MC9S08SE4VTG [NXP]

暂无描述;
MC9S08SE4VTG
型号: MC9S08SE4VTG
厂家: NXP    NXP
描述:

暂无描述

文件: 总35页 (文件大小:592K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Freescale Semiconductor  
Data Sheet: Technical Data  
Document Number: MC9S08SE8  
Rev. 4, 4/2015  
MC9S08SE8  
28-Pin SOIC  
Case 751F  
16-Pin TSSOP  
Case 948F-01  
28-Pin PDIP  
Case 710-02  
MC9S08SE8 Series  
Covers: MC9S08SE8  
MC9S08SE4  
Features:  
SCI — Full duplex non-return to zero (NRZ); LIN  
master extended break generation; LIN slave extended  
break detection; wakeup on active edge  
ADC — 10-channel, 10-bit resolution; 2.5 μs  
conversion time; automatic compare function;  
1.7 mV/°C temperature sensor; internal bandgap  
reference channel; runs in stop3  
• 8-Bit HCS08 Central Processor Unit (CPU)  
– 20 MHz HCS08 CPU (central processor unit)  
– 10 MHz internal bus frequency  
– HC08 instruction set with added BGND  
– Support for up to 32 interrupt/reset sources  
• On-Chip Memory  
TPMx — One 2-channel (TPM1) and one 1-channel  
(TPM2) 16-bit timer/pulse-width modulator (TPM)  
modules; selectable input capture, output compare, and  
edge-aligned PWM capability on each channel; timer  
module may be configured for buffered, centered PWM  
(CPWM) on all channels  
– Up to 8 KB of on-chip in-circuit programmable flash  
memory with block protection and security options  
– Up to 512 bytes of on-chip RAM  
• Power-Saving Modes  
– Wait plus two stops  
• Clock Source Options  
KBI — 8-pin keyboard interrupt module  
RTC — Real-time counter with binary- or  
decimal-based prescaler  
– Oscillator (XOSC) — Loop-control Pierce oscillator;  
crystal or ceramic resonator range of 31.25 kHz to  
38.4 kHz or 1 MHz to 16 MHz  
• Input/Output  
– Internal Clock Source (ICS) — Internal clock source  
module containing a frequency-locked-loop (FLL)  
controlled by internal or external reference; precision  
trimming of internal reference allows 0.2% resolution  
and 2% deviation over temperature and voltage;  
supports bus frequencies from 1 MHz to 10 MHz.  
• System Protection  
– Software selectable pullups on ports when used as inputs  
– Software selectable slew rate control on ports when used  
as outputs  
– Software selectable drive strength on ports when used as  
outputs  
– Master reset pin and power-on reset (POR)  
– Internal pullup on RESET, IRQ, and BKGD/MS pins to  
reduce customer system cost  
– Optional computer operating properly (COP) reset with  
option to run from independent 1 kHz internal clock  
source or the bus clock  
– Low voltage detection  
– Illegal opcode detection with reset  
• Package Options  
– 28-pin PDIP  
– 28-pin SOIC  
– 16-pin TSSOP  
– Illegal address detection with reset  
• Development Support  
– Single-wire background debug interface  
– Breakpoint capability to allow single breakpoint setting  
during in-circuit debugging  
• Peripherals  
This document contains information on a product under development. Freescale reserves the  
right to change or discontinue this product without notice.  
© Freescale Semiconductor, Inc., 2008-2009, 2015. All rights reserved.  
Table of Contents  
1
2
3
MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
3.8 Internal Clock Source (ICS) Characteristics . . . . . . . . 20  
3.9 ADC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
3.10 AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
3.10.1 Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . 25  
3.10.2 TPM/MTIM Module Timing. . . . . . . . . . . . . . . . 26  
3.11 Flash Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
4.1 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
4.2 Mechanical Drawings. . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6  
3.1 Parameter Classification . . . . . . . . . . . . . . . . . . . . . . . . .6  
3.2 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . .6  
3.3 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . .7  
3.4 ESD Protection and Latch-Up Immunity . . . . . . . . . . . . .8  
3.5 DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
3.6 Supply Current Characteristics . . . . . . . . . . . . . . . . . . .15  
3.7 External Oscillator (XOSC) Characteristics . . . . . . . . .19  
4
Revision History  
To provide the most up-to-date information, the revision of our documents on the World Wide Web will  
be the most current. Your printed copy may be an earlier revision. To verify you have the latest information  
available, refer to: freescale.com  
The following revision history table summarizes changes contained in this document.  
Revision  
Date  
Description of Changes  
1
2
10/8/2008  
1/16/2009  
Initial public released.  
In Table 8, added the Max. of S2IDD and S3IDD in 0–105 °C; changed the Max. of S2IDD and  
S3IDD in 0–85 °C; changed the typical of S2IDD and S3IDD; changed the S23IDDRTI to P.  
3
4/7/2009  
Added |IOZTOT| in the Table 7.  
Changed VDDAD to VDDA, VSSAD to VSSA  
.
Updated Table 9, Table 10, Table 11, and Table 12.  
Updated Figure 13 and Figure 14.  
4
4/10/2015  
Updated Table 9.  
Related Documentation  
Find the most current versions of all documents at: http://www.freescale.com  
Reference Manual (MC9S08SE8RM)  
Contains extensive product information including modes of operation, memory,  
resets and interrupts, register definition, port pins, CPU, and all module  
information.  
MC9S08SE8 Series MCU Data Sheet, Rev. 4  
2
Freescale Semiconductor  
MCU Block Diagram  
1
MCU Block Diagram  
The block diagram, Figure 1, shows the structure of the MC9S08SE8 series MCUs.  
HCS08 CORE  
BKGD/MS  
DEBUG MODULE (DBG)  
BDC  
CPU  
HCS08 SYSTEM CONTROL  
REAL-TIME COUNTER (RTC)  
RESETS AND INTERRUPTS  
MODES OF OPERATION  
POWER MANAGEMENT  
PTA7/TPM1CH1/ADP5  
PTA6/TPM1CH0/ADP4  
PTA5/IRQ/TCLK/RESET  
PTA4/BKGD/MS  
IRQ  
COP  
IRQ  
LVD  
KBIP7–KBIP0  
KEYBOARD INTERRUPT  
MODULE (KBI)  
PTA3/KBIP3/ADP3  
TCLK  
USER FLASH  
(MC9S08SE8 = 8192 BYTES)  
(MC9S08SE4 = 4096 BYTES)  
PTA2/KBIP2/ADP2  
2-CHANNEL TIMER/PWM  
MODULE (TPM1)  
TPM1CH1–TPM1CH0  
PTA1/KBIP1/TPM1CH1/ADP1  
PTA0/KBIP0/TPM1CH0/ADP0  
PTB7/EXTAL  
USER RAM  
RxD  
TxD  
SERIAL COMMUNICATIONS  
INTERFACE MODULE (SCI)  
(MC9S08SE8 = 512 BYTES)  
PTB6/XTAL  
(MC9S08SE4 = 256 BYTES)  
PTB5  
TCLK  
PTB4/TPM2CH0  
PTB3/KBIP7/ADP9  
PTB2/KBIP6/ADP8  
PTB1/KBIP5/TxD/ADP7  
PTB0/KBIP4/RxD/ADP6  
1-CHANNEL TIMER/PWM  
MODULE (TPM2)  
20 MHz INTERNAL CLOCK  
SOURCE (ICS)  
TPM2CH0  
EXTAL  
XTAL  
LOW-POWER OSCILLATOR  
31.25 kHz to 38.4 kHz  
1 MHz to 16 MHz  
(XOSC)  
PTC7  
PTC6  
PTC5  
PTC4  
PTC3  
PTC2  
PTC1  
PTC0  
VSS  
VDD  
VOLTAGE REGULATOR  
VSSA  
VSSA/VREFL  
VDDA/VREFH  
10-CHANNEL, 10-BIT  
ANALOG-TO-DIGITAL  
CONVERTER (ADC)  
ADP9–ADP0  
V
DDA  
VREFL  
VREFH  
pins not available on 16-pin package  
Notes:  
When PTA4 is configured as BKGD, pin is bi-directional.  
For the 16-pin package: VSSA/VREFL and VDDA/VREFH are double bonded to VSS and VDD respectively.  
Figure 1. MC9S08SE8 Series Block Diagram  
MC9S08SE8 Series MCU Data Sheet, Rev. 4  
Freescale Semiconductor  
3
 
