MC9328MX1VM15 [NXP]

32-BIT, 150MHz, RISC PROCESSOR, PBGA256, 14 X 14 MM, 1.30 MM HEIGHT, 0.80 MM PITCH, ROHS COMPLIANT, MAPBGA-256;
MC9328MX1VM15
型号: MC9328MX1VM15
厂家: NXP    NXP
描述:

32-BIT, 150MHz, RISC PROCESSOR, PBGA256, 14 X 14 MM, 1.30 MM HEIGHT, 0.80 MM PITCH, ROHS COMPLIANT, MAPBGA-256

时钟 外围集成电路
文件: 总100页 (文件大小:1119K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: MC9328MX1  
Rev. 7, 12/2006  
Freescale Semiconductor  
Data Sheet: Technical Data  
MC9328MX1  
Package Information  
Plastic Package  
Case 1304B-01  
MC9328MX1  
(MAPBGA–225)  
Ordering Information  
See Table 1 on page 3  
Contents  
1 Introduction  
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
2 Signals and Connections . . . . . . . . . . . . . . . 4  
3 Electrical Characteristics . . . . . . . . . . . . . . 22  
The i.MX Family of applications processors provides a  
leap in performance with an ARM9™ microprocessor  
core and highly integrated system functions. The i.MX  
family specifically addresses the requirements of the  
personal, portable product market by providing  
intelligent integrated peripherals, an advanced processor  
core, and power management capabilities.  
4 Functional Description and Application  
Information . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
5 Pin-Out and Package Information . . . . . . . . 96  
6 Product Documentation . . . . . . . . . . . . . . . . 98  
Contact Information . . . . . . . . . . . . . . . Last Page  
The MC9328MX1 (i.MX1) processor features the  
advanced and power-efficient ARM920T™ core that  
operates at speeds up to 200 MHz. Integrated modules,  
which include a USB device, an LCD controller, and an  
MMC/SD host controller, support a suite of peripherals  
to enhance portable products seeking to provide a rich  
multimedia experience. It is packaged in a 256-contact  
Mold Array Process-Ball Grid Array (MAPBGA).  
Figure 1 shows the functional block diagram of the  
i.MX1 processor.  
Freescale reserves the right to change the detail specifications as may be required to permit improvements in the design of its  
products.  
© Freescale Semiconductor, Inc., 2004, 2005, 2006. All rights reserved.  
 
Introduction  
Standard  
System I/O  
System Control  
Power  
Control  
CGM  
(DPLLx2)  
JTAG/ICE  
Bootstrap  
GPIO  
PWM  
Connectivity  
MC9328MX1  
CPU Complex  
ARM9TDMI™  
MMC/SD  
Timer 1 & 2  
RTC  
Memory Stick®  
Host Controller  
SPI 1 and  
SPI 2  
Watchdog  
UART 1  
I Cache  
D Cache  
Multimedia  
UART 2 & 3  
Multimedia  
Accelerator  
2
Interrupt  
Controller  
SSI/I S 1 & 2  
AIPI 1  
AIPI 2  
VMMU  
DMAC  
Video Port  
2
I C  
Bus  
Control  
USB Device  
Human Interface  
(11 Chnl)  
Analog Signal  
Processor  
SmartCard I/F  
EIM &  
SDRAMC  
eSRAM  
(128K)  
Bluetooth  
Accelerator  
LCD Controller  
Figure 1. i.MX1 Functional Block Diagram  
1.1  
Features  
To support a wide variety of applications, the processor offers a robust array of features, including the following:  
ARM920T™ Microprocessor Core  
AHB to IP Bus Interfaces (AIPIs)  
External Interface Module (EIM)  
SDRAM Controller (SDRAMC)  
DPLL Clock and Power Control Module  
Three Universal Asynchronous Receiver/Transmitters (UART 1, UART 2, and UART3)  
Two Serial Peripheral Interfaces (SPI1 and SPI2)  
Two General-Purpose 32-bit Counters/Timers  
Watchdog Timer  
Real-Time Clock/Sampling Timer (RTC)  
LCD Controller (LCDC)  
Pulse-Width Modulation (PWM) Module  
Universal Serial Bus (USB) Device  
Multimedia Card and Secure Digital (MMC/SD) Host Controller Module  
Memory Stick® Host Controller (MSHC)  
Direct Memory Access Controller (DMAC)  
2
Two Synchronous Serial Interfaces and an Inter-IC Sound (SSI1 and SSI2/I S) Module  
2
Inter-IC (I C) Bus Module  
Video Port  
MC9328MX1 Technical Data, Rev. 7  
2
Freescale Semiconductor  
Introduction  
General-Purpose I/O (GPIO) Ports  
Bootstrap Mode  
Analog Signal Processing (ASP) Module  
Bluetooth™ Accelerator (BTA)  
Multimedia Accelerator (MMA)  
Power Management Features  
Operating Voltage Range: 1.7 V to 1.9 V core, 1.7 V to 3.3 V I/O  
256-pin MAPBGA Package  
1.2  
Target Applications  
The i.MX1 processor is targeted for advanced information appliances, smart phones, Web browsers, based  
on the popular Palm OS platform, and messaging applications such as wireless cellular products, including the  
AccompliTM 008 GSM/GPRS interactive communicator.  
1.3  
Ordering Information  
Table 1 provides ordering information.  
Table 1. Ordering Information  
Package Type  
Frequency  
Temperature  
Solderball Type  
Order Number  
256-lead MAPBGA  
200 MHz  
0°C to 70°C  
-30°C to 70°C  
0°C to 70°C  
Pb-free  
Pb-free  
Pb-free  
Pb-free  
Pb-free  
MC9328MX1VM20(R2)  
MC9328MX1DVM20(R2)  
MC9328MX1VM15(R2)  
MC9328MX1DVM15(R2)  
MC9328MX1CVM15(R2)  
150 MHz  
-30°C to 70°C  
-40°C to 85°C  
1.4  
Conventions  
This document uses the following conventions:  
OVERBAR is used to indicate a signal that is active when pulled low: for example, RESET.  
Logic level one is a voltage that corresponds to Boolean true (1) state.  
Logic level zero is a voltage that corresponds to Boolean false (0) state.  
To set a bit or bits means to establish logic level one.  
To clear a bit or bits means to establish logic level zero.  
A signal is an electronic construct whose state conveys or changes in state convey information.  
A pin is an external physical connection. The same pin can be used to connect a number of signals.  
Asserted means that a discrete signal is in active logic state.  
Active low signals change from logic level one to logic level zero.  
Active high signals change from logic level zero to logic level one.  
MC9328MX1 Technical Data, Rev. 7  
Freescale Semiconductor  
3
 
Signals and Connections  
Negated means that an asserted discrete signal changes logic state.  
Active low signals change from logic level zero to logic level one.  
Active high signals change from logic level one to logic level zero.  
LSB means least significant bit or bits, and MSB means most significant bit or bits. References to  
low and high bytes or words are spelled out.  
Numbers preceded by a percent sign (%) are binary. Numbers preceded by a dollar sign ($) or 0x  
are hexadecimal.  
2 Signals and Connections  
Table 2 identifies and describes the i.MX1 processor signals that are assigned to package pins. The signals  
are grouped by the internal module that they are connected to.  
Table 2. i.MX1 Signal Descriptions  
Signal Name  
Function/Notes  
External Bus/Chip-Select (EIM)  
A[24:0]  
Address bus signals  
Data bus signals  
D[31:0]  
EB0  
MSB Byte Strobe—Active low external enable byte signal that controls D [31:24].  
Byte Strobe—Active low external enable byte signal that controls D [23:16].  
Byte Strobe—Active low external enable byte signal that controls D [15:8].  
LSB Byte Strobe—Active low external enable byte signal that controls D [7:0].  
Memory Output Enable—Active low output enables external data bus.  
EB1  
EB2  
EB3  
OE  
CS [5:0]  
Chip-Select—The chip-select signals CS [3:2] are multiplexed with CSD [1:0] and are selected by the  
Function Multiplexing Control Register (FMCR). By default CSD [1:0] is selected.  
ECB  
LBA  
Active low input signal sent by a flash device to the EIM whenever the flash device must terminate an  
on-going burst sequence and initiate a new (long first access) burst sequence.  
Active low signal sent by a flash device causing the external burst device to latch the starting burst  
address.  
BCLK (burst clock)  
RW  
Clock signal sent to external synchronous memories (such as burst flash) during burst mode.  
RW signal—Indicates whether external access is a read (high) or write (low) cycle. Used as a WE input  
signal by external DRAM.  
DTACK  
DTACK signal—The external input data acknowledge signal. When using the external DTACK signal  
as a data acknowledge signal, the bus time-out monitor generates a bus error when a bus cycle is not  
terminated by the external DTACK signal after 1022 clock counts have elapsed.  
Bootstrap  
BOOT [3:0]  
SDBA [4:0]  
System Boot Mode Select—The operational system boot mode of the i.MX1 processor upon system  
reset is determined by the settings of these pins.  
SDRAM Controller  
SDRAM non-interleave mode bank address multiplexed with address signals A [15:11]. These signals  
are logically equivalent to core address p_addr [25:21] in SDRAM cycles.  
MC9328MX1 Technical Data, Rev. 7  
4
Freescale Semiconductor  
 
Signals and Connections  
Table 2. i.MX1 Signal Descriptions (Continued)  
Function/Notes  
Signal Name  
SDIBA [3:0]  
SDRAM interleave addressing mode bank address multiplexed with address signals A [19:16]. These  
signals are logically equivalent to core address p_addr [12:9] in SDRAM cycles.  
MA [11:10]  
MA [9:0]  
SDRAM address signals  
SDRAM address signals which are multiplexed with address signals A [10:1]. MA [9:0] are selected on  
SDRAM cycles.  
DQM [3:0]  
CSD0  
SDRAM data enable  
SDRAM Chip-select signal which is multiplexed with the CS2 signal. These two signals are selectable  
by programming the system control register.  
CSD1  
SDRAM Chip-select signal which is multiplexed with CS3 signal. These two signals are selectable by  
programming the system control register. By default, CSD1 is selected, so it can be used as boot  
chip-select by properly configuring BOOT [3:0] input pins.  
RAS  
SDRAM Row Address Select signal  
SDRAM Column Address Select signal  
SDRAM Write Enable signal  
SDRAM Clock Enable 0  
SDRAM Clock Enable 1  
SDRAM Clock  
CAS  
SDWE  
SDCKE0  
SDCKE1  
SDCLK  
RESET_SF  
Not Used  
Clocks and Resets  
EXTAL16M  
Crystal input (4 MHz to 16 MHz), or a 16 MHz oscillator input when the internal oscillator circuit is shut  
down.  
XTAL16M  
EXTAL32K  
XTAL32K  
CLKO  
Crystal output  
32 kHz crystal input  
32 kHz crystal output  
Clock Out signal selected from internal clock signals.  
RESET_IN  
Master Reset—External active low Schmitt trigger input signal. When this signal goes active, all  
modules (except the reset module and the clock control module) are reset.  
RESET_OUT  
POR  
Reset Out—Internal active low output signal from the Watchdog Timer module and is asserted from the  
following sources: Power-on reset, External reset (RESET_IN), and Watchdog time-out.  
Power On Reset—Internal active high Schmitt trigger input signal. The POR signal is normally  
generated by an external RC circuit designed to detect a power-up event.  
JTAG  
TRST  
TDO  
TDI  
Test Reset Pin—External active low signal used to asynchronously initialize the JTAG controller.  
Serial Output for test instructions and data. Changes on the falling edge of TCK.  
Serial Input for test instructions and data. Sampled on the rising edge of TCK.  
Test Clock to synchronize test logic and control register access through the JTAG port.  
TCK  
TMS  
Test Mode Select to sequence the JTAG test controller’s state machine. Sampled on the rising edge of  
TCK.  
MC9328MX1 Technical Data, Rev. 7  
Freescale Semiconductor  
5
Signals and Connections  
Signal Name  
Table 2. i.MX1 Signal Descriptions (Continued)  
Function/Notes  
DMA  
DMA_REQ  
DMA Request—external DMA request signal. Multiplexed with SPI1_SPI_RDY.  
BIG_ENDIAN  
Big Endian—Input signal that determines the configuration of the external chip-select space. If it is  
driven logic-high at reset, the external chip-select space will be configured to big endian. If it is driven  
logic-low at reset, the external chip-select space will be configured to little endian. This input must not  
change state after power-on reset negates or during chip operation.  
ETM  
ETMTRACESYNC  
ETMTRACECLK  
ETM sync signal which is multiplexed with A24. ETMTRACESYNC is selected in ETM mode.  
ETM clock signal which is multiplexed with A23. ETMTRACECLK is selected in ETM mode.  
ETMPIPESTAT [2:0] ETM status signals which are multiplexed with A [22:20]. ETMPIPESTAT [2:0] are selected in ETM  
mode.  
ETMTRACEPKT [7:0] ETM packet signals which are multiplexed with ECB, LBA, BCLK (burst clock), PA17, A [19:16].  
ETMTRACEPKT [7:0] are selected in ETM mode.  
CMOS Sensor Interface  
CSI_D [7:0]  
CSI_MCLK  
CSI_VSYNC  
CSI_HSYNC  
CSI_PIXCLK  
Sensor port data  
Sensor port master clock  
Sensor port vertical sync  
Sensor port horizontal sync  
Sensor port data latch clock  
LCD Controller  
LD [15:0]  
LCD Data Bus—All LCD signals are driven low after reset and when LCD is off.  
FLM/VSYNC  
Frame Sync or Vsync—This signal also serves as the clock signal output for the gate  
driver (dedicated signal SPS for Sharp panel HR-TFT).  
LP/HSYNC  
LSCLK  
Line pulse or H sync  
Shift clock  
ACD/OE  
CONTRAST  
SPL_SPR  
PS  
Alternate crystal direction/output enable.  
This signal is used to control the LCD bias voltage as contrast control.  
Program horizontal scan direction (Sharp panel dedicated signal).  
Control signal output for source driver (Sharp panel dedicated signal).  
CLS  
Start signal output for gate driver. This signal is an inverted version of PS (Sharp panel dedicated  
signal).  
REV  
Signal for common electrode driving signal preparation (Sharp panel dedicated signal).  
SIM  
SIM_CLK  
SIM_RST  
SIM_RX  
SIM Clock  
SIM Reset  
Receive Data  
MC9328MX1 Technical Data, Rev. 7  
6
Freescale Semiconductor  
Signals and Connections  
Table 2. i.MX1 Signal Descriptions (Continued)  
Function/Notes  
Signal Name  
SIM_TX  
Transmit Data  
SIM_PD  
Presence Detect Schmitt trigger input  
SIM Vdd Enable  
SIM_SVEN  
SPI 1 and SPI 2  
SPI1_MOSI  
SPI1_MISO  
SPI1_SS  
Master Out/Slave In  
Slave In/Master Out  
Slave Select (Selectable polarity)  
Serial Clock  
SPI1_SCLK  
SPI1_SPI_RDY  
SPI2_TXD  
Serial Data Ready  
SPI2 Master TxData Output—This signal is multiplexed with a GPI/O pin yet shows up as a primary or  
alternative signal in the signal multiplex scheme table. Please refer to the SPI and GPIO chapters in  
the MC9328MX1 Reference Manual for information about how to bring this signal to the assigned pin.  
SPI2_RXD  
SPI2_SS  
SPI2 Master RxData Input—This signal is multiplexed with a GPI/O pin yet shows up as a primary or  
alternative signal in the signal multiplex scheme table. Please refer to the SPI and GPIO chapters in  
the MC9328MX1 Reference Manual for information about how to bring this signal to the assigned pin.  
SPI2 Slave Select—This signal is multiplexed with a GPI/O pin yet shows up as a primary or alternative  
signal in the signal multiplex scheme table. Please refer to the SPI and GPIO chapters in the  
MC9328MX1 Reference Manual for information about how to bring this signal to the assigned pin.  
SPI2_SCLK  
SPI2 Serial Clock—This signal is multiplexed with a GPI/O pin yet shows up as a primary or alternative  
signal in the signal multiplex scheme table. Please refer to the SPI and GPIO chapters in the  
MC9328MX1 Reference Manual for information about how to bring this signal to the assigned pin.  
General Purpose Timers  
TIN  
Timer Input Capture or Timer Input Clock—The signal on this input is applied to both timers  
simultaneously.  
TMR2OUT  
Timer 2 Output  
USB Device  
USBD_VMO  
USBD_VPO  
USBD_VM  
USB Minus Output  
USB Plus Output  
USB Minus Input  
USB Plus Input  
USBD_VP  
USBD_SUSPND  
USBD_RCV  
USBD_ROE  
USBD_AFE  
USB Suspend Output  
USB Receive Data  
USB OE  
USB Analog Front End Enable  
Secure Digital Interface  
SD_CMD  
SD Command—If the system designer does not wish to make use of the internal pull-up, via the Pull-up  
enable register, a 4.7K–69K external pull up resistor must be added.  
MC9328MX1 Technical Data, Rev. 7  
Freescale Semiconductor  
7
Signals and Connections  
Signal Name  
Table 2. i.MX1 Signal Descriptions (Continued)  
Function/Notes  
SD_CLK  
MMC Output Clock  
SD_DAT [3:0]  
Data—If the system designer does not wish to make use of the internal pull-up, via the Pull-up enable  
register, a 50K–69K external pull up resistor must be added.  
Memory Stick Interface  
MS_BS  
Memory Stick Bus State (Output)—Serial bus control signal  
Memory Stick Serial Data (Input/Output)  
MS_SDIO  
MS_SCLKO  
MS_SCLKI  
Memory Stick Serial Clock (Input)—Serial protocol clock source for SCLK Divider  
Memory Stick External Clock (Output)—Test clock input pin for SCLK divider. This pin is only for test  
purposes, not for use in application mode.  
MS_PI0  
MS_PI1  
General purpose Input0—Can be used for Memory Stick Insertion/Extraction detect  
General purpose Input1—Can be used for Memory Stick Insertion/Extraction detect  
UARTs – IrDA/Auto-Bauding  
UART1_RXD  
UART1_TXD  
UART1_RTS  
UART1_CTS  
UART2_RXD  
UART2_TXD  
UART2_RTS  
UART2_CTS  
UART2_DSR  
UART2_RI  
Receive Data  
Transmit Data  
Request to Send  
Clear to Send  
Receive Data  
Transmit Data  
Request to Send  
Clear to Send  
Data Set Ready  
Ring Indicator  
UART2_DCD  
UART2_DTR  
UART3_RXD  
UART3_TXD  
UART3_RTS  
UART3_CTS  
UART3_DSR  
UART3_RI  
Data Carrier Detect  
Data Terminal Ready  
Receive Data  
Transmit Data  
Request to Send  
Clear to Send  
Data Set Ready  
Ring Indicator  
UART3_DCD  
UART3_DTR  
Data Carrier Detect  
Data Terminal Ready  
Serial Audio Port – SSI (configurable to I2S protocol)  
SSI_TXDAT  
SSI_RXDAT  
Transmit Data  
Receive Data  
MC9328MX1 Technical Data, Rev. 7  
8
Freescale Semiconductor  
Signals and Connections  
Table 2. i.MX1 Signal Descriptions (Continued)  
Function/Notes  
Signal Name  
SSI_TXCLK  
Transmit Serial Clock  
SSI_RXCLK  
SSI_TXFS  
Receive Serial Clock  
Transmit Frame Sync  
Receive Frame Sync  
TxD  
SSI_RXFS  
SSI2_TXDAT  
SSI2_RXDAT  
SSI2_TXCLK  
SSI2_RXCLK  
SSI2_TXFS  
SSI2_RXFS  
RxD  
Transmit Serial Clock  
Receive Serial Clock  
Transmit Frame Sync  
Receive Frame Sync  
I2C  
I2C_SCL  
I2C_SDA  
I2C Clock  
I2C Data  
PWM  
ASP  
PWMO  
PWM Output  
UIN  
Positive U analog input (for low voltage, temperature measurement)  
Negative U analog input (for low voltage, temperature measurement)  
Positive pen-X analog input  
UIP  
PX1  
PY1  
PX2  
PY2  
R1A  
R1B  
R2A  
R2B  
RVP  
RVM  
AVDD  
AGND  
Positive pen-Y analog input  
Negative pen-X analog input  
Negative pen-Y analog input  
Positive resistance input (a)  
Positive resistance input (b)  
Negative resistance input (a)  
Negative resistance input (b)  
Positive reference for pen ADC  
Negative reference for pen ADC  
Analog power supply  
Analog ground  
BlueTooth  
BT1  
BT2  
BT3  
I/O clock signal  
Output  
Input  
MC9328MX1 Technical Data, Rev. 7  
Freescale Semiconductor  
9
Signals and Connections  
Signal Name  
Table 2. i.MX1 Signal Descriptions (Continued)  
Function/Notes  
BT4  
Input  
BT5  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
BT6  
BT7  
BT8  
BT9  
BT10  
BT11  
BT12  
BT13  
BTRF VDD  
BTRF GND  
Power supply from external BT RFIC  
Ground from external BT RFIC  
Test Function  
TRISTATE  
Forces all I/O signals to high impedance for test purposes. For normal operation, terminate this input  
with a 1 k ohm resistor to ground. (TRI-STATE® is a registered trademark of National Semiconductor.)  
Digital Supply Pins  
NVDD  
NVSS  
Digital Supply for the I/O pins  
Digital Ground for the I/O pins  
Supply Pins – Analog Modules  
Supply for analog blocks  
AVDD  
Internal Power Supply  
QVDD  
QVSS  
Power supply pins for silicon internal circuitry  
Ground pins for silicon internal circuitry  
2.1  
I/O Pads Power Supply and Signal Multiplexing Scheme  
This section describes detailed information about both the power supply for each I/O pin and its function  
multiplexing scheme. The user can reference information provided in Table 6 on page 23 to configure the  
power supply scheme for each device in the system (memory and external peripherals). The function  
multiplexing information also shown in Table 6 allows the user to select the function of each pin by  
configuring the appropriate GPIO registers when those pins are multiplexed to provide different functions.  
MC9328MX1 Technical Data, Rev. 7  
10  
Freescale Semiconductor  
Table 3. MC9328MX1 Signal Multiplexing Scheme  
Primary  
Dir Pull-up  
Alternate  
Signal  
GPIO  
Ain  
I/O Supply BGA  
RESE  
State (At/After)  
Default  
Voltage  
Pin  
Signal  
Dir Mux  
Pull-up  
Bin  
Aout  
NVDD1  
NVDD1  
K8  
B1  
NVDD1  
A24  
Static  
O
ETMTRACESYN  
C
O
PA0  
69K  
SPI2_CLK  
L
A24  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
C2  
C1  
D2  
D1  
D3  
E2  
E3  
E1  
F2  
F4  
E4  
A1  
H5  
F1  
F3  
G2  
G3  
F5  
G4  
G1  
H2  
H3  
D31  
A23  
D30  
A22  
D29  
A21  
D28  
A20  
D27  
A19  
D26  
VSS  
NVDD1  
A18  
D25  
A17  
D24  
A16  
D23  
A15  
D22  
A14  
I/O  
O
69K  
69K  
69K  
69K  
69K  
69K  
Pull-H  
L
ETMTRACECLK  
ETMPIPESTAT2  
ETMPIPESTAT1  
ETMPIPESTAT0  
ETMTRACEPKT3  
O
O
O
O
O
PA31  
PA30  
PA29  
PA28  
PA27  
69K  
69K  
69K  
69K  
69K  
A23  
A22  
A21  
A20  
A19  
I/O  
O
Pull-H  
L
I/O  
O
Pull-H  
L
I/O  
O
Pull-H  
L
I/O  
O
Pull-H  
L
I/O  
Static  
Static  
O
Pull-H  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
ETMTRACEPKT2  
ETMTRACEPKT1  
ETMTRACEPKT0  
O
O
O
PA26  
PA25  
PA24  
69K  
69K  
69K  
L
Pull-H  
L
A18  
A17  
A16  
I/O  
O
69K  
69K  
69K  
69K  
I/O  
O
Pull-H  
L
I/O  
O
Pull-H  
L
I/O  
O
Pull-H  
L
 
