MCM69R536ZP5 [NXP]

32KX36 LATE-WRITE SRAM, 2.5ns, PBGA119, 14 X 22 MM, 1.27 MM PITCH, PLASTIC, BGA-119;
MCM69R536ZP5
型号: MCM69R536ZP5
厂家: NXP    NXP
描述:

32KX36 LATE-WRITE SRAM, 2.5ns, PBGA119, 14 X 22 MM, 1.27 MM PITCH, PLASTIC, BGA-119

静态存储器
文件: 总20页 (文件大小:378K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Freescale Semiconductor, Inc.  
SEMICONDUCTOR TECHNICAL DATA  
MOTOROLA  
Order this document  
by MCM69R536/D  
MCM69R536  
MCM69R618  
Advance Information  
1M Late Write HSTL  
The MCM69R536/618 is a 1 megabit synchronous late write fast static RAM  
designed to provide high performance in secondary cache, ATM switch,  
Telecom, and other high speed memory applications. The MCM69R618  
organized as 64K words by 18 bits, and the MCM69R536 organized as 32K  
words by 36 bits wide are fabricated in Motorola’s high performance silicon gate  
BiCMOS technology.  
The differential CK clock inputs control the timing of read/write operations of  
the RAM. At the rising edge of the CK clock all addresses, write enables, and  
synchronous selects are registered. An internal buffer and special logic enable  
the memory to accept write data on the rising edge of the CK clock a cycle after  
address and control signals. Read data is driven on the rising edge of the CK  
clock also.  
ZP PACKAGE  
PBGA  
CASE 999–01  
TheRAMusesHSTLinputsandoutputs. Theadjustableinputtrippoint(V  
)
ref  
and output voltage (V  
) gives the system designer greater flexibility in  
DDQ  
optimizing system performance.  
The synchronous write and byte enables allow writing to individual bytes or the  
entire word.  
The impedance of the output buffers is programmable allowing the outputs to  
match the impedance of the circuit traces which reduces signal reflections.  
Byte Write Control  
Single 3.3 V + 10%, – 5% Operation  
HSTL – I/O (JEDEC Standard JESD8–6 Class 1 Compatible)  
HSTL – User Selectabe Input Trip–Point  
HSTL – Compatible Programmable Impedance Output Drivers  
Register to Register Synchronous Operation  
Asynchronous Output Enable  
Boundary Scan (JTAG) IEEE 1149.1 Compatible  
Differential Clock Inputs  
Optional x18 or x36 organization  
MCM69R536/618–5 = 5 ns  
MCM69R536/618–6 = 6 ns  
MCM69R536/618–7 = 7 ns  
MCM69R536/618–8 = 8 ns  
119 Bump, 50 mil (1.27 mm) Pitch, 14 mm x 22 mm Plastic Ball Grid Array  
(PBGA) Package  
This document contains information on a new product. Specifications and information herein are subject to change without notice.  
REV 1  
8/15/97  
Motorola, Inc. 1997  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
FUNCTIONAL BLOCK DIAGRAM  
DATA IN  
REGISTER  
ADDRESS  
REGISTERS  
MEMORY  
ARRAY  
SA  
DQ  
DATA OUT  
REGISTER  
SW  
SW  
REGISTERS  
CONTROL  
LOGIC  
SBx  
CK  
G
SS  
SS  
REGISTERS  
PIN ASSIGNMENTS  
TOP VIEW  
MCM69R536  
MCM69R618  
1
2
3
4
5
6
7
1
2
3
4
5
6
7
A
B
C
D
E
A
V
SA  
NC  
SA  
NC  
SA  
NC  
NC  
SA  
NC  
SA  
SA  
NC  
SA  
V
V
SA  
NC  
SA  
SA  
NC  
SA  
NC  
NC  
SA  
NC  
SA  
SA  
NC  
V
DDQ  
DDQ  
DDQ  
DDQ  
B
C
D
E
NC  
NC  
NC  
NC  
NC  
SA  
V
NC  
NC  
V
SA  
NC  
NC  
DD  
DD  
DQc  
DQc  
DQc  
DQc  
DQc  
V
ZQ  
V
DQb DQb  
DQb DQb  
DQb  
NC  
NC  
DQb  
NC  
V
ZQ  
SS  
G
V
DQa  
NC  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
V
V
SS  
G
V
V
V
V
V
V
V
V
DQa  
F
F
V
DQb  
V
V
DQa  
NC  
V
DDQ  
DDQ  
DDQ  
DDQ  
G
G
DQc  
DQc SBc  
NF  
NF  
SBb  
DQb DQb  
DQb DQb  
NC  
DQb SBb  
NF  
NF  
DQa  
H
H
DQc  
DQc  
V
V
DQb  
NC  
V
DQa  
NC  
SS  
SS  
SS  
J
K
L
J
K
L
V
V
V
V
V
V
V
DDQ  
DD  
ref  
DD  
ref  
DD DDQ  
V
V
V
V
V
V V  
DD DDQ  
DDQ  
DD  
ref  
DD  
ref  
DQd  
DQd  
V
CK  
V
DQa DQa  
DQa DQa  
NC  
DQb  
V
V
CK  
CK  
V
NC  
DQa  
NC  
SS  
SS  
SS  
SS  
SS  
DQb  
NC  
SBa  
DQa  
DQd  
DQd SBd  
CK  
SW  
SA  
SA  
SBa  
M
N
P
M
N
P
V
DQd  
DQd  
DQd  
V
V
V
V
V
V
DQa  
V
V
DQb  
NC  
V
V
V
SW  
SA  
SA  
V
V
V
NC  
DQa  
NC  
V
DDQ  
SS  
SS  
SS  
SS  
SS  
SS  
DDQ  
DDQ  
SS  
SS  
SS  
SS  
SS  
SS  
DDQ  
DQd  
DQa DQa  
DQa DQa  
DQb  
NC  
DQd  
NC  
NC  
NC  
DQb  
DQa  
NC  
ZZ  
R
T
R
T
NC  
NC  
SA  
NC  
V
V
V
SA  
NC  
NC  
NC  
ZZ  
SA  
SA  
V
V
V
SA  
SA  
NC  
SS  
DD  
DD  
SS  
DD  
NC  
TCK  
DD  
SA  
TDO  
SA  
SA  
SA  
SA  
U
U
V
TMS  
TDI  
TCK  
TDO  
V
V
TMS  
TDI  
V
DDQ  
DDQ  
DDQ  
DDQ  
MCM69R536MCM69R618  
2
MOTOROLA FAST SRAM  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
MCM69R536 PIN DESCRIPTIONS  
PBGA Pin Locations  
Symbol  
CK  
Type  
Input  
Input  
I/O  
Description  
4K  
4L  
Address, data in and control input register clock. Active high.  
Address, data in and control input register clock. Active low.  
Synchronous Data I/O.  
CK  
(a) 6K, 7K, 6L, 7L, 6M, 6N, 7N, 6P, 7P  
(b) 6D, 7D, 6E, 7E, 6F, 6G, 7G, 6H, 7H  
(c) 1D, 2D, 1E, 2E, 2F, 1G, 2G, 1H, 2H  
(d) 1K, 2K, 1L, 2L, 2M, 1N, 2N, 1P, 2P  
DQx  
4F  
G
Input  
Input  
Output Enable: Asynchronous pin, active low.  
2A, 3A, 5A, 6A, 2C, 3C,  
SA  
Synchronous Address Inputs: Registered on the rising clock edge.  
5C, 6C, 4N, 4P, 2R, 6R, 3T, 4T, 5T  
5L, 5G, 3G, 3L  
(a), (b), (c), (d)  
SBx  
Input  
Synchronous Byte Write Enable: Enables writes to byte x in  
conjunction with the SW input. Has no effect on read cycles, active  
low.  
4E  
SS  
Input  
Input  
Synchronous Chip Enable: Registered on the rising clock edge, active  
low.  
4M  
SW  
Synchronous Wre: Registered on the rising clock edge, active low.  
Writes all enabled bytes.  
4U  
TCK  
TDI  
Input  
Input  
Test Clock (JTAG).  
Test Data In (JTAG).  
3U  
5U  
TDO  
TMS  
Output Test Data Out (JTAG).  
Input Test Mode Select (JTAG).  
Supply Input Reference: provides reference voltage for input buffers.  
2U  
3J, 5J  
V
ref  
4D  
7T  
ZQ  
ZZ  
Input  
Input  
Programmable Output Impedance: Programming pin.  
Reserved for future use. Must be grounded.  
4C, 2J, 4J, 6J, 4R, 5R  
1A, 7A, 1F, 7F, 1J, 7J, M, 7M, 1U, 7U  
V
Supply Core Power Supply.  
DD  
V
DDQ  
Supply Output Power Supply: Provides operating power for output buffers.  
Supply Ground.  
3D, 5D, 3E, 5E, 3F, 5F, 3H, 5H,  
3K, 5K, 3M, 5M, 3N, 5N, 3P, 5P, 3R  
V
SS  
4A, 1B, 2B, 3B, 4B, 5B, 6B, 7B,  
1C, 7C, 1R, 7R, 1T, 2T, 6T, 6U  
NC  
No Connection: There is no connection to the chip.  
4G, 4H  
NF  
No Function: There is an internal connection to the chip, but the pin  
has no function on this device.  
MCM69R536MCM69R618  
MOTOROLA FAST SRAM  
For More Information On This Product,  
Go to: www.freescale.com  
3
Freescale Semiconductor, Inc.  
MCM69R618 PIN DESCRIPTIONS  
PBGA Pin Locations  
Symbol  
CK  
Type  
Input  
Input  
I/O  
Description  
4K  
4L  
Address, data in and control input register clock. Active high.  
