MK61FX512VMJ12R [NXP]

32-BIT, FLASH, 120MHz, RISC MICROCONTROLLER, PBGA256, 17 X 17 MM, MAPBGA-256;
MK61FX512VMJ12R
型号: MK61FX512VMJ12R
厂家: NXP    NXP
描述:

32-BIT, FLASH, 120MHz, RISC MICROCONTROLLER, PBGA256, 17 X 17 MM, MAPBGA-256

时钟 外围集成电路
文件: 总95页 (文件大小:1353K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: K61P256M120SF3  
Rev. 5, 10/2013  
Freescale Semiconductor  
Data Sheet: Technical Data  
K61P256M120SF3  
K61 Sub-Family  
Supports the following:  
MK61FX512VMJ12,  
MK61FN1M0VMJ12  
Features  
Security and integrity modules  
– Hardware CRC module to support fast cyclic  
redundancy checks  
Operating Characteristics  
– Voltage range: 1.71 to 3.6 V  
– Flash write voltage range: 1.71 to 3.6 V  
– Temperature range (ambient): -40 to 105°C  
– Tamper detect and secure storage  
– Hardware random-number generator  
– Hardware encryption supporting DES, 3DES, AES,  
MD5, SHA-1, and SHA-256 algorithms  
– 128-bit unique identification (ID) number per chip  
Performance  
– Up to 120 MHz ARM Cortex-M4 core with DSP  
instructions delivering 1.25 Dhrystone MIPS per  
MHz  
Human-machine interface  
– Low-power hardware touch sensor interface (TSI)  
– General-purpose input/output  
Memories and memory interfaces  
– Up to 1024 KB program flash memory on non-  
FlexMemory devices  
Analog modules  
– Four 16-bit SAR ADCs  
– Programmable gain amplifier (PGA) (up to x64)  
integrated into each ADC  
– Two 12-bit DACs  
– Four analog comparators (CMP) containing a 6-bit  
DAC and programmable reference input  
– Voltage reference  
– Up to 512 KB program flash memory on  
FlexMemory devices  
– Up to 512 KB FlexNVM on FlexMemory devices  
– 16 KB FlexRAM on FlexMemory devices  
– Up to 128 KB RAM  
– Serial programming interface (EzPort)  
– FlexBus external bus interface  
– DDR controller interface  
Timers  
– NAND flash controller interface  
– Programmable delay block  
– Two 8-channel motor control/general purpose/PWM  
timers  
– Two 2-channel quadrature decoder/general purpose  
timers  
Clocks  
– 3 to 32 MHz crystal oscillator  
– 32 kHz crystal oscillator  
– Multi-purpose clock generator  
– IEEE 1588 timers  
System peripherals  
– Periodic interrupt timers  
– 16-bit low-power timer  
– Carrier modulator transmitter  
– Real-time clock  
– Multiple low-power modes to provide power  
optimization based on application requirements  
– Memory protection unit with multi-master  
protection  
– 32-channel DMA controller, supporting up to 128  
request sources  
– External watchdog monitor  
– Software watchdog  
– Low-leakage wakeup unit  
Freescale reserves the right to change the detail specifications as may be  
required to permit improvements in the design of its products.  
© 2012–2013 Freescale Semiconductor, Inc.  
Communication interfaces  
– Ethernet controller with MII and RMII interface to external PHY and hardware IEEE 1588 capability  
– USB high-/full-/low-speed On-the-Go controller with ULPI interface  
– USB high-/full-/low-speed On-the-Go controller with on-chip high speed transceiver  
– USB full-/low-speed On-the-Go controller with on-chip transceiver  
– USB Device Charger detect  
– Two Controller Area Network (CAN) modules  
– Three SPI modules  
– Two I2C modules  
– Six UART modules  
– Secure Digital host controller (SDHC)  
– Two I2S modules  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
2
Freescale Semiconductor, Inc.  
