MIMX8DX5CVLFZAC [NXP]

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors;
MIMX8DX5CVLFZAC
型号: MIMX8DX5CVLFZAC
厂家: NXP    NXP
描述:

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors

文件: 总132页 (文件大小:2245K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: IMX8QXPIEC  
Rev. 0, 05/2020  
NXP Semiconductors  
Data Sheet: Technical Data  
MIMX8QXnAVLFZAC  
MIMX8DXnAVLFZAC  
i.MX 8QuadXPlus and  
8DualXPlus Industrial  
Applications Processors  
Package Information  
21 x 21 mm package case outline  
Ordering Information  
See Section 1.1Table 2 on page 5  
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
1.1 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . 5  
1.2 System Controller Firmware (SCFW) Requirements5  
1.3 Related resources . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Architectural Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
2.1 Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Modules List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
3.1 Special Signal Considerations. . . . . . . . . . . . . . . . 14  
3.2 Recommended Connections for Unused Interfaces14  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 15  
4.1 Chip-level conditions . . . . . . . . . . . . . . . . . . . . . . . 15  
4.2 Power supplies requirements and restrictions. . . . 25  
4.3 PLL electrical characteristics. . . . . . . . . . . . . . . . . 28  
4.4 On-chip oscillators. . . . . . . . . . . . . . . . . . . . . . . . . 31  
4.5 I/O DC Parameters . . . . . . . . . . . . . . . . . . . . . . . . 34  
4.6 I/O AC Parameters . . . . . . . . . . . . . . . . . . . . . . . . 41  
4.7 Output Buffer Impedance Parameters. . . . . . . . . . 43  
4.8 System Modules Timing . . . . . . . . . . . . . . . . . . . . 48  
4.9 General-Purpose Media Interface (GPMI) Timing. 52  
4.10 External Peripheral Interface Parameters . . . . . . . 61  
4.11 Analog-to-digital converter (ADC) . . . . . . . . . . . . 109  
Boot mode configuration. . . . . . . . . . . . . . . . . . . . . . . . 112  
5.1 Boot mode configuration pins . . . . . . . . . . . . . . . 112  
5.2 Boot devices interfaces allocation. . . . . . . . . . . . 112  
Package information and contact assignments . . . . . . 114  
6.1 FCPBGA, 21 x 21 mm, 0.8 mm pitch . . . . . . . . . 114  
Release Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
1 Introduction  
This data sheet contains specifications for the  
i.MX 8QuadXPlus and 8DualXPlus processors, which,  
along with the i.MX 8DualX processor , comprise the  
i.MX 8X Family (for i.MX 8DualX specifications, see  
i.MX 8DualX Industrial Processors [IMX8DXIEC]).  
The i.MX 8X processors consist of three to five Arm  
2
3
4
®
cores (two to four Arm Cortex -A35 and one  
®
Cortex -M4F). All devices include separate GPU and  
VPU subsystems as well as a failover-ready display  
controller. Advanced multicore audio processing is  
supported by the Arm cores and a high performance  
®
Tensilica HiFi 4 DSP for pre- and post-audio  
processing as well as voice recognition. The i.MX 8X  
Family supports up to three displays with multiple  
display output options, including parallel, MIPI-DSI,  
and LVDS. Memory interfaces for this device include:  
5
6
7
LPDDR4 (no error correcting code [ECC])  
DDR3L (optional ECC)  
2× Quad SPI or 1× Octal SPI (FlexSPI)  
eMMC 5.1, RAW NAND, and SD 3.0  
NXP reserves the right to change the detail specifications as may be required to permit improvements in the design of  
its products.  
© 2018-2020 NXP B.V.  
Introduction  
A wide range of peripheral I/Os such as CAN, parallel or MIPI CSI camera input, Gigabit Ethernet,  
USB 2.0 OTG, USB 3.0 (8QuadXPlus/8DualXPlus only), ADC, and PCIe 3.0 provide impressive  
flexibility.  
The i.MX 8QuadXPlus/8DualXPlus processors offer numerous advanced features as shown in this table.  
Table 1. i.MX 8QuadXPlus/8DualXPlus advanced features  
Function  
Feature  
Multicore architecture provides 2×–  
4× Cortex-A35 and Cortex-M4F  
cores  
AArch64 for 64-bit support and new architectural features  
AArch32 for full backward compatibility with ARMv7  
Cortex-A35 cores support ARM virtualization extensions.  
Cortex-M4F cores for real-time applications  
Graphics Processing Unit (GPU)  
4× Vec4 shaders with 16 execution units optimized for higher performance  
Supports OpenGL 3.0, 2.1,; OpenGL ES 3.1, 3.0, 2.0, and 1.1; OpenCL 1.2 Full Profile  
and 1.1; OpenVG 1.1; and Vulkan  
High-performance 2D Blit Engine  
H.265 decode (4Kp30)  
Video Processing Unit (VPU)  
H.264 decode (4Kp30)  
WMV9/VC-1 imple decode  
MPEG 1 and 2 decode  
AVS decode  
MPEG4.2 ASP, H.263, Sorenson Spark decode  
Divx 3.11 including GMC decode  
ON2/Google VP6/VP8 decode  
RealVideo 8/9/10 decode  
JPEG and MJPEG decode  
H.264 encode (1080p30)  
Tensilica HiFi 4 DSP for pre- and  
post-processing  
640 MHz  
Fixed-point and vector-floating-point support  
32 KB instruction cache, 48 KB data cache, 512 KB SRAM (448 KB of OCRAM and  
64 KB of TCM)  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
2
Introduction  
Table 1. i.MX 8QuadXPlus/8DualXPlus advanced features (continued)  
Function Feature  
Memory  
32-bit LPDDR4 @1200 MHz  
40-bit DDR3L @933 MHz (ECC option)  
1× Quad SPI which can be used to connect to an FPGA  
2× Quad SPI or 1× Octal SPI (FlexSPI) for fast boot from SPI NOR flash  
2× SD 3.0 card interfaces (note: if eMMC is used, then 1× SD 3.0 available in IOMUX)  
1× eMMC5.1/SD3.0 (note: use of eMMC will restrict SD card availability to 1× SD 3.0  
due to IOMUX restrictions)  
RAW NAND (62-bit ECC support via BCH-62 module)  
Supports up to 3 independent displays (2× MIPI or LVDS + 1× Parallel)  
Up to 18-layer composition  
Display Controller  
Complementary 2D blitting engines and online warping functionality  
Integrated Failover Path (SafeAssure) to ensure display content stays valid even in  
event of a software failure  
Display I/O  
Two MIPI-DSI/LVDS Combo PHYs (each up to 1080p60):  
Each single PHY can either be a 4-lane MIPI-DSI or a 4-lane channel LVDS interface  
for a total of 2 display interfaces. In combination, the two PHYs can be configured to  
be a single dual-channel LVDS interface.  
1× 24-bit parallel LCD up to 720p60 (DDR bandwidth might limit the available  
resolution).  
Camera I/O and video  
Security  
1× MIPI-CSI with 4-lanes  
1× 8-bit/10-bit parallel CSI  
Advanced High Assurance Boot (AHAB) secure & encrypted boot  
Random Number Generator with a high-quality entropy source generator and  
Hash_DRBG (based on hash functions)  
RSA up to 4096, Elliptic Curve up to 1023  
AES-128/192/256, DES, 3DES, MD5, SHA-1, SHA-224/256/384/512  
Dedicated Security Controller for Flashless SHE and HSM support, Trustzone, RTIC  
Built-in ECDSA/DSA protocol support  
See the security reference manual for this chip for a full list of security features.  
10× tamper pins (up to 5 active or 10 passive)  
Voltage and Temperature tamper detection  
64 kB Secure RAM (can be erased via tamper detection)  
• 2× I2C tightly coupled with Cortex-M4 cores (1× per Cortex M4F core)  
System Control  
The tightly coupled M4 I2C ports cannot be used for general-purpose use  
• System Control Unit (SCU):  
Power control, clocks, reset  
Boot ROMs  
PMIC interface  
Resource Domain Controller  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
3
Introduction  
Table 1. i.MX 8QuadXPlus/8DualXPlus advanced features (continued)  
Function  
Feature  
I/O  
1× PCIe 3.0 (1-lane) with L1 substate support  
1× USBOTG 3.0 with PHY—USB 3.0 can be used as USB 2.0  
1× USBOTG 2.0 (with PHY)  
2× 1Gb Ethernet with AVB (can be used as 10/100 Mbps ENET with AVB)  
3× CAN/CAN-FD  
Note: Legacy CAN mode supports both Mailbox (MB) and RX FIFO (with DMA  
support) operation. Flexible Data (FD) mode supports MB operation only. There is no  
enhanced RX FIFO or DMA support in FD mode.  
6× UARTs:  
• 4× UARTs (3× with hardware flow control)  
• 1× UART tightly coupled with Cortex-M4F cores  
• 1× SCU UART (Note: SCU UART is dedicated to the SCU and not available for  
general use)  
10× I2C (note that there are two types of I2C: High-speed I2C ports with DMA support,  
and low-speed I2C ports with no DMA support, which are used in conjunction with a  
specific PHY interface—for example, for touchscreen):  
• 4× I2C: High Speed, DMA support  
• 4× I2C: Low Speed, no DMA support  
• 1× I2C: PMIC control (dedicated)  
• 1× I2C: Cortex M4F (dedicated)  
Note: I2C ports associated with a PHY (e.g. MIPI DSI) can be used generally but  
require the PHY to be powered on even if the PHY interface itself is not used.  
4× SAI (SAI0 and SAI1 are transmit/receive; SAI2 and SAI3 are receive only)  
1× Enhanced Serial Audio Interface (ESAI)  
2× ASRC (Asynchronous Sample Rate Converter) (note: no I/O signals are directly  
connected to this module)  
1× SPDIF (Tx and Rx)  
1× 6-channel ADC converter  
3.3 V/1.8 V GPIO  
4× PWM channels  
1× 6×8 KPP (Key Pad Port)  
1× MQS (Medium Quality Sound)  
4× SPI  
Packaging  
Case FCPBGA 21 x 21 mm, 0.8 mm pitch  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
4
NXP Semiconductors  
Introduction  
1.1  
Ordering Information  
For ordering information, contact an NXP representative at nxp.com.  
Table 2. i.MX 8QuadXPlus Orderable part numbers  
Cortex-A35  
Cortex-M4F  
Speed  
Part Number  
Options  
Speed  
Grade  
Package  
Grade  
MIMX8QX6CVLFZAC With GPU, VPU, 24-bit Parallel  
LCD, DSP  
1.2 GHz  
264 MHz  
264 MHz  
21 mm X 21 mm, 0.8  
mm pitch, FCPBGA  
(lidded)  
MIMX8QX5CVLFZAC With GPU, VPU, 24-bit Parallel  
LCD  
1.2 GHz  
21 mm X 21 mm, 0.8  
mm pitch, FCPBGA  
(lidded)  
Table 3. i.MX 8DualXPlus Orderable part numbers  
Cortex-A35 Cortex-M4F  
Part Number  
Options  
Speed  
Grade  
Speed  
Grade  
Package  
MIMX8DX6CVLFZAC  
With GPU, VPU, 24-bit  
Parallel LCD, DSP  
1.2 GHz  
1.2 GHz  
264 MHz  
264 MHz  
21 mm X 21 mm, 0.8 mm  
pitch, FCPBGA (lidded)  
MIMX8DX5CVLFZAC  
With GPU, VPU, 24-bit  
Parallel LCD  
21 mm X 21 mm, 0.8 mm  
pitch, FCPBGA (lidded)  
1.2  
System Controller Firmware (SCFW) Requirements  
The i.MX 8 and 8X families require a minimum SCFW release version for correct operation and to prevent  
potential reliability issues.  
The SCFW is released as part of a Board Support Package (e.g. Linux, Android) which may vary in version  
number for a specific BSP.  
For example, NXP Yocto Linux release 4.14.98_2.3.0 contains SCFW version 1.3.0, NXP Yocto Linux  
release 4.14.98_2.0.0 GA contains SCFW version 1.2.10, whereas NXP Yocto Linux release  
4.14.78_1.0.0GA contains SCFW version 1.1.10.  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
5
Architectural Overview  
The released SCFW version associated within each BSP is the minimum version required to correctly  
support the wider BSP functionality.  
Customers should always check that they are using the specific SCFW binary delivered within their chosen  
BSP release. Customers should not mix newer BSP versions with older revisions of the SCFW.  
1.3  
Related resources  
Table 4. Related resources  
Description  
Type  
Reference manual  
The i.MX 8DualX/8DualXPlus/8QuadXPlus Applications Processor Reference Manual  
(IMX8DQXPRM) contains a comprehensive description of the structure and function  
(operation) of the SoC.  
Data sheet  
Chip Errata  
This data sheet includes electrical characteristics and signal connections.  
The chip mask set errata provides additional and/or corrective information for a particular  
device mask set.  
Package drawing  
Hardware guide  
Package dimensions are provided in Section 6, “Package information and contact  
assignments".”  
Contact an NXP representative for access.  
2 Architectural Overview  
The following subsections provide an architectural overview of the i.MX 8QuadXPlus/8DualXPlus  
processor system.  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
6
NXP Semiconductors  
Architectural Overview  
2.1  
Block Diagram  
The following figure shows the functional modules in the processor system.  
1x GPIO  
1x I2C  
1x UART  
Memories  
CPU Platform  
User CM4 Complex  
M4 Platform  
M4 CPU  
10/100/1000M  
Ethernet + AVB  
2x FlexSPI  
4x ARM Cortex-A35  
1x USB 3.0  
PHY  
NAND CTRL (BCH62)  
NEON  
32KB I$  
VFP  
32KB D$  
nvic  
fpu  
mpu  
MCM  
16KB system$  
1x USBOTG 2.0  
OTG & PHY  
External Memory Interface  
MMCAU  
32-bit LPDDR4  
(no ECC)  
@1200 MHz  
512KB L2 w/ ECC  
16KB code$  
PG  
PG  
PG  
DDR  
Controller  
256KB TCM w/ ECC  
BN  
TrustZone  
40-bit DDR3L  
(w/ ECC)  
@933 MHz  
1x eMMC  
5.1 / SD 3.0  
WDOG  
RGPIO  
LPIT  
INTs  
PWM  
2x SD 3.0  
(UHS-I)  
High Speed I/O  
Subsystem  
LPUART  
LPI2C  
2x MU  
SSI Bus  
Internal Memory  
OCRAM (256KB)  
x1 PCIe 3.0  
(1 lane)  
PCIe  
RAW /  
ONFI 3.2  
NAND Flash  
Connectivity Subsystem  
USB3  
2x uSDHC  
2x ENET  
NAND  
Imaging  
24-bit LCD  
Parallel  
Display  
Parallel  
2x Quad SPI /  
1x Octal SPI  
NOR Flash  
2x USB2  
I/F  
MJPEG MJPEG  
DEC  
ENC  
ISI  
(in ADMA SS)  
Low Speed I/O (LSIO) Subsystem  
LPI2C  
1x I2C  
4x4 Keypad  
32-bit GPIO  
I2C w/ DMA  
IEE  
4x PWM  
5x GPT  
KPP  
2x FlexSPI  
14x MU  
8x GPIO  
2x LVDS /  
MIPI-DSI  
MIPI / LVDS  
Combo  
Display Controller  
DPU  
Audio DMA  
(ADMA)  
Subsystem  
ASRC  
ACM  
MQS  
AUDMIX  
4x SAI  
PWM  
ESAI  
ASRC  
SPDIF  
SAI  
3x FlexCAN  
4x LPI2C  
1x ADC (4ch)  
LPI2C  
1x I2C  
UART (5 Mb/s)  
CAN / CAN-FD  
ADC (6 channels)  
4x LPSPI  
4x LPUART  
2x FTM  
MIPI-CSI2  
(4-lanes)  
1x MIPI  
CSI2  
GPT  
4x eDMA  
IRQs  
LCDIF  
Graphics Processing Unit  
GPU  
LPI2C  
SPDIF TX / RX  
ESAI TX / RX  
MQS L/R  
1x I2C  
System Control Unit  
8/10-bit  
Parallel Camera  
Parallel  
I/F  
JTAGC  
IOMUX  
SCU CM4 Complex  
Debug  
Clock, Reset  
Power Mgmt  
DAP, CTI, etc  
M4 Platform  
M4 CPU  
Video Processing Unit  
VPU  
LPI2C  
1x I2C  
2x SAI TX / RX  
2x SAI RX  
Boot ROM  
HAB  
RDC  
nvic  
MMCAU  
16KB code$  
fpu  
mpu  
Tempmon  
PMIC I/F  
MCM  
DSP Core  
(part of ADMA SS)  
Security  
16KB system$  
SECO  
SNVS  
256KB TCM w/ ECC  
24M and 32k  
XTALOSC  
Sources  
HIFI4 DSP  
OTP  
ADM  
Security  
Controller  
(M0+)  
32KB I$  
48KB D$  
WDOG  
RGPIO  
LPIT  
INTs  
PWM  
512KB SRAM  
64KB TCM  
LPUART  
LPI2C  
2x MU  
CAAM  
Secure  
JTAG  
4 shaders  
Mult-format Decode  
H.265 Dec (4k30)  
H.264 Dec (1080p60)  
H.264 Enc (1080p30)  
RNG  
Vulkan, OGLES 3.1,  
OCL 1.2, VG 1.1  
2D Blit Engine  
1x GPIO  
1x I2C  
1x UART  
Ciphers  
(ECC, RSA)  
Tamper  
Detection  
Dedicated  
64k Secure  
RAM  
Secure RTC  
Figure 1. i.MX 8QuadXPlus/8DualXPlus System Block Diagram  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
7
Modules List  
3 Modules List  
The i.MX 8QuadXPlus/8DualXPlus processors contain a variety of digital and analog modules. This table  
describes the processor modules in alphabetical order.  
Table 5. i.MX 8QuadXPlus/8DualXPlus modules list  
Block  
Mnemonic  
Block Name  
Brief Description  
ADC  
Analog-to-Digital  
Converter  
The analog-to-digital converter (ADC) is a successive approximation ADC  
designed for operation within a SoC.  
APBH-DMA  
NAND Flash and BCH The AHB-to-APBH bridge provides the chip with a peripheral attachment bus  
ECC DMA Controller  
running on the AHB's HCLK, which includes the AHB-to-APB PIO bridge for a  
memory-mapped I/O to the APB devices, as well as a central DMA facility for  
devices on this bus and a vectored interrupt controller for the Arm core.  
A35  
Arm (CPU1)  
2–4x Cortex-A35 CPUs with a 32KB L1 instruction cache and a 32 KB data cache.  
The CPUs share a 512 KB L2 cache.  
ASRC  
Asynchronous Sample The Asynchronous Sample Rate Converter (ASRC) converts the sampling rate of  
Rate Converter  
a signal associated to an input clock into a signal associated to a different output  
clock. The ASRC supports concurrent sample rate conversion of up to 10 channels  
of about -120dB THD+N. The sample rate conversion of each channel is  
associated to a pair of incoming and outgoing sampling rates. The ASRC supports  
up to three sampling rate pairs.  
BCH-62  
CAAM  
Binary-BCH ECC  
Processor  
The BCH62 module provides up to 62-bit ECC for NAND Flash controller (GPMI2)  
Cryptographic  
Accelerator and  
Assurance Module  
CAAM is a cryptographic accelerator and assurance module. CAAM implements  
several encryption and hashing functions, a run-time integrity checker, and a  
Pseudo Random Number Generator (PRNG).  
CAAM also implements a Secure Memory mechanism. In this device the security  
memory provided is 64 KB.  
CTI  
Cross Trigger Interface CTI sends signals across the chip indicating that debug events have occurred. It is  
used by features of the Coresight infrastructure.  
CTM  
DAP  
Cross Trigger Matrix  
Debug Access Port  
Cross Trigger Matrix IP is used to route triggering events between CTIs.  
The DAP provides real-time access for the debugger without halting the core to:  
• System memory and peripheral registers  
• All debug configuration registers  
The DAP also provides debugger access to JTAG scan chains.  
DC  
Display Controller  
DRAM Controller  
Dual display controller  
DDR Controller  
• Memory types: LPDDR4 (no ECC) and DDR3L (ECC option)  
• One channel of 32-bit memory:  
• LPDDR4 up to 1.2 GHz  
• DDR3L up to 933MHz  
DPR  
Display/Prefetch/  
Resolve  
The DPR prefetches data from memory and converts the data to raster format for  
display output. Raster source buffers can also be prefetched unconverted. The  
resolve process supports graphics and video formatted tile frame buffers and  
converts them to raster format. Embedded display memory is used as temporary  
storage for data which is sourced by the display controller to drive the display.  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
8
Modules List  
Table 5. i.MX 8QuadXPlus/8DualXPlus modules list (continued)  
Block  
Mnemonic  
Block Name  
Brief Description  
eDMA  
Enhanced Direct  
Memory Access  
• 4× eDMA with a total of 96 channels (note: all channels are not assigned; see  
the product reference manual for more information):  
• 2× instances with 32 channels each  
• 2× instances with 16 channels each  
• Programmable source, destination addresses, transfer size, plus support for  
enhanced addressing modes  
• Internal data buffer, used as temporary storage to support 64-byte burst  
transfers, one outstanding transaction per DMA controller.  
• Transfer control descriptor organized to support two-deep, nested transfer  
operations  
• Channel service request via one of three methods:  
• Explicit software initiation  
• Initiation via a channel-to-channel linking mechanism for continuous  
transfers  
• Peripheral-paced hardware requests (one per channel)  
• Support for fixed-priority and round-robin channel arbitration  
• Channel completion reported via interrupt requests  
• Support for scatter/gather DMA processing  
• Support for complex data structures via transfer descriptors  
• Support to cancel transfers via software or hardware  
• Each eDMA instance can be uniquely assigned to a different resource domain,  
security (TZ) state, and virtual machine  
• In scatter-gather mode, each transfer descriptor’s buffers can be assigned to  
different SMMU translation  
ENET  
ESAI  
Ethernet Controller  
2× 1 Gbps Ethernet + AVB (Audio Video Bridging, IEEE 802.1Qav)  
Enhanced Serial Audio The Enhanced Serial Audio Interface (ESAI) provides a full-duplex serial port for  
Interface  
serial communication with a variety of serial devices, including industry-standard  
codecs, SPDIF transceivers, and other processors. The ESAI consists of  
independent transmitter and receiver sections, each section with its own clock  
generator. All serial transfers are synchronized to a clock. Additional  
synchronization signals are used to delineate the word frames. The normal mode  
of operation is used to transfer data at a periodic rate, one word per period. The  
network mode is also intended for periodic transfers; however, it supports up to 32  
words (time slots) per period. This mode can be used to build time division  
multiplexed (TDM) networks. In contrast, the on-demand mode is intended for  
non-periodic transfers of data and to transfer data serially at high speed when the  
data becomes available.  
The ESAI has 12 pins for data and clocking connection to external devices.  
FTM  
FlexTimer  
Provides input signal capture and PWM support  
FlexCAN  
Flexible Controller Area Communication controller implementing the CAN with Flexible Data rate (CAN FD)  
Network protocol and the CAN protocol according to the CAN 2.0B protocol specification.  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
9
Modules List  
Table 5. i.MX 8QuadXPlus/8DualXPlus modules list (continued)  
Block  
Mnemonic  
Block Name  
Flexible Serial  
Brief Description  
FlexSpi (Quad  
SPI/Octal SPI)  
• Flexible sequence engine to support various flash vendor devices, including  
HyperBus™ devices:  
Peripheral Interface  
• Support for FPGA interface  
• Single, dual, quad, and octal mode of operation.  
• DDR/DTR mode wherein the data is generated on every edge of the serial flash  
clock.  
• Support for flash data strobe signal for data sampling in DDR and SDR mode.  
• Two identical serial flash devices can be connected and accessed in parallel for  
data read operations, forming one (virtual) flash memory with doubled readout  
bandwidth.  
GIC  
Generic Interrupt  
Controller  
The GIC-500 handles all interrupts from the various subsystems and is ready for  
virtualization.  
GPIO  
GPMI  
General Purpose I/O  
Modules  
Used for general purpose input/output to external devices. Each GPIO module  
supports 32 bits of I/O.  
General Purpose Media The GPMI module supports up to 8× NAND devices. 62-bit ECC (BCH) for NAND  
Interface  
Flash controller (GPMI). The GPMI supports separate DMA channels per NAND  
device.  
GPT  
General Purpose Timer Each GPT is a 32-bit “free-running” or “set and forget” mode timer with  
programmable prescaler and compare and capture register. A timer counter value  
can be captured using an external event and can be configured to trigger a capture  
event on either the leading or trailing edges of an input pulse. When the timer is  
configured to operate in “set and forget” mode, it is capable of providing precise  
interrupts at regular intervals with minimal processor intervention. The counter has  
output compare logic to provide the status and interrupt at comparison. This timer  
can be configured to run either on an external clock or on an internal clock.  
GPU  
Graphics Processing  
Audio Processor  
1× GC7000Lite with 4x Vec4 shader cores (16 execution units)  
HiFi 4 DSP  
A highly optimized audio processor geared for efficient execution of audio and  
voice codecs and pre- and post-processing modules to offload the Arm core.  
I2C  
I2C Interface  
I2C provides serial interface for external devices.  
IEE  
• Supports direct encryption and decryption of FlexSPI memory type  
• Provides decryption services (lower performance) for DRAM traffic  
• Supports I/O direct encrypted storage and retrieval  
• Support for a number of cryptographic standards:  
• 128/256-bit AES Encryption (AES-CTR, AES-XTS mode options)  
• Multiple keys supported:  
• Loaded via secure key channel from security block  
• Key selection is per access and based on source of transaction  
IOMUXC  
JPEG/dec  
JPEG/enc  
IOMUX Control  
This module enables flexible I/O multiplexing. Each I/O pad has default and several  
alternate functions. The alternate functions are software configurable.  
MJPEG engine for  
decode  
Provides up to 4-stream decoding in parallel.  
MJPEG engine for  
encode  
Provides up to 4-stream encoding in parallel.  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
10  
Modules List  
Table 5. i.MX 8QuadXPlus/8DualXPlus modules list (continued)  
Block Name Brief Description  
Key Pad Port  
Block  
Mnemonic  
KPP  
The Keypad Port (KPP) is a 16-bit peripheral that can be used as a 4 x 4 keypad  
matrix interface or as general purpose input/output (I/O).  
LPIT-1  
LPIT-2  
Low-Power Periodic  
Interrupt Timer  
Each LPIT is a 32-bit “set and forget” timer that starts counting after the LPIT is  
enabled by software. It is capable of providing precise interrupts at regular intervals  
with minimal processor intervention. It has a 12-bit prescaler for division of input  
clock frequency to get the required time setting for the interrupts to occur, and  
counter value can be programmed on the fly.  
LPSPI 0–3  
M4F  
Configurable SPI  
Arm (CPU3)  
Full-duplex enhanced Synchronous Serial Interface. It is configurable to support  
Master/Slave modes, four chip selects to support multiple peripherals.  
• Cortex-M4F core  
• AHB LMEM (Local Memory Controller) including controllers for TCM and cache  
memories  
• 256 KB tightly coupled memory(TCM) (128 KB TCMU, 128 KB TCML)  
• 16 KB Code Bus Cache  
• 16 KB System Bus Cache  
• ECC for TCM memories and parity for code and system caches  
• Integrated Nested Vector Interrupt Controller (NVIC)  
• Wakeup Interrupt Controller (WIC)  
• FPU (Floating Point Unit)  
• Core MPU (Memory Protection Unit)  
• Support for exclusive access on the system bus  
• MMCAU (Crypto Acceleration Unit)  
• MCM (Miscellaneous Control Module)  
MIPI CSI-2  
MIPI CSI-2 Interface  
The MIPI CSI-2 IP provides MIPI CSI-2 standard camera interface ports. The MIPI  
CSI-2 interface supports up to 1.5 Gbps for up to 4 data lanes  
MIPI-DSI/LVDS MIPI DSI/LVDS Combo The MIPI DSI IP provides DSI standard display serial interface with 4 data lines.  
interface  
The DSI interface supports 80 Mbps to 1.05 Gbps speed per data lane.  
The LVDS is a high-performance 2-channel serializer that interfaces with LVDS  
displays.  
Note: This is a combination PHY interface. It includes the digital logic and physical  
interface pins for both MIPI DSI (4 data lanes) and LVDS (4 differential pairs plus  
one for clock). The interface can be pinned out either as MIPI DSI or as LVDS.  
However, it does not allow for simultaneous use on one interface  
MQS  
Medium Quality Sound Medium Quality Sound (MQS) is used to generate 2-channel medium quality  
PWM-like audio via two standard digital GPIO pins.  
OCOTP_CTRL  
OTP Controller  
The On-Chip OTP controller (OCOTP_CTRL) provides an interface for reading,  
programming, and/or overriding identification and control information stored in  
on-chip fuse elements. The module supports electrically-programmable poly fuses  
(eFUSEs). The OCOTP_CTRL also provides a set of volatile software-accessible  
signals that can be used for software control of hardware elements, not requiring  
non-volatility. The OCOTP_CTRL provides the primary user-visible mechanism for  
interfacing with on-chip fuse elements. Among the uses for the fuses are unique  
chip identifiers, mask revision numbers, cryptographic keys, JTAG secure mode,  
boot characteristics, and various control signals requiring permanent nonvolatility.  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
11  
Modules List  
Table 5. i.MX 8QuadXPlus/8DualXPlus modules list (continued)  
Block  
Mnemonic  
Block Name  
Brief Description  
OCRAM  
On-Chip Memory  
Controller  
The On-Chip Memory controller (OCRAM) module is designed as an interface  
between the system’s AXI bus and the internal (on-chip) SRAM memory module.  
The OCRAM is used for controlling the 256 KB multimedia RAM through a 64-bit  
AXI bus.  
Parallel CSI  
Parallel CSI interface  
The Parallel Port Capture Subsystem interfaces to Parallel CSI sensors and  
includes the following features:  
• Configurable interface logic to support the most commonly used parallel CMOS  
sensors  
• Configurable master clock output to drive external sensor (24 MHz nominal)  
• Up to 150 MHz input clock from sensor  
• Input data formats supported:  
• 8-bit/10-bit BT.656  
• 8-bit/24-bit data port for RGB, YCbCr, and YUV data input  
• 8-bit/12-bit/10-bit/16-bit data port for Bayer data input  
Note: For some formats a single pixel is sent per clock, for others two or three are  
sent per clock.  
PCIe  
PRG  
PCI Express 3.0  
The PCIe IP provides PCI Express Gen 3.0 functionality .  
Prefetch/Resolve  
Gasket  
The PRG is a gasket which translates system memory accesses to local display  
RTRAM accesses for display refresh. It works with the DPR to complete the  