 
Table 3. MC9328MX1 Signal Multiplexing Scheme (Continued)  
Primary  
Dir Pull-up  
Alternate  
Signal  
GPIO  
Ain  
I/O Supply BGA  
RESE  
State (At/After)  
Default  
Voltage  
Pin  
Signal  
Dir Mux  
Pull-up  
Bin  
Aout  
NVDD1  
NVDD1  
NVDD1  
G5  
H1  
H4  
T1  
H9  
H8  
J5  
D21  
A13  
D20  
VSS  
QVDD1  
VSS  
NVDD1  
A12  
D19  
A11  
D18  
A10  
D17  
A9  
I/O  
69K  
Pull-H  
L
O
I/O  
Static  
Static  
Static  
Static  
O
69K  
Pull-H  
QVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
J1  
L
Pull-H  
L
J4  
I/O  
O
69K  
69K  
69K  
69K  
69K  
69K  
J2  
J3  
I/O  
O
Pull-H  
L
K1  
K4  
K3  
K2  
L1  
L4  
L2  
L5  
K6  
K5  
M4  
L3  
M1  
M2  
I/O  
O
Pull-H  
L
D16  
A8  
I/O  
O
Pull-H  
L
D15  
A7  
I/O  
O
Pull-H  
L
D14  
VSS  
NVDD1  
A6  
I/O  
Static  
Static  
O
Pull-H  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
L
D13  
A5  
I/O  
O
69K  
69K  
Pull-H  
L
D12  
I/O  
Pull-H  
Table 3. MC9328MX1 Signal Multiplexing Scheme (Continued)  
Primary  
Dir Pull-up  
Alternate  
Signal  
GPIO  
Ain  
I/O Supply BGA  
RESE  
State (At/After)  
Default  
Voltage  
Pin  
Signal  
Dir Mux  
Pull-up  
Bin  
Aout  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
N1  
M3  
P3  
N3  
P1  
N2  
P2  
R1  
M6  
H6  
T2  
R2  
R5  
T3  
R3  
T4  
N4  
R4  
N5  
P4  
P5  
T5  
H7  
J6  
A4  
D11  
EB0  
D10  
A3  
O
I/O  
O
L
Pull-H  
H
69K  
69K  
I/O  
O
Pull-H  
L
EB1  
D9  
O
H
I/O  
O
69K  
Pull-H  
H
EB2  
VSS  
NVDD1  
A2  
Static  
Static  
O
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
L
H
EB3  
D8  
O
I/O  
O
69K  
69K  
69K  
Pull-H  
H
OE  
A1  
O
L
CS5  
D7  
O
PA23  
69K  
Pull-H  
Pull-H  
Pull-H  
L
PA23  
I/O  
O
CS4  
A0  
PA22  
PA21  
69K  
69K  
PA22  
A0  
O
CS3  
D6  
O
CSD1  
CSD0  
H
CSD1  
I/O  
O
Pull-H  
H
CS2  
VSS  
NVDD1  
SDCLK  
CSD0  
Static  
Static  
O
NVDD1  
NVDD1  
M5  
H
Table 3. MC9328MX1 Signal Multiplexing Scheme (Continued)  
Primary  
Dir Pull-up  
Alternate  
Signal  
GPIO  
Ain  
I/O Supply BGA  
RESE  
State (At/After)  
Default  
Voltage  
Pin  
Signal  
Dir Mux  
Pull-up  
Bin  
Aout  
NVDD1  
NVDD1  
T6  
T7  
CS1  
CS0  
O
O
H
1
H
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
R6  
P6  
N6  
R7  
P8  
R8  
P7  
J7  
D5  
ECB  
I/O  
I
69K  
69K  
69K  
69K  
Pull-H  
Pull-H  
Pull-H  
H
ETMTRACEPKT7  
ETMTRACEPKT6  
ETMTRACEPKT5  
PA20  
PA19  
PA18  
69K  
69K  
69K  
ECB  
LBA  
D4  
I/O  
O
LBA  
D3  
I/O  
Pull-H  
L
BCLK  
D2  
BCLK  
I/O  
Static  
Static  
I
Pull-H  
VSS  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
L6  
NVDD1  
DTACK  
D1  
N7  
N8  
M7  
T8  
M8  
R9  
K7  
P9  
T9  
N9  
R10  
M9  
L8  
ETMTRACEPKT4  
PA17  
69K  
SPI2_SS  
A25  
Pull-H  
Pull-H  
H
PA17  
I/O  
69K  
69K  
RW  
MA11  
MA10  
D0  
O
O
L
L
I/O  
Static  
O
Pull-H  
VSS  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
DQM3  
DQM2  
DQM1  
DQM0  
RAS  
CAS  
NVDD1  
L
L
O
O
L
O
L
O
H
H
O
J8  
Static  
Table 3. MC9328MX1 Signal Multiplexing Scheme (Continued)  
Primary  
Dir Pull-up  
Alternate  
Signal  
GPIO  
Ain  
I/O Supply BGA  
RESE  
State (At/After)  
Default  
Voltage  
Pin  
Signal  
Dir Mux  
Pull-up  
Bin  
Aout  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
NVDD1  
T10  
R11  
P10  
N10  
T11  
L7  
SDWE  
SDCKE0  
SDCKE1  
RESET_SF  
CLKO  
O
O
H
H
O
H
O
L/H  
L
O
VSS  
Static  
Static  
I
AVDD1  
AVDD1  
T12  
M10  
AVDD1  
2
RESET_IN  
69K  
L/H  
AVDD1  
AVDD1  
N11 RESET_OUT  
R12 POR  
O
I
L/H  
2
H/L  
3
AVDD1  
AVDD1  
AVDD1  
AVDD1  
AVDD1  
AVDD1  
M11 BIG_ENDIAN  
I
I
I
I
I
I
Hiz  
4
P11  
N12  
R13  
P12  
T13  
BOOT3  
BOOT2  
Hiz  
4
Hiz  
4
BOOT1  
Hiz  
4
BOOT0  
Hiz  
4
TRISTATE  
Hiz  
AVDD1  
QVDD2  
P13  
R15  
T16  
T14  
T15  
R16  
P16  
K10  
TRST  
QVDD2  
I
69K  
H
Static  
VSS  
Static  
AVDD1  
AVDD1  
AVDD1  
AVDD1  
NVDD2  
EXTAL16M  
XTAL16M  
EXTAL32K  
XTAL32K  
NVDD2  
I
Hiz  
Hiz  
O
I
O
Static  
Table 3. MC9328MX1 Signal Multiplexing Scheme (Continued)  
Primary  
Dir Pull-up  
Alternate  
Signal  
GPIO  
Ain  
I/O Supply BGA  
RESE  
State (At/After)  
Default  
Voltage  
Pin  
Signal  
Dir Mux  
Pull-up  
Bin  
Aout  
5
NVDD2  
R14  
TDO  
O
Hiz  
NVDD2  
NVDD2  
NVDD2  
NVDD2  
NVDD2  
NVDD2  
NVDD2  
NVDD2  
NVDD2  
NVDD2  
NVDD2  
NVDD2  
NVDD2  
NVDD2  
NVDD2  
NVDD2  
NVDD2  
NVDD2  
NVDD2  
NVDD2  
NVDD2  
NVDD2  
NVDD2  
NVDD2  
N15  
L9  
TMS  
TCK  
I
69K  
69K  
69K  
Pull-H  
Pull-H  
Pull-H  
Pull-H  
Pull-H  
Pull-H  
Pull-H  
Pull-H  
Pull-H  
Pull-H  
Pull-H  
I
N16  
P14  
P15  
N13  
M13  
M14  
N14  
M15  
M16  
J10  
M12  
L16  
L15  
L14  
L13  
L12  
L11  
L10  
K15  
K16  
K14  
K13  
TDI  
I
I2C_SCL  
I2C_SDA  
CSI_PIXCLK  
CSI_HSYNC  
CSI_VSYNC  
CSI_D7  
CSI_D6  
CSI_D5  
VSS  
O
PA16  
PA15  
PA14  
PA13  
PA12  
PA11  
PA10  
PA9  
69K  
69K  
69K  
69K  
69K  
69K  
69K  
69K  
PA16  
PA15  
PA14  
PA13  
PA12  
PA11  
PA10  
PA9  
I/O  
I
I
I
I
I
I
Static  
CSI_D4  
CSI_D3  
CSI_D2  
CSI_D1  
CSI_D0  
CSI_MCLK  
PWMO  
TIN  
I
I
PA8  
PA7  
69K  
69K  
69K  
69K  
69K  
69K  
69K  
69K  
69K  
69K  
69K  
69K  
Pull-H  
Pull-H  
Pull-H  
Pull-H  
Pull-H  
Pull-H  
Pull-H  
Pull-H  
Pull-H  
Pull-H  
Pull-H  
Pull-H  
PA8  
PA7  
I
PA6  
PA6  
I
PA5  
PA5  
I
PA4  
PA4  
O
O
I
PA3  
PA3  
PA2  
PA2  
PA1  
SPI2_RxD  
PA1  
TMR2OUT  
LD15  
O
O
O
O
PD31  
PD30  
PD29  
PD28  
SPI2_TxD  
PD31  
PD30  
PD29  
PD28  
LD14  
LD13  
Table 3. MC9328MX1 Signal Multiplexing Scheme (Continued)  
Primary  
Dir Pull-up  
Alternate  
Signal  
GPIO  
Ain  
I/O Supply BGA  
RESE  
State (At/After)  
Default  
Voltage  
Pin  
Signal  
Dir Mux  
Pull-up  
Bin  
Aout  
NVDD2  
QVDD3  
K12  
J15  
J16  
K9  
LD12  
QVDD3  
VSS  
O
Static  
Static  
Static  
O
PD27  
69K  
Pull-H  
PD27  
NVDD2  
NVDD2  
NVDD2  
NVDD2  
NVDD2  
NVDD2  
NVDD2  
NVDD2  
NVDD2  
NVDD2  
NVDD2  
NVDD2  
NVDD2  
NVDD2  
NVDD2  
NVDD2  
NVDD2  
NVDD2  
NVDD2  
NVDD2  
NVDD2  
NVDD2  
NVDD2  
LD11  
J14  
K11  
H15  
J13  
J12  
J11  
H14  
H13  
H16  
H12  
G16  
H11  
G15  
G14  
G13  
G12  
F16  
H10  
G11  
F12  
F15  
PD26  
PD25  
PD24  
PD23  
PD22  
PD21  
PD20  
PD19  
PD18  
PD17  
PD16  
PD15  
PD14  
PD13  
PD12  
PD11  
69K  
69K  
69K  
69K  
69K  
69K  
69K  
69K  
69K  
69K  
69K  
69K  
69K  
69K  
69K  
69K  
69K  
69K  
69K  
69K  
69K  
Pull-H  
Pull-H  
Pull-H  
Pull-H  
Pull-H  
Pull-H  
Pull-H  
Pull-H  
Pull-H  
Pull-H  
Pull-H  
Pull-H  
Pull-H  
Pull-H  
Pull-H  
Pull-H  
Pull-H  
Pull-H  
Pull-H  
Pull-H  
Pull-H  
PD26  
PD25  
PD24  
PD23  
PD22  
PD21  
PD20  
PD19  
PD18  
PD17  
PD16  
PD15  
PD14  
PD13  
PD12  
PD11  
PD10  
PD9  
LD10  
O
LD9  
O
LD8  
O
LD7  
O
LD6  
O
LD5  
O
LD4  
O
LD3  
O
LD2  
O
LD1  
O
LD0  
O
FLM/VSYNC  
LP/HSYNC  
ACD/OE  
CONTRAST  
SPL_SPR  
PS  
O
O
O
SPI2_SS2  
O
O
UART2_DSR  
UART2_RI  
O
O
O
I
PD10  
PD9  
PD8  
PD7  
PD6  
SPI2_TxD  
O
SPI2_RxD  
CLS  
O
UART2_DCD  
UART2_DTR  
SPI2_SS  
PD8  
REV  
O
SPI2_CLK  
PD7  
LSCLK  
O
PD6  
Table 3. MC9328MX1 Signal Multiplexing Scheme (Continued)  
Primary  
Dir Pull-up  
Alternate  
Signal  
GPIO  
Ain  
I/O Supply BGA  
RESE  
State (At/After)  
Default  
Voltage  
Pin  
Signal  
Dir Mux  
Pull-up  
Bin  
Aout  
J9  
VSS  
R2A  
Static  
I
6
E16  
qvdd  
QVDD  
6
D16  
F14  
F13  
E15  
E14  
D15  
C16  
R2B  
PX1  
PY1  
PX2  
PY2  
R1A  
R1B  
I
I
I
I
I
I
I
QVDD  
6
QVDD  
6
QVDD  
6
QVDD  
6
QVDD  
6
QVDD  
6
QVDD  
C15  
C14  
VSS  
Static  
Static  
6
AVDD2  
AVDD2  
6
B16  
A16  
B15  
A15  
E13  
D14  
B14  
A14  
D13  
C13  
E12  
NC  
NC  
I
I
QVDD  
6
QVDD  
6
UIN  
UIP  
NC  
I
QVDD  
6
I
QVDD  
6
I
QVDD  
6
NC  
I
QVDD  
6
RVM  
RVP  
NC  
I
QVDD  
6
I
QVDD  
6
I
QVDD  
6
NC  
I
QVDD  
6
NC  
O
QVDD  
Table 3. MC9328MX1 Signal Multiplexing Scheme (Continued)  
Primary  
Dir Pull-up  
Alternate  
Signal  
GPIO  
Ain  
I/O Supply BGA  
RESE  
State (At/After)  
Default  
Voltage  
Pin  
Signal  
Dir Mux  
Pull-up  
Bin  
Aout  
6
D12  
NC  
O
QVDD  
QVDD4  
A13  
B13  
QVDD4  
VSS  
Static  
Static  
BTRFVDD C12  
BTRFVDD B12  
BTRFVDD F11  
BTRFVDD A12  
BTRFVDD E11  
BTRFVDD A11  
BTRFVDD D11  
BTRFVDD B11  
BTRFVDD C11  
BTRFVDD G10  
BTRFVDD F10  
BTRFVDD B10  
BTRFVDD E10  
BTRFVDD D10  
C10  
BTRFVDD  
BT1  
Static  
I
O
PC31  
PC30  
PC29  
PC28  
PC27  
PC26  
PC25  
PC24  
PC23  
PC22  
PC21  
PC20  
PC19  
69K  
69K  
69K  
69K  
69K  
69K  
69K  
69K  
69K  
69K  
69K  
69K  
69K  
UART3_RX  
Pull-H  
Hiz  
Pull-H  
Pull-H  
Pull-H  
L
PC31  
PC30  
PC29  
PC28  
PC27  
PC26  
PC25  
PC24  
PC23  
PC22  
PC21  
PC20  
PC19  
UART3_TX  
BT2  
BT3  
I
UART3_RTS  
UART3_CTS  
UART3_DCD  
SPI2_SS3  
BT4  
I
BT5  
I/O  
O
BT6  
UART3_DTR  
UART3_DSR  
UART3_RI  
BT7  
O
L
BT8  
O
SSI2_RXFS  
SSI2_RX  
Hiz  
L
BT9  
O
BT10  
O
SSI2_TX  
H
BT11  
O
SSI2_TXCLK  
SSI2_TXFS  
SSI2_RXCLK  
H
BT12  
O
Hiz  
L
BT13  
O
BTRFGND  
NVDD3  
SPI1_MOSI  
SPI1_MISO  
SPI1_SS  
SPI1_SCLK  
Static  
Static  
I/O  
I/O  
I/O  
I/O  
I
NVDD3  
NVDD3  
NVDD3  
NVDD3  
NVDD3  
NVDD3  
NVDD3  
A10  
G9  
F9  
PC17  
PC16  
PC15  
PC14  
PC13  
PC12  
69K  
69K  
69K  
69K  
69K  
69K  
Pull-H  
Pull-H  
Pull-H  
Pull-H  
Pull-H  
Pull-H  
PC17  
PC16  
PC15  
PC14  
PC13  
PC12  
E9  
B9  
DMA_Req  
D9 SPI1_SPI_RDY  
A9 UART1_RXD  
I
Table 3. MC9328MX1 Signal Multiplexing Scheme (Continued)  
Primary  
Alternate  
Signal  
GPIO  
Ain  
I/O Supply BGA  
RESE  
State (At/After)  
Default  
Voltage  
Pin  
Signal  
Dir Pull-up  
Dir Mux  
Pull-up  
Bin  
Aout  
NVDD3  
NVDD3  
NVDD3  
NVDD3  
NVDD3  
NVDD3  
NVDD3  
NVDD3  
NVDD3  
C9  
A8  
G8  
B8  
F8  
E8  
D8  
B7  
C8  
A7  
C7  
F7  
E7  
C6  
D7  
D6  
E6  
B6  
D5  
C5  
B5  
A5  
A4  
A6  
G7  
UART1_TXD  
UART1_RTS  
UART1_CTS  
SSI_TXCLK  
SSI_TXFS  
SSI_TXDAT  
SSI_RXDAT  
SSI_RXCLK  
SSI_RXFS  
VSS  
O
PC11  
PC10  
PC9  
PC8  
PC7  
PC6  
PC5  
PC4  
PC3  
69K  
69K  
69K  
69K  
69K  
69K  
69K  
69K  
69K  
Pull-H  
Pull-H  
Pull-H  
Pull-H  
Pull-H  
Pull-H  
Pull-H  
Pull-H  
Pull-H  
PC11  
PC10  
PC9  
PC8  
PC7  
PC6  
PC5  
PC4  
PC3  
I
O
I/O  
I/O  
O
I
I/O  
I/O  
Static  
I
NVDD4  
NVDD4  
NVDD4  
NVDD4  
NVDD4  
NVDD4  
NVDD4  
NVDD4  
NVDD4  
NVDD4  
NVDD4  
NVDD4  
UART2_RXD  
UART2_TXD  
UART2_RTS  
UART2_CTS  
USBD_VMO  
USBD_VPO  
USBD_VM  
USBD_VP  
PB31  
PB30  
PB29  
PB28  
PB27  
PB26  
PB25  
PB24  
PB23  
PB22  
PB21  
PB20  
69K  
69K  
69K  
69K  
69K  
69K  
69K  
69K  
69K  
69K  
69K  
69K  
Pull-H  
Pull-H  
Pull-H  
Pull-H  
Pull-H  
Pull-H  
Pull-H  
Pull-H  
Pull-H  
Pull-H  
Pull-H  
Pull-H  
PB31  
PB30  
PB29  
PB28  
PB27  
PB26  
PB25  
PB24  
PB23  
PB22  
PB21  
PB20  
O
I
O
O
O
I
I
USBD_SUSPND  
USBD_RCV  
USBD_ROE  
USBD_AFE  
VSS  
O
I/O  
O
O
Static  
Static  
O
NVDD4  
NVDD4  
NVDD4  
SIM_CLK  
SSI_TXCLK  
I/O PB19  
69K  
Pull-H  
PB19  
Table 3. MC9328MX1 Signal Multiplexing Scheme (Continued)  
Primary  
Alternate  
Signal  
GPIO  
Ain  
I/O Supply BGA  
RESE  
State (At/After)  
Default  
Voltage  
Pin  
Signal  
Dir Pull-up  
Dir Mux  
Pull-up  
Bin  
Aout  
NVDD4  
NVDD4  
NVDD4  
NVDD4  
NVDD4  
NVDD4  
NVDD4  
NVDD4  
F6  
G6  
B4  
C4  
D4  
B3  
A3  
A2  
SIM_RST  
SIM_RX  
O
I
SSI_TXFS  
SSI_TXDAT  
SSI_RXDAT  
SSI_RXCLK  
SSI_RXFS  
MS_BS  
I/O PB18  
69K  
69K  
69K  
69K  
69K  
69K  
69K  
Pull-H  
Pull-H  
Pull-H  
Pull-H  
Pull-H  
Pull-H  
Pull-H  
Pull-L  
PB18  
PB17  
PB16  
PB15  
PB14  
PB13  
PB12  
PB11  
O
I
PB17  
PB16  
SIM_TX  
I/O  
I
SIM_PD  
I/O PB15  
I/O PB14  
SIM_SVEN  
SD_CMD  
SD_CLK  
SD_DAT3  
O
I/O  
O
O
O
PB13  
PB12  
MS_SCLKO  
MS_SDIO  
I/O  
I/O PB11  
69K  
(pull down)  
NVDD4  
NVDD4  
NVDD4  
E5  
B2  
C3  
SD_DAT2  
SD_DAT1  
SD_DAT0  
I/O  
I/O  
I/O  
MS_SCLKI  
MS_PI1  
I
I
I
PB10  
PB9  
PB8  
69K  
69K  
69K  
Pull-H  
Pull-H  
Pull-H  
PB10  
PB9  
PB8  
MS_PI0  
1
2
3
4
5
6
After reset, CS0 goes H/L depends on BOOT[3:0].  
Need external circuitry to drive the signal.  
Need external pull-up.  
External resistor is needed.  
Need external pull-up or pull-down.  
ASP signals are clamped by AVDD2 to prevent ESD (electrostatic discharge) damage. AVDD2 must be greater than QVDD to keep diodes reverse-biased.  
Electrical Characteristics  
3 Electrical Characteristics  
This section contains the electrical specifications and timing diagrams for the i.MX1 processor.  
3.1  
Maximum Ratings  
Table 4 provides information on maximum ratings which are those values beyond which damage to the  
device may occur. Functional operation should be restricted to the limits listed in Recommended Operating  
Range Table 5 on page 23 or the DC Characteristics table.  
Table 4. Maximum Ratings  
Symbol  
NVDD  
Rating  
Minimum  
-0.3  
Maximum  
3.3  
Unit  
V
DC I/O Supply Voltage  
QVDD  
DC Internal (core = 150 MHz) Supply Voltage  
DC Internal (core = 200 MHz) Supply Voltage  
DC Analog Supply Voltage  
-0.3  
1.9  
V
QVDD  
-0.3  
2.0  
V
AVDD  
-0.3  
3.3  
V
BTRFVDD  
DC Bluetooth Supply Voltage  
-0.3  
3.3  
V
VESD_HBM  
VESD_MM  
ILatchup  
Test  
ESD immunity with HBM (human body model)  
ESD immunity with MM (machine model)  
Latch-up immunity  
2000  
100  
200  
150  
V
V
mA  
°C  
Storage temperature  
-55  
8001  
13002  
Pmax  
Power Consumption  
mW  
A typical application with 30 pads simultaneously switching assumes the GPIO toggling and instruction fetches from the ARM®  
core-that is, 7x GPIO, 15x Data bus, and 8x Address bus.  
1
2
A worst-case application with 70 pads simultaneously switching assumes the GPIO toggling and instruction fetches from the  
ARM core-that is, 32x GPIO, 30x Data bus, 8x Address bus. These calculations are based on the core running its heaviest OS  
application at MHz, and where the whole image is running out of SDRAM. QVDD at V, NVDD and AVDD at 3.3V, therefore,  
180mA is the worst measurement recorded in the factory environment, max 5mA is consumed for OSC pads, with each toggle  
GPIO consuming 4mA.  
3.2  
Recommended Operating Range  
Table 5 provides the recommended operating ranges for the supply voltages and temperatures. The i.MX1  
processor has multiple pairs of VDD and VSS power supply and return pins. QVDD and QVSS pins are  
used for internal logic. All other VDD and VSS pins are for the I/O pads voltage supply, and each pair of  
VDD and VSS provides power to the enclosed I/O pads. This design allows different peripheral supply  
voltage levels in a system.  
Because AVDD pins are supply voltages to the analog pads, it is recommended to isolate and noise-filter  
the AVDD pins from other VDD pins.  
BTRFVDD is the supply voltage for the Bluetooth interface signals. It is quite sensitive to the data  
transmit/receive accuracy. Please refer to Bluetooth RF spec for special handling. If Bluetooth is not used  
MC9328MX1 Technical Data, Rev. 7  
22  
Freescale Semiconductor  
 