Pin Assignments  
2
Pin Assignments  
This chapter shows the pin assignments in the packages available for the MC9S08SE8 series.  
Table 1. Pin Availability by Package Pin-Count  
Pin Number  
<-- Lowest Priority --> Highest  
(Package)  
28  
16  
(TSSOP)  
Port Pin  
PTC5  
Alt 1  
Alt 2  
Alt 3  
(SOIC/PDIP)  
1
1
2
PTC4  
PTA5  
PTA4  
3
IRQ  
TCLK  
RESET  
4
2
BKGD  
MS  
5
3
VDD  
6
4
VDDA  
VSSA  
VREFH  
VREFL  
VSS  
7
8
9
5
PTB7  
PTB6  
PTB5  
PTB4  
PTC3  
PTC2  
PTC1  
PTC0  
PTB3  
PTB2  
PTB1  
PTB0  
PTA7  
PTA6  
PTA3  
PTA2  
PTA1  
PTA0  
PTC7  
PTC6  
EXTAL  
XTAL  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
6
7
8
TPM2CH0  
9
KBIP7  
KBIP6  
KBIP5  
KBIP4  
ADP9  
ADP8  
ADP7  
ADP6  
10  
11  
12  
13  
14  
15  
16  
TxD  
RxD  
TPM1CH11 ADP5  
TPM1CH01 ADP4  
ADP3  
KBIP3  
KBIP2  
KBIP1  
KBIP0  
ADP2  
TPM1CH11 ADP1  
TPM1CH01 ADP0  
1
TPM1 pins can be remapped to PTA7, PTA6 and PTA1,PTA0  
MC9S08SE8 Series MCU Data Sheet, Rev. 4  
4
Freescale Semiconductor  
Pin Assignments  
PTC6  
PTC5  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
PTC7  
PTC4  
2
3
PTA0/KBIP0/TPM1CH0/ADP0  
PTA1/KBIP1/TPM1CH1/ADP1  
PTA2/KBIP2/ADP2  
PTA5/IRQ/TCLK/RESET  
PTA4/BKGD/MS  
4
5
VDD  
VDDA/VREFH  
VSSA/VREFL  
VSS  
6
PTA3/KBIP3/ADP3  
7
PTA6/TPM1CH0/ADP4  
8
PTA7/TPM1CH1/ADP5  
PTB0/KBIP4/RxD/ADP6  
PTB7/EXTAL  
PTB6/XTAL  
PTB5  
9
10  
11  
12  
13  
14  
PTB1/KBIP5/TxD/ADP7  
PTB2/KBIP6/ADP8  
PTB4/TPM2CH0  
PTC3  
PTB3/KBIP7/ADP9  
PTC0  
PTC2  
PTC1  
Pins in bold are lost in the next lower pin count package.  
Figure 2. MC9S08SE8 Series in 28-Pin PDIP/SOIC Package  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
PTA0/KBIP0/TPM1CH0/ADP0  
PTA1/KBIP1/TPM1CH1/ADP1  
PTA2/KBIP2/ADP2  
PTA5/IRQ/TCLK/RESET  
PTA4/BKGD/MS  
VDD  
VSS  
PTA3/KBIP3/ADP3  
PTB0/KBIP4/RxD/ADP6  
PTB7/EXTAL  
PTB6/XTAL  
PTB5  
PTB1/KBIP5/TxD/ADP7  
PTB2/KBIP6/ADP8  
PTB3/KBIP7/ADP9  
PTB4/TPM2CH0  
Figure 3. MC9S08SE8 in 16-Pin TSSOP Package  
MC9S08SE8 Series MCU Data Sheet, Rev. 4  
Freescale Semiconductor  
5
Electrical Characteristics  
3
Electrical Characteristics  
This chapter contains electrical and timing specifications.  
3.1  
Parameter Classification  
The electrical parameters shown in this supplement are guaranteed by various methods. To give the  
customer a better understanding, the following classification is used and the parameters are tagged  
accordingly in the tables where appropriate:  
Table 2. Parameter Classifications  
P
C
Those parameters are guaranteed during production testing on each individual device.  
Those parameters are achieved by the design characterization by measuring a statistically relevant  
sample size across process variations.  
Those parameters are achieved by design characterization on a small sample size from typical devices  
under typical conditions unless otherwise noted. All values shown in the typical column are within this  
category.  
T
D
Those parameters are derived mainly from simulations.  
NOTE  
The classification is shown in the column labeled “C” in the parameter  
tables where appropriate.  
3.2  
Absolute Maximum Ratings  
Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not  
guaranteed. Stress beyond the limits specified in Table 3 may affect device reliability or cause permanent  
damage to the device. For functional operating conditions, refer to the remaining tables in this section.  
This device contains circuitry protecting against damage due to high static voltage or electrical fields;  
however, it is advised that normal precautions be taken to avoid application of any voltages higher than  
maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused  
inputs are tied to an appropriate logic voltage level (for instance, either V or V ) or the programmable  
SS  
DD  
pull-up resistor associated with the pin is enabled.  
MC9S08SE8 Series MCU Data Sheet, Rev. 4  
6
Freescale Semiconductor  
Electrical Characteristics  
Table 3. Absolute Maximum Ratings  
Rating  
Symbol  
Value  
Unit  
Supply voltage  
VDD  
IDD  
VIn  
–0.3 to 5.8  
120  
V
mA  
V
Maximum current into VDD  
Digital input voltage  
–0.3 to VDD + 0.3  
Instantaneous maximum current  
ID  
25  
mA  
Single pin limit (applies to all port pins)1, 2, 3  
Storage temperature range  
Tstg  
–55 to 150  
°C  
1
Input must be current limited to the value specified. To determine the value of the required  
current-limiting resistor, calculate resistance values for positive (VDD) and negative (VSS) clamp  
voltages, then use the larger of the two resistance values.  
2
3
All functional non-supply pins are internally clamped to VSS and VDD  
.
Power supply must maintain regulation within operating VDD range during instantaneous and  
operating maximum current conditions. If positive injection current (VIn > VDD) is greater than  
IDD, the injection current may flow out of VDD and could result in external power supply going  
out of regulation. Ensure external VDD load will shunt current greater than maximum injection  
current. This will be the greatest risk when the MCU is not consuming power. Examples are: if  
no system clock is present, or if the clock rate is very low (which would reduce overall power  
consumption).  
3.3  
Thermal Characteristics  
This section provides information about operating temperature range, power dissipation, and package  
thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in  
on-chip logic and voltage regulator circuits, and it is user-determined rather than being controlled by the  
MCU design. To take P into account in power calculations, determine the difference between actual pin  
I/O  
voltage and V or V and multiply by the pin current for each I/O pin. Except in cases of unusually high  
SS  
DD  
pin current (heavy loads), the difference between pin voltage and V or V will be very small.  
SS  
Table 4. Thermal Characteristics  
DD  
Rating  
Symbol  
Value  
Unit  
Operating temperature range (packaged)  
TL to TH  
–40 to 85  
–40 to 105  
–40 to 125  
C
V
M
TA  
°C  
°C  
Maximum junction temperature  
TJM  
135  
70  
28-pin SOIC  
Thermal resistance  
single-layer board  
28-pin PDIP  
16-pin TSSOP  
28-pin SOIC  
28-pin PDIP  
16-pin TSSOP  
68  
°C/W  
129  
48  
θJA  
Thermal resistance four-layer  
board  
49  
°C/W  
85  
MC9S08SE8 Series MCU Data Sheet, Rev. 4  
Freescale Semiconductor  
7
Electrical Characteristics  
The average chip-junction temperature (T ) in °C can be obtained from:  
J
T = T + (P × θ )  
JA  
Eqn. 1  
J
A
D
Where:  
T = Ambient temperature, °C  
A
θ
= Package thermal resistance, junction-to-ambient, °C/W  
JA  
P = P + P  
D
int  
I/O  
P
P
= I × V , Watts — chip internal power  
int  
I/O  
DD DD  
= Power dissipation on input and output pins — user-determined  
For most applications, P << P and can be neglected. An approximate relationship between P and T  
I/O  
int  
D
J
(if P is neglected) is:  
I/O  
P = K ÷ (T + 273°C)  
Eqn. 2  
D
J
Solving Equation 1 and Equation 2 for K gives:  
2
K = P × (T + 273°C) + θ × (P )  
Eqn. 3  
D
A
JA  
D
Where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring  
P (at equilibrium) for a known T . Using this value of K, the values of P and T can be obtained by  
D
A
D
J
solving Equation 1 and Equation 2 iteratively for any value of T .  
A
3.4  
ESD Protection and Latch-Up Immunity  
Although damage from electrostatic discharge (ESD) is much less common on these devices than on early  
CMOS circuits, normal handling precautions should be used to avoid exposure to static discharge.  
Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels  
of static without suffering any permanent damage.  
During the device qualification ESD stresses were performed for the human body model (HBM), the  
machine model (MM) and the charge device model (CDM).  
A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device  
specification. Complete DC parametric and functional testing is performed per the applicable device  
specification at room temperature followed by hot temperature, unless specified otherwise in the device  
specification.  
Table 5. ESD and Latch-up Test Conditions  
Model  
Description  
Series resistance  
Symbol  
Value  
Unit  
R1  
C
1500  
100  
3
Ω
pF  
Ω
Human  
body  
Storage capacitance  
Number of pulses per pin  
Series resistance  
R1  
C
0
Machine Storage capacitance  
Number of pulses per pin  
200  
3
pF  
MC9S08SE8 Series MCU Data Sheet, Rev. 4  
8
Freescale Semiconductor  
 
