MIMX8QPNAVUXXAX [NXP]

i.MX 8QuadPlus Automotive and Infotainment Applications Processors;
MIMX8QPNAVUXXAX
型号: MIMX8QPNAVUXXAX
厂家: NXP    NXP
描述:

i.MX 8QuadPlus Automotive and Infotainment Applications Processors

文件: 总147页 (文件大小:2863K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IMX8QPAEC  
Rev. 2, 05/2021  
NXP Semiconductors  
Data Sheet: Technical Data  
MIMX8QPnAVUxxAx  
i.MX 8QuadPlus  
Automotive and  
Infotainment  
Package Information  
29 x 29 mm package case outline  
Applications Processors  
Ordering Information  
See Table 2 on page 5  
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
1.1 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . 5  
1.2 System Controller Firmware (SCFW) Requirements5  
1.3 Related resources . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Architectural Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
2.1 Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Modules List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
3.1 Special Signal Considerations. . . . . . . . . . . . . . . . 13  
3.2 Recommended Connections for Unused Interfaces13  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 14  
4.1 Chip-level conditions . . . . . . . . . . . . . . . . . . . . . . . 14  
4.2 Power supplies requirements and restrictions. . . . 26  
4.3 PLL electrical characteristics. . . . . . . . . . . . . . . . . 29  
4.4 On-chip oscillators. . . . . . . . . . . . . . . . . . . . . . . . . 33  
4.5 I/O DC Parameters . . . . . . . . . . . . . . . . . . . . . . . . 36  
4.6 I/O AC Parameters . . . . . . . . . . . . . . . . . . . . . . . . 42  
4.7 Output Buffer Impedance Parameters. . . . . . . . . . 45  
4.8 System Modules Timing . . . . . . . . . . . . . . . . . . . . 49  
4.9 General-Purpose Media Interface (GPMI) Timing. 53  
4.10 External Peripheral Interface Parameters . . . . . . . 62  
4.11 Analog-to-digital converter (ADC) . . . . . . . . . . . . 111  
Boot mode configuration. . . . . . . . . . . . . . . . . . . . . . . . 115  
5.1 Boot mode configuration inputs. . . . . . . . . . . . . . 115  
5.2 Boot devices interfaces allocation. . . . . . . . . . . . 115  
Package information and contact assignments . . . . . . 117  
6.1 FCPBGA, 29 x 29 mm, 0.75 mm pitch . . . . . . . . 117  
Release Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144  
1 Introduction  
The i.MX 8 Family consists of two processors:  
2
3
i.MX 8QuadMax and 8QuadPlus. This data sheet covers  
the i.MX 8QuadPlus processor, which is composed of  
®
®
seven cores (one Arm Cortex -A72, four Arm  
®
®
Cortex -A53, and two Arm Cortex -M4F), dual 32-bit  
GPU subsystems, 4K H.265 capable VPU, and dual  
failover-ready display controllers. This processor  
supports a single 4K display (with multiple display  
output options, including MIPI-DSI, HDMI, eDP/DP,  
and LVDS), or multiple smaller displays. Memory  
interfaces supporting LPDDR4, Quad SPI/Octal SPI  
(FlexSPI), eMMC 5.1, RAW NAND, SD 3.0, and a wide  
range of peripheral I/Os such as PCIe 3.0, provide wide  
flexibility. Advanced multicore audio processing is  
supported by the Arm cores and a high performance  
4
5
®
Tensilica HiFi 4 DSP for pre- and post-audio  
6
7
processing as well as voice recognition.  
NXP reserves the right to change the detail specifications as may be required to permit improvements in the design of  
its products.  
© 2018-2021 NXP B.V.  
Introduction  
The i.MX 8QuadPlus processor offers numerous advanced features as shown in this table.  
Table 1. i.MX 8QuadPlus advanced features  
Function  
Feature  
Multicore architecture provides  
4× Cortex-A53, Cortex-A72 cores,  
and 2× Cortex-M4F cores  
AArch64 for 64-bit support and new architectural features  
AArch32 for full backward compatibility with ARMv7  
Cortex-A72 and Cortex-A53 cores support ARM virtualization extensions. sMMU  
provides address virtualization to all subsystems.  
Cortex-M4F cores for real-time applications  
Graphics Processing Unit (GPU)  
Video Processing Unit (VPU)  
16× Vec4 shaders with 64 execution units. Split GPU architecture allows for dual  
independent 8-Vec4 shader GPUs or a combined 16-Vec4 shader GPU.  
Supports OpenGL 3.0, 2.1,; OpenGL ES 3.2, 3.1 (with AEP), 3.0, 2.0, and 1.1;  
OpenCL 1.2 Full Profile and 1.1; OpenVG 1.1; and Vulkan  
High-performance 2D Blit Engine  
H.265 decode (4Kp60)  
H.264 decode (4Kp30)  
WMV9/VC-1 imple decode  
MPEG 1 and 2 decode  
AVS decode  
MPEG4.2 ASP, H.263, Sorenson Spark decode  
Divx 3.11 including GMC decode  
ON2/Google VP6/VP8 decode  
RealVideo 8/9/10 decode  
JPEG and MJPEG decode  
H.264 encode (1080p30)  
Tensilica HiFi 4 DSP for pre- and  
post-processing  
666 MHz  
Fixed-point and vector-floating-point support  
32 KB instruction cache, 48 KB data cache, 512 KB SRAM (448 KB of OCRAM and  
64 KB of TCM)  
Memory  
64-bit LPDDR4 @1600 MHz  
1× Quad SPI which can be used to connect to an FPGA  
2× Quad SPI or 1× Octal SPI (FlexSPI) for fast boot from SPI NOR flash  
2× SD 3.0 card interfaces  
1× eMMC5.1/SD3.0  
RAW NAND (62-bit ECC support via BCH-62 module)  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
2
Introduction  
Table 1. i.MX 8QuadPlus advanced features (continued)  
Feature  
Function  
Display Controller  
Supports single UltraHD 4Kp60 display or up to 4 independent FullHD 1080p60  
displays  
Up to 18-layer composition  
Complementary 2D blitting engines and online warping functionality  
Integrated Failover Path (SafeAssure) to ensure display content stays valid even in  
event of a software failure  
Display I/O  
2× MIPI-DSI with 4 lanes each  
1× HDMI-TX/DisplayPort compliant with:  
• HDMI  
• eDP 1.4  
• DP 1.3  
This high performance serializer supports a pair of LVDS displays with 8 lanes each.  
Each port can be configured for 2x Tx with 4 lanes each.  
Camera I/O and video  
Security  
2× MIPI-CSI with 4-lanes each  
Advanced High Assurance Boot (AHAB) secure & encrypted boot  
Random Number Generator with a high-quality entropy source generator and  
Hash_DRBG (based on hash functions)  
RSA up to 4096, Elliptic Curve up to 1023  
AES-128/192/256, DES, 3DES, MD5, SHA-1, SHA-224/256/384/512  
Dedicated Security Controller for Flashless SHE and HSM support, Trustzone  
Built-in ECDSA/DSA protocol support  
See the security reference manual for this chip for a full list of security features.  
• 2× I2C tightly coupled with Cortex-M4 cores (1× per Cortex M4F core)  
System Control  
The tightly coupled M4 I2C ports cannot be used for general-purpose use  
• System Control Unit (SCU):  
Power control, clocks, reset  
Boot ROMs  
PMIC interface  
Resource Domain Controller  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
3
Introduction  
Table 1. i.MX 8QuadPlus advanced features (continued)  
Feature  
Function  
I/O  
1× PCIe 3.0 (2-lanes). Can be used as two PCIe 3.0 controllers with one-lane,  
independent operation. PCIe 1.0 and 2.0 compliant. PCIe 3.0 capable, contact your  
NXP representative.  
1× USB 3.0 with PHY  
2× USB 2.0 (1 with PHY, 1 with HSIC)  
1× SATA 3.0 can be used as PCIe one-lane. This is in addition to the standard PCIe  
controller. PCIe 1.0 and 2.0 compliant. PCIe 3.0 capable, contact your NXP  
representative.  
2× 1Gb Ethernet with AVB (can be used as 10/100 Mbps ENET with AVB)  
3× CAN/CAN-FD  
8× UARTs:  
• 5× UARTs (2× with hardware flow control)  
• 2× UARTs tightly coupled with Cortex-M4F cores (1× per Cortex-M4F core)  
• 1× UART tightly coupled with SCU  
18× I2C:  
• 5× General-Purpose I2C (full-speed with DMA support)  
• Low-speed I2C without DMA support:  
2× master I2C in MIPI-DSI (1× per instance)  
4× master I2C in LVDS (2× per instance)  
2× master I2C in HDMI-TX  
2× master I2C in MIPI-CSI (1× per instance)  
Note: Although low-speed I2Cs can be made available for general purpose use  
which requires the associated PHY (for example, MIPI) to be powered on, it is not  
recommended.  
Note: I/O muxing constraints prevent using all I2Cs simultaneously.  
• 2x I2C tightly coupled with Cortex-M4 cores (1x per Cortex M4F core)  
Note: The tightly coupled M4 I2C ports cannot be used for general purpose use.  
• 1× I2C tightly coupled with SCU for communication with the PMIC. Not general  
purpose and not available for non-PMIC uses.  
4× SAI (SAI0 and SAI1 are transmit/receive; SAI2 and SAI3 are receive only)  
2× Enhanced Serial Audio Interface (ESAI)  
× ASRC (Asynchronous Sample Rate Converter) (note: no I/O signals are directly  
connected to this module)  
1× SPDIF (Tx and Rx)  
2× 4-channel ADC converters  
3.3 V/1.8 V GPIO  
4× PWM channels  
1× 6×8 KPP (Key Pad Port)  
1× MQS (Medium Quality Sound)  
4× SPI  
Packaging  
Case FCPBGA 29 x 29 mm, 0.75 mm pitch  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
4
Architectural Overview  
1.1  
Ordering Information  
The following table provides the ordering information.  
Table 2. i.MX 8QuadPlus Orderable part numbers  
Qualification  
Part Number  
Options Cortex-A72 Cortex-A53 Cortex-M4F  
GPU  
Package  
Tier  
MIMX8QP5AVUFFAB  
MIMX8QP6AVUFFAB  
1 x VPU  
One @  
1.6 GHz  
Four @  
1.2 GHz  
Two @  
264 MHz  
Two @  
625 MHz AEC-Q100  
Automotive  
29 mm × 29 mm  
0.75 mm pitch  
FCPBGA (lidded)  
1 x VPU  
1 x DSP  
1.2  
System Controller Firmware (SCFW) Requirements  
The i.MX 8 and 8X families require a minimum SCFW release version for correct operation and to prevent  
potential reliability issues.  
The SCFW is released as part of a Board Support Package (e.g. Linux, Android) which may vary in version  
number for a specific BSP.  
For example, 5.4.70_2.3.0 GA contains SCFW version 1.7.1. Whereas 5.10.0_1.0.0 GA contains SCFW  
version 1.8.0.  
The released SCFW version associated within each BSP is the minimum version required to correctly  
support the wider BSP functionality.  
Customers should always check that they are using the specific SCFW binary delivered within their chosen  
BSP release. Customers should not mix newer BSP versions with older revisions of the SCFW.  
1.3  
Related resources  
Table 3. Related resources  
Description  
Type  
Reference manual  
The i.MX 8QuadMax Applications Processor Reference Manual (IMX8QMRM) contains a  
comprehensive description of the structure and function (operation) of the QuadPlus SoC.  
Data sheet  
Chip Errata  
This data sheet includes electrical characteristics and signal connections.  
The chip mask set errata provides additional and/or corrective information for a particular  
device mask set.  
Package drawing  
Hardware guide  
Package dimensions are provided in Section 6, “Package information and contact  
assignments".”  
The i.MX 8QuadMax/8QuadPlus Hardware Developer’s Guide (IMX8HWDG) provides  
system design guidelines.  
2 Architectural Overview  
The following subsections provide an architectural overview of the i.MX 8QuadPlus processor system.  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
5
Architectural Overview  
2.1  
Block Diagram  
The following figure shows the functional modules in the processor system.  
CPU1 Platform  
CPU2 Platform  
2x User CM4 Complexes  
M4 Platform  
4x ARM Cortex-A53  
1x ARM Cortex-A72  
M4 CPU  
nvic  
fpu  
mpu  
MCM  
16KB system$  
NEON  
48KB I$  
VFP  
NEON  
32KB I$  
VFP  
1x UART  
(each)  
MMCAU  
16KB code$  
32KB D$  
32KB D$  
256KB TCM w/ ECC  
1x I2C  
(each)  
1MB L2 w/ optional ECC  
1MB L2 w/ ECC  
WDOG  
RGPIO  
LPIT  
INTs  
PWM  
1x GPIO  
(each)  
LPUART  
LPI2C  
2x MU  
Cache Coherent Interconnect (CCI-400)  
I2C w/ DMA  
UART (5 Mb/s)  
CAN / CAN-FD  
DMA Subsystem  
External Memory Interface  
2x ADC  
2x eDMA  
5x LPUART  
4x LPSPI  
5x LPI2C  
2x FTM  
PG  
PG  
PG  
PG  
DDR  
64-bit LPDDR4  
@1600 MHz  
2x EVM SIM 3x FlexCAN  
BN  
ADC  
(4 channels each)  
Controller  
Audio Subsystem  
x1 PCIe  
2 lanes /  
SPDIF TX / RX  
ESAI TX / RX  
2x ASRC  
2x ESAI  
8x SAI  
SPDIF  
HDMI TX SAI  
ACM  
High Speed I/O  
2x PCIe  
SATA  
x2 PCIe  
1 lane each  
MQS  
2x eDMA  
2x SAI TX / RX  
2x SAI RX  
1x SATA 3.0 /  
1x PCIe  
(1 lane)  
6x GPT  
Audio Mixer  
SSI Bus  
RAW /  
ONFI 3.2  
NAND Flash  
Imaging  
Connectivity Subsystem  
NAND  
VPU Subsystem  
2x LVDS  
TX  
1/2 LVDS TX  
(4 lanes each)  
MJPEG MJPEG  
DEC  
ENC  
Video Processing Unit  
ISI  
1x eMMC  
5.1 / SD 3.0  
LPI2C  
1x I2C  
VPU  
3x uSDHC  
USB3  
2x SD 3.0 (UHS-I)  
Display Controllers  
2x DPU (4x LCD)  
1x USB 3.0 PHY  
LPI2C  
DSP Core  
HIFI4 DSP  
1x I2C  
1x USB 2.0  
Host / HSIC  
2x MIPI CSI2  
(4-lanes)  
2x MIPI  
CSI2  
32KB I$  
448KB OCRAM  
64KB TCM  
48KB D$  
2x USB2  
2x ENET  
1x USB 2.0  
OTG, PHY  
LPI2C  
1x I2C  
Graphics Processing Unit  
2x GPU  
2x MIPI  
DSI  
MIPI Display  
(4-lanes)  
10/100/1000M  
Ethernet + AVB  
LPI2C  
LPI2C  
1x I2C  
1x I2C  
System Control Unit  
SJC  
IOMUX  
SCU CM4 Complex  
M4 Platform  
M4 CPU  
Internal Memory  
OCRAM (256KB)  
HDMI Tx 2.0a  
(eDP 1.4  
DisplayPort 1.3)  
Debug  
Clock, Reset  
Power Mgmt  
HDMI  
DAP, CTI, etc  
Boot ROM  
HAB  
RDC  
nvic  
fpu  
mpu  
Tempmon  
PMIC I/F  
MMCAU  
MCM  
Security  
16KB system$  
16KB code$  
Low Speed I/O  
(LSIO) Subsystem  
SECO  
SNVS  
OTP  
256KB TCM w/ ECC  
6x8 Keypad  
32-bit GPIO  
24M and 32k  
XTALOSC  
Sources  
IEE  
4x PWM  
5x GPT  
KPP  
Security  
Controller  
(M0+)  
WDOG  
RGPIO  
LPIT  
INTs  
PWM  
ADM  
14x MU  
8x GPIO  
2x Quad SPI /  
1x Octal SPI  
NOR Flash  
LPUART  
LPI2C  
2x MU  
CAAM  
2x FlexSPI  
Secure  
JTAG  
Dual Core, 16 shaders  
Vulkan, OGLES 3.2 w/ AEP,  
OCL 2.0, VG 1.1  
Mult-format Decode  
H.265 Dec (4k60)  
H.264 Dec (1080p60)  
H.264 Enc (1080p30)  
RNG  
1x GPIO  
1x I2C  
1x UART  
Ciphers  
(ECC, RSA)  
Tamper  
Detection  
2D Blit Engine  
Dedicated  
64k Secure  
RAM  
Secure RTC  
Figure 1. i.MX 8QuadPlus System Block Diagram  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
6
Modules List  
3 Modules List  
The i.MX 8QuadPlus processors contain a variety of digital and analog modules. This table describes the  
processor modules in alphabetical order.  
Table 4. i.MX 8QuadPlus modules list  
Block  
Mnemonic  
Block Name  
Brief Description  
ADC  
Analog-to-Digital  
Converter  
The analog-to-digital converter (ADC) is a successive approximation ADC  
designed for operation within a SoC.  
APBH-DMA  
NAND Flash and BCH The AHB-to-APBH bridge provides the chip with a peripheral attachment bus  
ECC DMA Controller  
running on the AHB's HCLK, which includes the AHB-to-APB PIO bridge for a  
memory-mapped I/O to the APB devices, as well as a central DMA facility for  
devices on this bus and a vectored interrupt controller for the Arm core.  
A53  
Arm (CPU1)  
Arm (CPU2)  
CPU cluster embedding 4x Cortex-A53 CPUs with a 32KB L1 instruction cache and  
a 32KB data cache. The CPUs share a 1 MB L2 cache.  
A72  
CPU cluster embedding 1x Cortex-A72 CPU with a 48 KB L1 instruction cache and  
32 KB data cache. The CPU has a 1MB L2 cache.  
ASRC  
Asynchronous Sample The Asynchronous Sample Rate Converter (ASRC) converts the sampling rate of  
Rate Converter  
a signal associated to an input clock into a signal associated to a different output  
clock. The ASRC supports concurrent sample rate conversion of up to 10 channels  
of about -120dB THD+N. The sample rate conversion of each channel is  
associated to a pair of incoming and outgoing sampling rates. The ASRC supports  
up to three sampling rate pairs.  
BCH-62  
CAAM  
Binary-BCH ECC  
Processor  
The BCH62 module provides up to 62-bit ECC for NAND Flash controller (GPMI2)  
Cryptographic  
Accelerator and  
Assurance Module  
CAAM is a cryptographic accelerator and assurance module. CAAM implements  
several encryption and hashing functions, a run-time integrity checker, and a  
Pseudo Random Number Generator (PRNG).  
CAAM also implements a Secure Memory mechanism. In this device the security  
memory provided is 64 KB.  
CTI  
Cross Trigger Interface CTI sends signals across the chip indicating that debug events have occurred. It is  
used by features of the Coresight infrastructure.  
CTM  
DAP  
Cross Trigger Matrix  
Debug Access Port  
Cross Trigger Matrix IP is used to route triggering events between CTIs.  
The DAP provides real-time access for the debugger without halting the core to:  
• System memory and peripheral registers  
• All debug configuration registers  
The DAP also provides debugger access to JTAG scan chains.  
DC  
Display Controller  
DRAM Controller  
Dual display controller  
DDR Controller  
• Memory types: LPDDR4  
• Two channels of 32-bit memory:  
• LPDDR4 up to 1.6 GHz  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
7
Modules List  
Table 4. i.MX 8QuadPlus modules list (continued)  
Block  
Mnemonic  
Block Name  
Brief Description  
DPR  
Display/Prefetch/  
Resolve  
The DPR prefetches data from memory and converts the data to raster format for  
display output. Raster source buffers can also be prefetched unconverted. The  
resolve process supports graphics and video formatted tile frame buffers and  
converts them to raster format. Embedded display memory is used as temporary  
storage for data which is sourced by the display controller to drive the display.  
eDMA  
Enhanced Direct  
Memory Access  
• 4× eDMA with a total of 128 channels (note: all channels are not assigned; see  
the product reference manual for more information):  
• 4× instances with 32 channels each  
• Programmable source, destination addresses, transfer size, plus support for  
enhanced addressing modes  
• Internal data buffer, used as temporary storage to support 64-byte burst  
transfers, one outstanding transaction per DMA controller.  
• Transfer control descriptor organized to support two-deep, nested transfer  
operations  
• Channel service request via one of three methods:  
• Explicit software initiation  
• Initiation via a channel-to-channel linking mechanism for continuous  
transfers  
• Peripheral-paced hardware requests (one per channel)  
• Support for fixed-priority and round-robin channel arbitration  
• Channel completion reported via interrupt requests  
• Support for scatter/gather DMA processing  
• Support for complex data structures via transfer descriptors  
• Support to cancel transfers via software or hardware  
• Each eDMA instance can be uniquely assigned to a different resource domain,  
security (TZ) state, and virtual machine  
• In scatter-gather mode, each transfer descriptor’s buffers can be assigned to  
different SMMU translation  
ENET  
ESAI  
Ethernet Controller  
2× 1 Gbps Ethernet controllers supporting RGMII + AVB (Audio Video Bridging,  
IEEE 802.1Qav)  
Enhanced Serial Audio The Enhanced Serial Audio Interface (ESAI) provides a full-duplex serial port for  
Interface  
serial communication with a variety of serial devices, including industry-standard  
codecs, SPDIF transceivers, and other processors. The ESAI consists of  
independent transmitter and receiver sections, each section with its own clock  
generator. All serial transfers are synchronized to a clock. Additional  
synchronization signals are used to delineate the word frames. The normal mode  
of operation is used to transfer data at a periodic rate, one word per period. The  
network mode is also intended for periodic transfers; however, it supports up to 32  
words (time slots) per period. This mode can be used to build time division  
multiplexed (TDM) networks. In contrast, the on-demand mode is intended for  
non-periodic transfers of data and to transfer data serially at high speed when the  
data becomes available.  
The ESAI has 12 pins for data and clocking connection to external devices.  
FTM  
FlexTimer  
Provides input signal capture and PWM support  
FlexCAN  
Flexible Controller Area Communication controller implementing the CAN with Flexible Data rate (CAN FD)  
Network protocol and the CAN protocol according to the CAN 2.0B protocol specification.  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
8
Modules List  
Table 4. i.MX 8QuadPlus modules list (continued)  
Block Name Brief Description  
Block  
Mnemonic  
FlexSpi (Quad  
SPI/Octal SPI)  
Flexible Serial  
Peripheral Interface  
• Flexible sequence engine to support various flash vendor devices, including  
HyperBus™ devices:  
• Support for FPGA interface  
• Single, dual, quad, and octal mode of operation.  
• DDR/DTR mode wherein the data is generated on every edge of the serial flash  
clock.  
• Support for flash data strobe signal for data sampling in DDR and SDR mode.  
• Two identical serial flash devices can be connected and accessed in parallel for  
data read operations, forming one (virtual) flash memory with doubled readout  
bandwidth.  
GIC  
Generic Interrupt  
Controller  
The GIC-500 handles all interrupts from the various subsystems and is ready for  
virtualization.  
GPIO  
GPMI  
General Purpose I/O  
Modules  
Used for general purpose input/output to external devices. Each GPIO module  
supports 32 bits of I/O.  
General Purpose Media The GPMI module supports up to 8× NAND devices. 62-bit ECC (BCH)  
Interface  
encryption/decryption for NAND Flash controller (GPMI). The GPMI supports  
separate DMA channels per NAND device.  
GPT  
General Purpose Timer Each GPT is a 32-bit “free-running” or “set and forget” mode timer with  
programmable prescaler and compare and capture register. A timer counter value  
can be captured using an external event and can be configured to trigger a capture  
event on either the leading or trailing edges of an input pulse. When the timer is  
configured to operate in “set and forget” mode, it is capable of providing precise  
interrupts at regular intervals with minimal processor intervention. The counter has  
output compare logic to provide the status and interrupt at comparison. This timer  
can be configured to run either on an external clock or on an internal clock.  
GPU  
Graphics Processing  
HDMI Tx interface  
Audio Processor  
I2C Interface  
2× GC7000XSVX GPUs with 8 shaders each that can run either independently or  
in “dual-mode” with 16 shaders.  
HDMI Tx/  
DP/eDP  
HDMI transmitter, Display Port 1.3 and embedded Display Port 1.4  
HiFi 4 DSP  
A highly optimized audio processor geared for efficient execution of audio and  
voice codecs and pre- and post-processing modules to offload the Arm core.  
I2C  
I2C provides serial interface for external devices.  
IEE  
• Supports direct encryption and decryption of FlexSPI memory type  
• Provides decryption services (lower performance) for DRAM traffic  
• Supports I/O direct encrypted storage and retrieval  
• Support for a number of cryptographic standards:  
• 128/256-bit AES Encryption (AES-CTR, AES-XTS mode options)  
• Multiple keys supported:  
• Loaded via secure key channel from security block  
• Key selection is per access and based on source of transaction  
IOMUXC  
IOMUX Control  
This module enables flexible I/O multiplexing. Each I/O pad has default and several  
alternate functions. The alternate functions are software configurable.  
JPEG/dec  
MJPEG engine for  
decode  
Provides up to 4-stream decoding in parallel.  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
9
Modules List  
Table 4. i.MX 8QuadPlus modules list (continued)  
Block Name Brief Description  
Provides up to 4-stream encoding in parallel.  
Block  
Mnemonic  
JPEG/enc  
KPP  
MJPEG engine for  
encode  
Key Pad Port  
The Keypad Port (KPP) is a 16-bit peripheral that can be used as a 6 x 8 keypad  
matrix interface or as general purpose input/output (I/O).  
LPIT-1  
LPIT-2  
Low-Power Periodic  
Interrupt Timer  
Each LPIT is a 32-bit “set and forget” timer that starts counting after the LPIT is  
enabled by software. It is capable of providing precise interrupts at regular intervals  
with minimal processor intervention. It has a 12-bit prescaler for division of input  
clock frequency to get the required time setting for the interrupts to occur, and  
counter value can be programmed on the fly.  
LPSPI 0–3  
LVDS  
Configurable SPI  
LVDS Display Bridge  
Arm (CPU3)  
Full-duplex enhanced Synchronous Serial Interface. It is configurable to support  
Master/Slave modes, four chip selects to support multiple peripherals.  
This high performance serializer supports a pair of LVDS displays with 8 lanes  
each. Each port can be configured for 2x Tx with 4 lanes each.  
M4F  
• Cortex-M4F core  
• AHB LMEM (Local Memory Controller) including controllers for TCM and cache  
memories  
• 256 KB embedded tightly coupled memory(TCM) (128 KB TCMU, 128 KB  
TCML)  
• 16 KB Code Bus Cache  
• 16 KB System Bus Cache  
• ECC for TCM memories and parity for code and system caches  
• Integrated Nested Vector Interrupt Controller (NVIC)  
• Wakeup Interrupt Controller (WIC)  
• FPU (Floating Point Unit)  
• Core MPU (Memory Protection Unit)  
• Support for exclusive access on the system bus  
• MMCAU (Crypto Acceleration Unit)  
• MCM (Miscellaneous Control Module)  
MIPI CSI-2  
MIPI-DSI  
MIPI CSI-2 Interface  
MIPI DSI interface  
The MIPI CSI-2 IP provides MIPI CSI-2 standard camera interface ports. The MIPI  
CSI-2 interface supports up to 1.5 Gbps for up to 4 data lanes  
The MIPI DSI IP provides DSI standard display serial interface. The DSI interface  
supports 80 Mbps to 1.5 Gbps speed per data lane.  
MQS  
Medium Quality Sound Medium Quality Sound (MQS) is used to generate 2-channel medium quality  
PWM-like audio via two standard digital GPIO pins.  
OCOTP_CTRL  
OTP Controller  
The On-Chip OTP controller (OCOTP_CTRL) provides an interface for reading,  
programming, and/or overriding identification and control information stored in  
on-chip fuse elements. The module supports electrically-programmable poly fuses  
(eFUSEs). The OCOTP_CTRL also provides a set of volatile software-accessible  
signals that can be used for software control of hardware elements, not requiring  
non-volatility. The OCOTP_CTRL provides the primary user-visible mechanism for  
interfacing with on-chip fuse elements. Among the uses for the fuses are unique  
chip identifiers, mask revision numbers, cryptographic keys, JTAG secure mode,  
boot characteristics, and various control signals requiring permanent nonvolatility.  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
10  
Modules List  
Table 4. i.MX 8QuadPlus modules list (continued)  
Block Name Brief Description  
Block  
Mnemonic  
OCRAM  
On-Chip Memory  
Controller  
The On-Chip Memory controller (OCRAM) module is designed as an interface  
between the system’s AXI bus and the internal (on-chip) SRAM memory module.  
The OCRAM is used for controlling the 256 KB multimedia RAM through a 64-bit  
AXI bus.  
PCIe  
PRG  
PCI Express 3.0  
PCIe 1.0 and 2.0 compliant. PCIe 3.0 capable; contact your NXP representative.  
Prefetch/Resolve  
Gasket  
The PRG is a gasket which translates system memory accesses to local display  
RTRAM accesses for display refresh. It works with the DPR to complete the  
prefetch and resolving operations needed to drive the display.  
PWM  
Pulse Width Modulation The pulse-width modulator (PWM) has a 16-bit counter and is optimized to  
generate sound from stored sample audio images and it can also generate tones.  
It uses 16-bit resolution and a 4×16 data FIFO to generate square waveforms.  
RAM  
64 KB Secure  
RAM  
Secure/non-secure  
RAM  
Secure/non-secure Internal RAM, interfaced through the CAAM.  
RAM  
Internal RAM  
Internal RAM, which is accessed through OCRAM memory controllers.  
256 KB  
RNG  
Random Number  
Generator  
The purpose of the RNG is to generate cryptographically strong random data. It  
uses a true random number generator (TRNG) and a pseudo-random number  
generator (PRNG) to achieve true randomness and cryptographic strength. The  
RNG generates random numbers for secret keys, per message secrets, random  
challenges, and other similar quantities used in cryptographic algorithms.  
SAI  
I2S/SSI/AC97 Interface The SAI module provides a synchronous audio interface that supports full duplex  
serial interfaces with frame synchronization, such as I2S, AC97, TDM, and  
codec/DSP interfaces.  
SECO  
SJC  
Security Controller  
Core and associated memory and hardware responsible for key management.  
Secure JTAG Controller The SJC provides the JTAG interface, which is compatible with JTAG TAP  
standards, to internal logic. This device uses JTAG port for production, testing, and  
system debugging. Additionally, the SJC provides BSR (Boundary Scan Register)  
standard support, which is compatible with IEEE1149.1 and IEEE1149.6 standards.  
The JTAG port must be accessible during platform initial laboratory bring-up, for  
manufacturing tests and troubleshooting, as well as for software debugging by  
authorized entities. The SJC incorporates three security modes for protecting  
against unauthorized accesses. Modes are selected through eFUSE configuration.  
sMMU  
SNVS  
SPDIF  
System MMU  
The System MMU is an MMU-500 from Arm. It supports two-stage address  
translation and multiple translation contexts.  
Secure Non-Volatile  
Storage  
Secure Non-Volatile Storage, including Secure Real Time Clock, Security State  
Machine, Master Key Control.  
Sony Philips Digital  
Interconnect Format  
The Sony/Philips Digital Interface (SPDIF) audio block is a stereo transceiver that  
allows the processor to receive and transmit digital audio. The SPDIF transceiver  
allows the handling of both SPDIF channel status (CS) and User (U) data and  
includes a frequency measurement block that allows the precise measurement of  
an incoming sampling frequency.  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
11  
Modules List  
Table 4. i.MX 8QuadPlus modules list (continued)  
Block  
Mnemonic  
Block Name  
Brief Description  
TEMPMON  
Temperature Monitor  
The temperature monitor/sensor IP module for detecting high temperature  
conditions. The temperature read out does not reflect case or ambient temperature.  
It reflects the temperature in proximity of the sensor location on the die.  
Temperature distribution may not be uniformly distributed; therefore, the read-out  
value may not be the reflection of the temperature value for the entire die.  
UART  
UART Interface  
• High-speed TIA/EIA-232-F compatible, up to 5.0 Mbps  
• Serial IR interface low-speed, IrDA-compatible (up to 115.2 Kbit/s)  
• 9-bit or Multidrop mode (RS-485) support (automatic slave address detection)  
• 7, 8, 9, or 10-bit data characters (7-bits only with parity)  
• 1 or 2 stop bits  
• Programmable parity (even, odd, and no parity)  
• Hardware flow control support for request to send (RTS_B) and clear to send  
(CTS_B) signals  
USB3/USB2  
The USB3/USB2 OTG module has been specified to perform USB 3.0 dual role and  
USB 2.0 On-The-Go (OTG) compatible with the USB 3.0, and USB 2.0  
specification with OTG supplementary specifications. This controller supports  
twoindependent USB cores (1× USB3.0 dual-role, 1× USB2.0 OTG) and includes  
the PHY and I/O interfaces to support this operation. The full pinout of the USB 3.0  
controller includes the signaling for both USB 3.0 and USB 2.0. This does not  
mean there is a separate USB 2.0 controller that can be used independently and  
simultaneously with USB 3.0. This device has an additional separate,  
independent USB 2.0 OTG controller which can be used simultaneously with this  
USB 3.0. Specific features requested for this updated module:  
• Super Speed (5 Gbps), High Speed (480 Mbps), full speed (12 Mbps) and low  
speed (1.5 Mbps)  
• Fully compatible with the USB 3.0 specification (backward compatible with USB  
2.0)  
• Fully compatible with the USB On-The-Go supplement to the USB 2.0  
specification  
• Hardware support for OTG signaling  
• Host Negotiation Protocol (HNP) and Session Request Protocol (SRP)  
implemented in hardware, which can also be controlled by software  
USBOH  
The USBOH module has been specified which performs USB 2.0 On-The-Go  
(OTG) and USB 2.0 Host functionality compatible with the USB 2.0 with OTG  
supplement and HS IC-USB specification. This controller supports two  
independent USB cores (1× USB2.0 OTG, 1× USB2.0 Host) and includes the PHY  
and I/O interfaces to support this operation.  
Key features:  
• One USB2.0 OTG controller  
• High Speed (480 Mbps), full speed (12 Mbps) and low speed (1.5 Mbps)  
• Fully compatible with the USB 2.0 specification  
• Fully compatible with the USB On-The-Go supplement to the USB 2.0  
specification  
• Hardware support for OTG signaling  
• Host Negotiation Protocol (HNP) and Session Request Protocol (SRP)  
implemented in hardware, which can also be controlled by software  
• USB2.0 Host with HS IC-USB specification  
• HS IC-USB transceiver-less downstream support (Host only).  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
12  
Modules List  
Table 4. i.MX 8QuadPlus modules list (continued)  
Block Name Brief Description  
Block  
Mnemonic  
uSDHC  
SD/eMMC and SDXC  
i.MX 8 Family SoC-specific characteristics:  
Enhanced Multi-Media All three MMC/SD/SDIO controller IPs are identical and are based on the uSDHC  
Card / Secure Digital  
Host Controller  
IP.  
The uSDHC is a host controller used to communicate with external low cost data  
storage and communication media. It supports the previous versions of the  
MultiMediaCard (MMC) and Secure Digital Card (SD) standards. Specifically, the  
uSDHC supports:  
• SD Host Controller Standard Specification v3.0 with the exception that all the  
registers do not match the standards address mapping.  
• SD Physical Layer Specification v3.0 UHS-I (SDR104/DDR50)  
• SDIO specification v3.0  
• eMMC System Specification v5.1  
VPU  
Video Processing Unit See the device reference manual for the complete list of the VPU’s  
decoding/encoding capabilities.  
WDOG  
Watchdog  
The Watchdog Timer supports two comparison points during each counting period.  
Each of the comparison points is configurable to evoke an interrupt to theArm core,  
and a second point evokes an external event on the WDOG line.  
XTAL OSC24M  
XTAL OSC32K  
The 24 MHz clock source is an external crystal that acts as the main system clock.  
The OSC24M is used as the source clock for subsystem PLLs. OSC24M can be  
turned off by the System Control Unit (SCU) during sleep mode.  
The 32.768 kHz clock source is an external crystal. The OSC32K is intended to be  
always on and is distributed by the SCU to modules in the chip.  
3.1  
Special Signal Considerations  
Special signal considerations can be found in the Hardware Developer’s Guide for this device in the  
Design Checklist section.  
3.2  
Recommended Connections for Unused Interfaces  
The recommended connections for unused analog interfaces can be found in the section, “Unused  
Input/Output Terminations,” in the Hardware Developer’s Guide for this device.  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
13  
Electrical characteristics  
4 Electrical characteristics  
This section provides the device and module-level electrical characteristics for these processors.  
4.1  
Chip-level conditions  
This section provides the device-level electrical characteristics for the SoC. See the following table for a  
quick reference to the individual tables and sections.  
Table 5. Chip-level conditions  
For these characteristics, …  
Absolute maximum ratings  
Topic appears …  
on page 15  
on page 17  
on page 17  
on page 21  
on page 21  
on page 48  
on page 25  
FCPBGA package thermal resistance data  
Operating ranges  
External Input Clock Frequency  
Maximum supply currents  
Standby use cases  
USB 2.0 PHY typical current consumption in Power-Down  
Mode  
USB 3.0 PHY typical current consumption in Power-Down  
Mode  
on page 25  
on page 25  
Typical current consumption in Power-Down mode for USB  
2.0 PHY embedded in USB 3.0 PHY  
4.1.1  
Absolute Maximum Ratings  
CAUTION  
Stresses beyond those listed under Table 6 may affect reliability or cause  
permanent damage to the device. These are stress ratings only. Functional  
operation of the device at these or any other conditions beyond those  
indicated in the “Operating ranges” or other parameter tables is not implied.  
Exposure to absolute-maximum-rated conditions for extended periods will  
affect device reliability.  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
14  
NXP Semiconductors  
Electrical characteristics  
Table 6. Absolute maximum ratings  
Symbol  
Parameter Description  
Min  
Max  
Units  
Core Supplies Input Voltage  
VDD_A72  
-0.3  
1.2  
V
VDD_A53  
VDD_GPU0  
VDD_GPU1  
VDD_MAIN  
VDD_MEMC  
DDR PHY supplies  
1.0V IO supplies  
VDD_DDR_VDDQ  
-0.3  
-0.3  
1.75  
1.2  
V
V
VDD_MIPI_1P0  
VDD_USB_OTG_1P0  
VDD_ADC_1P8  
IO Supply for GPIO Type  
1.8V IO Single supply  
-0.5  
2.1  
V
VDD_ADC_DIG_1P8  
VDD_ANA0_1P8 (IO, analog,OSC SCU)  
VDD_ANA1_1P8 (IO, analog,OSC SCU)  
VDD_DDR_PLL_1P8 (memory PLLs)  
VDD_MIPI_1P8 (PHY, GPIO)  
VDD_MIPI_CSI_DIG_1P8 (PHY, GPIO)  
VDD_PCIE_1P8 (PHY)  
VDD_USB_1P8 (PHY, GPIO)  
VDD_ENET1_1P8_2P5_3P3  
VDD_ENET0_1P8_3P3  
IO Supply for GPIO Type  
1.8 / 2.5 / 3.3V IO Tri-voltage Supply  
-0.3  
3.8  
V
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
15  
Electrical characteristics  
Table 6. Absolute maximum ratings (continued)  