Electrical Characteristics  
in the system, these Bluetooth pins can be used as general purpose I/O pins and BTRFVDD can be used  
as other NVDD pins.  
For more information about I/O pads grouping per VDD, please refer to Table 2 on page 4.  
Table 5. Recommended Operating Range  
Symbol  
Rating  
Minimum Maximum  
Unit  
TA  
Operating temperature range  
0
70  
°C  
MC9328MX1VM20\MC9328MX1VM15  
TA  
TA  
Operating temperature range  
MC9328MX1DVM20\MC9328MX1DVM15  
-30  
-40  
2.70  
70  
°C  
°C  
V
Operating temperature range  
MC9328MX1CVM15  
85  
NVDD  
I/O supply voltage (if using MSHC, CSI, SPI, BTA, LCD, and USBd which  
are only 3 V interfaces)  
3.30  
NVDD  
QVDD  
QVDD  
AVDD  
I/O supply voltage (if not using the peripherals listed above)  
Internal supply voltage (Core = 150 MHz)  
Internal supply voltage (Core = 200 MHz)  
Analog supply voltage  
1.70  
1.70  
1.80  
1.70  
3.30  
1.90  
2.00  
3.30  
V
V
V
V
3.3  
Power Sequence Requirements  
For required power-up and power-down sequencing, please refer to the “Power-Up Sequence” section of  
application note AN2537 on the i.MX applications processor website.  
3.4  
DC Electrical Characteristics  
Table 6 contains both maximum and minimum DC characteristics of the i.MX1 processor.  
Table 6. Maximum and Minimum DC Characteristics  
Number or  
Symbol  
Parameter  
Min  
Typical  
Max  
Unit  
Iop  
Full running operating current at 1.8V for QVDD, 3.3V for  
NVDD/AVDD (Core = 96 MHz, System = 96 MHz, MPEG4  
decoding playback from external memory card to both  
external SSI audio decoder and driving TFT display panel,  
and OS with MMU enabled memory system is running on  
external SDRAM).  
QVDD at  
mA  
1.8V = 120mA;  
NVDD+AVDD at  
3.0V = 30mA  
Sidd1  
Sidd2  
Sidd3  
Standby current  
(Core = 150 MHz, QVDD = 1.8V, temp = 25°C)  
25  
45  
35  
μA  
μA  
μA  
Standby current  
(Core = 150 MHz, QVDD = 1.8V, temp = 55°C)  
Standby current  
(Core = 150 MHz, QVDD = 2.0V, temp = 25°C)  
MC9328MX1 Technical Data, Rev. 7  
Freescale Semiconductor  
23  
 
Electrical Characteristics  
Table 6. Maximum and Minimum DC Characteristics (Continued)  
Number or  
Symbol  
Parameter  
Min  
Typical  
Max  
Unit  
Sidd4  
Standby current  
60  
μA  
(Core = 150 MHz, QVDD = 2.0V, temp = 55°C)  
V
Input high voltage  
0.7V  
Vdd+0.2  
0.4  
V
V
IH  
DD  
V
Input low voltage  
0.7V  
IL  
V
Output high voltage (I  
= 2.0 mA)  
Vdd  
0.4  
V
OH  
OH  
DD  
V
Output low voltage (I = -2.5 mA)  
OL  
V
OL  
IL  
I
Input low leakage current  
1
μA  
(V = GND, no pull-up or pull-down)  
IN  
I
Input high leakage current  
1
μA  
mA  
mA  
μA  
IH  
(V = V , no pull-up or pull-down)  
IN  
DD  
I
Output high current  
(V = 0.8VDD, VDD = 1.8V)  
4.0  
-4.0  
OH  
OH  
I
Output low current  
OL  
OZ  
(V = 0.4V, VDD = 1.8V)  
OL  
I
Output leakage current  
5
(V = V , output is high impedance)  
out  
DD  
C
Input capacitance  
Output capacitance  
5
5
pF  
pF  
i
C
o
3.5  
AC Electrical Characteristics  
The AC characteristics consist of output delays, input setup and hold times, and signal skew times. All  
signals are specified relative to an appropriate edge of other signals. All timing specifications are specified  
at a system operating frequency from 0 MHz to 96 MHz (core operating frequency 150 MHz) with an  
operating supply voltage from V  
timing is measured at 30 pF loading.  
to V  
under an operating temperature from T to T . All  
L H  
DD max  
DD min  
Table 7. Tristate Signal Timing  
Pin  
Parameter  
Minimum  
Maximum  
Unit  
TRISTATE Time from TRISTATE activate until I/O becomes Hi-Z  
Table 8. 32k/16M Oscillator Signal Timing  
20.8  
ns  
Parameter  
Minimum  
RMS  
Maximum  
Unit  
EXTAL32k input jitter (peak to peak)  
EXTAL32k startup time  
5
20  
ns  
800  
ms  
MC9328MX1 Technical Data, Rev. 7  
24  
Freescale Semiconductor  
Functional Description and Application Information  
Table 8. 32k/16M Oscillator Signal Timing (Continued)  
Parameter  
Minimum  
RMS  
Maximum  
Unit  
EXTAL16M input jitter (peak to peak) 1  
EXTAL16M startup time 1  
TBD  
TBD  
TBD  
1
The 16 MHz oscillator is not recommended for use in new designs.  
4 Functional Description and Application Information  
This section provides the electrical information including and timing diagrams for the individual modules  
of the i.MX1.  
4.1  
Embedded Trace Macrocell  
All registers in the ETM9 are programmed through a JTAG interface. The interface is an extension of the  
ARM920T processor’s TAP controller, and is assigned scan chain 6. The scan chain consists of a 40-bit  
shift register comprised of the following:  
32-bit data field  
7-bit address field  
A read/write bit  
The data to be written is scanned into the 32-bit data field, the address of the register into the 7-bit address  
field, and a 1 into the read/write bit.  
A register is read by scanning its address into the address field and a 0 into the read/write bit. The 32-bit  
data field is ignored. A read or a write takes place when the TAP controller enters the UPDATE-DR state.  
The timing diagram for the ETM9 is shown in Figure 2. See Table 9 for the ETM9 timing parameters used  
in Figure 2.  
2a  
1
2b  
3a  
TRACECLK  
3b  
TRACECLK  
(Half-Rate Clocking Mode)  
Output Trace Port  
Valid Data  
Valid Data  
4a  
Figure 2. Trace Port Timing Diagram  
4b  
MC9328MX1 Technical Data, Rev. 7  
Freescale Semiconductor  
25  
 
Functional Description and Application Information  
Table 9. Trace Port Timing Diagram Parameter Table  
1.8 ꢀ.1 V 3.ꢀ ꢀ.3 V  
Ref No.  
Parameter  
Unit  
Minimum  
Maximum  
Minimum  
Maximum  
1
CLK frequency  
0
1.3  
3
85  
0
2
2
2
3
100  
MHz  
ns  
2a  
2b  
3a  
3b  
4a  
4b  
Clock high time  
Clock low time  
Clock rise time  
Clock fall time  
ns  
4
3
ns  
3
3
ns  
Output hold time  
Output setup time  
2.28  
3.42  
ns  
ns  
4.2  
DPLL Timing Specifications  
Parameters of the DPLL are given in Table 10. In this table, T is a reference clock period after the  
ref  
Table 1ꢀ. DPLL Specifications  
Test Conditions  
pre-divider and T is the output double clock period.  
dck  
Parameter  
Minimum Typical Maximum  
Unit  
DPLL input clock freq range  
Vcc = 1.8V  
Vcc = 1.8V  
5
5
100  
30  
MHz  
Pre-divider output clock  
freq range  
MHz  
DPLL output clock freq range  
Pre-divider factor (PD)  
Vcc = 1.8V  
80  
1
220  
16  
MHz  
Total multiplication factor (MF) Includes both integer and fractional parts  
5
15  
MF integer part  
5
15  
MF numerator  
Should be less than the denominator  
0
1022  
1023  
312.5  
MF denominator  
Pre-multiplier lock-in time  
1
μsec  
Freq lock-in time after  
full reset  
FOL mode for non-integer MF  
(does not include pre-multi lock-in time)  
280  
(56 μs)  
Tref  
Tref  
250  
220  
300  
270  
300  
270  
400  
370  
0.01  
Freq lock-in time after  
partial reset  
FOL mode for non-integer MF (does not  
include pre-multi lock-in time)  
250  
(50 μs)  
Phase lock-in time after  
full reset  
FPL mode and integer MF (does not include  
pre-multi lock-in time)  
350  
(70 μs)  
Tref  
Phase lock-in time after  
partial reset  
FPL mode and integer MF (does not include  
pre-multi lock-in time)  
320  
(64 μs)  
Tref  
Freq jitter (p-p)  
0.005  
(0.01%)  
2•Tdck  
MC9328MX1 Technical Data, Rev. 7  
26  
Freescale Semiconductor  
 
Functional Description and Application Information  
Table 1ꢀ. DPLL Specifications (Continued)  
Parameter  
Phase jitter (p-p)  
Test Conditions  
Minimum Typical Maximum  
Unit  
Integer MF, FPL mode, Vcc=1.8V  
1.0  
1.7  
1.5  
2.5  
4
ns  
V
(10%)  
Power supply voltage  
Power dissipation  
FOL mode, integer MF,  
fdck = MHz, Vcc = 1.8V  
mW  
4.3  
Reset Module  
The timing relationships of the Reset module with the POR and RESET_IN are shown in Figure 3 and  
Figure 4.  
NOTE  
Be aware that NVDD must ramp up to at least 1.8V before QVDD is powered up  
to prevent forward biasing.  
90% AVDD  
1
10% AVDD  
POR  
2
RESET_POR  
Exact 300ms  
3
7 cycles @ CLK32  
RESET_DRAM  
4
14 cycles @ CLK32  
HRESET  
RESET_OUT  
CLK32  
HCLK  
Figure 3. Timing Relationship with POR  
MC9328MX1 Technical Data, Rev. 7  
Freescale Semiconductor  
27  
 
Functional Description and Application Information  
5
RESET_IN  
14 cycles @ CLK32  
HRESET  
RESET_OUT  
6
4
CLK32  
HCLK  
Figure 4. Timing Relationship with RESET_IN  
Table 11. Reset Module Timing Parameter Table  
1.8 ꢀ.1 V  
3.ꢀ ꢀ.3 V  
Ref  
No.  
Parameter  
Unit  
Min  
Max  
Min  
Max  
note1  
300  
note1  
300  
1
2
Width of input POWER_ON_RESET  
Width of internal POWER_ON_RESET  
(9600 *CLK32 at 32 kHz)  
300  
300  
ms  
3
4
5
6
7K to 32K-cycle stretcher for SDRAM reset  
7
14  
4
7
14  
7
14  
4
7
14  
Cycles of  
CLK32  
14K to 32K-cycle stretcher for internal system reset  
HRESERT and output reset at pin RESET_OUT  
Cycles of  
CLK32  
Width of external hard-reset RESET_IN  
Cycles of  
CLK32  
4K to 32K-cycle qualifier  
4
4
4
4
Cycles of  
CLK32  
1
POR width is dependent on the 32 or 32.768 kHz crystal oscillator start-up time. Design margin should allow for crystal  
tolerance, i.MX chip variations, temperature impact, and supply voltage influence. Through the process of supplying crystals  
for use with CMOS oscillators, crystal manufacturers have developed a working knowledge of start-up time of their crystals.  
Typically, start-up times range from 400 ms to 1.2 seconds for this type of crystal.  
If an external stable clock source (already running) is used instead of a crystal, the width of POR should be ignored in  
calculating timing for the start-up process.  
4.4  
External Interface Module  
The External Interface Module (EIM) handles the interface to devices external to the i.MX1 processor,  
including the generation of chip-selects for external peripherals and memory. The timing diagram for the  
EIM is shown in Figure 5, and Table 12 defines the parameters of signals.  
MC9328MX1 Technical Data, Rev. 7  
28  
Freescale Semiconductor  
Functional Description and Application Information  
(HCLK) Bus Clock  
Address  
1a  
2a  
3a  
1b  
2b  
Chip-select  
3b  
Read (Write)  
4a  
5a  
4b  
OE (rising edge)  
4c  
5c  
4d  
OE (falling edge)  
EB (rising edge)  
EB (falling edge)  
5b  
5d  
6a  
6a  
6b  
LBA (negated falling edge)  
LBA (negated rising edge)  
6c  
7b  
7a  
BCLK (burst clock) - rising edge  
7c  
7d  
BCLK (burst clock) - falling edge  
Read Data  
8b  
9a  
9a  
8a  
9b  
Write Data (negated falling)  
9c  
Write Data (negated rising)  
DTACK_B  
10a  
10a  
Figure 5. EIM Bus Timing Diagram  
Table 12. EIM Bus Timing Parameter Table  
1.8 ꢀ.1 V  
3.ꢀ ꢀ.3 V  
Ref No.  
Parameter  
Unit  
Min  
Typical Max  
Min  
Typical Max  
1a  
1b  
2a  
2b  
3a  
3b  
Clock fall to address valid  
2.48  
1.55  
2.69  
1.55  
1.35  
1.86  
3.31  
2.48  
3.31  
2.48  
2.79  
2.59  
9.11  
5.69  
7.87  
6.31  
6.52  
6.11  
2.4  
1.5  
2.6  
1.5  
1.3  
1.8  
3.2  
2.4  
3.2  
2.4  
2.7  
2.5  
8.8  
5.5  
7.6  
6.1  
6.3  
5.9  
ns  
ns  
ns  
ns  
ns  
ns  
Clock fall to address invalid  
Clock fall to chip-select valid  
Clock fall to chip-select invalid  
Clock fall to Read (Write) Valid  
Clock fall to Read (Write) Invalid  
MC9328MX1 Technical Data, Rev. 7  
Freescale Semiconductor  
29  
 
