MC9S08PA32A [NXP]

MC9S08PA60A and MC9S08PA32A are recommended for new design;
MC9S08PA32A
型号: MC9S08PA32A
厂家: NXP    NXP
描述:

MC9S08PA60A and MC9S08PA32A are recommended for new design

文件: 总41页 (文件大小:897K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number MC9S08PA60  
Rev. 4, 09/2019  
NXP Semiconductors  
Data Sheet: Technical Data  
MC9S08PA60  
MC9S08PA60 Series Data  
MC9S08PA60A and MC9S08PA32A  
are recommended for new design  
Sheet  
Supports: MC9S08PA60(A) and  
MC9S08PA32(A)  
Key features  
• Development support  
– Single-wire background debug interface  
– Breakpoint capability to allow three breakpoints  
setting during in-circuit debugging  
– On-chip in-circuit emulator (ICE) debug module  
containing two comparators and nine trigger modes  
• 8-Bit S08 central processor unit (CPU)  
– Up to 20 MHz bus at 2.7 V to 5.5 V across  
temperature range of -40 °C to 105 °C  
– Supporting up to 40 interrupt/reset sources  
– Supporting up to four-level nested interrupt  
– On-chip memory  
• Peripherals  
– Up to 60 KB flash read/program/erase over full  
operating voltage and temperature  
– Up to 256 byte EEPROM; 2-byte erase sector;  
program and erase while executing flash  
– Up to 4096 byte random-access memory (RAM)  
– Flash and RAM access protection  
– ACMP - one analog comparator with both positive  
and negative inputs; separately selectable interrupt  
on rising and falling comparator output; filtering  
– ADC - 16-channel, 12-bit resolution; 2.5 µs  
conversion time; data buffers with optional  
watermark; automatic compare function; internal  
bandgap reference channel; operation in stop mode;  
optional hardware trigger  
• Power-saving modes  
– One low-power stop mode; reduced power wait  
mode  
– Peripheral clock enable register can disable clocks to  
unused modules, reducing currents; allows clocks to  
remain enabled to specific peripherals in stop3 mode  
– CRC - programmable cyclic redundancy check  
module  
– FTM - three flex timer modulators modules  
including one 6-channel and two 2-channel ones;  
16-bit counter; each channel can be configured for  
input capture, output compare, edge- or center-  
aligned PWM mode  
– IIC - One inter-integrated circuit module; up to 400  
kbps; multi-master operation; programmable slave  
address; supporting broadcast mode and 10-bit  
addressing; supporting SMBUS and PMBUS  
– MTIM - Two modulo timers with 8-bit prescaler and  
overflow interrupt  
– RTC - 16-bit real timer counter (RTC)  
– SCI - three serial communication interface (SCI/  
UART) modules optional 13-bit break; full duplex  
non-return to zero (NRZ); LIN extension support  
– SPI - one 8-bit and one 16-bit serial peripheral  
interface (SPI) modules; full-duplex or single-wire  
bidirectional; master or slave mode  
• Clocks  
– Oscillator (XOSC) - loop-controlled Pierce  
oscillator; crystal or ceramic resonator range of  
31.25 kHz to 39.0625 kHz or 4 MHz to 20 MHz  
– Internal clock source (ICS) - containing a frequency-  
locked-loop (FLL) controlled by internal or external  
reference; precision trimming of internal reference  
allowing 1% deviation across temperature range of 0  
°C to 70 °C and 2% deviation across the whole  
operating temperature; up to 20 MHz  
• System protection  
– Watchdog with independent clock source  
– Low-voltage detection with reset or interrupt;  
selectable trip points  
– Illegal opcode detection with reset  
– Illegal address detection with reset  
NXP reserves the right to change the production detail specifications as may be  
required to permit improvements in the design of its products.  
• Input/Output  
– Up to 57 GPIOs including one output-only pin  
– Two 8-bit keyboard interrupt modules (KBI)  
– Two true open-drain output pins  
– Eight, ultra-high current sink pins supporting 20 mA source/sink current  
• Package options  
– 64-pin LQFP; 64-pin QFP  
– 48-pin LQFP  
– 44-pin LQFP  
– 32-pin LQFP  
MC9S08PA60 Series Data Sheet, Rev. 4, 09/2019  
2
NXP Semiconductors  
Table of Contents  
1
2
3
MCU block diagram...........................................................................4  
6.2.2 Debug trace timing specifications................................19  
6.2.3 FTM module timing.....................................................20  
6.3 Thermal specifications...............................................................21  
6.3.1 Thermal operating requirements..................................21  
6.3.2 Thermal characteristics................................................ 21  
Peripheral operating requirements and behaviors..............................22  
7.1 External oscillator (XOSC) and ICS characteristics..................22  
7.2 NVM specifications...................................................................24  
7.3 Analog........................................................................................25  
7.3.1 ADC characteristics..................................................... 25  
7.3.2 Analog comparator (ACMP) electricals...................... 28  
7.4 Communication interfaces.........................................................29  
7.4.1 SPI switching specifications........................................ 29  
Dimensions.........................................................................................32  
8.1 Obtaining package dimensions..................................................32  
Pinout................................................................................................. 33  
9.1 Signal multiplexing and pin assignments.................................. 33  
9.2 Device pin assignment...............................................................35  
Orderable part numbers......................................................................6  
Part identification...............................................................................7  
3.1 Description.................................................................................7  
3.2 Format........................................................................................7  
3.3 Fields..........................................................................................7  
3.4 Example..................................................................................... 7  
Parameter Classification.....................................................................8  
Ratings................................................................................................8  
5.1 Thermal handling ratings...........................................................8  
5.2 Moisture handling ratings..........................................................8  
5.3 ESD handling ratings.................................................................9  
5.4 Voltage and current operating ratings........................................9  
General............................................................................................... 10  
6.1 Nonswitching electrical specifications...................................... 10  
6.1.1 DC characteristics........................................................ 10  
6.1.2 Supply current characteristics......................................16  
6.1.3 EMC performance........................................................17  
6.2 Switching specifications............................................................ 18  
6.2.1 Control timing..............................................................18  
7
4
5