prefetch and resolving operations needed to drive the display.  
PWM  
Pulse Width Modulation The pulse-width modulator (PWM) has a 16-bit counter and is optimized to  
generate sound from stored sample audio images and it can also generate tones.  
It uses 16-bit resolution and a 4×16 data FIFO to generate square waveforms.  
RAM  
64 KB Secure  
RAM  
Secure/non-secure  
RAM  
Secure/non-secure Internal RAM, interfaced through the CAAM.  
RAM  
Internal RAM  
Internal RAM, which is accessed through OCRAM memory controllers.  
256 KB  
RNG  
Random Number  
Generator  
The purpose of the RNG is to generate cryptographically strong random data. It  
uses a true random number generator (TRNG) and a pseudo-random number  
generator (PRNG) to achieve true randomness and cryptographic strength. The  
RNG generates random numbers for secret keys, per message secrets, random  
challenges, and other similar quantities used in cryptographic algorithms.  
SAI  
I2S/SSI/AC97 Interface The SAI module provides a synchronous audio interface that supports full duplex  
serial interfaces with frame synchronization, such as I2S, AC97, TDM, and  
codec/DSP interfaces.  
SECO  
SJC  
Security Controller  
Core and associated memory and hardware responsible for key management.  
Secure JTAG Controller The SJC provides the JTAG interface, which is compatible with JTAG TAP  
standards, to internal logic. This device uses JTAG port for production, testing, and  
system debugging. Additionally, the SJC provides BSR (Boundary Scan Register)  
standard support, which is compatible with IEEE1149.1 and IEEE1149.6 standards.  
The JTAG port must be accessible during platform initial laboratory bring-up, for  
manufacturing tests and troubleshooting, as well as for software debugging by  
authorized entities. The SJC incorporates three security modes for protecting  
against unauthorized accesses. Modes are selected through eFUSE configuration.  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
12  
NXP Semiconductors  
Modules List  
Table 5. i.MX 8QuadXPlus/8DualXPlus modules list (continued)  
Block  
Mnemonic  
Block Name  
Brief Description  
SNVS  
SPDIF  
Secure Non-Volatile  
Storage  
Secure Non-Volatile Storage, including Secure Real Time Clock, Security State  
Machine, Master Key Control, and Violation/Tamper Detection and reporting.  
Sony Philips Digital  
Interconnect Format  
The Sony/Philips Digital Interface (SPDIF) audio block is a stereo transceiver that  
allows the processor to receive and transmit digital audio. The SPDIF transceiver  
allows the handling of both SPDIF channel status (CS) and User (U) data and  
includes a frequency measurement block that allows the precise measurement of  
an incoming sampling frequency.  
TEMPMON  
UART  
Temperature Monitor  
UART Interface  
The temperature monitor/sensor IP module for detecting high temperature  
conditions. The temperature read out does not reflect case or ambient temperature.  
It reflects the temperature in proximity of the sensor location on the die.  
Temperature distribution may not be uniformly distributed; therefore, the read-out  
value may not be the reflection of the temperature value for the entire die.  
• High-speed TIA/EIA-232-F compatible, up to 5.0 Mbps  
• Serial IR interface low-speed, IrDA-compatible (up to 115.2 Kbit/s)  
• 9-bit or Multidrop mode (RS-485) support (automatic slave address detection)  
• 7, 8, 9, or 10-bit data characters (7-bits only with parity)  
• 1 or 2 stop bits  
• Programmable parity (even, odd, and no parity)  
• Hardware flow control support for request to send (RTS_B) and clear to send  
(CTS_B) signals  
USB3/USB2  
The USB3/USB2 OTG module has been specified to perform USB 3.0 dual role and  
USB 2.0 On-The-Go (OTG) compatible with the USB 3.0, and USB 2.0  
specification with OTG supplementary specifications. This controller supports  
twoindependent USB cores (1× USB3.0 dual-role, 1× USB2.0 OTG) and includes  
the PHY and I/O interfaces to support this operation. The full pinout of the USB 3.0  
controller includes the signaling for both USB 3.0 and USB 2.0. This does not  
mean there is a separate USB 2.0 controller that can be used independently and  
simultaneously with USB 3.0. This device has an additional separate,  
independent USB 2.0 OTG controller which can be used simultaneously with this  
USB 3.0. Specific features requested for this updated module:  
• Super Speed (5 Gbps), High Speed (480 Mbps), full speed (12 Mbps) and low  
speed (1.5 Mbps)  
• Fully compatible with the USB 3.0 specification (backward compatible with USB  
2.0)  
• Fully compatible with the USB On-The-Go supplement to the USB 2.0  
specification  
• Hardware support for OTG signaling  
• Host Negotiation Protocol (HNP) and Session Request Protocol (SRP)  
implemented in hardware, which can also be controlled by software  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
13  
Modules List  
Table 5. i.MX 8QuadXPlus/8DualXPlus modules list (continued)  
Block  
Mnemonic  
Block Name  
Brief Description  
USBOH  
The USBOH module has been specified which performs USB 2.0 On-The-Go  
(OTG) and USB 2.0 Host functionality compatible with the USB 2.0 with OTG  
supplement specification. This controller supports one independent USB core (1×  
USB2.0 OTG) and includes the PHY and I/O interfaces to support this operation.  
Key features:  
• One USB2.0 OTG controller  
• High Speed (480 Mbps), full speed (12 Mbps) and low speed (1.5 Mbps)  
• Fully compatible with the USB 2.0 specification  
• Fully compatible with the USB On-The-Go supplement to the USB 2.0  
specification  
• Hardware support for OTG signaling  
Host Negotiation Protocol (HNP) and Session Request Protocol (SRP)  
implemented in hardware, which can also be controlled by software  
uSDHC  
SD/eMMC and SDXC  
The uSDHC is a host controller used to communicate with external low cost data  
Enhanced Multi-Media storage and communication media. It supports the previous versions of the  
Card / Secure Digital  
Host Controller  
MultiMediaCard (MMC) and Secure Digital Card (SD) standards. Specifically, the  
uSDHC supports:  
• SD Host Controller Standard Specification v3.0 with the exception that all the  
registers do not match the standards address mapping.  
• SD Physical Layer Specification v3.0 UHS-I (SDR104/DDR50)  
• SDIO specification v3.0  
• eMMC System Specification v5.1  
VPU  
Video Processing Unit See the device reference manual for the complete list of the VPU’s  
decoding/encoding capabilities.  
WDOG  
Watchdog  
The Watchdog Timer supports two comparison points during each counting period.  
Each of the comparison points is configurable to evoke an interrupt to theArm core,  
and a second point evokes an external event on the WDOG line.  
XTAL OSC24M  
XTAL OSC32K  
The 24 MHz clock source is an external crystal that acts as one of two main clock  
sources to the chip. The OSC24M is used as the source clock for subsystem PLLs.  
OSC24M can be turned off by the System Control Unit (SCU) during sleep mode.  
The 32 KHz clock source is an external crystal that is one of two main clock sources  
to the chip. The OSC32K is intended to be always on and is distributed by the SCU  
to modules in the chip.  
3.1  
Special Signal Considerations  
The package contact assignments can be found in Section 6, “Package information and contact  
assignments".” Signal descriptions are defined in the device reference manual.  
3.2  
Recommended Connections for Unused Interfaces  
The recommended connections for unused analog interfaces can be found in the section, “Unused  
Input/Output Terminations,” in the hardware development guide for this device.  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
14  
NXP Semiconductors  
Electrical characteristics  
4 Electrical characteristics  
This section provides the device and module-level electrical characteristics for these processors.  
4.1  
Chip-level conditions  
This section provides the device-level electrical characteristics for the SoC. See the following table for a  
quick reference to the individual tables and sections.  
Table 6. Chip-level conditions  
For these characteristics, …  
Absolute maximum ratings  
Topic appears …  
on page 15  
on page 17  
on page 18  
on page 20  
on page 21  
on page 24  
FCPBGA package thermal resistance data  
Operating ranges  
External Input Clock Frequency  
Maximum supply currents  
USB 2.0 PHY typical current consumption in Power-Down  
Mode  
USB 3.0 PHY typical current consumption in Power-Down  
Mode  
on page 24  
on page 24  
Typical current consumption in Power-Down mode for USB  
2.0 PHY embedded in USB 3.0 PHY  
4.1.1  
Absolute Maximum Ratings  
CAUTION  
Stresses beyond those listed under Table 7 may affect reliability or cause  
permanent damage to the device. These are stress ratings only. Functional  
operation of the device at these or any other conditions beyond those  
indicated in the “Operating ranges” or other parameter tables is not implied.  
Exposure to absolute-maximum-rated conditions for extended periods will  
affect device reliability.  
Table 7. Absolute maximum ratings  
Parameter Description  
Symbol  
Min  
Max  
Units  
Core Supplies Input Voltage  
VDD_A35  
VDD_GPU  
VDD_MAIN  
-0.3  
1.2  
V
DDR PHY supplies  
VDD_DDR_VDDQ  
-0.3  
1.75  
V
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
15  
Electrical characteristics  
Table 7. Absolute maximum ratings (continued)  
Parameter Description  
Symbol  
Min  
Max  
Units  
1.0V IO supplies  
VDD_MIPI_1P0  
-0.3  
1.2  
V
VDD_USB_OTG_1P0  
IO Supply for GPIO Type  
1.8V IO Single supply  
VDD_ADC_1P8  
-0.5  
2.1  
V
VDD_ADC_DIG_1P8  
VDD_ANA0_1P8 (IO, analog,OSC SCU)  
VDD_ANA1_1P8 (IO, analog,OSC SCU)  
VDD_DDR_PLL_1P8 (memory PLLs)  
VDD_MIPI_1P8 (PHY, GPIO)  
VDD_MIPI_CSI_DIG_1P8 (PHY, GPIO)  
VDD_PCIE_1P8 (PHY)  
VDD_USB_1P8 (PHY, GPIO)  
IO Supply for GPIO Type  
1.8 / 2.5 / 3.3V IO Tri-voltage Supply  
VDD_ENET0_VSELECT_1P8_2P5_3P3 -0.3  
VDD_ENET0_1P8_2P5_3P3  
3.8  
3.8  
V
V
VDD_ESAI_SPDIF_1P8_2P5_3P3  
IO Supply for GPIO Type  
1.8 / 3.3V IO Dual Voltage Supply  
VDD_CAN_UART_1P8_3P3  
VDD_CSI_1P8_3P3  
-0.3  
VDD_EMMC0_1P8_3P3  
VDD_EMMC0_VSELECT_1P8_3P3  
VDD_ENET_MDIO_1P8_3P3  
VDD_MIPI_DSI_DIG_1P8_3P3  
VDD_PCIE_DIG_1P8_3P3  
VDD_QSPI0A_1P8_3P3  
VDD_QSPI0B_1P8_3P3  
VDD_SPI_MCLK_UART_1P8_3P3  
VDD_SPI_SAI_1P8_3P3  
VDD_TMPR_CSI_1P8_3P3  
VDD_USB_3P3 (PHY & GPIO)  
VDD_USDHC1_1P8_3P3  
VDD_USDHC1_VSELECT_1P8_3P3  
VDD_SNVS_4P2  
SNVS Coin Cell  
-0.3  
-0.3  
-0.3  
4.3  
3.63  
5.5  
V
V
V
USB VBUS (OTG2)  
USB VBUS (OTG1)  
USB_OTG2_VBUS  
USB_OTG1_VBUS  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
16  
Electrical characteristics  
Table 7. Absolute maximum ratings (continued)  
Parameter Description  
Symbol  
Min  
Max  
Units  
I/O Voltage for USB Drivers  
USB_OTG1_DP/USB_OTG1_DN  
USB_OTG2_DP/USB_OTG2_DN  
ADC_INx  
-0.3  
3.63  
V
I/O Voltage for ADC  
-0.1  
-0.3  
2.1  
V
V
Vin/Vout input/output voltage range (GPIO Vin/Vout  
Type Pins)  
OVDD+0.31  
Vin/Vout input/output voltage range (DDR Vin/Vout  
pins)  
-0.3  
OVDD+0.41,2  
V
ESD immunity (HBM).  
ESD immunity (CDM).  
Storage temperature range  
Vesd_HBMX  
1000  
250  
V
Vesd_CDM  
Tstorage  
V
-55  
150  
°C  
1
OVDD is the I/O supply voltage.  
2
The absolute maximum voltage includes an allowance for 400 mV of overshoot on the I/O pins. Per JEDEC standard the allowed  
signal overshoot must be derated if NVCC_DRAM exceeds 1.575 V.  
4.1.2  
Thermal resistance  
4.1.2.1  
FCPBGA package thermal resistance  
This table provides the FCPBGA package thermal resistance data.  
Table 8. FCPBGA package thermal resistance data  
Value,  
21x21 mm  
package  
Rating  
Board Type1  
Symbol  
Unit  
Junction to Ambient Thermal  
Resistance2  
JESD51-9, 2s2p  
JESD51-9, 2s2p  
JESD51-9, 1s  
RθJA  
ΨJT  
15.2  
0.1  
°C/W  
°C/W  
°C/W  
Junction to Package Top Thermal  
Resistance2  
Junction to Case Thermal Resistance3  
RθJC  
0.7  
1
Thermal test board meets JEDEC specification for this package (JESD51-9).  
2
Determined in accordance to JEDEC JESD51-2A natural convection environment. Thermal resistance data in this  
report is solely for a thermal performance comparison of one package to another in a standardized specified  
environment. It is not meant to predict the performance of a package in an application-specific environment.  
3
Junction-to-Case thermal resistance determined using an isothermal cold plate. Case temperature refers to the  
mold surface temperature at the package top side dead center.  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
17  
Electrical characteristics  
4.1.3  
Operating Ranges  
The following table provides the operating ranges of these processors.  
1
Table 9. Operating ranges  
Symbol  
Description  
Mode  
Min Typ Max Unit  
Comments  
VDD_A35  
VDD_GPU  
Power supply of  
Cortex-A35 cluster  
Overdrive 1.05 1.10 1.15  
Nominal 0.95 1.00 1.10  
V
V
Max frequency: 1.2 GHz  
Max frequency: 900 MHz  
Power supply of  
GPU instance  
Overdrive 1.05 1.10 1.15  
V
V
V
Max frequencies:  
• Shaders: 850MHz  
• Core: 700 MHz  
Nominal  
N/A  
0.95 1.00 1.10  
0.95 1.00 1.10  
Max frequencies:  
shaders: 372 MHz;  
core: 372 MHz  
VDD_MAIN2  
Power supply of  
remaining core  
logic  
Max freq.: HiFi4 DSP  
640 MHz  
Max freq.: M4 264 MHz  
Max freq.: VPU 600 MHz  
VDD_DDR_VDDQ  
Power supplies of  
memory IOs  
DDR3L  
1.30 1.35 1.45  
V
V
Max frequency: 933 MHz  
to support DDR3L-1866  
LPDDR4 1.06 1.10 1.17  
Max frequency: 1.2GHz  
to support  
LPDDR4-2400  
VDD_DDR_PLL_1P8  
VDD_MIPI_1P0  
Power supplies of  
memory PLLs  
N/A  
1.65 1.80 1.95  
V
PLL supply can be  
merged with other 1.8V  
supplies with proper on  
board decoupling.  
Power supplies of  
PHYs (1.0V part)  
N/A  
N/A  
0.95 1.00 1.10  
1.65 1.80 1.95  
V
V
VDD_ANA0_1P8  
VDD_ANA1_1P8  
Power supplies of  
IOs, analog and  
oscillator of the  
SCU  
These balls shall be  
powered by a dedicated  
supply  
VDD_ADC_1P8  
VDD_ADC_DIG_1P8  
VDD_MIPI_1P8  
VDD_MIPI_CSI_DIG_1P8  
VDD_USB_1P8  
Power supplies of  
PHYs (1.8V part)  
and GPIO  
operating at 1.8V  
only.  
N/A  
1.65 1.80 1.95  
1.71 1.80 1.89  
V
V
VDD_PCIE_1P8  
Power supplies of  
PCIE PHY (1.8 V  
part)  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
18  
Electrical characteristics  
1
Table 9. Operating ranges (continued)  
Symbol  
Description  
Mode  
Min Typ Max Unit  
Comments  
VDD_USB_3P3  
Power supplies of  
PHYs (3.3V part)  
and GPIO  
N/A  
3.00 3.30 3.60  
V
operating at 3.3V  
only  
VDD_CAN_UART_1P8_3P3  
VDD_CSI_1P8_3P3  
VDD_EMMC0_1P8_3P3  
VDD_EMMC0_VSELECT_1P8_3P3  
VDD_ENET_MDIO_1P8_3P3  
VDD_MIPI_DSI_DIG_1P8_3P3  
VDD_PCIE_DIG_1P8_3P3  
VDD_QSPI0A_1P8_3P3  
Power supplies of  
GPIO supporting  
both 1.8V or 3.3V  
1.8V  
1.65 1.80 1.95  
V
When  
VDD_USDHC1_1P8_3P  
3 is used to support an  
SD card, then it shall be  
on a dedicated  
1.8V/3.3V regulator.  
When  
VDD_QSPI0B_1P8_3P3  
VDD_SPI_MCLK_UART_1P8_3P3  
VDD_SPI_SAI_1P8_3P3  
VDD_TMPR_CSI_1P8_3P3  
VDD_USDHC1_1P8_3P3  
VDD_SIM0_1P8_3P3 is  
used to support a SIM  
card, it shall be on a  
dedicated 1.8V/3.3V  
regulator.  
VDD_USDHC1_VSELECT_1P8_3P3  
When  
VDD_TMPR_CSI_1P8_  
3P3 is used as a GPIO it  
can be connected to the  
1.8/3.3V supply.  
VDDs of this list targeting  
1.8V can share 1.8V  
regulator of 1.8V only  
VDDs  
VDDs of this list targeting  
3.3V can share 3.3V  
regulator of 3.3V only  
VDDs  
3.3V  
1.8V  
2.5V  
3.3V  
N/A  
3.00 3.30 3.60  
1.65 1.80 1.95  
2.40 2.50 2.60  
3.00 3.30 3.60  
2.80 3.30 4.20  
V
V
V
V
V
VDD_ENET0_1P8_2P5_3P3  
VDD_ENET0_VSELECT_1P8_2P5_3P3 ethernet IOs  
VDD_ESAI_SPDIF_1P8_2P5_3P3  
Power supplies of  
VDD_SNVS_4P2  
Power supply of  
SNVS  
It can be supplied by a  
backup battery: a coin  
cell or a super cap.  
Output of embedded LDOs  
VDD_PCIE_LDO_1P0_CAP  
VDD_USB_SS3_LDO_1P0_CAP  
1.0V output of  
embedded LDOs  
N/A  
N/A  
1.00  
1.80  
V
V
VDD_SNVS_LDO_1P8_CAP  
1.8V output of  
SNVS embedded  
LDO  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
19  
Electrical characteristics  
Symbol  
1
Table 9. Operating ranges (continued)  
Description Mode Min Typ Max Unit  
Power supplies that shall be connected to output of an embedded LDO  
Comments  
VDD_TMPR_CSI_1P8_3P3  
N/A  
1.80  
V
Shall be connected to  
VDD_SNVS_LDO_1P8_  
CAP when used as a  
tamper pin. In CSI mode  
use an external 1.8 V  
supply. In this case,  
follow the 1.8 V I/O  
specification above.  
VDD_USB_OTG_1P0  
Junction temperature  
N/A  
1.00  
V
Shall be externally  
connected to  
VDD_USB_SS3_LDO_1  
P0_CAP  
Junction temperature  
-40  
105 °C  
1
2
Voltage ranges are defined to group as many supplies as possible. Some supplies may have a wider range than listed here.  
During low power state (see Section 4.1.6, “Low power mode supply currents"), this voltage can be dropped to 0.8 V +/- 3%  
for retention.  
4.1.4  
External clock sources  
Each processor has two external input system clocks: a low frequency (RTC_XTALI) and a high frequency  
(XTALI).  
The RTC_XTALI is used for real time functions. It supplies the clock for real time clock operation and for  
slow-system and watchdog counters. The clock input can be connected to either an external oscillator or a  
crystal using the internal oscillator amplifier.  
The system clock input XTALI is used to generate the main system clock. It supplies the PLLs and other  
peripherals. The system clock input requires a crystal using the internal oscillator amplifier.  
The PCIe oscillator can be sourced internally or input to the chip. In both cases, it is a 100 MHz nominal  
clock using HCSL signaling to provide the PCIe reference clock.  
The following table shows the interface frequency requirements.  
Table 10. External Input Clock Frequency  
Parameter Description  
Symbol  
Min  
Typ  
Max  
Unit  
RTC_XTALI Oscillator1,2  
XTALI Oscillator4,2  
PCIe oscillator5  
fckil  
fxtal  
f100M  
32.7683/32.0  
kHz  
MHz  
MHz  
ppm  
24  
100  
Frequency accuracy  
±300  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
20  
Electrical characteristics  
1
2
External oscillator or a crystal with internal oscillator amplifier.  
The required frequency stability of this clock source is application dependent. For recommendations, see the hardware  
development guide for this device.  
3
4
5
Recommended nominal frequency 32.768 kHz.  
Fundamental frequency crystal with internal oscillator amplifier.  
If using an external clock instead of the internal clock source, an HCSL-compatible clock is required.  
The typical values shown in Table 10 are required for use with NXP board support packages (BSPs) to  
ensure precise time keeping and USB operations.  
4.1.5  
Maximum Supply Currents  
NOTE  
Some of the numbers shown in this table are based on the companion  
regulator limits and not actual use cases. Work is in progress to provide use  
case–based numbers in future data sheet releases.  
Table 11. Maximum supply currents  
Symbol  
Value Unit  
Comments  
VDD_A351  
VDD_GPU1  
VDD_MAIN  
2500 mA  
2500 mA  
5000 mA  
VDD_DDR_VDDQ  
1200 mA Does not comprehend IO of memory  
VDD_DDR_PLL_1P8  
VDD_ANA0_1P8  
20  
200  
200  
100  
115  
18  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
VDD_ANA1_1P8  
VDD_MIPI_1P0  
VDD_MIPI_1P8  
VDD_ADC_DIG_1P8  
VDD_CAN_UART_1P8_3P3  
VDD_CSI_1P8_3P3  
30  
12  
VDD_EMMC0_1P8_3P3  
VDD_EMMC0_VSELECT_1P8_3P3  
VDD_ENET_MDIO_1P8_3P3  
VDD_ENET0_1P8_2P5_3P3  
30  
30  
15  
30  
VDD_ENET0_VSELECT_1P8_2P5_3  
P3  
30  
VDD_ESAI_SPDIF_1P8_2P5_3P3  
VDD_MIPI_CSI_DIG_1P8  
39  
15  
mA  
mA  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
21  
Electrical characteristics  
Symbol  
Table 11. Maximum supply currents (continued)  
Value Unit Comments  
VDD_MIPI_DSI_DIG_1P8_3P3  
VDD_PCIE_DIG_1P8_3P3  
VDD_QSPI0A_1P8_3P3  
VDD_QSPI0B_1P8_3P3  
VDD_SPI_MCLK_UART_1P8_3P3  
VDD_SPI_SAI_1P8_3P3  
VDD_TMPR_CSI_1P8_3P3  
VDD_USDHC1_1P8_3P3  
VDD_USDHC1_VSELECT_1P8_3P3  
VDD_ADC_1P8  
24  
9
mA  
mA  
40  
40  
36  
48  
30  
30  
20  
5
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
VDD_USB_OTG_1P0  
36  
175  
40  
255  
5
mA Shall be externally connected to VDD_USB_SS3_LDO_1P0_CAP  
VDD_USB_1P8  
mA  
VDD_USB_3P3  
mA  
VDD_PCIE_1P8  
mA  
VDD_SNVS_4P22  
mA Start-up current  
1
VDD_A35 and VDD_GPU can be combined with one power supply.  
2
Under normal operating conditions, the maximum current on VDD_SNVS_4P2 is shown Table 11. During initial power on,  
VDD_SNVS_4P2 can draw up to 5 mA if the supply is capable of sourcing that current. If less than 5 mA is available, the  
VDD_SNVS_LDO_1P8_CAP charge time will increase.  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
22  
NXP Semiconductors  
Electrical characteristics  
4.1.6  
Low power mode supply currents  
The following table shows the current core consumption (not including I/O) in selected low power modes.  
Table 12. i.MX 8QuadXPlus/8DualXPlus Key State (KSx) power consumption  
Mode  
Test conditions  
Supply  
Max  
Unit  
KS0 SNVS only, all other supplies OFF. RTC running, tamper not active,  
external 32K crystal.  
VDD_SNVS_4P2 (4.2 V)  
50  
μA  
KS11 RAM and IO state retained.  
DRAM in self-refresh, associated I/O’s OFF.  
32K running, 24M, PLLs and ring oscillators OFF.  
PHYs are in idle state.  
VDD_ANAx_1P8 (1.8 V)  
VDD_A35 (OFF)  
VDD_GPU (OFF)  
VDD_MAIN (0.8 V)  
VDD_DDR_VDDQ (1.1 V)  
Total  
0.9  
33  
0.5  
28.6  
mA  
mA  
mA  
mA  
mA  
mW  
A35 and GPU supplies OFF.  
MAIN2 dropped to 0.8 V.  
KS43 Leakage test, not intended as a customer use case.  
VDD_ANAx_1P8 (1.8 V)  
3.5  
600  
250  
1100  
2541  
mA  
mA  
mA  
mA  
mW  
Overdrive conditions set, memories active, all sub-systems powered ON. VDD_A35 (1.1 V)  
Active power minimized.  
VDD_GPU (1.1 V)  
VDD_MAIN (1.0 V)  
Total  
1
2
3
Maximum values are for 25 °C Tambient  
0.8 V nominal—voltage specification under this case is ± 3%.  
.
Maximum values are for 105 °C Tjunction  
.
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
23  
Electrical characteristics  
4.1.7  
USB 2.0 PHY typical current consumption in Power-Down mode  
In power down mode, everything is powered down, including the VBUS valid detectors, typical condition.  
The following table shows the USB interface typical current consumption in Power-Down mode.  
Table 13. USB 2.0 PHY typical current consumption in Power-Down Mode  
VDD_USB_3P3 (3.3 V)  
VDD_USB_1P8 (1.8 V)  
VDD_USB_OTG_1P0 (1.0 V)  
Current  
1 μA  
0.06 μA  
0.5 μA  
4.1.8  
USB 3.0 PHY typical current consumption in Power-Down mode  
In power down mode, everything is powered down, including the VBUS valid detectors, typical condition.  
The following table shows the USB interface typical current consumption in Power-Down mode.  
Table 14. USB 3.0 PHY typical current consumption in Power-Down Mode  
VDD_USB_1P8 (1.8 V)  
VDD_USB_OTG_1P0 (1.0 V)  
Current  
10 μA  
70 μA  
The following table shows the current consumption for the USB 2.0 PHY embedded in the USB 3.0  
PHY.  
Table 15. Typical current consumption in Power-Down mode for USB 2.0 PHY embedded in USB 3.0 PHY  
VDD_USB_OTG2_1P0VDD_U  
VDD_USB_3P3 (3.3 V)  
VDD_USB_1P8 (1.8 V)  
SB_OTG_1P0 (1.0 V)  
Current—Host mode  
22.6 μA  
12.6 μΑ  
12.7 μΑ  
85.7 μΑ  
81.5 μΑ  
78.5 μΑ  
Current—Device mode  
4.1.8.1  
USB 3.0 Type-C connector considerations  
The device supports USB 3.0 Type-C connection when used in conjunction with the following devices:  
PTN36043  
PTN5150A  
NX5P3090UK  
NXP supports many other configurations and implementations for USB 3.0 Type-C connections. See NXP  
USB Type-C: True Plug’n Play .  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
24  
NXP Semiconductors  
Electrical characteristics  
4.2  
Power supplies requirements and restrictions  
The system design must comply with power-up sequence, power-down sequence, and steady state  
guidelines as described in this section to ensure the reliable operation of the device. Any deviation from  
these sequences may result in the following situations:  
Excessive current during power-up phase  
Prevention of the device from booting  
Irreversible damage to the processor  
4.2.1  
Power-up sequence  
The device has the following power-up sequence requirements:  
Supply group 0 (SNVS) must be powered first. It is expected that group 0 will typically remain  
always on after the first power-on.  
Supply group 1 (MAIN and SCU) and group 0 must both be powered to their nominal values prior  
to boot. They must power up after or simultaneously with group 0.  
Supply group 2 (I/O’s and DDR interface) consists of those modules required to start the boot  
process by accessing external storage devices. These must be fully powered prior to POR release  
if booting from one of these supplies interfaces. They must power up after or simultaneously with  
group 1.  
Supply group 3 consists of the remaining portions of the SoC. This includes nonboot I/O voltages  
and supplies for the major computational units. These can be sequenced in any order and as  
required to perform the desired functions for the intended application. They must power up after  
or simultaneously with group 2.  
NOTE  
The definition of “power-up” refers to a stable voltage operating within the  
range defined in Table 9. This should be taken into consideration, along  
with the different capacitive loading on each rail, if considering  
simultaneous switch-on of the different supply groups.  
4.2.2  
Power-down sequence  
The device processor has the following power-down sequence requirements:  
Supply group 0 must be turned off last, after all other supplies.  
Supply group 1 can be turned off just prior to group 0.  
All remaining supplies can be turned off prior to group 1.  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
25  
Electrical characteristics  
NOTE  
When switching off supply group 0 (SNVS), VDD_SNVS_4P2 must be  
discharged below 2.4 V before starting the next power-up sequence to  
ensure correct operation. This will generate a full SNVS reset, allowing  
correct operation on the next power-up sequence. This would also be a  
requirement to clear any security related flag as a result of an SNVS voltage  
drop, when tamper features are enabled.  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
26  
NXP Semiconductors  
4.2.3  
Power Supplies Usage  
The following table shows the power supplies usage by group.  
Table 16. Power supplies usage  
Supply  
Groups  
Voltage  
2.4 - 4.2v  
VDD_SNVS_4P2  
1.0v  
1.8v internal LDO  
VDD_TMPR_CSI_1P8_3P31  
1.8v  
Group 0  
Group 1  
VDD_MAIN  
VDD_ANAx_1P8  
VDD_MIPI_1P0  
1.1 - 1.35v  
1.8v  
1.8v or 3.3v  
1.8v or 3.3v switchable  
3.3v  
VDD_DDR_VDDQ  
VDD_ADC_DIG_1P8  
VDD_ADC_1P8  
VDD_CAN_UART_1P8_3P3  
VDD_CSI_1P8_3P3  
VDD_EMMC0_1P8_3P3  
VDD_USDHC1_1P8_3P3  
VDD_USB_3P3  
VDD_DDR_PLL_1P8  
VDD_MIPI_1P8  
VDD_EMMC0_VSELECT_1P8_3P3  
VDD_ENET_MDIO_1P8_3P3  
VDD_MIPI_DSI_DIG_1P8_3P3  
VDD_PCIE_DIG_1P8_3P3  
VDD_MIPI_CSI_DIG_1P8  
VDD_PCIE_1P8  
Group 2  
VDD_USB_1P8  
VDD_QSPI0x_1P8_3P3  
VDD_SPI_MCLK_UART_1P8_3P3  
VDD_SPI_SAI_1P8_3P3  
VDD_TMPR_CSI_1P8_3P31  
VDD_USDHC1_VSELECT_1P8_3P3  
1.1 - 1.1v  
1.0v internal LDO's  
1.8v or 2.5v or 3.3v  
VDD_A352  
VDD_GPU2  
VDD_USB_OTG_1P0  
VDD_ENET0_1P8_2P5_3P3  
VDD_ENET0_VSELECT_1P8_2P5_3P3  
VDD_ESAI_SPDIF_1P8_2P5_3P3  
Group 3  
1
2
Supply connection and Supply Group vary depending on use case. For use as tamper pin, it must be tied to the VDD_SNVS_LDO_1P8_CAP. If used as a  
CSI/SAI, it is tied to I/O supply.  
VDD_A35 and VDD_GPU can be combined with one power supply.  
Electrical characteristics  
4.3  
PLL electrical characteristics  
4.3.1  
PLLs of subsystems  
i.MX 8QuadXPlus/8DualXPlus embeds a large number of PLLs to address clocking requirements of the  
various subsystems. These PLLs are controlled through the SCU and not directly by Cortex-A or  
Cortex-M4F processors. A software API shall be used by those processors to access the PLL settings.  
Additional PLLs are specific to high-performance interfaces. These are described in the following  
sections.  
This table summarizes the PLLs controlled by the SCU.  
Table 17. PLLs controlled by SCU  
Locking range1  
Subsystem  
PLL usage  
Source clock  
Lock freq.  
Unit  
Min freq. Max freq.  
Cortex-A35  
Subsystem  
24  
650  