Table of Contents  
1 Ordering parts...........................................................................5  
5.4.2  
Thermal attributes...............................................26  
1.1 Determining valid orderable parts......................................5  
2 Part identification......................................................................5  
2.1 Description.........................................................................5  
2.2 Format...............................................................................5  
2.3 Fields.................................................................................5  
2.4 Example............................................................................6  
3 Terminology and guidelines......................................................6  
3.1 Definition: Operating requirement......................................6  
3.2 Definition: Operating behavior...........................................6  
3.3 Definition: Attribute............................................................7  
3.4 Definition: Rating...............................................................7  
3.5 Result of exceeding a rating..............................................8  
3.6 Relationship between ratings and operating  
5.5 Power sequencing.............................................................27  
6 Peripheral operating requirements and behaviors....................27  
6.1 Core modules....................................................................28  
6.1.1  
6.1.2  
Debug trace timing specifications.......................28  
JTAG electricals..................................................28  
6.2 System modules................................................................31  
6.3 Clock modules...................................................................31  
6.3.1  
6.3.2  
6.3.3  
MCG specifications.............................................31  
Oscillator electrical specifications.......................34  
32 kHz oscillator electrical characteristics..........36  
6.4 Memories and memory interfaces.....................................37  
6.4.1  
6.4.2  
6.4.3  
6.4.4  
6.4.5  
Flash (FTFE) electrical specifications.................37  
EzPort switching specifications...........................41  
NFC specifications..............................................42  
DDR controller specifications..............................45  
Flexbus switching specifications.........................48  
requirements......................................................................8  
3.7 Guidelines for ratings and operating requirements............8  
3.8 Definition: Typical value.....................................................9  
3.9 Typical value conditions....................................................10  
4 Ratings......................................................................................10  
4.1 Thermal handling ratings...................................................10  
4.2 Moisture handling ratings..................................................10  
4.3 ESD handling ratings.........................................................10  
4.4 Voltage and current operating ratings...............................11  
5 General.....................................................................................11  
5.1 AC electrical characteristics..............................................11  
5.2 Nonswitching electrical specifications...............................12  
6.5 Security and integrity modules..........................................50  
6.5.1 DryIce Tamper Electrical Specifications.............50  
6.6 Analog...............................................................................51  
6.6.1  
6.6.2  
6.6.3  
6.6.4  
ADC electrical specifications..............................51  
CMP and 6-bit DAC electrical specifications......58  
12-bit DAC electrical characteristics...................61  
Voltage reference electrical specifications..........64  
6.7 Timers................................................................................65  
6.8 Communication interfaces.................................................65  
5.2.1  
5.2.2  
5.2.3  
5.2.4  
5.2.5  
5.2.6  
5.2.7  
5.2.8  
Voltage and current operating requirements......12  
LVD and POR operating requirements...............14  
Voltage and current operating behaviors............15  
Power mode transition operating behaviors.......18  
Power consumption operating behaviors............19  
EMC radiated emissions operating behaviors....22  
Designing with radiated emissions in mind.........23  
Capacitance attributes........................................23  
6.8.1  
6.8.2  
6.8.3  
6.8.4  
6.8.5  
6.8.6  
6.8.7  
Ethernet switching specifications........................65  
USB electrical specifications...............................67  
USB DCD electrical specifications......................67  
USB VREG electrical specifications...................68  
ULPI timing specifications...................................68  
CAN switching specifications..............................69  
DSPI switching specifications (limited voltage  
range).................................................................70  
DSPI switching specifications (full voltage  
5.3 Switching specifications.....................................................23  
6.8.8  
6.8.9  
5.3.1  
5.3.2  
Device clock specifications.................................23  
General switching specifications.........................24  
range).................................................................71  
Inter-Integrated Circuit Interface (I2C) timing.....73  
5.4 Thermal specifications.......................................................26  
5.4.1 Thermal operating requirements.........................26  
6.8.10 UART switching specifications............................74  
6.8.11 SDHC specifications...........................................74  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
Freescale Semiconductor, Inc.  
3
6.8.12 I2S/SAI switching specifications.........................75  
6.9 Human-machine interfaces (HMI)......................................82  
8 Pinout........................................................................................83  
8.1 Pins with active pull control after reset..............................83  
8.2 K61 Signal Multiplexing and Pin Assignments..................84  
8.3 K61 Pinouts.......................................................................92  
9 Revision History........................................................................94  
6.9.1  
TSI electrical specifications................................82  
7 Dimensions...............................................................................83  
7.1 Obtaining package dimensions.........................................83  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
4
Freescale Semiconductor, Inc.  
Ordering parts  
1 Ordering parts  
1.1 Determining valid orderable parts  
Valid orderable part numbers are provided on the web. To determine the orderable part  
numbers for this device, go to freescale.com and perform a part number search for the  
following device numbers: PK61 and MK61  
2 Part identification  
2.1 Description  
Part numbers for the chip have fields that identify the specific part. You can use the  
values of these fields to determine the specific part you have received.  