6
8
9
10 Revision history................................................................................. 39  
MC9S08PA60 Series Data Sheet, Rev. 4, 09/2019  
NXP Semiconductors  
3
MCU block diagram  
1 MCU block diagram  
The block diagram below shows the structure of the MCUs.  
MC9S08PA60 Series Data Sheet, Rev. 4, 09/2019  
4
NXP Semiconductors  
MCU block diagram  
PTA0/KBI0P0/FTM0CH0/ACMP0/ADP0  
PTA1/KBI0P1/FTM0CH1/ACMP1/ADP1  
1
PTA2/KBI0P2/RxD0/SDA  
PTA3/KBI0P3/TxD0/SCL  
PTA4/ACMPO/BKGD/MS  
HCS08 CORE  
1
KEYBOARD INTERRUPT  
2
MODULE (KBI0)  
PTA5/IRQ/TCLK0/RESET  
PTA6/FTM2FAULT1/ADP2  
PTA7/FTM2FAULT2/ADP3  
CPU  
BDC  
KBYBOARD INTERRUPT  
MODULE (KBI1)  
PTB0/KBI0P4/RxD0/ADP4  
PTB1/KBI0P5/TxD0/ADP5  
PTB2/KBI0P6/SPSCK0/ADP6  
PTB3/KBI0P7/MOSI0/ADP7  
SYSTEM INTEGRATION  
8-BIT MODULO TIMER  
MODULE (SIM)  
(MTIM0)  
3
PTB4/FTM2CH4/MISO0  
3
WDOG  
IRQ  
LVD  
PTB5/FTM2CH5/SS0  
PTB6/SDA/XTAL  
PTB7/SCL/EXTAL  
8-BIT MODULO TIMER  
(MTIM1)  
1 kHz OSC  
PTC0/FTM2CH0/ADP8  
PTC1/FTM2CH1/ADP9/  
PTC2/FTM2CH2/ADP10  
PTC3/FTM2CH3/ADP11  
PTC4/FTM1CH0/RTCO  
PTC5/FTM1CH1  
2-CH FLEX TIMER  
INTERRUPT PRIORITY  
MODULE (FTM0)  
CONTROLLER(IPC)  
2-CH FLEX TIMER  
ON-CHIP ICE AND  
DEBUG MODUE (DBG)  
MODULE (FTM1)  
PTC6/RxD1  
PTC7/TxD1  
6-CH FTM TIMER  
3
USER FLASH  
MC9S08PA60 = 60,864 bytes  
MC9S08PA32 = 32,768 bytes  
MODULE (FTM2)  
PTD0/KBI1P0/FTM2CH2/SPSCK1  
PTD1/KBI1P1/FTM2CH3/MOSI1  
PTD2/KBI1P2/MISO1  
PTD3/KBI1P3/SS1  
PTD4/KBI1P4  
PTD5/KBI1P5  
PTD6/KBI1P6/RxD2  
PTD7/KBI1P7/TxD2  
3
SERIAL COMMUNICATION  
INTERFACE (SCI0)  
USER EEPROM  
MC9S08PA60 = 256 bytes  
MC9S08PA32 = 256 bytes  
SERIAL COMMUNICATION  
INTERFACE (SCI1)  
3
PTE0/SPSCK0/TCLK1  
PTE1/MOSI0  
PTE2/MISO0  
PTE3/SS0  
PTE4  
SERIAL COMMUNICATION  
USER RAM  
MC9S08PA60 = 4,096 bytes  
MC9S08PA32 = 4,096 bytes  
3
INTERFACE (SCI2)  
8-BIT SERIAL PERIPHERAL  
INTERFACE MODULE(SPI0)  
PTE5  
20 MHz INTERNAL CLOCK  
PTE6  
PTE7/TCLK2  
SOURCE (ICS)  
16-BIT SERIAL PERIPHERAL  
EXTAL  
XTAL  
INTERFACE MODULE(SPI1)  
PTF0  
PTF1  
PTF2  
PTF3  
PTF4/ADP12  
PTF5/ADP13  
PTF6/ADP14  
PTF7/ADP15  
EXTERNAL OSCILLATOR  
SOURCE (XOSC)  
INTER-INTEGRATED  
V
V
V
V
V
DD  
SS  
DD  
SS  
CIRCUIT(IIC)  
5
5
POWER MANAGEMENT  
CONTROLLER (PMC)  
ANALOG COMPARATOR  
5
(ACMP)  
SS  
V
V
V
V
REFH  
DDA  
REFL  
SSA  
PTG0  
PTG1  
PTG2  
PTG3  
REAL-TIME COUNTER  
16-CH 12-BIT  
ANALOG-TO-DIGITAL  
CONVERTER(ADC)  
(RTC)  
3
PTH0/FTM2CH0  
3
CYCLIC REDUNDANCY  
CHECK (CRC)  
PTH1/FTM2CH1  
4
PTH2/BUSOUT  
PTH6  
PTH7  
1. PTA2 and PTA3 operate as true open drain when working as output .  
2. PTA4/ACMPO/BKGD/MS is an output-only pin when used as port pin.  
3. PTB4, PTB5, PTD0, PTD1, PTE0, PTE1, PTH0 and PTH1 can provide high sink/source current drive.  
4. The frequency of the clock from BUSOUT must be equal or less than 10 MHz with 25 pF loading at PAD.  
5. The secondary power pair of V and V (pin 41 and pin 40 in 64-pin packages) and the third V (pin 13 in 64-pin packages) are not bonded  
DD  
SS  
SS  
in 32-pin packages.  
Figure 1. MCU block diagram  
MC9S08PA60 Series Data Sheet, Rev. 4, 09/2019  
NXP Semiconductors  
5
Orderable part numbers  
2 Orderable part numbers  
The following table summarizes the part numbers of the devices covered by this  
document.  
Table 1. Ordering information  
Feature  
MC9S08PA60(A)  
VLF  
MC9S08PA32(A)  
VLF  
Part  
VLH  
VQH  
VLD  
VLC  
VLH  
VQH  
VLD  
VLC  
Number  
Max.  
frequency  
(MHz)  
20  
60  
20  
60  
4
20  
60  
20  
60  
4
20  
60  
4
20  
32  
4
20  
32  
4
20  
32  
20  
32  
4
20  
32  
4
Flash  
memory  
(KB)  
RAM (KB) 4  
4
4
EEPROM 256  
(B)  
256  
256  
256  
256  
256  
256  
256  
256  
256  
12-bit  
ADC  
16ch  
16ch  
12ch  
12ch  
12ch  
16ch  
16ch  
12ch  
12ch  
12ch  
16-bit  
6ch+2ch 6ch+2ch 6ch+2ch 6ch+2ch 6ch+2ch 6ch+2ch 6ch+2ch 6ch+2ch 6ch+2ch 6ch+2ch  
FlexTimer +2ch  
+2ch  
+2ch  
+2ch  
+2ch  
+2ch  
+2ch  
+2ch  
+2ch  
+2ch  
8-bit  
2
2
2
2
2
2
2
2
2
2
Modulo  
timer  
ACMP  
RTC  
1
1
1
1
1
1
1
1
1
1
Yes  
Yes  
1
Yes  
1
Yes  
1
Yes  
1
Yes  
1
Yes  
1
Yes  
1
Yes  
1
Yes  
1
16-bit SPI 1  
8-bit SPI  
I2C  
1
1
3
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
SCI (LIN  
Capable)  
3
3
3
2
3
3
3
3
2
Watchdog Yes  
Yes  
Yes  
8
Yes  
Yes  
6
Yes  
Yes  
6
Yes  
Yes  
4
Yes  
Yes  
8
Yes  
Yes  
8
Yes  
Yes  
6
Yes  
Yes  
6
Yes  
Yes  
4
CRC  
Yes  
8
20mA  
high-drive  
pins  
KBI pins 16  
GPIO 57  
16  
57  
16  
41  
12  
37  
12  
28  
16  
57  
16  
57  
16  
41  
12  
37  
12  
28  
Package 64-LQFP 64-QFP  
48-LQFP 44-LQFP 32-LQFP 64-LQFP 64-QFP  
48-LQFP 44-LQFP 32-LQFP  
MC9S08PA60 Series Data Sheet, Rev. 4, 09/2019  
6
NXP Semiconductors  
Part identification  
3 Part identification  
3.1 Description  
Part numbers for the chip have fields that identify the specific part. You can use the  
values of these fields to determine the specific part you have received.  
3.2 Format  
Part numbers for this device have the following format:  
MC 9 S08 PA AA (V) B CC  
3.3 Fields  
This table lists the possible values for each field in the part number (not all combinations  
are valid):  
Field  
Description  
Values  
• MC = fully qualified, general market flow  
• 9 = flash based  
MC  
9
Qualification status  
Memory  
S08  
PA  
AA  
Core  
• S08 = 8-bit CPU  
Device family  
• PA  
Approximate flash size in KB  
• 60 = 60 KB  
• 32 = 32 KB  
(V)  
Mask set version  
• (blank) = Any version  
• A = Rev. 2 or later version, this is  
recommended for new design  
B
Operating temperature range (°C)  
Package designator  
• V = –40 to 105  
CC  
• QH = 64-pin QFP  
• LH = 64-pin LQFP  
• LF = 48-pin LQFP  
• LD = 44-pin LQFP  
• LC = 32-pin LQFP  
3.4 Example  
This is an example part number:  
MC9S08PA60 Series Data Sheet, Rev. 4, 09/2019  
NXP Semiconductors  
7
Parameter Classification  
MC9S08PA60VQH  
4 Parameter Classification  
The electrical parameters shown in this supplement are guaranteed by various methods.  
To give the customer a better understanding, the following classification is used and the  
parameters are tagged accordingly in the tables where appropriate:  
Table 2. Parameter Classifications  
P
C
Those parameters are guaranteed during production testing on each individual device.  
Those parameters are achieved by the design characterization by measuring a statistically relevant sample size  
across process variations.  
T
Those parameters are achieved by design characterization on a small sample size from typical devices under  
typical conditions unless otherwise noted. All values shown in the typical column are within this category.  
D
Those parameters are derived mainly from simulations.  
NOTE  
The classification is shown in the column labeled “C” in the  
parameter tables where appropriate.  
5 Ratings  
5.1 Thermal handling ratings  
Symbol  
TSTG  
Description  
Min.  
–55  
Max.  
150  
Unit  
°C  
Notes  
Storage temperature  
Solder temperature, lead-free  
1
2
TSDR  
260  
°C  
1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.  
2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
5.2 Moisture handling ratings  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
MSL  
Moisture sensitivity level  
3
1
1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
MC9S08PA60 Series Data Sheet, Rev. 4, 09/2019  
8
NXP Semiconductors  
Ratings  
5.3 ESD handling ratings  
Symbol  
VHBM  
VCDM  
ILAT  
Description  
Min.  
-6000  
-500  
Max.  
+6000  
+500  
Unit  