Parameter Description  
Symbol  
Min  
Max  
Units  
IO Supply for GPIO Type  
1.8 / 3.3V IO Dual Voltage Supply  
VDD_CAN_UART_1P8_3P3  
VDD_CSI_1P8_3P3  
-0.3  
3.8  
V
VDD_EMMC0_1P8_3P3  
VDD_EMMC0_VSELECT_1P8_3P3  
VDD_ENET_MDIO_1P8_3P3  
VDD_MIPI_DSI_DIG_1P8_3P3  
VDD_PCIE_DIG_1P8_3P3  
VDD_QSPI0A_1P8_3P3  
VDD_QSPI0B_1P8_3P3  
VDD_SPI_MCLK_UART_1P8_3P3  
VDD_SPI_SAI_1P8_3P3  
VDD_TMPR_CSI_1P8_3P3  
VDD_USB_3P3 (PHY & GPIO)  
VDD_USDHC1_1P8_3P3  
VDD_USDHC1_VSELECT_1P8_3P3  
VDD_SNVS_4P2  
SNVS Coin Cell  
-0.3  
-0.3  
-0.3  
-0.3  
4.3  
3.63  
5.5  
V
V
V
V
USB VBUS (OTG2)  
USB VBUS (OTG1)  
I/O Voltage for USB Drivers  
USB_OTG2_VBUS  
USB_OTG1_VBUS  
USB_OTG1_DP/USB_OTG1_DN  
USB_OTG2_DP/USB_OTG2_DN  
ADC_INx  
3.63  
I/O Voltage for ADC  
-0.1  
2.1  
V
V
Vin/Vout input/output voltage range (GPIO Vin/Vout  
Type Pins)  
See Section 4.6.1  
Vin/Vout input/output voltage range (DDR Vin/Vout  
pins)  
See Section 4.6.1  
V
ESD immunity (HBM).  
ESD immunity (CDM).  
Storage temperature range  
Vesd_HBMX  
1000  
250  
V
Vesd_CDM  
Tstorage  
V
-40  
150  
°C  
NOTE  
HDMI CEC is 3.3V tolerant. HDMI DDC signals and HPD are 5V tolerant.  
Refer to the Hardware Developer’s Guide for proper terminations.  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
16  
NXP Semiconductors  
Electrical characteristics  
4.1.2  
Thermal resistance  
4.1.2.1  
FCPBGA package thermal resistance  
This table provides the FCPBGA package thermal resistance data.  
Table 7. FCPBGA package thermal resistance data  
29x29 mm  
Unit  
Rating  
Board Type1  
Symbol  
package  
Junction to Ambient Thermal Resistance2  
Junction to Package Top Thermal Resistance2  
Junction to Case Thermal Resistance3  
JESD51-9, 2s2p  
JESD51-9, 2s2p  
JESD51-9, 1s  
RθJA  
ΨJT  
12.9  
0.1  
°C/W  
°C/W  
°C/W  
RθJC  
0.3  
1
Thermal test board meets JEDEC specification for this package (JESD51-9).  
2
Determined in accordance to JEDEC JESD51-2A natural convection environment. Thermal resistance data in this report is  
solely for a thermal performance comparison of one package to another in a standardized specified environment. It is not meant  
to predict the performance of a package in an application-specific environment.  
3
Junction-to-Case thermal resistance determined using an isothermal cold plate. Case temperature refers to the mold surface  
temperature at the package top side dead center.  
4.1.3  
Operating Ranges  
The following table provides the operating ranges of these processors.  
1
Table 8. Operating ranges  
Symbol  
Description  
Mode  
Min Typ Max Unit  
Comments  
VDD_A722  
VDD_A532  
Power supply Overdrive 1.05 1.10 1.15  
of Cortex-A72  
V
Min frequency = 208.5 MHz  
Max frequency = 1.6 GHz  
cluster  
Nominal 0.95 1.00 1.10  
V
V
Max frequency = 1.06 GHz  
Power supply Overdrive 1.05 1.10 1.15  
of Cortex-A53  
Min frequency = 208.5 MHz  
Max frequency = 1.2 GHz  
cluster  
Nominal 0.95 1.00 1.10  
V
V
Max frequency = 900 MHz  
VDD_GPU0  
VDD_GPU1  
VDD_MEMC  
Power supply  
of first GPU  
instance  
Nominal 0.95 1.00 1.10  
Nominal 0.95 1.00 1.10  
Max frequencies:  
Shaders = 625 MHz;  
Core = 625 MHz  
Power supply  
of second  
GPU instance  
V
V
Max frequencies.:  
Shaders = 625 MHz;  
Core = 625 MHz  
Power supply  
of memory  
controller  
N/A  
1.05 1.10 1.15  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
17  
Electrical characteristics  
1
Table 8. Operating ranges (continued)  
Symbol  
Description  
Mode  
Min Typ Max Unit  
Comments  
Max frequencies:  
HiFi4 DSP = 666 MHz  
M4 = 264 MHz  
VDD_MAIN3  
Power supply  
of remaining  
core logic  
N/A  
0.95 1.00 1.10  
V
VPU = 600 MHz  
VDD_DDR_CH0_VDDQ,  
VDD_DDR_CH0_VDDQ_CKE,  
VDD_DDR_CH1_VDDQ,  
Power  
supplies of  
memory I/Os  
LPDDR4 1.06 1.10 1.17  
V
Max frequency = 1.6 GHz  
Supports LPDDR4-3200  
VDD_DDR_CH1_VDDQ_CKE,  
VDD_DDR_CH0_VDDA_PLL_1P8, Power  
N/A  
N/A  
1.65 1.80 1.95  
0.95 1.00 1.10  
V
V
PLL supply can be merged with  
other 1.8V supplies with proper  
on board decoupling.  
VDD_DDR_CH1_VDDA_PLL_1P8  
supplies of  
memory PLLs  
VDD_MIPI_CSI0_1P0,  
VDD_MIPI_CSI1_1P0,  
VDD_MIPI_DSI0_1P0,  
VDD_MIPI_DSI0_PLL_1P0,  
VDD_MIPI_DSI1_1P0,  
VDD_MIPI_DSI1_PLL_1P0,  
VDD_LVDS0_1P0,  
Power  
These balls shall be connected to  
the same power supply as  
VDD_MAIN. It shall be a star  
connection from the power  
supply. Each VDD power supply  
ball shall have its own dedicated  
decoupling caps.  
supplies of  
PHYs (1.0 V  
part)  
VDD_LVDS1_1P0  
VDD_ANA1_1P8, VDD_ANA2_1P8, Power  
N/A  
N/A  
1.65 1.70 1.75  
V
V
These balls shall be powered by a  
dedicated supply.  
VDD_ANA3_1P8, VDD_CP_1P8,  
VDD_SCU_1P8,  
VDD_SCU_ANA_1P8,  
VDD_SCU_XTAL_1P8  
supplies of  
I/Os, analog  
and oscillator  
of the SCU  
Note: The disconnect between  
the ball naming, implying a 1.8 V  
supply, and the actual required  
operating voltage of 1.7 V is  
known and correct as shown.  
VDD_PCIE_IOB_1P8,  
VDD_ADC_1P8,  
VDD_ADC_DIG_1P8,  
VDD_HDMI_RX0_1P84,  
VDD_HDMI_TX0_1P8,  
VDD_LVDS0_1P8,  
Power  
1.65 1.80 1.95  
supplies of  
PHYs (1.8 V  
part) and  
GPIO  
operating at  
1.8 V only.  
VDD_LVDS1_1P8,  
VDD_MIPI_CSI0_1P8,  
VDD_MIPI_CSI1_1P8,  
VDD_MIPI_DSI0_1P8,  
VDD_MIPI_DSI1_1P8,  
VDD_MLB_1P85,  
VDD_PCIE_LDO_1P8,  
VDD_PCIE_SATA0_PLL_1P84,  
VDD_PCIE0_PLL_1P8,  
VDD_PCIE1_PLL_1P8,  
VDD_USB_HSIC0_1P8,  
VDD_ANA0_1P8,  
VDD_MIPI_CSI_DIG_1P8  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
18  
Electrical characteristics  
1
Table 8. Operating ranges (continued)  
Symbol  
Description  
Mode  
Min Typ Max Unit  
Comments  
VDD_HDMI_RX0_VH_RX_3P34,  
VDD_HDMI_TX0_DIG_3P3,  
VDD_USB_OTG1_3P3,  
VDD_USB_OTG2_3P3,  
VDD_USB_SS3_TC_3P3  
Power  
N/A  
3.00 3.30 3.60  
V
supplies of  
PHYs (3.3 V  
part) and  
GPIO  
operating at  
3.3 V only  
VDD_PCIE_DIG_1P8_3P3,  
VDD_ENET0_1P8_3P3,  
VDD_ENET_MDIO_1P8_3P3,  
VDD_EMMC0_1P8_3P3,  
Power  
supplies of  
GPIO  
supporting  
both 1.8 V or  
3.3 V  
1.8 V  
3.3 V  
1.65 1.80 1.95  
3.00 3.30 3.60  
V
V
When VDD_USDHC1_1P8_3P3  
or VDD_USDHC2_1P8_3P3 is  
used to support an SD card then  
it shall be on a dedicated  
1.8V/3.3V regulator.  
When VDD_SIM0_1P8_3P3 is  
used to support a SIM card, it  
shall be on a dedicated 1.8V/3.3V  
regulator.  
VDDs of this list targeting 1.8V  
can share 1.8V regulator of 1.8V  
only VDDs  
VDDs of this list targeting 3.3V  
can share 3.3V regulator of 3.3V  
only VDDs  
VDD_USDHC1_1P8_3P3,  
VDD_USDHC2_1P8_3P3,  
VDD_USDHC_VSELECT_1P8_3P3,  
VDD_SIM0_1P8_3P3,  
VDD_ESAI0_MCLK_1P8_3P3,  
VDD_ESAI1_SPDIF_SPI_1P8_3P3,  
VDD_FLEXCAN_1P8_3P3,  
VDD_LVDS_DIG_1P8_3P3,  
VDD_M4_GPT_UART_1P8_3P3,  
VDD_MIPI_DSI_DIG_1P8_3P3,  
VDD_MLB_DIG_1P8_3P36,  
VDD_QSPI0_1P8_3P3,  
VDD_QSPI1A_1P8_3P3,  
VDD_SPI_SAI_1P8_3P3  
VDD_ENET1_1P8_2P5_3P3  
Power  
supplies of  
ethernet I/Os  
1.8 V  
2.5 V  
3.3 V  
N/A  
1.65 1.80 1.95  
2.38 2.50 2.63  
3.00 3.30 3.60  
1.1 1.2 1.3  
V
V
V
V
VDD_USB_HSIC0_1P2  
VDD_SNVS_4P2  
Power supply  
of USB-HSIC  
I/Os  
Power supply  
of SNVS  
N/A  
2.80 3.30 4.20  
V
It can be supplied by a backup  
battery: a coin cell or a super cap.  
Output of embedded LDOs and negative charge pump  
VDD_USB_SS3_LDO_1P0_CAP,  
1.0 V output of  
N/A  
1.00  
V
VDD_HDMI_RX0_LDO0_1P0_CAP4 embedded  
,
LDOs  
VDD_HDMI_RX0_LDO1_1P0_CAP4  
, VDD_HDMI_TX0_LDO_1P0_CAP,  
VDD_PCIE_LDO_1P0_CAP  
VDD_SNVS_LDO_1P8_CAP  
1.8 V output of  
SNVS  
N/A  
1.80  
V
embedded  
LDO  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
19  
Electrical characteristics  
1
Table 8. Operating ranges (continued)  
Symbol  
Description  
Mode  
Min Typ Max Unit  
-1.80  
Comments  
VDD_M1P8 _CAP  
-1.8 V output  
of embedded  
charge pump  
N/A  
V
Power supplies that shall be connected to output of an embedded LDO  
VDD_HDMI_TX0_1P0  
N/A  
1.00  
V
Shall be externally connected to  
VDD_HDMI_TX0_LDO_1P0_CA  
P
VDD_PCIE_SATA0_1P04,  
VDD_PCIE0_1P0, VDD_PCIE1_1P0  
N/A  
N/A  
1.00  
1.00  
V
V
Shall be externally connected to  
VDD_PCIE_LDO_1P0_CAP  
VDD_USB_OTG1_1P0,  
VDD_USB_OTG2_1P0  
Shall be externally connected to  
VDD_USB_SS3_LDO_1P0_CA  
P
Junction temperature  
-40  
Junction temperature  
125 °C  
1
Voltage ranges are defined to group as many supplies as possible. Individual supplies may have a wider range than listed here.  
2
These are the supported frequencies included in the Linux, Android, and all other operating systems using the SCU defined  
DVFS (Dynamic Voltage and Frequency Scaling) set points. An additional Overdrive set point is included to provide a more  
balanced power-versus-performance trade-off, where the A72 runs at 1.3 GHz and the A53 runs at 1.1 GHz. Likewise, an  
additional Nominal set point is included where both the A72 and A53 run at 600 MHz.  
3
4
During low power state, this voltage can be dropped to 0.8 V +/- 3% for retention.  
HDMI-RX is not currently supported, the related power and signal connections are provided for future use when it is expected  
HDMI-RX support will be enabled.  
5
6
MLB is not supported on this product. This MLB power rail may be tied to the power supply voltage indicated or may be  
terminated, per the Hardware Developer’s Guide power supplies of unused functions.  
MLB is not supported on this product. The MLB power rail must be tied to the power supply voltage indicated if other I/O  
functions are used, as determined by IOMUX selection. Alternately, terminate the MLB supply per the Hardware Developer’s  
Guide power supplies of unused functions.  
4.1.4  
External clock sources  
Each processor has two external input system clocks: a low frequency (RTC_XTALI) and a high frequency  
(XTALI).  
The RTC_XTALI is used for real time functions. It supplies the clock for real time clock operation and for  
slow-system and watchdog counters. The clock input can be connected to either an external oscillator or a  
crystal using the internal oscillator amplifier.  
The system clock input XTALI is used to generate the main system clock. It supplies the PLLs and other  
peripherals. The system clock input requires a crystal using the internal oscillator amplifier.  
The PCIe oscillator can be sourced internally or input to the chip. In both cases, it is a 100 MHz nominal  
clock using HCSL signaling to provide the PCIe reference clock.  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
20  
NXP Semiconductors  
Electrical characteristics  
The following table shows the interface frequency requirements.  
Table 9. External Input Clock Frequency  
Parameter Description  
Symbol  
Min  
Typ  
Max  
Unit  
RTC_XTALI Oscillator1,2  
XTALI Oscillator4,2  
PCIe oscillator5  
fckil  
fxtal  
f100M  
32.7683/32.0  
kHz  
MHz  
MHz  
ppm  
24  
100  
Frequency accuracy  
±300  
1
External oscillator or a crystal with internal oscillator amplifier.  
2
The required frequency stability of this clock source is application dependent. For recommendations, see the hardware  
development guide for this device.  
3
4
5
Recommended nominal frequency 32.768 kHz.  
Fundamental frequency crystal with internal oscillator amplifier.  
If using an external clock instead of the internal clock source, an HCSL-compatible clock is required. Concerning EMI/EMC,  
note that internal source is not spread-spectrum capable.  
The typical values shown in Table 9 are required for use with NXP board support packages (BSPs) to  
ensure precise time keeping and USB and HDMI operations.  
4.1.5  
Maximum Supply Currents  
NOTE  
Some of the numbers shown in this table are based on the companion  
regulator limits and not actual use cases. Current-drain application note  
AN13249 is also available for reference. This document contains measured  
results for i.MX 8QuadMax and should be used as a guideline for i.MX  
8QuadPlus.  
Table 10. Maximum supply currents  
Symbol  
Value Unit  
Comments  
VDD_A72  
3500 mA Value based on max current delivered by PMIC  
2500 mA Value based on max current delivered by PMIC  
3500 mA Value based on max current delivered by PMIC  
3500 mA Value based on max current delivered by PMIC  
5000 mA Value based on max current delivered by PMIC  
3200 mA Value based on max current delivered by PMIC  
VDD_A53  
VDD_GPU0  
VDD_GPU1  
VDD_MAIN  
VDD_MEMC  
VDD_DDR_CH0_VDDQ  
800  
200  
20  
mA Does not include current used by external memory.  
mA Does not include current used by external memory.  
mA  
VDD_DDR_CH0_VDDQ_CKE  
VDD_DDR_CH0_VDDA_PLL_1P8  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
21  
Electrical characteristics  
Symbol  
Table 10. Maximum supply currents (continued)  
Value Unit Comments  
mA Does not include current used by external memory.  
VDD_DDR_CH1_VDDQ  
VDD_DDR_CH1_VDDQ_CKE  
VDD_DDR_CH1_VDDA_PLL_1P8  
VDD_SCU_ANA_1P8  
800  
200  
20  
5
mA Does not include current used by external memory.  
mA  
mA  
VDD_SCU_1P8  
20  
60  
10  
175  
45  
140  
110  
15  
45  
40  
25  
35  
15  
20  
35  
55  
5
mA Digital I/Os of SCU  
VDD_CP_1P8  
ma There is a peak current of 60mA over 140 μs.  
VDD_SCU_XTAL_1P8  
VDD_ANA0_1P8  
mA Supply of crystal oscillator and integrated 200 MHz oscillator  
mA  
VDD_ANA1_1P8  
mA  
VDD_ANA2_1P8  
mA  
VDD_ANA3_1P8  
mA  
VDD_SIM0_1P8_3P3  
mA  
VDD_M4_GPT_UART_1P8_3P3  
VDD_ESAI1_SPDIF_SPI_1P8_3P3  
VDD_ESAI0_MCLK_1P8_3P3  
VDD_SPI_SAI_1P8_3P3  
VDD_FLEXCAN_1P8_3P3  
VDD_QSPI1A_1P8_3P3  
VDD_QSPI0_1P8_3P3  
VDD_EMMC0_1P8_3P3  
VDD_USDHC_VSELECT_1P8_3P3  
VDD_USDHC1_1P8_3P3  
VDD_USDHC2_1P8_3P3  
VDD_ENET_MDIO_1P8_3P3  
VDD_ENET0_1P8_3P3  
VDD_ENET1_1P8_2P5_3P3  
VDD_LVDS_DIG_1P8_3P3  
VDD_LVDSx_1P8  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
55  
35  
15  
25  
25  
25  
100  
5
mA  
mA  
mA  
mA  
mA  
mA  
mA x is 0 or 1  
mA x is 0 or 1  
mA  
VDD_LVDSx_1P0  
VDD_MIPI_DSI_DIG_1P8_3P3  
VDD_MIPI_DSIx_1P8  
20  
5
mA x is 0 or 1  
mA x is 0 or 1  
mA x is 0 or 1  
VDD_MIPI_DSIx_1P0  
35  
5
VDD_MIPI_DSIx_PLL_1P0  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
22  
Electrical characteristics  
Table 10. Maximum supply currents (continued)  
Value Unit Comments  
Symbol  
VDD_MIPI_CSI_DIG_1P8  
VDD_MIPI_CSIx_1P8  
VDD_MIPI_CSIx_1P0  
VDD_HDMI_TX0_DIG_3P3  
VDD_HDMI_TX0_1P8  
VDD_HDMI_TX0_1P0  
VDD_ADC_1P8  
20  
5
mA  
mA x is 0 or 1  
mA x is 0 or 1  
mA  
20  
5
80  
80  
5
mA  
mA Shall be externally connected to VDD_HDMI_TX0_LDO_1P0_CAP  
mA  
VDD_ADC_DIG_1P8  
VDD_MLB_DIG_1P8_3P31  
VDD_MLB_1P82  
1
mA  
10  
50  
1
mA  
mA  
VDD_USB_OTG1_1P0  
VDD_USB_OTG1_3P3  
VDD_USB_OTG2_1P0  
VDD_USB_OTG2_3P3  
VDD_USB_SS3_TC_3P3  
VDD_USB_HSIC0_1P2  
VDD_USB_HSIC0_1P8  
VDD_PCIE_DIG_1P8_3P3  
VDD_PCIE_IOB_1P8  
VDD_PCIE_LDO_1P8  
VDD_PCIE_SATA0_PLL_1P8  
VDD_PCIE0_PLL_1P8  
VDD_PCIE1_PLL_1P8  
VDD_PCIE_SATA0_1P0  
VDD_PCIE0_1P0  
mA Shall be externally connected to VDD_USB_SS3_LDO_1P0_CAP  
30  
35  
10  
10  
10  
5
mA  
mA Shall be externally connected to VDD_USB_SS3_LDO_1P0_CAP  
mA  
mA  
mA  
mA  
5
mA  
45  
190  
20  
20  
20  
65  
65  
60  
5
mA  
mA  
mA  
mA  
mA  
mA Shall be externally connected to VDD_PCIE_LDO_1P0_CAP  
mA Shall be externally connected to VDD_PCIE_LDO_1P0_CAP  
mA Shall be externally connected to VDD_PCIE_LDO_1P0_CAP  
mA Start-up current  
VDD_PCIE1_1P0  
VDD_SNVS_4P23  
1
MLB is not supported on this product. This MLB power rail must be tied to the voltage specified in Table 8 if other I/O functions  
are used, as determined by IOMUX selection. Alternately, terminate the MLB supply per the Hardware Developer’s Guide  
power supplies of unused functions.  
2
3
MLB is not supported on this product. The MLB power rail must be tied to the voltage specified in Table 8 or may be terminated,  
per the Hardware Developer’s Guide power supplies of unused tables.  
Under normal operating conditions, the maximum current on VDD_SNVS_4P2 is shown Table 11. During initial power on,  
VDD_SNVS_4P2 can draw up to 5 mA if the supply is capable of sourcing that current. If less than 5 mA is available, the  
VDD_SNVS_LDO_1P8_CAP charge time will increase.  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
23  
Electrical characteristics  
4.1.6  
Low power mode supply currents  
The following table shows the current core consumption (not including I/O) in selected low power modes.  
Table 11. i.MX 8QuadPlus Key State (KSx) power consumption  
Mode  
Test conditions  
Supply  
Max  
Unit  
KS0 SNVS only, all other supplies OFF. RTC running,  
tamper not active, external 32K crystal.  
VDD_SNVS_4P2 (4.2 V)  
50  
μA  
KS11 RAM and IO state retained.  
DRAM in self-refresh, associated I/O’s OFF.  
32K running, 24M, PLLs and ring oscillators OFF  
PHYs are in idle state.  
VDD_ANAx_1P8, VDD_SCUx_1P8,  
VDD_CP_1P8 (1.7V)  
6
mA  
VDD_A53 (OFF)  
VDD_A72 (OFF)  
VDD_GPU0 (OFF)  
VDD_GPU1 (OFF)  
VDD_MEMC (OFF)  
VDD_DDR_CHx_VDDQ (1.1V)  
VDD_MAIN (0.8V)  
Total  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mW  
mA  
mA  
mA  
MEMC, A53, A72, and GPU supplies OFF.  
MAIN2 dropped to 0.8 V.  
1.4  
12  
21.94  
1066  
2000  
KS43 Leakage test, not intended as a customer use case. VDD_A53 (1.1V)  
Overdrive conditions set, memories active, all  
VDD_A72 (1.1V)  
sub-systems powered ON.  
Active power minimized.  
VDD_GPU0 (1.0V)  
See  
footnote4  
VDD_GPU1 (1.0V)  
See  
mA  
footnote4  
VDD_MEMC (1.1V)  
VDD_MAIN (1.0V)  
Total  
1800  
1500  
mA  
mA  
mW  
1
2
3
4
Maximum values are for 25 °C Tambient  
.
0.8 V nominal—voltage specification under this case is ± 3%.  
Maximum values are for 125 °C Tjunction . Stated supply voltages do not exceed +2% during test.  
Unavailable at time of publication.  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
24  
Electrical characteristics  
4.1.7  
USB 2.0 PHY typical current consumption in Power-Down mode  
In power down mode, everything is powered down, including the VBUS valid detectors, typical condition.  
The following table shows the USB interface typical current consumption in Power-Down mode.  
Table 12. USB 2.0 PHY typical current consumption in Power-Down Mode  
VDD_USB_OTG1_3P3 (3.3 V)  
VDD_ANA0_1P8 (1.8 V)  
VDD_USB_OTG1_1P0 (1.0 V)  
Current  
1 μA  
0.06 μA  
0.5 μA  
4.1.8  
USB 3.0 PHY typical current consumption in Power-Down mode  
In power down mode, everything is powered down, including the VBUS valid detectors, typical condition.  
The following table shows the USB interface typical current consumption in Power-Down mode.  
Table 13. USB 3.0 PHY typical current consumption in Power-Down Mode  
VDD_ANA0_1P8 (1.8 V)  
VDD_USB_OTG2_1P0 (1.0 V)  
Current  
10 μA  
70 μA  
The following table shows the current consumption for the USB 2.0 PHY embedded in the USB 3.0  
PHY.  
Table 14. Typical current consumption in Power-Down mode for USB 2.0 PHY embedded in USB 3.0 PHY  
VDD_USB_OTG2_3P3 (3.3 V)  
VDD_ANA0_1P8 (1.8 V)  
VDD_USB_OTG2_1P0 (1.0 V)  
Current—Host mode  
22.6 μA  
12.6 μΑ  
12.7 μΑ  
85.7 μΑ  
81.5 μΑ  
78.5 μΑ  
Current—Device mode  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
25  
Electrical characteristics  
4.2  
Power supplies requirements and restrictions  
The system design must comply with power-up sequence, power-down sequence, and steady state  
guidelines as described in this section to ensure the reliable operation of the device. Any deviation from  
these sequences may result in the following situations:  
Excessive current during power-up phase  
Prevention of the device from booting  
Irreversible damage to the processor  
4.2.1  
Power-up sequence  
The device has the following power-up sequence requirements:  
Supply group 0 (SNVS) must be powered first. It is expected that group 0 will typically remain  
always on after the first power-on.  
Supply group 1 (MAIN and SCU) and group 0 must both be powered to their nominal values prior  
to boot. They must power up after or simultaneously with group 0.  
Supply group 2 (I/O’s and DDR interface) consists of those modules required to start the boot  
process by accessing external storage devices. These must be fully powered prior to POR release  
if booting from one of these supplies interfaces. They must power up after or simultaneously with  
group 1.  
Supply group 3 consists of the remaining portions of the SoC. This includes nonboot I/O voltages  
and supplies for the major computational units. These can be sequenced in any order and as  
required to perform the desired functions for the intended application. They must power up after  
or simultaneously with group 2.  
NOTE  
The definition of “power-up” refers to a stable voltage operating within the  
range defined in Table 8. This should be taken into consideration, along  
with the different capacitive loading on each rail, if considering  
simultaneous switch-on of the different supply groups.  
4.2.2  
Power-down sequence  
The device processor has the following power-down sequence requirements:  
Supply group 0 must be turned off last, after all other supplies.  
Supply group 1 can be turned off just prior to group 0.  
All remaining supplies can be turned off prior to group 1.  
NOTE  
When switching off supply group 0 (SNVS), VDD_SNVS_LDO_1P8_CAP  
must be fully discharged to 0 V before starting the next power-up sequence  
to ensure correct operation.  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
26  
NXP Semiconductors  
Electrical characteristics  
4.2.3  
Power Supplies Usage  
The following table shows the power supplies usage by group.  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
27  
Table 15. Power supplies usage  
Supply  
Groups  
Voltage  
Group0  
2.4 - 4.2v  
VDD_SNVS_4P2  
1.0v  
Group 1  
1.8v  
VDD_MAIN  
VDD_ANA1_1P8  
VDD_ANA2_1P8  
VDD_ANA3_1P8  
VDD_CP_1P8  
VDD_LVDSx_1P0  
VDD_MIPI_CSIx_1P0  
VDD_MIPI_DSIx_1P0  
VDD_MIPI_DSIx_PLL_1P0  
VDD_SCU_1P8  
VDD_SCU_x_1P8  
Group 2  
1.1V  
1.8v  
VDD_ADC_DIG_1P8  
VDD_ADC_1P8  
1.8v or 3.3v  
1.8v or 3.3v switchable  
3.3v  
VDD_MEMC  
VDD_EMMC0_1P8_3P3  
VDD_ESAI0_MCLK_1P8_3P3  
VDD_ESAI1_SPDIF_SPI_1P8_3P3  
VDD_FLEXCAN_1P8_3P3  
VDD_USDHCx_1P8_3P3 VDD_HDMI_RX0_VH_RX_3P3  
VDD_DDR_CHx_VDDQ  
VDD_DDR_CHx_VDDQ_CKE  
VDD_SIM0_1P8_3P3  
VDD_HDMI_TX0_DIG_3P3  
VDD_USB_OTGx_3P3  
VDD_USB_SS3_TC_3P3  
VDD_ANA0_1P8  
VDD_DDR_CHx_VDDA_PLL_1P8  
VDD_HDMI_x_1P8  
VDD_LVDSx_1P8  
VDD_LVDS_DIG_1P8_3P3  
VDD_M4_GPT_UART_1P8_3P3  
VDD_MIPI_DSI_DIG_1P8_3P3  
VDD_MIPI_CSI_DIG_1P8  
VDD_MIPI_x_1P8  
1
VDD_MLB_DIG_1P8_3P3  
2
VDD_MLB_1P8  
VDD_PCIE_DIG_1P8_3P3  
VDD_QSPIx_1P8_3P3  
VDD_PCIE_SATA0_PLL_1P8  
VDD_PCIE_x_1P8  
VDD_PCIEx_PLL_1P8  
VDD_USB_HSIC0_1P8  
1.2v  
VDD_SPI_SAI_1P8_3P3  
VDD_USDHC_VSELECT_1P8_3P3  
Group 3  
1.1 - 1.1v  
1.0v internal LDO's  
VDD_HDMI_TX0_1P0  
VDD_PCIE_SATA0_1P0  
1.8v or 2.5v or 3.3v  
VDD_ENET_MDIO_1P8_3P3  
VDD_ENET0_1P8_3P3  
VDD_A53  
VDD_A72  
VDD_USB_HSIC0_1P2  
VDD_ENET1_1P8_2P5_3P3  
VDD_GPUx  
VDD_PCIEx_1P0  
VDD_USB_OTGx_1P0  
1
2
MLB is not supported on this product. This MLB power rail must be tied to the voltage specified in Table 8 if other I/O functions are used as determined by  
IOMUX selection. Alternately, terminate the MLB supply, per the Hardware Developer’s Guide power supplies usage of unused features.  
MLB is not supported on this product. The MLB power rail must be tied to the voltage specified in Table 8 or may be terminated, per the Hardware Developer’s  
Guide power supplies of unused functions.  
Electrical characteristics  
4.3  
PLL electrical characteristics  
PLLs of subsystems  
4.3.1  
i.MX 8QuadPlus embeds a large number of PLLs to address clocking requirements of the various  
subsystems. These PLLs are controlled through the SCU and not directly by Cortex-A or Cortex-M4F  
processors. A software API shall be used by those processors to access the PLL settings. Additional PLLs  
are specific to high-performance interfaces. These are described in the following sections.  
This table summarizes the PLLs controlled by the SCU.  
Table 16. PLLs controlled by SCU  
Locking range1  
Subsystem  
Cortex-A532  
PLL usage  
Source clock  
Lock freq.  
Unit  
Min freq. Max freq.  
Subsystem  
24  
24  
1250  
1250  
2500  
2500  
• Overdrive: 2400  
• Nominal: 1800  
MHz  
MHz  
Cortex-A723  
Subsystem  
• Overdrive: 1600  
• Nominal: 2120  
CCI  
Subsystem  
24  
24  
650  
1300  
2500  
1000  
MHz  
MHz  
GPU  
PLL #0: subsystem  
1250  
• Nominal: 2500  
• Underdrive: 16004  
PLL #1: shaders  
Subsystem  
24  
24  
1250  
1250  
2500  
2500  
• Nominal: 2500  
MHz  
MHz  
• Underdrive: 16004  
DRC (DRAM  
Controller)  
• LPDDR4: 1600  
DB (DRAM Block)  
DBLog  
Subsystem  
Subsystem  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
650  
650  
650  
650  
650  
650  
650  
650  
650  
650  
650  
650  
650  
1300  
1300  
1300  
1300  
1300  
1300  
1300  
1300  
1300  
1300  
1300  
1300  
1300  
750  
800  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
Display Controller 0 PLL #0: subsystem  
PLL #1: display clock #0  
800  
User-configurable  
User-configurable  
800  
PLL #2: display clock #1  
Display Controller 1 PLL #0: subsystem  
PLL #1: display clock #0  
User-configurable  
User-configurable  
1200  
PLL #2: display clock #1  
Imaging  
Audio  
Subsystem  
PLL #0: subsystem  
PLL #1: audio PLL #0  
PLL #2: audio PLL #1  
Subsystem  
700  
User-configurable  
User-configurable  
792  
Connectivity  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
29  
Electrical characteristics  
Subsystem  
Table 16. PLLs controlled by SCU (continued)  
Locking range1  
PLL usage  
Source clock  
Lock freq.  
Unit  
Min freq. Max freq.  
HSIO (High-speed  
I/O)  
Subsystem  
24  
24  
650  
650  
1300  
1300  
800  
800  
MHz  
MHz  
LSIO (Low-speed  
I/O)  
Subsystem  
Cortex-M4  
VPU  
Subsystem  
24  
24  
24  
24  
24  
24  
24  
24  
650  
650  
650  
650  
650  
650  
650  
650  
1300  
1300  
1300  
1300  
1300  
1300  
1300  
1300  
792  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
PLL #0: subsystem  
PLL #1: Audio DSP (HiFi 4)  
Subsystem  
1200  
666  
HDMI-TX / eDP  
MIPI-DSI  
MIPI-CSI  
DMA  
User-configurable  
Subsystem  
864  
720  
Subsystem  
Subsystem  
960  
SCU (System  
Subsystem  
1056  
Controller Unit)  
1
2
Operating frequencies are limited to only those supported by the SCFW.  
2400 MHz is used to generate the 1200 MHz maximum and 600 MHz slow operating points; 1800 MHz is used to generate the  
900 MHz typical operating point. See Table 8 to get associated voltages.  
3
4
1600 MHz is used for max operating point, 2120 MHz is used to generate 1060 MHz for typical operating point, and 2400 MHz  
is used to generate the 600 MHz slow operating point. See Table 8 to get associated voltages.  
2500 MHz is used to generate 625 MHz for the max operating point, 1600 MHz is used to generate 400 MHz for the slow  
operating point. See Table 8 to get associated voltages.  
4.3.2  
PLLs dedicated to specific interfaces  
The following sections cover PLLs used for specific interfaces. Clock output frequency and clock output  
range refer to the output of the PLL. Additional clock dividers may be on the output path to divide the  
output frequency down to the targeted frequency. See the related sections in the reference manual for  
settings of these clock dividers.  
4.3.2.1  
Ethernet PLL  
This PLL is controlled by the SCU.  
Table 17. Ethernet PLL  
Parameter  
Value  
Unit  
Reference clock  
24  
1
MHz  
GHz  
Clock output frequency  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
30  
Electrical characteristics  
4.3.2.2  
USB 3.0 PLLs  
USB 3.0 has two PLLs. One is embedded in Super-Speed PHY. The other one is embedded in the USB 2.0  
OTG PHY that is part of the USB 3.0 interface.  
The table below describes the PLL embedded in the Super-Speed PHY.  
Table 18. USB 3.0 PLL embedded in Super Speed PHY  
Parameter  
Value  
Unit  
Reference clock  
24  
5
MHz  
GHz  
Clock output frequency  
The table below describes the PLL embedded in the USBOTG PHY.  
Table 19. USB 3.0 PLL embedded in USBOTG PHY  
Parameter  
Value  
Unit  
Reference clock  
24  
MHz  
MHz  
Clock output frequency  
480  
4.3.2.3  
USB 2.0 OTG and USB-HSIC PLLs  
This PLL is embedded in the USB 2.0 OTG PHY (the one which is not part of the USB 3.0 feature). It is  
also used to supply the 480 MHz clock to the HSIC interface.  
Table 20. USB 2.0 OTG and USB-HSIC PLLs  
Parameter  
Value  
Unit  
Reference clock  
24  
MHz  
MHz  
Clock output frequency  
480  
4.3.2.4  
PCIe PLLs  
The PCIe interface has seven PLLs:  
One is used to generate the single, common 100 MHz reference clock to each lane  
One Transmit and one Receive PLL per lane (three lanes)  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
31  
Electrical characteristics  
The table below shows the characteristics for the reference clock PLL.  
Table 21. PCIe reference clock PLLs  
Parameter  
Value  
Unit  
Comments  
Reference clock  
Clock output frequency  
24  
MHz  
100  
MHz Used to generate internal 100 MHz reference clock to PCIe lanes  
The table below shows characteristics of the TX and RX PLLs used in each lane.  
1
Table 22. PCIe Transmit and Receive PLLs  
Parameter  
Value  
Unit  
Comments  
Reference clock  
100  
MHz From differential input clock pads or from internal PLL  
Clock output range  
6 ~ 10  
GHz PCIe gen3: 8GHz to get 8GHz baud clock  
PCIe gen2: 10GHz to get 5GHz baud clock  
PCIe gen1: 10GHz to get 2.5GHz baud clock  
1
PCIe 1.0 and 2.0 compliant. PCIe 3.0 capable, contact your NXP representative.  
4.3.2.5  
HDMI-TX / DP PLLs  
The HDMI-TX interface uses two PLLs. One is used to generate the reference clock when using the HDMI  
PHY itself in HDMI mode. In DP mode, this PLL is bypassed and only the PLL embedded in the PHY is  
used.  
The table below shows characteristics of the reference clock PLL for HDMI.  
Table 23. HDMI reference clock PLL  
Parameter  
Value  
Unit  
Comments  
Reference clock  
Clock output range  
24  
MHz  
1.25 ~ 2.5  
GHz Refer to HDMI / DP section of reference manual  
The table below shows characteristics of the PLL embedded in HDMI/DP PHY.  
Table 24. PLL embedded in HDMI/DP PHY  
Parameter  
Value  
Unit  
Comments  
Reference clock  
24MHz / derived from  
HDMI-TX PLL  
MHz 24MHz: when in DP mode  
derived from HDMI-TX PLL: when in HDMI mode  
Clock output range  
5.4  
GHz Dependent on targeted display configuration  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
32  
Electrical characteristics  
4.3.2.6  
MIPI-DSI PLL  
The table below shows characteristics of the PLL embedded in the MIPI-DSI PHY.  
Table 25. MIPI-DSIPHY PLL  
Parameter  
Value  
Unit  
Comments  
Reference clock  
Clock output range  
24  
MHz  
0.75 ~ 1.5  
GHz Dependent on targeted display configuration  
4.3.2.7  
LVDS PLL  
The table below shows characteristics of the PLL embedded in LVDS PHY.  
Table 26. LVDS PHY PLL  
Parameter  
Value  
Unit  
Comments  
Reference clock  
Data rate range  
25 ~ 160  
MHz  
175 ~ 1120  
Mbps Dependent on targeted display configuration  
4.4  
On-chip oscillators  
OSC24M  
4.4.1  
This block integrates trimmable internal loading capacitors and driving circuitry. When combined with a  
suitable 24 MHz external quartz element, it can generate a low-jitter clock. The oscillator is powered from  
VDD_SCU_XTAL_1P8. The internal loading capacitors are trimmable to provide fine adjustment of the  
24 MHz oscillation frequency. It is expected that customers burn appropriate trim values for the selected  
crystal and board parasitics.  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
33  
Electrical characteristics  
Figure 2. Normal Crystal Oscillation mode  
Table 27. Crystal specifications  
Parameter description  
Min  
Typ  
Max  
Unit  
Frequency1  
24  
18  
60  
MHz  
pF  
Cload2  
Maximum drive level  
200  
μW  
Ω
ESR  
1
The required frequency accuracy is set by the serial interfaces utilized for a specific application and is detailed in the  
respective standard documents.  
2
Cload is the specification of the quartz element, not for the capacitors coupled to the quartz element.  
4.4.2  
OSC32K  
This block implements an internal amplifier, trimmable load capacitors and a bias network that when  
combined with a suitable quartz crystal implements a low power oscillator.  
Additionally, if the clock monitor determines that the 32KHz oscillation is not present, then the source of  
the 32 KHz clock will automatically switch to the internal relaxation oscillator of lesser frequency  
accuracy.  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
34  
NXP Semiconductors  
Electrical characteristics  
CAUTION  
The internal ring oscillator is not meant to be used in customer applications,  
due to gross frequency variation over wafer processing, temperature, and  
supply voltage. These variations will cause timing issues to many different  
circuits that use the internal ring oscillator for reference; and, if this timing  
is critical, application issues will occur. To prevent application issues, it is  
recommended to only use an external crystal or an accurate external clock.  
If this recommendation is not followed, NXP cannot guarantee full  
compliance of any circuit using this clock. The OSC32K runs from  
VDD_SNVS_LDO_1P8_CAP, which is regulated from VDD_SNVS. The  
target battery/voltage range is 2.8 to 4.2 V for VDD_SNVS, with a regulated  
output of approximately 1.75 V.  
Table 28. OSC32K main characteristics  
Parameter  
Min  
Typ  
Max  
Comments  
Fosc  
32.768 kHz  
This frequency is nominal and determined mainly by  
the crystal selected. 32.0 KHz is also supported.  
Current  
consumption  
• xtal oscillator mode: 5 μA  
These values are for typical process and room  
temperature. Values will be updated after silicon  
characterization.  
• 32K internal oscillator mode: 10 μA  
Bias resistor  
200 MΩ  
This the integrated bias resistor that sets the amplifier  
into a high gain state. Any leakage through the ESD  
network, external board leakage, or even a scope  
probe that is significant relative to this value will  
debias the amplifier. The debiasing will result in low  
gain, and will impact the circuit's ability to start up and  
maintain oscillations.  
Target Crystal Properties  
Cload  
ESR  
10 pF  
Usually crystals can be purchased tuned for different  
Cloads. This Cload value is typically 1/2 of the  
capacitances realized on the PCB on either side of  
the quartz. A higher Cload will decrease oscillation  
margin, but increases current oscillating through the  
crystal.  
50 kΩ  
100 kΩ Equivalent series resistance of the crystal. Choosing  
a crystal with a higher value will decrease the  
oscillating margin.  
Table 29. External input clock for OSC32K  
Min  
Typ  
Max  
Unit  
Notes  
Frequency  
700  
32.768 or 32  
kHz  
mV  
ns  
1,2,3  
VPP RTC_XTALI  
Rise/fall time  
VDD_SNVS_LDO_1P8_CAP  
4
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
35  
Electrical characteristics  
1
The external clock is fed into the chip from the RTC_XTALI pin; the RTC_XTALO pin should be left floating.  
2
The parameter specified here is a peak-to-peak value and VIH/VIL specifications do not apply.  
3
The voltage applied on RTC_XTALI must be within the range of VSS to VDD_SNVS_LDO_1P8_CAP.  
4
The rise/fall time of the applied clock are not strictly confined.  
4.5  
I/O DC Parameters  
This section includes the DC parameters of the following I/O types:  
XTALI and RTC_XTALI (clock inputs) DC parameters  
General Purpose I/O (GPIO) DC parameters  
NOTE  
The term ‘OVDD’ in this section refers to the associated supply rail of an  
input or output.  
ovdd  
pmos (Rpu)  
Voh min  
1
Vol max  
or  
0
pdat  
pad  
Predriver  
nmos (Rpd)  
ovss  
Figure 3. Circuit for Parameters Voh and Vol for I/O Cells  
4.5.1  
XTALI and RTC_XTALI (Clock Inputs) DC Parameters  
For RTC_XTALI, V /V specifications do not apply. The high and low levels of the applied clock on  
IH IL  
this pin are not strictly defined, as long as the input’s peak-to-peak amplitude meet the requirements and  
the input’s voltage value does not exceed the limits.  
4.5.2  
General-purpose I/O (GPIO) DC parameters  
NOTE  
The term “OVDD” in this section refers to the associated supply rail of an  
input or output. The association is shown in Table 127.  
4.5.2.1  
Tri-voltage GPIO DC parameters  
The following tables show tri-voltage 1.8V, 2.5 V, and 3.3 V DC parameters, respectively, for GPIO pads.  
These parameters are guaranteed per the operating ranges in Table 8, unless otherwise noted.  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
36  
NXP Semiconductors  
Electrical characteristics  
1
Table 30. Tri-voltage 1.8 V GPIO DC parameters  
Parameter  
Symbol  
Test Conditions  
Min  
Max  
Units  
High-level output voltage2,3  
VOH  
IOH= 0.1mA  
PDRV=1  
0.8 × OVDD  
V
IOH= 2mA  
PDRV=0  
Low-level output voltage2,3  
VOL  
IOL= -0.1mA  
PDRV=1  
0.125 × OVDD  
V
I
OL= -2mA  
PDRV=0  
High-Level input voltage2,4  
Low-Level input voltage  
Pull-up resistance  
VIH  
VIL  
0.625 × OVDD  
OVDD  
0.25 × OVDD  
50  
V
V
0
RPU  
VIN=0V (Pullup Resistor)  
PUN = "L", PDN = "H"  
15  
kΩ  
Pull-down resistance  
RDOWN  
VIN=OVDD( Pulldown Resistor)  
PUN = "H", PDN = "L"  
15  
-1  
50  
1
kΩ  
μA  
Input current (no PU/PD)  
IIN  
VI = 0, VI = OVDD  
PUN = "H", PDN = "H"  
1
For tri-voltage I/O, the associated IOMUXD compensation control register PSW_OVR and COMP bits must be set correctly.  