 
 
Electrical Characteristics  
Unit  
Table 5. ESD and Latch-up Test Conditions (continued)  
Model  
Description  
Symbol  
Value  
Minimum input voltage limit  
Maximum input voltage limit  
–2.5  
7.5  
V
V
Latch-up  
Table 6. ESD and Latch-up Protection Characteristics  
No.  
Rating1  
Symbol  
Min  
Max  
Unit  
1
2
3
4
Human body model (HBM)  
Machine model (MM)  
VHBM  
VMM  
VCDM  
ILAT  
2000  
200  
500  
100  
V
V
Charge device model (CDM)  
Latch-up current at TA = 125 °C  
V
mA  
1
Parameter is achieved by design characterization on a small sample size from typical devices  
under typical conditions unless otherwise noted.  
3.5  
DC Characteristics  
This section includes information about power supply requirements and I/O pin characteristics.  
Table 7. DC Characteristics  
Num C  
1 — Operating voltage  
Parameter  
Symbol  
Min  
Typical1  
Max  
Unit  
2.7  
5.5  
V
Output high voltage — Low drive (PTxDSn = 0)  
5 V, ILoad = –2 mA  
VDD – 1.5  
VDD – 1.5  
VDD – 0.8  
VDD – 0.8  
3 V, ILoad = –0.6 mA  
5 V, ILoad = –0.4 mA  
3 V, ILoad = –0.24 mA  
VOH  
V
Output high voltage — High drive (PTxDSn = 1)  
5 V, ILoad = –10 mA  
VDD – 1.5  
2
P
3 V, ILoad = –3 mA  
5 V, ILoad = –2 mA  
3 V, ILoad = –0.4 mA  
VDD – 1.5  
VDD – 0.8  
VDD – 0.8  
Output low voltage — Low drive (PTxDSn = 0)  
5 V, ILoad = 2 mA  
1.5  
1.5  
0.8  
0.8  
3 V, ILoad = 0.6 mA  
5 V, ILoad = 0.4 mA  
3 V, ILoad = 0.24 mA  
VOL  
V
Output low voltage — High drive (PTxDSn = 1)  
5 V, ILoad = 10 mA  
1.5  
1.5  
0.8  
0.8  
3
4
P
P
3 V, ILoad = 3 mA  
5 V, ILoad = 2 mA  
3 V, ILoad = 0.4 mA  
Output high current — Max total IOH for all ports  
5 V IOHT  
3 V  
100  
60  
mA  
MC9S08SE8 Series MCU Data Sheet, Rev. 4  
Freescale Semiconductor  
9
Electrical Characteristics  
Num C  
Table 7. DC Characteristics (continued)  
Parameter  
Symbol  
Min  
Typical1  
Max  
Unit  
Output low current — Max total IOL for all ports  
5 V IOLT  
3 V  
5
P
100  
60  
mA  
6
7
8
9
P Input high voltage; all digital inputs  
P Input low voltage; all digital inputs  
P Input hysteresis; all digital inputs  
C Input leakage current; input only pins2  
VIH  
VIL  
0.65 × VDD  
V
0.35 × VDD  
Vhys  
|IIn|  
0.06 × VDD  
1
mV  
μA  
μA  
0.1  
0.1  
10 P High impedance (off-state) leakage current2  
|IOZ  
|
1
Total leakage combined for all inputs and Hi-Z pins  
11  
C
|IOZTOT  
|
2
μA  
— All input only and I/O2  
12 P Internal pullup resistors3  
13 P Internal pulldown resistors4  
RPU  
RPD  
20  
20  
45  
45  
65  
65  
kΩ  
kΩ  
DC injection current 5, 6, 7  
VIN < VSS, VIN > VDD  
Single pin limit  
14  
D
IIC  
mA  
–0.2  
–5  
0.2  
5
Total MCU limit, includes sum of all stressed pins  
15 C Input capacitance; all non-supply pins  
16 C RAM retention voltage  
17 P POR re-arm voltage8  
CIn  
0.6  
0.9  
10  
1.0  
1.4  
8
pF  
V
VRAM  
VPOR  
tPOR  
2.0  
V
18 D POR re-arm time  
μs  
Low-voltage detection threshold —  
high range  
19  
20  
21  
22  
23  
24  
P
P
C
P
P
C
VLVD1  
VLVD0  
VLVW3  
VLVW2  
VLVW1  
VLVW0  
V
V
V
V
V
V
VDD falling  
VDD rising  
3.9  
4.0  
4.0  
4.1  
4.1  
4.2  
Low-voltage detection threshold —  
low range  
VDD falling  
VDD rising  
2.48  
2.54  
2.56  
2.62  
2.64  
2.70  
Low-voltage warning threshold —  
high range 1  
VDD falling  
VDD rising  
4.5  
4.6  
4.6  
4.7  
4.7  
4.8  
Low-voltage warning threshold —  
high range 0  
VDD falling  
VDD rising  
4.2  
4.3  
4.3  
4.4  
4.4  
4.5  
Low-voltage warning threshold  
low range 1  
VDD falling  
2.84  
2.90  
2.92  
2.98  
3.00  
3.06  
VDD rising  
Low-voltage warning threshold —  
low range 0  
VDD falling  
VDD rising  
2.66  
2.72  
2.74  
2.80  
2.82  
2.88  
MC9S08SE8 Series MCU Data Sheet, Rev. 4  
10  
Freescale Semiconductor  
Electrical Characteristics  
Table 7. DC Characteristics (continued)  
Num C  
Parameter  
Symbol  
Min  
Typical1  
Max  
Unit  
Low-voltage inhibit reset/recover hysteresis  
25  
T
5 V Vhys  
3 V  
100  
60  
mV  
V
26 P Bandgap voltage reference9  
VBG  
1.18  
1.20  
1.21  
1
2
3
4
5
6
Typical values are measured at 25 °C. Characterized, not tested.  
Measured with VIn = VDD or VSS  
Measured with VIn = VSS  
Measured with VIn = VDD  
All functional non-supply pins are internally clamped to VSS and VDD  
.
.
.
.
Input must be current-limited to the value specified. To determine the value of the required current-limiting resistor,  
calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.  
7
Power supply must maintain regulation within operating VDD range during instantaneous and operating maximum  
current conditions. If positive injection current (VIn > VDD) is greater than IDD, the injection current may flow out of  
VDD and could result in external power supply going out of regulation. Ensure external VDD load will shunt current  
greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power.  
Examples are: if no system clock is present, or if clock rate is very low (which would reduce overall power  
consumption).  
8
9