Address, data in and control input register clock. Active low.  
Synchronous Data I/O.  
CK  
(a) 6D, 7E, 6F, 7G, 6H, 7K, 6L, 6N, 7P  
(b) 1D, 2E, 2G, 1H, 2K, 1L, 2M, 1N, 2P  
DQx  
4F  
G
Input  
Input  
Output Enable: Asynchronous pin, active low.  
2A, 3A, 5A, 6A, 2C, 3C, 5C,  
SA  
Synchronous Address Inputs: Registered on the rising clock edge.  
6C, 4N, 4P, 2R, 6R, 2T, 3T, 5T, 6T  
5L, 3G  
(a), (b)  
SBx  
Input  
Synchronous Byte Write Enable: Enables writes to byte x in  
conjunction with the SW input. Has no effect on read cycles, active  
low.  
4E  
SS  
Input  
Input  
Synchronous Chip Enable: Registered on the rising clock edge, active  
low.  
4M  
SW  
Synchronous Write: Registered on the rising clock edge, active low.  
Writes all enabled byts.  
4U  
TCK  
TDI  
Input  
Input  
Test Clock (JTAG).  
Test Data In (JTAG).  
3U  
5U  
TDO  
TMS  
Output Test Data Out (JTAG).  
Input Test Mode Select (JTAG).  
Supply Input Reference: provides reference voltage for input buffers.  
2U  
3J, 5J  
V
ref  
4D  
7T  
ZQ  
ZZ  
Input  
Input  
Programmable Output Impedance: Programming pin.  
Reserved for future use. Must be grounded.  
4C, 2J, 4J, 6J, 4R, 5R  
1A, 7A, 1F, 7F, 1J, 7J, 1M, 7M, 1U, 7U  
V
Supply Core Power Supply.  
DD  
V
DDQ  
Supply Output Power Supply: Provides operating power for output buffers.  
Supply Ground.  
3D, 5D, 3E, 5E, 3F, 5F, 5G, 3H, 5H,  
3K, 5K, 3L, 3M, 5M, 3N, 5N, 3P, 5P, 3R  
V
SS  
4A, 1B, 2B, 3B, 4B, 5B, 6B, 7B, 1C, 7C,  
2D, 7D, 1E, 6E, 2F, 1G, 6G,  
NC  
No Connection: There is no connection to the chip.  
2H, 7H, 1K, 6K, 2L, 7L, 6M, 2N,  
7N, 1P, 6P, 1R, 7R, 1T, 4T, 6U  
4G, 4H  
NF  
No Function: There is an internal connection to the chip, but the pin  
has no function on this device.  
MCM69R536MCM69R618  
4
MOTOROLA FAST SRAM  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
ABSOLUTE MAXIMUM RATINGS (Voltages Referenced to V , See Note 1)  
SS  
This device contains circuitry to protect the  
inputs against damage due to high static volt-  
ages or electric fields; however, it is advised  
that normal precautions be taken to avoid  
application of any voltage higher than maxi-  
mum rated voltages to this high–impedance  
circuit.  
This BiCMOS memory circuit has been  
designed to meet the dc and ac specifications  
shown in the tables, after thermal equilibrium  
has been established.  
Rating  
Core Supply Voltage  
Symbol  
Value  
Unit  
V
DD  
– 0.5 to + 4.6  
V
Output Supply Voltage  
Voltage On Any Pin  
V
DDQ  
– 0.5 to V  
+ 0.5  
V
V
DD  
V
in  
– 0.5 to V  
+ 0.5  
DD  
Input Current (per I/O)  
Output Current (per I/O)  
Power Dissipation (See Note 2)  
Operating Temperature  
Temperature Under Bias  
I
in  
± 50  
mA  
mA  
W
I
± 70  
out  
P
D
This device contains circuitry that will ensure  
the output devices are in High–Z at power up.  
T
A
0 to + 70  
°C  
°C  
°C  
T
bias  
–10 to + 85  
Storage Temperature  
NOTES:  
T
stg  
– 55 to + 125  
1. Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are  
exceeded. Functional operation should be restricted to RECOMMENDED OPER-  
ATING CONDITIONS. Exposuretohigherthanrecommendedvoltagesforextended  
periods of time could affect device reliability.  
2. Powerdissipationcapabilitywillbedependentuponpackagecharacteristicsanduse  
environment. See enclosed thermal impedance data.  
PBGA PACKAGE THERMAL CHARACTERISTICS  
Rating  
Symbol  
Max  
59  
44  
28  
18  
9
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Notes  
1, 2  
Junction to Ambient (Still Air)  
Junction to Ambient (@200 ft/min)  
Junction to Ambient (@200 ft/min)  
Junction to Board (Bottom)  
Junction to Case (Top)  
R
θJA  
R
θJA  
R
θJA  
R
θJB  
R
θJC  
Single Layer Board  
Four Layer Board  
1, 2  
3
4
NOTES:  
1. Junction temperature is a function of on–chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient  
temperature, air flow, power dissipation of other components on the board, and board thermal resistance.  
2. Per SEMI G38–87.  
3. Indicates the average thermal resistance between the die and the printed circuit board.  
4. Indicates the average thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC–883  
Method 1012.1).  
CLOCK TRUTH TABLE  
K
ZZ  
L
SS  
L
SW  
H
L
SBa  
X
SBb  
X
SBc  
X
SBd  
X
DQ (n)  
High–Z  
High–Z  
High–Z  
High–Z  
High–Z  
High–Z  
High–Z  
High–Z  
High–Z  
High–Z  
DQ (n+1)  
Mode  
L – H  
L – H  
L – H  
L – H  
L – H  
L – H  
L – H  
L – H  
L – H  
X
D
0–35  
0–8  
Read Cycle All Bytes  
Write Cycle 1st Byte  
Write Cycle 2nd Byte  
Write Cycle 3rd Byte  
Write Cycle 4th Byte  
Write Cycle All Bytes  
Abort Write Cycle  
Deselect Cycle  
out  
L
L
L
H
L
H
H
L
H
H
H
L
D
in  
L
L
L
H
H
H
L
D
9–17  
in  
L
L
L
H
H
L
D
18–26  
27–35  
0–35  
in  
in  
L
L
L
H
L
D
L
L
L
L
D
in  
L
L
L
H
X
H
X
H
X
H
X
High–Z  
High–Z  
High–Z  
High–Z  
L
H
H
X
H
L
L
X
X
X
X
Deselect Cycle  
H
X
X
X
X
X
Sleep Mode  
MCM69R536MCM69R618  
MOTOROLA FAST SRAM  
For More Information On This Product,  
Go to: www.freescale.com  
5
Freescale Semiconductor, Inc.  
DC OPERATING CONDITIONS AND CHARACTERISTICS  
(0°C T 70°C, Unless Otherwise Noted)  
A
RECOMMENDED OPERATING CONDITIONS (See Notes 1 through 4)  
Typical Typical Typical Typical  
–5  
–6  
–7  
–8  
Parameter  
Core Power Supply Voltage  
Output Driver Supply Voltage  
Active Power Supply Current  
Symbol  
Min  
3.15  
1.4  
Max  
3.6  
Unit  
V
Notes  
V
DD  
V
1.6  
V
DDQ  
DD1  
(x18)  
(x36)  
I
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
mA  
5
Quiescent Active Power Supply Current (x18)  
(x36)  
I
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
mA  
mA  
mA  
6, 10  
7
DD2  
Active Standby Power Supply Current  
(x18)  
(x36)  
I
I
I
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
SB1  
SB2  
SB3  
Quiescent Standby Power Supply Current (x18)  
(x36)  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
8, 10  
Sleep Mode Power Supply Current  
Input Reference DC Voltage  
NOTES:  
TBD  
BD  
TBD  
TBD  
TBD  
1.1  
mA  
V
9, 10  
11  
V
(dc)  
0.6  
ref  
1. AlldatasheetparametersspecifiedtofullrangeofV  
unlessotherwisenoted. AllvoltagesarereferencedtovoltageappliedtoV bumps.  
SS  
DD  
2. Supply voltage applied to V  
3. Supply voltage applied to V  
connections.  
DD  
connections.  
DDQ  
4. All power supply currents measured with outputs open or deselected.  
5. V  
6. V  
7. V  
8. V  
9. V  
= V  
= V  
= V  
= V  
= V  
(max), t  
(max), t  
(max), t  
(max), t  
(Max), t  
= t  
KHKH KHKH  
(min), SS registered active, 50% read cycles.  
= dc, SS registeed active.  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
KHKH  
KHKH KHKH  
= t  
(min), SS registered inactive.  