V
Notes  
Electrostatic discharge voltage, human body model  
Electrostatic discharge voltage, charged-device model  
Latch-up current at ambient temperature of 105 °C  
1
2
V
-100  
+100  
mA  
1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body  
Model (HBM).  
2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for  
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.  
5.4 Voltage and current operating ratings  
Absolute maximum ratings are stress ratings only, and functional operation at the  
maxima is not guaranteed. Stress beyond the limits specified in below table may affect  
device reliability or cause permanent damage to the device. For functional operating  
conditions, refer to the remaining tables in this document.  
This device contains circuitry protecting against damage due to high static voltage or  
electrical fields; however, it is advised that normal precautions be taken to avoid  
application of any voltages higher than maximum-rated voltages to this high-impedance  
circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate  
logic voltage level (for instance, either VSS or VDD) or the programmable pullup resistor  
associated with the pin is enabled.  
Symbol  
VDD  
Description  
Min.  
–0.3  
Max.  
6.0  
Unit  
V
Supply voltage  
IDD  
Maximum current into VDD  
120  
mA  
V
VDIO  
Digital input voltage (except RESET, EXTAL, XTAL, or true  
open drain pin PTA2 and PTA3)  
–0.3  
VDD + 0.3  
Digital input voltage (true open drain pin PTA2 and PTA3)  
Analog1, RESET, EXTAL, and XTAL input voltage  
-0.3  
–0.3  
–25  
6
VDD + 0.3  
25  
V
V
VAIO  
ID  
Instantaneous maximum current single pin limit (applies to all  
port pins)  
mA  
VDDA  
Analog supply voltage  
VDD – 0.3  
VDD + 0.3  
V
1. All digital I/O pins, except open-drain pin PTA2 and PTA3, are internally clamped to VSS and VDD. PTA2 and PTA3 is only  
clamped to VSS  
.
MC9S08PA60 Series Data Sheet, Rev. 4, 09/2019  
NXP Semiconductors  
9
General  
6 General  
6.1 Nonswitching electrical specifications  
6.1.1 DC characteristics  
This section includes information about power supply requirements and I/O pin  
characteristics.  
Table 3. DC characteristics  
Symbol  
C
P
Descriptions  
Operating voltage  
Output high All I/O pins, standard- 5 V, Iload  
Min  
2.7  
Typical1  
Max  
5.5  
Unit  
V
VOH  
=
=
=
=
VDD - 0.8  
V
voltage  
drive strength  
-5 mA  
C
P
C
D
3 V, Iload  
-2.5 mA  
VDD - 0.8  
VDD - 0.8  
VDD - 0.8  
V
V
High current drive  
pins, high-drive  
strength2  
5 V, Iload  
-20 mA  
3 V, Iload  
-10 mA  
V
IOHT  
Output high  
current  
Max total IOH for all  
ports  
5 V  
3 V  
-100  
-50  
mA  
VOL  
P
C
P
C
D
Output low All I/O pins, standard- 5 V, Iload = 5  
0.8  
V
V
voltage  
drive strength  
mA  
3 V, Iload  
2.5 mA  
=
0.8  
0.8  
0.8  
High current drive  
pins, high-drive  
strength2  
5 V, Iload  
=20 mA  
V
3 V, Iload  
10 mA  
=
V
IOLT  
VIH  
VIL  
Output low  
current  
Max total IOL for all  
ports  
5 V  
100  
mA  
3 V  
50  
P
C
P
C
C
Input high  
voltage  
All digital inputs  
All digital inputs  
All digital inputs  
VDD>4.5V  
VDD>2.7V  
VDD>4.5V  
VDD>2.7V  
0.70 × VDD  
0.75 × VDD  
V
V
Input low  
voltage  
0.30 × VDD  
0.35 × VDD  
Vhys  
|IIn|  
Input  
0.06 × VDD  
mV  
µA  
hysteresis  
P
Input leakage  
current  
All input only pins  
(per pin)  
VIN = VDD or  
VSS  
0.1  
1
Table continues on the next page...  
MC9S08PA60 Series Data Sheet, Rev. 4, 09/2019  
10  
NXP Semiconductors  
Nonswitching electrical specifications  
Table 3. DC characteristics (continued)  
Symbol  
|IOZ  
C
Descriptions  
Min  
Typical1  
Max  
Unit  
|
P
Hi-Z (off-  
state) leakage  
current  
All input/output (per VIN = VDD or  
0.1  
1
µA  
pin)  
VSS  
|IOZTOT  
|
C
P
Total leakage All input only and I/O VIN = VDD or  
2
µA  
kΩ  
combined for  
all inputs and  
Hi-Z pins  
VSS  
RPU  
Pullup  
resistors  
All digital inputs,  
when enabled (all I/O  
pins other than PTA2  
and PTA3)  
30.0  
50.0  
60.0  
3
RPU  
P
D
Pullup  
PTA2 and PTA3 pin  
30.0  
kΩ  
resistors  
IIC  
DC injection  
current4, 5, 6  
Single pin limit  
VIN < VSS  
VIN > VDD  
,
-0.2  
-5  
2
mA  
Total MCU limit,  
includes sum of all  
stressed pins  
25  
CIn  
C
C
Input capacitance, all pins  
RAM retention voltage  
7
pF  
V
VRAM  
2.0  
1. Typical values are measured at 25 °C. Characterized, not tested.  
2. Only PTB4, PTB5, PTD0, PTD1, PTE0, PTE1, PTH0, and PTH1 support ultra high current output.  
3. The specified resistor value is the actual value internal to the device. The pullup value may appear higher when measured  
externally on the pin.  
4. All functional non-supply pins, except for PTA2 and PTA3, are internally clamped to VSS and VDD  
.
5. Input must be current-limited to the value specified. To determine the value of the required current-limiting resistor,  
calculate resistance values for positive and negative clamp voltages, then use the large one.  
6. Power supply must maintain regulation within operating VDD range during instantaneous and operating maximum current  
conditions. If the positive injection current (VIn > VDD) is higher than IDD, the injection current may flow out of VDD and could  
result in external power supply going out of regulation. Ensure that external VDD load will shunt current higher than  
maximum injection current when the MCU is not consuming power, such as no system clock is present, or clock rate is  
very low (which would reduce overall power consumption).  
Table 4. LVD and POR Specification  
Symbol  
VPOR  
C
D
C
Description  
Min  
1.5  
4.2  
Typ  
1.75  
4.3  
Max  
2.0  
Unit  
V
POR re-arm voltage1, 2  
VLVDH  
Falling low-voltage detect  
threshold - high range (LVDV  
= 1)3  
4.4  
V
VLVW1H  
VLVW2H  
VLVW3H  
VLVW4H  
C
C
C
C
Falling low- Level 1 falling  
4.3  
4.5  
4.6  
4.7  
4.4  
4.5  
4.6  
4.7  
4.5  
4.6  
4.7  
4.8  
V
V
V
V
voltage  
warning  
threshold -  
high range  
(LVWV = 00)  
Level 2 falling  
(LVWV = 01)  
Level 3 falling  
(LVWV = 10)  
Level 4 falling  
(LVWV = 11)  
Table continues on the next page...  
MC9S08PA60 Series Data Sheet, Rev. 4, 09/2019  
NXP Semiconductors  
11  
Nonswitching electrical specifications  
Table 4. LVD and POR Specification (continued)  
Symbol  
C
Description  
Min  
Typ  
Max  
Unit  
VHYSH  
C
High range low-voltage  
100  
mV  
detect/warning hysteresis  
VLVDL  
C
Falling low-voltage detect  
threshold - low range (LVDV =  
0)  
2.56  
2.61  
2.66  
V
VLVDW1L  
VLVDW2L  
VLVDW3L  
VLVDW4L  
VHYSDL  
VHYSWL  
VBG  
C
C
C
C
C
C
P
Falling low- Level 1 falling  
2.62  
2.72  
2.82  
2.92  
2.7  
2.8  
2.9  
3.0  
40  
2.78  
2.88  
2.98  
3.08  
V
V
voltage  
warning  
threshold -  
low range  
(LVWV = 00)  
Level 2 falling  
(LVWV = 01)  
Level 3 falling  
(LVWV = 10)  
V
Level 4 falling  
(LVWV = 11)  
V
Low range low-voltage detect  
hysteresis  
mV  
mV  
V
Low range low-voltage  
warning hysteresis  
Buffered bandgap output 4  
80  
1.14  
1.16  
1.18  
1. Maximum is highest voltage that POR is guaranteed.  
2. POR ramp time must be longer than 20us/V to get a stable startup.  
3. Rising thresholds are falling threshold + hysteresis.  
4. Voltage factory trimmed at VDD = 5.0 V, Temp = 25 °C  
VDD-VOH(V)  
IOH(mA)  
Figure 2. Typical IOH Vs. VDD-VOH (standard drive strength) (VDD = 5 V)  
MC9S08PA60 Series Data Sheet, Rev. 4, 09/2019  
12  
NXP Semiconductors  
Nonswitching electrical specifications  
VDD-VOH(V)  
IOH(mA)  
Figure 3. Typical IOH Vs. VDD-VOH (standard drive strength) (VDD = 3 V)  
