MK22FX512VLH12 [NXP]

Kinetis K 32-bit MCU, ARM Cortex-M4 core, 512KB Flash, 120MHz, USB, QFP 64;
MK22FX512VLH12
型号: MK22FX512VLH12
厂家: NXP    NXP
描述:

Kinetis K 32-bit MCU, ARM Cortex-M4 core, 512KB Flash, 120MHz, USB, QFP 64

时钟 微控制器 外围集成电路
文件: 总70页 (文件大小:1934K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: K22P80M120SF5  
Rev. 3, 08/2013  
Freescale Semiconductor  
Data Sheet: Technical Data  
K22P80M120SF5  
K22 Sub-Family Data Sheet  
Supports the following:  
MK22FX512VLK12,  
MK22FN1M0VLK12  
Features  
Security and integrity modules  
– Hardware CRC module to support fast cyclic  
redundancy checks  
Operating Characteristics  
– Voltage range: 1.71 to 3.6 V  
– Flash write voltage range: 1.71 to 3.6 V  
– Temperature range (ambient): -40 to 105°C  
– 128-bit unique identification (ID) number per chip  
Human-machine interface  
– General-purpose input/output  
Performance  
– Up to 120 MHz ARM Cortex-M4 core with DSP  
instructions delivering 1.25 Dhrystone MIPS per  
MHz  
Analog modules  
– Two 16-bit SAR ADCs  
– 12-bit DAC  
– Three analog comparators (CMP) containing a 6-bit  
DAC and programmable reference input  
– Voltage reference  
Memories and memory interfaces  
– Up to 1 MB program flash memory on non-  
FlexMemory devices  
– Up to 512 KB program flash memory on  
FlexMemory devices  
– Up to 128 KB FlexNVM on FlexMemory devices  
– 4 KB FlexRAM on FlexMemory devices  
– Up to 128 KB RAM  
Timers  
– Programmable delay block  
– Two 8-channel motor control/general purpose/PWM  
timers  
– Two 2-channel quadrature decoder/general purpose  
timers  
– Serial programming interface (EzPort)  
– FlexBus external bus interface  
– Periodic interrupt timers  
– 16-bit low-power timer  
– Carrier modulator transmitter  
– Real-time clock  
Clocks  
– 3 to 32 MHz crystal oscillator  
– 32 kHz crystal oscillator  
– Multi-purpose clock generator  
Communication interfaces  
– USB full-/low-speed On-the-Go controller with on-  
chip transceiver  
– USB Device Charger detect  
– Controller Area Network (CAN) module  
– Two SPI modules  
System peripherals  
– Multiple low-power modes to provide power  
optimization based on application requirements  
– Memory protection unit with multi-master  
protection  
– 16-channel DMA controller, supporting up to 63  
request sources  
– Three I2C modules  
– Four UART modules  
– External watchdog monitor  
– Software watchdog  
– Secure Digital host controller (SDHC)  
– I2S module  
– Low-leakage wakeup unit  
Freescale reserves the right to change the detail specifications as may be  
required to permit improvements in the design of its products.  
© 2012–2013 Freescale Semiconductor, Inc.  
Table of Contents  
Thermal attributes...............................................22  
1 Ordering parts...........................................................................3  
5.4.2  
1.1 Determining valid orderable parts......................................3  
2 Part identification......................................................................3  
2.1 Description.........................................................................3  
2.2 Format...............................................................................3  
2.3 Fields.................................................................................3  
2.4 Example............................................................................4  
2.5 Small package marking.....................................................4  
3 Terminology and guidelines......................................................5  
3.1 Definition: Operating requirement......................................5  
3.2 Definition: Operating behavior...........................................5  
3.3 Definition: Attribute............................................................6  
3.4 Definition: Rating...............................................................6  
3.5 Result of exceeding a rating..............................................7  
3.6 Relationship between ratings and operating  
6 Peripheral operating requirements and behaviors....................23  
6.1 Core modules....................................................................23  
6.1.1  
6.1.2  
Debug trace timing specifications.......................23  
JTAG electricals..................................................24  
6.2 System modules................................................................27  
6.3 Clock modules...................................................................27  
6.3.1  
6.3.2  
6.3.3  
MCG specifications.............................................27  
Oscillator electrical specifications.......................29  
32 kHz oscillator electrical characteristics..........31  
6.4 Memories and memory interfaces.....................................32  
6.4.1  
6.4.2  
6.4.3  
Flash (FTFE) electrical specifications.................32  
EzPort switching specifications...........................37  
Flexbus switching specifications.........................37  
6.5 Security and integrity modules..........................................40  
6.6 Analog...............................................................................40  
requirements......................................................................7  
3.7 Guidelines for ratings and operating requirements............8  
3.8 Definition: Typical value.....................................................8  
3.9 Typical value conditions....................................................9  
4 Ratings......................................................................................9  
4.1 Thermal handling ratings...................................................9  
4.2 Moisture handling ratings..................................................10  
4.3 ESD handling ratings.........................................................10  
4.4 Voltage and current operating ratings...............................10  
5 General.....................................................................................10  
5.1 AC electrical characteristics..............................................11  
5.2 Nonswitching electrical specifications...............................11  
6.6.1  
6.6.2  
6.6.3  
6.6.4  
ADC electrical specifications..............................40  
CMP and 6-bit DAC electrical specifications......45  
12-bit DAC electrical characteristics...................47  
Voltage reference electrical specifications..........50  
6.7 Timers................................................................................51  
6.8 Communication interfaces.................................................51  
6.8.1  
6.8.2  
6.8.3  
6.8.4  
6.8.5  
USB electrical specifications...............................51  
USB DCD electrical specifications......................52  
USB VREG electrical specifications...................52  
CAN switching specifications..............................53  
DSPI switching specifications (limited voltage  
range).................................................................53  
DSPI switching specifications (full voltage  
5.2.1  
5.2.2  
5.2.3  
5.2.4  
5.2.5  
5.2.6  
5.2.7  
5.2.8  
Voltage and current operating requirements......11  
LVD and POR operating requirements...............12  
Voltage and current operating behaviors............13  
Power mode transition operating behaviors.......14  
Power consumption operating behaviors............15  
EMC radiated emissions operating behaviors....19  
Designing with radiated emissions in mind.........20  
Capacitance attributes........................................20  
6.8.6  
range).................................................................54  
I2C switching specifications................................56  
UART switching specifications............................56  
SDHC specifications...........................................56  
6.8.7  
6.8.8  
6.8.9  
6.8.10 I2S switching specifications................................57  
7 Dimensions...............................................................................63  
7.1 Obtaining package dimensions.........................................63  
8 Pinout........................................................................................63  
8.1 K22 Signal Multiplexing and Pin Assignments..................63  
8.2 K22 Pinouts.......................................................................67  
9 Revision History........................................................................68  
5.3 Switching specifications.....................................................20  
5.3.1  
5.3.2  
Device clock specifications.................................20  
General switching specifications.........................21  
5.4 Thermal specifications.......................................................22  
5.4.1 Thermal operating requirements.........................22  
K22 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2013.  
2
Freescale Semiconductor, Inc.  
Ordering parts  
1 Ordering parts  
1.1 Determining valid orderable parts  
Valid orderable part numbers are provided on the web. To determine the orderable part  
numbers for this device, go to freescale.com and perform a part number search for the  
following device numbers: PK22 and MK22 .  
2 Part identification  
2.1 Description  
Part numbers for the chip have fields that identify the specific part. You can use the  
values of these fields to determine the specific part you have received.  
2.2 Format  
Part numbers for this device have the following format:  
Q K## A M FFF R T PP CC N  
2.3 Fields  
This table lists the possible values for each field in the part number (not all combinations  
are valid):  
Field  
Description  
Values  
Q
Qualification status  
• M = Fully qualified, general market flow  
• P = Prequalification  
K##  
A
Kinetis family  
Key attribute  
• K22  
• D = Cortex-M4 w/ DSP  
• F = Cortex-M4 w/ DSP and FPU  
M
Flash memory type  
• N = Program flash only  
• X = Program flash and FlexMemory  
Table continues on the next page...  
K22 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2013.  
Freescale Semiconductor, Inc.  
3
 
 
 
 
 
 
Part identification  
Field  
Description  
Program flash memory size  
Values  
FFF  
• 32 = 32 KB  
• 64 = 64 KB  
• 128 = 128 KB  
• 256 = 256 KB  
• 512 = 512 KB  
• 1M0 = 1 MB  
• 2M0 = 2 MB  
R
Silicon revision  
• Z = Initial  
• (Blank) = Main  
• A = Revision after main  
T
Temperature range (°C)  
Package identifier  
• V = –40 to 105  
• C = –40 to 85  
PP  
• FM = 32 QFN (5 mm x 5 mm)  
• FT = 48 QFN (7 mm x 7 mm)  
• LF = 48 LQFP (7 mm x 7 mm)  
• LH = 64 LQFP (10 mm x 10 mm)  
• MP = 64 MAPBGA (5 mm x 5 mm)  
• LK = 80 LQFP (12 mm x 12 mm)  
• LL = 100 LQFP (14 mm x 14 mm)  
• MC = 121 MAPBGA (8 mm x 8 mm)  
• DC = 121 XFBGA (8 mm x 8 mm x 0.5 mm)  
• LQ = 144 LQFP (20 mm x 20 mm)  
• MD = 144 MAPBGA (13 mm x 13 mm)  
CC  
Maximum CPU frequency (MHz)  
• 5 = 50 MHz  
• 7 = 72 MHz  
• 10 = 100 MHz  
• 12 = 120 MHz  
• 15 = 150 MHz  
• 18 = 180 MHz  
N
Packaging type  
• R = Tape and reel  
• (Blank) = Trays  
2.4 Example  
This is an example part number:  
MK22FN1M0VLK10  
2.5 Small package marking  
In an effort to save space, small package devices use special marking on the chip. These  
markings have the following format:  
Q ## C F T PP  
This table lists the possible values for each field in the part number for small packages  
(not all combinations are valid):  
K22 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2013.  
4
Freescale Semiconductor, Inc.  
 
 
Terminology and guidelines  
Values  
Field  
Description  
Q
Qualification status  
• M = Fully qualified, general market flow  
• P = Prequalification  
##  
C
Kinetis family  
Speed  
• 2# = K21/K22  
• H = 120 MHz  
F
Flash memory configuration  
• K = 512 KB + Flex  
• 1 = 1 MB  
T
Temperature range (°C)  
Package identifier  
• V = –40 to 105  
PP  
• LL = 100 LQFP  
• MC = 121 MAPBGA  
• LQ = 144 LQFP  
• MD = 144 MAPBGA  
• DC = 121 XFBGA  
This tables lists some examples of small package marking along with the original part  
numbers:  
Original part number  
Alternate part number  
MK22FN1M0VLK12  
M22H1VLK  
3 Terminology and guidelines  
3.1 Definition: Operating requirement  
An operating requirement is a specified value or range of values for a technical  
characteristic that you must guarantee during operation to avoid incorrect operation and  
possibly decreasing the useful life of the chip.  
3.1.1 Example  
This is an example of an operating requirement:  
Symbol  
Description  
Min.  
Max.  
Unit  
VDD  
1.0 V core supply  
voltage  
0.9  
1.1  
V
K22 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2013.  
Freescale Semiconductor, Inc.  
5
 
 
 
Terminology and guidelines  
3.2 Definition: Operating behavior  
An operating behavior is a specified value or range of values for a technical  
characteristic that are guaranteed during operation if you meet the operating requirements  
and any other specified conditions.  
3.2.1 Example  
This is an example of an operating behavior:  
Symbol  
Description  
Min.  
Max.  
Unit  
IWP  
Digital I/O weak pullup/ 10  
pulldown current  
130  
µA  
3.3 Definition: Attribute  
An attribute is a specified value or range of values for a technical characteristic that are  
guaranteed, regardless of whether you meet the operating requirements.  
3.3.1 Example  
This is an example of an attribute:  
Symbol  
Description  
Min.  
Max.  
Unit  
CIN_D  
Input capacitance:  
digital pins  
7
pF  
3.4 Definition: Rating  
A rating is a minimum or maximum value of a technical characteristic that, if exceeded,  
may cause permanent chip failure:  
Operating ratings apply during operation of the chip.  
Handling ratings apply when the chip is not powered.  
K22 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2013.  
6
Freescale Semiconductor, Inc.  
 
 
Terminology and guidelines  
3.4.1 Example  
This is an example of an operating rating:  
Symbol  
Description  
Min.  
Max.  
Unit  
VDD  
1.0 V core supply  
voltage  
–0.3  
1.2  
V
3.5 Result of exceeding a rating  
40  
30  
The likelihood of permanent chip failure increases rapidly as  
soon as a characteristic begins to exceed one of its operating ratings.  
20  
10  
0
Operating rating  
Measured characteristic  
3.6 Relationship between ratings and operating requirements  
Fatal range  
Degraded operating range  
Normal operating range  
Degraded operating range  
Fatal range  
Expected permanent failure  
- No permanent failure  
- Possible decreased life  
- Possible incorrect operation  
- No permanent failure  
- Correct operation  
- No permanent failure  
- Possible decreased life  
- Possible incorrect operation  
Expected permanent failure  
 
Operating (power on)  
Fatal range  
Handling range  
Fatal range  
Expected permanent failure  
No permanent failure  
Expected permanent failure  
∞  
Handling (power off)  
K22 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2013.  
Freescale Semiconductor, Inc.  
7
 
 
Terminology and guidelines  
3.7 Guidelines for ratings and operating requirements  
Follow these guidelines for ratings and operating requirements:  
• Never exceed any of the chip’s ratings.  
• During normal operation, don’t exceed any of the chip’s operating requirements.  
• If you must exceed an operating requirement at times other than during normal  
operation (for example, during power sequencing), limit the duration as much as  
possible.  
3.8 Definition: Typical value  
A typical value is a specified value for a technical characteristic that:  
• Lies within the range of values specified by the operating behavior  
• Given the typical manufacturing process, is representative of that characteristic  
during operation when you meet the typical-value conditions or other specified  
conditions  
Typical values are provided as design guidelines and are neither tested nor guaranteed.  
3.8.1 Example 1  
This is an example of an operating behavior that includes a typical value:  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
IWP  
Digital I/O weak  
pullup/pulldown  
current  
10  
70  
130  
µA  
3.8.2 Example 2  
This is an example of a chart that shows typical values for various voltage and  
temperature conditions:  
K22 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2013.  
8
Freescale Semiconductor, Inc.  
 
