as VSS.  
In cases where separate power supplies are used for analog and digital power, the ground connection  
between these supplies should be at the VSSA pin. This should be the only ground connection between  
these supplies if possible. The VSSA pin makes a good single point ground location.  
3.7.3 ADC10 Voltage Reference High Pin (V  
)
REFH  
VREFH is the power supply for setting the high-reference voltage for the converter. In some packages,  
REFH is connected internally to VDDA. If externally available, VREFH may be connected to the same  
V
potential as VDDA, or may be driven by an external source that is between the minimum VDDA spec and  
the VDDA potential (VREFH must never exceed VDDA).  
NOTE  
Route VREFH carefully for maximum noise immunity and place bypass  
capacitors as near as possible to the package.  
AC current in the form of current spikes required to supply charge to the capacitor array at each  
successive approximation step is drawn through the VREFH and VREFL loop. The best external component  
to meet this current demand is a 0.1 μF capacitor with good high frequency characteristics. This capacitor  
is connected between VREFH and VREFL and must be placed as close as possible to the package pins.  
Resistance in the path is not recommended because the current will cause a voltage drop which could  
result in conversion errors. Inductance in this path must be minimum (parasitic only).  
3.7.4 ADC10 Voltage Reference Low Pin (V  
)
REFL  
VREFL is the power supply for setting the low-reference voltage for the converter. In some packages,  
VREFL is connected internally to VSSA. If externally available, connect the VREFL pin to the same voltage  
potential as VSSA. There will be a brief current associated with VREFL when the sampling capacitor is  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
45  
Analog-to-Digital Converter (ADC10) Module  
charging. If externally available, connect the VREFL pin to the same potential as VSSA at the single point  
ground location.  
3.7.5 ADC10 Channel Pins (ADn)  
The ADC10 has multiple input channels. Empirical data shows that capacitors on the analog inputs  
improve performance in the presence of noise or when the source impedance is high. 0.01 μF capacitors  
with good high-frequency characteristics are sufficient. These capacitors are not necessary in all cases,  
but when used they must be placed as close as possible to the package pins and be referenced to VSSA  
.
3.8 Registers  
These registers control and monitor operation of the ADC10:  
ADC10 status and control register, ADSCR  
ADC10 data registers, ADRH and ADRL  
ADC10 clock register, ADCLK  
3.8.1 ADC10 Status and Control Register  
This section describes the function of the ADC10 status and control register (ADSCR). Writing ADSCR  
aborts the current conversion and initiates a new conversion (if the ADCH[4:0] bits are equal to a value  
other than all 1s).  
Bit 7  
6
AIEN  
0
5
ADCO  
0
4
ADCH4  
1
3
ADCH3  
1
2
ADCH2  
1
1
ADCH1  
1
Bit 0  
ADCH0  
1
Read:  
Write:  
Reset:  
COCO  
0
= Unimplemented  
Figure 3-3. ADC10 Status and Control Register (ADSCR)  
COCO — Conversion Complete Bit  
COCO is a read-only bit which is set each time a conversion is completed. This bit is cleared whenever  
the status and control register is written or whenever the data register (low) is read.  
1 = Conversion completed  
0 = Conversion not completed  
AIEN — ADC10 Interrupt Enable Bit  
When this bit is set, an interrupt is generated at the end of a conversion. The interrupt signal is cleared  
when the data register is read or the status/control register is written.  
1 = ADC10 interrupt enabled  
0 = ADC10 interrupt disabled  
ADCO — ADC10 Continuous Conversion Bit  
When this bit is set, the ADC10 will begin to convert samples continuously (continuous conversion  
mode) and update the result registers at the end of each conversion, provided the ADCH[4:0] bits do  
not decode to all 1s. The ADC10 will continue to convert until the MCU enters reset, the MCU enters  
stop mode (if ACLKEN is clear), ADCLK is written, or until ADSCR is written again. If stop is entered  
MC68HC908QB8 Data Sheet, Rev. 3  
46  
Freescale Semiconductor  
Registers  
(with ACLKEN low), continuous conversions will cease and can be restarted only with a write to  
ADSCR. Any write to ADSCR with ADCO set and the ADCH bits not all 1s will abort the current  
conversion and begin continuous conversions.  
If the bus frequency is less than the ADCK frequency, precise sample time for continuous conversions  
cannot be guaranteed in short-sample mode (ADLSMP = 0). If the bus frequency is less than 1/11th  
of the ADCK frequency, precise sample time for continuous conversions cannot be guaranteed in  
long-sample mode (ADLSMP = 1).  
When clear, the ADC10 will perform a single conversion (single conversion mode) each time ADSCR  
is written (assuming the ADCH[4:0] bits do not decode all 1s).  
1 = Continuous conversion following a write to ADSCR  
0 = One conversion following a write to ADSCR  
ADCH[4:0] — Channel Select Bits  
The ADCH[4:0] bits form a 5-bit field that is used to select one of the input channels. The input  
channels are detailed in Table 3-2. The successive approximation converter subsystem is turned off  
when the channel select bits are all set to 1. This feature allows explicit disabling of the ADC10 and  
isolation of the input channel from the I/O pad. Terminating continuous conversion mode this way will  
prevent an additional, single conversion from being performed. It is not necessary to set the channel  
select bits to all 1s to place the ADC10 in a low-power state, however, because the module is  
automatically placed in a low-power state when a conversion completes.  
Table 3-2. Input Channel Select  
Input Select(1)  
AD0  
ADCH4  
ADCH3  
ADCH2  
ADCH1  
ADCH0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
AD1  
AD2  
AD3  
AD4  
AD5  
AD6  
AD7  
Unused  
Unused  
Unused  
AD8  
Continuing through  
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
AD9  
BANDGAP REF(2)  
Reserved  
Reserved  
VREFH  
VREFL  
1
1
1
1
1
1
1
1
0
1
Low-power state  
1. If any unused or reserved channels are selected, the resulting conversion will  
be unknown.  
2. Requires LVI to be powered (LVIPWRD =0, in CONFIG1)  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
47  
 
Analog-to-Digital Converter (ADC10) Module  
3.8.2 ADC10 Result High Register (ADRH)  
This register holds the MSBs of the result and is updated each time a conversion completes. All other bits  
read as 0s. Reading ADRH prevents the ADC10 from transferring subsequent conversion results into the  
result registers until ADRL is read. If ADRL is not read until the after next conversion is completed, then  
the intermediate conversion result will be lost. In 8-bit mode, this register contains no interlocking with  
ADRL.  
Bit 7  
0
6
0
5
0
4
0
3
0
2
0
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 3-4. ADC10 Data Register High (ADRH), 8-Bit Mode  
Bit 7  
0
6
0
5
0
4
0
3
0
2
0
1
Bit 0  
AD8  
Read:  
Write:  
Reset:  
AD9  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 3-5. ADC10 Data Register High (ADRH), 10-Bit Mode  
3.8.3 ADC10 Result Low Register (ADRL)  
This register holds the LSBs of the result. This register is updated each time a conversion completes.  
Reading ADRH prevents the ADC10 from transferring subsequent conversion results into the result  
registers until ADRL is read. If ADRL is not read until the after next conversion is completed, then the  
intermediate conversion result will be lost. In 8-bit mode, there is no interlocking with ADRH.  
Bit 7  
AD7  
6
5
4
3
2
1
Bit 0  
AD0  
Read:  
Write:  
Reset:  
AD6  
AD5  
AD4  
AD3  
AD2  
AD1  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 3-6. ADC10 Data Register Low (ADRL)  
MC68HC908QB8 Data Sheet, Rev. 3  
48  
Freescale Semiconductor  
Registers  
3.8.4 ADC10 Clock Register (ADCLK)  
This register selects the clock frequency for the ADC10 and the modes of operation.  
Bit 7  
ADLPC  
0
6
ADIV1  
0
5
ADIV0  
0
4
ADICLK  
0
3
MODE1  
0
2
MODE0  
0
1
Bit 0  
Read:  
Write:  
Reset:  
ADLSMP ACLKEN  
0
0
Figure 3-7. ADC10 Clock Register (ADCLK)  
ADLPC — ADC10 Low-Power Configuration Bit  
ADLPC controls the speed and power configuration of the successive approximation converter. This  
is used to optimize power consumption when higher sample rates are not required.  
1 = Low-power configuration: The power is reduced at the expense of maximum clock speed.  
0 = High-speed configuration  
ADIV[1:0] — ADC10 Clock Divider Bits  
ADIV1 and ADIV0 select the divide ratio used by the ADC10 to generate the internal clock ADCK.  
Table 3-3 shows the available clock configurations.  
Table 3-3. ADC10 Clock Divide Ratio  
ADIV1  
ADIV0  
Divide Ratio (ADIV)  
Clock Rate  
Input clock ÷ 1  
Input clock ÷ 2  
Input clock ÷ 4  
Input clock ÷ 8  
0
0
1
1
0
1
0
1
1
2
4
8
ADICLK — Input Clock Select Bit  
If ACLKEN is clear, ADICLK selects either the bus clock or an alternate clock source as the input clock  
source to generate the internal clock ADCK. If the alternate clock source is less than the minimum  
clock speed, use the internally-generated bus clock as the clock source. As long as the internal clock  
ADCK, which is equal to the selected input clock divided by ADIV, is at a frequency (fADCK) between  
the minimum and maximum clock speeds (considering ALPC), correct operation can be guaranteed.  
1 = The internal bus clock is selected as the input clock source  
0 = The alternate clock source IS SELECTED  
MODE[1:0] — 10- or 8-Bit or Hardware Triggered Mode Selection  
These bits select 10- or 8-bit operation. The successive approximation converter generates a result  
that is rounded to 8- or 10-bit value based on the mode selection. This rounding process sets the  
transfer function to transition at the midpoint between the ideal code voltages, causing a quantization  
error of 1/2LSB.  
Reset returns 8-bit mode.  
00 = 8-bit, right-justified, ADSCR software triggered mode enabled  
01 = 10-bit, right-justified, ADSCR software triggered mode enabled  
10 = Reserved  
11 = 10-bit, right-justified, hardware triggered mode enabled  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
49  
 
Analog-to-Digital Converter (ADC10) Module  
ADLSMP — Long Sample Time Configuration  
This bit configures the sample time of the ADC10 to either 3.5 or 23.5 ADCK clock cycles. This adjusts  
the sample period to allow higher impedance inputs to be accurately sampled or to maximize  
conversion speed for lower impedance inputs. Longer sample times can also be used to lower overall  
power consumption in continuous conversion mode if high conversion rates are not required.  
1 = Long sample time (23.5 cycles)  
0 = Short sample time (3.5 cycles)  
ACLKEN — Asynchronous Clock Source Enable  
This bit enables the asynchronous clock source as the input clock to generate the internal clock ADCK,  
and allows operation in stop mode. The asynchronous clock source will operate between 1 MHz and  
2 MHz if ADLPC is clear, and between 0.5 MHz and 1 MHz if ADLPC is set.  
1 = The asynchronous clock is selected as the input clock source (the clock generator is only  
enabled during the conversion)  
0 = ADICLK specifies the input clock source and conversions will not continue in stop mode  
MC68HC908QB8 Data Sheet, Rev. 3  
50  
Freescale Semiconductor  
Chapter 4  
Auto Wakeup Module (AWU)  
4.1 Introduction  
This section describes the auto wakeup module (AWU). The AWU generates a periodic interrupt during  
stop mode to wake the part up without requiring an external signal. Figure 4-1 is a block diagram of the  
AWU.  
COPRS (FROM CONFIG1)  
VDD  
AUTOWUGEN  
TO PTA READ, BIT 6  
1 = DIV 29  
D
E
AWUL  
Q
OSCENINSTOP (FROM CONFIG2)  
BUSCLKX2  
SHORT  
0 = DIV 214  
OVERFLOW  
AWUIREQ  
M
U
X
R
EN  
32 kHz  
CLK  
RST  
TO KBI INTERRUPT LOGIC  
(SEE Figure 9-2)  
INT RC OSC  
CLRLOGIC  
CLEAR  
RESET  
ACKK  
BUSCLKX2  
RESET  
CLK  
RST  
RESET  
ISTOP  
AWUIE  
Figure 4-1. Auto Wakeup Interrupt Request Generation Logic  
4.2 Features  
Features of the auto wakeup module include:  
One internal interrupt with separate interrupt enable bit, sharing the same keyboard interrupt vector  
and keyboard interrupt mask bit  
Exit from low-power stop mode without external signals  
Selectable timeout periods  
Dedicated low-power internal oscillator separate from the main system clock sources  
Option to allow bus clock source to run the AWU if enabled in STOP  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
51  
 
 
 
Auto Wakeup Module (AWU)  
4.3 Functional Description  
The function of the auto wakeup logic is to generate periodic wakeup requests to bring the microcontroller  
unit (MCU) out of stop mode. The wakeup requests are treated as regular keyboard interrupt requests,  
with the difference that instead of a pin, the interrupt signal is generated by an internal logic.  
Entering stop mode will enable the auto wakeup generation logic. Writing the AWUIE bit in the keyboard  
interrupt enable register enables or disables the auto wakeup interrupt input (see Figure 4-1). A 1 applied  
to the AWUIREQ input with auto wakeup interrupt request enabled, latches an auto wakeup interrupt  
request.  
Auto wakeup latch, AWUL, can be read directly from the bit 6 position of port A data register (PTA). This  
is a read-only bit which is occupying an empty bit position on PTA. No PTA associated registers, such as  
PTA6 data direction or PTA6 pullup exist for this bit.  
There are two clock sources for the AWU. An internal RC oscillator (INTRCOSC, exclusive for the auto  
wakeup feature) drives the wakeup request generator provided the OSCENINSTOP bit in the CONFIG2  
register Figure 4-1 is cleared. More accurate wakeup periods are possible using the BUSCLKX2 signal  
(from the oscillator module) which is selected by setting OSCENINSTOP.  
Once the overflow count is reached in the generator counter, a wakeup request, AWUIREQ, is latched  
and sent to the KBI logic. See Figure 4-1.  
Wakeup interrupt requests will only be serviced if the associated interrupt enable bit, AWUIE, in KBIER  
is set. The AWU shares the keyboard interrupt vector.  
The overflow count can be selected from two options defined by the COPRS bit in CONFIG1. This bit was  
“borrowed” from the computer operating properly (COP) using the fact that the COP feature is idle (no  
MCU clock available) in stop mode. COPRS = 1 selects the short wakeup period while COPRS = 0 selects  
the long wakeup period.  
The auto wakeup RC oscillator is highly dependent on operating voltage and temperature. This feature is  
not recommended for use as a time-keeping function.  
The wakeup request is latched to allow the interrupt source identification. The latched value, AWUL, can  
be read directly from the bit 6 position of PTA data register. This is a read-only bit which is occupying an  
empty bit position on PTA. No PTA associated registers, such as PTA6 data, PTA6 direction, and PTA6  
pullup exist for this bit. The latch can be cleared by writing to the ACKK bit in the KBSCR register. Reset  
also clears the latch. AWUIE bit in KBI interrupt enable register (see Figure 4-1) has no effect on AWUL  
reading.  
The AWU oscillator and counters are inactive in normal operating mode and become active only upon  
entering stop mode.  
4.4 Interrupts  
The AWU can generate an interrupt requests:.  
AWU Latch (AWUL) — The AWUL bit is set when the AWU counter overflows. The auto wakeup interrupt  
mask bit, AWUIE, is used to enable or disable AWU interrupt requests.  
The AWU shares its interrupt with the KBI vector.  
MC68HC908QB8 Data Sheet, Rev. 3  
52  
Freescale Semiconductor  
Low-Power Modes  
4.5 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.  
4.5.1 Wait Mode  
The AWU module remains inactive in wait mode.  
4.5.2 Stop Mode  
When the AWU module is enabled (AWUIE = 1 in the keyboard interrupt enable register) it is activated  
automatically upon entering stop mode. Clearing the IMASKK bit in the keyboard status and control  
register enables keyboard interrupt requests to bring the MCU out of stop mode. The AWU counters start  
from 0 each time stop mode is entered.  
4.6 Registers  
The AWU shares registers with the keyboard interrupt (KBI) module, the port A I/O module and  
configuration register 2. The following I/O registers control and monitor operation of the AWU:  
Port A data register (PTA)  
Keyboard interrupt status and control register (KBSCR)  
Keyboard interrupt enable register (KBIER)  
Configuration register 1 (CONFIG1)  
Configuration register 2 (CONFIG2)  
4.6.1 Port A I/O Register  
The port A data register (PTA) contains a data latch for the state of the AWU interrupt request, in addition  
to the data latches for port A.  
Bit 7  
0
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
AWUL  
PTA2  
PTA5  
PTA4  
PTA3  
PTA1  
PTA0  
0
0
Unaffected by reset  
= Unimplemented  
Figure 4-2. Port A Data Register (PTA)  
AWUL — Auto Wakeup Latch  
This is a read-only bit which has the value of the auto wakeup interrupt request latch. The wakeup  
request signal is generated internally. There is no PTA6 port or any of the associated bits such as  
PTA6 data direction or pullup bits.  
1 = Auto wakeup interrupt request is pending  
0 = Auto wakeup interrupt request is not pending  
NOTE  
PTA5–PTA0 bits are not used in conjuction with the auto wakeup feature.  
To see a description of these bits, see 12.2.1 Port A Data Register.  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
53  
Auto Wakeup Module (AWU)  
4.6.2 Keyboard Status and Control Register  
The keyboard status and control register (KBSCR):  
Flags keyboard/auto wakeup interrupt requests  
Acknowledges keyboard/auto wakeup interrupt requests  
Masks keyboard/auto wakeup interrupt requests  
Bit 7  
0
6
0
5
0
4
0
3
2
1
IMASKK  
0
Bit 0  
MODEK  
0
Read:  
Write:  
Reset:  
KEYF  
0
ACKK  
0
0
0
0
0
0
= Unimplemented  
Figure 4-3. Keyboard Status and Control Register (KBSCR)  
Bits 7–4 — Not used  
These read-only bits always read as 0s.  
KEYF — Keyboard Flag Bit  
This read-only bit is set when a keyboard interrupt is pending on port A or auto wakeup. Reset clears  
the KEYF bit.  
1 = Keyboard/auto wakeup interrupt pending  
0 = No keyboard/auto wakeup interrupt pending  
ACKK — Keyboard Acknowledge Bit  
Writing a 1 to this write-only bit clears the keyboard/auto wakeup interrupt request on port A and auto  
wakeup logic. ACKK always reads as 0. Reset clears ACKK.  
IMASKK— Keyboard Interrupt Mask Bit  
Writing a 1 to this read/write bit prevents the output of the keyboard interrupt mask from generating  
interrupt requests on port A or auto wakeup. Reset clears the IMASKK bit.  
1 = Keyboard/auto wakeup interrupt requests masked  
0 = Keyboard/auto wakeup interrupt requests not masked  
NOTE  
MODEK is not used in conjuction with the auto wakeup feature. To see a  
description of this bit, see 9.8.1 Keyboard Status and Control Register  
(KBSCR).  
4.6.3 Keyboard Interrupt Enable Register  
The keyboard interrupt enable register (KBIER) enables or disables the auto wakeup to operate as a  
keyboard/auto wakeup interrupt input.  
Bit 7  
0
6
AWUIE  
0
5
KBIE5  
0
4
KBIE4  
0
3
KBIE3  
0
2
KBIE2  
0
1
KBIE1  
0
Bit 0  
KBIE0  
0
Read:  
Write:  
Reset:  
0
= Unimplemented  
Figure 4-4. Keyboard Interrupt Enable Register (KBIER)  
MC68HC908QB8 Data Sheet, Rev. 3  
54  
Freescale Semiconductor  
Registers  
AWUIE — Auto Wakeup Interrupt Enable Bit  
This read/write bit enables the auto wakeup interrupt input to latch interrupt requests. Reset clears  
AWUIE.  
1 = Auto wakeup enabled as interrupt input  
0 = Auto wakeup not enabled as interrupt input  
NOTE  
KBIE5–KBIE0 bits are not used in conjuction with the auto wakeup feature.  
To see a description of these bits, see 9.8.2 Keyboard Interrupt Enable  
Register (KBIER).  
4.6.4 Configuration Register 2  
The configuration register 2 (CONFIG2), is used to allow the bus clock source to run in STOP. In this case,  
the clock, BUSCLKX2 will be used to drive the AWU request generator.  
Bit 7  
IRQPUD  
0
6
IRQEN  
0
5
R
0
4
R
0
3
R
0
2
1
Bit 0  
Read:  
Write:  
Reset:  
ESCI-BDSRC OSCENINSTOP RSTEN  
0
0
0
Figure 4-5. Configuration Register 2 (CONFIG2)  
OSCENINSTOP — Oscillator Enable in Stop Mode Bit  
OSCENINSTOP, when set, will allow the bus clock source (BUSCLKX2) to generate clocks for the  
AWU in stop mode. See 11.8.1 Oscillator Status and Control Register for information on enabling the  
external clock sources.  
1 = Oscillator enabled to operate during stop mode  
0 = Oscillator disabled during stop mode  
NOTE  
IRQPUD, IRQEN, ESCIBDSRC, and RSTEN bits are not used in conjuction  
with the auto wakeup feature. To see a description of these bits, see  
Chapter 5 Configuration Register (CONFIG).  
4.6.5 Configuration Register 1  
The configuration register 1 (CONFIG1), is used to select the period for the AWU. The timeout will be  
based on the COPRS bit along with the clock source for the AWU.  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
COPRS  
LVISTOP LVIRSTD LVIPWRD LVITRIP  
SSREC  
STOP  
COPD  
0
0
0
0
0
0
0
0
U
0
0
0
0
0
0
0
Reset: POR:  
U = Unaffected  
Figure 4-6. Configuration Register 1 (CONFIG1)  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
55  
Auto Wakeup Module (AWU)  
COPRS (In Stop Mode) — Auto Wakeup Period Selection Bit, depends on OSCSTOPEN in  
CONFIG2 and bus clock source (BUSCLKX2).  
1 = Auto wakeup short cycle = 512 × (INTRCOSC or BUSCLKX2)  
0 = Auto wakeup long cycle = 16,384 × (INTRCOSC or BUSCLKX2)  
SSREC — Short Stop Recovery Bit  
SSREC enables the CPU to exit stop mode with a delay of 32 BUSCLKX4 cycles instead of a 4096  
BUSCLKX4 cycle delay.  
1 = Stop mode recovery after 32 BUSCLKX4 cycles  
0 = Stop mode recovery after 4096 BUSCLKX4 cycles  
NOTE  
LVISTOP, LVIRST, LVIPWRD, LVITRIP and COPD bits are not used in  
conjuction with the auto wakeup feature. To see a description of these bits,  
see Chapter 5 Configuration Register (CONFIG)  
MC68HC908QB8 Data Sheet, Rev. 3  
56  
Freescale Semiconductor  
Chapter 5  
Configuration Register (CONFIG)  
5.1 Introduction  
This section describes the configuration registers (CONFIG1 and CONFIG2). The configuration registers  
enable or disable the following options:  
Stop mode recovery time (32 × BUSCLKX4 cycles or 4096 × BUSCLKX4 cycles)  
STOP instruction  
Computer operating properly module (COP)  
COP reset period (COPRS): 8176 × BUSCLKX4 or 262,128 × BUSCLKX4  
Low-voltage inhibit (LVI) enable and trip voltage selection  
Auto wakeup timeout period  
Allow clock source to remain enabled in STOP  
Enable IRQ pin  
Disable IRQ pin pullup device  
Enable RST pin  
Clock source selection for the enhanced serial communication interface (ESCI) module  
5.2 Functional Description  
The configuration registers are used in the initialization of various options. The configuration registers can  
be written once after each reset. Most of the configuration register bits are cleared during reset. Since the  
various options affect the operation of the microcontroller unit (MCU) it is recommended that this register  
be written immediately after reset. The configuration registers are located at $001E and $001F, and may  
be read at anytime.  
NOTE  
The CONFIG registers are one-time writable by the user after each reset.  
Upon a reset, the CONFIG registers default to predetermined settings as  
shown in Figure 5-1 and Figure 5-2.  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
POR:  
IRQPUD  
IRQEN  
R
R
R
ESCIBDSRC OSCENINSTOP RSTEN  
0
0
0
0
0
0
0
0
0
0
0
0
U
0
0
0
= Reserved  
U = Unaffected  
R
Figure 5-1. Configuration Register 2 (CONFIG2)  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
57  
 
 
Configuration Register (CONFIG)  
IRQPUD — IRQ Pin Pullup Control Bit  
1 = Internal pullup is disconnected  
0 = Internal pullup is connected between IRQ pin and VDD  
IRQEN — IRQ Pin Function Selection Bit  
1 = Interrupt request function active in pin  
0 = Interrupt request function inactive in pin  
ESCIBDSRC — ESCI Baud Rate Clock Source Bit  
ESCIBDSRC controls the clock source used for the ESCI. The setting of the bit affects the frequency  
at which the ESCI operates.  
1 = Internal data bus clock used as clock source for ESCI  
0 = BUSCLKX4 used as clock source for ESCI  
OSCENINSTOP— Oscillator Enable in Stop Mode Bit  
OSCENINSTOP, when set, will allow the clock source to continue to generate clocks in stop mode.  
This function can be used to keep the auto-wakeup running while the rest of the microcontroller stops.  
When clear, the clock source is disabled when the microcontroller enters stop mode.  
1 = Oscillator enabled to operate during stop mode  
0 = Oscillator disabled during stop mode  
RSTEN — RST Pin Function Selection  
1 = Reset function active in pin  
0 = Reset function inactive in pin  
NOTE  
The RSTEN bit is cleared by a power-on reset (POR) only. Other resets will  
leave this bit unaffected.  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
POR:  
COPRS  
LVISTOP LVIRSTD LVIPWRD LVITRIP  
SSREC  
STOP  
COPD  
0
0
0
0
0
0
0
U
0
0
0
0
0
0
0
0
U = Unaffected  
Figure 5-2. Configuration Register 1 (CONFIG1)  
COPRS (Out of Stop Mode) — COP Reset Period Selection Bit  
1 = COP reset short cycle = 8176 × BUSCLKX4  
0 = COP reset long cycle = 262,128 × BUSCLKX4  
COPRS (In Stop Mode) — Auto Wakeup Period Selection Bit, depends on OSCSTOPEN in  
CONFIG2 and external clock source  
1 = Auto wakeup short cycle = 512 × (INTRCOSC or BUSCLKX4)  
0 = Auto wakeup long cycle = 16,384 × (INTRCOSC or BUSCLKX4)  
LVISTOP — LVI Enable in Stop Mode Bit  
When the LVIPWRD bit is clear, setting the LVISTOP bit enables the LVI to operate during stop mode.  
Reset clears LVISTOP.  
1 = LVI enabled during stop mode  
0 = LVI disabled during stop mode  
MC68HC908QB8 Data Sheet, Rev. 3  
58  
Freescale Semiconductor  
Functional Description  
LVIRSTD — LVI Reset Disable Bit  
LVIRSTD disables the reset signal from the LVI module.  
1 = LVI module resets disabled  
0 = LVI module resets enabled  
LVIPWRD — LVI Power Disable Bit  
LVIPWRD disables the LVI module.  
1 = LVI module power disabled  
0 = LVI module power enabled  
LVITRIP — LVI Trip Point Selection Bit  
LVITRIP selects the voltage operating mode of the LVI module. The voltage mode selected for the LVI  
should match the operating VDD for the LVI’s voltage trip points for each of the modes.  
1 = LVI operates for a 5-V protection  
0 = LVI operates for a 3-V protection  
NOTE  
The LVITRIP bit is cleared by a power-on reset (POR) only. Other resets  
will leave this bit unaffected.  
SSREC — Short Stop Recovery Bit  
SSREC enables the CPU to exit stop mode with a delay of 32 BUSCLKX4 cycles instead of a 4096  
BUSCLKX4 cycle delay.  
1 = Stop mode recovery after 32 BUSCLKX4 cycles  
0 = Stop mode recovery after 4096 BUSCLKX4 cycles  
NOTE  
Exiting stop mode by an LVI reset will result in the long stop recovery.  
When using the LVI during normal operation but disabling during stop mode, the LVI will have an  
enable time of tEN. The system stabilization time for power-on reset and long stop recovery (both 4096  
BUSCLKX4 cycles) gives a delay longer than the LVI enable time for these startup scenarios. There  
is no period where the MCU is not protected from a low-power condition. However, when using the  
short stop recovery configuration option, the 32 BUSCLKX4 delay must be greater than the LVI’s turn  
on time to avoid a period in startup where the LVI is not protecting the MCU.  
STOP — STOP Instruction Enable Bit  
STOP enables the STOP instruction.  
1 = STOP instruction enabled  
0 = STOP instruction treated as illegal opcode  
COPD — COP Disable Bit  
COPD disables the COP module.  
1 = COP module disabled  
0 = COP module enabled  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
59  
Configuration Register (CONFIG)  
MC68HC908QB8 Data Sheet, Rev. 3  
60  
Freescale Semiconductor  
Chapter 6  
Computer Operating Properly (COP)  
6.1 Introduction  
The computer operating properly (COP) module contains a free-running counter that generates a reset if  
allowed to overflow. The COP module helps software recover from runaway code. Prevent a COP reset  
by clearing the COP counter periodically. The COP module can be disabled through the COPD bit in the  
configuration 1 (CONFIG1) register.  
6.2 Functional Description  
SIM MODULE  
SIM RESET CIRCUIT  
12-BIT SIM COUNTER  
BUSCLKX4  
RESET STATUS REGISTER  
INTERNAL RESET SOURCES(1)  
STOP INSTRUCTION  
COPCTL WRITE  
COP CLOCK  
COP MODULE  
6-BIT COP COUNTER  
COPEN (FROM SIM)  
COPD (FROM CONFIG1)  
CLEAR  
COP COUNTER  
RESET  
COPCTL WRITE  
COP RATE SELECT  
(COPRS FROM CONFIG1)  
1. See Chapter 14 System Integration Module (SIM) for more details.  
Figure 6-1. COP Block Diagram  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
61  
 
Computer Operating Properly (COP)  
The COP counter is a free-running 6-bit counter preceded by the 12-bit system integration module (SIM)  
counter. If not cleared by software, the COP counter overflows and generates an asynchronous reset after  
8176 or 262,128 BUSCLKX4 cycles; depending on the state of the COP rate select bit, COPRS, in  
configuration register 1. With a 262,128 BUSCLKX4 cycle overflow option, the internal 12.8-MHz  
oscillator gives a COP timeout period of 20.48 ms. Writing any value to location $FFFF before an overflow  
occurs prevents a COP reset by clearing the COP counter and stages 12–5 of the SIM counter.  
NOTE  
Service the COP immediately after reset and before entering or after exiting  
stop mode to guarantee the maximum time before the first COP counter  
overflow.  
A COP reset pulls the RST pin low (if the RSTEN bit is set in the CONFIG1 register) for 32 × BUSCLKX4  
cycles and sets the COP bit in the reset status register (RSR). See 14.8.1 SIM Reset Status Register.  
NOTE  
Place COP clearing instructions in the main program and not in an interrupt  
subroutine. Such an interrupt subroutine could keep the COP from  
generating a reset even while the main program is not working properly.  
6.3 I/O Signals  
The following paragraphs describe the signals shown in Figure 6-1.  
6.3.1 BUSCLKX4  
BUSCLKX4 is the oscillator output signal. BUSCLKX4 frequency is equal to the internal oscillator  
frequency, the crystal frequency, or the RC-oscillator frequency.  
6.3.2 STOP Instruction  
The STOP instruction clears the SIM counter.  
6.3.3 COPCTL Write  
Writing any value to the COP control register (COPCTL) (see Figure 6-2) clears the COP counter and  
clears stages 12–5 of the SIM counter. Reading the COP control register returns the low byte of the reset  
vector.  
6.3.4 Power-On Reset  
The power-on reset (POR) circuit in the SIM clears the SIM counter 4096 × BUSCLKX4 cycles after power  
up.  
6.3.5 Internal Reset  
An internal reset clears the SIM counter and the COP counter.  
6.3.6 COPD (COP Disable)  
The COPD signal reflects the state of the COP disable bit (COPD) in the configuration register (CONFIG).  
See Chapter 5 Configuration Register (CONFIG).  
MC68HC908QB8 Data Sheet, Rev. 3  
62  
Freescale Semiconductor  
Interrupts  
6.3.7 COPRS (COP Rate Select)  
The COPRS signal reflects the state of the COP rate select bit (COPRS) in the configuration register 1  
(CONFIG1). See Chapter 5 Configuration Register (CONFIG).  
6.4 Interrupts  
The COP does not generate CPU interrupt requests.  
6.5 Monitor Mode  
The COP is disabled in monitor mode when VTST is present on the IRQ pin.  
6.6 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.  
6.6.1 Wait Mode  
The COP continues to operate during wait mode. To prevent a COP reset during wait mode, periodically  
clear the COP counter.  
6.6.2 Stop Mode  
Stop mode turns off the BUSCLKX4 input to the COP and clears the SIM counter. Service the COP  
immediately before entering or after exiting stop mode to ensure a full COP timeout period after entering  
or exiting stop mode.  
6.7 COP Module During Break Mode  
The COP is disabled during a break interrupt with monitor mode when BDCOP bit is set in break auxiliary  
register (BRKAR).  
6.8 Register  
The COP control register (COPCTL) is located at address $FFFF and overlaps the reset vector. Writing  
any value to $FFFF clears the COP counter and starts a new timeout period. Reading location $FFFF  
returns the low byte of the reset vector.  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
LOW BYTE OF RESET VECTOR  
CLEAR COP COUNTER  
Unaffected by reset  
Figure 6-2. COP Control Register (COPCTL)  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
63  
Computer Operating Properly (COP)  
MC68HC908QB8 Data Sheet, Rev. 3  
64  
Freescale Semiconductor  
Chapter 7  
Central Processor Unit (CPU)  
7.1 Introduction  
The M68HC08 CPU (central processor unit) is an enhanced and fully object-code-compatible version of  
the M68HC05 CPU. The CPU08 Reference Manual (document order number CPU08RM/AD) contains a  
description of the CPU instruction set, addressing modes, and architecture.  
7.2 Features  
Features of the CPU include:  
Object code fully upward-compatible with M68HC05 Family  
16-bit stack pointer with stack manipulation instructions  
16-bit index register with x-register manipulation instructions  
8-MHz CPU internal bus frequency  
64-Kbyte program/data memory space  
16 addressing modes  
Memory-to-memory data moves without using accumulator  
Fast 8-bit by 8-bit multiply and 16-bit by 8-bit divide instructions  
Enhanced binary-coded decimal (BCD) data handling  
Modular architecture with expandable internal bus definition for extension of addressing range  
beyond 64 Kbytes  
Low-power stop and wait modes  
7.3 CPU Registers  
Figure 7-1 shows the five CPU registers. CPU registers are not part of the memory map.  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
65  
Central Processor Unit (CPU)  
7
0
0
0
0
ACCUMULATOR (A)  
15  
15  
15  
H
X
INDEX REGISTER (H:X)  
STACK POINTER (SP)  
PROGRAM COUNTER (PC)  
CONDITION CODE REGISTER (CCR)  
7
V
0
C
1
1
H
I
N
Z
CARRY/BORROW FLAG  
ZERO FLAG  
NEGATIVE FLAG  
INTERRUPT MASK  
HALF-CARRY FLAG  
TWO’S COMPLEMENT OVERFLOW FLAG  
Figure 7-1. CPU Registers  
7.3.1 Accumulator  
The accumulator is a general-purpose 8-bit register. The CPU uses the accumulator to hold operands and  
the results of arithmetic/logic operations.  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Unaffected by reset  
Figure 7-2. Accumulator (A)  
7.3.2 Index Register  
The 16-bit index register allows indexed addressing of a 64-Kbyte memory space. H is the upper byte of  
the index register, and X is the lower byte. H:X is the concatenated 16-bit index register.  
In the indexed addressing modes, the CPU uses the contents of the index register to determine the  
conditional address of the operand.  
The index register can serve also as a temporary data storage location.  
Bit  
Bit  
0
15 14 13 12 11 10  
9
0
8
0
7
6
5
4
3
2
1
Read:  
Write:  
Reset:  
0
0
0
0
0
0
X
X
X
X
X
X
X
X
X = Indeterminate  
Figure 7-3. Index Register (H:X)  
MC68HC908QB8 Data Sheet, Rev. 3  
66  
Freescale Semiconductor  
CPU Registers  
7.3.3 Stack Pointer  
The stack pointer is a 16-bit register that contains the address of the next location on the stack. During a  
reset, the stack pointer is preset to $00FF. The reset stack pointer (RSP) instruction sets the least  
significant byte to $FF and does not affect the most significant byte. The stack pointer decrements as data  
is pushed onto the stack and increments as data is pulled from the stack.  
In the stack pointer 8-bit offset and 16-bit offset addressing modes, the stack pointer can function as an  
index register to access data on the stack. The CPU uses the contents of the stack pointer to determine  
the conditional address of the operand.  
Bit  
Bit  
0
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
Read:  
Write:  
Reset:  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
Figure 7-4. Stack Pointer (SP)  
NOTE  
The location of the stack is arbitrary and may be relocated anywhere in  
random-access memory (RAM). Moving the SP out of page 0 ($0000 to  
$00FF) frees direct address (page 0) space. For correct operation, the  
stack pointer must point only to RAM locations.  
7.3.4 Program Counter  
The program counter is a 16-bit register that contains the address of the next instruction or operand to be  
fetched.  
Normally, the program counter automatically increments to the next sequential memory location every  
time an instruction or operand is fetched. Jump, branch, and interrupt operations load the program  
counter with an address other than that of the next sequential location.  
During reset, the program counter is loaded with the reset vector address located at $FFFE and $FFFF.  
The vector address is the address of the first instruction to be executed after exiting the reset state.  
Bit  
Bit  
0
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
Read:  
Write:  
Reset:  
Loaded with vector from $FFFE and $FFFF  
Figure 7-5. Program Counter (PC)  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
67  
Central Processor Unit (CPU)  
7.3.5 Condition Code Register  
The 8-bit condition code register contains the interrupt mask and five flags that indicate the results of the  
instruction just executed. Bits 6 and 5 are set permanently to 1. The following paragraphs describe the  
functions of the condition code register.  
Bit 7  
V
6
1
1
5
1
1
4
H
X
3
I
2
N
X
1
Z
X
Bit 0  
C
Read:  
Write:  
Reset:  
X
1
X
X = Indeterminate  
Figure 7-6. Condition Code Register (CCR)  
V — Overflow Flag  
The CPU sets the overflow flag when a two's complement overflow occurs. The signed branch  
instructions BGT, BGE, BLE, and BLT use the overflow flag.  
1 = Overflow  
0 = No overflow  
H — Half-Carry Flag  
The CPU sets the half-carry flag when a carry occurs between accumulator bits 3 and 4 during an  
add-without-carry (ADD) or add-with-carry (ADC) operation. The half-carry flag is required for  
binary-coded decimal (BCD) arithmetic operations. The DAA instruction uses the states of the H and  
C flags to determine the appropriate correction factor.  
1 = Carry between bits 3 and 4  
0 = No carry between bits 3 and 4  
I — Interrupt Mask  
When the interrupt mask is set, all maskable CPU interrupts are disabled. CPU interrupts are enabled  
when the interrupt mask is cleared. When a CPU interrupt occurs, the interrupt mask is set  
automatically after the CPU registers are saved on the stack, but before the interrupt vector is fetched.  
1 = Interrupts disabled  
0 = Interrupts enabled  
NOTE  
To maintain M6805 Family compatibility, the upper byte of the index  
register (H) is not stacked automatically. If the interrupt service routine  
modifies H, then the user must stack and unstack H using the PSHH and  
PULH instructions.  
After the I bit is cleared, the highest-priority interrupt request is serviced first.  
A return-from-interrupt (RTI) instruction pulls the CPU registers from the stack and restores the  
interrupt mask from the stack. After any reset, the interrupt mask is set and can be cleared only by the  
clear interrupt mask software instruction (CLI).  
N — Negative Flag  
The CPU sets the negative flag when an arithmetic operation, logic operation, or data manipulation  
produces a negative result, setting bit 7 of the result.  
1 = Negative result  
0 = Non-negative result  
MC68HC908QB8 Data Sheet, Rev. 3  
68  
Freescale Semiconductor  
Arithmetic/Logic Unit (ALU)  
Z — Zero Flag  
The CPU sets the zero flag when an arithmetic operation, logic operation, or data manipulation  
produces a result of $00.  
1 = Zero result  
0 = Non-zero result  
C — Carry/Borrow Flag  
The CPU sets the carry/borrow flag when an addition operation produces a carry out of bit 7 of the  
accumulator or when a subtraction operation requires a borrow. Some instructions — such as bit test  
and branch, shift, and rotate — also clear or set the carry/borrow flag.  
1 = Carry out of bit 7  
0 = No carry out of bit 7  
7.4 Arithmetic/Logic Unit (ALU)  
The ALU performs the arithmetic and logic operations defined by the instruction set.  
Refer to the CPU08 Reference Manual (document order number CPU08RM/AD) for a description of the  
instructions and addressing modes and more detail about the architecture of the CPU.  
7.5 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.  
7.5.1 Wait Mode  
The WAIT instruction:  
Clears the interrupt mask (I bit) in the condition code register, enabling interrupts. After exit from  
wait mode by interrupt, the I bit remains clear. After exit by reset, the I bit is set.  
Disables the CPU clock  
7.5.2 Stop Mode  
The STOP instruction:  
Clears the interrupt mask (I bit) in the condition code register, enabling external interrupts. After  
exit from stop mode by external interrupt, the I bit remains clear. After exit by reset, the I bit is set.  
Disables the CPU clock  
After exiting stop mode, the CPU clock begins running after the oscillator stabilization delay.  
7.6 CPU During Break Interrupts  
If a break module is present on the MCU, the CPU starts a break interrupt by:  
Loading the instruction register with the SWI instruction  
Loading the program counter with $FFFC:$FFFD or with $FEFC:$FEFD in monitor mode  
The break interrupt begins after completion of the CPU instruction in progress. If the break address  
register match occurs on the last cycle of a CPU instruction, the break interrupt begins immediately.  
A return-from-interrupt instruction (RTI) in the break routine ends the break interrupt and returns the MCU  
to normal operation if the break interrupt has been deasserted.  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
69  
Central Processor Unit (CPU)  
7.7 Instruction Set Summary  
Table 7-1 provides a summary of the M68HC08 instruction set.  
Table 7-1. Instruction Set Summary (Sheet 1 of 6)  
Effect  
on CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
ADC #opr  
IMM  
DIR  
EXT  
IX2  
A9 ii  
B9 dd  
C9 hh ll  
D9 ee ff  
E9 ff  
2
3
4
4
3
2
4
5
ADC opr  
ADC opr  
ADC opr,X  
ADC opr,X  
ADC ,X  
Add with Carry  
A (A) + (M) + (C)  
IX1  
IX  
SP1  
SP2  
F9  
ADC opr,SP  
ADC opr,SP  
9EE9 ff  
9ED9 ee ff  
ADD #opr  
ADD opr  
ADD opr  
ADD opr,X  
ADD opr,X  
ADD ,X  
ADD opr,SP  
ADD opr,SP  
IMM  
DIR  
EXT  
IX2  
AB ii  
BB dd  
CB hh ll  
DB ee ff  
EB ff  
FB  
9EEB ff  
9EDB ee ff  
2
3
4
4
3
2
4
5
Add without Carry  
A (A) + (M)  
IX1  
IX  
SP1  
SP2  
AIS #opr  
AIX #opr  
Add Immediate Value (Signed) to SP  
Add Immediate Value (Signed) to H:X  
– IMM  
– IMM  
A7 ii  
AF ii  
2
2
SP (SP) + (16 « M)  
H:X (H:X) + (16 « M)  
AND #opr  
AND opr  
IMM  
DIR  
EXT  
A4 ii  
B4 dd  
C4 hh ll  
D4 ee ff  
E4 ff  
2
3
4
4
3
2
4
5
AND opr  
AND opr,X  
AND opr,X  
AND ,X  
AND opr,SP  
AND opr,SP  
IX2  
Logical AND  
A (A) & (M)  
0
IX1  
IX  
F4  
SP1  
SP2  
9EE4 ff  
9ED4 ee ff  
ASL opr  
ASLA  
DIR  
INH  
38 dd  
48  
4
1
1
4
3
5
ASLX  
Arithmetic Shift Left  
(Same as LSL)  
INH  
58  
C
0
ASL opr,X  
ASL ,X  
IX1  
68 ff  
78  
b7  
b7  
b0  
b0  
IX  
ASL opr,SP  
SP1  
9E68 ff  
ASR opr  
ASRA  
ASRX  
ASR opr,X  
ASR opr,X  
ASR opr,SP  
DIR  
INH  
37 dd  
47  
4
1
1
4
3
5
INH  
57  
C
Arithmetic Shift Right  
IX1  
67 ff  
77  
IX  
SP1  
9E67 ff  
BCC rel  
Branch if Carry Bit Clear  
PC (PC) + 2 + rel ? (C) = 0  
– REL  
24 rr  
3
DIR (b0) 11 dd  
DIR (b1) 13 dd  
DIR (b2) 15 dd  
DIR (b3) 17 dd  
DIR (b4) 19 dd  
DIR (b5) 1B dd  
DIR (b6) 1D dd  
DIR (b7) 1F dd  
4
4
4
4
4
4
4
4
BCLR n, opr  
Clear Bit n in M  
Mn 0  
BCS rel  
BEQ rel  
Branch if Carry Bit Set (Same as BLO)  
Branch if Equal  
PC (PC) + 2 + rel ? (C) = 1  
PC (PC) + 2 + rel ? (Z) = 1  
– REL  
– REL  
25 rr  
27 rr  
3
3
Branch if Greater Than or Equal To  
(Signed Operands)  
BGE opr  
BGT opr  
– REL  
– REL  
90 rr  
92 rr  
3
PC (PC) + 2 + rel ? (N V) = 0  
Branch if Greater Than (Signed  
Operands)  
3
3
PC (PC) + 2 + rel ? (Z) | (N V) = 0  
BHCC rel  
BHCS rel  
BHI rel  
Branch if Half Carry Bit Clear  
Branch if Half Carry Bit Set  
Branch if Higher  
PC (PC) + 2 + rel ? (H) = 0  
PC (PC) + 2 + rel ? (H) = 1  
PC (PC) + 2 + rel ? (C) | (Z) = 0  
– REL  
– REL  
– REL  
28 rr  
29 rr  
22 rr  
3
3
MC68HC908QB8 Data Sheet, Rev. 3  
70  
Freescale Semiconductor  
 