Maximum is highest voltage that POR is guaranteed.  
Factory trimmed at VDD = 5.0 V, Temp = 25 °C.  
MC9S08SE8 Series MCU Data Sheet, Rev. 4  
Freescale Semiconductor  
11  
Electrical Characteristics  
VOL vs IOL at VDD = 5.0 V, High Drive  
700  
-40C  
0C  
600  
500  
400  
300  
200  
100  
0
25C  
70C  
95C  
125C  
135C  
1
1.5  
2
2.5  
3
9
9.5  
10  
10.5 11  
IOL/mA  
Figure 4. Typical V vs. I for High Drive Enabled Pad (V = 5 V)  
OL  
OL  
DD  
VOL vs IOL at VDD = 3.0 V, High Drive  
350  
300  
250  
200  
150  
100  
50  
-40C  
0C  
25C  
70C  
95C  
125C  
135C  
0
0.2 0.3 0.4 0.5 0.6  
2
2.5  
3
3.5  
4
IOL/mA  
Figure 5. Typical V vs. I for High Drive Enabled Pad (V = 3 V)  
OL  
OL  
DD  
MC9S08SE8 Series MCU Data Sheet, Rev. 4  
12  
Freescale Semiconductor  
Electrical Characteristics  
VOL vs IOL at VDD = 5.0 V, Low Drive  
600  
500  
400  
300  
200  
100  
0
-40C  
0C  
25C  
70C  
95C  
125C  
135C  
0.2  
0.3  
0.4  
0.5  
0.6  
1
1.5  
2
2.5  
3
IOL/mA  
Figure 6. Typical V vs. I for Low Drive Enabled Pad (V = 5 V)  
OL  
OL  
DD  
VOL vs IOL at VDD = 3.0 V, Low Drive  
250  
200  
150  
100  
50  
-40C  
0C  
25C  
70C  
95C  
125C  
135C  
0
160  
200  
240 280  
320 400  
500  
600 700  
800  
IOL/mA  
Figure 7. Typical V vs. I for Low Drive Enabled Pad (V = 3 V)  
OL  
OL  
DD  
MC9S08SE8 Series MCU Data Sheet, Rev. 4  
Freescale Semiconductor  
13  
Electrical Characteristics  
VOH vs IOH at VDD = 5.0 V, High Drive  
5.1  
-40C  
0C  
5
4.9  
4.8  
4.7  
4.6  
4.5  
4.4  
4.3  
4.2  
4.1  
25C  
70C  
95C  
125C  
135C  
-1  
-1.5  
-2  
-2.5  
-3  
-9  
-9.5  
-10 -10.5 -11  
IOH/mA  
Figure 8. Typical V vs. I for High Drive Enabled Pad (V = 5 V)  
OH  
OH  
DD  
VOH vs IOL at VDD = 3.0 V, High Drive  
3.05  
3
-40C  
0C  
2.95  
2.9  
25C  
70C  
95C  
125C  
135C  
2.85  
2.8  
2.75  
2.7  
2.65  
2.6  
2.55  
2.5  
-200 -300 -400 -500 -600  
-2  
-2.5  
-3  
-3.5  
-4  
IOH/mA  
Figure 9. Typical V vs. I for High Drive Enabled Pad (V = 3 V)  
OH  
OH  
DD  
MC9S08SE8 Series MCU Data Sheet, Rev. 4  
14  
Freescale Semiconductor  
Electrical Characteristics  
VOH vs IOH at VDD = 5.0 V, Low Drive  
5.2  
5
-40C  
0C  
25C  
70C  
95C  
125C  
135C  
4.8  
4.6  
4.4  
4.2  
4
3.8  
-200 -300 -400 -500 -600  
-1  
-1.5  
-2  
-2.5  
-3  
IOH/mA  
Figure 10. Typical V vs. I for Low Drive Enabled Pad (V = 5 V)  
OH  
OH  
DD  
VOH vs IOH at VDD = 3.0 V, Low Drive  
3
2.95  
2.9  
-40C  
0C  
25C  
70C  
95C  
125C  
135C  
2.85  
2.8  
2.75  
2.7  
2.65  
2.6  
2.55  
-160 -200 -240 -280 -320 -400 -500 -600 -700 -800  
IOH/mA  
Figure 11. Typical V vs. I for Low Drive Enabled Pad (V = 3 V)  
OH  
OH  
DD  
3.6  
Supply Current Characteristics  
This section includes information about power supply current in various operating modes.  
MC9S08SE8 Series MCU Data Sheet, Rev. 4  
Freescale Semiconductor  
15  
Electrical Characteristics  
Table 8. Supply Current Characteristics  
VDD  
Temp  
(°C)  
Num  
C
C
P
P
Parameter  
Symbol  
Typical1  
Max  
Unit  
mA  
mA  
mA  
(V)  
Run supply current2 measured at  
(CPU clock = 4 MHz, fBus = 2 MHz)  
5
3
5
3
5
3
2.4  
2.18  
6.35  
5.79  
1.4  
2.72  
2.26  
7.29  
6.42  
1.56  
1.53  
1
2
3
RIDD  
–40 to 125  
–40 to 125  
–40 to 125  
Run supply current2 measured at  
(CPU clock = 20 MHz, fBus = 10 MHz)  
RIDD  
Wait supply current2 measured at  
fBus = 2 MHz  
WIDD  
1.36  
19  
28  
45.8  
–40 to 85  
–40 to 105  
–40 to 125  
1.4  
1.3  
μA  
μA  
μA  
μA  
5
3
5
4
P
Stop2 mode supply current  
Stop3 mode supply current  
S2IDD  
15  
22  
37.2  
–40 to 85  
–40 to 105  
–40 to 125  
23  
43  
76.1  
–40 to 85  
–40 to 105  
–40 to 125  
1.61  
1.44  
5
6
P
P
S3IDD  
19  
38  
66.4  
–40 to 85  
–40 to 105  
–40 to 125  
3
5
3
500  
500  
–40 to 85  
–40 to 125  
300  
300  
nA  
nA  
RTC adder to stop2 or stop33  
S23IDDRTI  
500  
500  
–40 to 85  
–40 to 125  
5
3
122  
110  
180  
160  
μA  
μA  
–40 to 125  
–40 to 125  
7
8
C
C
LVD adder to stop3 (LVDE = LVDSE = 1)  
S3IDDLVD  
Adder to stop3 for oscillator enabled4  
(OSCSTEN =1)  
S3IDDOSC  
5,3  
5
8
μA  
–40 to 125  
1
Typical values are based on characterization data at 25 °C unless otherwise stated. See Figure 12 through Figure 13 for typical  
curves across voltage/temperature.  
2
3
All modules except ADC active, ICS configured for FBE, and does not include any dc loads on port pins.  
Most customers are expected to find that auto-wakeup from stop2 or stop3 can be used instead of the higher current wait  
mode. Wait mode typical is 220 μA at 5 V with fBus = 1 MHz.  
Values given under the following conditions: low range operation (RANGE = 0) with a 32.768 kHz crystal and low power mode  
(HGO = 0).  
4
MC9S08SE8 Series MCU Data Sheet, Rev. 4  
16  
Freescale Semiconductor  
Electrical Characteristics  
Run IDD at 10 MHz vs Temp  
8
7
6
5
4
3
2
1
0
5.5V  
5.0V  
4.5V  
3.3V  
3.0V  
2.7V  
-40C  
0C  
25C  
70C  
95C  
125C  
135C  
Temp (C)  
Figure 12. Typical Run I Curves  
DD  
Stop2 IDD vs Temp  
20  
18  
16  
14  
12  
10  
8