 
Ratings  
5000  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
TJ  
150 °C  
105 °C  
25 °C  
–40 °C  
0
0.90  
0.95  
1.00  
1.05  
1.10  
VDD (V)  
3.9 Typical value conditions  
Typical values assume you meet the following conditions (or other conditions as  
specified):  
Symbol  
Description  
Ambient temperature  
3.3 V supply voltage  
Value  
Unit  
TA  
25  
°C  
V
VDD  
3.3  
4 Ratings  
4.1 Thermal handling ratings  
Symbol  
TSTG  
Description  
Min.  
–55  
Max.  
150  
Unit  
°C  
Notes  
Storage temperature  
Solder temperature, lead-free  
1
2
TSDR  
260  
°C  
1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.  
2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
K22 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2013.  
Freescale Semiconductor, Inc.  
9
 
 
 
 
 
General  
4.2 Moisture handling ratings  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
MSL  
Moisture sensitivity level  
3
1
1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
4.3 ESD handling ratings  
Symbol  
VHBM  
VCDM  
ILAT  
Description  
Min.  
-2000  
-500  
Max.  
+2000  
+500  
Unit  
V
Notes  
Electrostatic discharge voltage, human body model  
Electrostatic discharge voltage, charged-device model  
Latch-up current at ambient temperature of 105°C  
1
2
3
V
-100  
+100  
mA  
1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body  
Model (HBM).  
2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for  
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.  
3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.  
4.4 Voltage and current operating ratings  
Symbol  
VDD  
Description  
Min.  
–0.3  
Max.  
3.8  
Unit  
V
Digital supply voltage  
IDD  
Digital supply current  
185  
mA  
V
VDIO  
Digital input voltage (except RESET, EXTAL, and XTAL)  
Analog1, RESET, EXTAL, and XTAL input voltage  
Maximum current single pin limit (applies to all digital pins)  
Analog supply voltage  
–0.3  
5.5  
VAIO  
–0.3  
VDD + 0.3  
25  
V
ID  
–25  
mA  
V
VDDA  
VUSB0_DP  
VUSB0_DM  
VBAT  
VDD – 0.3  
–0.3  
VDD + 0.3  
3.63  
USB0_DP input voltage  
V
USB0_DM input voltage  
–0.3  
3.63  
V
RTC battery supply voltage  
–0.3  
3.8  
V
1. Analog pins are defined as pins that do not have an associated general purpose I/O port function.  
5 General  
K22 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2013.  
10  
Freescale Semiconductor, Inc.  
 
 
 
 
 
 
 
 
 
General  
5.1 AC electrical characteristics  
Unless otherwise specified, propagation delays are measured from the 50% to the 50%  
point, and rise and fall times are measured at the 20% and 80% points, as shown in the  
following figure.  
Figure 1. Input signal measurement reference  
All digital I/O switching characteristics assume:  
1. output pins  
• have CL=30pF loads,  
• are configured for fast slew rate (PORTx_PCRn[SRE]=0), and  
• are configured for high drive strength (PORTx_PCRn[DSE]=1)  
2. input pins  
• have their passive filter disabled (PORTx_PCRn[PFE]=0)  
5.2 Nonswitching electrical specifications  
5.2.1 Voltage and current operating requirements  
Table 1. Voltage and current operating requirements  
Symbol  
VDD  
Description  
Min.  
1.71  
1.71  
–0.1  
–0.1  
1.71  
Max.  
3.6  
3.6  
0.1  
0.1  
3.6  
Unit  
V
Notes  
Supply voltage  
VDDA  
Analog supply voltage  
V
VDD – VDDA VDD-to-VDDA differential voltage  
VSS – VSSA VSS-to-VSSA differential voltage  
V
V
VBAT  
VIH  
RTC battery supply voltage  
Input high voltage  
V
• 2.7 V ≤ VDD ≤ 3.6 V  
• 1.7 V ≤ VDD ≤ 2.7 V  
0.7 × VDD  
V
V
0.75 × VDD  
Table continues on the next page...  
K22 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2013.  
Freescale Semiconductor, Inc.  
11  
 
 
 
General  
Table 1. Voltage and current operating requirements (continued)  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
VIL  
Input low voltage  
• 2.7 V ≤ VDD ≤ 3.6 V  
• 1.7 V ≤ VDD ≤ 2.7 V  
0.35 × VDD  
0.3 × VDD  
V
V
VHYS  
IICDIO  
Input hysteresis  
0.06 × VDD  
-5  
V
Digital pin negative DC injection current — single pin  
• VIN < VSS-0.3V  
1
3
mA  
IICAIO  
Analog2, EXTAL, and XTAL pin DC injection current —  
single pin  
mA  
-5  
• VIN < VSS-0.3V (Negative current injection)  
• VIN > VDD+0.3V (Positive current injection)  
+5  
IICcont  
Contiguous pin DC injection current —regional limit,  
includes sum of negative injection currents or sum of  
positive injection currents of 16 contiguous pins  
-25  
mA  
• Negative current injection  
• Positive current injection  
+25  
VODPU  
VRAM  
Open drain pullup voltage level  
VDD  
1.2  
VDD  
V
V
V
4
VDD voltage required to retain RAM  
VRFVBAT  
VBAT voltage required to retain the VBAT register file  
VPOR_VBAT  
1. All 5 V tolerant digital I/O pins are internally clamped to VSS through an ESD protection diode. There is no diode  
connection to VDD. If VIN is less than VDIO_MIN, a current limiting resistor is required. If VIN greater than VDIO_MIN  
(=VSS-0.3V) is observed, then there is no need to provide current limiting resistors at the pads. The negative DC injection  
current limiting resistor is calculated as R=(VDIO_MIN-VIN)/|IICDIO|.  
2. Analog pins are defined as pins that do not have an associated general purpose I/O port function. Additionally, EXTAL and  
XTAL are analog pins.  
3. All analog pins are internally clamped to VSS and VDD through ESD protection diodes. If VIN is less than VAIO_MIN or greater  
than VAIO_MAX, a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as  
R=(VAIO_MIN-VIN)/|IICAIO|. The positive injection current limiting resistor is calculated as R=(VIN-VAIO_MAX)/|IICAIO|. Select the  
larger of these two calculated resistances if the pin is exposed to positive and negative injection currents.  
4. Open drain outputs must be pulled to VDD.  
5.2.2 LVD and POR operating requirements  
Table 2. VDD supply LVD and POR operating requirements  
Symbol Description  
Min.  
0.8  
Typ.  
1.1  
Max.  
1.5  
Unit  
V
Notes  
VPOR  
Falling VDD POR detect voltage  
VLVDH  
Falling low-voltage detect threshold — high  
range (LVDV=01)  
2.48  
2.56  
2.64  
V
Table continues on the next page...  
K22 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2013.  
12  
Freescale Semiconductor, Inc.  
 
 
 
 
 
General  
Table 2. VDD supply LVD and POR operating requirements (continued)  
Symbol Description  
Low-voltage warning thresholds — high range  
Min.  
Typ.  
Max.  
Unit  
Notes  
1
VLVW1H  
VLVW2H  
VLVW3H  
VLVW4H  
• Level 1 falling (LVWV=00)  
• Level 2 falling (LVWV=01)  
• Level 3 falling (LVWV=10)  
• Level 4 falling (LVWV=11)  
2.62  
2.72  
2.82  
2.92  
2.70  
2.80  
2.90  
3.00  
2.78  
2.88  
2.98  
3.08  
V
V
V
V
VHYSH  
VLVDL  
Low-voltage inhibit reset/recover hysteresis —  
high range  
80  
mV  
V
Falling low-voltage detect threshold — low range  
(LVDV=00)  
1.54  
1.60  
1.66  
Low-voltage warning thresholds — low range  
• Level 1 falling (LVWV=00)  
1
VLVW1L  
VLVW2L  
VLVW3L  
VLVW4L  
1.74  
1.84  
1.94  
2.04  
1.80  
1.90  
2.00  
2.10  
1.86  
1.96  
2.06  
2.16  
V
V
V
V
• Level 2 falling (LVWV=01)  
• Level 3 falling (LVWV=10)  
• Level 4 falling (LVWV=11)  
VHYSL  
Low-voltage inhibit reset/recover hysteresis —  
low range  
60  
mV  
VBG  
tLPO  
Bandgap voltage reference  
0.97  
900  
1.00  
1.03  
V
Internal low power oscillator period — factory  
trimmed  
1000  
1100  
μs  
1. Rising threshold is the sum of falling threshold and hysteresis voltage  
Table 3. VBAT power operating requirements  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
VPOR_VBAT Falling VBAT supply POR detect voltage  
0.8  
1.1  
1.5  
V
5.2.3 Voltage and current operating behaviors  
Table 4. Voltage and current operating behaviors  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
VOH  
Output high voltage — high drive strength  
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = -8mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = -3mA  
VDD – 0.5  
VDD – 0.5  
V
V
Output high voltage — low drive strength  
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = -2mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = -0.6mA  
VDD – 0.5  
VDD – 0.5  
V
V
IOHT  
Output high current total for all ports  
100  
mA  
Table continues on the next page...  
K22 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2013.  
Freescale Semiconductor, Inc.  
13  
 
 
General  
Table 4. Voltage and current operating behaviors (continued)  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
VOL  
Output low voltage — high drive strength  
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 9mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 3mA  
0.5  
0.5  
V
V
Output low voltage — low drive strength  
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 2mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 0.6mA  
0.5  
0.5  
V
V
IOLT  
IIN  
Output low current total for all ports  
100  
1
mA  
μA  
Input leakage current (per pin) for full temperature  
range  
1
1
IIN  
Input leakage current (per pin) at 25°C  
Hi-Z (off-state) leakage current (per pin)  
Internal pullup resistors  
20  
20  
0.025  
0.25  
50  
μA  
μA  
kΩ  
kΩ  
IOZ  
RPU  
RPD  
2
3
Internal pulldown resistors  
50  
1. Measured at VDD=3.6V  
2. Measured at VDD supply voltage = VDD min and Vinput = VSS  
3. Measured at VDD supply voltage = VDD min and Vinput = VDD  
5.2.4 Power mode transition operating behaviors  
All specifications except tPOR, and VLLSxRUN recovery times in the following table  
assume this clock configuration:  
• CPU and system clocks = 100 MHz  
• Bus clock = 50 MHz  
• FlexBus clock = 50 MHz  
• Flash clock = 25 MHz  
Table 5. Power mode transition operating behaviors  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
tPOR  
After a POR event, amount of time from the point VDD  
reaches 1.71 V to execution of the first instruction  
across the operating temperature range of the chip.  
300  
μs  
183  
183  
105  
105  
μs  
μs  
μs  
μs  
• VLLS0 RUN  
• VLLS1 RUN  
• VLLS2 RUN  
• VLLS3 RUN  
Table continues on the next page...  
K22 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2013.  
14  
Freescale Semiconductor, Inc.  
 
 
 
 
General  
Notes  
Table 5. Power mode transition operating behaviors (continued)  
Symbol  
Description  
Min.  
Max.  
Unit  
5.0  
μs  
• LLS RUN  
4.4  
4.4  
μs  
μs  
• VLPS RUN  
• STOP RUN  
5.2.5 Power consumption operating behaviors  
Table 6. Power consumption operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDDA  
Analog supply current  
See note  
mA  
1
2
IDD_RUN Run mode current — all peripheral clocks  
disabled, code executing from flash  
33.57  
33.51  
36.2  
36.1  
mA  
mA  
• @ 1.8V  
• @ 3.0V  
IDD_RUN Run mode current — all peripheral clocks  
enabled, code executing from flash  
3, 4  
46.36  
50.1  
mA  
• @ 1.8V  
• @ 3.0V  
• @ 25°C  
• @ 125°C  
46.31  
57.4  
49.9  
mA  
mA  
IDD_WAIT Wait mode high frequency current at 3.0 V — all  
peripheral clocks disabled  
18.2  
7.2  
mA  
mA  
mA  
mA  
mA  
2
5
6
7
8
IDD_WAIT Wait mode reduced frequency current at 3.0 V —  
all peripheral clocks disabled  
IDD_VLPR Very-low-power run mode current at 3.0 V — all  
peripheral clocks disabled  
1.21  
1.88  
0.80  
IDD_VLPR Very-low-power run mode current at 3.0 V — all  
peripheral clocks enabled  
IDD_VLPW Very-low-power wait mode current at 3.0 V — all  
peripheral clocks disabled  
IDD_STOP Stop mode current at 3.0 V  
• @ –40 to 25°C  
0.528  
1.6  
2.25  
8
mA  
mA  
mA  
• @ 70°C  
5.2  
20  
• @ 105°C  
Table continues on the next page...  
K22 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2013.  
Freescale Semiconductor, Inc.  
15  
 
General  
Table 6. Power consumption operating behaviors (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDD_VLPS Very-low-power stop mode current at 3.0 V  
78  
700  
2400  
3600  
μA  
μA  
μA  
• @ –40 to 25°C  
• @ 70°C  
498  
1300  
• @ 105°C  
IDD_LLS Low leakage stop mode current at 3.0 V  
5.1  
28  
15  
80  
μA  
μA  
μA  
• @ –40 to 25°C  
• @ 70°C  
124  
300  
• @ 105°C  
IDD_VLLS3 Very low-leakage stop mode 3 current at 3.0 V  
3.1  
7.5  
45  
μA  
μA  
μA  
• @ –40 to 25°C  
• @ 70°C  
14.5  
63.5  
195  
• @ 105°C  
IDD_VLLS2 Very low-leakage stop mode 2 current at 3.0 V  
2.0  
6.9  
30  
5
μA  
μA  
μA  
• @ –40 to 25°C  
• @ 70°C  
32  
112  
• @ 105°C  
IDD_VLLS1 Very low-leakage stop mode 1 current at 3.0 V  
1.25  
6.5  
37  
2.1  
18.5  
108  
μA  
μA  
μA  
• @ –40 to 25°C  
• @ 70°C  
• @ 105°C  
IDD_VLLS0 Very low-leakage stop mode 0 current at 3.0 V  
with POR detect circuit enabled  
0.745  
6.03  
37  
1.65  
18  
μA  
μA  
μA  
• @ –40 to 25°C  
• @ 70°C  
108  
• @ 105°C  
IDD_VLLS0 Very low-leakage stop mode 0 current at 3.0 V  
with POR detect circuit disabled  
0.268  
3.7  
1.25  
15  
μA  
μA  
μA  
• @ –40 to 25°C  
• @ 70°C  
22.9  
95  
• @ 105°C  
IDD_VBAT Average current with RTC and 32kHz disabled at  
3.0 V  
• @ –40 to 25°C  
• @ 70°C  
0.19  
0.49  
2.2  
0.22  
0.64  
3.2  
μA  
μA  
μA  
• @ 105°C  
Table continues on the next page...  
K22 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2013.  
16  
Freescale Semiconductor, Inc.  
General  
Table 6. Power consumption operating behaviors (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDD_VBAT Average current when CPU is not accessing RTC  
registers  
9
• @ 1.8V  
• @ –40 to 25°C  
• @ 70°C  
0.68  
1.2  
0.8  
1.56  
5.3  
μA  
μA  
μA  
• @ 105°C  
• @ 3.0V  
3.6  
• @ –40 to 25°C  
• @ 70°C  
0.81  
1.45  
4.3  
0.96  
1.89  
6.33  
μA  
μA  
μA  
• @ 105°C  
1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See  
each module's specification for its supply current.  
2. 120 MHz core and system clock, 60 MHz bus 40 Mhz and FlexBus clock, and 24 MHz flash clock. MCG configured for  
PEE mode. All peripheral clocks disabled.  
3. 120 MHz core and system clock, 60 MHz bus and FlexBus clock, and 24 MHz flash clock. MCG configured for PEE mode.  
All peripheral clocks enabled.  
4. Max values are measured with CPU executing DSP instructions.  
5. 25 MHz core and system clock, 25 MHz bus clock, and 12.5 MHz FlexBus and flash clock. MCG configured for FEI mode.  
6. 4 MHz core, system, FlexBus, and bus clock and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks  
disabled. Code executing from flash.  
7. 4 MHz core, system, FlexBus, and bus clock and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks  
enabled but peripherals are not in active operation. Code executing from flash.  
8. 4 MHz core, system, FlexBus, and bus clock and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks  
disabled.  
9. Includes 32kHz oscillator current and RTC operation.  
5.2.5.1 Diagram: Typical IDD_RUN operating behavior  
The following data was measured under these conditions:  
• MCG in PEE mode at greater than 100 MHz frequencies  
• No GPIOs toggled  
• Code execution from flash with cache enabled  
• For the ALLOFF curve, all peripheral clocks are disabled except FTFE  
K22 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2013.  
Freescale Semiconductor, Inc.  
17  
 