Instruction Set Summary  
Table 7-1. Instruction Set Summary (Sheet 2 of 6)  
Effect  
on CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
Branch if Higher or Same  
(Same as BCC)  
BHS rel  
PC (PC) + 2 + rel ? (C) = 0  
– REL  
24 rr  
3
BIH rel  
BIL rel  
Branch if IRQ Pin High  
Branch if IRQ Pin Low  
PC (PC) + 2 + rel ? IRQ = 1  
PC (PC) + 2 + rel ? IRQ = 0  
– REL  
– REL  
2F rr  
2E rr  
3
3
BIT #opr  
BIT opr  
IMM  
DIR  
EXT  
A5 ii  
B5 dd  
C5 hh ll  
D5 ee ff  
E5 ff  
2
3
4
4
3
2
4
5
BIT opr  
BIT opr,X  
BIT opr,X  
BIT ,X  
BIT opr,SP  
BIT opr,SP  
IX2  
Bit Test  
(A) & (M)  
0
IX1  
IX  
F5  
SP1  
SP2  
9EE5 ff  
9ED5 ee ff  
Branch if Less Than or Equal To  
(Signed Operands)  
BLE opr  
– REL  
93 rr  
3
PC (PC) + 2 + rel ? (Z) | (N V) = 1  
BLO rel  
BLS rel  
BLT opr  
BMC rel  
BMI rel  
BMS rel  
BNE rel  
BPL rel  
BRA rel  
Branch if Lower (Same as BCS)  
Branch if Lower or Same  
Branch if Less Than (Signed Operands)  
Branch if Interrupt Mask Clear  
Branch if Minus  
PC (PC) + 2 + rel ? (C) = 1  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
– REL  
25 rr  
23 rr  
91 rr  
2C rr  
2B rr  
2D rr  
26 rr  
2A rr  
20 rr  
3
3
3
3
3
3
3
3
3
PC (PC) + 2 + rel ? (C) | (Z) = 1  
PC (PC) + 2 + rel ? (N V) =1  
PC (PC) + 2 + rel ? (I) = 0  
PC (PC) + 2 + rel ? (N) = 1  
PC (PC) + 2 + rel ? (I) = 1  
PC (PC) + 2 + rel ? (Z) = 0  
PC (PC) + 2 + rel ? (N) = 0  
PC (PC) + 2 + rel  
Branch if Interrupt Mask Set  
Branch if Not Equal  
Branch if Plus  
Branch Always  
DIR (b0) 01 dd rr  
DIR (b1) 03 dd rr  
DIR (b2) 05 dd rr  
DIR (b3) 07 dd rr  
DIR (b4) 09 dd rr  
DIR (b5) 0B dd rr  
DIR (b6) 0D dd rr  
DIR (b7) 0F dd rr  
5
5
5
5
5
5
5
5
BRCLR n,opr,rel Branch if Bit n in M Clear  
PC (PC) + 3 + rel ? (Mn) = 0  
PC (PC) + 2  
BRN rel  
Branch Never  
– REL  
21 rr  
3
DIR (b0) 00 dd rr  
DIR (b1) 02 dd rr  
DIR (b2) 04 dd rr  
DIR (b3) 06 dd rr  
DIR (b4) 08 dd rr  
DIR (b5) 0A dd rr  
DIR (b6) 0C dd rr  
DIR (b7) 0E dd rr  
5
5
5
5
5
5
5
5
BRSET n,opr,rel Branch if Bit n in M Set  
PC (PC) + 3 + rel ? (Mn) = 1  
DIR (b0) 10 dd  
DIR (b1) 12 dd  
DIR (b2) 14 dd  
DIR (b3) 16 dd  
DIR (b4) 18 dd  
DIR (b5) 1A dd  
DIR (b6) 1C dd  
DIR (b7) 1E dd  
4
4
4
4
4
4
4
4
BSET n,opr  
BSR rel  
Set Bit n in M  
Mn 1  
PC (PC) + 2; push (PCL)  
SP (SP) – 1; push (PCH)  
SP (SP) – 1  
Branch to Subroutine  
– REL  
AD rr  
4
PC (PC) + rel  
CBEQ opr,rel  
PC (PC) + 3 + rel ? (A) – (M) = $00  
PC (PC) + 3 + rel ? (A) – (M) = $00  
PC (PC) + 3 + rel ? (X) – (M) = $00  
PC (PC) + 3 + rel ? (A) – (M) = $00  
PC (PC) + 2 + rel ? (A) – (M) = $00  
PC (PC) + 4 + rel ? (A) – (M) = $00  
DIR  
31 dd rr  
41 ii rr  
51 ii rr  
61 ff rr  
71 rr  
5
4
4
5
4
6
CBEQA #opr,rel  
CBEQX #opr,rel  
CBEQ opr,X+,rel  
CBEQ X+,rel  
IMM  
IMM  
Compare and Branch if Equal  
IX1+  
IX+  
CBEQ opr,SP,rel  
SP1  
9E61 ff rr  
CLC  
CLI  
Clear Carry Bit  
C 0  
I 0  
0
0 INH  
– INH  
98  
9A  
1
2
Clear Interrupt Mask  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
71  
Central Processor Unit (CPU)  
Table 7-1. Instruction Set Summary (Sheet 3 of 6)  
Effect  
on CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
CLR opr  
CLRA  
M $00  
A $00  
X $00  
H $00  
M $00  
M $00  
M $00  
DIR  
INH  
INH  
3F dd  
4F  
3
1
1
1
3
2
4
CLRX  
5F  
CLRH  
Clear  
0
0
1
– INH  
IX1  
8C  
CLR opr,X  
CLR ,X  
6F ff  
7F  
IX  
SP1  
CLR opr,SP  
9E6F ff  
CMP #opr  
CMP opr  
CMP opr  
CMP opr,X  
CMP opr,X  
CMP ,X  
CMP opr,SP  
CMP opr,SP  
IMM  
DIR  
EXT  
A1 ii  
B1 dd  
C1 hh ll  
D1 ee ff  
E1 ff  
2
3
4
4
3
2
4
5
IX2  
Compare A with M  
(A) – (M)  
IX1  
IX  
F1  
SP1  
SP2  
9EE1 ff  
9ED1 ee ff  
COM opr  
COMA  
M (M) = $FF – (M)  
A (A) = $FF – (M)  
X (X) = $FF – (M)  
M (M) = $FF – (M)  
M (M) = $FF – (M)  
M (M) = $FF – (M)  
DIR  
INH  
33 dd  
43  
4
1
1
4
3
5
COMX  
INH  
53  
Complement (One’s Complement)  
Compare H:X with M  
0
1
COM opr,X  
COM ,X  
COM opr,SP  
IX1  
63 ff  
73  
9E63 ff  
IX  
SP1  
CPHX #opr  
CPHX opr  
IMM  
65 ii ii+1  
75 dd  
3
4
(H:X) – (M:M + 1)  
DIR  
CPX #opr  
CPX opr  
IMM  
DIR  
EXT  
A3 ii  
B3 dd  
C3 hh ll  
D3 ee ff  
E3 ff  
2
3
4
4
3
2
4
5
CPX opr  
CPX ,X  
IX2  
Compare X with M  
(X) – (M)  
(A)10  
CPX opr,X  
CPX opr,X  
CPX opr,SP  
CPX opr,SP  
IX1  
IX  
F3  
SP1  
SP2  
9EE3 ff  
9ED3 ee ff  
DAA  
Decimal Adjust A  
U –  
INH  
72  
2
A (A) – 1 or M (M) – 1 or X (X) – 1  
PC (PC) + 3 + rel ? (result) 0  
PC (PC) + 2 + rel ? (result) 0  
PC (PC) + 2 + rel ? (result) 0  
PC (PC) + 3 + rel ? (result) 0  
PC (PC) + 2 + rel ? (result) 0  
PC (PC) + 4 + rel ? (result) 0  
5
3
3
5
4
6
DBNZ opr,rel  
DBNZA rel  
DIR  
INH  
3B dd rr  
4B rr  
DBNZX rel  
Decrement and Branch if Not Zero  
– INH  
IX1  
5B rr  
DBNZ opr,X,rel  
DBNZ X,rel  
6B ff rr  
7B rr  
IX  
SP1  
DBNZ opr,SP,rel  
9E6B ff rr  
DEC opr  
DECA  
M (M) – 1  
A (A) – 1  
X (X) – 1  
M (M) – 1  
M (M) – 1  
M (M) – 1  
DIR  
INH  
3A dd  
4A  
4
1
1
4
3
5
DECX  
INH  
5A  
Decrement  
Divide  
DEC opr,X  
DEC ,X  
DEC opr,SP  
IX1  
6A ff  
7A  
9E6A ff  
IX  
SP1  
A (H:A)/(X)  
H Remainder  
DIV  
INH  
52  
7
EOR #opr  
EOR opr  
IMM  
DIR  
EXT  
A8 ii  
B8 dd  
C8 hh ll  
D8 ee ff  
E8 ff  
2
3
4
4
3
2
4
5
EOR opr  
EOR opr,X  
EOR opr,X  
EOR ,X  
EOR opr,SP  
EOR opr,SP  
IX2  
Exclusive OR M with A  
0
A (A M)  
IX1  
IX  
F8  
SP1  
SP2  
9EE8 ff  
9ED8 ee ff  
INC opr  
INCA  
M (M) + 1  
A (A) + 1  
X (X) + 1  
M (M) + 1  
M (M) + 1  
M (M) + 1  
DIR  
INH  
3C dd  
4C  
4
1
1
4
3
5
INCX  
INH  
5C  
Increment  
INC opr,X  
INC ,X  
IX1  
6C ff  
7C  
IX  
INC opr,SP  
SP1  
9E6C ff  
MC68HC908QB8 Data Sheet, Rev. 3  
72  
Freescale Semiconductor  
Instruction Set Summary  
Table 7-1. Instruction Set Summary (Sheet 4 of 6)  
Effect  
on CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
JMP opr  
DIR  
BC dd  
CC hh ll  
DC ee ff  
EC ff  
2
3
4
3
2
JMP opr  
JMP opr,X  
JMP opr,X  
JMP ,X  
EXT  
Jump  
PC Jump Address  
– IX2  
IX1  
IX  
FC  
JSR opr  
JSR opr  
JSR opr,X  
JSR opr,X  
JSR ,X  
DIR  
EXT  
– IX2  
IX1  
BD dd  
CD hh ll  
DD ee ff  
ED ff  
4
5
6
5
4
PC (PC) + n (n = 1, 2, or 3)  
Push (PCL); SP (SP) – 1  
Push (PCH); SP (SP) – 1  
PC Unconditional Address  
Jump to Subroutine  
IX  
FD  
LDA #opr  
LDA opr  
IMM  
DIR  
EXT  
A6 ii  
B6 dd  
C6 hh ll  
D6 ee ff  
E6 ff  
2
3
4
4
3
2
4
5
LDA opr  
LDA opr,X  
LDA opr,X  
LDA ,X  
LDA opr,SP  
LDA opr,SP  
IX2  
Load A from M  
Load H:X from M  
Load X from M  
A (M)  
H:X ← (M:M + 1)  
X (M)  
0
0
0
IX1  
IX  
F6  
SP1  
SP2  
9EE6 ff  
9ED6 ee ff  
LDHX #opr  
LDHX opr  
IMM  
45 ii jj  
55 dd  
3
4
DIR  
LDX #opr  
LDX opr  
LDX opr  
LDX opr,X  
LDX opr,X  
LDX ,X  
LDX opr,SP  
LDX opr,SP  
IMM  
DIR  
EXT  
AE ii  
BE dd  
CE hh ll  
DE ee ff  
EE ff  
FE  
9EEE ff  
9EDE ee ff  
2
3
4
4
3
2
4
5
IX2  
IX1  
IX  
SP1  
SP2  
LSL opr  
LSLA  
DIR  
INH  
38 dd  
48  
4
1
1
4
3
5
LSLX  
Logical Shift Left  
(Same as ASL)  
INH  
58  
C
0
LSL opr,X  
LSL ,X  
LSL opr,SP  
IX1  
68 ff  
78  
9E68 ff  
b7  
b7  
b0  
b0  
IX  
SP1  
LSR opr  
LSRA  
DIR  
INH  
34 dd  
44  
4
1
1
4
3
5
LSRX  
INH  
54  
0
C
Logical Shift Right  
0
LSR opr,X  
LSR ,X  
IX1  
64 ff  
74  
IX  
LSR opr,SP  
SP1  
9E64 ff  
MOV opr,opr  
MOV opr,X+  
MOV #opr,opr  
MOV X+,opr  
DD  
4E dd dd  
5E dd  
5
4
4
4
(M)Destination (M)Source  
DIX+  
Move  
0
0
IMD  
IX+D  
6E ii dd  
7E dd  
H:X (H:X) + 1 (IX+D, DIX+)  
X:A (X) × (A)  
MUL  
Unsigned multiply  
0 INH  
42  
5
NEG opr  
NEGA  
DIR  
INH  
30 dd  
40  
4
1
1
4
3
5
M –(M) = $00 – (M)  
A –(A) = $00 – (A)  
X –(X) = $00 – (X)  
M –(M) = $00 – (M)  
M –(M) = $00 – (M)  
NEGX  
INH  
50  
Negate (Two’s Complement)  
NEG opr,X  
NEG ,X  
NEG opr,SP  
IX1  
60 ff  
70  
9E60 ff  
IX  
SP1  
NOP  
NSA  
No Operation  
Nibble Swap A  
None  
– INH  
– INH  
9D  
62  
1
3
A (A[3:0]:A[7:4])  
ORA #opr  
ORA opr  
IMM  
DIR  
EXT  
AA ii  
BA dd  
CA hh ll  
DA ee ff  
EA ff  
2
3
4
4
3
2
4
5
ORA opr  
ORA opr,X  
ORA opr,X  
ORA ,X  
ORA opr,SP  
ORA opr,SP  
IX2  
Inclusive OR A and M  
A (A) | (M)  
0
IX1  
IX  
FA  
SP1  
SP2  
9EEA ff  
9EDA ee ff  
PSHA  
PSHH  
PSHX  
Push A onto Stack  
Push H onto Stack  
Push X onto Stack  
Push (A); SP (SP) – 1  
Push (H); SP (SP) – 1  
Push (X); SP (SP) – 1  
– INH  
– INH  
– INH  
87  
8B  
89  
2
2
2
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
73  
Central Processor Unit (CPU)  
Table 7-1. Instruction Set Summary (Sheet 5 of 6)  
Effect  
on CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
PULA  
PULH  
PULX  
Pull A from Stack  
Pull H from Stack  
Pull X from Stack  
SP (SP + 1); Pull (A)  
SP (SP + 1); Pull (H)  
SP (SP + 1); Pull (X)  
– INH  
– INH  
– INH  
86  
8A  
88  
2
2
2
ROL opr  
ROLA  
DIR  
INH  
39 dd  
49  
4
1
1
4
3
5
ROLX  
INH  
59  
C
Rotate Left through Carry  
Rotate Right through Carry  
ROL opr,X  
ROL ,X  
ROL opr,SP  
IX1  
69 ff  
79  
9E69 ff  
b7  
b0  
IX  
SP1  
ROR opr  
RORA  
DIR  
INH  
36 dd  
46  
4
1
1
4
3
5
RORX  
INH  
56  
C
ROR opr,X  
ROR ,X  
IX1  
66 ff  
76  
b7  
b0  
IX  
ROR opr,SP  
SP1  
9E66 ff  
RSP  
Reset Stack Pointer  
Return from Interrupt  
SP $FF  
– INH  
9C  
1
SP (SP) + 1; Pull (CCR)  
SP (SP) + 1; Pull (A)  
SP (SP) + 1; Pull (X)  
SP (SP) + 1; Pull (PCH)  
SP (SP) + 1; Pull (PCL)  
RTI  
INH  
80  
7
SP SP + 1; Pull (PCH)  
SP SP + 1; Pull (PCL)  
RTS  
Return from Subroutine  
Subtract with Carry  
– INH  
81  
4
SBC #opr  
SBC opr  
SBC opr  
SBC opr,X  
SBC opr,X  
SBC ,X  
SBC opr,SP  
SBC opr,SP  
IMM  
DIR  
EXT  
A2 ii  
B2 dd  
C2 hh ll  
D2 ee ff  
E2 ff  
2
3
4
4
3
2
4
5
IX2  
A (A) – (M) – (C)  
IX1  
IX  
SP1  
SP2  
F2  
9EE2 ff  
9ED2 ee ff  
SEC  
SEI  
Set Carry Bit  
C 1  
I 1  
1
1 INH  
– INH  
99  
9B  
1
2
Set Interrupt Mask  
STA opr  
DIR  
EXT  
IX2  
B7 dd  
C7 hh ll  
D7 ee ff  
E7 ff  
3
4
4
3
2
4
5
STA opr  
STA opr,X  
STA opr,X  
STA ,X  
STA opr,SP  
STA opr,SP  
Store A in M  
M (A)  
0
– IX1  
IX  
F7  
SP1  
SP2  
9EE7 ff  
9ED7 ee ff  
STHX opr  
Store H:X in M  
(M:M + 1) (H:X)  
0
0
– DIR  
35 dd  
4
Enable Interrupts, Stop Processing,  
Refer to MCU Documentation  
STOP  
I 0; Stop Processing  
– INH  
8E  
1
STX opr  
DIR  
EXT  
IX2  
BF dd  
CF hh ll  
DF ee ff  
EF ff  
3
4
4
3
2
4
5
STX opr  
STX opr,X  
STX opr,X  
STX ,X  
STX opr,SP  
STX opr,SP  
Store X in M  
M (X)  
0
– IX1  
IX  
FF  
SP1  
SP2  
9EEF ff  
9EDF ee ff  
SUB #opr  
SUB opr  
SUB opr  
SUB opr,X  
SUB opr,X  
SUB ,X  
SUB opr,SP  
SUB opr,SP  
IMM  
DIR  
EXT  
A0 ii  
B0 dd  
C0 hh ll  
D0 ee ff  
E0 ff  
2
3
4
4
3
2
4
5
IX2  
Subtract  
A (A) – (M)  
IX1  
IX  
F0  
SP1  
SP2  
9EE0 ff  
9ED0 ee ff  
MC68HC908QB8 Data Sheet, Rev. 3  
74  
Freescale Semiconductor  
Opcode Map  
Table 7-1. Instruction Set Summary (Sheet 6 of 6)  
Effect  
on CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
PC (PC) + 1; Push (PCL)  
SP (SP) – 1; Push (PCH)  
SP (SP) – 1; Push (X)  
SP (SP) – 1; Push (A)  
SWI  
Software Interrupt  
1
– INH  
83  
9
SP (SP) – 1; Push (CCR)  
SP (SP) – 1; I 1  
PCH Interrupt Vector High Byte  
PCL Interrupt Vector Low Byte  
TAP  
TAX  
TPA  
Transfer A to CCR  
Transfer A to X  
CCR (A)  
X (A)  
INH  
– INH  
– INH  
84  
97  
85  
2
1
1
Transfer CCR to A  
A (CCR)  
TST opr  
TSTA  
DIR  
INH  
3D dd  
4D  
3
1
1
3
2
4
TSTX  
INH  
5D  
Test for Negative or Zero  
(A) – $00 or (X) – $00 or (M) – $00  
0
TST opr,X  
TST ,X  
TST opr,SP  
IX1  
6D ff  
7D  
9E6D ff  
IX  
SP1  
TSX  
TXA  
TXS  
Transfer SP to H:X  
Transfer X to A  
H:X (SP) + 1  
A (X)  
– INH  
– INH  
– INH  
95  
9F  
94  
2
1
2
Transfer H:X to SP  
(SP) (H:X) – 1  
I bit 0; Inhibit CPU clocking  
WAIT  
Enable Interrupts; Wait for Interrupt  
0
– INH  
8F  
1
until interrupted  
A
Accumulator  
n
Any bit  
C
Carry/borrow bit  
opr Operand (one or two bytes)  
PC Program counter  
CCR  
dd  
Condition code register  
Direct address of operand  
Direct address of operand and relative offset of branch instruction  
Direct to direct addressing mode  
Direct addressing mode  
Direct to indexed with post increment addressing mode  
High and low bytes of offset in indexed, 16-bit offset addressing  
Extended addressing mode  
Offset byte in indexed, 8-bit offset addressing  
Half-carry bit  
Index register high byte  
PCH Program counter high byte  
PCL Program counter low byte  
REL Relative addressing mode  
rel  
rr  
SP1 Stack pointer, 8-bit offset addressing mode  
SP2 Stack pointer 16-bit offset addressing mode  
SP Stack pointer  
U
V
X
Z
&
|
dd rr  
DD  
DIR  
DIX+  
ee ff  
EXT  
ff  
Relative program counter offset byte  
Relative program counter offset byte  
H
H
Undefined  
Overflow bit  
Index register low byte  
Zero bit  
hh ll  
I
High and low bytes of operand address in extended addressing  
Interrupt mask  
Immediate operand byte  
Immediate source to direct destination addressing mode  
ii  
Logical AND  
Logical OR  
IMD  
IMM  
INH  
IX  
Immediate addressing mode  
Inherent addressing mode  
Indexed, no offset addressing mode  
Indexed, no offset, post increment addressing mode  
Logical EXCLUSIVE OR  
Contents of  
( )  
–( ) Negation (two’s complement)  
#
IX+  
Immediate value  
IX+D  
IX1  
IX1+  
IX2  
M
Indexed with post increment to direct addressing mode  
Indexed, 8-bit offset addressing mode  
Indexed, 8-bit offset, post increment addressing mode  
Indexed, 16-bit offset addressing mode  
Memory location  
«
?
Sign extend  
Loaded with  
If  
Concatenated with  
Set or cleared  
Not affected  
:
N
Negative bit  
7.8 Opcode Map  
See Table 7-2.  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
75  
Table 7-2. Opcode Map  
Bit Manipulation Branch  
Read-Modify-Write  
Control  
Register/Memory  
DIR  
DIR  
REL  
DIR  
3
INH  
4
INH  
IX1  
SP1  
9E6  
IX  
7
INH  
INH  
IMM  
A
DIR  
B
EXT  
C
IX2  
SP2  
IX1  
E
SP1  
9EE  
IX  
F
MSB  
0
1
2
5
6
8
9
D
9ED  
LSB  
5
4
3
4
1
NEGA  
INH  
1
NEGX  
INH  
4
5
3
7
3
2
3
4
4
5
3
4
2
0
BRSET0 BSET0  
BRA  
NEG  
NEG  
NEG  
NEG  
RTI  
BGE  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
3
DIR  
5
2
DIR  
4
2
2
2
2
2
2
2
2
REL 2 DIR  
1
1
2
IX1 3 SP1 1 IX  
5
1
1
INH  
2
2
2
2
1
1
REL 2 IMM 2 DIR  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
EXT 3 IX2  
4
4
4
4
4
4
4
4
4
4
4
4
SP2 2 IX1  
3
3
3
3
3
3
3
3
3
3
3
3
SP1 1 IX  
3
BRN  
REL 3 DIR  
5
4
4
6
4
4
3
BLT  
2
3
4
4
5
3
4
2
1
2
BRCLR0 BCLR0  
CBEQ CBEQA CBEQX CBEQ  
CBEQ  
CBEQ  
RTS  
CMP  
CMP  
CMP  
CMP  
CMP  
CMP  
CMP  
CMP  
3
DIR  
5
2
DIR  
4
3
IMM 3 IMM 3 IX1+  
4
SP1 2 IX+  
INH  
REL 2 IMM 2 DIR  
EXT 3 IX2  
SP2 2 IX1  
SP1 1 IX  
3
5
7
3
2
DAA  
3
BGT  
2
SBC  
3
SBC  
4
SBC  
EXT 3 IX2  
4
CPX  
EXT 3 IX2  
4
AND  
EXT 3 IX2  
4
BIT  
EXT 3 IX2  
4
LDA  
EXT 3 IX2  
4
STA  
EXT 3 IX2  
4
EOR  
EXT 3 IX2  
4
ADC  
EXT 3 IX2  
4
ORA  
EXT 3 IX2  
4
ADD  
EXT 3 IX2  
3
JMP  
EXT 3 IX2  
5
JSR  
EXT 3 IX2  
4
LDX  
EXT 3 IX2  
4
STX  
EXT 3 IX2  
4
SBC  
5
SBC  
SP2 2 IX1  
5
CPX  
SP2 2 IX1  
5
AND  
SP2 2 IX1  
5
BIT  
SP2 2 IX1  
5
LDA  
SP2 2 IX1  
5
STA  
SP2 2 IX1  
5
EOR  
SP2 2 IX1  
5
ADC  
SP2 2 IX1  
3
SBC  
4
SBC  
SP1 1 IX  
4
CPX  
SP1 1 IX  
4
AND  
SP1 1 IX  
4
BIT  
SP1 1 IX  
4
LDA  
SP1 1 IX  
4
STA  
SP1 1 IX  
4
EOR  
SP1 1 IX  
4
ADC  
SP1 1 IX  
2
SBC  
BRSET1 BSET1  
BHI  
MUL  
INH  
DIV  
INH  
NSA  
3
DIR  
5
2
DIR  
4
REL  
1
1
1
2
2
3
2
2
2
2
2
INH  
1
INH  
3
REL 2 IMM 2 DIR  
3
BLS  
REL 2 DIR  
3
BCC  
REL 2 DIR  
3
BCS  
REL 2 DIR  
3
BNE  
REL 2 DIR  
4
1
1
4
COM  
IX1  
4
LSR  
IX1  
3
CPHX  
IMM  
4
ROR  
IX1  
4
ASR  
IX1  
4
LSL  
IX1  
4
ROL  
IX1  
4
DEC  
IX1  
5
9
3
BLE  
2
CPX  
3
CPX  
4
CPX  
3
CPX  
2
CPX  
3
BRCLR1 BCLR1  
COM  
COMA  
COMX  
COM  
COM  
SWI  
3
DIR  
5
2
DIR  
4
1
INH  
1
INH  
3
3
SP1 1 IX  
1
1
1
1
1
1
1
1
1
1
INH  
REL 2 IMM 2 DIR  
4
LSR  
1
LSRA  
INH  
1
LSRX  
INH  
5
LSR  
SP1 1 IX  
3
LSR  
2
2
2
AND  
IMM 2 DIR  
3
AND  
4
AND  
3
AND  
2
AND  
4
BRSET2 BSET2  
TAP  
TXS  
3
DIR  
5
2
DIR  
4
1
3
1
INH  
INH  
2
2
2
2
2
2
2
2
4
3
4
4
1
2
2
BIT  
3
BIT  
4
BIT  
3
BIT  
2
BIT  
5
BRCLR2 BCLR2  
STHX  
LDHX  
LDHX  
CPHX  
TPA  
TSX  
3
DIR  
5
2
DIR  
4
IMM 2 DIR  
2
DIR  
3
INH  
INH  
IMM 2 DIR  
4
ROR  
1
1
5
2
PULA  
INH  
2
PSHA  
INH  
2
PULX  
INH  
2
PSHX  
INH  
2
PULH  
INH  
2
PSHH  
INH  
1
CLRH  
INH  
2
LDA  
IMM 2 DIR  
2
AIS  
IMM 2 DIR  
2
EOR  
IMM 2 DIR  
2
ADC  
IMM 2 DIR  
2
ORA  
IMM 2 DIR  
2
ADD  
IMM 2 DIR  
3
LDA  
4
LDA  
3
LDA  
2
LDA  
6
BRSET3 BSET3  
RORA  
RORX  
ROR  
SP1 1 IX  
5
ASR  
SP1 1 IX  
5
LSL  
SP1 1 IX  
5
ROL  
SP1 1 IX  
ROR  
3
DIR  
5
2
DIR  
4
1
INH  
1
INH  
3
3
3
3
3
4
3
3
3
BEQ  
REL 2 DIR  
3
4
ASR  
1
ASRA  
INH  
1
LSLA  
INH  
1
ROLA  
INH  
1
DECA  
INH  
1
ASRX  
INH  
1
LSLX  
INH  
1
ROLX  
INH  
1
DECX  
INH  
3
ASR  
1
3
STA  
4
STA  
3
STA  
2
STA  
7
BRCLR3 BCLR3  
TAX  
3
DIR  
5
2
DIR  
4
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
INH  
4
LSL  
3
LSL  
1
3
EOR  
4
EOR  
3
EOR  
2
EOR  
8
BRSET4 BSET4 BHCC  
CLC  
3
DIR  
5
2
DIR  
4
2
REL 2 DIR  
3
INH  
4
ROL  
3
ROL  
1
3
ADC  
4
ADC  
3
ADC  
2
ADC  
9
BRCLR4 BCLR4 BHCS  
SEC  
3
DIR  
5
2
DIR  
4
2
2
2
2
2
2
2
REL 2 DIR  
INH  
3
BPL  
REL 2 DIR  
3
BMI  
REL 3 DIR  
4
DEC  
5
DEC  
SP1 1 IX  
3
DEC  
2
3
ORA  
4
ORA  
5
ORA  
SP2 2 IX1  
5
ADD  
SP2 2 IX1  
3
ORA  
4
ORA  
SP1 1 IX  
4
ADD  
SP1 1 IX  
2
ORA  
A
B
C
D
E
F
BRSET5 BSET5  
CLI  
3
DIR  
5
2
DIR  
4
INH  
5
3
3
5
6
4
2
3
ADD  
4
ADD  
3
ADD  
2
ADD  
BRCLR5 BCLR5  
DBNZ DBNZA DBNZX DBNZ  
DBNZ  
DBNZ  
SEI  
3
DIR  
5
2
DIR  
4
2
1
1
3
1
INH  
1
2
1
1
2
1
INH  
1
3
2
2
3
2
IX1  
4
SP1 2 IX  
INH  
3
4
INC  
5
INC  
SP1 1 IX  
4
TST  
SP1 1 IX  
3
INC  
1
2
JMP  
4
JMP  
3
JMP  
2
BRSET6 BSET6  
BMC  
INCA  
INCX  
INC  
RSP  
JMP  
3
DIR  
5
2
DIR  
4
REL 2 DIR  
INH  
1
INH  
1
IX1  
3
INH  
2
DIR  
4
2
2
IX1  
5
1
1
IX  
3
BMS  
3
TST  
2
TST  
1
4
BSR  
REL 2 DIR  
2
LDX  
IMM 2 DIR  
2
AIX  
IMM 2 DIR  
6
JSR  
4
JSR  
IX  
2
LDX  
BRCLR6 BCLR6  
TSTA  
TSTX  
TST  
NOP  
JSR  
JSR  
3
DIR  
5
2
DIR  
4
REL 2 DIR  
3
INH  
5
INH  
4
IX1  
4
INH  
2
2
2
IX1  
3
4
1
STOP  
INH  
1
WAIT  
INH  
3
LDX  
4
LDX  
5
LDX  
SP2 2 IX1  
5
STX  
SP2 2 IX1  
4
LDX  
SP1 1 IX  
4
STX  
SP1 1 IX  
BRSET7 BSET7  
BIL  
MOV  
MOV  
MOV  
MOV  
LDX  
*
1
TXA  
INH  
3
DIR  
5
2
DIR  
4
REL  
3
DD  
DIX+  
IMD  
3
2
IX+D  
1
1
4
4
3
3
3
CLR  
1
CLRA  
INH  
1
CLRX  
INH  
4
CLR  
SP1 1 IX  
2
CLR  
3
STX  
4
STX  
3
STX  
2
STX  
BRCLR7 BCLR7  
BIH  
CLR  
IX1  
3
DIR  
2
DIR  
REL 2 DIR  
3
1
INH Inherent  
REL Relative  
SP1 Stack Pointer, 8-Bit Offset  
SP2 Stack Pointer, 16-Bit Offset  
IX+ Indexed, No Offset with  
Post Increment  
IX1+ Indexed, 1-Byte Offset with  
Post Increment  
MSB  
LSB  
0
High Byte of Opcode in Hexadecimal  
Cycles  
IMM Immediate  
DIR Direct  
IX  
Indexed, No Offset  
IX1 Indexed, 8-Bit Offset  
IX2 Indexed, 16-Bit Offset  
IMD Immediate-Direct  
EXT Extended  
DD Direct-Direct  
IX+D Indexed-Direct DIX+ Direct-Indexed  
*Pre-byte for stack pointer indexed instructions  
5
Low Byte of Opcode in Hexadecimal  
0
BRSET0 Opcode Mnemonic  
DIR Number of Bytes / Addressing Mode  
3
Chapter 8  
External Interrupt (IRQ)  
8.1 Introduction  
The IRQ (external interrupt) module provides a maskable interrupt input.  
IRQ functionality is enabled by setting configuration register 2 (CONFIG2) IRQEN bit accordingly. A zero  
disables the IRQ function and IRQ will assume the other shared functionalities. A one enables the IRQ  
function. See Chapter 5 Configuration Register (CONFIG) for more information on enabling the IRQ pin.  
The IRQ pin shares its pin with general-purpose input/output (I/O) port pins. See Figure 8-1 for port  
location of this shared pin.  
8.2 Features  
Features of the IRQ module include:  
A dedicated external interrupt pin IRQ  
IRQ interrupt control bits  
Programmable edge-only or edge and level interrupt sensitivity  
Automatic interrupt acknowledge  
Internal pullup device  
8.3 Functional Description  
A low level applied to the external interrupt request (IRQ) pin can latch a CPU interrupt request. Figure 8-2  
shows the structure of the IRQ module.  
Interrupt signals on the IRQ pin are latched into the IRQ latch. The IRQ latch remains set until one of the  
following actions occurs:  
IRQ vector fetch. An IRQ vector fetch automatically generates an interrupt acknowledge signal that  
clears the latch that caused the vector fetch.  
Software clear. Software can clear the IRQ latch by writing a 1 to the ACK bit in the interrupt status  
and control register (INTSCR).  
Reset. A reset automatically clears the IRQ latch.  
The external IRQ pin is falling edge sensitive out of reset and is software-configurable to be either falling  
edge or falling edge and low level sensitive. The MODE bit in INTSCR controls the triggering sensitivity  
of the IRQ pin.  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
77  
 
External Interrupt (IRQ)  
PTA0/TCH0/AD0/KBI0  
PTA1/TCH1/AD1/KBI1  
PTA2/IRQ/KBI2/TCLK  
PTA3/RST/KBI3  
CLOCK  
GENERATOR  
KEYBOARD INTERRUPT  
MODULE  
PTA4/OSC2/AD2/KBI4  
PTA5/OSC1/AD3/KBI5  
M68HC08 CPU  
EXTERNAL INTERRUPT  
MODULE  
PTB0/SCK/AD4  
PTB1/MOSI/AD5  
PTB2/MISO/AD6  
PTB3/SS/AD7  
PTB4/RxD/AD8  
PTB5/TxD/AD9  
PTB6/TCH2  
AUTO WAKEUP  
MODULE  
LOW-VOLTAGE  
INHIBIT  
PTB7/TCH3  
4-CHANNEL 16-BIT  
TIMER MODULE  
COP  
MODULE  
MC68HC908QB8  
256 BYTES  
MC68HC908QB8  
8192 BYTES  
10-CHANNEL  
10-BIT ADC  
USER RAM  
USER FLASH  
ENHANCED SERIAL  
COMMUNICATIONS  
INTERFACE MODULE  
VDD  
VSS  
POWER SUPPLY  
SERIAL PERIPHERAL  
INTERFACE  
DEVELOPMENT SUPPORT  
MONITOR ROM  
BREAK MODULE  
RST, IRQ: Pins have internal pull up device  
All port pins have programmable pull up device  
PTA[0:5]: Higher current sink and source capability  
Figure 8-1. Block Diagram Highlighting IRQ Block and Pin  
When set, the IMASK bit in INTSCR masks the IRQ interrupt request. A latched interrupt request is not  
presented to the interrupt priority logic unless IMASK is clear.  
NOTE  
The interrupt mask (I) in the condition code register (CCR) masks all  
interrupt requests, including the IRQ interrupt request.  
A falling edge on the IRQ pin can latch an interrupt request into the IRQ latch. An IRQ vector fetch,  
software clear, or reset clears the IRQ latch.  
MC68HC908QB8 Data Sheet, Rev. 3  
78  
Freescale Semiconductor  
Functional Description  
RESET  
ACK  
TO CPU FOR  
BIL/BIH  
INSTRUCTIONS  
IRQ VECTOR  
FETCH  
DECODER  
VDD  
INTERNAL  
PULLUP  
DEVICE  
VDD  
IRQF  
CLR  
D
Q
IRQ  
SYNCHRONIZER  
INTERRUPT  
REQUEST  
CK  
IRQ  
IMASK  
IRQ LATCH  
MODE  
TO MODE  
SELECT  
LOGIC  
HIGH  
VOLTAGE  
DETECT  
Figure 8-2. IRQ Module Block Diagram  
8.3.1 MODE = 1  
If the MODE bit is set, the IRQ pin is both falling edge sensitive and low level sensitive. With MODE set,  
both of the following actions must occur to clear the IRQ interrupt request:  
Return of the IRQ pin to a high level. As long as the IRQ pin is low, the IRQ request remains active.  
IRQ vector fetch or software clear. An IRQ vector fetch generates an interrupt acknowledge signal  
to clear the IRQ latch. Software generates the interrupt acknowledge signal by writing a 1 to ACK  
in INTSCR. The ACK bit is useful in applications that poll the IRQ pin and require software to clear  
the IRQ latch. Writing to ACK prior to leaving an interrupt service routine can also prevent spurious  
interrupts due to noise. Setting ACK does not affect subsequent transitions on the IRQ pin. A falling  
edge that occurs after writing to ACK latches another interrupt request. If the IRQ mask bit, IMASK,  
is clear, the CPU loads the program counter with the IRQ vector address.  
The IRQ vector fetch or software clear and the return of the IRQ pin to a high level may occur in any order.  
The interrupt request remains pending as long as the IRQ pin is low. A reset will clear the IRQ latch and  
the MODE control bit, thereby clearing the interrupt even if the pin stays low.  
Use the BIH or BIL instruction to read the logic level on the IRQ pin.  
8.3.2 MODE = 0  
If the MODE bit is clear, the IRQ pin is falling edge sensitive only. With MODE clear, an IRQ vector fetch  
or software clear immediately clears the IRQ latch.  
The IRQF bit in INTSCR can be read to check for pending interrupts. The IRQF bit is not affected by  
IMASK, which makes it useful in applications where polling is preferred.  
NOTE  
When using the level-sensitive interrupt trigger, avoid false IRQ interrupts  
by masking interrupt requests in the interrupt routine.  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
79  
External Interrupt (IRQ)  
8.4 Interrupts  
The following IRQ source can generate interrupt requests:  
Interrupt flag (IRQF) — The IRQF bit is set when the IRQ pin is asserted based on the IRQ mode..  
The IRQ interrupt mask bit, IMASK, is used to enable or disable IRQ interrupt requests.  
8.5 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.  
8.5.1 Wait Mode  
The IRQ module remains active in wait mode. Clearing IMASK in INTSCR enables IRQ interrupt requests  
to bring the MCU out of wait mode.  
8.5.2 Stop Mode  
The IRQ module remains active in stop mode. Clearing IMASK in INTSCR enables IRQ interrupt requests  
to bring the MCU out of stop mode.  
8.6 IRQ Module During Break Interrupts  
The system integration module (SIM) controls whether status bits in other modules can be cleared during  
the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear status  
bits during the break state. See BFCR in the SIM section of this data sheet.  
To allow software to clear status bits during a break interrupt, write a 1 to BCFE. If a status bit is cleared  
during the break state, it remains cleared when the MCU exits the break state.  
To protect status bits during the break state, write a 0 to BCFE. With BCFE cleared (its default state),  
software can read and write registers during the break state without affecting status bits. Some status bits  
have a two-step read/write clearing procedure. If software does the first step on such a bit before the  
break, the bit cannot change during the break state as long as BCFE is cleared. After the break, doing the  
second step clears the status bit.  
8.7 I/O Signals  
The IRQ module does not share its pin with any module on this MCU.  
8.7.1 IRQ Input Pins (IRQ)  
The IRQ pin provides a maskable external interrupt source. The IRQ pin contains an internal pullup  
device.  
MC68HC908QB8 Data Sheet, Rev. 3  
80  
Freescale Semiconductor  
Registers  
8.8 Registers  
The IRQ status and control register (INTSCR) controls and monitors operation of the IRQ module. The  
INTSCR:  
Shows the state of the IRQ flag  
Clears the IRQ latch  
Masks the IRQ interrupt request  
Controls triggering sensitivity of the IRQ interrupt pin  
Bit 7  
0
6
0
5
0
4
0
3
2
0
1
IMASK  
0
Bit 0  
MODE  
0
Read:  
Write:  
Reset:  
IRQF  
ACK  
0
0
0
0
0
0
= Unimplemented  
Figure 8-3. IRQ Status and Control Register (INTSCR)  
IRQF — IRQ Flag Bit  
This read-only status bit is set when the IRQ interrupt is pending.  
1 = IRQ interrupt pending  
0 = IRQ interrupt not pending  
ACK — IRQ Interrupt Request Acknowledge Bit  
Writing a 1 to this write-only bit clears the IRQ latch. ACK always reads 0.  
IMASK — IRQ Interrupt Mask Bit  
Writing a 1 to this read/write bit disables the IRQ interrupt request.  
1 = IRQ interrupt request disabled  
0 = IRQ interrupt request enabled  
MODE — IRQ Edge/Level Select Bit  
This read/write bit controls the triggering sensitivity of the IRQ pin.  
1 = IRQ interrupt request on falling edges and low levels  
0 = IRQ interrupt request on falling edges only  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
81  
External Interrupt (IRQ)  
MC68HC908QB8 Data Sheet, Rev. 3  
82  
Freescale Semiconductor  
Chapter 9  
Keyboard Interrupt Module (KBI)  
9.1 Introduction  
The keyboard interrupt module (KBI) provides independently maskable external interrupts.  
The KBI shares its pins with general-purpose input/output (I/O) port pins. See Figure 9-1 for port location  
of these shared pins.  
9.2 Features  
Features of the keyboard interrupt module include:  
Keyboard interrupt pins with separate keyboard interrupt enable bits and one keyboard interrupt  
mask  
Programmable edge-only or edge and level interrupt sensitivity  
Edge sensitivity programmable for rising or falling edge  
Level sensitivity programmable for high or low level  
Pullup or pulldown device automatically enabled based on the polarity of edge or level detect  
Exit from low-power modes  
9.3 Functional Description  
The keyboard interrupt module controls the enabling/disabling of interrupt functions on the KBI pins.  
These pins can be enabled/disabled independently of each other. See Figure 9-2.  
9.3.1 Keyboard Operation  
Writing to the KBIEx bits in the keyboard interrupt enable register (KBIER) independently enables or  
disables each KBI pin. The polarity of the keyboard interrupt is controlled using the KBIPx bits in the  
keyboard interrupt polarity register (KBIPR). Edge-only or edge and level sensitivity is controlled using the  
MODEK bit in the keyboard status and control register (KBISCR).  
Enabling a keyboard interrupt pin also enables its internal pullup or pulldown device based on the polarity  
enabled. On falling edge or low level detection, a pullup device is configured. On rising edge or high level  
detection, a pulldown device is configured.  
The keyboard interrupt latch is set when one or more enabled keyboard interrupt inputs are asserted.  
If the keyboard interrupt sensitivity is edge-only, for KBIPx = 0, a falling (for KBIPx = 1, a rising)  
edge on a keyboard interrupt input does not latch an interrupt request if another enabled keyboard  
pin is already asserted. To prevent losing an interrupt request on one input because another input  
remains asserted, software can disable the latter input while it is asserted.  
If the keyboard interrupt is edge and level sensitive, an interrupt request is present as long as any  
enabled keyboard interrupt input is asserted.  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
83  
 
Keyboard Interrupt Module (KBI)  
PTA0/TCH0/AD0/KBI0  
PTA1/TCH1/AD1/KBI1  
PTA2/IRQ/KBI2/TCLK  
PTA3/RST/KBI3  
CLOCK  
GENERATOR  
KEYBOARD INTERRUPT  
MODULE  
PTA4/OSC2/AD2/KBI4  
PTA5/OSC1/AD3/KBI5  
M68HC08 CPU  
EXTERNAL INTERRUPT  
MODULE  
PTB0/SCK/AD4  
PTB1/MOSI/AD5  
PTB2/MISO/AD6  
PTB3/SS/AD7  
PTB4/RxD/AD8  
PTB5/TxD/AD9  
PTB6/TCH2  
AUTO WAKEUP  
MODULE  
LOW-VOLTAGE  
INHIBIT  
PTB7/TCH3  
4-CHANNEL 16-BIT  
TIMER MODULE  
COP  
MODULE  
MC68HC908QB8  
256 BYTES  
MC68HC908QB8  
8192 BYTES  
10-CHANNEL  
10-BIT ADC  
USER RAM  
USER FLASH  
ENHANCED SERIAL  
COMMUNICATIONS  
INTERFACE MODULE  
VDD  
VSS  
POWER SUPPLY  
SERIAL PERIPHERAL  
INTERFACE  
DEVELOPMENT SUPPORT  
MONITOR ROM  
BREAK MODULE  
RST, IRQ: Pins have internal pull up device  
All port pins have programmable pull up device  
PTA[0:5]: Higher current sink and source capability  
Figure 9-1. Block Diagram Highlighting KBI Block and Pins  
9.3.1.1 MODEK = 1  
If the MODEK bit is set, the keyboard interrupt inputs are both edge and level sensitive. The KBIPx bit will  
determine whether a edge sensitive pin detects rising or falling edges and on level sensitive pins whether  
the pin detects low or high levels. With MODEK set, both of the following actions must occur to clear a  
keyboard interrupt request:  
Return of all enabled keyboard interrupt inputs to a deasserted level. As long as any enabled  
keyboard interrupt pin is asserted, the keyboard interrupt remains active.  
MC68HC908QB8 Data Sheet, Rev. 3  
84  
Freescale Semiconductor  
 