1300  
• Overdrive: 1200  
• Nominal: 9002  
GPU  
PLL #0: subsystem  
PLL #1: shaders  
Subsystem  
24  
24  
24  
648  
648  
1344  
1344  
2500  
• Overdrive: 700  
• Nominal: 7443  
MHz  
MHz  
MHz  
• Overdrive: : 850  
• Nominal: 7444  
DRC (DRAM  
Controller)  
1250  
• LPDDR4: 2400  
• DDR3L: 18665  
DB (DRAM Block)  
Subsystem  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
650  
650  
650  
650  
650  
650  
650  
650  
650  
650  
650  
650  
1300  
1300  
1300  
1300  
1300  
1300  
1300  
1300  
1300  
1300  
1300  
1300  
1200  
800  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
Display Controller 0 PLL #0: subsystem  
PLL #1: display clock #0  
User-configurable  
User-configurable  
1200  
PLL #2: display clock #1  
Imaging  
ADMA6  
Subsystem  
PLL #0: subsystem  
PLL #1: audio PLL #0  
PLL #2: audio PLL #1  
PLL #3: Parallel LCD display  
PLL #0: Subsystem  
PLL #1: PHY  
1280  
User-configurable  
User-configurable  
Pixel freq. ×N  
792  
Connectivity  
1000  
HSIO (High-speed  
I/O)  
Subsystem  
800  
LSIO (Low-speed  
I/O)  
Subsystem  
24  
650  
1300  
800  
MHz  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
28  
Electrical characteristics  
Table 17. PLLs controlled by SCU (continued)  
Locking range1  
Subsystem  
PLL usage  
Source clock  
Lock freq.  
Unit  
Min freq. Max freq.  
Cortex-M4  
Subsystem  
24  
24  
24  
24  
24  
650  
650  
650  
650  
650  
1300  
1300  
1300  
1300  
1300  
792  
1200  
864  
MHz  
MHz  
MHz  
MHz  
MHz  
VPU  
PLL #0: subsystem  
Subsystem  
MIPI-DSI  
MIPI-CSI  
Subsystem  
720  
SCU (System  
Subsystem  
1056  
Controller Unit)  
1
2
Operating frequencies are limited to only those supported by the SCFW.  
1200 MHz is used to generate the overdrive frequency point, and 900 MHz for the nominal frequency point. See Table 9 to get  
associated voltages.  
3
4
5
700 MHz is used to generate the overdrive frequency point, and 744 is used to generate the nominal point (372 MHz).  
850 MHz is used to generate the overdrive frequency point, and 744 is used to generate the nominal point (372 MHz)  
2400 MHz is used to generate 1200 MHz when in LPDDR4 mode. 1866 MHz is used to generate 933 MHz when in DDR3L  
mode. See Table 9 to get associated voltages.  
6
The audio PLLs support on-the-fly frequency changes for clock synchronization applications, 25 Hz steps, up to a maximum  
change of +/- 250 KHz is supported.  
4.3.2  
PLLs dedicated to specific interfaces  
The following sections cover PLLs used for specific interfaces. Clock output frequency and clock output  
range refer to the output of the PLL. Additional clock dividers may be on the output path to divide the  
output frequency down to the targeted frequency. See the related sections in the reference manual for  
settings of these clock dividers.  
4.3.2.1  
Ethernet PLL  
This PLL is controlled by the SCU.  
Table 18. Ethernet PLL  
Parameter  
Value  
Unit  
Reference clock  
24  
1
MHz  
GHz  
Clock output frequency  
4.3.2.2  
USB 3.0 PLLs  
USB 3.0 has two PLLs. One is embedded in Super-Speed PHY. The other one is embedded in the USB 2.0  
OTG PHY that is part of the USB 3.0 interface.  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
29  
Electrical characteristics  
The table below describes the PLL embedded in the Super-Speed PHY.  
Table 19. USB 2.0 PLL embedded in Super Speed PHY  
Parameter  
Value  
Unit  
Reference clock  
24  
5
MHz  
GHz  
Clock output frequency  
The table below describes the PLL embedded in the USBOTG PHY.  
Table 20. USB 2.0 PLL embedded in USBOTG PHY  
Parameter  
Value  
Unit  
Reference clock  
24  
MHz  
MHz  
Clock output frequency  
480  
4.3.2.3  
USB 2.0 OTG PLLs  
This PLL is embedded in the USB 2.0 OTG PHY (the one which is not part of the USB 3.0 feature).  
Table 21. USB 2.0 OTG PLLs  
Parameter  
Value  
Unit  
Reference clock  
24  
MHz  
MHz  
Clock output frequency  
480  
4.3.2.4  
PCIe PLLs  
The PCIe interface has three PLLs:  
One is used to generate the single, common 100 MHz reference clock to each lane  
One Transmit and one Receive PLL in one lane  
The table below shows the characteristics for the reference clock PLL.  
Table 22. PCIe reference clock PLLs  
Parameter  
Value  
Unit  
Comments  
Reference clock  
Clock output frequency  
24  
MHz  
100  
MHz Used to generate internal 100 MHz reference clock to PCIe lanes  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
30  
Electrical characteristics  
The table below shows characteristics of the TX and RX PLLs used in each lane.  
Table 23. PCIe Transmit and Receive PLLs  
Parameter  
Value  
Unit  
Comments  
Reference clock  
100  
MHz From differential input clock pads or from internal PLL  
Clock output range  
6 ~ 10  
GHz PCIe gen3: 8GHz to get 8GHz baud clock  
PCIe gen2: 10GHz to get 5GHz baud clock  
PCIe gen3: 10GHz to get 2.5GHz baud clock  
4.3.2.5  
MIPI-DSI/LVDS combo PLL  
The table below shows characteristics of the PLL embedded in the MIPI-DSI/LVDS combo PHY.  
Table 24. MIPI-DSI/LVDS combo PHY PLL  
Parameter  
Value  
Unit  
Comments  
Reference clock  
Clock output range  
24  
MHz  
0.75 ~ 1.05  
GHz Dependent on targeted display configuration  
4.4  
On-chip oscillators  
OSC24M  
4.4.1  
This block integrates trimmable internal loading capacitors and driving circuitry. When combined with a  
suitable 24 MHz external quartz element, it can generate a low-jitter clock. The oscillator is powered from  
VDD_ANA1_1P8. The internal loading capacitors are trimmable to provide fine adjustment of the  
24 MHz oscillation frequency. It is expected that customers burn appropriate trim values for the selected  
crystal and board parasitics.  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
31  
Electrical characteristics  
Figure 2. Normal Crystal Oscillation mode  
Table 25. Crystal specifications  
Parameter description  
Min  
Typ  
Max  
Unit  
Frequency1  
24  
18  
60  
MHz  
pF  
Cload2  
Maximum drive level  
200  
μW  
Ω
ESR  
1
The required frequency accuracy is set by the serial interfaces utilized for a specific application and is detailed in the  
respective standard documents.  
2
Cload is the specification of the quartz element, not for the capacitors coupled to the quartz element.  
4.4.2  
OSC32K  
This block implements an internal amplifier, trimmable load capacitors and a bias network that when  
combined with a suitable quartz crystal implements a low power oscillator.  
Additionally, if the clock monitor determines that the 32KHz oscillation is not present, then the source of  
the 32 KHz clock will automatically switch to the internal relaxation oscillator of lesser frequency  
accuracy.  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
32  
NXP Semiconductors  
Electrical characteristics  
CAUTION  
The internal ring oscillator is not meant to be used in customer applications,  
due to gross frequency variation over wafer processing, temperature, and  
supply voltage. These variations will cause timing issues to many different  
circuits that use the internal ring oscillator for reference; and, if this timing  
is critical, application issues will occur. To prevent application issues, it is  
recommended to only use an external crystal or an accurate external clock.  
If this recommendation is not followed, NXP cannot guarantee full  
compliance of any circuit using this clock. The OSC32K runs from  
VDD_SNVS_LDO_1P8_CAP, which is regulated from VDD_SNVS. The  
target battery/voltage range is 2.8 to 4.2 V for VDD_SNVS, with a regulated  
output of approximately 1.75 V.  
Table 26. OSC32K main characteristics  
Parameter  
Min  
Typ  
Max  
Comments  
Fosc  
32.768 kHz  
This frequency is nominal and determined mainly by  
the crystal selected. 32.0 KHz is also supported.  
Current  
consumption  
• xtal oscillator mode: 5 μA  
These values are for typical process and room  
temperature. Values will be updated after silicon  
characterization.  
• 32K internal oscillator mode: 10 μA  
Bias resistor  
200 MΩ  
This the integrated bias resistor that sets the amplifier  
into a high gain state. Any leakage through the ESD  
network, external board leakage, or even a scope  
probe that is significant relative to this value will  
debias the amplifier. The debiasing will result in low  
gain, and will impact the circuit's ability to start up and  
maintain oscillations.  
Target Crystal Properties  
Cload  
ESR  
10 pF  
Usually crystals can be purchased tuned for different  
Cloads. This Cload value is typically 1/2 of the  
capacitances realized on the PCB on either side of  
the quartz. A higher Cload will decrease oscillation  
margin, but increases current oscillating through the  
crystal.  
50 kΩ  
100 kΩ Equivalent series resistance of the crystal. Choosing  
a crystal with a higher value will decrease the  
oscillating margin.  
Table 27. External input clock for OSC32K  
Min  
Typ  
Max  
Unit  
Notes  
Frequency  
700  
32.768 or 32  
kHz  
mV  
ns  
1,2,3  
VPP RTC_XTALI  
Rise/fall time  
VDD_SNVS_LDO_1P8_CAP  
4
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
33  
Electrical characteristics  
1
The external clock is fed into the chip from the RTC_XTALI pin; the RTC_XTALO pin should be left floating.  
2
The parameter specified here is a peak-to-peak value and VIH/VIL specifications do not apply.  
3
The voltage applied on RTC_XTALI must be within the range of VSS to VDD_SNVS_LDO_1P8_CAP.  
4
The rise/fall time of the applied clock are not strictly confined.  
4.5  
I/O DC Parameters  
This section includes the DC parameters of the following I/O types:  
XTALI and RTC_XTALI (clock inputs) DC parameters  
General Purpose I/O (GPIO) DC parameters  
NOTE  
The term ‘OVDD’ in this section refers to the associated supply rail of an  
input or output.  
ovdd  
pmos (Rpu)  
Voh min  
1
Vol max  
or  
0
pdat  
pad  
Predriver  
nmos (Rpd)  
ovss  
Figure 3. Circuit for Parameters Voh and Vol for I/O Cells  
4.5.1  
XTALI and RTC_XTALI (Clock Inputs) DC Parameters  
For RTC_XTALI, V /V specifications do not apply. The high and low levels of the applied clock on  
IH IL  
this pin are not strictly defined, as long as the input’s peak-to-peak amplitude meet the requirements and  
the input’s voltage value does not exceed the limits.  
4.5.2  
General-purpose I/O (GPIO) DC parameters  
Tri-voltage GPIO DC parameters  
4.5.2.1  
The following tables show tri-voltage 1.8V, 2.5 V, and 3.3 V DC parameters, respectively, for GPIO pads.  
These parameters are guaranteed per the operating ranges in Table 9, unless otherwise noted.  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
34  
NXP Semiconductors  
Electrical characteristics  
1
Table 28. Tri-voltage 1.8 V GPIO DC parameters  
Parameter  
Symbol  
Test Conditions  
Min  
Max  
Units  
High-level output voltage2,3  
VOH  
IOH= -0.1mA  
DSE=1  
0.8 × OVDD  
V
IOH= -2mA  
DSE=0  
Low-level output voltage2,3  
VOL  
IOL= -0.1mA  
DSE=1  
0.125 × OVDD  
V
I
OL= -2mA  
DSE=0  
High-Level input voltage2,4  
Low-Level input voltage  
Pull-up resistance  
VIH  
VIL  
0.625 × OVDD  
OVDD  
0.25 × OVDD  
50  
V
V
0
RPU  
VIN=0V (Pullup Resistor)  
PUN = "L", PDN = "H"  
15  
kΩ  
Pull-down resistance  
RDOWN  
VIN=OVDD( Pulldown Resistor)  
PUN = "H", PDN = "L"  
15  
-1  
50  
1
kΩ  
μA  
Input current (no PU/PD)  
IIN  
VI = 0, VI = OVDD  
PUN = "H", PDN = "H"  
1
For tri-voltage I/O, the associated IOMUXD compensation control register PSW_OVR and COMP bits must be set correctly.  
For 1.8 or 3.3 V operation, the SCFW API must be used to set PSW_OVR = 0b0 and COMP=0b000. For 2.5 V operation,  
PSW_OVR = 0b1 and COMP = 0b010.  
2
Overshoot and undershoot conditions (transitions above OVDD and below GND) on switching pads must be held below 0.3 V,  
and the duration of the overshoot/undershoot must not exceed 10% of the system clock cycle. Overshoot/ undershoot must  
be controlled through printed circuit board layout, transmission line impedance matching, signal line termination, or other  
methods. Noncompliance to this specification may affect device reliability or cause permanent damage to the device. (OVDD  
is the I/O Supply)  
3
4
DSE is the setting of the PDRV register. High Drive mode is recommended for 3v3 and 2v5 modes. Low Drive mode is  
recommended for 1v8 mode.  
To maintain a valid level, the transition edge of the input must sustain a constant slew rate (monotonic) from the current DC  
level through to the target DC level, VIL or VIH. Monotonic input transition time is from 0.1 ns to 1 ns.  
1
Table 29. Tri-voltage 2.5 V GPIO DC parameters  
Parameter  
Symbol  
Test Conditions  
Min  
Max  
Units  
V
High-level output voltage2,3  
IOH= -2mA  
DSE=0  
0.8 × OVDD  
V
OH  
V
Low-level output voltage2,3  
IOL= -2mA  
DSE=0  
0.125 × OVDD  
V
OL  
V
High-Level input voltage2,4  
Low-Level input voltage  
Pull-up resistance  
0.625 × OVDD  
OVDD  
0.25 × OVDD  
100  
V
V
IH  
VIL  
0
RPU  
VIN=0V (Pullup Resistor)  
PUN = "L", PDN = "H"  
10  
kΩ  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
35  
Electrical characteristics  
1
Table 29. Tri-voltage 2.5 V GPIO DC parameters (continued)  
Parameter  
Symbol  
Test Conditions  
Min  
Max  
Units  
Pull-down resistance  
RDOWN  
VIN=OVDD( Pulldown  
Resistor)  
10  
100  
kΩ  
PUN = "H", PDN = "L"  
Input current (no PU/PD)  
IIN  
VI = 0, VI = OVDD  
PUN = "H", PDN = "H"  
-1  
1
μA  
1
For tri-voltage I/O, the associated IOMUXD compensation control register PSW_OVR and COMP bits must be set correctly.  
For 1.8 or 3.3 V operation, the SCFW API must be used to set PSW_OVR = 0b0 and COMP=0b000. For 2.5 V operation,  
PSW_OVR = 0b1 and COMP = 0b010.  
2
Overshoot and undershoot conditions (transitions above OVDD and below GND) on switching pads must be held below 0.3 V,  
and the duration of the overshoot/undershoot must not exceed 10% of the system clock cycle. Overshoot/undershoot must be  
controlled through printed circuit board layout, transmission line impedance matching, signal line termination, or other  
methods. Noncompliance to this specification may affect device reliability or cause permanent damage to the device. (OVDD  
is the I/O supply.)  
3
4
DSE is the setting of the PDRV register. High Drive mode is recommended for 3v3 and 2v5 modes. Low Drive mode is  
recommended for 1v8 mode.  
To maintain a valid level, the transition edge of the input must sustain a constant slew rate (monotonic) from the current DC  
level through to the target DC level, VIL or VIH. Monotonic input transition time is from 0.1 ns to 1 ns.  
1
Table 30. Tri-voltage 3.3 V GPIO DC parameters  
Parameter  
Symbol  
Test Conditions  
Min  
Max  
Units  
V
High-level output voltage2,3  
IOH= -0.1mA  
4DSE=1  
0.8 × OVDD  
V
OH  
IOH= -2mA  
4DSE=0  
V
Low-level output voltage2,3  
IOL= -0.1mA  
4DSE3=1  
0.125 × OVDD  
V
OL  
IOL= -2mA  
4DSE=0  
V
High-Level input voltage2,4,3  
Low-Level input voltage  
Pull-up resistance  
0.725 × OVDD  
OVDD  
0.25 × OVDD  
100  
V
V
IH  
VIL  
0
RPU  
VIN=0V (Pullup Resistor)  
PUN = "L", PDN = "H"  
10  
kΩ  
Pull-down resistance  
RDOWN  
VIN=OVDD( Pulldown Resistor)  
PUN = "H", PDN = "L"  
10  
-2  
100  
2
kΩ  
μA  
Input current (no PU/PD)  
IIN  
VI = 0, VI = OVDD  
PUN = "H", PDN = "H"  
1
For tri-voltage I/O, the associated IOMUXD compensation control register PSW_OVR and COMP bits must be set correctly.  
For 1.8 or 3.3 V operation, the SCFW API must be used to set PSW_OVR = 0b0 and COMP=0b000. For 2.5 V operation,  
PSW_OVR = 0b1 and COMP = 0b010.  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
36  
NXP Semiconductors  
Electrical characteristics  
2
Overshoot and undershoot conditions (transitions above OVDD and below GND) on switching pads must be held below 0.3 V,  
and the duration of the overshoot/undershoot must not exceed 10% of the system clock cycle. Overshoot/ undershoot must  
be controlled through printed circuit board layout, transmission line impedance matching, signal line termination, or other  
methods. Noncompliance to this specification may affect device reliability or cause permanent damage to the device. (OVDD  
is the I/O Supply.)  
3
4
DSE is the setting of the PDRV register. High Drive mode recommended for 3v3 and 2v5 modes. Low Drive mode is  
recommended for 1v8 mode.  
To maintain a valid level, the transition edge of the input must sustain a constant slew rate (monotonic) from the current DC  
level through to the target DC level, VIL or VIH. Monotonic input transition time is from 0.1 ns to 1 ns.  
4.5.2.2  
Dual-voltage GPIO DC parameters  
The following two tables show dual-voltage 1.8 V and 3.3 V DC parameters, respectively, for GPIO  
pads. These parameters are guaranteed per the operating ranges in Table 9, unless otherwise noted.  
Table 31. Dual-voltage 1.8 V GPIO DC parameters  
Parameter  
Symbol  
Test Conditions  
Ioh= -0.1mA  
Min  
Max  
Units  
High-level output voltage1,2  
VOH  
0.8 × OVDD  
V
DSE=1  
Ioh= -2mA  
DSE=0  
Low-level output voltage1,2  
High-Level input voltage1,3  
VOL  
Iol= -0.1mA  
DSE=1  
0.125 × OVD  
V
V
D
Iol= -2mA  
DSE=0  
VIH  
0.625 × OVD  
OVDD  
D
Low-Level input voltage  
Pull-up resistance  
VIL  
0
0.25 × OVDD  
V
RPU  
Vin=0 V (Pullup Resistor)  
PUN = "L", PDN = "H"  
15  
50  
kΩ  
Pull-down resistance  
Rdown Vin=OVDD( Pulldown Resistor)  
PUN = "H", PDN = "L"  
15  
-1  
50  
1
kΩ  
μA  
Input current (no PU/PD)  
IIN  
VI = 0, VI = OVDD  
PUN = "H", PDN = "H"  
1
Overshoot and undershoot conditions (transitions above OVDD and below GND) on switching pads must be held below 0.3 V,  
and the duration of the overshoot/undershoot must not exceed 10% of the system clock cycle. Overshoot/undershoot must be  
controlled through printed circuit board layout, transmission line impedance matching, signal line termination, or other  
methods. Noncompliance to this specification may affect device reliability or cause permanent damage to the device. (OVDD  
is the IO Supply.)  
2
3
DSE is the setting of the PDRV register. High Drive mode is recommended for SD standard (3v3 mode) and MMC standard  
(1v8/3v3 modes). Low Drive mode is recommended for SD standard (1v8 mode).  
To maintain a valid level, the transition edge of the input must sustain a constant slew rate (monotonic) from the current DC  
level through to the target DC level, Vil or Vih. Monotonic input transition time is from 0.1 ns to 1 ns.  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
37  
Electrical characteristics  
Table 32. Dual-voltage 3.3 V GPIO DC parameters  
Parameter  
Symbol  
Test Conditions  
Min  
Max  
Units  
High-level output voltage1,2  
VOH  
Ioh= -0.1mA  
DSE=1  
0.8 × OVDD  
V
Ioh= -2mA  
DSE=0  
Low-level output voltage1,2  
VOL  
Iol= -0.1mA  
DSE=1  
0.125 × OVDD  
V
Iol= -2mA  
DSE=0  
High-Level input voltage1,3  
Low-Level input voltage  
Pull-upresistance  
VIH  
VIL  
0.725 × OVDD  
OVDD  
0.25 × OVDD  
100  
V
V
0
RPU  
Vin=0V (Pullup Resistor)  
PUN = "L", PDN = "H"  
10  
kΩ  
Pull-down resistance  
Rdown  
Vin=OVDD( Pulldown Resistor)  
PUN = "H", PDN = "L"  
10  
-2  
100  
2
kΩ  
μA  
Input current (no PU/PD)  
IIN  
VI = 0, VI = OVDD  
PUN = "H", PDN = "H"  
1
Overshoot and undershoot conditions (transitions above OVDD and below GND) on switching pads must be held below 0.3 V,  
and the duration of the overshoot/undershoot must not exceed 10% of the system clock cycle. Overshoot/ undershoot must be  
controlled through printed circuit board layout, transmission line impedance matching, signal line termination, or other methods.  
Noncompliance to this specification may affect device reliability or cause permanent damage to the device. (OVDD is the I/O  
Supply.)  
2
3
DSE is the setting of the PDRV register. High Drive mode is recommended for SD standard (3v3 mode) and MMC standard  
(1v8/3v3 modes). Low Drive mode is recommended for SD standard (1v8 mode).  
To maintain a valid level, the transition edge of the input must sustain a constant slew rate (monotonic) from the current DC  
level through to the target DC level, VIL or VIH. Monotonic input transition time is from 0.1 ns to 1 ns.  
4.5.2.3  
Single-voltage GPIO DC parameters  
Table 33 and Table 34 show single-voltage 1.8 V and 3.3 V DC parameters, respectively, for GPIO pads.  
These parameters are guaranteed per the operating ranges in Table 9 unless otherwise noted.  
Table 33. Single-voltage 1.8 V GPIO DC parameters  
Parameter  
Symbol  
Test Conditions  
Min  
Max  
Units  
High-level output voltage1,2  
VOH  
IOH= -0.1mA  
DSE = 000 or 001  
OVDD × 0.8  
V
IOH= -2mA  
DSE = 010 or 011  
IOH= -4mA  
DSE = 100 to 110  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
38  
Electrical characteristics  
Table 33. Single-voltage 1.8 V GPIO DC parameters (continued)  
Parameter  
Symbol  
Test Conditions  
Min  
Max  
Units  
Low-level output voltage1,2  
VOL  
IOL= 0.1mA  
DSE = 000 or 001  
OVDD × 0.2  
V
IOL= 2mA  
DSE = 010 or 011  
I
OL= 4mA  
DSE = 100 to 110  
High-Level input voltage2,3  
Low-Level input voltage2,3  
Pull-up resistance  
VIH  
VIL  
0.65 × OVDD  
OVDD  
0.35 × OVDD  
90  
V
V
0
RPU  
Vin=0V (Pullup Resistor)  
PUN = "L", PDN = "H"  
20  
kΩ  
Pull-down resistance  
Rdown  
Vin=OVDD( Pulldown Resistor)  
PUN = "H", PDN = "L"  
20  
-5  
90  
5
kΩ  
μA  
kΩ  
Input current (no PU/PD)  
Keeper Circuit Resistance  
IIN  
VI = 0, VI = OVDD  
PUN = "H", PDN = "H"  
R_Keeper  
VI =.3xOVDD, VI = .7x OVDD  
PUN = "L", PDN = "L"  
20  
90  
1
As programmed in the associated IOMUX (DSE field) register.  
2
Overshoot and undershoot conditions (transitions above OVDD and below GND) on switching pads must be held below 0.3  
V, and the duration of the overshoot/undershoot must not exceed 10% of the system clock cycle. Overshoot/ undershoot must  
be controlled through printed circuit board layout, transmission line impedance matching, signal line termination, or other  
methods. Noncompliance to this specification may affect device reliability or cause permanent damage to the device. (OVDD  
is the IO supply.)  
3
To maintain a valid level, the transition edge of the input must sustain a constant slew rate (monotonic) from the current DC  
level through to the target DC level, VIL or VIH. Monotonic input transition time is from 0.1 ns to 1 ns.  
Table 34. Single-voltage 3.3 V GPIO DC parameters  
Parameter  
Symbol  
Test Conditions  
Min  
Max  
Units  
High-level output voltage1,2  
VOH  
IOH = -0.1mA  
DSE = 00 or 01  
0.8 × OVDD  
V
IOH= -2mA  
DSE = 10 or 11  
Low-level output voltage1,2  
VOL  
IOL=0.1mA  
DSE = 00 or 01  
0.2 × OVDD  
V
IOL = 2mA  
DSE = 10 or 11  
High-Level input voltage2,3  
Low-Level input voltage2,3  
Pull-upresistance  
VIH  
VIL  
0.75 × OVDD  
OVDD  
0.25 × OVDD  
90  
V
V
0
RPU  
Vin=0 V (Pullup Resistor)  
PUN = "L", PDN = "H"  
20  
kΩ  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
39  
Electrical characteristics  
Table 34. Single-voltage 3.3 V GPIO DC parameters (continued)  
Parameter  
Symbol  
Test Conditions  
Min  
Max  
Units  
Pull-down resistance  
Rdown  
Vin=OVDD( Pulldown Resistor)  
PUN = "H", PDN = "L"  
20  
90  
kΩ  
Input current (no PU/PD)  
IIN  
VI = 0, VI = OVDD  
PUN = "H", PDN = "H"  
-5  
5
μA  
kΩ  
Keeper Circuit Resistance  
R_Keeper  
VI =.3xOVDD, VI = .7x OVDD  
PUN = "L", PDN = "L"  
20  
90  
1
As programmed in the associated IOMUX (DSE field) register.  
2
Overshoot and undershoot conditions (transitions above OVDD and below GND) on switching pads must be held below 0.3 V,  
and the duration of the overshoot/undershoot must not exceed 10% of the system clock cycle. Overshoot/ undershoot must  
be controlled through printed circuit board layout, transmission line impedance matching, signal line termination, or other  
methods. Noncompliance to this specification may affect device reliability or cause permanent damage to the device. (OVDD  
is the IO supply.)  
3
To maintain a valid level, the transition edge of the input must sustain a constant slew rate (monotonic) from the current DC  
level through to the target DC level, VIL or VIH. Monotonic input transition time is from 0.1 ns to 1 ns.  
4.5.3  
DDR I/O DC parameters  
4.5.3.1  
LPDDR4 mode I/O DC parameters  
These parameters are guaranteed per the operating ranges in Table 9 unless otherwise noted.  
Table 35. LPDDR4 DC parameters  
Parameter  
Symbol  
Test Conditions  
Min  
Max  
Units  
High-level output voltage1  
VOH  
Out Drive = All setting  
(40,48,60,80,120,240)  
unterminated outputs loaded  
with 1pF capacitor load  
0.9 × VDDQ  
V
Low-level output voltage1  
VOL  
Out Drive = All setting  
(40,48,60,80,120,240)  
unterminated outputs loaded  
with 1pF capacitor load  
0.1 × VDDQ  
V
Input current (no ODT)  
IIN  
VI = VSSQ, VI = VDDQ  
-2  
2
μA  
V
DC High-Level input voltage  
DC Low-Level input voltage  
VIH_DC  
VIL_DC  
VREF + 0.1  
VSSQ  
VDDQ  
VREF – 0.1  
V
1
Maximum peak amplitude allowed for overshoot and undershoot area = 0.35 V. Maximum overshoot area above VDD/VDDQ  
0.8 V-ns; maximum undershoot area below VSS/VSSQ 0.8 V-ns.  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
40  
NXP Semiconductors  
Electrical characteristics  
4.5.3.2  
DDR3L mode I/O DC parameters  
Table 36. SSTL DDR3L DC parameters  
Parameter  
Symbol  
Test Conditions  
Min  
Max  
Units  
DC High-level output voltage 1  
VOH  
Out Drive = All setting  
(40,60,120) unterminated  
outputs loaded with 1pF  
capacitor load  
0.8 × VDDQ  
V
DC Low-level output voltage1  
VOL  
Out Drive = All setting  
(40,60,120) unterminated  
outputs loaded with 1pF  
capacitor load  
0.2 × VDDQ  
V
Input termination resistance (ODT) to VDDQ/2  
RTT  
40 Ω setting  
36  
54  
44  
Ω
60 Ω setting  
66  
140  
120 Ω setting  
100  
Input current (no ODT)  
IIN  
VI = VSSQ, VI = VDDQ  
-2  
2
μA  
V
DC High-Level input voltage  
DC Low-Level input voltage  
VIH_DC  
VIL_DC  
VREF + 0.09  
VSSQ  
VDDQ  
VREF – 0.09  
V
1
Maximum peak amplitude allowed for overshoot and undershoot area = 0.35 V. Maximum overshoot area above VDD/VDDQ  
0.8 V-ns; maximum undershoot area below VSS/VSSQ 0.8 V-ns.  
4.6  
I/O AC Parameters  
The GPIO and DDR I/O load circuit and output transition time waveforms are shown in Figure 4 and  
Figure 5.  
From Output  
Under Test  
Test Point  
CL  
CL includes package, probe and fixture capacitance  
Figure 4. Load Circuit for Output  
OVDD  
0 V  
80%  
20%  
80%  
20%  
tr  
Output (at pad)  
tf  
Figure 5. Output Transition Time Waveform  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
41  
Electrical characteristics  
4.6.1  
General Purpose I/O (GPIO) AC Parameters  
1
Table 37. General Purpose I/O AC Parameters  
Symbol  
Parameter  
Test Condition  
Min  
Typ  
Max  
Unit  
1.8 V application2  
fmax  
Maximum frequency  
Load = 21 pF (PDRV = H, high  
208  
MHz  
drive, Type A, 33 Ω  
Load = 15 pF (PDRV = L, low  
drive, Type B, 50 Ω  
tr  
tf  
Rise time  
Fall time  
Measured between VOL and  
VOH  
0.4  
0.4  
1.32  
1.32  
ns  
ns  
Measured between VOH and  
VOL  
Driver 3.3 V application3  
fmax  
tr  
Maximum frequency  
Rise time  
Load = 30 pF  
52  
3
MHz  
ns  
Measured between  
VOL and VOH  
tf  
Fall time  
Measured between  
VOH and VOL  
3
ns  
1
All output I/O specifications are guaranteed for Accurate mode of the compensation cell operation. This is applicable for both  
DC and AC specifications.  
2
3
All timing specifications in 1.8 V application are valid for High Drive mode (PDRV = H). In Low Drive mode (PDRV = L), the  
driver is functional.  
All timing specifications in 3.3 V application are valid for Type B driver only. In Type A, the driver is functional.  
Table 38. Dynamic input characteristics  
Symbol  
Parameter  
Condition1,2  
Min  
Max  
Unit  
Dynamic Input Characteristics for 3.3 V Application  
fop  
Input frequency of operation  
52  
3.5  
MHz  
ns  
INPSL Slope of input signal at I/O  
IOMAX High level input voltage  
IOMIN Low level input voltage  
Measured between 10% to 90% of the I/O swing  
3.3 V + 0.3 V  
V
-0.3 V  
Dynamic Input Characteristics for 1.8 V Application  
fop  
Input frequency of operation  
208  
1.5  
MHz  
ns  
INPSL Slope of input signal at I/O  
IOMAX High level input voltage  
IOMIN Low level input voltage  
Measured between 10% to 90% of the I/O swing  
1.8 V + 0.3 V  
V
-0.3 V  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
42  
Electrical characteristics  
1
2