 
 
 
 
 
 
 
 
General  
Figure 2. Run mode supply current vs. core frequency  
K22 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2013.  
18  
Freescale Semiconductor, Inc.  
General  
Figure 3. VLPR mode supply current vs. core frequency  
5.2.6 EMC radiated emissions operating behaviors  
Table 7. EMC radiated emissions operating behaviors  
Symbol  
Description  
Frequency  
band (MHz)  
Typ.  
Unit  
Notes  
VRE1  
VRE2  
Radiated emissions voltage, band 1  
Radiated emissions voltage, band 2  
Radiated emissions voltage, band 3  
Radiated emissions voltage, band 4  
IEC level  
0.15–50  
50–150  
23  
27  
28  
14  
K
dBμV  
dBμV  
dBμV  
dBμV  
1, 2  
VRE3  
150–500  
500–1000  
0.15–1000  
VRE4  
VRE_IEC  
2, 3  
1. Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150  
kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement of  
Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband  
TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported  
emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the  
measured orientations in each frequency range.  
2. VDD = 3.3 V, TA = 25 °C, fOSC = 12 MHz (crystal), fSYS = 96 MHz, fBUS = 48MHz  
K22 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2013.  
Freescale Semiconductor, Inc.  
19  
 
 
 
General  
3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and Wideband  
TEM Cell Method  
5.2.7 Designing with radiated emissions in mind  
To find application notes that provide guidance on designing your system to minimize  
interference from radiated emissions:  
1. Go to www.freescale.com.  
2. Perform a keyword search for “EMC design.”  
5.2.8 Capacitance attributes  
Table 8. Capacitance attributes  
Symbol  
CIN_A  
Description  
Min.  
Max.  
Unit  
pF  
Input capacitance: analog pins  
Input capacitance: digital pins  
7
7
CIN_D  
pF  
5.3 Switching specifications  
5.3.1 Device clock specifications  
Table 9. Device clock specifications  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
Normal run mode  
fSYS  
System and core clock  
120  
MHz  
MHz  
fSYS_USB  
System and core clock when Full Speed USB in  
operation  
20  
fBUS  
FB_CLK  
fFLASH  
Bus clock  
60  
50  
25  
25  
MHz  
MHz  
MHz  
MHz  
FlexBus clock  
Flash clock  
LPTMR clock  
fLPTMR  
VLPR mode1  
fSYS  
fBUS  
System and core clock  
Bus clock  
4
4
MHz  
MHz  
MHz  
MHz  
MHz  
FB_CLK  
fFLASH  
fERCLK  
FlexBus clock  
4
Flash clock  
0.8  
16  
External reference clock  
Table continues on the next page...  
K22 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2013.  
20  
Freescale Semiconductor, Inc.  
 
 
 
 
 
General  
Notes  
Table 9. Device clock specifications (continued)  
Symbol  
Description  
Min.  
Max.  
25  
Unit  
MHz  
MHz  
MHz  
MHz  
MHz  
fLPTMR_pin  
LPTMR clock  
fLPTMR_ERCLK LPTMR external reference clock  
fFlexCAN_ERCLK FlexCAN external reference clock  
16  
8
fI2S_MCLK  
fI2S_BCLK  
I2S master clock  
I2S bit clock  
12.5  
4
1. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any  
other module.  
5.3.2 General switching specifications  
These general purpose specifications apply to all pins configured for:  
• GPIO signaling  
• Other peripheral module signaling not explicitly stated elsewhere  
Table 10. General switching specifications  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
GPIO pin interrupt pulse width (digital glitch filter  
disabled) — Synchronous path  
1.5  
Bus clock  
cycles  
1, 2  
GPIO pin interrupt pulse width (digital glitch filter  
disabled, analog filter enabled) — Asynchronous path  
100  
16  
ns  
ns  
ns  
3
3
3
GPIO pin interrupt pulse width (digital glitch filter  
disabled, analog filter disabled) — Asynchronous path  
External reset pulse width (digital glitch filter disabled)  
100  
2
Mode select (EZP_CS) hold time after reset  
deassertion  
Bus clock  
cycles  
Port rise and fall time (high drive strength)  
• Slew disabled  
4
• 1.71 ≤ VDD ≤ 2.7V  
• 2.7 ≤ VDD ≤ 3.6V  
12  
6
ns  
ns  
• Slew enabled  
• 1.71 ≤ VDD ≤ 2.7V  
• 2.7 ≤ VDD ≤ 3.6V  
36  
24  
ns  
ns  
Port rise and fall time (low drive strength)  
• Slew disabled  
5
• 1.71 ≤ VDD ≤ 2.7V  
• 2.7 ≤ VDD ≤ 3.6V  
12  
6
ns  
ns  
• Slew enabled  
• 1.71 ≤ VDD ≤ 2.7V  
• 2.7 ≤ VDD ≤ 3.6V  
36  
24  
ns  
ns  
K22 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2013.  
Freescale Semiconductor, Inc.  
21  
 
 
General  
1. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or  
may not be recognized. In Stop, VLPS, LLS, and VLLSx modes, the synchronizer is bypassed so shorter pulses can be  
recognized in that case.  
2. The greater synchronous and asynchronous timing must be met.  
3. This is the minimum pulse width that is guaranteed to be recognized as a pin interrupt request in Stop, VLPS, LLS, and  
VLLSx modes.  
4. 75 pF load  
5. 15 pF load  
5.4 Thermal specifications  
5.4.1 Thermal operating requirements  
Table 11. Thermal operating requirements  
Symbol  
TJ  
Description  
Min.  
–40  
–40  
Max.  
125  
Unit  
°C  
Die junction temperature  
Ambient temperature  
TA  
105  
°C  
5.4.2 Thermal attributes  
Board type  
Symbol  
Description  
80 LQFP  
Unit  
Notes  
Single-layer (1s)  
RθJA  
Thermal  
50  
°C/W  
1
resistance, junction  
to ambient (natural  
convection)  
Four-layer (2s2p)  
Single-layer (1s)  
Four-layer (2s2p)  
RθJA  
Thermal  
35  
39  
29  
°C/W  
°C/W  
°C/W  
1
1
1
resistance, junction  
to ambient (natural  
convection)  
RθJMA  
Thermal  
resistance, junction  
to ambient (200 ft./  
min. air speed)  
RθJMA  
Thermal  
resistance, junction  
to ambient (200 ft./  
min. air speed)  
RθJB  
Thermal  
resistance, junction  
to board  
19  
8
°C/W  
°C/W  
2
3
RθJC  
Thermal  
resistance, junction  
to case  
Table continues on the next page...  
K22 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2013.  
22  
Freescale Semiconductor, Inc.  
 
 
 
 
 
 
 
 
Peripheral operating requirements and behaviors  
Board type  
Symbol  
Description  
80 LQFP  
Unit  
Notes  
ΨJT  
Thermal  
2
°C/W  
4
characterization  
parameter, junction  
to package top  
outside center  
(natural  
convection)  
1.  
Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental  
Conditions—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method  
Environmental Conditions—Forced Convection (Moving Air).  
2.  
3.  
Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental  
Conditions—Junction-to-Board.  
Determined according to Method 1012.1 of MIL-STD 883, Test Method Standard, Microcircuits, with the cold plate  
temperature used for the case temperature. The value includes the thermal resistance of the interface material  
between the top of the package and the cold plate.  
4.  
Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental  
Conditions—Natural Convection (Still Air).  
6 Peripheral operating requirements and behaviors  
6.1 Core modules  
6.1.1 Debug trace timing specifications  
Table 12. Debug trace operating behaviors  
Symbol  
Description  
Min.  
Max.  
Unit  
Tcyc  
Clock period  
Frequency dependent (limited  
to 50 MHz)  
MHz  
Twl  
Twh  
Tr  
Low pulse width  
High pulse width  
Clock and data rise time  
Clock and data fall time  
Data setup  
2
2
3
ns  
ns  
ns  
ns  
ns  
ns  
3
Tf  
3
Ts  
Th  
Data hold  
2
Figure 4. TRACE_CLKOUT specifications  
K22 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2013.  
Freescale Semiconductor, Inc.  
23  
 
 
 
 
 
 
 
Peripheral operating requirements and behaviors  
TRACE_CLKOUT  
Ts  
Th  
Ts  
Th  
TRACE_D[3:0]  
Figure 5. Trace data specifications  
6.1.2 JTAG electricals  
Table 13. JTAG limited voltage range electricals  
Symbol  
Description  
Min.  
Max.  
Unit  
V
Operating voltage  
2.7  
3.6  
J1  
TCLK frequency of operation  
• Boundary Scan  
MHz  
0
0
0
10  
25  
50  
• JTAG and CJTAG  
• Serial Wire Debug  
J2  
J3  
TCLK cycle period  
TCLK clock pulse width  
• Boundary Scan  
1/J1  
ns  
50  
20  
10  
ns  
ns  
ns  
• JTAG and CJTAG  
• Serial Wire Debug  
J4  
J5  
TCLK rise and fall times  
20  
2.6  
8
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Boundary scan input data setup time to TCLK rise  
Boundary scan input data hold time after TCLK rise  
TCLK low to boundary scan output data valid  
TCLK low to boundary scan output high-Z  
TMS, TDI input data setup time to TCLK rise  
TMS, TDI input data hold time after TCLK rise  
TCLK low to TDO data valid  
25  
25  
17  
17  
J6  
J7  
J8  
J9  
J10  
J11  
J12  
J13  
J14  
1
100  
8
TCLK low to TDO high-Z  
TRST assert time  
TRST setup time (negation) to TCLK high  
Table 14. JTAG full voltage range electricals  
Symbol  
Description  
Operating voltage  
Min.  
Max.  
Unit  
1.71  
3.6  
V
Table continues on the next page...  
K22 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2013.  
24  
Freescale Semiconductor, Inc.  
 
Peripheral operating requirements and behaviors  
Table 14. JTAG full voltage range electricals (continued)  
Symbol  
Description  
Min.  
Max.  
Unit  
J1  
TCLK frequency of operation  
• Boundary Scan  
MHz  
0
0
0
10  
20  
40  
• JTAG and CJTAG  
• Serial Wire Debug  
J2  
J3  
TCLK cycle period  
TCLK clock pulse width  
• Boundary Scan  
1/J1  
ns  
50  
25  
ns  
ns  
ns  
• JTAG and CJTAG  
• Serial Wire Debug  
12.5  
J4  
J5  
TCLK rise and fall times  
20  
0
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Boundary scan input data setup time to TCLK rise  
Boundary scan input data hold time after TCLK rise  
TCLK low to boundary scan output data valid  
TCLK low to boundary scan output high-Z  
TMS, TDI input data setup time to TCLK rise  
TMS, TDI input data hold time after TCLK rise  
TCLK low to TDO data valid  
J6  
J7  
8
25  
25  
J8  
J9  
J10  
J11  
J12  
J13  
J14  
1.4  
100  
8
22.1  
22.1  
TCLK low to TDO high-Z  
TRST assert time  
TRST setup time (negation) to TCLK high  
J2  
J4  
J3  
J3  
TCLK (input)  
J4  
Figure 6. Test clock input timing  
K22 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2013.  
Freescale Semiconductor, Inc.  
25  
Peripheral operating requirements and behaviors  
TCLK  
J5  
J6  
Input data valid  
Data inputs  
Data outputs  
Data outputs  
Data outputs  
J7  
Output data valid  
J8  
J7  
Output data valid  
Figure 7. Boundary scan (JTAG) timing  
TCLK  
TDI/TMS  
TDO  
J9  
J10  
Input data valid  
J11  
Output data valid  
J12  
J11  
TDO  
Output data valid  
TDO  
Figure 8. Test Access Port timing  
K22 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2013.  
26  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
TCLK  
TRST  
J14  
J13  
Figure 9. TRST timing  
6.2 System modules  
There are no specifications necessary for the device's system modules.  
6.3 Clock modules  
6.3.1 MCG specifications  
Table 15. MCG specifications  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
fints_ft  
fints_t  
Iints  
Internal reference frequency (slow clock) —  
factory trimmed at nominal VDD and 25 °C  
32.768  
kHz  
Internal reference frequency (slow clock) — user  
trimmed  
31.25  
39.0625  
kHz  
Internal reference (slow clock) current  
20  
µA  
Δfdco_res_t Resolution of trimmed average DCO output  
frequency at fixed voltage and temperature —  
using SCTRIM and SCFTRIM  
0.3  
0.6  
%fdco  
1
1
Δfdco_res_t Resolution of trimmed average DCO output  
frequency at fixed voltage and temperature —  
using SCTRIM only  
0.2  
0.5  
%fdco  
Δfdco_t  
Total deviation of trimmed average DCO output  
frequency over voltage and temperature  
0.5  
0.3  
2
1
%fdco  
%fdco  
1, 2  
1
Δfdco_t  
Total deviation of trimmed average DCO output  
frequency over fixed voltage and temperature  
range of 0–70°C  
fintf_ft  
fintf_t  
Internal reference frequency (fast clock) —  
factory trimmed at nominal VDD and 25°C  
3
4
5
MHz  
MHz  
Internal reference frequency (fast clock) — user  
trimmed at nominal VDD and 25 °C  
Iintf  
Internal reference (fast clock) current  
25  
µA  
floc_low  
Loss of external clock minimum frequency —  
RANGE = 00  
(3/5) x  
fints_t  
kHz  
Table continues on the next page...  
K22 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2013.  
Freescale Semiconductor, Inc.  
27  
 
 
 