= dc, SS registered inactive, ZZ low.  
= dc, registered inactive, ZZ high.  
KHKH  
KHKH  
10. 200 mV V V  
– 200 mV.  
11. Although considerable atitude in the selection of the nominal dc value (i.e., rms value) of V is supported, the peak to peak ac component  
in DDQ  
ref  
superimposed on V may not exceed 5% of the dc component of V  
ref  
.
ref  
DC INPUT CHARACTERISTICS  
Parameter  
Symbol  
Min  
+ 0.1  
Max  
+ 0.3  
DD  
Unit  
V
Notes  
DC Input Logic High  
V
(dc)  
(dc)  
V
ref  
V
IH  
DC Input Logic Low (See Figure 2)  
Input Leakage Current  
V
– 0.3  
V
ref  
– 0.1  
V
1
2
IL  
I
± 5  
µA  
V
lkg  
Clock Input Signal Voltage  
V
in  
– 0.3  
0.2  
V
V
+ 0.3  
+ 0.6  
DD  
Clock Input Differential Voltage  
Clock Input Common Mode Voltage Range (See Figure 3)  
Clock Input Crossing Point Voltage Range (See Figure 3)  
NOTES:  
V
DIF  
V
CM  
(dc)  
(dc)  
V
3
4
DD  
0.68  
0.68  
1.1  
1.1  
V
V
X
V
1. Inputs may undershoot to –0.5 V (peak) for up to 20% t  
(e.g., 2 ns at a clock cycle time of 10 ns).  
KHKH  
2. 0 V V for all pins.  
V
in DDQ  
3. Minimum differential input voltage required for differential input clock operation.  
4. Maximum rejectable common mode input voltage variation.  
MCM69R536MCM69R618  
6
MOTOROLA FAST SRAM  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
DC OUTPUT BUFFER CHARACTERISTICS – PROGRAMMABLE IMPEDANCE PUSH–PULL OUTPUT BUFFER MODE  
(0_C T 70_C, Unless Otherwise Noted, See Notes 1 and 2)  
A
Parameter  
Symbol  
Min  
Max  
V /2 +0.025  
DDQ  
Unit  
V
Notes  
Output Logic Low  
Output Logic High  
V
OL  
V
V
/2 – 0.025  
/2 – 0.025  
3
4
5
6
DDQ  
V
OH  
V
DDQ  
/2 + 0.025  
V
DDQ  
Light Load Output Logic Low  
Light Load Output Logic High  
V 1  
OL  
V
SS  
0.2  
V
V
OH  
1
V
– 0.2  
V
DDQ  
V
DDQ  
NOTES:  
1. The impedance controlled mode is expected to be used in point–to–point applications, driving high impedance inputs.  
2. The ZQ pin is connected through RQ to V for the controlled impedance mode.  
SS  
/2)/(RQ/5) for values of RQ = 175 RQ 350 Ω.  
3. I  
OL  
= (V  
DDQ  
4. | I  
| = (V  
/2)/(RQ/5) for values of RQ = 175 RQ 350 Ω.  
OH  
DDQ  
5. I  
OL  
100 µA.  
| 100 µA.  
6. | I  
OH  
DC OUTPUT BUFFER CHARACTERISTICS – MINIMUM IMPEDANCE PUSH–PULL OUTPUT BUFFER MODE  
(0_C T 70_C, ZQ = V , See Notes 1 and 2)  
A
DD  
Parameter  
Symbol  
Min.  
Max.  
Unit  
V
Notes  
Output Logic Low  
Output Logic High  
V 2  
OL  
V
SS  
0.4  
3
4
5
6
V
2
3
V
V
– 0.4  
V
DDQ  
V
OH  
DDQ  
Light Load Output Logic Low  
Light Load Output Logic High  
V
V
SS  
0.2  
V
OL  
V
OH  
3
– 0.2  
V
DDQ  
V
DDQ  
NOTES:  
1. The push–pull output mode is expected tbe used in bussed applications and may be series or parallel terminated. Conforms to the JEDEC  
Standard JESD8–6 Class 1.  
2. The ZQ pin is connected to V  
to enable the minimum impedance mode.  
DD  
3. I  
OL  
8 mA.  
| 8 mA.  
4. | I  
OH  
100 µA.  
5. I  
OL  
6. | I  
|100 µA.  
OH  
CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, 0_C T 70_C, Periodically Sampled Rather Than 100% Tested)  
A
Characteristic  
Symbol  
Typ  
Max  
Unit  
pF  
Input Capacitance  
C
4
5
8
5
in  
Input/Output Capacitance  
CK, CK Capacitance  
C
7
pF  
I/O  
CK  
C
4
pF  
MCM69R536MCM69R618  
MOTOROLA FAST SRAM  
For More Information On This Product,  
Go to: www.freescale.com  
7
Freescale Semiconductor, Inc.  
AC OPERATING CONDITIONS AND CHARACTERISTICS  
(0°C T 70°C, Unless Otherwise Noted)  
A
Input Pulse Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.25 to 1.25 V  
Input Rise/Fall Time . . . . . . . . . . . . . . . . . . . . . . 1 V/ns (20% to 80%)  
Input Timing Measurement Reference Level . . . . . . . . . . . . . . 0.75 V  
Output Timing Reference Level . . . . . . . . . . . . . . . . . . . . . . . . . 0.75 V  
Clock Input Timing Reference Level . . . . . . Differential Cross–Point  
ZQ for 50 Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 Ω  
READ/WRITE CYCLE TIMING (See Note 1)  
MCM69R536–5  
MCM69R618–5  
MCM69R536–6  
MCM69R618–6  
MCM69R536–7  
MCM69R618–7  
MCM69R536–8  
MCM69R618–8  
Parameter  
Cycle Time  
Symbol  
Min  
5
Max  
Min  
6
Max  
3
Min  
7
Max  
Min  
8
Max  
4
Unit Notes  
t
ns  
ns  
ns  
KHKH  
Clock High Pulse Width  
t
2
2.4  
2.4  
1
2.8  
2.8  
1
3.2  
3.2  
1
KHKL  
KLKH  
Clock Low Pulse Width  
t
2
Clock High to Output Low–Z  
Clock High to Output Valid  
Clock High to Output Hold  
Clock High to Output High–Z  
t
1
ns  
ns  
ns  
ns  
ns  
2, 3  
KHQX1  
t
0.5  
0.5  
2.5  
3.5  
KHQV  
KHQX  
t
0.5  
3
0.5  
0.5  
4
2
t
2.5  
3.5  
2, 3  
KHQZ  
GLQX  
Output Enable Low to Output  
Low–Z  
t
0.5  
0.5  
0.5  
Output Enable Low to Output  
Valid  
t
2.5  
3
3.5  
4
ns  
GLQV  
Output Enable to Output Hold  
t
0.5  
0.5  
3
0.5  
0.5  
4
ns  
ns  
GHQX  
Output Enable High to Output  
High–Z  
t
2.5  
3.5  
2, 3  
GHQZ  
Setup Times:  
Hold Times:  
NOTES:  
Address  
Data In  
Chip Selet  
Write Enable  
t
t
0.5  
0.5  
0.5  
0.5  
ns  
AVKH  
DVKH  
t
SVKH  
t
WVKH  
Address  
Data In  
Chip Select  
Write Enable  
t
t
1
1
1
1
ns  
KHAX  
KHDX  
t
KHSX  
t
KHWX  
1. In no case may control input signals (e.g., SS) be operated with pulse widths less than the minimum clock input pulse width specifications  
(e.g., t ) or at frequencies that exceed the applied K clock frequency.  
KHKL  
2. This parameter is sampled and not 100% tested.  
3. Measured at ± 200 mV from steady state.  
AC INPUT CHARACTERISTICS  
Parameter  
Symbol  
Min  
Max  
Note  
AC Input Logic High (See Figure 4)  
AC Input Logic Low (See Figure 2 and 4)  
Input Reference Peak to Peak ac Voltage  
Clock Input Differential Voltage  
V
(ac)  
(ac)  
(ac)  
(ac)  
V
ref  
+ 200 mV  
IH  
V
V
– 200 mV  
1
2
3
IL  
ref  
V
ref  
5% V (dc)  
ref  
V
dif  
400 mV  
V
DDQ  
+ 600 mV  
NOTES:  
1. Inputs may undershoot to – 0.5 V (peak) for up to 20% t  
2. Although considerable latitude in the selection of the nominal dc value (i.e., rms value) of V is supported, the peak to peak ac component  
(e.g., 2 ns at a clock cycle time of 10 ns).  
KHKH  
ref  
superimposed on V may not exceed 5% of the dc component of V  
.
ref  
ref  
3. Minimum differential input voltage required for differential input clock operation.  
MCM69R536MCM69R618  
8
MOTOROLA FAST SRAM  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
TIMING LIMITS  
The table of timing values shows either a minimum  
or a maximum limit for each parameter. Input require-  
ments are specified from the external system point of  
view. Thus, address setup time is shown as a mini-  
mum since the system must supply at least that much  
time. On the other hand, responses from the memory  