 
Functional Description and Application Information  
Table 12. EIM Bus Timing Parameter Table (Continued)  
1.8 ꢀ.1 V  
3.ꢀ ꢀ.3 V  
Ref No.  
Parameter  
Unit  
Min  
Typical Max  
Min  
Typical Max  
4a  
4b  
4c  
4d  
5a  
5b  
5c  
5d  
6a  
6b  
6c  
7a  
7b  
7c  
7d  
8a  
8b  
9a  
9b  
9c  
10a  
Clock1 rise to Output Enable Valid  
Clock1 rise to Output Enable Invalid  
Clock1 fall to Output Enable Valid  
Clock1 fall to Output Enable Invalid  
Clock1 rise to Enable Bytes Valid  
Clock1 rise to Enable Bytes Invalid  
Clock1 fall to Enable Bytes Valid  
Clock1 fall to Enable Bytes Invalid  
Clock1 fall to Load Burst Address Valid  
Clock1 fall to Load Burst Address Invalid  
Clock1 rise to Load Burst Address Invalid  
Clock1 rise to Burst Clock rise  
Clock1rise to Burst Clock fall  
2.32  
2.11  
2.38  
2.17  
1.91  
1.81  
1.97  
1.76  
2.07  
1.97  
1.91  
1.61  
1.61  
1.55  
1.55  
5.54  
0
2.62  
2.52  
2.69  
2.59  
2.52  
2.42  
2.59  
2.48  
2.79  
2.79  
2.62  
2.62  
2.62  
2.48  
2.59  
6.85  
6.55  
7.04  
6.73  
5.54  
5.24  
5.69  
5.38  
6.73  
6.83  
6.45  
5.64  
5.84  
5.59  
5.80  
2.3  
2.1  
2.3  
2.1  
1.9  
1.8  
1.9  
1.7  
2.0  
1.9  
1.9  
1.6  
1.6  
1.5  
1.5  
5.5  
0
2.6  
2.5  
2.6  
2.5  
2.5  
2.4  
2.5  
2.4  
2.7  
2.7  
2.6  
2.6  
2.6  
2.4  
2.5  
6.8  
6.5  
6.8  
6.5  
5.5  
5.2  
5.5  
5.2  
6.5  
6.6  
6.4  
5.6  
5.8  
5.4  
5.6  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Clock1 fall to Burst Clock rise  
Clock1 fall to Burst Clock fall  
Read Data setup time  
Read Data hold time  
Clock1 rise to Write Data Valid  
Clock1 fall to Write Data Invalid  
Clock1 rise to Write Data Invalid  
DTACK setup time  
1.81  
1.45  
1.63  
2.52  
2.72  
2.48  
6.85  
5.69  
1.8  
1.4  
1.62  
2.5  
2.7  
2.4  
6.8  
5.5  
1
Clock refers to the system clock signal, HCLK, generated from the System DPLL  
4.4.1  
DTACK Signal Description  
The DTACK signal is the external input data acknowledge signal. When using the external DTACK signal  
as a data acknowledge signal, the bus time-out monitor generates a bus error when a bus cycle is not  
terminated by the external DTACK signal after 1022 HCLK counts have elapsed. Only the CS5 group  
supports DTACK signal function when the external DTACK signal is used for data acknowledgement.  
4.4.2  
DTACK Signal Timing  
Figure 6 through Figure 9 show the access cycle timing used by chip-select 5. The signal values and units  
of measure for this figure are found in the associated tables.  
MC9328MX1 Technical Data, Rev. 7  
30  
Freescale Semiconductor  
Functional Description and Application Information  
4.4.2.1  
WAIT Read Cycle without DMA  
3
Address  
2
CS5  
EB  
8
1
9
programmable  
min 0ns  
5
OE  
4
WAIT  
7
6
DATABUS  
10  
11  
X1)  
Figure 6. WAIT Read Cycle without DMA  
Table 13. WAIT Read Cycle without DMA: WSC = 111111, DTACK_SEL=1, HCLK=96MHz  
3.ꢀ ꢀ.3 V  
Number  
Characteristic  
Unit  
Minimum  
Maximum  
1
OE and EB assertion time  
CS5 pulse width  
See note 2  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2
3T  
56.81  
3
OE negated to address inactive  
Wait asserted after OE asserted  
Wait asserted to OE negated  
Data hold timing after OE negated  
Data ready after wait asserted  
OE negated to CS negated  
OE negated after EB negated  
Become low after CS5 asserted  
Wait pulse width  
4
1020T  
3T+7.17  
5
2T+2.2  
T-1.86  
0
6
7
T
8
9
1.5T+0.24  
0.5  
1.5T+0.85  
1.5  
10  
0
1019T  
1020T  
11  
1T  
Note:  
1. T is the system clock period. (For 96 MHz system clock, T=10.42 ns)  
2. OE and EB assertion time is programmable by OEA bit in CS5L register. EB assertion in read cycle will occur only when  
EBC bit in CS5L register is clear.  
3. Address becomes valid and CS asserts at the start of read access cycle.  
4. The external wait input requirement is eliminated when CS5 is programmed to use internal wait state.  
MC9328MX1 Technical Data, Rev. 7  
Freescale Semiconductor  
31  
Functional Description and Application Information  
4.4.2.2  
WAIT Read Cycle DMA Enabled  
4
Address  
2
9
CS5  
EB  
1
10  
programmable  
min 0ns  
3
7
6
OE  
RW  
(logic high)  
WAIT  
5
8
11  
DATABUS  
12  
nput to  
MX1)  
Figure 7. DTACK WAIT Read Cycle DMA Enabled  
Table 14. DTACK WAIT Read Cycle DMA Enabled: WSC = 111111, DTACK_SEL=1, HCLK=96MHz  
3.ꢀ ꢀ.3 V  
Number  
Characteristic  
Unit  
Minimum  
Maximum  
1
2
OE and EB assertion time  
See note 2  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CS pulse width  
3T  
1.5T+0.85  
0.93  
3
OE negated before CS5 is negated  
Address inactived before CS negated  
Wait asserted after CS5 asserted  
Wait asserted to OE negated  
Data hold timing after OE negated  
Data ready after wait is asserted  
CS deactive to next CS active  
OE negate after EB negate  
1.5T+0.24  
4
5
2T+2.2  
T-1.86  
1020T  
3T+7.17  
6
7
8
T
9
T
10  
11  
0.5  
1.5  
Wait becomes low after CS5 asserted  
0
1019T  
MC9328MX1 Technical Data, Rev. 7  
32  
Freescale Semiconductor  
Functional Description and Application Information  
Table 14. DTACK WAIT Read Cycle DMA Enabled: WSC = 111111, DTACK_SEL=1, HCLK=96MHz (Continued)  
3.ꢀ ꢀ.3 V  
Number  
Characteristic  
Unit  
Minimum  
Maximum  
12  
Wait pulse width  
1T  
1020T  
ns  
Note:  
1. T is the system clock period. (For 96 MHz system clock, T=10.42 ns)  
2. OE and EB assertion time is programmable by OEA bit in CS5L register. EB assertion in read cycle will occur only when  
EBC bit in CS5L register is clear.  
3. Address becomes valid and CS asserts at the start of read access cycle.  
4. The external wait input requirement is eliminated when CS5 is programmed to use internal wait state.  
4.4.2.3  
WAIT Write Cycle without DMA  
5
Address  
3
1
programmable  
min 0ns  
CS5  
EB  
10  
2
programmable  
min 0ns  
4
7
RW  
(logic high)  
WAIT  
OE  
6
11  
9
8
12  
DATABUS  
(output from  
i.MX1)  
Figure 8. WAIT Write Cycle without DMA  
Table 15. WAIT Write Cycle without DMA: WSC = 111111, DTACK_SEL=1, HCLK=96MHz  
3.ꢀ ꢀ.3 V  
Number  
Characteristic  
Unit  
Minimum  
Maximum  
1
2
3
4
5
6
CS5 assertion time  
See note 2  
See note 2  
3T  
ns  
ns  
ns  
ns  
ns  
ns  
EB assertion time  
CS5 pulse width  
2.5T+0.68  
RW negated before CS5 is negated  
RW negated to Address inactive  
Wait asserted after CS5 asserted  
2.5T-0.29  
67.28  
1020T  
MC9328MX1 Technical Data, Rev. 7  
Freescale Semiconductor  
33  
Functional Description and Application Information  
Table 15. WAIT Write Cycle without DMA: WSC = 111111, DTACK_SEL=1, HCLK=96MHz (Continued)  
3.ꢀ ꢀ.3 V  
Number  
Characteristic  
Unit  
Minimum  
Maximum  
7
8
Wait asserted to RW negated  
Data hold timing after RW negated  
Data ready after CS5 is asserted  
EB negated after CS5 is negated  
Wait becomes low after CS5 asserted  
Wait pulse width  
1T+2.15  
2T+7.34  
ns  
ns  
ns  
ns  
ns  
ns  
2.5T-1.18  
9
T
10  
11  
12  
1.5T+0.74  
1.5T+2.35  
1019T  
1020T  
0
1T  
Note:  
1. T is the system clock period. (For 96 MHz system clock, T=10.42 ns)  
2. CS5 assertion can be controlled by CSA bits. EB assertion can also be programmable by WEA bits in CS5L register.  
3. Address becomes valid and RW asserts at the start of write access cycle.  
4. The external wait input requirement is eliminated when CS5 is programmed to use internal wait state.  
4.4.2.4  
WAIT Write Cycle DMA Enabled  
5
Address  
1
3
10  
programmable  
min 0ns  
CS5  
2
11  
programmable  
min 0ns  
EB  
4
7
RW  
OE (logic high)  
WAIT  
6
12  
9
8
13  
DATABUS  
Figure 9. WAIT Write Cycle DMA Enabled  
MC9328MX1 Technical Data, Rev. 7  
34  
Freescale Semiconductor  
Functional Description and Application Information  
Table 16. WAIT Write Cycle DMA Enabled: WSC = 111111, DTACK_SEL=1, HCLK=96MHz  
3.ꢀ ꢀ.3 V  
Number  
Characteristic  
Unit  
Minimum  
Maximum  
1
2
CS5 assertion time  
See note 2  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
EB assertion time  
See note 2  
3
CS5 pulse width  
3T  
4
RW negated before CS5 is negated  
Address inactived after CS negated  
Wait asserted after CS5 asserted  
Wait asserted to RW negated  
Data hold timing after RW negated  
Data ready after CS5 is asserted  
CS deactive to next CS active  
EB negate after CS negate  
Wait becomes low after CS5 asserted  
Wait pulse width  
2.5T-0.29  
2.5T+0.68  
0.93  
5
6
1020T  
2T+7.34  
7
T+2.15  
8
24.87  
9
T
10  
11  
12  
13  
T
1.5T+0.74  
1.5T+2.35  
1019T  
1020T  
0
ns  
ns  
1T  
Note:  
1. T is the system clock period. (For 96 MHz system clock, T=10.42 ns)  
2. CS5 assertion can be controlled by CSA bits. EB assertion also can be programmable by WEA bits in CS5L register.  
3. Address becomes valid and RW asserts at the start of write access cycle.  
4.The external wait input requirement is eliminated when CS5 is programmed to use internal wait state.  
4.4.3  
EIM External Bus Timing  
The External Interface Module (EIM) is the interface to devices external to the i.MX1, including  
generation of chip-selects for external peripherals and memory. The timing diagram for the EIM is shown  
in Figure 5, and Table 12 defines the parameters of signals.  
MC9328MX1 Technical Data, Rev. 7  
Freescale Semiconductor  
35  
Functional Description and Application Information  
hclk  
hsel_weim_cs[0]  
htrans  
hwrite  
Seq/Nonseq  
Read  
haddr  
hready  
V1  
weim_hrdata  
weim_hready  
Last Valid Data  
V1  
BCLK (burst clock)  
ADDR  
Last Valid Address  
V1  
CS2  
R/W  
Read  
LBA  
OE  
EBx1 (EBC2=0)  
EBx1 (EBC2=1)  
DATA  
V1  
Note 1: x = 0, 1, 2 or 3  
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register  
Figure 1ꢀ. WSC = 1, A.HALF/E.HALF  
MC9328MX1 Technical Data, Rev. 7  
36  
Freescale Semiconductor  
Functional Description and Application Information  
hclk  
hsel_weim_cs[0]  
htrans  
Nonseq  
Write  
V1  
hwrite  
haddr  
hready  
hwdata  
Last Valid Data  
Write Data (V1)  
Unknown  
weim_hrdata  
Last Valid Data  
weim_hready  
BCLK (burst clock)  
ADDR  
Last Valid Address  
V1  
CS0  
R/W  
Write  
LBA  
OE  
EB  
DATA  
Last Valid Data  
Write Data (V1)  
Figure 11. WSC = 1, WEA = 1, WEN = 1, A.HALF/E.HALF  
MC9328MX1 Technical Data, Rev. 7  
Freescale Semiconductor  
37  
Functional Description and Application Information  
hclk  
hsel_weim_cs[0]  
htrans  
hwrite  
haddr  
Nonseq  
Read  
V1  
hready  
weim_hrdata  
Last Valid Data  
V1 Word  
weim_hready  
BCLK (burst clock)  
ADDR  
Last Valid Addr  
Address V1  
Address V1 + 2  
CS0  
Read  
R/W  
LBA  
OE  
EBx1 (EBC2=0)  
EBx1 (EBC2=1)  
1/2 Half Word  
2/2 Half Word  
DATA  
Note 1: x = 0, 1, 2 or 3  
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register  
Figure 12. WSC = 1, OEA = 1, A.WORD/E.HALF  
MC9328MX1 Technical Data, Rev. 7  
38  
Freescale Semiconductor  
Functional Description and Application Information  
hclk  
hsel_weim_cs[0]  
htrans  
Nonseq  
Write  
V1  
hwrite  
haddr  
hready  
hwdata  
Last Valid Data  
Write Data (V1 Word)  
weim_hrdata  
Last Valid Data  
weim_hready  
BCLK (burst clock)  
ADDR  
Last Valid Addr  
Address V1  
Address V1 + 2  
CS0  
R/W  
LBA  
Write  
OE  
EB  
DATA  
1/2 Half Word  
2/2 Half Word  
Figure 13. WSC = 1, WEA = 1, WEN = 2, A.WORD/E.HALF  
MC9328MX1 Technical Data, Rev. 7  
Freescale Semiconductor  
39  
Functional Description and Application Information  
hclk  
hsel_weim_cs[3]  
Nonseq  
htrans  
hwrite  
Read  
V1  
haddr  
hready  
weim_hrdata  
Last Valid Data  
V1 Word  
weim_hready  
BCLK (burst clock)  
ADDR  
Last Valid Addr  
Address V1  
Address V1 + 2  
CS[3]  
R/W  
LBA  
Read  
OE  
EBx1 (EBC2=0)  
EBx1 (EBC2=1)  
DATA  
Note 1: x = 0, 1, 2 or 3  
1/2 Half Word  
2/2 Half Word  
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register  
Figure 14. WSC = 3, OEA = 2, A.WORD/E.HALF  
MC9328MX1 Technical Data, Rev. 7  
40  
Freescale Semiconductor  
Functional Description and Application Information  
hclk  
hsel_weim_cs[3]  
htrans  
Nonseq  
Write  
V1  
hwrite  
haddr  
hready  
hwdata Last Valid  
Data  
Write Data (V1 Word)  
weim_hrdata  
Last Valid Data  
weim_hready  
BCLK (burst clock)  
ADDR  
Last Valid Addr  
Address V1  
Address V1 + 2  
CS3  
R/W  
LBA  
OE  
Write  
EB  
DATA  
Last Valid Data  
1/2 Half Word  
2/2 Half Word  
Figure 15. WSC = 3, WEA = 1, WEN = 3, A.WORD/E.HALF  
MC9328MX1 Technical Data, Rev. 7  
Freescale Semiconductor  
41  
Functional Description and Application Information  
hclk  
hsel_weim_cs[2]  
htrans  
Nonseq  
Read  
V1  
hwrite  
haddr  
hready  
weim_hrdata  
Last Valid Data  
V1 Word  
weim_hready  
BCLK (burst clock)  
ADDR  
Last Valid Addr  
Address V1  
Address V1 + 2  
CS2  
R/W  
Read  
LBA  
OE  
EBx1 (EBC2=0)  
EBx1 (EBC2=1)  
weim_data_in  
1/2 Half Word  
2/2 Half Word  
Note 1: x = 0, 1, 2 or 3  
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register  
Figure 16. WSC = 3, OEA = 4, A.WORD/E.HALF  
MC9328MX1 Technical Data, Rev. 7  
42  
Freescale Semiconductor  
Functional Description and Application Information  
hclk  
hsel_weim_cs[2]  
htrans  
Nonseq  
Write  
V1  
hwrite  
haddr  
hready  
hwdata  
Last Valid  
Data  
Write Data (V1 Word)  
weim_hrdata  
Last Valid Data  
weim_hready  
BCLK (burst clock)  
ADDR Last Valid Addr  
Address V1  
Address V1 + 2  
CS2  
R/W  
Write  
LBA  
OE  
EB  
DATA  
Last Valid Data  
1/2 Half Word  
2/2 Half Word  
Figure 17. WSC = 3, WEA = 2, WEN = 3, A.WORD/E.HALF  
MC9328MX1 Technical Data, Rev. 7  
Freescale Semiconductor  
43  
Functional Description and Application Information  
hclk  
hsel_weim_cs[2]  
htrans  
Nonseq  
Read  
V1  
hwrite  
haddr  
hready  
weim_hrdata  
Last Valid Data  
V1 Word  
weim_hready  
BCLK (burst clock)  
ADDR  
Last Valid Addr  
Address V1  
Address V1 + 2  
CS2  
R/W  
LBA  
Read  
OE  
EBx1 (EBC2=0)  
EBx1 (EBC2=1)  
DATA  
Note 1: x = 0, 1, 2 or 3  
1/2 Half Word  
2/2 Half Word  
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register  
Figure 18. WSC = 3, OEN = 2, A.WORD/E.HALF  
MC9328MX1 Technical Data, Rev. 7  
44  
Freescale Semiconductor  
Functional Description and Application Information  
hclk  
hsel_weim_cs[2]  
htrans  
Nonseq  
Read  
V1  
hwrite  
haddr  
hready  
weim_hrdata  
Last Valid Data  
V1 Word  
weim_hready  
BCLK (burst clock)  
ADDR  
Last Valid Addr  
Address V1  
Address V1 + 2  
CS2  
R/W  
LBA  
Read  
OE  
EBx1 (EBC2=0)  
EBx1 (EBC2=1)  
DATA  
Note 1: x = 0, 1, 2 or 3  
1/2 Half Word  
2/2 Half Word  
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register  
Figure 19. WSC = 3, OEA = 2, OEN = 2, A.WORD/E.HALF  
MC9328MX1 Technical Data, Rev. 7  
Freescale Semiconductor  
45  
Functional Description and Application Information  
hclk  
hsel_weim_cs[2]  
htrans  
Nonseq  
Write  
V1  
hwrite  
haddr  
hready  
hwdata  
Last Valid  
Data  
Write Data (V1 Word)  
Last Valid Data  
Unknown  
weim_hrdata  
weim_hready  
BCLK (burst clock)  
ADDR Last Valid Addr  
Address V1  
Address V1 + 2  
CS2  
R/W  
Write  
LBA  
OE  
EB  
DATA  
Last Valid Data  
1/2 Half Word  
2/2 Half Word  
Figure 2ꢀ. WSC = 2, WWS = 1, WEA = 1, WEN = 2, A.WORD/E.HALF  
MC9328MX1 Technical Data, Rev. 7  
46  
Freescale Semiconductor  
Functional Description and Application Information  
hclk  
hsel_weim_cs[2]  
htrans  
Nonseq  
Write  
V1  
hwrite  
haddr  
hready  
hwdata  
Last Valid  
Data  
Write Data (V1 Word)  
Unknown  
weim_hrdata  
Last Valid Data  
weim_hready  
BCLK (burst clock)  
ADDR  
Last Valid Addr  
Address V1  
Address V1 + 2  
CS2  
R/W  
LBA  
OE  
Write  
EB  
DATA  
Last Valid Data  
1/2 Half Word  
2/2 Half Word  
Figure 21. WSC = 1, WWS = 2, WEA = 1, WEN = 2, A.WORD/E.HALF  
MC9328MX1 Technical Data, Rev. 7  
Freescale Semiconductor  
47  
Functional Description and Application Information  
hclk  
hsel_weim_cs[2]  
Nonseq  
Read  
V1  
Nonseq  
Write  
V8  
htrans  
hwrite  
haddr  
hready  
hwdata  
Last Valid Data  
Write Data  
Read Data  
weim_hrdata  
weim_hready  
Last Valid Data  
BCLK (burst clock)  
ADDR  
Last Valid Addr  
Address V1  
Address V8  
CS2  
R/W  
LBA  
Read  
Write  
OE  
EBx1 (EBC2=0)  
EBx1 (EBC2=1)  
DATA  
DATA  
Read Data  
Last Valid Data  
Write Data  
Note 1: x = 0, 1, 2 or 3  
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register  
Figure 22. WSC = 2, WWS = 2, WEA = 1, WEN = 2, A.HALF/E.HALF  
MC9328MX1 Technical Data, Rev. 7  
48  
Freescale Semiconductor  
Functional Description and Application Information  
Read  
Idle  
Write  
hclk  
hsel_weim_cs[2]  
htrans  
Nonseq  
Read  
V1  
Nonseq  
Write  
V8  
hwrite  
haddr  
hready  
hwdata  
Last Valid Data  
Write Data  
Read Data  
weim_hrdata  
weim_hready  
Last Valid Data  
BCLK (burst clock)  
ADDR  
Last Valid Addr  
Address V1  
Address V8  
Write  
CS2  
R/W  
LBA  
Read  
OE  
EBx1 (EBC2=0)  
EBx1 (EBC2=1)  
DATA  
DATA  
Read Data  
Last Valid Data  
Write Data  
Note 1: x = 0, 1, 2 or 3  
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register  
Figure 23. WSC = 2, WWS = 1, WEA = 1, WEN = 2, EDC = 1, A.HALF/E.HALF  
MC9328MX1 Technical Data, Rev. 7  
Freescale Semiconductor  
49  
Functional Description and Application Information  
hclk  
hsel_weim_cs[4]  
htrans  
Nonseq  
Write  
V1  
hwrite  
haddr  
hready  
hwdata  
Last Valid  
Data  
Write Data (Word)  
Last Valid Data  
weim_hrdata  
weim_hready  
BCLK (burst clock)  
ADDR  
Last Valid Addr  
Address V1  
Address V1 + 2  
CS  
R/W  
Write  
LBA  
OE  
EB  
DATA  
Last Valid Data  
Write Data (1/2 Half Word)  
Write Data (2/2 Half Word)  
Figure 24. WSC = 2, CSA = 1, WWS = 1, A.WORD/E.HALF  
MC9328MX1 Technical Data, Rev. 7  
50  
Freescale Semiconductor  
Functional Description and Application Information  
hclk  
hsel_weim_cs[4]  
htrans  
Nonseq  
Read  
V1  
Nonseq  
Write  
V8  
hwrite  
haddr  
hready  
hwdata  
weim_hrdata  
weim_hready  
Last Valid Data  
Write Data  
Read Data  
Last Valid Data  
BCLK (burst clock)  
ADDR Last Valid Addr  
Address V1  
Address V8  
CS4  
R/W  
LBA  
OE  
Read  
Write  
EBx1 (EBC2=0)  
EBx1 (EBC2=1)  
Read Data  
DATA  
DATA  
Last Valid Data  
Write Data  
Note 1: x = 0, 1, 2 or 3  
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register  
Figure 25. WSC = 3, CSA = 1, A.HALF/E.HALF  
MC9328MX1 Technical Data, Rev. 7  
Freescale Semiconductor  
51  
Functional Description and Application Information  
hclk  
hsel_weim_cs[4]  
htrans  
hwrite  
haddr  
Nonseq  
Read  
V1  
Idle  
Seq  
Read  
V2  
hready  
weim_hrdata  
weim_hready  
Last Valid Data  
Read Data (V1)  
Read Data (V2)  
BCLK (burst clock)  
ADDR  
Last Valid  
Address V1  
Address V2  
CNC  
CS4  
R/W  
LBA  
Read  
OE  
EBx1 (EBC2=0)  
EBx1 (EBC2=1)  
Read Data  
(V1)  
Read Data  
(V2)  
DATA  
Note 1: x = 0, 1, 2 or 3  
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register  
Figure 26. WSC = 2, OEA = 2, CNC = 3, BCM = 1, A.HALF/E.HALF  
MC9328MX1 Technical Data, Rev. 7  
52  
Freescale Semiconductor  
Functional Description and Application Information  
hclk  
hsel_weim_cs[4]  
htrans  
Nonseq  
Read  
V1  
Idle Nonseq  
hwrite  
haddr  
Write  
V8  
hready  
hwdata  
Last Valid Data  
Write Data  
Read Data  
weim_hrdata  
Last Valid Data  
weim_hready  
BCLK (burst clock)  
ADDR  
Last Valid Addr  
Address V1  
Address V8  
CNC  
CS4  
R/W  
LBA  
OE  
Read  
Write  
EBx1 (EBC2=0)  
EBx1 (EBC2=1)  
DATA  
DATA  
Read Data  
Last Valid Data  
Write Data  
Note 1: x = 0, 1, 2 or 3  
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register  
Figure 27. WSC = 2, OEA = 2, WEA = 1, WEN = 2, CNC = 3, A.HALF/E.HALF  
MC9328MX1 Technical Data, Rev. 7  
Freescale Semiconductor  
53  
Functional Description and Application Information  
hclk  
hsel_weim_cs[2]  
htrans  
Idle  
Nonseq  
Nonse  
Read  
V5  
hwrite  
haddr  
Read  
V1  
hready  
weim_hrdata  
weim_hready  
BCLK (burst clock)  
ADDR  
Last Valid Addr  
Address V1  
Address V5  
CS2  
Read  
R/W  
LBA  
OE  
EBx1 (EBC2=0)  
EBx1 (EBC2=1)  
ECB  
DATA  
V1 Word V2 Word  
V5 Word V6 Word  
Note 1: x = 0, 1, 2 or 3  
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register  
Figure 28. WSC = 3, SYNC = 1, A.HALF/E.HALF  
MC9328MX1 Technical Data, Rev. 7  
54  
Freescale Semiconductor  
Functional Description and Application Information  
hclk  
hsel_weim_cs[2]  
htrans  
Idle  
Nonseq  
Read  
V1  
Seq  
Read  
V2  
Seq  
Read  
V3  
Seq  
Read  
V4  
hwrite  
haddr  
hready  
weim_hrdata  
weim_hready  
BCLK (burst clock)  
ADDR  
Last Valid Data  
V1 Word  
V2 Word  
V3 Word  
V4 Word  
Last Valid Addr  
Address V1  
CS2  
R/W  
LBA  
Read  
OE  
EBx1 (EBC2=0)  
EBx1 (EBC2=1)  
ECB  
DATA  
V1 Word  
V2 Word  
V3 Word  
V4 Word  
Note 1: x = 0, 1, 2 or 3  
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register  
Figure 29. WSC = 2, SYNC = 1, DOL = [1/ꢀ], A.WORD/E.WORD  
MC9328MX1 Technical Data, Rev. 7  
Freescale Semiconductor  
55  
Functional Description and Application Information  
hclk  
hsel_weim_cs[2]  
htrans  
Idle  
Seq  
Nonseq  
hwrite  
haddr  
Read  
V1  
Read  
V2  
hready  
weim_hrdata  
Last Valid Data  
V1 Word  
V2 Word  
weim_hready  
BCLK (burst clock)  
ADDR  
CS2  
Last Valid  
Address V1  
Address V2  
Read  
R/W  
LBA  
OE  
EBx1 (EBC2=0)  
EBx1 (EBC2=1)  
ECB  
DATA  
V1 1/2  
V1 2/2  
V2 1/2  
V2 2/2  
Note 1: x = 0, 1, 2 or 3  
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register  
Figure 3ꢀ. WSC = 2, SYNC = 1, DOL = [1/ꢀ], A.WORD/E.HALF  
MC9328MX1 Technical Data, Rev. 7  
56  
Freescale Semiconductor  
Functional Description and Application Information  
hclk  
hsel_weim_cs[2]  
Non  
seq  
Idle  
htrans  
hwrite  
Seq  
Read  
V1  
Read  
V2  
haddr  
hready  
weim_hrdata  
Last Valid Data  
V1 Word  
V2 Word  
weim_hready  
BCLK (burst clock)  
Last  
ADDR  
CS2  
Address V1  
Read  
R/W  
LBA  
OE  
EBx1 (EBC2=0)  
EBx1 (EBC2=1)  
ECB  
DATA  
V1 1/2  
V1 2/2  
V2 1/2  
V2 2/2  
Note 1: x = 0, 1, 2 or 3  
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register  
Figure 31. WSC = 7, OEA = 8, SYNC = 1, DOL = 1, BCD = 1, BCS = 2, A.WORD/E.HALF  
MC9328MX1 Technical Data, Rev. 7  
Freescale Semiconductor  
57  
Functional Description and Application Information  
hclk  
hsel_weim_cs[2]  
Non  
seq  
htrans  
hwrite  
haddr  
Idle  
Seq  
Read  
V2  
Read  
V1  
hready  
weim_hrdata  
Last Valid Data  
V1 Word  
V2 Word  
weim_hready  
BCLK (burst clock)  
ADDR  
Last  
Address V1  
CS2  
R/W  
LBA  
Read  
OE  
EBx1 (EBC2=0)  
EBx1 (EBC2=1)  
ECB  
DATA  
V1 1/2  
V1 2/2  
V2 1/2  
V2 2/2  
Note 1: x = 0, 1, 2 or 3  
Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register  
Figure 32. WSC = 7, OEA = 8, SYNC = 1, DOL = 1, BCD = 1, BCS = 1, A.WORD/E.HALF  
MC9328MX1 Technical Data, Rev. 7  
58  
Freescale Semiconductor  
Functional Description and Application Information  
4.4.4  
Non-TFT Panel Timing  
T1  
T1  
VSYN  
T3  
T4  
T2  
T2  
XMAX  
HSYN  
SCLK  
Ts  
LD[15:0]  
Figure 33. Non-TFT Panel Timing  
Table 17. Non TFT Panel Timing Diagram  
Allowed Register  
Symbol  
Parameter  
Actual Value  
Unit  
Minimum Value1, 2  
Tpix4  
Tpix  
T1  
HSYN to VSYN delay3  
0
HWAIT2+2  
HWIDTH+1  
T2  
T3  
HSYN pulse width  
VSYN to SCLK  
0
0 T3 Ts5  
T4  
SCLK to HSYN  
0
HWAIT1+1  
Tpix  
1
Maximum frequency of LCDC_CLK is 48 MHz, which is controlled by Peripheral Clock Divider Register.  
Maximum frequency of SCLK is HCLK / 5, otherwise LD output will be wrong.  
2
3
VSYN, HSYN and SCLK can be programmed as active high or active low. In the above timing diagram, all  
these 3 signals are active high.  
4
5
Tpix is the pixel clock period which equals LCDC_CLK period * (PCD + 1).  
Ts is the shift clock period. Ts = Tpix * (panel data bus width).  
4.5  
Pen ADC Specifications  
The specifications for the pen ADC are shown in Table 18 through Table 20.  
Table 18. Pen ADC System Performance  
Full Range Resolution1  
Non-Linearity Error1  
Accuracy 1  
13 bits  
4 bits  
9 bits  
1
Tested under input = 0~1.8V at 25°C  
MC9328MX1 Technical Data, Rev. 7  
Freescale Semiconductor  
59  
 