5.5V  
5.0V  
4.5V  
3.3V  
3.0V  
2.7V  
6
4
2
0
-40C  
0C  
25C  
70C  
95C  
125C  
135C  
Temp (C)  
Figure 13. Typical Stop2 I Curves  
DD  
MC9S08SE8 Series MCU Data Sheet, Rev. 4  
Freescale Semiconductor  
17  
Electrical Characteristics  
Stop3 IDD vs Temp  
35  
30  
25  
20  
15  
10  
5
5.5V  
5.0V  
4.5V  
3.3V  
3.0V  
2.7V  
0
-40C  
0C  
25C  
70C  
95C  
125C  
135C  
Temp (C)  
Figure 14. Typical Stop3 I Curves  
DD  
3.7  
External Oscillator (XOSC) Characteristics  
Table 9. Oscillator electrical specifications (Temperature Range = –40 to 125°C Ambient)  
Num  
C
Characteristic  
Symbol  
Min.  
Typical1 Max. Unit  
Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1)  
Low range (RANGE = 0)  
flo  
fhi-hgo  
fhi-lp  
32  
1
1
38.4  
16  
8
kHz  
MHz  
MHz  
High range (RANGE = 1), high gain (HGO = 1)2  
1
2
C
High range (RANGE = 1), low power (HGO = 0)2  
— Load capacitors  
C1,C2  
See crystal or resonator  
manufacturer’s recommendation  
Feedback resistor  
3
Low range (32 kHz to 100 kHz)  
RF  
10  
1
MΩ  
kΩ  
High range (1 MHz to 16 MHz)  
Series resistor  
Low range, low gain (RANGE = 0, HGO = 0)  
Low range, high gain (RANGE = 0, HGO = 1)  
High range, low gain (RANGE = 1, HGO = 0)  
0
100  
0
RS  
4
High range, high gain (RANGE = 1, HGO = 1)  
8 MHz  
4 MHz  
1 MHz  
0
0
0
0
10  
20  
MC9S08SE8 Series MCU Data Sheet, Rev. 4  
18  
Freescale Semiconductor  
Electrical Characteristics  
Table 9. Oscillator electrical specifications (Temperature Range = –40 to 125°C Ambient)  
Num  
C
Characteristic  
Symbol  
Min.  
Typical1 Max. Unit  
Crystal start-up time3  
t
Low range, low gain (RANGE = 0, HGO = 0)  
Low range, high gain (RANGE = 0, HGO = 1)  
High range, low gain (RANGE = 1, HGO = 0)4  
High range, high gain (RANGE = 1, HGO = 1)4  
200  
400  
5
CSTL-LP  
t
t
5
T
CSTH-HGO  
ms  
t
CSTH-LP  
15  
CSTH-HGO  
Square wave input clock frequency (EREFS = 0, ERCLKEN = 1)  
FEE or FBE mode 2  
fextal  
6
T
0.03125  
0
20  
20  
MHz  
MHz  
FBELP mode  
1
2
3
Typical column was characterized at 5.0 V, 25 °C or is recommended value.  
The input clock source must be divided using RDIV to within the range of 31.25 kHz to 39.0625 kHz.  
This parameter is characterized and not tested on each device. Proper PC board layout procedures must be followed to achieve  
specifications. This data will vary based upon the crystal manufacturer and board design. The crystal should be characterized  
by the crystal manufacturer.  
4
4 MHz crystal.  
XOSCVLP  
EXTAL  
XTAL  
RS  
RF  
Crystal or Resonator  
C1  
C2  
Figure 15. Typical Crystal or Resonator Circuit: High Range and Low Range/High Gain  
XOSCVLP  
EXTAL  
XTAL  
Crystal or Resonator  
Figure 16. Typical Crystal or Resonator Circuit: Low Range/Low Power  
MC9S08SE8 Series MCU Data Sheet, Rev. 4  
Freescale Semiconductor  
19  
Electrical Characteristics  
3.8  
Internal Clock Source (ICS) Characteristics  
Table 10. ICS Frequency Specifications (Temperature Range = –40 to 85°C Ambient)  
Num  
C
Characteristic  
Symbol  
Min.  
Typical1  
Max.  
Unit  
Average internal reference frequency — factory trimmed  
at VDD = 5 V and temperature = 25 °C  
fint_t  
1
P
39.0625  
kHz  
Internal reference frequency — user trimmed  
Internal reference start-up time  
fint_ut  
tIRST  
2
3
P
T
31.25  
39.06  
100  
kHz  
60  
μs  
DCO output frequency range —  
trimmed2  
Low range  
(DRS = 00)  
fdco_t  
4
5
6
7
D
D
C
C
16  
59.77  
0.1  
20  
MHz  
MHz  
DCO output frequency2  
Reference = 32768 Hz and DMX32 = 1  
fdco_DMX32  
Δfdco_res_t  
Δfdco_res_t  
Resolution of trimmed DCO output frequency at fixed  
voltage and temperature (using FTRIM)  
%fdco  
%fdco  
0.2  
0.4  
Resolution of trimmed DCO output frequency at fixed  
voltage and temperature (not using FTRIM)  
0.2  
Total deviation of DCO output from trimmed frequency3  
Over full voltage and temperature range  
Over fixed voltage and temperature range of 0 to 70 °C  
Δfdco_t  
%fdco  
8
C
–1.0 to 0.5  
0.5  
2
1
FLL acquisition time4  
tAcquire  
CJitter  
10  
11  
C
C
1
ms  
Long term jitter of DCO output clock (averaged over 2-ms  
interval)5  
%fdco  
0.02  
0.2  
1
2
3
4
Data in Typical column was characterized at 3.0 V, 25 °C or is typical recommended value.  
The resulting bus clock frequency should not exceed the maximum specified bus clock frequency of the device.  
This parameter is characterized and not tested on each device.  
This specification applies to any time the FLL reference source or reference divider is changed, trim value changed or  
changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used  
as the reference, this specification assumes it is already running.  
5
Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum fBus  
.
Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise  
injected into the FLL circuitry via VDD and VSS and variation in crystal oscillator frequency increase the CJitter percentage  
for a given interval.  
MC9S08SE8 Series MCU Data Sheet, Rev. 4  
20  
Freescale Semiconductor  
 