Peripheral operating requirements and behaviors  
Table 15. MCG specifications (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
floc_high  
Loss of external clock minimum frequency —  
RANGE = 01, 10, or 11  
(16/5) x  
fints_t  
kHz  
FLL  
ffll_ref  
fdco  
FLL reference frequency range  
31.25  
20  
39.0625  
25  
kHz  
DCO output  
Low range (DRS=00)  
20.97  
MHz  
3, 4  
frequency range  
640 × ffll_ref  
Mid range (DRS=01)  
1280 × ffll_ref  
40  
60  
80  
41.94  
62.91  
83.89  
23.99  
47.97  
71.99  
95.98  
50  
75  
100  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
ps  
Mid-high range (DRS=10)  
1920 × ffll_ref  
High range (DRS=11)  
2560 × ffll_ref  
fdco_t_DMX32 DCO output  
frequency  
Low range (DRS=00)  
732 × ffll_ref  
5, 6  
Mid range (DRS=01)  
1464 × ffll_ref  
Mid-high range (DRS=10)  
2197 × ffll_ref  
High range (DRS=11)  
2929 × ffll_ref  
Jcyc_fll  
FLL period jitter  
180  
150  
• fDCO = 48 MHz  
• fDCO = 98 MHz  
tfll_acquire FLL target frequency acquisition time  
1
ms  
7
PLL  
fvco  
Ipll  
VCO operating frequency  
48.0  
120  
MHz  
µA  
PLL operating current  
8
8
1060  
• PLL @ 96 MHz (fosc_hi_1 = 8 MHz, fpll_ref  
2 MHz, VDIV multiplier = 48)  
=
=
Ipll  
PLL operating current  
600  
µA  
• PLL @ 48 MHz (fosc_hi_1 = 8 MHz, fpll_ref  
2 MHz, VDIV multiplier = 24)  
fpll_ref  
PLL reference frequency range  
PLL period jitter (RMS)  
• fvco = 48 MHz  
2.0  
4.0  
MHz  
Jcyc_pll  
9
9
120  
75  
ps  
ps  
• fvco = 120 MHz  
Jacc_pll  
PLL accumulated jitter over 1µs (RMS)  
• fvco = 48 MHz  
1350  
600  
ps  
ps  
• fvco = 120 MHz  
Dlock  
Lock entry frequency tolerance  
1.49  
2.98  
%
Table continues on the next page...  
K22 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2013.  
28  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 15. MCG specifications (continued)  
Symbol Description  
Min.  
4.47  
Typ.  
Max.  
Unit  
%
Notes  
Dunl  
Lock exit frequency tolerance  
Lock detector detection time  
5.97  
150 × 10-6  
+ 1075(1/  
tpll_lock  
s
10  
fpll_ref  
)
1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock  
mode).  
2. 2 V <= VDD <= 3.6 V.  
3. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0.  
4. The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency deviation  
(Δfdco_t) over voltage and temperature should be considered.  
5. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1.  
6. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.  
7. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed,  
DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE,  
FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.  
8. Excludes any oscillator currents that are also consuming power while PLL is in operation.  
9. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of  
each PCB and results will vary.  
10. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled  
(BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes  
it is already running.  
6.3.2 Oscillator electrical specifications  
6.3.2.1 Oscillator DC electrical specifications  
Table 16. Oscillator DC electrical specifications  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
VDD  
Supply voltage  
1.71  
3.6  
V
IDDOSC  
Supply current — low-power mode (HGO=0)  
1
• 32 kHz  
600  
200  
300  
950  
1.2  
nA  
μA  
μA  
μA  
mA  
mA  
• 4 MHz  
• 8 MHz (RANGE=01)  
• 16 MHz  
• 24 MHz  
• 32 MHz  
1.5  
Table continues on the next page...  
K22 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2013.  
Freescale Semiconductor, Inc.  
29  
 
 
 
 
 
 
 
 
 
 
 
Peripheral operating requirements and behaviors  
Table 16. Oscillator DC electrical specifications (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDDOSC  
Supply current — high gain mode (HGO=1)  
1
• 32 kHz  
7.5  
500  
650  
2.5  
3.25  
4
μA  
μA  
• 4 MHz  
• 8 MHz (RANGE=01)  
• 16 MHz  
μA  
mA  
mA  
mA  
• 24 MHz  
• 32 MHz  
Cx  
Cy  
RF  
EXTAL load capacitance  
XTAL load capacitance  
2, 3  
2, 3  
2, 4  
Feedback resistor — low-frequency, low-power  
mode (HGO=0)  
MΩ  
MΩ  
MΩ  
MΩ  
kΩ  
Feedback resistor — low-frequency, high-gain  
mode (HGO=1)  
10  
Feedback resistor — high-frequency, low-power  
mode (HGO=0)  
Feedback resistor — high-frequency, high-gain  
mode (HGO=1)  
1
RS  
Series resistor — low-frequency, low-power  
mode (HGO=0)  
Series resistor — low-frequency, high-gain mode  
(HGO=1)  
200  
kΩ  
Series resistor — high-frequency, low-power  
mode (HGO=0)  
kΩ  
Series resistor — high-frequency, high-gain  
mode (HGO=1)  
0
kΩ  
V
5
Vpp  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — low-frequency, low-power mode  
(HGO=0)  
0.6  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — low-frequency, high-gain mode  
(HGO=1)  
VDD  
0.6  
V
V
V
Peak-to-peak amplitude of oscillation (oscillator  
mode) — high-frequency, low-power mode  
(HGO=0)  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — high-frequency, high-gain mode  
(HGO=1)  
VDD  
1. VDD=3.3 V, Temperature =25 °C, Internal capacitance = 20 pf  
2. See crystal or resonator manufacturer's recommendation  
3. Cx,Cy can be provided by using either the integrated capacitors or by using external components.  
4. When low power mode is selected, RF is integrated and must not be attached externally.  
5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any  
other devices.  
K22 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2013.  
30  
Freescale Semiconductor, Inc.  
 
 
 
 
 
Peripheral operating requirements and behaviors  
6.3.2.2 Oscillator frequency specifications  
Table 17. Oscillator frequency specifications  
Symbol Description  
fosc_lo Oscillator crystal or resonator frequency — low-  
frequency mode (MCG_C2[RANGE]=00)  
Min.  
32  
Typ.  
Max.  
40  
Unit  
Notes  
kHz  
fosc_hi_1 Oscillator crystal or resonator frequency — high-  
frequency mode (low range)  
3
8
8
MHz  
MHz  
(MCG_C2[RANGE]=01)  
fosc_hi_2 Oscillator crystal or resonator frequency — high  
frequency mode (high range)  
32  
(MCG_C2[RANGE]=1x)  
fec_extal  
tdc_extal  
tcst  
Input clock frequency (external clock mode)  
Input clock duty cycle (external clock mode)  
40  
50  
50  
60  
MHz  
%
1, 2  
3, 4  
Crystal startup time — 32 kHz low-frequency,  
low-power mode (HGO=0)  
750  
ms  
Crystal startup time — 32 kHz low-frequency,  
high-gain mode (HGO=1)  
250  
0.6  
ms  
ms  
Crystal startup time — 8 MHz high-frequency  
(MCG_C2[RANGE]=01), low-power mode  
(HGO=0)  
Crystal startup time — 8 MHz high-frequency  
(MCG_C2[RANGE]=01), high-gain mode  
(HGO=1)  
1
ms  
1. Other frequency limits may apply when external clock is being used as a reference for FLL or PLL.  
2. When transitioning from FBE to FEI mode, restrict the frequency of the input clock so that—it remains within the limits of  
DCO input clock frequency when divided by FRDIV.  
3. Proper PC board layout procedures must be followed to achieve specifications.  
4. Crystal startup time is defined as the time between oscillator being enabled and OSCINIT bit in the MCG_S register being  
set.  
NOTE  
The 32 kHz oscillator works in low power mode by default and  
cannot be moved into high power/gain mode.  
6.3.3 32 kHz oscillator electrical characteristics  
6.3.3.1 32 kHz oscillator DC electrical specifications  
Table 18. 32kHz oscillator DC electrical specifications  
Symbol  
VBAT  
RF  
Description  
Min.  
1.71  
Typ.  
Max.  
3.6  
Unit  
V
Supply voltage  
Internal feedback resistor  
Parasitical capacitance of EXTAL32 and XTAL32  
100  
5
MΩ  
pF  
Cpara  
7
Table continues on the next page...  
K22 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2013.  
Freescale Semiconductor, Inc.  
31  
 
 
 
 
 
Peripheral operating requirements and behaviors  
Table 18. 32kHz oscillator DC electrical specifications (continued)  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
1
Vpp  
Peak-to-peak amplitude of oscillation  
0.6  
V
1. When a crystal is being used with the 32 kHz oscillator, the EXTAL32 and XTAL32 pins should only be connected to  
required oscillator components and must not be connected to any other devices.  
6.3.3.2 32 kHz oscillator frequency specifications  
Table 19. 32 kHz oscillator frequency specifications  
Symbol Description  
Min.  
Typ.  
32.768  
1000  
Max.  
Unit  
kHz  
ms  
Notes  
fosc_lo  
tstart  
Oscillator crystal  
Crystal start-up time  
1
vec_extal32 Externally provided input clock amplitude  
700  
VBAT  
mV  
2, 3  
1. Proper PC board layout procedures must be followed to achieve specifications.  
2. This specification is for an externally supplied clock driven to EXTAL32 and does not apply to any other clock input. The  
oscillator remains enabled and XTAL32 must be left unconnected.  
3. The parameter specified is a peak-to-peak value and VIH and VIL specifications do not apply. The voltage of the applied  
clock must be within the range of VSS to VBAT  
.
6.4 Memories and memory interfaces  
6.4.1 Flash (FTFE) electrical specifications  
This section describes the electrical characteristics of the FTFE module.  
6.4.1.1 Flash timing specifications — program and erase  
The following specifications represent the amount of time the internal charge pumps are  
active and do not include command overhead.  
Table 20. NVM program/erase timing specifications  
Symbol Description  
Min.  
Typ.  
7.5  
Max.  
18  
Unit  
μs  
Notes  
thvpgm8  
Program Phrase high-voltage time  
thversscr Erase Flash Sector high-voltage time  
thversblk128k Erase Flash Block high-voltage time for 128 KB  
thversblk512k Erase Flash Block high-voltage time for 512 KB  
13  
113  
ms  
ms  
ms  
1
1
1
104  
416  
1808  
7232  
1. Maximum time based on expectations at cycling end-of-life.  
K22 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2013.  
32  
Freescale Semiconductor, Inc.  
 
 
 
 
 
 
 
Peripheral operating requirements and behaviors  
6.4.1.2 Flash timing specifications — commands  
Table 21. Flash command timing specifications  
Symbol Description  
Read 1s Block execution time  
Min.  
Typ.  
Max.  
Unit  
Notes  
trd1blk128k  
trd1blk512k  
• 128 KB data flash  
0.5  
1.8  
ms  
ms  
• 512 KB program flash  
trd1sec4k Read 1s Section execution time (4 KB flash)  
70  
100  
95  
μs  
μs  
μs  
μs  
1
1
1
tpgmchk  
trdrsrc  
Program Check execution time  
Read Resource execution time  
Program Phrase execution time  
Erase Flash Block execution time  
• 128 KB data flash  
40  
tpgm8  
150  
2
tersblk128k  
tersblk512k  
110  
435  
925  
ms  
ms  
• 512 KB program flash  
3700  
tersscr  
Erase Flash Sector execution time  
15  
5
115  
ms  
ms  
2
tpgmsec1k Program Section execution time (1KB flash)  
Read 1s All Blocks execution time  
trd1allx  
trd1alln  
• FlexNVM devices  
2.2  
3.4  
ms  
ms  
• Program flash only devices  
trdonce  
Read Once execution time  
70  
30  
μs  
μs  
ms  
μs  
1
tpgmonce Program Once execution time  
tersall  
Erase All Blocks execution time  
Verify Backdoor Access Key execution time  
Swap Control execution time  
• control code 0x01  
490  
4200  
30  
2
1
tvfykey  
tswapx01  
tswapx02  
tswapx04  
tswapx08  
200  
70  
70  
150  
150  
30  
μs  
μs  
μs  
μs  
• control code 0x02  
• control code 0x04  
• control code 0x08  
Program Partition for EEPROM execution time  
• 32 KB FlexNVM  
tpgmpart32k  
tpgmpart128k  
70  
75  
ms  
ms  
• 128 KB FlexNVM  
Set FlexRAM Function execution time:  
• Control Code 0xFF  
tsetramff  
tsetram32k  
tsetram64k  
tsetram128k  
70  
0.8  
1.3  
2.4  
μs  
ms  
ms  
ms  
• 32 KB EEPROM backup  
• 64 KB EEPROM backup  
• 128 KB EEPROM backup  
1.2  
1.9  
3.1  
teewr8bers Byte-write to erased FlexRAM location execution  
time  
175  
275  
μs  
3
Table continues on the next page...  
K22 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2013.  
Freescale Semiconductor, Inc.  
33  
Peripheral operating requirements and behaviors  
Table 21. Flash command timing specifications (continued)  
Symbol Description  
Byte-write to FlexRAM execution time:  
Min.  
Typ.  
Max.  
Unit  
Notes  
teewr8b32k  
teewr8b64k  
teewr8b128k  
• 32 KB EEPROM backup  
• 64 KB EEPROM backup  
• 128 KB EEPROM backup  
385  
475  
650  
1700  
2000  
2350  
μs  
μs  
μs  
teewr16bers 16-bit write to erased FlexRAM location  
execution time  
175  
275  
μs  
16-bit write to FlexRAM execution time:  
teewr16b32k  
teewr16b64k  
teewr16b128k  
• 32 KB EEPROM backup  
• 64 KB EEPROM backup  
• 128 KB EEPROM backup  
385  
475  
650  
1700  
2000  
2350  
μs  
μs  
μs  
teewr32bers 32-bit write to erased FlexRAM location  
execution time  
360  
550  
μs  
32-bit write to FlexRAM execution time:  
teewr32b32k  
teewr32b64k  
teewr32b128k  
• 32 KB EEPROM backup  
• 64 KB EEPROM backup  
• 128 KB EEPROM backup  
630  
810  
2000  
2250  
2650  
μs  
μs  
μs  
1200  
1. Assumes 25MHz or greater flash clock frequency.  
2. Maximum times for erase parameters based on expectations at cycling end-of-life.  
3. For byte-writes to an erased FlexRAM location, the aligned word containing the byte must be erased.  
6.4.1.3 Flash high voltage current behaviors  
Table 22. Flash high voltage current behaviors  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
IDD_PGM  
Average current  
adder during high  
voltage flash  
programming  
operation  
3.5  
7.5  
mA  
IDD_ERS  
Average current  
adder during high  
voltage flash erase  
operation  
1.5  
4.0  
mA  
6.4.1.4 Reliability specifications  
Table 23. NVM reliability specifications  
Symbol Description  
Min.  
Program Flash  
Table continues on the next page...  
Typ.1  
Max.  
Unit  
Notes  
K22 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2013.  
34  
Freescale Semiconductor, Inc.  
 