Functional Description and Application Information  
Table 19. Pen ADC Test Conditions  
Vp max 1800 mV ip max +7 µA  
Vp min  
Vn  
GND  
GND  
ip min  
in  
1.5 µA  
1.5 µA  
Sample frequency  
Sample rate  
12 MHz  
1.2 KHz  
100 Hz  
Input frequency  
Input range  
0–1800 mV  
Note: Ru1 = Ru2 = 200K  
Table 2ꢀ. Pen ADC Absolute Rating  
ip max  
ip min  
in max  
in min  
+9.5 µA  
-2.5 µA  
+9.5 µA  
-2.5 µA  
4.6  
ASP Touch Panel Controller  
The following sections contain the electrical specifications of the ASP touch panel controller. The value  
of parameters and their corresponding measuring conditions are mentioned as well.  
4.6.1  
Electrical Specifications  
Test conditions: Temperature = 25º C, QVDD = 1800mV.  
Table 21. ASP Touch Panel Controller Electrical Spec  
Parameter  
Minimum  
Typical  
Maximum  
Unit  
Offset  
32768  
8199  
Offset Error  
Gain  
mV-1  
13.65  
Gain Error  
DNL  
9
33%  
8
Bits  
Bits  
Bits  
mV  
mV  
Ohm  
INL  
0
Accuracy (without missing code)  
Operating Voltage Range (Pen)  
Operating Voltage Range (U)  
On-resistance of switches SW[8:1]  
8
9
QVDD  
QVDD  
Negative QVDD  
10  
Note that QVDD should be 1800mV.  
MC9328MX1 Technical Data, Rev. 7  
60  
Freescale Semiconductor  
Functional Description and Application Information  
4.6.2  
Gain Calculations  
The ideal mapping of input voltage to output digital sample is defined as follows:  
Sample  
65535  
Smax  
G0  
C0  
Vi  
2400  
-2400  
1800  
Figure 34. Gain Calculations  
In general, the mapping function is:  
S = G * V + C  
Where V is input, S is output, G is the slope, and C is the y-intercept.  
-1  
Nominal Gain G = 65535 / 4800 = 13.65mV  
0
Nominal Offset C = 65535 / 2 = 32767  
0
4.6.3  
Offset Calculations  
The ideal mapping of input voltage to output digital sample is defined as:  
Sample  
65535  
G0  
Smax  
C0  
Vi  
2400  
-2400  
1800  
Figure 35. Offset Calculations  
In general, the mapping function is:  
S = G * V + C  
Where V is input, S is output, G is the slope, and C is the y-intercept.  
-1  
Nominal Gain G = 65535 / 4800 = 13.65mV  
0
Nominal Offset C = 65535 / 2 = 32767  
0
MC9328MX1 Technical Data, Rev. 7  
Freescale Semiconductor  
61  
Functional Description and Application Information  
4.6.4  
Gain Error Calculations  
Gain error calculations are made using the information in this section.  
Sample  
Gmax  
65535  
Smax  
G0  
C0  
Vi  
2400  
- 2400  
1800  
Figure 36. Gain Error Calculations  
Assuming the offset remains unchanged, the mapping is rotated around y-intercept to determine the  
maximum gain allowed. This occurs when the sample at 1800mV has just reached the ceiling of the 16-bit  
range, 65535.  
Maximum Offset G  
max,  
G
= (65535 - C / 1800  
max  
0)  
= (65535 - 32767) / 1800  
= 18.20  
Gain Error G  
r,  
G
= (G  
- G ) / G * 100%  
max 0 0  
r
= (18.20 - 13.65) / 13.65 * 100%  
= 33%  
4.7  
Bluetooth Accelerator  
CAUTION  
On-chip accelerator hardware is not supported by software. An external  
Bluetooth chip interfaced to a UART is recommended.  
The Bluetooth Accelerator (BTA) radio interface supports the Wireless RF Transceiver, MC13180 using  
an SPI interface. This section provides the data bus timing diagrams and SPI interface timing diagrams  
shown in Figure 37 and Figure 38, and the associated parameters shown in Table 22 and Table 23.  
MC9328MX1 Technical Data, Rev. 7  
62  
Freescale Semiconductor  
Functional Description and Application Information  
2
BT CLK (BT1)  
7
Receive  
FS (BT5)  
1
PKT DATA (BT3)  
3
4
RXTX_EN (BT9)  
PKT DATA (BT2)  
Transmit  
8
5
6
Figure 37. MC1318ꢀ Data Bus Timing Diagram  
Table 22. MC1318ꢀ Data Bus Timing Parameter Table  
Ref No.  
Parameter  
Minimum Typical Maximum Unit  
1
2
3
4
5
6
7
8
FrameSync setup time relative to BT CLK rising edge1  
FrameSync hold time relative to BT CLK rising edge1  
Receive Data setup time relative to BT CLK rising edge1  
Receive Data hold time relative to BT CLK rising edge1  
Transmit Data setup time relative to RXTX_EN rising edge2  
TX DATA period  
4
ns  
ns  
ns  
ns  
µs  
ns  
%
12  
6
13  
172.5  
192.5  
1000 +/- 0.02  
BT CLK duty cycle  
40  
4
60  
10  
Transmit Data hold time relative to RXTX_EN falling edge  
µs  
1
2
Please refer to 2.4 GHz RF Transceiver Module (MC13180) Technical Data documentation.  
The setup and hold times of RX_TX_EN can be adjusted by programming Time_A_B register (0x00216050) and  
RF_Status (0x0021605C) registers.  
MC9328MX1 Technical Data, Rev. 7  
Freescale Semiconductor  
63  
Functional Description and Application Information  
5
1
4
6
SPI CLK (BT13)  
9
SPI_EN (BT11)  
8
SPI_DATA_OUT (BT12)  
3
7
SPI_DATA_IN (BT4)  
2
Figure 38. SPI Interface Timing Diagram Using MC1318ꢀ  
Table 23. SPI Interface Timing Parameter Table Using MC1318ꢀ  
Ref No.  
Parameter  
Minimum Maximum  
Unit  
1
2
3
4
5
6
7
8
9
SPI_EN setup time relative to rising edge of SPI_CLK  
Transmit data delay time relative to rising edge of SPI_CLK  
Transmit data hold time relative to rising edge of SPI_EN  
SPI_CLK rise time  
15  
0
15  
15  
25  
25  
ns  
ns  
0
ns  
0
ns  
SPI_CLK fall time  
0
ns  
SPI_EN hold time relative to falling edge of SPI_CLK  
Receive data setup time relative to falling edge of SPI_CLK1  
Receive data hold time relative to falling edge of SPI_CLK1  
SPI_CLK frequency, 50% duty cycle required1  
15  
15  
15  
ns  
ns  
ns  
20  
MHz  
1
The SPI_CLK clock frequency and duty cycle, setup and hold times of receive data can be set by programming  
SPI_Control (0x00216138) register together with system clock.  
4.8  
SPI Timing Diagrams  
To use the internal transmit (TX) and receive (RX) data FIFOs when the SPI 1 module is configured as a  
master, two control signals are used for data transfer rate control: the SS signal (output) and the SPI_RDY  
signal (input). The SPI1 Sample Period Control Register (PERIODREG1) and the SPI2 Sample Period  
Control Register (PERIODREG2) can also be programmed to a fixed data transfer rate for either SPI 1 or  
SPI 2. When the SPI 1 module is configured as a slave, the user can configure the SPI1 Control Register  
(CONTROLREG1) to match the external SPI master’s timing. In this configuration, SS becomes an input  
signal, and is used to latch data into or load data out to the internal data shift registers, as well as to  
increment the data FIFO. Figure 39 through Figure 43 show the timing relationship of the master SPI using  
different triggering mechanisms.  
MC9328MX1 Technical Data, Rev. 7  
64  
Freescale Semiconductor  
Functional Description and Application Information  
2
5
3
SS  
1
4
SPIRDY  
SCLK, MOSI, MISO  
Figure 39. Master SPI Timing Diagram Using SPI_RDY Edge Trigger  
SS  
SPIRDY  
SCLK, MOSI, MISO  
Figure 4ꢀ. Master SPI Timing Diagram Using SPI_RDY Level Trigger  
SS (output)  
SCLK, MOSI, MISO  
Figure 41. Master SPI Timing Diagram Ignore SPI_RDY Level Trigger  
SS (input)  
SCLK, MOSI, MISO  
Figure 42. Slave SPI Timing Diagram FIFO Advanced by BIT COUNT  
SS (input)  
6
7
SCLK, MOSI, MISO  
Figure 43. Slave SPI Timing Diagram FIFO Advanced by SS Rising Edge  
MC9328MX1 Technical Data, Rev. 7  
Freescale Semiconductor  
65  
 