For 1.8 or 3.3 V operation, the SCFW API must be used to set PSW_OVR = 0b0 and COMP=0b000. For 2.5 V operation,  
PSW_OVR = 0b1 and COMP = 0b010.  
2
3
Refer to Section 4.6.1 for undershoot and overshoot specifications.  
As programmed in the associated IOMUX (PDRV field) register. High Drive mode is recommended for 3v3 and 2v5 modes.  
Low Drive mode is recommended for 1v8 mode.  
4
Refer to Section 4.6.2 for monotonic requirements.  
1
Table 31. Tri-voltage 2.5 V GPIO DC parameters  
Parameter  
Symbol  
Test Conditions  
Min  
Max  
Units  
V
High-level output voltage2,3  
IOH= 2mA  
PDRV=0  
0.8 × OVDD  
V
OH  
V
Low-level output voltage2,3  
IOL= -2mA  
PDRV=0  
0.125 × OVDD  
V
OL  
V
High-Level input voltage2,4  
Low-Level input voltage  
Pull-up resistance  
0.625 × OVDD  
OVDD  
0.25 × OVDD  
100  
V
V
IH  
VIL  
0
RPU  
VIN=0V (Pullup Resistor)  
PUN = "L", PDN = "H"  
10  
kΩ  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
37  
Electrical characteristics  
1
Table 31. Tri-voltage 2.5 V GPIO DC parameters (continued)  
Parameter  
Symbol  
Test Conditions  
Min  
Max  
Units  
Pull-down resistance  
RDOWN  
VIN=OVDD( Pulldown  
Resistor)  
10  
100  
kΩ  
PUN = "H", PDN = "L"  
Input current (no PU/PD)  
IIN  
VI = 0, VI = OVDD  
PUN = "H", PDN = "H"  
-1  
1
μA  
1
For tri-voltage I/O, the associated IOMUXD compensation control register PSW_OVR and COMP bits must be set correctly.  
For 1.8 or 3.3 V operation, the SCFW API must be used to set PSW_OVR = 0b0 and COMP=0b000. For 2.5 V operation,  
PSW_OVR = 0b1 and COMP = 0b010.  
2
3
Refer to Section 4.6.1 for undershoot and overshoot specifications.  
As programmed in the associated IOMUX (PDRV field) register. High Drive mode is recommended for 3v3 and 2v5 modes.  
Low Drive mode is recommended for 1v8 mode.  
4
Refer to Section 4.6.2 for monotonic requirements.  
1
Table 32. Tri-voltage 3.3 V GPIO DC parameters  
Parameter  
Symbol  
Test Conditions  
Min  
Max  
Units  
V
High-level output voltage2,3  
IOH= 0.1mA  
PDRV=1  
0.8 × OVDD  
V
OH  
IOH= 2mA  
PDRV=0  
V
Low-level output voltage2,3  
IOL= -0.1mA  
PDRV3=1  
0.125 × OVDD  
V
OL  
IOL= -2mA  
PDRV=0  
V
High-Level input voltage2,4,3  
Low-Level input voltage  
Pull-up resistance  
0.725 × OVDD  
OVDD  
0.25 × OVDD  
100  
V
V
IH  
VIL  
0
RPU  
VIN=0V (Pullup Resistor)  
PUN = "L", PDN = "H"  
10  
kΩ  
Pull-down resistance  
RDOWN  
VIN=OVDD( Pulldown Resistor)  
PUN = "H", PDN = "L"  
10  
-2  
100  
2
kΩ  
μA  
Input current (no PU/PD)  
IIN  
VI = 0, VI = OVDD  
PUN = "H", PDN = "H"  
1
For tri-voltage I/O, the associated IOMUXD compensation control register PSW_OVR and COMP bits must be set correctly.  
For 1.8 or 3.3 V operation, the SCFW API must be used to set PSW_OVR = 0b0 and COMP=0b000. For 2.5 V operation,  
PSW_OVR = 0b1 and COMP = 0b010.  
2
3
Refer to Section 4.6.1 for undershoot and overshoot specifications.  
As programmed in the associated IOMUX (PDRV field) register. High Drive mode recommended for 3v3 and 2v5 modes. Low  
Drive mode is recommended for 1v8 mode.  
4
Refer to Section 4.6.2 for monotonic requirements.  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
38  
NXP Semiconductors  
Electrical characteristics  
4.5.2.2  
Dual-voltage GPIO DC parameters  
The following two tables show dual-voltage 1.8 V and 3.3 V DC parameters, respectively, for GPIO  
pads. These parameters are guaranteed per the operating ranges in Table 8, unless otherwise noted.  
Table 33. Dual-voltage 1.8 V GPIO DC parameters  
Parameter  
Symbol  
Test Conditions  
Ioh= 0.1mA  
Min  
Max  
Units  
High-level output voltage1,2  
VOH  
0.8 × OVDD  
V
PDRV=1  
Ioh= 2mA  
PDRV=0  
Low-level output voltage1,2  
High-Level input voltage1,3  
VOL  
Iol= -0.1mA  
PDRV=1  
0.125 × OVD  
V
V
D
Iol= -2mA  
PDRV=0  
VIH  
0.625 × OVD  
OVDD  
D
Low-Level input voltage  
Pull-up resistance  
VIL  
0
0.25 × OVDD  
V
RPU  
Vin=0 V (Pullup Resistor)  
PUN = "L", PDN = "H"  
15  
50  
kΩ  
Pull-down resistance  
Rdown Vin=OVDD( Pulldown Resistor)  
PUN = "H", PDN = "L"  
15  
-1  
50  
1
kΩ  
μA  
Input current (no PU/PD)  
IIN  
VI = 0, VI = OVDD  
PUN = "H", PDN = "H"  
1
Refer to Section 4.6.1 for undershoot and overshoot specifications.  
2
As programmed in the associated IOMUX (PDRV field) register. High Drive mode is recommended for SD standard (3v3 mode)  
and MMC standard (1v8/3v3 modes). Low Drive mode is recommended for SD standard (1v8 mode).  
3
Refer to Section 4.6.2 for monotonic requirements.  
Table 34. Dual-voltage 3.3 V GPIO DC parameters  
Parameter  
Symbol  
Test Conditions  
Min  
Max  
Units  
High-level output voltage1,2  
VOH  
Ioh= 0.1mA  
PDRV=1  
0.8 × OVDD  
V
Ioh= 2mA  
PDRV=0  
Low-level output voltage1,2  
VOL  
Iol= -0.1mA  
PDRV=1  
0.125 × OVDD  
V
Iol= -2mA  
PDRV=0  
High-Level input voltage1,3  
Low-Level input voltage  
VIH  
VIL  
0.725 × OVDD  
OVDD  
V
V
0
0.25 × OVDD  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
39  
Electrical characteristics  
Table 34. Dual-voltage 3.3 V GPIO DC parameters (continued)  
Parameter  
Symbol  
Test Conditions  
Min  
Max  
Units  
Pull-upresistance  
RPU  
Vin=0V (Pullup Resistor)  
PUN = "L", PDN = "H"  
10  
100  
kΩ  
Pull-down resistance  
Rdown  
Vin=OVDD( Pulldown Resistor)  
PUN = "H", PDN = "L"  
10  
-2  
100  
2
kΩ  
μA  
Input current (no PU/PD)  
IIN  
VI = 0, VI = OVDD  
PUN = "H", PDN = "H"  
1
Refer to Section 4.6.1 for undershoot and overshoot specifications.  
2
As programmed in the associated IOMUX (PDRV field) register. High Drive mode is recommended for SD standard (3v3 mode)  
and MMC standard (1v8/3v3 modes). Low Drive mode is recommended for SD standard (1v8 mode).  
3
Refer to Section 4.6.2 for monotonic requirements.  
4.5.2.3  
Single-voltage GPIO DC parameters  
Table 35 and Table 36 show single-voltage 1.8 V and 3.3 V DC parameters, respectively, for GPIO pads.  
These parameters are guaranteed per the operating ranges in Table 8 unless otherwise noted.  
Table 35. Single-voltage 1.8 V GPIO DC parameters  
Parameter  
Symbol  
Test Conditions  
Min  
Max  
Units  
High-level output voltage1,2  
VOH  
IOH= 0.1mA  
DSE = 000 or 001  
OVDD × 0.8  
V
IOH= 2mA  
DSE = 010 or 011  
IOH= 4mA  
DSE = 100 to 110  
Low-level output voltage1,2  
VOL  
IOL= -0.1mA  
DSE = 000 or 001  
OVDD × 0.2  
V
IOL= -2mA  
DSE = 010 or 011  
IOL= -4mA  
DSE = 100 to 110  
High-Level input voltage2,3  
Low-Level input voltage2,3  
Pull-up resistance  
VIH  
VIL  
0.65 × OVDD  
OVDD  
0.35 × OVDD  
90  
V
V
0
RPU  
Vin=0V (Pullup Resistor)  
PUN = "L", PDN = "H"  
20  
kΩ  
Pull-down resistance  
Rdown  
Vin=OVDD( Pulldown Resistor)  
PUN = "H", PDN = "L"  
20  
-5  
90  
5
kΩ  
μA  
kΩ  
Input current (no PU/PD)  
Keeper Circuit Resistance  
IIN  
VI = 0, VI = OVDD  
PUN = "H", PDN = "H"  
R_Keeper  
VI =.3xOVDD, VI = .7x OVDD  
PUN = "L", PDN = "L"  
20  
90  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
40  
Electrical characteristics  
1
2
3
As programmed in the associated IOMUX (DSE field) register.  
Refer to Section 4.6.1 for undershoot and overshoot specifications.  
Refer to Section 4.6.2 for monotonic requirements.  
Table 36. Single-voltage 3.3 V GPIO DC parameters  
Parameter  
Symbol  
Test Conditions  
Min  
Max  
Units  
High-level output voltage1,2  
VOH  
IOH = 0.1mA  
DSE = 00 or 01  
0.8 × OVDD  
V
IOH= 2mA  
DSE = 10 or 11  
Low-level output voltage1,2  
VOL  
IOL= -0.1mA  
DSE = 00 or 01  
0.2 × OVDD  
V
I
OL = -2mA  
DSE = 10 or 11  
High-Level input voltage2,3  
Low-Level input voltage2,3  
Pull-upresistance  
VIH  
VIL  
0.75 × OVDD  
OVDD  
0.25 × OVDD  
90  
V
V
0
RPU  
Vin=0 V (Pullup Resistor)  
PUN = "L", PDN = "H"  
20  
kΩ  
Pull-down resistance  
Rdown  
Vin=OVDD( Pulldown Resistor)  
PUN = "H", PDN = "L"  
20  
-5  
90  
5
kΩ  
μA  
kΩ  
Input current (no PU/PD)  
Keeper Circuit Resistance  
IIN  
VI = 0, VI = OVDD  
PUN = "H", PDN = "H"  
R_Keeper  
VI =.3xOVDD, VI = .7x OVDD  
PUN = "L", PDN = "L"  
20  
90  
1
2
3
As programmed in the associated IOMUX (DSE field) register.  
Refer to Section 4.6.1 for undershoot and overshoot specifications.  
Refer to Section 4.6.2 for monotonic requirements.  
4.5.3  
HDMI control signals parameters  
The following table shows HDMI control signals DC parameters. These parameters are guaranteed per the  
operating ranges in Table 8, unless otherwise noted.  
Table 37. HDMI DDC and HPD DC parameters  
Parameter  
Symbol  
Test Conditions  
Min  
Max  
Units  
High-level input voltage  
Low-level input voltage  
VIH  
VIL  
2
0
5.3  
0.8  
V
V
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
41  
Electrical characteristics  
4.5.4  
DDR I/O DC parameters  
4.5.4.1  
LPDDR4 mode I/O DC parameters  
These parameters are guaranteed per the operating ranges in Table 8 unless otherwise noted.  
Table 38. LPDDR4 DC parameters  
Parameter  
Symbol  
Test Conditions  
Min  
Max  
Units  
High-level output voltage1  
VOH  
Output Drive = All settings  
(40,48,60,80,120,240)  
unterminated outputs  
0.9 × VDDQ  
V
Low-level output voltage1  
VOL  
Output Drive = All settings  
(40,48,60,80,120,240)  
unterminated outputs  
0.1 × VDDQ  
V
Input current (no ODT)  
IIN  
VI = VSSQ, VI = VDDQ  
-2  
2
μA  
V
DC High-Level input voltage  
DC Low-Level input voltage  
VIH_DC  
VIL_DC  
VREF + 0.1  
VSSQ  
VDDQ  
VREF – 0.1  
V
1
Refer to Section 4.6.1 for undershoot and overshoot specifications.  
4.6  
I/O AC Parameters  
The GPIO and DDR I/O load circuit and output transition time waveforms are shown in Figure 4 and  
Figure 5.  
From Output  
Under Test  
Test Point  
CL  
CL includes package, probe and fixture capacitance  
Figure 4. Load Circuit for Output  
OVDD  
0 V  
80%  
20%  
80%  
20%  
tr  
Output (at pad)  
tf  
Figure 5. Output Transition Time Waveform  
4.6.1  
I/O Overshoot and Undershoot Parameters  
For all inputs/outputs, maximum peak amplitude allowed for overshoot and undershoot is specified in  
Table 39. OVDD is the I/O Supply.  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
42  
NXP Semiconductors  
Electrical characteristics  
NOTE  
If a signal edge produces more than one overshoot/undershoot event, the  
sum of all areas following the transition must be less than the area specified.  
Table 39. Overshoot and Undershoot Parameters  
Parameter  
Symbol  
Min  
Max  
Units  
Amplitude above OVDD or below GND  
Area above OVDD or below GND (A + B)  
VPeak  
VArea  
0.35  
0.8  
V
V-ns  
Overshoot/undershoot must be controlled through printed circuit board layout, transmission line  
impedance matching, signal line termination, and other methods. Noncompliance to this specification may  
affect device reliability or cause permanent damage to the device.  
VPeak  
B
A
Figure 6. Undershoot Waveform Example  
4.6.2  
Input Signal Monotonic Requirements  
Processor input signal monotonic requirements are illustrated in the following figure.  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
43  
Electrical characteristics  
Figure 7. Input Waveform Monotonic Requirement  
VIH_min and VIL_max are the guaranteed minimum logic-high and maximum logic-low voltage  
specifications, respectively. NXP devices are typically better than guaranteed specifications; these values  
are shown in the diagram as “typ”. Nominally, lower voltages than the guaranteed specification are  
accepted by the device as logic high and higher voltages than the guaranteed specification are accepted as  
logic low.  
4.6.3  
General Purpose I/O (GPIO) AC Parameters  
1
Table 40. General Purpose I/O AC Parameters  
Symbol  
Parameter  
Test Condition  
Min  
Typ  
Max  
Unit  
1.8 V application2  
fmax  
Maximum frequency  
Load = 21 pF (PDRV = L, high  
208  
MHz  
drive, 33 Ω  
Load = 15 pF (PDRV = H, low  
drive, 50 Ω  
tr  
tf  
Rise time  
Fall time  
Measured between VOL and  
VOH  
0.4  
0.4  
1.32  
1.32  
ns  
ns  
Measured between VOH and  
VOL  
Driver 3.3 V application3  
fmax  
Maximum frequency  
Load = 30 pF  
52  
MHz  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
44  
Electrical characteristics  
1
Table 40. General Purpose I/O AC Parameters (continued)  
Symbol  
Parameter  
Test Condition  
Min  
Typ  
Max  
Unit  
tr  
Rise time  
Fall time  
Measured between  
VOL and VOH  
3
ns  
tf  
Measured between  
VOH and VOL  
3
ns  
1
2
3
All output I/O specifications are guaranteed for Accurate mode of the compensation cell operation. This is applicable for both  
DC and AC specifications.  
All timing specifications in 1.8 V application are valid for High Drive mode (PDRV = L). In Low Drive mode (PDRV = H), the  
driver is functional.  
All timing specifications in 3.3 V application are valid for Low Drive only. For High Drive setting, the driver is functional.  
Table 41. Dynamic input characteristics  
Symbol  
Parameter  
Condition1,2  
Min  
Max  
Unit  
Dynamic Input Characteristics for 3.3 V Application  
fop  
Input frequency of operation  
52  
MHz  
ns  
INPSL Slope of input signal at I/O  
Measured between 10% to 90% of the I/O swing  
3.5  
Dynamic Input Characteristics for 1.8 V Application  
fop  
Input frequency of operation  
208  
1.5  
MHz  
ns  
INPSL Slope of input signal at I/O  
Measured between 10% to 90% of the I/O swing  
1
For all supply ranges of operation.  
2
The dynamic input characteristic specifications are applicable for the digital bidirectional cells.  
4.7  
Output Buffer Impedance Parameters  
This section defines the I/O impedance parameters for the following I/O types:  
General Purpose I/O (GPIO) output buffer impedance  
Double Data Rate I/O (DDR) output buffer impedance for LPDDR4  
NOTE  
GPIO and DDR I/O output driver impedance is measured with “long”  
transmission line of impedance Ztl attached to I/O pad and incident wave  
launched into transmission line. Rpu/Rpd and Ztl form a voltage divider that  
defines specific voltage of incident wave relative to OVDD. Output driver  
impedance is calculated from this voltage divider (see Figure 8).  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
45  
Electrical characteristics  
OVDD  
PMOS (Rpu)  
Ztl Ω, L = 20 inches  
ipp_do  
pad  
predriver  
Cload = 1p  
NMOS (Rpd)  
OVSS  
U,(V)  
VDD  
Vin (do)  
t,(ns)  
0
U,(V)  
Vout (pad)  
OVDD  
Vref2  
Vref1  
Vref  
t,(ns)  
0
Vovdd – Vref1  
Vref1  
Rpu =  
Rpd =  
× Ztl  
× Ztl  
Vref2  
Vovdd – Vref2  
Figure 8. Impedance Matching Load for Measurement  
4.7.1  
GPIO output buffer impedance  
4.7.1.1  
Tri-voltage GPIO output buffer impedance  
Table 42. Tri-voltage 1.8 V GPIO output impedance DC parameters  
Parameter  
Symbol  
Test conditions  
Typical  
Units  
Output impedance  
Output impedance  
ZO  
ZO  
1DSE=0  
1DSE=1  
33  
50  
Ω
Ω
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
46  
Electrical characteristics  
1
As programmed in the associated IOMUX (PDRV field) register.  
Table 43. Tri-voltage 2.5 V GPIO output impedance DC parameters  
Parameter  
Symbol  
Test conditions  
Typical  
Units  
Output impedance  
Output impedance  
ZO  
ZO  
1DSE=0  
1DSE=1  
25  
33  
Ω
Ω
1
As programmed in the associated IOMUX (PDRV field) register.  
Table 44. Tri-voltage 3.3 V GPIO output impedance DC parameters  
Parameter  
Symbol  
Test conditions  
Typical  
Units  
Output impedance  
Output impedance  
ZO  
ZO  
1DSE=0  
1DSE=1  
25  
37  
Ω
Ω
1
As programmed in the associated IOMUX (PDRV field) register.  
4.7.1.2  
Dual-voltage GPIO output buffer impedance  
Table 45. Dual-voltage 1.8 V GPIO output impedance DC parameters  
Parameter  
Symbol  
Test conditions  
Typical  
Units  
Output impedance  
Output impedance  
ZO  
ZO  
1DSE=0  
1DSE=1  
33  
50  
Ω
Ω
1
‘As programmed in the associated IOMUX (PDRV field) register.  
Table 46. Dual-voltage 3.3 V GPIO output impedance DC parameters  
Parameter  
Symbol  
Test conditions  
Typical  
Units  
Output impedance  
Output impedance  
ZO  
ZO  
1DSE=0  
1DSE=1  
25  
37  
Ω
Ω
1
As programmed in the associated IOMUX (PDRV field) register.  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
47  
Electrical characteristics  
4.7.1.3  
Single-voltage 1.8 V GPIO output buffer drive strength  
The following table shows the GPIO output buffer drive strength (OVDD 1.8 V).  
Table 47. Single-voltage GPIO 1.8 V output impedance DC parameters  
Parameter  
Symbol  
Test conditions  
Typical  
Units  
1DSE=000  
1DSE=001  
1DSE=010  
1DSE=011  
1DSE=100  
1DSE=101  
1DSE=110  
1DSE=111  
200  
100  
55  
Ω
40  
Output impedance  
ZO  
30  
24  
20  
18  
1
As programmed in the associated IOMUX (DSE field) register.  
4.7.1.4  
Single-voltage 3.3 V GPIO output buffer drive strength  
The following table shows the GPIO output buffer drive strength (OVDD 3.3 V).  
Table 48. Single-voltage GPIO 3.3 V output impedance DC parameters  
Parameter  
Symbol  
Test conditions  
Typical  
Units  
Output impedance  
ZO  
1DSE=00  
1DSE=01  
1DSE=10  
1DSE=11  
400  
200  
100  
50  
Ω
1
As programmed in the associated IOMUX (DSE field) register.  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
48  
Electrical characteristics  
4.7.2  
DDR I/O output buffer impedance  
The following tables show LPDDR4 I/O output buffer impedance of the device.  
The ZQ Calibration cell uses a single register (ZQnPR0) to determine the target output buffer impedances  
of the pull-up driver and the pull-down driver, as well as the target on-die termination impedance. The  
resulting calibration setting is then applied to all DDR pads within the PHY complex.  
Table 49 shows the recommended ZQnPR0 field settings for the LPDDR4 I/Os to achieve the desired  
output buffer impedances.  
Table 49. LPDDR4 I/O output buffer impedance  
Typical  
Parameter  
ZQnPR0  
ZPROG_ASYM_PU_DRV  
ZQnPR0  
ZPROG_ASYM_PD_DRV  
Impedance  
Impedance  
Recommended combinations  
for DQ /CA pins  
5
7
80 Ω  
60 Ω  
48 Ω  
40 Ω  
3
5
7
9
120 Ω  
80 Ω  
60 Ω  
48 Ω  
9
11  
Table 50. LPDDR4 I/O on-die termination impedance  
Typical  
Parameter  
ZQnPR0. ZPROG_HOST_ODT  
Impedance  
Recommended combinations  
for DQ/CA pins  
120.0 Ω  
80.0 Ω  
60.0 Ω  
48.0 Ω  
40.0 Ω  
3
5
7
9
11  
4.8  
System Modules Timing  
This section contains the timing and electrical parameters for the modules in each processor.  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
49  
Electrical characteristics  
4.8.1  
Reset Timing Parameters  
The following figure shows the reset timing and Table 51 lists the timing parameters.  
POR_B  
(Input)  
CC1  
Figure 9. Reset timing diagram  
Table 51. Reset timing parameters  
ID  
Parameter  
Min  
Max  
Unit  
CC1  
Duration of SRC_POR_B to be qualified as valid  
1
XTALOSC_RTC_ XTALI cycle  
4.8.2  
WDOG reset timing parameters  
The following figure shows the WDOG reset timing and Table 52 lists the timing parameters.  
Figure 10. SCU_WDOG_OUT timing diagram  
Table 52. WDOG1_B timing parameters  
ID  
Parameter  
Min  
Max  
Unit  
CC3 Duration of SCU_WDOG_OUT assertion  
1
XTALOSC_RTC_ XTALI cycle  
NOTE  
XTALOSC_RTC_XTALI is approximately 32 kHz.  
XTALOSC_RTC_XTALI cycle is one period or approximately 30 μs.  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
50  
NXP Semiconductors  
Electrical characteristics  
4.8.3  
DDR SDRAM–specific parameters (LPDDR4)  
The i.MX 8 Family of processors have been designed and tested to work with JEDEC JESD209-4A–  
compliant LPDDR4 memory . Timing diagrams and tolerances required to work with these memories are  
specified in the respective documents and are not reprinted here.  
Meeting the necessary timing requirements for a DDR memory system is highly dependent on the  
components chosen and the design layout of the system as a whole. NXP cannot cover in this document  
all the requirements needed to achieve a design that meets full system performance over temperature,  
voltage, and part variation; PCB trace routing, PCB dielectric material, number of routing layers used,  
placement of bulk/decoupling capacitors on critical power rails, VIA placement, GND and Supply planes  
layout, and DDR controller/PHY register settings all are factors affecting the performance of the memory  
system. Consult the hardware user guide for this device and NXP validated design layouts for information  
on how to properly design a PCB for best DDR performance. NXP strongly recommends duplicating an  
NXP validated design as much as possible in the design of critical power rails, placement of  
bulk/decoupling capacitors and DDR trace routing between the processor and the selected DDR memory.  
All supporting material is readily available on the device web page on  
https://www.nxp.com/products/processors-and-microcontrollers/applications-processors/i.mx-applicatio  
ns-processors/i.mx-8-processors:IMX8-SERIES .  
Processors that demonstrate full DDR performance on NXP validated designs, but do not function on  
customer designs, are not considered marginal parts. A report detailing how the returned part behaved on  
an NXP validated system will be provided to the customer as closure to a customer’s reported DDR issue.  
Customers bear the responsibility of properly designing the Printed Circuit Board, correctly simulating and  
modeling the designed DDR system, and validating the system under all expected operating conditions  
(temperatures, voltages) prior to releasing their product to market.  
Table 53. i.MX 8 Family DRAM controller supported SDRAM configurations  
Parameter  
LPDDR4  
Number of Controllers  
Number of Channels  
Number of Chip Selects  
Bus Width  
2
2 per controller  
2 per channel  
16 bit per channel1  
16 (R0-R15)  
1600 MHz  
Number of Address Rows  
Maximum Clock Frequency  
1
Only 16-bit external memory configurations are supported.  
4.8.3.1  
Clock/data/command/address pin allocations  
These processors uses generic names for clock, data and command address bus (DCF—DRAM controller  
functions); the following table provides mapping of clock, data and command address signals for LPDDR4  
modes.  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
51  
Electrical characteristics  
Table 54. Clock, data, and command address signals for LPDDR4 modes  
Signal name  
LPDDR4  
DDR_CH[1:0].CK0_P  
DDR_CH[1:0].CK0_N  
DDR_CH[1:0].CK1_P  
DDR_CH[1:0].CK1_N  
DDR_CH[1:0].DQ_[15:0]  
DDR_CH[1:0].DQ_[31:16]  
DDR_CH[1:0].DQS_N_[3:0]  
DDR_CH[1:0].DQS_P_[3:0]  
DDR_CH[1:0].DM_[3:0]  
DDR_CH[1:0].DCF00  
DDR_CH[1:0].DCF01  
DDR_CH[1:0].DCF02  
DDR_CH[1:0].DCF03  
DDR_CH[1:0].DCF04  
DDR_CH[1:0].DCF05  
DDR_CH[1:0].DCF06  
DDR_CH[1:0].DCF07  
DDR_CH[1:0].DCF08  
DDR_CH[1:0].DCF09  
DDR_CH[1:0].DCF10  
DDR_CH[1:0].DCF11  
DDR_CH[1:0].DCF12  
DDR_CH[1:0].DCF13  
DDR_CH[1:0].DCF14  
DDR_CH[1:0].DCF15  
DDR_CH[1:0].DCF16  
DDR_CH[1:0].DCF17  
DDR_CH[1:0].DCF18  
DDR_CH[1:0].DCF19  
DDR_CH[1:0].DCF20  
DDR_CH[1:0].DCF21  
DDR_CH[1:0].DCF22  
CK_t_A  
CK_c_A  
CK_t_B  
CK_c_B  
DQ[15:0]_A  
DQ[15:0]_B  
DQS_N_[3:0]  
DQS_P_[3:0]  
DM_[3:0]  
CA2_A  
CA4_A  
CA5_A  
CA3_A  
ODT_CA_A  
CS0_A  
CA0_A  
CS1_A  
CKE0_A  
CKE1_A  
CA1_A  
CA4_B  
RESET_N  
CA5_B  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
52  
Electrical characteristics  
Table 54. Clock, data, and command address signals for LPDDR4 modes (continued)  
Signal name  
LPDDR4  
DDR_CH[1:0].DCF23  
DDR_CH[1:0].DCF24  
DDR_CH[1:0].DCF25  
DDR_CH[1:0].DCF26  
DDR_CH[1:0].DCF27  
DDR_CH[1:0].DCF28  
DDR_CH[1:0].DCF29  
DDR_CH[1:0].DCF30  
DDR_CH[1:0].DCF31  
DDR_CH[1:0].DCF32  
DDR_CH[1:0].DCF33  
ODT_CA_B  
CA3_B  
CA0_B  
CS0_B  
CS1_B  
CKE0_B  
CKE1_B  
CA1_B  
CA2_B  
4.9  
General-Purpose Media Interface (GPMI) Timing  
The GPMI controller is a flexible interface NAND Flash controller with 8-bit data width, up to 400 MB/s  
I/O speed, and individual chip select. It supports Asynchronous Timing mode, Source Synchronous  
Timing mode, and Toggle Timing mode, as described in the following subsections.  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
53  
Electrical characteristics  
4.9.1  
GPMI Asynchronous mode AC timing (ONFI 1.0 compatible)  
Asynchronous mode AC timings are provided as multiplications of the clock cycle and fixed delay. The  
Maximum I/O speed of GPMI in Asynchronous mode is about 50 MB/s. Figure 11 through Figure 14  
depict the relative timing between GPMI signals at the module level for different operations under  
Asynchronous mode. Table 55 describes the timing parameters (NF1–NF17) that are shown in the figures.  
NF2  
NF1  
.!.$?#,%  
NF3  
NF4  
.!.$?#%ꢀ?"  
.!.$?7%?"  
NF5  
.!.$?!,%  
NF6  
NF8  
Command  
NF7  
NF9  
.!.$?$!4!XX  
Figure 11. Command Latch Cycle Timing Diagram  
NF1  
.!.$?#,%  
NF3  
.!.$?#%ꢀ?"  
.!.$?7%?"  
NF10  
NF5  
NF11  
NF7  
.!.$?!,%  
NF6  
NF8  
Address  
NF9  
NAND_DATAxx  
Figure 12. Address Latch Cycle Timing Diagram  
NF1  
.!.$?#,%  
.!.$?#%ꢀ?"  
.!.$?7%?"  
NF3  
NF10  
NF5  
NF11  
NF7  
NF6  
.!.$?!,%  
NF8  
Data to NF  
NF9  
.!.$?$!4!XX  
Figure 13. Write Data Latch Cycle Timing Diagram  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
54  
NXP Semiconductors  
Electrical characteristics  
.!.$?#,%  
.!.$?#%ꢀ?"  
.!.$?2%?"  
NF14  
NF13  
NF15  
.!.$?2%!$9?"  
NF12  
NF16  
NF17  
Data from NF  
.!.$?$!4!XX  
Figure 14. Read Data Latch Cycle Timing Diagram (Non-EDO Mode)  
.!.$?#,%  
.!.$?#%ꢀ?"  
NF14  
NF13  
NF15  
.!.$?2%?"  
.!.$?2%!$9?"  
NF12  
NF17  
NF16  
NAND_DATAxx  
Data from NF  
Figure 15. Read Data Latch Cycle Timing Diagram (EDO Mode)  
1
Table 55. Asynchronous Mode Timing Parameters  
Timing  
T = GPMI Clock Cycle  
ID  
Parameter  
Symbol  
Unit  
Min  
(AS + DS) × T - 0.12 [see 2,3  
Max  
NF1  
NF2  
NF3  
NF4  
NF5  
NF6  
NF7  
NF8  
NF9  
NAND_CLE setup time  
NAND_CLE hold time  
NAND_CEx_B setup time  
NAND_CEx_B hold time  
NAND_WE_B pulse width  
NAND_ALE setup time  
NAND_ALE hold time  
Data setup time  
tCLS  
tCLH  
tCS  
]
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DH × T - 0.72 [see 2]  
(AS + DS + 1) × T [see 3,2  
(DH+1) × T - 1 [see 2]  
DS × T [see 2]  
]
tCH  
tWP  
tALS  
tALH  
tDS  
(AS + DS) × T - 0.49 [see 3,2  
(DH × T - 0.42 [see 2]  
DS × T - 0.26 [see 2]  
DH × T - 1.37 [see 2]  
(DS + DH) × T [see 2]  
DH × T [see 2]  
]
Data hold time  
tDH  
NF10 Write cycle time  
tWC  
tWH  
tRR4  
tRP  
NF11 NAND_WE_B hold time  
NF12 Ready to NAND_RE_B low  
NF13 NAND_RE_B pulse width  
NF14 READ cycle time  
(AS + 2) × T [see 3,2  
]
DS × T [see 2]  
(DS + DH) × T [see 2]  
DH × T [see 2]  
tRC  
NF15 NAND_RE_B high hold time  
tREH  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
55  
Electrical characteristics  
1
Table 55. Asynchronous Mode Timing Parameters (continued)  
Timing  
T = GPMI Clock Cycle  
ID  
Parameter  
Symbol  
Unit  
Min  
Max  
NF16 Data setup on read  
NF17 Data hold on read  
tDSR  
tDHR  
(DS × T -0.67)/18.38 [see 5,6  
]
ns  
ns  
0.82/11.83 [see 5,6  
]
1
The GPMI asynchronous mode output timing can be controlled by the module’s internal registers  
HW_GPMI_TIMING0_ADDRESS_SETUP, HW_GPMI_TIMING0_DATA_SETUP, and HW_GPMI_TIMING0_DATA_HOLD.  
This AC timing depends on these registers settings. In the table, AS/DS/DH represents each of these settings.  
2
3
4
5
6
AS minimum value can be 0, while DS/DH minimum value is 1.  
T = GPMI clock period -0.075ns (half of maximum p-p jitter).  
NF12 is met automatically by the design.  
Non-EDO mode.  
EDO mode, GPMI clock 100 MHz  
(AS=DS=DH=1, GPMI_CTL1 [RDN_DELAY] = 8, GPMI_CTL1 [HALF_PERIOD] = 0).  
In EDO mode (Figure 15), NF16/NF17 are different from the definition in non-EDO mode (Figure 14).  
They are called tREA/tRHOH (NAND_RE_B access time/NAND_RE_B HIGH to output hold). The  
typical value for them are 16 ns (max for tREA)/15 ns (min for tRHOH) at 50 MB/s EDO mode. In EDO  
mode, GPMI will sample NAND_DATAxx at rising edge of delayed NAND_RE_B provided by an  
internal DPLL. The delay value can be controlled by GPMI_CTRL1.RDN_DELAY(see the GPMI chapter  
of the device reference manual. The typical value of this control register is 0x8 at 50 MT/s EDO mode.  
However, if the board delay is large enough and cannot be ignored, the delay value should be made larger  
to compensate the board delay.  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
56  
NXP Semiconductors  
Electrical characteristics  
4.9.2  
GPMI Source Synchronous mode AC timing (ONFI 2.x compatible)  
The following figure shows the write and read timing of Source Synchronous mode.  
NF19  
NF18  
.!.$?#%?"  
NF23  
NAND_CLE  
NF26  
NF25  
NF24  
NAND_ALE  
NF25 NF26  
NAND_WE/RE_B  
NF22  
NAND_CLK  
NAND_DQS  
NAND_DQS  
Output enable  
NF20  
NF20  
NF21  
NF21  
CMD  
ADD  
NAND_DATA[7:0]  
NAND_DATA[7:0]  
Output enable  
Figure 16. Source Synchronous Mode Command and Address Timing Diagram  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
57  
Electrical characteristics  
NF19  
NF18  
.!.$?#%ꢀ?"  
.!.$?#,%  
NF23  
NF23  
NF24  
NF24  
NF25  
NF25  
NF26  
NF26  
.!.$?!,%  
NAND_WE/RE_B  
NF22  
.!.$?#,+  
.!.$?$13  
NF27  
NF27  
.!.$?$13  
Output enable  
NF29  
NF29  
.!.$?$1;ꢁꢂꢀ=  
NF28  
NF28  
.!.$?$1;ꢁꢂꢀ=  
Output enable  
Figure 17. Source Synchronous Mode Data Write Timing Diagram  
NF18  
NF19  
.!.$?#%?"  
.!.$?#,%  
NF24  
NF24  
NF23  
NF23  
NF26  
NF26  
NF25  
NF25  
NAND_ALE  
NF25  
.!.$?7%ꢃ2%  
NF25  
NF22  
NF26  
.!.$?#,+  
.!.$?$13  
.!.$?$13  
/UTPUT ENABLE  
.!.$?$!4!;ꢁꢂꢀ=  
.!.$?$!4!;ꢁꢂꢀ=  
/UTPUT ENABLE  
Figure 18. Source Synchronous Mode Data Read Timing Diagram  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
58  
Electrical characteristics  
.!.$?$13  
NF30  
.!.$?$!4!;ꢁꢂꢀ=  
D0  
D1  
D2  
D3  
NF30  
NF31  
NF31  
Figure 19. NAND_DQS/NAND_DQ Read Valid Window  
1
Table 56. Source Synchronous Mode Timing Parameters  
Timing  
T = GPMI Clock Cycle  
ID  
Parameter  
Symbol  
Unit  
Min  
Max  
2
NF18 NAND_CEx_B access time  
NF19 NAND_CEx_B hold time  
tCE  
tCH  
CE_DELAY × T - 0.79 [see ]  
0.5 × tCK - 0.63 [see 2]  
0.5 × tCK - 0.05  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
NF20 Command/address NAND_DATAxx setup time  
NF21 Command/address NAND_DATAxx hold time  
NF22 clock period  
tCAS  
tCAH  
tCK  
0.5 × tCK - 1.23  
NF23 preamble delay  
tPRE  
tPOST  
tCALS  
tCALH  
tDQSS  
tDS  
PRE_DELAY × T - 0.29 [see 2]  
POST_DELAY × T - 0.78 [see 2]  
0.5 × tCK - 0.86  
NF24 postamble delay  
NF25 NAND_CLE and NAND_ALE setup time  
NF26 NAND_CLE and NAND_ALE hold time  
NF27 NAND_CLK to first NAND_DQS latching transition  
NF28 Data write setup  
0.5 × tCK - 0.37  
T - 0.41 [see 2]  
0.25 × tCK - 0.35  
NF29 Data write hold  
tDH  
0.25 × tCK - 0.85  
NF30 NAND_DQS/NAND_DQ read setup skew  
NF31 NAND_DQS/NAND_DQ read hold skew  
tDQSQ  
tQHS  
2.06  
1.95  
1
The GPMI source synchronous mode output timing can be controlled by the module’s internal registers  
GPMI_TIMING2_CE_DELAY, GPMI_TIMING_PREAMBLE_DELAY, GPMI_TIMING2_POST_DELAY. This AC timing  
depends on these registers settings. In the table, CE_DELAY/PRE_DELAY/POST_DELAY represents each of these settings.  
2
T = tCK (GPMI clock period) -0.075ns (half of maximum p-p jitter).  
Figure 19 shows the timing diagram of NAND_DQS/NAND_DATAxx read valid window. For Source  
Synchronous mode, the typical value of tDQSQ is 0.85 ns (max) and 1 ns (max) for tQHS at 200 MB/s.  
GPMI will sample NAND_DATA[7:0] at both rising and falling edge of a delayed NAND_DQS signal,  
which can be provided by an internal DPLL. The delay value can be controlled by GPMI register  
GPMI_READ_DDR_DLL_CTRL.SLV_DLY_TARGET (see the GPMI chapter of the device reference  
manual. Generally, the typical delay value of this register is equal to 0x7 which means 1/4 clock cycle  
delay expected. However, if the board delay is large enough and cannot be ignored, the delay value should  
be made larger to compensate the board delay.  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
59  
Electrical characteristics  
4.9.3  
ONFI NV-DDR2 mode (ONFI 3.2 compatible)  
4.9.3.1  
Command and address timing  
ONFI 3.2 mode command and address timing is the same as ONFI 1.0 compatible Async mode AC timing.  
See Section 4.9.1, “GPMI Asynchronous mode AC timing (ONFI 1.0 compatible)",” for details.  
4.9.3.2  
Read and write timing  
ONFI 3.2 mode read and write timing is the same as Toggle mode AC timing. See Section 4.9.4, “Toggle  
mode AC Timing",” for details.  
4.9.4  
Toggle mode AC Timing  
4.9.4.1  
Command and address timing  
NOTE  
Toggle mode command and address timing is the same as ONFI 1.0  
compatible Asynchronous mode AC timing. See Section 4.9.1, “GPMI  
Asynchronous mode AC timing (ONFI 1.0 compatible)",” for details.  
4.9.4.2  
Read and write timing  
Figure 20. Toggle mode data write timing  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
60  
NXP Semiconductors  
Electrical characteristics  
DEV?CLK  
.!.$?#%X?"  
.& ꢄꢅ  
.!.$?#,%  
.!.$?!,%  
ꢄ T #+  
.&ꢆꢈ  
.!.$?7%?"  
.!.$?2%?"  
ꢄ T #+  
.& ꢆꢇ  
ꢄ T #+  
ꢄ T #+  
ꢄ T #+  
.!.$?$13  
.!.$?$!4!;ꢁꢂꢀ=  
Figure 21. Toggle mode data read timing  
1
Table 57. Toggle mode timing parameters  
Timing  
T = GPMI Clock Cycle  
ID  
Parameter  
Symbol  
Unit  
Min.  
Max.  
NF1 NAND_CLE setup time  
NF2 NAND_CLE hold time  
tCLS  
tCLH  
tCS  
(AS + DS) × T - 0.12 [see note2s,3]  
DH × T - 0.72 [see note2]  
(AS + DS) × T - 0.58 [see notes,2]  
DH × T - 1 [see note2]  
NF3 NAND_CE0_B setup time  
NF4 NAND_CE0_B hold time  
NF5 NAND_WE_B pulse width  
NF6 NAND_ALE setup time  
NF7 NAND_ALE hold time  
tCH  
tWP  
tALS  
tALH  
tCAS  
tCAH  
tCE  
DS × T [see note2]  
(AS + DS) × T - 0.49 [see notes,2]  
DH × T - 0.42 [see note2]  
DS × T - 0.26 [see note2]  
DH × T - 1.37 [see note2]  
NF8 Command/address NAND_DATAxx setup time  
NF9 Command/address NAND_DATAxx hold time  
NF18 NAND_CEx_B access time  
NF22 clock period  
CE_DELAY × T [see notes4,2  
]
ns  
ns  
ns  
ns  
tCK  
NF23 preamble delay  
tPRE PRE_DELAY × T [see notes5,2  
]
NF24 postamble delay  
tPOST  
POST_DELAY × T +0.43 [see  
note2]  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
61  
Electrical characteristics  
1
Table 57. Toggle mode timing parameters (continued)  
Timing  
T = GPMI Clock Cycle  
ID  
Parameter  
Symbol  
Unit  
Min.  
Max.  
NF28 Data write setup  
NF29 Data write hold  
tDS6  
tDH6  
0.25 × tCK - 0.32  
ns  
ns  
0.25 × tCK - 0.79  
NF30 NAND_DQS/NAND_DQ read setup skew  
NF31 NAND_DQS/NAND_DQ read hold skew  
tDQSQ7  
tQHS7  
3.18  
3.27  
1
The GPMI toggle mode output timing can be controlled by the module’s internal registers  
HW_GPMI_TIMING0_ADDRESS_SETUP, HW_GPMI_TIMING0_DATA_SETUP, and HW_GPMI_TIMING0_DATA_HOLD.  
This AC timing depends on these registers settings. In the table, AS/DS/DH represents each of these settings.  
2
3
4
AS minimum value can be 0, while DS/DH minimum value is 1.  
T = tCK (GPMI clock period) -0.075 ns (half of maximum p-p jitter).  
CE_DELAY represents HW_GPMI_TIMING2[CE_DELAY]. NF18 is guaranteed by the design. Read/Write operation is started  
with enough time of ALE/CLE assertion to low level.  
5
6
7
PRE_DELAY+1) (AS+DS)  
Shown in Figure 20.  
Shown in Figure 21.  
For DDR Toggle mode, Figure 21 shows the timing diagram of NAND_DQS/NAND_DATAxx read valid  
window. The typical value of tDQSQ is 1.4 ns (max) and 1.4 ns (max) for tQHS at 133 MB/s. GPMI will  
sample NAND_DATA[7:0] at both rising and falling edge of an delayed NAND_DQS signal, which is  
provided by an internal DPLL. The delay value of this register can be controlled by GPMI register  
GPMI_READ_DDR_DLL_CTRL.SLV_DLY_TARGET (see the GPMI chapter of the device reference  
manual. Generally, the typical delay value is equal to 0x7 which means 1/4 clock cycle delay expected.  
But if the board delay is big enough and cannot be ignored, the delay value should be made larger to  
compensate the board delay.  
4.10 External Peripheral Interface Parameters  
The following subsections provide information on external peripheral interfaces.  
4.10.1 LPSPI timing parameters  
All LPSPI interfaces do not have the same maximum serial clock frequency. There are two groups. LPSPI  
interfaces which can operate at 60 MHz in Master mode and 40 MHz in Slave mode and the other group  
where interfaces operate at 40 MHz in Master mode and 20 MHz in Slave mode. The same performance  
is achieved at 1.8 V and 3.3 V unless otherwise stated.  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
62  
NXP Semiconductors  
Electrical characteristics  
Below are the LPSPI interfaces and their respective chip selects:  
Table 58. LPSPI interfaces and chip selects  
LPSPI interface  
Chip select  
Comment  
60 MHz in Master mode and 40 MHz in SPI0, SPI1, SPI2, SPI3 (primary mode) SPI1 is muxed behind ADC pins so it  
Slave mode  
operates at 1.8 V only.  
40 MHz in Master mode and 20 MHz in SPI3b (behind UART1)  
Slave mode  
4.10.1.1 LPSPI Master mode  
Waveform is assuming LPSPI is configured in mode 0, i.e. TCR.CPOL=0b0 and TCR.CPHA=0b0. Timing  
parameters are valid for all modes using appropriate edge of the clock.  
Figure 22. LPSPI Master mode  
Table 59. LPSPI timings—Master mode at 60 MHz  
ID  
Parameter  
SPIx_SCLK Cycle frequency  
Min  
Max  
Unit  
60  
MHz  
ns  
t1 SPIx_SCLK High or Low Time–Read  
SPIx_SCLK High or Low Time–Write  
7.5  
t2 SPIx_CSy pulse width  
t3 SPIx_CSy Lead Time(1)  
7.5  
ns  
ns  
FCLK_PERIOD(2) x (PCSSCK  