For all supply ranges of operation.  
The dynamic input characteristic specifications are applicable for the digital bidirectional cells.  
4.7  
Output Buffer Impedance Parameters  
This section defines the I/O impedance parameters for the following I/O types:  
General Purpose I/O (GPIO) output buffer impedance  
Double Data Rate I/O (DDR) output buffer impedance for LPDDR4 and DDR3L modes  
NOTE  
GPIO and DDR I/O output driver impedance is measured with “long”  
transmission line of impedance Ztl attached to I/O pad and incident wave  
launched into transmission line. Rpu/Rpd and Ztl form a voltage divider that  
defines specific voltage of incident wave relative to OVDD. Output driver  
impedance is calculated from this voltage divider (see Figure 6).  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
43  
Electrical characteristics  
OVDD  
PMOS (Rpu)  
Ztl Ω, L = 20 inches  
ipp_do  
pad  
predriver  
Cload = 1p  
NMOS (Rpd)  
OVSS  
U,(V)  
VDD  
Vin (do)  
t,(ns)  
0
U,(V)  
Vout (pad)  
OVDD  
Vref2  
Vref1  
Vref  
t,(ns)  
0
Vovdd – Vref1  
Vref1  
Rpu =  
Rpd =  
× Ztl  
× Ztl  
Vref2  
Vovdd – Vref2  
Figure 6. Impedance Matching Load for Measurement  
4.7.1  
GPIO output buffer impedance  
4.7.1.1  
Tri-voltage GPIO output buffer impedance  
Table 39. Tri-voltage 1.8 V GPIO output impedance DC parameters  
Parameter  
Symbol  
Test conditions  
Typical  
Units  
Output impedance  
Output impedance  
ZO  
ZO  
1DSE=0  
1DSE=1  
33  
50  
Ω
Ω
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
44  
Electrical characteristics  
1
As programmed in the associated IOMUX (PDRV field) register.  
Table 40. Tri-voltage 2.5 V GPIO output impedance DC parameters  
Parameter  
Symbol  
Test conditions  
Typical  
Units  
Output impedance  
Output impedance  
ZO  
ZO  
1DSE=0  
1DSE=1  
25  
33  
Ω
Ω
1
As programmed in the associated IOMUX (PDRV field) register.  
Table 41. Tri-voltage 3.3 V GPIO output impedance DC parameters  
Parameter  
Symbol  
Test conditions  
Typical  
Units  
Output impedance  
Output impedance  
ZO  
ZO  
1DSE=0  
1DSE=1  
25  
37  
Ω
Ω
1
As programmed in the associated IOMUX (PDRV field) register.  
4.7.1.2  
Dual-voltage GPIO output buffer impedance  
Table 42. Dual-voltage 1.8 V GPIO output impedance DC parameters  
Parameter  
Symbol  
Test conditions  
Typical  
Units  
Output impedance  
Output impedance  
ZO  
ZO  
1DSE=0  
1DSE=1  
33  
50  
Ω
Ω
1
‘As programmed in the associated IOMUX (PDRV field) register.  
Table 43. Dual-voltage 3.3 V GPIO output impedance DC parameters  
Parameter  
Symbol  
Test conditions  
Typical  
Units  
Output impedance  
Output impedance  
ZO  
ZO  
1DSE=0  
1DSE=1  
25  
37  
Ω
Ω
1
As programmed in the associated IOMUX (PDRV field) register.  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
45  
Electrical characteristics  
4.7.1.3  
Single-voltage 1.8 V GPIO output buffer drive strength  
The following table shows the GPIO output buffer drive strength (OVDD 1.8 V).  
Table 44. Single-voltage GPIO 1.8 V output impedance DC parameters  
Parameter  
Symbol  
Test conditions  
Typical  
Units  
1DSE=000  
1DSE=001  
1DSE=010  
1DSE=011  
1DSE=100  
1DSE=101  
1DSE=110  
1DSE=111  
200  
100  
55  
Ω
40  
Output impedance  
ZO  
30  
24  
20  
18  
1
As programmed in the associated IOMUX (DSE field) register.  
4.7.1.4  
Single-voltage 3.3 V GPIO output buffer drive strength  
The following table shows the GPIO output buffer drive strength (OVDD 3.3 V).  
Table 45. Single-voltage GPIO 3.3 V output impedance DC parameters  
Parameter  
Symbol  
Test conditions  
Typical  
Units  
Output impedance  
ZO  
1DSE=00  
1DSE=01  
1DSE=10  
1DSE=11  
400  
200  
100  
50  
Ω
1
As programmed in the associated IOMUX (DSE field) register.  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
46  
Electrical characteristics  
4.7.2  
DDR I/O output buffer impedance  
The following tables show DDR3L and LPDDR4 I/O output buffer impedance of the device.  
The ZQ Calibration cell uses a single register (ZQnPR0) to determine the target output buffer impedances  
of the pull-up driver and the pull-down driver, as well as the target on-die termination impedance. The  
resulting calibration setting is then applied to all DDR pads within the PHY complex.  
Table 46 and Table 48 show, respectively, the recommended ZQnPR0 field settings for the DDR3L and  
LPDDR4 I/Os to achieve the desired output buffer impedances. Table 47 and Table 49 show,  
respectively, the recommended ZQnPR0 field settings for the DDR3L and LPDDR4 I/Os to achieve the  
desired ODT settings.  
Table 46. LPDDR4 I/O output buffer impedance  
Typical  
Parameter  
ZQnPR0  
ZPROG_ASYM_PU_DRV  
ZQnPR0  
ZPROG_ASYM_PD_DRV  
Impedance  
Impedance  
Recommended combinations  
for DQ /CA pins  
5
7
80 Ω  
60 Ω  
48 Ω  
40 Ω  
3
5
7
9
120 Ω  
80 Ω  
60 Ω  
48 Ω  
9
11  
Table 47. LPDDR4 I/O on-die termination impedance  
Typical  
Parameter  
ZQnPR0. ZPROG_HOST_ODT  
Impedance  
Recommended combinations  
for DQ/CA pins  
120.0 Ω  
80.0 Ω  
60.0 Ω  
48.0 Ω  
40.0 Ω  
3
5
7
9
11  
Table 48. DDR3L I/O output buffer impedance  
Typical  
Parameter  
ZQnPR0. ZPROG_ASYM_PU_DRV  
Impedance  
ZQnPR0. ZPROG_ASYM_PD_DRV  
Recommended combinations  
for DQ/CA pins  
48.0 Ω  
40.0 Ω  
34.3 Ω  
9
9
11  
13  
11  
13  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
47  
Electrical characteristics  
Table 49. DDR3L I/O on-die termination impedance  
Typical  
Parameter  
ZQnPR0. ZPROG_HOST_ODT  
Impedance  
Recommended combinations  
for DQ/CA pins  
120.0 Ω  
60.0 Ω  
40.0 Ω  
1
3
5
NOTE  
Output driver impedance is controlled across PVTs using ZQ calibration  
procedure.  
Calibration is done against 240 Ω external reference resistor.  
Output driver impedance deviation (calibration accuracy) is ±5%  
(max/min impedance) across PVTs.  
4.8  
System Modules Timing  
This section contains the timing and electrical parameters for the modules in each processor.  
4.8.1  
Reset Timing Parameters  
The following figure shows the reset timing and Table 50 lists the timing parameters.  
POR_B  
(Input)  
CC1  
Figure 7. Reset timing diagram  
Table 50. Reset timing parameters  
ID  
Parameter  
Min  
Max  
Unit  
CC1  
Duration of SRC_POR_B to be qualified as valid  
1
XTALOSC_RTC_ XTALI cycle  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
48  
Electrical characteristics  
4.8.2  
WDOG reset timing parameters  
The following figure shows the WDOG reset timing and Table 51 lists the timing parameters.  
Figure 8. SCU_WDOG_OUT timing diagram  
Table 51. WDOG1_B timing parameters  
ID  
Parameter  
Min  
Max  
Unit  
CC3 Duration of SCU_WDOG_OUT assertion  
1
XTALOSC_RTC_ XTALI cycle  
NOTE  
XTALOSC_RTC_XTALI is approximately 32 kHz.  
XTALOSC_RTC_XTALI cycle is one period or approximately 30 μs.  
4.8.3  
DDR SDRAM–specific parameters (LPDDR4 and DDR3L)  
The i.MX 8x Family of processors have been designed and tested to work with JEDEC JESD209-4A–  
compliant LPDDR4 memory and with JEDEC JESD79-3-1 DDR3L compliant with DDR3L memory.  
Timing diagrams and tolerances required to work with these memories are specified in the respective  
documents and are not reprinted here.  
Meeting the necessary timing requirements for a DDR memory system is highly dependent on the  
components chosen and the design layout of the system as a whole. NXP cannot cover in this document  
all the requirements needed to achieve a design that meets full system performance over temperature,  
voltage, and part variation; PCB trace routing, PCB dielectric material, number of routing layers used,  
placement of bulk/decoupling capacitors on critical power rails, VIA placement, GND and Supply planes  
layout, and DDR controller/PHY register settings all are factors affecting the performance of the memory  
system. Consult the hardware user guide for this device and NXP validated design layouts for information  
on how to properly design a PCB for best DDR performance. NXP strongly recommends duplicating an  
NXP validated design as much as possible in the design of critical power rails, placement of  
bulk/decoupling capacitors and DDR trace routing between the processor and the selected DDR memory.  
All supporting material is readily available on the device web page on  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
49  
Electrical characteristics  
https://www.nxp.com/products/processors-and-microcontrollers/applications-processors/i.mx-applicatio  
ns-processors/i.mx-8-processors:IMX8-SERIES .  
Processors that demonstrate full DDR performance on NXP validated designs, but do not function on  
customer designs, are not considered marginal parts. A report detailing how the returned part behaved on  
an NXP validated system will be provided to the customer as closure to a customer’s reported DDR issue.  
Customers bear the responsibility of properly designing the Printed Circuit Board, correctly simulating and  
modeling the designed DDR system, and validating the system under all expected operating conditions  
(temperatures, voltages) prior to releasing their product to market.  
Table 52. i.MX 8 Family DRAM controller supported SDRAM configurations  
Parameter  
LPDDR4  
Number of Controllers  
Number of Channels  
Number of Chip Selects  
Bus Width  
2
2 per controller  
2 per channel  
16 bit per channel1  
1600 MHz  
Maximum Clock Frequency  
1
Only 16-bit external memory configurations are supported.  
Table 53. i.MX 8QuadXPlus/8DualXPlus DRAM controller supported SDRAM configurations  
Parameter  
Number of Controllers  
LPDDR4  
DDR3L  
1
Number of Channels  
Number of Chip Selects  
Bus Width  
2 per controller  
2 per channel  
16-bit per channel  
1200 MHz  
N/A  
2 per controller  
32-bit (optional 40-bit with ECC)  
933 MHz  
Maximum Clock Frequency  
4.8.3.1  
Clock/data/command/address pin allocations  
These processors uses generic names for clock, data and command address bus (DCF—DRAM controller  
functions); the following table provides mapping of clock, data and command address signals for LPDDR4  
and DDR3L modes.  
Table 54. Clock, data, and command address signals for LPDDR4 and DDR3L modes  
Signal name  
LPDDR4  
DDR_CK0_P  
DDR_CK0_N  
CK_t_A  
CK_c_A  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
50  
Electrical characteristics  
Table 54. Clock, data, and command address signals for LPDDR4 and DDR3L modes (continued)  
Signal name  
LPDDR4  
DDR_CK1_P  
DDR_CK1_N  
DDR_DQ_[15:0]  
DDR_DQ_[31:16]  
DDR_DQ_[39:32]  
DDR_DQS_N_[3:0]  
DDR_DQS_P_[3:0]  
DDR_DQS_N_4  
DDR_DQS_P_4  
DDR_DM_[3:0]  
DDR_DM_4  
CK_t_B  
CK_c_B  
DQ[15:0]_A  
DQ[15:0]_B  
DQS_N_[3:0]  
DQS_P_[3:0]  
DM_[3:0]  
DDR_DCF00  
DDR_DCF01  
DDR_DCF03  
DDR_DCF04  
DDR_DCF05  
DDR_DCF07  
DDR_DCF08  
DDR_DCF09  
DDR_DCF10  
DDR_DCF11  
DDR_DCF12  
DDR_DCF14  
DDR_DCF15  
DDR_DCF16  
DDR_DCF17  
DDR_DCF18  
DDR_DCF19  
DDR_DCF20  
DDR_DCF21  
DDR_DCF22  
DDR_DCF23  
DDR_DCF24  
CA2_A  
CA4_A  
CA5_A  
CA3_A  
ODT_CA_A  
CS0_A  
CA0_A  
CS1_A  
CKE0_A  
CKE1_A  
CA1_A  
CA4_B  
RESET_N  
CA5_B  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
51  
Electrical characteristics  
Table 54. Clock, data, and command address signals for LPDDR4 and DDR3L modes (continued)  
Signal name  
LPDDR4  
DDR_DCF25  
DDR_DCF26  
DDR_DCF27  
DDR_DCF28  
DDR_DCF29  
DDR_DCF30  
DDR_DCF31  
DDR_DCF32  
DDR_DCF33  
ODT_CA_B  
CA3_B  
CA0_B  
CS0_B  
CS1_B  
CKE0_B  
CKE1_B  
CA1_B  
CA2_B  
4.8.3.2  
ECC for DDR3L  
i.MX 8QuadXPlus/8DualXPlus supports up to 8-bit ECC when using DDR3L only. This is accomplished  
through the use of a fifth byte lane (DQS4[P:N],DM4, DQ[32:39]). When using the fifth byte lane, it is  
not a requirement that all DDR3L devices be identical, but it is required that all devices be able to operate  
with the same timing parameters. This can be easily accomplished by using memory containing the same  
die(s), but contained in different packages. Consult the DDR3L device datasheets for timing requirements.  
The fifth byte lane is for the exclusive use of ECC. If not using ECC, leave the pins as not connected. For  
LPDDR4 mode, pins DQS4[P:N],DM4, DQ[32:39] are not used and cannot be substituted for one of the  
other byte lanes. If using LPDDR4 mode, leave these pins as not connected.  
4.9  
General-Purpose Media Interface (GPMI) Timing  
The GPMI controller is a flexible interface NAND Flash controller with 8-bit data width, up to 400 MB/s  
I/O speed, and individual chip select. It supports Asynchronous Timing mode, Source Synchronous  
Timing mode, and Toggle Timing mode, as described in the following subsections.  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
52  
NXP Semiconductors  
Electrical characteristics  
4.9.1  
GPMI Asynchronous mode AC timing (ONFI 1.0 compatible)  
Asynchronous mode AC timings are provided as multiplications of the clock cycle and fixed delay. The  
Maximum I/O speed of GPMI in Asynchronous mode is about 50 MB/s. Figure 9 through Figure 12 depict  
the relative timing between GPMI signals at the module level for different operations underAsynchronous  
mode. Table 55 describes the timing parameters (NF1–NF17) that are shown in the figures.  
NF2  
NF1  
.!.$?#,%  
NF3  
NF4  
.!.$?#%ꢀ?"  
.!.$?7%?"  
NF5  
.!.$?!,%  
NF6  
NF8  
Command  
NF7  
NF9  
.!.$?$!4!XX  
Figure 9. Command Latch Cycle Timing Diagram  
NF1  
.!.$?#,%  
NF3  
.!.$?#%ꢀ?"  
.!.$?7%?"  
NF10  
NF5  
NF11  
NF7  
.!.$?!,%  
NF6  
NF8  
Address  
NF9  
NAND_DATAxx  
Figure 10. Address Latch Cycle Timing Diagram  
NF1  
.!.$?#,%  
.!.$?#%ꢀ?"  
.!.$?7%?"  
NF3  
NF10  
NF5  
NF11  
NF7  
NF6  
.!.$?!,%  
NF8  
Data to NF  
NF9  
.!.$?$!4!XX  
Figure 11. Write Data Latch Cycle Timing Diagram  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
53  
Electrical characteristics  
.!.$?#,%  
.!.$?#%ꢀ?"  
.!.$?2%?"  
NF14  
NF13  
NF15  
.!.$?2%!$9?"  
NF12  
NF16  
NF17  
Data from NF  
.!.$?$!4!XX  
Figure 12. Read Data Latch Cycle Timing Diagram (Non-EDO Mode)  
.!.$?#,%  
.!.$?#%ꢀ?"  
NF14  
NF13  
NF15  
.!.$?2%?"  
.!.$?2%!$9?"  
NF12  
NF17  
NF16  
NAND_DATAxx  
Data from NF  
Figure 13. Read Data Latch Cycle Timing Diagram (EDO Mode)  
1
Table 55. Asynchronous Mode Timing Parameters  
Timing  
T = GPMI Clock Cycle  
ID  
Parameter  
Symbol  
Unit  
Min  
(AS + DS) × T - 0.12 [see 2,3  
Max  
NF1  
NF2  
NF3  
NF4  
NF5  
NF6  
NF7  
NF8  
NF9  
NAND_CLE setup time  
NAND_CLE hold time  
NAND_CEx_B setup time  
NAND_CEx_B hold time  
NAND_WE_B pulse width  
NAND_ALE setup time  
NAND_ALE hold time  
Data setup time  
tCLS  
tCLH  
tCS  
]
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DH × T - 0.72 [see 2]  
(AS + DS + 1) × T [see 3,2  
(DH+1) × T - 1 [see 2]  
DS × T [see 2]  
]
tCH  
tWP  
tALS  
tALH  
tDS  
(AS + DS) × T - 0.49 [see 3,2  
(DH × T - 0.42 [see 2]  
DS × T - 0.26 [see 2]  
DH × T - 1.37 [see 2]  
(DS + DH) × T [see 2]  
DH × T [see 2]  
]
Data hold time  
tDH  
NF10 Write cycle time  
tWC  
tWH  
tRR4  
tRP  
NF11 NAND_WE_B hold time  
NF12 Ready to NAND_RE_B low  
NF13 NAND_RE_B pulse width  
NF14 READ cycle time  
(AS + 2) × T [see 3,2  
]
DS × T [see 2]  
(DS + DH) × T [see 2]  
DH × T [see 2]  
tRC  
NF15 NAND_RE_B high hold time  
tREH  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
54  
Electrical characteristics  
1
Table 55. Asynchronous Mode Timing Parameters (continued)  
Timing  
T = GPMI Clock Cycle  
ID  
Parameter  
Symbol  
Unit  
Min  
Max  
NF16 Data setup on read  
NF17 Data hold on read  
tDSR  
tDHR  
(DS × T -0.67)/18.38 [see 5,6  
]
ns  
ns  
0.82/11.83 [see 5,6  
]
1
The GPMI asynchronous mode output timing can be controlled by the module’s internal registers  
HW_GPMI_TIMING0_ADDRESS_SETUP, HW_GPMI_TIMING0_DATA_SETUP, and HW_GPMI_TIMING0_DATA_HOLD.  
This AC timing depends on these registers settings. In the table, AS/DS/DH represents each of these settings.  
2
3
4
5
6
AS minimum value can be 0, while DS/DH minimum value is 1.  
T = GPMI clock period -0.075ns (half of maximum p-p jitter).  
NF12 is met automatically by the design.  
Non-EDO mode.  
EDO mode, GPMI clock 100 MHz  
(AS=DS=DH=1, GPMI_CTL1 [RDN_DELAY] = 8, GPMI_CTL1 [HALF_PERIOD] = 0).  
In EDO mode (Figure 13), NF16/NF17 are different from the definition in non-EDO mode (Figure 12).  
They are called tREA/tRHOH (NAND_RE_B access time/NAND_RE_B HIGH to output hold). The  
typical value for them are 16 ns (max for tREA)/15 ns (min for tRHOH) at 50 MB/s EDO mode. In EDO  
mode, GPMI will sample NAND_DATAxx at rising edge of delayed NAND_RE_B provided by an  
internal DPLL. The delay value can be controlled by GPMI_CTRL1.RDN_DELAY(see the GPMI chapter  
of the device reference manual. The typical value of this control register is 0x8 at 50 MT/s EDO mode.  
However, if the board delay is large enough and cannot be ignored, the delay value should be made larger  
to compensate the board delay.  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
55  
Electrical characteristics  
4.9.2  
GPMI Source Synchronous mode AC timing (ONFI 2.x compatible)  
The following figure shows the write and read timing of Source Synchronous mode.  
NF19  
NF18  
.!.$?#%?"  
NF23  
NAND_CLE  
NF26  
NF25  
NF24  
NAND_ALE  
NF25 NF26  
NAND_WE/RE_B  
NF22  
NAND_CLK  
NAND_DQS  
NAND_DQS  
Output enable  
NF20  
NF20  
NF21  
NF21  
CMD  
ADD  
NAND_DATA[7:0]  
NAND_DATA[7:0]  
Output enable  
Figure 14. Source Synchronous Mode Command and Address Timing Diagram  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
56  
NXP Semiconductors  
Electrical characteristics  
NF19  
NF18  
.!.$?#%ꢀ?"  
.!.$?#,%  
NF23  
NF23  
NF24  
NF24  
NF25  
NF25  
NF26  
NF26  
.!.$?!,%  
NAND_WE/RE_B  
NF22  
.!.$?#,+  
.!.$?$13  
NF27  
NF27  
.!.$?$13  
Output enable  
NF29  
NF29  
.!.$?$1;ꢁꢂꢀ=  
NF28  
NF28  
.!.$?$1;ꢁꢂꢀ=  
Output enable  
Figure 15. Source Synchronous Mode Data Write Timing Diagram  
NF18  
NF19  
.!.$?#%?"  
.!.$?#,%  
NF24  
NF24  
NF23  
NF23  
NF26  
NF26  
NF25  
NF25  
NAND_ALE  
NF25  
.!.$?7%ꢃ2%  
NF25  
NF22  
NF26  
.!.$?#,+  
.!.$?$13  
.!.$?$13  
/UTPUT ENABLE  
.!.$?$!4!;ꢁꢂꢀ=  
.!.$?$!4!;ꢁꢂꢀ=  
/UTPUT ENABLE  
Figure 16. Source Synchronous Mode Data Read Timing Diagram  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
57  
Electrical characteristics  
.!.$?$13  
NF30  
.!.$?$!4!;ꢁꢂꢀ=  
D0  
D1  
D2  
D3  
NF30  
NF31  
NF31  
Figure 17. NAND_DQS/NAND_DQ Read Valid Window  
1
Table 56. Source Synchronous Mode Timing Parameters  
Timing  
T = GPMI Clock Cycle  
ID  
Parameter  
Symbol  
Unit  
Min  
Max  
2
NF18 NAND_CEx_B access time  
NF19 NAND_CEx_B hold time  
tCE  
tCH  
CE_DELAY × T - 0.79 [see ]  
0.5 × tCK - 0.63 [see 2]  
0.5 × tCK - 0.05  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
NF20 Command/address NAND_DATAxx setup time  
NF21 Command/address NAND_DATAxx hold time  
NF22 clock period  
tCAS  
tCAH  
tCK  
0.5 × tCK - 1.23  
NF23 preamble delay  
tPRE  
tPOST  
tCALS  
tCALH  
tDQSS  
tDS  
PRE_DELAY × T - 0.29 [see 2]  
POST_DELAY × T - 0.78 [see 2]  
0.5 × tCK - 0.86  
NF24 postamble delay  
NF25 NAND_CLE and NAND_ALE setup time  
NF26 NAND_CLE and NAND_ALE hold time  
NF27 NAND_CLK to first NAND_DQS latching transition  
NF28 Data write setup  
0.5 × tCK - 0.37  
T - 0.41 [see 2]  
0.25 × tCK - 0.35  
NF29 Data write hold  
tDH  
0.25 × tCK - 0.85  
NF30 NAND_DQS/NAND_DQ read setup skew  
NF31 NAND_DQS/NAND_DQ read hold skew  
tDQSQ  
tQHS  
2.06  
1.95  
1
The GPMI source synchronous mode output timing can be controlled by the module’s internal registers  
GPMI_TIMING2_CE_DELAY, GPMI_TIMING_PREAMBLE_DELAY, GPMI_TIMING2_POST_DELAY. This AC timing  
depends on these registers settings. In the table, CE_DELAY/PRE_DELAY/POST_DELAY represents each of these settings.  
2
T = tCK (GPMI clock period) -0.075ns (half of maximum p-p jitter).  
Figure 17 shows the timing diagram of NAND_DQS/NAND_DATAxx read valid window. For Source  
Synchronous mode, the typical value of tDQSQ is 0.85 ns (max) and 1 ns (max) for tQHS at 200 MB/s.  
GPMI will sample NAND_DATA[7:0] at both rising and falling edge of a delayed NAND_DQS signal,  
which can be provided by an internal DPLL. The delay value can be controlled by GPMI register  
GPMI_READ_DDR_DLL_CTRL.SLV_DLY_TARGET (see the GPMI chapter of the device reference  
manual. Generally, the typical delay value of this register is equal to 0x7 which means 1/4 clock cycle  
delay expected. However, if the board delay is large enough and cannot be ignored, the delay value should  
be made larger to compensate the board delay.  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
58  
NXP Semiconductors  
Electrical characteristics  
4.9.3  
ONFI NV-DDR2 mode (ONFI 3.2 compatible)  
Command and address timing  
4.9.3.1  
ONFI 3.2 mode command and address timing is the same as ONFI 1.0 compatible Async mode AC timing.  
See Section 4.9.1, “GPMI Asynchronous mode AC timing (ONFI 1.0 compatible)",” for details.  
4.9.3.2  
Read and write timing  
ONFI 3.2 mode read and write timing is the same as Toggle mode AC timing. See Section 4.9.4, “Toggle  
mode AC Timing",” for details.  
4.9.4  
Toggle mode AC Timing  
4.9.4.1  
Command and address timing  
NOTE  
Toggle mode command and address timing is the same as ONFI 1.0  
compatible Asynchronous mode AC timing. See Section 4.9.1, “GPMI  
Asynchronous mode AC timing (ONFI 1.0 compatible)",” for details.  
4.9.4.2  
Read and write timing  
Figure 18. Toggle mode data write timing  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
59  
Electrical characteristics  
DEV?CLK  
.!.$?#%X?"  
.& ꢄꢅ  
.!.$?#,%  
.!.$?!,%  
ꢄ T #+  
.&ꢆꢈ  
.!.$?7%?"  
.!.$?2%?"  
ꢄ T #+  
.& ꢆꢇ  
ꢄ T #+  
ꢄ T #+  
ꢄ T #+  
.!.$?$13  
.!.$?$!4!;ꢁꢂꢀ=  
Figure 19. Toggle mode data read timing  
1
Table 57. Toggle mode timing parameters  
Timing  
T = GPMI Clock Cycle  
ID  
Parameter  
Symbol  
Unit  
Min.  
Max.  
NF1 NAND_CLE setup time  
NF2 NAND_CLE hold time  
tCLS  
tCLH  
tCS  
(AS + DS) × T - 0.12 [see note2s,3]  
DH × T - 0.72 [see note2]  
(AS + DS) × T - 0.58 [see notes,2]  
DH × T - 1 [see note2]  
NF3 NAND_CE0_B setup time  
NF4 NAND_CE0_B hold time  
NF5 NAND_WE_B pulse width  
NF6 NAND_ALE setup time  
NF7 NAND_ALE hold time  
tCH  
tWP  
tALS  
tALH  
tCAS  
tCAH  
tCE  
DS × T [see note2]  
(AS + DS) × T - 0.49 [see notes,2]  
DH × T - 0.42 [see note2]  
DS × T - 0.26 [see note2]  
DH × T - 1.37 [see note2]  
NF8 Command/address NAND_DATAxx setup time  
NF9 Command/address NAND_DATAxx hold time  
NF18 NAND_CEx_B access time  
NF22 clock period  
CE_DELAY × T [see notes4,2  
]
ns  
ns  
ns  
ns  
tCK  
NF23 preamble delay  
tPRE PRE_DELAY × T [see notes5,2  
]
NF24 postamble delay  
tPOST  
POST_DELAY × T +0.43 [see  
note2]  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
60  
Electrical characteristics  
1
Table 57. Toggle mode timing parameters (continued)  
Timing  
T = GPMI Clock Cycle  
ID  
Parameter  
Symbol  
Unit  
Min.  
Max.  
NF28 Data write setup  
tDS6  
tDH6  
0.25 × tCK - 0.32  
ns  
ns  
NF29 Data write hold  
0.25 × tCK - 0.79  
NF30 NAND_DQS/NAND_DQ read setup skew  
NF31 NAND_DQS/NAND_DQ read hold skew  
tDQSQ7  
tQHS7  
3.18  
3.27  
1
The GPMI toggle mode output timing can be controlled by the module’s internal registers  
HW_GPMI_TIMING0_ADDRESS_SETUP, HW_GPMI_TIMING0_DATA_SETUP, and HW_GPMI_TIMING0_DATA_HOLD.  
This AC timing depends on these registers settings. In the table, AS/DS/DH represents each of these settings.  
2
3
4
AS minimum value can be 0, while DS/DH minimum value is 1.  
T = tCK (GPMI clock period) -0.075 ns (half of maximum p-p jitter).  
CE_DELAY represents HW_GPMI_TIMING2[CE_DELAY]. NF18 is guaranteed by the design. Read/Write operation is started  
with enough time of ALE/CLE assertion to low level.  
5
6
7
PRE_DELAY+1) (AS+DS)  
Shown in Figure 18.  
Shown in Figure 19.  
For DDR Toggle mode, Figure 19 shows the timing diagram of NAND_DQS/NAND_DATAxx read valid  
window. The typical value of tDQSQ is 1.4 ns (max) and 1.4 ns (max) for tQHS at 133 MB/s. GPMI will  
sample NAND_DATA[7:0] at both rising and falling edge of an delayed NAND_DQS signal, which is  
provided by an internal DPLL. The delay value of this register can be controlled by GPMI register  
GPMI_READ_DDR_DLL_CTRL.SLV_DLY_TARGET (see the GPMI chapter of the device reference  
manual. Generally, the typical delay value is equal to 0x7 which means 1/4 clock cycle delay expected.  
But if the board delay is big enough and cannot be ignored, the delay value should be made larger to  
compensate the board delay.  
4.10 External Peripheral Interface Parameters  
The following subsections provide information on external peripheral interfaces.  
4.10.1 LPSPI timing parameters  
All LPSPI interfaces do not have the same maximum serial clock frequency. There are two groups. LPSPI  
interfaces which can operate at 60 MHz in Master mode and 40 MHz in Slave mode and the other group  
where interfaces operate at 40 MHz in Master mode and 20 MHz in Slave mode. The same performance  
is achieved at 1.8 V and 3.3 V unless otherwise stated.  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
61  
Electrical characteristics  
Below are the LPSPI interfaces and their respective chip selects:  
Table 58. LPSPI interfaces and chip selects  
LPSPI interface  
Chip select  
Comment  
60 MHz in Master mode and 40 MHz in SPI0, SPI2, SPI2b, SPI3  
Slave mode  
SPI2 - default SPI2 balls  
SPI2b - muxed behind audio balls  
40 MHz in Master mode and 20 MHz in SPI1, SPI1b, SPI2c  
Slave mode  
SPI1 - muxed behind SAI balls  
SPI1b - muxed behind CSI balls  
SP2c - muxed behind uSDHC1 balls  
4.10.1.1 LPSPI Master mode  
Waveform is assuming LPSPI is configured in mode 0, i.e. TCR.CPOL=0b0 and TCR.CPHA=0b0. Timing  
parameters are valid for all modes using appropriate edge of the clock.  
Figure 20. LPSPI Master mode  
Table 59. LPSPI timings—Master mode at 60 MHz  
ID  
Parameter  
SPIx_SCLK Cycle frequency  
Min  
Max  
Unit  
60  
MHz  
ns  
t1 SPIx_SCLK High or Low Time–Read  
SPIx_SCLK High or Low Time–Write  
7.5  
t2 SPIx_CSy pulse width  
t3 SPIx_CSy Lead Time(1)  
7.5  
ns  
ns  
FCLK_PERIOD(2) x (PCSSCK  
+ 1) / 2PRESCALE - 3  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
62  
Electrical characteristics  
Table 59. LPSPI timings—Master mode at 60 MHz (continued)  
ID  
Parameter  
Min  
Max  
Unit  
t4 SPIx_CSy Lag Time(3)  
FCLK_PERIOD(2) x (SCKPCS  
+ 1) / 2PRESCALE + 3  
ns  
t5 SPIx_SDO output Delay (CLOAD = 20 pF)  
t6 SPIx_SDI Setup Time  
2
3
ns  
ns  
ns  
t7 SPIx_SDI Hold Time  
2
1
2
3
This timing is controllable through CCR.PCSSCK and TCR.PRESCALE registers.  
FCLK_PERIOD is the period of the functional clock provided to LPSPI module. Maximum allowed frequency is 240 MHz.  
This timing is controllable through CCR.SCKPCS and TCR.PRESCALE registers.  
Table 60. LPSPI timings—Master mode at 40 MHz  
ID  
Parameter  
SPIx_SCLK Cycle frequency  
Min  
Max  
Unit  
11  
40  
MHz  
ns  
t1 SPIx_SCLK High or Low Time–Read  
SPIx_SCLK High or Low Time–Write  
t2 SPIx_CSy pulse width  
t3 SPIx_CSy Lead Time(1)  
11  
ns  
ns  
FCLK_PERIOD(2) x (PCSSCK  
+ 1) / 2PRESCALE + 3  
t4 SPIx_CSy Lag Time(3)  
FCLK_PERIOD(2) x (SCKPCS  
+ 1) / 2PRESCALE + 3  
ns  
t5 SPIx_SDO output Delay (CLOAD = 20 pF)  
t6 SPIx_SDI Setup Time  
5
5
ns  
ns  
ns  
t7 SPIx_SDI Hold Time  
4
1
2
3
This timing is controllable through CCR.PCSSCK and TCR.PRESCALE registers.  
FCLK_PERIOD is the period of the functional clock provided to LPSPI module. Maximum allowed frequency is 240 MHz.  
This timing is controllable through CCR.SCKPCS and TCR.PRESCALE registers.  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
63  
Electrical characteristics  
Figure 21. LPSPI Slave mode  
Table 61. LPSPI timings—Slave mode at 40 MHz  
Parameter  
ID  
Min  
Max  
Unit  
t1  
SPIx_SCLK Cycle frequency  
SPIx_SCLK High or Low Time–Read  
11  
40  
MHz  
ns  
SPIx_SCLK High or Low Time–Write  
t2  
t3  
t4  
t5  
t6  
t7  
SPIx_CSy pulse width  
11  
4
5
ns  
ns  
ns  
ns  
ns  
ns  
SPIx_CSy Lead Time (CS setup time)  
SPIx_CSy Lag Time (CS hold time)  
SPIx_SDO output Delay (CLOAD = 20 pF)  
SPIx_SDI Setup Time  
2
2
SPIx_SDI Hold Time  
2
Table 62. LPSPI timings—Slave mode at 20 MHz  
Parameter  
ID  
Min  
Max  
Unit  
t1  
SPIx_SCLK Cycle frequency  
20  
MHz  
ns  
SPIx_SCLK High or Low Time–Read  
SPIx_SCLK High or Low Time–Write  
22  
t2  
t3  
SPIx_CSy pulse width  
22  
4
ns  
ns  