 
Functional Description and Application Information  
Table 24. Timing Parameter Table for Figure 39 through Figure 43  
3.ꢀ ꢀ.3 V  
Ref No.  
Parameter  
Unit  
Minimum  
Maximum  
2T1  
1
2
SPI_RDY to SS output low  
ns  
ns  
3 • Tsclk2  
2 • Tsclk  
0
SS output low to first SCLK edge  
3
4
5
Last SCLK edge to SS output high  
SS output high to SPI_RDY low  
SS output pulse width  
ns  
ns  
ns  
Tsclk + WAIT 3  
6
7
SS input low to first SCLK edge  
SS input pulse width  
T
T
ns  
ns  
1
2
3
T = CSPI system clock period (PERCLK2).  
Tsclk = Period of SCLK.  
WAIT = Number of bit clocks (SCLK) or 32.768 kHz clocks per Sample Period Control Register.  
8
SCLK  
9
9
Figure 44. SPI SCLK Timing Diagram  
Table 25. Timing Parameter Table for SPI SCLK  
3.ꢀ ꢀ.3 V  
Ref No.  
Parameter  
Unit  
Minimum  
Maximum  
8
9
SCLK frequency  
SCLK pulse width  
0
10  
MHz  
ns  
100  
4.9  
LCD Controller  
This section includes timing diagrams for the LCD controller. For detailed timing diagrams of the LCD  
controller with various display configurations, refer to the LCD controller chapter of the MC9328MX1  
Reference Manual.  
LSCLK  
1
LD[15:0]  
Figure 45. SCLK to LD Timing Diagram  
MC9328MX1 Technical Data, Rev. 7  
66  
Freescale Semiconductor  
Functional Description and Application Information  
Table 26. LCDC SCLK Timing Parameter Table  
3.ꢀ ꢀ.3 V  
Ref No.  
Parameter  
Minimum  
Maximum  
Unit  
1
SCLK to LD valid  
2
ns  
Non-display  
Display region  
T3  
T1  
T4  
VSYN  
T2  
HSYN  
OE  
Line Y  
Line 1  
Line Y  
LD[15:0]  
T6  
T7  
T5  
XMAX  
HSYN  
SCLK  
OE  
T8  
(1,1)  
(1,2)  
LD[15:0]  
VSYN  
(1,X)  
T9  
T10  
Figure 46. 4/8/16 Bit/Pixel TFT Color Mode Panel Timing  
Table 27. 4/8/16 Bit/Pixel TFT Color Mode Panel Timing  
Symbol  
Description  
Minimum  
Corresponding Register Value  
Unit  
T1  
End of OE to beginning of VSYN  
T5+T6  
(VWAIT1·T2)+T5+T6+T7+T9  
Ts  
+T7+T9  
T2  
T3  
T4  
T5  
T6  
T7  
HSYN period  
XMAX+5  
XMAX+T5+T6+T7+T9+T10  
VWIDTH·(T2)  
VWAIT2·(T2)  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
VSYN pulse width  
T2  
2
End of VSYN to beginning of OE  
HSYN pulse width  
1
HWIDTH+1  
End of HSYN to beginning to T9  
End of OE to beginning of HSYN  
1
HWAIT2+1  
1
HWAIT1+1  
MC9328MX1 Technical Data, Rev. 7  
Freescale Semiconductor  
67  
 
Functional Description and Application Information  
Table 27. 4/8/16 Bit/Pixel TFT Color Mode Panel Timing (Continued)  
Symbol  
Description  
SCLK to valid LD data  
Minimum  
Corresponding Register Value  
Unit  
T8  
T9  
-3  
2
3
2
ns  
Ts  
End of HSYN idle2 to VSYN edge  
(for non-display region)  
T9  
End of HSYN idle2 to VSYN edge  
(for Display region)  
1
1
Ts  
T10  
T10  
VSYN to OE active (Sharp = 0) when VWAIT2 = 0  
VSYN to OE active (Sharp = 1) when VWAIT2 = 0  
1
2
1
2
Ts  
Ts  
Note:  
Ts is the SCLK period which equals LCDC_CLK / (PCD + 1). Normally LCDC_CLK = 15ns.  
VSYN, HSYN and OE can be programmed as active high or active low. In Figure 46, all 3 signals  
are active low.  
The polarity of SCLK and LD[15:0] can also be programmed.  
SCLK can be programmed to be deactivated during the VSYN pulse or the OE deasserted period.  
In Figure 46, SCLK is always active.  
For T9 non-display region, VSYN is non-active. It is used as an reference.  
XMAX is defined in pixels.  
4.1ꢀ Multimedia Card/Secure Digital Host Controller  
The DMA interface block controls all data routing between the external data bus (DMA access), internal  
MMC/SD module data bus, and internal system FIFO access through a dedicated state machine that  
monitors the status of FIFO content (empty or full), FIFO address, and byte/block counters for the  
MMC/SD module (inner system) and the application (user programming).  
3a  
1
2
4b  
3b  
Bus Clock  
4a  
5b  
5a  
Valid Data  
CMD_DAT Input  
Valid Data  
7
CMD_DAT Output  
Valid Data  
Valid Data  
6a  
Figure 47. Chip-Select Read Cycle Timing Diagram  
6b  
MC9328MX1 Technical Data, Rev. 7  
68  
Freescale Semiconductor  
Functional Description and Application Information  
Table 28. SDHC Bus Timing Parameter Table  
1.8 ꢀ.1 V  
3.ꢀ ꢀ.3 V  
Ref  
No.  
Parameter  
Unit  
Minimum  
Maximum  
Minimum  
Maximum  
1
CLK frequency at Data transfer Mode  
(PP)1—10/30 cards  
0
25/5  
0
25/5  
MHz  
2
CLK frequency at Identification Mode2  
Clock high time1—10/30 cards  
Clock low time1—10/30 cards  
Clock fall time1—10/30 cards  
0
6/33  
15/75  
400  
0
400  
kHz  
ns  
3a  
3b  
4a  
10/50  
10/50  
ns  
10/50  
10/50  
ns  
(5.00)3  
4b  
Clock rise time1—10/30 cards  
14/67  
(6.67)3  
10/50  
ns  
5a  
5b  
6a  
6b  
7
Input hold time3—10/30 cards  
Input setup time3—10/30 cards  
Output hold time3—10/30 cards  
Output setup time3—10/30 cards  
Output delay time3  
10.3/10.3  
10.3/10.3  
5.7/5.7  
5.7/5.7  
0
9/9  
9/9  
5/5  
5/5  
0
ns  
ns  
ns  
ns  
ns  
16  
14  
1
2
3
CL 100 pF / 250 pF (10/30 cards)  
CL 250 pF (21 cards)  
CL 25 pF (1 card)  
4.1ꢀ.1 Command Response Timing on MMC/SD Bus  
The card identification and card operation conditions timing are processed in open-drain mode. The card  
response to the host command starts after exactly N clock cycles. For the card address assignment,  
ID  
SET_RCA is also processed in the open-drain mode. The minimum delay between the host command and  
card response is NCR clock cycles as illustrated in Figure 48. The symbols for Figure 48 through  
Figure 52 are defined in Table 29.  
Table 29. State Signal Parameters for Figure 48 through Figure 52  
Card Active  
Definition  
Host Active  
Definition  
Symbol  
Symbol  
Z
D
High impedance state  
Data bits  
S
T
P
E
Start bit (0)  
Transmitter bit (Host = 1, Card = 0)  
One-cycle pull-up (1)  
End bit (1)  
*
Repetition  
CRC  
Cyclic redundancy check bits (7 bits)  
MC9328MX1 Technical Data, Rev. 7  
Freescale Semiconductor  
69  
 
Functional Description and Application Information  
N
ID cycles  
Host Command  
Content  
CRC  
CID/OCR  
Content  
CMD  
CMD  
******  
ST  
E Z  
Z S T  
Z Z Z  
Identification Timing  
NCR cycles  
Host Command  
Content  
CRC  
CID/OCR  
******  
Content  
SET_RCA Timing  
ST  
E Z  
Z S T  
Z Z Z  
Figure 48. Timing Diagrams at Identification Mode  
After a card receives its RCA, it switches to data transfer mode. As shown on the first diagram in  
Figure 49, SD_CMD lines in this mode are driven with push-pull drivers. The command is followed by a  
period of two Z bits (allowing time for direction switching on the bus) and then by P bits pushed up by the  
responding card. The other two diagrams show the separating periods N and N  
.
RC  
CC  
NCR cycles  
Host Command  
Response  
Content  
CRC  
E Z Z Z  
CMD  
Content  
CRC  
******  
ST  
E Z Z P  
P S T  
Command response timing (data transfer mode)  
NRC cycles  
Response  
Content  
Host Command  
Content  
CRC  
E Z Z Z  
CMD  
CRC  
******  
ST  
E Z  
Z S T  
Timing response end to next CMD start (data transfer mode)  
NCC cycles  
Host Command  
Host Command  
Content  
CRC  
E Z Z Z  
CMD  
Content  
CRC  
E Z  
******  
ST  
Z S T  
Timing of command sequences (all modes)  
Figure 49. Timing Diagrams at Data Transfer Mode  
Figure 50 shows basic read operation timing. In a read operation, the sequence starts with a single block  
read command (which specifies the start address in the argument field). The response is sent on the  
SD_CMD lines as usual. Data transmission from the card starts after the access time delay N , beginning  
AC  
from the last bit of the read command. If the system is in multiple block read mode, the card sends a  
continuous flow of data blocks with distance N until the card sees a stop transmission command. The  
AC  
data stops two clock cycles after the end bit of the stop command.  
MC9328MX1 Technical Data, Rev. 7  
70  
Freescale Semiconductor  
 
 
Functional Description and Application Information  
NCR cycles  
Host Command  
Response  
CMD  
DAT  
Content  
CRC  
******  
******  
Content  
CRC  
E Z  
ST  
E Z Z P  
P S T  
Z****Z  
*****  
Z Z P  
P S DDDD  
Read Data  
Timing of single block read  
NAC cycles  
NCR cycles  
Host Command  
Response  
Content  
CRC  
E Z  
CMD  
DAT  
Content  
CRC  
******  
ST  
E Z Z P  
Z Z P  
P S T  
Z****Z  
******  
*****  
Read Data  
*****  
*****  
Read Data  
P S DDDD  
P
P S DDDD  
NAC cycles  
NAC cycles  
Timing of multiple block read  
NCR cycles  
Host Command  
Response  
CMD  
Content  
CRC  
******  
Content  
CRC  
E Z  
ST  
E Z Z P  
P S T  
NST  
DAT  
*****  
*****  
DDDD  
DDDD E Z Z Z  
Timing of stop command  
(CMD12, data transfer mode)  
Valid Read Data  
Figure 5ꢀ. Timing Diagrams at Data Read  
Figure 51 shows the basic write operation timing. As with the read operation, after the card response, the  
data transfer starts after N cycles. The data is suffixed with CRC check bits to allow the card to check  
WR  
for transmission errors. The card sends back the CRC check result as a CC status token on the data line. If  
there was a transmission error, the card sends a negative CRC status (101); otherwise, a positive CRC  
status (010) is returned. The card expects a continuous flow of data blocks if it is configured to multiple  
block mode, with the flow terminated by a stop transmission command.  
MC9328MX1 Technical Data, Rev. 7  
Freescale Semiconductor  
71  
Functional Description and Application Information  
Figure 51. Timing Diagrams at Data Write  
The stop transmission command may occur when the card is in different states. Figure 52 shows the  
different scenarios on the bus.  
MC9328MX1 Technical Data, Rev. 7  
72  
Freescale Semiconductor  
Functional Description and Application Information  
Figure 52. Stop Transmission During Different Scenarios  
Table 3ꢀ. Timing Values for Figure 48 through Figure 52  
Parameter Symbol Minimum Maximum  
MMC/SD bus clock, CLK (All values are referred to minimum (VIH) and maximum (VIL)  
Unit  
Command response cycle  
Identification response cycle  
Access time delay cycle  
NCR  
NID  
2
5
2
64  
Clock cycles  
Clock cycles  
Clock cycles  
5
NAC  
TAAC + NSAC  
MC9328MX1 Technical Data, Rev. 7  
Freescale Semiconductor  
73  
 
Functional Description and Application Information  
Table 3ꢀ. Timing Values for Figure 48 through Figure 52 (Continued)  
Parameter  
Command read cycle  
Symbol  
Minimum  
Maximum  
Unit  
NRC  
NCC  
NWR  
NST  
8
8
2
2
2
Clock cycles  
Clock cycles  
Clock cycles  
Clock cycles  
Command-command cycle  
Command write cycle  
Stop transmission cycle  
TAAC: Data read access time -1 defined in CSD register bit[119:112]  
NSAC: Data read access time -2 in CLK cycles (NSAC·100) defined in CSD register bit[111:104]  
4.1ꢀ.2 SDIO-IRQ and ReadWait Service Handling  
In SDIO, there is a 1-bit or 4-bit interrupt response from the SDIO peripheral card. In 1-bit mode, the  
interrupt response is simply that the SD_DAT[1] line is held low. The SD_DAT[1] line is not used as data  
in this mode. The memory controller generates an interrupt according to this low and the system interrupt  
continues until the source is removed (SD_DAT[1] returns to its high level).  
In 4-bit mode, the interrupt is less simple. The interrupt triggers at a particular period called the “Interrupt  
Period” during the data access, and the controller must sample SD_DAT[1] during this short period to  
determine the IRQ status of the attached card. The interrupt period only happens at the boundary of each  
block (512 bytes).  
CMD  
Content  
CRC  
Response  
******  
S
ST  
E Z Z P S  
E Z Z Z  
Z Z Z  
DAT[1]  
Interrupt Period  
IRQ  
IRQ  
Block Data  
Block Data  
S
E
E
For 4-bit  
L H  
DAT[1]  
Interrupt Period  
For 1-bit  
Figure 53. SDIO IRQ Timing Diagram  
ReadWait is another feature in SDIO that allows the user to submit commands during the data transfer. In  
this mode, the block temporarily pauses the data transfer operation counter and related status, yet keeps  
the clock running, and allows the user to submit commands as normal. After all commands are submitted,  
the user can switch back to the data transfer operation and all counter and status values are resumed as  
access continues.  
MC9328MX1 Technical Data, Rev. 7  
74  
Freescale Semiconductor  
Functional Description and Application Information  
CMD  
******  
CMD52 CRC  
******  
P S T  
E Z Z Z  
DAT[1]  
Block Data  
Block Data  
Block Data  
S
S
E Z Z L H  
S
E
E
For 4-bit  
DAT[2]  
Block Data  
E Z Z L L L L L L L L L L L L L L L L L L L L L H Z S  
For 4-bit  
Figure 54. SDIO ReadWait Timing Diagram  
4.11 Memory Stick Host Controller  
The Memory Stick protocol requires three interface signal line connections for data transfers: MS_BS,  
MS_SDIO, and MS_SCLKO. Communication is always initiated by the MSHC and operates the bus in  
either four-state or two-state access mode.  
The MS_BS signal classifies data on the SDIO into one of four states (BS0, BS1, BS2, or BS3) according  
to its attribute and transfer direction. BS0 is the INT transfer state, and during this state no packet  
transmissions occur. During the BS1, BS2, and BS3 states, packet communications are executed. The BS1,  
BS2, and BS3 states are regarded as one packet length and one communication transfer is always  
completed within one packet length (in four-state access mode).  
The Memory Stick usually operates in four state access mode and in BS1, BS2, and BS3 bus states. When  
an error occurs during packet communication, the mode is shifted to two-state access mode, and the BS0  
and BS1 bus states are automatically repeated to avoid a bus collision on the SDIO.  
MC9328MX1 Technical Data, Rev. 7  
Freescale Semiconductor  
75  
Functional Description and Application Information  
2
3
5
1
4
MS_SCLKI  
6
8
7
MS_SCLKO  
MS_BS  
9
10  
11  
12  
11  
12  
MS_SDIO(output)  
14  
13  
MS_SDIO (input)  
(RED bit = 0)  
15  
16  
MS_SDIO (input)  
(RED bit = 1)  
Figure 55. MSHC Signal Timing Diagram  
Table 31. MSHC Signal Timing Parameter Table  
Parameter  
3.ꢀ ꢀ.3 V  
Minimum Maximum  
Ref  
No.  
Unit  
1
2
MS_SCLKI frequency  
20  
20  
25  
MHz  
ns  
MS_SCLKI high pulse width  
MS_SCLKI low pulse width  
MS_SCLKI rise time  
3
ns  
4
3
ns  
5
MS_SCLKI fall time  
3
ns  
6
MS_SCLKO frequency1  
MS_SCLKO high pulse width1  
MS_SCLKO low pulse width1  
MS_SCLKO rise time1  
MS_SCLKO fall time1  
25  
MHz  
ns  
7
20  
15  
8
ns  
9
5
ns  
10  
11  
5
ns  
MS_BS delay time1  
3
ns  
MC9328MX1 Technical Data, Rev. 7  
76  
Freescale Semiconductor  
Functional Description and Application Information  
Table 31. MSHC Signal Timing Parameter Table (Continued)  
3.ꢀ ꢀ.3 V  
Ref  
No.  
Parameter  
MS_SDIO output delay time1,2  
Unit  
Minimum Maximum  
12  
13  
14  
15  
16  
18  
0
3
ns  
ns  
ns  
ns  
ns  
MS_SDIO input setup time for MS_SCLKO rising edge (RED bit = 0)3  
MS_SDIO input hold time for MS_SCLKO rising edge (RED bit = 0)3  
MS_SDIO input setup time for MS_SCLKO falling edge (RED bit = 1)4  
MS_SDIO input hold time for MS_SCLKO falling edge (RED bit = 1)4  
23  
0
1
2
Loading capacitor condition is less than or equal to 30pF.  
An external resistor (100 ~ 200 ohm) should be inserted in series to provide current control on the MS_SDIO pin,  
because of a possibility of signal conflict between the MS_SDIO pin and Memory Stick SDIO pin when the pin  
direction changes.  
3
4
If the MSC2[RED] bit = 0, MSHC samples MS_SDIO input data at MS_SCLKO rising edge.  
If the MSC2[RED] bit = 1, MSHC samples MS_SDIO input data at MS_SCLKO falling edge.  
4.12 Pulse-Width Modulator  
The PWM can be programmed to select one of two clock signals as its source frequency. The selected  
clock signal is passed through a divider and a prescaler before being input to the counter. The output is  
available at the pulse-width modulator output (PWMO) external pin. Its timing diagram is shown in  
Figure 56 and the parameters are listed in Table 32.  
1
2a  
3b  
System Clock  
2b  
4b  
3a  
4a  
PWM Output  
Figure 56. PWM Output Timing Diagram  
Table 32. PWM Output Timing Parameter Table  
1.8 ꢀ.1 V  
3.ꢀ ꢀ.3 V  
Ref No.  
Parameter  
Unit  
Minimum  
Maximum  
Minimum  
Maximum  
1
System CLK frequency1  
Clock high time1  
Clock low time1  
0
87  
0
100  
MHz  
ns  
2a  
2b  
3a  
3.3  
7.5  
5/10  
5/10  
ns  
Clock fall time1  
5
5/10  
ns  
MC9328MX1 Technical Data, Rev. 7  
Freescale Semiconductor  
77  
 