+ 1) / 2PRESCALE - 3  
t4 SPIx_CSy Lag Time(3)  
FCLK_PERIOD(2) x (SCKPCS  
+ 1) / 2PRESCALE + 3  
ns  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
63  
Electrical characteristics  
Table 59. LPSPI timings—Master mode at 60 MHz (continued)  
ID  
Parameter  
Min  
Max  
Unit  
t5 SPIx_SDO output Delay (CLOAD = 20 pF)  
t6 SPIx_SDI Setup Time  
2
3
ns  
ns  
ns  
t7 SPIx_SDI Hold Time  
2
1
2
3
This timing is controllable through CCR.PCSSCK and TCR.PRESCALE registers.  
FCLK_PERIOD is the period of the functional clock provided to LPSPI module. Maximum allowed frequency is 240 MHz.  
This timing is controllable through CCR.SCKPCS and TCR.PRESCALE registers.  
Table 60. LPSPI timings—Master mode at 40 MHz  
ID  
Parameter  
SPIx_SCLK Cycle frequency  
Min  
Max  
Unit  
11  
40  
MHz  
ns  
t1 SPIx_SCLK High or Low Time–Read  
SPIx_SCLK High or Low Time–Write  
t2 SPIx_CSy pulse width  
t3 SPIx_CSy Lead Time(1)  
11  
ns  
ns  
FCLK_PERIOD(2) x (PCSSCK  
+ 1) / 2PRESCALE + 3  
t4 SPIx_CSy Lag Time(3)  
FCLK_PERIOD(2) x (SCKPCS  
+ 1) / 2PRESCALE + 3  
ns  
t5 SPIx_SDO output Delay (CLOAD = 20 pF)  
t6 SPIx_SDI Setup Time  
5
5
ns  
ns  
ns  
t7 SPIx_SDI Hold Time  
4
1
2
3
This timing is controllable through CCR.PCSSCK and TCR.PRESCALE registers.  
FCLK_PERIOD is the period of the functional clock provided to LPSPI module. Maximum allowed frequency is 240 MHz.  
This timing is controllable through CCR.SCKPCS and TCR.PRESCALE registers.  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
64  
NXP Semiconductors  
Electrical characteristics  
Figure 23. LPSPI Slave mode  
Table 61. LPSPI timings—Slave mode at 40 MHz  
Parameter  
ID  
Min  
Max  
Unit  
t1  
SPIx_SCLK Cycle frequency  
11  
40  
MHz  
ns  
SPIx_SCLK High or Low Time–Read  
SPIx_SCLK High or Low Time–Write  
t2  
t3  
t4  
t5  
t6  
t7  
SPIx_CSy pulse width  
11  
4
5
ns  
ns  
ns  
ns  
ns  
ns  
SPIx_CSy Lead Time (CS setup time)  
SPIx_CSy Lag Time (CS hold time)  
SPIx_SDO output Delay (CLOAD = 20 pF)  
SPIx_SDI Setup Time  
2
2
SPIx_SDI Hold Time  
2
Table 62. LPSPI timings—Slave mode at 20 MHz  
Parameter  
ID  
Min  
Max  
Unit  
t1  
SPIx_SCLK Cycle frequency  
20  
MHz  
ns  
SPIx_SCLK High or Low Time–Read  
SPIx_SCLK High or Low Time–Write  
22  
t2  
t3  
SPIx_CSy pulse width  
22  
4
ns  
ns  
SPIx_CSy Lead Time (CS setup time)  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
65  
Electrical characteristics  
Table 62. LPSPI timings—Slave mode at 20 MHz (continued)  
ID  
Parameter  
Min  
Max  
Unit  
t4  
t5  
t6  
t7  
SPIx_CSy Lag Time (CS hold time)  
SPIx_SDO output Delay (CLOAD = 20 pF)  
2
2
18  
ns  
ns  
ns  
ns  
SPIx_SDI Setup Time  
SPIx_SDI Hold Time  
2
4.10.2 Serial audio interface (SAI) timing parameters  
The timings and figures in this section are valid for noninverted clock polarity (I2S_TCR2.BCP = 0b0,  
I2S_RCR2.BCP = 0b0) and non-inverted frame sync polarity (I2S_TCR4.FSP = 0b0, I2S_RCR4.FSP =  
0b0). If the polarity of the clock and/or the frame sync have been inverted, all the timings remain valid by  
inverting the clock signal (SAI_TXC / SAI_RXC) and/or the frame sync (SAI_TXFS / SAI_RXFS) shown  
in the figures below.  
The same performance is achieved at both 1.8 V and 3.3 V unless otherwise stated.  
NOTE  
SAI0 and SAI1 are transmit/receive capable. SAI2 and SAI3 are receive  
only.  
4.10.2.1 SAI Master Synchronous mode  
In this mode, transmitter clock and frame sync are used by both transmitter and receiver  
(I2S_TCR2.SYNC=0b00, I2S_RCR2.SYNC=0b01). In that case, SAI interface requires only 4 signals to  
be routed: SAI_TXC, SAI_TXFS, SAI_TXD and SAI_RXD. SAI_RXC and SAI_RXFS can be left  
unconnected. I2S_RCR2.BCI shall be set to 0b1 to get setup and hold times provided in Table 63.  
Figure 24. SAI Master Synchronous mode  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
66  
NXP Semiconductors  
Electrical characteristics  
Table 63. SAI timings—Master Synchronous mode  
ID  
Parameters  
Min  
Max  
Unit  
SAI TXC clock frequency  
45%  
49.152  
MHz  
t1 SAI TXC pulse width low / high  
t2 SAI TXFS output valid  
t3 SAI TXD output valid  
t4 SAI RXD input setup  
t5 SAI RXD input hold  
55%  
2
SAI_TXC period  
ns  
ns  
ns  
ns  
2
1
4
4.10.2.2 SAI Master mode  
In this mode, transmitter and/or receiver part are set to bring out transmit and/or receive clock. Frame sync  
can be either input or output.  
Figure 25. SAI Master mode  
Table 64. SAI timings—Master mode  
ID  
Parameters  
SAI TXC / RXC clock frequency1  
Min  
Max  
Unit  
45%  
49.152  
55%  
2
MHz  
TXC/RXC period  
ns  
t1 SAI TXC / RXC pulse width low / high  
t2 SAI TXFS / RXFS output valid  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
67  
Electrical characteristics  
Table 64. SAI timings—Master mode (continued)  
ID  
Parameters  
Min  
Max  
Unit  
t3 SAI TXD output valid  
6
2
ns  
ns  
ns  
t4 SAI RXD/RXFS/TXFS input setup  
t5 SAI RXD/RXFS/TXFS input hold  
0
1
Given the high setup time requirement on inputs, receiver and transmitter, when using frame sync in input, are likely to run at  
a lower frequency. This frequency will be driven by characteristics of the external component connected to the interface.  
4.10.2.3 SAI Slave mode  
In this mode, transmitter and/or receiver parts are set to receive transmit and/or receive clock from external  
world. Frame sync can be either input or output.  
Figure 26. SAI Slave mode  
Table 65. SAI timings—Slave mode  
ID  
Parameters  
SAI TXC/RXC clock frequency  
Min  
Max  
Unit  
45%  
24.576  
55%  
13  
MHz  
t11 SAI TXC/RXC pulse width low/high  
t12 SAI TXFS/RXFS output valid  
t13 SAI TXD output valid  
TXC/RXC period  
ns  
ns  
ns  
ns  
13  
t14 SAI RXD/RXFS/TXFS input setup  
t15 SAI RXD/RXFS/TXFS input hold  
1
4
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
68  
Electrical characteristics  
4.10.3 Enhanced serial audio interface (ESAI)  
The same performance is achieved at both 1.8 V and 3.3 V unless otherwise stated.  
SCKT  
t1  
t1  
(Input / Output)  
FST (bit) out  
2t  
2t  
2t  
FST (word) out  
Data Out  
2t  
Last bit  
First bit  
t3  
t3  
4t  
t4  
FST (bit) in  
FST (word) in  
Flags Out  
t5  
t6  
t5  
t6  
t7  
Figure 27. ESAI Transmit timing  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
69  
Electrical characteristics  
Figure 28. ESAI Receive timing  
The following table shows the interface timing values. The ID field in the table refers to timing signals  
found in Figure 27 and Figure 28.  
Table 66. Enhanced Serial Audio Interface (ESAI) Timing  
ID  
Parameters  
Min  
Max  
Condition1  
Unit  
t1  
t2  
Clock frequency  
SCKT / SCKT pulse width high / low  
FST output delay  
45%  
24.576  
55%  
MHz  
SCKT / SCKR period  
ns  
10  
2
x ck  
i ck  
t3  
t4  
t5  
t6  
t7  
TX data - high impedance / valid data  
TX data output delay  
9
1
x ck  
i ck  
ns  
ns  
ns  
ns  
ns  
10  
2
x ck  
i ck  
FST - setup requirement  
FST - hold requirement  
Flag output delay  
2
10  
x ck  
i ck  
2
0
x ck  
i ck  
10  
2
x ck  
i ck  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
70  
Electrical characteristics  
Table 66. Enhanced Serial Audio Interface (ESAI) Timing (continued)  
ID  
Parameters  
Min  
Max  
Condition1  
Unit  
t8  
FSR output delay  
7
4
x ck  
i ck a  
ns  
t9  
RX data pins - setup requirement  
RX data pins - hold requirement  
FSR - setup requirement  
2
10  
x ck  
i ck  
ns  
ns  
ns  
ns  
ns  
ns  
t10  
t11  
t12  
t13  
t14  
2
0
x ck  
i ck  
2
10  
x ck  
i ck a  
FSR - hold requirement  
2
0
x ck  
i ck a  
Flags - setup requirement  
Flags - hold requirement  
2
10  
x ck  
i ck s  
2
0
x ck  
i ck s  
RX_HF_CLK / TX_HX_CLK clock cycle  
TX_HF_CLK input to SCKT  
20  
10  
10  
ns  
ns  
ns  
RX_HF_CLK input to SCKR  
1
i ck = internal clock  
x ck = external clock  
i ck a = internal clock, asynchronous mode (SCKT and SCKR are two different clocks)  
i ck s = internal clock, synchronous mode (SCKT and SCKR are the same clock)  
4.10.4 Ultra High Speed SD/SDIO/MMC Host Interface (uSDHC) AC  
Timing  
This section describes the electrical information of the uSDHC, including:  
SD3.1/eMMC5.1 High-Speed mode AC Timing  
eMMC5.1 DDR 52 mode/SD3.1 DDR 50 mode timing  
HS400 AC timing—eMMC 5.1 only  
HS200 Mode Timing  
SDR50/SDR104 AC Timing  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
71  
Electrical characteristics  
4.10.4.1 SD3.1/eMMC5.1 High-Speed mode AC Timing  
The following figure depicts the timing of SD3.1/eMMC5.1 High-Speed mode, and Table 67 lists the  
timing characteristics.  
SD4  
SD2  
SD1  
SD5  
SDx_CLK  
SD3  
SD6  
Output from uSDHC to card  
SDx_DATA[7:0]  
SD7  
SD8  
Input from card to uSDHC  
SDx_DATA[7:0]  
Figure 29. SD3.1/eMMC5.1 High-Speed mode Timing  
Table 67. SD3.1/eMMC5.1 High-Speed mode interface timing specification  
ID  
Parameter  
Symbols  
Min  
Max  
Unit  
Card Input Clock  
1
SD1  
Clock Frequency (Low Speed)  
fPP  
0
0
400  
25/50  
20/52  
400  
kHz  
MHz  
MHz  
kHz  
ns  
2
Clock Frequency (SD/SDIO Full Speed/High Speed)  
Clock Frequency (MMC Full Speed/High Speed)  
Clock Frequency (Identification Mode)  
Clock Low Time  
fPP  
3
fPP  
0
fOD  
tWL  
100  
7
SD2  
SD3  
SD4  
SD5  
Clock High Time  
tWH  
tTLH  
tTHL  
7
ns  
Clock Rise Time  
3
ns  
Clock Fall Time  
3
ns  
eSDHC Output/Card Inputs SD_CMD, SD_DATA (Reference to SD_CLK)  
eSDHC Output Delay tOD –6.6  
eSDHC Input/Card Outputs SD_CMD, SD_DATA (Reference to SD_CLK)  
SD6  
3.6  
ns  
SD7  
SD8  
eSDHC Input Setup Time  
eSDHC Input Hold Time4  
tISU  
tIH  
2.5  
1.5  
ns  
ns  
1
2
In low speed mode, card clock must be lower than 400 kHz, voltage ranges from 2.7 to 3.6 V.  
In normal (full) speed mode for SD/SDIO card, clock frequency can be any value between 025 MHz. In high-speed mode,  
clock frequency can be any value between 050 MHz.  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
72  
NXP Semiconductors  
Electrical characteristics  
3
4
In normal (full) speed mode for MMC card, clock frequency can be any value between 020 MHz. In high-speed mode, clock  
frequency can be any value between 052 MHz.  
To satisfy hold timing, the delay difference between clock input and cmd/data input must not exceed 2 ns.  
4.10.4.2 eMMC5.1 DDR 52 mode/SD3.1 DDR 50 mode timing  
The following figure depicts the timing of eMMC5.1 DDR 52 mode/SD3.1 DDR 50 mode, and Table 68  
lists the timing characteristics. Be aware that only SDx_DATA is sampled on both edges of the clock (not  
applicable to SD_CMD).  
SD1  
SDx_CLK  
SD2  
SD2  
Output from eSDHCv3 to card  
SDx_DATA[7:0]  
......  
......  
SD3  
SD4  
Input from card to eSDHCv3  
SDx_DATA[7:0]  
Figure 30. eMMC 5.1 timing  
Figure 31. eMMC5.1 DDR 52 mode/SD3.1 DDR 50 mode interface timing  
Table 68. eMMC5.1 DDR 52 mode/SD3.150 mode interface timing specification  
ID  
Parameter  
Symbols  
Card Input Clock1  
Min  
Max  
Unit  
SD1  
SD1  
Clock Frequency (eMMC5.1 DDR)  
Clock Frequency (SD3.1 DDR)  
fPP  
fPP  
0
0
52  
50  
MHz  
MHz  
uSDHC Output / Card Inputs SD_CMD, SDx_DATAx (Reference to CLK)  
uSDHC Output Delay tOD 2.8  
uSDHC Input / Card Outputs SD_CMD, SDx_DATAx (Reference to CLK)  
SD2  
6.8  
ns  
SD3  
SD4  
uSDHC Input Setup Time  
uSDHC Input Hold Time  
tISU  
tIH  
1.7  
1.5  
ns  
ns  
1
Clock duty cycle will be in the range of 47% to 53%.  
4.10.4.3 HS400 AC timing—eMMC 5.1 only  
Figure 32 depicts the timing of HS400. Table 69 lists the HS400 timing characteristics. Be aware that only  
data is sampled on both edges of the clock (not applicable to CMD). The CMD input/output timing for  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
73  
Electrical characteristics  
HS400 mode is the same as CMD input/output timing for SDR104 mode. Check SD5, SD6 and SD7  
parameters in Table 71 SDR50/SDR104 Interface Timing Specification for CMD input/output timing for  
HS400 mode.  
Figure 32. HS400 timing  
Table 69. HS400 interface timing specifications  
ID  
Parameter  
Symbols  
Min  
Max  
Unit  
Card Input clock  
SD1  
Clock Frequency  
fPP  
tCL  
0
200  
Mhz  
ns  
SD2  
SD3  
Clock Low Time  
Clock High Time  
0.46 × tCLK  
0.46 × tCLK  
0.54 × tCLK  
0.54 × tCLK  
tCH  
ns  
uSDHC Output/Card inputs DAT (Reference to SCK)  
SD4  
SD5  
Output Skew from Data of  
Edge of SCK  
tOSkew1  
0.45  
0.45  
ns  
ns  
Output Skew from Edge of  
SCK to Data  
tOSkew2  
uSDHC input/Card Outputs DAT (Reference to Strobe)  
SD6  
SD7  
uSDHC input skew  
uSDHC hold skew  
tRQ  
0.45  
0.45  
ns  
ns  
tRQH  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
74  
Electrical characteristics  
4.10.4.4 HS200 Mode Timing  
The following figure depicts the timing of HS200 mode, and Table 70 lists the HS200 timing  
characteristics.  
SD1  
SD2  
SD3  
SD7  
SCK  
SD4/SD5  
8-bit output from uSDHC to eMMC  
8-bit input from eMMC to uSDHC  
SD6  
SD8  
Figure 33. HS200 Mode Timing  
Table 70. HS200 Interface Timing Specification  
ID  
Parameter  
Symbols  
Min  
Max  
Unit  
Card Input Clock  
SD1  
SD2  
SD2  
Clock Frequency Period  
Clock Low Time  
tCLK  
tCL  
5.0  
ns  
ns  
ns  
0.46 × tCLK  
0.46 × tCLK  
0.54 × tCLK  
0.54 × tCLK  
Clock High Time  
tCH  
uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in HS200 (Reference to CLK)  
uSDHC Output Delay tOD –1.6  
uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in HS200 (Reference to CLK)1  
Card Output Data Window tODW 0.5*tCLK  
1
ns  
ns  
SD5  
SD8  
1HS200 is for 8 bits while SDR104 is for 4 bits.  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
75  
Electrical characteristics  
4.10.4.5 SDR50/SDR104 AC Timing  
The following figure depicts the timing of SDR50/SDR104, and Table 71 lists the SDR50/SDR104 timing  
characteristics.  
SD1  
SD2  
SD3  
SCK  
SD5  
SD4  
Output from uSDHC to card  
SD7  
SD6  
Input from card to uSDHC  
SD8  
Figure 34. SDR50/SDR104 timing  
Table 71. SDR50/SDR104 Interface Timing Specification  
ID  
Parameter  
Symbols  
Min  
Max  
Unit  
Card Input Clock  
SD1 Clock Frequency Period  
SD2 Clock Low Time  
tCLK  
tCL  
4.8  
ns  
ns  
ns  
0.46 × tCLK  
0.46 × tCLK  
0.54 × tCLK  
0.54 × tCLK  
SD3 Clock High Time  
tCH  
uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in SDR50 (Reference to SDx_CLK)  
SD4 uSDHC Output Delay tOD –3  
uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in SDR104 (Reference to SDx_CLK)  
uSDHC Output Delay tOD –1.6  
uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in SDR50 (Reference to SDx_CLK)  
1
ns  
ns  
1
SD5  
uSDHC Input Setup Time  
uSDHC Input Hold Time  
tISU  
tIH  
2.5  
1.5  
ns  
ns  
SD6  
SD7  
uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in SDR104 (Reference to SDx_CLK)1  
Card Output Data Window tODW 0.5 × tCLK  
ns  
SD8  
1
Data window in SDR100 mode is variable.  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
76  
Electrical characteristics  
4.10.4.6 Bus Operation Condition for 3.3 V and 1.8 V Signaling  
Signaling level of SD/eMMC 5.1 and eMMC 5.1 modes is 3.3 V. Signaling level of SDR104/SDR50 mode  
is 1.8 V. The DC parameters for the NVCC_SD1, NVCC_SD2, and NVCC_SD3 supplies are identical to  
those shown in “,” and Table 33, "Dual-voltage 1.8 V GPIO DC parameters," on page 39Table 34,  
"Dual-voltage 3.3 V GPIO DC parameters," on page 39.  
4.10.5 Ethernet Controller (ENET) AC Electrical Specifications  
ENET interface supporting RGMII protocol in delay and non-delay mode. RGMII is used to support up to  
1000 Mbps Ethernet as well as RMII protocol. RMII is used to support up to 100 Mbps Ethernet.  
NOTE  
ENET1 supports RGMII at 1.8 V and 2.5 V, and RMII at 3.3 V. ENET0  
supports RGMII at 1.8 V only and RMII at 3.3 V.  
Table 72. RGMII/RMII pin mapping  
Pin name1  
RGMII  
RGMII_TXC  
RMII  
Comment2  
ENETx_RGMII_TXC  
RCLK50M  
RCLK50M can be an input or  
an output. It's using different  
Alternate pin muxing modes.  
Refer to pin muxing for details.  
ENETx_RGMII_TX_CTL  
ENETx_RGMII_TXD0  
ENETx_RGMII_TXD1  
ENETx_RGMII_TXD2  
ENETx_RGMII_TXD3  
ENETx_RGMII_RXC  
ENETx_RGMII_RX_CTL  
ENETx_RGMII_RXD0  
ENETx_RGMII_RXD1  
ENETx_RGMII_RXD2  
RGMII_TX_CTL  
RGMII_TXD0  
RGMII_TXD1  
RGMII_TXD2  
RGMII_TXD3  
RGMII_RXC  
RMII_TXEN  
RMII_TXD0  
RMII_TXD1  
N/A  
N/A  
N/A  
RGMII_RX_CTL  
RGMII_RXD0  
RGMII_RXD1  
RGMII_RXD2  
RMII_CRS_DV  
RMII_RXD0  
RMII_RXD1  
RMII_RXER  
RMII_RXER is mapped on  
ALT1 mode of pin muxing.  
ENETx_RGMII_RXD3  
RGMII_RXD3  
N/A  
N/A  
ENETx_REFCLK_125M_25M RGMII_REF_CLK  
RGMII_REF_CLK is optional  
for RGMII operation and  
dependent on the intended  
clock configuration.  
ENETx_MDIO  
ENETx_MDC  
RGMII_MDIO  
RGMII_MDC  
RMII_MDIO  
RMII_MDC  
1
x can be 0 or 1.  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
77  
Electrical characteristics  
2
Except for RCLK50M and RMII_RXER, all other RMII functions are using the same pin muxing mode as RGMII.  
4.10.5.1 RGMII  
4.10.5.1.1 No-Internal-Delay mode  
This mode corresponds to the RGMIIv1.3 specification.  
Figure 35. RGMII timing diagram—No-Internal-Delay mode  
Table 73. RGMII timings—No-Internal-Delay mode  
ID  
Parameter  
Min  
Typ  
Max  
Unit  
TXC / RXC frequency  
Clock cycle  
7.2  
-500  
1
125  
8
8.8  
500  
2.6  
MHz  
ns  
t1  
t2  
t3  
Data to clock output skew  
ps  
Data to clock input skew1(1)  
ns  
1
This implies that PC board design requires clocks to be routed such that an additional trace delay of greater than 1.5 ns and  
less than 2.0 ns is added to the associated clock signal.  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
78  
NXP Semiconductors  
Electrical characteristics  
4.10.5.1.2 Internal-delay mode  
This mode corresponds to RGMIIv2.0 specification. The interface is still operating at 2.5 V. 1.5 V is not  
supported.  
Figure 36. RGMII timing diagram—Internal-Delay mode  
Table 74. RGMII timing—Internal-Delay mode  
ID  
Parameter  
Min  
Typ  
Max  
Unit  
TXC / RXC frequency  
Clock cycle  
7.2  
1.2  
1.2  
0
125  
8
8.8  
MHz  
ns  
t1  
t2  
t3  
t4  
t5  
TXD setup time  
TXD hold time  
RXD setup time  
RXD hold time  
ns  
ns  
ns  
2.5  
ns  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
79  
Electrical characteristics  
4.10.5.2 RMII  
RMII interface is matching RMII v1.2 specification. In RMII mode, the reference clock can be generated  
internally and provided to the PHYthrough RCLK50M_OUT. Or, it come from and external 50MHz clock  
generator which is connected to the PHY and to i.MX8 through RCLK50M_IN pin.  
Figure 37. RMII timing diagram  
Timings in table below are covering both cases: reference clock generated internally or externally.  
Table 75. RMII timing  
ID  
Parameter  
Min  
Typ  
Max  
Unit  
t1  
Reference clock  
35  
2
50  
50  
65  
12  
MHz  
ppm  
%
Reference clock accuracy  
Reference clock duty-cycle  
t2  
t3  
t4  
RMII_TXEN, RMII_TXD output delay  
RMII_CRS_DV, RMII_RXD setup time  
RMII_CRS_DV, RMII_RXD hold time  
ns  
4
ns  
2
ns  
4.10.5.3 MDIO  
MDIO is the control link used to configure Ethernet PHY connected to i.MX8 device.  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
80  
NXP Semiconductors  
Electrical characteristics  
Figure 38. MDIO timing diagram  
Table 76. MDIO timing  
ID  
Parameter  
Min  
Typ  
Max  
Unit  
MDC frequency  
180  
0
2.5  
20  
MHz  
%
t1  
t2  
t3  
t4  
MDC high / low pulse width  
MDIO output delay  
MDIO setup time  
ns  
10  
10  
ns  
MDIO hold time  
ns  
4.10.6 CAN network AC Electrical Specifications  
The Flexible Controller Area Network (FlexCAN) module is a communication controller implementing  
the CAN protocol according to the CAN with Flexible Data rate (CAN FD) protocol and the CAN 2.0B  
protocol specification. The processor has three CAN modules available for systems design. Tx and Rx  
ports for both modules are multiplexed with other I/O pins. See the IOMUXC chapter of the device  
reference manual to see which pins expose Tx and Rx pins; these ports are named FLEXCAN_TX and  
FLEXCAN_RX, respectively.  
4.10.7 HDMI Tx module timing parameters  
See the following specifications:  
DisplayPort 1.3 standard (VESA.org)  
Embedded DisplayPort 1.4 standard (VESA.org)  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
81  
Electrical characteristics  
The DDC link requires external pull-up resistors to be connected to a 5 V supply. The following table  
provides the range for those pull-ups.  
Table 77. HDMI—Pull-up resistors for DDC link  
Ball name  
Min  
Typ  
Max  
Unit  
HDMI_TX0_DDC_SCL  
HDMI_TX0_DDC_SDA  
1.5  
1.5  
2
2
kΩ  
kΩ  
4.10.8 HDMI Tx and Rx REXT reference resistor connection  
Table 78. HDMI_REXT reference resistor connection  
Name Min Typ Max Unit  
REXT 497.50 500 502.50  
Descriptions  
Ω
REXT resistor is 500 Ω ± 0.5%. It shall be connected to ground.  
4.10.9 I2C Module Timing Parameters  
2
This section describes the timing parameters of the I C module. The following figure depicts the timing  
2
2
of the I C module, and Table 79 lists the I C module timing characteristics.  
I2Cx_SDA  
I2Cx_SCL  
IC11  
IC9  
IC10  
IC7  
IC4  
IC2  
IC3  
IC8  
IC10b  
IC6  
IC11b  
STOP  
START  
START  
START  
IC5  
IC1  
2
Figure 39. I C bus timing  
2
Table 79. I C Module Timing Parameters  
Standard Mode  
Fast Mode  
ID  
Parameter  
Unit  
Min  
Max  
Min  
Max  
IC1  
IC2  
IC3  
IC4  
I2Cx_SCL cycle time  
10  
4.0  
4.0  
01  
2.5  
0.6  
0.6  
01  
µs  
µs  
µs  
Hold time (repeated) START condition  
Set-up time for STOP condition  
Data hold time  
3.452  
0.92 µs  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
82  
Electrical characteristics  
2
Table 79. I C Module Timing Parameters (continued)  
Standard Mode  
Parameter  
Fast Mode  
Unit  
ID  
Min  
Max  
Min  
Max  
IC5  
IC6  
IC7  
IC8  
IC9  
HIGH Period of I2Cx_SCL Clock  
4.0  
4.7  
4.7  
250  
4.7  
0.6  
1.3  
µs  
µs  
µs  
ns  
µs  
LOW Period of the I2Cx_SCL Clock  
Set-up time for a repeated START condition  
Data set-up time  
0.6  
1003  
1.3  
Bus free time between a STOP and START condition  
4
IC10/IC10b Rise time of both I2Cx_SDA and I2Cx_SCL signals  
IC11/IC11b Fall time of both I2Cx_SDA and I2Cx_SCL signals  
1000  
300  
400  
20 + 0.1Cb 300 ns  
4
20 + 0.1Cb 300 ns  
IC12  
Capacitive load for each bus line (Cb)  
400 pF  
1
A device must internally provide a hold time of at least 300 ns for I2Cx_SDA signal in order to bridge the undefined region of  
the falling edge of I2Cx_SCL.  
2
3
The maximum hold time has only to be met if the device does not stretch the LOW period (ID no IC5) of the I2Cx_SCL signal.  
A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system, but the requirement of Set-up time (ID No IC7)  
of 250 ns must be met. This automatically is the case if the device does not stretch the LOW period of the I2Cx_SCL signal.  
If such a device does stretch the LOW period of the I2Cx_SCL signal, it must output the next data bit to the I2Cx_SDA line  
max_rise_time (IC9) + data_setup_time (IC7) = 1000 + 250 = 1250 ns (according to the Standard-mode I2C-bus specification)  
before the I2Cx_SCL line is released.  
4
Cb = total capacitance of one bus line in pF.  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
83  
Electrical characteristics  
Table 80. I2C timing  
Fast Mode Plus  
Min  
High Speed1  
Min Max  
Unit  
ID  
Parameter  
SCL clock frequency  
Max  
IC1  
IC2  
IC3  
IC4  
IC5  
IC6  
IC7  
IC8  
IC9  
1
160  
160  
0
3.4  
70  
MHz  
ns  
Hold time (repeated) START condition  
Set-up time for STOP condition  
Data hold time  
260  
260  
0
ns  
ns  
HIGH Period of I2Cx_SCL Clock  
LOW Period of the I2Cx_SCL Clock  
Set-up time for a repeated START condition  
Data set-up time  
260  
500  
260  
50  
60  
ns  
160  
160  
10  
ns  
ns  
ns  
Bus free time between a STOP and START  
condition  
500  
150  
ns  
IC10 Rise time of I2Cx_SDA signals  
IC11 Fall time of I2Cx_SDA signals  
120  
120  
10  
10  
80  
80  
ns  
ns  
12 (@3.3 V)  
6.5 (@1.8 V)  
IC10b Rise time of I2Cx_SCL signals  
IC11b Fall time of I2Cx_SCL signals  
120  
120  
10  
10  
40  
40  
ns  
ns  
12 (@3.3 V)  
6.5 (@1.8 V)  
IC12 Capacitive load for each bus line (Cb)  
550  
100  
pF  
1
High-speed mode is only available for I2C modules in DMA, SCU and Cortex-M4 subsystems.  
4.10.10 LVDS and MIPI-DSI display output specifications  
4.10.10.1 LVDS display bridge module parameters  
Maximum frequency support for dedicated LVDS channels on this device:  
Table 81. LVDS pins  
Function1  
Channel A  
Channel B  
4 pairs LVDS up to 1.12 Gbps per pair  
Single channel  
Dual channel  
4 pairs LVDS up to 1.12 Gbps per pair  
8 pairs LVDS up to 595 Mbps per pair  
1
In single channel operation the maximum clock speed is 160 MHz; in dual channel operation with a single synchronized clock  
the maximum clock speed is 85 MHz.  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
84  
NXP Semiconductors  
Electrical characteristics  
4.10.10.2 MIPI-DSI display bridge module parameters  
Maximum frequency support for dedicated MIPI-DSI channels on this device:  
Table 82. MIPI-DSI pins  
Function1  
Channel A  
DSI  
DSI up to 1.5 Gb/per lane  
1
Maximum clock speed is 1.5 GHz.  
4.10.10.3 LVDS display bridge (LDB) module electrical specifications  
The LVDS interface is compatible with TIA/EIA 644-A standard. For more details, see TIA/EIA  
STANDARD 644-A, “Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface  
Circuits.”  
Table 83. LVDS Display Bridge (LDB) Electrical Specifications  
Parameter  
Symbol  
Test Condition  
100 Ω Differential load  
Min  
Max  
Units  
Differential Voltage Output Voltage  
Output Voltage High  
VOD  
Voh  
0.25  
0.4  
V
V
100 Ω differential load  
(0 V Diff—Output High Voltage static)  
1.475  
Output Voltage Low  
Offset Static Voltage  
Vol  
100 Ω differential load  
0.925  
1.125  
V
V
(0 V Diff—Output Low Voltage static)  
VOS  
Two 49.9 Ω resistors in series between  
N-P terminal, with output in either Zero or  
One state, the voltage measured between  
the 2 resistors.  
1.275  
VOS Differential  
VOSDIFF  
Difference in VOS between a One and a  
Zero state  
mV  
Output short-circuited to GND  
Output short current  
ISA ISB  
ISAB  
With the output common shorted to GND  
40  
12  
mA  
mA  
4.10.10.4 MIPI-DSI HS-TX specifications  
Table 84. MIPI high-speed transmitter DC specifications  
Parameter  
Symbol  
Min Typ Max  
Unit  
1
VCMTX  
High Speed Transmit Static Common Mode Voltage  
VCMTX mismatch when Output is Differential-1 or Differential-0  
High Speed Transmit Differential Voltage  
150 200  
250  
5
mV  
mV  
mV  
mV  
|ΔVCMTX (1,0)  
|
1
|VOD  
|
140 200  
270  
10  
|ΔVOD  
|
VOD mismatch when Output is Differential-1 or Differential-0  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
85  
Electrical characteristics  
Table 84. MIPI high-speed transmitter DC specifications (continued)  
Parameter Min Typ Max  
Symbol  
Unit  
1
VOHHS  
High Speed Output High Voltage  
Single Ended Output Impedance  
40  
50  
360  
62.5  
10  
mV  
Ω
ZOS  
ΔZOS  
Single Ended Output Impedance Mismatch  
%
1
Value when driving into load impedance anywhere in the ZID range.  
Table 85. MIPI high-speed transmitter AC specifications  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
ΔVCMTX(HF)  
ΔVCMTX(LF)  
Common-level variations above 450 MHz  
Common-level variation between 50-450 MHz  
Rise Time and Fall Time (20% to 80%)  
15  
25  
mVRMS  
mVPEAK  
ps  
1
tR and tF  
100  
0.35 UI  
1
UI is the long-term average unit interval.  
4.10.10.5 MIPI-DSI LP-TX specifications  
Table 86. MIPI low-power transmitter DC specifications  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
1
VOH  
Thevenin Output High Level  
Thevenin Output Low Level  
1.1  
–50  
110  
1.2  
1.3  
50  
V
mV  
Ω
VOL  
2
ZOLP  
Output Impedance of Low Power Transmitter  
1
2
This specification can only be met when limiting the core supply variation from 1.1 V till 1.3 V.  
Although there is no specified maximum for ZOLP, the LP transmitter output impedance ensures the TRLP/TFLP specification  
is met.  
Table 87. MIPI low-power transmitter AC specifications  
Symbol  
Parameter  
Min Typ Max Unit  
1
TRLP/TFLP  
15% to 85% Rise Time and Fall Time  
30% to 85% Rise Time and Fall Time  
25  
35  
ns  
ns  
ns  
1,2,3  
TREOT  
4
TLP-PULSE-TX Pulse width of the LP exclusive-OR clock: First LP exclusive-OR clock pulse after Stop 40  
state or last pulse before Stop state  
Pulse width of the LP exclusive-OR clock: All other pulses  
Period of the LP exclusive-OR clock  
20  
90  
ns  
ns  
TLP-PER-TX  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
86  
Electrical characteristics  
Table 87. MIPI low-power transmitter AC specifications (continued)  
Parameter Min Typ Max Unit  
Symbol  
1,5,6,7  
δV/δtSR  
Slew Rate @ CLOAD= 0 pF  
Slew Rate @ CLOAD= 5 pF  
Slew Rate @ CLOAD= 20 pF  
Slew Rate @ CLOAD= 70 pF  
Load Capacitance  
30  
30  
30  
30  
0
500 mV/ns  
200 mV/ns  
150 mV/ns  
100 mV/ns  
CLOAD  
70  
pF  
1
CLOAD includes the low equivalent transmission line capacitance. The capacitance of TX and RX are assumed to always be <  
10 pF. The distributed line capacitance can be up to 50 pF for a transmission line with 2 ns delay.  
2
The rise-time of TREOT starts from the HS common-level at the moment of the differential amplitude drops below 70 mV, due  
to stopping the differential drive.  
3
4
With an additional load capacitance CCM between 0 to 60 pF on the termination center tap at RX side of the lane.  
This parameter value can be lower then TLPX due to differences in rise vs. fall signal slopes and trip levels and mismatches  
between Dp and Dn LP transmitters. Any LP exclusive-OR pulse observed during HS EoT (transition from HS level to LP-11)  
is glitch behavior as described in Low-Power Receiver section.  
5
6
7
When the output voltage is between 15% and below 85% of the fully settled LP signal levels.  
Measured as average across any 50 mV segment of the output signal transition.  
This value represents a corner point in a piecewise linear curve.  
4.10.10.6 MIPI-DSI LP-RX specifications  
Table 88. MIPI low power receiver DC specifications  
Parameter Min  
Symbol  
VIH  
Typ  
Max  
Unit  
Logic 1 input voltage  
880  
1.3  
550  
300  
mV  
mV  
mV  
mV  
VIL  
Logic 0 input voltage, not in ULP state  
Logic 0 input voltage, ULP state  
Input hysteresis  
VIL-ULPS  
VHYST  
25  
Table 89. MIPI low power receiver AC specifications  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
1,2  
eSPIKE  
Input pulse rejection  
20  
300  
V.ps  
ns  
3
TMIN-RX  
Minimum pulse width response  
Peak Interference amplitude  
Interference frequency  
VINT  
200  
mV  
MHz  
fINT  
450  
1
2
3
Time-voltage integration of a spike above VIL when in LP-0 state or below VIH when in LP-1 state.  
An impulse below this value will not change the receiver state.  
An input pulse greater than this value shall toggle the output.  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
87  
Electrical characteristics  
4.10.10.7 MIPI-DSI LP-CD specifications  
Table 90. MIPI contention detector DC specifications  
Parameter Min  
Symbol  
Typ  
Max  
Unit  
VIHCD  
VILCD  
Logic 1 contention threshold  
Logic 0 contention threshold  
450  
mV  
mV  
200  
4.10.10.8 MIPI-DSI DC specifications  
Table 91. MIPI input characteristics DC specifications  
Symbol  
VPIN  
Parameter  
Min  
Typ  
Max  
Unit  
Pad signal voltage range  
Pin leakage current  
Ground shift  
–50  
–10  
–50  
–0.15  
1350  
10  
mV  
μA  
mV  
V
1
ILEAK  
VGNDSH  
50  
2
VPIN(absmax)  
Maximum pin voltage level  
1.45  
20  
3
TVPIN(absmax) Maximum transient time above VPIN(max) or below VPIN(min)  
ns  
1
When the pad voltage is within the signal voltage range between VGNDSH(min) to VOH + VGNDSH(max) and the Lane Module is  
in LP receive mode.  
2
3
This value includes ground shift.  
The voltage overshoot and undershoot beyond the VPIN is only allowed during a single 20 ns window after any LP-0 to LP-1  
transition or vice versa. For all other situations it must stay within the VPIN range.  
4.10.11 PCIe PHY Parameters  
The TX and RX eye diagrams specifications are per the template shown in the following figure. The  
summary of specifications is shown in Table 92 and Table 93. Note that the time closure (1–AOPENING)  
in the eye templates needs not match jitter specifications in the Standards Specifications, as there are such  
discrepancies in some Standards Specifications. The design meets the tightest of specifications in case of  
discrepancy.  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
88  
NXP Semiconductors  
Electrical characteristics  
Figure 40. TX and RX eye diagram template  
Table 92. PCIe transmitter eye specifications for example standards  
UI AOPENING BOPENING AOPENING BOPENING VDIFFp-pmin VDIFFp-pmax  
ps  
UI  
ps  
mV  
PCI Express Gen 1 Transition Bit  
PCI ExpressGen 1 De-emphasized Bit  
PCI Express Gen 2 Transition Bit  
PCI Express Gen 2 De-emphasized Bit  
400  
400  
200  
200  
0.75  
0.75  
0.75  
0.75  
0
0
0
0
300  
300  
150  
150  
0
0
0
0
800  
505  
800  
379  
12001  
757  
12001  
850  
1
VDIFFp-p eye opening is limited to VDDIO under matched termination conditions.  
Table 93. PCIe receiver eye specifications for example standards  
UI AOPENING BOPENING AOPENING BOPENING VDIFFp-pmin VDIFFp-pmax  
ps  
UI  
ps  
mV  
PCI Express Gen 1 Transition Bit  
400  
200  
125  
0.4  
0.32  
0.3  
0
0
0
160  
64  
0
0
0
175  
100  
25  
1200  
1200  
1300  
PCI Express Gen 2 Transition Bit1  
PCI Express Gen 3 Virtual EYE2  
38  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
89  
Electrical characteristics  
1
For a lossy channel, the default DFE setting may not work for PCIe Gen1 -3.5dB TX de-emphasis. It is recommended to use  
a higher DFE setting (reg241[7]=A1_force=1 and reg241[5:0]=A1_init) in this case.  
2
PCIE 3.0 8 GT/s measured using PCIE reference equalizer + CDR per PCIE specification.PCIe 1.0 and 2.0 compliant. PCIe  
3.0 capable, contact your NXP representative.  
Table 94. PCIe differential output driver characteristics (including board and load)  
Parameter  
Min  
Typ  
Max  
Units  
Notes  
1
Output Rise and fall time TR, TF  
175  
350  
20  
50  
ps  
%
ps  
ns  
μs  
Ω
1, 2  
Output Rise/Fall matching  
Output skewTOSKEW  
Initialization time from assertion of TXOE  
Initialization time from assertion of TXENA  
Transmission line characteristic impedance (ZO)  
100  
10  
50  
Driver output impedance, single ended (small signal @  
Vout=Vcm)  
1000  
Ω
Output single ended voltage (RS= 33, RT= 50 Ω)  
3, 4  
3
VOH  
0.65  
-13  
-0.20  
0.71  
-14.2  
0.00  
0.85  
-17  
0.05  
V
mA  
V
IOH@ 6 * IR  
VOL  
Output common mode voltage (RS = 33, RT= 50 Ω)  
|VOCM  
|
0.25  
-0.015  
-0.050  
0.375  
0.55  
0.015  
0.050  
5
6
ΔVOCM (DC)  
ΔVOCM (AC)  
V
7,8  
9
Buffer induced deterministic jitter (absolute, pk-pk)  
Reference Buffer Dynamic Power (Digital)  
Reference Buffer Dynamic Power (Analog)  
Output Buffer Dynamic Power (Digital)  
4
ps  
μA  
mA  
μA  
mA  
0.015  
2.8  
0.66  
3.14  
1.8  
9
9
0.035  
18.9  
9
Output Buffer Dynamic Power (Analog)  
22.11  
1
When the output is transitioning between logic 0 and logic 1, or logic 1 and logic 0, and driving a terminated  
transmission line, the outputs monotonically transition between VOL and VOH, VOH, and VOL respectively. Target rise and  
fall times observed at the receiver and are primarily set by board trace impedance and Load capacitance. Rise and fall  
times are defined by 25% and 75% crossing points.  
2
3
Calculated as: 2 × (TR–TF) / (TR+ TF)  
IR is proportional to the reference current. Measured across RT. The primary contributor to output voltage spread is  
VDD spread, and so a VDD tighter than ±10% may be required to achieve this spread.  
4
Higher output voltages may occur depending on load, power supply, and selected output drive. Higher output voltages may  
transiently occur during initialization period following TXENA assertion.  
5
6
7
Peak change in output differential voltage when driving a logic 0 and when driving a logic 1 under DC conditions.  
Peak change in output differential voltage when driving a logic 0 and when driving a logic 1 under AC conditions.  
Measured under “clean power supply and ground” conditions, and after de-embedding the jitter of the input, measured over a  
time span of 1000 cycles  
8
Power supply induced jitter is included under this category, and the power supply variation is to be less than 8mVpp.  
Note that customer has to be uncommonly careful with power supply fidelity due to the small jitter numbers.  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
90  
NXP Semiconductors  
Electrical characteristics  
9
Power consumption is simulated under the following conditions:  
Typ: TT, VDD=1.0 V, VD18=1.8 V, 25 °C  
Max: FF, VDD=1.1 V, VD18=1.98 V, 125 °C  
Dynamic: TXENA=1, TXOE=1  
Static: TXENA=0, TXOE=1  
4.10.11.1 PCIE_REXT reference resistor connection  
The following figure shows the PCIE_REXT reference resistor connection.  
Figure 41. PCIE_REXT reference resistor connection  
4.10.11.2 PCIE_REF_CLK  
Contact an NXP representative to obtain the hardware development guide for this device, which contains  
details on the PCIe reference clock requirements.  