SPIx_CSy Lead Time (CS setup time)  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
64  
Electrical characteristics  
Table 62. LPSPI timings—Slave mode at 20 MHz (continued)  
ID  
Parameter  
Min  
Max  
Unit  
t4  
t5  
t6  
t7  
SPIx_CSy Lag Time (CS hold time)  
2
2
18  
ns  
ns  
ns  
ns  
SPIx_SDO output Delay (CLOAD = 20 pF)  
SPIx_SDI Setup Time  
SPIx_SDI Hold Time  
2
4.10.2 Serial audio interface (SAI) timing parameters  
The timings and figures in this section are valid for noninverted clock polarity (I2S_TCR2.BCP = 0b0,  
I2S_RCR2.BCP = 0b0) and non-inverted frame sync polarity (I2S_TCR4.FSP = 0b0, I2S_RCR4.FSP =  
0b0). If the polarity of the clock and/or the frame sync have been inverted, all the timings remain valid by  
inverting the clock signal (SAI_TXC / SAI_RXC) and/or the frame sync (SAI_TXFS / SAI_RXFS) shown  
in the figures below.  
The same performance is achieved at both 1.8 V and 3.3 V unless otherwise stated.  
NOTE  
SAI0 and SAI1 are transmit/receive capable. SAI2 and SAI3 are receive  
only.  
4.10.2.1 SAI Master Synchronous mode  
In this mode, transmitter clock and frame sync are used by both transmitter and receiver  
(I2S_TCR2.SYNC=0b00, I2S_RCR2.SYNC=0b01). In that case, SAI interface requires only 4 signals to  
be routed: SAI_TXC, SAI_TXFS, SAI_TXD and SAI_RXD. SAI_RXC and SAI_RXFS can be left  
unconnected. I2S_RCR2.BCI shall be set to 0b1 to get setup and hold times provided in Table 63.  
Figure 22. SAI Master Synchronous mode  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
65  
Electrical characteristics  
Table 63. SAI timings—Master Synchronous mode  
ID  
Parameters  
Min  
Max  
Unit  
SAI TXC clock frequency  
45%  
49.152  
MHz  
t1 SAI TXC pulse width low / high  
t2 SAI TXFS output valid  
t3 SAI TXD output valid  
t4 SAI RXD input setup  
t5 SAI RXD input hold  
55%  
2
SAI_TXC period  
ns  
ns  
ns  
ns  
2
1
4
4.10.2.2 SAI Master mode  
In this mode, transmitter and/or receiver part are set to bring out transmit and/or receive clock. Frame sync  
can be either input or output.  
Figure 23. SAI Master mode  
Table 64. SAI timings—Master mode  
ID  
Parameters  
SAI TXC / RXC clock frequency1  
Min  
Max  
Unit  
45%  
49.152  
55%  
2
MHz  
TXC/RXC period  
ns  
t1 SAI TXC / RXC pulse width low / high  
t2 SAI TXFS / RXFS output valid  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
66  
Electrical characteristics  
Unit  
Table 64. SAI timings—Master mode (continued)  
ID  
Parameters  
Min  
Max  
t3 SAI TXD output valid  
6
2
ns  
ns  
ns  
t4 SAI RXD/RXFS/TXFS input setup  
t5 SAI RXD/RXFS/TXFS input hold  
0
1
Given the high setup time requirement on inputs, receiver and transmitter, when using frame sync in input, are likely to run at  
a lower frequency. This frequency will be driven by characteristics of the external component connected to the interface.  
4.10.2.3 SAI Slave mode  
In this mode, transmitter and/or receiver parts are set to receive transmit and/or receive clock from external  
world. Frame sync can be either input or output.  
Figure 24. SAI Slave mode  
Table 65. SAI timings—Slave mode  
ID  
Parameters  
SAI TXC/RXC clock frequency  
Min  
Max  
Unit  
45%  
24.576  
55%  
13  
MHz  
t11 SAI TXC/RXC pulse width low/high  
t12 SAI TXFS/RXFS output valid  
t13 SAI TXD output valid  
TXC/RXC period  
ns  
ns  
ns  
ns  
13  
t14 SAI RXD/RXFS/TXFS input setup  
t15 SAI RXD/RXFS/TXFS input hold  
1
4
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
67  
Electrical characteristics  
4.10.3 Enhanced serial audio interface (ESAI)  
The same performance is achieved at both 1.8 V and 3.3 V unless otherwise stated.  
SCKT  
t1  
t1  
(Input / Output)  
FST (bit) out  
2t  
2t  
2t  
FST (word) out  
Data Out  
2t  
Last bit  
First bit  
t3  
t3  
4t  
t4  
FST (bit) in  
FST (word) in  
Flags Out  
t5  
t6  
t5  
t6  
t7  
Figure 25. ESAI Transmit timing  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
68  
Electrical characteristics  
Figure 26. ESAI Receive timing  
The following table shows the interface timing values. The ID field in the table refers to timing signals  
found in Figure 25 and Figure 26.  
Table 66. Enhanced Serial Audio Interface (ESAI) Timing  
ID  
Parameters  
Min  
Max  
Condition1  
Unit  
t1  
t2  
Clock frequency  
SCKT / SCKT pulse width high / low  
FST output delay  
45%  
24.576  
55%  
MHz  
SCKT / SCKR period  
ns  
10  
2
x ck  
i ck  
t3  
t4  
t5  
t6  
t7  
TX data - high impedance / valid data  
TX data output delay  
9
1
x ck  
i ck  
ns  
ns  
ns  
ns  
ns  
10  
2
x ck  
i ck  
FST - setup requirement  
FST - hold requirement  
Flag output delay  
2
10  
x ck  
i ck  
2
0
x ck  
i ck  
10  
2
x ck  
i ck  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
69  
Electrical characteristics  
Table 66. Enhanced Serial Audio Interface (ESAI) Timing (continued)  
ID  
Parameters  
Min  
Max  
Condition1  
Unit  
t8  
FSR output delay  
7
4
x ck  
i ck a  
ns  
t9  
RX data pins - setup requirement  
RX data pins - hold requirement  
FSR - setup requirement  
2
10  
x ck  
i ck  
ns  
ns  
ns  
ns  
ns  
ns  
t10  
t11  
t12  
t13  
t14  
2
0
x ck  
i ck  
2
10  
x ck  
i ck a  
FSR - hold requirement  
2
0
x ck  
i ck a  
Flags - setup requirement  
Flags - hold requirement  
2
10  
x ck  
i ck s  
2
0
x ck  
i ck s  
RX_HF_CLK / TX_HX_CLK clock cycle  
TX_HF_CLK input to SCKT  
20  
10  
10  
ns  
ns  
ns  
RX_HF_CLK input to SCKR  
1
i ck = internal clock  
x ck = external clock  
i ck a = internal clock, asynchronous mode (SCKT and SCKR are two different clocks)  
i ck s = internal clock, synchronous mode (SCKT and SCKR are the same clock)  
4.10.4 Ultra High Speed SD/SDIO/MMC Host Interface (uSDHC) AC  
Timing  
This section describes the electrical information of the uSDHC, including:  
SD3.1/eMMC5.1 High-Speed mode AC Timing  
eMMC5.1 DDR 52 mode/SD3.1 DDR 50 mode timing  
HS400 AC timing—eMMC 5.1 only  
HS200 Mode Timing  
SDR50/SDR104 AC Timing  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
70  
NXP Semiconductors  
Electrical characteristics  
4.10.4.1 SD3.1/eMMC5.1 High-Speed mode AC Timing  
The following figure depicts the timing of SD3.1/eMMC5.1 High-Speed mode, and Table 67 lists the  
timing characteristics.  
SD4  
SD2  
SD1  
SD5  
SDx_CLK  
SD3  
SD6  
Output from uSDHC to card  
SDx_DATA[7:0]  
SD7  
SD8  
Input from card to uSDHC  
SDx_DATA[7:0]  
Figure 27. SD3.1/eMMC5.1 High-Speed mode Timing  
Table 67. SD3.1/eMMC5.1 High-Speed mode interface timing specification  
ID  
Parameter  
Symbols  
Min  
Max  
Unit  
Card Input Clock  
1
SD1  
Clock Frequency (Low Speed)  
fPP  
0
0
400  
25/50  
20/52  
400  
kHz  
MHz  
MHz  
kHz  
ns  
2
Clock Frequency (SD/SDIO Full Speed/High Speed)  
Clock Frequency (MMC Full Speed/High Speed)  
Clock Frequency (Identification Mode)  
Clock Low Time  
fPP  
3
fPP  
0
fOD  
tWL  
100  
7
SD2  
SD3  
SD4  
SD5  
Clock High Time  
tWH  
tTLH  
tTHL  
7
ns  
Clock Rise Time  
3
ns  
Clock Fall Time  
3
ns  
eSDHC Output/Card Inputs SD_CMD, SD_DATA (Reference to SD_CLK)  
eSDHC Output Delay tOD –6.6  
eSDHC Input/Card Outputs SD_CMD, SD_DATA (Reference to SD_CLK)  
SD6  
3.6  
ns  
SD7  
SD8  
eSDHC Input Setup Time  
eSDHC Input Hold Time4  
tISU  
tIH  
2.5  
1.5  
ns  
ns  
1
2
In low speed mode, card clock must be lower than 400 kHz, voltage ranges from 2.7 to 3.6 V.  
In normal (full) speed mode for SD/SDIO card, clock frequency can be any value between 025 MHz. In high-speed mode,  
clock frequency can be any value between 050 MHz.  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
71  
Electrical characteristics  
3
In normal (full) speed mode for MMC card, clock frequency can be any value between 020 MHz. In high-speed mode, clock  
frequency can be any value between 052 MHz.  
4
To satisfy hold timing, the delay difference between clock input and cmd/data input must not exceed 2 ns.  
4.10.4.2 eMMC5.1 DDR 52 mode/SD3.1 DDR 50 mode timing  
The following figure depicts the timing of eMMC5.1 DDR 52 mode/SD3.1 DDR 50 mode, and Table 68  
lists the timing characteristics. Be aware that only SDx_DATA is sampled on both edges of the clock (not  
applicable to SD_CMD).  
SD1  
SDx_CLK  
SD2  
SD2  
Output from eSDHCv3 to card  
SDx_DATA[7:0]  
......  
......  
SD3  
SD4  
Input from card to eSDHCv3  
SDx_DATA[7:0]  
Figure 28. eMMC 5.1 timing  
Figure 29. eMMC5.1 DDR 52 mode/SD3.1 DDR 50 mode interface timing  
Table 68. eMMC5.1 DDR 52 mode/SD3.150 mode interface timing specification  
ID  
Parameter  
Symbols  
Card Input Clock1  
Min  
Max  
Unit  
SD1  
SD1  
Clock Frequency (eMMC5.1 DDR)  
Clock Frequency (SD3.1 DDR)  
fPP  
fPP  
0
0
52  
50  
MHz  
MHz  
uSDHC Output / Card Inputs SD_CMD, SDx_DATAx (Reference to CLK)  
uSDHC Output Delay tOD 2.8  
uSDHC Input / Card Outputs SD_CMD, SDx_DATAx (Reference to CLK)  
SD2  
6.8  
ns  
SD3  
SD4  
uSDHC Input Setup Time  
uSDHC Input Hold Time  
tISU  
tIH  
1.7  
1.5  
ns  
ns  
1
Clock duty cycle will be in the range of 47% to 53%.  
4.10.4.3 HS400 AC timing—eMMC 5.1 only  
Figure 30 depicts the timing of HS400. Table 69 lists the HS400 timing characteristics. Be aware that only  
data is sampled on both edges of the clock (not applicable to CMD). The CMD input/output timing for  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
72  
NXP Semiconductors  
Electrical characteristics  
HS400 mode is the same as CMD input/output timing for SDR104 mode. Check SD5, SD6 and SD7  
parameters in Table 71 SDR50/SDR104 Interface Timing Specification for CMD input/output timing for  
HS400 mode.  
Figure 30. HS400 timing  
Table 69. HS400 interface timing specifications  
ID  
Parameter  
Symbols  
Min  
Max  
Unit  
Card Input clock  
SD1  
Clock Frequency  
fPP  
tCL  
0
200  
Mhz  
ns  
SD2  
SD3  
Clock Low Time  
Clock High Time  
0.46 × tCLK  
0.46 × tCLK  
0.54 × tCLK  
0.54 × tCLK  
tCH  
ns  
uSDHC Output/Card inputs DAT (Reference to SCK)  
SD4  
SD5  
Output Skew from Data of  
Edge of SCK  
tOSkew1  
0.45  
0.45  
ns  
ns  
Output Skew from Edge of  
SCK to Data  
tOSkew2  
uSDHC input/Card Outputs DAT (Reference to Strobe)  
SD6  
SD7  
uSDHC input skew  
uSDHC hold skew  
tRQ  
0.45  
0.45  
ns  
ns  
tRQH  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
73  
Electrical characteristics  
4.10.4.4 HS200 Mode Timing  
The following figure depicts the timing of HS200 mode, and Table 70 lists the HS200 timing  
characteristics.  
SD1  
SD2  
SD3  
SD7  
SCK  
SD4/SD5  
8-bit output from uSDHC to eMMC  
8-bit input from eMMC to uSDHC  
SD6  
SD8  
Figure 31. HS200 Mode Timing  
Table 70. HS200 Interface Timing Specification  
ID  
Parameter  
Symbols  
Min  
Max  
Unit  
Card Input Clock  
SD1  
SD2  
SD2  
Clock Frequency Period  
Clock Low Time  
tCLK  
tCL  
5.0  
ns  
ns  
ns  
0.46 × tCLK  
0.46 × tCLK  
0.54 × tCLK  
0.54 × tCLK  
Clock High Time  
tCH  
uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in HS200 (Reference to CLK)  
uSDHC Output Delay tOD –1.6  
uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in HS200 (Reference to CLK)1  
Card Output Data Window tODW 0.5*tCLK  
1
ns  
ns  
SD5  
SD8  
1HS200 is for 8 bits while SDR104 is for 4 bits.  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
74  
Electrical characteristics  
4.10.4.5 SDR50/SDR104 AC Timing  
The following figure depicts the timing of SDR50/SDR104, and Table 71 lists the SDR50/SDR104 timing  
characteristics.  
SD1  
SD2  
SD3  
SCK  
SD5  
SD4  
Output from uSDHC to card  
SD7  
SD6  
Input from card to uSDHC  
SD8  
Figure 32. SDR50/SDR104 timing  
Table 71. SDR50/SDR104 Interface Timing Specification  
ID  
Parameter  
Symbols  
Min  
Max  
Unit  
Card Input Clock  
SD1 Clock Frequency Period  
SD2 Clock Low Time  
tCLK  
tCL  
4.8  
ns  
ns  
ns  
0.46 × tCLK  
0.46 × tCLK  
0.54 × tCLK  
0.54 × tCLK  
SD3 Clock High Time  
tCH  
uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in SDR50 (Reference to SDx_CLK)  
SD4 uSDHC Output Delay tOD –3  
uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in SDR104 (Reference to SDx_CLK)  
uSDHC Output Delay tOD –1.6  
uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in SDR50 (Reference to SDx_CLK)  
1
ns  
ns  
1
SD5  
uSDHC Input Setup Time  
uSDHC Input Hold Time  
tISU  
tIH  
2.5  
1.5  
ns  
ns  
SD6  
SD7  
uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in SDR104 (Reference to SDx_CLK)1  
Card Output Data Window tODW 0.5 × tCLK  
ns  
SD8  
1
Data window in SDR100 mode is variable.  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
75  
Electrical characteristics  
4.10.4.6 Bus Operation Condition for 3.3 V and 1.8 V Signaling  
The DC parameters for the NVCC_SD1, NVCC_SD2, and NVCC_SD3 supplies are identical to those  
shown in “,” and Table 31, "Dual-voltage 1.8 V GPIO DC parameters," on page 37Table 32,  
"Dual-voltage 3.3 V GPIO DC parameters," on page 38.  
4.10.5 Ethernet Controller (ENET) AC Electrical Specifications  
ENET interface supporting RGMII protocol in delay and non-delay mode. RGMII is used to support up to  
1000 Mbps Ethernet as well as RMII protocol. RMII is used to support up to 100 Mbps Ethernet.  
NOTE  
Both ENET0 and ENET1 support RGMII at 1.8 V and 2.5 V, and RMII at  
3.3 V.  
Table 72. RGMII/RMII pin mapping  
Pin name1  
RGMII  
RGMII_TXC  
RMII  
Comment2  
ENETx_RGMII_TXC  
RCLK50M  
RCLK50M can be an input or  
an output. It's using different  
Alternate pin muxing modes.  
Refer to pin muxing for details.  
ENETx_RGMII_TX_CTL  
ENETx_RGMII_TXD0  
ENETx_RGMII_TXD1  
ENETx_RGMII_TXD2  
ENETx_RGMII_TXD3  
ENETx_RGMII_RXC  
ENETx_RGMII_RX_CTL  
ENETx_RGMII_RXD0  
ENETx_RGMII_RXD1  
ENETx_RGMII_RXD2  
RGMII_TX_CTL  
RGMII_TXD0  
RGMII_TXD1  
RGMII_TXD2  
RGMII_TXD3  
RGMII_RXC  
RMII_TXEN  
RMII_TXD0  
RMII_TXD1  
N/A  
N/A  
N/A  
RGMII_RX_CTL  
RGMII_RXD0  
RGMII_RXD1  
RGMII_RXD2  
RMII_CRS_DV  
RMII_RXD0  
RMII_RXD1  
RMII_RXER  
RMII_RXER is mapped on  
ALT1 mode of pin muxing.  
ENETx_RGMII_RXD3  
RGMII_RXD3  
N/A  
N/A  
ENETx_REFCLK_125M_25M RGMII_REF_CLK  
RGMII_REF_CLK is optional  
for RGMII operation and  
dependent on the intended  
clock configuration.  
ENETx_MDIO  
ENETx_MDC  
RGMII_MDIO  
RGMII_MDC  
RMII_MDIO  
RMII_MDC  
1
x can be 0 or 1.  
2
Except for RCLK50M and RMII_RXER, all other RMII functions are using the same pin muxing mode as RGMII.  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
76  
NXP Semiconductors  
Electrical characteristics  
4.10.5.1 RGMII  
4.10.5.1.1 No-Internal-Delay mode  
This mode corresponds to the RGMIIv1.3 specification.  
Figure 33. RGMII timing diagram—No-Internal-Delay mode  
Table 73. RGMII timings—No-Internal-Delay mode  
ID  
Parameter  
Min  
Typ  
Max  
Unit  
TXC / RXC frequency  
Clock cycle  
7.2  
-500  
1
125  
8
8.8  
500  
2.6  
MHz  
ns  
t1  
t2  
t3  
Data to clock output skew  
ps  
Data to clock input skew1(1)  
ns  
1
This implies that PC board design requires clocks to be routed such that an additional trace delay of greater than 1.5 ns and  
less than 2.0 ns is added to the associated clock signal.  
4.10.5.1.2 Internal-delay mode  
This mode corresponds to RGMIIv2.0 specification.  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
77  
Electrical characteristics  
Figure 34. RGMII timing diagram—Internal-Delay mode  
Table 74. RGMII timing—Internal-Delay mode  
ID  
Parameter  
Min  
Typ  
Max  
Unit  
TXC / RXC frequency  
7.2  
1.2  
1.2  
0
125  
8
8.8  
MHz  
ns  
t1  
t2  
t3  
t4  
t5  
Clock cycle  
TXD setup time  
TXD hold time  
RXD setup time  
RXD hold time  
ns  
ns  
ns  
2.5  
ns  
4.10.5.2 RMII  
RMII interface is matching RMII v1.2 specification. In RMII mode, the reference clock can be generated  
internally and provided to the PHYthrough RCLK50M_OUT. Or, it come from and external 50MHz clock  
generator which is connected to the PHY and to i.MX8 through RCLK50M_IN pin.  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
78  
NXP Semiconductors  
Electrical characteristics  
Figure 35. RMII timing diagram  
Timings in table below are covering both cases: reference clock generated internally or externally.  
Table 75. RMII timing  
ID  
Parameter  
Min  
Typ  
Max  
Unit  
t1  
Reference clock  
35  
2
50  
50  
65  
12  
MHz  
ppm  
%
Reference clock accuracy  
Reference clock duty-cycle  
t2  
t3  
t4  
RMII_TXEN, RMII_TXD output delay  
RMII_CRS_DV, RMII_RXD setup time  
RMII_CRS_DV, RMII_RXD hold time  
ns  
4
ns  
2
ns  
4.10.5.3 MDIO  
MDIO is the control link used to configure Ethernet PHY connected to i.MX8 device.  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
79  
Electrical characteristics  
Figure 36. MDIO timing diagram  
Table 76. MDIO timing  
ID  
Parameter  
Min  
Typ  
Max  
Unit  
MDC frequency  
180  
0
2.5  
20  
MHz  
%
t1  
t2  
t3  
t4  
MDC high / low pulse width  
MDIO output delay  
MDIO setup time  
MDIO hold time  
ns  
10  
10  
ns  
ns  
4.10.6 CAN network AC Electrical Specifications  
The Flexible Controller Area Network (FlexCAN) module is a communication controller implementing  
the CAN protocol according to the CAN with Flexible Data rate (CAN FD) protocol and the CAN 2.0B  
protocol specification. The processor has three CAN modules available for systems design. Tx and Rx  
ports for both modules are multiplexed with other I/O pins. See the IOMUXC chapter of the device  
reference manual to see which pins expose Tx and Rx pins; these ports are named FLEXCAN_TX and  
FLEXCAN_RX, respectively.  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
80  
NXP Semiconductors  
Electrical characteristics  
4.10.7 I2C Module Timing Parameters  
2
This section describes the timing parameters of the I C module. The following figure depicts the timing  
2
2
of the I C module, and Table 77 lists the I C module timing characteristics.  
I2Cx_SDA  
I2Cx_SCL  
IC11  
IC9  
IC10  
IC7  
IC4  
IC2  
IC3  
IC8  
IC10b  
IC6  
IC11b  
STOP  
START  
START  
START  
IC5  
IC1  
2
Figure 37. I C bus timing  
2
Table 77. I C Module Timing Parameters  
Standard Mode  
Fast Mode  
ID  
Parameter  
Unit  
Min  
Max  
Min  
Max  
IC1  
IC2  
IC3  
IC4  
IC5  
IC6  
IC7  
IC8  
IC9  
I2Cx_SCL cycle time  
10  
4.0  
4.0  
01  
2.5  
0.6  
0.6  
01  
µs  
µs  
µs  
Hold time (repeated) START condition  
Set-up time for STOP condition  
Data hold time  
3.452  
0.92 µs  
HIGH Period of I2Cx_SCL Clock  
LOW Period of the I2Cx_SCL Clock  
Set-up time for a repeated START condition  
Data set-up time  
4.0  
4.7  
4.7  
250  
4.7  
0.6  
1.3  
0.6  
µs  
µs  
µs  
ns  
µs  
1003  
1.3  
Bus free time between a STOP and START condition  
4
IC10/IC10b Rise time of both I2Cx_SDA and I2Cx_SCL signals  
IC11/IC11b Fall time of both I2Cx_SDA and I2Cx_SCL signals  
1000  
300  
400  
20 + 0.1Cb 300 ns  
4
20 + 0.1Cb 300 ns  
IC12  
Capacitive load for each bus line (Cb)  
400 pF  
1
A device must internally provide a hold time of at least 300 ns for I2Cx_SDA signal in order to bridge the undefined region of  
the falling edge of I2Cx_SCL.  
2
3
The maximum hold time has only to be met if the device does not stretch the LOW period (ID no IC5) of the I2Cx_SCL signal.  
A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system, but the requirement of Set-up time (ID No IC7)  
of 250 ns must be met. This automatically is the case if the device does not stretch the LOW period of the I2Cx_SCL signal.  
If such a device does stretch the LOW period of the I2Cx_SCL signal, it must output the next data bit to the I2Cx_SDA line  
max_rise_time (IC9) + data_setup_time (IC7) = 1000 + 250 = 1250 ns (according to the Standard-mode I2C-bus specification)  
before the I2Cx_SCL line is released.  
4
Cb = total capacitance of one bus line in pF.  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
81  
Electrical characteristics  
Table 78. I2C timing  
Fast Mode Plus  
Min  
High Speed1  
Min Max  
Unit  
ID  
Parameter  
SCL clock frequency  
Max  
IC1  
IC2  
IC3  
IC4  
IC5  
IC6  
IC7  
IC8  
IC9  
1
160  
160  
0
3.4  
70  
MHz  
ns  
Hold time (repeated) START condition  
Set-up time for STOP condition  
Data hold time  
260  
260  
0
ns  
ns  
HIGH Period of I2Cx_SCL Clock  
LOW Period of the I2Cx_SCL Clock  
Set-up time for a repeated START condition  
Data set-up time  
260  
500  
260  
50  
60  
ns  
160  
160  
10  
ns  
ns  
ns  
Bus free time between a STOP and START  
condition  
500  
150  
ns  
IC10 Rise time of I2Cx_SDA signals  
IC11 Fall time of I2Cx_SDA signals  
120  
120  
10  
10  
80  
80  
ns  
ns  
12 (@3.3 V)  
6.5 (@1.8 V)  
IC10b Rise time of I2Cx_SCL signals  
IC11b Fall time of I2Cx_SCL signals  
120  
120  
10  
10  
40  
40  
ns  
ns  
12 (@3.3 V)  
6.5 (@1.8 V)  
IC12 Capacitive load for each bus line (Cb)  
550  
100  
pF  
1
High-speed mode is only available for I2C modules in DMA, SCU and Cortex-M4 subsystems.  
4.10.8 MIPI-DSI/LVDS combo display output specifications  
The physical pins of the combo display output controller can be used in LVDS mode or in DSI display  
mode.  
4.10.8.1 MIPI-DSI/LVDS display bridge module parameters  
Maximum frequency support for combination MIPI-DSI/LVDS modules:  
Table 79. MIPI-DSI/LVDS combo pins  
Function1,2  
DSI  
Channel A  
DSI up to 1.05 Gb/per lane  
Channel B  
DSI up to 1.05 Gb/per lane  
Mix  
Mix  
4 pairs LVDS up to 1.05 Gb per pair  
DSI up to 1.05 Gb/per lane  
DSI up to 1.05 Gb/per lane  
4 pairs LVDS up to 1.05 Gb per pair  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
82  
Electrical characteristics  
Table 79. MIPI-DSI/LVDS combo pins (continued)  
Channel A  
Function1,2  
Channel B  
LVDS (single  
channel)  
4 pairs LVDS up to 1.05 Gb per pair  
4 pairs LVDS up to 1.05 Gb per pair  
LVDS (dual  
channel)  
8 pairs LVDS up to 595 Mb per pair  
1
For DSI the maximum clock speed is 1.05 GHz.  
2
For LVDS in single-channel operation the maximum clock speed is 150 MHz; in dual-channel operation with a single  
synchronized clock the maximum clock speed is 85 MHz.  
4.10.8.2 LVDS display bridge (LDB) module electrical specifications  
The MIPI DSI/LVDS interface is compatible with TIA/EIA 644-A standard. For more details, see  
TIA/EIA STANDARD 644-A, “Electrical Characteristics of Low Voltage Differential Signaling (LVDS)  
Interface Circuits.”  
Table 80. LVDS Display Bridge (LDB) Electrical Specifications  
Parameter  
Symbol  
Test Condition  
100 Ω Differential load  
Min  
Max  
Units  
Differential Voltage Output Voltage  
Output Voltage High  
VOD  
Voh  
0.25  
0.4  
V
V
100 Ω differential load  
(0 V Diff—Output High Voltage static)  
1.475  
Output Voltage Low  
Offset Static Voltage  
Vol  
100 Ω differential load  
0.925  
1.125  
V
V
(0 V Diff—Output Low Voltage static)  
VOS  
Two 49.9 Ω resistors in series between  
N-P terminal, with output in either Zero or  
One state, the voltage measured between  
the 2 resistors.  
1.275  
VOS Differential  
VOSDIFF  
Difference in VOS between a One and a  
Zero state  
mV  
Output short-circuited to GND  
Output short current  
ISA ISB  
ISAB  
With the output common shorted to GND  
40  
12  
mA  
mA  
4.10.8.3 MIPI-DSI HS-TX specifications  
Table 81. MIPI high-speed transmitter DC specifications  
Parameter  
Symbol  
Min Typ Max  
Unit  
1
VCMTX  
High Speed Transmit Static Common Mode Voltage  
VCMTX mismatch when Output is Differential-1 or Differential-0  
High Speed Transmit Differential Voltage  
150 200  
250  
5
mV  
mV  
mV  
|ΔVCMTX (1,0)  
|
1
|VOD  
|
140 200  
270  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
83  
Electrical characteristics  
Table 81. MIPI high-speed transmitter DC specifications (continued)  
Symbol  
|ΔVOD  
Parameter  
Min Typ Max  
Unit  
|
VOD mismatch when Output is Differential-1 or Differential-0  
High Speed Output High Voltage  
40  
50  
10  
360  
62.5  
10  
mV  
mV  
Ω
1
VOHHS  
ZOS  
Single Ended Output Impedance  
ΔZOS  
Single Ended Output Impedance Mismatch  
%
1
Value when driving into load impedance anywhere in the ZID range.  
Table 82. MIPI high-speed transmitter AC specifications  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
ΔVCMTX(HF)  
ΔVCMTX(LF)  
Common-level variations above 450 MHz  
Common-level variation between 50-450 MHz  
Rise Time and Fall Time (20% to 80%)  
15  
25  
mVRMS  
mVPEAK  
ps  
1
tR and tF  
100  
0.35 UI  
1
UI is the long-term average unit interval.  
4.10.8.4 MIPI-DSI LP-TX specifications  
Table 83. MIPI low-power transmitter DC specifications  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
1
VOH  
Thevenin Output High Level  
Thevenin Output Low Level  
1.1  
–50  
110  
1.2  
1.3  
50  
V
mV  
Ω
VOL  
2
ZOLP  
Output Impedance of Low Power Transmitter  
1
2
This specification can only be met when limiting the core supply variation from 1.1 V till 1.3 V.  
Although there is no specified maximum for ZOLP, the LP transmitter output impedance ensures the TRLP/TFLP specification  
is met.  
Table 84. MIPI low-power transmitter AC specifications  
Symbol  
Parameter  
Min Typ Max Unit  
1
TRLP/TFLP  
15% to 85% Rise Time and Fall Time  
30% to 85% Rise Time and Fall Time  
25  
35  
ns  
ns  
ns  
1,2,3  
TREOT  
4
TLP-PULSE-TX Pulse width of the LP exclusive-OR clock: First LP exclusive-OR clock pulse after Stop 40  
state or last pulse before Stop state  
Pulse width of the LP exclusive-OR clock: All other pulses  
Period of the LP exclusive-OR clock  
20  
90  
ns  
ns  
TLP-PER-TX  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
84  
Electrical characteristics  
Table 84. MIPI low-power transmitter AC specifications (continued)  
Parameter Min Typ Max Unit  
Symbol  
1,5,6,7  
δV/δtSR  
Slew Rate @ CLOAD= 0 pF  
Slew Rate @ CLOAD= 5 pF  
Slew Rate @ CLOAD= 20 pF  
Slew Rate @ CLOAD= 70 pF  
Load Capacitance  
30  
30  
30  
30  
0
500 mV/ns  
200 mV/ns  
150 mV/ns  
100 mV/ns  
CLOAD  
70  
pF  
1
CLOAD includes the low equivalent transmission line capacitance. The capacitance of TX and RX are assumed to always be <  
10 pF. The distributed line capacitance can be up to 50 pF for a transmission line with 2 ns delay.  
2
The rise-time of TREOT starts from the HS common-level at the moment of the differential amplitude drops below 70 mV, due  
to stopping the differential drive.  
3
4
With an additional load capacitance CCM between 0 to 60 pF on the termination center tap at RX side of the lane.  
This parameter value can be lower then TLPX due to differences in rise vs. fall signal slopes and trip levels and mismatches  
between Dp and Dn LP transmitters. Any LP exclusive-OR pulse observed during HS EoT (transition from HS level to LP-11)  
is glitch behavior as described in Low-Power Receiver section.  
5
6
7
When the output voltage is between 15% and below 85% of the fully settled LP signal levels.  
Measured as average across any 50 mV segment of the output signal transition.  
This value represents a corner point in a piecewise linear curve.  
4.10.8.5 MIPI-DSI LP-RX specifications  
Table 85. MIPI low power receiver DC specifications  
Parameter Min  
Symbol  
VIH  
Typ  
Max  
Unit  
Logic 1 input voltage  
880  
1.3  
550  
300  
mV  
mV  
mV  
mV  
VIL  
Logic 0 input voltage, not in ULP state  
Logic 0 input voltage, ULP state  
Input hysteresis  
VIL-ULPS  
VHYST  
25  
Table 86. MIPI low power receiver AC specifications  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
1,2  
eSPIKE  
Input pulse rejection  
20  
300  
V.ps  
ns  
3
TMIN-RX  
Minimum pulse width response  
Peak Interference amplitude  
Interference frequency  
VINT  
200  
mV  
MHz  
fINT  
450  
1
2
3
Time-voltage integration of a spike above VIL when in LP-0 state or below VIH when in LP-1 state.  
An impulse below this value will not change the receiver state.  
An input pulse greater than this value shall toggle the output.  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
85  
Electrical characteristics  
4.10.8.6 MIPI-DSI LP-CD specifications  
Table 87. MIPI contention detector DC specifications  
Parameter Min  
Symbol  
Typ  
Max  
Unit  
VIHCD  
VILCD  
Logic 1 contention threshold  
Logic 0 contention threshold  
450  
mV  
mV  
200  
4.10.8.7 MIPI-DSI DC specifications  
Table 88. MIPI input characteristics DC specifications  
Symbol  
VPIN  
Parameter  
Min  
Typ  
Max  
Unit  
Pad signal voltage range  
Pin leakage current  
Ground shift  
–50  
–10  
–50  
–0.15  
1350  
10  
mV  
μA  
mV  
V
1
ILEAK  
VGNDSH  
50  
2
VPIN(absmax)  
Maximum pin voltage level  
1.45  
20  
3
TVPIN(absmax) Maximum transient time above VPIN(max) or below VPIN(min)  