 
 
Peripheral operating requirements and behaviors  
Table 23. NVM reliability specifications (continued)  
Symbol Description  
Min.  
5
Typ.1  
Max.  
Unit  
years  
years  
cycles  
Notes  
tnvmretp10k Data retention after up to 10 K cycles  
tnvmretp1k Data retention after up to 1 K cycles  
nnvmcycp Cycling endurance  
50  
20  
100  
50 K  
10 K  
2
Data Flash  
tnvmretd10k Data retention after up to 10 K cycles  
tnvmretd1k Data retention after up to 1 K cycles  
nnvmcycd Cycling endurance  
5
50  
years  
years  
cycles  
20  
10 K  
100  
50 K  
2
FlexRAM as EEPROM  
tnvmretee100 Data retention up to 100% of write endurance  
tnvmretee10 Data retention up to 10% of write endurance  
nnvmcycee Cycling endurance for EEPROM backup  
Write endurance  
5
50  
years  
years  
cycles  
20  
100  
50 K  
20 K  
2
3
nnvmwree16  
nnvmwree128  
nnvmwree512  
nnvmwree2k  
nnvmwree4k  
• EEPROM backup to FlexRAM ratio = 16  
• EEPROM backup to FlexRAM ratio = 128  
• EEPROM backup to FlexRAM ratio = 512  
• EEPROM backup to FlexRAM ratio = 2,048  
• EEPROM backup to FlexRAM ratio = 4,096  
70 K  
630 K  
2.5 M  
10 M  
20 M  
175 K  
1.6 M  
6.4 M  
25 M  
50 M  
writes  
writes  
writes  
writes  
writes  
1. Typical data retention values are based on measured response accelerated at high temperature and derated to a constant  
25°C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering  
Bulletin EB619.  
2. Cycling endurance represents number of program/erase cycles at -40°C ≤ Tj ≤ 125°C.  
3. Write endurance represents the number of writes to each FlexRAM location at -40°C ≤Tj ≤ 125°C influenced by the cycling  
endurance of the FlexNVM (same value as data flash) and the allocated EEPROM backup per subsystem. Minimum and  
typical values assume all byte-writes to FlexRAM.  
6.4.1.5 Write endurance to FlexRAM for EEPROM  
When the FlexNVM partition code is not set to full data flash, the EEPROM data set size  
can be set to any of several non-zero values.  
The bytes not assigned to data flash via the FlexNVM partition code are used by the  
FTFE to obtain an effective endurance increase for the EEPROM data. The built-in  
EEPROM record management system raises the number of program/erase cycles that can  
be attained prior to device wear-out by cycling the EEPROM data through a larger  
EEPROM NVM storage space.  
While different partitions of the FlexNVM are available, the intention is that a single  
choice for the FlexNVM partition code and EEPROM data set size is used throughout the  
entire lifetime of a given application. The EEPROM endurance equation and graph  
shown below assume that only one configuration is ever used.  
K22 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2013.  
Freescale Semiconductor, Inc.  
35  
 
 
 
Peripheral operating requirements and behaviors  
EEPROM – 2 × EEESPLIT × EEESIZE  
Writes_subsystem =  
× Write_efficiency × nnvmcycee  
EEESPLIT × EEESIZE  
where  
• Writes_subsystem — minimum number of writes to each FlexRAM location for  
subsystem (each subsystem can have different endurance)  
• EEPROM — allocated FlexNVM for each EEPROM subsystem based on DEPART;  
entered with Program Partition command  
• EEESPLIT — FlexRAM split factor for subsystem; entered with the Program  
Partition command  
• EEESIZE — allocated FlexRAM based on DEPART; entered with Program Partition  
command  
• Write_efficiency —  
• 0.25 for 8-bit writes to FlexRAM  
• 0.50 for 16-bit or 32-bit writes to FlexRAM  
• nnvmcycee — EEPROM-backup cycling endurance  
Figure 10. EEPROM backup writes to FlexRAM  
K22 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2013.  
36  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
6.4.2 EzPort switching specifications  
Table 24. EzPort switching specifications  
Num  
Description  
Min.  
Max.  
3.6  
Unit  
V
Operating voltage  
1.71  
EP1  
EZP_CK frequency of operation (all commands except  
READ)  
fSYS/2  
MHz  
EP1a  
EP2  
EP3  
EP4  
EP5  
EP6  
EP7  
EP8  
EP9  
EZP_CK frequency of operation (READ command)  
EZP_CS negation to next EZP_CS assertion  
EZP_CS input valid to EZP_CK high (setup)  
EZP_CK high to EZP_CS input invalid (hold)  
EZP_D input valid to EZP_CK high (setup)  
EZP_CK high to EZP_D input invalid (hold)  
EZP_CK low to EZP_Q output valid  
fSYS/8  
MHz  
ns  
2 x tEZP_CK  
5
5
ns  
ns  
2
ns  
5
ns  
0
18  
ns  
EZP_CK low to EZP_Q output invalid (hold)  
EZP_CS negation to EZP_Q tri-state  
ns  
12  
ns  
EZP_CK  
EP2  
EP3  
EP4  
EZP_CS  
EP9  
EP8  
EP7  
EZP_Q (output)  
EZP_D (input)  
EP5  
EP6  
Figure 11. EzPort Timing Diagram  
6.4.3 Flexbus switching specifications  
All processor bus timings are synchronous; input setup/hold and output delay are given in  
respect to the rising edge of a reference clock, FB_CLK. The FB_CLK frequency may be  
the same as the internal system bus frequency or an integer divider of that frequency.  
K22 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2013.  
Freescale Semiconductor, Inc.  
37  
 
 
Peripheral operating requirements and behaviors  
The following timing numbers indicate when data is latched or driven onto the external  
bus, relative to the Flexbus output clock (FB_CLK). All other timing relationships can be  
derived from these values.  
Table 25. Flexbus limited voltage range switching specifications  
Num  
Description  
Min.  
2.7  
Max.  
3.6  
Unit  
V
Notes  
Operating voltage  
Frequency of operation  
Clock period  
FB_CLK  
MHz  
ns  
FB1  
FB2  
FB3  
FB4  
FB5  
20  
Address, data, and control output valid  
Address, data, and control output hold  
Data and FB_TA input setup  
Data and FB_TA input hold  
11.5  
ns  
1
1
2
2
0.5  
8.5  
0.5  
ns  
ns  
ns  
1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W,FB_TBST, FB_TSIZ[1:0], FB_ALE,  
and FB_TS.  
2. Specification is valid for all FB_AD[31:0] and FB_TA.  
Table 26. Flexbus full voltage range switching specifications  
Num  
Description  
Min.  
1.71  
Max.  
3.6  
Unit  
V
Notes  
Operating voltage  
Frequency of operation  
Clock period  
FB_CLK  
MHz  
ns  
FB1  
FB2  
FB3  
FB4  
FB5  
1/FB_CLK  
Address, data, and control output valid  
Address, data, and control output hold  
Data and FB_TA input setup  
Data and FB_TA input hold  
13.5  
ns  
1
1
2
2
0
ns  
13.7  
0.5  
ns  
ns  
1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W,FB_TBST, FB_TSIZ[1:0], FB_ALE,  
and FB_TS.  
2. Specification is valid for all FB_AD[31:0] and FB_TA.  
K22 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2013.  
38  
Freescale Semiconductor, Inc.  
 
 
 
 
Peripheral operating requirements and behaviors  
FB1  
FB_CLK  
FB_A[Y]  
FB_D[X]  
FB_RW  
FB_TS  
FB3  
FB5  
Address  
FB4  
FB2  
Address  
Data  
FB_ALE  
FB_CSn  
FB_OEn  
FB_BEn  
FB_TA  
AA=1  
AA=0  
FB4  
FB5  
AA=1  
AA=0  
FB_TSIZ[1:0]  
TSIZ  
Figure 12. FlexBus read timing diagram  
K22 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2013.  
Freescale Semiconductor, Inc.  
39  
Peripheral operating requirements and behaviors  
FB1  
FB_CLK  
FB2  
FB3  
FB_A[Y]  
FB_D[X]  
FB_RW  
FB_TS  
Address  
Address  
Data  
FB_ALE  
FB_CSn  
FB_OEn  
FB_BEn  
FB_TA  
AA=1  
AA=0  
FB4  
FB5  
AA=1  
AA=0  
FB_TSIZ[1:0]  
TSIZ  
Figure 13. FlexBus write timing diagram  
6.5 Security and integrity modules  
There are no specifications necessary for the device's security and integrity modules.  
6.6 Analog  
K22 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2013.  
40  
Freescale Semiconductor, Inc.  
 
 
 
Peripheral operating requirements and behaviors  
6.6.1 ADC electrical specifications  
The 16-bit accuracy specifications listed in Table 27 and Table 28 are achievable on the  
differential pins ADCx_DP0, ADCx_DM0.  
All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy  
specifications.  
6.6.1.1 16-bit ADC operating conditions  
Table 27. 16-bit ADC operating conditions  
Symbol Description  
Conditions  
Min.  
1.71  
-100  
-100  
1.13  
Typ.1  
Max.  
3.6  
Unit  
V
Notes  
VDDA  
ΔVDDA  
ΔVSSA  
VREFH  
Supply voltage  
Supply voltage  
Ground voltage  
Absolute  
Delta to VDD (VDD – VDDA  
)
0
+100  
+100  
VDDA  
mV  
mV  
V
2
2
Delta to VSS (VSS – VSSA  
)
0
ADC reference  
voltage high  
VDDA  
VREFL  
VADIN  
ADC reference  
voltage low  
VSSA  
VSSA  
VSSA  
V
V
Input voltage  
• 16-bit differential mode  
• All other modes  
• 16-bit mode  
VREFL  
VREFL  
31/32 *  
VREFH  
VREFH  
CADIN  
Input capacitance  
8
4
10  
5
pF  
• 8-bit / 10-bit / 12-bit  
modes  
RADIN  
RAS  
Input resistance  
2
5
5
kΩ  
kΩ  
Analog source  
resistance  
13-bit / 12-bit modes  
fADCK < 4 MHz  
3
fADCK  
fADCK  
Crate  
ADC conversion ≤ 13-bit mode  
clock frequency  
1.0  
2.0  
18.0  
12.0  
MHz  
MHz  
4
4
5
ADC conversion 16-bit mode  
clock frequency  
ADC conversion ≤ 13-bit modes  
rate  
No ADC hardware averaging  
20.000  
37.037  
818.330  
461.467  
Ksps  
Ksps  
Continuous conversions  
enabled, subsequent  
conversion time  
Crate  
ADC conversion 16-bit mode  
5
rate  
No ADC hardware averaging  
Continuous conversions  
enabled, subsequent  
conversion time  
1. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 1.0 MHz, unless otherwise stated. Typical values are for  
reference only, and are not tested in production.  
2. DC potential difference.  
K22 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2013.  
Freescale Semiconductor, Inc.  
41  
 
 
 
Peripheral operating requirements and behaviors  
3. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as  
possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The RAS/CAS  
time constant should be kept to < 1 ns.  
4. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.  
5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.  
SIMPLIFIED  
INPUT PIN EQUIVALENT  
ZADIN  
CIRCUIT  
SIMPLIFIED  
CHANNEL SELECT  
CIRCUIT  
Pad  
leakage  
due to  
input  
protection  
ZAS  
ADC SAR  
ENGINE  
RAS  
RADIN  
VADIN  
CAS  
VAS  
RADIN  
RADIN  
RADIN  
INPUT PIN  
INPUT PIN  
INPUT PIN  
CADIN  
Figure 14. ADC input impedance equivalency diagram  
6.6.1.2 16-bit ADC electrical characteristics  
Table 28. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA  
)
Symbol Description  
Conditions1.  
Min.  
0.215  
1.2  
Typ.2  
Max.  
1.7  
3.9  
6.1  
7.3  
9.5  
Unit  
Notes  
IDDA_ADC Supply current  
mA  
3
ADC  
asynchronous  
• ADLPC = 1, ADHSC = 0  
• ADLPC = 1, ADHSC = 1  
• ADLPC = 0, ADHSC = 0  
• ADLPC = 0, ADHSC = 1  
2.4  
4.0  
5.2  
6.2  
tADACK = 1/  
fADACK  
MHz  
MHz  
MHz  
MHz  
2.4  
clock source  
fADACK  
3.0  
4.4  
Sample Time  
See Reference Manual chapter for sample times  
TUE  
DNL  
Total unadjusted  
error  
• 12-bit modes  
• <12-bit modes  
4
6.8  
2.1  
LSB4  
LSB4  
5
5
1.4  
Differential non-  
linearity  
• 12-bit modes  
0.7  
-1.1 to +1.9  
-0.3 to 0.5  
• <12-bit modes  
0.2  
Table continues on the next page...  
K22 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2013.  
42  
Freescale Semiconductor, Inc.  
 
 
 
 
Peripheral operating requirements and behaviors  
Table 28. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)  
Symbol Description  
Conditions1.  
Min.  
Typ.2  
Max.  
Unit  
Notes  
INL  
Integral non-  
linearity  
• 12-bit modes  
1.0  
-2.7 to +1.9  
-0.7 to +0.5  
LSB4  
5
• <12-bit modes  
• 12-bit modes  
• <12-bit modes  
0.5  
-4  
EFS  
Full-scale error  
-5.4  
-1.8  
LSB4  
LSB4  
VADIN  
VDDA  
=
-1.4  
5
6
EQ  
Quantization  
error  
• 16-bit modes  
• ≤13-bit modes  
-1 to 0  
0.5  
ENOB  
Effective number 16-bit differential mode  
of bits  
• Avg = 32  
12.8  
11.9  
14.5  
13.8  
bits  
bits  
• Avg = 4  
16-bit single-ended mode  
• Avg = 32  
12.2  
11.4  
13.9  
13.1  
bits  
bits  
• Avg = 4  
Signal-to-noise  
plus distortion  
See ENOB  
SINAD  
THD  
6.02 × ENOB + 1.76  
dB  
Total harmonic  
distortion  
16-bit differential mode  
• Avg = 32  
7
7
-94  
-85  
dB  
dB  
16-bit single-ended mode  
• Avg = 32  
SFDR  
Spurious free  
dynamic range  
16-bit differential mode  
• Avg = 32  
82  
78  
95  
dB  
16-bit single-ended mode  
• Avg = 32  
90  
dB  
EIL  
Input leakage  
error  
IIn × RAS  
mV  
IIn =  
leakage  
current  
(refer to  
the MCU's  
voltage  
and current  
operating  
ratings)  
Temp sensor  
slope  
Across the full temperature  
range of the device  
1.55  
706  
1.62  
716  
1.69  
726  
mV/°C  
mV  
8
VTEMP25 Temp sensor  
voltage  
25 °C  
8
1. All accuracy numbers assume the ADC is calibrated with VREFH = VDDA  
K22 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2013.  
Freescale Semiconductor, Inc.  
43  
 
Peripheral operating requirements and behaviors  
2. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 2.0 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low  
power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with 1  
MHz ADC conversion clock speed.  
4. 1 LSB = (VREFH - VREFL)/2N  
5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)  
6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.  
7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.  
8. ADC conversion clock < 3 MHz  
Figure 15. Typical ENOB vs. ADC_CLK for 16-bit differential mode  
K22 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2013.  
44  
Freescale Semiconductor, Inc.  
 
 
 
 
 
 
 
Peripheral operating requirements and behaviors  
Figure 16. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode  
6.6.2 CMP and 6-bit DAC electrical specifications  
Table 29. Comparator and 6-bit DAC electrical specifications  
Symbol  
VDD  
Description  
Min.  
1.71  
Typ.  
Max.  
3.6  
Unit  
V
Supply voltage  
IDDHS  
IDDLS  
VAIN  
Supply current, High-speed mode (EN=1, PMODE=1)  
Supply current, low-speed mode (EN=1, PMODE=0)  
Analog input voltage  
200  
20  
μA  
μA  
V
VSS – 0.3  
VDD  
20  
VAIO  
Analog input offset voltage  
Analog comparator hysteresis1  
• CR0[HYSTCTR] = 00  
mV  
VH  
5
mV  
mV  
mV  
mV  
• CR0[HYSTCTR] = 01  
10  
20  
30  
• CR0[HYSTCTR] = 10  
• CR0[HYSTCTR] = 11  
VCMPOh  
VCMPOl  
tDHS  
Output high  
Output low  
VDD – 0.5  
50  
0.5  
200  
V
V
Propagation delay, high-speed mode (EN=1,  
PMODE=1)  
20  
ns  
tDLS  
Propagation delay, low-speed mode (EN=1,  
PMODE=0)  
Analog comparator initialization delay2  
80  
250  
600  
40  
ns  
μs  
Table continues on the next page...  
K22 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2013.  
Freescale Semiconductor, Inc.  
45  
 
Peripheral operating requirements and behaviors  
Table 29. Comparator and 6-bit DAC electrical specifications (continued)  
Symbol  
IDAC6b  
INL  
Description  
Min.  
Typ.  
7
Max.  
Unit  
μA  
LSB3  
6-bit DAC current adder (enabled)  
6-bit DAC integral non-linearity  
6-bit DAC differential non-linearity  
–0.5  
–0.3  
0.5  
0.3  
DNL  
LSB  
1. Typical hysteresis is measured with input voltage range limited to 0.6 to VDD–0.6 V.  
2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to  
CMP_DACCR[DACEN], CMP_DACCR[VRSEL], CMP_DACCR[VOSEL], CMP_MUXCR[PSEL], and  
CMP_MUXCR[MSEL]) and the comparator output settling to a stable level.  
3. 1 LSB = Vreference/64  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
HYSTCTR  
Setting  
00  
01  
10  
11  
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
Vinlevel (V)  
Figure 17. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0)  
K22 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2013.  
46  
Freescale Semiconductor, Inc.  
 