2.2 Format  
Part numbers for this device have the following format:  
Q K## A M FFF T PP CC N  
2.3 Fields  
This table lists the possible values for each field in the part number (not all combinations  
are valid):  
Field  
Description  
Values  
Q
Qualification status  
• M = Fully qualified, general market flow  
• P = Prequalification  
K##  
A
Kinetis family  
• K61  
Key attribute  
• F = Cortex-M4 w/ DSP and FPU  
M
Flash memory type  
• N = Program flash only  
• X = Program flash and FlexMemory  
FFF  
Program flash memory size  
• 512 = 512 KB  
• 1M0 = 1 MB  
Table continues on the next page...  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
Freescale Semiconductor, Inc.  
5
Terminology and guidelines  
Field  
Description  
Values  
T
Temperature range (°C)  
• V = –40 to 105  
• C = –40 to 85  
PP  
CC  
N
Package identifier  
• MJ = 256 MAPBGA (17 mm x 17 mm)  
• 12 = 120 MHz  
Maximum CPU frequency (MHz)  
Packaging type  
• R = Tape and reel  
• (Blank) = Trays  
2.4 Example  
This is an example part number:  
MK61FN1M0VMJ12  
3 Terminology and guidelines  
3.1 Definition: Operating requirement  
An operating requirement is a specified value or range of values for a technical  
characteristic that you must guarantee during operation to avoid incorrect operation and  
possibly decreasing the useful life of the chip.  
3.1.1 Example  
This is an example of an operating requirement:  
Symbol  
Description  
Min.  
Max.  
Unit  
VDD  
1.0 V core supply  
voltage  
0.9  
1.1  
V
3.2 Definition: Operating behavior  
An operating behavior is a specified value or range of values for a technical  
characteristic that are guaranteed during operation if you meet the operating requirements  
and any other specified conditions.  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
6
Freescale Semiconductor, Inc.  
Terminology and guidelines  
3.2.1 Example  
This is an example of an operating behavior:  
Symbol  
Description  
Min.  
Max.  
Unit  
IWP  
Digital I/O weak pullup/ 10  
pulldown current  
130  
µA  
3.3 Definition: Attribute  
An attribute is a specified value or range of values for a technical characteristic that are  
guaranteed, regardless of whether you meet the operating requirements.  
3.3.1 Example  
This is an example of an attribute:  
Symbol  
Description  
Min.  
Max.  
Unit  
CIN_D  
Input capacitance:  
digital pins  
7
pF  
3.4 Definition: Rating  
A rating is a minimum or maximum value of a technical characteristic that, if exceeded,  
may cause permanent chip failure:  
Operating ratings apply during operation of the chip.  
Handling ratings apply when the chip is not powered.  
3.4.1 Example  
This is an example of an operating rating:  
Symbol  
Description  
Min.  
Max.  
Unit  
VDD  
1.0 V core supply  
voltage  
–0.3  
1.2  
V
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
Freescale Semiconductor, Inc.  
7
Terminology and guidelines  
3.5 Result of exceeding a rating  
40  
30  
The likelihood of permanent chip failure increases rapidly as  
soon as a characteristic begins to exceed one of its operating ratings.  
20  
10  
0
Operating rating  
Measured characteristic  
3.6 Relationship between ratings and operating requirements  
Fatal range  
Degraded operating range  
Normal operating range  
Degraded operating range  
Fatal range  
Expected permanent failure  
- No permanent failure  
- Possible decreased life  
- Possible incorrect operation  
- No permanent failure  
- Correct operation  
- No permanent failure  
- Possible decreased life  
- Possible incorrect operation  
Expected permanent failure  
 
Operating (power on)  
Fatal range  
Handling range  
Fatal range  
Expected permanent failure  
No permanent failure  
Expected permanent failure  
∞  
Handling (power off)  
3.7 Guidelines for ratings and operating requirements  
Follow these guidelines for ratings and operating requirements:  
• Never exceed any of the chip’s ratings.  
• During normal operation, don’t exceed any of the chip’s operating requirements.  
• If you must exceed an operating requirement at times other than during normal  
operation (for example, during power sequencing), limit the duration as much as  
possible.  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
8
Freescale Semiconductor, Inc.  