ns  
1
When the pad voltage is within the signal voltage range between VGNDSH(min) to VOH + VGNDSH(max) and the Lane Module is  
in LP receive mode.  
2
3
This value includes ground shift.  
The voltage overshoot and undershoot beyond the VPIN is only allowed during a single 20 ns window after any LP-0 to LP-1  
transition or vice versa. For all other situations it must stay within the VPIN range.  
4.10.9 PCIe 3.0 PHY Parameters  
The TX and RX eye diagrams specifications are per the template shown in the following figure. The  
summary of specifications is shown in Table 89 and Table 90. Note that the time closure (1–AOPENING)  
in the eye templates needs not match jitter specifications in the Standards Specifications, as there are such  
discrepancies in some Standards Specifications. The design meets the tightest of specifications in case of  
discrepancy.  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
86  
NXP Semiconductors  
Electrical characteristics  
Figure 38. TX and RX eye diagram template  
Table 89. PCIe transmitter eye specifications for example standards  
UI AOPENING BOPENING AOPENING BOPENING VDIFFp-pmin VDIFFp-pmax  
ps  
UI  
ps  
mV  
PCI Express Gen 1 Transition Bit  
PCI ExpressGen 1 De-emphasized Bit  
PCI Express Gen 2 Transition Bit  
PCI Express Gen 2 De-emphasized Bit  
400  
400  
200  
200  
0.75  
0.75  
0.75  
0.75  
0
0
0
0
300  
300  
150  
150  
0
0
0
0
800  
505  
800  
379  
12001  
757  
12001  
850  
1
VDIFFp-p eye opening is limited to VDDIO under matched termination conditions.  
Table 90. PCIe receiver eye specifications for example standards  
UI AOPENING BOPENING AOPENING BOPENING VDIFFp-pmin VDIFFp-pmax  
ps  
UI  
ps  
mV  
PCI Express Gen 1 Transition Bit  
400  
200  
125  
0.4  
0
0
0
0
160  
0
0
0
0
175  
100  
25  
1200  
1200  
1300  
PCI Express Gen 2 Transition Bit  
PCI Express Gen 3 Virtual EYE1  
0.3  
38  
1
PCIE 3.0 8 GT/s measured using PCIE reference equalizer + CDR per PCIE specification.  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
87  
Electrical characteristics  
Table 91. PCIe differential output driver characteristics (including board and load)  
Parameter  
Min  
Typ  
Max  
Units  
Notes  
1
Output Rise and fall time TR, TF  
175  
350  
20  
50  
ps  
%
ps  
ns  
μs  
Ω
1, 2  
Output Rise/Fall matching  
Output skewTOSKEW  
Initialization time from assertion of TXOE  
Initialization time from assertion of TXENA  
Transmission line characteristic impedance (ZO)  
100  
10  
50  
Driver output impedance, single ended (small signal @  
Vout=Vcm)  
1000  
Ω
Output single ended voltage (RS= 33, RT= 50 Ω)  
3, 4  
3
VOH  
0.65  
-13  
-0.20  
0.71  
-14.2  
0.00  
0.85  
-17  
0.05  
V
mA  
V
IOH@ 6 * IR  
VOL  
Output common mode voltage (RS = 33, RT= 50 Ω)  
|VOCM  
|
0.25  
-0.015  
-0.050  
0.375  
0.55  
0.015  
0.050  
5
6
ΔVOCM (DC)  
ΔVOCM (AC)  
V
7,8  
9
Buffer induced deterministic jitter (absolute, pk-pk)  
Reference Buffer Dynamic Power (Digital)  
Reference Buffer Dynamic Power (Analog)  
Output Buffer Dynamic Power (Digital)  
4
ps  
μA  
mA  
μA  
mA  
0.015  
2.8  
0.66  
3.14  
1.8  
9
9
0.035  
18.9  
9
Output Buffer Dynamic Power (Analog)  
22.11  
1
When the output is transitioning between logic 0 and logic 1, or logic 1 and logic 0, and driving a terminated  
transmission line, the outputs monotonically transition between VOL and VOH, VOH, and VOL respectively. Target rise and  
fall times observed at the receiver and are primarily set by board trace impedance and Load capacitance. Rise and fall  
times are defined by 25% and 75% crossing points.  
2
3
Calculated as: 2 × (TR–TF) / (TR+ TF)  
IR is proportional to the reference current. Measured across RT. The primary contributor to output voltage spread is  
VDD spread, and so a VDD tighter than ±10% may be required to achieve this spread.  
4
Higher output voltages may occur depending on load, power supply, and selected output drive. Higher output voltages may  
transiently occur during initialization period following TXENA assertion.  
5
6
7
Peak change in output differential voltage when driving a logic 0 and when driving a logic 1 under DC conditions.  
Peak change in output differential voltage when driving a logic 0 and when driving a logic 1 under AC conditions.  
Measured under “clean power supply and ground” conditions, and after de-embedding the jitter of the input, measured over a  
time span of 1000 cycles  
8
9
Power supply induced jitter is included under this category, and the power supply variation is to be less than 8mVpp.  
Note that customer has to be uncommonly careful with power supply fidelity due to the small jitter numbers.  
Power consumption is simulated under the following conditions:  
Typ: TT, VDD=1.0 V, VD18=1.8 V, 25 °C  
Max: FF, VDD=1.1 V, VD18=1.98 V, 125 °C  
Dynamic: TXENA=1, TXOE=1  
Static: TXENA=0, TXOE=1  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
88  
NXP Semiconductors  
Electrical characteristics  
4.10.9.1 PCIE_REXT reference resistor connection  
The following figure shows the PCIE_REXT reference resistor connection.  
Figure 39. PCIE_REXT reference resistor connection  
4.10.9.2 PCIE_REF_CLK  
Contact an NXP representative to obtain the hardware development guide for this device, which contains  
details on the PCIe reference clock requirements.  
4.10.10 Pulse Width Modulator (PWM) Timing Parameters  
This section describes the electrical information of the PWM. The PWM can be programmed to select one  
of three clock signals as its source frequency. The selected clock signal is passed through a prescaler before  
being input to the counter. The output is available at the pulse-width modulator output (PWMO) external  
pin.  
The following figure depicts the timing of the PWM, and Table 92 lists the PWM timing parameters.  
PWMn_OUT  
Figure 40. PWM Timing  
Table 92. PWM Output Timing Parameters  
ID  
Parameter  
Min  
Max  
Unit  
P1  
P2  
PWM Module Clock Frequency  
PWM output pulse width high  
PWM output pulse width low  
0
ipg_clk  
MHz  
ns  
15  
15  
ns  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
89  
Electrical characteristics  
4.10.11 LCD controller (LCDIF) parameters  
Figure 41 shows the LCDIF timing, and the table below lists the timing parameters.  
L1  
L2  
L3  
LCDn_CLK  
(falling edge capture)  
LCDn_CLK  
(rising edge capture)  
LCDn_DATA[23:00]  
LCDn Control Signals  
L4  
L5  
L6  
L7  
Figure 41. LCD Timing  
Table 93. LCD Timing Parameters  
ID  
Parameter  
Symbol  
Min  
Max  
Unit  
L1  
L2  
L3  
L4  
L5  
L6  
L7  
LCD pixel clock frequency  
tCLK(LCD)  
tCLKH(LCD)  
tCLKL(LCD)  
td(CLKH-DV)  
td(CLKL-DV)  
6
80  
1
MHz  
ns  
LCD pixel clock high (falling edge capture)  
LCD pixel clock low (rising edge capture)  
6
ns  
LCD pixel clock high to data valid (falling edge capture)  
LCD pixel clock low to data valid (rising edge capture)  
-1  
-1  
-1  
-1  
ns  
1
ns  
LCD pixel clock high to control signal valid (falling edge capture) td(CLKH-CTRLV)  
LCD pixel clock low to control signal valid (rising edge capture) td(CLKL-CTRLV)  
1
ns  
1
ns  
4.10.11.1 LCDIF signal mapping  
The table below lists the details about the mapping signals.  
Table 94. LCD Signal Parameters  
8-bit DOTCLK LCD 16-bit DOTCLK LCD 18-bit DOTCLK LCD 24-bit DOTCLK LCD 8-bit DVI LCD  
Pin name  
IF  
IF  
IF  
IF  
IF  
LCD_RS  
CCIR_CLK  
LCD_VSYNC*  
(Two options)  
LCD_VSYNC  
LCD_VSYNC  
LCD_VSYNC  
LCD_VSYNC  
LCD_HSYNC  
LCD_HSYNC  
LCD_HSYNC  
LCD_HSYNC  
LCD_HSYNC  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
90  
Electrical characteristics  
Table 94. LCD Signal Parameters (continued)  
LCD_DOTCLK  
LCD_ENABLE  
LCD_D23  
LCD_D22  
LCD_D21  
LCD_D20  
LCD_D19  
LCD_D18  
LCD_D17  
LCD_D16  
LCD_DOTCLK  
LCD_DOTCLK  
LCD_DOTCLK  
LCD_DOTCLK  
LCD_ENABLE  
LCD_ENABLE  
LCD_ENABLE  
LCD_ENABLE  
R[7]  
R[6]  
R[5]  
R[4]  
R[3]  
R[2]  
R[5]  
R[4]  
R[3]  
R[1]  
R[0]  
LCD_D15 /  
VSYNC*  
R[4]  
G[7]  
LCD_D14 /  
HSYNC**  
R[3]  
R[2]  
R[1]  
G[6]  
G[5]  
LCD_D13 /  
LCD_DOTCLK  
**  
R21]  
LCD_D12 /  
ENABLE**  
R[1]  
R[0]  
G[4]  
LCD_D11  
LCD_D10  
LCD_D9  
LCD_D8  
LCD_D8  
LCD_D7  
LCD_D6  
LCD_D5  
LCD_D4  
LCD_D3  
LCD_D2  
LCD_D1  
LCD_D0  
LCD_RESET  
R[0]  
G[5]  
G[5]  
G[4]  
G[3]  
G[2]  
G[4]  
G[3]  
G[1]  
G[3]  
G[2]  
G[0]  
G[3]  
G[2]  
G[0]  
R[2]  
R[1]  
R[0]  
G[2]  
G[1]  
G[0]  
B[1]  
G[2]  
G[1]  
B[7]  
Y/C[7]  
Y/C[6]  
Y/C[5]  
Y/C[4]  
Y/C[3]  
Y/C[2]  
Y/C[1]  
Y/C[0]  
G[1]  
G[0]  
B[6]  
G[0]  
B[5]  
B[5]  
B[4]  
B[4]  
B[4]  
B[3]  
B[3]  
B[3]  
B[2]  
B[2]  
B[2]  
B[1]  
B[1]  
B[1]  
B[0]  
B[0]  
B[0]  
B[0]  
LCD_RESET  
LCD_RESET  
LCD_RESET  
LCD_RESET  
LCD_BUSY /  
LCD_VSYNC  
LCD_BUSY (or  
optional  
LCD_BUSY (or  
optional LCD_VSYNC)  
LCD_BUSY (or  
optional  
LCD_BUSY (or  
optional  
LCD_VSYNC)  
LCD_VSYNC)  
LCD_VSYNC)  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
91  
Electrical characteristics  
4.10.12 FlexSPI (Quad SPI/Octal SPI) timing parameters  
The FlexSPI interface can work in SDR or DDR modes. It can operate up to 60 MHz at 3.3 V, 166 MHz  
at 1.8 V SDR mode or 200 MHz at 1.8 V DDR mode. It supports single-ended and differential DQS  
signaling.  
FlexSPI supports the following clocking scheme for a read data path:  
Dummy read strobe generated by FlexSPI controller and looped back internally  
(FlexSPIn_MCR0[RXCLKSRC] = 0x0)  
Dummy read strobe generated by FlexSPI controller and looped back through the DQS pad  
(FlexSPIn_MCR0[RXCLKSRC] = 0x1). It means the I/O cannot be used for another feature.  
Read strobe provided by memory device and input from DQS pad  
(FlexSPIn_MCR0[RXCLKSRC] = 0x3)  
4.10.12.1 SDR mode  
4.10.12.1.1 SDR mode timing diagrams  
The following write timing diagram is valid for any FlexSPIn_MCR0[RXCLKSRC] value.  
Figure 42. FlexSPI write timing diagram (SDR mode)  
The following read timing diagram is valid for FlexSPIn_MCR0[RXCLKSRC] = 0x0 or 0x1.  
Figure 43. FlexSPI read timing diagram (SDR mode)  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
92  
NXP Semiconductors  
Electrical characteristics  
The following read timing diagram is valid for FlexSPIn_MCR0[RXCLKSRC] = 0x3.  
Figure 44. FlexSPI read with DQS timing diagram (SDR mode)  
4.10.12.1.2 SDR mode timing parameter tables  
Table 95. FlexSPI timings with FlexSPIn_MCR0[RXCLKSRC] = 0x0 (SDR mode)  
ID  
Parameter  
QSPIx[A/B]_SCLK Cycle frequency  
Min  
Max  
Unit  
60  
1
MHz  
ns  
t1 QSPIx[A/B]_SCLK High or Low Time  
t2 QSPIx[A/B]_SSy_B pulse width  
7.5  
1
SCLK  
SCLK  
SCLK  
ns  
t3 QSPIx[A/B]_SSy_B Lead Time1  
TCSS+0.5  
t4 QSPIx[A/B]_SSy_B Lag Time1  
TCSH  
t5 QSPIx[A/B]_DATAy output Delay  
t6 QSPIx[A/B]_DATAy Setup Time  
6
ns  
t7 QSPIx[A/B]_DATAy Hold Time  
0
ns  
1
Timing is controlled from FLSHxCR1 register (x=A1, A2, B1, or B2).  
Table 96. FlexSPI timings with FlexSPIn_MCR0[RXCLKSRC] = 0x1 (SDR mode)  
ID  
Parameter  
QSPIx[A/B]_SCLK Cycle frequency  
Min  
Max  
Unit  
166  
1
MHz  
ns  
t1 QSPIx[A/B]_SCLK High or Low Time  
t2 QSPIx[A/B]_SSy_B pulse width  
t3 QSPIx[A/B]_SSy_B Lead Time1  
t4 QSPIx[A/B]_SSy_B Lag Time1  
t5 QSPIx[A/B]_DATAy output Delay  
t6 QSPIx[A/B]_DATAy Setup Time  
t7 QSPIx[A/B]_DATAy Hold Time  
2.7  
1
SCLK  
SCLK  
SCLK  
ns  
TCSS+0.5  
TCSH  
1
ns  
2
ns  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
93  
Electrical characteristics  
1
Timing is controlled from FLSHxCR1 register (x=A1, A2, B1, or B2).  
Table 97. FlexSPI timings with FlexSPIn_MCR0[RXCLKSRC] = 0x3 (SDR mode)  
ID  
Parameter  
QSPIx[A/B]_DQS Cycle frequency  
Min  
Max  
Unit  
2.25  
200  
MHz  
ns  
t1 QSPIx[A/B]_SCLK High or Low Time  
t2 QSPIx[A/B]_SSy_B pulse width1  
t3 QSPIx[A/B]_SSy_B Lead Time2  
t4 QSPIx[A/B]_SSy_B Lag Time2  
CSINTERVAL  
TCSS+0.5  
TCSH  
SCLK  
SCLK  
SCLK  
ns  
t5 QSPIx[A/B]_DATAy output Delay  
t8 QSPIx[A/B]_DQS / QSPIx[A/B]_DATAy delta  
1
-0.65  
0.65  
ns  
1
2
Minimum is 2 SCLK cycles even if CSINTERVAL value is less than 2.  
Timing is controlled from FLSHxCR1 register (x=A1, A2, B1, or B2).  
4.10.12.2 DDR mode  
4.10.12.2.1 DDR mode timing diagrams  
Figure 45. FlexSPI write timing diagram (DDR mode)  
Figure 46. FlexSPI read timing diagram (DDR mode)  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
94  
Electrical characteristics  
QSPIx[A/B]_DQS  
QSPIx[A/B]_DATAy  
t9  
t10  
Figure 47. FlexSPI read with DQS timing diagram (DDR mode)  
Table 98. FlexSPI timings with FlexSPIn_MCR0[RXCLKSRC] = 0x0 (DDR mode)  
ID  
Parameter  
QSPIx[A/B]_SCLK Cycle frequency  
Min  
Max  
Unit  
30  
MHz  
ns  
t1 QSPIx[A/B]_SCLK High or Low Time  
t2 QSPIx[A/B]_SSy_B pulse width  
15  
1
SCLK  
SCLK  
SCLK  
ns  
t3 QSPIx[A/B]_SSy_B Lead Time1  
(TCSS+0.5)/2  
t4 QSPIx[A/B]_SSy_B Lag Time1  
TCSH/2  
t5 QSPIx[A/B]_DATAy output valid time  
t6 QSPIx[A/B]_DATAy output hold time  
t7 QSPIx[A/B]_DATAy Setup Time  
6.5  
6.5  
6
ns  
ns  
t8 QSPIx[A/B]_DATAy Hold Time  
0
ns  
1
Timing is controlled from FLSHxCR1 register (x=A1, A2, B1, or B2).  
Table 99. FlexSPI timings with FlexSPIn_MCR0[RXCLKSRC] = 0x1 (DDR mode)  
ID  
Parameter  
QSPIx[A/B]_SCLK Cycle frequency  
Min  
Max  
Unit  
83  
MHz  
ns  
t1 QSPIx[A/B]_SCLK High or Low Time  
t2 QSPIx[A/B]_SSy_B pulse width  
5.4  
1
SCLK  
SCLK  
SCLK  
ns  
t3 QSPIx[A/B]_SSy_B Lead Time1  
(TCSS+0.5)/2  
t4 QSPIx[A/B]_SSy_B Lag Time1  
TCSH/2  
t5 QSPIx[A/B]_DATAy output valid time  
t6 QSPIx[A/B]_DATAy output hold time  
t7 QSPIx[A/B]_DATAy Setup Time  
2
2
1
1
ns  
ns  
t8 QSPIx[A/B]_DATAy Hold Time  
ns  
1
Timing is controlled from FLSHxCR1 register (x=A1, A2, B1, or B2).  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
95  
Electrical characteristics  
Table 100. FlexSPI timings with FlexSPIn_MCR0[RXCLKSRC] = 0x3 (DDR mode)  
ID  
Parameter  
QSPIx[A/B]_SCLK Cycle frequency  
Min  
Max  
Unit  
200  
MHz  
ns  
t1 QSPIx[A/B]_SCLK High or Low Time  
t2 QSPIx[A/B]_SSy_B pulse width  
2.25  
1
(TCSS+0.5)/2  
TCSH/2  
0.65  
SCLK  
SCLK  
SCLK  
ns  
t3 QSPIx[A/B]_SSy_B Lead Time1  
t4 QSPIx[A/B]_SSy_B Lag Time1  
t5 QSPIx[A/B]_DATAy output valid time  
t6 QSPIx[A/B]_DATAy output hold time  
t9 QSPIx[A/B]_DATAy Setup Skew  
0.65  
ns  
0.65  
0.65  
ns  
t10 QSPIx[A/B]_DATAy Hold Skew  
ns  
1
Timing is controlled from FLSHxCR1 register (x=A1, A2, B1, or B2).  
4.10.13 Secure JTAG controller (SJC)  
4.10.13.1 Internal pull-up/pull-down configuration  
The following table describes the default configuration of internal pull-ups and pull-downs of the JTAG  
interface. External pull-ups and pull-downs are needed when this interface is routed to a connector.  
Table 101. JTAG default configuration for internal pull-up/pull-down  
Ball name  
Internal pull setting1  
Typical pull value  
Unit  
JTAG_TMS  
JTAG_TCK  
JTAG_TDI  
PU  
PD  
PU  
PD  
50  
KΩ  
TEST_MODE_SELECT  
1
PU = pull-up; PD = pull-down  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
96  
Electrical characteristics  
4.10.13.2 JTAG timing parameters  
Figure 48 depicts the SJC test clock input timing. Figure 49 depicts the SJC boundary scan timing.  
Figure 50 depicts the SJC test access port. Signal parameters are listed in Table 102.  
SJ1  
SJ2  
VM  
SJ2  
VM  
JTAG_TCK  
(Input)  
VIH  
VIL  
SJ3  
SJ3  
Figure 48. Test Clock Input Timing Diagram  
JTAG_TCK  
(Input)  
VIH  
SJ5  
Input Data Valid  
VIL  
SJ4  
Data  
Inputs  
SJ6  
Data  
Outputs  
Output Data Valid  
SJ7  
SJ6  
Data  
Outputs  
Data  
Outputs  
Output Data Valid  
Figure 49. Boundary system (JTAG) timing diagram  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
97  
Electrical characteristics  
JTAG_TCK  
(Input)  
VIH  
SJ9  
VIL  
SJ8  
Input Data Valid  
JTAG_TDI  
JTAG_TMS  
(Input)  
SJ10  
SJ11  
SJ10  
JTAG_TDO  
(Output)  
Output Data Valid  
JTAG_TDO  
(Output)  
JTAG_TDO  
(Output)  
Output Data Valid  
Figure 50. Test Access Port Timing Diagram  
Table 102. JTAG Timing  
All Frequencies  
ID  
Parameter1,2  
Unit  
Min  
Max  
1
SJ0  
SJ1  
SJ2  
SJ3  
SJ4  
SJ5  
SJ6  
SJ7  
SJ8  
SJ9  
SJ10  
SJ11  
JTAG_TCK frequency of operation 1/(3xTDC  
JTAG_TCK cycle time in crystal mode  
)
0.001  
45  
22.5  
22  
3
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2
JTAG_TCK clock pulse width measured at VM  
JTAG_TCK rise and fall times  
Boundary scan input data set-up time  
Boundary scan input data hold time  
JTAG_TCK low to output data valid  
JTAG_TCK low to output high impedance  
JTAG_TMS, JTAG_TDI data set-up time  
JTAG_TMS, JTAG_TDI data hold time  
JTAG_TCK low to JTAG_TDO data valid  
5
40  
40  
44  
44  
24  
5
25  
JTAG_TCK low to JTAG_TDO high impedance  
= target frequency of SJC  
1
2
T
DC  
VM = mid-point voltage  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
98  
Electrical characteristics  
4.10.14 SPDIF Timing Parameters  
The Sony/Philips Digital Interconnect Format (SPDIF) data is sent using the bi-phase marking code. When  
encoding, the SPDIF data signal is modulated by a clock that is twice the bit rate of the data signal.  
Table 103, Figure 51, and Figure 52 show SPDIF timing parameters for the Sony/Philips Digital  
Interconnect Format (SPDIF), including the timing of the modulating Rx clock (SPDIF_SR_CLK) for  
SPDIF in Rx mode and the timing of the modulating Tx clock (SPDIF_ST_CLK) for SPDIF in Tx mode.  
Table 103. SPDIF Timing Parameters  
Timing Parameter Range  
Parameter  
Symbol  
Unit  
Min  
Max  
SPDIF_IN Skew: asynchronous inputs, no specs apply  
0.7  
ns  
ns  
SPDIF_OUT output (Load = 50pf)  
• Skew  
• Transition rising  
• Transition falling  
1.5  
24.2  
31.3  
SPDIF_OUT output (Load = 30pf)  
• Skew  
• Transition rising  
• Transition falling  
1.5  
13.6  
18.0  
ns  
Modulating Rx clock (SPDIF_SR_CLK) period  
SPDIF_SR_CLK high period  
srckp  
srckph  
srckpl  
stclkp  
stclkph  
stclkpl  
40.0  
16.0  
16.0  
40.0  
16.0  
16.0  
ns  
ns  
ns  
ns  
ns  
ns  
SPDIF_SR_CLK low period  
Modulating Tx clock (SPDIF_ST_CLK) period  
SPDIF_ST_CLK high period  
SPDIF_ST_CLK low period  
srckp  
srckpl  
VM  
srckph  
VM  
SPDIF_SR_CLK  
(Output)  
Figure 51. SPDIF_SR_CLK Timing Diagram  
stclkp  
stclkpl  
VM  
stclkph  
VM  
SPDIF_ST_CLK  
(Input)  
Figure 52. SPDIF_ST_CLK Timing Diagram  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
99  
Electrical characteristics  
4.10.15 UART I/O configuration and timing parameters  
4.10.15.0.1 UART Transmitter  
The following figure depicts the transmit timing of UART in the RS-232 serial mode, with 8 data bit/1  
stop bit format. Table 104 lists the UART RS-232 serial mode transmit timing characteristics.  
POSSIBLE  
PARITY  
UA1  
UA1  
Bit 3  
BIT  
NEXT  
START  
BIT  
Start  
Bit  
UARTx_TX_DATA  
(output)  
STOP  
BIT  
Bit 7  
Bit 0  
Bit 1  
Bit 2  
Bit 4  
Bit 5  
Bit 6  
Par Bit  
UA1  
UA1  
Figure 53. UART RS-232 Serial Mode Transmit Timing Diagram  
Table 104. UART RS-232 Serial Mode Transmit Timing Parameters  
ID  
Parameter  
Transmit Bit Time  
Symbol  
Min  
Max  
1/Fbaud_rate + Tref_clk  
Unit  
2
UA1  
tTbit  
1/Fbaud_rate1 – Tref_clk  
1
Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (LPUART_clk frequency)/(SBR[12:0]  
× (OSR+1)).  
2
Tref_clk: The period of UART reference clock ref_clk (LPUART_clk after SBR divider).  
4.10.15.0.2 UART Receiver  
The following figure depicts the RS-232 serial mode receive timing with 8 data bit/1 stop bit format.  
Table 105 lists serial mode receive timing characteristics.  
POSSIBLE  
PARITY  
UA2  
UA2  
Bit 3  
BIT  
NEXT  
START  
BIT  
Start  
Bit  
UARTx_RX_DATA  
(input)  
STOP  
BIT  
Bit 7  
Bit 0  
Bit 1  
Bit 2  
Bit 4  
Bit 5  
Bit 6  
Par Bit  
UA2  
UA2  
Figure 54. UART RS-232 Serial Mode Receive Timing Diagram  
Table 105. RS-232 Serial Mode Receive Timing Parameters  
ID  
Parameter  
Receive Bit Time1  
Symbol  
Min  
Max  
Unit  
2
UA2  
tRbit  
1/Fbaud_rate  
1/Fbaud_rate  
+
1/(16 × Fbaud_rate  
)
1/(16 × Fbaud_rate)  
1
2
The UART receiver can tolerate 1/((OSR+1) × Fbaud_rate) tolerance in each bit, but accumulation tolerance in one frame must  
not exceed 3/((OSR+1) × Fbaud_rate).  
Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (LPUART_clk frequency)/(SBR[12:0] ×  
(OSR+1)).  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
100  
NXP Semiconductors  
Electrical characteristics  
4.10.15.0.3 UART IrDA Mode Timing  
The following subsections give the UART transmit and receive timings in IrDA mode.  
UART IrDA Mode Transmitter  
The following figure depicts the UART IrDA mode transmit timing, with 8 data bit/1 stop bit format.  
Table 106 lists the transmit timing characteristics.  
UA3  
UA3  
UA4  
UA3  
UA3  
UARTx_TX_DATA  
(output)  
Start  
Bit  
STOP  
BIT  
POSSIBLE  
PARITY  
BIT  
Bit 0  
Bit 1  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
Bit 7  
Figure 55. UART IrDA Mode Transmit Timing Diagram  
Table 106. IrDA Mode Transmit Timing Parameters  
ID  
Parameter  
Symbol  
Min  
Max  
1/Fbaud_rate + Tref_clk  
Unit  
2
UA3 Transmit Bit Time in IrDA mode  
UA4 Transmit IR Pulse Duration  
tTIRbit  
1/Fbaud_rate1 – Tref_clk  
tTIRpulse (TNP+1)/(OSR+1) × (1/Fbaud_rat (TNP+1)/(OSR+1) × (1/Fbaud_rat  
e) – Tref_clk e) + Tref_clk  
1
2
Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (LPUART_clk frequency)/(SBR[12:0] ×  
(OSR+1)).  
Tref_clk: The period of UART reference clock ref_clk (LPUART_clk after SBR divider).  
UART IrDA Mode Receiver  
The following figure depicts the UART IrDA mode receive timing, with 8 data bit/1 stop bit format.  
Table 107 lists the receive timing characteristics.  
UA5  
UA6  
UA5  
UA5  
UA5  
UARTx_RX_DATA  
(input)  
STOP  
BIT  
Start  
Bit  
POSSIBLE  
PARITY  
BIT  
Bit 0  
Bit 1  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
Bit 7  
Figure 56. UART IrDA Mode Receive Timing Diagram  
Table 107. IrDA Mode Receive Timing Parameters  
ID  
Parameter  
Symbol  
Min  
Max  
1/Fbaud_rate  
Unit  
2
UA5 Receive Bit Time1 in IrDA mode  
tRIRbit  
1/Fbaud_rate  
+
1/(16 × Fbaud_rate  
)
1/(16 × Fbaud_rate  
)
UA6 Receive IR Pulse Duration  
tRIRpulse  
1.41 μs  
(5/16) × (1/Fbaud_rate  
)
1
The UART receiver can tolerate 1/((OSR+1) × Fbaud_rate) tolerance in each bit. But accumulation tolerance in one frame  
must not exceed 3/((OSR+1) × Fbaud_rate).  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
101  
Electrical characteristics  
2
Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (LPUART_clk frequency)/(SBR[12:0] ×  
(OSR+1)).  
4.10.16 USB 2.0 PHY Parameters  
4.10.16.1 USB 2.0 PHY Transmitter specifications  
This section describes the transmitter specifications for USB2.0 PHY.  
4.10.16.1.1 USB 2.0 PHY full-speed/low-speed transmitter specifications  
The following table lists the full-speed/low-speed (FS/LS) transmitter specifications for USB2.0 PHY.  
Table 108. USB 2.0 PHY FS/LS transmitter specifications  
Symbol  
Description  
Min Typ  
Max  
Units  
VOL  
VOH  
Output Voltage Low  
0
2.8  
0.8  
1.3  
4
0.3  
3.6  
V
Output Voltage High (Driven)  
V
VOSE1 Single Ended One (SE1)  
V
VCRS  
TFR  
TLR  
TFF  
Output Signal Cross Over Voltage  
2.0  
20  
V
Driver Rise Time - FS  
Driver Rise Time - LS  
Driver Fall Time - FS  
Driver Fall Time - LS  
ns  
ns  
ns  
ns  
%
%
Ω
75  
300  
20  
4
TLF  
75  
300  
111.11  
125  
49.5  
3.5  
4
TFRFM Differential Rise and Fall Time Matching - FS  
TLRFM Differential Rise and Fall Time Matching - LS  
ZHSDRV Driver Output Resistance (Also serves as HS Termination)  
90  
80  
40.5  
-3.5  
-4  
TDJ1  
TDJ2  
Source Jitter (Next Transition) - FS  
Source Jitter (Paired Transition) - FS  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
μs  
TFDEOP Source Jitter (Differential to SE0 transition) - FS  
TFEOPT Source SE0 interval of EOP - FS  
-2  
5
160  
-25  
-14  
-95  
-150  
-40  
1.25  
175  
25  
TDDJ1  
TDDJ2  
TUDJ1  
TUDJ2  
Source Jitter in downstream direction (Next Transition) - LS  
Source Jitter in downstream direction (Paired Transition) - LS  
Source Jitter in upstream direction (Next Transition) - LS  
Source Jitter in upstream direction (Paired Transition) - LS  
14  
95  
150  
100  
1.5  
TLDEOP Source Jitter in upstream direction (Differential to SE0 transition) - LS  
TLEOPT Source SE0 interval of EOP - LS  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
102  
Electrical characteristics  
4.10.16.2 USB 2.0 PHY high-speed transmitter specifications  
The following table lists the high-speed (HS) transmitter specifications for USB 2.0 PHY.  
Table 109. USB 2.0 PHY HS transmitter specifications  
Symbol/Parameter  
Description  
Min Typ  
Max  
Units  
HSOI  
High Speed Idle Level  
-10  
-10  
10  
10  
mV  
mV  
mV  
mV  
mV  
Ω
VHSTERM  
VHSOL  
Termination Voltage in High Speed  
High Speed Data Signaling Low  
Chirp J (Differential Voltage)  
Chirp K (Differential Voltage)  
Driver Output Resistance  
-10  
10  
VCHIRPJ  
700  
-900  
40.5  
100  
100  
-300  
1100  
-500  
49.5  
VCHIRPK  
ZHSDRV  
THSR  
Rise Time (10% to 90%)  
ps  
THSF  
Fall Time (10% to 90%)  
ps  
HS Eye Opening: Template 1  
Differential eye opening at 37.5% US and 62.5% UI for a  
hub measured at TP2 and for a device without a captive  
cable measured at TP3.  
300  
mV  
HS Eye Opening: Template 2  
HS Jitter: Template 1  
Differential eye opening at 37.5% US and 62.5% UI for a  
device with a captive cable measured at TP2.  
-175  
175  
mV  
Peak-Peak Jitter at Zero crossing for a hub measured at  
TP2 and for a device without captive cable measured at  
TP3.  
15  
%UI  
ps  
312.5  
HS Jitter: Template 2  
Peak-Peak Jitter at Zero crossing for a device with captive  
cable measured at TP2.  
25  
%UI  
ps  
520.83  
4.10.16.3 USB 2.0 PHY receiver specifications  
This section describes the receiver specifications implemented in USB 2.0 PHY.  
4.10.16.3.1 USB 2.0 PHY full-speed/low-speed (FS/LS) receiver specifications  
Table 110. USB 2.0 PHY FS/LS receiver specifications  
Symbol  
VIH  
Description  
Input Voltage Level - High (Driven)  
Min  
Typ  
Max  
Units  
2
2.7  
3.6  
0.8  
2.0  
2.5  
18.5  
V
V
VIHZ  
VIL  
Input Voltage Level - High (Floating)  
Input Voltage Level - Low  
V
VTH  
VCM  
TJR1  
Switching Threshold  
0.8  
0.8  
-18.5  
V
Common Mode Range  
V
Receiver Jitter Budget (Next Transition) - FS  
ns  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
103  
Electrical characteristics  
Table 110. USB 2.0 PHY FS/LS receiver specifications (continued)  
Symbol  
TJR2  
Description  
Min  
Typ  
Max  
Units  
Receiver Jitter Budget (Paired Transition) - FS  
Receiver EOP Interval of EOP - FS  
-9  
82  
9
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TFEOPR  
TUJR1  
TUJR2  
TDJR1  
TDJR2  
TLEOPR  
US Port Differential Receiver Jitter (Next Transition) - LS  
US Port Differential Receiver Jitter (Paired Transition) - LS  
DS Port Differential Receiver Jitter (Next Transition) - LS  
DS Port Differential Receiver Jitter (Paired Transition) - LS  
Receiver EOP Interval of EOP - LS  
-152  
-200  
-75  
152  
200  
75  
-45  
45  
670  
4.10.16.3.2 USB 2.0 PHY high-speed receiver specifications  
The following table lists the high-speed (HS) receiver specifications for USB 2.0 PHY.  
Table 111. USB 2.0 PHY HS receiver specifications  
Symbol/Parameter  
VHSCM  
Description  
Min Typ Max Units  
HS RX input common mode voltage range.  
-50  
40.5  
500  
49.5  
20  
mV  
Ω
ZHSDRV  
HS RX input termination (Same as Driver output resistance).  
HSRX Jitter: Template 3  
HS RX Peak-Peak Jitter specification at differential zero crossing for a  
device with captive cable when signal applied at TP2.  
%UI  
416.66 ps  
HSRX Jitter: Template 4  
HS RX Peak-Peak Jitter specification at differential zero crossing for a  
device without captive cable at TP3 and for a hub at TP2.  
30  
%UI  
ps  
625  
275  
HSRX Input Eye Opening: HS RX differential sensitivity specification at 40% and 60% UI for a  
Template 3 device with captive cable when signal is applied at TP2.  
-275  
mV  
HSRX Input Eye Opening: HS RX differential sensitivity specification at 35% and 65% UI for a  
-150  
150  
mV  
Template 4  
device without captive cable when signal is applied at TP3 and for a  
hub when a signal is applied at TP2.  
4.10.16.3.3 USB 2.0 PHY high-speed envelope detector specifications  
The following table lists the high-speed (HS) Envelope Detector Specifications of USB 2.0 PHY.  
Table 112. USB 2.0 PHY HS envelope detector specifications  
Symbol  