are specified from the device point of view. Thus, the  
access time is shown as a maximum since the device  
never provides data later than that time.  
0.75 V  
V
/2  
DDQ  
V
ref  
50  
DEVICE  
UNDER  
TEST  
50  
250  
ZQ  
Figure 1. AC Test Load  
V
OH  
V
SS  
50%  
100%  
20% t  
KHKH  
Figure 2. Undershoot Voltage  
V
DDQ  
V
TR  
CROSSING POINT  
V
DIF  
V
*
CM  
V
CP  
V
SS  
*V , the Common Mode Input Voltage, equals V  
CM TR  
– ((V  
– V )/2).  
TR CP  
Figure 3. Differential Inputs/Common Mode Input Voltage  
V
DDQ  
(ac)  
V
IH  
V
ref  
V
(ac)  
IL  
V
SS  
Figure 4. AC Input Conditions  
MCM69R536MCM69R618  
MOTOROLA FAST SRAM  
For More Information On This Product,  
Go to: www.freescale.com  
9
Freescale Semiconductor, Inc.  
REGISTER/REGISTER READ–WRITE–READ CYCLES  
t
t
KHKL  
KHKH  
CK  
SA  
SS  
SW  
t
t
AVKH  
KLKH  
t
KHAX  
A0  
A1  
A2  
A3  
A4  
t
SVKH  
t
KHSX  
t
WVKH  
t
KHWX  
SBx  
G
V
IL  
t
t
t
KHQX1  
t
t
KHQZ  
KHQV  
t
KHDX  
KHQX  
t
KHQX  
Q1  
DVKH  
DQx  
Q–1  
Q0  
D2  
Q3  
MCM69R536MCM69R618  
10  
MOTOROLA FAST SRAM  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
REGISTER/REGISTER READ–WRITE–READ  
(G Controlled)  
t
t
KHKL  
KHKH  
CK  
SA  
t
t
AVKH  
KLKH  
t
KHAX  
A0  
A1  
A2  
A3  
A4  
SS  
V
IL  
SW  
SBx  
G
t
t
GLQV  
GLQX  
t
GHQZ  
t
GHQX  
DQx  
Q–1  
Q0  
Q1  
D2  
Q3  
MCM69R536MCM69R618  
MOTOROLA FAST SRAM  
For More Information On This Product,  
Go to: www.freescale.com  
11  
Freescale Semiconductor, Inc.  
occur, but the outputs will be deselected as in a normal write  
cycle.  
FUNCTIONAL OPERATION  
READ AND WRITE OPERATIONS  
LATE WRITE  
All control signals except G are registered on the rising  
edge of the CK clock. These signals must meet the setup  
and hold times shown in the AC Characteristics table. On the  
rising edge of the following clock, read data is clocked into  
The write address is sampled on the first rising edge of  
clock and write data is sampled on the following rising edge.  
The late write feature is implemented with single stage  
write buffering. Write buffering is transparent to the user. A  
comparator monitors the address bus and, when necessary,  
routes buffer contents to the outputs to assure coherent op-  
eration. This occurs in all cases whether there is a byte write  
or a full word is written.  
the output register and available at the outputs at t  
. Dur-  
KHQV  
ing this same cycle a new read address can be applied to the  
address pins.  
A deselect cycle (dead cycle) must occur prior to a write  
cycle. Read cycles may follow write cycles immediately.  
G, SS, and SW control output drive. Chip deselect via a  
high on SS at the rising edge of the CK clock has its effect on  
the output drivers after the next rising edge of the CK clock.  
SW low deselects the output drivers immediately (as regis-  
tered by CK). Output drive is also controlled directly by out-  
put enable, G. No clock edges are required to generate  
output disable with G. G asynchronously enables the output  
drivers.  
PROGRAMMABLE IMPEDANCE OPERATION  
The designer can program the RAMs output buffer imped-  
ance by terminating the Q pin to V  
through a precision  
SS  
resistor (RQ). The value of RQ is five times the output imped-  
ance desired. For example, 250 resistor will give an output  
impedance of 50 .  
Impedance updates occur continuously and the frequency  
of the update is based on the subdivided K clock. Note that if  
the K clock stops so does the impedance update.  
The actual change in the impedance occurs in small incre-  
ments and is monotonic. There are no significant distur-  
bances that occur on the output because of this smooth  
update method.  
Output data will be valid the latter of t  
and t  
.
GLQV  
KHQV  
Outputs will begin driving at t  
vious data until t or t  
. Outputs will hold pre-  
KHQX1  
.
GHQX  
KHQX  
WRITE AND BYTE WRITE FUNCTIONS  
The impedance update is not related to any particular type  
of cycle because the impedance is updated continuously and  
is based on the K clock. Updates occur regardless of wheth-  
er the the device is performing a read, write or a deselect  
cycle and does not depend on the state of G.  
At power up, the output impedance defaults to approxi-  
mately 50 . It will take 4,000 to 16,000 cycles for the imped-  
ance to be completely updated if the programmed  
impedance is much higher or lower than 50 .  
Note that in the following discussion the term “byte” refers  
to nine bits of the RAM I/O bus. In all caes, the timing pa-  
rameters described for synchronous write input (SW) apply  
to each of the byte write enable inputs (SBa, SBb, etc.).  
Byte write enable inputs have no effect on read cycles.  
This allows the system designer not interested in performing  
byte writes to connect the byte enable inputs to active low  
(V ). Reads of all bytes proceed normally and write cycles,  
SS  
activated via a low on SW, and the rising edge of the CK  
clock, write the entire RAM I/O width. This way the designer  
is spared having to drive multiple write input buffer loads.  
Byte writes are performed using the byte write enable in-  
puts in conjunction with the synchronous write input (SW). It  
is important to note that writing any one byte will inhibit a read  
of all bytes at the current address. The RAM cannot simulta-  
neously read one byte and write another at the same ad-  
dress. A write cycle initiated with none of the byte write  
enable inputs active is neither a read or a write. No write will  
The output buffers can also be programmed in a minimum  
impedance configuration by connecting ZQ to V  
.
DD  
POWER UP AND INITIALIZATION  
Once supplies have reached specification levels, a mini-  
mum dwell of 1.0 ms with CK clock inputs cycling is required  
before beginning normal operations. At power up the output  
impedance will be set at approximately 50 as stated  
above.  
MCM69R536MCM69R618  
12  
MOTOROLA FAST SRAM  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
SERIAL BOUNDARY SCAN TEST ACCESS PORT OPERATION  
OVERVIEW  
1149.1 compliant TAPs. The TAP operates using convention-  
al JEDEC Standard 8–1B Low Voltage (3.3 V) TTL/CMOS  
logic level signaling.  
The serial boundary scan test access port (TAP) on this  
RAM is designed to operate in a manner consistent with  
IEEE Standard 1149.1–1990 (commonly referred to as  
JTAG), but does not implement all of the functions required  
for 1149.1 compliance. Certain functions have been modified  
or eliminated because their implementation places extra de-  
lays in the RAMs critical speed path. Nevertheless, the RAM  