Terminology and guidelines  
3.8 Definition: Typical value  
A typical value is a specified value for a technical characteristic that:  
• Lies within the range of values specified by the operating behavior  
• Given the typical manufacturing process, is representative of that characteristic  
during operation when you meet the typical-value conditions or other specified  
conditions  
Typical values are provided as design guidelines and are neither tested nor guaranteed.  
3.8.1 Example 1  
This is an example of an operating behavior that includes a typical value:  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
IWP  
Digital I/O weak  
pullup/pulldown  
current  
10  
70  
130  
µA  
3.8.2 Example 2  
This is an example of a chart that shows typical values for various voltage and  
temperature conditions:  
5000  
4500  
4000  
TJ  
3500  
150 °C  
3000  
105 °C  
2500  
25 °C  
2000  
–40 °C  
1500  
1000  
500  
0
0.90  
0.95  
1.00  
1.05  
1.10  
VDD (V)  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
Freescale Semiconductor, Inc.  
9
Ratings  
3.9 Typical value conditions  
Typical values assume you meet the following conditions (or other conditions as  
specified):  
Symbol  
Description  
Ambient temperature  
3.3 V supply voltage  
Value  
Unit  
TA  
25  
°C  
V
VDD  
3.3  
4 Ratings  
4.1 Thermal handling ratings  
Symbol  
TSTG  
Description  
Min.  
–55  
Max.  
150  
Unit  
°C  
Notes  
Storage temperature  
Solder temperature, lead-free  
1
2
TSDR  
260  
°C  
1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.  
2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
4.2 Moisture handling ratings  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
MSL  
Moisture sensitivity level  
3
1
1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
4.3 ESD handling ratings  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
VHBM  
Electrostatic discharge voltage, human body model  
-2000  
+2000  
V
1
Table continues on the next page...  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
10  
Freescale Semiconductor, Inc.  
General  
Symbol  
VCDM  
ILAT  
Description  
Min.  
-500  
-100  
Max.  
+500  
+100  
Unit  
V
Notes  
Electrostatic discharge voltage, charged-device model  
Latch-up current at ambient temperature of 105°C  
2
3
mA  
1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body  
Model (HBM).  
2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for  
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.  
3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.  
4.4 Voltage and current operating ratings  
Symbol  
VDD  
Description  
Min.  
–0.3  
–0.3  
–0.3  
Max.  
3.8  
Unit  
V
Digital supply voltage1  
Core supply voltage  
DDR I/O supply voltage  
Digital supply current  
Core supply current  
DDR supply current  
VDD_INT  
VDD_DDR  
IDD  
3.8  
V
3.8  
V
300  
185  
220  
5.5  
mA  
mA  
mA  
V
IDD_INT  
IDD_DDR  
VDIO  
Digital input voltage (except RESET, EXTAL0/XTAL0, and  
EXTAL1/XTAL1) 2  
–0.3  
VDDDR  
VAIO  
DDR input voltage  
Analog3, RESET, EXTAL0/XTAL0, and EXTAL1/XTAL1 input  
voltage  
–0.3  
–0.3  
VDD_DDR + 0.3  
VDD + 0.3  
V
V
ID  
Maximum current single pin limit (applies to all digital pins)  
Analog supply voltage  
–25  
VDD – 0.3  
–0.3  
25  
VDD + 0.3  
3.63  
mA  
V
VDDA  
VUSB0_DP  
VUSB1_DP  
VUSB0_DM  
VUSB1_DM  
VREGIN  
VBAT  
USB0_DP input voltage  
V
USB1_DP input voltage  
–0.3  
3.63  
V
USB0_DM input voltage  
–0.3  
3.63  
V
USB1_DM input voltage  
–0.3  
3.63  
V
USB regulator input  
–0.3  
6.0  
V
RTC battery supply voltage  
–0.3  
3.8  
V
1. It applies for all port pins except Tamper pins.  
2. It covers digital pins except Tamper pins and DDR pins.  
3. Analog pins are defined as pins that do not have an associated general purpose I/O port function.  
5 General  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
Freescale Semiconductor, Inc.  
11  
General  
5.1 AC electrical characteristics  
Unless otherwise specified, propagation delays are measured from the 50% to the 50%  
point, and rise and fall times are measured at the 20% and 80% points, as shown in the  
following figure.  