 
Functional Description and Application Information  
Table 32. PWM Output Timing Parameter Table (Continued)  
1.8 ꢀ.1 V 3.ꢀ ꢀ.3 V  
Ref No.  
Parameter  
Unit  
Minimum  
Maximum  
Minimum  
Maximum  
3b  
4a  
4b  
Clock rise time1  
6.67  
5
5
5/10  
ns  
ns  
ns  
Output delay time1  
Output setup time1  
5.7  
5.7  
1
CL of PWMO = 30 pF  
4.13 SDRAM Controller  
This section shows timing diagrams and parameters associated with the SDRAM (synchronous dynamic  
random access memory) Controller.  
1
SDCLK  
2
3S  
3
CS  
RAS  
CAS  
3H  
3S  
3S  
3H  
3S  
3H  
3H  
4H  
WE  
ADDR  
DQ  
4S  
ROW/BA  
COL/BA  
5
8
6
Data  
7
3S  
DQM  
3H  
Note: CKE is high during the read/write cycle.  
Figure 57. SDRAM Read Cycle Timing Diagram  
MC9328MX1 Technical Data, Rev. 7  
78  
Freescale Semiconductor  
Functional Description and Application Information  
Table 33. SDRAM Read Timing Parameter Table  
1.8 ꢀ.1 V  
3.ꢀ ꢀ.3 V  
Ref  
No.  
Parameter  
Unit  
Minimum  
Maximum  
Minimum  
Maximum  
1
2
3
SDRAM clock high-level width  
SDRAM clock low-level width  
SDRAM clock cycle time  
2.67  
6
4
4
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
11.4  
3.42  
2.28  
3.42  
2.28  
10  
3
3S CS, RAS, CAS, WE, DQM setup time  
3H CS, RAS, CAS, WE, DQM hold time  
4S Address setup time  
2
3
4H Address hold time  
2
5
5
5
6
7
7
7
8
SDRAM access time (CL = 3)  
6.84  
6.84  
22  
6
SDRAM access time (CL = 2)  
6
SDRAM access time (CL = 1)  
22  
Data out hold time  
2.85  
2.5  
Data out high-impedance time (CL = 3)  
Data out high-impedance time (CL = 2)  
Data out high-impedance time (CL = 1)  
Active to read/write command period (RC = 1)  
6.84  
6.84  
22  
6
6
22  
1
tRCD1  
tRCD  
1
tRCD = SDRAM clock cycle time. This settings can be found in the MC9328MX1 reference manual.  
MC9328MX1 Technical Data, Rev. 7  
Freescale Semiconductor  
79  
Functional Description and Application Information  
SDCLK  
1
3
2
CS  
RAS  
6
CAS  
WE  
ADDR  
DQ  
5
7
4
/ BA  
ROW/BA  
COL/BA  
DATA  
8
9
DQM  
Figure 58. SDRAM Write Cycle Timing Diagram  
Table 34. SDRAM Write Timing Parameter Table  
1.8 ꢀ.1 V  
3.ꢀ ꢀ.3 V  
Ref No.  
Parameter  
Unit  
Minimum  
Maximum  
Minimum  
Maximum  
1
2
3
4
5
6
SDRAM clock high-level width  
SDRAM clock low-level width  
SDRAM clock cycle time  
Address setup time  
2.67  
6
4
4
ns  
ns  
ns  
ns  
ns  
ns  
11.4  
3.42  
2.28  
10  
3
Address hold time  
Precharge cycle period1  
2
2
tRP2  
tRP  
7
Active to read/write command delay  
tRCD2  
tRCD2  
ns  
8
9
Data setup time  
Data hold time  
4.0  
2
2
ns  
ns  
2.28  
1
Precharge cycle timing is included in the write timing diagram.  
2
tRP and tRCD = SDRAM clock cycle time. These settings can be found in the MC9328MX1 reference manual.  
MC9328MX1 Technical Data, Rev. 7  
80  
Freescale Semiconductor  
Functional Description and Application Information  
SDCLK  
CS  
1
3
2
RAS  
CAS  
6
7
7
WE  
ADDR  
DQ  
4
5
BA  
ROW/BA  
DQM  
Figure 59. SDRAM Refresh Timing Diagram  
Table 35. SDRAM Refresh Timing Parameter Table  
1.8 ꢀ.1 V  
3.ꢀ ꢀ.3 V  
Ref No.  
Parameter  
Unit  
Minimum  
Maximum  
Minimum  
Maximum  
1
2
3
4
5
6
SDRAM clock high-level width  
SDRAM clock low-level width  
SDRAM clock cycle time  
Address setup time  
2.67  
6
4
4
ns  
ns  
ns  
ns  
ns  
ns  
11.4  
3.42  
2.28  
10  
3
Address hold time  
2
1
Precharge cycle period  
tRP1  
tRP  
7
Auto precharge command period  
tRC1  
tRC1  
ns  
1
tRP and tRC = SDRAM clock cycle time. These settings can be found in the MC9328MX1 reference manual.  
MC9328MX1 Technical Data, Rev. 7  
Freescale Semiconductor  
81  
Functional Description and Application Information  
SDCLK  
CS  
RAS  
CAS  
WE  
ADDR  
DQ  
BA  
DQM  
CKE  
Figure 6ꢀ. SDRAM Self-Refresh Cycle Timing Diagram  
4.14 USB Device Port  
Four types of data transfer modes exist for the USB module: control transfers, bulk transfers, isochronous  
transfers, and interrupt transfers. From the perspective of the USB module, the interrupt transfer type is  
identical to the bulk data transfer mode, and no additional hardware is supplied to support it. This section  
covers the transfer modes and how they work from the ground up.  
Data moves across the USB in packets. Groups of packets are combined to form data transfers. The same  
packet transfer mechanism applies to bulk, interrupt, and control transfers. Isochronous data is also moved  
in the form of packets, however, because isochronous pipes are given a fixed portion of the USB  
bandwidth at all times, there is no end-of-transfer.  
MC9328MX1 Technical Data, Rev. 7  
82  
Freescale Semiconductor  
Functional Description and Application Information  
USBD_AFE  
(Output)  
t VMO_ROE  
4
t ROE_VPO  
1
USBD_ROE  
(Output)  
6
3
tPERIOD  
tVPO_ROE  
USBD_VPO  
(Output)  
USBD_VMO  
(Output)  
tROE_VMO  
tFEOPT  
USBD_SUSPND  
(Output)  
2
5
USBD_RCV  
(Input)  
USBD_VP  
(Input)  
USBD_VM  
(Input)  
Figure 61. USB Device Timing Diagram for Data Transfer to USB Transceiver (TX)  
Table 36. USB Device Timing Parameters for Data Transfer to USB Transceiver (TX)  
3.ꢀ ꢀ.3 V  
Ref  
No.  
Parameter  
Unit  
Minimum  
Maximum  
1
2
3
4
5
6
t
ROE_VPO; USBD_ROE active to USBD_VPO low  
83.14  
81.55  
83.54  
248.90  
160.00  
11.97  
83.47  
81.98  
83.80  
249.13  
175.00  
12.03  
ns  
ns  
tROE_VMO; USBD_ROE active to USBD_VMO high  
tVPO_ROE; USBD_VPO high to USBD_ROE deactivated  
tVMO_ROE; USBD_VMO low to USBD_ROE deactivated (includes SE0)  
tFEOPT; SE0 interval of EOP  
ns  
ns  
ns  
tPERIOD; Data transfer rate  
Mb/s  
MC9328MX1 Technical Data, Rev. 7  
Freescale Semiconductor  
83  
Functional Description and Application Information  
USBD_AFE  
(Output)  
USBD_ROE  
(Output)  
USBD_VPO  
(Output)  
USBD_VMO  
(Output)  
USBD_SUSPND  
(Output)  
USBD_RCV  
(Input)  
1
tFEOPR  
USBD_VP  
(Input)  
USBD_VM  
(Input)  
Figure 62. USB Device Timing Diagram for Data Transfer from USB Transceiver (RX)  
Table 37. USB Device Timing Parameter Table for Data Transfer from USB Transceiver (RX)  
3.ꢀ ꢀ.3 V  
Ref No.  
Parameter  
Unit  
Minimum  
Maximum  
1
tFEOPR; Receiver SE0 interval of EOP  
82  
ns  
2
4.15 I C Module  
2
The I C communication protocol consists of seven elements: START, Data Source/Recipient, Data  
Direction, Slave Acknowledge, Data, Data Acknowledge, and STOP.  
SDA  
5
3
4
SCL  
2
6
1
2
Figure 63. Definition of Bus Timing for I C  
MC9328MX1 Technical Data, Rev. 7  
84  
Freescale Semiconductor  
Functional Description and Application Information  
2
Table 38. I C Bus Timing Parameter Table  
1.8 ꢀ.1 V  
3.ꢀ ꢀ.3 V  
Ref No.  
Parameter  
Unit  
Minimum  
Maximum  
Minimum  
Maximum  
1
2
3
4
5
6
Hold time (repeated) START condition  
Data hold time  
182  
0
171  
160  
0
150  
ns  
ns  
ns  
ns  
ns  
ns  
Data setup time  
11.4  
80  
10  
HIGH period of the SCL clock  
LOW period of the SCL clock  
Setup time for STOP condition  
120  
320  
160  
480  
182.4  
4.16 Synchronous Serial Interface  
The transmit and receive sections of the SSI can be synchronous or asynchronous. In synchronous mode,  
the transmitter and the receiver use a common clock and frame synchronization signal. In asynchronous  
mode, the transmitter and receiver each have their own clock and frame synchronization signals.  
Continuous or gated clock mode can be selected. In continuous mode, the clock runs continuously. In gated  
clock mode, the clock functions only during transmission. The internal and external clock timing diagrams  
are shown in Figure 65 through Figure 67.  
Normal or network mode can also be selected. In normal mode, the SSI functions with one data word of  
I/O per frame. In network mode, a frame can contain between 2 and 32 data words. Network mode is  
typically used in star or ring-time division multiplex networks with other processors or codecs, allowing  
interface to time division multiplexed networks without additional logic. Use of the gated clock is not  
allowed in network mode. These distinctions result in the basic operating modes that allow the SSI to  
communicate with a wide variety of devices.  
1
STCK Output  
4
2
STFS (bl) Output  
STFS (wl) Output  
6
8
12  
11  
32  
10  
STXD Output  
SRXD Input  
31  
Note: SRXD input in synchronous mode only.  
Figure 64. SSI Transmitter Internal Clock Timing Diagram  
MC9328MX1 Technical Data, Rev. 7  
Freescale Semiconductor  
85  
Functional Description and Application Information  
1
SRCK Output  
3
5
SRFS (bl) Output  
SRFS (wl) Output  
7
9
13  
14  
SRXD Input  
Figure 65. SSI Receiver Internal Clock Timing Diagram  
15  
16  
17  
STCK Input  
18  
20  
STFS (bl) Input  
STFS (wl) Input  
24  
22  
28  
27  
34  
26  
STXD Output  
SRXD Input  
33  
Note: SRXD Input in Synchronous mode only  
Figure 66. SSI Transmitter External Clock Timing Diagram  
MC9328MX1 Technical Data, Rev. 7  
86  
Freescale Semiconductor  
Functional Description and Application Information  
15  
16  
17  
SRCK Input  
19  
21  
SRFS (bl) Input  
SRFS (wl) Input  
25  
23  
30  
29  
SRXD Input  
Figure 67. SSI Receiver External Clock Timing Diagram  
Table 39. SSI (Port C Primary Function) Timing Parameter Table  
1.8 ꢀ.1 V  
3.ꢀ ꢀ.3 V  
Ref No.  
Parameter  
Unit  
Minimum Maximum Minimum Maximum  
Internal Clock Operation1 (Port C Primary Function2)  
1
2
STCK/SRCK clock period1  
95  
1.5  
4.5  
83.3  
1.3  
-1.1  
2.2  
0.1  
1.3  
-1.1  
2.2  
0.1  
12.5  
0.8  
0.5  
11.3  
18.5  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
STCK high to STFS (bl) high3  
SRCK high to SRFS (bl) high3  
STCK high to STFS (bl) low3  
SRCK high to SRFS (bl) low3  
STCK high to STFS (wl) high3  
SRCK high to SRFS (wl) high3  
STCK high to STFS (wl) low3  
SRCK high to SRFS (wl) low3  
STCK high to STXD valid from high impedance  
STCK high to STXD high  
3.9  
-1.5  
3.8  
-0.8  
3.9  
-1.5  
3.8  
-0.8  
13.8  
2.7  
2.8  
11.9  
3
-1.2  
2.5  
-1.7  
4.3  
4
5
0.1  
-0.8  
4.45  
-1.5  
4.33  
-0.8  
15.73  
3.08  
3.19  
13.57  
6
1.48  
-1.1  
2.51  
0.1  
7
8
9
10  
11a  
11b  
12  
13  
14  
14.25  
0.91  
0.57  
12.88  
21.1  
0
STCK high to STXD low  
STCK high to STXD high impedance  
SRXD setup time before SRCK low  
SRXD hold time after SRCK low  
External Clock Operation (Port C Primary Function2)  
15  
16  
17  
STCK/SRCK clock period1  
STCK/SRCK clock high period  
STCK/SRCK clock low period  
92.8  
27.1  
61.1  
81.4  
40.7  
40.7  
ns  
ns  
ns  
MC9328MX1 Technical Data, Rev. 7  
Freescale Semiconductor  
87  
Functional Description and Application Information  
Table 39. SSI (Port C Primary Function) Timing Parameter Table (Continued)  
1.8 ꢀ.1 V 3.ꢀ ꢀ.3 V  
Minimum Maximum Minimum Maximum  
Ref No.  
Parameter  
Unit  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27a  
27b  
28  
29  
30  
STCK high to STFS (bl) high3  
SRCK high to SRFS (bl) high3  
STCK high to STFS (bl) low3  
SRCK high to SRFS (bl) low3  
STCK high to STFS (wl) high3  
SRCK high to SRFS (wl) high3  
STCK high to STFS (wl) low3  
SRCK high to SRFS (wl) low3  
STCK high to STXD valid from high impedance  
STCK high to STXD high  
92.8  
92.8  
92.8  
92.8  
92.8  
92.8  
92.8  
92.8  
28.16  
18.13  
18.24  
28.5  
0
0
81.4  
81.4  
81.4  
81.4  
81.4  
81.4  
81.4  
81.4  
24.7  
15.9  
16.0  
25.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0
0
0
0
0
0
18.01  
8.98  
9.12  
18.47  
1.14  
0
15.8  
7.0  
8.0  
16.2  
1.0  
0
STCK high to STXD low  
STCK high to STXD high impedance  
SRXD setup time before SRCK low  
SRXD hole time after SRCK low  
Synchronous Internal Clock Operation (Port C Primary Function2)  
31  
32  
SRXD setup before STCK falling  
SRXD hold after STCK falling  
15.4  
0
13.5  
0
ns  
ns  
Synchronous External Clock Operation (Port C Primary Function2)  
33  
34  
SRXD setup before STCK falling  
SRXD hold after STCK falling  
1.14  
0
1.0  
0
ns  
ns  
1
2
All the timings for the SSI are given for a non-inverted serial clock polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync  
(TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting  
the clock signal STCK/SRCK and/or the frame sync STFS/SRFS shown in the tables and in the figures.  
There are 2 sets of I/O signals for the SSI module. They are from Port C primary function (pad 257 to pad 261) and Port B  
alternate function (pad 283 to pad 288). When SSI signals are configured as outputs, they can be viewed both at Port C primary  
function and Port B alternate function. When SSI signals are configured as input, the SSI module selects the input based on  
status of the FMCR register bits in the Clock controller module (CRM). By default, the input are selected from Port C primary  
function.  
3
bl = bit length; wl = word length.  
MC9328MX1 Technical Data, Rev. 7  
88  
Freescale Semiconductor  
Functional Description and Application Information  
Table 4ꢀ. SSI (Port B Alternate Function) Timing Parameter Table  
1.8 ꢀ.1 V 3.ꢀ ꢀ.3 V  
Minimum Maximum Minimum Maximum  
Internal Clock Operation1 (Port B Alternate Function2)  
Ref  
No.  
Parameter  
Unit  
1
2
3
4
5
6
7
8
9
STCK/SRCK clock period1  
95  
1.7  
83.3  
1.5  
-0.1  
2.7  
4.2  
1.0  
4.6  
2.0  
4.2  
1.0  
4.6  
2.0  
14.2  
3.0  
3.5  
12.8  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
STCK high to STFS (bl) high3  
SRCK high to SRFS (bl) high3  
STCK high to STFS (bl) low3  
SRCK high to SRFS (bl) low3  
STCK high to STFS (wl) high3  
SRCK high to SRFS (wl) high3  
STCK high to STFS (wl) low3  
SRCK high to SRFS (wl) low3  
4.8  
-0.1  
3.08  
1.25  
1.71  
-0.1  
3.08  
1.25  
14.93  
1.25  
2.51  
12.43  
20  
1.0  
5.24  
2.28  
4.79  
1.0  
1.1  
1.5  
-0.1  
2.7  
5.24  
2.28  
16.19  
3.42  
3.99  
14.59  
1.1  
10 STCK high to STXD valid from high impedance  
11a STCK high to STXD high  
13.1  
1.1  
11b STCK high to STXD low  
2.2  
10.9  
17.5  
0
12 STCK high to STXD high impedance  
13 SRXD setup time before SRCK low  
14 SRXD hold time after SRCK low  
0
External Clock Operation (Port B Alternate Function2)  
15 STCK/SRCK clock period1  
16 STCK/SRCK clock high period  
17 STCK/SRCK clock low period  
18 STCK high to STFS (bl) high3  
19 SRCK high to SRFS (bl) high3  
20 STCK high to STFS (bl) low3  
21 SRCK high to SRFS (bl) low3  
22 STCK high to STFS (wl) high3  
23 SRCK high to SRFS (wl) high3  
24 STCK high to STFS (wl) low3  
25 SRCK high to SRFS (wl) low3  
26 STCK high to STXD valid from high impedance  
27a STCK high to STXD high  
92.8  
27.1  
61.1  
81.4  
40.7  
40.7  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
92.8  
92.8  
92.8  
92.8  
92.8  
92.8  
92.8  
92.8  
29.07  
20.75  
21.32  
81.4  
81.4  
81.4  
81.4  
81.4  
81.4  
81.4  
81.4  
25.5  
18.2  
18.7  
0
0
0
0
0
0
0
18.9  
9.23  
10.60  
16.6  
8.1  
9.3  
27b STCK high to STXD low  
MC9328MX1 Technical Data, Rev. 7  
Freescale Semiconductor  
89  
Functional Description and Application Information  
Table 4ꢀ. SSI (Port B Alternate Function) Timing Parameter Table (Continued)  
1.8 ꢀ.1 V 3.ꢀ ꢀ.3 V  
Ref  
No.  
Parameter  
Unit  
Minimum  
Maximum  
Minimum  
Maximum  
28 STCK high to STXD high impedance  
29 SRXD setup time before SRCK low  
30 SRXD hold time after SRCK low  
17.90  
1.14  
0
29.75  
15.7  
1.0  
0
26.1  
ns  
ns  
ns  
Synchronous Internal Clock Operation (Port B Alternate Function2)  
31 SRXD setup before STCK falling  
32 SRXD hold after STCK falling  
18.81  
0
16.5  
0
ns  
ns  
Synchronous External Clock Operation (Port B Alternate Function2)  
33 SRXD setup before STCK falling  
34 SRXD hold after STCK falling  
1.14  
0
1.0  
0
ns  
ns  
1
2
All the timings for the SSI are given for a non-inverted serial clock polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync  
(TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting  
the clock signal STCK/SRCK and/or the frame sync STFS/SRFS shown in the tables and in the figures.  
There are 2 set of I/O signals for the SSI module. They are from Port C primary function (pad 257 to pad 261) and Port B  
alternate function (pad 283 to pad 288). When SSI signals are configured as outputs, they can be viewed both at Port C primary  
function and Port B alternate function. When SSI signals are configured as inputs, the SSI module selects the input based on  
FMCR register bits in the Clock controller module (CRM). By default, the input are selected from Port C primary function.  
3
bl = bit length; wl = word length.  
Table 41. SSI 2 (Port C Alternate Function) Timing Parameter Table  
1.8V +/- ꢀ.1ꢀV  
Minimum Maximum  
Internal Clock Operation1 (Port C Alternate Function)2  
3.ꢀV +/- ꢀ.3ꢀV  
Ref  
No.  
Parameter  
Unit  
Minimum Maximum  
1
2
STCK/SRCK clock period1  
95  
1.7  
83.3  
1.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
STCK high to STFS (bl) high3  
SRCK high to SRFS (bl) high3  
STCK high to STFS (bl) low3  
SRCK high to SRFS (bl) low3  
STCK high to STFS (wl) high3  
SRCK high to SRFS (wl) high3  
STCK high to STFS (wl) low3  
SRCK high to SRFS (wl) low3  
STCK high to STXD valid from high impedance  
4.8  
4.2  
1.0  
4.6  
2.0  
4.2  
1.0  
4.6  
2.0  
14.2  
3.0  
3
-0.1  
3.08  
1.25  
1.71  
-0.1  
3.08  
1.25  
14.93  
1.25  
1.0  
-0.1  
2.7  
4
5.24  
2.28  
4.79  
1.0  
5
1.1  
6
1.5  
7
-0.1  
2.7  
8
5.24  
2.28  
16.19  
3.42  
9
1.1  
10  
13.1  
1.1  
11a STCK high to STXD high  
MC9328MX1 Technical Data, Rev. 7  
90  
Freescale Semiconductor  
Functional Description and Application Information  
Table 41. SSI 2 (Port C Alternate Function) Timing Parameter Table (Continued)  
1.8V +/- ꢀ.1ꢀV 3.ꢀV +/- ꢀ.3ꢀV  
Ref  
No.  
Parameter  
Unit  
Minimum  
Maximum  
Minimum  
Maximum  
11b STCK high to STXD low  
2.51  
12.43  
20  
3.99  
14.59  
2.2  
10.9  
17.5  
0
3.5  
12.8  
ns  
ns  
ns  
ns  
12  
13  
14  
STCK high to STXD high impedance  
SRXD setup time before SRCK low  
SRXD hold time after SRCK low  
0
External Clock Operation (Port C Alternate Function)2  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
STCK/SRCK clock period1  
92.8  
27.1  
61.1  
81.4  
40.7  
40.7  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
STCK/SRCK clock high period  
STCK/SRCK clock low period  
STCK high to STFS (bl) high3  
SRCK high to SRFS (bl) high3  
STCK high to STFS (bl) low3  
SRCK high to SRFS (bl) low3  
STCK high to STFS (wl) high3  
SRCK high to SRFS (wl) high3  
STCK high to STFS (wl) low3  
SRCK high to SRFS (wl) low3  
STCK high to STXD valid from high impedance  
92.8  
92.8  
92.8  
92.8  
92.8  
92.8  
92.8  
92.8  
29.07  
20.75  
21.32  
29.75  
81.4  
81.4  
81.4  
81.4  
81.4  
81.4  
81.4  
81.4  
25.5  
18.2  
18.7  
26.1  
0
0
0
0
0
0
0
18.9  
9.23  
10.60  
17.90  
1.14  
0
16.6  
8.1  
9.3  
15.7  
1.0  
0
27a STCK high to STXD high  
27b STCK high to STXD low  
28  
29  
30  
STCK high to STXD high impedance  
SRXD setup time before SRCK low  
SRXD hole time after SRCK low  
Synchronous Internal Clock Operation (Port C Alternate Function)2  
31  
32  
SRXD setup before STCK falling  
SRXD hold after STCK falling  
18.81  
0
16.5  
0
ns  
ns  
Synchronous External Clock Operation (Port C Alternate Function)2  
33  
34  
SRXD setup before STCK falling  
SRXD hold after STCK falling  
1.14  
0
1.0  
0
ns  
ns  
1
All the timings for both SSI modules are given for a non-inverted serial clock polarity (TSCKP/RSCKP = 0) and a non-inverted  
frame sync (TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid  
by inverting the clock signal STCK/SRCK and/or the frame sync STFS/SRFS shown in the tables and in the figures.  
MC9328MX1 Technical Data, Rev. 7  
Freescale Semiconductor  
91  
Functional Description and Application Information  
2
There is one set of I/O signals for the SSI2 module. They are from Port C alternate function (PC19 – PC24). When SSI signals  
are configured as outputs, they can be viewed at Port C alternate function a. When SSI signals are configured as inputs, the  
SSI module selects the input based on FMCR register bits in the Clock controller module (CRM). By default, the input is selected  
from Port C alternate function.  
3
bl = bit length; wl = word length  
4.17 CMOS Sensor Interface  
The CMOS Sensor Interface (CSI) module consists of a control register to configure the interface timing,  
a control register for statistic data generation, a status register, interface logic, a 32 × 32 image data receive  
FIFO, and a 16 × 32 statistic data FIFO.  
4.17.1 Gated Clock Mode  
Figure 68 shows the timing diagram when the CMOS sensor output data is configured for negative edge  
and the CSI is programmed to received data on the positive edge. Figure 69 shows the timing diagram  
when the CMOS sensor output data is configured for positive edge and the CSI is programmed to received  
data in negative edge. The parameters for the timing diagrams are listed in Table 42.  
1
VSYNC  
7
HSYNC  
5
6
2
PIXCLK  
Valid Data  
Valid Data  
Valid Data  
DATA[7:0]  
3
4
Figure 68. Sensor Output Data on Pixel Clock Falling Edge  
CSI Latches Data on Pixel Clock Rising Edge  
MC9328MX1 Technical Data, Rev. 7  
92  
Freescale Semiconductor  
 