supports the standard TAP controller architecture. (The TAP  
controller is the state machine that controls the TAPs opera-  
tion) and can be expected to function in a manner that does  
not conflict with the operation of devices with Standard  
DISABLING THE TEST ACCESS PORT  
It is possible to use this device without utilizing the TAP. To  
disable the TAP Controller without interfering with normal op-  
eration of the device, TCK must be tied to V  
to preclude  
SS  
mid level inputs. TDI and TMS are designed so an undriven  
input will produce a response identical to the application of a  
logic 1, and may be left unconnected. But they may also be  
tied to V  
nected.  
through a 1 k resistor. TDO should be left uncon-  
DD  
TAP DC OPERATING CHARACTERISTICS  
(0°C T 70°C, Unless Otherwise Noted)  
A
Parameter  
Symbol  
Min  
Max  
V + 0.3  
DD  
Unit  
V
Note  
Logic Input Logic High  
Logic Input Logic Low  
Logic Input Leakage Current  
Output Logic Low  
V
IH  
1
2.0  
– 0.3  
V 1  
IL  
0.8  
± 5  
0.2  
V
I
µA  
V
1
2
3
4
5
lkg  
V 1  
OL  
Output Logic High  
V
OH  
1
V
– 0.2  
V
DD  
Output Logic Low  
V 2  
OL  
0.4  
V
Output Logic High  
V
OH  
2
2.4  
V
NOTES:  
1. 0 V V V  
for all logic input pins.  
= 0.2 V. Sampled, not 100% tested.  
1| 100 µA @ V – 0.2 V. Sampled, not 100% tested.  
in  
DD  
2. I 1 100 µA @ V  
OL OL  
3. |I  
OH  
DDQ  
= 0.4 V.  
4. I 2 8 mA @ V  
OL  
5. |I  
OL  
2| 8 mA @ V  
= 2.4 V.  
OH  
OH  
MCM69R536MCM69R618  
MOTOROLA FAST SRAM  
For More Information On This Product,  
Go to: www.freescale.com  
13  
Freescale Semiconductor, Inc.  
TAP AC OPERATING CONDITIONS AND CHARACTERISTICS  
(0°C T 70°C, Unless Otherwise Noted)  
A
Input Pulse Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 to 3.0 V  
Input Rise/Fall Time . . . . . . . . . . . . . . . . . . . . . . 1 V/ns (20% to 80%)  
Input Timing Measurement Reference Level . . . . . . . . . . . . . . . 1.5 V  
Output Timing Reference Level . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5 V  
Output Test Load . . . . . . 50 Parallel Terminated T–line with 20 pF  
Receiver Input Capacitance  
Test Load Termination Supply Voltage (V ) . . . . . . . . . . . . . . . 1.5 V  
T
TAP CONTROLLER TIMING  
Parameter  
Cycle Time  
Symbol  
Min  
100  
40  
40  
10  
10  
10  
10  
10  
10  
0
Max  
20  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Notes  
t
THTH  
Clock High Time  
t
THTL  
Clock Low Time  
t
TLTH  
TMS Setup  
t
t
MVTH  
THMX  
TMS Hold  
TDI Valid to TCK High  
TCK High to TDI Don’t Care  
Capture Setup  
t
DVTH  
THDX  
t
t
1
1
CS  
Capture Hold  
t
CH  
TCK Low to TDO Unknown  
TCK Low to TDO Valid  
NOTES:  
t
t
TLQX  
TLOV  
1. t + t  
CS CH  
defines the minimum pause in RAM I/O pad transitions to assure accurate pad data capture.  
AC TEST LOAD  
1.5 V  
50  
DEVICE  
UNDER  
TEST  
50  
20 pF  
TAP CONTROLLER TIMING DIAGRAM  
t
THTH  
t
TLTH  
TEST CLOCK  
(TCK)  
t
THTL  
t
THMX  
t
MVTH  
TEST MODE SELECT  
(TMS)  
t
THDX  
t
DVTH  
TEST DATA IN  
(TDI)  
t
t
TLQV  
TLQX  
TEST DATA OUT  
(TDO)  
MCM69R536MCM69R618  
14  
MOTOROLA FAST SRAM  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
BOUNDARY SCAN REGISTER  
TEST ACCESS PORT PINS  
The boundary scan register is identical in length to the  
number of active input and I/O connections on the RAM (not  
counting the TAP pins). This also includes a number of place  
holder locations (always set to a logic 1) reserved for density  
upgrade address pins. There are a total of 70 bits in the case  
of the x36 device and 51 bits in the case of the x18 device.  
The boundary scan register, under the control of the TAP  
controller, is loaded with the contents of the RAMs I/O ring  
when the controller is in capture–DR state and then is placed  
between the TDI and TDO pins when the controller is moved  
to shift–DR state. Several TAP instructions can be used to  
activate the boundary scan register.  
TCK — TEST CLOCK (INPUT)  
Clocks all TAP events. All inputs are captured on the rising  
edge of TCK and all outputs propagate from the falling edge  
of TCK.  
TMS — TEST MODE SELECT (INPUT)  
The TMS input is sampled on the rising edge of TCK. This  
is the command input for the TAP controller state machine.  
An undriven TMS input will produce the same result as a  
logic one input level.  
TDI — TEST DATA IN (INPUT)  
The Bump/Bit Scan Order tables describe which device  
bump connects to each boundary scan register location. The  
first column defines the bits position in the boundary scan  
register. The shift register bit nearest TDO (i.e., first to be  
shifted out) is defined as bit 1. The second column is the  
name of the input or I/O at the bump and the third column is  
the bump number.  
The TDI input is sampled on the rising edge of TCK. This is  
the input side of the serial registers placed between TDI and  
TDO. The register placed between TDI and TDO is deter-  
mined by the state of the TAP controller state machine and  
the instruction that is currently loaded in the TAP instruction  
register (refer to Figure 6, TAP Controller State Diagram). An  
undriven TDI pin will produce the same result as a logic one  
input level.  
IDENTIFICATION (ID) REGISTER  
The ID Register is a 32–bit register that is loaded with a  
device and vendor specific 32–bit code when the controller is  
put in capture–DR state with the IDCODE command loaded  
in the instruction register. The code is loaded from a 32 bit  
on–chip ROM. It describes various attributes of the RAM as  
indicated below. The register is then placed between the TDI  
and TDO pins when the controller is moved into shift–DR  
state. Bit 0 in the register is the LSB and the first to reach  
TDO when shifting begins.  
TDO — TEST DATA OUT (OUTPUT)  
Output that is active depending on the state of the TAP  
state machine (refer to Figure 6, TAP Controller State Dia-  
gram). Output changes in response to the falling edge of  
TCK. This is the output side of the serial registers placed be-  
tween TDI and TDO.  
TRST — TAP RESET  
This device does not have a TRST pin. TRST is optional in  
IEEE 1149.1. The test–logc reset state is entered while TMS  
is held high for five rising edges of TCK. Power on reset cir-  
cuitry is included internally. This type of reset does not affect  
the operation of the system logic. The reset affects test logic  
only.  
ID Register Presence Indicator  
Bit #  
0
1
Value  
Motorola JEDEC ID Code (Compressed Format, per  
IEEE Standard 1149.1 – 1990  
TEST ACCESS PORT REGISTERS  
OVERVIEW  
Bit #  
11  
10  
9
8
7
6
5
4
3
2
1
Value  
0
0
0
0
0
0
0
1
1
1
0
The various TAP registers are selected (one at a time) via  