4.10.12 Pulse Width Modulator (PWM) Timing Parameters  
This section describes the electrical information of the PWM. The PWM can be programmed to select one  
of three clock signals as its source frequency. The selected clock signal is passed through a prescaler before  
being input to the counter. The output is available at the pulse-width modulator output (PWMO) external  
pin.  
The following figure depicts the timing of the PWM, and Table 95 lists the PWM timing parameters.  
PWMn_OUT  
Figure 42. PWM Timing  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
91  
Electrical characteristics  
Table 95. PWM Output Timing Parameters  
ID  
Parameter  
PWM Module Clock Frequency  
Min  
Max  
Unit  
P1  
P2  
0
ipg_clk  
MHz  
ns  
PWM output pulse width high  
PWM output pulse width low  
15  
15  
ns  
4.10.13 FlexSPI (Quad SPI/Octal SPI) timing parameters  
The FlexSPI interface can work in SDR or DDR modes. It can operate up to 60 MHz at 3.3 V, 166 MHz  
at 1.8 V SDR mode or 200 MHz at 1.8 V DDR mode. It supports single-ended and differential DQS  
signaling.  
FlexSPI supports the following clocking scheme for a read data path:  
Dummy read strobe generated by FlexSPI controller and looped back internally  
(FlexSPIn_MCR0[RXCLKSRC] = 0x0)  
Dummy read strobe generated by FlexSPI controller and looped back through the DQS pad  
(FlexSPIn_MCR0[RXCLKSRC] = 0x1). It means the I/O cannot be used for another feature.  
Read strobe provided by memory device and input from DQS pad  
(FlexSPIn_MCR0[RXCLKSRC] = 0x3)  
4.10.13.1 SDR mode  
4.10.13.1.1 SDR mode timing diagrams  
The following write timing diagram is valid for any FlexSPIn_MCR0[RXCLKSRC] value.  
Figure 43. FlexSPI write timing diagram (SDR mode)  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
92  
NXP Semiconductors  
Electrical characteristics  
The following read timing diagram is valid for FlexSPIn_MCR0[RXCLKSRC] = 0x0 or 0x1.  
Figure 44. FlexSPI read timing diagram (SDR mode)  
The following read timing diagram is valid for FlexSPIn_MCR0[RXCLKSRC] = 0x3.  
Figure 45. FlexSPI read with DQS timing diagram (SDR mode)  
4.10.13.1.2 SDR mode timing parameter tables  
Table 96. FlexSPI timings with FlexSPIn_MCR0[RXCLKSRC] = 0x0 (SDR mode)  
ID  
Parameter  
QSPIx[A/B]_SCLK Cycle frequency  
Min  
Max  
Unit  
60  
1
MHz  
ns  
t1 QSPIx[A/B]_SCLK High or Low Time  
t2 QSPIx[A/B]_SSy_B pulse width  
7.5  
1
SCLK  
SCLK  
SCLK  
ns  
t3 QSPIx[A/B]_SSy_B Lead Time1  
TCSS+0.5  
t4 QSPIx[A/B]_SSy_B Lag Time1  
TCSH  
t5 QSPIx[A/B]_DATAy output Delay  
t6 QSPIx[A/B]_DATAy Setup Time  
6
ns  
t7 QSPIx[A/B]_DATAy Hold Time  
0
ns  
1
Timing is controlled from FLSHxCR1 register (x=A1, A2, B1, or B2).  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
93  
Electrical characteristics  
Table 97. FlexSPI timings with FlexSPIn_MCR0[RXCLKSRC] = 0x1 (SDR mode)  
ID  
Parameter  
QSPIx[A/B]_SCLK Cycle frequency  
Min  
Max  
Unit  
166  
1
MHz  
ns  
t1 QSPIx[A/B]_SCLK High or Low Time  
t2 QSPIx[A/B]_SSy_B pulse width  
2.7  
1
SCLK  
SCLK  
SCLK  
ns  
t3 QSPIx[A/B]_SSy_B Lead Time1  
TCSS+0.5  
t4 QSPIx[A/B]_SSy_B Lag Time1  
TCSH  
t5 QSPIx[A/B]_DATAy output Delay  
t6 QSPIx[A/B]_DATAy Setup Time  
1
ns  
t7 QSPIx[A/B]_DATAy Hold Time  
2
ns  
1
Timing is controlled from FLSHxCR1 register (x=A1, A2, B1, or B2).  
Table 98. FlexSPI timings with FlexSPIn_MCR0[RXCLKSRC] = 0x3 (SDR mode)  
ID  
Parameter  
QSPIx[A/B]_DQS Cycle frequency  
Min  
Max  
Unit  
2.25  
200  
MHz  
ns  
t1 QSPIx[A/B]_SCLK High or Low Time  
t2 QSPIx[A/B]_SSy_B pulse width1  
t3 QSPIx[A/B]_SSy_B Lead Time2  
t4 QSPIx[A/B]_SSy_B Lag Time2  
CSINTERVAL  
TCSS+0.5  
TCSH  
SCLK  
SCLK  
SCLK  
ns  
t5 QSPIx[A/B]_DATAy output Delay  
t8 QSPIx[A/B]_DQS / QSPIx[A/B]_DATAy delta  
1
-0.65  
0.65  
ns  
1
2
Minimum is 2 SCLK cycles even if CSINTERVAL value is less than 2.  
Timing is controlled from FLSHxCR1 register (x=A1, A2, B1, or B2).  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
94  
Electrical characteristics  
4.10.13.2 DDR mode  
4.10.13.2.1 DDR mode timing diagrams  
Figure 46. FlexSPI write timing diagram (DDR mode)  
Figure 47. FlexSPI read timing diagram (DDR mode)  
QSPIx[A/B]_DQS  
QSPIx[A/B]_DATAy  
t9  
t10  
Figure 48. FlexSPI read with DQS timing diagram (DDR mode)  
Table 99. FlexSPI timings with FlexSPIn_MCR0[RXCLKSRC] = 0x0 (DDR mode)  
ID  
Parameter  
QSPIx[A/B]_SCLK Cycle frequency  
Min  
Max  
Unit  
30  
MHz  
ns  
t1 QSPIx[A/B]_SCLK High or Low Time  
15  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
95  
Electrical characteristics  
Table 99. FlexSPI timings with FlexSPIn_MCR0[RXCLKSRC] = 0x0 (DDR mode) (continued)  
ID  
Parameter  
Min  
Max  
Unit  
t2 QSPIx[A/B]_SSy_B pulse width  
1
SCLK  
SCLK  
SCLK  
ns  
t3 QSPIx[A/B]_SSy_B Lead Time1  
(TCSS+0.5)/2  
t4 QSPIx[A/B]_SSy_B Lag Time1  
TCSH/2  
t5 QSPIx[A/B]_DATAy output valid time  
t6 QSPIx[A/B]_DATAy output hold time  
t7 QSPIx[A/B]_DATAy Setup Time  
6.5  
6.5  
6
ns  
ns  
t8 QSPIx[A/B]_DATAy Hold Time  
0
ns  
1
Timing is controlled from FLSHxCR1 register (x=A1, A2, B1, or B2).  
Table 100. FlexSPI timings with FlexSPIn_MCR0[RXCLKSRC] = 0x1 (DDR mode)  
ID  
Parameter  
QSPIx[A/B]_SCLK Cycle frequency  
Min  
Max  
Unit  
83  
MHz  
ns  
t1 QSPIx[A/B]_SCLK High or Low Time  
t2 QSPIx[A/B]_SSy_B pulse width  
5.4  
1
SCLK  
SCLK  
SCLK  
ns  
t3 QSPIx[A/B]_SSy_B Lead Time1  
(TCSS+0.5)/2  
t4 QSPIx[A/B]_SSy_B Lag Time1  
TCSH/2  
t5 QSPIx[A/B]_DATAy output valid time  
t6 QSPIx[A/B]_DATAy output hold time  
t7 QSPIx[A/B]_DATAy Setup Time  
2
2
1
1
ns  
ns  
t8 QSPIx[A/B]_DATAy Hold Time  
ns  
1
Timing is controlled from FLSHxCR1 register (x=A1, A2, B1, or B2).  
Table 101. FlexSPI timings with FlexSPIn_MCR0[RXCLKSRC] = 0x3 (DDR mode)  
ID  
Parameter  
QSPIx[A/B]_SCLK Cycle frequency  
Min  
Max  
Unit  
2.25  
200  
MHz  
ns  
t1 QSPIx[A/B]_SCLK High or Low Time  
t2 QSPIx[A/B]_SSy_B pulse width  
t3 QSPIx[A/B]_SSy_B Lead Time1  
t4 QSPIx[A/B]_SSy_B Lag Time1  
t5 QSPIx[A/B]_DATAy output valid time  
t6 QSPIx[A/B]_DATAy output hold time  
1
SCLK  
SCLK  
SCLK  
ns  
(TCSS+0.5)/2  
TCSH/2  
0.65  
0.65  
ns  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
96  
Electrical characteristics  
Table 101. FlexSPI timings with FlexSPIn_MCR0[RXCLKSRC] = 0x3 (DDR mode) (continued)  
ID  
Parameter  
Min  
Max  
Unit  
t9 QSPIx[A/B]_DATAy Setup Skew  
0.65  
0.65  
ns  
ns  
t10 QSPIx[A/B]_DATAy Hold Skew  
1
Timing is controlled from FLSHxCR1 register (x=A1, A2, B1, or B2).  
4.10.14 Secure JTAG controller (SJC)  
4.10.14.1 Internal pull-up/pull-down configuration  
The following table describes the default configuration of internal pull-ups and pull-downs of the JTAG  
interface. External pull-ups and pull-downs are needed when this interface is routed to a connector.  
Table 102. JTAG default configuration for internal pull-up/pull-down  
Ball name  
Internal pull setting1  
Typical pull value  
Unit  
JTAG_TMS  
JTAG_TCK  
JTAG_TDI  
PU  
PD  
PU  
PU  
PD  
50  
KΩ  
JTAG_TRST_B  
TEST_MODE_SELECT  
1
PU = pull-up; PD = pull-down  
4.10.14.2 JTAG timing parameters  
Figure 49 depicts the SJC test clock input timing. Figure 50 depicts the SJC boundary scan timing.  
Figure 51 depicts the SJC test access port. Figure 52 depicts the JTAG_TRST_B timing. Signal  
parameters are listed in Table 103.  
SJ1  
SJ2  
VM  
SJ2  
VM  
JTAG_TCK  
(Input)  
VIH  
VIL  
SJ3  
SJ3  
Figure 49. Test Clock Input Timing Diagram  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
97  
Electrical characteristics  
JTAG_TCK  
(Input)  
VIH  
SJ5  
Input Data Valid  
VIL  
SJ4  
Data  
Inputs  
SJ6  
Data  
Outputs  
Output Data Valid  
SJ7  
SJ6  
Data  
Outputs  
Data  
Outputs  
Output Data Valid  
Figure 50. Boundary system (JTAG) timing diagram  
JTAG_TCK  
(Input)  
VIH  
VIL  
SJ8  
Input Data Valid  
SJ9  
JTAG_TDI  
JTAG_TMS  
(Input)  
SJ10  
SJ11  
SJ10  
JTAG_TDO  
(Output)  
Output Data Valid  
JTAG_TDO  
(Output)  
JTAG_TDO  
(Output)  
Output Data Valid  
Figure 51. Test Access Port Timing Diagram  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
98  
Electrical characteristics  
JTAG_TCK  
(Input)  
SJ13  
JTAG_TRST_B  
(Input)  
SJ12  
Figure 52. JTAG_TRST_B Timing Diagram  
Table 103. JTAG Timing  
All Frequencies  
ID  
Parameter1,2  
Unit  
Min  
Max  
1
SJ0  
SJ1  
SJ2  
JTAG_TCK frequency of operation 1/(3xTDC  
JTAG_TCK cycle time in crystal mode  
)
0.001  
45  
22.5  
22  
3
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2
JTAG_TCK clock pulse width measured at VM  
JTAG_TCK rise and fall times  
SJ3  
SJ4  
Boundary scan input data set-up time  
Boundary scan input data hold time  
JTAG_TCK low to output data valid  
JTAG_TCK low to output high impedance  
JTAG_TMS, JTAG_TDI data set-up time  
JTAG_TMS, JTAG_TDI data hold time  
JTAG_TCK low to JTAG_TDO data valid  
5
40  
40  
44  
44  
SJ5  
24  
SJ6  
SJ7  
SJ8  
SJ9  
5
25  
SJ10  
SJ11  
SJ12  
SJ13  
JTAG_TCK low to JTAG_TDO high impedance  
JTAG_TRST_B assert time  
100  
40  
JTAG_TRST_B set-up time to JTAG_TCK low  
1
2
T
= target frequency of SJC  
DC  
VM = mid-point voltage  
4.10.15 SPDIF Timing Parameters  
The Sony/Philips Digital Interconnect Format (SPDIF) data is sent using the bi-phase marking code. When  
encoding, the SPDIF data signal is modulated by a clock that is twice the bit rate of the data signal.  
Table 104, Figure 53, and Figure 54 show SPDIF timing parameters for the Sony/Philips Digital  
Interconnect Format (SPDIF), including the timing of the modulating Rx clock (SPDIF_SR_CLK) for  
SPDIF in Rx mode and the timing of the modulating Tx clock (SPDIF_ST_CLK) for SPDIF in Tx mode.  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
99  
Electrical characteristics  
Table 104. SPDIF Timing Parameters  
Timing Parameter Range  
Parameter  
Symbol  
Unit  
Min  
Max  
SPDIF_IN Skew: asynchronous inputs, no specs apply  
0.7  
ns  
ns  
SPDIF_OUT output (Load = 50pf)  
• Skew  
• Transition rising  
• Transition falling  
1.5  
24.2  
31.3  
SPDIF_OUT output (Load = 30pf)  
• Skew  
• Transition rising  
• Transition falling  
1.5  
13.6  
18.0  
ns  
Modulating Rx clock (SPDIF_SR_CLK) period  
SPDIF_SR_CLK high period  
srckp  
srckph  
srckpl  
stclkp  
stclkph  
stclkpl  
40.0  
16.0  
16.0  
40.0  
16.0  
16.0  
ns  
ns  
ns  
ns  
ns  
ns  
SPDIF_SR_CLK low period  
Modulating Tx clock (SPDIF_ST_CLK) period  
SPDIF_ST_CLK high period  
SPDIF_ST_CLK low period  
srckp  
srckpl  
VM  
srckph  
VM  
SPDIF_SR_CLK  
(Output)  
Figure 53. SPDIF_SR_CLK Timing Diagram  
stclkp  
stclkpl  
VM  
stclkph  
VM  
SPDIF_ST_CLK  
(Input)  
Figure 54. SPDIF_ST_CLK Timing Diagram  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
100  
Electrical characteristics  
4.10.16 UART I/O configuration and timing parameters  
4.10.16.0.1 UART Transmitter  
The following figure depicts the transmit timing of UART in the RS-232 serial mode, with 8 data bit/1  
stop bit format. Table 105 lists the UART RS-232 serial mode transmit timing characteristics.  
POSSIBLE  
PARITY  
UA1  
UA1  
Bit 3  
BIT  
NEXT  
START  
BIT  
Start  
Bit  
UARTx_TX_DATA  
(output)  
STOP  
BIT  
Bit 7  
Bit 0  
Bit 1  
Bit 2  
Bit 4  
Bit 5  
Bit 6  
Par Bit  
UA1  
UA1  
Figure 55. UART RS-232 Serial Mode Transmit Timing Diagram  
Table 105. UART RS-232 Serial Mode Transmit Timing Parameters  
ID  
Parameter  
Transmit Bit Time  
Symbol  
Min  
Max  
1/Fbaud_rate + Tref_clk  
Unit  
2
UA1  
tTbit  
1/Fbaud_rate1 – Tref_clk  
1
Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (LPUART_clk frequency)/(SBR[12:0]  
× (OSR+1)).  
2
Tref_clk: The period of UART reference clock ref_clk (LPUART_clk after SBR divider).  
4.10.16.0.2 UART Receiver  
The following figure depicts the RS-232 serial mode receive timing with 8 data bit/1 stop bit format.  
Table 106 lists serial mode receive timing characteristics.  
POSSIBLE  
PARITY  
UA2  
UA2  
Bit 3  
BIT  
NEXT  
START  
BIT  
Start  
Bit  
UARTx_RX_DATA  
(input)  
STOP  
BIT  
Bit 7  
Bit 0  
Bit 1  
Bit 2  
Bit 4  
Bit 5  
Bit 6  
Par Bit  
UA2  
UA2  
Figure 56. UART RS-232 Serial Mode Receive Timing Diagram  
Table 106. RS-232 Serial Mode Receive Timing Parameters  
ID  
Parameter  
Receive Bit Time1  
Symbol  
Min  
Max  
Unit  
2
UA2  
tRbit  
1/Fbaud_rate  
1/Fbaud_rate  
+
1/(16 × Fbaud_rate  
)
1/(16 × Fbaud_rate)  
1
2
The UART receiver can tolerate 1/((OSR+1) × Fbaud_rate) tolerance in each bit, but accumulation tolerance in one frame must  
not exceed 3/((OSR+1) × Fbaud_rate).  
Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (LPUART_clk frequency)/(SBR[12:0] ×  
(OSR+1)).  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
101  
Electrical characteristics  
4.10.16.0.3 UART IrDA Mode Timing  
The following subsections give the UART transmit and receive timings in IrDA mode.  
UART IrDA Mode Transmitter  
The following figure depicts the UART IrDA mode transmit timing, with 8 data bit/1 stop bit format.  
Table 107 lists the transmit timing characteristics.  
UA3  
UA3  
UA4  
UA3  
UA3  
UARTx_TX_DATA  
(output)  
Start  
Bit  
STOP  
BIT  
POSSIBLE  
PARITY  
BIT  
Bit 0  
Bit 1  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
Bit 7  
Figure 57. UART IrDA Mode Transmit Timing Diagram  
Table 107. IrDA Mode Transmit Timing Parameters  
ID  
Parameter  
Symbol  
Min  
Max  
1/Fbaud_rate + Tref_clk  
Unit  
2
UA3 Transmit Bit Time in IrDA mode  
UA4 Transmit IR Pulse Duration  
tTIRbit  
1/Fbaud_rate1 – Tref_clk  
tTIRpulse (TNP+1)/(OSR+1) × (1/Fbaud_rat (TNP+1)/(OSR+1) × (1/Fbaud_rat  
e) – Tref_clk e) + Tref_clk  
1
2
Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (LPUART_clk frequency)/(SBR[12:0] ×  
(OSR+1)).  
Tref_clk: The period of UART reference clock ref_clk (LPUART_clk after SBR divider).  
UART IrDA Mode Receiver  
The following figure depicts the UART IrDA mode receive timing, with 8 data bit/1 stop bit format.  
Table 108 lists the receive timing characteristics.  
UA5  
UA6  
UA5  
UA5  
UA5  
UARTx_RX_DATA  
(input)  
STOP  
BIT  
Start  
Bit  
POSSIBLE  
PARITY  
BIT  
Bit 0  
Bit 1  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
Bit 7  
Figure 58. UART IrDA Mode Receive Timing Diagram  
Table 108. IrDA Mode Receive Timing Parameters  
ID  
Parameter  
Symbol  
Min  
Max  
1/Fbaud_rate  
Unit  
2
UA5 Receive Bit Time1 in IrDA mode  
tRIRbit  
1/Fbaud_rate  
+
1/(16 × Fbaud_rate  
)
1/(16 × Fbaud_rate  
)
UA6 Receive IR Pulse Duration  
tRIRpulse  
1.41 μs  
(5/16) × (1/Fbaud_rate  
)
1
The UART receiver can tolerate 1/((OSR+1) × Fbaud_rate) tolerance in each bit. But accumulation tolerance in one frame  
must not exceed 3/((OSR+1) × Fbaud_rate).  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
102  
NXP Semiconductors  
Electrical characteristics  
2
Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (LPUART_clk frequency)/(SBR[12:0] ×  
(OSR+1)).  
4.10.17 USB HSIC Timings  
This section describes the electrical information of the USB HSIC port.  
NOTE  
HSIC is a DDR signal. The following timing specification is for both rising  
and falling edges.  
4.10.17.1 USB HSIC Transmit Timing  
Tstrobe  
USB_H_STROBE  
Todelay  
Todelay  
USB_H_DATA  
Figure 59. USB HSIC Transmit Waveform  
Table 109. USB HSIC Transmit Parameters  
Name  
Parameter  
Min  
Max  
Unit  
Comment  
Tstrobe strobe period  
4.165  
550  
4.168  
1350  
2
ns  
ps  
Todelay data output delay time  
Measured at 50% point  
Averaged from 30% – 70% points  
Tslew  
strobe/data rising/falling time  
0.7  
V/ns  
4.10.17.2 USB HSIC Receive Timing  
Tstrobe  
USB_H_STROBE  
USB_H_DATA  
Thold  
Tsetup  
Figure 60. USB HSIC Receive Waveform  
1
Table 110. USB HSIC Receive Parameters  
Name  
Parameter  
Min  
Max  
Unit  
Comment  
Tstrobe strobe period  
Thold data hold time  
4.165  
300  
4.168  
ns  
ps  
Measured at 50% point  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
103  
Electrical characteristics  
1
Table 110. USB HSIC Receive Parameters (continued)  
Name  
Parameter  
Min  
Max  
Unit  
Comment  
Tsetup  
Tslew  
data setup time  
300  
0.7  
2
ps  
Measured at 50% point  
Averaged from 30% – 70% points  
strobe/data rising/falling time  
V/ns  
1
The timings in the table are guaranteed when:  
—AC I/O voltage is between 0.9× to 1× the I/O supply  
—DDR_SEL configuration bits of the I/O are set to (10)b  
4.10.18 USB 2.0 PHY Parameters  
4.10.18.1 USB 2.0 PHY Transmitter specifications  
This section describes the transmitter specifications for USB2.0 PHY.  
4.10.18.1.1 USB 2.0 PHY full-speed/low-speed transmitter specifications  
The following table lists the full-speed/low-speed (FS/LS) transmitter specifications for USB2.0 PHY.  
Table 111. USB 2.0 PHY FS/LS transmitter specifications  
Symbol  
Description  
Min Typ  
Max  
Units  
VOL  
VOH  
Output Voltage Low  
0
2.8  
0.8  
1.3  
4
0.3  
3.6  
V
V
Output Voltage High (Driven)  
VOSE1 Single Ended One (SE1)  
V
VCRS  
TFR  
TLR  
TFF  
Output Signal Cross Over Voltage  
2.0  
20  
V
Driver Rise Time - FS  
Driver Rise Time - LS  
Driver Fall Time - FS  
Driver Fall Time - LS  
ns  
ns  
ns  
ns  
%
%
Ω
75  
300  
20  
4
TLF  
75  
300  
111.11  
125  
49.5  
3.5  
4
TFRFM Differential Rise and Fall Time Matching - FS  
TLRFM Differential Rise and Fall Time Matching - LS  
ZHSDRV Driver Output Resistance (Also serves as HS Termination)  
90  
80  
40.5  
-3.5  
-4  
TDJ1  
TDJ2  
Source Jitter (Next Transition) - FS  
Source Jitter (Paired Transition) - FS  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TFDEOP Source Jitter (Differential to SE0 transition) - FS  
TFEOPT Source SE0 interval of EOP - FS  
-2  
5
160  
-25  
-14  
-95  
175  
25  
TDDJ1  
TDDJ2  
TUDJ1  
Source Jitter in downstream direction (Next Transition) - LS  
Source Jitter in downstream direction (Paired Transition) - LS  
Source Jitter in upstream direction (Next Transition) - LS  
14  
95  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
104  
Electrical characteristics  
Table 111. USB 2.0 PHY FS/LS transmitter specifications (continued)  
Symbol  
Description  
Min Typ  
Max  
Units  
TUDJ2  
Source Jitter in upstream direction (Paired Transition) - LS  
-150  
-40  
150  
100  
1.5  
ns  
ns  
μs  
TLDEOP Source Jitter in upstream direction (Differential to SE0 transition) - LS  
TLEOPT Source SE0 interval of EOP - LS  
1.25  
4.10.18.2 USB 2.0 PHY high-speed transmitter specifications  
The following table lists the high-speed (HS) transmitter specifications for USB 2.0 PHY.  
Table 112. USB 2.0 PHY HS transmitter specifications  
Symbol/Parameter  
Description  
Min Typ  
Max  
Units  
HSOI  
High Speed Idle Level  
-10  
-10  
10  
10  
mV  
mV  
mV  
mV  
mV  
Ω
VHSTERM  
VHSOL  
Termination Voltage in High Speed  
High Speed Data Signaling Low  
Chirp J (Differential Voltage)  
Chirp K (Differential Voltage)  
Driver Output Resistance  
-10  
10  
VCHIRPJ  
700  
-900  
40.5  
100  
100  
-300  
1100  
-500  
49.5  
VCHIRPK  
ZHSDRV  
THSR  
Rise Time (10% to 90%)  
ps  
THSF  
Fall Time (10% to 90%)  
ps  
HS Eye Opening: Template 1  
Differential eye opening at 37.5% US and 62.5% UI for a  
hub measured at TP2 and for a device without a captive  
cable measured at TP3.  
300  
mV  
HS Eye Opening: Template 2  
HS Jitter: Template 1  
Differential eye opening at 37.5% US and 62.5% UI for a  
device with a captive cable measured at TP2.  
-175  
175  
mV  
Peak-Peak Jitter at Zero crossing for a hub measured at  
TP2 and for a device without captive cable measured at  
TP3.  
15  
%UI  
ps  
312.5  
HS Jitter: Template 2  
Peak-Peak Jitter at Zero crossing for a device with captive  
cable measured at TP2.  
25  
%UI  
ps  
520.83  
4.10.18.3 USB 2.0 PHY receiver specifications  
This section describes the receiver specifications implemented in USB 2.0 PHY.  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
105  
Electrical characteristics  
4.10.18.3.1 USB 2.0 PHY full-speed/low-speed (FS/LS) receiver specifications  
Table 113. USB 2.0 PHY FS/LS receiver specifications  
Symbol  
VIH  
Description  
Input Voltage Level - High (Driven)  
Min  
Typ  
Max  
Units  
2
2.7  
3.6  
0.8  
2.0  
2.5  
18.5  
9
V
V
VIHZ  
Input Voltage Level - High (Floating)  
VIL  
Input Voltage Level - Low  
V
VTH  
Switching Threshold  
0.8  
0.8  
-18.5  
-9  
V
VCM  
Common Mode Range  
V
TJR1  
Receiver Jitter Budget (Next Transition) - FS  
Receiver Jitter Budget (Paired Transition) - FS  
Receiver EOP Interval of EOP - FS  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TJR2  
TFEOPR  
TUJR1  
TUJR2  
TDJR1  
TDJR2  
TLEOPR  
82  
US Port Differential Receiver Jitter (Next Transition) - LS  
US Port Differential Receiver Jitter (Paired Transition) - LS  
DS Port Differential Receiver Jitter (Next Transition) - LS  
DS Port Differential Receiver Jitter (Paired Transition) - LS  
Receiver EOP Interval of EOP - LS  
-152  
-200  
-75  
-45  
670  
152  
200  
75  
45  
4.10.18.3.2 USB 2.0 PHY high-speed receiver specifications  
The following table lists the high-speed (HS) receiver specifications for USB 2.0 PHY.  
Table 114. USB 2.0 PHY HS receiver specifications  
Symbol/Parameter  
VHSCM  
Description  
Min Typ Max Units  
HS RX input common mode voltage range.  
-50  
40.5  
500  
49.5  
20  
mV  
Ω
ZHSDRV  
HS RX input termination (Same as Driver output resistance).  
HSRX Jitter: Template 3  
HS RX Peak-Peak Jitter specification at differential zero crossing for a  
device with captive cable when signal applied at TP2.  
%UI  
416.66 ps  
HSRX Jitter: Template 4  
HS RX Peak-Peak Jitter specification at differential zero crossing for a  
device without captive cable at TP3 and for a hub at TP2.  
30  
%UI  
ps  
625  
275  
HSRX Input Eye Opening: HS RX differential sensitivity specification at 40% and 60% UI for a  
Template 3 device with captive cable when signal is applied at TP2.  
-275  
mV  
HSRX Input Eye Opening: HS RX differential sensitivity specification at 35% and 65% UI for a  
-150  
150  
mV  
Template 4  
device without captive cable when signal is applied at TP3 and for a  
hub when a signal is applied at TP2.  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
106  
Electrical characteristics  
4.10.18.3.3 USB 2.0 PHY high-speed envelope detector specifications  
The following table lists the high-speed (HS) Envelope Detector Specifications of USB 2.0 PHY.  
Table 115. USB 2.0 PHY HS envelope detector specifications  
Symbol  
Description  
Min Typ Max Units  
VHSSQ  
VHSDSC  
HS Squelch Detection threshold (differential signal amplitude)  
HS Disconnect Detection threshold (differential signal amplitude)  
100  
525  
150  
625  
mV  
mV  
4.10.18.4 USB 2.0 PHY full-speed/high-speed terminations specification  
The following table lists the full-speed/low-speed (FS/LS) Terminations Specification of USB 2.0 PHY.  
Table 116. USB 2.0 PHY FS/LS terminations specification  
Symbol  
RPU  
Description  
Min  
Typ  
Max  
Units  
Bus Pull-Up resistor on US Port in IDLE State  
Bus Pull-Up resistor on US Port in ACTIVE State  
Bus Pull-Down resistor on DS Port  
900  
1425  
14.25  
3.0  
1575  
3090  
24.8  
3.6  
Ω
Ω
RPD  
KΩ  
V
VTERM  
Termination Voltage for US Port Pull-Up (RPU)  
4.10.18.5 Voltage threshold specification  
The following table lists the OTG Comparator Specifications of USB2.0 PHY.  
Table 117. USB 2.0 PHY OTG comparator specifications  
Symbol  
Description  
Min  
Typ  
Max  
Units  
sessvld  
vbusvalid  
B-Device Session Valid threshold  
VBUS Valid threshold  
0.8  
4.4  
4.0  
V
V
4.75  
4.10.19 USB 3.0 PHY parameters  
The following content is from the USB 3.0 PHY specifications.  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
107  
Electrical characteristics  
4.10.19.1 USB 3.0 PHY external component  
Table 118. USB 3.0 PHY external component specifications  
Name Min Typ Max Units  
rext 497.5 500 502.5  
Descriptions  
Ω
There needs to be an external resistor component connected at rext ball while the  
internal resistor or current is getting calibrated. Package routing from rext ball to its  
respective bump should not contribute more than 0.05 Ω.  
4.10.19.2 USB 3.0 PHY transmitter module  
Table 119. USB 3.0 PHY transmitter module electrical specifications  
Symbol  
Description  
Min Typ  
Max  
Unit  
Voltage/current parameters  
VTX-DIFFp  
Programmable output voltage  
swing (single-ended)  
50  
500  
1000  
1200  
100  
mV  
mV  
mV  
VTX-DIFFp-p  
Programmable differential  
peak-to-peak output voltage  
100  
400  
1
VTX-DIFFp-p-LOW  
Low power differential p-p TX  
voltage swing  
ITX-SHORT  
RLTX-DIFF  
Transmit lane short-circuit current  
Transmitter differential return loss  
mA  
Db  
0 < -20dB < 100Mhz  
100Mhz < -18dB < 300Mhz  
300Mhz < -16dB < 600Mhz  
600Mhz < -10dB < 2500Mhz  
2500Mhz < -9dB < 4875Mhz  
4875Mhz < -8dB < 11200Mhz  
11200Mhz < -5dB < 16800Mhz  
and -3dB beyond that  
Transmitter common mode return  
loss  
50Hz < -8dB < 15000Mhz  
dB  
RL  
TX-CM  
DC differential TX impedance  
Unit Interval  
80  
100  
120  
Ω
Z
TX-DIFF-DC  
UI  
199.94  
200.06  
0.4  
ps  
UI  
TTX-MAX-JITTER  
Transmitter total jitter  
(peak-to-peak) (Tj)  
TTX-RJ-PLL-sigma  
After application of TX jitter transfer  
function  
2.42  
210  
ps  
UI  
LTLAT-10  
Transmitter data latency  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
108  
Electrical characteristics  
Table 119. USB 3.0 PHY transmitter module electrical specifications (continued)  
Symbol  
Description  
Min Typ  
Max  
Unit  
Voltage parameters  
VTX-CM-DC-ACTIVE-IDLE-DELTA Absolute Delta of DC Common  
Mode Voltage during L0 and  
0
100  
mV  
Electrical Idle.  
VTX-IDLE-DIFF-AC-p  
VTX-CM-DC-LINE-DELTA  
VTX-RCV-DETECT  
Electrical Idle Differential Peak  
Output Voltage  
0
0
20  
25  
600  
8
mV  
mV  
mV  
ns  
Absolute Delta of DC Common  
Mode Voltage between D+ and D-  
The amount of voltage change  
allowed during Receiver Detection  
0
TTX-IDLE-SET-TO-IDLE  
Maximum time to transition to a  
valid Electrical Idle after sending an  
EIOS  
TTX-IDLE-TO-DIFF-DATA  
Maximum time to transition to valid  
diff signaling after leaving Electrical  
Idle  
8
ns  
VTX-CM-AC-PP  
Tx AC peak-peak common mode  
voltage (5.0 GT/s)  
20  
150  
5
mVpp  
TEIExit  
Time to exit Electrical Idle (L0s)  
state and to enter L0  
Txsysclk  
Tx signal characteristics  
ftol  
TX Frequency Long Term Accuracy -300  
300  
33  
ppm of  
Fbaud  
fSSC  
Spread-Spectrum Modulation  
Frequency  
30  
kHz  
t20-80TX  
tskewTX  
TX Rise/Fall Time  
0.2  
0.41  
20  
UI  
ps  
TX Differential Skew  
1
For USB 3.0, no EQ is required  
4.10.19.3 USB 3.0 PHY receiver module  
Table 120. USB 3.0 PHY receiver module electrical specifications  
Symbol  
Description  
Min  
Voltage Parameters  
100  
Typ Max Unit  
Comments  
VRX-DIFF(p-p)  
Differential input voltage  
(peak-to-peak) (that is, receiver  
eye voltage opening)  
1200 mV  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
109  
Electrical characteristics  
Table 120. USB 3.0 PHY receiver module electrical specifications (continued)  
Symbol  
Description  
Min  
Typ Max Unit  
Comments  
VRX-IDLE-DET-DIFF(p-p Differential input threshold voltage  
100  
300  
mV USB3 LFPS  
(peak-to-peak) to detect idle  
(LFPS)  
)
Vcm, acRX  
RX AC Common Mode Voltage  
0
100 mVp-p Simulated at 250 MHz  
VRX-CM-AC  
Receiver common-mode voltage  
for AC coupling  
150  
mV  
ZRX-DIFF-DC  
RLRX-DIFF  
Differential input impedance (DC)  
Receiver differential return loss  
80  
100 120  
W
100 Ω ± 10%  
Same as  
TX RL  
dB  
Jitter Parameters  
TRX-MAX-JITTER  
Receiver total jitter tolerance  
0
0.66  
UI  
Incoming Jitter:  
USB3 = 0.43UI DJ + 0.23UI RJ  
USB3 numbers are with REFC-TLE  
Table 121. PLL module electrical specifications  
Parameter  
Symbol  
Description  
Min  
Typ  
Max Units  
Input Reference Clock  
REF CLK  
Frequency  
REF CLK  
19.2 19.2/24/25/26/38.4 38.4 MHz  
REF CLK Duty  
Cycle  
47  
40  
53  
MHz  
MHz  
ps  
REF CLK  
Frequency  
REF CLK  
40/48/50/52/100 100  
REF CLK RJ  
Tolerance  
Integrated jitter from 10 kHz to 16 MHz  
after applying appropriate PLL ref clock  
transfer function and the protocol JTF  
0.5  
63  
REF CLK Duty  
Cycle  
37  
%
Divided Reference  
Frequency  
19.2  
38.4 MHz  
Dividers  
Input division  
IPDIV<7:0>  
1
2
255 Counts  
1025 Counts  
1025 Counts  
<2 Counts  
Feedback division pll_fbdiv_high<9:0>  
pll_fbdiv_low<9:0>  
2
Feedback fractional  
division range  
>-2  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
110  
Electrical characteristics  
Table 121. PLL module electrical specifications (continued)  
Parameter  
Number of  
Symbol  
Description  
Min  
Typ  
Max Units  
This includes one bit for sign  
27  
Bits  
fractional bits  
VCO  
Clock frequency  
VCO frequency  
Output full rate clocks  
5000  
5000  
MHz  
MHz  
ppm  
VCO oscillation frequency  
This includes SSC deviation  
Output clock  
-5300  
300  
frequency tolerance  
SSC modulation  
rate  
As applicable for USB3.0  
30  
33  
kHz  
ps  
Output clock RJ  
sigma for TX  
After application of TX jitter transfer  
function  
2.42  
1.40  
Output clock RJ  
sigma for RX  
After application of RX jitter transfer  
function  
ps  
4.11 Analog-to-digital converter (ADC)  
The following table shows the ADC electrical specifications for VREFH=VDD_ADC_1P8.  
Table 122. ADC electrical specifications (VREFH=VDD_ADC_1P8)  
Symbol  
VADIN  
Description  
Min  
Typ1  
Max  
Unit  
Notes  
Input Voltage  
VREFL  
4.5  
500  
VREFH  
V
pF  
CADIN  
RADIN  
RAS  
Input capacitance  
Input Resistance  
Ω
2
Analog Source Resistance  
ADC Conversion Clock Frequency  
Sample cycles  
5
kΩ  
fADCK  
24  
MHz  
3
Csample  
Ccompare  
Cconversion  
DNL  
3.5  
131.5  
Fixed compare cycles  
Conversion cycles  
Differential Non-Linearity  
Integral Non-Linearity  
Effective Number of Bits  
Avg = 1  
17.5  
cycles  
cycles  
LSB  
LSB  
Cconversion = Csample + Ccompare  
4
± 0.6  
± 0.9  
-0.5 to +1.1  
4
INL  
±1.1  
5,6,7  
ENOB  
10.1  
10.5  
11.1  
10.4  
10.7  
11.3  
Bits  
Bits  
Bits  
dB  
Avg = 2  
Avg = 16  
SINAD  
Signal to Noise plus Distortion  
SINAD=6.02 x ENOB + 1.76  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
111  
Electrical characteristics  
Table 122. ADC electrical specifications (VREFH=VDD_ADC_1P8) (continued)  
Symbol  
Description  
Min  
Typ1  
Max  
Unit  
Notes  
8
EG  
EO  
Gain error  
-0.29  
0.01  
%FSV  
%FSV  
μA  
9
Offset error  
Supply Current  
10  
IVDDA18  
Iin,ext,leak  
EIL  
480  
External Channel Leakage Current  
Input leakage error  
30  
500  
nA  
RAS * Iin  
mV  
1
Typical values assume VDD_ADC_1P8 = 1.8 V, Temp = 25 °C, fACLK = Max, unless otherwise stated. Typical values are for  
reference only. All values, including Min and Max, are derived from lab characterization and are not tested in production.  
2
This resistance is external to the input pad. To achieve the best results, the analog source resistance must be kept as low as  
possible. The results in this data sheet were derived from a system that had < 15 Ω analog source resistance. The RAS/CAS  
(analog source capacitance) time constant should be kept to < 1 ns.  
3
4
5
6
7
See Figure 61.  
ADC conversion clock at max frequency and using linear histogram.  
Input data used for test was 1 kHz sine wave.  
Measured at VREFH = 1.8 V and pwrsel = 2.  
ENOB can be lower than shown, if an ADC channel corrupts other ADC channels through capacitive coupling. This coupling  
may be dominated by board parasitics. Care must be taken not to corrupt the desired channel being measured. This coupling  
becomes worse at higher analog frequencies and with switching waveforms due to the harmonic content.  
8
9
Error measured at fullscale at 1.8 V.  
Error measured at zero scale at 0 V.  
10 Power Configuration Select, PWRSEL, is set to 10 binary.  
The following table shows the ADC electrical specifications for 1VVREFH<VDD_ADC_1P8.  
Table 123. ADC electrical specifications (1VVREFH<VDD_ADC_1P8)  
Symbol  
VADIN  
Description  
Min  
Typ1  
Max  
Unit  
Notes  
Input Voltage  
VREFL  
4.5  
500  
VREFH  
V
pF  
CADIN  
RADIN  
RAS  
Input capacitance  
Input Resistance  
Ω
2
Analog Source Resistance  
ADC Conversion Clock Frequency  
Sample cycles  
5
kΩ  
fADCK  
24  
MHz  
3
Csample  
Ccompare  
Cconversion  
DNL  
3.5  
131.5  
Fixed compare cycles  
Conversion cycles  
17.5  
cycles  
cycles  
LSB  
LSB  
Cconversion = Csample + Ccompare  
4
Differential Non-Linearity  
Integral Non-Linearity  
± 0.6  
± 0.9  
-0.5 to +1.1  
±1.1  
4
INL  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
112  
Electrical characteristics  
Table 123. ADC electrical specifications (1VVREFH<VDD_ADC_1P8) (continued)  
Symbol  
ENOB  
Description  
Effective Number of Bits  
Min  
Typ1  
Max  
Unit  
Notes  
5,6,7  
9.5  
9.7  
10.1  
11  
Bits  
Bits  
Bits  
dB  
Avg = 1  
Avg = 2  
9.9  
Avg = 16  
10.8  
SINAD  
EG  
Signal to Noise plus Distortion  
Gain error  
SINAD=6.02 x ENOB + 1.76  
8
0.29  
0.01  
%FSV  
%FSV  
μA  
9
EO  
Offset error  
10  
IVDDA18  
Iin,ext,leak  
EIL  
Supply Current  
External Channel Leakage Current  
Input leakage error  
480  
30  
500  
nA  
RAS * Iin  
mV  
1
Typical values assume VDD_ANA_1P8 = 1.8 V, Temp = 25 °C, fACLK = Max, unless otherwise stated. Typical values are for  
reference only. All values, including Min and Max, are derived from lab characterization and are not tested in production.  
2
This resistance is external to the input pad. To achieve the best results, the analog source resistance must be kept as low as  
possible. The results in this data sheet were derived from a system that had < 15 Ω analog source resistance. The RAS/CAS  
(analog source capacitance) time constant should be kept to < 1 ns.  
3
4
5
6
7
See Figure 61.  
ADC conversion clock at max frequency and using linear histogram.  
Input data used for test was 1 kHz sine wave.  
Measured at VREFH = 1 V and pwrsel = 2.  
ENOB can be lower than shown, if an ADC channel corrupts other ADC channels through capacitive coupling. This coupling  
may be dominated by board parasitics. Care must be taken not to corrupt the desired channel being measured. This coupling  
becomes worse at higher analog frequencies and with switching waveforms due to the harmonic content.  
8
9
Error measured at fullscale at 1.0 V.  
Error measured at zero scale at 0 V.  
10 Power Configuration Select, PWRSEL, is set to 10 binary.  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
113  
Electrical characteristics  
The following figure shows a plot of the ADC sample time versus R .  
AS  
Figure 61. Sample time vs. R  
AS  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
114  
Boot mode configuration  
5 Boot mode configuration  
This section provides information on boot mode configuration pins allocation and boot devices interfaces  
allocation.  
5.1  
Boot mode configuration inputs  
The following table lists boot option dedicated inputs. These inputs are sampled at reset and can be used  
to override fuse values, depending on the value of FORCE_BOOT_FROM_FUSE. After this fuse is  
blown, the Boot mode inputs are ignored by ROM; ROM receives 'boot mode' from the  
BT_MODE_FUSES fuse. The boot option inputs are in effect when BT_FUSE_SEL fuse is ‘0’ (cleared,  
which is the case for an unblown fuse). For detailed boot mode options configured by the Boot mode pins,  
see the “System Boot, Fusemap, and eFuse” chapter of the device reference manual.  
Table 124. Boot options and associated inputs used for Boot  
Interface  
IP Instance  
Allocated Pads During Boot  
SCU_BOOT_MODE0  
Comment  
BOOT_MODE[0]  
BOOT_MODE[1]  
BOOT_MODE[2]  
BOOT_MODE[3]  
BOOT_MODE[4]  
BOOT_MODE[5]  
Input  
Input  
Input  
Input  
Input  
Input  
Boot mode selection  
SCU_BOOT_MODE1  
SCU_BOOT_MODE2  
SCU_BOOT_MODE3  
SCU_BOOT_MODE4  
SCU_BOOT_MODE5  
5.2  
Boot devices interfaces allocation  
The following table lists the interfaces that can be used by the boot process in accordance with the  
specific Boot mode configuration. The table also describes the interface’s specific modes and IOMUXC  
allocation, which are configured during boot when appropriate.  
Table 125. Interface allocation during boot  
Interface  
MMC  
IP Instance  
Allocated Pads During Boot  
Comment  
USDHC-0  
EMMC0_CLK, EMMC0_CMD, EMMC0_DATA0, 4 or 8 bit  
EMMC0_DATA1, EMMC0_DATA2,  
EMMC0_DATA3, EMMC0_DATA4,  
EMMC0_DATA5, EMMC0_DATA6,  
EMMC0_DATA7, EMMC0_RESET_B  
SD/MMC  
USDHC-1  
USDHC1_CLK, USDHC1_CMD,  
4 or 8 bit  
USDHC1_DATA0, USDHC1_DATA1,  
USDHC1_DATA2, USDHC1_DATA3,  
USDHC1_DATA4, USDHC1_DATA5,  
USDHC1_DATA6, USDHC1_DATA7,  
USDHC1_VSELECT, USDHC1_RESET_B  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
115  
Boot mode configuration  
Table 125. Interface allocation during boot (continued)  
Allocated Pads During Boot  
Interface  
SD  
IP Instance  
Comment  
USDHC-2  
USDHC2_CLK, USDHC2_CMD,  
USDHC2_DATA0, USDHC2_DATA1,  
USDHC2_DATA2, USDHC2_DATA3,  
USDHC2_RESET_B, USDHC2_VSELECT,  
USDHC2_CD_B  
4 bit  
QSPI  
QSPI0  
QSPI0A_DATA0, QSPI0A_DATA1,  
QSPI0A_DATA2, QSPI0A_DATA3,  
QSPI0A_DQS, QSPI0A_SS0_B,  
QSPI0A_SS1_B, QSPI0A_SCLK,  
QSPI0B_SCLK, QSPI0B_DATA0,  
QSPI0B_DATA1, QSPI0B_DATA2,  
QSPI0B_DATA3, QSPI0B_DQS,  
QSPI0B_SS0_B, QSPI0B_SS1_B  
4, dual-4, or 8 bit  