VDD-VOH(V)  
IOH(mA)  
Figure 4. Typical IOH Vs. VDD-VOH (high drive strength) (VDD = 5 V)  
MC9S08PA60 Series Data Sheet, Rev. 4, 09/2019  
NXP Semiconductors  
13  
Nonswitching electrical specifications  
VDD-VOH(V)  
IOH(mA)  
Figure 5. Typical IOH Vs. VDD-VOH (high drive strength) (VDD = 3 V)  
VOL(V)  
IOL(mA)  
Figure 6. Typical IOL Vs. VOL (standard drive strength) (VDD = 5 V)  
MC9S08PA60 Series Data Sheet, Rev. 4, 09/2019  
14  
NXP Semiconductors  
Nonswitching electrical specifications  
VOL(V)  
IOL(mA)  
Figure 7. Typical IOL Vs. VOL (standard drive strength) (VDD = 3 V)  
VOL(V)  
IOL(mA)  
Figure 8. Typical IOL Vs. VOL (high drive strength) (VDD = 5 V)  
MC9S08PA60 Series Data Sheet, Rev. 4, 09/2019  
NXP Semiconductors  
15  
Nonswitching electrical specifications  
VOL(V)  
IOL(mA)  
Figure 9. Typical IOL Vs. VOL (high drive strength) (VDD = 3 V)  
6.1.2 Supply current characteristics  
This section includes information about power supply current in various operating modes.  
Table 5. Supply current characteristics  
Num  
C
C
C
Parameter  
Symbol Bus Freq  
VDD (V)  
Typical1  
12.6  
7.2  
Max  
Unit  
Temp  
1
Run supply current FEI  
mode, all modules on; run  
from flash  
RIDD  
RIDD  
RIDD  
20 MHz  
10 MHz  
1 MHz  
5
mA -40 to 105 °C  
mA -40 to 105 °C  
mA -40 to 105 °C  
2.4  
C
C
20 MHz  
10 MHz  
1 MHz  
3
5
3
5
9.6  
6.1  
2.1  
2
3
C
C
Run supply current FEI  
mode, all modules off &  
gated; run from flash  
20 MHz  
10 MHz  
1 MHz  
10.5  
6.2  
2.3  
C
C
20 MHz  
10 MHz  
1 MHz  
7.4  
5.0  
2.0  
P
C
Run supply current FBE  
mode, all modules on; run  
from RAM  
20 MHz  
10 MHz  
1 MHz  
12.1  
6.5  
14.8  
1.8  
Table continues on the next page...  
MC9S08PA60 Series Data Sheet, Rev. 4, 09/2019  
16  
NXP Semiconductors  
Nonswitching electrical specifications  
Table 5. Supply current characteristics (continued)  
Num  
C
P
Parameter  
Symbol Bus Freq  
20 MHz  
VDD (V)  
Typical1  
Max  
11.8  
Unit  
Temp  
3
9.1  
C
10 MHz  
5.5  
1 MHz  
1.5  
4
P
C
Run supply current FBE  
mode, all modules off &  
gated; run from RAM  
RIDD  
20 MHz  
10 MHz  
1 MHz  
20 MHz  
10 MHz  
1 MHz  
20 MHz  
10 MHz  
1 MHz  
20 MHz  
10 MHz  
1 MHz  
5
3
5
3
9.8  
12.3  
mA -40 to 105 °C  
5.4  
1.6  
P
C
6.9  
9.2  
4.4  
1.4  
5
C
C
Wait mode current FEI  
mode, all modules on  
WIDD  
7.8  
mA -40 to 105 °C  
4.5  
1.3  
C
5.1  
3.5  
1.2  
6
7
C
C
Stop3 mode supply  
current no clocks active  
(except 1 kHz LPO  
clock)2, 3  
S3IDD  
5
3
1.45  
1.4  
µA  
µA  
-40 to 105 °C  
-40 to 105 °C  
C
C
ADC adder to stop3  
ADLPC = 1  
5
3
44  
40  
-40 to 105 °C  
ADLSMP = 1  
ADCO = 1  
MODE = 10B  
ADICLK = 11B  
LVD adder to stop34  
8
C
C
5
3
130  
125  
µA  
-40 to 105 °C  
1. Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.  
2. RTC adder cause <1 µA IDD increase typically, RTC clock source is 1 kHz LPO clock.  
3. ACMP adder cause <10 µA IDD increase typically.  
4. LVD is periodically woken up from stop3 by 5% duty cycle. The period is equal to or less than 2 ms.  
6.1.3 EMC performance  
Electromagnetic compatibility (EMC) performance is highly dependent on the  
environment in which the MCU resides. Board design and layout, circuit topology  
choices, location and characteristics of external components as well as MCU software  
operation all play a significant role in EMC performance. The system designer should  
consult NXP applications notes such as AN2321, AN1050, AN1263, AN2764, and  
AN1259 for advice and guidance specifically targeted at optimizing EMC performance.  
MC9S08PA60 Series Data Sheet, Rev. 4, 09/2019  
NXP Semiconductors  
17  
Switching specifications  
6.1.3.1 EMC radiated emissions operating behaviors  
Table 6. EMC radiated emissions operating behaviors for 64-pin SOIC package  
Symbol  
Description  
Frequency  
band (MHz)  
Typ.  
Unit  
Notes  
VRE1  
VRE2  
Radiated emissions voltage, band 1  
Radiated emissions voltage, band 2  
Radiated emissions voltage, band 3  
Radiated emissions voltage, band 4  
IEC level  
0.15–50  
50–150  
12  
10  
4
dBμV  
dBμV  
dBμV  
dBμV  
1, 2  
VRE3  
150–500  
500–1000  
0.15–1000  
VRE4  
5
VRE_IEC  
N
2, 3  
1. Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150  
kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement of  
Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband  
TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported  
emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the  
measured orientations in each frequency range.  
2. VDD = 5.0 V, TA = 25 °C, fOSC = 10 MHz (crystal), fSYS = 20 MHz, fBUS = 20 MHz  
3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and Wideband  
TEM Cell Method  
6.2 Switching specifications  
6.2.1 Control timing  
Table 7. Control timing  
Num  
C
P
P
D
Rating  
Bus frequency (tcyc = 1/fBus  
Symbol  
fBus  
Min  
DC  
Typical1  
Max  
20  
Unit  
MHz  
KHz  
ns  
1
2
3
)
1.0  
Internal low power oscillator frequency  
External reset pulse width2  
fLPO  
0.67  
1.25  
textrst  
1.5 ×  
tcyc  
4
5
D
D
Reset low drive  
trstdrv  
34 × tcyc  
500  
ns  
ns  
BKGD/MS setup time after issuing background  
debug force reset to enter user or BDM modes  
tMSSU  
6
7
D
D
BKGD/MS hold time after issuing background  
debug force reset to enter user or BDM modes3  
tMSH  
tILIH  
100  
100  
ns  
ns  
IRQ pulse width  
Asynchronous  
path2  
D
D
Synchronous path4  
tIHIL  
tILIH  
1.5 × tcyc  
100  
ns  
ns  
8
Keyboard interrupt pulse  
width  
Asynchronous  
path2  
D
Synchronous path  
tIHIL  
1.5 × tcyc  
ns  
Table continues on the next page...  
MC9S08PA60 Series Data Sheet, Rev. 4, 09/2019  
18  
NXP Semiconductors  
Switching specifications  
Table 7. Control timing (continued)  
Num  
C
C
C
Rating  
Symbol  
tRise  
Min  
Typical1  
10.2  
Max  
Unit  
ns  
9
Port rise and fall time -  
standard drive strength  
(load = 50 pF)5  
tFall  
9.5  
ns  
C
C
Port rise and fall time -  
high drive strength (load =  
50 pF)5  
tRise  
tFall  
5.4  
4.6  
ns  
ns  
1. Typical values are based on characterization data at VDD = 5.0 V, 25 °C unless otherwise stated.  
2. This is the shortest pulse that is guaranteed to be recognized as a reset pin request.  
3. To enter BDM mode following a POR, BKGD/MS must be held low during the powerup and for a hold time of tMSH after  
VDD rises above VLVD  
.
4. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or  
may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized.  
5. Timing is shown with respect to 20% VDD and 80% VDD levels in operating temperature range.  
textrst  
RESET PIN  
Figure 10. Reset timing  
tIHIL  
KBIPx  
IRQ/KBIPx  
tILIH  
Figure 11. IRQ/KBIPx timing  
6.2.2 Debug trace timing specifications  
Table 8. Debug trace operating behaviors  
Symbol  
Description  
Min.  
Max.  
Unit  
MHz  
ns  
tcyc  
twl  
twh  
tr  
Clock period  
Frequency dependent  
Low pulse width  
High pulse width  
Clock and data rise time  
Clock and data fall time  
Data setup  
2
2
3
ns  
3
ns  
tf  
3
ns  
ts  
ns  
th  
Data hold  
2
ns  
MC9S08PA60 Series Data Sheet, Rev. 4, 09/2019  
NXP Semiconductors  
19  
Switching specifications  
TRACECLK  
T
r
T
f
T
T
wh  
wl  
T
cyc  
Figure 12. TRACE_CLKOUT specifications  
TRACE_CLKOUT  
TRACE_D[3:0]  
Ts  
Th  
Ts  
Th  
Figure 13. Trace data specifications  
6.2.3 FTM module timing  
Synchronizer circuits determine the shortest input pulses that can be recognized or the  