the sequences of ones and zeros input to the TMS pin as the  
TCK is strobed. Each of the TAPs registers are serial shift  
registers that capture serial input data on the rising edge of  
TCK and push serial data out on subsequent falling edge of  
TCK. When a register is selected it is “placed” between the  
TDI and TDO pins.  
Reserved For Future Use  
Bit #  
17  
16  
15  
14  
13  
12  
Value  
x
x
x
x
x
x
Device Width  
Configuration  
32K x 36  
Bit #  
Value  
Value  
22  
0
21  
20  
1
19  
0
18  
0
INSTRUCTION REGISTER  
0
0
The instruction register holds the instructions that are  
executed by the TAP controller when it is moved into the run  
test/idle or the various data register states. The instructions  
are three bits long. The register can be loaded when it is  
placed between the TDI and TDO pins. The instruction regis-  
ter is automatically preloaded with the IDCODE instruction at  
power–up or whenever the controller is placed in test–logic–  
reset state.  
64K x 18  
0
0
1
1
Device Depth  
Configuration  
32K x 36  
Bit #  
Value  
Value  
27  
0
26  
0
25  
0
24  
1
23  
1
64K x 18  
0
0
1
0
0
Revision Number  
BYPASS REGISTER  
Bit #  
31  
30  
29  
28  
The bypass register is a single bit register that can be  
placed between TDI and TDO. It allows serial test data to be  
passed through the RAMs TAP to another device in the scan  
chain with as little delay as possible.  
Value  
x
x
x
x
Figure 5. ID Register Bit Meanings  
MCM69R536MCM69R618  
MOTOROLA FAST SRAM  
For More Information On This Product,  
Go to: www.freescale.com  
15  
Freescale Semiconductor, Inc.  
MCM69R536 Bump/Bit Scan Order  
MCM69R618 Bump/Bit Scan Order  
BIT  
No.  
Signal  
Name  
Bump  
ID  
Bit  
No.  
Signal  
Name  
Bump  
ID  
Bit  
No.  
Signal  
Name  
Bump  
ID  
Bit  
No.  
Signal  
Name  
Bump  
ID  
1
M2  
SA  
5R  
4P  
4T  
6R  
5T  
7T  
6P  
7P  
6N  
7N  
6M  
6L  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
NC  
NC  
3B  
2B  
3A  
3C  
2C  
2A  
2D  
1D  
2E  
1E  
2F  
2G  
1G  
2H  
1H  
3G  
4D  
4E  
4G  
4H  
4M  
3L  
1
M2  
SA  
5R  
6T  
4P  
6R  
5T  
7T  
7P  
6N  
6L  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
SBb  
ZQ  
3G  
4D  
4E  
4G  
4H  
4M  
2K  
1L  
2
2
3
SA  
SA  
3
SA  
SS  
4
SA  
SA  
4
SA  
NF  
5
SA  
SA  
5
SA  
NF  
6
ZZ  
SA  
6
ZZ  
SW  
DQb  
DQb  
DQb  
DQb  
DQb  
SA  
7
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
SBa  
CK  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
SBc  
ZQ  
7
DQa  
DQa  
DQa  
DQa  
SBa  
CK  
8
8
9
9
2M  
1N  
2P  
3T  
2R  
4N  
2T  
3R  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
7K  
5L  
4L  
7L  
CK  
4K  
4F  
6H  
7G  
6F  
7E  
6D  
6A  
6C  
5C  
5A  
6B  
5B  
3B  
2B  
3A  
3C  
2C  
2A  
1D  
2E  
2G  
1H  
SA  
6K  
7K  
5L  
G
SA  
DQa  
DQa  
DQa  
DQa  
DQa  
SA  
SA  
M1  
4L  
CK  
4K  
4F  
5G  
7H  
6H  
7G  
6G  
6F  
7E  
6E  
7D  
6D  
6A  
6C  
5C  
5A  
6B  
5B  
SS  
G
NF  
SBb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
SA  
NF  
SW  
SBd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
SA  
SA  
SA  
1K  
2K  
1L  
SA  
NC  
NC  
2L  
NC  
2M  
1N  
2N  
1P  
2P  
3T  
2R  
4N  
3R  
NC  
SA  
SA  
SA  
SA  
SA  
SA  
DQb  
DQb  
DQb  
DQb  
SA  
SA  
NC  
SA  
35  
NC  
M1  
NOTES:  
1. TheNC pads listed in this table are indeed no connects, but are represented in the boundary scan register by a “place holder” bit that is forced  
to logic 1. These pads are reserved for use as address inputs on higher density RAMs that follow this pad out and scan order standard.  
2. In scan mode, differential inputs CK and CK are referenced to each other and must be at opposite logic levels for reliable operation.  
3. ZQ, M1, and M2 are not ordinary inputs and may not respond to standard I/O logic levels. ZQ, M1, and M2 must be driven to within 100 mV  
of a V  
or V  
supply rail to ensure consistent results.  
SS  
DD  
4. ZZ must remain at V during boundary scan to ensure consistent results.  
IL  
MCM69R536MCM69R618  
16  
MOTOROLA FAST SRAM  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
expected. RAM input signals must be stabilized for long  
enough to meet the TAPs input data capture set–up plus hold  
time (t plus t ). The RAMs clock inputs need not be  
TAP CONTROLLER INSTRUCTION SET  
OVERVIEW  
CS CH  
paused for any other TAP operation except capturing the I/O  
ring contents into the boundary scan register.  
There are two classes of instructions defined in the Stan-  
dard 1149.1–1990; the standard (public) instructions, and de-  
vice specific (private) instructions. Some public instructions,  
are mandatory for 1149.1 compliance. Optional public  
instructions must be implemented in prescribed ways.  
Although the TAP controller in this device follows the  
1149.1 conventions, it is not 1194.1 compliant because some  
of the mandatory instructions are not fully implemented. The  
TAP on this device may be used to monitor all input and I/O  
pads, but can not be used to load address, data or control  
signals into the RAM or to preload the I/O buffers. In other  
words, the device will not perform Standard 1149.1 EXTEST,  
INTEST or the preload portion of the SAMPLE/PRELOAD  
command.  
When the TAP controller is placed in capture–IR state the  
two least significant bits of the instruction register are loaded  
with 01. When the controller is moved to the shift–IR state  
the instruction register is placed between TDI and TDO. In  
this state the desired instruction is serially loaded through the  
TDI input (while the previous contents are shifted out at  
TDO). For all instructions, the TAP executes newly loaded  
instructions only when the controller is moved to update–IR  
state. The TAP instruction sets for this device are listed in the  
following tables.  
Moving the controller to shift–DR state then places the  
boundary scan register between the TDI and TDO pins. Be-  
cause the PRELOAD portion of the command is not imple-  
mented in this device, moving the controller to the  
update–DR state with the SAMPLE/PRELOAD instruction  
loaded in the instruction register has the same effect as the  
pause–DR command. This functionality is not Standard  
1149.1 compliant.  
EXTEST  
EXTEST is an IEEE 11491 mandatory public instruction. It  
is to be executed whenever the instruction register, whatever  
length it may be in the device, is loaded with all logic 0s. EX-  
TEST is not implemented in this device. Therefore this de-  
vice is not 1149.1 compliant. Nevertheless, this RAMs TAP  
does respond to an all zeros instruction, as follows. With the  
EXTEST (000) instruction loaded in the instruction register  