During boot, QSPI0B can only be used in  
combination with QSPI0A, i.e. booting with  
4-bit QSPI0B is not supported.  
NAND  
GPMI  
EMMC0_CLK, EMMC0_CMD, EMMC0_DATA0, 8 bit  
EMMC0_DATA1, EMMC0_DATA2,  
EMMC0_DATA3, EMMC0_DATA4,  
EMMC0_DATA5, EMMC0_DATA6,  
EMMC0_DATA7, EMMC0_STROBE,  
EMMC0_RESET_B,, USDHC1_DATA0,  
USDHC1_DATA1  
Boot from CS0 only, but will drive CS1to high  
when booting if specified in fuse, this is for  
Multi-CS NAND chip.  
• Single-ended DQS—use EMMC0_CMD  
• Single-ended RE—use USDHC1_DATA5  
• Differential DQS—  
USDHC1_DATA2, USDHC1_DATA3,  
USDHC1_DATA4, USDHC1_DATA5  
USDHC1_DATA6, USDHC1_DATA7  
USDHC1_STROBE  
• _N use USDHC1_DATA2  
• _P use USDHC1_DATA3  
• Differential RE—  
• _N use USDHC1_DATA0  
• _P use USDHC1_DATA1  
USB  
USB-OTG  
PHY  
USB_OTG1_VBUS, USB_OTG1_DP,  
USB_OTG1_DN, USB_OTG2_VBUS,  
USB_OTG2_DP, USB_OTG2_DN  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
116  
Package information and contact assignments  
6 Package information and contact assignments  
This section contains package information and contact assignments for the following package(s):  
FCPBGA, 29 x 29 mm, 0.75 mm pitch  
6.1  
FCPBGA, 29 x 29 mm, 0.75 mm pitch  
This section includes the following information for the 29 x 29 mm, 0.75 mm pitch package:  
Mechanical package drawing  
Ball map  
Contact assignments  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
117  
Package information and contact assignments  
6.1.1  
29 x 29 mm package case outline  
The following figure shows the top, bottom, and side views of the 29 × 29 mm package.  
Figure 62. 29 x 29 mm Package Top, Bottom, and Side Views  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
118  
NXP Semiconductors  
Package information and contact assignments  
The notes in the following figure pertain to the preceding figure., “29 x 29 mm Package Top, Bottom, and  
Side Views.”  
Figure 63. Notes on 29 x 29 mm Package Top, Bottom, and Side Views  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
119  
Package information and contact assignments  
6.1.2  
29 x 29 mm, 0.75 mm pitch ball map  
The following page shows the 29 x 29 mm, 0.75 mm pitch ball map.  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
120  
NXP Semiconductors  
29 x 29 mm, 0.75 pitch ballmap  
ꢀꢉ  
ꢀꢀ  
ꢀꢁ  
ꢀꢂ  
ꢀꢃ  
ꢀꢄ  
ꢀꢅ  
ꢀꢆ  
ꢀꢇ  
ꢀꢈ  
ꢁꢉ  
ꢁꢀ  
ꢁꢁ  
ꢁꢂ  
ꢁꢃ  
ꢁꢄ  
ꢁꢅ  
ꢁꢆ  
ꢁꢇ  
ꢁꢈ  
ꢂꢉ  
ꢂꢀ  
ꢂꢁ  
ꢂꢂ  
ꢂꢃ  
ꢂꢄ  
ꢂꢅ  
ꢂꢆ  
ꢂꢇ  
ꢂꢈ  
ꢃꢉ  
ꢃꢀ  
ꢃꢁ  
ꢃꢂ  
ꢃꢃ  
ꢃꢄ  
ꢃꢅ  
ꢃꢆ  
ꢃꢇ  
ꢃꢈ  
ꢄꢉ  
ꢄꢀ  
ꢄꢁ  
ꢄꢂ  
ꢖꢐꢖꢗꢀꢍꢕꢖ  
ꢚꢔꢙꢛꢍꢀꢁꢄ  
ꢎꢍꢁꢄꢎ  
ꢜꢔꢏꢖꢍꢔꢗꢕ  
ꢙꢉꢍꢝꢊꢛꢖ  
ꢍꢘ  
ꢜꢔꢏꢖꢍꢔꢗꢕ  
ꢙꢉꢍꢔꢙꢛꢕꢖ  
ꢞꢍꢘ  
ꢜꢔꢏꢖꢍꢔꢗꢕ  
ꢙꢀꢍꢔꢙꢛꢕꢖ  
ꢞꢍꢘ  
ꢜꢔꢏꢖꢍꢔꢗꢕ  
ꢙꢀꢍꢝꢊꢛꢖ  
ꢍꢘ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢑꢌꢒꢓꢔꢀꢍ  
ꢕꢖꢌꢖꢗꢍꢘ  
ꢑꢌꢒꢓꢔꢁꢍ  
ꢋꢌꢖꢙꢖꢔꢗ  
ꢖꢐꢖꢗꢉꢍꢎꢒ  
ꢖꢐꢖꢗꢀꢍꢎꢒ  
ꢜꢔꢏꢖꢍꢌꢊꢗ  
ꢊꢉꢍꢕꢟꢉꢍꢜ  
ꢜꢔꢏꢖꢀꢍꢕꢟ  
ꢉꢍꢜ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢜꢔꢏꢖꢉꢍꢕꢟ  
ꢉꢍꢜ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢑꢌꢘꢍꢌꢌꢂ  
ꢍꢗꢟꢍꢜ  
ꢑꢌꢘꢍꢠꢗꢡ  
ꢁꢍꢋꢘꢑꢌ  
ꢑꢌꢘꢍꢠꢗꢡ  
ꢀꢍꢏꢒ  
ꢑꢌꢘꢍꢠꢗꢡ  
ꢀꢍꢋꢘꢑꢌ  
ꢖꢐꢖꢗꢉꢍꢕꢡ  
ꢎꢏꢏꢍꢗꢟꢔ  
ꢖꢐꢖꢗꢉꢍꢕꢡ  
ꢎꢏꢏꢍꢗꢟꢒꢉ  
ꢖꢐꢖꢗꢉꢍꢕꢡ  
ꢎꢏꢏꢍꢗꢟꢒꢁ  
ꢖꢐꢖꢗꢉꢍꢕꢡ  
ꢎꢏꢏꢍꢕꢟꢒꢉ  
ꢖꢐꢖꢗꢀꢍꢕꢡ  
ꢎꢏꢏꢍꢗꢟꢒꢉ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢖꢐꢖꢗꢉꢍꢕꢖ  
ꢚꢔꢙꢛꢍꢀꢁꢄ  
ꢎꢍꢁꢄꢎ  
ꢜꢔꢏꢖꢍꢌꢊꢗ  
ꢊꢉꢍꢕꢟꢉꢍ  
ꢖꢐꢖꢗꢀꢍꢕꢡ  
ꢎꢏꢏꢍꢗꢟꢍꢔꢗ  
ꢑꢌꢒꢓꢔꢀꢍ  
ꢋꢌꢖꢙꢖꢔꢗ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢑꢌꢒꢓꢔꢁꢍ  
ꢔꢒꢍꢘ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢜꢔꢏꢖꢍꢌꢊꢗ  
ꢊꢉꢍꢗꢟꢉꢍꢜ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢜꢔꢏꢖꢀꢍꢕꢟ  
ꢉꢍꢐ  
ꢜꢔꢏꢖꢀꢍꢗꢟꢉ  
ꢍꢜ  
ꢜꢔꢏꢖꢉꢍꢗꢟꢉ  
ꢍꢜ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢜꢔꢏꢖꢉꢍꢕꢟ  
ꢉꢍꢐ  
ꢑꢌꢘꢍꢌꢌꢂ  
ꢍꢗꢟꢍꢐ  
ꢑꢌꢘꢍꢌꢌꢂ  
ꢍꢕꢟꢍꢐ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢑꢌꢘꢍꢠꢗꢡ  
ꢁꢍꢒꢜ  
ꢑꢌꢘꢍꢠꢗꢡ  
ꢀꢍꢒꢜ  
ꢖꢐꢖꢗꢉꢍꢕꢡ  
ꢎꢏꢏꢍꢗꢟꢒꢀ  
ꢖꢐꢖꢗꢉꢍꢕꢡ  
ꢎꢏꢏꢍꢕꢟꢔ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢖꢐꢖꢗꢀꢍꢕꢡ  
ꢎꢏꢏꢍꢕꢟꢔ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢚꢙꢖꢟꢔꢊꢐ  
ꢁꢍꢕꢟ  
ꢚꢙꢖꢟꢔꢊꢐ  
ꢉꢍꢕꢟ  
ꢑꢌꢒꢓꢔꢁꢍ  
ꢕꢖꢌꢖꢗꢍꢘ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢖꢐꢖꢗꢀꢍꢎꢒ  
ꢏꢠ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢜꢔꢏꢖꢍꢌꢊꢗ  
ꢊꢉꢍꢗꢟꢉꢍꢐ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢜꢔꢏꢖꢀꢍꢗꢟꢉ  
ꢍꢐ  
ꢜꢔꢏꢖꢉꢍꢗꢟꢉ  
ꢍꢐ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢑꢌꢘꢍꢌꢌꢂ  
ꢍꢕꢟꢍꢜ  
ꢑꢌꢘꢍꢠꢗꢡ  
ꢁꢍꢒꢐ  
ꢑꢌꢘꢍꢠꢗꢡ  
ꢀꢍꢒꢐ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢖꢐꢖꢗꢉꢍꢕꢡ  
ꢎꢏꢏꢍꢕꢟꢒꢁ  
ꢖꢐꢖꢗꢀꢍꢕꢡ  
ꢎꢏꢏꢍꢗꢟꢒꢀ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢖꢐꢖꢗꢀꢍꢕꢡ  
ꢎꢏꢏꢍꢕꢟꢒꢀ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢜꢔꢏꢖꢍꢔꢗꢕ  
ꢙꢉꢍꢜꢖꢕꢌꢗ  
ꢍꢘ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢑꢌꢒꢓꢔꢁꢍ  
ꢝꢜ  
ꢖꢐꢖꢗꢉꢍꢎꢒ  
ꢏꢠ  
ꢞꢌꢜꢏꢀꢊꢍꢒ  
ꢊꢗꢊꢉ  
ꢞꢌꢜꢏꢀꢊꢍꢒ  
ꢊꢗꢊꢀ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢜꢔꢏꢖꢍꢕꢖꢟ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢎꢙꢘꢍꢌꢏꢡꢍ  
ꢎꢙꢘꢍꢔꢙꢛ  
ꢍꢜ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢖꢐꢖꢗꢉꢍꢕꢡ  
ꢎꢏꢏꢍꢗꢟꢒꢂ  
ꢖꢐꢖꢗꢉꢍꢕꢡ  
ꢎꢏꢏꢍꢕꢟꢒꢀ  
ꢖꢐꢖꢗꢀꢍꢕꢡ  
ꢎꢏꢏꢍꢗꢟꢔ  
ꢖꢐꢖꢗꢀꢍꢕꢡ  
ꢎꢏꢏꢍꢗꢟꢒꢂ  
ꢖꢐꢖꢗꢀꢍꢕꢡ  
ꢎꢏꢏꢍꢕꢟꢒꢁ  
ꢎꢙꢘꢍꢔꢙꢛ  
ꢜꢔꢏꢖꢍꢌꢊꢗ  
ꢊꢍꢕꢖꢚꢔꢙ  
ꢛꢀꢉꢉꢎꢍꢐ  
ꢖꢐꢖꢗꢉꢍꢕꢡ  
ꢎꢏꢏꢍꢗꢟꢍꢔꢗ  
ꢖꢐꢖꢗꢉꢍꢕꢡ  
ꢎꢏꢏꢍꢕꢟꢍꢔꢗ  
ꢖꢐꢖꢗꢀꢍꢕꢡ  
ꢎꢏꢏꢍꢕꢟꢍꢔꢗ  
ꢎꢙꢘꢍꢒꢊꢗ  
ꢚꢙꢖꢟꢔꢊꢐ  
ꢀꢍꢕꢟ  
ꢚꢙꢖꢟꢔꢊꢐ  
ꢁꢍꢗꢟ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢞꢌꢜꢏꢀꢊꢍꢒ  
ꢊꢗꢊꢂ  
ꢞꢌꢜꢏꢀꢊꢍꢒ  
ꢊꢗꢊꢁ  
ꢞꢌꢜꢏꢉꢊꢍꢌ  
ꢌꢉꢍꢘ  
ꢞꢌꢜꢏꢉꢊꢍꢌ  
ꢔꢙꢛ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢜꢔꢏꢖꢍꢕꢖꢚꢍ  
ꢞꢕ  
ꢑꢌꢘꢍꢌꢌꢂ  
ꢍꢕꢖꢟꢗ  
ꢑꢌꢘꢍꢠꢗꢡ  
ꢁꢍꢕꢖꢟꢗ  
ꢎꢙꢘꢍꢌꢏꢡꢍ  
ꢎꢙꢘꢍꢔꢙꢛ  
ꢍꢐ  
ꢎꢙꢘꢍꢒꢊꢗ  
ꢊꢍꢐ  
ꢑꢌꢒꢓꢔꢀꢍ  
ꢒꢊꢗꢊꢉ  
ꢑꢌꢒꢓꢔꢀꢍ  
ꢒꢊꢗꢊꢁ  
ꢖꢐꢖꢗꢉꢍꢕꢡ  
ꢎꢏꢏꢍꢕꢟꢒꢂ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢖꢐꢖꢗꢀꢍꢕꢡ  
ꢎꢏꢏꢍꢕꢟꢒꢉ  
ꢖꢐꢖꢗꢀꢍꢕꢡ  
ꢎꢏꢏꢍꢕꢟꢒꢂ  
ꢎꢙꢘꢍꢌꢏꢡ  
ꢜꢔꢏꢖꢍꢌꢊꢗ  
ꢊꢍꢕꢖꢚꢔꢙ  
ꢛꢀꢉꢉꢎꢍꢜ  
ꢑꢌꢘꢍꢓꢌꢏꢔ  
ꢉꢍꢌꢗꢕꢠꢘ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢑꢌꢘꢍꢌꢌꢂ  
ꢍꢗꢔꢁ  
ꢞꢌꢜꢏꢀꢊꢍꢌ  
ꢔꢙꢛ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢞꢌꢜꢏꢉꢊꢍꢒ  
ꢊꢗꢊꢀ  
ꢞꢌꢜꢏꢉꢊꢍꢌ  
ꢌꢀꢍꢘ  
ꢞꢌꢜꢏꢉꢘꢍꢌ  
ꢔꢙꢛ  
ꢞꢌꢜꢏꢉꢘꢍꢒ  
ꢊꢗꢊꢂ  
ꢞꢌꢜꢏꢉꢘꢍꢌ  
ꢌꢉꢍꢘ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢑꢌꢘꢍꢠꢗꢡ  
ꢁꢍꢏꢒ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢎꢙꢘꢍꢒꢊꢗ  
ꢊꢍꢜ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢑꢌꢒꢓꢔꢀꢍ  
ꢒꢊꢗꢊꢀ  
ꢑꢌꢒꢓꢔꢀꢍ  
ꢒꢊꢗꢊꢂ  
ꢑꢌꢒꢓꢔꢀꢍ  
ꢒꢊꢗꢊꢅ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢑꢌꢒꢓꢔꢁꢍ  
ꢔꢙꢛ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢜꢔꢏꢖꢍꢔꢗꢕ  
ꢙꢀꢍꢜꢖꢕꢌꢗ  
ꢍꢘ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢞꢉꢄ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢞꢉꢅ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢚꢙꢖꢟꢔꢊꢐ  
ꢀꢍꢗꢟ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢞꢌꢜꢏꢀꢊꢍꢌ  
ꢌꢀꢍꢘ  
ꢞꢌꢜꢏꢉꢊꢍꢒ  
ꢊꢗꢊꢉ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢞꢌꢜꢏꢉꢊꢍꢒ  
ꢞꢌ  
ꢞꢌꢜꢏꢉꢘꢍꢒ  
ꢊꢗꢊꢁ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢖꢎꢎꢔꢉꢍꢒ  
ꢊꢗꢊꢉ  
ꢖꢎꢎꢔꢉꢍꢒ  
ꢊꢗꢊꢁ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢖꢎꢎꢔꢉꢍꢒ  
ꢊꢗꢊꢆ  
ꢖꢎꢎꢔꢉꢍꢌ  
ꢗꢕꢠꢘꢖ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢑꢌꢒꢓꢔꢀꢍ  
ꢔꢎꢒ  
ꢑꢌꢒꢓꢔꢀꢍ  
ꢒꢊꢗꢊꢄ  
ꢑꢌꢒꢓꢔꢁꢍ  
ꢒꢊꢗꢊꢀ  
ꢖꢐꢖꢗꢀꢍꢕꢡ  
ꢎꢏꢏꢍꢗꢟꢒꢁ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢞꢉꢅ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢞꢉꢄ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢎꢉ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢞꢉꢃ  
ꢚꢙꢖꢟꢔꢊꢐ  
ꢉꢍꢗꢟ  
ꢑꢌꢘꢍꢌꢌꢂ  
ꢍꢗꢔꢂ  
ꢞꢌꢜꢏꢀꢊꢍꢒ  
ꢞꢌ  
ꢞꢌꢜꢏꢉꢊꢍꢒ  
ꢊꢗꢊꢁ  
ꢞꢌꢜꢏꢉꢊꢍꢒ  
ꢊꢗꢊꢂ  
ꢞꢌꢜꢏꢉꢘꢍꢒ  
ꢊꢗꢊꢉ  
ꢞꢌꢜꢏꢉꢘꢍꢒ  
ꢊꢗꢊꢀ  
ꢞꢌꢜꢏꢉꢘꢍꢒ  
ꢞꢌ  
ꢞꢌꢜꢏꢉꢘꢍꢌ  
ꢌꢀꢍꢘ  
ꢑꢌꢘꢍꢓꢌꢏꢔ  
ꢉꢍꢒꢊꢗꢊ  
ꢖꢎꢎꢔꢉꢍꢔ  
ꢙꢛ  
ꢖꢎꢎꢔꢉꢍꢒ  
ꢊꢗꢊꢀ  
ꢖꢎꢎꢔꢉꢍꢒ  
ꢊꢗꢊꢂ  
ꢖꢎꢎꢔꢉꢍꢒ  
ꢊꢗꢊꢄ  
ꢖꢎꢎꢔꢉꢍꢒ  
ꢊꢗꢊꢅ  
ꢖꢎꢎꢔꢉꢍꢕ  
ꢖꢌꢖꢗꢍꢘ  
ꢑꢌꢒꢓꢔꢀꢍ  
ꢒꢊꢗꢊꢃ  
ꢑꢌꢒꢓꢔꢀꢍ  
ꢒꢊꢗꢊꢆ  
ꢑꢌꢒꢓꢔꢁꢍ  
ꢔꢎꢒ  
ꢑꢌꢒꢓꢔꢁꢍ  
ꢒꢊꢗꢊꢉ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢞꢉꢃ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢎꢉ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢑꢌꢘꢍꢌꢌꢂ  
ꢍꢗꢔꢉ  
ꢞꢌꢜꢏꢀꢊꢍꢌ  
ꢌꢉꢍꢘ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢖꢎꢎꢔꢉꢍꢔ  
ꢎꢒ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢖꢎꢎꢔꢉꢍꢒ  
ꢊꢗꢊꢃ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢑꢌꢒꢓꢔꢀꢍ  
ꢔꢙꢛ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢑꢌꢒꢓꢔꢀꢍ  
ꢌꢗꢕꢠꢘꢖ  
ꢑꢌꢒꢓꢔꢁꢍ  
ꢒꢊꢗꢊꢂ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢞꢌꢉꢍꢜ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢞꢉꢈ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢞꢉꢂ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢞꢉꢂ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢞꢉꢈ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢞꢌꢉꢍꢜ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢞꢌꢉꢍꢐ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢞꢀꢀ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢞꢉꢇ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢞꢉꢁ  
ꢑꢌꢘꢍꢌꢌꢂ  
ꢍꢗꢔꢀ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢑꢌꢒꢓꢔꢁꢍ  
ꢒꢊꢗꢊꢁ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢞꢉꢁ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢞꢉꢇ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢞꢀꢀ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢞꢌꢉꢍꢐ  
ꢜꢔꢏꢖꢍꢌꢊꢗ  
ꢊꢉꢍꢜꢓꢣꢍ  
ꢜꢙꢙꢍꢕꢖꢚꢍ  
ꢕꢖꢗꢑꢕꢐ  
ꢋꢒꢒꢍꢑꢌꢘ  
ꢍꢌꢌꢂꢍꢙꢒ  
ꢠꢍꢀꢜꢉꢍꢔ  
ꢊꢜ  
ꢋꢒꢒꢍꢎꢙꢘ  
ꢍꢒꢏꢡꢍꢀꢜꢇ  
ꢍꢂꢜꢂ  
ꢋꢒꢒꢍꢑꢌꢘ  
ꢍꢌꢌꢂꢍꢗꢔꢍ  
ꢂꢜꢂ  
ꢋꢒꢒꢍꢞꢌꢜꢏ  
ꢀꢊꢍꢀꢜꢇꢍꢂ  
ꢜꢂ  
ꢋꢒꢒꢍꢜꢔꢏꢖ  
ꢀꢍꢜꢙꢙꢍꢀꢜ  
ꢋꢒꢒꢍꢜꢔꢏꢖ  
ꢍꢌꢊꢗꢊꢉꢍ  
ꢀꢜꢉ  
ꢜꢔꢏꢖꢉꢍꢜꢓ  
ꢣꢍꢜꢙꢙꢍꢕꢖ  
ꢚꢍꢕꢖꢗꢑꢕꢐ  
ꢋꢒꢒꢍꢑꢌꢘ  
ꢍꢠꢗꢡꢀꢍꢀꢜ  
ꢋꢒꢒꢍꢑꢌꢘ  
ꢍꢠꢗꢡꢁꢍꢂꢜ  
ꢋꢒꢒꢍꢑꢌꢒ  
ꢓꢔꢀꢍꢀꢜꢇꢍ  
ꢂꢜꢂ  
ꢋꢒꢒꢍꢑꢌꢒ  
ꢓꢔꢁꢍꢀꢜꢇꢍ  
ꢂꢜꢂ  
ꢋꢒꢒꢍꢖꢐꢖ  
ꢗꢉꢍꢀꢜꢇꢍꢂ  
ꢜꢂ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢜꢔꢏꢖ  
ꢉꢍꢀꢜꢉ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢖꢐꢖ  
ꢗꢍꢎꢒꢏꢠꢍꢀ  
ꢜꢇꢍꢁꢜꢄꢍꢂ  
ꢜꢂ  
ꢋꢒꢒꢍꢚꢙꢖ  
ꢟꢔꢊꢐꢍꢀꢜ  
ꢇꢍꢂꢜꢂ  
ꢋꢒꢒꢍꢞꢌꢜꢏ  
ꢉꢍꢀꢜꢇꢍꢂꢜ  
ꢋꢒꢒꢍꢜꢔꢏꢖ  
ꢍꢌꢊꢗꢊꢉꢍ  
ꢜꢙꢙꢍꢀꢜꢇ  
ꢜꢔꢏꢖꢀꢍꢜꢓ  
ꢣꢍꢜꢙꢙꢍꢕꢖ  
ꢚꢍꢕꢖꢗꢑꢕꢐ  
ꢋꢒꢒꢍꢜꢔꢏꢖ  
ꢉꢍꢜꢙꢙꢍꢀꢜ  
ꢋꢒꢒꢍꢜꢔꢏꢖ  
ꢍꢙꢒꢠꢍꢀꢜꢉ  
ꢍꢔꢊꢜ  
ꢋꢒꢒꢍꢑꢌꢘ  
ꢍꢠꢗꢡꢁꢍꢀꢜ  
ꢋꢒꢒꢍꢑꢌꢘ  
ꢍꢠꢗꢡꢀꢍꢂꢜ  
ꢋꢒꢒꢍꢖꢎꢎ  
ꢔꢉꢍꢀꢜꢇꢍꢂ  
ꢜꢂ  
ꢋꢒꢒꢍꢑꢌꢒ  
ꢓꢔꢀꢍꢀꢜꢇꢍ  
ꢂꢜꢂ  
ꢋꢒꢒꢍꢖꢐꢖ  
ꢗꢉꢍꢀꢜꢇꢍꢂ  
ꢜꢂ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢞꢌꢀꢍꢜ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢞꢀꢉ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢞꢀꢂ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢎꢀ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢞꢉꢀ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢞꢉꢆ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢜꢔꢏꢖ  
ꢀꢍꢀꢜꢉ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢞꢉꢆ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢞꢉꢀ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢎꢀ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢞꢀꢂ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢞꢀꢉ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢞꢌꢀꢍꢜ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢞꢌꢀꢍꢐ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢞꢀꢃ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢞꢀꢄ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢞꢀꢁ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢞꢉꢉ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢞꢉꢉ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢞꢀꢁ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢞꢀꢄ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢞꢀꢃ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢞꢌꢀꢍꢐ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢑꢌꢒ  
ꢓꢔꢍꢋꢌꢖꢙ  
ꢖꢔꢗꢍꢀꢜꢇꢍ  
ꢂꢜꢂ  
ꢋꢒꢒꢍꢖꢐꢖ  
ꢗꢀꢍꢀꢜꢇꢍꢁ  
ꢜꢄꢍꢂꢜꢂ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢔꢚꢉꢈ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢔꢚꢀꢉ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢔꢚꢉꢇ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢔꢚꢀꢂ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢗꢠꢀ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢜꢔꢏꢖ  
ꢍꢒꢏꢡꢍꢀꢜꢇ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢜꢔꢏꢖ  
ꢍꢏꢠꢘꢍꢀꢜꢇ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢎꢙꢘ  
ꢍꢀꢜꢇ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢗꢠꢀ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢔꢚꢀꢂ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢔꢚꢉꢇ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢔꢚꢀꢉ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢔꢚꢉꢈ  
ꢋꢒꢒꢍꢒꢒꢕ  
ꢍꢔꢓꢀꢍꢋꢒ  
ꢒꢞ  
ꢋꢒꢒꢍꢒꢒꢕ  
ꢍꢔꢓꢉꢍꢋꢒ  
ꢒꢞ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢔꢚꢀꢅ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢔꢚꢀꢀ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢔꢚꢀꢁ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢔꢚꢉꢉ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢗꢠꢉ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢋꢕꢖꢚ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢊꢐꢊ  
ꢀꢍꢀꢜꢇ  
ꢋꢒꢒꢍꢜꢔꢏꢖ  
ꢍꢙꢒꢠꢍꢀꢜꢇ  
ꢋꢒꢒꢍꢊꢐꢊ  
ꢉꢍꢀꢜꢇ  
ꢋꢒꢒꢍꢊꢐꢊ  
ꢉꢍꢀꢜꢇ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢡꢜꢑ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢋꢕꢖꢚ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢗꢠꢉ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢔꢚꢉꢉ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢔꢚꢀꢁ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢔꢚꢀꢀ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢔꢚꢀꢅ  
ꢋꢒꢒꢍꢒꢒꢕ  
ꢍꢔꢓꢀꢍꢋꢒ  
ꢒꢞ  
ꢋꢒꢒꢍꢑꢌꢘ  
ꢍꢓꢌꢏꢔꢉꢍꢀ  
ꢜꢁ  
ꢋꢒꢒꢍꢑꢌꢘ  
ꢍꢓꢌꢏꢔꢉꢍꢀ  
ꢜꢇ  
ꢋꢒꢒꢍꢒꢒꢕ  
ꢍꢔꢓꢉꢍꢋꢒ  
ꢒꢞ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢡꢜꢑ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢡꢜꢑ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢒꢒꢕ  
ꢍꢔꢓꢀꢍꢋꢒ  
ꢒꢞ  
ꢋꢒꢒꢍꢒꢒꢕ  
ꢍꢔꢓꢉꢍꢋꢒ  
ꢒꢞ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢔꢚꢀꢃ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢔꢚꢉꢆ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢔꢛꢉꢍꢜ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢔꢚꢉꢀ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢔꢚꢉꢅ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢔꢚꢉꢃ  
ꢋꢒꢒꢍꢎꢖꢎ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢡꢜꢑ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢡꢜꢑ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢎꢖꢎ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢔꢚꢉꢃ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢔꢚꢉꢅ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢔꢚꢉꢀ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢔꢛꢉꢍꢜ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢔꢚꢉꢆ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢔꢚꢀꢃ  
ꢋꢒꢒꢍꢒꢒꢕ  
ꢍꢔꢓꢀꢍꢋꢒ  
ꢒꢞ  
ꢋꢒꢒꢍꢒꢒꢕ  
ꢍꢔꢓꢉꢍꢋꢒ  
ꢒꢞ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢔꢚꢀꢄ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢔꢛꢉꢍꢐ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢔꢚꢉꢁ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢔꢚꢉꢂ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢔꢚꢉꢄ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢡꢜꢑ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢡꢜꢑ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢡꢜꢑ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢔꢚꢉꢄ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢔꢚꢉꢂ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢔꢚꢉꢁ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢔꢛꢉꢍꢐ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢔꢚꢀꢄ  
ꢋꢒꢒꢍꢒꢒꢕ  
ꢍꢔꢓꢀꢍꢋꢒ  
ꢒꢞ  
ꢋꢒꢒꢍꢒꢒꢕ  
ꢍꢔꢓꢉꢍꢋꢒ  
ꢒꢞ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢡꢜꢑ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢡꢜꢑ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢊꢊ  
ꢊꢘ  
ꢊꢔ  
ꢊꢒ  
ꢊꢖ  
ꢊꢚ  
ꢊꢡ  
ꢊꢓ  
ꢊꢢ  
ꢊꢛ  
ꢊꢙ  
ꢊꢎ  
ꢊꢐ  
ꢊꢜ  
ꢊꢕ  
ꢊꢗ  
ꢊꢑ  
ꢊꢋ  
ꢊꢝ  
ꢊꢣ  
ꢘꢊ  
ꢘꢘ  
ꢘꢔ  
ꢘꢒ  
ꢘꢖ  
ꢘꢚ  
ꢘꢡ  
ꢘꢓ  
ꢘꢢ  
ꢘꢛ  
ꢘꢙ  
ꢘꢎ  
ꢘꢐ  
ꢋꢒꢒꢍꢒꢒꢕ  
ꢍꢔꢓꢀꢍꢋꢒ  
ꢒꢞꢍꢔꢛꢖ  
ꢋꢒꢒꢍꢒꢒꢕ  
ꢍꢔꢓꢉꢍꢋꢒ  
ꢒꢞꢍꢔꢛꢖ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢔꢚꢂꢀ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢔꢛꢀꢍꢐ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢔꢚꢀꢇ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢔꢚꢀꢈ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢔꢚꢁꢃ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢡꢜꢑ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢡꢜꢑ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢡꢜꢑ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢔꢚꢁꢃ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢔꢚꢀꢈ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢔꢚꢀꢇ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢔꢛꢀꢍꢐ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢔꢚꢂꢀ  
ꢋꢒꢒꢍꢒꢒꢕ  
ꢍꢔꢓꢀꢍꢋꢒ  
ꢒꢞꢍꢔꢛꢖ  
ꢋꢒꢒꢍꢒꢒꢕ  
ꢍꢔꢓꢉꢍꢋꢒ  
ꢒꢞꢍꢔꢛꢖ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢔꢚꢂꢉ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢔꢚꢁꢁ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢔꢛꢀꢍꢜ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢔꢚꢀꢆ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢔꢚꢁꢂ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢔꢚꢁꢉ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢎꢖꢎ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢡꢜꢑ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢡꢜꢑ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢎꢖꢎ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢔꢚꢁꢉ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢔꢚꢁꢂ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢔꢚꢀꢆ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢔꢛꢀꢍꢜ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢔꢚꢁꢁ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢔꢚꢂꢉ  
ꢋꢒꢒꢍꢒꢒꢕ  
ꢍꢔꢓꢀꢍꢋꢒ  
ꢒꢞꢍꢔꢛꢖ  
ꢋꢒꢒꢍꢒꢒꢕ  
ꢍꢔꢓꢉꢍꢋꢒ  
ꢒꢞꢍꢔꢛꢖ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢡꢜꢑ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢡꢜꢑ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢡꢜꢑ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢒꢒꢕ  
ꢍꢔꢓꢀꢍꢋꢒ  
ꢒꢊꢍꢜꢙꢙꢍꢀ  
ꢜꢇ  
ꢋꢒꢒꢍꢒꢒꢕ  
ꢍꢔꢓꢉꢍꢋꢒ  
ꢒꢊꢍꢜꢙꢙꢍꢀ  
ꢜꢇ  
ꢋꢒꢒꢍꢒꢒꢕ  
ꢍꢔꢓꢀꢍꢋꢒ  
ꢒꢞ  
ꢋꢒꢒꢍꢒꢒꢕ  
ꢍꢔꢓꢉꢍꢋꢒ  
ꢒꢞ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢔꢚꢂꢁ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢔꢚꢁꢆ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢔꢚꢁꢈ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢔꢚꢁꢅ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢔꢚꢁꢀ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢡꢜꢑ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢡꢜꢑ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢔꢚꢁꢀ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢔꢚꢁꢅ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢔꢚꢁꢈ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢔꢚꢁꢆ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢔꢚꢂꢁ  
ꢋꢒꢒꢍꢒꢒꢕ  
ꢍꢔꢓꢀꢍꢋꢒ  
ꢒꢞ  
ꢋꢒꢒꢍꢒꢒꢕ  
ꢍꢔꢓꢉꢍꢋꢒ  
ꢒꢞ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢔꢚꢁꢄ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢔꢚꢁꢇ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢔꢚꢂꢂ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢊꢗꢠ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢤꢞ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢤꢞ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢊꢗꢠ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢔꢚꢂꢂ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢔꢚꢁꢇ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢔꢚꢁꢄ  
ꢋꢒꢒꢍꢒꢒꢕ  
ꢍꢔꢓꢀꢍꢋꢒ  
ꢒꢞ  
ꢋꢒꢒꢍꢒꢒꢕ  
ꢍꢔꢓꢉꢍꢋꢒ  
ꢒꢞ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢎꢖꢎ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢎꢖꢎ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢎꢖꢎ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢎꢖꢎ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢒꢒꢕ  
ꢍꢔꢓꢀꢍꢋꢒ  
ꢒꢞ  
ꢋꢒꢒꢍꢒꢒꢕ  
ꢍꢔꢓꢉꢍꢋꢒ  
ꢒꢞ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢞꢌꢁꢍꢐ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢞꢁꢂ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢞꢁꢁ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢞꢁꢀ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢞꢁꢄ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢎꢖꢎ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢎꢖꢎ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢎꢖꢎ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢞꢁꢄ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢞꢁꢀ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢞꢁꢁ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢞꢁꢂ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢞꢌꢁꢍꢐ  
ꢋꢒꢒꢍꢒꢒꢕ  
ꢍꢔꢓꢀꢍꢋꢒ  
ꢒꢞ  
ꢋꢒꢒꢍꢒꢒꢕ  
ꢍꢔꢓꢉꢍꢋꢒ  
ꢒꢞ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢞꢌꢁꢍꢜ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢞꢀꢈ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢞꢁꢉ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢎꢁ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢞꢁꢃ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢞꢂꢉ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢎꢖꢎ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢎꢖꢎ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢊꢐꢊ  
ꢁꢍꢀꢜꢇ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢞꢂꢉ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢞꢁꢃ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢎꢁ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢞꢁꢉ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢞꢀꢈ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢞꢌꢁꢍꢜ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢊꢒꢔ  
ꢍꢒꢏꢡꢍꢀꢜꢇ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢊꢐꢊ  
ꢂꢍꢀꢜꢇ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢎꢖꢎ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢎꢖꢎ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢌꢏꢎꢉ  
ꢍꢀꢜꢇꢍꢂꢜꢂ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢎꢃꢍ  
ꢡꢜꢗꢍꢑꢊꢕ  
ꢗꢍꢀꢜꢇꢍꢂꢜ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢞꢌꢂꢍꢐ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢞꢀꢇ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢞꢀꢆ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢞꢁꢆ  
ꢋꢕꢖꢚꢓꢍꢊ  
ꢒꢔ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢊꢒꢔ  
ꢍꢀꢜꢇ  
ꢋꢒꢒꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢞꢁꢆ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢞꢀꢆ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢞꢀꢇ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢞꢌꢂꢍꢐ  
ꢊꢒꢔꢍꢏꢐꢅ  
ꢊꢒꢔꢍꢏꢐꢃ  
ꢊꢒꢔꢍꢏꢐꢂ  
ꢋꢒꢒꢍꢊꢆꢁ  
ꢋꢒꢒꢍꢊꢆꢁ  
ꢌꢏꢎꢉꢍꢜꢒ  
ꢌꢏꢎꢉꢍꢔꢙꢛ  
ꢋꢒꢒꢍꢎꢃꢍ  
ꢡꢜꢗꢍꢑꢊꢕ  
ꢗꢍꢀꢜꢇꢍꢂꢜ  
ꢋꢒꢒꢍꢌꢜꢏꢍ  
ꢌꢊꢏꢍꢀꢜꢇꢍ  
ꢂꢜꢂ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢞꢌꢂꢍꢜ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢞꢀꢅ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢞꢁꢅ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢕꢖꢚꢙꢍꢊ  
ꢒꢔ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢎꢃꢉꢍꢏꢁꢔꢉ  
ꢍꢌꢔꢙ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢞꢁꢅ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢞꢀꢅ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢞꢌꢂꢍꢜ  
ꢋꢒꢒꢍꢊꢄꢂ  
ꢋꢒꢒꢍꢊꢄꢂ  
ꢋꢒꢒꢍꢊꢆꢁ  
ꢋꢒꢒꢍꢊꢆꢁ  
ꢋꢒꢒꢍꢌꢜꢏꢍ  
ꢌꢊꢏꢍꢀꢜꢇꢍ  
ꢂꢜꢂ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢔꢜꢍ  
ꢀꢜꢇ  
ꢋꢒꢒꢍꢌꢔꢑ  
ꢍꢀꢜꢇ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢊꢒꢔꢍꢏꢐꢀ  
ꢋꢒꢒꢍꢊꢄꢂ  
ꢋꢒꢒꢍꢊꢆꢁ  
ꢋꢒꢒꢍꢊꢆꢁ  
ꢋꢒꢒꢍꢊꢆꢁ  
ꢌꢏꢎꢉꢍꢏꢠ  
ꢋꢒꢒꢍꢖꢌꢊꢏ  
ꢉꢍꢎꢔꢙꢛꢍꢀ  
ꢜꢇꢍꢂꢜꢂ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢎꢂ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢞꢁꢈ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢌꢔꢑ  
ꢍꢀꢜꢇ  
ꢋꢒꢒꢍꢎꢀꢜ  
ꢇꢍꢔꢊꢜ  
ꢎꢃꢀꢍꢡꢜꢏꢠ  
ꢉꢍꢉꢉ  
ꢌꢏꢎꢉꢍꢡꢜꢏ  
ꢠꢉꢍꢉꢉ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢞꢁꢈ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢎꢂ  
ꢊꢒꢔꢍꢏꢐꢆ  
ꢊꢒꢔꢍꢏꢐꢁ  
ꢊꢒꢔꢍꢏꢐꢉ  
ꢋꢒꢒꢍꢊꢄꢂ  
ꢋꢒꢒꢍꢊꢆꢁ  
ꢋꢒꢒꢍꢊꢆꢁ  
ꢌꢏꢎꢉꢍꢕꢌꢗ  
ꢋꢒꢒꢍꢖꢌꢊꢏ  
ꢉꢍꢎꢔꢙꢛꢍꢀ  
ꢜꢇꢍꢂꢜꢂ  
ꢋꢒꢒꢍꢌꢔꢑ  
ꢍꢊꢐꢊꢍꢀꢜ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢞꢁꢇ  
ꢒꢒꢕꢍꢔꢓꢀ  
ꢍꢒꢞꢂꢀ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢎꢊꢏ  
ꢑꢊꢕꢗꢀꢍꢕ  
ꢗꢌꢍꢘ  
ꢎꢃꢀꢍꢏꢁꢔꢉ  
ꢍꢌꢔꢙ  
ꢎꢃꢉꢍꢡꢜꢏꢠ  
ꢉꢍꢉꢉ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢞꢂꢀ  
ꢒꢒꢕꢍꢔꢓꢉ  
ꢍꢒꢞꢁꢇ  
ꢊꢒꢔꢍꢏꢐꢄ  
ꢋꢒꢒꢍꢊꢄꢂ  
ꢋꢒꢒꢍꢊꢄꢂ  
ꢋꢒꢒꢍꢊꢆꢁ  
ꢋꢒꢒꢍꢊꢆꢁ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢖꢌꢊꢏꢀꢍꢗꢟ  
ꢄꢍꢕꢟꢉ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢌꢐꢋ  
ꢌꢍꢃꢜꢁ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢑꢊꢕꢗꢀꢍꢕ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢌꢏꢎꢉꢍꢜꢠ  
ꢝꢖꢕꢍꢖꢐ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢊꢄꢂ  
ꢋꢒꢒꢍꢊꢆꢁ  
ꢋꢒꢒꢍꢖꢌꢊꢏ  
ꢀꢍꢌꢜꢒꢏꢚꢍ  
ꢌꢜꢏꢍꢀꢜꢇꢍꢂ  
ꢜꢂ  
ꢋꢒꢒꢍꢓꢒꢎꢏ  
ꢍꢕꢟꢉꢍꢙꢒ  
ꢠꢉꢍꢀꢜꢉꢍꢔ  
ꢊꢜ  
ꢋꢒꢒꢍꢓꢒꢎꢏ  
ꢍꢕꢟꢉꢍꢙꢒ  
ꢠꢀꢍꢀꢜꢉꢍꢔ  
ꢊꢜ  
ꢋꢒꢒꢍꢎꢏꢜꢏꢍ  
ꢒꢌꢏꢍꢒꢏꢡꢍꢀ  
ꢜꢇꢍꢂꢜꢂ  
ꢋꢒꢒꢍꢌꢔꢑ  
ꢍꢟꢗꢊꢙꢍꢀꢜ  
ꢌꢊꢏꢀꢍꢕꢟꢚ  
ꢖꢌꢊꢏꢉꢍꢗꢟ  
ꢄꢍꢕꢟꢉ  
ꢖꢌꢊꢏꢉꢍꢗꢟ  
ꢁꢍꢕꢟꢂ  
ꢖꢌꢊꢏꢀꢍꢗꢟ  
ꢁꢍꢕꢟꢂ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢎꢏꢜꢏꢍ  
ꢔꢌꢏꢀꢍꢀꢜꢇ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢎꢏꢜꢏꢍ  
ꢒꢌꢏꢉꢍꢀꢜꢉ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢌꢔꢑꢍꢡꢜꢏꢠ  
ꢉꢍꢉꢉ  
ꢑꢊꢕꢗꢉꢍꢕ  
ꢗꢌꢍꢘ  
ꢎꢃꢀꢍꢡꢜꢏꢠ  
ꢉꢍꢉꢀ  
ꢎꢃꢀꢍꢏꢁꢔꢉ  
ꢍꢌꢒꢊ  
ꢎꢃꢉꢍꢏꢁꢔꢉ  
ꢍꢌꢒꢊ  
ꢎꢃꢉꢍꢡꢜꢏꢠ  
ꢉꢍꢉꢀ  
ꢌꢊꢏꢀꢍꢗꢟꢒ  
ꢌꢜꢏꢁꢍꢔꢌꢉ  
ꢌꢜꢏꢁꢍꢌꢒꢠ  
ꢌꢜꢏꢉꢍꢔꢌꢉ  
ꢌꢊꢏꢀꢍꢗꢟꢔ  
ꢌꢜꢏꢁꢍꢌꢔꢛ  
ꢌꢜꢏꢉꢍꢌꢒꢏ  
ꢋꢒꢒꢍꢓꢒꢎꢏ  
ꢍꢕꢟꢉꢍꢋꢓ  
ꢍꢕꢟꢍꢂꢜꢂ  
ꢋꢒꢒꢍꢎꢏꢜꢏꢍ  
ꢔꢌꢏꢍꢒꢏꢡꢍꢀ  
ꢜꢇ  
ꢋꢒꢒꢍꢙꢋꢒ  
ꢌꢍꢒꢏꢡꢍꢀꢜ  
ꢇꢍꢂꢜꢂ  
ꢌꢊꢏꢀꢍꢗꢟꢚ  
ꢖꢌꢊꢏꢉꢍꢗꢟ  
ꢃꢍꢕꢟꢀ  
ꢖꢌꢊꢏꢀꢍꢗꢟ  
ꢂꢍꢕꢟꢁ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢓꢒꢎꢏ  
ꢍꢗꢟꢉꢍꢀꢜꢉ  
ꢋꢒꢒꢍꢓꢒꢎꢏ  
ꢍꢕꢟꢉꢍꢀꢜꢇ  
ꢋꢒꢒꢍꢎꢏꢜꢏꢍ  
ꢔꢌꢏꢉꢍꢀꢜꢇ  
ꢋꢒꢒꢍꢎꢏꢜꢏꢍ  
ꢔꢌꢏꢉꢍꢀꢜꢉ  
ꢋꢒꢒꢍꢎꢏꢜꢏꢍ  
ꢒꢌꢏꢀꢍꢀꢜꢉ  
ꢋꢒꢒꢍꢎꢏꢜꢏꢍ  
ꢒꢌꢏꢀꢍꢀꢜꢇ  
ꢋꢒꢒꢍꢙꢋꢒ  
ꢌꢉꢍꢀꢜꢇ  
ꢋꢒꢒꢍꢙꢋꢒ  
ꢌꢉꢍꢀꢜꢉ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢌꢔꢑꢍꢡꢜꢏꢠ  
ꢉꢍꢉꢀ  
ꢑꢊꢕꢗꢀꢍꢔ  
ꢗꢌꢍꢘ  
ꢑꢊꢕꢗꢉꢍꢗ  
ꢑꢊꢕꢗꢉꢍꢕ  
ꢡꢜꢗꢉꢍꢔꢊ  
ꢜꢗꢑꢕꢖ  
ꢌꢊꢏꢀꢍꢕꢟꢒ  
ꢌꢜꢏꢁꢍꢌꢒꢏ  
ꢌꢜꢏꢉꢍꢌꢔꢛ  
ꢌꢊꢏꢀꢍꢕꢟꢔ  
ꢋꢒꢒꢍꢓꢒꢎꢏ  
ꢍꢗꢟꢉꢍꢙꢒꢠ  
ꢍꢀꢜꢉꢍꢔꢊꢜ  
ꢋꢒꢒꢍꢓꢒꢎꢏ  
ꢍꢗꢟꢉꢍꢒꢏꢡ  
ꢍꢂꢜꢂ  
ꢋꢒꢒꢍꢎꢏꢜꢏꢍ  
ꢒꢌꢏꢀꢍꢜꢙꢙꢍ  
ꢀꢜꢉ  
ꢋꢒꢒꢍꢎꢏꢜꢏꢍ  
ꢒꢌꢏꢉꢍꢜꢙꢙꢍ  
ꢀꢜꢉ  
ꢋꢒꢒꢍꢌꢐꢋ  
ꢌꢍꢙꢒꢠꢍꢀꢜ  
ꢇꢍꢔꢊꢜ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢖꢌꢊꢏꢉꢍꢚꢌ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢓꢒꢎꢏ  
ꢍꢗꢟꢉꢍꢀꢜꢇ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢒꢒꢍꢎꢏꢜꢏꢍ  
ꢔꢌꢏꢀꢍꢀꢜꢉ  
ꢋꢒꢒꢍꢎꢏꢜꢏꢍ  
ꢒꢌꢏꢉꢍꢀꢜꢇ  
ꢋꢒꢒꢍꢙꢋꢒ  
ꢌꢀꢍꢀꢜꢇ  
ꢋꢒꢒꢍꢙꢋꢒ  
ꢌꢀꢍꢀꢜꢉ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢌꢔꢑꢍꢡꢜꢏꢠ  
ꢉꢍꢉꢁ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢑꢊꢕꢗꢉꢍꢔ  
ꢗꢌꢍꢘ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢡꢜꢗꢉꢍꢔꢠ  
ꢎꢜꢊꢕꢖ  
ꢖꢌꢊꢏꢉꢍꢌꢔ  
ꢛꢗ  
ꢖꢌꢊꢏꢀꢍꢌꢔ  
ꢛꢗ  
ꢖꢌꢊꢏꢀꢍꢗꢟ  
ꢃꢍꢕꢟꢀ  
ꢌꢔꢑꢍꢘꢠꢠ  
ꢗꢍꢎꢠꢒꢖꢃ  
ꢌꢔꢑꢍꢡꢜꢏꢠ  
ꢉꢍꢉꢄ  
ꢜꢎꢏꢔꢍꢏꢁꢔꢍ  
ꢌꢔꢙ  
ꢑꢊꢕꢗꢀꢍꢗ  
ꢡꢜꢗꢀꢍꢔꢊ  
ꢜꢗꢑꢕꢖ  
ꢌꢜꢏꢁꢍꢔꢌꢀ  
ꢌꢜꢏꢉꢍꢌꢒꢠ  
ꢡꢜꢗꢉꢍꢔꢙꢛ  
ꢌꢔꢑꢍꢜꢎꢏꢔ  
ꢍꢌꢗꢊꢐꢒꢘ  
ꢖꢌꢊꢏꢉꢍꢗꢟ  
ꢖꢌꢊꢏꢉꢍꢗꢟ  
ꢖꢌꢊꢏꢀꢍꢗꢟ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢌꢔꢑꢍꢘꢠꢠ  
ꢗꢍꢎꢠꢒꢖꢂ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢢꢗꢊꢡꢍꢗꢎ  
ꢡꢜꢗꢀꢍꢔꢠ  
ꢎꢜꢊꢕꢖ  
ꢌꢜꢏꢉꢍꢔꢌꢀ  
ꢡꢜꢗꢀꢍꢔꢙꢛ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢖꢌꢊꢏꢉꢍꢌꢔ  
ꢛꢕ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢌꢔꢑꢍꢘꢠꢠ  
ꢗꢍꢎꢠꢒꢖꢉ  
ꢌꢔꢑꢍꢡꢜꢏꢠ  
ꢉꢍꢉꢂ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢌꢔꢑꢍꢝꢒꢠ  
ꢡꢍꢠꢑꢗ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢗꢖꢌꢗꢍꢎꢠ  
ꢒꢖꢍꢌꢖꢙꢖꢔ  
ꢌꢔꢑꢍꢜꢎꢏꢔ  
ꢍꢎꢖꢎꢔꢍꢠ  
ꢖꢌꢊꢏꢉꢍꢗꢟ  
ꢂꢍꢕꢟꢁ  
ꢌꢜꢒꢏꢚꢉꢍꢕ  
ꢌꢜꢒꢏꢚꢉꢍꢗ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢌꢔꢑꢍꢘꢠꢠ  
ꢗꢍꢎꢠꢒꢖꢀ  
ꢌꢔꢑꢍꢡꢜꢏꢠ  
ꢉꢍꢉꢃ  
ꢢꢗꢊꢡꢍꢗꢔ  
ꢎꢔꢙꢛꢍꢏꢐꢉ  
ꢌꢐꢋꢌꢍꢗꢊ  
ꢎꢜꢖꢕꢍꢠꢑ  
ꢗꢀ  
ꢌꢐꢋꢌꢍꢗꢊ  
ꢎꢜꢖꢕꢍꢠꢑ  
ꢗꢉ  
ꢊꢐꢊꢍꢗꢖꢌ  
ꢎꢔꢙꢛꢍꢠꢑ  
ꢗꢉ  
ꢌꢜꢒꢏꢚꢉꢍꢖ  
ꢟꢗꢍꢔꢙꢛ  
ꢖꢌꢊꢏꢀꢍꢌꢔ  
ꢛꢕ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢎꢏꢜꢏꢍꢒꢌꢏꢉꢍ  
ꢡꢜꢏꢠꢉꢍꢉꢀ  
ꢎꢏꢜꢏꢍꢒꢌꢏꢉꢍ  
ꢡꢜꢏꢠꢉꢍꢉꢉ  
ꢙꢋꢒꢌꢀꢍꢏꢁ  
ꢔꢀꢍꢌꢔꢙ  
ꢙꢋꢒꢌꢀꢍꢡ  
ꢜꢏꢠꢉꢉ  
ꢙꢋꢒꢌꢉꢍꢏꢁ  
ꢔꢉꢍꢌꢒꢊ  
ꢙꢋꢒꢌꢉꢍꢏꢁ  
ꢔꢉꢍꢌꢔꢙ  
ꢙꢋꢒꢌꢉꢍꢡ  
ꢜꢏꢠꢉꢀ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢢꢗꢊꢡꢍꢗꢒ  
ꢌꢜꢏꢂꢍꢔꢌꢀ  
ꢗꢍꢠꢑꢗꢀꢍꢐ  
ꢓꢒꢎꢏꢍꢕꢟꢉ  
ꢍꢒꢒꢔꢍꢌꢒ  
ꢊꢐꢊꢍꢗꢖꢌ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢖꢌꢊꢏꢀꢍꢚꢌ  
ꢎꢏꢜꢏꢍꢔꢌꢏꢀꢍ  
ꢏꢁꢔꢉꢍꢌꢒꢊ  
ꢎꢏꢜꢏꢍꢔꢌꢏꢉꢍ  
ꢒꢊꢗꢊꢂꢍꢐ  
ꢎꢏꢜꢏꢍꢔꢌꢏꢉꢍ  
ꢒꢊꢗꢊꢀꢍꢐ  
ꢎꢏꢜꢏꢍꢔꢌꢏꢉꢍ  
ꢔꢙꢛꢍꢐ  
ꢎꢏꢜꢏꢍꢔꢌꢏꢉꢍ  
ꢒꢊꢗꢊꢉꢍꢐ  
ꢎꢏꢜꢏꢍꢔꢌꢏꢉꢍ  
ꢒꢊꢗꢊꢁꢍꢐ  
ꢎꢏꢜꢏꢍꢒꢌꢏꢀꢍ  
ꢏꢁꢔꢉꢍꢌꢔꢙ  
ꢎꢏꢜꢏꢍꢒꢌꢏꢉꢍ  
ꢏꢁꢔꢉꢍꢌꢔꢙ  
ꢎꢏꢜꢏꢍꢒꢌꢏꢉꢍ  
ꢏꢁꢔꢉꢍꢌꢒꢊ  
ꢙꢋꢒꢌꢀꢍꢏꢁ  
ꢔꢉꢍꢌꢒꢊ  
ꢙꢋꢒꢌꢉꢍꢏꢁ  
ꢔꢀꢍꢌꢒꢊ  
ꢙꢋꢒꢌꢉꢍꢏꢁ  
ꢔꢀꢍꢌꢔꢙ  
ꢙꢋꢒꢌꢉꢍꢡ  
ꢜꢏꢠꢉꢉ  
ꢌꢐꢋꢌꢍꢗꢊ  
ꢌꢐꢋꢌꢍꢗꢊ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢠꢐꢍꢠꢚꢚꢍ  
ꢘꢑꢗꢗꢠꢐ  
ꢢꢗꢊꢡꢍꢗꢕ  
ꢌꢗꢍꢘ  
ꢌꢜꢏꢂꢍꢌꢒꢏ  
ꢜꢠꢕꢍꢘ  
ꢢꢗꢊꢡꢍꢗꢒꢏ  
ꢗꢍꢠꢑꢗꢀꢍꢜ  
ꢎꢜꢖꢕꢍꢏꢐꢉ  
ꢎꢜꢖꢕꢍꢏꢐꢀ  
ꢜꢎꢏꢔꢍꢖꢊꢕ  
ꢙꢣꢍꢝꢊꢕꢐ  
ꢏꢐꢡ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢖꢌꢊꢏꢀꢍꢗꢟ  
ꢖꢌꢊꢏꢀꢍꢚꢌ  
ꢓꢒꢎꢏꢍꢕꢟꢉ  
ꢍꢓꢜꢒ  
ꢎꢏꢜꢏꢍꢔꢌꢏꢉꢍ  
ꢒꢊꢗꢊꢂꢍꢜ  
ꢎꢏꢜꢏꢍꢔꢌꢏꢉꢍ  
ꢒꢊꢗꢊꢀꢍꢜ  
ꢎꢏꢜꢏꢍꢔꢌꢏꢉꢍ  
ꢔꢙꢛꢍꢜ  
ꢎꢏꢜꢏꢍꢔꢌꢏꢉꢍ  
ꢒꢊꢗꢊꢉꢍꢜ  
ꢎꢏꢜꢏꢍꢔꢌꢏꢉꢍ  
ꢒꢊꢗꢊꢁꢍꢜ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢌꢔꢑꢍꢡꢜꢏꢠ  
ꢉꢍꢉꢆ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢌꢜꢏꢂꢍꢌꢒꢠ  
ꢌꢜꢏꢂꢍꢌꢔꢛ  
ꢓꢒꢎꢏꢍꢗꢟꢉ  
ꢍꢒꢒꢔꢍꢌꢔ  
ꢓꢒꢎꢏꢍꢗꢟꢉ  
ꢍꢊꢑꢟꢍꢐ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢖꢌꢊꢏꢉꢍꢚꢌ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢎꢏꢜꢏꢍꢒꢌꢏꢀꢍ  
ꢏꢁꢔꢉꢍꢌꢒꢊ  
ꢎꢏꢜꢏꢍꢒꢌꢏꢀꢍ  
ꢒꢊꢗꢊꢂꢍꢜ  
ꢎꢏꢜꢏꢍꢒꢌꢏꢀꢍ  
ꢒꢊꢗꢊꢀꢍꢜ  
ꢎꢏꢜꢏꢍꢒꢌꢏꢀꢍ  
ꢔꢙꢛꢍꢜ  
ꢎꢏꢜꢏꢍꢒꢌꢏꢀꢍ  
ꢒꢊꢗꢊꢉꢍꢜ  
ꢎꢏꢜꢏꢍꢒꢌꢏꢀꢍ  
ꢒꢊꢗꢊꢁꢍꢜ  
ꢙꢋꢒꢌꢉꢍꢔ  
ꢙꢋꢒꢌꢉꢍꢔ  
ꢙꢋꢒꢌꢉꢍꢔ  
ꢙꢋꢒꢌꢉꢍꢔ  
ꢙꢋꢒꢌꢉꢍꢔ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢌꢔꢑꢍꢡꢜꢏꢠ  
ꢉꢍꢉꢅ  
ꢜꢎꢏꢔꢍꢏꢁꢔꢍ  
ꢌꢒꢊ  
ꢊꢐꢊꢍꢗꢖꢌ  
ꢌꢜꢏꢂꢍꢔꢌꢉ  
ꢓꢀꢍꢗꢟꢂꢍꢐ  
ꢓꢀꢍꢗꢟꢁꢍꢐ  
ꢓꢀꢍꢗꢟꢀꢍꢐ  
ꢓꢀꢍꢗꢟꢉꢍꢐ  
ꢓꢀꢍꢔꢙꢛꢍꢐ  
ꢗꢍꢠꢑꢗꢉꢍꢜ  
ꢓꢒꢎꢏꢍꢕꢟꢉ  
ꢍꢒꢒꢔꢍꢌꢔ  
ꢓꢒꢎꢏꢍꢗꢟꢉ  
ꢍꢊꢑꢟꢍꢜ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢓꢒꢎꢏꢍꢗꢟꢉ  
ꢍꢓꢜꢒ  
ꢎꢏꢜꢏꢍꢔꢌꢏꢀꢍ  
ꢒꢊꢗꢊꢂꢍꢐ  
ꢎꢏꢜꢏꢍꢔꢌꢏꢀꢍ  
ꢒꢊꢗꢊꢀꢍꢐ  
ꢎꢏꢜꢏꢍꢔꢌꢏꢀꢍ  
ꢔꢙꢛꢍꢐ  
ꢎꢏꢜꢏꢍꢔꢌꢏꢀꢍ  
ꢒꢊꢗꢊꢉꢍꢐ  
ꢎꢏꢜꢏꢍꢔꢌꢏꢀꢍ  
ꢒꢊꢗꢊꢁꢍꢐ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢎꢏꢜꢏꢍꢔꢌꢏꢉꢍ  
ꢏꢁꢔꢉꢍꢌꢔꢙ  
ꢎꢏꢜꢏꢍꢒꢌꢏꢀꢍ  
ꢒꢊꢗꢊꢂꢍꢐ  
ꢎꢏꢜꢏꢍꢒꢌꢏꢀꢍ  
ꢒꢊꢗꢊꢀꢍꢐ  
ꢎꢏꢜꢏꢍꢒꢌꢏꢀꢍ  
ꢔꢙꢛꢍꢐ  
ꢎꢏꢜꢏꢍꢒꢌꢏꢀꢍ  
ꢒꢊꢗꢊꢉꢍꢐ  
ꢎꢏꢜꢏꢍꢒꢌꢏꢀꢍ  
ꢒꢊꢗꢊꢁꢍꢐ  
ꢙꢋꢒꢌꢀꢍꢡ  
ꢜꢏꢠꢉꢀ  
ꢙꢋꢒꢌꢉꢍꢔ  
ꢙꢋꢒꢌꢉꢍꢔ  
ꢙꢋꢒꢌꢉꢍꢔ  
ꢙꢋꢒꢌꢉꢍꢔ  
ꢙꢋꢒꢌꢉꢍꢔ  
ꢜꢎꢏꢔꢍꢏꢐꢗꢍ  
ꢊꢐꢊꢍꢗꢖꢌ  
ꢓꢀꢍꢗꢟꢂꢍꢜ  
ꢓꢀꢍꢗꢟꢁꢍꢜ  
ꢓꢀꢍꢗꢟꢀꢍꢜ  
ꢓꢀꢍꢗꢟꢉꢍꢜ  
ꢓꢀꢍꢔꢙꢛꢍꢜ  
ꢗꢍꢠꢑꢗꢉꢍꢐ  
ꢎꢏꢜꢏꢍꢔꢌꢏꢉꢍ  
ꢎꢔꢙꢛꢍꢠꢑ  
ꢓꢒꢎꢏꢍꢗꢟꢉ  
ꢍꢔꢖꢔ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢓꢒꢎꢏꢍꢗꢟꢉ  
ꢍꢕꢖꢟꢗ  
ꢓꢒꢎꢏꢍꢕꢟꢉ  
ꢍꢔꢖꢔ  
ꢓꢒꢎꢏꢍꢕꢟꢉ  
ꢍꢕꢖꢟꢗ  
ꢎꢏꢜꢏꢍꢔꢌꢏꢀꢍ  
ꢒꢊꢗꢊꢂꢍꢜ  
ꢎꢏꢜꢏꢍꢔꢌꢏꢀꢍ  
ꢒꢊꢗꢊꢀꢍꢜ  
ꢎꢏꢜꢏꢍꢔꢌꢏꢀꢍ  
ꢔꢙꢛꢍꢜ  
ꢎꢏꢜꢏꢍꢔꢌꢏꢀꢍ  
ꢒꢊꢗꢊꢉꢍꢜ  
ꢎꢏꢜꢏꢍꢔꢌꢏꢀꢍ  
ꢒꢊꢗꢊꢁꢍꢜ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢌꢔꢑꢍꢘꢠꢠ  
ꢗꢍꢎꢠꢒꢖꢁ  
ꢓꢒꢎꢏꢍꢗꢟꢉ  
ꢍꢔꢙꢛꢍꢖꢒꢜ  
ꢂꢍꢐ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢎꢏꢜꢏꢍꢒꢌꢏꢀꢍ  
ꢡꢜꢏꢠꢉꢍꢉꢀ  
ꢎꢏꢜꢏꢍꢒꢌꢏꢉꢍ  
ꢒꢊꢗꢊꢀꢍꢜ  
ꢎꢏꢜꢏꢍꢒꢌꢏꢉꢍ  
ꢒꢊꢗꢊꢉꢍꢜ  
ꢙꢋꢒꢌꢀꢍꢔ  
ꢙꢋꢒꢌꢀꢍꢔ  
ꢙꢋꢒꢌꢀꢍꢔ  
ꢙꢋꢒꢌꢀꢍꢔ  
ꢙꢋꢒꢌꢀꢍꢔ  
ꢙꢋꢒꢌꢀꢍꢔ  
ꢙꢋꢒꢌꢉꢍꢔ  
ꢙꢋꢒꢌꢉꢍꢔ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢌꢔꢑ  
ꢍꢟꢗꢊꢙ  
ꢌꢔꢑꢍꢘꢠꢠ  
ꢗꢍꢎꢠꢒꢖꢄ  
ꢓꢀꢍꢗꢟꢂꢍꢐ  
ꢓꢀꢍꢗꢟꢀꢍꢐ  
ꢓꢀꢍꢔꢙꢛꢍꢐ  
ꢓꢉꢍꢔꢙꢛꢍꢐ  
ꢓꢉꢍꢗꢟꢀꢍꢐ  
ꢓꢉꢍꢗꢟꢂꢍꢐ  
ꢓꢉꢍꢗꢟꢉꢍꢐ  
ꢓꢉꢍꢗꢟꢁꢍꢐ  
ꢓꢒꢎꢏꢍꢗꢟꢉ  
ꢍꢔꢙꢛꢍꢖꢒꢜ  
ꢂꢍꢜ  
ꢓꢒꢎꢏꢍꢗꢟꢉ  
ꢍꢒꢊꢗꢊꢉꢍ  
ꢖꢒꢜꢁꢍꢜ  
ꢓꢒꢎꢏꢍꢗꢟꢉ  
ꢍꢒꢊꢗꢊꢀꢍ  
ꢖꢒꢜꢀꢍꢜ  
ꢓꢒꢎꢏꢍꢗꢟꢉ  
ꢍꢒꢊꢗꢊꢁꢍ  
ꢖꢒꢜꢉꢍꢜ  
ꢓꢒꢎꢏꢍꢕꢟꢉ  
ꢍꢒꢊꢗꢊꢉꢍ  
ꢓꢒꢎꢏꢍꢕꢟꢉ  
ꢍꢒꢊꢗꢊꢀꢍ  
ꢓꢒꢎꢏꢍꢕꢟꢉ  
ꢍꢒꢊꢗꢊꢁꢍ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢓꢒꢎꢏꢍꢕꢟꢉ  
ꢍꢔꢙꢛꢍꢐ  
ꢓꢒꢎꢏꢍꢕꢟꢉ  
ꢍꢊꢕꢔꢍꢐ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢎꢏꢜꢏꢍꢔꢌꢏꢉꢍ  
ꢡꢜꢏꢠꢉꢍꢉꢉ  
ꢎꢏꢜꢏꢍꢒꢌꢏꢉꢍ  
ꢒꢊꢗꢊꢂꢍꢜ  
ꢎꢏꢜꢏꢍꢒꢌꢏꢉꢍ  
ꢔꢙꢛꢍꢜ  
ꢎꢏꢜꢏꢍꢒꢌꢏꢉꢍ  
ꢒꢊꢗꢊꢁꢍꢜ  
ꢙꢋꢒꢌꢀꢍꢔ  
ꢙꢋꢒꢌꢀꢍꢔ  
ꢙꢋꢒꢌꢀꢍꢏꢁ  
ꢔꢉꢍꢌꢔꢙ  
ꢙꢋꢒꢌꢀꢍꢔ  
ꢙꢋꢒꢌꢀꢍꢔ  
ꢙꢋꢒꢌꢉꢍꢔ  
ꢙꢋꢒꢌꢉꢍꢔ  
ꢙꢋꢒꢌꢉꢍꢔ  
ꢕꢗꢔꢍꢟꢗꢊ  
ꢙꢠ  
ꢜꢎꢏꢔꢍꢠꢐꢍ  
ꢕꢖꢞ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢟꢗꢊꢙꢠ  
ꢓꢀꢍꢗꢟꢁꢍꢐ  
ꢓꢀꢍꢗꢟꢉꢍꢐ  
ꢓꢉꢍꢗꢟꢉꢍꢐ  
ꢓꢉꢍꢗꢟꢁꢍꢐ  
ꢓꢉꢍꢔꢙꢛꢍꢐ  
ꢓꢉꢍꢗꢟꢀꢍꢐ  
ꢓꢉꢍꢗꢟꢂꢍꢐ  
ꢓꢒꢎꢏꢍꢗꢟꢉ  
ꢍꢒꢊꢗꢊꢉꢍ  
ꢖꢒꢜꢁꢍꢐ  
ꢓꢒꢎꢏꢍꢗꢟꢉ  
ꢍꢒꢊꢗꢊꢀꢍ  
ꢖꢒꢜꢀꢍꢐ  
ꢓꢒꢎꢏꢍꢗꢟꢉ  
ꢍꢒꢊꢗꢊꢁꢍ  
ꢖꢒꢜꢉꢍꢐ  
ꢓꢒꢎꢏꢍꢕꢟꢉ  
ꢍꢒꢊꢗꢊꢉꢍ  
ꢓꢒꢎꢏꢍꢕꢟꢉ  
ꢍꢒꢊꢗꢊꢀꢍ  
ꢓꢒꢎꢏꢍꢕꢟꢉ  
ꢍꢒꢊꢗꢊꢁꢍ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢓꢒꢎꢏꢍꢕꢟꢉ  
ꢍꢔꢙꢛꢍꢜ  
ꢓꢒꢎꢏꢍꢕꢟꢉ  
ꢍꢊꢕꢔꢍꢜ  
ꢎꢏꢜꢏꢍꢔꢌꢏꢉꢍ  
ꢡꢜꢏꢠꢉꢍꢉꢀ  
ꢎꢏꢜꢏꢍꢒꢌꢏꢀꢍ  
ꢡꢜꢏꢠꢉꢍꢉꢉ  
ꢎꢏꢜꢏꢍꢒꢌꢏꢉꢍ  
ꢒꢊꢗꢊꢀꢍꢐ  
ꢎꢏꢜꢏꢍꢒꢌꢏꢉꢍ  
ꢒꢊꢗꢊꢉꢍꢐ  
ꢙꢋꢒꢌꢀꢍꢔ  
ꢙꢋꢒꢌꢀꢍꢔ  
ꢙꢋꢒꢌꢀꢍꢔ  
ꢙꢋꢒꢌꢀꢍꢔ  
ꢙꢋꢒꢌꢀꢍꢔ  
ꢙꢋꢒꢌꢀꢍꢔ  
ꢙꢋꢒꢌꢉꢍꢔ  
ꢙꢋꢒꢌꢉꢍꢔ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢋꢌꢌꢍꢌꢔꢑ  
ꢍꢟꢗꢊꢙ  
ꢋꢌꢌꢍꢌꢔꢑ  
ꢍꢟꢗꢊꢙ  
ꢓꢀꢍꢗꢟꢂꢍꢜ  
ꢓꢀꢍꢗꢟꢀꢍꢜ  
ꢓꢀꢍꢔꢙꢛꢍꢜ  
ꢓꢉꢍꢔꢙꢛꢍꢜ  
ꢓꢉꢍꢗꢟꢀꢍꢜ  
ꢓꢉꢍꢗꢟꢂꢍꢜ  
ꢓꢉꢍꢗꢟꢉꢍꢜ  
ꢓꢉꢍꢗꢟꢁꢍꢜ  
ꢓꢒꢎꢏꢍꢗꢟꢉ  
ꢍꢒꢒꢔꢍꢌꢒ  
ꢎꢏꢜꢏꢍꢔꢌꢏꢀꢍ  
ꢎꢔꢙꢛꢍꢠꢑ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢓꢒꢎꢏꢍꢗꢟꢉ  
ꢍꢗꢌꢍꢌꢒꢊ  
ꢓꢒꢎꢏꢍꢗꢟꢉ  
ꢍꢗꢌꢍꢌꢔꢙ  
ꢓꢒꢎꢏꢍꢕꢟꢉ  
ꢍꢎꢠꢐꢍꢄꢋ  
ꢎꢏꢜꢏꢍꢔꢌꢏꢀꢍ  
ꢡꢜꢏꢠꢉꢍꢉꢀ  
ꢎꢏꢜꢏꢍꢔꢌꢏꢀꢍ  
ꢡꢜꢏꢠꢉꢍꢉꢉ  
ꢎꢏꢜꢏꢍꢔꢌꢏꢀꢍ  
ꢏꢁꢔꢉꢍꢌꢔꢙ  
ꢎꢏꢜꢏꢍꢔꢌꢏꢉꢍ  
ꢏꢁꢔꢉꢍꢌꢒꢊ  
ꢋꢌꢌꢍꢎꢊꢏ  
ꢎꢏꢜꢏꢍꢒꢌꢏꢉꢍ  
ꢒꢊꢗꢊꢂꢍꢐ  
ꢎꢏꢜꢏꢍꢒꢌꢏꢉꢍ  
ꢔꢙꢛꢍꢐ  
ꢎꢏꢜꢏꢍꢒꢌꢏꢉꢍ  
ꢒꢊꢗꢊꢁꢍꢐ  
ꢙꢋꢒꢌꢀꢍꢔ  
ꢙꢋꢒꢌꢀꢍꢔ  
ꢙꢋꢒꢌꢀꢍꢏꢁ  
ꢔꢀꢍꢌꢒꢊ  
ꢙꢋꢒꢌꢀꢍꢔ  
ꢙꢋꢒꢌꢀꢍꢔ  
ꢙꢋꢒꢌꢉꢍꢔ  
ꢙꢋꢒꢌꢉꢍꢔ  
ꢙꢋꢒꢌꢉꢍꢔ  
ꢕꢗꢔꢍꢟꢗꢊ  
ꢙꢏ  
ꢋꢌꢌꢍꢌꢔꢑ  
ꢍꢟꢗꢊꢙ  
ꢟꢗꢊꢙꢏ  
ꢓꢀꢍꢗꢟꢁꢍꢜ  
ꢓꢀꢍꢗꢟꢉꢍꢜ  
ꢓꢉꢍꢗꢟꢉꢍꢜ  
ꢓꢉꢍꢗꢟꢁꢍꢜ  
ꢓꢉꢍꢔꢙꢛꢍꢜ  
ꢓꢉꢍꢗꢟꢀꢍꢜ  
ꢓꢉꢍꢗꢟꢂꢍꢜ  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
21  
Package information and contact assignments  
6.1.3  
29 x 29 mm power supplies and functional contact assignments  
The following table shows power supplies contact assignments for the 29 × 29 mm package.  
Table 126. 29 x 29 mm power supplies contact assignments  
Power rail  
Ball reference  
VDD_A53  
VDD_A72  
AM22, AM26, AN23, AP24, AR21, AR25, AT22  
AL29, AL33, AM30, AM34, AN27, AN31, AN35, AP28, AP32, AR29, AR33, AT34  
VDD_ADC_1P8  
AL15  
VDD_ADC_DIG_1P8  
AK16  
VDD_ANA0_1P8  
U29, U31  
VDD_ANA1_1P8  
U25  
VDD_ANA2_1P8  
AJ35  
VDD_ANA3_1P8  
AK20  
VDD_CP_1P8  
AN37  
VDD_DDR_CH0_VDDA_PLL_1P8  
VDD_DDR_CH0_VDDQ  
VDD_DDR_CH0_VDDQ_CKE  
VDD_DDR_CH1_VDDA_PLL_1P8  
VDD_DDR_CH1_VDDQ  
VDD_DDR_CH1_VDDQ_CKE  
VDD_EMMC0_1P8_3P3  
VDD_ENET_MDIO_1P8_3P3  
VDD_ENET0_1P8_3P3  
VDD_ENET1_1P8_2P5_3P3  
VDD_ESAI0_MCLK_1P8_3P3  
VDD_ESAI1_SPDIF_SPI_1P8_3P3  
VDD_FLEXCAN_1P8_3P3  
VDD_GPU0  
AE43  
AA39, AE39, AF38, AG39, AH38, AJ39, U39, V38, W39, Y38  
AB38, AC39, AD38  
AE11  
AA15, AE15, AF16, AG15, AH16, AJ15, U15, V16, W15, Y16  
AB16, AC15, AD16  
N35  
N17  
M40, N39  
T38  
AP16, AR15  
AU15  
N15  
AA19, AB20, AC21, AD18, AD22, AE19, V20, W21, Y18, Y22  
VDD_GPU1  
AA35, AB32, AB36, AC33, AD34, AE35, U35, V36, W33, Y34  
VDD_HDMI_RX0_LDO0_1P0_CAP1  
VDD_HDMI_RX0_LDO1_1P0_CAP1  
VDD_HDMI_RX0_VH_RX_3P31  
VDD_HDMI_TX0_1P0  
AU19  
AU21  
AV20  
AV16  
AW17  
VDD_HDMI_TX0_1P8  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
122  
Package information and contact assignments  
Table 126. 29 x 29 mm power supplies contact assignments (continued)  
Power rail  
Ball reference  
VDD_HDMI_TX0_DIG_3P3  
VDD_HDMI_TX0_LDO_1P0_CAP  
VDD_LVDS_DIG_1P8_3P3  
VDD_LVDS0_1P0  
AW21  
AW15  
AV32  
AV36  
VDD_LVDS0_1P8  
AV34  
VDD_LVDS1_1P0  
AW35  
VDD_LVDS1_1P8  
AW33  
VDD_M1P8_CAP  
AP42  
VDD_M4_GPT_UART_1P8_3P3  
VDD_MAIN  
AL39, AM38  
AA23, AA27, AA31, AB24, AB28, AC25, AC29, AD26, AD30, AE23, AE27, AE31, AF20,  
AF24, AF28, AF32, AF36, AG21, AG33, AH18, AH34, AJ19, AJ31, AK32, AK36, AL17,  
AL21, AL25, AL37, AM18, AN19, AP20, AP36, AR17, AR37, AT18, AT26, AT30, AU35,  
T34, U19, U23, V24, V32, W25, W29, Y26, Y30  
VDD_MEMC  
AC17, AC37, AG17, AG25, AG29, AG37, AH22, AH26, AH30, AJ23, AJ27, AK24, AK28,  
W17, W37  
VDD_MIPI_CSI_DIG_1P8  
VDD_MIPI_CSI0_1P0  
VDD_MIPI_CSI0_1P8  
VDD_MIPI_CSI1_1P0  
VDD_MIPI_CSI1_1P8  
VDD_MIPI_DSI_DIG_1P8_3P3  
VDD_MIPI_DSI0_1P0  
VDD_MIPI_DSI0_1P8  
VDD_MIPI_DSI0_PLL_1P0  
VDD_MIPI_DSI1_1P0  
VDD_MIPI_DSI1_1P8  
VDD_MIPI_DSI1_PLL_1P0  
VDD_MLB_1P82  
AV22  
AV26  
AV24  
AW25  
AU23  
AU27  
AU29  
AW31  
AW29  
AV28  
AV30  
AW27  
T30  
VDD_MLB_DIG_1P8_3P33  
VDD_PCIE_DIG_1P8_3P3  
VDD_PCIE_IOB_1P8  
M14  
T22  
T26  
VDD_PCIE_LDO_1P0_CAP  
VDD_PCIE_LDO_1P8  
VDD_PCIE_SATA0_1P01  
N29  
U27  
M24  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
123  
Package information and contact assignments  
Table 126. 29 x 29 mm power supplies contact assignments (continued)  
Power rail  
Ball reference  
VDD_PCIE_SATA0_PLL_1P81  
VDD_PCIE0_1P0  
N21  
M26  
VDD_PCIE0_PLL_1P8  
VDD_PCIE1_1P0  
N27  
N25  
VDD_PCIE1_PLL_1P8  
VDD_QSPI0_1P8_3P3  
VDD_QSPI1A_1P8_3P3  
VDD_SCU_1P8  
M22  
N19  
M18  
AN39, AP38  
AR39  
AU39  
AK42  
AT38  
AW39  
AM16, AN15  
V26  
VDD_SCU_ANA_1P8  
VDD_SCU_XTAL_1P8  
VDD_SIM0_1P8_3P3  
VDD_SNVS_4P2  
VDD_SNVS_LDO_1P8_CAP  
VDD_SPI_SAI_1P8_3P3  
VDD_USB_HSIC0_1P2  
VDD_USB_HSIC0_1P8  
VDD_USB_OTG1_1P0  
VDD_USB_OTG1_3P3  
VDD_USB_OTG2_1P0  
VDD_USB_OTG2_3P3  
VDD_USB_SS3_LDO_1P0_CAP  
VDD_USB_SS3_TC_3P3  
VDD_USDHC_VSELECT_1P8_3P3  
VDD_USDHC1_1P8_3P3  
VDD_USDHC2_1P8_3P3  
VREFH_ADC  
V28  
M32  
N33  
N31  
M34  
M30  
M16  
T18  
M36, N37  
M38  
AL11  
AM10  
VREFL_ADC  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
124  
Package information and contact assignments  
Table 126. 29 x 29 mm power supplies contact assignments (continued)  
Power rail  
Ball reference  
VSS_MAIN  
A23, A3, A31, A51, AA1, AA11, AA13, AA17, AA21, AA25, AA29, AA3, AA33, AA37,  
AA41, AA43, AA45, AA47, AA49, AA5, AA51, AA53, AA7, AA9, AB12, AB18, AB22,  
AB26, AB30, AB34, AB42, AC13, AC19, AC23, AC27, AC31, AC35, AC41, AD10, AD12,  
AD2, AD20, AD24, AD28, AD32, AD36, AD4, AD42, AD44, AD46, AD48, AD50, AD52,  
AD6, AD8, AE13, AE17, AE21, AE25, AE29, AE33, AE37, AE41, AF12, AF18, AF22,  
AF26, AF30, AF34, AF42, AG1, AG11, AG13, AG19, AG23, AG27, AG3, AG31, AG35,  
AG41, AG43, AG45, AG47, AG49, AG5, AG51, AG53, AG7, AG9, AH12, AH20, AH24,  
AH28, AH32, AH36, AH42, AJ13, AJ17, AJ21, AJ25, AJ29, AJ33, AJ37, AJ41, AK10,  
AK12, AK18, AK2, AK22, AK26, AK30, AK34, AK38, AK4, AK44, AK46, AK48, AK50,  
AK52, AK6, AK8, AL13, AL19, AL23, AL27, AL31, AL35, AL41, AM12, AM20, AM24,  
AM28, AM32, AM36, AM42, AM46, AM8, AN1, AN13, AN17, AN21, AN25, AN29, AN3,  
AN33, AN41, AN43, AN47, AN49, AN5, AN51, AN53, AN7, AP12, AP18, AP22, AP26,  
AP30, AP34, AR11, AR19, AR23, AR27, AR31, AR35, AR49, AR5, AT12, AT16, AT2,  
AT20, AT24, AT28, AT32, AT36, AT4, AT42, AT46, AT50, AT52, AT6, AT8, AU17, AU25,  
AU31, AU33, AU37, AV12, AV38, AV42, AW11, AW19, AW23, AW3, AW37, AW43,  
AW47, AW51, AW7, B12, B14, B18, B28, B36, B46, B6, BA13, BA15, BA17, BA19, BA21,  
BA23, BA25, BA27, BA29, BA31, BA33, BA35, BA37, BA39, BA41, BA45, BB10, BB14,  
BB16, BB18, BB2, BB20, BB22, BB24, BB26, BB28, BB30, BB32, BB34, BB36, BB38,  
BB40, BB48, BB52, BB6, BC11, BC13, BC15, BC17, BC19, BC21, BC23, BC25, BC27,  
BC29, BC31, BC33, BC35, BC37, BC39, BC41, BC43, BD14, BD16, BD18, BD20, BD22,  
BD24, BD26, BD48, BD50, BE3, BE45, BE7, BE9, BF26, BF28, BF30, BF32, BF34,  
BF36, BF38, BF4, BF40, BF42, BF44, BF52, BG11, BG13, BG15, BG17, BG19, BG21,  
BG23, BG47, BG7, BH22, BH4, BJ25, BJ27, BJ29, BJ3, BJ31, BJ33, BJ35, BJ37, BJ39,  
BJ41, BJ43, BJ45, BJ47, BJ49, BJ5, BJ51, BK10, BK12, BK14, BK16, BK18, BK20,  
BK22, BK46, BK6, BK8, BL1, BL21, BL53, BM10, BM46, BN21, BN3, C1, C11, C15, C19,  
C21, C23, C29, C31, C33, C41, C43, C49, C53, C9, D16, D18, D24, D26, D28, D34, D36,  
D38, D40, D6, E19, E21, E47, E9, F12, F2, F24, F32, F36, F4, F44, F50, F52, G15, G21,  
G23, G27, G33, G39, G49, G5, G9, J1, J13, J15, J17, J19, J21, J23, J25, J29, J3, J31,  
J35, J37, J41, J47, J49, J5, J51, J53, J7, K12, K14, K16, K18, K20, K22, K24, K26, K28,  
K30, K32, K34, K36, K38, K40, K42, K46, K8, L11, L13, L15, L17, L19, L21, L23, L25,  