Electrical Characteristics  
1.00%  
0.50%  
0.00%  
-0.50%  
-1.00%  
-1.50%  
-2.00%  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature  
Figure 17. Deviation of DCO Output from Trimmed Frequency (20 MHz, 3.0 V)  
3.9  
ADC Characteristics  
Table 11. 10-Bit ADC Operating Conditions  
Characteristic  
Conditions  
Symb  
Min  
Typ1  
Max  
Unit  
Comment  
Absolute  
Delta to VDD (VDD – VDDA  
VDDA  
ΔVDDA  
ΔVSSA  
VADIN  
CADIN  
RADIN  
2.7  
–100  
–100  
VREFL  
0
5.5  
100  
100  
VREFH  
5.5  
V
Supply voltage  
2
)
mV  
mV  
V
2
Ground voltage  
Input voltage  
Delta to VSS (VSS – VSSA  
)
0
4.5  
3
Input capacitance  
Input resistance  
pF  
kΩ  
5
10-bit mode  
ADCK > 4MHz  
f
5
10  
Analog source  
resistance  
External to  
MCU  
RAS  
kΩ  
fADCK < 4MHz  
8-bit mode (all valid fADCK  
High speed (ADLPC = 0)  
Low power (ADLPC = 1)  
)
10  
8.0  
4.0  
0.4  
0.4  
ADC conversion  
clock frequency  
fADCK  
MHz  
MC9S08SE8 Series MCU Data Sheet, Rev. 4  
Freescale Semiconductor  
21  
Electrical Characteristics  
1
Typical values assume VDDA = 5.0 V, Temp = 25 °C, fADCK = 1.0 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
2
DC potential difference.  
SIMPLIFIED  
INPUT PIN EQUIVALENT  
ZADIN  
CIRCUIT  
SIMPLIFIED  
CHANNEL SELECT  
CIRCUIT  
Pad  
ZAS  
leakage  
due to  
ADC SAR  
ENGINE  
input  
protection  
RAS  
RADIN  
+
VADIN  
CAS  
VAS  
+
RADIN  
RADIN  
RADIN  
INPUT PIN  
INPUT PIN  
INPUT PIN  
CADIN  
Figure 18. ADC Input Impedance Equivalency Diagram  
Table 12. 10-Bit ADC Characteristics (V  
= V  
, V  
= V  
)
SSA  
REFH  
DDA  
REFL  
Characteristic  
Conditions  
C
Symb  
Min  
Typ1  
Max  
Unit  
Comment  
Supply Current  
ADLPC = 1  
ADLSMP = 1  
ADCO = 1  
T
IDDA  
133  
μA  
μA  
μA  
Supply Current  
ADLPC = 1  
ADLSMP = 0  
ADCO = 1  
T
T
IDDA  
218  
327  
Supply Current  
ADLPC = 0  
ADLSMP = 1  
ADCO = 1  
IDDA  
Supply Current  
ADLPC = 0  
ADLSMP = 0  
ADCO = 1  
D
D
IDDA  
0.582  
0.011  
1
1
mA  
Supply Current Stop, Reset, Module Off  
IDDA  
μA  
MC9S08SE8 Series MCU Data Sheet, Rev. 4  
22  
Freescale Semiconductor  
Electrical Characteristics  
) (continued)  
Table 12. 10-Bit ADC Characteristics (V  
= V  
, V  
= V  
SSA  
REFH  
DDA  
REFL  
Typ1  
3.3  
Characteristic  
Conditions  
C
Symb  
Min  
Max  
Unit  
Comment  
ADC  
Asynchronous  
Clock Source  
High Speed (ADLPC = 0)  
Low Power (ADLPC = 1)  
2
5
tADACK  
1/fADACK  
=
D
fADACK  
MHz  
1.25  
2
3.3  
Short Sample (ADLSMP =  
0)  
Conversion  
Time(Including  
sample time)  
20  
40  
ADCK  
cycles  
D
D
tADC  
See SE8  
reference  
manual for  
conversion  
time variances  
Long Sample (ADLSMP = 1)  
Short Sample (ADLSMP =  
0)  
3.5  
23.5  
ADCK  
cycles  
Sample Time  
tADS  
Long Sample (ADLSMP = 1)  
–40°C– 25°C  
3.266  
3.638  
Temp Sensor  
Slope  
D
D
m
mV/°C  
25°C– 125°C  
Temp Sensor  
Voltage  
25°C  
VTEMP25  
1.396  
mV  
Characteristics for 28-pin packages only  
Total  
Unadjusted  
Error  
10-bit mode  
8-bit mode  
P
P
1
2.5  
1.0  
Includes  
quantization  
ETUE  
LSB3  
0.5  
10-bit mode2  
8-bit mode3  
10-bit mode  
8-bit mode  
10-bit mode  
8-bit mode  
10-bit mode  
8-bit mode  
10-bit mode  
8-bit mode  
10-bit mode  
8-bit mode  
P
P
T
T
P
P
T
T
0.5  
0.3  
0.5  
0.3  
0.5  
0.5  
0.5  
0.5  
1.0  
0.5  
1.0  
0.5  
1.5  
0.5  
1
Differential  
Non-Linearity  
DNL  
INL  
EZS  
EFS  
EQ  
LSB3  
LSB3  
LSB3  
LSB3  
LSB3  
LSB3  
Integral  
Non-Linearity  
Zero-Scale  
Error  
VADIN = VSSA  
Full-Scale  
Error  
VADIN = VDDA  
0.5  
0.5  
0.5  
2.5  
1
Quantization  
Error  
D
D
0.2  
0.1  
Input Leakage  
Error  
Padleakage4 *  
RAS  
EIL  
Characteristics for 16-pin package only  
Total  
Unadjusted  
Error  
10-bit mode  
8-bit mode  
P
P
1.5  
0.7  
3.5  
1.5  
Includes  
quantization  
ETUE  
LSB3  
MC9S08SE8 Series MCU Data Sheet, Rev. 4  
Freescale Semiconductor  
23  
Electrical Characteristics  
Table 12. 10-Bit ADC Characteristics (V  
= V  
, V  
= V  
) (continued)  
SSA  
REFH  
DDA  
REFL  
Typ1  
Characteristic  
Conditions  
10-bit mode3  
C
Symb  
Min  
Max  
1.0  
Unit  
Comment  
P
P
T
T
P
P
T
T
0.5  
0.3  
0.5  
0.3  
1.5  
0.5  
1
Differential  
Non-Linearity  
DNL  
INL  
EZS  
EFS  
EQ  
LSB3  
8-bit mode3  
10-bit mode  
8-bit mode  
10-bit mode  
8-bit mode  
10-bit mode  
8-bit mode  
10-bit mode  
8-bit mode  
10-bit mode  
8-bit mode  
0.5  
1.0  
0.5  
2.1  
0.7  
1.5  
0.5  
0.5  
0.5  
2.5  
1
Integral  
Non-Linearity  
LSB3  
LSB3  
LSB3  
LSB3  
LSB3  
Zero-Scale  
Error  
VADIN = VSSA  
Full-Scale  
Error  
VADIN = VDDA  
0.5  
Quantization  
Error  
D
D
0.2  
0.1  
Input Leakage  
Error  
Padleakage4 *  
RAS  
EIL  
1
Typical values assume VDDA = 5.0 V, Temp = 25 °C, fADCK = 1.0 MHz unless otherwise stated. Typical values are for reference  
only and are not tested in production.  
2
3
4
Monotonicity and No-Missing-Codes guaranteed in 10-bit and 8-bit modes  
1 LSB =(VREFH – VREFL)/2N  
Based on input pad leakage current. Refer to pad electricals.  
MC9S08SE8 Series MCU Data Sheet, Rev. 4  
24  
Freescale Semiconductor  
 