Functional Description  
INTERNAL BUS  
VECTOR FETCH  
DECODER  
ACKK  
RESET  
1
0
KBI0  
VDD  
S
KBIE0  
KEYF  
CLR  
TO PULLUP/  
PULLDOWN ENABLE  
D
Q
SYNCHRONIZER  
KBIP0  
CK  
1
0
IMASKK  
KBI LATCH  
KBIx  
KEYBOARD  
INTERRUPT  
REQUEST  
S
KBIEx  
MODEK  
TO PULLUP/  
KBIPx  
PULLDOWN ENABLE  
AWUIREQ  
(SEE Figure 4-1)  
Figure 9-2. Keyboard Interrupt Block Diagram  
Vector fetch or software clear. A KBI vector fetch generates an interrupt acknowledge signal to  
clear the KBI latch. Software generates the interrupt acknowledge signal by writing a 1 to ACKK in  
KBSCR. The ACKK bit is useful in applications that poll the keyboard interrupt inputs and require  
software to clear the KBI latch. Writing to ACKK prior to leaving an interrupt service routine can  
also prevent spurious interrupts due to noise. Setting ACKK does not affect subsequent transitions  
on the keyboard interrupt inputs. An edge detect that occurs after writing to ACKK latches another  
interrupt request. If the keyboard interrupt mask bit, IMASKK, is clear, the CPU loads the program  
counter with the KBI vector address.  
The KBI vector fetch or software clear and the return of all enabled keyboard interrupt pins to a deasserted  
level may occur in any order.  
Reset clears the keyboard interrupt request and the MODEK bit, clearing the interrupt request even if a  
keyboard interrupt input stays asserted.  
9.3.1.2 MODEK = 0  
If the MODEK bit is clear, the keyboard interrupt inputs are edge sensitive. The KBIPx bit will determine  
whether an edge sensitive pin detects rising or falling edges. A KBI vector fetch or software clear  
immediately clears the KBI latch.  
The keyboard flag bit (KEYF) in KBSCR can be read to check for pending interrupts. The KEYF bit is not  
affected by IMASKK, which makes it useful in applications where polling is preferred.  
NOTE  
Setting a keyboard interrupt enable bit (KBIEx) forces the corresponding  
keyboard interrupt pin to be an input, overriding the data direction register.  
However, the data direction register bit must be a 0 for software to read the  
pin.  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
85  
Keyboard Interrupt Module (KBI)  
9.3.2 Keyboard Initialization  
When a keyboard interrupt pin is enabled, it takes time for the internal pullup or pulldown device to pull  
the pin to its deasserted level. Therefore a false interrupt can occur as soon as the pin is enabled.  
To prevent a false interrupt on keyboard initialization:  
1. Mask keyboard interrupts by setting IMASKK in KBSCR.  
2. Enable the KBI polarity by setting the appropriate KBIPx bits in KBIPR.  
3. Enable the KBI pins by setting the appropriate KBIEx bits in KBIER.  
4. Write to ACKK in KBSCR to clear any false interrupts.  
5. Clear IMASKK.  
An interrupt signal on an edge sensitive pin can be acknowledged immediately after enabling the pin. An  
interrupt signal on an edge and level sensitive pin must be acknowledged after a delay that depends on  
the external load.  
9.4 Interrupts  
The following KBI source can generate interrupt requests:  
Keyboard flag (KEYF) — The KEYF bit is set when any enabled KBI pin is asserted based on the  
KBI mode and pin polarity. The keyboard interrupt mask bit, IMASKK, is used to enable or disable  
KBI interrupt requests.  
9.5 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.  
9.5.1 Wait Mode  
The KBI module remains active in wait mode. Clearing IMASKK in KBSCR enables keyboard interrupt  
requests to bring the MCU out of wait mode.  
9.5.2 Stop Mode  
The KBI module remains active in stop mode. Clearing IMASKK in KBSCR enables keyboard interrupt  
requests to bring the MCU out of stop mode.  
9.6 KBI During Break Interrupts  
The system integration module (SIM) controls whether status bits in other modules can be cleared during  
the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear status  
bits during the break state. See BFCR in the SIM section of this data sheet.  
To allow software to clear status bits during a break interrupt, write a 1 to BCFE. If a status bit is cleared  
during the break state, it remains cleared when the MCU exits the break state.  
To protect status bits during the break state, write a 0 to BCFE. With BCFE cleared (its default state),  
software can read and write registers during the break state without affecting status bits. Some status bits  
have a two-step read/write clearing procedure. If software does the first step on such a bit before the  
break, the bit cannot change during the break state as long as BCFE is cleared. After the break, doing the  
second step clears the status bit.  
MC68HC908QB8 Data Sheet, Rev. 3  
86  
Freescale Semiconductor  
I/O Signals  
9.7 I/O Signals  
The KBI module can share its pins with the general-purpose I/O pins. See Figure 9-1 for the port pins that  
are shared.  
9.7.1 KBI Input Pins (KBIx:KBI0)  
Each KBI pin is independently programmable as an external interrupt source. KBI pin polarity can be  
controlled independently. Each KBI pin when enabled will automatically configure the appropriate  
pullup/pulldown device based on polarity.  
9.8 Registers  
The following registers control and monitor operation of the KBI module:  
KBSCR (keyboard interrupt status and control register)  
KBIER (keyboard interrupt enable register)  
KBIPR (keyboard interrupt polarity register)  
9.8.1 Keyboard Status and Control Register (KBSCR)  
Features of the KBSCR:  
Flags keyboard interrupt requests  
Acknowledges keyboard interrupt requests  
Masks keyboard interrupt requests  
Controls keyboard interrupt triggering sensitivity  
Bit 7  
0
6
0
5
0
4
0
3
2
1
IMASKK  
0
Bit 0  
MODEK  
0
Read:  
Write:  
Reset:  
KEYF  
0
ACKK  
0
0
0
0
0
0
= Unimplemented  
Figure 9-3. Keyboard Status and Control Register (KBSCR)  
Bits 7–4 — Not used  
KEYF — Keyboard Flag Bit  
This read-only bit is set when a keyboard interrupt is pending.  
1 = Keyboard interrupt pending  
0 = No keyboard interrupt pending  
ACKK — Keyboard Acknowledge Bit  
Writing a 1 to this write-only bit clears the KBI request. ACKK always reads 0.  
IMASKK— Keyboard Interrupt Mask Bit  
Writing a 1 to this read/write bit prevents the output of the KBI latch from generating interrupt requests.  
1 = Keyboard interrupt requests disabled  
0 = Keyboard interrupt requests enabled  
MODEK — Keyboard Triggering Sensitivity Bit  
This read/write bit controls the triggering sensitivity of the keyboard interrupt pins.  
1 = Keyboard interrupt requests on edge and level  
0 = Keyboard interrupt requests on edge only  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
87  
Keyboard Interrupt Module (KBI)  
9.8.2 Keyboard Interrupt Enable Register (KBIER)  
KBIER enables or disables each keyboard interrupt pin.  
Bit 7  
0
6
AWUIE  
0
5
KBIE5  
0
4
KBIE4  
0
3
KBIE3  
0
2
KBIE2  
0
1
KBIE1  
0
Bit 0  
KBIE0  
0
Read:  
Write:  
Reset:  
0
= Unimplemented  
Figure 9-4. Keyboard Interrupt Enable Register (KBIER)  
KBIE5–KBIE0 — Keyboard Interrupt Enable Bits  
Each of these read/write bits enables the corresponding keyboard interrupt pin to latch KBI interrupt  
requests.  
1 = KBIx pin enabled as keyboard interrupt pin  
0 = KBIx pin not enabled as keyboard interrupt pin  
NOTE  
AWUIE bit is not used in conjunction with the keyboard interrupt feature. To  
see a description of this bit, see Chapter 4 Auto Wakeup Module (AWU)  
9.8.3 Keyboard Interrupt Polarity Register (KBIPR)  
KBIPR determines the polarity of the enabled keyboard interrupt pin and enables the appropriate pullup  
or pulldown device.  
Bit 7  
0
6
0
5
KBIP5  
0
4
KBIP4  
0
3
KBIP3  
0
2
KBIP2  
0
1
KBIP1  
0
Bit 0  
KBIP0  
0
Read:  
Write:  
Reset:  
0
0
= Unimplemented  
Figure 9-5. Keyboard Interrupt Polarity Register (KBIPR)  
KBIP5–KBIP0 — Keyboard Interrupt Polarity Bits  
Each of these read/write bits enables the polarity of the keyboard interrupt detection.  
1 = Keyboard polarity is high level and/or rising edge  
0 = Keyboard polarity is low level and/or falling edge  
MC68HC908QB8 Data Sheet, Rev. 3  
88  
Freescale Semiconductor  
Chapter 10  
Low-Voltage Inhibit (LVI)  
10.1 Introduction  
The low-voltage inhibit (LVI) module is provided as a system protection mechanism to prevent the MCU  
from operating below a certain operating supply voltage level. The module has several configuration  
options to allow functionality to be tailored to different system level demands.  
The configuration registers (see Chapter 5 Configuration Register (CONFIG)) contain control bits for this  
module.  
10.2 Features  
Features of the LVI module include:  
Programmable LVI reset  
Selectable LVI trip voltage  
Programmable stop mode operation  
10.3 Functional Description  
Figure 10-1 shows the structure of the LVI module. LVISTOP, LVIPWRD, LVITRIP, and LVIRSTD are  
user selectable options found in the configuration register.  
VDD  
STOP INSTRUCTION  
LVISTOP  
FROM CONFIGURATION REGISTER  
FROM CONFIGURATION REGISTER  
LVIRSTD  
LVIPWRD  
FROM CONFIGURATION REGISTER  
0 IF VDD > VTRIPR  
LVI RESET  
LOW VDD  
DETECTOR  
1 IF VDD VTRIPF  
LVIOUT  
LVITRIP  
FROM CONFIGURATION REGISTER  
Figure 10-1. LVI Module Block Diagram  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
89  
 
Low-Voltage Inhibit (LVI)  
The LVI module contains a bandgap reference circuit and comparator. When the LVITRIP bit is cleared,  
the default state at power-on reset, VTRIPF is configured for the lower VDD operating range. The actual  
trip points are specified in 18.5 5-V DC Electrical Characteristics and 18.8 3-V DC Electrical  
Characteristics.  
Because the default LVI trip point after power-on reset is configured for low voltage operation, a system  
requiring high voltage LVI operation must set the LVITRIP bit during system initialization. VDD must be  
above the LVI trip rising voltage, VTRIPR, for the high voltage operating range or the MCU will immediately  
go into LVI reset.  
After an LVI reset occurs, the MCU remains in reset until VDD rises above VTRIPR. See Chapter 14 System  
Integration Module (SIM) for the reset recovery sequence.  
The output of the comparator controls the state of the LVIOUT flag in the LVI status register (LVISR) and  
can be used for polling LVI operation when the LVI reset is disabled.  
The LVI is enabled out of reset. The following bits located in the configuration register can alter the default  
conditions.  
Setting the LVI power disable bit, LVIPWRD, disables the LVI.  
Setting the LVI reset disable bit, LVIRSTD, prevents the LVI module from generating a reset.  
Setting the LVI enable in stop mode bit, LVISTOP, enables the LVI to operate in stop mode.  
Setting the LVI trip point bit, LVITRIP, configures the trip point voltage (VTRIPF) for the higher VDD  
operating range.  
10.3.1 Polled LVI Operation  
In applications that can operate at VDD levels below the VTRIPF level, software can monitor VDD by polling  
the LVIOUT bit. In the configuration register, LVIPWRD must be cleared to enable the LVI module, and  
LVIRSTD must be set to disable LVI resets.  
10.3.2 Forced Reset Operation  
In applications that require VDD to remain above the VTRIPF level, enabling LVI resets allows the LVI  
module to reset the MCU when VDD falls below the VTRIPF level. In the configuration register, LVIPWRD  
and LVIRSTD must be cleared to enable the LVI module and to enable LVI resets.  
10.3.3 LVI Hysteresis  
The LVI has hysteresis to maintain a stable operating condition. After the LVI has triggered (by having  
VDD fall below VTRIPF), the MCU will remain in reset until VDD rises above the rising trip point voltage,  
VTRIPR. This prevents a condition in which the MCU is continually entering and exiting reset if VDD is  
approximately equal to VTRIPF. VTRIPR is greater than VTRIPF by the typical hysteresis voltage, VHYS  
.
10.3.4 LVI Trip Selection  
LVITRIP in the configuration register selects the LVI protection range. The default setting out of reset is  
for the low voltage range. Because LVITRIP is in a write-once configuration register, the protection range  
cannot be changed after initialization.  
NOTE  
The MCU is guaranteed to operate at a minimum supply voltage. The trip  
point (VTRIPF) may be lower than this. See the Electrical Characteristics  
section for the actual trip point voltages.  
MC68HC908QB8 Data Sheet, Rev. 3  
90  
Freescale Semiconductor  
LVI Interrupts  
10.4 LVI Interrupts  
The LVI module does not generate interrupt requests.  
10.5 Low-Power Modes  
The STOP and WAIT instructions put the MCU in low power-consumption standby modes.  
10.5.1 Wait Mode  
If enabled, the LVI module remains active in wait mode. If enabled to generate resets, the LVI module can  
generate a reset and bring the MCU out of wait mode.  
10.5.2 Stop Mode  
If the LVIPWRD bit in the configuration register is cleared and the LVISTOP bit in the configuration  
register is set, the LVI module remains active. If enabled to generate resets, the LVI module can generate  
a reset and bring the MCU out of stop mode.  
10.6 Registers  
The LVI status register (LVISR) contains a status bit that is useful when the LVI is enabled and LVI reset  
is disabled.  
Bit 7  
Read: LVIOUT  
Write:  
6
0
5
0
4
0
3
0
2
0
1
0
Bit 0  
R
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
R
= Reserved  
Figure 10-2. LVI Status Register (LVISR)  
LVIOUT — LVI Output Bit  
This read-only flag becomes set when the VDD voltage falls below the VTRIPF trip voltage and is cleared  
when VDD voltage rises above VTRIPR. (See Table 10-1).  
Table 10-1. LVIOUT Bit Indication  
VDD  
LVIOUT  
VDD > VTRIPR  
0
VDD < VTRIPF  
1
VTRIPF < VDD < VTRIPR  
Previous value  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
91  
 
Low-Voltage Inhibit (LVI)  
MC68HC908QB8 Data Sheet, Rev. 3  
92  
Freescale Semiconductor  
Chapter 11  
Oscillator Module (OSC)  
11.1 Introduction  
The oscillator (OSC) module is used to provide a stable clock source for the MCU system and bus.  
The OSC shares its pins with general-purpose input/output (I/O) port pins. See Figure 11-1 for port  
location of these shared pins. The OSC2EN bit is located in the port A pull enable register (PTAPUEN)  
on this MCU. See Chapter 12 Input/Output Ports (PORTS) for information on PTAPUEN register.  
11.2 Features  
The bus clock frequency is one fourth of any of these clock source options:  
1. Internal oscillator: An internally generated, fixed frequency clock, trimmable to ± 0.4%. There are  
three choices for the internal oscillator,12.8 MHz, 8 MHz, or 4 MHz. The 4-MHz internal oscillator  
is the default option out of reset.  
2. External oscillator: An external clock that can be driven directly into OSC1.  
3. External RC: A built-in oscillator module (RC oscillator) that requires an external R connection only.  
The capacitor is internal to the chip.  
4. External crystal: A built-in XTAL oscillator that requires an external crystal or ceramic-resonator.  
There are three crystal frequency ranges supported, 8–32 MHz, 1–8 MHz, and 32–100 kHz.  
11.3 Functional Description  
The oscillator contains these major subsystems:  
Internal oscillator circuit  
Internal or external clock switch control  
External clock circuit  
External crystal circuit  
External RC clock circuit  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
93  
 
Oscillator Module (OSC)  
PTA0/TCH0/AD0/KBI0  
PTA1/TCH1/AD1/KBI1  
PTA2/IRQ/KBI2/TCLK  
PTA3/RST/KBI3  
CLOCK  
GENERATOR  
KEYBOARD INTERRUPT  
MODULE  
PTA4/OSC2/AD2/KBI4  
PTA5/OSC1/AD3/KBI5  
M68HC08 CPU  
EXTERNAL INTERRUPT  
MODULE  
PTB0/SCK/AD4  
PTB1/MOSI/AD5  
PTB2/MISO/AD6  
PTB3/SS/AD7  
PTB4/RxD/AD8  
PTB5/TxD/AD9  
PTB6/TCH2  
AUTO WAKEUP  
MODULE  
LOW-VOLTAGE  
INHIBIT  
PTB7/TCH3  
4-CHANNEL 16-BIT  
TIMER MODULE  
COP  
MODULE  
MC68HC908QB8  
256 BYTES  
MC68HC908QB8  
8192 BYTES  
10-CHANNEL  
10-BIT ADC  
USER RAM  
USER FLASH  
ENHANCED SERIAL  
COMMUNICATIONS  
INTERFACE MODULE  
VDD  
VSS  
POWER SUPPLY  
SERIAL PERIPHERAL  
INTERFACE  
DEVELOPMENT SUPPORT  
MONITOR ROM  
BREAK MODULE  
RST, IRQ: Pins have internal pull up device  
All port pins have programmable pull up device  
PTA[0:5]: Higher current sink and source capability  
Figure 11-1. Block Diagram Highlighting OSC Block and Pins  
MC68HC908QB8 Data Sheet, Rev. 3  
94  
Freescale Semiconductor  
 
Functional Description  
11.3.1 Internal Signal Definitions  
The following signals and clocks are used in the functional description and figures of the OSC module.  
11.3.1.1 Oscillator Enable Signal (SIMOSCEN)  
The SIMOSCEN signal comes from the system integration module (SIM) and disables the XTAL oscillator  
circuit, the RC oscillator, or the internal oscillator in stop mode. OSCENINSTOP in the configuration  
register can be used to override this signal.  
11.3.1.2 XTAL Oscillator Clock (XTALCLK)  
XTALCLK is the XTAL oscillator output signal. It runs at the full speed of the crystal (fXCLK) and comes  
directly from the crystal oscillator circuit. Figure 11-2 shows only the logical relation of XTALCLK to OSC1  
and OSC2 and may not represent the actual circuitry. The duty cycle of XTALCLK is unknown and may  
depend on the crystal and other external factors. The frequency of XTALCLK can be unstable at start up.  
11.3.1.3 RC Oscillator Clock (RCCLK)  
RCCLK is the RC oscillator output signal. Its frequency is directly proportional to the time constant of the  
external R (REXT) and internal C. Figure 11-3 shows only the logical relation of RCCLK to OSC1 and may  
not represent the actual circuitry.  
11.3.1.4 Internal Oscillator Clock (INTCLK)  
INTCLK is the internal oscillator output signal. INTCLK is software selectable to be nominally 12.8 MHz,  
8.0 MHz, or 4.0 MHz. INTCLK can be digitally adjusted using the oscillator trimming feature of the  
OSCTRIM register (see 11.3.2.1 Internal Oscillator Trimming).  
11.3.1.5 Bus Clock Times 4 (BUSCLKX4)  
BUSCLKX4 is the same frequency as the input clock (XTALCLK, RCCLK, or INTCLK). This signal is  
driven to the SIM module and is used during recovery from reset and stop and is the clock source for the  
COP module.  
11.3.1.6 Bus Clock Times 2 (BUSCLKX2)  
The frequency of this signal is equal to half of the BUSCLKX4. This signal is driven to the SIM for  
generation of the bus clocks used by the CPU and other modules on the MCU. BUSCLKX2 will be divided  
by two in the SIM. The internal bus frequency is one fourth of the XTALCLK, RCCLK, or INTCLK  
frequency.  
11.3.2 Internal Oscillator  
The internal oscillator circuit is designed for use with no external components to provide a clock source  
with a tolerance of less than 25% untrimmed. An 8-bit register (OSCTRIM) allows the digital adjustment  
to a tolerance of ACCINT. See the oscillator characteristics in the Electrical section of this data sheet.  
The internal oscillator is capable of generating clocks of 12.8 MHz, 8.0 MHz, or 4.0 MHz (INTCLK)  
resulting in a bus frequency (INTCLK divided by 4) of 3.2 MHz, 2.0 MHz, or 1.0 MHz respectively. The  
bus clock is software selectable and defaults to the 1.0-MHz bus out of reset. Users can increase the bus  
frequency based on the voltage range of their application.  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
95  
Oscillator Module (OSC)  
Figure 11-3 shows how BUSCLKX4 is derived from INTCLK and OSC2 can output BUSCLKX4 by setting  
OSC2EN.  
11.3.2.1 Internal Oscillator Trimming  
OSCTRIM allows a clock period adjustment of +127 and –128 steps. Increasing the OSCTRIM value  
increases the clock period, which decreases the clock frequency. Trimming allows the internal clock  
frequency to be fine tuned to the target frequency.  
All devices are factory programmed with a trim value that is stored in FLASH memory at location $FFC0.  
The trim value is not automatically loaded into the OSCTRIM register. User software must copy the trim  
value from $FFC0 into OSCTRIM if needed. The factory trim value provides the accuracy required for  
communication using forced monitor mode. Some production programmers erase the factory trim value,  
so confirm with your programmer vendor that the trim value at $FFC0 is preserved, or is re-trimmed.  
Trimming the device in the user application board will provide the most accurate trim value.  
11.3.2.2 Internal to External Clock Switching  
When external clock source (external OSC, RC, or XTAL) is desired, the user must perform the following  
steps:  
1. For external crystal circuits only, configure OSCOPT[1:0] to external crystal. To help precharge an  
external crystal oscillator, momentarily configure OSC2 as an output and drive it high for several  
cycles. This can help the crystal circuit start more robustly.  
2. Configure OSCOPT[1:0] and ECFS[1:0] according to 11.8.1 Oscillator Status and Control Register.  
The oscillator module control logic will then enable OSC1 as an external clock input and, if the  
external crystal option is selected, OSC2 will also be enabled as the clock output. If RC oscillator  
option is selected, enabling the OSC2 output may change the bus frequency.  
3. Create a software delay to provide the stabilization time required for the selected clock source  
(crystal, resonator, RC). A good rule of thumb for crystal oscillators is to wait 4096 cycles of the  
crystal frequency; i.e., for a 4-MHz crystal, wait approximately 1 ms.  
4. After the stabilization delay has elapsed, set ECGON.  
After ECGON set is detected, the OSC module checks for oscillator activity by waiting two external clock  
rising edges. The OSC module then switches to the external clock. Logic provides a coherent transition.  
The OSC module first sets ECGST and then stops the internal oscillator.  
11.3.2.3 External to Internal Clock Switching  
After following the procedures to switch to an external clock source, it is possible to go back to the internal  
source. By clearing the OSCOPT[1:0] bits and clearing the ECGON bit, the external circuit will be  
disengaged. The bus clock will be derived from the selected internal clock source based on the ICFS[1:0]  
bits.  
11.3.3 External Oscillator  
The external oscillator option is designed for use when a clock signal is available in the application to  
provide a clock source to the MCU. The OSC1 pin is enabled as an input by the oscillator module. The  
clock signal is used directly to create BUSCLKX4 and also divided by two to create BUSCLKX2.  
In this configuration, the OSC2 pin cannot output BUSCLKX4. The OSC2EN bit will be forced clear to  
enable alternative functions on the pin.  
MC68HC908QB8 Data Sheet, Rev. 3  
96  
Freescale Semiconductor  
 
Functional Description  
11.3.4 XTAL Oscillator  
The XTAL oscillator circuit is designed for use with an external crystal or ceramic resonator to provide an  
accurate clock source. In this configuration, the OSC2 pin is dedicated to the external crystal circuit. The  
OSC2EN bit has no effect when this clock mode is selected.  
In its typical configuration, the XTAL oscillator is connected in a Pierce oscillator configuration, as shown  
in Figure 11-2. This figure shows only the logical representation of the internal components and may not  
represent actual circuitry.  
The oscillator configuration uses five components:  
Crystal, X1  
Fixed capacitor, C1  
Tuning capacitor, C2 (can also be a fixed capacitor)  
Feedback resistor, RB  
Series resistor, RS (optional)  
NOTE  
The series resistor (RS) is included in the diagram to follow strict Pierce  
oscillator guidelines and may not be required for all ranges of operation,  
especially with high frequency crystals. Refer to the oscillator  
characteristics table in the Electricals section for more information.  
SIMOSCEN (INTERNAL SIGNAL) OR  
OSCENINSTOP (BIT LOCATED IN  
CONFIGURATION REGISTER)  
BUSCLKX4  
BUSCLKX2  
XTALCLK  
÷ 2  
MCU  
OSC1  
OSC2  
RS  
RB  
X1  
C1  
C2  
See the electrical section for details.  
Figure 11-2. XTAL Oscillator External Connections  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
97  
 
Oscillator Module (OSC)  
11.3.5 RC Oscillator  
The RC oscillator circuit is designed for use with an external resistor (REXT) to provide a clock source with  
a tolerance within 25% of the expected frequency. See Figure 11-3.  
The capacitor (C) for the RC oscillator is internal to the MCU. The REXT value must have a tolerance of  
1% or less to minimize its effect on the frequency.  
In this configuration, the OSC2 pin can be used as general-purpose input/output (I/O) port pins or other  
alternative pin function. The OSC2EN bit can be set to enable the OSC2 output function on the pin.  
Enabling the OSC2 output can affect the external RC oscillator frequency, fRCCLK  
.
OSCOPT = EXTERNAL RC SELECTED  
BUSCLKX2  
SIMOSCEN (INTERNAL SIGNAL) OR  
OSCENINSTOP (BIT LOCATED IN  
CONFIGURATION REGISTER)  
BUSCLKX4  
INTCLK  
RCCLK  
0
1
EXTERNAL RC  
EN  
÷ 2  
OSCILLATOR  
1
0
ALTERNATIVE  
PIN FUNTION  
OSC2EN  
MCU  
OSC1  
OSC2 — AVAILABLE FOR ALTERNATIVE PIN FUNCTION  
VDD  
REXT  
See the electricals section for component value.  
Figure 11-3. RC Oscillator External Connections  
11.4 Interrupts  
There are no interrupts associated with the OSC module.  
11.5 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.  
11.5.1 Wait Mode  
The OSC module remains active in wait mode.  
11.5.2 Stop Mode  
The OSC module can be configured to remain active in stop mode by setting OSCENINSTOP located in  
a configuration register.  
MC68HC908QB8 Data Sheet, Rev. 3  
98  
Freescale Semiconductor  
 
OSC During Break Interrupts  
11.6 OSC During Break Interrupts  
There are no status flags associated with the OSC module.  
The system integration module (SIM) controls whether status bits in other modules can be cleared during  
the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear status  
bits during the break state. See BFCR in the SIM section of this data sheet.  
To allow software to clear status bits during a break interrupt, write a 1 to BCFE. If a status bit is cleared  
during the break state, it remains cleared when the MCU exits the break state.  
To protect status bits during the break state, write a 0 to BCFE. With BCFE cleared (its default state),  
software can read and write registers during the break state without affecting status bits. Some status bits  
have a two-step read/write clearing procedure. If software does the first step on such a bit before the  
break, the bit cannot change during the break state as long as BCFE is cleared. After the break, doing the  
second step clears the status bit.  
11.7 I/O Signals  
The OSC shares its pins with general-purpose input/output (I/O) port pins. See Figure 11-1 for port  
location of these shared pins.  
11.7.1 Oscillator Input Pin (OSC1)  
The OSC1 pin is an input to the crystal oscillator amplifier, an input to the RC oscillator circuit, or an input  
from an external clock source.  
When the OSC is configured for internal oscillator, the OSC1 pin can be used as a general-purpose  
input/output (I/O) port pin or other alternative pin function.  
11.7.2 Oscillator Output Pin (OSC2)  
For the XTAL oscillator option, the OSC2 pin is the output of the crystal oscillator amplifier.  
When the OSC is configured for internal oscillator, external clock, or RC, the OSC2 pin can be used as a  
general-purpose I/O port pin or other alternative pin function. When the oscillator is configured for internal  
or RC, the OSC2 pin can be used to output BUSCLKX4.  
Table 11-1. OSC2 Pin Function  
Option  
OSC2 Pin Function  
XTAL oscillator  
External clock  
Inverting OSC1  
General-purpose I/O or alternative pin function  
Internal oscillator  
or  
RC oscillator  
Controlled by OSC2EN bit  
OSC2EN = 0: General-purpose I/O or alternative pin function  
OSC2EN = 1: BUSCLKX4 output  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
99  
Oscillator Module (OSC)  
11.8 Registers  
The oscillator module contains two registers:  
Oscillator status and control register (OSCSC)  
Oscillator trim register (OSCTRIM)  
11.8.1 Oscillator Status and Control Register  
The oscillator status and control register (OSCSC) contains the bits for switching between internal and  
external clock sources. If the application uses an external crystal, bits in this register are used to select  
the crystal oscillator amplifier necessary for the desired crystal. While running off the internal clock source,  
the user can use bits in this register to select the internal clock source frequency.  
Bit 7  
6
5
ICFS1  
0
4
ICFS0  
0
3
ECFS1  
0
2
ECFS0  
0
1
ECGON  
0
Bit 0  
Read:  
Write:  
Reset:  
ECGST  
OSCOPT1 OSCOPT0  
0
0
0
= Unimplemented  
Figure 11-4. Oscillator Status and Control Register (OSCSC)  
OSCOPT1:OSCOPT0 — OSC Option Bits  
These read/write bits allow the user to change the clock source for the MCU. The default reset  
condition has the bus clock being derived from the internal oscillator. See 11.3.2.2 Internal to External  
Clock Switching for information on changing clock sources.  
OSCOPT1  
OSCOPT0  
Oscillator Modes  
Internal oscillator (frequency selected using ICFSx bits)  
External oscillator clock  
0
0
1
1
0
1
0
1
External RC  
External crystal (range selected using ECFSx bits)  
ICFS1:ICFS0 — Internal Clock Frequency Select Bits  
These read/write bits enable the frequency to be increased for applications requiring a faster bus clock  
when running off the internal oscillator. The WAIT instruction has no effect on the oscillator logic.  
BUSCLKX2 and BUSCLKX4 continue to drive to the SIM module.  
ICFS1  
ICFS0  
Internal Clock Frequency  
4.0 MHz — default reset condition  
0
0
1
1
0
1
0
1
8.0 MHz  
12.8 MHz  
Reserved  
MC68HC908QB8 Data Sheet, Rev. 3  
100  
Freescale Semiconductor  
Registers  
ECFS1:ECFS0 — External Crystal Frequency Select Bits  
These read/write bits enable the specific amplifier for the crystal frequency range. Refer to oscillator  
characteristics table in the Electricals section for information on maximum external clock frequency  
versus supply voltage.  
ECFS1  
ECFS0  
External Crystal Frequency  
8 MHz – 32 MHz  
0
0
1
1
0
1
0
1
1 MHz – 8 MHz  
32 kHz – 100 kHz  
Reserved  
ECGON — External Clock Generator On Bit  
This read/write bit enables the OSC1 pin as the clock input to the MCU, so that the switching process  
can be initiated. This bit is cleared by reset. This bit is ignored in monitor mode with the internal  
oscillator bypassed.  
1 = External clock enabled  
0 = External clock disabled  
ECGST — External Clock Status Bit  
This read-only bit indicates whether an external clock source is engaged to drive the system clock.  
1 = An external clock source engaged  
0 = An external clock source disengaged  
11.8.2 Oscillator Trim Register (OSCTRIM)  
Bit 7  
TRIM7  
1
6
TRIM6  
0
5
TRIM5  
0
4
TRIM4  
0
3
TRIM3  
0
2
TRIM2  
0
1
TRIM1  
0
Bit 0  
TRIM0  
0
Read:  
Write:  
Reset:  
Figure 11-5. Oscillator Trim Register (OSCTRIM)  
TRIM7–TRIM0 — Internal Oscillator Trim Factor Bits  
These read/write bits change the internal capacitance used by the internal oscillator. By measuring the  
period of the internal clock and adjusting this factor accordingly, the frequency of the internal clock can  
be fine tuned. Increasing (decreasing) this factor by one increases (decreases) the period by  
approximately 0.2% of the untrimmed oscillator period. The oscillator period is based on the oscillator  
frequency selected by the ICFS bits in OSCSC.  
Applications using the internal oscillator should copy the internal oscillator trim value at location $FFC0  
into this register to trim the clock source.  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
101  
Oscillator Module (OSC)  
MC68HC908QB8 Data Sheet, Rev. 3  
102  
Freescale Semiconductor  
Chapter 12  
Input/Output Ports (PORTS)  
12.1 Introduction  
The MC68HC908QB8, MC68HC908QB4 and MC68HC908QY8 have thirteen bidirectional pins and one  
input only pin.  
NOTE  
Connect any unused I/O pins to an appropriate logic level, either VDD or VSS.  
Although the I/O ports do not require termination for proper operation,  
termination reduces excess current consumption and the possibility of  
electrostatic damage.  
12.2 Port A  
Port A is an 6-bit special function port that shares its pins with the keyboard interrupt (KBI) module  
(see Chapter 9 Keyboard Interrupt Module (KBI), the 4-channel timer interface module (TIM) (see Chapter  
16 Timer Interface Module (TIM)), the 10-bit ADC (see Chapter 3 Analog-to-Digital Converter (ADC10)  
Module), the external interrupt (IRQ) pin (see Chapter 8 External Interrupt (IRQ)), the reset (RST) pin  
enabled using a configuration register (see Chapter 5 Configuration Register (CONFIG)) and the  
oscillator pins (see Chapter 11 Oscillator Module (OSC)).  
Each port A pin also has a software configurable pullup device if the corresponding port pin is configured  
as an input port.  
NOTE  
PTA2 is input only.  
When the IRQ function is enabled in the configuration register 2  
(CONFIG2), bit 2 of the port A data register (PTA) will always read a logic 0.  
In this case, the BIH and BIL instructions can be used to read the logic level  
on the PTA2 pin. When the IRQ function is disabled, these instructions will  
behave as if the PTA2 pin is a logic 1. However, reading bit 2 of PTA will  
read the actual logic level on the pin.  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
103  
Input/Output Ports (PORTS)  
12.2.1 Port A Data Register  
The port A data register (PTA) contains a data latch for each of the six port A pins.  
Bit 7  
R
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
AWUL  
PTA2  
PTA5  
PTA4  
PTA3  
PTA1  
PTA0  
Unaffected by reset  
= Unimplemented  
Figure 12-1. Port A Data Register (PTA)  
PTA[5:0] — Port A Data Bits  
These read/write bits are software programmable. Data direction of each port A pin is under the control  
of the corresponding bit in data direction register A. Reset has no effect on port A data.  
AWUL — Auto Wakeup Latch Data Bit  
This is a read-only bit which has the value of the auto wakeup interrupt request latch. The wakeup  
request signal is generated internally (see Chapter 4 Auto Wakeup Module (AWU)). There is no PTA6  
port nor any of the associated bits such as PTA6 data register, pullup enable or direction. .  
12.2.2 Data Direction Register A  
Data direction register A (DDRA) determines whether each port A pin is an input or an output. Writing a 1  
to a DDRA bit enables the output buffer for the corresponding port A pin; a 0 disables the output buffer.  
Bit 7  
R
6
5
DDRA5  
0
4
DDRA4  
0
3
DDRA3  
0
2
0
1
DDRA1  
0
Bit 0  
DDRA0  
0
Read:  
Write:  
Reset:  
R
0
0
0
R
= Reserved  
= Unimplemented  
Figure 12-2. Data Direction Register A (DDRA)  
DDRA[5:0] — Data Direction Register A Bits  
These read/write bits control port A data direction. Reset clears DDRA[5:0], configuring all port A pins  
as inputs.  
1 = Corresponding port A pin configured as output  
0 = Corresponding port A pin configured as input  
NOTE  
Avoid glitches on port A pins by writing to the port A data register before  
changing data direction register A bits from 0 to 1.  
Figure 12-3 shows the port A I/O logic.  
MC68HC908QB8 Data Sheet, Rev. 3  
104  
Freescale Semiconductor  
Port A  
READ DDRA  
WRITE DDRA  
PTAPUEx  
DDRAx  
PTAx  
RESET  
PULLUP  
WRITE PTA  
READ PTA  
PTAx  
Figure 12-3. Port A I/O Circuit  
NOTE  
Figure 12-3 does not apply to PTA2  
When DDRAx is a 1, reading PTA reads the PTAx data latch. When DDRAx is a 0, reading PTA reads  
the logic level on the PTAx pin. The data latch can always be written, regardless of the state of its data  
direction bit.  
12.2.3 Port A Input Pullup Enable Register  
The port A input pullup enable register (PTAPUE) contains a software configurable pullup device for each  
of the port A pins. Each bit is individually configurable and requires the corresponding data direction  
register, DDRAx, to be configured as input. Each pullup device is automatically and dynamically disabled  
when its corresponding DDRAx bit is configured as output.  
Bit 7  
OSC2EN  
0
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTAPUE5 PTAPUE4 PTAPUE3 PTAPUE2 PTAPUE1 PTAPUE0  
0
0
0
0
0
0
0
= Unimplemented  
Figure 12-4. Port A Input Pullup Enable Register (PTAPUE)  
OSC2EN — Enable PTA4 on OSC2 Pin  
This read/write bit configures the OSC2 pin function when internal oscillator or RC oscillator option is  
selected. This bit has no effect for the XTAL or external oscillator options.  
1 = OSC2 pin outputs the internal or RC oscillator clock (BUSCLKX4)  
0 = OSC2 pin configured for PTA4 I/O, having all the interrupt and pullup functions  
PTAPUE[5:0] — Port A Input Pullup Enable Bits  
These read/write bits are software programmable to enable pullup devices on port A pins.  
1 = Corresponding port A pin configured to have internal pullup if its DDRA bit is set to 0  
0 = Pullup device is disconnected on the corresponding port A pin regardless of the state of its  
DDRA bit  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
105  
 
Input/Output Ports (PORTS)  
12.2.4 Port A Summary Table  
The following table summarizes the operation of the port A pins when used as a general-purpose  
input/output pins.  
Table 12-1. Port A Pin Functions  
Accesses to DDRA  
Read/Write  
Accesses to PTA  
PTAPUE  
Bit  
DDRA  
Bit  
PTA  
Bit  
I/O Pin  
Mode  
Read  
Write  
(2)  
X(1)  
X
PTA5–PTA0(3)  
PTA5–PTA0(3)  
PTA5–PTA0(5)  
1
0
X
0
0
1
DDRA5–DDRA0  
DDRA5–DDRA0  
DDRA5–DDRA0  
Pin  
Pin  
Input, VDD  
Input, Hi-Z(4)  
Output  
X
PTA5–PTA0  
1. X = don’t care  
2. I/O pin pulled to VDD by internal pullup.  
3. Writing affects data register, but does not affect input.  
4. Hi-Z = high impedance  
5. Output does not apply to PTA2  
12.3 Port B  
Port B is an 8-bit special function port that shares its pins with the 4-channel timer interface module (TIM)  
(see Chapter 16 Timer Interface Module (TIM)), the 10-bit ADC (see Chapter 3 Analog-to-Digital  
Converter (ADC10) Module), the serial peripheral interface (SPI) module (see Chapter 15 Serial  
Peripheral Interface (SPI) Module) and the enhanced serial communications interface (ESCI) module  
(see Chapter 13 Enhanced Serial Communications Interface (ESCI) Module).  
Each port B pin also has a software configurable pullup device if the corresponding port pin is configured  
as an input port.  
12.3.1 Port B Data Register  
The port B data register (PTB) contains a data latch for each of the port B pins.  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTB7  
PTB6  
PTB5  
PTB4  
PTB3  
PTB2  
PTB1  
PTB0  
Unaffected by reset  
Figure 12-5. Port B Data Register (PTB)  
PTB[7:0] — Port B Data Bits  
These read/write bits are software programmable. Data direction of each port B pin is under the control  
of the corresponding bit in data direction register B. Reset has no effect on port B data.  
MC68HC908QB8 Data Sheet, Rev. 3  
106  
Freescale Semiconductor  
Port B  
12.3.2 Data Direction Register B  
Data direction register B (DDRB) determines whether each port B pin is an input or an output. Writing a 1  
to a DDRB bit enables the output buffer for the corresponding port B pin; a 0 disables the output buffer.  
Bit 7  
DDRB7  
0
6
DDRB6  
0
5
DDRB5  
0
4
DDRB4  
0
3
DDRB3  
0
2
DDRB2  
0
1
DDRB1  
0
Bit 0  
DDRB0  
0
Read:  
Write:  
Reset:  
Figure 12-6. Data Direction Register B (DDRB)  
DDRB[7:0] — Data Direction Register B Bits  
These read/write bits control port B data direction. Reset clears DDRB[7:0], configuring all port B pins  
as inputs.  
1 = Corresponding port B pin configured as output  
0 = Corresponding port B pin configured as input  
NOTE  
Avoid glitches on port B pins by writing to the port B data register before  
changing data direction register B bits from 0 to 1. Figure 12-7 shows the  
port B I/O logic.  
READ DDRB  
PTBPUEx  
WRITE DDRB  
DDRBx  
RESET  
PULLUP  
WRITE PTB  
PTBx  
PTBx  
READ PTB  
Figure 12-7. Port B I/O Circuit  
When DDRBx is a 1, reading PTB reads the PTBx data latch. When DDRBx is a 0, reading PTB reads  
the logic level on the PTBx pin. The data latch can always be written, regardless of the state of its data  
direction bit.  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
107  
 
Input/Output Ports (PORTS)  
12.3.3 Port B Input Pullup Enable Register  
The port B input pullup enable register (PTBPUE) contains a software configurable pullup device for each  
of the eight port B pins. Each bit is individually configurable and requires the corresponding data direction  
register, DDRBx, be configured as input. Each pullup device is automatically and dynamically disabled  
when its corresponding DDRBx bit is configured as output.  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTBPUE7 PTBPUE6 PTBPUE5 PTBPUE4 PTBPUE3 PTBPUE2 PTBPUE2 PTBPUE0  
0
0
0
0
0
0
0
0
Figure 12-8. Port B Input Pullup Enable Register (PTBPUE)  
PTBPUE[7:0] — Port B Input Pullup Enable Bits  
These read/write bits are software programmable to enable pullup devices on port B pins  
1 = Corresponding port B pin configured to have internal pull if its DDRB bit is set to 0  
0 = Pullup device is disconnected on the corresponding port B pin regardless of the state of its  
DDRB bit.  
12.3.4 Port B Summary Table  
Table 12-2 summarizes the operation of the port A pins when used as a general-purpose input/output  
pins.  
Table 12-2. Port B Pin Functions  
Accesses to DDRB  
Read/Write  
Accesses to PTB  
Write  
DDRB  
Bit  
PTB  
Bit  
I/O Pin  
Mode  
Read  
Pin  
X(1)  
X
Input, Hi-Z(2)  
Output  
PTB7–PTB0(3)  
0
1
DDRB7–DDRB0  
DDRB7–DDRB0  
Pin  
PTB7–PTB0  
1. X = don’t care  
2. Hi-Z = high impedance  
3. Writing affects data register, but does not affect the input.  
MC68HC908QB8 Data Sheet, Rev. 3  
108  
Freescale Semiconductor  
 
Chapter 13  
Enhanced Serial Communications Interface (ESCI) Module  
13.1 Introduction  
The enhanced serial communications interface (ESCI) module allows asynchronous communications  
with peripheral devices and other microcontroller units (MCU).  
The ESCI module shares its pins with general-purpose input/output (I/O) port pins. See Figure 13-1 for  
port location of these shared pins. The ESCI baud rate clock source is controlled by a bit (ESCIBDSRC)  
located in the configuration register.  
13.2 Features  
Features include:  
Full-duplex operation  
Standard mark/space non-return-to-zero (NRZ) format  
Programmable baud rates  
Programmable 8-bit or 9-bit character length  
Separately enabled transmitter and receiver  
Separate receiver and transmitter interrupt requests  
Programmable transmitter output polarity  
Receiver wakeup methods  
Idle line  
Address mark  
Interrupt-driven operation with eight interrupt flags:  
Transmitter empty  
Transmission complete  
Receiver full  
Idle receiver input  
Receiver overrun  
Noise error  
Framing error  
Parity error  
Receiver framing error detection  
Hardware parity checking  
1/16 bit-time noise detection  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
109  
Enhanced Serial Communications Interface (ESCI) Module  
PTA0/TCH0/AD0/KBI0  
PTA1/TCH1/AD1/KBI1  
PTA2/IRQ/KBI2/TCLK  
PTA3/RST/KBI3  
CLOCK  
GENERATOR  
KEYBOARD INTERRUPT  
MODULE  
PTA4/OSC2/AD2/KBI4  
PTA5/OSC1/AD3/KBI5  
M68HC08 CPU  
EXTERNAL INTERRUPT  
MODULE  
PTB0/SCK/AD4  
PTB1/MOSI/AD5  
PTB2/MISO/AD6  
PTB3/SS/AD7  
PTB4/RxD/AD8  
PTB5/TxD/AD9  
PTB6/TCH2  
AUTO WAKEUP  
MODULE  
LOW-VOLTAGE  
INHIBIT  
PTB7/TCH3  
4-CHANNEL 16-BIT  
TIMER MODULE  
COP  
MODULE  
MC68HC908QB8  
256 BYTES  
MC68HC908QB8  
8192 BYTES  
10-CHANNEL  
10-BIT ADC  
USER RAM  
USER FLASH  
ENHANCED SERIAL  
COMMUNICATIONS  
INTERFACE MODULE  
VDD  
VSS  
POWER SUPPLY  
SERIAL PERIPHERAL  
INTERFACE  
DEVELOPMENT SUPPORT  
MONITOR ROM  
BREAK MODULE  
RST, IRQ: Pins have internal pull up device  
All port pins have programmable pull up device  
PTA[0:5]: Higher current sink and source capability  
Figure 13-1. Block Diagram Highlighting ESCI Block and Pins  
MC68HC908QB8 Data Sheet, Rev. 3  
110  
Freescale Semiconductor  
 