 
 
Peripheral operating requirements and behaviors  
0.18  
0.16  
0.14  
0.12  
0.1  
HYSTCTR  
Setting  
00  
01  
10  
11  
0.08  
0.06  
0.04  
0.02  
0
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
Vinlevel (V)  
Figure 18. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1)  
6.6.3 12-bit DAC electrical characteristics  
6.6.3.1 12-bit DAC operating requirements  
Table 30. 12-bit DAC operating requirements  
Symbol  
VDDA  
VDACR  
TA  
Desciption  
Min.  
1.71  
1.13  
Max.  
3.6  
Unit  
V
Notes  
Supply voltage  
Reference voltage  
Temperature  
3.6  
V
1
Operating temperature  
range of the device  
°C  
CL  
IL  
Output load capacitance  
Output load current  
100  
1
pF  
2
mA  
1. The DAC reference can be selected to be VDDA or the voltage output of the VREF module (VREF_OUT)  
2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC  
K22 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2013.  
Freescale Semiconductor, Inc.  
47  
 
 
 
Peripheral operating requirements and behaviors  
6.6.3.2 12-bit DAC operating behaviors  
Table 31. 12-bit DAC operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDDA_DACL Supply current — low-power mode  
150  
μA  
P
IDDA_DACH Supply current — high-speed mode  
100  
15  
0.7  
700  
200  
30  
μA  
μs  
P
tDACLP Full-scale settling time (0x080 to 0xF7F) —  
low-power mode  
1
1
1
tDACHP Full-scale settling time (0x080 to 0xF7F) —  
high-power mode  
μs  
tCCDACLP Code-to-code settling time (0xBF8 to 0xC08)  
— low-power mode and high-speed mode  
1
μs  
Vdacoutl DAC output voltage range low — high-speed  
mode, no load, DAC set to 0x000  
100  
VDACR  
8
mV  
mV  
LSB  
LSB  
LSB  
Vdacouth DAC output voltage range high — high-  
speed mode, no load, DAC set to 0xFFF  
VDACR  
−100  
INL  
DNL  
DNL  
Integral non-linearity error — high speed  
mode  
2
3
4
Differential non-linearity error — VDACR > 2  
V
1
Differential non-linearity error — VDACR  
VREF_OUT  
=
1
VOFFSET Offset error  
EG Gain error  
PSRR Power supply rejection ratio, VDDA ≥ 2.4 V  
60  
0.4  
0.1  
0.8  
0.6  
90  
%FSR  
%FSR  
dB  
5
5
TCO  
TGE  
AC  
Temperature coefficient offset voltage  
Temperature coefficient gain error  
Offset aging coefficient  
3.7  
μV/C  
%FSR/C  
μV/yr  
Ω
6
0.000421  
100  
250  
Rop  
SR  
Output resistance (load = 3 kΩ)  
Slew rate -80hF7Fh80h  
V/μs  
• High power (SPHP  
• Low power (SPLP  
)
1.2  
1.7  
)
0.05  
0.12  
CT  
Channel to channel cross talk  
3dB bandwidth  
-80  
dB  
BW  
kHz  
• High power (SPHP  
• Low power (SPLP  
)
550  
40  
)
1. Settling within 1 LSB  
2. The INL is measured for 0 + 100 mV to VDACR −100 mV  
3. The DNL is measured for 0 + 100 mV to VDACR −100 mV  
4. The DNL is measured for 0 + 100 mV to VDACR −100 mV with VDDA > 2.4 V  
5. Calculated by a best fit curve from VSS + 100 mV to VDACR − 100 mV  
6. VDDA = 3.0 V, reference select set for VDDA (DACx_CO:DACRFS = 1), high power mode (DACx_C0:LPEN = 0), DAC set to  
0x800, temperature range is across the full range of the device  
K22 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2013.  
48  
Freescale Semiconductor, Inc.  
 
 
 
 
 
 
Peripheral operating requirements and behaviors  
Figure 19. Typical INL error vs. digital code  
K22 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2013.  
Freescale Semiconductor, Inc.  
49  
Peripheral operating requirements and behaviors  
Figure 20. Offset at half scale vs. temperature  
6.6.4 Voltage reference electrical specifications  
Table 32. VREF full-range operating requirements  
Symbol  
VDDA  
TA  
Description  
Supply voltage  
Temperature  
Min.  
Max.  
Unit  
V
Notes  
1.71  
3.6  
Operating temperature  
range of the device  
°C  
CL  
Output load capacitance  
100  
nF  
1, 2  
1. CL must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external  
reference.  
2. The load capacitance should not exceed +/-25% of the nominal specified CL value over the operating temperature range of  
the device.  
K22 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2013.  
50  
Freescale Semiconductor, Inc.  
 
 
 
Peripheral operating requirements and behaviors  
Table 33. VREF full-range operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
Vout  
Voltage reference output with factory trim at  
1.1915  
1.195  
1.1977  
V
1
nominal VDDA and temperature=25C  
Voltage reference output — factory trim  
Voltage reference output — user trim  
Voltage reference trim step  
Vout  
Vout  
1.1584  
1.193  
1.2376  
1.197  
V
V
1
1
1
1
Vstep  
Vtdrift  
0.5  
mV  
mV  
Temperature drift (Vmax -Vmin across the full  
temperature range)  
80  
Ibg  
Bandgap only current  
80  
µA  
µV  
1
ΔVLOAD Load regulation  
• current = 1.0 mA  
1, 2  
200  
Tstup  
Buffer startup time  
2
100  
µs  
Vvdrift  
Voltage drift (Vmax -Vmin across the full voltage  
range)  
mV  
1
1. See the chip's Reference Manual for the appropriate settings of the VREF Status and Control register.  
2. Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load  
Table 34. VREF limited-range operating requirements  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
TA  
Temperature  
0
50  
°C  
Table 35. VREF limited-range operating behaviors  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
Vout  
Voltage reference output with factory trim  
1.173  
1.225  
V
6.7 Timers  
See General switching specifications.  
6.8 Communication interfaces  
K22 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2013.  
Freescale Semiconductor, Inc.  
51  
 
 
 
 
 
Peripheral operating requirements and behaviors  
6.8.1 USB electrical specifications  
The USB electricals for the USB On-the-Go module conform to the standards  
documented by the Universal Serial Bus Implementers Forum. For the most up-to-date  
standards, visit usb.org.  
6.8.2 USB DCD electrical specifications  
Table 36. USB DCD electrical specifications  
Symbol  
VDP_SRC  
VLGC  
Description  
Min.  
0.5  
Typ.  
Max.  
0.7  
Unit  
V
USB_DP source voltage (up to 250 μA)  
Threshold voltage for logic high  
USB_DP source current  
USB_DM sink current  
0.8  
2.0  
V
IDP_SRC  
IDM_SINK  
7
10  
13  
μA  
μA  
kΩ  
V
50  
100  
150  
24.8  
0.4  
RDM_DWN D- pulldown resistance for data pin contact detect  
VDAT_REF Data detect voltage  
14.25  
0.25  
0.33  
6.8.3 USB VREG electrical specifications  
Table 37. USB VREG electrical specifications  
Symbol Description  
Min.  
2.7  
Typ.1  
Max.  
5.5  
Unit  
Notes  
VREGIN Input supply voltage  
V
IDDon  
IDDstby  
IDDoff  
Quiescent current — Run mode, load current  
equal zero, input supply (VREGIN) > 3.6 V  
125  
186  
μA  
Quiescent current — Standby mode, load current  
equal zero  
1.1  
10  
μA  
Quiescent current — Shutdown mode  
650  
4
nA  
μA  
• VREGIN = 5.0 V and temperature=25 °C  
• Across operating voltage and temperature  
ILOADstby Maximum load current — Standby mode  
1
mA  
VReg33out Regulator output voltage — Input supply  
(VREGIN) > 3.6 V  
• Run mode  
3
3.3  
2.8  
3.6  
3.6  
3.6  
V
V
V
• Standby mode  
2.1  
2.1  
VReg33out Regulator output voltage — Input supply  
(VREGIN) < 3.6 V, pass-through mode  
2
COUT  
ESR  
External output capacitor  
1.76  
1
2.2  
8.16  
100  
μF  
External output capacitor equivalent series  
resistance  
mΩ  
ILIM  
Short circuit current  
315  
mA  
K22 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2013.  
52  
Freescale Semiconductor, Inc.  
 
 
Peripheral operating requirements and behaviors  
1. Typical values assume VREGIN = 5.0 V, Temp = 25 °C unless otherwise stated.  
2. Operating in pass-through mode: regulator output voltage equal to the input voltage minus a drop proportional to ILoad  
.
6.8.4 CAN switching specifications  
See General switching specifications.  
6.8.5 DSPI switching specifications (limited voltage range)  
The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with  
master and slave operations. Many of the transfer attributes are programmable. The tables  
below provide DSPI timing characteristics for classic SPI timing modes. Refer to the  
DSPI chapter of the Reference Manual for information on the modified transfer formats  
used for communicating with slower peripheral devices.  
Table 38. Master mode DSPI timing (limited voltage range)  
Num  
Description  
Min.  
2.7  
Max.  
3.6  
30  
Unit  
V
Notes  
Operating voltage  
Frequency of operation  
MHz  
ns  
DS1  
DS2  
DS3  
DSPI_SCK output cycle time  
DSPI_SCK output high/low time  
DSPI_PCSn valid to DSPI_SCK delay  
2 x tBUS  
(tSCK/2) − 2 (tSCK/2) + 2  
ns  
(tBUS x 2) −  
2
ns  
1
2
DS4  
DSPI_SCK to DSPI_PCSn invalid delay  
(tBUS x 2) −  
2
ns  
DS5  
DS6  
DS7  
DS8  
DSPI_SCK to DSPI_SOUT valid  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
−2  
15  
0
8.5  
ns  
ns  
ns  
ns  
1. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].  
2. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].  
K22 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2013.  
Freescale Semiconductor, Inc.  
53  
 
 
 
 
 
 
Peripheral operating requirements and behaviors  
DSPI_PCSn  
DS1  
DS3  
DS2  
DS4  
DSPI_SCK  
DS8  
DS7  
(CPOL=0)  
Data  
Last data  
First data  
DSPI_SIN  
DS5  
DS6  
First data  
Data  
Last data  
DSPI_SOUT  
Figure 21. DSPI classic SPI timing — master mode  
Table 39. Slave mode DSPI timing (limited voltage range)  
Num  
Description  
Min.  
Max.  
Unit  
V
Operating voltage  
2.7  
3.6  
Frequency of operation  
15  
MHz  
ns  
DS9  
DSPI_SCK input cycle time  
4 x tBUS  
DS10  
DS11  
DS12  
DS13  
DS14  
DS15  
DS16  
DSPI_SCK input high/low time  
(tSCK/2) − 2  
(tSCK/2) + 2  
ns  
DSPI_SCK to DSPI_SOUT valid  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
DSPI_SS active to DSPI_SOUT driven  
DSPI_SS inactive to DSPI_SOUT not driven  
0
17.4  
ns  
ns  
2
ns  
7
ns  
16  
16  
ns  
ns  
DSPI_SS  
DS10  
DS9  
DSPI_SCK  
(CPOL=0)  
DS15  
DS12  
DS16  
DS11  
First data  
DS14  
Last data  
DSPI_SOUT  
Data  
Data  
DS13  
First data  
Last data  
DSPI_SIN  
Figure 22. DSPI classic SPI timing — slave mode  
K22 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2013.  
54  
Freescale Semiconductor, Inc.  
 
Peripheral operating requirements and behaviors  
6.8.6 DSPI switching specifications (full voltage range)  
The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with  
master and slave operations. Many of the transfer attributes are programmable. The tables  
below provides DSPI timing characteristics for classic SPI timing modes. Refer to the  
DSPI chapter of the Reference Manual for information on the modified transfer formats  
used for communicating with slower peripheral devices.  
Table 40. Master mode DSPI timing (full voltage range)  
Num  
Description  
Min.  
1.71  
Max.  
3.6  
15  
Unit  
V
Notes  
Operating voltage  
1
Frequency of operation  
MHz  
ns  
DS1  
DS2  
DS3  
DSPI_SCK output cycle time  
DSPI_SCK output high/low time  
DSPI_PCSn valid to DSPI_SCK delay  
4 x tBUS  
(tSCK/2) - 4 (tSCK/2) + 4  
ns  
(tBUS x 2) −  
4
ns  
2
3
DS4  
DSPI_SCK to DSPI_PCSn invalid delay  
(tBUS x 2) −  
4
ns  
DS5  
DS6  
DS7  
DS8  
DSPI_SCK to DSPI_SOUT valid  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
-4.5  
20.5  
0
10  
ns  
ns  
ns  
ns  
1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage  
range the maximum frequency of operation is reduced.  
2. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].  
3. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].  
DSPI_PCSn  
DS1  
DS3  
DS2  
DS4  
DSPI_SCK  
(CPOL=0)  
DS8  
DS7  
Data  
Last data  
First data  
DSPI_SIN  
DS5  
DS6  
First data  
Data  
Last data  
DSPI_SOUT  
Figure 23. DSPI classic SPI timing — master mode  
Table 41. Slave mode DSPI timing (full voltage range)  
Num  
Description  
Min.  
1.71  
Max.  
3.6  
Unit  
V
Operating voltage  
Frequency of operation  
7.5  
MHz  
Table continues on the next page...  
K22 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2013.  
Freescale Semiconductor, Inc.  
55  
 
 
 
Peripheral operating requirements and behaviors  
Table 41. Slave mode DSPI timing (full voltage range) (continued)  
Num  
DS9  
Description  
DSPI_SCK input cycle time  
Min.  
Max.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
8 x tBUS  
DS10  
DS11  
DS12  
DS13  
DS14  
DS15  
DS16  
DSPI_SCK input high/low time  
(tSCK/2) - 4  
(tSCK/2) + 4  
DSPI_SCK to DSPI_SOUT valid  
0
20  
19  
19  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
DSPI_SS active to DSPI_SOUT driven  
DSPI_SS inactive to DSPI_SOUT not driven  
2
7
DSPI_SS  
DS10  
DS9  
DSPI_SCK  
(CPOL=0)  
DS15  
DS12  
DS16  
DS11  
First data  
DS14  
Last data  
DSPI_SOUT  
Data  
Data  
DS13  
First data  
Last data  
DSPI_SIN  
Figure 24. DSPI classic SPI timing — slave mode  
6.8.7 I2C switching specifications  
See General switching specifications.  
6.8.8 UART switching specifications  
See General switching specifications.  
K22 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2013.  
56  
Freescale Semiconductor, Inc.  
 