Description  
Min Typ Max Units  
VHSSQ  
VHSDSC  
HS Squelch Detection threshold (differential signal amplitude)  
HS Disconnect Detection threshold (differential signal amplitude)  
100  
525  
150  
625  
mV  
mV  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
104  
Electrical characteristics  
4.10.16.4 USB 2.0 PHY full-speed/high-speed terminations specification  
The following table lists the full-speed/low-speed (FS/LS) Terminations Specification of USB 2.0 PHY.  
Table 113. USB 2.0 PHY FS/LS terminations specification  
Symbol  
RPU  
Description  
Min  
Typ  
Max  
Units  
Bus Pull-Up resistor on US Port in IDLE State  
Bus Pull-Up resistor on US Port in ACTIVE State  
Bus Pull-Down resistor on DS Port  
900  
1425  
14.25  
3.0  
1575  
3090  
24.8  
3.6  
Ω
Ω
RPD  
KΩ  
V
VTERM  
Termination Voltage for US Port Pull-Up (RPU)  
4.10.16.5 Voltage threshold specification  
The following table lists the OTG Comparator Specifications of USB2.0 PHY.  
Table 114. USB 2.0 PHY OTG comparator specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
sessvld  
vbusvalid  
B-Device Session Valid threshold  
VBUS Valid threshold  
0.8  
4.4  
4.0  
V
V
4.75  
4.10.17 USB 3.0 PHY parameters  
The following content is from the USB 3.0 PHY specifications.  
4.10.17.1 USB 3.0 PHY external component  
Table 115. USB 3.0 PHY external component specifications  
Name Min Typ Max Units Descriptions  
rext 497.5 500 502.5  
Ω
There needs to be an external resistor component connected at rext ball while the  
internal resistor or current is getting calibrated. Package routing from rext ball to its  
respective bump should not contribute more than 0.05 Ω.  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
105  
Electrical characteristics  
4.10.17.2 USB 3.0 PHY transmitter module  
Table 116. USB 3.0 PHY transmitter module electrical specifications  
Symbol  
Description  
Min Typ  
Max  
Unit  
Voltage/current parameters  
VTX-DIFFp  
Programmable output voltage  
swing (single-ended)  
50  
500  
1000  
1200  
100  
mV  
mV  
mV  
VTX-DIFFp-p  
Programmable differential  
peak-to-peak output voltage  
100  
400  
1
VTX-DIFFp-p-LOW  
Low power differential p-p TX  
voltage swing  
ITX-SHORT  
RLTX-DIFF  
Transmit lane short-circuit current  
Transmitter differential return loss  
mA  
Db  
0 < -20dB < 100Mhz  
100Mhz < -18dB < 300Mhz  
300Mhz < -16dB < 600Mhz  
600Mhz < -10dB < 2500Mhz  
2500Mhz < -9dB < 4875Mhz  
4875Mhz < -8dB < 11200Mhz  
11200Mhz < -5dB < 16800Mhz  
and -3dB beyond that  
Transmitter common mode return  
loss  
50Hz < -8dB < 15000Mhz  
dB  
RL  
TX-CM  
DC differential TX impedance  
Unit Interval  
80  
100  
120  
Ω
Z
TX-DIFF-DC  
UI  
199.94  
200.06  
0.4  
ps  
UI  
TTX-MAX-JITTER  
Transmitter total jitter  
(peak-to-peak) (Tj)  
TTX-RJ-PLL-sigma  
After application of TX jitter transfer  
function  
2.42  
210  
ps  
UI  
LTLAT-10  
Transmitter data latency  
Voltage parameters  
VTX-CM-DC-ACTIVE-IDLE-DELTA Absolute Delta of DC Common  
Mode Voltage during L0 and  
0
100  
mV  
Electrical Idle.  
VTX-IDLE-DIFF-AC-p  
VTX-CM-DC-LINE-DELTA  
VTX-RCV-DETECT  
Electrical Idle Differential Peak  
Output Voltage  
0
0
20  
25  
600  
8
mV  
mV  
mV  
ns  
Absolute Delta of DC Common  
Mode Voltage between D+ and D-  
The amount of voltage change  
allowed during Receiver Detection  
0
TTX-IDLE-SET-TO-IDLE  
Maximum time to transition to a  
valid Electrical Idle after sending an  
EIOS  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
106  
Electrical characteristics  
Table 116. USB 3.0 PHY transmitter module electrical specifications (continued)  
Symbol  
Description  
Min Typ  
Max  
Unit  
TTX-IDLE-TO-DIFF-DATA  
Maximum time to transition to valid  
diff signaling after leaving Electrical  
Idle  
8
ns  
VTX-CM-AC-PP  
Tx AC peak-peak common mode  
voltage (5.0 GT/s)  
20  
150  
5
mVpp  
TEIExit  
Time to exit Electrical Idle (L0s)  
state and to enter L0  
Txsysclk  
Tx signal characteristics  
ftol  
TX Frequency Long Term Accuracy -300  
300  
33  
ppm of  
Fbaud  
fSSC  
Spread-Spectrum Modulation  
Frequency  
30  
kHz  
t20-80TX  
tskewTX  
TX Rise/Fall Time  
0.2  
0.41  
20  
UI  
ps  
TX Differential Skew  
1
For USB 3.0, no EQ is required  
4.10.17.3 USB 3.0 PHY receiver module  
Table 117. USB 3.0 PHY receiver module electrical specifications  
Symbol  
Description  
Min  
Typ Max Unit  
Comments  
Voltage Parameters  
VRX-DIFF(p-p)  
Differential input voltage  
(peak-to-peak) (that is, receiver  
eye voltage opening)  
100  
100  
1200 mV  
VRX-IDLE-DET-DIFF(p-p Differential input threshold voltage  
300  
mV USB3 LFPS  
(peak-to-peak) to detect idle  
(LFPS)  
)
Vcm, acRX  
RX AC Common Mode Voltage  
0
100 mVp-p Simulated at 250 MHz  
VRX-CM-AC  
Receiver common-mode voltage  
for AC coupling  
150  
mV  
ZRX-DIFF-DC  
RLRX-DIFF  
Differential input impedance (DC)  
Receiver differential return loss  
80  
100 120  
W
100 Ω ± 10%  
Same as  
TX RL  
dB  
Jitter Parameters  
TRX-MAX-JITTER  
Receiver total jitter tolerance  
0
0.66  
UI  
Incoming Jitter:  
USB3 = 0.43UI DJ + 0.23UI RJ  
USB3 numbers are with REFC-TLE  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
107  
Electrical characteristics  
Table 118. PLL module electrical specifications  
Parameter  
Symbol  
Description  
Min  
Typ  
Max Units  
Input Reference Clock  
REF CLK  
Frequency  
REF CLK  
19.2 19.2/24/25/26/38.4 38.4 MHz  
REF CLK Duty  
Cycle  
47  
40  
53  
MHz  
MHz  
ps  
REF CLK  
Frequency  
REF CLK  
40/48/50/52/100 100  
REF CLK RJ  
Tolerance  
Integrated jitter from 10 kHz to 16 MHz  
after applying appropriate PLL ref clock  
transfer function and the protocol JTF  
0.5  
63  
REF CLK Duty  
Cycle  
37  
%
Divided Reference  
Frequency  
19.2  
38.4 MHz  
Dividers  
Input division  
IPDIV<7:0>  
1
2
255 Counts  
1025 Counts  
1025 Counts  
<2 Counts  
Feedback division pll_fbdiv_high<9:0>  
pll_fbdiv_low<9:0>  
2
Feedback fractional  
division range  
>-2  
Number of  
This includes one bit for sign  
27  
Bits  
fractional bits  
VCO  
Clock frequency  
VCO frequency  
Output full rate clocks  
5000  
5000  
MHz  
MHz  
ppm  
VCO oscillation frequency  
This includes SSC deviation  
Output clock  
-5300  
300  
frequency tolerance  
SSC modulation  
rate  
As applicable for USB3.0  
30  
33  
kHz  
ps  
Output clock RJ  
sigma for TX  
After application of TX jitter transfer  
function  
2.42  
1.40  
Output clock RJ  
sigma for RX  
After application of RX jitter transfer  
function  
ps  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
108  
Electrical characteristics  
4.11 Analog-to-digital converter (ADC)  
The following table shows the ADC electrical specifications for VREFH=VDD_ADC_1P8.  
Table 119. ADC electrical specifications (VREFH=VDD_ADC_1P8)  
Symbol  
VADIN  
Description  
Min  
Typ1  
Max  
Unit  
Notes  
Input Voltage  
VREFL  
4.5  
500  
VREFH  
V
pF  
CADIN  
RADIN  
RAS  
Input capacitance  
Input Resistance  
Ω
2
Analog Source Resistance  
ADC Conversion Clock Frequency  
Sample cycles  
5
kΩ  
fADCK  
24  
MHz  
3
Csample  
Ccompare  
Cconversion  
DNL  
3.5  
131.5  
Fixed compare cycles  
Conversion cycles  
Differential Non-Linearity  
Integral Non-Linearity  
Effective Number of Bits  
Avg = 1  
17.5  
cycles  
cycles  
LSB  
LSB  
Cconversion = Csample + Ccompare  
4
± 0.6  
± 0.9  
-0.5 to +1.1  
4
INL  
±1.1  
5,6,7  
ENOB  
10.1  
10.5  
11.1  
10.4  
10.7  
11.3  
Bits  
Bits  
Bits  
dB  
Avg = 2  
Avg = 16  
SINAD  
EG  
Signal to Noise plus Distortion  
Gain error  
SINAD=6.02 x ENOB + 1.76  
8
-0.29  
0.01  
%FSV  
%FSV  
μA  
9
EO  
Offset error  
10  
IVDDA18  
Iin,ext,leak  
EIL  
Supply Current  
480  
External Channel Leakage Current  
Input leakage error  
30  
500  
nA  
RAS * Iin  
mV  
1
Typical values assume VDD_ADC_1P8 = 1.8 V, Temp = 25 °C, fACLK = Max, unless otherwise stated. Typical values are for  
reference only. All values, including Min and Max, are derived from lab characterization and are not tested in production.  
2
This resistance is external to the input pad. To achieve the best results, the analog source resistance must be kept as low as  
possible. The results in this data sheet were derived from a system that had < 15 Ω analog source resistance. The RAS/CAS  
(analog source capacitance) time constant should be kept to < 1 ns.  
3
4
5
6
7
See Figure 57.  
ADC conversion clock at max frequency and using linear histogram.  
Input data used for test was 1 kHz sine wave.  
Measured at VREFH = 1.8 V and pwrsel = 2.  
ENOB can be lower than shown, if an ADC channel corrupts other ADC channels through capacitive coupling. This coupling  
may be dominated by board parasitics. Care must be taken not to corrupt the desired channel being measured. This coupling  
becomes worse at higher analog frequencies and with switching waveforms due to the harmonic content.  
8
9
Error measured at fullscale at 1.8 V.  
Error measured at zero scale at 0 V.  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
109  
Electrical characteristics  
10 Power Configuration Select, PWRSEL, is set to 10 binary.  
The following table shows the ADC electrical specifications for 1VVREFH<VDD_ADC_1P8.  
Table 120. ADC electrical specifications (1VVREFH<VDD_ADC_1P8)  
Symbol  
VADIN  
Description  
Min  
Typ1  
Max  
Unit  
Notes  
Input Voltage  
VREFL  
4.5  
500  
VREFH  
V
pF  
CADIN  
RADIN  
RAS  
Input capacitance  
Input Resistance  
Ω
2
Analog Source Resistance  
ADC Conversion Clock Frequency  
Sample cycles  
5
kΩ  
fADCK  
24  
MHz  
3
Csample  
Ccompare  
Cconversion  
DNL  
3.5  
131.5  
Fixed compare cycles  
Conversion cycles  
Differential Non-Linearity  
Integral Non-Linearity  
Effective Number of Bits  
Avg = 1  
17.5  
cycles  
cycles  
LSB  
LSB  
Cconversion = Csample + Ccompare  
4
± 0.6  
± 0.9  
-0.5 to +1.1  
4
INL  
±1.1  
5,6,7  
ENOB  
9.5  
9.9  
10.8  
9.7  
Bits  
Bits  
Bits  
dB  
Avg = 2  
10.1  
11  
Avg = 16  
SINAD  
EG  
Signal to Noise plus Distortion  
Gain error  
SINAD=6.02 x ENOB + 1.76  
8
0.29  
0.01  
%FSV  
%FSV  
μA  
9
EO  
Offset error  
10  
IVDDA18  
Iin,ext,leak  
EIL  
Supply Current  
480  
External Channel Leakage Current  
Input leakage error  
30  
500  
nA  
RAS * Iin  
mV  
1
Typical values assume VDD_ANA_1P8 = 1.8 V, Temp = 25 °C, fACLK = Max, unless otherwise stated. Typical values are for  
reference only. All values, including Min and Max, are derived from lab characterization and are not tested in production.  
2
This resistance is external to the input pad. To achieve the best results, the analog source resistance must be kept as low as  
possible. The results in this data sheet were derived from a system that had < 15 Ω analog source resistance. The RAS/CAS  
(analog source capacitance) time constant should be kept to < 1 ns.  
3
4
5
6
7
See Figure 57.  
ADC conversion clock at max frequency and using linear histogram.  
Input data used for test was 1 kHz sine wave.  
Measured at VREFH = 1 V and pwrsel = 2.  
ENOB can be lower than shown, if an ADC channel corrupts other ADC channels through capacitive coupling. This coupling  
may be dominated by board parasitics. Care must be taken not to corrupt the desired channel being measured. This coupling  
becomes worse at higher analog frequencies and with switching waveforms due to the harmonic content.  
8
Error measured at fullscale at 1.0 V.  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
110  
NXP Semiconductors  
Electrical characteristics  
9
Error measured at zero scale at 0 V.  
10 Power Configuration Select, PWRSEL, is set to 10 binary.  
The following figure shows a plot of the ADC sample time versus R .  
AS  
Figure 57. Sample time vs. R  
AS  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
111  
Boot mode configuration  
5 Boot mode configuration  
This section provides information on boot mode configuration pins allocation and boot devices interfaces  
allocation.  
5.1  
Boot mode configuration pins  
The following table provides boot options, functionality, fuse values, and associated pins. Several input  
pins are also sampled at reset and can be used to override fuse values, depending on the value of  
FORCE_BOOT_FROM_FUSE. After it is blown, the Boot mode pin is ignored by ROM; ROM receives  
'boot mode' from the BT_MODE_FUSES fuse. The boot option pins are in effect when BT_FUSE_SEL  
fuse is ‘0’ (cleared, which is the case for an unblown fuse). For detailed boot mode options configured by  
the Boot mode pins, see the “System Boot, Fusemap, and eFuse” chapter of the device reference manual  
for more details.  
Table 121. Fuse and associated pins used for Boot  
Interface  
IP Instance  
Allocated Pads During Boot  
SCU_BOOT_MODE0  
Comment  
BOOT_MODE[0]  
BOOT_MODE[1]  
BOOT_MODE[2]  
BOOT_MODE[3]  
Input  
Input  
Input  
Input  
Boot mode selection  
SCU_BOOT_MODE1  
SCU_BOOT_MODE2  
SCU_BOOT_MODE3  
5.2  
Boot devices interfaces allocation  
The following table lists the interfaces that can be used by the boot process in accordance with the  
specific Boot mode configuration. The table also describes the interface’s specific modes and IOMUXC  
allocation, which are configured during boot when appropriate.  
Table 122. Interface allocation during boot  
Interface IP Instance  
Allocated Pads During Boot  
Comment  
eMMC  
USDHC0 EMMC0_CLK, EMMC0_CMD, EMMC0_DATA0,  
EMMC0_DATA1, EMMC0_DATA2,  
EMMC0_DATA3, EMMC0_DATA4,  
EMMC0_DATA5, EMMC0_DATA6,  
EMMC0_DATA7, EMMC0_RESET_B  
SD  
USDHC1 USDHC1_CD_B, USDHC1_CLK, USDHC1_CMD, USDHC1_CD_B is used by first (A0) silicon only.  
USDHC1_DATA0, USDHC1_DATA1,  
USDHC1_DATA2, USDHC1_DATA3,  
USDHC1_RESET_B, USDHC1_VSELECT  
Second (B0) silicon uses USDHC1_DATA3 for  
CD (Card Detect).  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
112  
Boot mode configuration  
Table 122. Interface allocation during boot (continued)  
Allocated Pads During Boot  
Interface IP Instance  
Comment  
NAND  
GPMI  
EMMC0_CLK, EMMC0_CMD, EMMC0_DATA0,  
EMMC0_DATA1, EMMC0_DATA2,  
EMMC0_DATA3, EMMC0_DATA4,  
EMMC0_DATA5, EMMC0_DATA6,  
EMMC0_DATA7, EMMC0_STROBE,  
EMMC0_RESET_B, USDHC1_CD_B,  
USDHC1_CMD, USDHC1_DATA0,  
USDHC1_DATA1, USDHC1_DATA2,  
USDHC1_DATA3, USDHC1_RESET_B,  
USDHC1_VSELECT, USDHC1_WP  
8 bit boot from CS0 only, but will drive CS1 to  
high when booting if specified in fuse.  
Single-ended DQS:  
• USDHC1_CD_B  
Single-ended RE:  
• USDHC1_VSELECT  
Differential DQS:  
• _N use USDHC1_WP  
• _P use USDHC1_CD_B  
Differential RE:  
• _N use USDHC1_RESET_B  
• _P use USDHC1_VSELECT  
Quad SPI  
QSPI0  
QSPI0A_DATA0, QSPI0A_DATA1,  
4, dual-4, or 8 bit  
QSPI0A_DATA2, QSPI0A_DATA3, QSPI0A_DQS,  
QSPI0A_SCLK, QSPI0A_SS0_B,  
QSPI0A_SS1_B, QSPI0B_DATA0,  
QSPI0B_DATA1, QSPI0B_DATA2,  
QSPI0B_DATA3, QSPI0B_DQS, QSPI0B_SCLK,  
QSPI0B_SS0_B, QSPI0B_SS1_B  
USB  
USB-OTG1 USB_OTG1_DN, USB_OTG2_DN,  
USB_OTG1_DP, USB_OTG2_DP,  
USB_OTG1_ID, USB_OTG2_ID,  
USB_OTG1_VBUS, USB_OTG2_VBUS  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
113  
Package information and contact assignments  
6 Package information and contact assignments  
This section contains package information and contact assignments for the following package(s):  
FCPBGA, 21 x 21 mm, 0.8 mm pitch  
6.1  
FCPBGA, 21 x 21 mm, 0.8 mm pitch  
This section includes the following information for the 21 x 21 mm, 0.8 mm pitch package:  
Mechanical package drawing  
Ball map  
Contact assignments  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
114  
NXP Semiconductors  
Package information and contact assignments  
6.1.1  
21 x 21 mm package case outline  
The following figure shows the top, bottom, and side views of the 21 x 21 mm package.  
Figure 58. 21 x 21 mm Package Top, Bottom, and Side Views  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
115  
Package information and contact assignments  
The following notes pertain to the preceding figure, “21 x 21 mm Package Top, Bottom, and Side  
Views.”  
Figure 59. Notes on 21 x 21 mm Package Top, Bottom, and Side Views  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
116  
NXP Semiconductors  
Package information and contact assignments  
6.1.2  
21 x 21 mm, 0.8 mm pitch ball map  
The following page shows the 21 x 21 mm, 0.8 mm pitch ball map.  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
117  
Package information and functional contact assignments for FCPBGA, 21 x 21 mm, 0.8 mm pitch  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
PCIE_CT  
RL0_WA  
KE_B  
ENET0_R  
GMII_TX  
_CTL  
ENET0_R  
GMII_RX  
D0  
VSS_MAI  
N
DDR_DQ  
31  
DDR_DQ  
28  
PCIE0_T  
X0_N  
PCIE0_R  
X0_P  
USB_SS3  
_TX_N  
VSS_MAI  
N
USB_SS3  
_RX_P  
EMMC0_  
DATA1  
EMMC0_  
DATA6  
USDHC1_  
VSELECT  
USDHC1_  
DATA0  
VSS_MAI  
N
A
B
ENET0_R  
GMII_TX  
D1  
ENET0_R  
GMII_RX  
_CTL  
DDR_DQ  
30  
DDR_DQ  
29  
DDR_DQ1  
6
VSS_MAI  
N
PCIE0_T  
X0_P  
PCIE0_R  
X0_N  
VSS_MAI  
N
USB_SS3  
_TX_P  
USB_SS3  
_RX_N  
VSS_MAI  
N
EMMC0_  
DATA4  
USDHC1_  
RESET_B  
USDHC1_  
DATA1  
ENET0_  
MDIO  
ESAI0_T  
X1  
ENET0_R  
GMII_RX  
D1  
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
USB_SS3  
_TC3  
VSS_MAI  
N
VSS_MAI  
N
EMMC0_  
DATA0  
VSS_MAI  
N
USDHC1_  
CMD  
VSS_MAI  
N
VSS_MAI  
N
ESAI0_T  
X3_RX2  
VSS_MAI  
N
C
PCIE_CT  
RL0_CLK  
REQ_B  
PCIE_RE  
FCLK100  
M_N  
ENET0_R  
GMII_RX  
C
DDR_DQ  
S3_P  
DDR_DM  
2
DDR_DQ  
S2_P  
DDR_DQ1  
9
USB_OT  
USB_OT  
G2_DN  
USB_OT  
G1_DP  
EMMC0_  
CMD  
EMMC0_  
DATA7  
USDHC1_  
WP  
USDHC1_  
DATA2  
ENET0_  
MDC  
ESAI0_T  
X0  
SPDIF0_T  
X
D
G2_REXT  
PCIE_RE  
FCLK100  
M_P  
ENET0_R  
GMII_TX  
D2  
DDR_DM  
3
DDR_DQ  
S3_N  
DDR_DQ  
S2_N  
DDR_DQ1  
8
DDR_DQ1  
7
USB_SS3  
_REXT  
VSS_MAI  
N
USB_OT  
G2_DP  
USB_OT  
G1_DN  
EMMC0_  
DATA2  
USDHC1_  
CD_B  
USDHC1_  
DATA3  
VSS_MAI  
N
ESAI0_S  
CKT  
VSS_MAI  
N
SPDIF0_E  
XT_CLK  
E
ENET0_R  
GMII_TX  
D3  
ENET0_R  
EFCLK_12  
5M_25M  
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
PCIE_RE  
F_QR  
USB_SS3  
_TC0  
USB_OT  
G2_ID  
VSS_MAI  
N
VSS_MAI  
N
EMMC0_  
STROBE  
VSS_MAI  
N
ESAI0_FS  
R
ESAI0_T  
X4_RX1  
SPI3_SD  
O
F
PCIE0_PH  
Y_PLL_R  
EF_RETU  
RN  
ENET0_R  
GMII_TX  
D0  
ENET0_R  
GMII_RX  
D2  
DDR_DQ  
27  
DDR_DQ  
26  
DDR_DQ  
23  
DDR_DQ  
20  
VDD_PCI  
E_1P8  
USB_SS3  
_TC2  
USB_OT  
G1_ID  
EMMC0_  
CLK  
EMMC0_  
DATA5  
USDHC1_  
CLK  
ESAI0_FS  
T
SPDIF0_  
RX  
MCLK_IN  
0
G
DDR_ZQ  
SPI3_SDI  
PCIE_CT  
RL0_PER  
ST_B  
USB_OT  
G2_VBU  
S
ENET0_R  
GMII_TX  
C
ENET0_R  
GMII_RX  
D3  
DDR_DQ  
24  
DDR_DQ  
25  
DDR_DQ  
22  
DDR_DQ  
21  
PCIE_RE  
XT  
USB_SS3  
_TC1  
USB_OT  
EMMC0_  
DATA3  
EMMC0_  
RESET_B  
ESAI0_S  
CKR  
VSS_MAI  
N
UART1_T  
X
H
SPI3_SCK  
G1_VBUS  
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
ESAI0_T  
X5_RX0  
VSS_MAI  
N
SAI0_TX  
C
J
SPI3_CS0  
DDR_DC  
F29  
DDR_DC  
F27  
DDR_DC  
F28  
DDR_DC  
F25  
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
ESAI0_T  
X2_RX3  
UART1_C  
TS_B  
SAI0_TX  
D
K
SPI3_CS1  
VDD_EN  
ET0_VSE  
LECT_1P8  
_2P5_3P  
3
VDD_US  
DHC1_VS  
ELECT_1P  
8_3P3  
VDD_PCI  
E_DIG_1P  
8_3P3  
VDD_PCI  
E_LDO_1  
P0_CAP  
VDD_US  
B_OTG_1  
P0  
VDD_EM  
MC0_1P8  
_3P3  
VDD_EN  
ET_MDIO  
_1P8_3P3  
DDR_DC  
F18  
DDR_DC  
F32  
DDR_DC  
F31  
DDR_DC  
F26  
VSS_MAI  
N
VDD_US  
B_3P3  
VSS_MAI  
N
MCLK_O  
UT0  
UART1_R  
X
SAI0_TX  
FS  
SAI1_RX  
C
L
VDD_US  
B_SS3_L  
DO_1P0_  
CAP  
VDD_EM  
MC0_VS  
ELECT_1P  
8_3P3  
VDD_US  
DHC1_1P8  
_3P3  
VDD_EN  
ET0_1P8_  
2P5_3P3  
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
VDD_DD  
R_VDDQ  
VDD_AN  
A0_1P8  
VDD_US  
B_1P8  
VSS_MAI  
N
MCLK_IN  
1
VSS_MAI  
N
SAI1_RX  
D
SAI0_RX  
D
M
VDD_ES  
AI_SPDIF  
_1P8_2P5  
_3P3  
DDR_DC  
F19  
DDR_DC  
F17  
DDR_CK1  
_N  
DDR_DC  
F30  
VDD_DD  
R_VDDQ  
VDD_DD  
R_VDDQ  
VSS_MAI  
N
VDD_MA  
IN  
VSS_MAI  
N
VDD_MA  
IN  
VSS_MAI  
N
VDD_GP  
U
VSS_MAI  
N
UART1_R  
TS_B  
VSS_MAI  
N
SAI1_RXF  
S
N
SPI2_SDI  
DDR_DC  
F22  
DDR_DC  
F20  
DDR_CK1  
_P  
DDR_DC  
F33  
VSS_MAI  
N
VDD_MA  
IN  
VSS_MAI  
N
VDD_MA  
IN  
VSS_MAI  
N
VDD_GP  
U
VDD_GP  
U
VDD_MA  
IN  
VSS_MAI  
N
SPI2_SD  
O
P
SPI2_CS0  
SPI0_SCK  
SPI0_SDI  
VDD_SPI  
_MCLK_  
UART_1P  
8_3P3  
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
VDD_DD  
R_VDDQ  
VSS_MAI  
N
VDD_DD  
R_VDDQ  
VDD_MA  
IN  
VSS_MAI  
N
VDD_MA  
IN  
VSS_MAI  
N
VDD_GP  
U
VSS_MAI  
N
VSS_MAI  
N
SPI0_SD  
O
R
SPI2_SCK  
SPI0_CS0  
SPI0_CS1  
DDR_DC  
F07  
DDR_DC  
F23  
DDR_DC  
F24  
DDR_DC  
F21  
VSS_MAI  
N
VDD_DD  
R_VDDQ  
VDD_MA  
IN  
VSS_MAI  
N
VDD_MA  
IN  
VSS_MAI  
N
VDD_GP  
U
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
T
VDD_SPI  
_SAI_1P8  
_3P3  
DDR_DC  
F03  
DDR_DC  
F01  
DDR_DC  
F05  
DDR_DC  
F04  
VSS_MAI  
N
VDD_DD  
R_VDDQ  
VSS_MAI  
N
VDD_MA  
IN  
VSS_MAI  
N
VDD_MA  
IN  
VSS_MAI  
N
VDD_GP  
U
VSS_MAI  
N
ADC_VR  
EFH  
ADC_VR  
EFL  
U
ADC_IN1  
ADC_IN0  
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
VDD_MA  
IN  
VSS_MAI  
N
VDD_MA  
IN  
VSS_MAI  
N
VDD_GP  
U
VSS_MAI  
N
VDD_MA  
IN  
VSS_MAI  
N
VDD_AD  
C_1P8  
V
ADC_IN3  
ADC_IN2  
ADC_IN5  
VDD_AD  
C_DIG_1P  
8
DDR_DC  
F00  
DDR_DC  
F11  
DDR_CK  
0_P  
DDR_DC  
F16  
VSS_MAI  
N
VDD_DD  
R_VDDQ  
VDD_MA  
IN  
VSS_MAI  
N
VDD_MA  
IN  
VSS_MAI  
N
VDD_GP  
U
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
W
Y
ADC_IN4  
VDD_CA  
N_UART  
_1P8_3P3  
DDR_DC  
F14  
DDR_DC  
F15  
DDR_CK  
0_N  
DDR_DC  
F12  
VSS_MAI  
N
VDD_DD  
R_VDDQ  
VDD_MA  
IN  
VSS_MAI  
N
VDD_MA  
IN  
VSS_MAI  
N
VDD_MA  
IN  
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
FLEXCAN  
0_TX  
FLEXCAN  
0_RX  
VDD_MIP  
I_DSI_DI  
G_1P8_3  
P3  
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
VDD_DD  
R_VDDQ  
VDD_DD  
R_VDDQ  
VSS_MAI  
N
VSS_MAI  
N
VDD_MA  
IN  
VSS_MAI  
N
UART0_T  
X
FLEXCAN  
2_TX  
FLEXCAN  
1_RX  
FLEXCAN  
1_TX  
AA  
AB  
AC  
AD  
AE  
AF  
AG  
AH  
AJ  
AK  
AL  
AM  
AN  
AP  
AR  
VDD_A35  
VDD_A35  
VDD_A35  
MIPI_DSI  
0_I2C0_S  
DA  
DDR_DQ1  
4
DDR_DC  
F08  
DDR_DC  
F09  
DDR_AT  
O
VSS_MAI  
N
VDD_MA  
IN  
VSS_MAI  
N
VSS_MAI  
N
VDD_AN  
A1_1P8  
VSS_MAI  
N
VSS_MAI  
N
UART0_  
RX  
FLEXCAN  
2_RX  
VDD_A35  
VDD_A35  
VDD_A35  
VDD_DD  
R_PLL_1P  
8
MIPI_DSI1  
_I2C0_S  
DA  
MIPI_DSI  
0_I2C0_S  
CL  
DDR_DQ1  
5
DDR_DQ1  
2
DDR_DC  
F10  
DDR_DT  
O0  
VDD_DD  
R_VDDQ  
VDD_MA  
IN  
VSS_MAI  
N
VDD_MA  
IN  
VSS_MAI  
N
VDD_MA  
IN  
VSS_MAI  
N
VDD_SN  
VS_4P2  
VSS_MAI  
N
VSS_MAI  
N
UART2_T  
X
VDD_TM  
PR_CSI_1  
P8_3P3  
MIPI_DSI1  
_GPIO0_  
00  
MIPI_DSI  
0_GPIO0  
_00  
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
DDR_VR  
EF  
VSS_MAI  
N
VDD_DD  
R_VDDQ  
VDD_MA  
IN  
VDD_MIP  
I_1P8  
VDD_MIP  
I_1P0  
VSS_MAI  
N
VDD_MA  
IN  
VSS_MAI  
N
SCU_WD  
OG_OUT  
UART2_  
RX  
VDD_QS  
PI0B_1P8  
_3P3  
VDD_QS  
PI0A_1P8  
_3P3  
VDD_MIP  
I_CSI_DI  
G_1P8  
VDD_SN  
VS_LDO_  
1P8_CAP  
TEST_M  
ODE_SEL  
ECT  
MIPI_DSI1  
_I2C0_S  
CL  
MIPI_DSI  
0_GPIO0  
_01  
DDR_DQ  
S1_N  
DDR_DQ1  
3
DDR_DQ  
01  
DDR_DT  
O1  
VSS_MAI  
N
VDD_DD  
R_VDDQ  
VDD_MIP  
I_1P8  
VDD_MIP  
I_1P0  
VDD_CSI  
_1P8_3P3  
VSS_MAI  
N
JTAG_TC  
K
MIPI_DSI1  
_GPIO0_  
01  
DDR_DQ  
S1_P  
DDR_DM  
1
DDR_DQ  
00  
DDR_DQ  
03  
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
SCU_GPI  
O0_00  
VSS_MAI  
N
JTAG_TD  
O
SCU_PMI  
C_STAN  
DBY  
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
JTAG_T  
MS  
POR_B  
DDR_DQ1  
0
DDR_DQ1  
1
DDR_DQ  
S0_N  
DDR_DQ  
02  
QSPI0B_  
SS0_B  
QSPI0A_  
DATA3  
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
ON_OFF_  
BUTTON  
SCU_GPI  
O0_01  
PMIC_I2  
C_SDA  
JTAG_TD  
I
MIPI_DSI  
0_DATA3  
_N  
MIPI_DSI  
0_DATA1  
_N  
MIPI_DSI  
0_DATA0  
_N  
MIPI_DSI  
0_DATA2  
_N  
SCU_BO  
OT_MOD  
E3  
SCU_BO  
OT_MOD  
E0  
DDR_DQ  
08  
DDR_DQ  
09  
DDR_DQ  
S0_P  
DDR_DM  
0
QSPI0B_  
SS1_B  
QSPI0B_  
DATA2  
QSPI0A_  
DATA2  
MIPI_DSI  
0_CLK_N  
PMIC_IN  
T_B  
PMIC_I2  
C_SCL  
CSI_D06  
CSI_D03  
MIPI_DSI  
0_DATA3  
_P  
MIPI_DSI  
0_DATA1  
_P  
MIPI_DSI  
0_DATA0  
_P  
MIPI_DSI  
0_DATA2  
_P  
SCU_BO  
OT_MOD  
E1  
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
QSPI0B_  
DQS  
QSPI0A_  
SS1_B  
QSPI0A_  
DATA0  
MIPI_DSI  
0_CLK_P  
VSS_MAI  
N
ANA_TES  
T_OUT_N  
CSI_PCLK  
CSI_D00  
CSI_D07  
CSI_EN  
SCU_BO  
OT_MOD  
E2  
DDR_DQ  
32  
DDR_DQ  
34  
DDR_DQ  
06  
DDR_DQ  
07  
QSPI0B_  
DATA1  
QSPI0A_  
DQS  
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
CSI_VSY  
NC  
VSS_MAI  
N
ANA_TES  
T_OUT_P  
CSI_D01  
MIPI_DSI1  
_DATA2_  
N
MIPI_DSI1  
_DATA3_  
N
MIPI_CSI  
0_DATA1  
_N  
MIPI_CSI  
0_DATA0  
_N  
MIPI_CSI  
0_I2C0_S  
DA  
DDR_DQ  
33  
DDR_DQ  
04  
DDR_DQ  
05  
QSPI0B_  
DATA3  
QSPI0B_  
DATA0  
QSPI0A_  
SS0_B  
MIPI_DSI1  
_CLK_N  
CSI_MCL  
K
RTC_XT  
ALO  
CSI_D05  
XTALO  
MIPI_DSI1  
_DATA0_  
N
MIPI_DSI1  
_DATA1_  
N
MIPI_CSI  
0_DATA3  
_N  
MIPI_CSI  
0_DATA2  
_N  
MIPI_CSI  
0_MCLK_  
OUT  
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
VSS_MAI  
N
MIPI_CSI  
0_CLK_N  
VSS_MAI  
N
VSS_MAI  
N
VSS_SCU  
_XTAL  
VSS_SCU  
_XTAL  
CSI_D04  
MIPI_DSI1  
_DATA2_  
P
MIPI_DSI1  
_DATA3_  
P
MIPI_CSI  
0_DATA1  
_P  
MIPI_CSI  
0_DATA0  
_P  
MIPI_CSI  
0_GPIO0  
_01  
MIPI_CSI  
0_I2C0_S  
CL  
DDR_DQ  
35  
DDR_DQ  
S4_P  
DDR_DM  
4
DDR_DQ  
36  
DDR_DQ  
37  
QSPI0A_  
SCLK  
MIPI_DSI1  
_CLK_P  
RTC_XT  
ALI  
CSI_D02  
XTALI  
MIPI_DSI1  
_DATA0_  
P
MIPI_DSI1  
_DATA1_  
P
MIPI_CSI  
0_DATA3  
_P  
MIPI_CSI  
0_DATA2  
_P  
MIPI_CSI  
0_GPIO0  
_00  
VSS_MAI  
N
DDR_DQ  
S4_N  
DDR_DQ  
39  
DDR_DQ  
38  
QSPI0B_  
SCLK  
QSPI0A_  
DATA1  
MIPI_CSI  
0_CLK_P  
CSI_RES  
ET  
CSI_HSY  
NC  
PMIC_ON  
_REQ  
VSS_SCU  
_XTAL  
i.MX 8QuadXPlus/8DualXPlus Industrial Applications Processors, Rev. 0 05/2020  
NXP Semiconductors  
118  
Package information and contact assignments  
6.1.3  
21 x 21 mm power supplies and functional contact assignments  
The following table shows the power supplies contact assignments for the 21 × 21 mm package  
Table 123. 21 x 21 mm power supplies contact assignments  
Power rail  
Ball reference  
VDD_A351  
VDD_ADC_1P8  
AA15,AA17,AA19,AB16,AB18,AB20  
V28  
VDD_ADC_DIG_1P8  
W25  
VDD_ANA0_1P8  
M14  
VDD_ANA1_1P8  
AB24  
VDD_CAN_UART_1P8_3P3  
VDD_CSI_1P8_3P3  
Y24  
AE23  
VDD_DDR_PLL_1P8  
AC9  
VDD_DDR_VDDQ  
AA11,AA9,M12,N9,N11,R7,R11,T12,U11,W11,Y12,AC11,AD12,AE11  
VDD_EMMC0_1P8_3P3  
VDD_EMMC0_VSELECT_1P8_3P3  
VDD_ENET_MDIO_1P8_3P3  
VDD_ENET0_1P8_2P5_3P3  
VDD_ENET0_VSELECT_1P8_2P5_3P3  
VDD_ESAI_SPDIF_1P8_2P5_3P3  
VDD_GPU1  
L19  
M20  
L25  
M24  
L23  
N25  
N23,P20,P22,R21,T22,U23,V20,W21  
VDD_MAIN  
AA23,AB12,AC13,AC17,AC21,AD14,AD22,N15,N19,P12,P16,P24,R13,R17,T14,T  
18,U15,U19,V12,V16,V24,W13,W17,Y14,Y18,Y22  
VDD_MIPI_1P0  
VDD_MIPI_1P8  
AD18,AE19  
AD16,AE17  
AE21  
AA25  
G13  
VDD_MIPI_CSI_DIG_1P8  
VDD_MIPI_DSI_DIG_1P8_3P3  
VDD_PCIE_1P8  
VDD_PCIE_DIG_1P8_3P3  
VDD_PCIE_LDO_1P0_CAP  
VDD_QSPI0A_1P8_3P3  
VDD_QSPI0B_1P8_3P3  
VDD_SNVS_4P2  
L11  
L13  
AE15  
AE13  
AC25  
AE25  
R25  
VDD_SNVS_LDO_1P8_CAP  
VDD_SPI_MCLK_UART_1P8_3P3  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
119  
Package information and contact assignments  
Table 123. 21 x 21 mm power supplies contact assignments (continued)  
Power rail  
Ball reference  
VDD_SPI_SAI_1P8_3P3  
VDD_TMPR_CSI_1P8_3P3  
VDD_USB_1P8  
U25  
AD24  
M18  
L15  
VDD_USB_3P3  
VDD_USB_OTG_1P0  
L17  
VDD_USB_SS3_LDO_1P0_CAP  
VDD_USDHC1_1P8_3P3  
VDD_USDHC1_VSELECT_1P8_3P3  
VSS_MAIN  
M16  
M22  
L21  
A17, A3, A33, AA1, AA13, AA21, AA27, AA3,  
AA5,AA7,AB10,AB14,AB22,AB26,AB30,AC15,AC19,AC23,AC27,AC33,AD10,AD2,  
AD20,AD26,AD4,AD6,AE27,AE9,AF10,AF12,AF14,AF16,AF18,AF20,AF22,AF24,A  
F26,AF30,AG1,AG11,AG13,AG15,AG17,AG19,AG21,AG23,  
AG25,AG27,AG3,AG33,AG5,AG7,AG9,AH14,AH16,AH18,AH20,AH22,AH24,AH26  
,AK2,AK30,AK4,AK6,AK8,AL13,AL15,AL17,AL19,AL21,AL23,AL25,AL33,  
AN1,AN11,AN13,AN27,AN3,AN31,AN5,AN7,AN9,AR3,B14,B20,B8,C1,C11,C13,C1  
7,C19,C23,C27,C3,C31,C35,C5,C7,C9,E15,E29,E33,  
F10,F18,F2,F20,F24,F4,F6,F8,H30,J1,J11,J13,J15,J17,J19,J21,J23,J25,J27,J3,J3  
3,J5,J7,J9,K10,K12,K14,K16,K18,K20,K22,K24,K26,L27,L9,M10,M2,M26,  
M30,M4,M6,M8,N13,N17,N21,N27,N33,P10,P14,P18,P26,R1,R15,R19,R23,R27,R  
3,R5,R9,T10,T16,T20,T24,T26,T28,T30,T32,T34,U13,U17,U21,U27,U9, V10,  
V14,V18,V2,V22,V26,V4,V6,V8,W15,W19,W23,W27,W31,W33,W35,W9,Y10,Y16,  
Y20,Y26,Y28,Y30  
VSS_SCU_XTAL  
AN33,AN35,AR33  
1
VDD_A35 and VDD_GPU can be combined with one power supply.  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