Functional Description  
13.3 Functional Description  
Figure 13-2 shows the structure of the ESCI module. The ESCI allows full-duplex, asynchronous, NRZ  
serial communication between the MCU and remote devices, including other MCUs. The transmitter and  
receiver of the ESCI operate independently, although they use the same baud rate generator.  
INTERNAL BUS  
ESCI DATA  
REGISTER  
ESCI DATA  
REGISTER  
RxD  
SCI_TxD  
TxD  
RECEIVE  
SHIFT REGISTER  
TRANSMIT  
SHIFT REGISTER  
RxD  
BUS CLOCK  
TXINV  
LINR  
SCTIE  
TCIE  
SCRIE  
ILIE  
R8  
T8  
SL  
ACLK BIT  
IN SCIACTL  
TE  
SCTE  
TC  
RE  
RWU  
SBK  
SCRF  
IDLE  
OR  
NF  
FE  
PE  
ORIE  
NEIE  
FEIE  
PEIE  
LOOPS  
ENSCI  
LOOPS  
RECEIVE  
CONTROL  
FLAG  
CONTROL  
TRANSMIT  
CONTROL  
WAKEUP  
CONTROL  
M
BKF  
RPF  
BUS  
CLOCK  
LINT  
ENSCI  
WAKE  
ILTY  
PEN  
PTY  
ENHANCED  
PRESCALER  
BUSCLKX4  
PRE-  
BAUD RATE  
÷ 4  
SCALER GENERATOR  
SL  
DATA SELECTION  
CONTROL  
÷ 16  
SL = 1 -> SCI_CLK = BUSCLK  
SL = 0 -> SCI_CLK = BUSCLKX4  
Figure 13-2. ESCI Module Block Diagram  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
111  
 
Enhanced Serial Communications Interface (ESCI) Module  
13.3.1 Data Format  
The SCI uses the standard mark/space non-return-to-zero (NRZ) format illustrated in Figure 13-3.  
PARITY  
8-BIT DATA FORMAT  
(BIT M IN SCC1 CLEAR)  
OR DATA  
BIT  
NEXT  
START  
BIT  
START  
BIT  
BIT 0  
BIT 0  
BIT 1  
BIT 1  
BIT 2  
BIT 2  
BIT 3  
BIT 4  
BIT 5 BIT 6  
BIT 7  
STOP  
BIT  
PARITY  
OR DATA  
BIT  
9-BIT DATA FORMAT  
(BIT M IN SCC1 SET)  
NEXT  
START  
BIT  
START  
BIT  
BIT 3  
BIT 4  
BIT 5 BIT 6  
BIT 7  
BIT 8  
STOP  
BIT  
Figure 13-3. SCI Data Formats  
13.3.2 Transmitter  
Figure 13-4 shows the structure of the SCI transmitter.  
INTERNAL BUS  
PRE-  
BAUD  
÷ 16  
÷ 4  
ESCI DATA REGISTER  
SCALER DIVIDER  
SCP1  
SCP0  
SCR2  
SCR1  
SCR0  
11-BIT  
TRANSMIT  
SHIFT REGISTER  
STOP  
8
7
6
5
4
3
2
1
0
START  
SCI_TxD  
TXINV  
M
PDS2  
PDS1  
PEN  
PTY  
PARITY  
GENERATION  
BUSCLKX4  
OR  
PDS0  
BUS CLOCK  
PSSB4  
PSSB3  
PSSB2  
PSSB1  
PSSB0  
T8  
TRANSMITTER  
CONTROL LOGIC  
TRANSMITTER  
INTERRUPT REQUEST  
SCTE  
SBK  
SCTE  
SCTIE  
LOOPS  
ENSCI  
TE  
SCTIE  
TC  
TC  
TCIE  
TCIE  
LINT  
Figure 13-4. ESCI Transmitter  
MC68HC908QB8 Data Sheet, Rev. 3  
112  
Freescale Semiconductor  
 
 
Functional Description  
13.3.2.1 Character Length  
The transmitter can accommodate either 8-bit or 9-bit data. The state of the M bit in ESCI control  
register 1 (SCC1) determines character length. When transmitting 9-bit data, bit T8 in ESCI control  
register 3 (SCC3) is the ninth bit (bit 8).  
13.3.2.2 Character Transmission  
During an ESCI transmission, the transmit shift register shifts a character out to the TxD pin. The ESCI  
data register (SCDR) is the write-only buffer between the internal data bus and the transmit shift register.  
To initiate an ESCI transmission:  
1. Enable the ESCI by writing a 1 to the enable ESCI bit (ENSCI) in ESCI control register 1 (SCC1).  
2. Enable the transmitter by writing a 1 to the transmitter enable bit (TE) in ESCI control register 2  
(SCC2).  
3. Clear the ESCI transmitter empty bit (SCTE) by first reading ESCI status register 1 (SCS1) and  
then writing to the SCDR. For 9-bit data, also write the T8 bit in SCC3.  
4. Repeat step 3 for each subsequent transmission.  
At the start of a transmission, transmitter control logic automatically loads the transmit shift register with  
a preamble of 1s. After the preamble shifts out, control logic transfers the SCDR data into the transmit  
shift register. A 0 start bit automatically goes into the least significant bit (LSB) position of the transmit shift  
register. A 1 stop bit goes into the most significant bit (MSB) position.  
The ESCI transmitter empty bit, SCTE, in SCS1 becomes set when the SCDR transfers a byte to the  
transmit shift register. The SCTE bit indicates that the SCDR can accept new data from the internal data  
bus. If the ESCI transmit interrupt enable bit, SCTIE, in SCC2 is also set, the SCTE bit generates a  
transmitter interrupt request.  
When the transmit shift register is not transmitting a character, the TxD pin goes to the idle condition, high.  
If at any time software clears the ENSCI bit in ESCI control register 1 (SCC1), the transmitter and receiver  
relinquish control of the port pins.  
13.3.2.3 Break Characters  
Writing a 1 to the send break bit, SBK, in SCC2 loads the transmit shift register with a break character.  
For TXINV = 0 (output not inverted), a transmitted break character contains all 0s and has no start, stop,  
or parity bit. Break character length depends on the M bit in SCC1 and the LINR bits in SCBR. As long as  
SBK is set, transmitter logic continuously loads break characters into the transmit shift register. After  
software clears the SBK bit, the shift register finishes transmitting the last break character and then  
transmits at least one 1. The automatic 1 at the end of a break character guarantees the recognition of  
the start bit of the next character.  
When LINR is cleared in SCBR, the ESCI recognizes a break character when a start bit is followed by  
eight or nine 0 data bits and a 0 where the stop bit should be, resulting in a total of 10 or 11 consecutive 0  
data bits. When LINR is set in SCBR, the ESCI recognizes a break character when a start bit is followed  
by 9 or 10 0 data bits and a 0 where the stop bit should be, resulting in a total of 11 or 12 consecutive 0  
data bits.  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
113  
Enhanced Serial Communications Interface (ESCI) Module  
Receiving a break character has these effects on ESCI registers:  
Sets the framing error bit (FE) in SCS1  
Sets the ESCI receiver full bit (SCRF) in SCS1  
Clears the ESCI data register (SCDR)  
Clears the R8 bit in SCC3  
Sets the break flag bit (BKF) in SCS2  
May set the overrun (OR), noise flag (NF), parity error (PE), or reception in progress flag (RPF) bits  
13.3.2.4 Idle Characters  
For TXINV = 0 (output not inverted), a transmitted idle character contains all 1s and has no start, stop, or  
parity bit. Idle character length depends on the M bit in SCC1. The preamble is a synchronizing idle  
character that begins every transmission.  
If the TE bit is cleared during a transmission, the TxD pin becomes idle after completion of the  
transmission in progress. Clearing and then setting the TE bit during a transmission queues an idle  
character to be sent after the character currently being transmitted.  
13.3.2.5 Inversion of Transmitted Output  
The transmit inversion bit (TXINV) in ESCI control register 1 (SCC1) reverses the polarity of transmitted  
data. All transmitted values including idle, break, start, and stop bits, are inverted when TXINV is set. See  
13.8.1 ESCI Control Register 1.  
13.3.3 Receiver  
Figure 13-5 shows the structure of the ESCI receiver.  
13.3.3.1 Character Length  
The receiver can accommodate either 8-bit or 9-bit data. The state of the M bit in ESCI control register 1  
(SCC1) determines character length. When receiving 9-bit data, bit R8 in ESCI control register 3 (SCC3)  
is the ninth bit (bit 8). When receiving 8-bit data, bit R8 is a copy of the eighth bit (bit 7).  
13.3.3.2 Character Reception  
During an ESCI reception, the receive shift register shifts characters in from the RxD pin. The ESCI data  
register (SCDR) is the read-only buffer between the internal data bus and the receive shift register.  
After a complete character shifts into the receive shift register, the data portion of the character transfers  
to the SCDR. The ESCI receiver full bit, SCRF, in ESCI status register 1 (SCS1) becomes set, indicating  
that the received byte can be read. If the ESCI receive interrupt enable bit, SCRIE, in SCC2 is also set,  
the SCRF bit generates a receiver interrupt request.  
MC68HC908QB8 Data Sheet, Rev. 3  
114  
Freescale Semiconductor  
Functional Description  
INTERNAL BUS  
LINR  
SCP1  
SCP0  
SCR2  
SCR1  
SCR0  
ESCI DATA REGISTER  
PRE-  
BAUD  
÷ 4  
÷ 16  
SCALER DIVIDER  
11-BIT  
RECEIVE SHIFT REGISTER  
DATA  
RECOVERY  
H
8
7
6
5
4
3
2
1
0
L
RxD  
ALL ZEROS  
BKF  
RPF  
PDS2  
PDS1  
BUSCLKX4  
OR  
BUS CLOCK  
PDS0  
M
RWU  
PSSB4  
PSSB3  
PSSB2  
PSSB1  
PSSB0  
SCRF  
IDLE  
WAKE  
ILTY  
WAKEUP  
LOGIC  
PEN  
PTY  
R8  
PARITY  
CHECKING  
IDLE  
ILIE  
ILIE  
RECEIVER  
INTERRUPT  
REQUEST  
SCRF  
SCRIE  
SCRIE  
OR  
OR  
ORIE  
ORIE  
NF  
NF  
NEIE  
NEIE  
ERROR  
INTERRUPT  
REQUEST  
FE  
FE  
FEIE  
FEIE  
PE  
PE  
PEIE  
PEIE  
Figure 13-5. ESCI Receiver Block Diagram  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
115  
Enhanced Serial Communications Interface (ESCI) Module  
13.3.3.3 Data Sampling  
The receiver samples the RxD pin at the RT clock rate. The RT clock is an internal signal with a frequency  
16 times the baud rate. To adjust for baud rate mismatch, the RT clock is resynchronized at these times  
(see Figure 13-6):  
After every start bit  
After the receiver detects a data bit change from 1 to 0 (after the majority of data bit samples at  
RT8, RT9, and RT10 returns a valid 1 and the majority of the next RT8, RT9, and RT10 samples  
returns a valid 0)  
To locate the start bit, data recovery logic does an asynchronous search for a 0 preceded by three 1s.  
When the falling edge of a possible start bit occurs, the RT clock begins to count to 16.  
START BIT  
LSB  
RxD  
START BIT  
QUALIFICATION  
START BIT  
DATA  
SAMPLES  
VERIFICATION SAMPLING  
RT  
CLOCK  
RT CLOCK  
STATE  
RT CLOCK  
RESET  
Figure 13-6. Receiver Data Sampling  
To verify the start bit and to detect noise, data recovery logic takes samples at RT3, RT5, and RT7.  
Table 13-1 summarizes the results of the start bit verification samples.  
Table 13-1. Start Bit Verification  
RT3, RT5, and RT7 Samples Start Bit Verification Noise Flag  
000  
001  
010  
011  
100  
101  
110  
111  
Yes  
Yes  
Yes  
No  
0
1
1
0
1
0
0
0
Yes  
No  
No  
No  
If start bit verification is not successful, the RT clock is reset and a new search for a start bit begins.  
To determine the value of a data bit and to detect noise, recovery logic takes samples at RT8, RT9, and  
RT10. Table 13-2 summarizes the results of the data bit samples.  
MC68HC908QB8 Data Sheet, Rev. 3  
116  
Freescale Semiconductor  
 
 
Functional Description  
Table 13-2. Data Bit Recovery  
RT8, RT9, and RT10 Samples Data Bit Determination Noise Flag  
000  
001  
010  
011  
100  
101  
110  
111  
0
0
0
1
0
1
1
1
0
1
1
1
1
1
1
0
NOTE  
The RT8, RT9, and RT10 samples do not affect start bit verification. If any  
or all of the RT8, RT9, and RT10 start bit samples are 1s following a  
successful start bit verification, the noise flag (NF) is set and the receiver  
assumes that the bit is a start bit.  
To verify a stop bit and to detect noise, recovery logic takes samples at RT8, RT9, and RT10. Table 13-3  
summarizes the results of the stop bit samples.  
Table 13-3. Stop Bit Recovery  
RT8, RT9, and RT10 Samples Framing Error Flag Noise Flag  
000  
001  
010  
011  
100  
101  
110  
111  
1
1
1
0
1
0
0
0
0
1
1
1
1
1
1
0
13.3.3.4 Framing Errors  
If the data recovery logic does not detect a 1 where the stop bit should be in an incoming character, it sets  
the framing error bit, FE, in SCS1. A break character also sets the FE bit because a break character has  
no stop bit. The FE bit is set at the same time that the SCRF bit is set.  
13.3.3.5 Baud Rate Tolerance  
A transmitting device may be operating at a baud rate below or above the receiver baud rate.  
Accumulated bit time misalignment can cause one of the three stop bit data samples to fall outside the  
actual stop bit. Then a noise error occurs. If more than one of the samples is outside the stop bit, a framing  
error occurs. In most applications, the baud rate tolerance is much more than the degree of misalignment  
that is likely to occur.  
As the receiver samples an incoming character, it resynchronizes the RT clock on any valid falling edge  
within the character. Resynchronization within characters corrects misalignments between transmitter bit  
times and receiver bit times.  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
117  
 
 
Enhanced Serial Communications Interface (ESCI) Module  
Slow Data Tolerance  
Figure 13-7 shows how much a slow received character can be misaligned without causing a noise error  
or a framing error. The slow stop bit begins at RT8 instead of RT1 but arrives in time for the stop bit data  
samples at RT8, RT9, and RT10.  
MSB  
STOP  
RECEIVER  
RT CLOCK  
DATA SAMPLES  
Figure 13-7. Slow Data  
For an 8-bit character, data sampling of the stop bit takes the receiver 9 bit times × 16 RT cycles  
+ 10 RT cycles = 154 RT cycles.  
With the misaligned character shown in Figure 13-7, the receiver counts 154 RT cycles at the point when  
the count of the transmitting device is 9 bit times × 16 RT cycles + 3 RT cycles = 147 RT cycles.  
The maximum percent difference between the receiver count and the transmitter count of a slow 8-bit  
character with no errors is:  
154 147  
× 100 = 4.54%  
-------------------------  
154  
For a 9-bit character, data sampling of the stop bit takes the receiver 10 bit times × 16 RT cycles  
+ 10 RT cycles = 170 RT cycles.  
With the misaligned character shown in Figure 13-7, the receiver counts 170 RT cycles at the point when  
the count of the transmitting device is 10 bit times × 16 RT cycles + 3 RT cycles = 163 RT cycles.  
The maximum percent difference between the receiver count and the transmitter count of a slow 9-bit  
character with no errors is:  
170 163  
× 100 = 4.12%  
-------------------------  
170  
Fast Data Tolerance  
Figure 13-8 shows how much a fast received character can be misaligned without causing a noise error  
or a framing error. The fast stop bit ends at RT10 instead of RT16 but is still there for the stop bit data  
samples at RT8, RT9, and RT10.  
STOP  
IDLE OR NEXT CHARACTER  
RECEIVER  
RT CLOCK  
DATA  
SAMPLES  
Figure 13-8. Fast Data  
MC68HC908QB8 Data Sheet, Rev. 3  
118  
Freescale Semiconductor  
 
 
Interrupts  
For an 8-bit character, data sampling of the stop bit takes the receiver 9 bit times × 16 RT cycles  
+ 10 RT cycles = 154 RT cycles.  
With the misaligned character shown in Figure 13-8, the receiver counts 154 RT cycles at the point when  
the count of the transmitting device is 10 bit times × 16 RT cycles = 160 RT cycles.  
The maximum percent difference between the receiver count and the transmitter count of a fast 8-bit  
character with no errors is  
154 160  
× 100 = 3.90%.  
-------------------------  
154  
For a 9-bit character, data sampling of the stop bit takes the receiver 10 bit times × 16 RT cycles  
+ 10 RT cycles = 170 RT cycles.  
With the misaligned character shown in Figure 13-8, the receiver counts 170 RT cycles at the point when  
the count of the transmitting device is 11 bit times × 16 RT cycles = 176 RT cycles.  
The maximum percent difference between the receiver count and the transmitter count of a fast 9-bit  
character with no errors is:  
170 176  
× 100 = 3.53%.  
-------------------------  
170  
13.3.3.6 Receiver Wakeup  
So that the MCU can ignore transmissions intended only for other receivers in multiple-receiver systems,  
the receiver can be put into a standby state. Setting the receiver wakeup bit, RWU, in SCC2 puts the  
receiver into a standby state during which receiver interrupts are disabled.  
Depending on the state of the WAKE bit in SCC1, either of two conditions on the RxD pin can bring the  
receiver out of the standby state:  
1. Address mark — An address mark is a 1 in the MSB position of a received character. When the  
WAKE bit is set, an address mark wakes the receiver from the standby state by clearing the RWU  
bit. The address mark also sets the ESCI receiver full bit, SCRF. Software can then compare the  
character containing the address mark to the user-defined address of the receiver. If they are the  
same, the receiver remains awake and processes the characters that follow. If they are not the  
same, software can set the RWU bit and put the receiver back into the standby state.  
2. Idle input line condition — When the WAKE bit is clear, an idle character on the RxD pin wakes the  
receiver from the standby state by clearing the RWU bit. The idle character that wakes the receiver  
does not set the receiver idle bit, IDLE, or the ESCI receiver full bit, SCRF. The idle line type bit,  
ILTY, determines whether the receiver begins counting 1s as idle character bits after the start bit  
or after the stop bit.  
NOTE  
With the WAKE bit clear, setting the RWU bit after the RxD pin has been  
idle will cause the receiver to wake up.  
13.4 Interrupts  
The following sources can generate ESCI interrupt requests.  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
119  
Enhanced Serial Communications Interface (ESCI) Module  
13.4.1 Transmitter Interrupts  
These conditions can generate interrupt requests from the ESCI transmitter:  
ESCI transmitter empty (SCTE) — The SCTE bit in SCS1 indicates that the SCDR has transferred  
a character to the transmit shift register. SCTE can generate a transmitter interrupt request. Setting  
the ESCI transmit interrupt enable bit, SCTIE, in SCC2 enables the SCTE bit to generate  
transmitter interrupt requests.  
Transmission complete (TC) — The TC bit in SCS1 indicates that the transmit shift register and the  
SCDR are empty and that no break or idle character has been generated. The transmission  
complete interrupt enable bit, TCIE, in SCC2 enables the TC bit to generate transmitter interrupt  
requests.  
13.4.2 Receiver Interrupts  
These sources can generate interrupt requests from the ESCI receiver:  
ESCI receiver full (SCRF) — The SCRF bit in SCS1 indicates that the receive shift register has  
transferred a character to the SCDR. SCRF can generate a receiver interrupt request. Setting the  
ESCI receive interrupt enable bit, SCRIE, in SCC2 enables the SCRF bit to generate receiver  
interrupts.  
Idle input (IDLE) — The IDLE bit in SCS1 indicates that 10 or 11 consecutive 1s shifted in from the  
RxD pin. The idle line interrupt enable bit, ILIE, in SCC2 enables the IDLE bit to generate interrupt  
requests.  
13.4.3 Error Interrupts  
These receiver error flags in SCS1 can generate interrupt requests:  
Receiver overrun (OR) — The OR bit indicates that the receive shift register shifted in a new  
character before the previous character was read from the SCDR. The previous character remains  
in the SCDR, and the new character is lost. The overrun interrupt enable bit, ORIE, in SCC3  
enables OR to generate ESCI error interrupt requests.  
Noise flag (NF) — The NF bit is set when the ESCI detects noise on incoming data or break  
characters, including start, data, and stop bits. The noise error interrupt enable bit, NEIE, in SCC3  
enables NF to generate ESCI error interrupt requests.  
Framing error (FE) — The FE bit in SCS1 is set when a 0 occurs where the receiver expects a stop  
bit. The framing error interrupt enable bit, FEIE, in SCC3 enables FE to generate ESCI error  
interrupt requests.  
Parity error (PE) — The PE bit in SCS1 is set when the ESCI detects a parity error in incoming  
data. The parity error interrupt enable bit, PEIE, in SCC3 enables PE to generate ESCI error  
interrupt requests.  
13.5 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.  
13.5.1 Wait Mode  
The ESCI module remains active in wait mode. Any enabled interrupt request from the ESCI module can  
bring the MCU out of wait mode.  
If ESCI module functions are not required during wait mode, reduce power consumption by disabling the  
module before executing the WAIT instruction.  
MC68HC908QB8 Data Sheet, Rev. 3  
120  
Freescale Semiconductor  
ESCI During Break Interrupts  
13.5.2 Stop Mode  
The ESCI module is inactive in stop mode. The STOP instruction does not affect ESCI register states.  
ESCI module operation resumes after the MCU exits stop mode.  
Because the internal clock is inactive during stop mode, entering stop mode during an ESCI transmission  
or reception results in invalid data.  
13.6 ESCI During Break Interrupts  
The system integration module (SIM) controls whether status bits in other modules can be cleared during  
the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear status  
bits during the break state. See BFCR in the SIM section of this data sheet.  
To allow software to clear status bits during a break interrupt, write a 1 to BCFE. If a status bit is cleared  
during the break state, it remains cleared when the MCU exits the break state.  
To protect status bits during the break state, write a 0 to BCFE. With BCFE cleared (its default state),  
software can read and write registers during the break state without affecting status bits. Some status bits  
have a two-step read/write clearing procedure. If software does the first step on such a bit before the  
break, the bit cannot change during the break state as long as BCFE is cleared.After the break, doing the  
second step clears the status bit.  
13.7 I/O Signals  
The ESCI module can share its pins with the general-purpose I/O pins. See Figure 13-1 for the port pins  
that are shared.  
13.7.1 ESCI Transmit Data (TxD)  
The TxD pin is the serial data output from the ESCI transmitter. When the ESCI is enabled, the TxD pin  
becomes an output.  
13.7.2 ESCI Receive Data (RxD)  
The RxD pin is the serial data input to the ESCI receiver. When the ESCI is enabled, the RxD pin becomes  
an input.  
13.8 Registers  
The following registers control and monitor operation of the ESCI:  
ESCI control register 1, SCC1  
ESCI control register 2, SCC2  
ESCI control register 3, SCC3  
ESCI status register 1, SCS1  
ESCI status register 2, SCS2  
ESCI data register, SCDR  
ESCI baud rate register, SCBR  
ESCI prescaler register, SCPSC  
ESCI arbiter control register, SCIACTL  
ESCI arbiter data register, SCIADAT  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
121  
Enhanced Serial Communications Interface (ESCI) Module  
13.8.1 ESCI Control Register 1  
ESCI control register 1 (SCC1):  
Enables loop mode operation  
Enables the ESCI  
Controls output polarity  
Controls character length  
Controls ESCI wakeup method  
Controls idle character detection  
Enables parity function  
Controls parity type  
Bit 7  
LOOPS  
0
6
ENSCI  
0
5
TXINV  
0
4
M
0
3
WAKE  
0
2
ILTY  
0
1
PEN  
0
Bit 0  
PTY  
0
Read:  
Write:  
Reset:  
Figure 13-9. ESCI Control Register 1 (SCC1)  
LOOPS — Loop Mode Select Bit  
This read/write bit enables loop mode operation. In loop mode the RxD pin is disconnected from the  
ESCI, and the transmitter output goes into the receiver input. Both the transmitter and the receiver  
must be enabled to use loop mode.  
1 = Loop mode enabled  
0 = Normal operation enabled  
ENSCI — Enable ESCI Bit  
This read/write bit enables the ESCI and the ESCI baud rate generator. Clearing ENSCI sets the SCTE  
and TC bits in ESCI status register 1 and disables transmitter interrupts.  
1 = ESCI enabled  
0 = ESCI disabled  
TXINV — Transmit Inversion Bit  
This read/write bit reverses the polarity of transmitted data.  
1 = Transmitter output inverted  
0 = Transmitter output not inverted  
NOTE  
Setting the TXINV bit inverts all transmitted values including idle, break,  
start, and stop bits.  
M — Mode (Character Length) Bit  
This read/write bit determines whether ESCI characters are eight or nine bits long (see  
Table 13-4).The ninth bit can serve as a receiver wakeup signal or as a parity bit.  
1 = 9-bit ESCI characters  
0 = 8-bit ESCI characters  
MC68HC908QB8 Data Sheet, Rev. 3  
122  
Freescale Semiconductor  
Registers  
Table 13-4. Character Format Selection  
Control Bits  
PEN:PTY  
0 X  
Character Format  
M
0
1
0
0
1
1
Start Bits Data Bits  
Parity  
None  
None  
Even  
Odd  
Stop Bits Character Length  
1
1
1
1
1
1
8
9
7
7
8
8
1
1
1
1
1
1
10 bits  
11 bits  
10 bits  
10 bits  
11 bits  
11 bits  
0 X  
1 0  
1 1  
1 0  
Even  
Odd  
1 1  
WAKE — Wakeup Condition Bit  
This read/write bit determines which condition wakes up the ESCI: a 1 (address mark) in the MSB  
position of a received character or an idle condition on the RxD pin.  
1 = Address mark wakeup  
0 = Idle line wakeup  
ILTY — Idle Line Type Bit  
This read/write bit determines when the ESCI starts counting 1s as idle character bits. The counting  
begins either after the start bit or after the stop bit. If the count begins after the start bit, then a string  
of 1s preceding the stop bit may cause false recognition of an idle character. Beginning the count after  
the stop bit avoids false idle character recognition, but requires properly synchronized transmissions.  
1 = Idle character bit count begins after stop bit  
0 = Idle character bit count begins after start bit  
PEN — Parity Enable Bit  
This read/write bit enables the ESCI parity function (see Table 13-4). When enabled, the parity  
function inserts a parity bit in the MSB position (see Table 13-2).  
1 = Parity function enabled  
0 = Parity function disabled  
PTY — Parity Bit  
This read/write bit determines whether the ESCI generates and checks for odd parity or even parity  
(see Table 13-4).  
1 = Odd parity  
0 = Even parity  
NOTE  
Changing the PTY bit in the middle of a transmission or reception can  
generate a parity error.  
13.8.2 ESCI Control Register 2  
ESCI control register 2 (SCC2):  
Enables these interrupt requests:  
SCTE bit to generate transmitter interrupt requests  
TC bit to generate transmitter interrupt requests  
SCRF bit to generate receiver interrupt requests  
IDLE bit to generate receiver interrupt requests  
Enables the transmitter  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
123  
 
Enhanced Serial Communications Interface (ESCI) Module  
Enables the receiver  
Enables ESCI wakeup  
Transmits ESCI break characters  
Bit 7  
SCTIE  
0
6
TCIE  
0
5
SCRIE  
0
4
ILIE  
0
3
TE  
0
2
RE  
0
1
RWU  
0
Bit 0  
SBK  
0
Read:  
Write:  
Reset:  
Figure 13-10. ESCI Control Register 2 (SCC2)  
SCTIE — ESCI Transmit Interrupt Enable Bit  
This read/write bit enables the SCTE bit to generate ESCI transmitter interrupt requests. Setting the  
SCTIE bit in SCC2 enables the SCTE bit to generate interrupt requests.  
1 = SCTE enabled to generate interrupt  
0 = SCTE not enabled to generate interrupt  
TCIE — Transmission Complete Interrupt Enable Bit  
This read/write bit enables the TC bit to generate ESCI transmitter interrupt requests.  
1 = TC enabled to generate interrupt requests  
0 = TC not enabled to generate interrupt requests  
SCRIE — ESCI Receive Interrupt Enable Bit  
This read/write bit enables the SCRF bit to generate ESCI receiver interrupt requests. Setting the  
SCRIE bit in SCC2 enables the SCRF bit to generate interrupt requests.  
1 = SCRF enabled to generate interrupt  
0 = SCRF not enabled to generate interrupt  
ILIE — Idle Line Interrupt Enable Bit  
This read/write bit enables the IDLE bit to generate ESCI receiver interrupt requests.  
1 = IDLE enabled to generate interrupt requests  
0 = IDLE not enabled to generate interrupt requests  
TE — Transmitter Enable Bit  
Setting this read/write bit begins the transmission by sending a preamble of 10 or 11 1s from the  
transmit shift register to the TxD pin. If software clears the TE bit, the transmitter completes any  
transmission in progress before the TxD returns to the idle condition (high). Clearing and then setting  
TE during a transmission queues an idle character to be sent after the character currently being  
transmitted.  
1 = Transmitter enabled  
0 = Transmitter disabled  
NOTE  
Writing to the TE bit is not allowed when the enable ESCI bit (ENSCI) is  
clear. ENSCI is in ESCI control register 1.  
RE — Receiver Enable Bit  
Setting this read/write bit enables the receiver. Clearing the RE bit disables the receiver but does not  
affect receiver interrupt flag bits.  
1 = Receiver enabled  
0 = Receiver disabled  
MC68HC908QB8 Data Sheet, Rev. 3  
124  
Freescale Semiconductor  
Registers  
NOTE  
Writing to the RE bit is not allowed when the enable ESCI bit (ENSCI) is  
clear. ENSCI is in ESCI control register 1.  
RWU — Receiver Wakeup Bit  
This read/write bit puts the receiver in a standby state during which receiver interrupts are disabled.  
The WAKE bit in SCC1 determines whether an idle input or an address mark brings the receiver out  
of the standby state and clears the RWU bit.  
1 = Standby state  
0 = Normal operation  
SBK — Send Break Bit  
Setting and then clearing this read/write bit transmits a break character followed by a 1. The 1 after the  
break character guarantees recognition of a valid start bit. If SBK remains set, the transmitter  
continuously transmits break characters with no 1s between them.  
1 = Transmit break characters  
0 = No break characters being transmitted  
NOTE  
Do not toggle the SBK bit immediately after setting the SCTE bit. Toggling  
SBK before the preamble begins causes the ESCI to send a break  
character instead of a preamble.  
13.8.3 ESCI Control Register 3  
ESCI control register 3 (SCC3):  
Stores the ninth ESCI data bit received and the ninth ESCI data bit to be transmitted.  
Enables these interrupts:  
Receiver overrun  
Noise error  
Framing error  
Parity error  
Bit 7  
6
T8  
0
5
R
0
4
3
2
NEIE  
0
1
FEIE  
0
Bit 0  
PEIE  
0
Read:  
Write:  
Reset:  
R8  
R
ORIE  
U
0
0
= Unimplemented  
R
= Reserved  
U = Unaffected  
Figure 13-11. ESCI Control Register 3 (SCC3)  
R8 — Received Bit 8  
When the ESCI is receiving 9-bit characters, R8 is the read-only ninth bit (bit 8) of the received  
character. R8 is received at the same time that the SCDR receives the other 8 bits.  
When the ESCI is receiving 8-bit characters, R8 is a copy of the eighth bit (bit 7).  
T8 — Transmitted Bit 8  
When the ESCI is transmitting 9-bit characters, T8 is the read/write ninth bit (bit 8) of the transmitted  
character. T8 is loaded into the transmit shift register at the same time that the SCDR is loaded into  
the transmit shift register.  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
125  
Enhanced Serial Communications Interface (ESCI) Module  
ORIE — Receiver Overrun Interrupt Enable Bit  
This read/write bit enables ESCI error interrupt requests generated by the receiver overrun bit, OR.  
1 = ESCI error interrupt requests from OR bit enabled  
0 = ESCI error interrupt requests from OR bit disabled  
NEIE — Receiver Noise Error Interrupt Enable Bit  
This read/write bit enables ESCI error interrupt requests generated by the noise error bit, NE.  
1 = ESCI error interrupt requests from NE bit enabled  
0 = ESCI error interrupt requests from NE bit disabled  
FEIE — Receiver Framing Error Interrupt Enable Bit  
This read/write bit enables ESCI error interrupt requests generated by the framing error bit, FE.  
1 = ESCI error interrupt requests from FE bit enabled  
0 = ESCI error interrupt requests from FE bit disabled  
PEIE — Receiver Parity Error Interrupt Enable Bit  
This read/write bit enables ESCI receiver interrupt requests generated by the parity error bit, PE.  
1 = ESCI error interrupt requests from PE bit enabled  
0 = ESCI error interrupt requests from PE bit disabled  
13.8.4 ESCI Status Register 1  
ESCI status register 1 (SCS1) contains flags to signal these conditions:  
Transfer of SCDR data to transmit shift register complete  
Transmission complete  
Transfer of receive shift register data to SCDR complete  
Receiver input idle  
Receiver overrun  
Noisy data  
Framing error  
Parity error  
Bit 7  
6
5
4
3
2
1
Bit 0  
PE  
Read:  
Write:  
Reset:  
SCTE  
TC  
SCRF  
IDLE  
OR  
NF  
FE  
1
1
0
0
0
0
0
0
= Unimplemented  
Figure 13-12. ESCI Status Register 1 (SCS1)  
SCTE — ESCI Transmitter Empty Bit  
This clearable, read-only bit is set when the SCDR transfers a character to the transmit shift register.  
SCTE can generate an ESCI transmitter interrupt request. When the SCTIE bit in SCC2 is set, SCTE  
generates an ESCI transmitter interrupt request. In normal operation, clear the SCTE bit by reading  
SCS1 with SCTE set and then writing to SCDR  
1 = SCDR data transferred to transmit shift register  
0 = SCDR data not transferred to transmit shift register  
MC68HC908QB8 Data Sheet, Rev. 3  
126  
Freescale Semiconductor  
Registers  
TC — Transmission Complete Bit  
This read-only bit is set when the SCTE bit is set, and no data, preamble, or break character is being  
transmitted. TC generates an ESCI transmitter interrupt request if the TCIE bit in SCC2 is also set. TC  
is cleared automatically when data, preamble, or break is queued and ready to be sent. There may be  
up to 1.5 transmitter clocks of latency between queueing data, preamble, and break and the  
transmission actually starting.  
1 = No transmission in progress  
0 = Transmission in progress  
SCRF — ESCI Receiver Full Bit  
This clearable, read-only bit is set when the data in the receive shift register transfers to the ESCI data  
register. SCRF can generate an ESCI receiver interrupt request. When the SCRIE bit in SCC2 is set  
the SCRF generates a interrupt request. In normal operation, clear the SCRF bit by reading SCS1 with  
SCRF set and then reading the SCDR.  
1 = Received data available in SCDR  
0 = Data not available in SCDR  
IDLE — Receiver Idle Bit  
This clearable, read-only bit is set when 10 or 11 consecutive 1s appear on the receiver input. IDLE  
generates an ESCI receiver interrupt request if the ILIE bit in SCC2 is also set. Clear the IDLE bit by  
reading SCS1 with IDLE set and then reading the SCDR. After the receiver is enabled, it must receive  
a valid character that sets the SCRF bit before an idle condition can set the IDLE bit. Also, after the  
IDLE bit has been cleared, a valid character must again set the SCRF bit before an idle condition can  
set the IDLE bit.  
1 = Receiver input idle  
0 = Receiver input active (or idle since the IDLE bit was cleared)  
OR — Receiver Overrun Bit  
This clearable, read-only bit is set when software fails to read the SCDR before the receive shift  
register receives the next character. The OR bit generates an ESCI error interrupt request if the ORIE  
bit in SCC3 is also set. The data in the shift register is lost, but the data already in the SCDR is not  
affected. Clear the OR bit by reading SCS1 with OR set and then reading the SCDR.  
1 = Receive shift register full and SCRF = 1  
0 = No receiver overrun  
Software latency may allow an overrun to occur between reads of SCS1 and SCDR in the flag-clearing  
sequence. Figure 13-13 shows the normal flag-clearing sequence and an example of an overrun  
caused by a delayed flag-clearing sequence. The delayed read of SCDR does not clear the OR bit  
because OR was not set when SCS1 was read. Byte 2 caused the overrun and is lost. The next  
flag-clearing sequence reads byte 3 in the SCDR instead of byte 2.  
In applications that are subject to software latency or in which it is important to know which byte is lost  
due to an overrun, the flag-clearing routine can check the OR bit in a second read of SCS1 after  
reading the data register.  
NF — Receiver Noise Flag Bit  
This clearable, read-only bit is set when the ESCI detects noise on the RxD pin. NF generates an NF  
interrupt request if the NEIE bit in SCC3 is also set. Clear the NF bit by reading SCS1 and then reading  
the SCDR.  
1 = Noise detected  
0 = No noise detected  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
127  
Enhanced Serial Communications Interface (ESCI) Module  
NORMAL FLAG CLEARING SEQUENCE  
BYTE 1  
BYTE 2  
BYTE 3  
BYTE 4  
READ SCS1  
SCRF = 1  
OR = 0  
READ SCS1  
SCRF = 1  
OR = 0  
READ SCS1  
SCRF = 1  
OR = 0  
READ SCDR  
BYTE 1  
READ SCDR  
BYTE 3  
READ SCDR  
BYTE 2  
DELAYED FLAG CLEARING SEQUENCE  
BYTE 1  
BYTE 2  
BYTE 3  
BYTE 4  
READ SCS1  
SCRF = 1  
OR = 0  
READ SCS1  
SCRF = 1  
OR = 1  
READ SCDR  
BYTE 1  
READ SCDR  
BYTE 3  
Figure 13-13. Flag Clearing Sequence  
FE — Receiver Framing Error Bit  
This clearable, read-only bit is set when a 0 is accepted as the stop bit. FE generates an ESCI error  
interrupt request if the FEIE bit in SCC3 also is set. Clear the FE bit by reading SCS1 with FE set and  
then reading the SCDR.  
1 = Framing error detected  
0 = No framing error detected  
PE — Receiver Parity Error Bit  
This clearable, read-only bit is set when the ESCI detects a parity error in incoming data. PE generates  
a PE interrupt request if the PEIE bit in SCC3 is also set. Clear the PE bit by reading SCS1 with PE  
set and then reading the SCDR.  
1 = Parity error detected  
0 = No parity error detected  
MC68HC908QB8 Data Sheet, Rev. 3  
128  
Freescale Semiconductor  
Registers  
13.8.5 ESCI Status Register 2  
ESCI status register 2 (SCS2) contains flags to signal these conditions:  
Break character detected  
Reception in progress  
Bit 7  
6
0
5
0
4
0
3
0
2
0
1
Bit 0  
RPF  
Read:  
Write:  
Reset:  
0
0
BKF  
0
0
0
0
0
0
0
= Unimplemented  
Figure 13-14. ESCI Status Register 2 (SCS2)  
BKF — Break Flag Bit  
This clearable, read-only bit is set when the ESCI detects a break character on the RxD pin. In SCS1,  
the FE and SCRF bits are also set. In 9-bit character transmissions, the R8 bit in SCC3 is cleared. BKF  
does not generate a interrupt request. Clear BKF by reading SCS2 with BKF set and then reading the  
SCDR. Once cleared, BKF can become set again only after 1s again appear on the RxD pin followed  
by another break character.  
1 = Break character detected  
0 = No break character detected  
RPF — Reception in Progress Flag Bit  
This read-only bit is set when the receiver detects a 0 during the RT1 time period of the start bit search.  
RPF does not generate an interrupt request. RPF is reset after the receiver detects false start bits  
(usually from noise or a baud rate mismatch), or when the receiver detects an idle character. Polling  
RPF before disabling the ESCI module or entering stop mode can show whether a reception is in  
progress.  
1 = Reception in progress  
0 = No reception in progress  
13.8.6 ESCI Data Register  
The ESCI data register (SCDR) is the buffer between the internal data bus and the receive and transmit  
shift registers. Reset has no effect on data in the ESCI data register.  
Bit 7  
R7  
6
5
4
3
2
1
Bit 0  
R0  
Read:  
Write:  
Reset:  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
T7  
T0  
Unaffected by reset  
Figure 13-15. ESCI Data Register (SCDR)  
R7/T7:R0/T0 — Receive/Transmit Data Bits  
Reading SCDR accesses the read-only received data bits, R7:R0.  
Writing to SCDR writes the data to be transmitted, T7:T0.  
NOTE  
Do not use read-modify-write instructions on the ESCI data register.  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
129  
Enhanced Serial Communications Interface (ESCI) Module  
13.8.7 ESCI Baud Rate Register  
The ESCI baud rate register (SCBR) together with the ESCI prescaler register selects the baud rate for  
both the receiver and the transmitter.  
NOTE  
There are two prescalers available to adjust the baud rate — one in the  
ESCI baud rate register and one in the ESCI prescaler register.  
Bit 7  
LINT  
6
5
SCP1  
0
4
SCP0  
0
3
R
0
2
SCR2  
0
1
SCR1  
0
Bit 0  
SCR0  
0
Read:  
Write:  
Reset:  
LINR  
0
0
R
= Reserved  
Figure 13-16. ESCI Baud Rate Register (SCBR)  
LINT — LIN Transmit Enable  
This read/write bit selects the enhanced ESCI features for the local interconnect network (LIN) protocol  
as shown in Table 13-5.  
LINR — LIN Receiver Bits  
This read/write bit selects the enhanced ESCI features for the local interconnect network (LIN) protocol  
as shown in Table 13-5.  
Table 13-5. ESCI LIN Control Bits  
LINT  
LINR  
M
X
0
1
0
1
0
1
Functionality  
Normal ESCI functionality  
0
0
0
1
1
1
1
0
1
1
0
0
1
1
11-bit break detect enabled for LIN receiver  
12-bit break detect enabled for LIN receiver  
13-bit generation enabled for LIN transmitter  
14-bit generation enabled for LIN transmitter  
11-bit break detect/13-bit generation enabled for LIN  
12-bit break detect/14-bit generation enabled for LIN  
In LIN (version 1.2 and later) systems, the master node transmits a break character which will appear  
as 11.05–14.95 dominant bits to the slave node. A data character of 0x00 sent from the master might  
appear as 7.65–10.35 dominant bit times. This is due to the oscillator tolerance requirement that the  
slave node must be within 15% of the master node's oscillator. Because a slave node cannot know  
if it is running faster or slower than the master node (prior to synchronization), the LINR bit allows the  
slave node to differentiate between a 0x00 character of 10.35 bits and a break character of 11.05 bits.  
The break symbol length must be verified in software in any case, but the LINR bit serves as a filter,  
preventing false detections of break characters that are really 0x00 data characters.  
MC68HC908QB8 Data Sheet, Rev. 3  
130  
Freescale Semiconductor  
 
Registers  
SCP1 and SCP0 — ESCI Baud Rate Register Prescaler Bits  
These read/write bits select the baud rate register prescaler divisor as shown in Table 13-6.  
Table 13-6. ESCI Baud Rate Prescaling  
Baud Rate Register  
SCP[1:0]  
Prescaler Divisor (BPD)  
0 0  
0 1  
1 0  
1 1  
1
3
4
13  
SCR2–SCR0 — ESCI Baud Rate Select Bits  
These read/write bits select the ESCI baud rate divisor as shown in Table 13-7. Reset clears  
SCR2–SCR0.  
Table 13-7. ESCI Baud Rate Selection  
SCR[2:1:0]  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
Baud Rate Divisor (BD)  
1
2
4
8
16  
32  
64  
128  
13.8.8 ESCI Prescaler Register  
The ESCI prescaler register (SCPSC) together with the ESCI baud rate register selects the baud rate for  
both the receiver and the transmitter.  
NOTE  
There are two prescalers available to adjust the baud rate — one in the  
ESCI baud rate register and one in the ESCI prescaler register.  
Bit 7  
PDS2  
0
6
PDS1  
0
5
PDS0  
0
4
PSSB4  
0
3
PSSB3  
0
2
PSSB2  
0
1
PSSB1  
0
Bit 0  
PSSB0  
0
Read:  
Write:  
Reset:  
Figure 13-17. ESCI Prescaler Register (SCPSC)  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
131  
 