 
 
Peripheral operating requirements and behaviors  
6.8.9 SDHC specifications  
The following timing specs are defined at the chip I/O pin and must be translated  
appropriately to arrive at timing specs/constraints for the physical interface.  
Table 42. SDHC switching specifications  
Num  
Symbol  
Description  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
3.6  
V
Card input clock  
SD1  
fpp  
fpp  
fpp  
fOD  
tWL  
tWH  
tTLH  
tTHL  
Clock frequency (low speed)  
0
0
400  
25\50  
20\50  
400  
kHz  
MHz  
MHz  
kHz  
ns  
Clock frequency (SD\SDIO full speed\high speed)  
Clock frequency (MMC full speed\high speed)  
Clock frequency (identification mode)  
Clock low time  
0
0
SD2  
SD3  
SD4  
SD5  
7
Clock high time  
7
ns  
Clock rise time  
3
ns  
Clock fall time  
3
ns  
SDHC output / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)  
SDHC output delay (output valid) -5 8.3  
SDHC input / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)  
SD6  
tOD  
ns  
SD7  
SD8  
tISU  
tIH  
SDHC input setup time  
SDHC input hold time  
5
0
ns  
ns  
SD3  
SD6  
SD2  
SD1  
SDHC_CLK  
Output SDHC_CMD  
Output SDHC_DAT[3:0]  
Input SDHC_CMD  
SD7  
SD8  
Input SDHC_DAT[3:0]  
Figure 25. SDHC timing  
K22 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2013.  
Freescale Semiconductor, Inc.  
57  
 
Peripheral operating requirements and behaviors  
6.8.10 I2S switching specifications  
This section provides the AC timings for the I2S in master (clocks driven) and slave  
modes (clocks input). All timings are given for non-inverted serial clock polarity  
(TCR[TSCKP] = 0, RCR[RSCKP] = 0) and a non-inverted frame sync (TCR[TFSI] = 0,  
RCR[RFSI] = 0). If the polarity of the clock and/or the frame sync have been inverted, all  
the timings remain valid by inverting the clock signal (I2S_BCLK) and/or the frame sync  
(I2S_FS) shown in the figures below.  
Table 43. I2S master mode timing  
Num  
Description  
Min.  
2.7  
40  
45%  
80  
45%  
Max.  
3.6  
Unit  
Operating voltage  
V
S1  
S2  
S3  
S4  
S5  
S6  
S7  
S8  
S9  
S10  
I2S_MCLK cycle time  
ns  
I2S_MCLK pulse width high/low  
I2S_BCLK cycle time  
55%  
MCLK period  
ns  
I2S_BCLK pulse width high/low  
I2S_BCLK to I2S_FS output valid  
I2S_BCLK to I2S_FS output invalid  
I2S_BCLK to I2S_TXD valid  
I2S_BCLK to I2S_TXD invalid  
I2S_RXD/I2S_FS input setup before I2S_BCLK  
I2S_RXD/I2S_FS input hold after I2S_BCLK  
55%  
15  
BCLK period  
ns  
ns  
ns  
ns  
ns  
ns  
0
15  
0
15  
0
S1  
S2  
S2  
I2S_MCLK (output)  
I2S_BCLK (output)  
I2S_FS (output)  
I2S_FS (input)  
I2S_TXD  
S3  
S4  
S4  
S5  
S6  
S10  
S9  
S7  
S8  
S7  
S8  
S9  
S10  
I2S_RXD  
Figure 26. I2S timing — master mode  
K22 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2013.  
58  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 44. I2S slave mode timing  
Num  
Description  
Min.  
Max.  
3.6  
Unit  
Operating voltage  
2.7  
80  
45%  
4.5  
2
V
S11  
S12  
S13  
S14  
S15  
S16  
S17  
S18  
S19  
I2S_BCLK cycle time (input)  
ns  
I2S_BCLK pulse width high/low (input)  
I2S_FS input setup before I2S_BCLK  
I2S_FS input hold after I2S_BCLK  
I2S_BCLK to I2S_TXD/I2S_FS output valid  
I2S_BCLK to I2S_TXD/I2S_FS output invalid  
I2S_RXD setup before I2S_BCLK  
I2S_RXD hold after I2S_BCLK  
55%  
MCLK period  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
18  
0
4.5  
2
I2S_TX_FS input assertion to I2S_TXD output valid1  
21  
1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear  
S11  
S12  
I2S_BCLK (input)  
I2S_FS (output)  
I2S_FS (input)  
I2S_TXD  
S12  
S15  
S16  
S13  
S14  
S19  
S15  
S16  
S15  
S16  
S17  
S18  
I2S_RXD  
Figure 27. I2S timing — slave modes  
6.8.10.1 Normal Run, Wait and Stop mode performance over the full  
operating voltage range  
This section provides the operating performance over the full operating voltage for the  
device in Normal Run, Wait and Stop modes.  
Table 45. I2S/SAI master mode timing  
Num.  
Characteristic  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
40  
3.6  
V
S1  
S2  
S3  
I2S_MCLK cycle time  
ns  
I2S_MCLK (as an input) pulse width high/low  
I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)  
45%  
80  
55%  
MCLK period  
ns  
Table continues on the next page...  
K22 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2013.  
Freescale Semiconductor, Inc.  
59  
 
Peripheral operating requirements and behaviors  
Table 45. I2S/SAI master mode timing (continued)  
Num.  
Characteristic  
Min.  
Max.  
55%  
Unit  
BCLK period  
S4  
S5  
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low  
45%  
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/  
I2S_RX_FS output valid  
15  
ns  
S6  
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/  
I2S_RX_FS output invalid  
-1  
ns  
S7  
S8  
S9  
I2S_TX_BCLK to I2S_TXD valid  
I2S_TX_BCLK to I2S_TXD invalid  
15  
ns  
ns  
ns  
0
I2S_RXD/I2S_RX_FS input setup before  
I2S_RX_BCLK  
20.5  
S10  
I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK  
0
ns  
S1  
S2  
S2  
I2S_MCLK (output)  
S3  
S4  
I2S_TX_BCLK/  
I2S_RX_BCLK (output)  
S4  
S5  
S6  
I2S_TX_FS/  
I2S_RX_FS (output)  
S10  
S9  
I2S_TX_FS/  
I2S_RX_FS (input)  
S7  
S8  
S7  
S8  
I2S_TXD  
I2S_RXD  
S9  
S10  
Figure 28. I2S/SAI timing — master modes  
Table 46. I2S/SAI slave mode timing  
Num.  
Characteristic  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
80  
3.6  
V
S11  
S12  
I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)  
ns  
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low  
(input)  
45%  
55%  
MCLK period  
S13  
S14  
I2S_TX_FS/I2S_RX_FS input setup before  
I2S_TX_BCLK/I2S_RX_BCLK  
5.8  
2
ns  
ns  
I2S_TX_FS/I2S_RX_FS input hold after  
I2S_TX_BCLK/I2S_RX_BCLK  
S15  
S16  
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid  
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid  
0
23.5  
ns  
ns  
Table continues on the next page...  
K22 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2013.  
60  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 46. I2S/SAI slave mode timing (continued)  
Num.  
Characteristic  
Min.  
Max.  
Unit  
S17  
S18  
S19  
I2S_RXD setup before I2S_RX_BCLK  
I2S_RXD hold after I2S_RX_BCLK  
I2S_TX_FS input assertion to I2S_TXD output valid1  
5.8  
2
25  
ns  
ns  
ns  
1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear  
S11  
S12  
I2S_TX_BCLK/  
S12  
I2S_RX_BCLK (input)  
S15  
S16  
I2S_TX_FS/  
I2S_RX_FS (output)  
S13  
S19  
S14  
I2S_TX_FS/  
I2S_RX_FS (input)  
S15  
S16  
S15  
S16  
I2S_TXD  
I2S_RXD  
S17  
S18  
Figure 29. I2S/SAI timing — slave modes  
6.8.10.2 VLPR, VLPW, and VLPS mode performance over the full  
operating voltage range  
This section provides the operating performance over the full operating voltage for the  
device in VLPR, VLPW, and VLPS modes.  
Table 47. I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes  
(full voltage range)  
Num.  
Characteristic  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
62.5  
45%  
250  
45%  
3.6  
V
S1  
S2  
S3  
S4  
S5  
I2S_MCLK cycle time  
ns  
I2S_MCLK pulse width high/low  
55%  
MCLK period  
I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)  
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low  
ns  
55%  
45  
BCLK period  
ns  
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/  
I2S_RX_FS output valid  
S6  
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/  
I2S_RX_FS output invalid  
0
ns  
S7  
S8  
I2S_TX_BCLK to I2S_TXD valid  
I2S_TX_BCLK to I2S_TXD invalid  
45  
ns  
ns  
Table continues on the next page...  
K22 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2013.  
Freescale Semiconductor, Inc.  
61  
 
Peripheral operating requirements and behaviors  
Table 47. I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes (full voltage range)  
(continued)  
Num.  
Characteristic  
Min.  
Max.  
Unit  
S9  
I2S_RXD/I2S_RX_FS input setup before  
I2S_RX_BCLK  
ns  
ns  
S10  
I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK  
0
S1  
S2  
S2  
I2S_MCLK (output)  
S3  
S4  
I2S_TX_BCLK/  
I2S_RX_BCLK (output)  
S4  
S5  
S6  
I2S_TX_FS/  
I2S_RX_FS (output)  
S10  
S9  
I2S_TX_FS/  
I2S_RX_FS (input)  
S7  
S8  
S7  
S8  
I2S_TXD  
I2S_RXD  
S9  
S10  
Figure 30. I2S/SAI timing — master modes  
Table 48. I2S/SAI slave mode timing in VLPR, VLPW, and VLPS modes (full  
voltage range)  
Num.  
Characteristic  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
250  
3.6  
V
S11  
S12  
I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)  
ns  
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low  
(input)  
45%  
55%  
MCLK period  
S13  
S14  
I2S_TX_FS/I2S_RX_FS input setup before  
I2S_TX_BCLK/I2S_RX_BCLK  
30  
ns  
ns  
I2S_TX_FS/I2S_RX_FS input hold after  
I2S_TX_BCLK/I2S_RX_BCLK  
S15  
S16  
S17  
S18  
S19  
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid  
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid  
I2S_RXD setup before I2S_RX_BCLK  
0
ns  
ns  
ns  
ns  
ns  
72  
30  
2
I2S_RXD hold after I2S_RX_BCLK  
I2S_TX_FS input assertion to I2S_TXD output valid1  
1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear  
K22 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2013.  
62  
Freescale Semiconductor, Inc.  
 
Dimensions  
S11  
S12  
I2S_TX_BCLK/  
S12  
I2S_RX_BCLK (input)  
S15  
S16  
I2S_TX_FS/  
I2S_RX_FS (output)  
S13  
S19  
S14  
I2S_TX_FS/  
I2S_RX_FS (input)  
S15  
S16  
S15  
S16  
I2S_TXD  
I2S_RXD  
S17  
S18  
Figure 31. I2S/SAI timing — slave modes  
7 Dimensions  
7.1 Obtaining package dimensions  
Package dimensions are provided in package drawings.  
To find a package drawing, go to freescale.com and perform a keyword search for the  
drawing’s document number:  
If you want the drawing for this package  
80-pin LQFP  
Then use this document number  
98ASS23174W  
8 Pinout  
8.1 K22 Signal Multiplexing and Pin Assignments  
The following table shows the signals available on each pin and the locations of these  
pins on the devices supported by this document. The Port Control Module is responsible  
for selecting which ALT functionality is available on each pin.  
K22 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2013.  
Freescale Semiconductor, Inc.  
63  
 
 
 