Figure 1. Input signal measurement reference  
All digital I/O switching characteristics assume:  
1. output pins  
• have CL=30pF loads,  
• are configured for fast slew rate (PORTx_PCRn[SRE]=0), and  
• are configured for high drive strength (PORTx_PCRn[DSE]=1)  
2. input pins  
• have their passive filter disabled (PORTx_PCRn[PFE]=0)  
5.2 Nonswitching electrical specifications  
5.2.1 Voltage and current operating requirements  
Table 1. Voltage and current operating requirements  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
VDD  
Supply voltage  
max  
3.6  
V
[VDD_DDR  
1.71 V]  
,
VDD_INT  
Core supply voltage  
1.71  
VDD  
V
VDD_DDR DDR voltage — memory I/O buffers  
• DDR1  
2.3  
2.7  
1.9  
V
V
• DDR2/LPDDR1  
1.71  
VREF_DDR Input reference voltage (DDR1/DDR2/LPDDR1)  
0.49 ×  
VDD_DDR  
V
1
VDD_DDR  
VDDA  
Analog supply voltage  
1.71  
–0.1  
3.6  
0.1  
V
V
VDD – VDDA VDD-to-VDDA differential voltage  
Table continues on the next page...  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
12  
Freescale Semiconductor, Inc.  
General  
Notes  
Table 1. Voltage and current operating requirements (continued)  
Symbol  
Description  
Min.  
–0.1  
1.71  
Max.  
0.1  
Unit  
V
VSS – VSSA VSS-to-VSSA differential voltage  
VBAT  
VIH  
RTC battery supply voltage  
3.6  
V
Input high voltage (digital pins except Tamper pins and  
DDR pins)  
0.7 × VDD  
V
V
• 2.7 V ≤ VDD ≤ 3.6 V  
• 1.7 V ≤ VDD ≤ 2.7 V  
0.75 × VDD  
VIL  
Input low voltage (digital pins except Tamper pins and  
DDR pins)  
0.35 × VDD  
0.3 × VDD  
V
V
• 2.7 V ≤ VDD ≤ 3.6 V  
• 1.7 V ≤ VDD ≤ 2.7 V  
VIH_DDR  
Input high voltage (DDR pins)  
VREF_DDR  
0.15  
+
+
V
V
V
• DDR1  
• DDR2  
• LPDDR1  
VREF_DDR  
0.125  
0.7 ×  
VDD_DDR  
VIL_DDR  
Input low voltage (DDR pins)  
VREF_DDR  
0.15  
V
V
V
• DDR1  
• DDR2  
• LPDDR1  
VREF_DDR  
0.125  
0.3 ×  
VDD_DDR  
VHYS  
IICDIO  
Input hysteresis (digital pins except Tamper pins and  
DDR pins)  
0.06 × VDD  
V
Digital pin (except Tamper pins) negative DC injection  
current — single pin  
2
4
-5  
mA  
• VIN < VSS-0.3V  
IICAIO  
Analog3, EXTAL0/XTAL0, and EXTAL1/XTAL1 pin DC  
injection current — single pin  
mA  
-5  
• VIN < VSS-0.3V (Negative current injection)  
• VIN > VDD+0.3V (Positive current injection)  
+5  
IICcont  
Contiguous pin DC injection current —regional limit,  
includes sum of negative injection currents or sum of  
positive injection currents of 16 contiguous pins  
-25  
mA  
• Negative current injection  
• Positive current injection  
+25  
VODPU  
VRAM  
Open drain pullup voltage level  
VDD  
1.2  
VDD  
V
V
V
5
VDD (VDD_INT) voltage required to retain RAM  
VBAT voltage required to retain the VBAT register file  
VRFVBAT  
VPOR_VBAT  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
Freescale Semiconductor, Inc.  
13  
General  
1. For DDR1/DDR2, connect VREF_DDR to the same reference voltage used for the memory. For LPDDR1, connect VREF_DDR  
to the VDD_DDR voltage.  
2. All 5 V tolerant digital I/O pins are internally clamped to VSS through an ESD protection diode. There is no diode  
connection to VDD. If VIN is less than VDIO_MIN, a current limiting resistor is required. If VIN greater than VDIO_MIN  
(=VSS-0.3V) is observed, then there is no need to provide current limiting resistors at the pads. The negative DC injection  
current limiting resistor is calculated as R=(VDIO_MIN-VIN)/|IICDIO|.  