the RAM responds just as it does in response to the SAM-  
PLE / PRELOAD instruction described above, except the  
RAM outputs are forced to high–Z any time the instruction is  
loaded.  
IDCODE  
The IDCODE instruction causes the ID ROM to be loaded  
into the ID register when the controller is in capture–DR  
mode and places the ID register between the TDI and TDO  
pins in shift–DR mode. The IDCODE instruction is the default  
instruction loaded in at power up and any time the controller  
is placed in the test–logic–reset state.  
STANDARD (PUBLIC) INSRUCTIONS  
BYPASS  
The BYPASS instrucion is loaded in the instruction regis-  
ter when the bypass register is placed between TDI and  
TDO. This occurs when the TAP controller is moved to the  
shift–DR state. This allows the board level scan path to be  
shortened to facilitate testing of other devices in the scan  
path.  
THE DEVICE SPECIFIC (PUBLIC) INSTRUCTION  
SAMPLE–Z  
SAMPLE/PRELOAD  
If the SAMPLE–Z instruction is loaded in the instruction  
register, all RAM outputs are forced to an inactive drive state  
(high–Z) and the boundary scan register is connected be-  
tween TDI and TDO when the TAP controller is moved to the  
shift–DR state.  
Sample/preload is a Standard 1149.1 mandatory public  
instruction. When the sample/preload instruction is loaded in  
the Instruction register, moving the TAP controller into the  
capture–DR state loads the data in the RAMs input and I/O  
buffers into the boundary scan register. Because the RAM  
clock(s) are independent from the TAP clock (TCK) it is pos-  
sible for the TAP to attempt to capture the I/O ring contents  
while the input buffers are in transition (i.e., in a metastable  
state). Although allowing the TAP to sample metastable in-  
puts will not harm the device, repeatable results can not be  
THE DEVICE SPECIFIC (PRIVATE) INSTRUCTION  
NOOP  
Do not use these instructions; they are reserved for future  
use.  
MCM69R536MCM69R618  
MOTOROLA FAST SRAM  
For More Information On This Product,  
Go to: www.freescale.com  
17  
Freescale Semiconductor, Inc.  
STANDARD (PUBLIC) INSTRUCTION CODES  
Instruction  
EXTEST  
Code*  
Description  
000  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO. Forces all  
RAM outputs to High–Z state. *NOT 1149.1 COMPLIANT*  
IDCODE  
001**  
100  
Preloads ID register and places it between TDI and TDO.  
Does not affect RAM operation.  
SAMPLE / PRELOAD  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO. Does not  
affect RAM operation.  
Does not implement 1149.1 Preload function. * NOT 1149.1 COMPLIANT *  
BYPASS  
111  
010  
Places bypass register between TDI and TDO.  
Does not affect RAM operation.  
SAMPLE–Z  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO. Forces all  
RAM output drivers to High–Z.  
*Instruction codes expressed in binary, MSB on left, LSB on right.  
**Default instruction automatically loaded at power–up and in test–logic–reset state.  
STANDARD (PRIVATE) INSTRUCTION CODES  
Instruction  
NO OP  
Code*  
011  
Description  
Do not use these instructions; they are reserved for future use.  
Do not use these instructions; they are reserved for future use.  
Do not use these instructions; they are reserved for future use.  
NO OP  
NO OP  
101  
110  
*Instruction codes expressed in binary, MSB on left, LSB on right.  
TEST–LOGIC  
RESET  
1
0
1
RUN–TEST/  
IDLE  
SELECT  
DR–SCAN  
SELECT  
IR–SCAN  
1
1
0
0
0
1
1
CAPTURE–DR  
CAPTURE–IR  
0
0
SHIFT–DR  
1
SHIFT–IR  
1
0
0
1
1
EXIT1–DR  
0
EXIT1–IR  
0
PAUSE–DR  
1
PAUSE–IR  
1
0
0
0
0
EXIT2–DR  
1
EXIT2–IR  
1
UPDATE–DR  
UPDATE–IR  
1
0
1
0
NOTE: The value adjacent to each state transition represents the signal present at TMS at the rising edge of TCK.  
Figure 6. TAP Controller State Diagram  
MCM69R536MCM69R618  
18  
MOTOROLA FAST SRAM  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
ORDERING INFORMATION  
(Order by Full Part Number)  
69R536  
MCM  
69R618  
XX  
X
X
Motorola Memory Prefix  
Part Number  
R = Tape and Reel, Blank = Tray  
Speed (5 = 5 ns, 6 = 6 ns, 7 = 7 ns, 8 = 8 ns)  
Package (ZP = PBGA)  
Full Part Numbers — MCM69R536ZP5  
MCM69R618ZP5  
MCM69R536ZP6  
MCM69R618ZP6  
MCM69R536ZP7  
MCM69R618ZP7  
MCM69R536ZP8  
MCM69R618ZP8  
MCM69R536ZP5R  
MCM69R618ZP5R  
MCM69R536ZP6R MCM69R536ZP7R MCM69R536ZP8R  
MCM69R618ZP6R MCM69R618ZP7R MCM69R618ZP8R  
MCM69R536MCM69R618  
19  
MOTOROLA FAST SRAM  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
PACKAGE DIMENSIONS  
ZP PACKAGE  
7 X 17 BUMP PBGA  
CASE 999–01  
NOTES:  
0.20 (0.008)  
4X  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
A
–W–  
2. CONTROLLING DIMENSION: MILLIMETER.  
PIN 1A  
IDENTIFIER  
7
6
5
4
3 2 1  
MILLIMETERS  
MIN MAX  
14.00 BSC  
22.00 BSC  
INCHES  
MIN MAX  
0.551 BSC  
0.866 BSC  
A
B
C
D
E
F
G
H
J
DIM  
A
B
C
D
E
–––  
0.60  
0.50  
1.30  
2.40  
–––  
0.024  
0.020  
0.051  
0.094  
0.90  
0.70  
1.70  
0.035  
0.028  
0.067  
B
–L–  
S
P
F
K
L
G
K
N
P
1.27 BSC  
0.050 BSC  
M
N
P
R
T
0.80  
11.90  
19.40  
1.00  
12.10  
19.60  
0.031  
0.469  
0.764  
0.039  
0.476  
0.772  
16X G  
R
S
7.62 BSC  
20.32 BSC  
0.300 BSC  
0.800 BSC  
U
11
D
N
6X  
G
S
S
S
S
0.30 (0.012)  
0.10 (0.004)  
T
T
W
L
R
TOP VIEW  
BOTTOM VIEW  
0.25 (0.010)  
T
F
0.35 (0.014)  
T
0.15 (0.006)  
T
C
–T–  
K
SIDE VIEW  
E
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specificallydisclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola  
datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,includingTypicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applicationsintended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
ordeathmayoccur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
Motorola was negligent regarding the design or manufacture of the part. Motorola and  
Opportunity/Affirmative Action Employer.  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal  
Mfax is a trademark of Motorola, Inc.  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;  
P.O. Box 5405, Denver, Colorado, 80217. 1-303-675-2140 or 1-800-441-2447 3–20–1, Minami–Azabu. Minato–ku, Tokyo 106–8573 Japan. 81–3–3440–3569  
Mfax : RMFAX0@email.sps.mot.com – TOUCHTONE 1-602-244-6609 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre,  
– US & Canada ONLY 1-800-774-1848 2 Dai King Street, Tai Po Industrial Estate, Tao Po, N.T., Hong Kong.  
JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center,  
Motorola Fax Back System  
– http://sps.motorola.com/mfax/  
852-26668334  
HOME PAGE: http://motorola.com/sps/  
CUSTOMER FOCUS CENTER: 1-800-521-6274  
MCM69R536/D  
For More Information On This Product,  
Go to: www.freescale.com  