 
Pinout  
NOTE  
• The analog input signals ADC0_DP2 and ADC0_DM2 on  
PTE2 and PTE3 are available only for K21 and K22  
devices and are not present on K10 and K20 devices.  
• The TRACE signals on PTE0, PTE1, PTE2, PTE3, and  
PTE4 are available only for K11, K12, K21, and K22  
devices and are not present on K10 and K20 devices.  
• If the VBAT pin is not used, the VBAT pin should be left  
floating. Do not connect VBAT pin to VSS.  
• The FTM_CLKIN signals on PTB16 and PTB17 are  
available only for K11, K12, K21, and K22 devices and is  
not present on K10 and K20 devices. For K22D devices  
this signal is on ALT7, and for K22F devices, this signal is  
on ALT4.  
• The FTM0_CH2 signal on PTC5/LLWU_P9 is available  
only for K11, K12, K21, and K22 devices and is not  
present on K10 and K20 devices.  
• The I2C0_SCL signal on PTD2/LLWU_P13 and  
I2C0_SDA signal on PTD3 are available only for K11,  
K12, K21, and K22 devices and are not present on K10 and  
K20 devices.  
80  
LQFP  
Pin Name  
Default  
ADC1_SE4a  
ADC1_SE5a  
ALT0  
ALT1  
ALT2  
SPI1_PCS1  
SPI1_SOUT  
SPI1_SCK  
SPI1_SIN  
ALT3  
UART1_TX  
UART1_RX  
ALT4  
SDHC0_D1  
SDHC0_D0  
ALT5  
ALT6  
I2C1_SDA  
I2C1_SCL  
ALT7  
RTC_CLKOUT  
SPI1_SIN  
EzPort  
1
2
3
4
5
PTE0  
ADC1_SE4a  
ADC1_SE5a  
PTE0  
TRACE_  
CLKOUT  
PTE1/  
LLWU_P0  
PTE1/  
LLWU_P0  
TRACE_D3  
PTE2/  
LLWU_P1  
ADC0_DP2/  
ADC1_SE6a  
ADC0_DP2/  
ADC1_SE6a  
PTE2/  
LLWU_P1  
UART1_CTS_b SDHC0_DCLK  
UART1_RTS_b SDHC0_CMD  
TRACE_D2  
TRACE_D1  
TRACE_D0  
PTE3  
ADC0_DM2/  
ADC1_SE7a  
ADC0_DM2/  
ADC1_SE7a  
PTE3  
SPI1_SOUT  
PTE4/  
LLWU_P2  
DISABLED  
PTE4/  
LLWU_P2  
SPI1_PCS0  
SPI1_PCS2  
UART3_TX  
UART3_RX  
SDHC0_D3  
SDHC0_D2  
6
7
PTE5  
DISABLED  
VDD  
PTE5  
FTM3_CH0  
VDD  
VDD  
8
VSS  
VSS  
VSS  
9
USB0_DP  
USB0_DM  
VOUT33  
VREGIN  
USB0_DP  
USB0_DM  
VOUT33  
VREGIN  
USB0_DP  
USB0_DM  
VOUT33  
VREGIN  
10  
11  
12  
13  
ADC0_DP0/  
ADC1_DP3  
ADC0_DP0/  
ADC1_DP3  
ADC0_DP0/  
ADC1_DP3  
14  
ADC0_DM0/  
ADC1_DM3  
ADC0_DM0/  
ADC1_DM3  
ADC0_DM0/  
ADC1_DM3  
K22 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2013.  
64  
Freescale Semiconductor, Inc.  
Pinout  
80  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
LQFP  
15  
16  
ADC1_DP0/  
ADC0_DP3  
ADC1_DP0/  
ADC0_DP3  
ADC1_DP0/  
ADC0_DP3  
ADC1_DM0/  
ADC0_DM3  
ADC1_DM0/  
ADC0_DM3  
ADC1_DM0/  
ADC0_DM3  
17  
18  
19  
20  
21  
VDDA  
VREFH  
VREFL  
VSSA  
VDDA  
VREFH  
VREFL  
VSSA  
VDDA  
VREFH  
VREFL  
VSSA  
VREF_OUT/  
CMP1_IN5/  
CMP0_IN5/  
ADC1_SE18  
VREF_OUT/  
CMP1_IN5/  
CMP0_IN5/  
ADC1_SE18  
VREF_OUT/  
CMP1_IN5/  
CMP0_IN5/  
ADC1_SE18  
22  
DAC0_OUT/  
CMP1_IN3/  
ADC0_SE23  
DAC0_OUT/  
CMP1_IN3/  
ADC0_SE23  
DAC0_OUT/  
CMP1_IN3/  
ADC0_SE23  
23  
24  
25  
26  
XTAL32  
EXTAL32  
VBAT  
XTAL32  
EXTAL32  
VBAT  
XTAL32  
EXTAL32  
VBAT  
PTA0  
JTAG_TCLK/  
SWD_CLK/  
EZP_CLK  
PTA0  
UART0_CTS_  
b/  
UART0_COL_b  
FTM0_CH5  
JTAG_TCLK/  
SWD_CLK  
EZP_CLK  
27  
28  
PTA1  
PTA2  
JTAG_TDI/  
EZP_DI  
PTA1  
PTA2  
UART0_RX  
UART0_TX  
FTM0_CH6  
FTM0_CH7  
JTAG_TDI  
EZP_DI  
JTAG_TDO/  
TRACE_SWO/  
EZP_DO  
JTAG_TDO/  
TRACE_SWO  
EZP_DO  
29  
30  
PTA3  
JTAG_TMS/  
SWD_DIO  
PTA3  
UART0_RTS_b FTM0_CH0  
FTM0_CH1  
JTAG_TMS/  
SWD_DIO  
PTA4/  
NMI_b/  
PTA4/  
NMI_b  
EZP_CS_b  
LLWU_P3  
EZP_CS_b  
LLWU_P3  
31  
32  
PTA5  
DISABLED  
CMP2_IN0  
PTA5  
USB_CLKIN  
CAN0_TX  
FTM0_CH2  
FTM1_CH0  
CMP2_OUT  
I2C2_SCL  
I2S0_TX_BCLK JTAG_TRST_b  
PTA12  
CMP2_IN0  
CMP2_IN1  
PTA12  
I2S0_TXD0  
FTM1_QD_  
PHA  
33  
PTA13/  
LLWU_P4  
CMP2_IN1  
PTA13/  
LLWU_P4  
CAN0_RX  
FTM1_CH1  
I2C2_SDA  
I2C2_SCL  
I2S0_TX_FS  
FTM1_QD_  
PHB  
34  
35  
36  
PTA14  
PTA15  
PTA16  
DISABLED  
DISABLED  
DISABLED  
PTA14  
PTA15  
PTA16  
SPI0_PCS0  
SPI0_SCK  
SPI0_SOUT  
UART0_TX  
UART0_RX  
I2S0_RX_BCLK I2S0_TXD1  
I2S0_RXD0  
UART0_CTS_  
b/  
I2S0_RX_FS  
I2S0_RXD1  
UART0_COL_b  
37  
38  
39  
40  
41  
42  
PTA17  
VDD  
ADC1_SE17  
VDD  
ADC1_SE17  
VDD  
PTA17  
SPI0_SIN  
UART0_RTS_b  
I2S0_MCLK  
VSS  
VSS  
VSS  
PTA18  
PTA19  
RESET_b  
EXTAL0  
XTAL0  
EXTAL0  
XTAL0  
PTA18  
PTA19  
FTM0_FLT2  
FTM1_FLT0  
FTM_CLKIN0  
FTM_CLKIN1  
LPTMR0_ALT1  
RESET_b  
RESET_b  
K22 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2013.  
Freescale Semiconductor, Inc.  
65  
Pinout  
80  
LQFP  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
I2C0_SCL  
I2C0_SDA  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
43  
44  
PTB0/  
LLWU_P5  
ADC0_SE8/  
ADC1_SE8  
ADC0_SE8/  
ADC1_SE8  
PTB0/  
LLWU_P5  
FTM1_CH0  
FTM1_CH1  
UART0_RTS_b  
FTM1_QD_  
PHA  
PTB1  
ADC0_SE9/  
ADC1_SE9  
ADC0_SE9/  
ADC1_SE9  
PTB1  
FTM1_QD_  
PHB  
45  
46  
PTB2  
PTB3  
ADC0_SE12  
ADC0_SE13  
ADC0_SE12  
ADC0_SE13  
PTB2  
PTB3  
I2C0_SCL  
I2C0_SDA  
FTM0_FLT3  
FTM0_FLT0  
UART0_CTS_  
b/  
UART0_COL_b  
47  
48  
49  
50  
51  
52  
53  
PTB10  
PTB11  
VSS  
ADC1_SE14  
ADC1_SE15  
VSS  
ADC1_SE14  
ADC1_SE15  
VSS  
PTB10  
PTB11  
SPI1_PCS0  
SPI1_SCK  
UART3_RX  
UART3_TX  
FB_AD19  
FB_AD18  
FTM0_FLT1  
FTM0_FLT2  
VDD  
VDD  
VDD  
PTB16  
PTB17  
PTB18  
DISABLED  
DISABLED  
DISABLED  
PTB16  
PTB17  
PTB18  
SPI1_SOUT  
SPI1_SIN  
CAN0_TX  
UART0_RX  
UART0_TX  
FTM2_CH0  
FTM_CLKIN0  
FTM_CLKIN1  
FB_AD17  
FB_AD16  
EWM_IN  
EWM_OUT_b  
I2S0_TX_BCLK FB_AD15  
FTM2_QD_  
PHA  
54  
PTB19  
PTC0  
DISABLED  
PTB19  
PTC0  
CAN0_RX  
FTM2_CH1  
I2S0_TX_FS  
FB_OE_b  
FTM2_QD_  
PHB  
55  
56  
ADC0_SE14  
ADC0_SE15  
ADC0_SE14  
ADC0_SE15  
SPI0_PCS4  
SPI0_PCS3  
PDB0_EXTRG  
FB_AD14  
FB_AD13  
I2S0_TXD1  
I2S0_TXD0  
PTC1/  
PTC1/  
UART1_RTS_b FTM0_CH0  
LLWU_P6  
LLWU_P6  
57  
58  
PTC2  
ADC0_SE4b/  
CMP1_IN0  
ADC0_SE4b/  
CMP1_IN0  
PTC2  
SPI0_PCS2  
SPI0_PCS1  
UART1_CTS_b FTM0_CH1  
FB_AD12  
CLKOUT  
I2S0_TX_FS  
PTC3/  
CMP1_IN1  
CMP1_IN1  
PTC3/  
UART1_RX  
FTM0_CH2  
I2S0_TX_BCLK  
LLWU_P7  
LLWU_P7  
59  
60  
61  
VSS  
VDD  
VSS  
VSS  
VDD  
VDD  
PTC4/  
LLWU_P8  
DISABLED  
PTC4/  
LLWU_P8  
SPI0_PCS0  
SPI0_SCK  
SPI0_SOUT  
SPI0_SIN  
UART1_TX  
FTM0_CH3  
I2S0_RXD0  
FB_AD11  
FB_AD10  
CMP1_OUT  
CMP0_OUT  
I2S0_MCLK  
62  
63  
64  
65  
66  
PTC5/  
LLWU_P9  
DISABLED  
CMP0_IN0  
CMP0_IN1  
PTC5/  
LLWU_P9  
LPTMR0_ALT2  
PDB0_EXTRG  
FTM0_CH2  
PTC6/  
LLWU_P10  
CMP0_IN0  
CMP0_IN1  
PTC6/  
LLWU_P10  
I2S0_RX_BCLK FB_AD9  
PTC7  
PTC8  
PTC9  
PTC10  
PTC7  
PTC8  
PTC9  
PTC10  
USB_SOF_  
OUT  
I2S0_RX_FS  
I2S0_MCLK  
FB_AD8  
FB_AD7  
ADC1_SE4b/  
CMP0_IN2  
ADC1_SE4b/  
CMP0_IN2  
FTM3_CH4  
ADC1_SE5b/  
CMP0_IN3  
ADC1_SE5b/  
CMP0_IN3  
FTM3_CH5  
I2S0_RX_BCLK FB_AD6  
FTM2_FLT0  
67  
68  
ADC1_SE6b  
ADC1_SE7b  
ADC1_SE6b  
ADC1_SE7b  
I2C1_SCL  
I2C1_SDA  
FTM3_CH6  
FTM3_CH7  
I2S0_RX_FS  
I2S0_RXD1  
FB_AD5  
PTC11/  
PTC11/  
FB_RW_b  
LLWU_P11  
LLWU_P11  
69  
70  
71  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
PTC16  
DISABLED  
PTC16  
UART3_RX  
FB_CS5_b/  
FB_TSIZ1/  
K22 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2013.  
66  
Freescale Semiconductor, Inc.  
Pinout  
80  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
LQFP  
FB_BE23_16_  
BLS15_8_b  
72  
73  
PTC17  
DISABLED  
DISABLED  
PTC17  
UART3_TX  
FB_CS4_b/  
FB_TSIZ0/  
FB_BE31_24_  
BLS7_0_b  
PTD0/  
LLWU_P12  
PTD0/  
LLWU_P12  
SPI0_PCS0  
UART2_RTS_b FTM3_CH0  
UART2_CTS_b FTM3_CH1  
FB_ALE/  
FB_CS1_b/  
FB_TS_b  
74  
75  
PTD1  
ADC0_SE5b  
DISABLED  
ADC0_SE5b  
PTD1  
SPI0_SCK  
FB_CS0_b  
FB_AD4  
PTD2/  
PTD2/  
SPI0_SOUT  
UART2_RX  
FTM3_CH2  
I2C0_SCL  
I2C0_SDA  
LLWU_P13  
LLWU_P13  
76  
77  
PTD3  
DISABLED  
DISABLED  
PTD3  
SPI0_SIN  
UART2_TX  
FTM3_CH3  
FB_AD3  
FB_AD2  
PTD4/  
PTD4/  
SPI0_PCS1  
UART0_RTS_b FTM0_CH4  
EWM_IN  
LLWU_P14  
LLWU_P14  
78  
PTD5  
ADC0_SE6b  
ADC0_SE6b  
ADC0_SE7b  
PTD5  
SPI0_PCS2  
UART0_CTS_  
b/  
UART0_COL_b  
FTM0_CH5  
FB_AD1  
FB_AD0  
EWM_OUT_b  
79  
80  
PTD6/  
LLWU_P15  
ADC0_SE7b  
DISABLED  
PTD6/  
LLWU_P15  
SPI0_PCS3  
CMT_IRO  
UART0_RX  
UART0_TX  
FTM0_CH6  
FTM0_CH7  
FTM0_FLT0  
FTM0_FLT1  
PTD7  
PTD7  
8.2 K22 Pinouts  
The below figure shows the pinout diagram for the devices supported by this document.  
Many signals may be multiplexed onto a single pin. To determine what signals can be  
used on which pin, see the previous section.  
K22 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2013.  
Freescale Semiconductor, Inc.  
67  
 
Revision History  
1
PTE0  
PTE1/LLWU_P0  
PTE2/LLWU_P1  
PTE3  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
VDD  
2
VSS  
3
PTC3/LLWU_P7  
PTC2  
4
5
PTE4/LLWU_P2  
PTE5  
PTC1/LLWU_P6  
PTC0  
6
7
VDD  
PTB19  
8
VSS  
PTB18  
9
USB0_DP  
PTB17  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
USB0_DM  
PTB16  
VOUT33  
VDD  
VREGIN  
VSS  
ADC0_DP0/ADC1_DP3  
ADC0_DM0/ADC1_DM3  
ADC1_DP0/ADC0_DP3  
ADC1_DM0/ADC0_DM3  
VDDA  
PTB11  
PTB10  
PTB3  
PTB2  
PTB1  
VREFH  
PTB0/LLWU_P5  
RESET_b  
PTA19  
VREFL  
VSSA  
Figure 32. K22 80 LQFP Pinout Diagram  
9 Revision History  
The following table provides a revision history for this document.  
K22 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2013.  
68  
Freescale Semiconductor, Inc.  
 
Revision History  
Table 49. Revision History  
Rev. No.  
Date  
11/2012  
5/2013  
Substantial Changes  
1
2
Alpha customer release  
• Updated supported part numbers and document number  
• Updated section "Voltage and current operating behaviors"  
• Added the following figures:  
• Run mode supply current vs. core frequency  
• VLPR mode supply current vs. core frequency  
• Updated section "Device clock specifications"  
• Updated section "Power consumption operating behaviors"  
• Updated section "Power mode transition operating behaviors"  
• Updated section "JTAG limited voltage range electricals"  
• Updated section "MCG specifications"  
• Updated section "Oscillator DC electrical specifications"  
• Updated section "16-bit ADC operating conditions"  
• Updated the pinouts  
• Added section "Alternate part numbers for small packages"  
3
8/2013  
• Updated section "Power consumption operating behaviors"  
• Updated the "Run mode supply current vs. core frequency" figure in section "Diagram:  
Typical IDD_RUN operating behavior  
K22 Sub-Family Data Sheet Data Sheet, Rev. 3, 08/2013.  
Freescale Semiconductor, Inc.  
69  
Information in this document is provided solely to enable system and software  
implementers to use Freescale products. There are no express or implied copyright  
licenses granted hereunder to design or fabricate any integrated circuits based on the  
information in this document.  
How to Reach Us:  
Home Page:  
freescale.com  
Web Support:  
freescale.com/support  
Freescale reserves the right to make changes without further notice to any products  
herein. Freescale makes no warranty, representation, or guarantee regarding the  
suitability of its products for any particular purpose, nor does Freescale assume any  
liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation consequential or incidental  
damages. “Typical” parameters that may be provided in Freescale data sheets and/or  
specifications can and do vary in different applications, and actual performance may  
vary over time. All operating parameters, including “typicals,must be validated for each  
customer application by customer’s technical experts. Freescale does not convey any  
license under its patent rights nor the rights of others. Freescale sells products pursuant  
to standard terms and conditions of sale, which can be found at the following address:  
freescale.com/SalesTermsandConditions.  
Freescale, the Freescale logo, Energy Efficient Solutions logo, and Kinetis, are  
trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other  
product or service names are the property of their respective owners. ARM and Cortex  
are the registered trademarks of ARM Limited.  
© 2013 Freescale Semiconductor, Inc.  
Document Number: K22P80M120SF5  
Rev. 3  
08/2013  

相关型号:

MK22FX512VLK12

Kinetis K22F Sub-Family
NXP

MK22FX512VLL12

Kinetis K22F Sub-Family
NXP

MK22FX512VLQ12

Kinetis K22F Sub-Family
NXP

MK22FX512VMC12

Kinetis K22F Sub-Family
NXP

MK22FX512VMD12

Kinetis K22F Sub-Family
NXP

MK23-35

Open Reed Sensors for SMD Mounting
MEDER

MK23-35-A-2

MK Reed Sensors
MEDER

MK23-35-A-2_DE

(deutsch) MK Reed Sensor
MEDER

MK23-35-B-1

Open Reed Sensors for SMD Mounting
MEDER

MK23-35-B-1_DE

(deutsch) MK Reed Sensor
MEDER

MK23-35-B-2

Open Reed Sensors for SMD Mounting
MEDER

MK23-35-B-2_10

Open Reed Sensors for SMD Mounting
MEDER