fastest clock that can be used as the optional external source to the timer counter. These  
synchronizers operate from the current bus rate clock.  
Table 9. FTM input timing  
No.  
C
Function  
Symbol  
Min  
Max  
Unit  
1
D
External clock  
frequency  
fTCLK  
0
fBus/4  
Hz  
2
3
4
5
D
D
D
D
External clock  
period  
tTCLK  
tclkh  
4
tcyc  
tcyc  
tcyc  
tcyc  
External clock  
high time  
1.5  
1.5  
1.5  
External clock  
low time  
tclkl  
Input capture  
pulse width  
tICPW  
tTCLK  
tclkh  
TCLK  
tclkl  
Figure 14. Timer external clock  
MC9S08PA60 Series Data Sheet, Rev. 4, 09/2019  
20  
NXP Semiconductors  
Thermal specifications  
tICPW  
FTMCHn  
FTMCHn  
tICPW  
Figure 15. Timer input capture pulse  
6.3 Thermal specifications  
6.3.1 Thermal operating requirements  
Table 10. Thermal operating requirements  
Symbol  
TJ  
Description  
Min.  
–40  
–40  
Max.  
Unit  
°C  
Die junction temperature  
Ambient temperature  
125  
105  
TA  
°C  
NOTE  
Maximum TA can be exceeded only if the user ensures that TJ  
does not exceed the maximum. The simplest method to  
determine TJ is: TJ = TA + RθJA × chip power dissipation.  
6.3.2 Thermal characteristics  
This section provides information about operating temperature range, power dissipation,  
and package thermal resistance. Power dissipation on I/O pins is usually small compared  
to the power dissipation in on-chip logic and voltage regulator circuits, and it is user-  
determined rather than being controlled by the MCU design. To take PI/O into account in  
power calculations, determine the difference between actual pin voltage and VSS or VDD  
and multiply by the pin current for each I/O pin. Except in cases of unusually high pin  
current (heavy loads), the difference between pin voltage and VSS or VDD will be very  
small.  
MC9S08PA60 Series Data Sheet, Rev. 4, 09/2019  
NXP Semiconductors  
21  
Peripheral operating requirements and behaviors  
Table 11. Thermal attributes  
Board type  
Symbo  
l
Description  
64  
LQFP  
64 QFP  
48  
LQFP  
44  
LQFP  
32  
LQFP  
Unit  
Notes  
Single-layer (1S)  
RθJA Thermal resistance,  
junction to ambient (natural  
71  
53  
59  
46  
61  
81  
57  
68  
50  
75  
53  
62  
47  
86  
57  
72  
51  
°C/W  
1, 2  
convection)  
Four-layer (2s2p)  
RθJA Thermal resistance,  
47  
50  
41  
°C/W  
°C/W  
°C/W  
1, 3  
1, 3  
1, 3  
junction to ambient (natural  
convection)  
Single-layer (1S) RθJMA Thermal resistance,  
junction to ambient (200 ft./  
min. air speed)  
Four-layer (2s2p) RθJMA Thermal resistance,  
junction to ambient (200 ft./  
min. air speed)  
RθJB Thermal resistance,  
junction to board  
35  
20  
5
32  
23  
8
34  
24  
6
34  
20  
5
33  
24  
6
°C/W  
°C/W  
°C/W  
4
5
6
RθJC Thermal resistance,  
junction to case  
ΨJT  
Thermal characterization  
parameter, junction to  
package top outside center  
(natural convection)  
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site  
(board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board  
thermal resistance.  
2. Per JEDEC JESD51-2 with the single layer board (JESD51-3) horizontal.  
3. Per JEDEC JESD51-6 with the board (JESD51-7) horizontal.  
4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured  
on the top surface of the board near the package.  
5. Thermal resistance between the die and the solder pad on the bottom of the package. Interface resistance is ignored.  
6. Thermal characterization parameter indicating the temperature difference between package top and the junction  
temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization.  
7 Peripheral operating requirements and behaviors  
7.1 External oscillator (XOSC) and ICS characteristics  
Table 12. XOSC and ICS specifications (temperature range = -40 to 105 °C ambient)  
Num  
C
C
C
Characteristic  
Low range (RANGE = 0)  
Symbol  
Min  
31.25  
4
Typical1  
32.768  
Max  
39.0625  
20  
Unit  
kHz  
1
Oscillator  
crystal or  
resonator  
flo  
fhi  
High range (RANGE = 1)  
FEE or FBE mode2  
MHz  
C
High range (RANGE = 1),  
high gain (HGO = 1),  
FBELP mode  
fhi  
4
20  
MHz  
Table continues on the next page...  
MC9S08PA60 Series Data Sheet, Rev. 4, 09/2019  
22  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
Table 12. XOSC and ICS specifications (temperature range = -40 to 105 °C ambient)  
(continued)  
Num  
C
Characteristic  
Symbol  
Min  
Typical1  
Max  
Unit  
C
High range (RANGE = 1),  
low power (HGO = 0),  
FBELP mode  
fhi  
4
20  
MHz  
2
3
D
D
Load capacitors  
C1, C2  
RF  
See Note3  
Feedback  
resistor  
Low Frequency, Low-Power  
Mode4  
MΩ  
MΩ  
MΩ  
MΩ  
Low Frequency, High-Gain  
Mode  
10  
1
High Frequency, Low-  
Power Mode  
High Frequency, High-Gain  
Mode  
1
4
5
D
D
Series resistor -  
Low Frequency  
Low-Power Mode 4  
High-Gain Mode  
Low-Power Mode4  
RS  
RS  
200  
kΩ  
kΩ  
kΩ  
Series resistor -  
High Frequency  
D
D
D
Series resistor -  
High  
Frequency,  
High-Gain Mode  
4 MHz  
8 MHz  
16 MHz  
0
0
0
kΩ  
kΩ  
kΩ  
6
C
C
C
C
Crystal start-up  
time Low range  
= 32.768 kHz  
crystal; High  
Low range, low power  
Low range, high power  
High range, low power  
High range, high power  
tCSTL  
1000  
800  
3
ms  
ms  
ms  
ms  
tCSTH  
range = 20 MHz  
1.5  
crystal5, 6  
7
8
T
D
D
Internal reference start-up time  
tIRST  
fextal  
0.03125  
0
20  
50  
5
µs  
Square wave  
FEE or FBE mode2  
MHz  
MHz  
input clock  
frequency  
FBELP mode  
20  
9
P
Average internal reference frequency -  
trimmed  
fint_t  
32.768  
kHz  
10  
11  
P
P
DCO output frequency range - trimmed  
fdco_t  
16  
20  
MHz  
Total deviation  
of DCO output  
from trimmed  
frequency5  
Over full voltage and  
temperature range  
Δfdco_t  
2.0  
%fdco  
C
Over fixed voltage and  
temperature range of 0 to  
70 °C  
1.0  
12  
13  
C
C
FLL acquisition time5, 7  
tAcquire  
CJitter  
2
ms  
Long term jitter of DCO output clock  
(averaged over 2 ms interval)8  
0.02  
0.2  
%fdco  
1. Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.  
2. When ICS is configured for FEE or FBE mode, input clock source must be divisible using RDIV to within the range of 31.25  
kHz to 39.0625 kHz.  
3. See crystal or resonator manufacturer's recommendation.  
4. Load capacitors (C1,C2), feedback resistor (RF) and series resistor (RS) are incorporated internally when RANGE = HGO =  
0.  
MC9S08PA60 Series Data Sheet, Rev. 4, 09/2019  
NXP Semiconductors  
23  
Peripheral operating requirements and behaviors  
5. This parameter is characterized and not tested on each device.  
6. Proper PC board layout procedures must be followed to achieve specifications.  
7. This specification applies to any time the FLL reference source or reference divider is changed, trim value changed, or  
changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as  
the reference, this specification assumes it is already running.  
8. Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum fBus  
.
Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise  
injected into the FLL circuitry via VDD and VSS and variation in crystal oscillator frequency increase the CJitter percentage  
for a given interval.  
XOSC  
EXTAL  
XTAL  
RS  
RF  
Crystal or Resonator  
C1  
C2  
Figure 16. Typical crystal or resonator circuit  
7.2 NVM specifications  
This section provides details about program/erase times and program/erase endurance for  
the flash and EEPROM memories.  
Table 13. Flash clock characteristics  
C
Characteristic  
Symbol  
Min  
Typical  
Max  
Unit  