相关型号:

MCM69R536ZP5R

Late-Write SRAM, 32KX36, 2.5ns, BICMOS, PBGA119, 14 X 22 MM, 1.27 MM PITCH, PLASTIC, BGA-119
MOTOROLA

MCM69R536ZP6R

32KX36 LATE-WRITE SRAM, 3ns, PBGA119, 14 X 22 MM, 1.27 MM PITCH, PLASTIC, BGA-119
MOTOROLA

MCM69R536ZP7R

Late-Write SRAM, 32KX36, 3.5ns, BICMOS, PBGA119, 14 X 22 MM, 1.27 MM PITCH, PLASTIC, BGA-119
MOTOROLA

MCM69R537ZP5

32KX36 CACHE SRAM, PBGA119, 14 X 22 MM, 1.27 MM PITCH, PLASTIC, BGA-119
MOTOROLA

MCM69R537ZP5R

32KX36 CACHE SRAM, PBGA119, 14 X 22 MM, 1.27 MM PITCH, PLASTIC, BGA-119
MOTOROLA

MCM69R537ZP6

32KX36 CACHE SRAM, PBGA119, 14 X 22 MM, 1.27 MM PITCH, PLASTIC, BGA-119
MOTOROLA

MCM69R537ZP6R

32KX36 CACHE SRAM, PBGA119, 14 X 22 MM, 1.27 MM PITCH, PLASTIC, BGA-119
MOTOROLA

MCM69R537ZP7

Cache SRAM, 32KX36, 3.5ns, BICMOS, PBGA119, 14 X 22 MM, 1.27 MM PITCH, PLASTIC, BGA-119
MOTOROLA

MCM69R537ZP7R

32KX36 CACHE SRAM, PBGA119, 14 X 22 MM, 1.27 MM PITCH, PLASTIC, BGA-119
MOTOROLA

MCM69R537ZP8

32KX36 CACHE SRAM, PBGA119, 14 X 22 MM, 1.27 MM PITCH, PLASTIC, BGA-119
MOTOROLA

MCM69R537ZP8R

Cache SRAM, 32KX36, BICMOS, PBGA119, 14 X 22 MM, 1.27 MM PITCH, PLASTIC, BGA-119
MOTOROLA

MCM69R538ZP5

32KX36 CACHE SRAM, 2.5ns, PBGA119, 14 X 22 MM, 1.27 MM PITCH, PLASTIC, BGA-119
MOTOROLA