 
Enhanced Serial Communications Interface (ESCI) Module  
PDS2–PDS0 — Prescaler Divisor Select Bits  
These read/write bits select the prescaler divisor as shown in Table 13-8.  
NOTE  
The setting of ‘000’ will bypass not only this prescaler but also the prescaler  
divisor fine adjust (PDFA). It is not recommended to bypass the prescaler  
while ENSCI is set, because the switching is not glitch free.  
Table 13-8. ESCI Prescaler Division Ratio  
PDS[2:1:0]  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
Prescaler Divisor (PD)  
Bypass this prescaler  
2
3
4
5
6
7
8
PSSB4–PSSB0 — Clock Insertion Select Bits  
These read/write bits select the number of clocks inserted in each 32 output cycle frame to achieve  
more timing resolution on the average prescaler frequency as shown in Table 13-9.  
Table 13-9. ESCI Prescaler Divisor Fine Adjust  
PSSB[4:3:2:1:0]  
0 0 0 0 0  
0 0 0 0 1  
0 0 0 1 0  
0 0 0 1 1  
0 0 1 0 0  
0 0 1 0 1  
0 0 1 1 0  
0 0 1 1 1  
0 1 0 0 0  
0 1 0 0 1  
0 1 0 1 0  
0 1 0 1 1  
0 1 1 0 0  
0 1 1 0 1  
0 1 1 1 0  
Prescaler Divisor Fine Adjust (PDFA)  
0/32 = 0  
1/32 = 0.03125  
2/32 = 0.0625  
3/32 = 0.09375  
4/32 = 0.125  
5/32 = 0.15625  
6/32 = 0.1875  
7/32 = 0.21875  
8/32 = 0.25  
9/32 = 0.28125  
10/32 = 0.3125  
11/32 = 0.34375  
12/32 = 0.375  
13/32 = 0.40625  
14/32 = 0.4375  
Continued on next page  
MC68HC908QB8 Data Sheet, Rev. 3  
132  
Freescale Semiconductor  
 
 
Registers  
Table 13-9. ESCI Prescaler Divisor Fine Adjust (Continued)  
PSSB[4:3:2:1:0]  
0 1 1 1 1  
1 0 0 0 0  
1 0 0 0 1  
1 0 0 1 0  
1 0 0 1 1  
1 0 1 0 0  
1 0 1 0 1  
1 0 1 1 0  
1 0 1 1 1  
1 1 0 0 0  
1 1 0 0 1  
1 1 0 1 0  
1 1 0 1 1  
1 1 1 0 0  
1 1 1 0 1  
1 1 1 1 0  
1 1 1 1 1  
Prescaler Divisor Fine Adjust (PDFA)  
15/32 = 0.46875  
16/32 = 0.5  
17/32 = 0.53125  
18/32 = 0.5625  
19/32 = 0.59375  
20/32 = 0.625  
21/32 = 0.65625  
22/32 = 0.6875  
23/32 = 0.71875  
24/32 = 0.75  
25/32 = 0.78125  
26/32 = 0.8125  
27/32 = 0.84375  
28/32 = 0.875  
29/32 = 0.90625  
30/32 = 0.9375  
31/32 = 0.96875  
Use the following formula to calculate the ESCI baud rate:  
Frequency of the SCI clock source  
64 x BPD x BD x (PD + PDFA)  
Baud rate =  
where:  
SCI clock source = bus clock or BUSCLKX4 (selected by ESCIBDSRC in the configuration register)  
BPD = Baud rate register prescaler divisor  
BD = Baud rate divisor  
PD = Prescaler divisor  
PDFA = Prescaler divisor fine adjust  
Table 13-10 shows the ESCI baud rates that can be generated with a 4.9152-MHz bus frequency.  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
133  
Enhanced Serial Communications Interface (ESCI) Module  
Table 13-10. ESCI Baud Rate Selection Examples  
Prescaler  
Divisor  
(BPD)  
Baud Rate  
Divisor  
(BD)  
Baud Rate  
(fBus= 4.9152 MHz)  
PDS[2:1:0]  
PSSB[4:3:2:1:0]  
SCP[1:0]  
SCR[2:1:0]  
0 0 0  
1 1 1  
1 1 1  
1 1 1  
1 1 1  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
X X X X X  
0 0 0 0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 1  
0 1  
0 1  
0 1  
0 1  
0 1  
0 1  
0 1  
1 0  
1 0  
1 0  
1 0  
1 0  
1 0  
1 0  
1 0  
1 1  
1 1  
1 1  
1 1  
1 1  
1 1  
1 1  
1 1  
1
1
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
1
1
76,800  
9600  
9562.65  
9525.58  
8563.07  
38,400  
19,200  
9600  
4800  
2400  
1200  
600  
0 0 0 0 1  
1
1
0 0 0 1 0  
1
1
1 1 1 1 1  
1
1
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
1
2
1
4
1
8
1
16  
32  
64  
128  
1
1
1
1
3
25,600  
12,800  
6400  
3200  
1600  
800  
3
2
3
4
3
8
3
16  
32  
64  
128  
1
3
3
400  
3
200  
4
19,200  
9600  
4800  
2400  
1200  
600  
4
2
4
4
4
8
4
16  
32  
64  
128  
1
4
4
300  
4
150  
13  
13  
13  
13  
13  
13  
13  
13  
5908  
2954  
1477  
739  
2
4
8
16  
32  
64  
128  
369  
185  
92  
46  
MC68HC908QB8 Data Sheet, Rev. 3  
134  
Freescale Semiconductor  
ESCI Arbiter  
13.9 ESCI Arbiter  
The ESCI module comprises an arbiter module designed to support software for communication tasks as  
bus arbitration, baud rate recovery and break time detection. The arbiter module consists of an 9-bit  
counter with 1-bit overflow and control logic. The can control operation mode via the ESCI arbiter control  
register (SCIACTL).  
13.9.1 ESCI Arbiter Control Register  
Bit 7  
AM1  
0
6
5
AM0  
0
4
ACLK  
0
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
ALOST  
AFIN  
ARUN  
AROVFL  
ARD8  
0
0
0
0
0
= Unimplemented  
Figure 13-18. ESCI Arbiter Control Register (SCIACTL)  
AM1 and AM0 — Arbiter Mode Select Bits  
These read/write bits select the mode of the arbiter module as shown in Table 13-11.  
Table 13-11. ESCI Arbiter Selectable Modes  
AM[1:0]  
0 0  
ESCI Arbiter Mode  
Idle / counter reset  
0 1  
Bit time measurement  
Bus arbitration  
1 0  
1 1  
Reserved / do not use  
ALOST — Arbitration Lost Flag  
This read-only bit indicates loss of arbitration. Clear ALOST by writing a 0 to AM1.  
ACLK — Arbiter Counter Clock Select Bit  
This read/write bit selects the arbiter counter clock source.  
1 = Arbiter counter is clocked with one half of the ESCI input clock generated by the ESCI prescaler  
0 = Arbiter counter is clocked with the bus clock divided by four  
NOTE  
For ACLK = 1, the arbiter input clock is driven from the ESCI prescaler. The  
prescaler can be clocked by either the bus clock or BUSCLKX4 depending  
on the state of the ESCIBDSRC bit in configuration register.  
AFIN— Arbiter Bit Time Measurement Finish Flag  
This read-only bit indicates bit time measurement has finished. Clear AFIN by writing any value to  
SCIACTL.  
1 = Bit time measurement has finished  
0 = Bit time measurement not yet finished  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
135  
 
Enhanced Serial Communications Interface (ESCI) Module  
ARUN— Arbiter Counter Running Flag  
This read-only bit indicates the arbiter counter is running.  
1 = Arbiter counter running  
0 = Arbiter counter stopped  
AROVFL— Arbiter Counter Overflow Bit  
This read-only bit indicates an arbiter counter overflow. Clear AROVFL by writing any value to  
SCIACTL. Writing 0s to AM1 and AM0 resets the counter keeps it in this idle state.  
1 = Arbiter counter overflow has occurred  
0 = No arbiter counter overflow has occurred  
ARD8— Arbiter Counter MSB  
This read-only bit is the MSB of the 9-bit arbiter counter. Clear ARD8 by writing any value to SCIACTL.  
13.9.2 ESCI Arbiter Data Register  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
ARD7  
ARD6  
ARD5  
ARD4  
ARD3  
ARD2  
ARD1  
ARD0  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 13-19. ESCI Arbiter Data Register (SCIADAT)  
ARD7–ARD0 — Arbiter Least Significant Counter Bits  
These read-only bits are the eight LSBs of the 9-bit arbiter counter. Clear ARD7–ARD0 by writing any  
value to SCIACTL. Writing 0s to AM1 and AM0 permanently resets the counter and keeps it in this idle  
state.  
13.9.3 Bit Time Measurement  
Two bit time measurement modes, described here, are available according to the state of ACLK.  
1. ACLK = 0 — The counter is clocked with one quarter of the bus clock. The counter is started when  
a falling edge on the RxD pin is detected. The counter will be stopped on the next falling edge.  
ARUN is set while the counter is running, AFIN is set on the second falling edge on RxD (for  
instance, the counter is stopped). This mode is used to recover the received baud rate. See  
Figure 13-20.  
2. ACLK = 1 — The counter is clocked with one half of the ESCI input clock generated by the ESCI  
prescaler. The counter is started when a 0 is detected on RxD (see Figure 13-21). A 0 on RxD on  
enabling the bit time measurement with ACLK = 1 leads to immediate start of the counter (see  
Figure 13-22). The counter will be stopped on the next rising edge of RxD. This mode is used to  
measure the length of a received break.  
MC68HC908QB8 Data Sheet, Rev. 3  
136  
Freescale Semiconductor  
ESCI Arbiter  
MEASURED TIME  
RXD  
Figure 13-20. Bit Time Measurement with ACLK = 0  
MEASURED TIME  
RXD  
Figure 13-21. Bit Time Measurement with ACLK = 1, Scenario A  
MEASURED TIME  
RXD  
Figure 13-22. Bit Time Measurement with ACLK = 1, Scenario B  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
137  
Enhanced Serial Communications Interface (ESCI) Module  
13.9.4 Arbitration Mode  
If AM[1:0] is set to 10, the arbiter module operates in arbitration mode. On every rising edge of SCI_TxD  
(output of the transmit shift register, see Figure 13-2), the counter is started. When the counter reaches  
$38 (ACLK = 0) or $08 (ACLK = 1), RxD is statically sensed. If in this case, RxD is sensed low (for  
example, another bus is driving the bus dominant) ALOST is set. As long as ALOST is set, the TxD pin is  
forced to 1, resulting in a seized transmission.  
If SCI_TxD senses 0 without having sensed a 0 before on RxD, the counter will be reset, arbitration  
operation will be restarted after the next rising edge of SCI_TxD.  
MC68HC908QB8 Data Sheet, Rev. 3  
138  
Freescale Semiconductor  
Chapter 14  
System Integration Module (SIM)  
14.1 Introduction  
This section describes the system integration module (SIM), which supports up to 24 external and/or  
internal interrupts. Together with the central processor unit (CPU), the SIM controls all microcontroller unit  
(MCU) activities. A block diagram of the SIM is shown in Figure 14-1. The SIM is a system state controller  
that coordinates CPU and exception timing.  
The SIM is responsible for:  
Bus clock generation and control for CPU and peripherals  
Stop/wait/reset/break entry and recovery  
Internal clock control  
Master reset control, including power-on reset (POR) and computer operating properly (COP)  
timeout  
Interrupt control:  
Acknowledge timing  
Arbitration control timing  
Vector address generation  
CPU enable/disable timing  
Table 14-1. Signal Name Conventions  
Signal Name  
Description  
BUSCLKX4  
Buffered clock from the internal, RC or XTAL oscillator circuit.  
The BUSCLKX4 frequency divided by two. This signal is again  
divided by two in the SIM to generate the internal bus clocks  
(bus clock = BUSCLKX4 ÷ 4).  
BUSCLKX2  
Address bus  
Data bus  
PORRST  
IRST  
Internal address bus  
Internal data bus  
Signal from the power-on reset module to the SIM  
Internal reset signal  
R/W  
Read/write signal  
14.2 RST and IRQ Pins Initialization  
RST and IRQ pins come out of reset as PTA3 and PTA2 respectively. RST and IRQ functions can be  
activated by programing CONFIG2 accordingly. Refer to Chapter 5 Configuration Register (CONFIG).  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
139  
System Integration Module (SIM)  
MODULE STOP  
MODULE WAIT  
CPU STOP (FROM CPU)  
CPU WAIT (FROM CPU)  
STOP/WAIT  
CONTROL  
SIMOSCEN (TO OSCILLATOR)  
SIM  
COUNTER  
COP CLOCK  
BUSCLKX4 (FROM OSCILLATOR)  
BUSCLKX2 (FROM OSCILLATOR)  
÷2  
VDD  
CLOCK  
CONTROL  
CLOCK GENERATORS  
INTERNAL CLOCKS  
INTERNAL  
PULL-UP  
ILLEGAL OPCODE (FROM CPU)  
ILLEGAL ADDRESS (FROM ADDRESS  
MAP DECODERS)  
RESET  
PIN LOGIC  
POR CONTROL  
MASTER  
RESET  
RESET PIN CONTROL  
COP TIMEOUT (FROM COP MODULE)  
CONTROL  
LVI RESET (FROM LVI MODULE)  
SIM RESET STATUS REGISTER  
FORCED MON MODE ENTRY (FROM MENRST MODULE)  
RESET  
INTERRUPT SOURCES  
CPU INTERFACE  
INTERRUPT CONTROL  
AND PRIORITY DECODE  
Figure 14-1. SIM Block Diagram  
14.3 SIM Bus Clock Control and Generation  
The bus clock generator provides system clock signals for the CPU and peripherals on the MCU. The  
system clocks are generated from an incoming clock, BUSCLKX2, as shown in Figure 14-2.  
FROM  
OSCILLATOR  
BUSCLKX4  
BUSCLKX2  
SIM COUNTER  
FROM  
OSCILLATOR  
BUS CLOCK  
GENERATORS  
÷ 2  
SIM  
Figure 14-2. SIM Clock Signals  
MC68HC908QB8 Data Sheet, Rev. 3  
140  
Freescale Semiconductor  
 
Reset and System Initialization  
14.3.1 Bus Timing  
In user mode, the internal bus frequency is the oscillator frequency (BUSCLKX4) divided by four.  
14.3.2 Clock Start-Up from POR  
When the power-on reset module generates a reset, the clocks to the CPU and peripherals are inactive  
and held in an inactive phase until after the 4096 BUSCLKX4 cycle POR time out has completed. The  
IBUS clocks start upon completion of the time out.  
14.3.3 Clocks in Stop Mode and Wait Mode  
Upon exit from stop mode by an interrupt or reset, the SIM allows BUSCLKX4 to clock the SIM counter.  
The CPU and peripheral clocks do not become active until after the stop delay time out. This time out is  
selectable as 4096 or 32 BUSCLKX4 cycles. See 14.7.2 Stop Mode.  
In wait mode, the CPU clocks are inactive. The SIM also produces two sets of clocks for other modules.  
Refer to the wait mode subsection of each module to see if the module is active or inactive in wait mode.  
Some modules can be programmed to be active in wait mode.  
14.4 Reset and System Initialization  
The MCU has these reset sources:  
Power-on reset module (POR)  
External reset pin (RST)  
Computer operating properly module (COP)  
Low-voltage inhibit module (LVI)  
Illegal opcode  
Illegal address  
All of these resets produce the vector $FFFE–FFFF ($FEFE–FEFF in monitor mode) and assert the  
internal reset signal (IRST). IRST causes all registers to be returned to their default values and all  
modules to be returned to their reset states.  
An internal reset clears the SIM counter (see 14.5 SIM Counter), but an external reset does not. Each of  
the resets sets a corresponding bit in the SIM reset status register (SRSR). See 14.8 SIM Registers.  
14.4.1 External Pin Reset  
The RST pin circuits include an internal pullup device. Pulling the asynchronous RST pin low halts all  
processing. The PIN bit of the SIM reset status register (SRSR) is set as long as RST is held low for at  
least the minimum tRL time. Figure 14-3 shows the relative timing. The RST pin function is only available  
if the RSTEN bit is set in the CONFIG2 register.  
BUSCLKX2  
RST  
VECT H VECT L  
ADDRESS BUS  
PC  
Figure 14-3. External Reset Timing  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
141  
 
System Integration Module (SIM)  
14.4.2 Active Resets from Internal Sources  
The RST pin is initially setup as a general-purpose input after a POR. Setting the RSTEN bit in the  
CONFIG2 register enables the pin for the reset function. This section assumes the RSTEN bit is set when  
describing activity on the RST pin.  
NOTE  
For POR and LVI resets, the SIM cycles through 4096 BUSCLKX4 cycles.  
The internal reset signal then follows the sequence from the falling edge of  
RST shown in Figure 14-4.  
The COP reset is asynchronous to the bus clock.  
The active reset feature allows the part to issue a reset to peripherals and other chips within a system  
built around the MCU.  
All internal reset sources actively pull the RST pin low for 32 BUSCLKX4 cycles to allow resetting of  
external peripherals. The internal reset signal IRST continues to be asserted for an additional 32 cycles  
(see Figure 14-4). An internal reset can be caused by an illegal address, illegal opcode, COP time out,  
LVI, or POR (see Figure 14-5).  
IRST  
RST PULLED LOW BY MCU  
32 CYCLES  
RST  
32 CYCLES  
BUSCLKX4  
ADDRESS  
BUS  
VECTOR HIGH  
Figure 14-4. Internal Reset Timing  
ILLEGAL ADDRESS RST  
ILLEGAL OPCODE RST  
COPRST  
POR  
INTERNAL RESET  
LVI  
Figure 14-5. Sources of Internal Reset  
Table 14-2. Reset Recovery Timing  
Reset Recovery Type  
POR/LVI  
All others  
Actual Number of Cycles  
4163 (4096 + 64 + 3)  
67 (64 + 3)  
MC68HC908QB8 Data Sheet, Rev. 3  
142  
Freescale Semiconductor  
 
 
 
Reset and System Initialization  
14.4.2.1 Power-On Reset  
When power is first applied to the MCU, the power-on reset module (POR) generates a pulse to indicate  
that power on has occurred. The SIM counter counts out 4096 BUSCLKX4 cycles. Sixty-four BUSCLKX4  
cycles later, the CPU and memories are released from reset to allow the reset vector sequence to occur.  
At power on, the following events occur:  
A POR pulse is generated.  
The internal reset signal is asserted.  
The SIM enables the oscillator to drive BUSCLKX4.  
Internal clocks to the CPU and modules are held inactive for 4096 BUSCLKX4 cycles to allow  
stabilization of the oscillator.  
The POR bit of the SIM reset status register (SRSR) is set.  
See Figure 14-6.  
OSC1  
PORRST  
4096  
CYCLES  
32  
CYCLES  
32  
CYCLES  
BUSCLKX4  
BUSCLKX2  
RST  
(RST PIN IS A GENERAL-PURPOSE INPUT AFTER A POR)  
ADDRESS BUS  
$FFFE  
$FFFF  
Figure 14-6. POR Recovery  
14.4.2.2 Computer Operating Properly (COP) Reset  
An input to the SIM is reserved for the COP reset signal. The overflow of the COP counter causes an  
internal reset and sets the COP bit in the SIM reset status register (SRSR). The SIM actively pulls down  
the RST pin for all internal reset sources.  
To prevent a COP module time out, write any value to location $FFFF. Writing to location $FFFF clears  
the COP counter and stages 12–5 of the SIM counter. The SIM counter output, which occurs at least  
every (212 – 24) BUSCLKX4 cycles, drives the COP counter. The COP should be serviced as soon as  
possible out of reset to guarantee the maximum amount of time before the first time out.  
The COP module is disabled during a break interrupt with monitor mode when BDCOP bit is set in break  
auxiliary register (BRKAR).  
14.4.2.3 Illegal Opcode Reset  
The SIM decodes signals from the CPU to detect illegal instructions. An illegal instruction sets the ILOP  
bit in the SIM reset status register (SRSR) and causes a reset.  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
143  
 
System Integration Module (SIM)  
If the stop enable bit, STOP, in the mask option register is 0, the SIM treats the STOP instruction as an  
illegal opcode and causes an illegal opcode reset. The SIM actively pulls down the RST pin for all internal  
reset sources.  
14.4.2.4 Illegal Address Reset  
An opcode fetch from an unmapped address generates an illegal address reset. The SIM verifies that the  
CPU is fetching an opcode prior to asserting the ILAD bit in the SIM reset status register (SRSR) and  
resetting the MCU. A data fetch from an unmapped address does not generate a reset. The SIM actively  
pulls down the RST pin for all internal reset sources. See Figure 2-1. Memory Map for memory ranges.  
14.4.2.5 Low-Voltage Inhibit (LVI) Reset  
The LVI asserts its output to the SIM when the VDD voltage falls to the LVI trip voltage VTRIPF. The LVI  
bit in the SIM reset status register (SRSR) is set, and the external reset pin (RST) is held low while the  
SIM counter counts out 4096 BUSCLKX4 cycles after VDD rises above VTRIPR. Sixty-four BUSCLKX4  
cycles later, the CPU and memories are released from reset to allow the reset vector sequence to occur.  
The SIM actively pulls down the (RST) pin for all internal reset sources.  
14.5 SIM Counter  
The SIM counter is used by the power-on reset module (POR) and in stop mode recovery to allow the  
oscillator time to stabilize before enabling the internal bus (IBUS) clocks. The SIM counter also serves as  
a prescaler for the computer operating properly module (COP). The SIM counter uses 12 stages for  
counting, followed by a 13th stage that triggers a reset of SIM counters and supplies the clock for the COP  
module. The SIM counter is clocked by the falling edge of BUSCLKX4.  
14.5.1 SIM Counter During Power-On Reset  
The power-on reset module (POR) detects power applied to the MCU. At power-on, the POR circuit  
asserts the signal PORRST. Once the SIM is initialized, it enables the oscillator to drive the bus clock  
state machine.  
14.5.2 SIM Counter During Stop Mode Recovery  
The SIM counter also is used for stop mode recovery. The STOP instruction clears the SIM counter. After  
an interrupt, break, or reset, the SIM senses the state of the short stop recovery bit, SSREC, in the  
configuration register 1 (CONFIG1). If the SSREC bit is a 1, then the stop recovery is reduced from the  
normal delay of 4096 BUSCLKX4 cycles down to 32 BUSCLKX4 cycles. This is ideal for applications  
using canned oscillators that do not require long start-up times from stop mode. External crystal  
applications should use the full stop recovery time, that is, with SSREC cleared in the configuration  
register 1 (CONFIG1).  
14.5.3 SIM Counter and Reset States  
External reset has no effect on the SIM counter (see 14.7.2 Stop Mode for details.) The SIM counter is  
free-running after all reset states. See 14.4.2 Active Resets from Internal Sources for counter control and  
internal reset recovery sequences.  
MC68HC908QB8 Data Sheet, Rev. 3  
144  
Freescale Semiconductor  
Exception Control  
14.6 Exception Control  
Normal sequential program execution can be changed in three different ways:  
1. Interrupts  
a. Maskable hardware CPU interrupts  
b. Non-maskable software interrupt instruction (SWI)  
2. Reset  
3. Break interrupts  
14.6.1 Interrupts  
An interrupt temporarily changes the sequence of program execution to respond to a particular event.  
Figure 14-7 flow charts the handling of system interrupts.  
Interrupts are latched, and arbitration is performed in the SIM at the start of interrupt processing. The  
arbitration result is a constant that the CPU uses to determine which vector to fetch. Once an interrupt is  
latched by the SIM, no other interrupt can take precedence, regardless of priority, until the latched  
interrupt is serviced (or the I bit is cleared).  
At the beginning of an interrupt, the CPU saves the CPU register contents on the stack and sets the  
interrupt mask (I bit) to prevent additional interrupts. At the end of an interrupt, the RTI instruction recovers  
the CPU register contents from the stack so that normal processing can resume. Figure 14-8 shows  
interrupt entry timing. Figure 14-9 shows interrupt recovery timing.  
14.6.1.1 Hardware Interrupts  
A hardware interrupt does not stop the current instruction. Processing of a hardware interrupt begins after  
completion of the current instruction. When the current instruction is complete, the SIM checks all pending  
hardware interrupts. If interrupts are not masked (I bit clear in the condition code register), and if the  
corresponding interrupt enable bit is set, the SIM proceeds with interrupt processing; otherwise, the next  
instruction is fetched and executed.  
If more than one interrupt is pending at the end of an instruction execution, the highest priority interrupt is  
serviced first. Figure 14-10 demonstrates what happens when two interrupts are pending. If an interrupt  
is pending upon exit from the original interrupt service routine, the pending interrupt is serviced before the  
LDA instruction is executed.  
The LDA opcode is prefetched by both the INT1 and INT2 return-from-interrupt (RTI) instructions.  
However, in the case of the INT1 RTI prefetch, this is a redundant operation.  
NOTE  
To maintain compatibility with the M6805 Family, the H register is not  
pushed on the stack during interrupt entry. If the interrupt service routine  
modifies the H register or uses the indexed addressing mode, software  
should save the H register and then restore it prior to exiting the routine.  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
145  
System Integration Module (SIM)  
FROM RESET  
YES  
BREAK INTERRUPT?  
NO  
YES  
I BIT SET?  
NO  
YES  
YES  
IRQ  
INTERRUPT?  
NO  
TIMER  
INTERRUPT?  
NO  
STACK CPU REGISTERS  
SET I BIT  
LOAD PC WITH INTERRUPT VECTOR  
(AS MANY INTERRUPTS AS EXIST ON CHIP)  
FETCH NEXT  
INSTRUCTION  
SWI  
YES  
YES  
INSTRUCTION?  
NO  
RTI  
UNSTACK CPU REGISTERS  
EXECUTE INSTRUCTION  
INSTRUCTION?  
NO  
Figure 14-7. Interrupt Processing  
MC68HC908QB8 Data Sheet, Rev. 3  
146  
Freescale Semiconductor  
Exception Control  
MODULE  
INTERRUPT  
I BIT  
ADDRESS BUS  
DATA BUS  
R/W  
DUMMY  
SP  
SP – 1  
SP – 2  
SP – 3  
SP – 4  
VECT H  
VECT L START ADDR  
DUMMY PC – 1[7:0] PC – 1[15:8]  
X
A
CCR  
V DATA H V DATA L OPCODE  
Figure 14-8. Interrupt Entry  
MODULE  
INTERRUPT  
I BIT  
ADDRESS BUS  
DATA BUS  
R/W  
SP – 4  
SP – 3  
SP – 2  
SP – 1  
SP  
PC  
PC + 1  
CCR  
A
X
PC – 1[7:0] PC – 1[15:8] OPCODE OPERAND  
Figure 14-9. Interrupt Recovery  
CLI  
LDA #$FF  
BACKGROUND ROUTINE  
INT1  
PSHH  
INT1 INTERRUPT SERVICE ROUTINE  
PULH  
RTI  
INT2  
PSHH  
INT2 INTERRUPT SERVICE ROUTINE  
PULH  
RTI  
Figure 14-10. Interrupt Recognition Example  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
147  
System Integration Module (SIM)  
14.6.1.2 SWI Instruction  
The SWI instruction is a non-maskable instruction that causes an interrupt regardless of the state of the  
interrupt mask (I bit) in the condition code register.  
NOTE  
A software interrupt pushes PC onto the stack. A software interrupt does  
not push PC – 1, as a hardware interrupt does.  
14.6.2 Interrupt Status Registers  
The flags in the interrupt status registers identify maskable interrupt sources. Table 14-3 summarizes the  
interrupt sources and the interrupt status register flags that they set. The interrupt status registers can be  
useful for debugging.  
Table 14-3. Interrupt Sources  
INT  
Register  
Flag  
Vector  
Address  
Mask(1)  
Priority  
Source  
Flag  
Reset  
$FFFE–$FFFF  
$FFFC–$FFFD  
$FFFA–$FFFB  
$FFF6–$FFF7  
$FFF4–$FFF5  
$FFF2–$FFF3  
$FFF0–$FFF1  
$FFEE–$FFEF  
Highest  
SWI instruction  
IRQ pin  
IRQF  
CH0F  
CH1F  
TOF  
IMASK  
CH0IE  
CH1IE  
TOIE  
IF1  
IF3  
IF4  
IF5  
IF6  
IF7  
Timer channel 0 interrupt  
Timer channel 1 interrupt  
Timer overflow interrupt  
TIM channel 2 vector  
CH2F  
CH3F  
CH2IE  
CH3IE  
TIM channel 3 vector  
OR, HF,  
FE, PE  
ORIE, NEIE,  
FEIE, PEIE  
ESCI error vector  
IF9  
$FFEA–$FFEB  
ESCI receive vector  
ESCI transmit vector  
SCRF  
SCRIE  
IF10  
IF11  
$FFE8–$FFE9  
$FFE6–$FFE7  
SCTE, TC  
SCTIE, TCIE  
SPRF,  
OVRF,  
MODF  
SPI receive  
SPRIE, ERRIE  
IF12  
$FFE4–$FFE5  
SPI transmit  
SPTE  
KEYF  
COCO  
SPTIE  
IMASKK  
AIEN  
IF13  
IF14  
IF15  
$FFE2–$FFE3  
$FFE0–$FFE1  
$FFDE–$FFDF  
Keyboard interrupt  
Lowest  
ADC conversion complete interrupt  
1. The I bit in the condition code register is a global mask for all interrupt sources except the SWI instruction.  
MC68HC908QB8 Data Sheet, Rev. 3  
148  
Freescale Semiconductor  
 
Exception Control  
14.6.2.1 Interrupt Status Register 1  
Bit 7  
IF6  
R
6
5
IF4  
R
4
IF3  
R
3
0
2
IF1  
R
1
0
Bit 0  
Read:  
Write:  
Reset:  
IF5  
0
R
0
R
R
0
R
0
0
0
0
0
0
R
= Reserved  
Figure 14-11. Interrupt Status Register 1 (INT1)  
IF1 and IF3–IF6 — Interrupt Flags  
These flags indicate the presence of interrupt requests from the sources shown in Table 14-3.  
1 = Interrupt request present  
0 = No interrupt request present  
Bit 0, 1, and 3— Always read 0  
14.6.2.2 Interrupt Status Register 2  
Bit 7  
IF14  
R
6
5
IF12  
R
4
IF11  
R
3
IF10  
R
2
IF9  
R
1
IF8  
R
Bit 0  
IF7  
R
Read:  
Write:  
Reset:  
IF13  
R
0
0
0
0
0
0
0
0
R
= Reserved  
Figure 14-12. Interrupt Status Register 2 (INT2)  
IF7–IF14 — Interrupt Flags  
This flag indicates the presence of interrupt requests from the sources shown in Table 14-3.  
1 = Interrupt request present  
0 = No interrupt request present  
14.6.2.3 Interrupt Status Register 3  
Bit 7  
IF22  
R
6
5
IF20  
R
4
IF19  
R
3
IF18  
R
2
IF17  
R
1
IF16  
R
Bit 0  
IF15  
R
Read:  
Write:  
Reset:  
IF21  
R
0
0
0
0
0
0
0
0
R
= Reserved  
Figure 14-13. Interrupt Status Register 3 (INT3)  
IF15–IF22 — Interrupt Flags  
These flags indicate the presence of interrupt requests from the sources shown in Table 14-3.  
1 = Interrupt request present  
0 = No interrupt request present  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
149  
System Integration Module (SIM)  
14.6.3 Reset  
All reset sources always have equal and highest priority and cannot be arbitrated.  
14.6.4 Break Interrupts  
The break module can stop normal program flow at a software programmable break point by asserting its  
break interrupt output. (See Chapter 17 Development Support.) The SIM puts the CPU into the break  
state by forcing it to the SWI vector location. Refer to the break interrupt subsection of each module to  
see how each module is affected by the break state.  
14.6.5 Status Flag Protection in Break Mode  
The SIM controls whether status flags contained in other modules can be cleared during break mode. The  
user can select whether flags are protected from being cleared by properly initializing the break clear flag  
enable bit (BCFE) in the break flag control register (BFCR).  
Protecting flags in break mode ensures that set flags will not be cleared while in break mode. This  
protection allows registers to be freely read and written during break mode without losing status flag  
information.  
Setting the BCFE bit enables the clearing mechanisms. Once cleared in break mode, a flag remains  
cleared even when break mode is exited. Status flags with a two-step clearing mechanism — for example,  
a read of one register followed by the read or write of another — are protected, even when the first step  
is accomplished prior to entering break mode. Upon leaving break mode, execution of the second step  
will clear the flag as normal.  
14.7 Low-Power Modes  
Executing the WAIT or STOP instruction puts the MCU in a low power- consumption mode for standby  
situations. The SIM holds the CPU in a non-clocked state. The operation of each of these modes is  
described below. Both STOP and WAIT clear the interrupt mask (I) in the condition code register, allowing  
interrupts to occur.  
14.7.1 Wait Mode  
In wait mode, the CPU clocks are inactive while the peripheral clocks continue to run. Figure 14-14 shows  
the timing for wait mode entry.  
ADDRESS BUS  
DATA BUS  
R/W  
WAIT ADDR  
WAIT ADDR + 1  
SAME  
SAME  
PREVIOUS DATA  
NEXT OPCODE  
SAME  
SAME  
NOTE: Previous data can be operand data or the WAIT opcode, depending on the last instruction.  
Figure 14-14. Wait Mode Entry Timing  
A module that is active during wait mode can wake up the CPU with an interrupt if the interrupt is enabled.  
Stacking for the interrupt begins one cycle after the WAIT instruction during which the interrupt occurred.  
MC68HC908QB8 Data Sheet, Rev. 3  
150  
Freescale Semiconductor  
 
Low-Power Modes  
In wait mode, the CPU clocks are inactive. Refer to the wait mode subsection of each module to see if the  
module is active or inactive in wait mode. Some modules can be programmed to be active in wait mode.  
Wait mode can also be exited by a reset (or break in emulation mode). A break interrupt during wait mode  
sets the SIM break stop/wait bit, SBSW, in the break status register (BSR). If the COP disable bit, COPD,  
in the configuration register is 0, then the computer operating properly module (COP) is enabled and  
remains active in wait mode.  
Figure 14-15 and Figure 14-16 show the timing for wait recovery.  
ADDRESS BUS  
DATA BUS  
$6E0B  
$A6  
$6E0C  
$00FF  
$00FE  
$00FD  
$00FC  
$A6  
$A6  
$01  
$0B  
$6E  
EXITSTOPWAIT  
NOTE: EXITSTOPWAIT = RST pin OR CPU interrupt  
Figure 14-15. Wait Recovery from Interrupt  
32  
CYCLES  
32  
CYCLES  
ADDRESS BUS  
$6E0B  
$A6  
RSTVCTH RSTVCTL  
DATA BUS $A6  
$A6  
RST(1)  
BUSCLKX4  
1. RST is only available if the RSTEN bit in the CONFIG2 register is set.  
Figure 14-16. Wait Recovery from Internal Reset  
14.7.2 Stop Mode  
In stop mode, the SIM counter is reset and the system clocks are disabled. An interrupt request from a  
module can cause an exit from stop mode. Stacking for interrupts begins after the selected stop recovery  
time has elapsed. Reset or break also causes an exit from stop mode.  
The SIM disables the oscillator signals (BUSCLKX2 and BUSCLKX4) in stop mode, stopping the CPU  
and peripherals. If OSCENINSTOP is set, BUSCLKX4 will remain running in STOP and can be used to  
run the AWU. Stop recovery time is selectable using the SSREC bit in the configuration register 1  
(CONFIG1). If SSREC is set, stop recovery is reduced from the normal delay of 4096 BUSCLKX4 cycles  
down to 32. This is ideal for the internal oscillator, RC oscillator, and external oscillator options which do  
not require long start-up times from stop mode.  
NOTE  
External crystal applications should use the full stop recovery time by  
clearing the SSREC bit.  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
151  
 
 
System Integration Module (SIM)  
The SIM counter is held in reset from the execution of the STOP instruction until the beginning of stop  
recovery. It is then used to time the recovery period. Figure 14-17 shows stop mode entry timing and  
Figure 14-18 shows the stop mode recovery time from interrupt or break  
NOTE  
To minimize stop current, all pins configured as inputs should be driven to  
a logic 1 or logic 0.  
CPUSTOP  
ADDRESS BUS  
DATA BUS  
R/W  
STOP ADDR  
STOP ADDR + 1  
SAME  
SAME  
PREVIOUS DATA  
NEXT OPCODE  
SAME  
SAME  
NOTE: Previous data can be operand data or the STOP opcode, depending on the last instruction.  
Figure 14-17. Stop Mode Entry Timing  
STOP RECOVERY PERIOD  
BUSCLKX4  
INTERRUPT  
ADDRESS BUS  
STOP + 2  
STOP + 2  
SP  
SP – 1  
SP – 2  
SP – 3  
STOP +1  
Figure 14-18. Stop Mode Recovery from Interrupt  
14.8 SIM Registers  
The SIM has two memory mapped registers.  
14.8.1 SIM Reset Status Register  
The SRSR register contains flags that show the source of the last reset. The status register will  
automatically clear after reading SRSR. A power-on reset sets the POR bit and clears all other bits in the  
register. All other reset sources set the individual flag bits but do not clear the register. More than one  
reset source can be flagged at any time depending on the conditions at the time of the internal or external  
reset. For example, the POR and LVI bit can both be set if the power supply has a slow rise time.  
Bit 7  
POR  
6
5
4
3
2
1
Bit 0  
0
Read:  
Write:  
POR:  
PIN  
COP  
ILOP  
ILAD  
MODRST  
LVI  
1
0
0
0
0
0
0
0
= Unimplemented  
Figure 14-19. SIM Reset Status Register (SRSR)  
MC68HC908QB8 Data Sheet, Rev. 3  
152  
Freescale Semiconductor  
 
 
SIM Registers  
POR — Power-On Reset Bit  
1 = Last reset caused by POR circuit  
0 = Read of SRSR  
PIN — External Reset Bit  
1 = Last reset caused by external reset pin (RST)  
0 = POR or read of SRSR  
COP — Computer Operating Properly Reset Bit  
1 = Last reset caused by COP counter  
0 = POR or read of SRSR  
ILOP — Illegal Opcode Reset Bit  
1 = Last reset caused by an illegal opcode  
0 = POR or read of SRSR  
ILAD — Illegal Address Reset Bit (illegal attempt to fetch an opcode from an unimplemented  
address)  
1 = Last reset caused by an opcode fetch from an illegal address  
0 = POR or read of SRSR  
MODRST — Monitor Mode Entry Module Reset Bit  
1 = Last reset caused by monitor mode entry when vector locations $FFFE and $FFFF are $FF after  
POR while IRQ VTST  
0 = POR or read of SRSR  
LVI — Low Voltage Inhibit Reset bit  
1 = Last reset caused by LVI circuit  
0 = POR or read of SRSR  
14.8.2 Break Flag Control Register  
The break control register (BFCR) contains a bit that enables software to clear status bits while the MCU  
is in a break state.  
Bit 7  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
BCFE  
R
R
R
R
R
R
0
= Reserved  
R
Figure 14-20. Break Flag Control Register (BFCR)  
BCFE — Break Clear Flag Enable Bit  
This read/write bit enables software to clear status bits by accessing status registers while the MCU is  
in a break state. To clear status bits during the break state, the BCFE bit must be set.  
1 = Status bits clearable during break  
0 = Status bits not clearable during break  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
153  
 
System Integration Module (SIM)  
MC68HC908QB8 Data Sheet, Rev. 3  
154  
Freescale Semiconductor  
Chapter 15  
Serial Peripheral Interface (SPI) Module  
15.1 Introduction  
This section describes the serial peripheral interface (SPI) module, which allows full-duplex, synchronous,  
serial communications with peripheral devices.  
The SPI shares its pins with general-purpose input/output (I/O) port pins. See Figure 15-1 for port location  
of these shared pins.  
15.2 Features  
Features of the SPI module include:  
Full-duplex operation  
Master and slave modes  
Double-buffered operation with separate transmit and receive registers  
Four master mode frequencies (maximum = bus frequency ÷ 2)  
Maximum slave mode frequency = bus frequency  
Serial clock with programmable polarity and phase  
Two separately enabled interrupts:  
SPRF (SPI receiver full)  
SPTE (SPI transmitter empty)  
Mode fault error flag with interrupt capability  
Overflow error flag with interrupt capability  
Programmable wired-OR mode  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
155  
Serial Peripheral Interface (SPI) Module  
PTA0/TCH0/AD0/KBI0  
PTA1/TCH1/AD1/KBI1  
PTA2/IRQ/KBI2/TCLK  
PTA3/RST/KBI3  
CLOCK  
GENERATOR  
KEYBOARD INTERRUPT  
MODULE  
PTA4/OSC2/AD2/KBI4  
PTA5/OSC1/AD3/KBI5  
M68HC08 CPU  
EXTERNAL INTERRUPT  
MODULE  
PTB0/SCK/AD4  
PTB1/MOSI/AD5  
PTB2/MISO/AD6  
PTB3/SS/AD7  
PTB4/RxD/AD8  
PTB5/TxD/AD9  
PTB6/TCH2  
AUTO WAKEUP  
MODULE  
LOW-VOLTAGE  
INHIBIT  
PTB7/TCH3  
4-CHANNEL 16-BIT  
TIMER MODULE  
COP  
MODULE  
MC68HC908QB8  
256 BYTES  
MC68HC908QB8  
8192 BYTES  
10-CHANNEL  
10-BIT ADC  
USER RAM  
USER FLASH  
ENHANCED SERIAL  
COMMUNICATIONS  
INTERFACE MODULE  
VDD  
POWER SUPPLY  
VSS  
SERIAL PERIPHERAL  
INTERFACE  
DEVELOPMENT SUPPORT  
MONITOR ROM  
BREAK MODULE  
RST, IRQ: Pins have internal pull up device  
All port pins have programmable pull up device  
PTA[0:5]: Higher current sink and source capability  
Figure 15-1. Block Diagram Highlighting SPI Block and Pins  
MC68HC908QB8 Data Sheet, Rev. 3  
156  
Freescale Semiconductor  
 
Functional Description  
15.3 Functional Description  
The SPI module allows full-duplex, synchronous, serial communication between the MCU and peripheral  
devices, including other MCUs. Software can poll the SPI status flags or SPI operation can be interrupt  
driven.  
The following paragraphs describe the operation of the SPI module.  
INTERNAL BUS  
TRANSMIT DATA REGISTER  
SHIFT REGISTER  
BUSCLK  
MISO  
MOSI  
7
6
5
4
3
2
1
0
÷ 2  
÷ 8  
CLOCK  
DIVIDER  
RECEIVE DATA REGISTER  
÷ 32  
÷ 128  
PIN  
CONTROL  
LOGIC  
CLOCK  
SPSCK  
SS  
SPMSTR  
SPE  
SELECT  
M
S
CLOCK  
LOGIC  
SPR1  
SPR0  
SPMSTR  
CPHA  
CPOL  
MODFEN  
ERRIE  
SPTIE  
SPRIE  
SPE  
SPWOM  
TRANSMITTER INTERRUPT REQUEST  
SPI  
CONTROL  
RECEIVER/ERROR INTERRUPT REQUEST  
SPRF  
SPTE  
OVRF  
MODF  
Figure 15-2. SPI Module Block Diagram  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
157  
 
Serial Peripheral Interface (SPI) Module  
15.3.1 Master Mode  
The SPI operates in master mode when the SPI master bit, SPMSTR, is set.  
NOTE  
In a multi-SPI system, configure the SPI modules as master or slave before  
enabling them. Enable the master SPI before enabling the slave SPI.  
Disable the slave SPI before disabling the master SPI. See 15.8.1 SPI  
Control Register.  
Only a master SPI module can initiate transmissions. Software begins the transmission from a master SPI  
module by writing to the transmit data register. If the shift register is empty, the byte immediately transfers  
to the shift register, setting the SPI transmitter empty bit, SPTE. The byte begins shifting out on the MOSI  
pin under the control of the serial clock. See Figure 15-3.  
MASTER MCU  
SLAVE MCU  
MISO  
MOSI  
MISO  
MOSI  
SHIFT REGISTER  
SHIFT REGISTER  
SPSCK  
SS  
SPSCK  
SS  
BAUD RATE  
GENERATOR  
VDD  
Figure 15-3. Full-Duplex Master-Slave Connections  
The SPR1 and SPR0 bits control the baud rate generator and determine the speed of the shift register.  
(See 15.8.2 SPI Status and Control Register.) Through the SPSCK pin, the baud rate generator of the  
master also controls the shift register of the slave peripheral.  
While the byte shifts out on the MOSI pin of the master, another byte shifts in from the slave on the  
master’s MISO pin. The transmission ends when the receiver full bit, SPRF, becomes set. At the same  
time that SPRF becomes set, the byte from the slave transfers to the receive data register. In normal  
operation, SPRF signals the end of a transmission. Software clears SPRF by reading the SPI status and  
control register (SPSCR) with SPRF set and then reading the SPI data register (SPDR). Writing to SPDR  
clears SPTE.  
15.3.2 Slave Mode  
The SPI operates in slave mode when SPMSTR is clear. In slave mode, the SPSCK pin is the input for  
the serial clock from the master MCU. Before a data transmission occurs, the SS pin of the slave SPI must  
be low. SS must remain low until the transmission is complete. See 15.3.6.2 Mode Fault Error.  
In a slave SPI module, data enters the shift register under the control of the serial clock from the master  
SPI module. After a byte enters the shift register of a slave SPI, it transfers to the receive data register,  
and the SPRF bit is set. To prevent an overflow condition, slave software then must read the receive data  
register before another full byte enters the shift register.  
The maximum frequency of the SPSCK for an SPI configured as a slave is the bus clock speed (which is  
twice as fast as the fastest master SPSCK clock that can be generated). The frequency of the SPSCK for  
an SPI configured as a slave does not have to correspond to any SPI baud rate. The baud rate only  
MC68HC908QB8 Data Sheet, Rev. 3  
158  
Freescale Semiconductor  
 