D
Supply voltage for program/erase  
Vprog/erase  
2.7  
5.5  
V
across the operating temperature range  
D
D
D
C
Supply voltage for read operation  
NVM Bus frequency  
VRead  
fNVMBUS  
fNVMOP  
nFLPE  
2.7  
1
5.5  
20  
V
MHz  
MHz  
Cycles  
NVM operating frequency  
0.8  
10 k  
1.0  
1.05  
FLASH Program/erase endurance TL to  
TH in the operating temperature range  
100 k  
C
C
EEPROM Program/erase endurance TL  
to TH in the operating temperature  
range  
nFLPE  
50 k  
15  
500 k  
100  
Cycles  
years  
Data retention at an average junction  
temperature of TJavg = 85°C after up to  
10,000 program/erase cycles  
tD_ret  
MC9S08PA60 Series Data Sheet, Rev. 4, 09/2019  
24  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
All timing parameters are a function of the bus clock frequency, FNVMBUS. All program  
and erase times are also a function of the NVM operating frequency, fNVMOP  
.
Each command timing is given by:  
tcommand=fNVMOP cycle × 1/fNVMOP + fNVMBUS cycle × 1/fNVMBUS  
Table 14. Flash timing characteristics  
C
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
Characteristic  
Erase Verify All Blocks  
Erase Verify Flash Block  
Erase Verify EEPROM Block  
Erase Verify Flash Section  
Erase Verify EEPROM Section  
Read Once  
Symbol  
tVFYALL  
tRD1BLK  
tRD1BLK  
tRD1SEC  
tDRD1SEC  
tRDONCE  
tPGM2  
fNVMOP cycle  
fNVMBUS cycle  
17338  
16913  
810  
484  
555  
450  
Program Flash (2 word)  
Program Flash (4 word)  
Program Once  
68  
1397  
2128  
2090  
1371  
2120  
2869  
3618  
17743  
17236  
868  
tPGM4  
122  
122  
47  
tPGMONCE  
tDPGM1  
tDPGM2  
tDPGM3  
tDPGM4  
tERSALL  
tERSBLK  
tERSPG  
Program EEPROM (1 Byte)  
Program EEPROM (2 Byte)  
Program EEPROM (3 Byte)  
Program EEPROM (4 Byte)  
Erase All Blocks  
94  
141  
188  
100066  
100060  
20015  
5015  
100066  
Erase Flash Block  
Erase Flash Sector  
Erase EEPROM Sector  
Unsecure Flash  
tDERSPG  
tUNSECU  
tVFYKEY  
tMLOADU  
756  
17730  
464  
Verify Backdoor Access Key  
Set User Margin Level  
407  
Program and erase operations do not require any special power sources other than the  
normal VDD supply. For more detailed information about program/erase operations, see  
the Memory section.  
7.3 Analog  
MC9S08PA60 Series Data Sheet, Rev. 4, 09/2019  
NXP Semiconductors  
25  
Peripheral operating requirements and behaviors  
7.3.1 ADC characteristics  
Table 15. 5 V 12-bit ADC operating conditions  
Characteri  
stic  
Conditions  
Symb  
Min  
Typ1  
Max  
Unit  
Comment  
Supply  
voltage  
Absolute  
VDDA  
ΔVDDA  
ΔVSSA  
2.7  
0
5.5  
V
Delta to VDD (VDD-VDDAD  
)
-100  
-100  
+100  
+100  
mV  
mV  
2
Ground  
voltage  
Delta to VSS (VSS-VSSA  
)
0
Input  
voltage  
VADIN  
CADIN  
RADIN  
RAS  
VREFL  
4.5  
3
VREFH  
5.5  
V
Input  
capacitance  
pF  
kΩ  
kΩ  
Input  
resistance  
5
Analog  
source  
resistance  
12-bit mode  
fADCK > 4 MHz  
fADCK < 4 MHz  
External to  
MCU  
2
5
10-bit mode  
fADCK > 4 MHz  
fADCK < 4 MHz  
5
10  
10  
8-bit mode  
(all valid fADCK  
)
ADC  
conversion  
clock  
High speed (ADLPC=0)  
Low power (ADLPC=1)  
fADCK  
0.4  
0.4  
8.0  
4.0  
MHz  
frequency  
1. Typical values assume VDDA = 5.0 V, Temp = 25°C, fADCK=1.0 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
2. DC potential difference.  
MC9S08PA60 Series Data Sheet, Rev. 4, 09/2019  
26  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
SIMPLIFIED  
INPUT PIN EQUIVALENT  
CIRCUIT  
Pad  
z ADIN  
SIMPLIFIED  
CHANNEL SELECT  
CIRCUIT  
ZAS  
leakage  
due to  
input  
ADC SAR  
ENGINE  
R AS  
R ADIN  
protection  
v ADIN  
C AS  
v AS  
R ADIN  
R ADIN  
R ADIN  
INPUT PIN  
INPUT PIN  
INPUT PIN  
C ADIN  
Figure 17. ADC input impedance equivalency diagram  
Table 16. 12-bit ADC Characteristics (VREFH = VDDA, VREFL = VSSA  
)
Characteristic  
Supply current  
ADLPC = 1  
Conditions  
C
Symb  
Min  
Typ1  
Max  
Unit  
T
IDDA  
133  
µA  
ADLSMP = 1  
ADCO = 1  
Supply current  
ADLPC = 1  
T
T
T
IDDA  
218  
327  
582  
µA  
µA  
µA  
ADLSMP = 0  
ADCO = 1  
Supply current  
ADLPC = 0  
IDDA  
ADLSMP = 1  
ADCO = 1  
Supply current  
ADLPC = 0  
IDDAD  
990  
ADLSMP = 0  
ADCO = 1  
Supply current  
Stop, reset, module  
off  
T
P
IDDA  
2
0.011  
3.3  
1
5
µA  
ADC asynchronous High speed (ADLPC  
fADACK  
MHz  
clock source  
= 0)  
Table continues on the next page...  
MC9S08PA60 Series Data Sheet, Rev. 4, 09/2019  
NXP Semiconductors  
27  
Peripheral operating requirements and behaviors  
Table 16. 12-bit ADC Characteristics (VREFH = VDDA, VREFL = VSSA) (continued)  
Characteristic  
Conditions  
C
Symb  
Min  
Typ1  
Max  
Unit  
Low power (ADLPC  
= 1)  
1.25  
2
3.3  
Conversion time  
(including sample  
time)  
Short sample  
(ADLSMP = 0)  
T
tADC  
20  
40  
ADCK  
cycles  
Long sample  
(ADLSMP = 1)  
Sample time  
Short sample  
(ADLSMP = 0)  
T
tADS  
3.5  
23.5  
ADCK  
cycles  
Long sample  
(ADLSMP = 1)  
Total unadjusted  
Error2  
12-bit mode  
10-bit mode  
8-bit mode  
T
P
P
T
P
P
T
T
T
C
P
P
T
T
T
D
D
D
ETUE  
DNL  
INL  
5.0  
1.5  
LSB3  
LSB3  
LSB3  
LSB3  
LSB3  
2.0  
1.0  
0.7  
Differential Non-  
Linearity  
12-bit mode  
10-bit mode4  
8-bit mode4  
1.0  
0.25  
0.15  
1.0  
0.5  
0.25  
Integral Non-Linearity 12-bit mode  
10-bit mode  
0.3  
0.5  
0.25  
8-bit mode  
0.15  
2.0  
Zero-scale error5  
Full-scale error6  
Quantization error  
12-bit mode  
10-bit mode  
8-bit mode  
EZS  
0.25  
0.65  
2.5  
1.0  
1.0  
12-bit mode  
10-bit mode  
8-bit mode  
EFS  
0.5  
1.0  
1.0  
0.5  
0.5  
≤12 bit modes  
EQ  
EIL  
m
LSB3  
mV  
Input leakage error7 all modes  
IIn * RAS  
3.266  
3.638  
1.396  
Temp sensor slope  
-40°C– 25°C  
25°C– 125°C  
mV/°C  
Temp sensor voltage 25°C  
D
VTEMP25  
V
1. Typical values assume VDDA = 5.0 V, Temp = 25°C, fADCK=1.0 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
2. Includes quantization.  
3. 1 LSB = (VREFH - VREFL)/2N  
4. Monotonicity and no-missing-codes guaranteed in 10-bit and 8-bit modes  
5. VADIN = VSSA  
6. VADIN = VDDA  
7. IIn = leakage current (refer to DC characteristics)  
MC9S08PA60 Series Data Sheet, Rev. 4, 09/2019  
28  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
7.3.2 Analog comparator (ACMP) electricals  
Table 17. Comparator electrical specifications  
C
D
T
Characteristic  
Supply voltage  
Symbol  
VDDA  
IDDA  
VAIN  
VAIO  
VH  
Min  
2.7  
Typical  
Max  
5.5  
20  
Unit  
V
Supply current (Operation mode)  
Analog input voltage  
10  
µA  
V
D
P
C
C
T
VSS - 0.3  
VDDA  
40  
Analog input offset voltage  
Analog comparator hysteresis (HYST=0)  
Analog comparator hysteresis (HYST=1)  
Supply current (Off mode)  
Propagation Delay  
mV  
mV  
mV  
nA  
µs  
15  
20  
VH  
20  
30  
IDDAOFF  
tD  
60  
C
0.4  
1
7.4 Communication interfaces  
7.4.1 SPI switching specifications  
The serial peripheral interface (SPI) provides a synchronous serial bus with master and  
slave operations. Many of the transfer attributes are programmable. The following tables  
provide timing characteristics for classic SPI timing modes. Refer to the SPI chapter of  
the chip's reference manual for information about the modified transfer formats used for  
communicating with slower peripheral devices. All timing is shown with respect to 20%  
VDD and 70% VDD, unless noted, and 100 pF load on all SPI pins. All timing assumes  
high drive strength is enabled for SPI output pins.  
Table 18. SPI master mode timing  
Nu  
m.  
Symbol Description  
Min.  
Max.  
Unit  