Functional Description and Application Information  
1
VSYNC  
HSYNC  
7
6
5
2
PIXCLK  
Valid Data  
Valid Data  
Valid Data  
DATA[7:0]  
3
4
Figure 69. Sensor Output Data on Pixel Clock Rising Edge  
CSI Latches Data on Pixel Clock Falling Edge  
Table 42. Gated Clock Mode Timing Parameters  
Ref No.  
Parameter  
Min  
Max  
Unit  
1
2
3
4
5
6
7
csi_vsync to csi_hsync  
csi_hsync to csi_pixclk  
csi_d setup time  
180  
ns  
ns  
1
1
ns  
csi_d hold time  
1
ns  
csi_pixclk high time  
csi_pixclk low time  
csi_pixclk frequency  
10.42  
10.42  
0
ns  
ns  
48  
MHz  
The limitation on pixel clock rise time / fall time are not specified. It should be calculated from the hold  
time and setup time, according to:  
Rising-edge latch data  
max rise time allowed = (positive duty cycle - hold time)  
max fall time allowed = (negative duty cycle - setup time)  
In most of case, duty cycle is 50 / 50, therefore  
max rise time = (period / 2 - hold time)  
max fall time = (period / 2 - setup time)  
For example: Given pixel clock period = 10ns, duty cycle = 50 / 50, hold time = 1ns, setup time = 1ns.  
positive duty cycle = 10 / 2 = 5ns  
=> max rise time allowed = 5 - 1 = 4ns  
negative duty cycle = 10 / 2 = 5ns  
=> max fall time allowed = 5 - 1 = 4ns  
MC9328MX1 Technical Data, Rev. 7  
Freescale Semiconductor  
93  
Functional Description and Application Information  
Falling-edge latch data  
max fall time allowed = (negative duty cycle - hold time)  
max rise time allowed = (positive duty cycle - setup time)  
4.17.2 Non-Gated Clock Mode  
Figure 70 shows the timing diagram when the CMOS sensor output data is configured for negative edge  
and the CSI is programmed to received data on the positive edge. Figure 71 shows the timing diagram  
when the CMOS sensor output data is configured for positive edge and the CSI is programmed to received  
data in negative edge. The parameters for the timing diagrams are listed in Table 43.  
1
VSYNC  
6
4
5
PIXCLK  
Valid Data  
Valid Data  
Valid Data  
DATA[7:0]  
2
3
Figure 7ꢀ. Sensor Output Data on Pixel Clock Falling Edge  
CSI Latches Data on Pixel Clock Rising Edge  
1
VSYNC  
6
4
5
PIXCLK  
Valid Data  
Valid Data  
Valid Data  
DATA[7:0]  
2
3
Figure 71. Sensor Output Data on Pixel Clock Rising Edge  
CSI Latches Data on Pixel Clock Falling Edge  
Table 43. Non-Gated Clock Mode Parameters  
Ref No.  
Parameter  
Min  
Max  
Unit  
1
2
csi_vsync to csi_pixclk  
csi_d setup time  
180  
1
ns  
ns  
MC9328MX1 Technical Data, Rev. 7  
94  
Freescale Semiconductor  
 
 
 
Functional Description and Application Information  
Table 43. Non-Gated Clock Mode Parameters (Continued)  
Ref No.  
Parameter  
csi_d hold time  
Min  
Max  
Unit  
3
4
5
6
1
ns  
ns  
csi_pixclk high time  
csi_pixclk low time  
csi_pixclk frequency  
10.42  
10.42  
0
ns  
48  
MHz  
The limitation on pixel clock rise time / fall time are not specified. It should be calculated from the hold  
time and setup time, according to:  
max rise time allowed = (positive duty cycle - hold time)  
max fall time allowed = (negative duty cycle - setup time)  
In most of case, duty cycle is 50 / 50, therefore:  
max rise time = (period / 2 - hold time)  
max fall time = (period / 2 - setup time)  
For example: Given pixel clock period = 10ns, duty cycle = 50 / 50, hold time = 1ns, setup time = 1ns.  
positive duty cycle = 10 / 2 = 5ns  
=> max rise time allowed = 5 - 1 = 4ns  
negative duty cycle = 10 / 2 = 5ns  
=> max fall time allowed = 5 - 1 = 4ns  
Falling-edge latch data  
max fall time allowed = (negative duty cycle - hold time)  
max rise time allowed = (positive duty cycle - setup time)  
MC9328MX1 Technical Data, Rev. 7  
Freescale Semiconductor  
95  
5 Pin-Out and Package Information  
Table 44 illustrates the package pin assignments for the 256-pin MAPBGA package. For a complete listing of signals, see the Signal  
Multiplexing Table 3 on page 11.  
Table 44. i.MX1 256 MAPBGA Pin Assignments  
1
2
3
4
5
6
7
8
9
1ꢀ  
11  
12  
13  
14  
15  
16  
USBD_  
AFE  
UART1_  
RTS  
UART1_  
RXD  
A
B
C
D
E
F
NVSS  
SD_DAT3  
SD_CLK  
NVSS  
NVDD4  
NVSS  
NVDD3  
BT5  
BT3  
QVDD4  
RVP  
UIP  
N.C.  
A
B
C
D
E
F
USBD_  
ROE  
SPI1_  
SCLK  
A24  
A23  
A22  
A20  
A18  
A15  
SD_DAT1  
D31  
SD_CMD  
SD_DAT0  
D29  
SIM_TX  
SIM_PD  
SIM_SVEN  
D26  
USBD_VP SSI_RXCLK SSI_TXCLK  
BT11  
BTRFGND  
BT13  
BT7  
BT8  
BT6  
BT4  
BT2  
CLS  
BT1  
BTRFVDD  
N.C.  
QVSS  
N.C.  
RVM  
UIN  
N.C.  
R1B  
USBD_  
RCV  
UART2_  
CTS  
UART2_  
RXD  
SSI_  
RXFS  
UART1_  
TXD  
VSS  
1
AVDD2  
N.C.  
USBD_  
SUSPND  
USBD_  
VPO  
USBD_  
VMO  
SPI1_  
SPI_RDY  
D30  
SSI_RXDAT  
N.C.  
R1A  
PX2  
R2B  
UART2_  
RTS  
A21  
D28  
SD_DAT2  
A16  
USBD_VM  
SIM_RST  
SIM_RX  
SSI_TXDAT SPI1_SS  
BT12  
N.C.  
N.C.  
PY2  
R2A  
UART2_  
TXD  
SPI1_  
SSI_TXFS  
D27  
D25  
A19  
BT10  
REV  
PY1  
PX1  
LP/  
LSCLK  
SPL_SPR  
LD1  
MISO  
UART1_  
CTS  
SPI1_  
MOSI  
FLM/  
VSYNC  
G
A17  
D24  
D23  
D21  
SIM_CLK  
BT9  
CONTRAST  
ACD/OE  
G
HSYNC  
H
J
A13  
A12  
A10  
A8  
D22  
A11  
D16  
A7  
A14  
D18  
A9  
D20  
D19  
D17  
D15  
NVDD1  
NVDD1  
NVDD1  
D14  
NVDD1  
NVDD1  
NVSS  
NVSS  
NVSS  
NVSS  
NVSS  
QVSS  
NVDD1  
NVDD1  
CAS  
QVDD1  
NVSS  
NVDD2  
TCK  
PS  
NVSS  
NVDD2  
TIN  
LD0  
LD6  
LD2  
LD7  
LD4  
LD8  
LD5  
LD9  
LD3  
QVSS  
LD15  
H
J
LD11  
LD14  
QVDD3  
TMR2OUT  
CSI_D2  
K
L
LD10  
PWMO  
LD12  
LD13  
CSI_D0  
K
L
D13  
NVDD1  
CSI_MCLK  
CSI_D1  
CSI_D3  
BIG_  
ENDIAN  
CSI_  
HSYNC  
M
N
A5  
A4  
D12  
EB1  
D11  
D10  
A6  
D7  
SDCLK  
A0  
NVSS  
D4  
RW  
MA10  
RAS  
RESET_IN  
CSI_D4  
BOOT2  
CSI_VSYNC  
CSI_D7  
CSI_D6  
TMS  
CSI_D5  
TDI  
M
N
RESET_  
OUT  
CSI_  
PIXCLK  
2
PA17  
D1  
D3  
DQM1  
RESET_SF  
SDCKE1  
DQM0  
P
R
T
A3  
EB2  
NVSS  
1
D9  
EB3  
A2  
2
EB0  
A1  
OE  
3
CS3  
CS4  
CS5  
4
D6  
D8  
CS2  
5
ECB  
D5  
D2  
LBA  
CS0  
7
DQM3  
D0  
BOOT3  
SDCKE0  
CLKO  
11  
BOOT0  
POR  
TRST  
I2C_SCL  
TDO  
I2C_SDA  
QVDD2  
XTAL32K  
EXTAL32K  
QVSS  
P
R
T
3
BOOT1  
BCLK  
CS1  
6
MA11  
DQM2  
9
SDWE  
1ꢀ  
AVDD1  
12  
TRISTATE EXTAL16M XTAL16M  
13 14 15  
8
16  
1
2
ASP signals are clamped by AVDD2 to prevent ESD (Electrostatic Discharge) damage. AVDD2 must be greater than QVDD to keep diodes reversed-biased.  
This signal is not used and should be floated in an actual application.  
3
burst clock  
 
Pin-Out and Package Information  
5.1  
MAPBGA 256 Package Dimensions  
Figure 72 illustrates the 256 MAPBGA 14 mm × 14 mm × 1.30 mm package, with an 0.8 mm pad pitch.  
The device designator for the MAPBGA package is VH.  
Case Outline 1367  
TOP VIEW  
SIDE VIEW  
BOTTOM VIEW  
NOTES:  
1. ALL DIMENSIONS ARE IN MILLIMETERS.  
2.INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14 5M-1994.  
3.MAXIMUM SOLDER BALL DIAMETER MEASURED PARALLEL TO DATUM A.  
4. DATUM A, THE SEATING PLANE IS DEFINED BY SPHERICAL CROWNS OF THE SOLDER BALLS.  
Figure 72. i.MXL 256 MAPBGA Mechanical Drawing  
MC9328MX1 Technical Data, Rev. 7  
Freescale Semiconductor  
97  
 
Product Documentation  
6 Product Documentation  
6.1  
Revision History  
Table 45 provides revision history for this release. This history includes technical content revisions only  
and not stylistic or grammatical changes.  
Table 45. i.MX1 Data Sheet Revision History Rev. 7  
Location  
Table 1 on page 3  
Revision  
• Added the DMA_REQ signal to table.  
Signal Names and  
Descriptions  
• Corrected signal name from USBD_OE to USBD_ROE  
• Corrected signal names  
From: C10 BTRFGN, To: BTRFGND  
From: G6 SIM_RST, To: SIM_RX  
From: G7 UART2_TXD, To: SIM_CLK  
Table 3 on page 11  
Signal Multiplex Table i.MX1  
Added Signal Multiplex table from Reference Manual with the following changes:  
• Changed I/O Supply Voltage, PB31–14, from NVDD3 to NVDD4  
• Corrected footnotes 1–5.  
• Changed AVDD2 references to QVDD, except for C14. Added footnote regarding ESD.  
• Changed occurrence of SD_SCLK to SD_CLK.  
• Removed 69K pull-up resistor from EB1, EB2, and added to D9  
Table 10 on page 26  
Table 3 on page 11  
Changed first and second parameters descriptions:  
From: Reference Clock freq range, To: DPLL input clock freq range  
From: Double clock freq range, To: DPLL output freq range  
Added Signal Multiplex table.  
6.2  
Reference Documents  
The following documents are required for a complete description of the MC9328MX1 and are necessary  
to design properly with the device. Especially for those not familiar with the ARM920T processor or  
previous i.MX processor products, the following documents are helpful when used in conjunction with this  
document.  
ARM Architecture Reference Manual (ARM Ltd., order number ARM DDI 0100)  
ARM9DT1 Data Sheet Manual (ARM Ltd., order number ARM DDI 0029)  
ARM Technical Reference Manual (ARM Ltd., order number ARM DDI 0151C)  
EMT9 Technical Reference Manual (ARM Ltd., order number DDI O157E)  
MC9328MX1 Product Brief (order number MC9328MX1P)  
MC9328MX1 Reference Manual (order number MC9328MX1RM)  
The Freescale manuals are available on the Freescale Semiconductors Web site at  
http://www.freescale.com/imx. These documents may be downloaded directly from the Freescale Web  
site, or printed versions may be ordered. The ARM Ltd. documentation is available from  
http://www.arm.com.  
MC9328MX1 Technical Data, Rev. 7  
98  
Freescale Semiconductor  
 
NOTES  
MC9328MX1 Technical Data, Rev. 7  
Freescale Semiconductor  
99  
How to Reach Us:  
Information in this document is provided solely to enable system and software implementers to use  
Freescale Semiconductor products. There are no express or implied copyright licenses granted  
hereunder to design or fabricate any integrated circuits or integrated circuits based on the information  
in this document.  
Home Page:  
www.freescale.com  
E-mail:  
Freescale Semiconductor reserves the right to make changes without further notice to any products  
herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the  
suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any  
liability arising out of the application or use of any product or circuit, and specifically disclaims any  
and all liability, including without limitation consequential or incidental damages. “Typical” parameters  
that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating parameters,  
including “Typicals”, must be validated for each customer application by customer’s technical experts.  
Freescale Semiconductor does not convey any license under its patent rights nor the rights of others.  
Freescale Semiconductor products are not designed, intended, or authorized for use as components  
in systems intended for surgical implant into the body, or other applications intended to support or  
sustain life, or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer purchase or use  
Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall  
indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and  
distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney  
fees arising out of, directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was  
negligent regarding the design or manufacture of the part.  
support@freescale.com  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor  
Technical Information Center, CH370  
1300 N. Alma School Road  
Chandler, Arizona 85224  
+1-800-521-6274 or +1-480-768-2130  
support@freescale.com  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
support@freescale.com  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064, Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. ARM and the  
ARM POWERED logo are the registered trademarks of ARM Limited. ARM9, ARM920T, and  
ARM9TDMI are the trademarks of ARM Limited. All other product or service names are the property  
of their respective owners.  
Asia/Pacific:  
© Freescale Semiconductor, Inc. 2006. All rights reserved.  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
+800 2666 8080  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical  
characteristics of their non-RoHS-compliant and/or non-Pb-free counterparts. For further  
information, see http://www.freescale.com or contact your Freescale sales representative.  
Denver, Colorado 80217  
1-800-521-6274 or 303-675-2140  
Fax: 303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
For information on Freescale’s Environmental Products program, go to  
http://www.freescale.com/epp.  
Document Number: MC9328MX1  
Rev. 7  
12/2006  

相关型号:

MC9328MX1VM15R2

32-BIT, 150MHz, RISC PROCESSOR, PBGA256, 14 X 14 MM, 1.30 MM HEIGHT, 0.80 MM PITCH, ROHS COMPLIANT, MAPBGA-256
NXP

MC9328MX1VM20

i.MX Integrated Portable System Processor
FREESCALE

MC9328MX1VM20

DRAGONBALL MX1 PB-FREE
NXP

MC9328MX1VM20

RISC Microprocessor, 32-Bit, 200MHz, CMOS, PBGA256, 14 X 14 MM, 1.30 MM HEIGHT, 0.80 MM PITCH, MAPBGA-256
MOTOROLA

MC9328MX1VM20R2

IC,MICROPROCESSOR,32-BIT,CMOS,BGA,256PIN,PLASTIC
NXP

MC9328MX1_06

MX Family of applications processors
FREESCALE

MC9328MX21

i.MX family of microprocessors
MOTOROLA

MC9328MX21

i.MX family of microprocessors
FREESCALE

MC9328MX21CJM

266 MHz i.MX family of microprocessors
FREESCALE

MC9328MX21CVG

i.MX family of microprocessors
MOTOROLA

MC9328MX21CVH

i.MX family of microprocessors
MOTOROLA

MC9328MX21CVK

i.MX family of microprocessors
MOTOROLA