 
Electrical Characteristics  
3.10 AC Characteristics  
This section describes ac timing characteristics for each peripheral system.  
3.10.1 Control Timing  
Table 13. Control Timing  
Num  
C
Rating  
Symbol  
Min  
Typical1  
Max  
Unit  
1
2
3
4
D
D
D
D
Bus frequency (tcyc = 1/fBus  
)
Internal low power oscillator period  
External reset pulse width2  
Reset low drive3  
fBus  
tLPO  
textrst  
trstdrv  
DC  
700  
10  
1300  
MHz  
μs  
100  
ns  
34 × tcyc  
ns  
BKGD/MS setup time after issuing background  
debug force reset to enter user or BDM modes  
5
6
D
D
tMSSU  
tMSH  
500  
100  
ns  
BKGD/MS hold time after issuing background debug  
force reset to enter user or BDM modes4  
μs  
IRQ pulse width  
7
8
D
Asynchronous path2  
Synchronous path5  
100  
1.5 × tcyc  
t
ILIH, tIHIL  
ns  
ns  
ns  
Pin interrupt pulse width  
Asynchronous path2  
Synchronous path5  
D
100  
1.5 × tcyc  
tILIH, IHIL  
t
Port rise and fall time —  
Low output drive (PTxDS = 0) (load = 50 pF)6  
Slew rate control disabled (PTxSE = 0)  
Slew rate control enabled (PTxSE = 1)  
t
Rise, tFall  
40  
75  
C
9
Port rise and fall time —  
High output drive (PTxDS = 1) (load = 50 pF)  
Slew rate control disabled (PTxSE = 0)  
Slew rate control enabled (PTxSE = 1)  
tRise, tFall  
ns  
11  
35  
1
2
Typical values are based on characterization data at VDD = 5.0 V, 25 °C unless otherwise stated.  
This is the shortest pulse that is guaranteed to be recognized as a reset pin request. Shorter pulses are not guaranteed to  
override reset requests from internal sources.  
3
4
When any reset is initiated, internal circuitry drives the reset pin (if enabled, RSTPE = 1) low for about 34 cycles of tcyc  
To enter BDM mode following a POR, BKGD/MS should be held low during the power-up and for a hold time of tMSH after VDD  
rises above VLVD  
.
.
5
6
This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or  
may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized in that case.  
Timing is shown with respect to 20% VDD and 80% VDD levels. Temperature range –40 °C to 125 °C.  
textrst  
RESET PIN  
Figure 19. Reset Timing  
MC9S08SE8 Series MCU Data Sheet, Rev. 4  
Freescale Semiconductor  
25  
Electrical Characteristics  
tIHIL  
IRQ/Pin Interrupts  
IRQ/Pin Interrupts  
tILIH  
Figure 20. IRQ/Pin Interrupt Timing  
3.10.2 TPM/MTIM Module Timing  
Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that  
can be used as the optional external source to the timer counter. These synchronizers operate from the  
current bus rate clock.  
Table 14. TPM Input Timing  
Num  
C
Rating  
Symbol  
Min  
Max  
Unit  
1
2
3
4
5
D
D
D
D
D
External clock frequency  
External clock period  
fTPMext  
tTPMext  
tclkh  
DC  
4
fBus/4  
MHz  
tcyc  
tcyc  
tcyc  
tcyc  
External clock high time  
External clock low time  
Input capture pulse width  
1.5  
1.5  
1.5  
tclkl  
tICPW  
tTCLK  
tclkh  
TCLK  
tclkl  
Figure 21. Timer External Clock  
tICPW  
TPMCHn  
TPMCHn  
tICPW  
Figure 22. Timer Input Capture Pulse  
MC9S08SE8 Series MCU Data Sheet, Rev. 4  
26  
Freescale Semiconductor  
Ordering Information  
3.11 Flash Specifications  
This section provides details about program/erase times and program-erase endurance for the flash  
memory.  
Program and erase operations do not require any special power sources other than the normal V supply.  
DD  
For more detailed information about program/erase operations, see the Memory section in the reference  
manual.  
Table 15. Flash Characteristics  
Num  
C
Characteristic  
Symbol  
Min  
Typical  
Max  
Unit  
1
2
3
4
5
6
7
8
D
D
D
D
P
P
P
P
Supply voltage for program/erase  
Supply voltage for read operation  
Internal FCLK frequency1  
Vprog/erase  
VRead  
fFCLK  
tFcyc  
2.7  
2.7  
150  
5
5.5  
5.5  
V
V
200  
6.67  
kHz  
μs  
Internal FCLK period (1/FCLK)  
Byte program time (random location)2  
Byte program time (burst mode)2  
Page erase time2  
tprog  
9
tFcyc  
tFcyc  
tFcyc  
tFcyc  
tBurst  
4
tPage  
4000  
20,000  
Mass erase time2  
tMass  
Program/erase endurance3  
TL to TH = –40 °C to 125 °C  
T = 25 °C  
nFLPE  
9
C
10,000  
15  
100,000  
cycles  
years  
10  
C
Data retention4  
tD_ret  
100  
1
2
The frequency of this clock is controlled by a software setting.  
These values are hardware state machine controlled. User code does not need to count cycles. This information supplied for  
calculating approximate time to program and erase.  
3
4
Typical endurance for flash was evaluated for this product family on the 9S12Dx64. For additional information on how  
Freescale defines typical endurance, please refer to Engineering Bulletin EB619/D, Typical Endurance for Nonvolatile  
Memory.  
Typical data retention values are based on intrinsic capability of the technology measured at high temperature and de-rated  
to 25 °C using the Arrhenius equation. For additional information on how Freescale defines typical data retention, please refer  
to Engineering Bulletin EB618/D, Typical Data Retention for Nonvolatile Memory.  
4
Ordering Information  
This chapter contains ordering information for the device numbering system.  
Example of the device numbering system:  
9
SE 8  
XX E  
C
MC S08  
RoHS compliance indicator (E = yes)  
Package designator (see Table 16)  
Status  
(MC = Fully Qualified)  
Memory  
Temperature range  
(C = –40 °C to 85 °C)  
(V = –40 °C to 105 °C)  
(M = –40 °C to 125 °C)  
(9 = Flash-based)  
Core  
Family  
Memory Size (in KB)  
MC9S08SE8 Series MCU Data Sheet, Rev. 4  
Freescale Semiconductor  
27  
Ordering Information  
4.1  
Package Information  
Table 16. Package Descriptions  
Pin Count  
Package Type  
Abbreviation  
Designator  
Case No.  
Document No.  
28  
28  
16  
Plastic Dual In-line Pin  
PDIP  
SOIC  
RL  
WL  
TG  
710  
98ASB42390B  
98ASB42345B  
98ASH70247A  
Small Outline Integrated Circuit  
Thin Shrink Small Outline Package  
751F  
948F  
TSSOP  
4.2  
Mechanical Drawings  
The following pages are mechanical drawings for the packages described in Table 16.  
MC9S08SE8 Series MCU Data Sheet, Rev. 4  
28  
Freescale Semiconductor  
 