Comment  
1
fop  
Frequency of operation  
fBus/2048  
fBus/2  
Hz  
fBus is the bus  
clock  
2
3
tSPSCK  
tLead  
tLag  
SPSCK period  
Enable lead time  
Enable lag time  
2 x tBus  
2048 x tBus  
ns  
tSPSCK  
tSPSCK  
ns  
tBus = 1/fBus  
1/2  
4
1/2  
5
tWSPSCK Clock (SPSCK) high or low time  
tBus - 30  
1024 x tBus  
6
tSU  
tHI  
tv  
Data setup time (inputs)  
Data hold time (inputs)  
Data valid (after SPSCK edge)  
Data hold time (outputs)  
Rise time input  
15  
0
ns  
7
ns  
8
0
25  
ns  
9
tHO  
tRI  
ns  
10  
tBus - 25  
ns  
Table continues on the next page...  
MC9S08PA60 Series Data Sheet, Rev. 4, 09/2019  
NXP Semiconductors  
29  
Peripheral operating requirements and behaviors  
Table 18. SPI master mode timing (continued)  
Nu  
m.  
Symbol Description  
Min.  
Max.  
Unit  
Comment  
tFI  
Fall time input  
Rise time output  
Fall time output  
11  
tRO  
tFO  
25  
ns  
1
SS  
(OUTPUT)  
3
2
10  
10  
11  
4
SPSCK  
(CPOL=0)  
(OUTPUT)  
5
5
11  
SPSCK  
(CPOL=1)  
(OUTPUT)  
6
7
MISO  
(INPUT)  
2
BIT 6 . . . 1  
8
MSB IN  
LSB IN  
9
MOSI  
(OUTPUT)  
2
BIT 6 . . . 1  
MSB OUT  
LSB OUT  
1. If configured as an output.  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 18. SPI master mode timing (CPHA=0)  
1
SS  
(OUTPUT)  
2
10  
10  
11  
11  
4
3
SPSCK  
(CPOL=0)  
(OUTPUT)  
5
5
SPSCK  
(CPOL=1)  
(OUTPUT)  
6
7
MISO  
(INPUT)  
2
BIT 6 . . . 1  
LSB IN  
MSB IN  
9
8
MOSI  
(OUTPUT)  
2
PORT DATA  
BIT 6 . . . 1  
MASTER MSB OUT  
PORT DATA  
MASTER LSB OUT  
1.If configured as output  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 19. SPI master mode timing (CPHA=1)  
MC9S08PA60 Series Data Sheet, Rev. 4, 09/2019  
30  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
Table 19. SPI slave mode timing  
Nu  
m.  
Symbol  
Description  
Min.  
Max.  
Unit  
Comment  
1
fop  
Frequency of operation  
0
fBus/4  
Hz  
fBus is the bus clock as  
defined in .  
2
3
4
5
6
7
8
tSPSCK  
tLead  
tLag  
SPSCK period  
Enable lead time  
Enable lag time  
4 x tBus  
ns  
tBus  
tBus  
ns  
tBus = 1/fBus  
1
1
tWSPSCK Clock (SPSCK) high or low time  
tBus - 30  
15  
tSU  
tHI  
ta  
Data setup time (inputs)  
Data hold time (inputs)  
Slave access time  
ns  
25  
ns  
tBus  
ns  
Time to data active from  
high-impedance state  
9
tdis  
Slave MISO disable time  
tBus  
ns  
Hold time to high-  
impedance state  
10  
11  
12  
tv  
Data valid (after SPSCK edge)  
Data hold time (outputs)  
Rise time input  
0
25  
ns  
ns  
ns  
tHO  
tRI  
tBus - 25  
tFI  
Fall time input  
13  
tRO  
tFO  
Rise time output  
25  
ns  
Fall time output  
SS  
(INPUT)  
2
12  
13  
13  
4
SPSCK  
(CPOL=0)  
(INPUT)  
5
5
3
12  
SPSCK  
(CPOL=1)  
(INPUT)  
9
8
10  
11  
11  
see  
note  
SEE  
NOTE  
MISO  
(OUTPUT)  
BIT 6 . . . 1  
SLAVE MSB  
7
SLAVE LSB OUT  
6
MOSI  
(INPUT)  
LSB IN  
MSB IN  
BIT 6 . . . 1  
NOTE: Not defined  
Figure 20. SPI slave mode timing (CPHA = 0)  
MC9S08PA60 Series Data Sheet, Rev. 4, 09/2019  
NXP Semiconductors  
31  
Dimensions  
SS  
(INPUT)  
4
2
12  
12  
13  
13  
3
SPSCK  
(CPOL=0)  
(INPUT)  
5
5
SPSCK  
(CPOL=1)  
(INPUT)  
11  
9
10  
SLAVE MSB OUT  
see  
note  
MISO  
(OUTPUT)  
BIT 6 . . . 1  
BIT 6 . . . 1  
SLAVE LSB OUT  
LSB IN  
8
6
7
MOSI  
(INPUT)  
MSB IN  
NOTE: Not defined  
Figure 21. SPI slave mode timing (CPHA=1)  
8 Dimensions  
8.1 Obtaining package dimensions  
Package dimensions are provided in package drawings.  
To find a package drawing, go to nxp.com and perform a keyword search for the  
drawing’s document number:  
If you want the drawing for this package  
32-pin LQFP  
Then use this document number  
98ASH70029A  
44-pin LQFP  
98ASS23225W  
48-pin LQFP  
98ASH00962A  
64-pin QFP  
98ASB42844B  
64-pin LQFP  
98ASS23234W  
MC9S08PA60 Series Data Sheet, Rev. 4, 09/2019  
32  
NXP Semiconductors  
Pinout  
9 Pinout  
9.1 Signal multiplexing and pin assignments  
The following table shows the signals available on each pin and the locations of these  
pins on the devices supported by this document. The Port Control Module is responsible  
for selecting which ALT functionality is available on each pin.  
Table 20. Pin availability by package pin-count  
Pin Number  
Lowest Priority <-- --> Highest  
64-LQFP  
48-LQFP 44-LQFP 32-LQFP  
Port Pin  
Alt 1  
Alt 2  
Alt 3  
Alt 4  
64-QFP  
1
1
2
1
2
1
2
PTD11  
PTD01  
PTH7  
PTH6  
PTE7  
PTH2  
KBI1P1  
FTM2CH3  
FTM2CH2  
MOSI1  
SPSCK1  
2
KBI1P0  
3
3
3
3
4
5
TCLK2  
BUSOUT  
6
4
4
7
5
5
VDD  
VREFH  
VREFL  
VSS  
EXTAL  
XTAL  
VSS  
8
6
6
4
VDDA  
VSSA  
9
7
7
5
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
8
8
6
9
9
7
PTB7  
PTB6  
SCL  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
8
SDA  
9
PTH11  
PTH01  
PTE6  
PTE5  
PTB51  
PTB41  
PTC3  
PTC2  
PTD7  
PTD6  
PTD5  
PTC1  
PTC0  
PTF7  
FTM2CH1  
FTM2CH0  
FTM2CH5  
FTM2CH4  
FTM2CH3  
FTM2CH2  
KBI1P7  
KBI1P6  
KBI1P5  
SS0  
10  
11  
12  
13  
14  
MISO0  
ADP11  
ADP10  
TXD2  
RXD2  
FTM2CH1  
FTM2CH0  
ADP9  
ADP8  
ADP15  
Table continues on the next page...  
MC9S08PA60 Series Data Sheet, Rev. 4, 09/2019  
NXP Semiconductors  
33  
Pinout  
Table 20. Pin availability by package pin-count (continued)  
Pin Number  
Lowest Priority <-- --> Highest  
64-LQFP  
64-QFP  
28  
48-LQFP 44-LQFP 32-LQFP  
Port Pin  
Alt 1  
Alt 2  
Alt 3  
Alt 4  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
PTF6  
PTF5  
PTF4  
PTB3  
PTB2  
PTB1  
PTB0  
PTF3  
PTF2  
PTA7  
PTA6  
PTE4  
ADP14  
ADP13  
ADP12  
ADP7  
ADP6  
ADP5  
ADP4  
29  
30  
31  
KBI0P7  
MOSI0  
SPSCK0  
TXD0  
RXD0  
32  
KBI0P6  
33  
KBI0P5  
34  
KBI0P4  
35  
36  
37  
FTM2FAULT2  
ADP3  
ADP2  
38  
FTM2FAULT1  
39  
40  
VSS  
VDD  
41  
42  
PTF1  
PTF0  
PTD4  
PTD3  
PTD2  
PTA32  
PTA22  
PTA1  
PTA0  
PTC7  
PTC6  
PTE3  
PTE2  
PTG3  
PTG2  
PTG1  
PTG0  
PTE11  
PTE01  
PTC5  
PTC4  
PTA5  
PTA4  
43  
44  
KBI1P4  
KBI1P3  
KBI1P2  
KBI0P3  
KBI0P2  
KBI0P1  
KBI0P0  
45  
SS1  
46  
MISO1  
TXD0  
RXD0  
FTM0CH1  
FTM0CH0  
TxD1  
RxD1  
SS0  
47  
SCL  
SDA  
ACMP1  
ACMP0  
48  
49  
ADP1  
ADP0  
50  
51  
52  
53  
54  
MISO0  
55  
56  
57  
58  
59  
MOSI0  
SPSCK0  
FTM1CH1  
FTM1CH0  
TCLK0  
ACMPO  
60  
TCLK1  
61  
62  
RTCO  
63  
IRQ  
RESET  
MS  
64  
BKGD  
MC9S08PA60 Series Data Sheet, Rev. 4, 09/2019  
34  
NXP Semiconductors  
Pinout  
1. This is a high current drive pin when operated as output.  
2. This is a true open-drain pin when operated as output.  
Note  
When an alternative function is first enabled, it is possible to  
get a spurious edge to the module. User software must clear any  
associated flags before interrupts are enabled. The table above  
illustrates the priority if multiple modules are enabled. The  
highest priority module will have control over the pin. Selecting  
a higher priority pin function with a lower priority function  
already enabled can cause spurious edges to the lower priority  
module. Disable all modules that share a pin before enabling  
another module.  
9.2 Device pin assignment  
MC9S08PA60 Series Data Sheet, Rev. 4, 09/2019  
NXP Semiconductors  
35  
Pinout  
2
1
1
1
2
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
PTA2/KBI0P2/RxD0/SDA  
PTD1/KBI1P1/FTM2CH3/MOSI1  
PTD0/KBI1P0/FTM2CH2/SPSCK1  
2
PTA3/KBI0P3/TxD0/SCL  
PTD2/KBI1P2/MISO1  
PTD3/KBI1P3/SS1  
PTD4/KBI1P4  
PTF0  
PTH7  
PTH6  
3
4
PTE7/TCLK2  
PTH2/BUSOUT  
5
6
V
7
PTF1  
DD  
8
V
DD  
V
DDA /V  
REFH  
9
V
SS  
V
SSA /V  
REFL  
V
10  
11  
12  
13  