L27, L29, L31, L33, L35, L37, L39, L41, L43, M10, M2, M4, M44, M46, M48, M50, M52,  
M6, M8, N13, N41, P12, P42, R1, R11, R15, R17, R19, R21, R23, R25, R27, R29, R3,  
R31, R33, R35, R37, R39, R43, R45, R47, R49, R5, R51, R53, R7, R9, T12, T16, T20,  
T24, T28, T32, T36, T42, U17, U21, U33, U37, V10, V12, V18, V2, V22, V30, V34, V4,  
V42, V44, V46, V48, V50, V52, V6, V8, W19, W23, W27, W31, W35, Y12, Y20, Y24, Y28,  
Y32, Y36, Y42  
VSS_SCU_XTAL  
BK48, BM48, BM50, BN51  
1
2
3
HDMI-RX is not currently supported, the related power and signal connections are provided for future use when it is expected  
HDMI-RX support will be enabled.  
MLB is not supported on this product. The MLB power rail must be tied to the voltage specified in Table 8 or may be terminated,  
per the Hardware Developer’s Guide power supplies of unused functions.  
MLB is not supported on this product. This MLB power rail must be tied to the voltage specified in Table 8 if other I/O functions  
are used, as determined by IOMUX selection. Alternately, terminate the MLB supply, per the Hardware Developer’s Guide power  
supplies of unused functions.  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
125  
Package information and contact assignments  
The following table shows functional contact assignments for the 29 × 29 mm package.  
Table 127. 29 × 29 mm functional contact assignments  
Reset Condition  
Ball  
Ball  
Ball Name  
Power Domain  
Type1  
Default  
mode  
Default function  
State2  
AP10  
AN11  
AP8  
AR9  
AN9  
AR7  
AL9  
AP6  
BH52  
BG53  
BD2  
BE1  
H28  
J27  
ADC_IN0  
ADC_IN1  
VDD_ADC_3P3  
GPIO  
ALT0  
ADC_IN0  
ADC_IN1  
ADC_IN2  
ADC_IN3  
ADC_IN4  
ADC_IN5  
ADC_IN6  
ADC_IN7  
PD  
ADC_IN2  
ADC_IN3  
ADC_IN4  
ADC_IN5  
ADC_IN6  
ADC_IN7  
ANA_TEST_OUT0_N  
ANA_TEST_OUT0_P  
ANA_TEST_OUT1_N  
ANA_TEST_OUT1_P  
EMMC0_CLK  
VDD_SCU_ANA_1P8  
VDD_SCU_ANA_1P8  
VDD_EMMC0_1P8_3P3  
ANA  
NXP Internal Use Only  
(Leave Unconnected)  
FASTD ALT1  
ALT0  
NAND_READY_B  
EMMC0_CMD  
PU  
PD  
EMMC0_CMD  
G29  
H30  
G31  
H32  
J33  
EMMC0_DATA0  
EMMC0_DATA1  
EMMC0_DATA2  
EMMC0_DATA3  
EMMC0_DATA4  
EMMC0_DATA5  
EMMC0_DATA6  
EMMC0_DATA7  
EMMC0_RESET_B  
EMMC0_STROBE  
ENET0_MDC  
EMMC0_DATA0  
EMMC0_DATA1  
EMMC0_DATA2  
EMMC0_DATA3  
EMMC0_DATA4  
EMMC0_DATA5  
EMMC0_DATA6  
EMMC0_DATA7  
LSIO.GPIO5.IO13  
EMMC0_STROBE  
LSIO.GPIO4.IO14  
ENET0_MDIO  
H34  
H36  
G35  
H38  
G37  
A9  
GPIO  
ALT3  
PU  
PD  
PD  
PU  
PD  
PD  
FASTD ALT0  
VDD_ENET_MDIO_1P8_3P3  
VDD_ENET0_1P8_3P3  
GPIO  
ALT3  
ALT0  
ALT3  
D10  
B10  
E43  
B44  
A47  
ENET0_MDIO  
ENET0_REFCLK_125M_25M  
ENET0_RGMII_RX_CTL  
ENET0_RGMII_RXC  
ENET0_RGMII_RXD0  
LSIO.GPIO4.IO15  
ENET0_RGMII_RX_CTL  
ENET0_RGMII_RXC  
ENET0_RGMII_RXD0  
FASTD ALT0  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
126  
Package information and contact assignments  
Table 127. 29 × 29 mm functional contact assignments (continued)  
Reset Condition  
Default function  
Ball  
Ball  
Ball Name  
Power Domain  
Type1  
Default  
mode  
State2  
D44  
C45  
E45  
E41  
A41  
A43  
B42  
A45  
D42  
A13  
C13  
A11  
E49  
B50  
E51  
C51  
D52  
E53  
B48  
D46  
A49  
C47  
G47  
D48  
AW9  
BG9  
BB8  
AY8  
BA9  
BA7  
AU9  
BC5  
ENET0_RGMII_RXD1  
ENET0_RGMII_RXD2  
ENET0_RGMII_RXD3  
ENET0_RGMII_TX_CTL  
ENET0_RGMII_TXC  
ENET0_RGMII_TXD0  
ENET0_RGMII_TXD1  
ENET0_RGMII_TXD2  
ENET0_RGMII_TXD3  
ENET1_MDC  
VDD_ENET0_1P8_3P3  
FASTD ALT0  
ENET0_RGMII_RXD1  
ENET0_RGMII_RXD2  
ENET0_RGMII_RXD3  
LSIO.GPIO5.IO31  
LSIO.GPIO5.IO30  
LSIO.GPIO6.IO00  
LSIO.GPIO6.IO01  
LSIO.GPIO6.IO02  
LSIO.GPIO6.IO03  
LSIO.GPIO4.IO18  
ENET1_MDIO  
PD  
ALT3  
PD  
VDD_ENET_MDIO_1P8_3P3  
VDD_ENET1_1P8_2P5_3P3  
GPIO  
ALT3  
ALT0  
ALT3  
PD  
PU  
PD  
PD  
ENET1_MDIO  
ENET1_REFCLK_125M_25M  
ENET1_RGMII_RX_CTL  
ENET1_RGMII_RXC  
ENET1_RGMII_RXD0  
ENET1_RGMII_RXD1  
ENET1_RGMII_RXD2  
ENET1_RGMII_RXD3  
ENET1_RGMII_TX_CTL  
ENET1_RGMII_TXC  
ENET1_RGMII_TXD0  
ENET1_RGMII_TXD1  
ENET1_RGMII_TXD2  
ENET1_RGMII_TXD3  
ESAI0_FSR  
LSIO.GPIO4.IO16  
ENET1_RGMII_RX_CTL  
ENET1_RGMII_RXC  
ENET1_RGMII_RXD0  
ENET1_RGMII_RXD1  
ENET1_RGMII_RXD2  
ENET1_RGMII_RXD3  
LSIO.GPIO6.IO11  
LSIO.GPIO6.IO10  
LSIO.GPIO6.IO12  
LSIO.GPIO6.IO13  
LSIO.GPIO6.IO14  
LSIO.GPIO6.IO15  
ESAI0_FSR  
FASTD ALT0  
ALT3  
PD  
VDD_ESAI0_MCLK_1P8_3P3  
GPIO  
ALT0  
PD  
ESAI0_FST  
ESAI0_FST  
ESAI0_SCKR  
ESAI0_SCKR  
ESAI0_SCKT  
ESAI0_SCKT  
ESAI0_TX0  
ESAI0_TX0  
ESAI0_TX1  
ESAI0_TX1  
ESAI0_TX2_RX3  
ESAI0_TX2_RX3  
ESAI0_TX3_RX2  
ESAI0_TX3_RX2  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
127  
Package information and contact assignments  
Table 127. 29 × 29 mm functional contact assignments (continued)  
Reset Condition  
Ball  
Ball  
Ball Name  
Power Domain  
Type1  
Default  
mode  
Default function  
State2  
AV8  
AU7  
ESAI0_TX4_RX1  
ESAI0_TX5_RX0  
ESAI1_FSR  
VDD_ESAI0_MCLK_1P8_3P3  
GPIO  
ALT0  
ESAI0_TX4_RX1  
ESAI0_TX5_RX0  
ESAI1_FSR  
PD  
BE11  
BF12  
BD12  
AY10  
BF10  
BA11  
AU11  
AV10  
AY12  
AT10  
C5  
VDD_ESAI1_SPDIF_SPI_1P8_3P3 GPIO  
ALT0  
PD  
ESAI1_FST  
ESAI1_FST  
ESAI1_SCKR  
ESAI1_SCKR  
ESAI1_SCKT  
ESAI1_SCKT  
ESAI1_TX0  
ESAI1_TX0  
ESAI1_TX1  
ESAI1_TX1  
ESAI1_TX2_RX3  
ESAI1_TX3_RX2  
ESAI1_TX4_RX1  
ESAI1_TX5_RX0  
FLEXCAN0_RX  
FLEXCAN0_TX  
FLEXCAN1_RX  
FLEXCAN1_TX  
FLEXCAN2_RX  
FLEXCAN2_TX  
GPT0_CAPTURE  
GPT0_CLK  
ESAI1_TX2_RX3  
ESAI1_TX3_RX2  
ESAI1_TX4_RX1  
ESAI1_TX5_RX0  
FLEXCAN0_RX  
LSIO.GPIO3.IO30  
FLEXCAN1_RX  
LSIO.GPIO4.IO00  
FLEXCAN2_RX  
LSIO.GPIO4.IO02  
GPT0_CAPTURE  
GPT0_CLK  
VDD_FLEXCAN_1P8_3P3  
VDD_M4_GPT_UART_1P8_3P3  
VDD_HDMI_RX0_1P8  
GPIO  
GPIO  
HDMI  
ALT0  
ALT3  
ALT0  
ALT3  
ALT0  
ALT3  
ALT0  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
H6  
E5  
G7  
C3  
E7  
AV52  
AY52  
AW53  
AY50  
BA53  
BA51  
BL13  
BM14  
BJ9  
GPT0_COMPARE  
GPT1_CAPTURE  
GPT1_CLK  
GPT0_COMPARE  
GPT1_CAPTURE  
GPT1_CLK  
GPT1_COMPARE  
HDMI_RX0_ARC_N3  
HDMI_RX0_ARC_P3  
HDMI_RX0_CEC3  
HDMI_RX0_CLK_N3  
HDMI_RX0_CLK_P3  
HDMI_RX0_DATA0_N3  
HDMI_RX0_DATA0_P3  
HDMI_RX0_DATA1_N3  
HDMI_RX0_DATA1_P3  
GPT1_COMPARE  
Not muxed  
BL11  
BM12  
BL15  
BM16  
BL17  
BM18  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
128  
Package information and contact assignments  
Table 127. 29 × 29 mm functional contact assignments (continued)  
Reset Condition  
Ball  
Ball  
Ball Name  
Power Domain  
Type1  
Default  
mode  
Default function  
State2  
BL19  
BM20  
BH10  
BE13  
BF14  
BN11  
BJ11  
BG3  
BH2  
BJ1  
HDMI_RX0_DATA2_N3  
HDMI_RX0_DATA2_P3  
HDMI_RX0_DDC_SCL3  
HDMI_RX0_DDC_SDA3  
HDMI_RX0_HPD3  
VDD_HDMI_RX0_1P8  
HDMI  
Not muxed  
HDMI_RX0_MON_5V3  
HDMI_RX0_REXT3  
HDMI_TX0_AUX_N  
VDD_HDMI_TX0_1P8  
HDMI  
Not muxed  
HDMI_TX0_AUX_P  
HDMI_TX0_CEC  
BK2  
HDMI_TX0_CLK_EDP3_N  
HDMI_TX0_CLK_EDP3_P  
HDMI_TX0_DATA0_EDP2_N  
HDMI_TX0_DATA0_EDP2_P  
HDMI_TX0_DATA1_EDP1_N  
HDMI_TX0_DATA1_EDP1_P  
HDMI_TX0_DATA2_EDP0_N  
HDMI_TX0_DATA2_EDP0_P  
HDMI_TX0_DDC_SCL  
HDMI_TX0_DDC_SDA  
HDMI_TX0_HPD  
BL3  
BM4  
BL5  
BM6  
BL7  
BM8  
BL9  
BG1  
BN5  
BH8  
BJ7  
HDMI_TX0_REXT  
BN9  
BN7  
BC51  
BE51  
BD52  
HDMI_TX0_TS_SCL  
HDMI_TX0_TS_SDA  
JTAG_TCK  
VDD_HDMI_TX0_DIG_3P3  
VDD_SCU_1P8  
GPIO  
TEST  
ALT0  
HDMI_TX0_TS_SCL  
HDMI_TX0_TS_SDA  
Not muxed  
PU  
PD  
PU  
JTAG_TDI  
JTAG_TDO  
Drive-  
0
BA49  
BE53  
JTAG_TMS  
PU  
JTAG_TRST_B  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
129  
Package information and contact assignments  
Table 127. 29 × 29 mm functional contact assignments (continued)  
Reset Condition  
Ball  
Ball  
Ball Name  
Power Domain  
Type1  
Default  
mode  
Default function  
State2  
BL41  
BN41  
BK42  
BM42  
BL43  
BN43  
BK44  
BM44  
BL45  
BN45  
BG45  
BH46  
BG43  
BH44  
BG41  
BH42  
BG39  
BH40  
BG37  
BH38  
BE39  
BD40  
BD38  
BD36  
BE37  
BE35  
LVDS0_CH0_CLK_N  
LVDS0_CH0_CLK_P  
LVDS0_CH0_TX0_N  
LVDS0_CH0_TX0_P  
LVDS0_CH0_TX1_N  
LVDS0_CH0_TX1_P  
LVDS0_CH0_TX2_N  
LVDS0_CH0_TX2_P  
LVDS0_CH0_TX3_N  
LVDS0_CH0_TX3_P  
LVDS0_CH1_CLK_N  
LVDS0_CH1_CLK_P  
LVDS0_CH1_TX0_N  
LVDS0_CH1_TX0_P  
LVDS0_CH1_TX1_N  
LVDS0_CH1_TX1_P  
LVDS0_CH1_TX2_N  
LVDS0_CH1_TX2_P  
LVDS0_CH1_TX3_N  
LVDS0_CH1_TX3_P  
LVDS0_GPIO00  
VDD_LVDS0_1P8  
LVDS  
Not muxed  
VDD_LVDS0_1P8  
LVDS  
Not muxed  
VDD_LVDS_DIG_1P8_3P3  
GPIO  
ALT0  
LVDS0_GPIO00  
LVDS0_GPIO01  
PD  
PU  
LVDS0_GPIO01  
LVDS0_I2C0_SCL  
LVDS0_I2C0_SDA  
LVDS0_I2C1_SCL  
LVDS0_I2C1_SDA  
LVDS0_I2C0_SCL  
LVDS0_I2C0_SDA  
LVDS0_I2C1_SCL  
LVDS0_I2C1_SDA  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
130  
Package information and contact assignments  
Table 127. 29 × 29 mm functional contact assignments (continued)  
Reset Condition  
Ball  
Ball  
Ball Name  
Power Domain  
Type1  
Default  
mode  
Default function  
State2  
BK36  
BM36  
BL37  
BN37  
BK38  
BM38  
BL39  
BN39  
BK40  
BM40  
BK34  
BM34  
BL33  
BN33  
BK32  
BM32  
BL31  
BN31  
BK30  
BM30  
BD34  
BH36  
BL35  
BE33  
BD32  
BN35  
LVDS1_CH0_CLK_N  
LVDS1_CH0_CLK_P  
LVDS1_CH0_TX0_N  
LVDS1_CH0_TX0_P  
LVDS1_CH0_TX1_N  
LVDS1_CH0_TX1_P  
LVDS1_CH0_TX2_N  
LVDS1_CH0_TX2_P  
LVDS1_CH0_TX3_N  
LVDS1_CH0_TX3_P  
LVDS1_CH1_CLK_N  
LVDS1_CH1_CLK_P  
LVDS1_CH1_TX0_N  
LVDS1_CH1_TX0_P  
LVDS1_CH1_TX1_N  
LVDS1_CH1_TX1_P  
LVDS1_CH1_TX2_N  
LVDS1_CH1_TX2_P  
LVDS1_CH1_TX3_N  
LVDS1_CH1_TX3_P  
LVDS1_GPIO00  
VDD_LVDS1_1P8  
LVDS  
Not muxed  
VDD_LVDS1_1P8  
LVDS  
Not muxed  
VDD_LVDS_DIG_1P8_3P3  
GPIO  
ALT0  
LVDS1_GPIO00  
LVDS1_GPIO01  
PD  
PU  
LVDS1_GPIO01  
LVDS1_I2C0_SCL  
LVDS1_I2C0_SDA  
LVDS1_I2C1_SCL  
LVDS1_I2C1_SDA  
LVDS1_I2C0_SCL  
LVDS1_I2C0_SDA  
LVDS1_I2C1_SCL  
LVDS1_I2C1_SDA  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
131  
Package information and contact assignments  
Table 127. 29 × 29 mm functional contact assignments (continued)  
Reset Condition  
Ball  
Ball  
Ball Name  
Power Domain  
Type1  
Default  
mode  
Default function  
State2  
AR47  
AU53  
AM44  
AU51  
AP44  
AU47  
AR45  
AU49  
BC3  
M40_GPIO0_00  
M40_GPIO0_01  
VDD_M4_GPT_UART_1P8_3P3  
GPIO  
ALT0  
M40_GPIO0_00  
M40_GPIO0_01  
M40_I2C0_SCL  
M40_I2C0_SDA  
M41_GPIO0_00  
M41_GPIO0_01  
M41_I2C0_SCL  
M41_I2C0_SDA  
MCLK_IN0  
PD  
M40_I2C0_SCL  
PU  
PD  
PU  
M40_I2C0_SDA  
M41_GPIO0_00  
M41_GPIO0_01  
M41_I2C0_SCL  
M41_I2C0_SDA  
MCLK_IN0  
VDD_ESAI0_MCLK_1P8_3P3  
VDD_MIPI_CSI0_1P8  
GPIO  
CSI  
ALT0  
ALT3  
PD  
PD  
BD4  
MCLK_OUT0  
LSIO.GPIO3.IO01  
Not muxed  
BE21  
BF20  
BE23  
BF22  
BE19  
BF18  
BE25  
BF24  
BE17  
BF16  
BL23  
BM22  
BH24  
BN19  
BJ23  
MIPI_CSI0_CLK_N  
MIPI_CSI0_CLK_P  
MIPI_CSI0_DATA0_N  
MIPI_CSI0_DATA0_P  
MIPI_CSI0_DATA1_N  
MIPI_CSI0_DATA1_P  
MIPI_CSI0_DATA2_N  
MIPI_CSI0_DATA2_P  
MIPI_CSI0_DATA3_N  
MIPI_CSI0_DATA3_P  
MIPI_CSI0_GPIO0_00  
MIPI_CSI0_GPIO0_01  
MIPI_CSI0_I2C0_SCL  
MIPI_CSI0_I2C0_SDA  
MIPI_CSI0_MCLK_OUT  
VDD_MIPI_CSI0_1P8  
VDD_MIPI_CSI_DIG  
CSI  
Not muxed  
GPIO  
ALT0  
ALT3  
MIPI_CSI0_GPIO0_00  
MIPI_CSI0_GPIO0_01  
MIPI_CSI0_I2C0_SCL  
MIPI_CSI0_I2C0_SDA  
LSIO.GPIO1.IO29  
PD  
PU  
PD  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
132  
Package information and contact assignments  
Table 127. 29 × 29 mm functional contact assignments (continued)  
Reset Condition  
Ball  
Ball  
Ball Name  
Power Domain  
Type1  
Default  
mode  
Default function  
State2  
BH16  
BJ17  
BH18  
BJ19  
BH14  
BJ15  
BH20  
BJ21  
BH12  
BJ13  
BN15  
BN13  
BN17  
BE15  
BN23  
BN27  
BL27  
BM28  
BK28  
BM26  
BK26  
BN29  
BL29  
BN25  
BL25  
BD30  
BD28  
BE29  
BE31  
MIPI_CSI1_CLK_N  
MIPI_CSI1_CLK_P  
VDD_MIPI_CSI1_1P8  
CSI  
Not muxed  
MIPI_CSI1_DATA0_N  
MIPI_CSI1_DATA0_P  
MIPI_CSI1_DATA1_N  
MIPI_CSI1_DATA1_P  
MIPI_CSI1_DATA2_N  
MIPI_CSI1_DATA2_P  
MIPI_CSI1_DATA3_N  
MIPI_CSI1_DATA3_P  
MIPI_CSI1_GPIO0_00  
MIPI_CSI1_GPIO0_01  
MIPI_CSI1_I2C0_SCL  
MIPI_CSI1_I2C0_SDA  
MIPI_CSI1_MCLK_OUT  
MIPI_DSI0_CLK_N  
VDD_MIPI_CSI_DIG  
GPIO  
ALT0  
ALT3  
MIPI_CSI1_GPIO0_00  
MIPI_CSI1_GPIO0_01  
MIPI_CSI1_I2C0_SCL  
MIPI_CSI1_I2C0_SDA  
LSIO.GPIO1.IO29  
PD  
PU  
PD  
VDD_MIPI_DSI0_1P8  
DSI  
Not muxed  
MIPI_DSI0_CLK_P  
MIPI_DSI0_DATA0_N  
MIPI_DSI0_DATA0_P  
MIPI_DSI0_DATA1_N  
MIPI_DSI0_DATA1_P  
MIPI_DSI0_DATA2_N  
MIPI_DSI0_DATA2_P  
MIPI_DSI0_DATA3_N  
MIPI_DSI0_DATA3_P  
MIPI_DSI0_GPIO0_00  
MIPI_DSI0_GPIO0_01  
MIPI_DSI0_I2C0_SCL  
MIPI_DSI0_I2C0_SDA  
VDD_MIPI_DSI_DIG_1P8_3P3  
VDD_MIPI_DSI_DIG_1P8_3P3  
GPIO  
GPIO  
ALT0  
ALT0  
MIPI_DSI0_GPIO0_00  
MIPI_DSI0_GPIO0_01  
MIPI_DSI0_I2C0_SCL  
MIPI_DSI0_I2C0_SDA  
PD  
PD  
PU  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
133  
Package information and contact assignments  
Table 127. 29 × 29 mm functional contact assignments (continued)  
Reset Condition  
Ball  
Ball  
Ball Name  
Power Domain  
Type1  
Default  
mode  
Default function  
State2  
BH30  
BG31  
BH32  
BG33  
BH28  
BG29  
BH34  
BG35  
BH26  
BG27  
BM24  
BK24  
BE27  
BG25  
D2  
MIPI_DSI1_CLK_N  
MIPI_DSI1_CLK_P  
MIPI_DSI1_DATA0_N  
MIPI_DSI1_DATA0_P  
MIPI_DSI1_DATA1_N  
MIPI_DSI1_DATA1_P  
MIPI_DSI1_DATA2_N  
MIPI_DSI1_DATA2_P  
MIPI_DSI1_DATA3_N  
MIPI_DSI1_DATA3_P  
MIPI_DSI1_GPIO0_00  
MIPI_DSI1_GPIO0_01  
MIPI_DSI1_I2C0_SCL  
MIPI_DSI1_I2C0_SDA  
MLB_CLK4  
VDD_MIPI_DSI1_1P8  
DSI  
Not muxed  
VDD_MIPI_DSI_DIG_1P8_3P3  
GPIO  
ALT0  
ALT0  
MIPI_DSI1_GPIO0_00  
MIPI_DSI1_GPIO0_01  
MIPI_DSI1_I2C0_SCL  
MIPI_DSI1_I2C0_SDA  
MLB_CLK  
PD  
PU  
PD  
VDD_MLB_DIG_1P8_3P3  
VDD_MLB_1P8  
GPIO  
MLB  
E3  
MLB_DATA4  
MLB_DATA  
E1  
MLB_SIG4  
MLB_SIG  
E33  
MLB_CLK_N5  
Not muxed  
PD  
D32  
MLB_CLK_P5  
E35  
MLB_DATA_N5  
F34  
MLB_DATA_P5  
E31  
MLB_SIG_N5  
D30  
MLB_SIG_P5  
BE47  
A17  
ON_OFF_BUTTON  
PCIE_CTRL0_CLKREQ_B  
PCIE_CTRL0_PERST_B  
PCIE_CTRL0_WAKE_B  
PCIE_CTRL1_CLKREQ_B  
PCIE_CTRL1_PERST_B  
PCIE_CTRL1_WAKE_B  
VDD_SNVS_LDO_1P8_CAP  
VDD_PCIE_DIG_1P8_3P3  
ANA  
Not muxed  
PU  
PD  
GPIO  
ALT0  
PCIE_CTRL0_CLKREQ_B  
PCIE_CTRL0_PERST_B  
PCIE_CTRL0_WAKE_B  
PCIE_CTRL1_CLKREQ_B  
PCIE_CTRL1_PERST_B  
PCIE_CTRL1_WAKE_B  
D20  
A15  
PU  
PD  
A25  
G25  
A27  
PU  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
134  
Package information and contact assignments  
Table 127. 29 × 29 mm functional contact assignments (continued)  
Reset Condition  
Ball  
Ball  
Ball Name  
Power Domain  
Type1  
Default  
mode  
Default function  
State2  
E23  
D22  
PCIE_REF_QR  
PCIE_REXT  
VDD_PCIE_LDO_1P8  
PCIE  
Not muxed  
M20 PCIE_SATA0_PHY_PLL_REF_RETURN3  
M28  
N23  
E25  
PCIE0_PHY_PLL_REF_RETURN  
PCIE1_PHY_PLL_REF_RETURN  
PCIE_SATA_REFCLK100M_N3  
PCIE_SATA_REFCLK100M_P3  
PCIE_SATA0_RX0_N3  
PCIE_SATA0_RX0_P3  
PCIE_SATA0_TX0_N3  
PCIE_SATA0_TX0_P3  
PCIE0_RX0_N  
VDD_PCIE_LDO_1P0_CAP  
PCIE  
HCSL compatiable clock  
Not muxed  
F26  
B20  
Not muxed  
A19  
C17  
B16  
B30  
A29  
PCIE0_RX0_P  
C27  
B26  
PCIE0_TX0_N  
PCIE0_TX0_P  
B22  
PCIE1_RX0_N  
A21  
PCIE1_RX0_P  
C25  
B24  
PCIE1_TX0_N  
PCIE1_TX0_P  
BF50  
AY46  
BG51  
BH50  
BL51  
PMIC_EARLY_WARNING  
PMIC_I2C_SCL  
VDD_SCU_1P8  
SCU  
ALT0  
PMIC_EARLY_WARNING  
PMIC_I2C_SCL  
PMIC_I2C_SDA  
PMIC_INT_B  
PD  
PU  
PMIC_I2C_SDA  
PMIC_INT_B  
PMIC_ON_REQ  
VDD_SNVS_LDO_1P8_CAP  
VDD_SCU_1P8  
ANA  
SCU  
Not muxed  
Drive-  
1
BE49  
POR_B  
PU  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
135  
Package information and contact assignments  
Table 127. 29 × 29 mm functional contact assignments (continued)  
Reset Condition  
Ball  
Ball  
Ball Name  
Power Domain  
Type1  
Default  
mode  
Default function  
State2  
G13  
F14  
H14  
H16  
G17  
E17  
E15  
F16  
H18  
H20  
G19  
F20  
H22  
F18  
F22  
H24  
D12  
D14  
E13  
E11  
H12  
F10  
J11  
QSPI0A_DATA0  
QSPI0A_DATA1  
QSPI0A_DATA2  
QSPI0A_DATA3  
QSPI0A_DQS  
QSPI0A_SCLK  
QSPI0A_SS0_B  
QSPI0A_SS1_B  
QSPI0B_DATA0  
QSPI0B_DATA1  
QSPI0B_DATA2  
QSPI0B_DATA3  
QSPI0B_DQS  
QSPI0B_SCLK  
QSPI0B_SS0_B  
QSPI0B_SS1_B  
QSPI1A_DATA0  
QSPI1A_DATA1  
QSPI1A_DATA2  
QSPI1A_DATA3  
QSPI1A_DQS  
QSPI1A_SCLK  
QSPI1A_SS0_B  
QSPI1A_SS1_B  
RTC_XTALI  
VDD_QSPI0_1P8_3P3  
FASTD ALT0  
FASTD ALT0  
FASTD ALT0  
ANA  
QSPI0A_DATA0  
QSPI0A_DATA1  
QSPI0A_DATA2  
QSPI0A_DATA3  
QSPI0A_DQS  
PD  
QSPI0A_SCLK  
QSPI0A_SS0_B  
QSPI0A_SS1_B  
QSPI0B_DATA0  
QSPI0B_DATA1  
QSPI0B_DATA2  
QSPI0B_DATA3  
QSPI0B_DQS  
VDD_QSPI0_1P8_3P3  
PD  
QSPI0B_SCLK  
QSPI0B_SS0_B  
QSPI0B_SS1_B  
QSPI1A_DATA0  
QSPI1A_DATA1  
QSPI1A_DATA2  
QSPI1A_DATA3  
QSPI1A_DQS  
PU  
PD  
VDD_QSPI1A_1P8_3P3  
QSPI1A_SCLK  
QSPI1A_SS0_B  
QSPI1A_SS1_B  
Not muxed  
PU  
PD  
G11  
BN47  
BL47  
AV6  
AV4  
AU3  
AU5  
AU1  
AV2  
VDD_SNVS_LDO_1P8_CAP  
VDD_SPI_SAI_1P8_3P3  
RTC_XTALO  
SAI1_RXC  
GPIO  
ALT0  
SAI1_RXC  
SAI1_RXD  
SAI1_RXFS  
SAI1_TXC  
SAI1_TXD  
SAI1_TXFS  
SAI1_RXD  
SAI1_RXFS  
SAI1_TXC  
SAI1_TXD  
SAI1_TXFS  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
136  
Package information and contact assignments  
Table 127. 29 × 29 mm functional contact assignments (continued)  
Reset Condition  
Ball  
Ball  
Ball Name  
Power Domain  
Type1  
Default  
mode  
Default function  
State2  
BB44  
BC45  
BJ53  
BA43  
AY42  
BK52  
AU43  
AV44  
AW45  
BB46  
BC47  
AY44  
BG49  
BF48  
BC53  
BA47  
BB50  
AL45  
AP46  
AN45  
AL43  
AT48  
AP48  
BE41  
BE43  
BD46  
BD42  
BD6  
SCU_BOOT_MODE0  
SCU_BOOT_MODE1  
SCU_BOOT_MODE2  
SCU_BOOT_MODE3  
SCU_BOOT_MODE4  
SCU_BOOT_MODE5  
SCU_GPIO0_00  
SCU_GPIO0_01  
SCU_GPIO0_02  
SCU_GPIO0_03  
SCU_GPIO0_04  
SCU_GPIO0_05  
SCU_GPIO0_06  
SCU_GPIO0_07  
SCU_PMIC_MEMC_ON  
SCU_PMIC_STANDBY  
SCU_WDOG_OUT  
SIM0_CLK  
VDD_SCU_1P8  
SCU  
Not muxed  
PD  
ALT0  
ALT0  
SCU_BOOT_MODE4  
SCU_BOOT_MODE5  
SCU_GPIO0_00  
SCU_GPIO0_01  
SCU_GPIO0_02  
SCU_GPIO0_03  
SCU_GPIO0_04  
SCU_GPIO0_05  
SCU_GPIO0_06  
SCU_GPIO0_07  
Not muxed  
VDD_SCU_1P8  
VDD_SCU_1P8  
GPIO  
GPIO  
PD  
PU  
PD  
PD  
ALT0  
VDD_SCU_1P8  
SCU  
PD  
Drive-  
0
VDD_SIM0_1P8_3P3  
GPIO  
ALT3  
LSIO.GPIO0.IO00  
LSIO.GPIO0.IO05  
LSIO.GPIO0.IO02  
SIM0_PD  
PD  
SIM0_GPIO0_00  
SIM0_IO  
SIM0_PD  
PD  
PD  
SIM0_POWER_EN  
SIM0_RST  
LSIO.GPIO0.IO04  
SIM0_RST  
SNVS_TAMPER_IN0  
SNVS_TAMPER_IN1  
SNVS_TAMPER_OUT0  
SNVS_TAMPER_OUT1  
SPDIF0_EXT_CLK  
SPDIF0_RX  
VDD_SNVS_LDO_1P8_CAP  
ANA  
Not muxed  
Hi-Z  
VDD_ESAI1_SPDIF_SPI_1P8_3P3 GPIO  
ALT0  
ALT3  
SPDIF0_EXT_CLK  
SPDIF0_RX  
PD  
PD  
BC7  
BC9  
SPDIF0_TX  
LSIO.GPIO2.IO15  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
137  
Package information and contact assignments  
Table 127. 29 × 29 mm functional contact assignments (continued)  
Reset Condition  
Ball  
Ball  
Ball Name  
Power Domain  
Type1  
Default  
mode  
Default function  
State2  
BC1  
BA3  
BB4  
BA5  
AY6  
SPI0_CS0  
SPI0_CS1  
VDD_SPI_SAI_1P8_3P3  
GPIO  
ALT0  
SPI0_CS0  
SPI0_CS1  
PD  
SPI0_SCK  
SPI0_SCK  
SPI0_SDI  
SPI0_SDI  
SPI0_SDO  
ALT3  
ALT0  
LSIO.GPIO3.IO03  
SPI2_CS0  
PD  
PD  
AW1  
AY2  
SPI2_CS0  
SPI2_CS1  
SPI2_CS1  
AW5  
AY4  
SPI2_SCK  
SPI2_SCK  
SPI2_SDI  
SPI2_SDI  
BA1  
BG5  
BD8  
BF6  
SPI2_SDO  
ALT3  
ALT0  
LSIO.GPIO3.IO08  
SPI3_CS0  
PD  
PD  
SPI3_CS0  
VDD_ESAI1_SPDIF_SPI_1P8_3P3 GPIO  
VDD_ESAI1_SPDIF_SPI_1P8_3P3 GPIO  
SPI3_CS1  
SPI3_CS1  
SPI3_SCK  
ALT0  
ALT3  
SPI3_SCK  
PD  
BE5  
BF2  
SPI3_SDI  
SPI3_SDI  
SPI3_SDO  
LSIO.GPIO2.IO18  
Not muxed  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
PD  
Hi-Z  
BC49  
AW49  
AU45  
AV50  
AV48  
AV46  
AR43  
AT44  
AY48  
H26  
TEST_MODE_SELECT  
UART0_CTS_B  
UART0_RTS_B  
UART0_RX  
VDD_SCU_1P8  
SCU  
VDD_M4_GPT_UART_1P8_3P3  
GPIO  
ALT0  
ALT3  
ALT0  
ALT3  
ALT0  
ALT3  
ALT0  
ALT3  
UART0_CTS_B  
LSIO.GPIO0.IO22  
UART0_RX  
UART0_TX  
LSIO.GPIO0.IO21  
UART1_CTS_B  
LSIO.GPIO0.IO26  
UART1_RX  
UART1_CTS_B  
UART1_RTS_B  
UART1_RX  
UART1_TX  
LSIO.GPIO0.IO24  
USB_HSIC0_DATA  
USB_HSIC0_STROBE  
Not muxed  
USB_HSIC0_DATA  
USB_HSIC0_STROBE  
USB_OTG1_DN  
USB_OTG1_DP  
USB_OTG1_ID  
USB_OTG1_VBUS  
VDD_USB_HSIC0_1P2  
VDD_USB_OTG1_3P3  
FASTD ALT0  
F28  
C39  
OTG  
B40  
A37  
A39  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
138  
Package information and contact assignments  
Table 127. 29 × 29 mm functional contact assignments (continued)  
Reset Condition  
Ball  
Ball  
Ball Name  
Power Domain  
Type1  
Default  
mode  
Default function  
State2  
C37  
B38  
F30  
E29  
A35  
E27  
B34  
C35  
B32  
A33  
J9  
USB_OTG2_DN  
USB_OTG2_DP  
USB_OTG2_ID  
USB_OTG2_REXT  
USB_OTG2_VBUS  
USB_SS3_REXT  
USB_SS3_RX_N  
USB_SS3_RX_P  
USB_SS3_TX_N  
USB_SS3_TX_P  
USB_SS3_TC0  
USB_SS3_TC1  
USB_SS3_TC2  
USB_SS3_TC3  
USDHC1_CLK  
VDD_USB_OTG2_3P3  
OTG  
USB3  
GPIO  
Not muxed  
VDD_USB_SS3_LDO_1P0_CAP  
Not muxed  
VDD_USB_SS3_TC_3P3  
ALT0  
USB_SS3_TC0  
USB_SS3_TC1  
USB_SS3_TC2  
USB_SS3_TC3  
USDHC1_CLK  
PU  
L9  
F8  
H10  
J39  
VDD_USDHC1_1P8_3P3  
VDD_USDHC1_1P8_3P3  
FASTD ALT0  
FASTD ALT0  
Drive-  
0
G41  
E37  
F38  
E39  
F40  
H40  
G43  
F42  
H42  
J43  
A5  
USDHC1_CMD  
USDHC1_DATA0  
USDHC1_DATA1  
USDHC1_DATA2  
USDHC1_DATA3  
USDHC1_DATA4  
USDHC1_DATA5  
USDHC1_DATA6  
USDHC1_DATA7  
USDHC1_STROBE  
USDHC1_RESET_B  
USDHC1_VSELECT  
USDHC2_CD_B  
USDHC1_CMD  
USDHC1_DATA0  
USDHC1_DATA1  
USDHC1_DATA2  
USDHC1_DATA3  
USDHC1_DATA4  
USDHC1_DATA5  
USDHC1_DATA6  
USDHC1_DATA7  
USDHC1_STROBE  
LSIO.GPIO4.IO07  
LSIO.GPIO4.IO07  
USDHC2_CD_B  
PD  
PU  
VDD_USDHC_VSELECT_1P8_3P3 GPIO  
ALT3  
ALT0  
PU  
PU  
B4  
B8  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
139  
Package information and contact assignments  
Table 127. 29 × 29 mm functional contact assignments (continued)  
Reset Condition  
Ball  
Ball  
Ball Name  
Power Domain  
Type1  
Default  
mode  
Default function  
State2  
F46  
H44  
H48  
G45  
L45  
J45  
USDHC2_CLK  
USDHC2_CMD  
USDHC2_DATA0  
USDHC2_DATA1  
USDHC2_DATA2  
USDHC2_DATA3  
USDHC2_RESET_B  
USDHC2_VSELECT  
USDHC2_WP  
VDD_USDHC2_1P8_3P3  
FASTD ALT3  
ALT0  
LSIO.GPIO5.IO24  
USDHC2_CMD  
USDHC2_DATA0  
USDHC2_DATA1  
USDHC2_DATA2  
USDHC2_DATA3  
LSIO.GPIO4.IO09  
LSIO.GPIO4.IO10  
USDHC2_WP  
PD  
PD  
PU  
C7  
VDD_USDHC_VSELECT_1P8_3P3 GPIO  
ALT3  
ALT0  
PU  
PD  
A7  
D8  
BN49  
BL49  
XTALI  
VDD_SCU_XTAL_1P8  
ANA  
Not muxed  
XTALO  
1
2
FASTD are GPIO balls configured for high speed operation using the FASTFRZ control.  
Reset condition shown is before boot code execution. For pad changes after boot code execution, see the “System Boot” chapter of  
the device reference manual,  
3
HDMI-RX is not currently supported, the related power and signal connections are provided for future use when it is expected  
HDMI-RX support will be enabled.  
4
5
MLB is not supported on this device. Users may choose alternate functions as determined by the IOMUX.  
MLB is not supported on this device. Terminate these outputs per the Hardware Developer’s Guide for unused I/O signals.  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
140  
NXP Semiconductors  
Package information and contact assignments  
The following table shows the DRAM pin function for the 29 x 29 mm package.  
Table 128. 29 x 29 mm DRAM pin function  
LPDDR4 Function  
Ball Name  
x = 0 x = 1  
Notes  
DDR_CHx_ATO  
AF46 AF8  
CK_c_A  
CK_t_A  
CK_c_B  
CK_t_B  
CA2_A  
CA4_A  
NXP Internal Use Only (Leave Unconnected)  
DDR_CHx_CK0_N  
DDR_CHx_CK0_P  
DDR_CHx_CK1_N  
DDR_CHx_CK1_P  
DDR_CHx_DCF00  
DDR_CHx_DCF01  
DDR_CHx_DCF02  
DDR_CHx_DCF03  
DDR_CHx_DCF04  
DDR_CHx_DCF05  
DDR_CHx_DCF06  
DDR_CHx_DCF07  
DDR_CHx_DCF08  
DDR_CHx_DCF09  
DDR_CHx_DCF10  
DDR_CHx_DCF11  
DDR_CHx_DCF12  
DDR_CHx_DCF13  
DDR_CHx_DCF14  
DDR_CHx_DCF15  
DDR_CHx_DCF16  
DDR_CHx_DCF17  
DDR_CHx_DCF18  
DDR_CHx_DCF19  
DDR_CHx_DCF20  
DDR_CHx_DCF21  
DDR_CHx_DCF22  
DDR_CHx_DCF23  
DDR_CHx_DCF24  
Y50  
Y4  
The exact clock and control line connections will be  
dependent on the memory configuration in use. Refer to  
the Hardware Developers Guide (HDG) for further details.  
W49  
W5  
AB50 AB4  
AC49 AC5  
U47  
W47  
Y48  
Y46  
U7  
W7  
Y6  
Y8  
CA5_A  
W43 W11  
Y44  
W45  
W51  
T48  
T52  
T50  
U51  
U49  
T46  
W53  
Y52  
U53  
Y10  
W9  
W3  
T6  
CA3_A  
T2  
T4  
CS0_A  
CA0_A  
CS1_A  
U3  
U5  
T8  
W1  
Y2  
U1  
CKE0_A  
CKE1_A  
CA1_A  
CA4_B  
RESET_N  
CA5_B  
AC47 AC7  
AB48 AB6  
AB46 AB8  
AC43 AC11  
AE45 AE9  
AC51 AC3  
AC45 AC9  
AB44 AB10  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
141  
Package information and contact assignments  
Table 128. 29 x 29 mm DRAM pin function (continued)  
Ball Name  
x = 0 x = 1  
LPDDR4 Function  
Notes  
DDR_CHx_DCF25  
DDR_CHx_DCF26  
DDR_CHx_DCF27  
DDR_CHx_DCF28  
DDR_CHx_DCF29  
DDR_CHx_DCF30  
DDR_CHx_DCF31  
DDR_CHx_DCF32  
DDR_CHx_DCF33  
DDR_CHx_DM0  
DDR_CHx_DM1  
DDR_CHx_DM2  
DDR_CHx_DM3  
DDR_CHx_DQ00  
DDR_CHx_DQ01  
DDR_CHx_DQ02  
DDR_CHx_DQ03  
DDR_CHx_DQ04  
DDR_CHx_DQ05  
DDR_CHx_DQ06  
DDR_CHx_DQ07  
DDR_CHx_DQ08  
DDR_CHx_DQ09  
DDR_CHx_DQ10  
DDR_CHx_DQ11  
DDR_CHx_DQ12  
DDR_CHx_DQ13  
DDR_CHx_DQ14  
DDR_CHx_DQ15  
DDR_CHx_DQ16  
DDR_CHx_DQ17  
DDR_CHx_DQ18  
DDR_CHx_DQ19  
AF52 AF2  
AE47 AE7  
AE51 AE3  
AF50 AF4  
AE49 AE5  
AC53 AC1  
AB52 AB2  
AE53 AE1  
AF48 AF6  
The exact clock and control line connections will be  
dependent on the memory configuration in use. Refer to  
the Hardware Developers Guide (HDG) for further details.  
CA3_B  
CA0_B  
CS0_B  
CS1_B  
CKE0_B  
CKE1_B  
CA1_B  
CA2_B  
DMI[3..0]  
H52  
N47  
H2  
N7  
The exact mask, strobe and data connections to memory  
are flexible as long as the correct byte mapping is used,  
there is no restriction on the bit connections within each  
byte.  
AJ47 AJ7  
AP52 AP2  
DM0 -> DQS0(_N/P) -> DQ[7..0]  
DM1 -> DQS1(_N/P) -> DQ[15..8]  
DM2 -> DQS2(_N/P) -> DQ[23..16]  
DM3 -> DQS3(_N/P) -> DQ[31..24]  
P44  
N45  
L47  
K48  
H50  
G53  
G51  
N43  
L49  
K50  
N51  
L51  
P46  
N49  
P50  
P48  
P10  
N9  
L7  
DQ[31..0]  
K6  
H4  
G1  
G3  
N11  
L5  
K4  
N3  
L3  
P8  
N5  
P4  
P6  
AM50 AM4  
AL49 AL5  
AL51 AL3  
AJ51 AJ3  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
142  
Package information and contact assignments  
Table 128. 29 x 29 mm DRAM pin function (continued)  
Ball Name  
x = 0 x = 1  
LPDDR4 Function  
Notes  
DDR_CHx_DQ20  
DDR_CHx_DQ21  
DDR_CHx_DQ22  
DDR_CHx_DQ23  
DDR_CHx_DQ24  
DDR_CHx_DQ25  
DDR_CHx_DQ26  
DDR_CHx_DQ27  
DDR_CHx_DQ28  
DDR_CHx_DQ29  
DDR_CHx_DQ30  
DDR_CHx_DQ31  
DDR_CHx_DQS0_N  
DDR_CHx_DQS0_P  
DDR_CHx_DQS1_N  
DDR_CHx_DQS1_P  
DDR_CHx_DQS2_N  
DDR_CHx_DQS2_P  
DDR_CHx_DQS3_N  
DDR_CHx_DQS3_P  
DDR_CHx_DTO0  
DDR_CHx_DTO1  
DDR_CHx_VREF  
DDR_CHx_ZQ  
AJ49 AJ5  
AH46 AH8  
AH48 AH6  
AH50 AH4  
AJ45 AJ9  
AH44 AH10  
AM48 AM6  
AL47 AL7  
AR53 AR1  
AP50 AP4  
AJ43 AJ11  
AR51 AR3  
DQ[31..0]  
The exact mask, strobe and data connections to memory  
are flexible as long as the correct byte mapping is used,  
there is no restriction on the bit connections within each  
byte.  
DM0 -> DQS0(_N/P) -> DQ[7..0]  
DM1 -> DQS1(_N/P) -> DQ[15..8]  
DM2 -> DQS2(_N/P) -> DQ[23..16]  
DM3 -> DQS3(_N/P) -> DQ[31..24]  
L53  
K52  
P52  
N53  
L1  
K2  
P2  
N1  
DQS[3..0]_c maps to _N  
DQS[3..0]_t maps to _P  
AH52 AH2  
AJ53 AJ1  
AL53 AL1  
AM52 AM2  
U45  
T44  
U43  
U9  
T10  
U11  
NXP Internal Use Only (Leave Unconnected)  
AF44 AF10  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
NXP Semiconductors  
143  
Release Notes  
7 Release Notes  
This table provides release notes for the data sheet.  
Table 129. Data sheet release notes  
Substantive Change(s)  
Rev.  
Number  
Date  
2
05/2021 • Clarified LVDS Tx port information in Table 1, "i.MX 8QuadPlus advanced features" under Display I/O.  
• Updated Table 2, "i.MX 8QuadPlus Orderable part numbers" information.  
• Updated the example in Section 1.2, “System Controller Firmware (SCFW) Requirements".  
• Corrected document IDs in Table 3, "Related resources".  
• Updated LVDS information and clarified KHz for XTAL OSC32K in Table 4, "i.MX 8QuadPlus modules  
list".  
• In Table 8, "Operating ranges", added min frequency for VDD_A72 and VDD_A53.  
• Updated note in Section 4.1.5, “Maximum Supply Currents".  
• Updated the value ranges in Table 26, "LVDS PHY PLL".  
• Updated footnotes pointing to Section 4.6.2, “Input Signal Monotonic Requirements" in Table 30,  
Table 31, Table 32, Table 33, Table 34, Table 35, and Table 36.  
• Corrected test conditions in Table 38, "LPDDR4 DC parameters".  
• Added Section 4.6.2, “Input Signal Monotonic Requirements".  
• Corrected maximum frequency test conditions and footnotes 2 and 3 in Table 40, "General Purpose I/O  
AC Parameters".  
• In Table 81, "LVDS pins", updated single channel values.  
• Updated PCI Express Gen 2 values for AOPENING and added footnote to Table 93, "PCIe receiver eye  
specifications for example standards".  
• Rewrote introductory paragraph for Section 5.1, “Boot mode configuration inputs".  
• Clarified QSPI information in Table 125, "Interface allocation during boot".  
• Corrected default function for Ball AP46 in Table 127, "29 × 29 mm functional contact assignments".  
• Corrected x=0 column value for DDR_CHx_DTO1 in Table 128, "29 x 29 mm DRAM pin function".  
i.MX 8QuadPlus Automotive and Infotainment Applications Processors, Rev. 2, 05/2021  
144  
NXP Semiconductors  
How To Reach Us  
Home Page:  
Limited warranty and liability — Information in this document is believed to be accurate and reliable. However,  
NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or  
completeness of such information and shall have no liability for the consequences of use of such information. NXP  
Semiconductors takes no responsibility for the content in this document if provided by an information source outside  
of NXP Semiconductors. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special  
or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related  
to the removal or replacement of any products or rework charges) whether or not such damages are based on tort  
(including negligence), warranty, breach of contract or any other legal theory.  
nxp.com  
Web Support:  
nxp.com/support  
Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’ aggregate  
and cumulative liability towards customer for the products described herein shall be limited in accordance with the  
Terms and conditions of commercial sale of NXP Semiconductors.  
Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this  
document, including without limitation specifications and product descriptions, at any time and without notice. This  
document supersedes and replaces all information supplied prior to the publication hereof.  
Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities.  
Customer is responsible for the design and operation of its applications and products throughout their lifecycles to  
reduce the effect of these vulnerabilities on customer’s applications and products. Customer’s responsibility also  
extends to other open and/or proprietary technologies supported by NXP products for use in customer’s applications.  
NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow  
up appropriately.  
Customer shall select products with security features that best meet rules, regulations, and standards of the intended  
application and make the ultimate design decisions regarding its products and is solely responsible for compliance  
with all legal, regulatory, and security related requirements concerning its products, regardless of any information or  
support that may be provided by NXP. NXP has a Product Security Incident Response Team (PSIRT) (reachable  
at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of  
NXP products.  
Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use  
in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of  
an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property  
or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of  
NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the  
customer’s own risk.  
Suitability for use in automotive applications — This NXP Semiconductors product has been qualified for use in  
automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to  
be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure  
or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death  
or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion  
and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use  
is at the customer's own risk.  
Applications — Applications that are described herein for any of these products are for illustrative purposes only.  
NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use  
without further testing or modification.  
Customers are responsible for the design and operation of their applications and products using NXP Semiconductors  
products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product  
design. It is customer’s sole responsibility to determine whether the NXP Semiconductors product is suitable and fit  
for the customer’s applications and products planned, as well as for the planned application and use of customer’s  
third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks  
associated with their applications and products.  
Table continues on the next page...  
NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on  
any weakness or default in the customer’s applications or products, or the application or use by customer’s third party  
customer(s). Customer is responsible for doing all necessary testing for the customer’s applications and products using  
NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or  
use by customer’s third party customer(s). NXP does not accept any liability in this respect.  
Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of  
IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation  
of the device at these or any other conditions above those given in the Recommended operating conditions section (if  
present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting  
values will permanently and irreversibly affect the quality and reliability of the device.  
Terms and conditions of commerical sale — NXP Semiconductors products are sold subject to the general terms  
and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a  
valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the  
respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer’s general  
terms and conditions with regard to the purchase of NXP Semiconductors products by customer.  
No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that  
is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other  
industrial or intellectual property rights.  
Bare die — All die are tested on compliance with their related technical specifications as stated in this data sheet up  
to the point of wafer sawing and are handled in accordance with the NXP Semiconductors storage and transportation  
conditions. If there are data sheet limits not guaranteed, these will be separately indicated in the data sheet. There are  
no post-packing tests performed on individual die or wafers.  
NXP Semiconductors has no control of third party procedures in the sawing, handling, packing or assembly of the die.  
Accordingly, NXP Semiconductors assumes no liability for device functionality or performance of the die or systems  
after third party sawing, handling, packing or assembly of the die. It is the responsibility of the customer to test and  
qualify their application in which the die is used. All die sales are conditioned upon and subject to the customer entering  
into a written die sale agreement with NXP Semiconductors through its legal department.  
Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and  
Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.  
Export control — This document as well as the item(s) described herein may be subject to export control regulations.  
Export might require a prior authorization from competent authorities.  
Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail  
in case of any discrepancy between the translated and English versions.  
NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,EMBRACE,  
GREENCHIP, HITAG, ICODE, JCOP, LIFE, VIBES, MIFARE, MANTIS, MIGLO, NTAG, ROADLINK, SMARTLX,  
SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior,  
ColdFire, ColdFire+, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC,  
Processor Expert, QorIQ, QorIQ Qonverge, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Airfast,  
BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, Tower, TurboLink, EdgeScale,  
EdgeLock, eIQ, and Immersive3D are trademarks of NXP B.V. All other product or service names are the property  
of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink,  
CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView,  
SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile  
are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related  
technology may be protected by any or all of patents, copyrights, designs and trade secrets. All rights reserved. Oracle  
and Java are registered trademarks of Oracle and/or its affiliates. M, M Mobileye and other Mobileye trademarks  
or logos appearing herein are trademarks of Mobileye Vision Technologies Ltd. in the United States, the EU and/or  
other jurisdictions.  
©
NXP B.V. 2020-2021.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 05/2021  
Document identifier: IMX8QPAEC  