Functional Description  
controls the speed of the SPSCK generated by an SPI configured as a master. Therefore, the frequency  
of the SPSCK for an SPI configured as a slave can be any frequency less than or equal to the bus speed.  
When the master SPI starts a transmission, the data in the slave shift register begins shifting out on the  
MISO pin. The slave can load its shift register with a new byte for the next transmission by writing to its  
transmit data register. The slave must write to its transmit data register at least one bus cycle before the  
master starts the next transmission. Otherwise, the byte already in the slave shift register shifts out on the  
MISO pin. Data written to the slave shift register during a transmission remains in a buffer until the end of  
the transmission.  
When the clock phase bit (CPHA) is set, the first edge of SPSCK starts a transmission. When CPHA is  
clear, the falling edge of SS starts a transmission. See 15.3.3 Transmission Formats.  
NOTE  
SPSCK must be in the proper idle state before the slave is enabled to  
prevent SPSCK from appearing as a clock edge.  
15.3.3 Transmission Formats  
During an SPI transmission, data is simultaneously transmitted (shifted out serially) and received (shifted  
in serially). A serial clock synchronizes shifting and sampling on the two serial data lines. A slave select  
line allows selection of an individual slave SPI device; slave devices that are not selected do not interfere  
with SPI bus activities. On a master SPI device, the slave select line can optionally be used to indicate  
multiple-master bus contention.  
15.3.3.1 Clock Phase and Polarity Controls  
Software can select any of four combinations of serial clock (SPSCK) phase and polarity using two bits  
in the SPI control register (SPCR). The clock polarity is specified by the CPOL control bit, which selects  
an active high or low clock and has no significant effect on the transmission format.  
The clock phase (CPHA) control bit selects one of two fundamentally different transmission formats. The  
clock phase and polarity should be identical for the master SPI device and the communicating slave  
device. In some cases, the phase and polarity are changed between transmissions to allow a master  
device to communicate with peripheral slaves having different requirements.  
NOTE  
Before writing to the CPOL bit or the CPHA bit, disable the SPI by clearing  
the SPI enable bit (SPE).  
15.3.3.2 Transmission Format When CPHA = 0  
Figure 15-4 shows an SPI transmission in which CPHA = 0. The figure should not be used as a  
replacement for data sheet parametric information.  
When CPHA = 0 for a slave, the falling edge of SS indicates the beginning of the transmission. This  
causes the SPI to leave its idle state and begin driving the MISO pin with the MSB of its data. After the  
transmission begins, no new data is allowed into the shift register from the transmit data register.  
Therefore, the SPI data register of the slave must be loaded with transmit data before the falling edge of  
SS. Any data written after the falling edge is stored in the transmit data register and transferred to the shift  
register after the current transmission.  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
159  
 
Serial Peripheral Interface (SPI) Module  
SPSCK CYCLE #  
FOR REFERENCE  
1
2
3
4
5
6
7
8
SPSCK; CPOL = 0  
SPSCK; CPOL =1  
MOSI  
MSB  
BIT 6  
BIT 6  
BIT 5  
BIT 5  
BIT 4  
BIT 4  
BIT 3  
BIT 3  
BIT 2  
BIT 2  
BIT 1  
BIT 1  
LSB  
LSB  
FROM MASTER  
MISO  
FROM SLAVE  
MSB  
SS; TO SLAVE  
CAPTURE STROBE  
Figure 15-4. Transmission Format (CPHA = 0)  
Two waveforms are shown for SPSCK: one for CPOL = 0 and another for CPOL = 1. The diagram may  
be interpreted as a master or slave timing diagram because the serial clock (SPSCK), master in/slave out  
(MISO), and master out/slave in (MOSI) pins are directly connected between the master and the slave.  
The MISO signal is the output from the slave, and the MOSI signal is the output from the master. The SS  
line is the slave select input to the slave. The slave SPI drives its MISO output only when its slave select  
input (SS) is low, so that only the selected slave drives to the master. The SS pin of the master is not  
shown but is assumed to be inactive. The SS pin of the master must be high or must be reconfigured as  
general-purpose I/O not affecting the SPI. (See 15.3.6.2 Mode Fault Error.) When CPHA = 0, the first  
SPSCK edge is the MSB capture strobe. Therefore, the slave must begin driving its data before the first  
SPSCK edge, and a falling edge on the SS pin is used to start the slave data transmission. The slave’s  
SS pin must be toggled back to high and then low again between each byte transmitted as shown in  
Figure 15-5.  
MISO/MOSI  
MASTER SS  
BYTE 1  
BYTE 2  
BYTE 3  
SLAVE SS  
CPHA = 0  
SLAVE SS  
CPHA = 1  
Figure 15-5. CPHA/SS Timing  
15.3.3.3 Transmission Format When CPHA = 1  
Figure 15-6 shows an SPI transmission in which CPHA = 1. The figure should not be used as a  
replacement for data sheet parametric information. Two waveforms are shown for SPSCK: one for  
CPOL = 0 and another for CPOL = 1. The diagram may be interpreted as a master or slave timing  
diagram because the serial clock (SPSCK), master in/slave out (MISO), and master out/slave in (MOSI)  
pins are directly connected between the master and the slave. The MISO signal is the output from the  
slave, and the MOSI signal is the output from the master. The SS line is the slave select input to the slave.  
The slave SPI drives its MISO output only when its slave select input (SS) is low, so that only the selected  
slave drives to the master. The SS pin of the master is not shown but is assumed to be inactive. The SS  
pin of the master must be high or must be reconfigured as general-purpose I/O not affecting the SPI. (See  
15.3.6.2 Mode Fault Error.) When CPHA = 1, the master begins driving its MOSI pin on the first SPSCK  
edge. Therefore, the slave uses the first SPSCK edge as a start transmission signal. The SS pin can  
MC68HC908QB8 Data Sheet, Rev. 3  
160  
Freescale Semiconductor  
 
 
Functional Description  
remain low between transmissions. This format may be preferable in systems having only one master and  
only one slave driving the MISO data line.  
SPSCK CYCLE #  
FOR REFERENCE  
1
2
3
4
5
6
7
8
SPSCK; CPOL = 0  
SPSCK; CPOL =1  
MOSI  
MSB  
MSB  
BIT 6  
BIT 6  
BIT 5  
BIT 5  
BIT 4  
BIT 4  
BIT 3  
BIT 3  
BIT 2  
BIT 2  
BIT 1  
BIT 1  
LSB  
FROM MASTER  
MISO  
LSB  
FROM SLAVE  
SS; TO SLAVE  
CAPTURE STROBE  
Figure 15-6. Transmission Format (CPHA = 1)  
When CPHA = 1 for a slave, the first edge of the SPSCK indicates the beginning of the transmission. This  
causes the SPI to leave its idle state and begin driving the MISO pin with the MSB of its data. After the  
transmission begins, no new data is allowed into the shift register from the transmit data register.  
Therefore, the SPI data register of the slave must be loaded with transmit data before the first edge of  
SPSCK. Any data written after the first edge is stored in the transmit data register and transferred to the  
shift register after the current transmission.  
15.3.3.4 Transmission Initiation Latency  
When the SPI is configured as a master (SPMSTR = 1), writing to the SPDR starts a transmission. CPHA  
has no effect on the delay to the start of the transmission, but it does affect the initial state of the SPSCK  
signal. When CPHA = 0, the SPSCK signal remains inactive for the first half of the first SPSCK cycle.  
When CPHA = 1, the first SPSCK cycle begins with an edge on the SPSCK line from its inactive to its  
active level. The SPI clock rate (selected by SPR1:SPR0) affects the delay from the write to SPDR and  
the start of the SPI transmission. (See Figure 15-7.) The internal SPI clock in the master is a free-running  
derivative of the internal MCU clock. To conserve power, it is enabled only when both the SPE and  
SPMSTR bits are set. Because the SPI clock is free-running, it is uncertain where the write to the SPDR  
occurs relative to the slower SPSCK. This uncertainty causes the variation in the initiation delay shown  
in Figure 15-7. This delay is no longer than a single SPI bit time. That is, the maximum delay is two MCU  
bus cycles for DIV2, eight MCU bus cycles for DIV8, 32 MCU bus cycles for DIV32, and 128 MCU bus  
cycles for DIV128.  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
161  
 
Serial Peripheral Interface (SPI) Module  
WRITE  
TO SPDR  
INITIATION DELAY  
BUS  
CLOCK  
MOSI  
MSB  
BIT 6  
BIT 5  
SPSCK  
CPHA = 1  
SPSCK  
CPHA = 0  
SPSCK CYCLE  
NUMBER  
1
2
3
INITIATION DELAY FROM WRITE SPDR TO TRANSFER BEGIN  
WRITE  
TO SPDR  
BUS  
CLOCK  
SPSCK = BUS CLOCK ÷ 2;  
2 POSSIBLE START POINTS  
EARLIEST  
LATEST  
WRITE  
TO SPDR  
BUS  
CLOCK  
EARLIEST  
SPSCK = BUS CLOCK ÷ 8;  
LATEST  
LATEST  
LATEST  
8 POSSIBLE START POINTS  
WRITE  
TO SPDR  
BUS  
CLOCK  
EARLIEST  
SPSCK = BUS CLOCK ÷ 32;  
32 POSSIBLE START POINTS  
WRITE  
TO SPDR  
BUS  
CLOCK  
EARLIEST  
SPSCK = BUS CLOCK ÷ 128;  
128 POSSIBLE START POINTS  
Figure 15-7. Transmission Start Delay (Master)  
MC68HC908QB8 Data Sheet, Rev. 3  
162  
Freescale Semiconductor  
Functional Description  
15.3.4 Queuing Transmission Data  
The double-buffered transmit data register allows a data byte to be queued and transmitted. For an SPI  
configured as a master, a queued data byte is transmitted immediately after the previous transmission  
has completed. The SPI transmitter empty flag (SPTE) indicates when the transmit data buffer is ready  
to accept new data. Write to the transmit data register only when the SPTE bit is high. Figure 15-8  
shows the timing associated with doing back-to-back transmissions with the SPI (SPSCK has  
CPHA: CPOL = 1:0).  
1
3
8
WRITE TO SPDR  
SPTE  
5
10  
2
SPSCK  
CPHA:CPOL = 1:0  
MOSI  
MSB BIT BIT BIT BIT BIT BIT LSB MSB BIT BIT BIT BIT BIT BIT LSB MSB BIT BIT BIT  
6
5
4
3
2
1
6
5
4
3
2
1
6
5
4
BYTE 1  
BYTE 2  
BYTE 3  
4
9
SPRF  
READ SPSCR  
READ SPDR  
6
11  
7
12  
1
2
WRITE BYTE 1 TO SPDR, CLEARING SPTE BIT.  
BYTE 1 TRANSFERS FROM TRANSMIT DATA  
7
8
READ SPDR, CLEARING SPRF BIT.  
WRITE BYTE 3 TO SPDR, QUEUEING BYTE  
3 AND CLEARING SPTE BIT.  
REGISTER TO SHIFT REGISTER, SETTING SPTE BIT.  
9
SECOND INCOMING BYTE TRANSFERS FROM SHIFT  
REGISTER TO RECEIVE DATA REGISTER, SETTING  
SPRF BIT.  
BYTE 3 TRANSFERS FROM TRANSMIT DATA  
REGISTER TO SHIFT REGISTER, SETTING SPTE BIT.  
WRITE BYTE 2 TO SPDR, QUEUEING BYTE 2  
AND CLEARING SPTE BIT.  
3
4
10  
FIRST INCOMING BYTE TRANSFERS FROM SHIFT  
REGISTER TO RECEIVE DATA REGISTER, SETTING  
SPRF BIT.  
11  
12  
READ SPSCR WITH SPRF BIT SET.  
READ SPDR, CLEARING SPRF BIT.  
5
6
BYTE 2 TRANSFERS FROM TRANSMIT DATA  
REGISTER TO SHIFT REGISTER, SETTING SPTE BIT.  
READ SPSCR WITH SPRF BIT SET.  
Figure 15-8. SPRF/SPTE interrupt Timing  
The transmit data buffer allows back-to-back transmissions without the slave precisely timing its writes  
between transmissions as in a system with a single data buffer. Also, if no new data is written to the data  
buffer, the last value contained in the shift register is the next data word to be transmitted.  
For an idle master or idle slave that has no data loaded into its transmit buffer, the SPTE is set again no  
more than two bus cycles after the transmit buffer empties into the shift register. This allows the user to  
queue up a 16-bit value to send. For an already active slave, the load of the shift register cannot occur  
until the transmission is completed. This implies that a back-to-back write to the transmit data register is  
not possible. SPTE indicates when the next write can occur.  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
163  
 
Serial Peripheral Interface (SPI) Module  
15.3.5 Resetting the SPI  
Any system reset completely resets the SPI. Partial resets occur whenever the SPI enable bit (SPE) is 0.  
Whenever SPE is 0, the following occurs:  
The SPTE flag is set.  
Any transmission currently in progress is aborted.  
The shift register is cleared.  
The SPI state counter is cleared, making it ready for a new complete transmission.  
All the SPI pins revert back to being general-purpose I/O.  
These items are reset only by a system reset:  
All control bits in the SPCR register  
All control bits in the SPSCR register (MODFEN, ERRIE, SPR1, and SPR0)  
The status flags SPRF, OVRF, and MODF  
By not resetting the control bits when SPE is low, the user can clear SPE between transmissions without  
having to set all control bits again when SPE is set high for the next transmission.  
By not resetting the SPRF, OVRF, and MODF flags, the user can still service these interrupts after the  
SPI has been disabled. The user can disable the SPI by writing 0 to the SPE bit. The SPI can also be  
disabled by a mode fault occurring in an SPI that was configured as a master with the MODFEN bit set.  
15.3.6 Error Conditions  
The following flags signal SPI error conditions:  
Overflow (OVRF) — Failing to read the SPI data register before the next full byte enters the shift  
register sets the OVRF bit. The new byte does not transfer to the receive data register, and the  
unread byte still can be read. OVRF is in the SPI status and control register.  
Mode fault error (MODF) — The MODF bit indicates that the voltage on the slave select pin (SS)  
is inconsistent with the mode of the SPI. MODF is in the SPI status and control register.  
15.3.6.1 Overflow Error  
The overflow flag (OVRF) becomes set if the receive data register still has unread data from a previous  
transmission when the capture strobe of bit 1 of the next transmission occurs. The bit 1 capture strobe  
occurs in the middle of SPSCK cycle 7 (see Figure 15-4 and Figure 15-6.) If an overflow occurs, all data  
received after the overflow and before the OVRF bit is cleared does not transfer to the receive data  
register and does not set the SPI receiver full bit (SPRF). The unread data that transferred to the receive  
data register before the overflow occurred can still be read. Therefore, an overflow error always indicates  
the loss of data. Clear the overflow flag by reading the SPI status and control register and then reading  
the SPI data register.  
OVRF generates a receiver/error interrupt request if the error interrupt enable bit (ERRIE) is also set. The  
SPRF, MODF, and OVRF interrupts share the same interrupt vector (see Figure 15-11.) It is not possible  
to enable MODF or OVRF individually to generate a receiver/error interrupt request. However, leaving  
MODFEN low prevents MODF from being set.  
If the SPRF interrupt is enabled and the OVRF interrupt is not, watch for an overflow condition.  
Figure 15-9 shows how it is possible to miss an overflow. The first part of Figure 15-9 shows how it is  
possible to read the SPSCR and SPDR to clear the SPRF without problems. However, as illustrated by  
the second transmission example, the OVRF bit can be set in between the time that SPSCR and SPDR  
are read.  
MC68HC908QB8 Data Sheet, Rev. 3  
164  
Freescale Semiconductor  
 
Functional Description  
In this case, an overflow can be missed easily. Because no more SPRF interrupts can be generated until  
this OVRF is serviced, it is not obvious that bytes are being lost as more transmissions are completed. To  
prevent this, either enable the OVRF interrupt or do another read of the SPSCR following the read of the  
SPDR. This ensures that the OVRF was not set before the SPRF was cleared and that future  
transmissions can set the SPRF bit. Figure 15-10 illustrates this process. Generally, to avoid this second  
SPSCR read, enable OVRF by setting the ERRIE bit.  
BYTE 1  
1
BYTE 2  
4
BYTE 3  
6
BYTE 4  
8
SPRF  
OVRF  
READ  
2
5
5
SPSCR  
READ  
SPDR  
3
7
1
2
BYTE 1 SETS SPRF BIT.  
READ SPSCR WITH SPRF BIT SET  
AND OVRF BIT CLEAR.  
READ SPSCR WITH SPRF BIT SET  
AND OVRF BIT CLEAR.  
READ BYTE 1 IN SPDR,  
CLEARING SPRF BIT.  
6
7
BYTE 3 SETS OVRF BIT. BYTE 3 IS LOST.  
3
4
READ BYTE 2 IN SPDR, CLEARING SPRF BIT,  
BUT NOT OVRF BIT.  
BYTE 2 SETS SPRF BIT.  
8
BYTE 4 FAILS TO SET SPRF BIT BECAUSE  
OVRF BIT IS NOT CLEARED. BYTE 4 IS LOST.  
Figure 15-9. Missed Read of Overflow Condition  
BYTE 1  
1
BYTE 2  
5
BYTE 3  
7
BYTE 4  
11  
SPI RECEIVE  
COMPLETE  
SPRF  
OVRF  
READ  
2
4
6
9
12  
14  
SPSCR  
READ  
SPDR  
3
8
10  
13  
1
2
5
6
10  
BYTE 1 SETS SPRF BIT.  
BYTE 2 SETS SPRF BIT.  
READ BYTE 2 SPDR,  
CLEARING OVRF BIT.  
READ SPSCR WITH SPRF BIT SET  
AND OVRF BIT CLEAR.  
READ SPSCR WITH SPRF BIT SET  
AND OVRF BIT CLEAR.  
11  
12  
13  
BYTE 4 SETS SPRF BIT.  
READ SPSCR.  
3
4
READ BYTE 1 IN SPDR,  
CLEARING SPRF BIT.  
7
8
BYTE 3 SETS OVRF BIT. BYTE 3 IS LOST.  
READ BYTE 2 IN SPDR,  
CLEARING SPRF BIT.  
READ BYTE 4 IN SPDR,  
CLEARING SPRF BIT.  
READ SPSCR AGAIN  
TO CHECK OVRF BIT.  
9
READ SPSCR AGAIN  
TO CHECK OVRF BIT.  
14  
READ SPSCR AGAIN  
TO CHECK OVRF BIT.  
Figure 15-10. Clearing SPRF When OVRF Interrupt Is Not Enabled  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
165  
 
Serial Peripheral Interface (SPI) Module  
15.3.6.2 Mode Fault Error  
Setting SPMSTR selects master mode and configures the SPSCK and MOSI pins as outputs and the  
MISO pin as an input. Clearing SPMSTR selects slave mode and configures the SPSCK and MOSI pins  
as inputs and the MISO pin as an output. The mode fault bit, MODF, becomes set any time the state of  
the slave select pin, SS, is inconsistent with the mode selected by SPMSTR.  
To prevent SPI pin contention and damage to the MCU, a mode fault error occurs if:  
The SS pin of a slave SPI goes high during a transmission  
The SS pin of a master SPI goes low at any time  
For the MODF flag to be set, the mode fault error enable bit (MODFEN) must be set. Clearing the  
MODFEN bit does not clear the MODF flag but does prevent MODF from being set again after MODF is  
cleared.  
MODF generates a receiver/error interrupt request if the error interrupt enable bit (ERRIE) is also set. The  
SPRF, MODF, and OVRF interrupts share the same interrupt vector. (See Figure 15-11.) It is not possible  
to enable MODF or OVRF individually to generate a receiver/error interrupt request. However, leaving  
MODFEN low prevents MODF from being set.  
In a master SPI with the mode fault enable bit (MODFEN) set, the mode fault flag (MODF) is set if SS  
goes low. A mode fault in a master SPI causes the following events to occur:  
If ERRIE = 1, the SPI generates an SPI receiver/error interrupt request.  
The SPE bit is cleared.  
The SPTE bit is set.  
The SPI state counter is cleared.  
The data direction register of the shared I/O port regains control of port drivers.  
NOTE  
To prevent bus contention with another master SPI after a mode fault error,  
clear all SPI bits of the data direction register of the shared I/O port before  
enabling the SPI.  
When configured as a slave (SPMSTR = 0), the MODF flag is set if SS goes high during a transmission.  
When CPHA = 0, a transmission begins when SS goes low and ends after the incoming SPSCK goes to  
its idle level following the shift of the eighth data bit. When CPHA = 1, the transmission begins when the  
SPSCK leaves its idle level and SS is already low. The transmission continues until the SPSCK returns  
to its idle level following the shift of the last data bit. See  
15.3.3 Transmission Formats.  
NOTE  
Setting the MODF flag does not clear the SPMSTR bit. SPMSTR has no  
function when SPE = 0. Reading SPMSTR when MODF = 1 shows the  
difference between a MODF occurring when the SPI is a master and when  
it is a slave.  
When CPHA = 0, a MODF occurs if a slave is selected (SS is low) and later  
unselected (SS is high) even if no SPSCK is sent to that slave. This  
happens because SS low indicates the start of the transmission (MISO  
driven out with the value of MSB) for CPHA = 0. When CPHA = 1, a slave  
can be selected and then later unselected with no transmission occurring.  
Therefore, MODF does not occur because a transmission was never  
begun.  
MC68HC908QB8 Data Sheet, Rev. 3  
166  
Freescale Semiconductor  
 
Interrupts  
In a slave SPI (MSTR = 0), MODF generates an SPI receiver/error interrupt request if the ERRIE bit is  
set. The MODF bit does not clear the SPE bit or reset the SPI in any way. Software can abort the SPI  
transmission by clearing the SPE bit of the slave.  
NOTE  
A high on the SS pin of a slave SPI puts the MISO pin in a high impedance  
state. Also, the slave SPI ignores all incoming SPSCK clocks, even if it was  
already in the middle of a transmission.  
To clear the MODF flag, read the SPSCR with the MODF bit set and then write to the SPCR register. This  
entire clearing mechanism must occur with no MODF condition existing or else the flag is not cleared.  
15.4 Interrupts  
Four SPI status flags can be enabled to generate interrupt requests. See Table 15-1.  
Table 15-1. SPI Interrupts  
Flag  
Request  
SPTE  
Transmitter empty  
SPI transmitter interrupt request  
(SPTIE = 1, SPE = 1)  
SPRF  
Receiver full  
SPI receiver interrupt request  
(SPRIE = 1)  
OVRF  
Overflow  
SPI receiver/error interrupt request  
(ERRIE = 1)  
MODF  
Mode fault  
SPI receiver/error interrupt request  
(ERRIE = 1)  
Reading the SPI status and control register with SPRF set and then reading the receive data register  
clears SPRF. The clearing mechanism for the SPTE flag is requires only a write to the transmit data  
register.  
The SPI transmitter interrupt enable bit (SPTIE) enables the SPTE flag to generate transmitter interrupt  
requests, provided that the SPI is enabled (SPE = 1).  
The SPI receiver interrupt enable bit (SPRIE) enables SPRF to generate receiver interrupt requests,  
regardless of the state of SPE. See Figure 15-11.  
SPTE  
SPTIE  
SPRF  
SPE  
SPI TRANSMITTER  
INTERRUPT REQUEST  
SPRIE  
SPI RECEIVER/ERROR  
INTERRUPT REQUEST  
ERRIE  
MODF  
OVRF  
Figure 15-11. SPI Interrupt Request Generation  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
167  
 
 
 
Serial Peripheral Interface (SPI) Module  
The error interrupt enable bit (ERRIE) enables both the MODF and OVRF bits to generate a receiver/error  
interrupt request.  
The mode fault enable bit (MODFEN) can prevent the MODF flag from being set so that only the OVRF  
bit is enabled by the ERRIE bit to generate receiver/error interrupt requests.  
The following sources in the SPI status and control register can generate interrupt requests:  
SPI receiver full bit (SPRF) — SPRF becomes set every time a byte transfers from the shift register  
to the receive data register. If the SPI receiver interrupt enable bit, SPRIE, is also set, SPRF  
generates an SPI receiver/error interrupt request.  
SPI transmitter empty bit (SPTE) — SPTE becomes set every time a byte transfers from the  
transmit data register to the shift register. If the SPI transmit interrupt enable bit, SPTIE, is also set,  
SPTE generates an SPTE interrupt request.  
15.5 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.  
15.5.1 Wait Mode  
The SPI module remains active after the execution of a WAIT instruction. In wait mode the SPI module  
registers are not accessible by the CPU. Any enabled interrupt request from the SPI module can bring the  
MCU out of wait mode.  
If SPI module functions are not required during wait mode, reduce power consumption by disabling the  
SPI module before executing the WAIT instruction.  
To exit wait mode when an overflow condition occurs, enable the OVRF bit to generate interrupt requests  
by setting the error interrupt enable bit (ERRIE). See 15.4 Interrupts.  
15.5.2 Stop Mode  
The SPI module is inactive after the execution of a STOP instruction. The STOP instruction does not  
affect register conditions. SPI operation resumes after an external interrupt. If stop mode is exited by  
reset, any transfer in progress is aborted, and the SPI is reset.  
15.6 SPI During Break Interrupts  
The system integration module (SIM) controls whether status bits in other modules can be cleared during  
the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear status  
bits during the break state. See BFCR in the SIM section of this data sheet.  
To allow software to clear status bits during a break interrupt, write a 1 to BCFE. If a status bit is cleared  
during the break state, it remains cleared when the MCU exits the break state.  
To protect status bits during the break state, write a 0 to BCFE. With BCFE cleared (its default state),  
software can read and write registers during the break state without affecting status bits. Some status bits  
have a two-step read/write clearing procedure. If software does the first step on such a bit before the  
break, the bit cannot change during the break state as long as BCFE is cleared. After the break, doing the  
second step clears the status bit.  
MC68HC908QB8 Data Sheet, Rev. 3  
168  
Freescale Semiconductor  
I/O Signals  
15.7 I/O Signals  
The SPI module can share its pins with the general-purpose I/O pins. See Figure 15-1 for the port pins  
that are shared.  
The SPI module has four I/O pins:  
MISO — Master input/slave output  
MOSI — Master output/slave input  
SPSCK — Serial clock  
SS — Slave select  
15.7.1 MISO (Master In/Slave Out)  
MISO is one of the two SPI module pins that transmits serial data. In full duplex operation, the MISO pin  
of the master SPI module is connected to the MISO pin of the slave SPI module. The master SPI  
simultaneously receives data on its MISO pin and transmits data from its MOSI pin.  
Slave output data on the MISO pin is enabled only when the SPI is configured as a slave. The SPI is  
configured as a slave when its SPMSTR bit is 0 and its SS pin is low. To support a multiple-slave system,  
a high on the SS pin puts the MISO pin in a high-impedance state.  
When enabled, the SPI controls data direction of the MISO pin regardless of the state of the data direction  
register of the shared I/O port.  
15.7.2 MOSI (Master Out/Slave In)  
MOSI is one of the two SPI module pins that transmits serial data. In full-duplex operation, the MOSI pin  
of the master SPI module is connected to the MOSI pin of the slave SPI module. The master SPI  
simultaneously transmits data from its MOSI pin and receives data on its MISO pin.  
When enabled, the SPI controls data direction of the MOSI pin regardless of the state of the data direction  
register of the shared I/O port.  
15.7.3 SPSCK (Serial Clock)  
The serial clock synchronizes data transmission between master and slave devices. In a master MCU,  
the SPSCK pin is the clock output. In a slave MCU, the SPSCK pin is the clock input. In full-duplex  
operation, the master and slave MCUs exchange a byte of data in eight serial clock cycles.  
When enabled, the SPI controls data direction of the SPSCK pin regardless of the state of the data  
direction register of the shared I/O port.  
15.7.4 SS (Slave Select)  
The SS pin has various functions depending on the current state of the SPI. For an SPI configured as a  
slave, SS is used to select a slave. For CPHA = 0, the SS is used to define the start of a transmission.  
(See 15.3.3 Transmission Formats.) Because it is used to indicate the start of a transmission, SS must  
be toggled high and low between each byte transmitted for the CPHA = 0 format. However, it can remain  
low between transmissions for the CPHA = 1 format. See Figure 15-12.  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
169  
 
Serial Peripheral Interface (SPI) Module  
MISO/MOSI  
MASTER SS  
BYTE 1  
BYTE 2  
BYTE 3  
SLAVE SS  
CPHA = 0  
SLAVE SS  
CPHA = 1  
Figure 15-12. CPHA/SS Timing  
When an SPI is configured as a slave, the SS pin is always configured as an input. It cannot be used as  
a general-purpose I/O regardless of the state of the MODFEN control bit. However, the MODFEN bit can  
still prevent the state of SS from creating a MODF error. See 15.8.2 SPI Status and Control Register.  
NOTE  
A high on the SS pin of a slave SPI puts the MISO pin in a high-impedance  
state. The slave SPI ignores all incoming SPSCK clocks, even if it was  
already in the middle of a transmission.  
When an SPI is configured as a master, the SS input can be used in conjunction with the MODF flag to  
prevent multiple masters from driving MOSI and SPSCK. (See 15.3.6.2 Mode Fault Error.) For the state  
of the SS pin to set the MODF flag, the MODFEN bit in the SPSCK register must be set. If the MODFEN  
bit is 0 for an SPI master, the SS pin can be used as a general-purpose I/O under the control of the data  
direction register of the shared I/O port. When MODFEN is 1, it is an input-only pin to the SPI regardless  
of the state of the data direction register of the shared I/O port.  
User software can read the state of the SS pin by configuring the appropriate pin as an input and reading  
the port data register. See Table 15-2.  
Table 15-2. SPI Configuration  
SPE  
SPMSTR  
MODFEN  
SPI Configuration  
Not enabled  
Function of SS Pin  
General-purpose I/O;  
SS ignored by SPI  
X(1)  
0
0
1
1
1
X
X
0
Slave  
Input-only to SPI  
General-purpose I/O;  
SS ignored by SPI  
1
Master without MODF  
Master with MODF  
1
1
Input-only to SPI  
1. X = Don’t care  
15.8 Registers  
The following registers allow the user to control and monitor SPI operation:  
SPI control register (SPCR)  
SPI status and control register (SPSCR)  
SPI data register (SPDR)  
MC68HC908QB8 Data Sheet, Rev. 3  
170  
Freescale Semiconductor  
 
 
Registers  
15.8.1 SPI Control Register  
The SPI control register:  
Enables SPI module interrupt requests  
Configures the SPI module as master or slave  
Selects serial clock polarity and phase  
Configures the SPSCK, MOSI, and MISO pins as open-drain outputs  
Enables the SPI module  
Bit 7  
6
5
SPMSTR  
1
4
CPOL  
0
3
CPHA  
1
2
SPWOM  
0
1
SPE  
0
Bit 0  
SPTIE  
0
Read:  
Write:  
Reset:  
SPRIE  
R
0
0
= Reserved  
R
Figure 15-13. SPI Control Register (SPCR)  
SPRIE — SPI Receiver Interrupt Enable Bit  
This read/write bit enables interrupt requests generated by the SPRF bit. The SPRF bit is set when a  
byte transfers from the shift register to the receive data register.  
1 = SPRF interrupt requests enabled  
0 = SPRF interrupt requests disabled  
SPMSTR — SPI Master Bit  
This read/write bit selects master mode operation or slave mode operation.  
1 = Master mode  
0 = Slave mode  
CPOL — Clock Polarity Bit  
This read/write bit determines the logic state of the SPSCK pin between transmissions. (See  
Figure 15-4 and Figure 15-6.) To transmit data between SPI modules, the SPI modules must have  
identical CPOL values.  
CPHA — Clock Phase Bit  
This read/write bit controls the timing relationship between the serial clock and SPI data. (See  
Figure 15-4 and Figure 15-6.) To transmit data between SPI modules, the SPI modules must have  
identical CPHA values. When CPHA = 0, the SS pin of the slave SPI module must be high between  
bytes. (See Figure 15-12.)  
SPWOM — SPI Wired-OR Mode Bit  
This read/write bit configures pins SPSCK, MOSI, and MISO so that these pins become open-drain  
outputs.  
1 = Wired-OR SPSCK, MOSI, and MISO pins  
0 = Normal push-pull SPSCK, MOSI, and MISO pins  
SPE — SPI Enable  
This read/write bit enables the SPI module. Clearing SPE causes a partial reset of the SPI. (See 15.3.5  
Resetting the SPI.)  
1 = SPI module enabled  
0 = SPI module disabled  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
171  
Serial Peripheral Interface (SPI) Module  
SPTIE— SPI Transmit Interrupt Enable  
This read/write bit enables interrupt requests generated by the SPTE bit. SPTE is set when a byte  
transfers from the transmit data register to the shift register.  
1 = SPTE interrupt requests enabled  
0 = SPTE interrupt requests disabled  
15.8.2 SPI Status and Control Register  
The SPI status and control register contains flags to signal these conditions:  
Receive data register full  
Failure to clear SPRF bit before next byte is received (overflow error)  
Inconsistent logic level on SS pin (mode fault error)  
Transmit data register empty  
The SPI status and control register also contains bits that perform these functions:  
Enable error interrupts  
Enable mode fault error detection  
Select master SPI baud rate  
Bit 7  
6
ERRIE  
0
5
4
3
2
MODFEN  
0
1
SPR1  
0
Bit 0  
SPR0  
0
Read:  
Write:  
Reset:  
SPRF  
OVRF  
MODF  
SPTE  
0
0
0
1
= Unimplemented  
Figure 15-14. SPI Status and Control Register (SPSCR)  
SPRF — SPI Receiver Full Bit  
This clearable, read-only flag is set each time a byte transfers from the shift register to the receive data  
register. SPRF generates a interrupt request if the SPRIE bit in the SPI control register is set also.  
During an SPRF interrupt, user software can clear SPRF by reading the SPI status and control register  
with SPRF set followed by a read of the SPI data register.  
1 = Receive data register full  
0 = Receive data register not full  
ERRIE — Error Interrupt Enable Bit  
This read/write bit enables the MODF and OVRF bits to generate interrupt requests.  
1 = MODF and OVRF can generate interrupt requests  
0 = MODF and OVRF cannot generate interrupt requests  
OVRF — Overflow Bit  
This clearable, read-only flag is set if software does not read the byte in the receive data register before  
the next full byte enters the shift register. In an overflow condition, the byte already in the receive data  
register is unaffected, and the byte that shifted in last is lost. Clear the OVRF bit by reading the SPI  
status and control register with OVRF set and then reading the receive data register.  
1 = Overflow  
0 = No overflow  
MC68HC908QB8 Data Sheet, Rev. 3  
172  
Freescale Semiconductor  
Registers  
MODF — Mode Fault Bit  
This clearable, read-only flag is set in a slave SPI if the SS pin goes high during a transmission with  
MODFEN set. In a master SPI, the MODF flag is set if the SS pin goes low at any time with the  
MODFEN bit set. Clear MODF by reading the SPI status and control register (SPSCR) with MODF set  
and then writing to the SPI control register (SPCR).  
1 = SS pin at inappropriate logic level  
0 = SS pin at appropriate logic level  
SPTE — SPI Transmitter Empty Bit  
This clearable, read-only flag is set each time the transmit data register transfers a byte into the shift  
register. SPTE generates an SPTE interrupt request if the SPTIE bit in the SPI control register is also  
set.  
NOTE  
Do not write to the SPI data register unless SPTE is high.  
During an SPTE interrupt, user software can clear SPTE by writing to the transmit data register.  
1 = Transmit data register empty  
0 = Transmit data register not empty  
MODFEN — Mode Fault Enable Bit  
This read/write bit, when set, allows the MODF flag to be set. If the MODF flag is set, clearing MODFEN  
does not clear the MODF flag. If the SPI is enabled as a master and the MODFEN bit is 0, then the SS  
pin is available as a general-purpose I/O.  
If the MODFEN bit is 1, then this pin is not available as a general-purpose I/O. When the SPI is enabled  
as a slave, the SS pin is not available as a general-purpose I/O regardless of the value of MODFEN.  
See 15.7.4 SS (Slave Select).  
If the MODFEN bit is 0, the level of the SS pin does not affect the operation of an enabled SPI  
configured as a master. For an enabled SPI configured as a slave, having MODFEN low only prevents  
the MODF flag from being set. It does not affect any other part of SPI operation. See 15.3.6.2 Mode  
Fault Error.  
SPR1 and SPR0 — SPI Baud Rate Select Bits  
In master mode, these read/write bits select one of four baud rates as shown in Table 15-3. SPR1 and  
SPR0 have no effect in slave mode.  
Table 15-3. SPI Master Baud Rate Selection  
SPR1 and SPR0  
Baud Rate Divisor (BD)  
00  
01  
10  
11  
2
8
32  
128  
Use this formula to calculate the SPI baud rate:  
Baud rate =  
BUSCLK  
BD  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
173  
 
Serial Peripheral Interface (SPI) Module  
15.8.3 SPI Data Register  
The SPI data register consists of the read-only receive data register and the write-only transmit data  
register. Writing to the SPI data register writes data into the transmit data register. Reading the SPI data  
register reads data from the receive data register. The transmit data and receive data registers are  
separate registers that can contain different values. See Figure 15-2.  
Bit 7  
R7  
6
5
4
3
2
1
Bit 0  
R0  
Read:  
Write:  
Reset:  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
T7  
T0  
Unaffected by reset  
Figure 15-15. SPI Data Register (SPDR)  
R7–R0/T7–T0 — Receive/Transmit Data Bits  
NOTE  
Do not use read-modify-write instructions on the SPI data register because  
the register read is not the same as the register written.  
MC68HC908QB8 Data Sheet, Rev. 3  
174  
Freescale Semiconductor  
Chapter 16  
Timer Interface Module (TIM)  
16.1 Introduction  
This section describes the timer interface module (TIM). The TIM module is a 4-channel timer that  
provides a timing reference with input capture, output compare, and pulse-width-modulation functions.  
The TIM module shares its pins with general-purpose input/output (I/O) port pins. See Figure 16-1 for port  
location of these shared pins.  
16.2 Features  
Features include the following:  
Four input capture/output compare channels  
Rising-edge, falling-edge, or any-edge input capture trigger  
Set, clear, or toggle output compare action  
Buffered and unbuffered output compare pulse-width modulation (PWM) signal generation  
Programmable clock input  
7-frequency internal bus clock prescaler selection  
External clock input pin if available, See Figure 16-1  
Free-running or modulo up-count operation  
Toggle any channel pin on overflow  
Counter stop and reset bits  
16.3 Functional Description  
Figure 16-2 shows the structure of the TIM. The central component of the TIM is the 16-bit counter that  
can operate as a free-running counter or a modulo up-counter. The counter provides the timing reference  
for the input capture and output compare functions. The TIM counter modulo registers, TMODH:TMODL,  
control the modulo value of the counter. Software can read the counter value, TCNTH:TCNTL, at any time  
without affecting the counting sequence.  
The four TIM channels are programmable independently as input capture or output compare channels.  
16.3.1 TIM Counter Prescaler  
The TIM clock source is one of the seven prescaler outputs or the external clock input pin, TCLK if  
available. The prescaler generates seven clock rates from the internal bus clock. The prescaler select  
bits, PS[2:0], in the TIM status and control register (TSC) select the clock source.  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
175  
Timer Interface Module (TIM)  
PTA0/TCH0/AD0/KBI0  
PTA1/TCH1/AD1/KBI1  
PTA2/IRQ/KBI2/TCLK  
PTA3/RST/KBI3  
CLOCK  
GENERATOR  
KEYBOARD INTERRUPT  
MODULE  
PTA4/OSC2/AD2/KBI4  
PTA5/OSC1/AD3/KBI5  
M68HC08 CPU  
EXTERNAL INTERRUPT  
MODULE  
PTB0/SCK/AD4  
PTB1/MOSI/AD5  
PTB2/MISO/AD6  
PTB3/SS/AD7  
PTB4/RxD/AD8  
PTB5/TxD/AD9  
PTB6/TCH2  
AUTO WAKEUP  
MODULE  
LOW-VOLTAGE  
INHIBIT  
PTB7/TCH3  
4-CHANNEL 16-BIT  
TIMER MODULE  
COP  
MODULE  
MC68HC908QB8  
256 BYTES  
MC68HC908QB8  
8192 BYTES  
10-CHANNEL  
10-BIT ADC  
USER RAM  
USER FLASH  
ENHANCED SERIAL  
COMMUNICATIONS  
INTERFACE MODULE  
VDD  
VSS  
POWER SUPPLY  
SERIAL PERIPHERAL  
INTERFACE  
DEVELOPMENT SUPPORT  
MONITOR ROM  
BREAK MODULE  
RST, IRQ: Pins have internal pull up device  
All port pins have programmable pull up device  
PTA[0:5]: Higher current sink and source capability  
Figure 16-1. Block Diagram Highlighting TIM Block and Pins  
16.3.2 Input Capture  
With the input capture function, the TIM can capture the time at which an external event occurs. When an  
active edge occurs on the pin of an input capture channel, the TIM latches the contents of the counter into  
the TIM channel registers, TCHxH:TCHxL. The polarity of the active edge is programmable. Input  
captures can be enabled to generate interrupt requests.  
MC68HC908QB8 Data Sheet, Rev. 3  
176  
Freescale Semiconductor  
 
Functional Description  
TCLK  
TCLK  
(IF AVAILABLE)  
PRESCALER SELECT  
INTERNAL  
BUS CLOCK  
PRESCALER  
TSTOP  
TRST  
PS2  
PS1  
PS0  
16-BIT COUNTER  
TCNTH:TCNTL  
TOF  
INTERRUPT  
LOGIC  
TOIE  
16-BIT COMPARATOR  
TMODH:TMODL  
TOV0  
ELS0B  
ELS0A  
PORT  
LOGIC  
CHANNEL 0  
16-BIT COMPARATOR  
TCH0H:TCH0L  
CH0MAX  
TCH0  
CH0F  
INTERRUPT  
LOGIC  
16-BIT LATCH  
CH0IE  
MS0A  
MS0B  
CH1F  
TOV1  
ELS1B  
ELS1A  
PORT  
TCH1  
CHANNEL 1  
CH1MAX  
LOGIC  
16-BIT COMPARATOR  
TCH1H:TCH1L  
INTERRUPT  
LOGIC  
16-BIT LATCH  
CH1IE  
MS1A  
TOV2  
ELS2B  
ELS2A  
PORT  
LOGIC  
CHANNEL 2  
CH2MAX  
TCH2  
16-BIT COMPARATOR  
TCH2H:TCH2L  
CH2F  
MS2B  
INTERRUPT  
LOGIC  
16-BIT LATCH  
CH2IE  
MS2A  
TOV3  
ELS3B  
ELS3A  
PORT  
TCH3  
CHANNEL 3  
CH3MAX  
LOGIC  
16-BIT COMPARATOR  
TCH3H:TCH3L  
CH3F  
INTERRUPT  
LOGIC  
16-BIT LATCH  
CH3IE  
MS3A  
Figure 16-2. TIM Block Diagram  
16.3.3 Output Compare  
With the output compare function, the TIM can generate a periodic pulse with a programmable polarity,  
duration, and frequency. When the counter reaches the value in the registers of an output compare  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
177  
 