120  
NXP Semiconductors  
Package information and contact assignments  
The following table shows functional contact assignments for the 21 × 21 mm package.  
Table 124. 21 x 21 mm functional contact assignments  
Reset Condition2  
Ball  
Ball  
Ball Name  
Power Domain  
Type  
Default  
Mode  
Default Default  
Direction Pull  
1
Default Function  
U35  
U33  
ADC_IN0  
ADC_IN1  
VDD_ADC_DIG_1P8  
VDD_ADC_DIG_1P8  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
ANA  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ADMA.ADC.IN0  
ADMA.ADC.IN1  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
V32  
ADC_IN2  
VDD_ADC_DIG_1P8  
ADMA.ADC.IN2  
V30  
ADC_IN3  
VDD_ADC_DIG_1P8  
ADMA.ADC.IN3  
W29  
V34  
ADC_IN4  
VDD_ADC_DIG_1P8  
ADMA.ADC.IN4  
ADC_IN5  
VDD_ADC_DIG_1P8  
ADMA.ADC.IN5  
U29  
ADC_VREFH  
ADC_VREFL  
ANA_TEST_OUT_N  
ANA_TEST_OUT_P  
CSI_D00  
VDD_ADC_1P8  
ADC_VREFH  
U31  
VDD_ADC_1P8  
ANA  
ADC_VREFL  
AK34  
AL35  
AK28  
AL29  
AP30  
AJ27  
AN29  
AM30  
AJ25  
AM28  
AR29  
AL27  
AP28  
AM26  
AK26  
AR27  
G19  
VDD_SCU_ANA_1P8  
VDD_SCU_ANA_1P8  
VDD_TMPR_CSI_1P8_3P3  
VDD_TMPR_CSI_1P8_3P3  
VDD_TMPR_CSI_1P8_3P3  
VDD_TMPR_CSI_1P8_3P3  
VDD_TMPR_CSI_1P8_3P3  
VDD_TMPR_CSI_1P8_3P3  
VDD_TMPR_CSI_1P8_3P3  
VDD_TMPR_CSI_1P8_3P3  
VDD_TMPR_CSI_1P8_3P3  
VDD_TMPR_CSI_1P8_3P3  
VDD_CSI_1P8_3P3  
ANA  
SCU.DSC.TEST_OUT_N  
SCU.DSC.TEST_OUT_P  
CI_PI.CSI_D02  
ANA  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT4  
ALT0  
ALT0  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
CSI_D01  
CI_PI.CSI_D03  
CSI_D02  
CI_PI.CSI_D04  
CSI_D03  
CI_PI.CSI_D05  
CSI_D04  
CI_PI.CSI_D06  
CSI_D05  
CI_PI.CSI_D07  
CSI_D06  
CI_PI.CSI_D08  
CSI_D07  
CI_PI.CSI_D09  
CSI_HSYNC  
CSI_VSYNC  
CSI_EN  
CI_PI.CSI_HSYNC  
CI_PI.CSI_VSYNC  
CI_PI.CSI_EN  
CSI_MCLK  
VDD_CSI_1P8_3P3  
LSIO.GPIO3.IO01  
CI_PI.CSI_PCLK  
CI_PI.CSI_RESET  
LSIO.GPIO4.IO07  
CONN.EMMC0.CMD  
CONN.EMMC0.DATA0  
CONN.EMMC0.DATA1  
CONN.EMMC0.DATA2  
CONN.EMMC0.DATA3  
CONN.EMMC0.DATA4  
CONN.EMMC0.DATA5  
CONN.EMMC0.DATA6  
CSI_PCLK  
VDD_CSI_1P8_3P3  
CSI_RESET  
EMMC0_CLK  
EMMC0_CMD  
EMMC0_DATA0  
EMMC0_DATA1  
EMMC0_DATA2  
EMMC0_DATA3  
EMMC0_DATA4  
EMMC0_DATA5  
EMMC0_DATA6  
VDD_CSI_1P8_3P3  
VDD_EMMC0_1P8_3P3  
VDD_EMMC0_1P8_3P3  
VDD_EMMC0_1P8_3P3  
VDD_EMMC0_1P8_3P3  
VDD_EMMC0_1P8_3P3  
VDD_EMMC0_1P8_3P3  
FASTD ALT4  
FASTD ALT0  
FASTD ALT0  
FASTD ALT0  
FASTD ALT0  
FASTD ALT0  
D20  
C21  
A21  
E21  
H20  
B22  
VDD_EMMC0_VSELECT_1P8_3P3 FASTD ALT0  
VDD_EMMC0_VSELECT_1P8_3P3 FASTD ALT0  
VDD_EMMC0_VSELECT_1P8_3P3 FASTD ALT0  
G21  
A23  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
121  
Package information and contact assignments  
Table 124. 21 x 21 mm functional contact assignments (continued)  
Reset Condition2  
Ball  
Ball  
Ball Name  
Power Domain  
Type  
Default  
Mode  
Default Default  
Direction Pull  
1
Default Function  
D22  
H22  
F22  
EMMC0_DATA7  
EMMC0_RESET_B  
EMMC0_STROBE  
ENET0_MDC  
VDD_EMMC0_VSELECT_1P8_3P3 FASTD ALT0  
VDD_EMMC0_VSELECT_1P8_3P3 GPIO ALT4  
VDD_EMMC0_VSELECT_1P8_3P3 FASTD ALT0  
CONN.EMMC0.DATA7  
LSIO.GPIO4.IO18  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
PD(50K)  
PU(50K)  
PD(50K)  
PD(50K)  
PU(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
CONN.EMMC0.STROBE  
LSIO.GPIO5.IO11  
D30  
B32  
F28  
VDD_ENET_MDIO_1P8_3P3  
VDD_ENET_MDIO_1P8_3P3  
VDD_ENET_MDIO_1P8_3P3  
VDD_ENET0_1P8_2P5_3P3  
VDD_ENET0_1P8_2P5_3P3  
VDD_ENET0_1P8_2P5_3P3  
VDD_ENET0_1P8_2P5_3P3  
VDD_ENET0_1P8_2P5_3P3  
VDD_ENET0_1P8_2P5_3P3  
GPIO  
GPIO  
GPIO  
ALT4  
ALT0  
ALT4  
ENET0_MDIO  
CONN.ENET0.MDIO  
LSIO.GPIO5.IO09  
ENET0_REFCLK_125M_25M  
ENET0_RGMII_RX_CTL  
ENET0_RGMII_RXC  
ENET0_RGMII_RXD0  
ENET0_RGMII_RXD1  
ENET0_RGMII_RXD2  
ENET0_RGMII_RXD3  
ENET0_RGMII_TX_CTL  
ENET0_RGMII_TXC  
ENET0_RGMII_TXD0  
ENET0_RGMII_TXD1  
ENET0_RGMII_TXD2  
ENET0_RGMII_TXD3  
ESAI0_FSR  
B30  
D28  
A31  
C29  
G27  
H26  
A29  
H24  
G25  
B28  
E27  
F26  
FASTD ALT0  
FASTD ALT0  
FASTD ALT0  
FASTD ALT0  
FASTD ALT0  
FASTD ALT0  
CONN.ENET0.RGMII_RX_CTL  
CONN.ENET0.RGMII_RXC  
CONN.ENET0.RGMII_RXD0  
CONN.ENET0.RGMII_RXD1  
CONN.ENET0.RGMII_RXD2  
CONN.ENET0.RGMII_RXD3  
LSIO.GPIO4.IO30  
VDD_ENET0_VSELECT_1P8_2P5_3P3 FASTD ALT4  
VDD_ENET0_VSELECT_1P8_2P5_3P3 FASTD ALT4  
VDD_ENET0_VSELECT_1P8_2P5_3P3 FASTD ALT4  
VDD_ENET0_VSELECT_1P8_2P5_3P3 FASTD ALT4  
VDD_ENET0_VSELECT_1P8_2P5_3P3 FASTD ALT4  
VDD_ENET0_VSELECT_1P8_2P5_3P3 FASTD ALT4  
LSIO.GPIO4.IO29  
LSIO.GPIO4.IO31  
LSIO.GPIO5.IO00  
LSIO.GPIO5.IO01  
LSIO.GPIO5.IO02  
F30  
VDD_ESAI_SPDIF_1P8_2P5_3P3  
VDD_ESAI_SPDIF_1P8_2P5_3P3  
VDD_ESAI_SPDIF_1P8_2P5_3P3  
VDD_ESAI_SPDIF_1P8_2P5_3P3  
VDD_ESAI_SPDIF_1P8_2P5_3P3  
VDD_ESAI_SPDIF_1P8_2P5_3P3  
VDD_ESAI_SPDIF_1P8_2P5_3P3  
VDD_ESAI_SPDIF_1P8_2P5_3P3  
VDD_ESAI_SPDIF_1P8_2P5_3P3  
VDD_ESAI_SPDIF_1P8_2P5_3P3  
VDD_CAN_UART_1P8_3P3  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
TEST  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT4  
ALT0  
ALT4  
ALT0  
ALT4  
ALT0  
ADMA.ESAI0.FSR  
G29  
H28  
E31  
D32  
B34  
K28  
C33  
F32  
ESAI0_FST  
ADMA.ESAI0.FST  
ESAI0_SCKR  
ADMA.ESAI0.SCKR  
ADMA.ESAI0.SCKT  
ADMA.ESAI0.TX0  
ESAI0_SCKT  
ESAI0_TX0  
ESAI0_TX1  
ADMA.ESAI0.TX1  
ESAI0_TX2_RX3  
ESAI0_TX3_RX2  
ESAI0_TX4_RX1  
ESAI0_TX5_RX0  
FLEXCAN0_RX  
ADMA.ESAI0.TX2_RX3  
ADMA.ESAI0.TX3_RX2  
ADMA.ESAI0.TX4_RX1  
ADMA.ESAI0.TX5_RX0  
ADMA.FLEXCAN0.RX  
LSIO.GPIO1.IO16  
J29  
Y34  
Y32  
AA33  
AA35  
AB34  
AA31  
AE31  
FLEXCAN0_TX  
VDD_CAN_UART_1P8_3P3  
FLEXCAN1_RX  
VDD_CAN_UART_1P8_3P3  
ADMA.FLEXCAN1.RX  
LSIO.GPIO1.IO18  
FLEXCAN1_TX  
VDD_CAN_UART_1P8_3P3  
FLEXCAN2_RX  
VDD_CAN_UART_1P8_3P3  
ADMA.FLEXCAN2.RX  
LSIO.GPIO1.IO20  
FLEXCAN2_TX  
VDD_CAN_UART_1P8_3P3  
JTAG_TCK  
VDD_ANA1_1P8  
SCU.JTAG.TCK  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
122  
Package information and contact assignments  
Table 124. 21 x 21 mm functional contact assignments (continued)  
Reset Condition2  
Ball  
Ball  
Ball Name  
Power Domain  
Type  
Default  
Mode  
Default Default  
Direction Pull  
1
Default Function  
AH34  
AF32  
AG35  
G35  
JTAG_TDI  
VDD_ANA1_1P8  
VDD_ANA1_1P8  
TEST  
TEST  
TEST  
GPIO  
GPIO  
GPIO  
CSI  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT4  
SCU.JTAG.TDI  
SCU.JTAG.TDO  
INPUT  
OUTPUT  
INPUT  
INPUT  
INPUT  
INPUT  
PU(50K)  
HiZ  
JTAG_TDO  
JTAG_TMS  
VDD_ANA1_1P8  
SCU.JTAG.TMS  
PU(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
Hi-Z  
MCLK_IN0  
VDD_SPI_MCLK_UART_1P8_3P3  
VDD_SPI_MCLK_UART_1P8_3P3  
VDD_SPI_MCLK_UART_1P8_3P3  
VDD_MIPI_1P8  
ADMA.ACM.MCLK_IN0  
ADMA.ACM.MCLK_IN1  
LSIO.GPIO0.IO20  
MIPI_CSI0.CKN  
M28  
MCLK_IN1  
L29  
MCLK_OUT0  
AN21  
AR21  
AM22  
AP22  
AM20  
AP20  
AN23  
AR23  
AN19  
AR19  
AR25  
AP24  
AP26  
AM24  
AN25  
AJ19  
AK20  
AJ21  
AK22  
AJ17  
AK18  
AJ23  
AK24  
AJ15  
AK16  
AD32  
AE35  
AC31  
AB28  
MIPI_CSI0_CLK_N  
MIPI_CSI0_CLK_P  
MIPI_CSI0_DATA0_N  
MIPI_CSI0_DATA0_P  
MIPI_CSI0_DATA1_N  
MIPI_CSI0_DATA1_P  
MIPI_CSI0_DATA2_N  
MIPI_CSI0_DATA2_P  
MIPI_CSI0_DATA3_N  
MIPI_CSI0_DATA3_P  
MIPI_CSI0_GPIO0_00  
MIPI_CSI0_GPIO0_01  
MIPI_CSI0_I2C0_SCL  
MIPI_CSI0_I2C0_SDA  
MIPI_CSI0_MCLK_OUT  
MIPI_DSI0_CLK_N  
MIPI_DSI0_CLK_P  
MIPI_DSI0_DATA0_N  
MIPI_DSI0_DATA0_P  
MIPI_DSI0_DATA1_N  
MIPI_DSI0_DATA1_P  
MIPI_DSI0_DATA2_N  
MIPI_DSI0_DATA2_P  
MIPI_DSI0_DATA3_N  
MIPI_DSI0_DATA3_P  
MIPI_DSI0_GPIO0_00  
MIPI_DSI0_GPIO0_01  
MIPI_DSI0_I2C0_SCL  
MIPI_DSI0_I2C0_SDA  
VDD_MIPI_1P8  
CSI  
MIPI_CSI0.CKP  
Hi-Z  
VDD_MIPI_1P8  
CSI  
MIPI_CSI0.DN0  
Hi-Z  
VDD_MIPI_1P8  
CSI  
MIPI_CSI0.DP0  
Hi-Z  
VDD_MIPI_1P8  
CSI  
MIPI_CSI0.DN1  
Hi-Z  
VDD_MIPI_1P8  
CSI  
MIPI_CSI0.DP1  
Hi-Z  
VDD_MIPI_1P8  
CSI  
MIPI_CSI0.DN2  
Hi-Z  
VDD_MIPI_1P8  
CSI  
MIPI_CSI0.DP2  
Hi-Z  
VDD_MIPI_1P8  
CSI  
MIPI_CSI0.DN3  
Hi-Z  
VDD_MIPI_1P8  
CSI  
MIPI_CSI0.DP3  
Hi-Z  
VDD_MIPI_CSI_DIG_1P8  
VDD_MIPI_CSI_DIG_1P8  
VDD_MIPI_CSI_DIG_1P8  
VDD_MIPI_CSI_DIG_1P8  
VDD_MIPI_CSI_DIG_1P8  
VDD_MIPI_1P8  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
DSI  
ALT0  
ALT0  
ALT0  
ALT0  
ALT4  
MIPI_CSI0.GPIO0.IO00  
MIPI_CSI0.GPIO0.IO01  
MIPI_CSI0.I2C0.SCL  
MIPI_CSI0.I2C0.SDA  
LSIO.GPIO3.IO04  
MIPI_DSI0.CKN  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
PD(50K)  
PD(50K)  
PU(50K)  
PU(50K)  
PD(50K)  
Hi-Z  
VDD_MIPI_1P8  
DSI  
MIPI_DSI0.CKP  
Hi-Z  
VDD_MIPI_1P8  
DSI  
MIPI_DSI0.DN0  
Hi-Z  
VDD_MIPI_1P8  
DSI  
MIPI_DSI0.DP0  
Hi-Z  
VDD_MIPI_1P8  
DSI  
MIPI_DSI0.DN1  
Hi-Z  
VDD_MIPI_1P8  
DSI  
MIPI_DSI0.DP1  
Hi-Z  
VDD_MIPI_1P8  
DSI  
MIPI_DSI0.DN2  
Hi-Z  
VDD_MIPI_1P8  
DSI  
MIPI_DSI0.DP2  
Hi-Z  
VDD_MIPI_1P8  
DSI  
MIPI_DSI0.DN3  
Hi-Z  
VDD_MIPI_1P8  
DSI  
MIPI_DSI0.DP3  
Hi-Z  
VDD_MIPI_DSI_DIG_1P8_3P3  
VDD_MIPI_DSI_DIG_1P8_3P3  
VDD_MIPI_DSI_DIG_1P8_3P3  
VDD_MIPI_DSI_DIG_1P8_3P3  
GPIO  
GPIO  
GPIO  
GPIO  
ALT0  
ALT0  
ALT0  
ALT0  
MIPI_DSI0.GPIO0.IO00  
MIPI_DSI0.GPIO0.IO01  
MIPI_DSI0.I2C0.SCL  
MIPI_DSI0.I2C0.SDA  
INPUT  
INPUT  
INPUT  
INPUT  
PD(50K)  
PD(50K)  
PU(50K)  
PU(50K)  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
123  
Package information and contact assignments  
Table 124. 21 x 21 mm functional contact assignments (continued)  
Reset Condition2  
Ball  
Ball  
Ball Name  
Power Domain  
Type  
Default  
Mode  
Default Default  
Direction Pull  
1
Default Function  
AM16  
AP16  
AN15  
AR15  
AN17  
AR17  
AM14  
AP14  
AM18  
AP18  
AD30  
AF34  
AE33  
AC29  
AH28  
D10  
MIPI_DSI1_CLK_N  
MIPI_DSI1_CLK_P  
VDD_MIPI_1P8  
VDD_MIPI_1P8  
DSI  
DSI  
MIPI_DSI1.CKN  
MIPI_DSI1.CKP  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
MIPI_DSI1_DATA0_N  
MIPI_DSI1_DATA0_P  
MIPI_DSI1_DATA1_N  
MIPI_DSI1_DATA1_P  
MIPI_DSI1_DATA2_N  
MIPI_DSI1_DATA2_P  
MIPI_DSI1_DATA3_N  
MIPI_DSI1_DATA3_P  
MIPI_DSI1_GPIO0_00  
MIPI_DSI1_GPIO0_01  
MIPI_DSI1_I2C0_SCL  
MIPI_DSI1_I2C0_SDA  
ON_OFF_BUTTON  
VDD_MIPI_1P8  
DSI  
MIPI_DSI1.DN0  
VDD_MIPI_1P8  
DSI  
MIPI_DSI1.DP0  
VDD_MIPI_1P8  
DSI  
MIPI_DSI1.DN1  
VDD_MIPI_1P8  
DSI  
MIPI_DSI1.DP1  
VDD_MIPI_1P8  
DSI  
MIPI_DSI1.DN2  
VDD_MIPI_1P8  
DSI  
MIPI_DSI1.DP2  
VDD_MIPI_1P8  
DSI  
MIPI_DSI1.DN3  
VDD_MIPI_1P8  
DSI  
MIPI_DSI1.DP3  
VDD_MIPI_DSI_DIG_1P8_3P3  
VDD_MIPI_DSI_DIG_1P8_3P3  
VDD_MIPI_DSI_DIG_1P8_3P3  
VDD_MIPI_DSI_DIG_1P8_3P3  
VDD_SNVS_LDO_1P8_CAP  
VDD_PCIE_DIG_1P8_3P3  
VDD_PCIE_DIG_1P8_3P3  
VDD_PCIE_DIG_1P8_3P3  
VDD_PCIE_1P8  
GPIO  
GPIO  
GPIO  
GPIO  
ANA  
GPIO  
GPIO  
GPIO  
PCIE  
PCIE  
PCIE  
PCIE  
PCIE  
PCIE  
PCIE  
PCIE  
PCIE  
SCU  
SCU  
SCU  
ANA  
SCU  
ALT0  
ALT0  
ALT0  
ALT0  
MIPI_DSI1.GPIO0.IO00  
MIPI_DSI1.GPIO0.IO01  
MIPI_DSI1.I2C0.SCL  
MIPI_DSI1.I2C0.SDA  
SNVS.ON_OFF_BUTTON  
HSIO.PCIE0.CLKREQ_B  
HSIO.PCIE0.PERST_B  
HSIO.PCIE0.WAKE_B  
HSIO.PCIE_IOB.REF_QR  
HSIO.PCIE_IOB.EXT_REFCLK100M_N  
HSIO.PCIE_IOB.EXT_REFCLK100M_P  
HSIO.PCIE.REXT  
INPUT  
INPUT  
INPUT  
INPUT  
PD(50K)  
PD(50K)  
PU(50K)  
PU(50K)  
PCIE_CTRL0_CLKREQ_B  
PCIE_CTRL0_PERST_B  
PCIE_CTRL0_WAKE_B  
PCIE_REF_QR  
ALT0  
ALT0  
ALT0  
INPUT  
INPUT  
INPUT  
PD(50K)  
PD(50K)  
PU(50K)  
H10  
A11  
F12  
D12  
PCIE_REFCLK100M_N  
PCIE_REFCLK100M_P  
PCIE_REXT  
VDD_PCIE_1P8  
E11  
VDD_PCIE_1P8  
H12  
VDD_PCIE0_1P0  
G11 PCIE0_PHY_PLL_REF_RETURN  
VDD_PCIE_LDO_1P0_CAP  
VDD_PCIE_LDO_1P0_CAP  
VDD_PCIE_LDO_1P0_CAP  
VDD_PCIE_LDO_1P0_CAP  
VDD_PCIE_LDO_1P0_CAP  
VDD_ANA1_1P8  
HSIO.PCIE0.PLL_REF_RETURN  
HSIO.PCIE0.RX0_N  
HSIO.PCIE0.RX0_P  
HSIO.PCIE0.TX0_N  
HSIO.PCIE0.TX0_P  
SCU.PMIC_I2C.SCL  
SCU.PMIC_I2C.SDA  
SCU.DSC.PMIC_INT_B  
SNVS.PMIC_ON_REQ  
SCU.DSC.POR_B  
B12  
A13  
PCIE0_RX0_N  
PCIE0_RX0_P  
PCIE0_TX0_N  
PCIE0_TX0_P  
PMIC_I2C_SCL  
PMIC_I2C_SDA  
PMIC_INT_B  
A9  
B10  
AJ35  
AH32  
AJ33  
AR31  
AG31  
AK14  
AR13  
AJ13  
ALT0  
ALT0  
ALT0  
INPUT  
INPUT  
INPUT  
PU(50K)  
PU(50K)  
PU(50K)  
VDD_ANA1_1P8  
VDD_ANA1_1P8  
PMIC_ON_REQ  
POR_B  
VDD_SNVS_LDO_1P8_CAP  
VDD_ANA1_1P8  
ALT0  
INPUT  
INPUT  
INPUT  
INPUT  
PU(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
QSPI0A_DATA0  
QSPI0A_DATA1  
QSPI0A_DATA2  
VDD_QSPI0A_1P8_3P3  
VDD_QSPI0A_1P8_3P3  
VDD_QSPI0A_1P8_3P3  
FASTD ALT0  
FASTD ALT0  
FASTD ALT0  
LSIO.QSPI0A.DATA0  
LSIO.QSPI0A.DATA1  
LSIO.QSPI0A.DATA2  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
124  
Package information and contact assignments  
Table 124. 21 x 21 mm functional contact assignments (continued)  
Reset Condition2  
Ball  
Ball  
Ball Name  
Power Domain  
Type  
Default  
Mode  
Default Default  
Direction Pull  
1
Default Function  
AH12  
AL11  
AP12  
AM12  
AK12  
AM10  
AL9  
QSPI0A_DATA3  
QSPI0A_DQS  
VDD_QSPI0A_1P8_3P3  
VDD_QSPI0A_1P8_3P3  
VDD_QSPI0A_1P8_3P3  
VDD_QSPI0A_1P8_3P3  
VDD_QSPI0A_1P8_3P3  
VDD_QSPI0B_1P8_3P3  
VDD_QSPI0B_1P8_3P3  
VDD_QSPI0B_1P8_3P3  
VDD_QSPI0B_1P8_3P3  
VDD_QSPI0B_1P8_3P3  
VDD_QSPI0B_1P8_3P3  
VDD_QSPI0B_1P8_3P3  
VDD_QSPI0B_1P8_3P3  
VDD_SNVS_LDO_1P8_CAP  
VDD_SNVS_LDO_1P8_CAP  
VDD_SPI_SAI_1P8_3P3  
VDD_SPI_SAI_1P8_3P3  
VDD_SPI_SAI_1P8_3P3  
VDD_SPI_SAI_1P8_3P3  
VDD_SPI_SAI_1P8_3P3  
VDD_SPI_SAI_1P8_3P3  
VDD_SPI_SAI_1P8_3P3  
VDD_ANA1_1P8  
FASTD ALT0  
FASTD ALT0  
FASTD ALT4  
FASTD ALT4  
FASTD ALT4  
FASTD ALT0  
FASTD ALT0  
FASTD ALT0  
FASTD ALT0  
FASTD ALT0  
FASTD ALT4  
FASTD ALT4  
FASTD ALT4  
ANA  
LSIO.QSPI0A.DATA3  
LSIO.QSPI0A.DQS  
LSIO.GPIO3.IO16  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
PD(50K)  
PD(50K)  
PD(50K)  
PU(50K)  
PU(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PU(50K)  
PU(50K)  
QSPI0A_SCLK  
QSPI0A_SS0_B  
QSPI0A_SS1_B  
QSPI0B_DATA0  
QSPI0B_DATA1  
QSPI0B_DATA2  
QSPI0B_DATA3  
QSPI0B_DQS  
LSIO.GPIO3.IO14  
LSIO.GPIO3.IO15  
LSIO.QSPI0B.DATA0  
LSIO.QSPI0B.DATA1  
LSIO.QSPI0B.DATA2  
LSIO.QSPI0B.DATA3  
LSIO.QSPI0B.DQS  
LSIO.GPIO3.IO17  
AJ11  
AM8  
AK10  
AR11  
AH10  
AJ9  
QSPI0B_SCLK  
QSPI0B_SS0_B  
QSPI0B_SS1_B  
RTC_XTALI  
LSIO.GPIO3.IO23  
LSIO.GPIO3.IO24  
AP32  
AM32  
M34  
SNVS.RTC_XTALI  
SNVS.RTC_XTALO  
ADMA.SAI0.RXD  
RTC_XTALO  
ANA  
SAI0_RXD  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
SCU  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT1  
ALT0  
ALT0  
ALT4  
ALT0  
ALT0  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
OUTPUT  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PU(50K)  
HiZ  
J35  
SAI0_TXC  
ADMA.SAI0.TXC  
K34  
SAI0_TXD  
ADMA.SAI0.TXD  
L33  
SAI0_TXFS  
ADMA.SAI0.TXFS  
L35  
SAI1_RXC  
ADMA.SAI1.RXC  
M32  
SAI1_RXD  
ADMA.SAI1.RXD  
N35  
SAI1_RXFS  
ADMA.SAI1.RXFS  
SCU.DSC.BOOT_MODE0  
SCU.DSC.BOOT_MODE1  
SCU.DSC.BOOT_MODE2  
SCU.DSC.BOOT_MODE3  
SCU.GPIO0.IO00  
AJ31  
AK32  
AL31  
AJ29  
AF28  
AH30  
AG29  
AD28  
E35  
SCU_BOOT_MODE0  
SCU_BOOT_MODE1  
SCU_BOOT_MODE2  
SCU_BOOT_MODE3  
SCU_GPIO0_00  
SCU_GPIO0_01  
SCU_PMIC_STANDBY  
VDD_ANA1_1P8  
SCU  
VDD_ANA1_1P8  
SCU  
VDD_ANA1_1P8  
SCU  
VDD_ANA1_1P8  
GPIO  
GPIO  
SCU  
VDD_ANA1_1P8  
SCU.GPIO0.IO01  
VDD_ANA1_1P8  
SCU.DSC.PMIC_STANDBY  
SCU.WDOG0.WDOG_OUT  
ADMA.SPDIF0.EXT_CLK  
ADMA.SPDIF0.RX  
LSIO.GPIO0.IO11  
3
SCU_WDOG_OUT  
VDD_ANA1_1P8  
SCU  
OUTPUT PD(50K)  
SPDIF0_EXT_CLK  
SPDIF0_RX  
SPDIF0_TX  
SPI0_CS0  
VDD_ESAI_SPDIF_1P8_2P5_3P3  
VDD_ESAI_SPDIF_1P8_2P5_3P3  
VDD_ESAI_SPDIF_1P8_2P5_3P3  
VDD_SPI_SAI_1P8_3P3  
VDD_SPI_SAI_1P8_3P3  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
G31  
D34  
R33  
ADMA.SPI0.CS0  
R35  
SPI0_CS1  
ADMA.SPI0.CS1  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
125  
Package information and contact assignments  
Table 124. 21 x 21 mm functional contact assignments (continued)  
Reset Condition2  
Ball  
Ball  
Ball Name  
Power Domain  
Type  
Default  
Mode  
Default Default  
Direction Pull  
1
Default Function  
P30  
P34  
R31  
P28  
R29  
N31  
P32  
J31  
SPI0_SCK  
SPI0_SDI  
VDD_SPI_SAI_1P8_3P3  
VDD_SPI_SAI_1P8_3P3  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
SCU  
ALT0  
ALT0  
ALT4  
ALT0  
ALT0  
ALT0  
ALT4  
ALT0  
ALT0  
ALT0  
ALT0  
ALT4  
ALT0  
ALT0  
ALT4  
ALT0  
ALT4  
ALT0  
ALT4  
ALT0  
ALT4  
ADMA.SPI0.SCK  
ADMA.SPI0.SDI  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
PD(50K)  
SPI0_SDO  
VDD_SPI_SAI_1P8_3P3  
LSIO.GPIO1.IO06  
SPI2_CS0  
VDD_SPI_SAI_1P8_3P3  
ADMA.SPI2.CS0  
SPI2_SCK  
VDD_SPI_SAI_1P8_3P3  
ADMA.SPI2.SCK  
SPI2_SDI  
VDD_SPI_SAI_1P8_3P3  
ADMA.SPI2.SDI  
SPI2_SDO  
VDD_SPI_SAI_1P8_3P3  
LSIO.GPIO1.IO01  
SPI3_CS0  
VDD_SPI_MCLK_UART_1P8_3P3  
VDD_SPI_MCLK_UART_1P8_3P3  
VDD_SPI_MCLK_UART_1P8_3P3  
VDD_SPI_MCLK_UART_1P8_3P3  
VDD_SPI_MCLK_UART_1P8_3P3  
VDD_ANA1_1P8  
ADMA.SPI3.CS0  
K30  
H32  
G33  
F34  
SPI3_CS1  
ADMA.SPI3.CS1  
SPI3_SCK  
ADMA.SPI3.SCK  
SPI3_SDI  
ADMA.SPI3.SDI  
SPI3_SDO  
LSIO.GPIO0.IO14  
AE29  
AB32  
AA29  
K32  
N29  
L31  
TEST_MODE_SELECT  
UART0_RX  
SCU.TCU.TEST_MODE_SELECT  
ADMA.UART0.RX  
VDD_CAN_UART_1P8_3P3  
VDD_CAN_UART_1P8_3P3  
VDD_SPI_MCLK_UART_1P8_3P3  
VDD_SPI_MCLK_UART_1P8_3P3  
VDD_SPI_MCLK_UART_1P8_3P3  
VDD_SPI_MCLK_UART_1P8_3P3  
VDD_CAN_UART_1P8_3P3  
VDD_CAN_UART_1P8_3P3  
VDD_USB_3P3  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
OTG  
UART0_TX  
LSIO.GPIO1.IO22  
UART1_CTS_B  
UART1_RTS_B  
UART1_RX  
ADMA.UART1.CTS_B  
LSIO.GPT0.CLK  
ADMA.UART1.RX  
H34  
AD34  
AC35  
E19  
D18  
G17  
H18  
D16  
E17  
F16  
UART1_TX  
LSIO.GPIO0.IO21  
UART2_RX  
ADMA.UART2.RX  
UART2_TX  
LSIO.GPIO1.IO23  
USB_OTG1_DN  
USB_OTG1_DP  
USB_OTG1_ID  
USB_OTG1_VBUS  
USB_OTG2_DN  
USB_OTG2_DP  
USB_OTG2_ID  
USB_OTG2_REXT  
USB_OTG2_VBUS  
USB_SS3_REXT  
USB_SS3_RX_N  
USB_SS3_RX_P  
USB_SS3_TC0  
USB_SS3_TC1  
CONN.USB_OTG1.DN  
CONN.USB_OTG1.DP  
CONN.USB_OTG1.ID  
CONN.USB_OTG1.VBUS  
CONN.USB_OTG2.DM  
CONN.USB_OTG2.DP  
CONN.USB_OTG2.ID  
CONN.USB_OTG2.RTRIM  
CONN.USB_OTG2.VBUS  
CONN.USB_SS3.REXT  
CONN.USB_SS3.RX_M_LN_0  
CONN.USB_SS3.RX_P_LN_0  
ADMA.I2C1.SCL  
VDD_USB_3P3  
OTG  
VDD_USB_3P3  
OTG  
OTG  
VDD_USB_3P3  
VDD_USB_3P3  
VDD_USB_3P3  
VDD_USB_3P3  
OTG  
OTG  
OTG  
D14  
H16  
E13  
B18  
A19  
F14  
OTG  
OTG  
VDD_USB_1P8  
VDD_USB_SS3_LDO_1P0_CAP  
VDD_USB_SS3_LDO_1P0_CAP  
VDD_USB_3P3  
USB3  
USB3  
USB3  
GPIO  
GPIO  
Hi-Z  
Hi-Z  
ALT0  
ALT0  
INPUT  
INPUT  
PD(50K)  
PD(50K)  
H14  
VDD_USB_3P3  
ADMA.I2C1.SCL  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
126  
Package information and contact assignments  
Table 124. 21 x 21 mm functional contact assignments (continued)  
Reset Condition2  
Ball  
Ball  
Ball Name  
Power Domain  
Type  
Default  
Mode  
Default Default  
Direction Pull  
1
Default Function  
G15  
C15  
A15  
B16  
E23  
G23  
C25  
A27  
B26  
D26  
E25  
B24  
A25  
D24  
AP34  
AM34  
USB_SS3_TC2  
USB_SS3_TC3  
USB_SS3_TX_N  
USB_SS3_TX_P  
USDHC1_CD_B  
USDHC1_CLK  
USDHC1_CMD  
USDHC1_DATA0  
USDHC1_DATA1  
USDHC1_DATA2  
USDHC1_DATA3  
USDHC1_RESET_B  
USDHC1_VSELECT  
USDHC1_WP  
VDD_USB_3P3  
VDD_USB_3P3  
GPIO  
GPIO  
USB3  
USB3  
ALT0  
ALT0  
ADMA.I2C1.SDA  
ADMA.I2C1.SDA  
INPUT  
INPUT  
PD(50K)  
PD(50K)  
VDD_USB_SS3_LDO_1P0_CAP  
VDD_USB_SS3_LDO_1P0_CAP  
CONN.USB_SS3.TX_M_LN_0  
CONN.USB_SS3.TX_P_LN_0  
CONN.USDHC1.CD_B  
LSIO.GPIO4.IO23  
VDD_USDHC1_VSELECT_1P8_3P3 FASTD ALT0  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
INPUT  
PU(50K)  
PD(50K)  
PU(50K)  
PU(50K)  
PU(50K)  
PU(50K)  
PU(50K)  
PU(50K)  
PD(50K)  
PD(50K)  
VDD_USDHC1_1P8_3P3  
VDD_USDHC1_1P8_3P3  
VDD_USDHC1_1P8_3P3  
VDD_USDHC1_1P8_3P3  
VDD_USDHC1_1P8_3P3  
VDD_USDHC1_1P8_3P3  
FASTD ALT4  
FASTD ALT0  
FASTD ALT0  
FASTD ALT0  
FASTD ALT0  
FASTD ALT0  
CONN.USDHC1.CMD  
CONN.USDHC1.DATA0  
CONN.USDHC1.DATA1  
CONN.USDHC1.DATA2  
CONN.USDHC1.DATA3  
LSIO.GPIO4.IO19  
VDD_USDHC1_VSELECT_1P8_3P3 FASTD ALT4  
VDD_USDHC1_VSELECT_1P8_3P3 FASTD ALT4  
VDD_USDHC1_VSELECT_1P8_3P3 FASTD ALT0  
LSIO.GPIO4.IO20  
CONN.USDHC1.WP  
SCU.DSC.XTALI  
XTALI  
VDD_ANA1_1P8  
VDD_ANA1_1P8  
ANA  
ANA  
XTALO  
SCU.DSC.XTALO  
1
2
FASTD are GPIO balls configured for high speed operation using the FASTRZ control.  
Reset condition shown is before boot code execution. For pad changes after boot code execution, see the System Boot chapter  
of the device reference manual.  
3
SCU_WDOG_OUT was previously named JTAG_TRST_B; it has been renamed because its functionality has changed.  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
127  
Package information and contact assignments  
The following table shows DDR pin function.  
Table 125. DRAM pin function  
Ball Name  
Ball  
LPDDR4 function  
DDR3L function  
DDR_ATO  
AB8  
Y6  
W5  
N5  
P6  
W1  
U3  
U1  
U7  
U5  
T2  
DDR_CK0_N  
DDR_CK0_P  
DDR_CK1_N  
DDR_CK1_P  
CA2_A  
CA4_A  
CA5_A  
DDR_CK0_N  
DDR_CK0_P  
DDR_CK1_N  
DDR_CK1_P  
DDR_DCF00  
DDR_DCF01  
DDR_DCF03  
DDR_DCF04  
DDR_DCF05  
DDR_DCF07  
DDR_DCF08  
DDR_DCF09  
DDR_DCF10  
DDR_DCF11  
DDR_DCF12  
DDR_DCF14  
DDR_DCF15  
DDR_DCF16  
DDR_DCF17  
DDR_DCF18  
DDR_DCF19  
DDR_DCF20  
DDR_DCF21  
DDR_DCF22  
DDR_DCF23  
DDR_DCF24  
DDR_DCF25  
DDR_DCF26  
DDR_DCF27  
DDR_DCF28  
DDR_CK0_N  
DDR_CK0_P  
DDR_CK1_N  
DDR_CK1_P  
A5  
A6  
A7  
A8  
A9  
RAS#  
A3  
AB4  
AB6  
AC5  
W3  
Y8  
Y2  
Y4  
W7  
N3  
L1  
CA3_A  
ODT_CA_A  
CS0_A  
CA0_A  
CS1_A  
CKE0_A  
CKE1_A  
CA1_A  
CA4_B  
RESET_N  
CA5_B  
ODT  
A1  
A0  
A2  
A4  
A12  
RESET_N  
A14  
N1  
P4  
T8  
A15  
BA0  
P2  
T4  
BA1  
BA2  
T6  
CAS#  
ODT1  
A13  
K8  
L7  
ODT_CA_B  
CA3_B  
CA0_B  
CS0_B  
K4  
K6  
A10  
CS_N[0]  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
128  
Package information and contact assignments  
Table 125. DRAM pin function (continued)  
Ball Name  
Ball  
LPDDR4 function  
DDR3L function  
DDR_DCF29  
DDR_DCF30  
DDR_DCF31  
DDR_DCF32  
DDR_DCF33  
DDR_DM0  
K2  
N7  
CS1_B  
CS_N[1]  
CKE0  
CKE0_B  
L5  
CKE1_B  
CKE1  
L3  
CA1_B  
A11  
P8  
CA2_B  
WE#  
AJ7  
AF4  
D4  
DDR_DMI0  
DDR_DMI1  
DDR_DMI2  
DDR_DMI3  
DDR_DMI0  
DDR_DMI1  
DDR_DMI2  
DDR_DMI3  
DDR_DMI4  
DDR_DQ00  
DDR_DQ01  
DDR_DQ02  
DDR_DQ03  
DDR_DQ04  
DDR_DQ05  
DDR_DQ06  
DDR_DQ07  
DDR_DQ08  
DDR_DQ09  
DDR_DQ10  
DDR_DQ11  
DDR_DQ12  
DDR_DQ13  
DDR_DQ14  
DDR_DQ15  
DDR_DQ16  
DDR_DQ17  
DDR_DQ18  
DDR_DQ19  
DDR_DQ20  
DDR_DQ21  
DDR_DQ22  
DDR_DM1  
DDR_DM2  
DDR_DM3  
E1  
DDR_DM4  
AP6  
AF6  
AE5  
AH8  
AF8  
AM4  
AM6  
AL5  
AL7  
AJ1  
AJ3  
AH2  
AH4  
AC3  
AE3  
AB2  
AC1  
B6  
DDR_DQ00  
DDR_DQ01  
DDR_DQ02  
DDR_DQ03  
DDR_DQ04  
DDR_DQ05  
DDR_DQ06  
DDR_DQ07  
DDR_DQ08  
DDR_DQ09  
DDR_DQ10  
DDR_DQ11  
DDR_DQ12  
DDR_DQ13  
DDR_DQ14  
DDR_DQ15  
DDR_DQ16  
DDR_DQ17  
DDR_DQ18  
DDR_DQ19  
DDR_DQ20  
DDR_DQ21  
DDR_DQ22  
DDR_DQ00  
DDR_DQ01  
DDR_DQ02  
DDR_DQ03  
DDR_DQ04  
DDR_DQ05  
DDR_DQ06  
DDR_DQ07  
DDR_DQ08  
DDR_DQ09  
DDR_DQ10  
DDR_DQ11  
DDR_DQ12  
DDR_DQ13  
DDR_DQ14  
DDR_DQ15  
DDR_DQ16  
DDR_DQ17  
DDR_DQ18  
DDR_DQ19  
DDR_DQ20  
DDR_DQ21  
DDR_DQ22  
E9  
E7  
D8  
G7  
H8  
H6  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
129  
Package information and contact assignments  
Table 125. DRAM pin function (continued)  
Ball Name  
Ball  
LPDDR4 function  
DDR3L function  
DDR_DQ23  
DDR_DQ24  
DDR_DQ25  
DDR_DQ26  
DDR_DQ27  
DDR_DQ28  
DDR_DQ29  
DDR_DQ30  
DDR_DQ31  
DDR_DQ32  
DDR_DQ33  
DDR_DQ34  
DDR_DQ35  
DDR_DQ36  
DDR_DQ37  
DDR_DQ38  
DDR_DQ39  
DDR_DQS0_N  
DDR_DQS0_P  
DDR_DQS1_N  
DDR_DQS1_P  
DDR_DQS2_N  
DDR_DQS2_P  
DDR_DQS3_N  
DDR_DQS3_P  
DDR_DQS4_N  
DDR_DQS4_P  
DDR_DTO0  
DDR_DTO1  
DDR_VREF  
DDR_ZQ  
G5  
H2  
DDR_DQ23  
DDR_DQ23  
DDR_DQ24  
DDR_DQ25  
DDR_DQ26  
DDR_DQ27  
DDR_DQ28  
DDR_DQ29  
DDR_DQ30  
DDR_DQ31  
DDR_DQ32  
DDR_DQ33  
DDR_DQ34  
DDR_DQ35  
DDR_DQ36  
DDR_DQ37  
DDR_DQ38  
DDR_DQ39  
DDR_DQS0_N  
DDR_DQS0_P  
DDR_DQS1_N  
DDR_DQS1_P  
DDR_DQS2_N  
DDR_DQS2_P  
DDR_DQS3_N  
DDR_DQS3_P  
DDR_DQS4_N  
DDR_DQS4_P  
DDR_DQ24  
H4  
DDR_DQ25  
G3  
DDR_DQ26  
G1  
DDR_DQ27  
A7  
DDR_DQ28  
B4  
DDR_DQ29  
B2  
DDR_DQ30  
A5  
DDR_DQ31  
AL1  
AM2  
AL3  
AP2  
AP8  
AP10  
AR9  
AR7  
AH6  
AJ5  
AE1  
AF2  
E5  
DDR_DQS0_N  
DDR_DQS0_P  
DDR_DQS1_N  
DDR_DQS1_P  
DDR_DQS2_N  
DDR_DQS2_P  
DDR_DQS3_N  
DDR_DQS3_P  
D6  
E3  
D2  
AR5  
AP4  
AC7  
AE7  
AD8  
G9  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
130  
Release Notes  
7 Release Notes  
This table provides release notes for the data sheet.  
Table 126. Data sheet release notes  
Substantive Change(s)  
Rev.  
Number  
Date  
0
05/2020 • Initial draft  
i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors, Rev. 0, 05/2020  
NXP Semiconductors  
131  
Information in this document is provided solely to enable system and software implementers to  
use NXP products. There are no express or implied copyright licenses granted hereunder to  
design or fabricate any integrated circuits based on the information in this document. NXP  
reserves the right to make changes without further notice to any products herein.  
How to Reach Us:  
Home Page:  
nxp.com  
Web Support:  
nxp.com/support  
NXP makes no warranty, representation, or guarantee regarding the suitability of its products for  
any particular purpose, nor does NXP assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation  
consequential or incidental damages. “Typical” parameters that may be provided in NXP data  
sheets and/or specifications can and do vary in different applications, and actual performance  
may vary over time. All operating parameters, including “typicals,” must be validated for each  
customer application by customer’s technical experts. NXP does not convey any license under  
its patent rights nor the rights of others. NXP sells products pursuant to standard terms and  
conditions of sale, which can be found at the following address:  
nxp.com/SalesTermsandConditions.  
While NXP has implemented advanced security features, all products may be subject to  
unidentified vulnerabilities. Customers are responsible for the design and operation of their  
applications and products to reduce the effect of these vulnerabilities on customer’s applications  
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers  
should implement appropriate design and operating safeguards to minimize the risks associated  
with their applications and products.  
NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,  
EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE  
CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,  
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,  
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior,  
ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,  
mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play,  
SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit,  
BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,  
TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the  
property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan,  
big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali,  
Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK,  
ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, μVision, Versatile are trademarks or registered  
trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related  
technology may be protected by any or all of patents, copyrights, designs and trade secrets. All  
rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The  
Power Architecture and Power.org word marks and the Power and Power.org logos and related  
marks are trademarks and service marks licensed by Power.org.  
¬© 2018-2020 NXP B.V.  
Document Number: IMX8QXPIEC  
Rev. 0  
05/2020  

相关型号:

MIMX8DX6AVLFZAC

i.MX 8QuadXPlus and 8DualXPlus Automotive and Infotainment Applications Processors
NXP

MIMX8DX6CVLFZAC

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors
NXP

MIMX8DXNAVLFZAC

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors
NXP

MIMX8MD6CVAHZAA

i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors
NXP

MIMX8MD6DVAJZAA

i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors
NXP

MIMX8MD7CVAHZAA

i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors
NXP

MIMX8MD7DVAJZAA

i.MX 8M Dual / 8M QuadLite / 8M Quad Applications Processors
NXP

MIMX8MM1CVTKZAA

i.MX 8M Mini Applications Processor Datasheet for Consumer Products
NXP

MIMX8MM1CVTKZCA

i.MX 8M Mini Applications Processor Datasheet for Consumer Products
NXP

MIMX8MM1CVTKZDA

i.MX 8M Mini Applications Processor Datasheet for Consumer Products
NXP

MIMX8MM1CVTLZAA

i.MX 8M Mini Applications Processor Datasheet for Consumer Products
NXP

MIMX8MM1CVTLZCA

i.MX 8M Mini Applications Processor Datasheet for Consumer Products
NXP