14  
15  
16  
PTE4  
SS  
PTB7/SCL/EXTAL  
PTB6/SDA/XTAL  
PTA6/FTM2FAULT1/ADP2  
PTA7/FTM2FAULT2/ADP3  
PTF2  
V
SS  
1
PTF3  
PTH1/FTM2CH1  
1
PTB0/KBI0P4/RxD0/ADP4  
PTB1/KBI0P5/TxD0/ADP5  
PTH0/FTM2CH0  
PTE6  
Pins in bold are not available on less pin-count packages.  
1. High source/sink current pins  
2. True open drain pins  
Figure 22. MC9S08PA60 64-pin QFP and LQFP package  
MC9S08PA60 Series Data Sheet, Rev. 4, 09/2019  
36  
NXP Semiconductors  
Pinout  
1
1
2
1
2
36  
35  
PTD1/KBI1P1/FTM2CH3/MOSI1  
PTD0/KBI1P0/FTM2CH2/SPSCK1  
PTA2/KBI0P2/RxD0/SDA  
2
PTA3/KBI0P3/TxD0/SCL  
3
PTE7/TCLK2  
34 PTD2/KBI1P2/MISO1  
33  
PTD3/KBI1P3/SS1  
32 PTD4/KBI1P4  
4
PTH2/BUSOUT  
5
V
DD  
REFH  
SSA /V  
6
31  
30  
V
DD  
V
SS  
V
DDA /V  
7
V
REFL  
8
29 PTE4  
28 PTA6/FTM2FAULT1/ADP2  
PTA7/FTM2FAULT2/ADP3  
V
SS  
9
PTB7/SCL/EXTAL  
PTB6/SDA/XTAL  
10  
11  
12  
27  
V
SS  
26 PTB0/KBI0P4/RxD0/ADP4  
25 PTB1/KBI0P5/TxD0/ADP5  
PTE6  
Pins in bold are not available on less pin-count packages.  
1. High source/sink current pins  
2. True open drain pins  
Figure 23. MC9S08PA60 48-pin LQFP package  
MC9S08PA60 Series Data Sheet, Rev. 4, 09/2019  
NXP Semiconductors  
37  
Pinout  
2
1
1
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
1
2
PTA2/KBI0P2/RxD0/SDA  
PTD1/KBI1P1/FTM2CH3/MOSI1  
PTD0/KBI1P0/FTM2CH2/SPSCK1  
PTA3/KBI0P3/TxD0/SCL2  
PTD2/KBI1P2/MISO1  
PTD3/KBI1P3/SS1  
PTD4/KBI1P4  
3
PTE7/TCLK2  
4
PTH2/BUSOUT  
5
V
DD  
REFH  
SSA /V  
6
V
V
V
DDA /V  
DD  
7
V
SS  
REFL  
8
PTA6/FTM2FAULT1/ADP2  
PTA7/FTM2FAULT2/ADP3  
PTB0/KBI0P4/RxD0/ADP4  
PTB1/KBI0P5/TxD0/ADP5  
V
SS  
9
PTB7/SCL/EXTAL  
PTB6/SDA/XTAL  
10  
11  
V
SS  
Pins in bold are not available on less pin-count packages.  
1. High source/sink current pins  
2. True open drain pins  
Figure 24. MC9S08PA60 44-pin LQFP package  
MC9S08PA60 Series Data Sheet, Rev. 4, 09/2019  
38  
NXP Semiconductors  
Revision history  
1
1
2
PTD1/KBI1P1/FTM2CH3/MOSI1  
PTD0/KBI1P0/FTM2CH2/SPSCK1  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
PTA2/KBI0P2/RxD0/SDA  
PTA3/KBI0P3/TxD0/SCL2  
PTD2/KBI1P2/MISO1  
V
DD  
PTD3/KBI1P3/SS1  
V
DDA /V  
REFH  
PTA6/FTM2FAULT1/ADP2  
PTA7/FTM2FAULT2/ADP3  
PTB0/KBI0P4/RxD0/ADP4  
PTB1/KBI0P5/TxD0/ADP5  
V
SSA /V  
REFL  
V
SS  
PTB7/SCL/EXTAL  
PTB6/SDA/XTAL  
1. High source/sink current pins  
2. True open drain pins  
Figure 25. MC9S08PA60 32-pin LQFP package  
10 Revision history  
The following table provides a revision history for this document.  
Table 21. Revision history  
Rev. No.  
Date  
Substantial Changes  
1
2
10/2012  
09/2014  
Initial public release  
• Updated VOH and VOL in DC characteristics  
• footnote on the S3IDD in Supply current characteristics  
• Added EMC radiated emissions operating behaviors  
• Updated the typical of fint_t to 31.25 kHz and updated footnote to  
tAcquire in External oscillator (XOSC) and ICS characteristics  
• Updated the assumption for all the timing values in SPI switching  
specifications  
Table continues on the next page...  
MC9S08PA60 Series Data Sheet, Rev. 4, 09/2019  
NXP Semiconductors  
39  
Revision history  
Rev. No.  
Table 21. Revision history (continued)  
Date  
Substantial Changes  
• Updated the rating descriptions for tRise and tFall in Control timing  
• Updated the part number format to add new field for new part  
numbers in Fields  
3
4
06/2015  
09/2019  
• Corrected the Min. of the textrst in Control timing  
• Added new section of Thermal operating requirements, Updated  
Thermal characteristics to remove redundant information.  
• Added MCU block diagram.  
• Added new section of Orderable part numbers  
• Updated flash characteristics in the NVM specifications  
• Updated S3IDD values in the Supply current characteristics  
MC9S08PA60 Series Data Sheet, Rev. 4, 09/2019  
40  
NXP Semiconductors  
How to Reach Us:  
Information in this document is provided solely to enable system and software implementers to use  
NXP products. There are no express or implied copyright licenses granted hereunder to design or  
fabricate any integrated circuits based on the information in this document. NXP reserves the right to  
make changes without further notice to any products herein.  
Home Page:  
nxp.com  
Web Support:  
nxp.com/support  
NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any  
particular purpose, nor does NXP assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without limitation  
consequential or incidental damages. “Typical” parameters that may be provided in NXP data sheets  
and/or specifications can and do vary in different applications, and actual performance may vary over  
time. All operating parameters, including “typicals,” must be validated for each customer application  
by customerʼs technical experts. NXP does not convey any license under its patent rights nor the  
rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be  
found at the following address: nxp.com/SalesTermsandConditions.  
While NXP has implemented advanced security features, all products may be subject to unidentified  
vulnerabilities. Customers are responsible for the design and operation of their applications and  
products to reduce the effect of these vulnerabilities on customer's applications and products, and  
NXP accepts no liability for any vulnerability that is discovered. Customers should implement  
appropriate design and operating safeguards to minimize the risks associated with their applications  
and products.  
NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,  
EMBRACE, GREENCHIP, HITAG, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC,  
MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,  
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,  
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire, ColdFire+,  
the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC,  
Processor Expert, QorIQ, QorIQ Qonverge, SafeAssure, the SafeAssure logo, StarCore, Symphony,  
VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC  
Engine, Tower, TurboLink, EdgeScale, EdgeLock, eIQ, and Immersive3D are trademarks of NXP  
B.V. All other product or service names are the property of their respective owners. AMBA, Arm,  
Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex,  
DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore,  
Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, μVision,  
Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in the US and/or  
elsewhere. The related technology may be protected by any or all of patents, copyrights, designs and  
trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its  
affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos  
and related marks are trademarks and service marks licensed by Power.org.  
© 2011-2020 NXP B.V.  
Document Number MC9S08PA60  
Revision 4, 09/2019  

相关型号:

MC9S08PA4

MC9S08PA4
FREESCALE

MC9S08PA4VTG

MC9S08PA4VTG
FREESCALE

MC9S08PA4VWJ

MC9S08PA4VWJ
FREESCALE

MC9S08PA60

MC9S08PA60A and MC9S08PA32A are recommended for new design
NXP

MC9S08PA60A

MC9S08PA60A and MC9S08PA32A are recommended for new design
NXP

MC9S08PA8AVTJ

S08PA 8-bit MCU, S08 core, 8KB Flash, SOP 20
NXP

MC9S08PL16

8-Bit S08 central processor unit
NXP

MC9S08PL16CLC

8-Bit S08 central processor unit
NXP

MC9S08PL16CTG

8-Bit S08 central processor unit
NXP

MC9S08PL16CTJ

8-Bit S08 central processor unit
NXP

MC9S08PL32CLC

8-Bit S08 central processor unit
NXP

MC9S08PL32CLD

8-Bit S08 central processor unit
NXP