Timer Interface Module (TIM)  
channel, the TIM can set, clear, or toggle the channel pin. Output compares can be enabled to generate  
interrupt requests.  
16.3.3.1 Unbuffered Output Compare  
Any output compare channel can generate unbuffered output compare pulses as described in 16.3.3  
Output Compare. The pulses are unbuffered because changing the output compare value requires writing  
the new value over the old value currently in the TIM channel registers.  
An unsynchronized write to the TIM channel registers to change an output compare value could cause  
incorrect operation for up to two counter overflow periods. For example, writing a new value before the  
counter reaches the old value but after the counter reaches the new value prevents any compare during  
that counter overflow period. Also, using a TIM overflow interrupt routine to write a new, smaller output  
compare value may cause the compare to be missed. The TIM may pass the new value before it is written.  
Use the following methods to synchronize unbuffered changes in the output compare value on channel x:  
When changing to a smaller value, enable channel x output compare interrupts and write the new  
value in the output compare interrupt routine. The output compare interrupt occurs at the end of  
the current output compare pulse. The interrupt routine has until the end of the counter overflow  
period to write the new value.  
When changing to a larger output compare value, enable TIM overflow interrupts and write the new  
value in the TIM overflow interrupt routine. The TIM overflow interrupt occurs at the end of the  
current counter overflow period. Writing a larger value in an output compare interrupt routine (at  
the end of the current pulse) could cause two output compares to occur in the same counter  
overflow period.  
16.3.3.2 Buffered Output Compare  
Channels 0 and 1 can be linked to form a buffered output compare channel whose output appears on the  
TCH0 pin. The TIM channel registers of the linked pair alternately control the output.  
Setting the MS0B bit in TIM channel 0 status and control register (TSC0) links channel 0 and channel 1.  
The output compare value in the TIM channel 0 registers initially controls the output on the TCH0 pin.  
Writing to the TIM channel 1 registers enables the TIM channel 1 registers to synchronously control the  
output after the TIM overflows. At each subsequent overflow, the TIM channel registers (0 or 1) that  
control the output are the ones written to last. TSC0 controls and monitors the buffered output compare  
function, and TIM channel 1 status and control register (TSC1) is unused. While the MS0B bit is set, the  
channel 1 pin, TCH1, is available as a general-purpose I/O pin.  
Channels 2 and 3 can be linked to form a buffered output compare channel whose output appears on the  
TCH2 pin. The TIM channel registers of the linked pair alternately control the output.  
Setting the MS2B bit in TIM channel 2 status and control register (TSC2) links channel 2 and channel 3.  
The output compare value in the TIM channel 2 registers initially controls the output on the TCH2 pin.  
Writing to the TIM channel 3 registers enables the TIM channel 3 registers to synchronously control the  
output after the TIM overflows. At each subsequent overflow, the TIM channel registers (2 or 3) that  
control the output are the ones written to last. TSC2 controls and monitors the buffered output compare  
function, and TIM channel 3 status and control register (TSC3) is unused. While the MS2B bit is set, the  
channel 3 pin, TCH3, is available as a general-purpose I/O pin.  
NOTE  
In buffered output compare operation, do not write new output compare  
values to the currently active channel registers. User software should track  
MC68HC908QB8 Data Sheet, Rev. 3  
178  
Freescale Semiconductor  
Functional Description  
the currently active channel to prevent writing a new value to the active  
channel. Writing to the active channel registers is the same as generating  
unbuffered output compares.  
16.3.4 Pulse Width Modulation (PWM)  
By using the toggle-on-overflow feature with an output compare channel, the TIM can generate a PWM  
signal. The value in the TIM counter modulo registers determines the period of the PWM signal. The  
channel pin toggles when the counter reaches the value in the TIM counter modulo registers. The time  
between overflows is the period of the PWM signal.  
As Figure 16-3 shows, the output compare value in the TIM channel registers determines the pulse width  
of the PWM signal. The time between overflow and output compare is the pulse width. Program the TIM  
to clear the channel pin on output compare if the polarity of the PWM pulse is 1 (ELSxA = 0). Program the  
TIM to set the pin if the polarity of the PWM pulse is 0 (ELSxA = 1).  
The value in the TIM counter modulo registers and the selected prescaler output determines the  
frequency of the PWM output The frequency of an 8-bit PWM signal is variable in 256 increments. Writing  
$00FF (255) to the TIM counter modulo registers produces a PWM period of 256 times the internal bus  
clock period if the prescaler select value is 000. See 16.8.1 TIM Status and Control Register.  
The value in the TIM channel registers determines the pulse width of the PWM output. The pulse width of  
an 8-bit PWM signal is variable in 256 increments. Writing $0080 (128) to the TIM channel registers  
produces a duty cycle of 128/256 or 50%.  
OVERFLOW  
OVERFLOW  
OVERFLOW  
PERIOD  
POLARITY = 1  
(ELSxA = 0)  
TCHx  
TCHx  
PULSE  
WIDTH  
POLARITY = 0  
(ELSxA = 1)  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
Figure 16-3. PWM Period and Pulse Width  
16.3.4.1 Unbuffered PWM Signal Generation  
Any output compare channel can generate unbuffered PWM pulses as described in 16.3.4 Pulse Width  
Modulation (PWM). The pulses are unbuffered because changing the pulse width requires writing the new  
pulse width value over the old value currently in the TIM channel registers.  
An unsynchronized write to the TIM channel registers to change a pulse width value could cause incorrect  
operation for up to two PWM periods. For example, writing a new value before the counter reaches the  
old value but after the counter reaches the new value prevents any compare during that PWM period.  
Also, using a TIM overflow interrupt routine to write a new, smaller pulse width value may cause the  
compare to be missed. The TIM may pass the new value before it is written to the timer channel  
(TCHxH:TCHxL).  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
179  
 
 
Timer Interface Module (TIM)  
Use the following methods to synchronize unbuffered changes in the PWM pulse width on channel x:  
When changing to a shorter pulse width, enable channel x output compare interrupts and write the  
new value in the output compare interrupt routine. The output compare interrupt occurs at the end  
of the current pulse. The interrupt routine has until the end of the PWM period to write the new  
value.  
When changing to a longer pulse width, enable TIM overflow interrupts and write the new value in  
the TIM overflow interrupt routine. The TIM overflow interrupt occurs at the end of the current PWM  
period. Writing a larger value in an output compare interrupt routine (at the end of the current pulse)  
could cause two output compares to occur in the same PWM period.  
NOTE  
In PWM signal generation, do not program the PWM channel to toggle on  
output compare. Toggling on output compare prevents reliable 0% duty  
cycle generation and removes the ability of the channel to self-correct in the  
event of software error or noise. Toggling on output compare also can  
cause incorrect PWM signal generation when changing the PWM pulse  
width to a new, much larger value.  
16.3.4.2 Buffered PWM Signal Generation  
Channels 0 and 1 can be linked to form a buffered PWM channel whose output appears on the TCH0 pin.  
The TIM channel registers of the linked pair alternately control the output.  
Setting the MS0B bit in TIM channel 0 status and control register (TSC0) links channel 0 and channel 1.  
The TIM channel 0 registers initially control the pulse width on the TCH0 pin. Writing to the TIM channel 1  
registers enables the TIM channel 1 registers to synchronously control the pulse width at the beginning  
of the next PWM period. At each subsequent overflow, the TIM channel registers (0 or 1) that control the  
pulse width are the ones written to last. TSC0 controls and monitors the buffered PWM function, and TIM  
channel 1 status and control register (TSC1) is unused. While the MS0B bit is set, the channel 1 pin,  
TCH1, is available as a general-purpose I/O pin.  
Channels 2 and 3 can be linked to form a buffered PWM channel whose output appears on the TCH2 pin.  
The TIM channel registers of the linked pair alternately control the output.  
Setting the MS2B bit in TIM channel 2 status and control register (TSC2) links channel 2 and channel 3.  
The TIM channel 2 registers initially control the pulse width on the TCH2 pin. Writing to the TIM channel  
3 registers enables the TIM channel 3 registers to synchronously control the pulse width at the beginning  
of the next PWM period. At each subsequent overflow, the TIM channel registers (2 or 3) that control the  
pulse width are the ones written to last. TSC2 controls and monitors the buffered PWM function, and TIM  
channel 3 status and control register (TSC3) is unused. While the MS2B bit is set, the channel 3 pin,  
TCH3, is available as a general-purpose I/O pin.  
NOTE  
In buffered PWM signal generation, do not write new pulse width values to  
the currently active channel registers. User software should track the  
currently active channel to prevent writing a new value to the active  
channel. Writing to the active channel registers is the same as generating  
unbuffered PWM signals.  
MC68HC908QB8 Data Sheet, Rev. 3  
180  
Freescale Semiconductor  
Functional Description  
16.3.4.3 PWM Initialization  
To ensure correct operation when generating unbuffered or buffered PWM signals, use the following  
initialization procedure:  
1. In the TIM status and control register (TSC):  
a. Stop the counter by setting the TIM stop bit, TSTOP.  
b. Reset the counter and prescaler by setting the TIM reset bit, TRST.  
2. In the TIM counter modulo registers (TMODH:TMODL), write the value for the required PWM  
period.  
3. In the TIM channel x registers (TCHxH:TCHxL), write the value for the required pulse width.  
4. In TIM channel x status and control register (TSCx):  
a. Write 0:1 (for unbuffered output compare or PWM signals) or 1:0 (for buffered output compare  
or PWM signals) to the mode select bits, MSxB:MSxA. See Table 16-2.  
b. Write 1 to the toggle-on-overflow bit, TOVx.  
c. Write 1:0 (polarity 1 — to clear output on compare) or 1:1 (polarity 0 — to set output on  
compare) to the edge/level select bits, ELSxB:ELSxA. The output action on compare must  
force the output to the complement of the pulse width level. See Table 16-2.  
NOTE  
In PWM signal generation, do not program the PWM channel to toggle on  
output compare. Toggling on output compare prevents reliable 0% duty  
cycle generation and removes the ability of the channel to self-correct in the  
event of software error or noise. Toggling on output compare can also  
cause incorrect PWM signal generation when changing the PWM pulse  
width to a new, much larger value.  
5. In the TIM status control register (TSC), clear the TIM stop bit, TSTOP.  
Setting MS0B links channels 0 and 1 and configures them for buffered PWM operation. The TIM  
channel 0 registers (TCH0H:TCH0L) initially control the buffered PWM output. TIM status control  
register 0 (TSC0) controls and monitors the PWM signal from the linked channels. MS0B takes priority  
over MS0A.  
Setting MS2B links channels 2 and 3 and configures them for buffered PWM operation. The TIM  
channel 2 registers (TCH2H:TCH2L) initially control the buffered PWM output. TIM status control  
register 2 (TSC2) controls and monitors the PWM signal from the linked channels. MS2B takes priority  
over MS2A.  
Clearing the toggle-on-overflow bit, TOVx, inhibits output toggles on TIM overflows. Subsequent output  
compares try to force the output to a state it is already in and have no effect. The result is a 0% duty cycle  
output.  
Setting the channel x maximum duty cycle bit (CHxMAX) and setting the TOVx bit generates a 100% duty  
cycle output. See 16.8.4 TIM Channel Status and Control Registers.  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
181  
Timer Interface Module (TIM)  
16.4 Interrupts  
The following TIM sources can generate interrupt requests:  
TIM overflow flag (TOF) — The TOF bit is set when the counter reaches the modulo value  
programmed in the TIM counter modulo registers. The TIM overflow interrupt enable bit, TOIE,  
enables TIM overflow interrupt requests. TOF and TOIE are in the TSC register.  
TIM channel flags (CH3F:CH0F) — The CHxF bit is set when an input capture or output compare  
occurs on channel x. Channel x TIM interrupt requests are controlled by the channel x interrupt  
enable bit, CHxIE. Channel x TIM interrupt requests are enabled when CHxIE =1. CHxF and  
CHxIE are in the TSCx register.  
16.5 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby modes.  
16.5.1 Wait Mode  
The TIM remains active after the execution of a WAIT instruction. In wait mode the TIM registers are not  
accessible by the CPU. Any enabled interrupt request from the TIM can bring the MCU out of wait mode.  
If TIM functions are not required during wait mode, reduce power consumption by stopping the TIM before  
executing the WAIT instruction.  
16.5.2 Stop Mode  
The TIM module is inactive after the execution of a STOP instruction. The STOP instruction does not  
affect register conditions. TIM operation resumes after an external interrupt. If stop mode is exited by  
reset, the TIM is reset.  
16.6 TIM During Break Interrupts  
A break interrupt stops the counter.  
The system integration module (SIM) controls whether status bits in other modules can be cleared during  
the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear status  
bits during the break state. See BFCR in the SIM section of this data sheet.  
To allow software to clear status bits during a break interrupt, write a 1 to BCFE. If a status bit is cleared  
during the break state, it remains cleared when the MCU exits the break state.  
To protect status bits during the break state, write a 0 to BCFE. With BCFE cleared (its default state),  
software can read and write registers during the break state without affecting status bits. Some status bits  
have a two-step read/write clearing procedure. If software does the first step on such a bit before the  
break, the bit cannot change during the break state as long as BCFE is cleared. After the break, doing the  
second step clears the status bit.  
MC68HC908QB8 Data Sheet, Rev. 3  
182  
Freescale Semiconductor  
I/O Signals  
16.7 I/O Signals  
The TIM module can share its pins with the general-purpose I/O pins. See Figure 16-1 for the port pins  
that are shared.  
16.7.1 TIM Channel I/O Pins (TCH3:TCH0)  
Each channel I/O pin is programmable independently as an input capture pin or an output compare pin.  
TCH0 and TCH2 can be configured as buffered output compare or buffered PWM pins.  
16.7.2 TIM Clock Pin (TCLK)  
TCLK is an external clock input that can be the clock source for the counter instead of the prescaled  
internal bus clock. Select the TCLK input by writing 1s to the three prescaler select bits, PS[2:0].  
(See 16.8.1 TIM Status and Control Register.) The minimum TCLK pulse width is specified in 18.16 Timer  
Interface Module Characteristics. The maximum TCLK frequency is the least of 4 MHz or bus  
frequency ÷ 2.  
16.8 Registers  
The following registers control and monitor operation of the TIM:  
TIM status and control register (TSC)  
TIM control registers (TCNTH:TCNTL)  
TIM counter modulo registers (TMODH:TMODL)  
TIM channel status and control registers (TSC0 through TSC3)  
TIM channel registers (TCH0H:TCH0L through TCH3H:TCH3L)  
16.8.1 TIM Status and Control Register  
The TIM status and control register (TSC) does the following:  
Enables TIM overflow interrupts  
Flags TIM overflows  
Stops the counter  
Resets the counter  
Prescales the counter clock  
Bit 7  
TOF  
0
6
TOIE  
0
5
TSTOP  
1
4
0
3
0
2
PS2  
0
1
PS1  
0
Bit 0  
PS0  
0
Read:  
Write:  
Reset:  
TRST  
0
0
0
= Unimplemented  
Figure 16-4. TIM Status and Control Register (TSC)  
TOF — TIM Overflow Flag Bit  
This read/write flag is set when the counter reaches the modulo value programmed in the TIM counter  
modulo registers. Clear TOF by reading the TSC register when TOF is set and then writing a 0 to TOF.  
If another TIM overflow occurs before the clearing sequence is complete, then writing 0 to TOF has no  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
183  
 
Timer Interface Module (TIM)  
effect. Therefore, a TOF interrupt request cannot be lost due to inadvertent clearing of TOF. Writing a  
1 to TOF has no effect.  
1 = Counter has reached modulo value  
0 = Counter has not reached modulo value  
TOIE — TIM Overflow Interrupt Enable Bit  
This read/write bit enables TIM overflow interrupts when the TOF bit becomes set.  
1 = TIM overflow interrupts enabled  
0 = TIM overflow interrupts disabled  
TSTOP — TIM Stop Bit  
This read/write bit stops the counter. Counting resumes when TSTOP is cleared. Reset sets the  
TSTOP bit, stopping the counter until software clears the TSTOP bit.  
1 = Counter stopped  
0 = Counter active  
NOTE  
Do not set the TSTOP bit before entering wait mode if the TIM is required  
to exit wait mode. Also, when the TSTOP bit is set and the timer is  
configured for input capture operation, input captures are inhibited until the  
TSTOP bit is cleared.  
When using TSTOP to stop the timer counter, see if any timer flags are set.  
If a timer flag is set, it must be cleared by clearing TSTOP, then clearing the  
flag, then setting TSTOP again.  
TRST — TIM Reset Bit  
Setting this write-only bit resets the counter and the TIM prescaler. Setting TRST has no effect on any  
other timer registers. Counting resumes from $0000. TRST is cleared automatically after the counter  
is reset and always reads as 0.  
1 = Prescaler and counter cleared  
0 = No effect  
NOTE  
Setting the TSTOP and TRST bits simultaneously stops the counter at a  
value of $0000.  
PS[2:0] — Prescaler Select Bits  
These read/write bits select one of the seven prescaler outputs as the input to the counter as  
Table 16-1 shows.  
Table 16-1. Prescaler Selection  
PS2  
0
PS1  
0
PS0  
0
TIM Clock Source  
Internal bus clock ÷ 1  
Internal bus clock ÷ 2  
Internal bus clock ÷ 4  
Internal bus clock ÷ 8  
Internal bus clock ÷ 16  
Internal bus clock ÷ 32  
Internal bus clock ÷ 64  
TCLK (if available)  
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
MC68HC908QB8 Data Sheet, Rev. 3  
184  
Freescale Semiconductor  
 
Registers  
16.8.2 TIM Counter Registers  
The two read-only TIM counter registers contain the high and low bytes of the value in the counter.  
Reading the high byte (TCNTH) latches the contents of the low byte (TCNTL) into a buffer. Subsequent  
reads of TCNTH do not affect the latched TCNTL value until TCNTL is read. Reset clears the TIM counter  
registers. Setting the TIM reset bit (TRST) also clears the TIM counter registers.  
NOTE  
If you read TCNTH during a break interrupt, be sure to unlatch TCNTL by  
reading TCNTL before exiting the break interrupt. Otherwise, TCNTL  
retains the value latched during the break.  
Bit 7  
6
5
4
3
2
1
Bit 0  
Bit 8  
Read:  
Write:  
Reset:  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 16-5. TIM Counter High Register (TCNTH)  
Bit 7  
Bit 7  
6
5
4
3
2
1
Bit 0  
Bit 0  
Read:  
Write:  
Reset:  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 16-6. TIM Counter Low Register (TCNTL)  
16.8.3 TIM Counter Modulo Registers  
The read/write TIM modulo registers contain the modulo value for the counter. When the counter reaches  
the modulo value, the overflow flag (TOF) becomes set, and the counter resumes counting from $0000  
at the next timer clock. Writing to the high byte (TMODH) inhibits the TOF bit and overflow interrupts until  
the low byte (TMODL) is written. Reset sets the TIM counter modulo registers.  
Bit 7  
Bit15  
1
6
Bit14  
1
5
Bit13  
1
4
Bit12  
1
3
Bit11  
1
2
Bit10  
1
1
Bit9  
1
Bit 0  
Bit8  
1
Read:  
Write:  
Reset:  
Figure 16-7. TIM Counter Modulo High Register (TMODH)  
Bit 7  
Bit7  
1
6
Bit6  
1
5
Bit5  
1
4
Bit4  
1
3
Bit3  
1
2
Bit2  
1
1
Bit1  
1
Bit 0  
Bit0  
1
Read:  
Write:  
Reset:  
Figure 16-8. TIM Counter Modulo Low Register (TMODL)  
NOTE  
Reset the counter before writing to the TIM counter modulo registers.  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
185  
Timer Interface Module (TIM)  
16.8.4 TIM Channel Status and Control Registers  
Each of the TIM channel status and control registers does the following:  
Flags input captures and output compares  
Enables input capture and output compare interrupts  
Selects input capture, output compare, or PWM operation  
Selects high, low, or toggling output on output compare  
Selects rising edge, falling edge, or any edge as the active input capture trigger  
Selects output toggling on TIM overflow  
Selects 0% and 100% PWM duty cycle  
Selects buffered or unbuffered output compare/PWM operation  
Bit 7  
CH0F  
0
6
CH0IE  
0
5
MS0B  
0
4
MS0A  
0
3
ELS0B  
0
2
ELS0A  
0
1
TOV0  
0
Bit 0  
CH0MAX  
0
Read:  
Write:  
Reset:  
0
Figure 16-9. TIM Channel 0 Status and Control Register (TSC0)  
Bit 7  
CH1F  
0
6
CH1IE  
0
5
0
4
MS1A  
0
3
ELS1B  
0
2
ELS1A  
0
1
TOV1  
0
Bit 0  
CH1MAX  
0
Read:  
Write:  
Reset:  
0
0
Figure 16-10. TIM Channel 1 Status and Control Register (TSC1)  
Bit 7  
CH2F  
0
6
CH2IE  
0
5
MS2B  
0
4
MS2A  
0
3
ELS2B  
0
2
ELS2A  
0
1
TOV2  
0
Bit 0  
CH2MAX  
0
Read:  
Write:  
Reset:  
0
Figure 16-11. TIM Channel 2 Status and Control Register (TSC2)  
Bit 7  
CH3F  
0
6
5
0
4
MS3A  
0
3
ELS3B  
0
2
ELS3A  
0
1
TOV3  
0
Bit 0  
CH3MAX  
0
Read:  
Write:  
Reset:  
CH3IE  
0
0
0
= Unimplemented  
Figure 16-12. TIM Channel 3 Status and Control Register (TSC3)  
CHxF — Channel x Flag Bit  
When channel x is an input capture channel, this read/write bit is set when an active edge occurs on  
the channel x pin. When channel x is an output compare channel, CHxF is set when the value in the  
counter registers matches the value in the TIM channel x registers.  
Clear CHxF by reading the TSCx register with CHxF set and then writing a 0 to CHxF. If another  
interrupt request occurs before the clearing sequence is complete, then writing 0 to CHxF has no  
effect. Therefore, an interrupt request cannot be lost due to inadvertent clearing of CHxF.  
MC68HC908QB8 Data Sheet, Rev. 3  
186  
Freescale Semiconductor  
Registers  
Writing a 1 to CHxF has no effect.  
1 = Input capture or output compare on channel x  
0 = No input capture or output compare on channel x  
CHxIE — Channel x Interrupt Enable Bit  
This read/write bit enables TIM interrupt service requests on channel x.  
1 = Channel x interrupt requests enabled  
0 = Channel x interrupt requests disabled  
MSxB — Mode Select Bit B  
This read/write bit selects buffered output compare/PWM operation. MSxB exists only in the TSC0 and  
TSC2 registers.  
Setting MS0B causes the contents of TSC1 to be ignored by the TIM and reverts TCH1 to  
general-purpose I/O.  
Setting MS2B causes the contents of TSC3 to be ignored by the TIM and reverts TCH3 to  
general-purpose I/O.  
1 = Buffered output compare/PWM operation enabled  
0 = Buffered output compare/PWM operation disabled  
MSxA — Mode Select Bit A  
When ELSxB:A 00, this read/write bit selects either input capture operation or unbuffered output  
compare/PWM operation. See Table 16-2.  
1 = Unbuffered output compare/PWM operation  
0 = Input capture operation  
When ELSxB:A = 00, this read/write bit selects the initial output level of the TCHx pin (see Table 16-2).  
1 = Initial output level low  
0 = Initial output level high  
NOTE  
Before changing a channel function by writing to the MSxB or MSxA bit, set  
the TSTOP and TRST bits in the TIM status and control register (TSC).  
Table 16-2. Mode, Edge, and Level Selection  
MSxB MSxA  
ELSxB  
ELSxA  
Mode  
Configuration  
Pin under port control; initial  
output level high  
X
X
0
1
0
0
Output preset  
Pin under port control; initial  
output level low  
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
1
1
1
1
X
X
X
0
1
1
0
0
1
1
0
1
1
1
0
1
0
1
0
1
1
0
1
Capture on rising edge only  
Capture on falling edge only  
Capture on rising or falling edge  
Software compare only  
Input capture  
Toggle output on compare  
Clear output on compare  
Set output on compare  
Output compare  
or PWM  
Toggle output on compare  
Clear output on compare  
Set output on compare  
Buffered output  
compare or  
buffered PWM  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
187  
 
Timer Interface Module (TIM)  
ELSxB and ELSxA — Edge/Level Select Bits  
When channel x is an input capture channel, these read/write bits control the active edge-sensing logic  
on channel x.  
When channel x is an output compare channel, ELSxB and ELSxA control the channel x output  
behavior when an output compare occurs.  
When ELSxB and ELSxA are both clear, channel x is not connected to an I/O port, and pin TCHx is  
available as a general-purpose I/O pin. Table 16-2 shows how ELSxB and ELSxA work.  
NOTE  
After initially enabling a TIM channel register for input capture operation  
and selecting the edge sensitivity, clear CHxF to ignore any erroneous  
edge detection flags.  
TOVx — Toggle-On-Overflow Bit  
When channel x is an output compare channel, this read/write bit controls the behavior of the channel  
x output when the counter overflows. When channel x is an input capture channel, TOVx has no effect.  
1 = Channel x pin toggles on counter overflow.  
0 = Channel x pin does not toggle on counter overflow.  
NOTE  
When TOVx is set, a counter overflow takes precedence over a channel x  
output compare if both occur at the same time.  
CHxMAX — Channel x Maximum Duty Cycle Bit  
When the TOVx bit is at 1, setting the CHxMAX bit forces the duty cycle of buffered and unbuffered  
PWM signals to 100%. As Figure 16-13 shows, the CHxMAX bit takes effect in the cycle after it is set  
or cleared. The output stays at the 100% duty cycle level until the cycle after CHxMAX is cleared.  
OVERFLOW  
OVERFLOW  
OVERFLOW  
OVERFLOW  
OVERFLOW  
PERIOD  
TCHx  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
CHxMAX  
Figure 16-13. CHxMAX Latency  
16.8.5 TIM Channel Registers  
These read/write registers contain the captured counter value of the input capture function or the output  
compare value of the output compare function. The state of the TIM channel registers after reset is  
unknown.  
In input capture mode (MSxB:MSxA = 0:0), reading the high byte of the TIM channel x registers (TCHxH)  
inhibits input captures until the low byte (TCHxL) is read.  
MC68HC908QB8 Data Sheet, Rev. 3  
188  
Freescale Semiconductor  
 
Registers  
In output compare mode (MSxB:MSxA 0:0), writing to the high byte of the TIM channel x registers  
(TCHxH) inhibits output compares until the low byte (TCHxL) is written.  
Bit 7  
6
5
4
3
2
1
Bit 0  
Bit 8  
Read:  
Write:  
Reset:  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Indeterminate after reset  
Figure 16-14. TIM Channel x Register High (TCHxH)  
Bit 7  
Bit 7  
6
5
4
3
2
1
Bit 0  
Bit 0  
Read:  
Write:  
Reset:  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Indeterminate after reset  
Figure 16-15. TIM Channel x Register Low (TCHxL)  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
189  
Timer Interface Module (TIM)  
MC68HC908QB8 Data Sheet, Rev. 3  
190  
Freescale Semiconductor  
Chapter 17  
Development Support  
17.1 Introduction  
This section describes the break module, the monitor module (MON), and the monitor mode entry  
methods.  
17.2 Break Module (BRK)  
The break module can generate a break interrupt that stops normal program flow at a defined address to  
enter a background program.  
Features include:  
Accessible input/output (I/O) registers during the break Interrupt  
Central processor unit (CPU) generated break interrupts  
Software-generated break interrupts  
Computer operating properly (COP) disabling during break interrupts  
17.2.1 Functional Description  
When the internal address bus matches the value written in the break address registers, the break module  
issues a breakpoint signal (BKPT) to the system integration module (SIM). The SIM then causes the CPU  
to load the instruction register with a software interrupt instruction (SWI). The program counter vectors to  
$FFFC and $FFFD ($FEFC and $FEFD in monitor mode).  
The following events can cause a break interrupt to occur:  
A CPU generated address (the address in the program counter) matches the contents of the break  
address registers.  
Software writes a 1 to the BRKA bit in the break status and control register.  
When a CPU generated address matches the contents of the break address registers, the break interrupt  
is generated. A return-from-interrupt instruction (RTI) in the break routine ends the break interrupt and  
returns the microcontroller unit (MCU) to normal operation.  
Figure 17-2 shows the structure of the break module.  
When the internal address bus matches the value written in the break address registers or when software  
writes a 1 to the BRKA bit in the break status and control register, the CPU starts a break interrupt by:  
Loading the instruction register with the SWI instruction  
Loading the program counter with $FFFC and $FFFD ($FEFC and $FEFD in monitor mode)  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
191  
Development Support  
PTA0/TCH0/AD0/KBI0  
PTA1/TCH1/AD1/KBI1  
PTA2/IRQ/KBI2/TCLK  
PTA3/RST/KBI3  
CLOCK  
GENERATOR  
KEYBOARD INTERRUPT  
MODULE  
PTA4/OSC2/AD2/KBI4  
PTA5/OSC1/AD3/KBI5  
M68HC08 CPU  
SINGLE INTERRUPT  
MODULE  
PTB0/SPSCK/AD4  
PTB1/MOSI/AD5  
PTB2/MISO/AD6  
PTB3/SS/AD7  
PTB4/RxD/AD8  
PTB5/TxD/AD9  
PTB6/TCH2  
AUTO WAKEUP  
MODULE  
LOW-VOLTAGE  
INHIBIT  
PTB7/TCH3  
4-CHANNEL 16-BIT  
TIMER MODULE  
COP  
MODULE  
MC68HC908QB8  
MC68HC908QB8  
8192 BYTES  
256 BYTES  
10-CHANNEL  
10-BIT ADC  
USER RAM  
USER FLASH  
ENHANCED SERIAL  
COMMUNICATIONS  
INTERFACE MODULE  
VDD  
VSS  
POWER SUPPLY  
SERIAL PERIPHERAL  
INTERFACE  
DEVELOPMENT SUPPORT  
MONITOR ROM  
BREAK MODULE  
RST, IRQ: Pins have internal pull up device  
All port pins have programmable pull up device  
PTA[0:5]: Higher current sink and source capability  
Figure 17-1. Block Diagram Highlighting BRK and MON Blocks  
MC68HC908QB8 Data Sheet, Rev. 3  
192  
Freescale Semiconductor  
Break Module (BRK)  
ADDRESS BUS[15:8]  
BREAK ADDRESS REGISTER HIGH  
8-BIT COMPARATOR  
ADDRESS BUS[15:0]  
CONTROL  
BKPT  
(TO SIM)  
8-BIT COMPARATOR  
BREAK ADDRESS REGISTER LOW  
ADDRESS BUS[7:0]  
Figure 17-2. Break Module Block Diagram  
The break interrupt timing is:  
When a break address is placed at the address of the instruction opcode, the instruction is not  
executed until after completion of the break interrupt routine.  
When a break address is placed at an address of an instruction operand, the instruction is executed  
before the break interrupt.  
When software writes a 1 to the BRKA bit, the break interrupt occurs just before the next instruction  
is executed.  
By updating a break address and clearing the BRKA bit in a break interrupt routine, a break interrupt can  
be generated continuously.  
CAUTION  
A break address should be placed at the address of the instruction opcode.  
When software does not change the break address and clears the BRKA  
bit in the first break interrupt routine, the next break interrupt will not be  
generated after exiting the interrupt routine even when the internal address  
bus matches the value written in the break address registers.  
17.2.1.1 Flag Protection During Break Interrupts  
The system integration module (SIM) controls whether or not module status bits can be cleared during  
the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear status  
bits during the break state. See 14.8.2 Break Flag Control Register and the Break Interrupts subsection  
for each module.  
17.2.1.2 TIM During Break Interrupts  
A break interrupt stops the timer counter.  
17.2.1.3 COP During Break Interrupts  
The COP is disabled during a break interrupt in monitor mode when the BDCOP bit is set in the break  
auxiliary register (BRKAR).  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
193  
Development Support  
17.2.2 Break Module Registers  
These registers control and monitor operation of the break module:  
Break status and control register (BRKSCR)  
Break address register high (BRKH)  
Break address register low (BRKL)  
Break status register (BSR)  
Break flag control register (BFCR)  
17.2.2.1 Break Status and Control Register  
The break status and control register (BRKSCR) contains break module enable and status bits.  
Bit 7  
BRKE  
0
6
BRKA  
0
5
0
4
0
3
0
2
0
1
0
Bit 0  
0
Read:  
Write:  
Reset:  
0
0
0
0
0
0
= Unimplemented  
Figure 17-3. Break Status and Control Register (BRKSCR)  
BRKE — Break Enable Bit  
This read/write bit enables breaks on break address register matches. Clear BRKE by writing a 0 to  
bit 7. Reset clears the BRKE bit.  
1 = Breaks enabled on 16-bit address match  
0 = Breaks disabled  
BRKA — Break Active Bit  
This read/write status and control bit is set when a break address match occurs. Writing a 1 to BRKA  
generates a break interrupt. Clear BRKA by writing a 0 to it before exiting the break routine. Reset  
clears the BRKA bit.  
1 = Break address match  
0 = No break address match  
17.2.2.2 Break Address Registers  
The break address registers (BRKH and BRKL) contain the high and low bytes of the desired breakpoint  
address. Reset clears the break address registers.  
Bit 7  
Bit 15  
0
6
Bit 14  
0
5
Bit 13  
0
4
Bit 12  
0
3
Bit 11  
0
2
Bit 10  
0
1
Bit 9  
0
Bit 0  
Bit 8  
0
Read:  
Write:  
Reset:  
Figure 17-4. Break Address Register High (BRKH)  
Bit 7  
Bit 7  
0
6
Bit 6  
0
5
Bit 5  
0
4
Bit 4  
0
3
Bit 3  
0
2
Bit 2  
0
1
Bit 1  
0
Bit 0  
Bit 0  
0
Read:  
Write:  
Reset:  
Figure 17-5. Break Address Register Low (BRKL)  
MC68HC908QB8 Data Sheet, Rev. 3  
194  
Freescale Semiconductor  
Break Module (BRK)  
17.2.2.3 Break Auxiliary Register  
The break auxiliary register (BRKAR) contains a bit that enables software to disable the COP while the  
MCU is in a state of break interrupt with monitor mode.  
Bit 7  
0
6
0
5
0
4
0
3
0
2
0
1
0
Bit 0  
BDCOP  
0
Read:  
Write:  
Reset:  
0
0
0
0
0
0
0
= Unimplemented  
Figure 17-6. Break Auxiliary Register (BRKAR)  
BDCOP — Break Disable COP Bit  
This read/write bit disables the COP during a break interrupt. Reset clears the BDCOP bit.  
1 = COP disabled during break interrupt  
0 = COP enabled during break interrupt  
17.2.2.4 Break Status Register  
The break status register (BSR) contains a flag to indicate that a break caused an exit from wait mode.  
This register is only used in emulation mode.  
Bit 7  
R
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
SBSW  
Note(1)  
0
R
R
R
R
R
R
= Reserved  
1. Writing a 0 clears SBSW.  
Figure 17-7. Break Status Register (BSR)  
SBSW — SIM Break Stop/Wait  
SBSW can be read within the break state SWI routine. The user can modify the return address on the  
stack by subtracting one from it.  
1 = Wait mode was exited by break interrupt  
0 = Wait mode was not exited by break interrupt  
17.2.2.5 Break Flag Control Register  
The break control register (BFCR) contains a bit that enables software to clear status bits while the MCU  
is in a break state.  
Bit 7  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
BCFE  
R
R
R
R
R
R
0
= Reserved  
R
Figure 17-8. Break Flag Control Register (BFCR)  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
195  
Development Support  
BCFE — Break Clear Flag Enable Bit  
This read/write bit enables software to clear status bits by accessing status registers while the MCU is  
in a break state. To clear status bits during the break state, the BCFE bit must be set.  
1 = Status bits clearable during break  
0 = Status bits not clearable during break  
17.2.3 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption standby modes. If enabled, the  
break module will remain enabled in wait and stop modes. However, since the internal address bus does  
not increment in these modes, a break interrupt will never be triggered.  
17.3 Monitor Module (MON)  
The monitor module allows debugging and programming of the microcontroller unit (MCU) through a  
single-wire interface with a host computer. Monitor mode entry can be achieved without use of the higher  
test voltage, VTST, as long as vector addresses $FFFE and $FFFF are blank, thus reducing the hardware  
requirements for in-circuit programming.  
Features include:  
Normal user-mode pin functionality  
One pin dedicated to serial communication between MCU and host computer  
Standard non-return-to-zero (NRZ) communication with host computer  
Standard communication baud rate (7200 @ 2-MHz bus frequency)  
Execution of code in random-access memory (RAM) or FLASH  
FLASH memory security feature(1)  
FLASH memory programming interface  
Use of external 9.8304 MHz oscillator to generate internal frequency of 2.4576 MHz  
Simple internal oscillator mode of operation (no external clock or high voltage)  
Monitor mode entry without high voltage, VTST, if reset vector is blank ($FFFE and $FFFF contain  
$FF)  
Normal monitor mode entry if VTST is applied to IRQ  
17.3.1 Functional Description  
Figure 17-9 shows a simplified diagram of monitor mode entry.  
The monitor module receives and executes commands from a host computer. Figure 17-10, Figure 17-11,  
and Figure 17-12 show example circuits used to enter monitor mode and communicate with a host  
computer via a standard RS-232 interface.  
Simple monitor commands can access any memory address. In monitor mode, the MCU can execute  
code downloaded into RAM by a host computer while most MCU pins retain normal operating mode  
functions. All communication between the host computer and the MCU is through the PTA0 pin. A  
level-shifting and multiplexing interface is required between PTA0 and the host computer. PTA0 is used  
in a wired-OR configuration and requires a pullup resistor.  
1. No security feature is absolutely secure. However, Freescale’s strategy is to make reading or copying the FLASH difficult for  
unauthorized users.  
MC68HC908QB8 Data Sheet, Rev. 3  
196  
Freescale Semiconductor  
Monitor Module (MON)  
POR RESET  
YES  
NO  
IRQ = VTST  
?
CONDITIONS  
FROM Table 17-1  
PTA0 = 1,  
PTA1 = 1, AND  
PTA4 = 0?  
PTA0 = 1,  
RESET VECTOR  
BLANK?  
NO  
NO  
YES  
YES  
FORCED  
MONITOR MODE  
NORMAL  
USER MODE  
NORMAL  
MONITOR MODE  
INVALID  
USER MODE  
HOST SENDS  
8 SECURITY BYTES  
YES  
IS RESET  
POR?  
NO  
ARE ALL  
SECURITY BYTES  
CORRECT?  
YES  
NO  
ENABLE FLASH  
DISABLE FLASH  
MONITOR MODE ENTRY  
DEBUGGING  
AND FLASH  
EXECUTE  
PROGRAMMING  
(IF FLASH  
MONITOR CODE  
IS ENABLED)  
NO  
YES  
DOES RESET  
OCCUR?  
Figure 17-9. Simplified Monitor Mode Entry Flowchart  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
197  
Development Support  
VDD  
VDD  
10 kΩ*  
VDD  
RST (PTA3)  
0.1 μF  
9.8304 MHz CLOCK  
VTST  
MAX232  
VDD  
OSC1 (PTA5)  
1
16  
15  
2
C1+  
+
+
+
VDD  
1 μF  
1 μF  
3
4
C1–  
C2+  
1 μF  
+
1 kΩ  
10 kΩ*  
10 kΩ*  
PTA1  
V+  
V–  
IRQ (PTA2)  
VDD  
1 μF  
6
5
9.1 V  
C2–  
1 μF  
10 kΩ  
+
PTA4  
VSS  
74HC125  
6
DB9  
5
10  
9
2
7
8
PTA0  
74HC125  
3
2
4
3
5
1
* Value not critical  
Figure 17-10. Monitor Mode Circuit (External Clock, with High Voltage)  
VDD  
N.C.  
RST (PTA3)  
VDD  
0.1 μF  
MAX232  
VDD  
1
16  
15  
2
9.8304 MHz CLOCK  
C1+  
OSC1 (PTA5)  
+
+
1 μF  
1 μF  
3
4
1 μF  
C1–  
C2+  
+
PTA1  
N.C.  
N.C.  
10 kΩ*  
V+  
V–  
VDD  
+
IRQ (PTA2)  
PTA0  
1 μF  
6
PTA4  
5
C2–  
1 μF  
10 kΩ  
+
74HC125  
DB9  
5
10  
9
6
2
7
8
74HC125  
3
4
3
5
2
VSS  
1
* Value not critical  
Figure 17-11. Monitor Mode Circuit (External Clock, No High Voltage)  
MC68HC908QB8 Data Sheet, Rev. 3  
198  
Freescale Semiconductor  
 
Monitor Module (MON)  
VDD  
N.C.  
N.C.  
RST (PTA3)  
VDD  
0.1 μF  
MAX232  
VDD  
OSC1 (PTA5)  
IRQ (PTA2)  
1
16  
15  
2
C1+  
+
+
+
1 μF  
1 μF  
PTA1  
PTA4  
N.C.  
N.C.  
3
4
1 μF  
C1–  
C2+  
+
10 kΩ*  
V+  
V–  
VDD  
1 μF  
6
5
C2–  
1 μF  
10 kΩ  
+
74HC125  
DB9  
5
10  
9
2
7
8
6
PTA0  
VSS  
74HC125  
3
2
4
3
5
1
* Value not critical  
Figure 17-12. Monitor Mode Circuit (Internal Clock, No High Voltage)  
The monitor code has been updated from previous versions of the monitor code to allow enabling the  
internal oscillator to generate the internal clock. This addition, which is enabled when IRQ is held low out  
of reset, is intended to support serial communication/programming at 9600 baud in monitor mode by using  
the internal oscillator, and the internal oscillator user trim value OSCTRIM (FLASH location $FFC0, if  
programmed) to generate the desired internal frequency (3.2 MHz). Since this feature is enabled only  
when IRQ is held low out of reset, it cannot be used when the reset vector is programmed (i.e., the value  
is not $FFFF) because entry into monitor mode in this case requires VTST on IRQ. The IRQ pin must  
remain low during this monitor session in order to maintain communication.  
Table 17-1 shows the pin conditions for entering monitor mode. As specified in the table, monitor mode  
may be entered after a power-on reset (POR) and will allow communication at 9600 baud provided one  
of the following sets of conditions is met:  
If $FFFE and $FFFF do not contain $FF (programmed state):  
The external clock is 9.8304 MHz  
IRQ = VTST  
If $FFFE and $FFFF contain $FF (erased state):  
The external clock is 9.8304 MHz  
IRQ = VDD (this can be implemented through the internal IRQ pullup)  
If $FFFE and $FFFF contain $FF (erased state):  
IRQ = VSS (internal oscillator is selected, no external clock required)  
The rising edge of the internal RST signal latches the monitor mode. Once monitor mode is latched, the  
values on PTA1 and PTA4 pins can be changed.  
Once out of reset, the MCU waits for the host to send eight security bytes (see 17.3.2 Security). After the  
security bytes, the MCU sends a break signal (10 consecutive 0s) to the host, indicating that it is ready to  
receive a command.  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
199  
 
Development Support  
Table 17-1. Monitor Mode Signal Requirements and Options  
Serial  
Communi-  
cation  
Mode  
Selection  
Communication  
Speed  
IRQ  
RST  
Reset  
Mode  
COP  
Comments  
(PTA2) (PTA3) Vector  
External  
Clock Frequency Rate  
Bus  
Baud  
PTA0  
PTA1 PTA4  
Normal  
Monitor  
9.8304  
MHz  
2.4576  
MHz  
Provide external  
clock at OSC1.  
VTST  
VDD  
X
1
1
0
Disabled  
9600  
$FFFF  
(blank)  
9.8304  
MHz  
2.4576  
MHz  
Provide external  
clock at OSC1.  
VDD  
VSS  
X
X
X
X
1
1
X
X
X
X
X
X
X
Disabled  
Disabled  
Enabled  
9600  
9600  
X
Forced  
Monitor  
$FFFF  
(blank)  
3.2 MHz  
(Trimmed)  
Internal clock is  
active.  
X
X
Not  
$FFFF  
User  
X
MON08  
Function  
[Pin No.]  
VTST  
[6]  
RST  
[4]  
COM  
[8]  
MOD0 MOD1  
[12] [10]  
OSC1  
[13]  
1. PTA0 must have a pullup resistor to VDD in monitor mode.  
2. Communication speed in the table is an example to obtain a baud rate of 9600. Baud rate using external oscillator is bus  
frequency / 256 and baud rate using internal oscillator is bus frequency / 335.  
3. External clock is a 9.8304 MHz oscillator on OSC1.  
4. Lowering VTST once monitor mode is entered allows the clock source to be controlled by the OSCSC register.  
5. X = don’t care  
6. MON08 pin refers to P&E Microcomputer Systems’ MON08-Cyclone 2 by 8-pin connector.  
NC  
NC  
NC  
NC  
NC  
1
3
5
7
9
2
4
GND  
RST  
IRQ  
6
8
PTA0  
PTA4  
PTA1  
NC  
10  
12  
14  
16  
NC 11  
OSC1 13  
VDD  
15  
NC  
17.3.1.1 Normal Monitor Mode  
RST and OSC1 functions will be active on the PTA3 and PTA5 pins respectively as long as VTST is  
applied to the IRQ pin. If the IRQ pin is lowered (no longer VTST) then the chip will still be operating in  
monitor mode, but the pin functions will be determined by the settings in the configuration registers (see  
Chapter 5 Configuration Register (CONFIG)) when VTST was lowered. With VTST lowered, the BIH and  
BIL instructions will read the IRQ pin state only if IRQEN is set in the CONFIG2 register.  
If monitor mode was entered with VTST on IRQ, then the COP is disabled as long as VTST is applied to  
IRQ.  
MC68HC908QB8 Data Sheet, Rev. 3  
200  
Freescale Semiconductor  
 
Monitor Module (MON)  
17.3.1.2 Forced Monitor Mode  
If entering monitor mode without high voltage on IRQ, then startup port pin requirements and conditions,  
(PTA1/PTA4) are not in effect. This is to reduce circuit requirements when performing in-circuit  
programming.  
NOTE  
If the reset vector is blank and monitor mode is entered, the chip will see an  
additional reset cycle after the initial power-on reset (POR). Once the reset  
vector has been programmed, the traditional method of applying a voltage,  
VTST, to IRQ must be used to enter monitor mode.  
If monitor mode was entered as a result of the reset vector being blank, the COP is always disabled  
regardless of the state of IRQ.  
If the voltage applied to the IRQ is less than VTST, the MCU will come out of reset in user mode. Internal  
circuitry monitors the reset vector fetches and will assert an internal reset if it detects that the reset vectors  
are erased ($FF). When the MCU comes out of reset, it is forced into monitor mode without requiring high  
voltage on the IRQ pin. Once out of reset, the monitor code is initially executing with the internal clock at  
its default frequency.  
If IRQ is held high, all pins will default to regular input port functions except for PTA0 and PTA5 which will  
operate as a serial communication port and OSC1 input respectively (refer to Figure 17-11). That will  
allow the clock to be driven from an external source through OSC1 pin.  
If IRQ is held low, all pins will default to regular input port function except for PTA0 which will operate as  
serial communication port. Refer to Figure 17-12.  
Regardless of the state of the IRQ pin, it will not function as a port input pin in monitor mode. Bit 2 of the  
Port A data register will always read 0. The BIH and BIL instructions will behave as if the IRQ pin is  
enabled, regardless of the settings in the configuration register. See Chapter 5 Configuration Register  
(CONFIG).  
The COP module is disabled in forced monitor mode. Any reset other than a power-on reset (POR) will  
automatically force the MCU to come back to the forced monitor mode.  
17.3.1.3 Monitor Vectors  
In monitor mode, the MCU uses different vectors for reset, SWI (software interrupt), and break interrupt  
than those for user mode. The alternate vectors are in the $FE page instead of the $FF page and allow  
code execution from the internal monitor firmware instead of user code.  
NOTE  
Exiting monitor mode after it has been initiated by having a blank reset  
vector requires a power-on reset (POR). Pulling RST (when RST pin  
available) low will not exit monitor mode in this situation.  
Table 17-2 summarizes the differences between user mode and monitor mode regarding vectors.  
Table 17-2. Mode Difference  
Functions  
Modes  
Reset  
Reset  
Break  
Break  
SWI  
SWI  
Vector High  
Vector Low Vector High Vector Low Vector High Vector Low  
User  
$FFFE  
$FEFE  
$FFFF  
$FEFF  
$FFFC  
$FEFC  
$FFFD  
$FEFD  
$FFFC  
$FEFC  
$FFFD  
$FEFD  
Monitor  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
201  
 