Ordering Information  
MC9S08SE8 Series MCU Data Sheet, Rev. 4  
Freescale Semiconductor  
29  
Ordering Information  
MC9S08SE8 Series MCU Data Sheet, Rev. 4  
30  
Freescale Semiconductor  
Ordering Information  
MC9S08SE8 Series MCU Data Sheet, Rev. 4  
Freescale Semiconductor  
31  
Ordering Information  
MC9S08SE8 Series MCU Data Sheet, Rev. 4  
32  
Freescale Semiconductor  
Ordering Information  
MC9S08SE8 Series MCU Data Sheet, Rev. 4  
Freescale Semiconductor  
33  
Ordering Information  
MC9S08SE8 Series MCU Data Sheet, Rev. 4  
34  
Freescale Semiconductor  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
How to Reach Us:  
Home Page:  
www.freescale.com  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
Web Support:  
http://www.freescale.com/support  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
1-800-521-6274 or +1-480-768-2130  
www.freescale.com/support  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Semiconductor was negligent regarding the design or manufacture of the part.  
Japan:  
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality  
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free  
counterparts. For further information, see http://www.freescale.com or contact your  
Freescale sales representative.  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
For information on Freescale’s Environmental Products program, go to  
http://www.freescale.com/epp.  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All  
other product or service names are the property of their respective owners.  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
© Freescale Semiconductor, Inc. 2008-2009, 2015. All rights reserved.  
Beijing 100022  
China  
+86 10 5879 8000  
support.asia@freescale.com  
Document Number: MC9S08SE8  
Rev. 4  
4/2015  

相关型号:

MC9S08SE4VTGE

IC,MICROCONTROLLER,8-BIT,TSSOP,16PIN,PLASTIC
NXP

MC9S08SE4VWL

MC9S08SE8/4 Do more with less
FREESCALE

MC9S08SE4VWLE

IC,MICROCONTROLLER,8-BIT,SOP,28PIN,PLASTIC
NXP

MC9S08SE8

8-Bit HCS08 Central Processor Unit
FREESCALE

MC9S08SE8CRL

MC9S08SE8/4 Do more with less
FREESCALE

MC9S08SE8CRLE

8-BIT, FLASH, 20MHz, MICROCONTROLLER, PDIP28, ROHS COMPLIANT, PLASTIC, DIP-28
NXP

MC9S08SE8CTG

MC9S08SE8CTG
FREESCALE

MC9S08SE8CTG

MICROCONTROLLER
NXP

MC9S08SE8CTGR

S08SE 8-bit MCU, S08 core, 8KB Flash, 20MHz, SOP 16
NXP

MC9S08SE8CWL

MC9S08SE8CWL
FREESCALE

MC9S08SE8CWLR

MICROCONTROLLER
NXP

MC9S08SE8MTG

MC9S08SE8MTG
FREESCALE