相关型号:

MIMX8QX1AVLFZAC

i.MX 8QuadXPlus and 8DualXPlus Automotive and Infotainment Applications Processors
NXP

MIMX8QX1AVOFZAC

i.MX 8QuadXPlus and 8DualXPlus Automotive and Infotainment Applications Processors
NXP

MIMX8QX2AVLFZAC

i.MX 8QuadXPlus and 8DualXPlus Automotive and Infotainment Applications Processors
NXP

MIMX8QX2AVOFZAC

i.MX 8QuadXPlus and 8DualXPlus Automotive and Infotainment Applications Processors
NXP

MIMX8QX5AVLFZAC

i.MX 8QuadXPlus and 8DualXPlus Automotive and Infotainment Applications Processors
NXP

MIMX8QX5CVLFZAC

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors
NXP

MIMX8QX6AVLFZAC

i.MX 8QuadXPlus and 8DualXPlus Automotive and Infotainment Applications Processors
NXP

MIMX8QX6CVLFZAC

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors
NXP

MIMX8QXNAVLFZAC

i.MX 8QuadXPlus and 8DualXPlus Industrial Applications Processors
NXP

MIMX8UX5AVLFZAC

i.MX 8DualX Automotive and Infotainment Applications Processors
NXP

MIMX8UX5AVOFZAC

i.MX 8DualX Automotive and Infotainment Applications Processors
NXP

MIMX8UX6AVLFZAC

i.MX 8DualX Automotive and Infotainment Applications Processors
NXP