Development Support  
17.3.1.4 Data Format  
Communication with the monitor ROM is in standard non-return-to-zero (NRZ) mark/space data format.  
Transmit and receive baud rates must be identical.  
NEXT  
START  
BIT  
START  
BIT  
BIT 6  
STOP  
BIT  
BIT 0  
BIT 1  
BIT 2  
BIT 3  
BIT 4  
BIT 5  
BIT 7  
Figure 17-13. Monitor Data Format  
17.3.1.5 Break Signal  
A start bit (logic 0) followed by nine logic 0 bits is a break signal. When the monitor receives a break signal,  
it drives the PTA0 pin high for the duration of two bits and then echoes back the break signal.  
MISSING STOP BIT  
2-STOP BIT DELAY BEFORE ZERO ECHO  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
Figure 17-14. Break Transaction  
17.3.1.6 Baud Rate  
The monitor communication baud rate is controlled by the frequency of the external or internal oscillator  
and the state of the appropriate pins as shown in Table 17-1.  
Table 17-1 also lists the bus frequencies to achieve standard baud rates. The effective baud rate is the  
bus frequency divided by 256 when using an external oscillator. When using the internal oscillator in  
forced monitor mode, the effective baud rate is the bus frequency divided by 335.  
17.3.1.7 Commands  
The monitor ROM firmware uses these commands:  
READ (read memory)  
WRITE (write memory)  
IREAD (indexed read)  
IWRITE (indexed write)  
READSP (read stack pointer)  
RUN (run user program)  
The monitor ROM firmware echoes each received byte back to the PTA0 pin for error checking. An 11-bit  
delay at the end of each command allows the host to send a break character to cancel the command. A  
delay of two bit times occurs before each echo and before READ, IREAD, or READSP data is returned.  
The data returned by a read command appears after the echo of the last byte of the command.  
NOTE  
Wait one bit time after each echo before sending the next byte.  
MC68HC908QB8 Data Sheet, Rev. 3  
202  
Freescale Semiconductor  
Monitor Module (MON)  
FROM  
HOST  
ADDRESS  
HIGH  
ADDRESS  
HIGH  
ADDRESS  
LOW  
ADDRESS  
LOW  
READ  
READ  
DATA  
4
4
1
1
4
1
3, 2  
4
ECHO  
RETURN  
Notes:  
1 = Echo delay, approximately 2 bit times  
2 = Data return delay, approximately 2 bit times  
3 = Cancel command delay, 11 bit times  
4 = Wait 1 bit time before sending next byte.  
Figure 17-15. Read Transaction  
FROM  
HOST  
ADDRESS  
HIGH  
ADDRESS  
HIGH  
ADDRESS  
LOW  
ADDRESS  
LOW  
DATA  
DATA  
WRITE  
WRITE  
3
3
1
1
3
1
3
1
2, 3  
ECHO  
Notes:  
1 = Echo delay, approximately 2 bit times  
2 = Cancel command delay, 11 bit times  
3 = Wait 1 bit time before sending next byte.  
Figure 17-16. Write Transaction  
A brief description of each monitor mode command is given in Table 17-3 through Table 17-8.  
Table 17-3. READ (Read Memory) Command  
Description Read byte from memory  
Operand 2-byte address in high-byte:low-byte order  
Data Returned Returns contents of specified address  
Opcode $4A  
Command Sequence  
SENT TO MONITOR  
ADDRESS ADDRESS ADDRESS  
HIGH HIGH LOW  
ADDRESS  
LOW  
READ  
READ  
DATA  
ECHO  
RETURN  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
203  
 
Development Support  
Table 17-4. WRITE (Write Memory) Command  
Description Write byte to memory  
Operand 2-byte address in high-byte:low-byte order; low byte followed by data byte  
Data Returned None  
Opcode $49  
Command Sequence  
FROM HOST  
ADDRESS ADDRESS ADDRESS ADDRESS  
DATA  
DATA  
WRITE  
WRITE  
HIGH  
HIGH  
LOW  
LOW  
ECHO  
Table 17-5. IREAD (Indexed Read) Command  
Description Read next 2 bytes in memory from last address accessed  
Operand None  
Data Returned Returns contents of next two addresses  
Opcode $1A  
Command Sequence  
FROM HOST  
IREAD  
IREAD  
DATA  
DATA  
ECHO  
RETURN  
Table 17-6. IWRITE (Indexed Write) Command  
Description Write to last address accessed + 1  
Operand Single data byte  
Data Returned None  
Opcode $19  
Command Sequence  
FROM HOST  
DATA  
DATA  
IWRITE  
ECHO  
IWRITE  
A sequence of IREAD or IWRITE commands can access a block of memory sequentially over the full  
64-Kbyte memory map.  
MC68HC908QB8 Data Sheet, Rev. 3  
204  
Freescale Semiconductor  
Monitor Module (MON)  
Table 17-7. READSP (Read Stack Pointer) Command  
Description Reads stack pointer  
Operand None  
Returns incremented stack pointer value (SP + 1) in high-byte:low-byte  
order  
Data Returned  
Opcode $0C  
Command Sequence  
FROM HOST  
SP  
HIGH  
SP  
LOW  
READSP  
ECHO  
READSP  
RETURN  
Table 17-8. RUN (Run User Program) Command  
Description Executes PULH and RTI instructions  
Operand None  
Data Returned None  
Opcode $28  
Command Sequence  
FROM HOST  
RUN  
ECHO  
RUN  
The MCU executes the SWI and PSHH instructions when it enters monitor mode. The RUN command  
tells the MCU to execute the PULH and RTI instructions. Before sending the RUN command, the host can  
modify the stacked CPU registers to prepare to run the host program. The READSP command returns  
the incremented stack pointer value, SP + 1. The high and low bytes of the program counter are at  
addresses SP + 5 and SP + 6.  
SP  
HIGH BYTE OF INDEX REGISTER  
CONDITION CODE REGISTER  
ACCUMULATOR  
SP + 1  
SP + 2  
SP + 3  
SP + 4  
SP + 5  
SP + 6  
SP + 7  
LOW BYTE OF INDEX REGISTER  
HIGH BYTE OF PROGRAM COUNTER  
LOW BYTE OF PROGRAM COUNTER  
Figure 17-17. Stack Pointer at Monitor Mode Entry  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
205  
Development Support  
17.3.2 Security  
A security feature discourages unauthorized reading of FLASH locations while in monitor mode. The host  
can bypass the security feature at monitor mode entry by sending eight security bytes that match the  
bytes at locations $FFF6–$FFFD. Locations $FFF6–$FFFD contain user-defined data.  
NOTE  
Do not leave locations $FFF6–$FFFD blank. For security reasons, program  
locations $FFF6–$FFFD even if they are not used for vectors.  
During monitor mode entry, the MCU waits after the power-on reset for the host to send the eight security  
bytes on pin PTA0. If the received bytes match those at locations $FFF6–$FFFD, the host bypasses the  
security feature and can read all FLASH locations and execute code from FLASH. Security remains  
bypassed until a power-on reset occurs. If the reset was not a power-on reset, security remains bypassed  
and security code entry is not required. See Figure 17-18.  
Upon power-on reset, if the received bytes of the security code do not match the data at locations  
$FFF6–$FFFD, the host fails to bypass the security feature. The MCU remains in monitor mode, but  
reading a FLASH location returns an invalid value and trying to execute code from FLASH causes an  
illegal address reset. After receiving the eight security bytes from the host, the MCU transmits a break  
character, signifying that it is ready to receive a command.  
NOTE  
The MCU does not transmit a break character until after the host sends the  
eight security bytes.  
VDD  
4096 + 32 BUSCLKX4 CYCLES  
RST  
FROM HOST  
PA0  
1
4
3
1
2
3
1
1
FROM MCU  
Notes:  
1 = Echo delay, approximately 2 bit times  
2 = Data return delay, approximately 2 bit times  
3 = Wait 1 bit time before sending next byte  
4 = Wait until clock is stable and monitor runs  
Figure 17-18. Monitor Mode Entry Timing  
To determine whether the security code entered is correct, check to see if bit 6 of RAM address $80 is  
set. If it is, then the correct security code has been entered and FLASH can be accessed.  
If the security sequence fails, the device should be reset by a power-on reset and brought up in monitor  
mode to attempt another entry. After failing the security sequence, the FLASH module can also be mass  
erased by executing an erase routine that was downloaded into internal RAM. The mass erase operation  
clears the security code locations so that all eight security bytes become $FF (blank).  
MC68HC908QB8 Data Sheet, Rev. 3  
206  
Freescale Semiconductor  
 
Chapter 18  
Electrical Specifications  
18.1 Introduction  
This section contains electrical and timing specifications.  
18.2 Absolute Maximum Ratings  
Maximum ratings are the extreme limits to which the microcontroller unit (MCU) can be exposed without  
permanently damaging it.  
NOTE  
This device is not guaranteed to operate properly at the maximum ratings.  
Refer to 18.5 5-V DC Electrical Characteristics and 18.8 3-V DC Electrical  
Characteristics for guaranteed operating conditions.  
Characteristic(1)  
Symbol  
VDD  
Value  
Unit  
V
Supply voltage  
Input voltage  
–0.3 to +6.0  
VIN  
VSS –0.3 to VDD +0.3  
VSS –0.3 to +9.1  
V
Mode entry voltage, IRQ pin  
VTST  
V
Maximum current per pin excluding  
PTA0–PTA5, VDD, and VSS  
I
15  
mA  
Maximum current for pins PTA0–PTA5  
Storage temperature  
IPTA0— PTA5  
I
±25  
–55 to +150  
100  
mA  
°C  
TSTG  
IMVSS  
IMVDD  
Maximum current out of VSS  
Maximum current into VDD  
mA  
mA  
100  
1. Voltages references to VSS  
.
NOTE  
This device contains circuitry to protect the inputs against damage due to  
high static voltages or electric fields; however, it is advised that normal  
precautions be taken to avoid application of any voltage higher than  
maximum-rated voltages to this high-impedance circuit. For proper  
operation, it is recommended that VIN and VOUT be constrained to the  
range VSS (VIN or VOUT) VDD. Reliability of operation is enhanced if  
unused inputs are connected to an appropriate logic voltage level (for  
example, either VSS or VDD.)  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
207  
Electrical Specifications  
18.3 Functional Operating Range  
Temperature  
Code  
Characteristic  
Symbol  
Value  
Unit  
– 40 to +125  
– 40 to +105  
40 to +85  
M
V
C
TA  
Operating temperature range  
Operating voltage range  
°C  
(TL to TH)  
VDD  
2.7 to 5.5  
V
18.4 Thermal Characteristics  
Characteristic  
Symbol  
Value  
Unit  
Thermal resistance  
16-pin PDIP  
16-pin SOIC  
76  
90  
θJA  
°C/W  
16-pin TSSOP  
133  
I/O pin power dissipation  
Power dissipation(1)  
PI/O  
PD  
User determined  
W
W
PD = (IDD x VDD  
)
+ PI/O = K/(TJ + 273°C)  
PD x (TA + 273°C)  
+ PD2 x θJA  
Constant(2)  
K
W/°C  
Average junction temperature  
TJ  
TA + (PD x θJA)  
°C  
°C  
Maximum junction temperature  
TJM  
150  
1. Power dissipation is a function of temperature.  
2. K constant unique to the device. K can be determined for a known TA and measured PD. With this value of K, PD and TJ  
can be determined for any value of TA.  
MC68HC908QB8 Data Sheet, Rev. 3  
208  
Freescale Semiconductor  
5-V DC Electrical Characteristics  
18.5 5-V DC Electrical Characteristics  
Characteristic(1)  
Typ(2)  
Symbol  
Min  
Max  
Unit  
V
Output high voltage  
I
Load = –2.0 mA, all I/O pins  
ILoad = –10.0 mA, all I/O pins  
Load = –15.0 mA, PTA0, PTA1, PTA3–PTA5 only  
VDD–0.4  
VDD–1.5  
DD–0.8  
VOH  
I
V
Maximum combined IOH (all I/O pins)  
IOHT  
50  
mA  
V
Output low voltage  
ILoad = 1.6 mA, all I/O pins  
ILoad = 10.0 mA, all I/O pins  
ILoad = 15.0 mA, PTA0, PTA1, PTA3–PTA5 only  
0.4  
1.5  
0.8  
VOL  
Maximum combined IOL (all I/O pins)  
IOHL  
VIH  
50  
mA  
V
Input high voltage  
PTA0–PTA5, PTB0–PTB7  
0.7 x VDD  
VSS  
VDD  
Input low voltage  
PTA0–PTA5, PTB0–PTB7  
VIL  
0.3 x VDD  
V
Input hysteresis(3)  
VHYS  
IINJ  
IINJTOT  
IIL  
0.06 x VDD  
+2  
V
DC injection current, all ports(4)  
Total dc current injection (sum of all I/O)(4)  
Ports Hi-Z leakage current  
–2  
–25  
–1  
mA  
mA  
μA  
+25  
+1  
±0.1  
Capacitance  
CIN  
8
pF  
Ports (as input)(3)  
POR rearm voltage  
VPOR  
RPOR  
VTST  
750  
0.035  
mV  
V/ms  
V
POR rise time ramp rate(3)(5)  
Monitor mode entry voltage (3)  
VDD + 2.5  
9.1  
Pullup resistors(6)  
PTA0–PTA5, PTB0–PTB7  
RPU  
RPD  
16  
16  
26  
26  
36  
36  
kΩ  
kΩ  
Pulldown resistors(7)  
PTA0–PTA5  
Low-voltage inhibit reset, trip falling voltage  
Low-voltage inhibit reset, trip rising voltage  
Low-voltage inhibit reset/recover hysteresis  
VTRIPF  
VTRIPR  
VHYS  
3.90  
4.00  
4.20  
4.30  
100  
4.50  
4.60  
V
V
mV  
1. VDD = 4.5 to 5.5 Vdc, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted.  
2. Typical values reflect average measurements at midpoint of voltage range, 25•C only. Typical values are for reference only  
and are not tested in production.  
3. Values are based on characterization results, not tested in production.  
4. Guaranteed by design, not tested in production.  
5. If minimum VDD is not reached before the internal POR reset is released, the LVI will hold the part in reset until minimum  
VDD is reached.  
6. RPU is measured at VDD = 5.0 V.  
7. RPD is measured at VDD = 5.0 V, Pulldown resistors only available when KBIx is enabled with KBIxPOL =1.  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
209  
 
Electrical Specifications  
18.6 Typical 5-V Output Drive Characteristics  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
5V PTA  
5V PTB  
0
-5  
-10  
-15  
-20  
-25  
-30  
IOH (mA)  
Figure 18-1. Typical 5-Volt Output High Voltage  
versus Output High Current (25°C)  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
5V PTA  
5V PTB  
0
5
10  
15  
20  
25  
30  
IOL (mA)  
Figure 18-2. Typical 5-Volt Output Low Voltage  
versus Output Low Current (25°C)  
MC68HC908QB8 Data Sheet, Rev. 3  
210  
Freescale Semiconductor  
5-V Control Timing  
18.7 5-V Control Timing  
Characteristic(1)  
Internal operating frequency  
Internal clock period (1/fOP  
Symbol  
Min  
Max  
Unit  
fOP  
8
MHz  
(fBUS  
)
)
tcyc  
125  
100  
ns  
ns  
RST input pulse width low(2)  
tRL  
IRQ interrupt pulse width low (edge-triggered)(2)  
IRQ interrupt pulse period(2)  
tILIH  
tILIL  
100  
ns  
Note(3)  
tcyc  
1. VDD = 4.5 to 5.5 Vdc, VSS = 0 Vdc, TA = TL to TH; timing shown with respect to 20% VDD and 70% VSS, unless otherwise  
noted.  
2. Values are based on characterization results, not tested in production.  
3. The minimum period is the number of cycles it takes to execute the interrupt service routine plus 1 tcyc  
.
tRL  
RST  
tILIL  
tILIH  
IRQ  
Figure 18-3. RST and IRQ Timing  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
211  
Electrical Specifications  
18.8 3-V DC Electrical Characteristics  
Characteristic(1)  
Typ(2)  
Symbol  
Min  
Max  
Unit  
V
Output high voltage  
ILoad = –0.6 mA, all I/O pins  
Load = –4.0 mA, all I/O pins  
ILoad = –10.0 mA, PTA0, PTA1, PTA3–PTA5 only  
Maximum combined IOH (all I/O pins)  
Output low voltage  
Load = 0.5 mA, all I/O pins  
ILoad = 6.0 mA, all I/O pins  
ILoad = 10.0 mA, PTA0, PTA1, PTA3–PTA5 only  
VDD–0.3  
VDD–1.0  
VDD–0.8  
VOH  
IOHT  
VOL  
I
50  
mA  
V
I
0.3  
1.0  
0.8  
Maximum combined IOL (all I/O pins)  
IOHL  
VIH  
50  
mA  
V
Input high voltage  
PTA0–PTA5, PTB0–PTB7  
0.7 x VDD  
VDD  
Input low voltage  
PTA0–PTA5, PTB0–PTB7  
VIL  
VSS  
0.3 x VDD  
V
Input hysteresis(3)  
VHYS  
IINJ  
IINJTOT  
IIL  
0.06 x VDD  
+2  
V
DC injection current, all ports(4)  
Total dc current injection (sum of all I/O)(4)  
Ports Hi-Z leakage current  
–2  
–25  
–1  
mA  
mA  
μA  
+25  
+1  
±0.1  
Capacitance  
CIN  
8
pF  
Ports (as input)(3)  
POR rearm voltage  
VPOR  
RPOR  
VTST  
750  
0.035  
mV  
V/ms  
V
POR rise time ramp rate(3)(5)  
Monitor mode entry voltage (3)  
VDD + 2.5  
VDD + 4.0  
Pullup resistors(6)  
PTA0–PTA5, PTB0–PTB7  
RPU  
RPD  
16  
16  
26  
26  
36  
36  
kΩ  
kΩ  
Pulldown resistors(7)  
PTA0–PTA5  
Low-voltage inhibit reset, trip falling voltage  
Low-voltage inhibit reset, trip rising voltage(6)  
Low-voltage inhibit reset/recover hysteresis  
VTRIPF  
VTRIPR  
VHYS  
2.40  
2.475  
2.55  
2.625  
75  
2.70  
2.775  
V
V
mV  
1. VDD = 2.7 to 3.3 Vdc, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted.  
2. Typical values reflect average measurements at midpoint of voltage range, 25•C only. Typical values are for reference only  
and are not tested in production.  
3. Values are based on characterization results, not tested in production.  
4. Guaranteed by design, not tested in production.  
5. If minimum VDD is not reached before the internal POR reset is released, the LVI will hold the part in reset until minimum  
VDD is reached.  
6. RPU is measured at VDD = 3.0 V  
7. RPD is measured at VDD = 3.0 V, Pulldown resistors only available when KBIx is enabled with KBIxPOL =1.  
MC68HC908QB8 Data Sheet, Rev. 3  
212  
Freescale Semiconductor  
Typical 3-V Output Drive Characteristics  
18.9 Typical 3-V Output Drive Characteristics  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
3V PTA  
3V PTB  
0
-5  
-10  
-15  
-20  
-25  
IOH (mA)  
Figure 18-4. Typical 3-Volt Output High Voltage  
versus Output High Current (25°C)  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
3V PTA  
3V PTB  
0
5
10  
15  
20  
25  
IOL (mA)  
Figure 18-5. Typical 3-Volt Output Low Voltage  
versus Output Low Current (25°C)  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
213  
Electrical Specifications  
18.10 3-V Control Timing  
Characteristic(1)  
Symbol  
fOP (fBus  
tcyc  
Min  
Max  
4
Unit  
MHz  
ns  
Internal operating frequency  
)
Internal clock period (1/fOP  
)
250  
RST input pulse width low(2)  
tRL  
200  
ns  
IRQ interrupt pulse width low (edge-triggered)(2)  
IRQ interrupt pulse period(2)  
tILIH  
200  
ns  
tILIL  
Note(3)  
tcyc  
1. VDD = 2.7 to 3.3 Vdc, VSS = 0 Vdc, TA = TL to TH; timing shown with respect to 20% VDD and 70% VDD, unless otherwise  
noted.  
2. Values are based on characterization results, not tested in production.  
3. The minimum period is the number of cycles it takes to execute the interrupt service routine plus 1 tcyc  
.
tRL  
RST  
tILIL  
tILIH  
IRQ  
Figure 18-6. RST and IRQ Timing  
MC68HC908QB8 Data Sheet, Rev. 3  
214  
Freescale Semiconductor  
Oscillator Characteristics  
18.11 Oscillator Characteristics  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Internal oscillator frequency(1)  
ICFS1:ICFS0 = 00  
ICFS1:ICFS0 = 01  
4
8
12.8  
fINTCLK  
MHz  
ICFS1:ICFS0 = 10 (not allowed if VDD <2.7V)  
Trim accuracy(2)(3)  
Deviation from trimmed Internal oscillator(3)(4)  
4, 8, 12.8MHz, VDD ± 10%, 0 to 70°C  
4, 8, 12.8MHz, VDD ± 10%, –40 to 125°C  
External RC oscillator frequency, RCCLK (1)(3)  
External clock reference frequencyy(1)(5)(6)  
VDD 4.5V  
VDD < 4.5V  
ΔTRIM_ACC  
ΔINT_TRIM  
fRCCLK  
± 0.4  
%
%
± 2  
± 5  
2
10  
MHz  
MHz  
fOSCXCLK  
dc  
dc  
32  
16  
RC oscillator external resistor(3)  
VDD = 5 V  
VDD = 3 V  
REXT  
See Figure 18-7  
See Figure 18-8  
Crystal frequency, XTALCLK(1)(7)(8)  
ECFS1:ECFS0 = 00 ( VDD 4.5 V)  
ECFS1:ECFS0 = 00  
ECFS1:ECFS0 = 01  
ECFS1:ECFS0 = 10  
8
8
1
32  
16  
8
MHz  
MHz  
MHz  
kHz  
fOSCXCLK  
30  
100  
ECFS1:ECFS0 = 00 (9)  
Feedback bias resistor  
Crystal load capacitance(10)  
Crystal capacitors(10)  
RB  
CL  
C1,C2  
1
20  
MΩ  
pF  
pF  
(2 x CL) – 5pF  
ECFS1:ECFS0 = 01(9)  
Crystal series damping resistor  
fOSCXCLK = 1 MHz  
fOSCXCLK = 4 MHz  
fOSCXCLK = 8 MHz  
Feedback bias resistor  
Crystal load capacitance(10)  
Crystal capacitors(10)  
RS  
20  
10  
0
5
18  
kΩ  
kΩ  
kΩ  
MΩ  
pF  
RB  
CL  
C1,C2  
(2 x CL) –10 pF  
pF  
AWU module internal RC oscillator frequency  
fINTRC  
32  
kHz  
1. Bus frequency, fOP, is oscillator frequency divided by 4.  
2. Factory trimmed to provided 12.8MHz accuracy requirement (± 5%, @25•C) for forced monitor mode communication. User  
should trim in-circuit to obtain the most accurate internal oscillator frequency for his application.  
3. Values are based on characterization results, not tested in production.  
4. Deviation values assumes trimming in target application @25•C and midpoint of voltage range, for example 5.0 V for 5 V  
± 10% operation.  
5. No more than 10% duty cycle deviation from 50%.  
6. When external oscillator clock is greater than 1MHz, ECFS1:ECFS0 must be 00 or 01  
7. Use fundamental mode only, do not use overtone crystals or overtone ceramic resonators  
8. Due to variations in electrical properties of external components such as, ESR and Load Capacitance, operation above  
16 MHz is not guaranteed for all crystals or ceramic resonators. Operation above 16 MHz requires that a Negative Resis-  
tance Margin (NRM) characterization and component optimization be performed by the crystal or ceramic resonator vendor  
for every different type of crystal or ceramic resonator which will be used. This characterization and optimization must be  
performed at the extremes of voltage and temperature which will be applied to the microcontroller in the application. The  
NRM must meet or exceed 10x the maximum ESR of the crystal or ceramic resonator for acceptable performance.  
9. Do not use damping resistor when ECFS1:ECFS0 = 00 or 10  
10. Consult crystal vendor data sheet.  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
215  
Electrical Specifications  
12  
10  
8
5V 25 oC  
6
4
2
0
0
10  
20  
30  
40  
50  
60  
Rext (k ohms)  
Figure 18-7. RC versus Frequency (5 Volts @ 25°C)  
12  
10  
8
3V 25 oC  
6
4
2
0
0
10  
20  
30  
ext (k ohms)  
40  
50  
60  
R
Figure 18-8. RC versus Frequency (3 Volts @ 25°C)  
MC68HC908QB8 Data Sheet, Rev. 3  
216  
Freescale Semiconductor  
Supply Current Characteristics  
18.12 Supply Current Characteristics  
Bus  
Frequency  
(MHz)  
Characteristic(1)  
Typ(2)  
Voltage  
Symbol  
Max  
Unit  
5.0  
3.0  
3.2  
3.2  
7.25  
3.1  
8.5  
3.8  
Run mode VDD supply current(3)  
Wait mode VDD supply current(4)  
RIDD  
WIDD  
mA  
mA  
5.0  
3.0  
3.2  
3.2  
1.0  
0.67  
2.0  
1.2  
Stop mode VDD supply current(5)  
–40 to 85°C  
–40 to 105°C  
0.26  
12  
125  
1.0  
2.0  
5.0  
5.0  
3.0  
μA  
μA  
–40 to 125°C  
25°C with auto wake-up enabled(6)  
Incremental current with LVI enabled  
SIDD  
Stop mode VDD supply current(4)  
–40 to 85°C  
–40 to 105°C  
0.23  
2
100  
0.8  
1.0  
4.0  
–40 to 125°C  
25°C with auto wake-up enabled(6)  
Incremental current with LVI enabled  
1. VSS = 0 Vdc, TA = TL to TH, unless otherwise noted.  
2. Typical values reflect average measurements, 25•C only. Typical values are for reference only and are not tested in pro-  
duction.  
3. Run (operating) IDD measured using trimmed internal oscillator, ADC off, all modules enabled. All pins configured as inputs  
and tied to 0.2 V from rail.  
4. Wait IDD measured using trimmed internal oscillator, ADC off, all modules enabled. All pins configured as inputs and tied  
to 0.2 V from rail.  
5. Stop IDD measured with all pins configured as inputs and tied to 0.2 V from rail.  
6. Values are based on characterization results, not tested in production.  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
217  
Electrical Specifications  
14  
13  
12  
11  
10  
9
Internal OSC (No A/D, ESCI, SPI)  
Internal OSC all Modules enabled  
Crystal (No A/D)  
8
Crystal All Modules Enabled  
External Reference No A/D  
7
6
5
External Reference All modules  
enabled  
4
3
2
1
0
0
1
2
3
4
5
6
7
8
9
BUS FREQUENCY (MHz)  
Figure 18-9. Typical 5-Volt Run Current  
versus Bus Frequency (25•C)  
4.5  
4
3.5  
3
Internal OSC (No A/D, ESCI, SPI)  
Internal OSC all Modules enabled  
Crystal (No A/D)  
2.5  
2
Crystal All Modules Enabled  
1.5  
1
0.5  
0
0
1
2
3
4
5
BUS FREQUENCY (MHz)  
Figure 18-10. Typical 3-Volt Run Current  
versus Bus Frequency (25•C)  
MC68HC908QB8 Data Sheet, Rev. 3  
218  
Freescale Semiconductor  
ADC10 Characteristics  
18.13 ADC10 Characteristics  
Typ(1)  
Characteristic  
Supply voltage  
Conditions  
Absolute  
Symbol  
Min  
2.7  
Max  
5.5  
Unit  
Comment  
VDD  
V
Supply Current  
ADLPC = 1  
ADLSMP = 1  
ADCO = 1  
VDD < 3.3 V (3.0 V Typ)  
55  
(2)  
IDD  
μA  
VDD < 5.5 V (5.0 V Typ)  
75  
Supply current  
ADLPC = 1  
ADLSMP = 0  
ADCO = 1  
V
DD < 3.3 V (3.0 V Typ)  
VDD < 5.5 V (5.0 V Typ)  
DD < 3.3 V (3.0 V Typ)  
120  
175  
140  
180  
340  
440  
(2)  
IDD  
μA  
μA  
Supply current  
ADLPC = 0  
ADLSMP = 1  
ADCO = 1  
V
(2)  
IDD  
VDD < 5.5 V (5.0 V Typ)  
VDD < 3.3 V (3.0 V Typ)  
Supply current  
ADLPC = 0  
ADLSMP = 0  
ADCO = 1  
(2)  
IDD  
μA  
VDD < 5.5 V (5.0 V Typ)  
615  
High speed (ADLPC = 0)  
0.40(3)  
0.40(3)  
19  
19  
39  
16  
36  
4
2.00  
1.00  
21  
ADC internal clock  
fADCK  
tADC  
tADC  
tADS  
MHz  
tADCK = 1/fADCK  
Low power (ADLPC = 1)  
Conversion time (4)  
10-bit Mode  
tADCK  
cycles  
Short sample (ADLSMP = 0)  
Long sample (ADLSMP = 1)  
Short sample (ADLSMP = 0)  
Long sample (ADLSMP = 1)  
Short sample (ADLSMP = 0)  
Long sample (ADLSMP = 1)  
39  
41  
Conversion time (4)  
8-bit Mode  
tADCK  
cycles  
16  
18  
36  
38  
4
4
tADCK  
cycles  
Sample time  
24  
24  
7
24  
Input voltage  
VADIN  
CADIN  
RADIN  
VSS  
VDD  
10  
V
Input capacitance  
Input impedance  
pF  
kΩ  
Not tested  
Not tested  
5
15  
External to  
MCU  
Analog source impedance  
Ideal resolution (1 LSB)  
RAS  
10  
kΩ  
10-bit mode  
8-bit mode  
10-bit mode  
8-bit mode  
10-bit mode  
8-bit mode  
1.758  
5
5.371  
21.48  
±2.5  
±1.0  
RES  
mV  
V
REFH/2N  
7.031  
20  
0
0
0
0
±1.5  
±0.7  
±0.5  
±0.3  
Includes  
quantization  
Total unadjusted error  
Differential non-linearity  
ETUE  
DNL  
LSB  
LSB  
Monotonicity and no-missing-codes guaranteed  
— Continued on next page  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
219  
Electrical Specifications  
Typ(1)  
±0.5  
±0.3  
±0.5  
±0.3  
±0.5  
±0.3  
Characteristic  
Conditions  
10-bit mode  
Symbol  
Min  
0
Max  
Unit  
Comment  
Integral non-linearity  
INL  
LSB  
8-bit mode  
10-bit mode  
8-bit mode  
10-bit mode  
8-bit mode  
10-bit mode  
8-bit mode  
10-bit mode  
8-bit mode  
0
0
Zero-scale error  
Full-scale error  
Quantization error  
EZS  
EFS  
EQ  
LSB  
LSB  
LSB  
VADIN = VSS  
0
0
VADIN = VDD  
0
0
±0.5  
±0.5  
±5  
8-bit mode is  
not truncated  
Pad leakage(5)  
* RAS  
±0.2  
±0.1  
1.245  
Input leakage error  
EIL  
LSB  
V
0
±1.2  
1.32  
Bandgap voltage (3)(6)  
VBG  
1.17  
1. Typical values assume VDD = 5.0 V, temperature = 25•C, fADCK = 1.0 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
2. Incremental IDD added to MCU mode current.  
3. Values are based on characterization results, not tested in production.  
4. Reference the ADC module specification for more information on calculating conversion times.  
5. Based on typical input pad leakage current.  
6. LVI must be enabled, (LVIPWRD = 0, in CONFIG1). Voltage input to ADCH4:0 = $1A, an ADC conversion on this channel  
allows user to determine supply voltage.  
MC68HC908QB8 Data Sheet, Rev. 3  
220  
Freescale Semiconductor  
5.0-Volt SPI Characteristics  
18.14 5.0-Volt SPI Characteristics  
Diagram  
Characteristic(2)  
Number(1)  
Symbol  
Min  
Max  
Unit  
Operating frequency  
Master  
Slave  
fOP(M)  
fOP(S)  
fOP/128  
dc  
fOP/2  
fOP  
MHz  
MHz  
Cycle time  
1
Master  
Slave  
tcyc(M)  
tcyc(S)  
2
1
128  
tcyc  
tcyc  
2
3
Enable lead time  
Enable lag time  
tLead(S)  
tLag(S)  
1
1
tcyc  
tcyc  
Clock (SPSCK) high time  
4
5
6
7
Master  
Slave  
tSCKH(M)  
tSCKH(S)  
tcyc –25  
1/2 tcyc –25  
64 tcyc  
ns  
ns  
Clock (SPSCK) low time  
Master  
Slave  
tSCKL(M)  
tSCKL(S)  
tcyc –25  
1/2 tcyc –25  
64 tcyc  
ns  
ns  
Data setup time (inputs)  
Master  
Slave  
tSU(M)  
tSU(S)  
30  
30  
ns  
ns  
Data hold time (inputs)  
Master  
Slave  
tH(M)  
tH(S)  
30  
30  
ns  
ns  
Access time, slave(3)  
CPHA = 0  
CPHA = 1  
8
9
tA(CP0)  
tA(CP1)  
0
0
40  
40  
ns  
ns  
Disable time, slave(4)  
tDIS(S)  
40  
ns  
Data valid time, after enable edge  
10  
Master  
tV(M)  
tV(S)  
50  
50  
ns  
ns  
Slave(5)  
Data hold time, outputs, after enable edge  
11  
Master  
Slave  
tHO(M)  
tHO(S)  
0
0
ns  
ns  
1. Numbers refer to dimensions in Figure 18-11 and Figure 18-12.  
2. All timing is shown with respect to 20% VDD and 70% VDD, unless noted; 100 pF load on all SPI pins.  
3. Time to data active from high-impedance state  
4. Hold time to high-impedance state  
5. With 100 pF on all SPI pins  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
221  
Electrical Specifications  
18.15 3.0-Volt SPI Characteristics  
Diagram  
Characteristic(2)  
Number(1)  
Symbol  
Min  
Max  
Unit  
Operating frequency  
Master  
Slave  
fOP(M)  
fOP(S)  
fOP/128  
DC  
fOP/2  
fOP  
MHz  
MHz  
Cycle time  
1
Master  
Slave  
tcyc(M)  
tcyc(S)  
2
1
128  
tcyc  
tcyc  
2
3
Enable lead time  
Enable lag time  
tLead(S)  
tLag(S)  
1
1
tcyc  
tcyc  
Clock (SPSCK) high time  
4
5
6
7
Master  
Slave  
tSCKH(M)  
tSCKH(S)  
tcyc –35  
1/2 tcyc –35  
64 tcyc  
ns  
ns  
Clock (SPSCK) low time  
Master  
Slave  
tSCKL(M)  
tSCKL(S)  
tcyc –35  
1/2 tcyc –35  
64 tcyc  
ns  
ns  
Data setup time (inputs)  
Master  
Slave  
tSU(M)  
tSU(S)  
40  
40  
ns  
ns  
Data hold time (inputs)  
Master  
Slave  
tH(M)  
tH(S)  
40  
40  
ns  
ns  
Access time, slave(3)  
CPHA = 0  
CPHA = 1  
8
9
tA(CP0)  
tA(CP1)  
0
0
50  
50  
ns  
ns  
Disable time, slave(4)  
tDIS(S)  
50  
ns  
Data valid time, after enable edge  
10  
Master  
tV(M)  
tV(S)  
60  
60  
ns  
ns  
Slave(5)  
Data hold time, outputs, after enable edge  
11  
Master  
Slave  
tHO(M)  
tHO(S)  
0
0
ns  
ns  
1. Numbers refer to dimensions in Figure 18-11 and Figure 18-12.  
2. All timing is shown with respect to 20% VDD and 70% VDD, unless noted; 100 pF load on all SPI pins.  
3. Time to data active from high-impedance state  
4. Hold time to high-impedance state  
5. With 100 pF on all SPI pins  
MC68HC908QB8 Data Sheet, Rev. 3  
222  
Freescale Semiconductor  
3.0-Volt SPI Characteristics  
SS  
INPUT  
SS PIN OF MASTER HELD HIGH  
1
5
4
SPSCK OUTPUT  
CPOL = 0  
NOTE  
4
5
SPSCK OUTPUT  
CPOL = 1  
NOTE  
6
7
LSB IN  
MISO  
MSB IN  
BITS 6–1  
BITS 6–1  
INPUT  
11  
MASTER MSB OUT  
10  
11  
MOSI  
OUTPUT  
MASTER LSB OUT  
Note: This first clock edge is generated internally, but is not seen at the SPSCK pin.  
a) SPI Master Timing (CPHA = 0)  
SS  
INPUT  
SS PIN OF MASTER HELD HIGH  
1
SPSCK OUTPUT  
CPOL = 0  
5
NOTE  
4
SPSCK OUTPUT  
CPOL = 1  
5
NOTE  
4
6
7
MISO  
MSB IN  
BITS 6–1  
BITS 6–1  
LSB IN  
INPUT  
11  
10  
10  
MOSI  
OUTPUT  
MASTER MSB OUT  
MASTER LSB OUT  
Note: This last clock edge is generated internally, but is not seen at the SPSCK pin.  
b) SPI Master Timing (CPHA = 1)  
Figure 18-11. SPI Master Timing  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
223  
Electrical Specifications  
SS  
INPUT  
3
1
SPSCK INPUT  
CPOL = 0  
5
4
4
5
2
SPSCK INPUT  
CPOL = 1  
9
8
MISO  
SLAVE MSB OUT  
BITS 6–1  
BITS 6–1  
SLAVE LSB OUT  
11  
NOTE  
INPUT  
11  
6
7
10  
MOSI  
OUTPUT  
MSB IN  
LSB IN  
Note: Not defined but normally MSB of character just received  
a) SPI Slave Timing (CPHA = 0)  
SS  
INPUT  
1
SPSCK INPUT  
CPOL = 0  
5
4
5
2
3
SPSCK INPUT  
CPOL = 1  
4
10  
9
8
MISO  
NOTE  
SLAVE MSB OUT  
BITS 6–1  
BITS 6–1  
SLAVE LSB OUT  
OUTPUT  
11  
6
7
10  
MOSI  
INPUT  
MSB IN  
LSB IN  
Note: Not defined but normally LSB of character previously transmitted  
b) SPI Slave Timing (CPHA = 1)  
Figure 18-12. SPI Slave Timing  
MC68HC908QB8 Data Sheet, Rev. 3  
224  
Freescale Semiconductor  
Timer Interface Module Characteristics  
18.16 Timer Interface Module Characteristics  
Characteristic  
Timer input capture pulse width(1)  
Symbol  
TH, tTL  
tTLTL  
tTCL, tTCH  
Min  
2
Max  
Unit  
tcyc  
tcyc  
ns  
t
Timer input capture period  
Note(2)  
Timer input clock pulse width(1)  
tcyc + 5  
1. Values are based on characterization results, not tested in production.  
2. The minimum period is the number of cycles it takes to execute the interrupt service routine plus 1 tcyc  
.
tTLTL  
tTH  
INPUT CAPTURE  
RISING EDGE  
tTLTL  
tTL  
INPUT CAPTURE  
FALLING EDGE  
tTLTL  
tTH  
tTL  
INPUT CAPTURE  
BOTH EDGES  
tTCH  
TCLK  
tTCL  
Figure 18-13. Timer Input Timing  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
225  
Electrical Specifications  
18.17 Memory Characteristics  
Typ(1)  
Characteristic  
RAM data retention voltage (2)  
Symbol  
VRDR  
Min  
1.3  
1
Max  
Unit  
V
FLASH program bus clock frequency  
MHz  
V
FLASH PGM/ERASE supply voltage (VDD  
FLASH read bus clock frequency  
)
VPGM/ERASE  
2.7  
0
5.5  
8 M  
(3)  
fRead  
Hz  
FLASH page erase time  
<1 K cycles  
>1 K cycles  
tErase  
0.9  
3.6  
1
4
1.1  
5.5  
ms  
FLASH mass erase time  
tMErase  
tNVS  
4
10  
5
40  
4
ms  
μs  
FLASH PGM/ERASE to HVEN setup time  
FLASH high-voltage hold time  
tNVH  
μs  
FLASH high-voltage hold time (mass erase)  
FLASH program hold time  
tNVHL  
tPGS  
100  
5
μs  
μs  
FLASH program time  
tPROG  
30  
1
μs  
(4)  
FLASH return to read time  
tRCV  
μs  
(5)  
FLASH cumulative program HV period  
FLASH endurance(6)  
tHV  
10 k  
15  
ms  
100 k  
100  
Cycles  
Years  
FLASH data retention time(7)  
1. Typical values are for reference only and are not tested in production.  
2. Values are based on characterization results, not tested in production.  
3. fRead is defined as the frequency range for which the FLASH memory can be read.  
4. tRCV is defined as the time it needs before the FLASH can be read after turning off the high voltage charge pump, by clear-  
ing HVEN to 0.  
5. tHV is defined as the cumulative high voltage programming time to the same row before next erase.  
tHV must satisfy this condition: tNVS + tNVH + tPGS + (tPROG x 32) tHV maximum.  
6. Typical endurance was evaluated for this product family. For additional information on how Freescale Semiconductor  
defines Typical Endurance, please refer to Engineering Bulletin EB619.  
7. Typical data retention values are based on intrinsic capability of the technology measured at high temperature and de-rated  
to 25•C using the Arrhenius equation. For additional information on how Freescale Semiconductor defines Typical Data  
Retention, please refer to Engineering Bulletin EB618.  
MC68HC908QB8 Data Sheet, Rev. 3  
226  
Freescale Semiconductor  
Chapter 19  
Ordering Information and Mechanical Specifications  
19.1 Introduction  
This section contains order numbers for the MC68HC908QB8, MC68HC908QB4, and MC68HC908QY8.  
Dimensions are given for:  
16-pin PDIP  
16-pin SOIC  
16-pin thin shrink small outline packages (TSSOP)  
19.2 MC Order Numbers  
Table 19-1. MC Order Numbers  
MC Order Number  
Package  
MC908QB8  
MC908QB4  
MC908QY8  
16-pins  
PDIP, SOIC, and TSSOP  
Temperature and package designators:  
C = –40•C to +85•C  
V = –40•C to +105•C  
M = –40•C to +125•C  
P = Plastic dual in-line package (PDIP)  
DW = Small outline integrated circuit package (SOIC)  
DT = Thin shrink small outline package (TSSOP)  
E = Lead free  
M C 9 0 8 Q B 8 X X X E  
FAMILY  
INDICATES Pb-FREE PACKAGE  
PACKAGE DESIGNATOR  
TEMPERATURE RANGE  
Figure 19-1. Device Numbering System  
19.3 Package Dimensions  
Refer to the following pages for detailed package dimensions.  
MC68HC908QB8 Data Sheet, Rev. 3  
Freescale Semiconductor  
227  
Ordering Information and Mechanical Specifications  
MC68HC908QB8 Data Sheet, Rev. 3  
228  
Freescale Semiconductor  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
+1-800-521-6274 or +1-480-768-2130  
www.freescale.com/support  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
Beijing 100022  
China  
+86 10 5879 8000  
support.asia@freescale.com  
Semiconductor was negligent regarding the design or manufacture of the part.  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
1-800-441-2447 or 303-675-2140  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
Fax: 303-675-2150  
© Freescale Semiconductor, Inc. 2005–2010. All rights reserved.  
LDCForFreescaleSemiconductor@hibbertgroup.com  
MC68HC908QB8  
Rev. 3, 04/2010  

相关型号:

MC908QB8MDTE

M68HC08 Microcontrollers
FREESCALE

MC908QB8MDTE

8-BIT, FLASH, 8MHz, MICROCONTROLLER, PDSO16, 0.65 MM PITCH, LEAD FREE, TSSOP-16
NXP

MC908QB8MDWE

M68HC08 Microcontrollers
FREESCALE

MC908QB8MDWE

8-BIT, FLASH, 8 MHz, MICROCONTROLLER, PDSO16, 1.27 MM PITCH, LEAD FREE, PLASTIC, MS-013AA, SOIC-16
NXP

MC908QB8MP

8-BIT, FLASH, 8 MHz, MICROCONTROLLER, PDIP16, PLASTIC, DIP-16
NXP

MC908QB8MPE

M68HC08 Microcontrollers
FREESCALE

MC908QB8VDTE

M68HC08 Microcontrollers
FREESCALE

MC908QB8VDWE

M68HC08 Microcontrollers
FREESCALE

MC908QB8VPE

M68HC08 Microcontrollers
FREESCALE

MC908QC16CDRE

Microcontrollers
FREESCALE

MC908QC16CDRE

8-BIT, FLASH, 8MHz, MICROCONTROLLER, PDSO28, 4.40 MM, 1.20 MM HEIGHT, 0.65 MM PITCH, LEAD FREE, MO-153AE, TSSOP-28
NXP

MC908QC16CDRER

Microcontrollers
FREESCALE