3. Analog pins are defined as pins that do not have an associated general purpose I/O port function. Additionally, EXTAL and  
XTAL are analog pins.  
4. All analog pins are internally clamped to VSS and VDD through ESD protection diodes. If VIN is less than VAIO_MIN or greater  
than VAIO_MAX, a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as  
R=(VAIO_MIN-VIN)/|IICAIO|. The positive injection current limiting resistor is calculated as R=(VIN-VAIO_MAX)/|IICAIO|. Select the  
larger of these two calculated resistances if the pin is exposed to positive and negative injection currents.  
5. Open drain outputs must be pulled to VDD.  
5.2.2 LVD and POR operating requirements  
Table 2. LVD and POR operating requirements  
Symbol Description  
Min.  
0.8  
Typ.  
1.1  
Max.  
1.5  
Unit  
V
Notes  
VPOR  
Falling VDD POR detect voltage  
VLVDH  
Falling low-voltage detect threshold — high  
range (LVDV=01)  
2.48  
2.56  
2.64  
V
Low-voltage warning thresholds — high range  
• Level 1 falling (LVWV=00)  
1
VLVW1H  
VLVW2H  
VLVW3H  
VLVW4H  
2.62  
2.72  
2.82  
2.92  
2.70  
2.80  
2.90  
3.00  
2.78  
2.88  
2.98  
3.08  
V
V
V
V
• Level 2 falling (LVWV=01)  
• Level 3 falling (LVWV=10)  
• Level 4 falling (LVWV=11)  
VHYSH  
VLVDL  
Low-voltage inhibit reset/recover hysteresis —  
high range  
80  
mV  
V
Falling low-voltage detect threshold — low range  
(LVDV=00)  
1.54  
1.60  
1.66  
Low-voltage warning thresholds — low range  
• Level 1 falling (LVWV=00)  
1
VLVW1L  
VLVW2L  
VLVW3L  
VLVW4L  
1.74  
1.84  
1.94  
2.04  
1.80  
1.90  
2.00  
2.10  
1.86  
1.96  
2.06  
2.16  
V
V
V
V
• Level 2 falling (LVWV=01)  
• Level 3 falling (LVWV=10)  
• Level 4 falling (LVWV=11)  
VHYSL  
Low-voltage inhibit reset/recover hysteresis —  
low range  
60  
mV  
VBG  
tLPO  
Bandgap voltage reference  
Internal low power oscillator period  
factory trimmed  
0.97  
900  
1.00  
1.03  
V
1000  
1100  
μs  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
14  
Freescale Semiconductor, Inc.  
General  
Notes  
1. Rising thresholds are falling threshold + hysteresis voltage  
Table 3. VBAT power operating requirements  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
VPOR_VBAT Falling VBAT supply POR detect voltage  
0.8  
1.1  
1.5  
V
5.2.3 Voltage and current operating behaviors  
Table 4. Voltage and current operating behaviors  
Symbol Description  
VOH Output high voltage — high drive strength  
Min.  
Typ.  
Max.  
Unit  
Notes  
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = -9mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = -3mA  
VDD – 0.5  
VDD – 0.5  
V
V
Output high voltage — low drive strength  
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = -2mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = -0.6mA  
VDD – 0.5  
VDD – 0.5  
V
V
IOHT  
Output high current total for all ports  
100  
100  
mA  
mA  
IOHT_io60 Output high current total for fast digital ports  
VOH_DDR Output high voltage for DDR pins  
• DDR1 (IOH = -16.2 mA)  
VDD_DDR  
0.36  
-
-
-
V
V
V
V
V
• DDR2 half strength (IOH = -5.36 mA)  
• DDR2 full strength (IOH = -13.4 mA)  
• LPDDR1 half strength (IOH = -0.1 mA)  
• LPDDR1 full strength (IOH = -0.1 mA)  
VDD_DDR  
0.28  
VDD_DDR  
0.28  
0.9 x  
VDD_DDR  
0.9 x  
VDD_DDR  
IOHT_DDR Output high current total for DDR pins  
100  
56  
mA  
mA  
mA  
• DDR1  
• DDR2  
39  
• LPDDR1  
VOH_Tamper Output high voltage — high drive strength  
• 2.7 V ≤ VBAT ≤ 3.6 V, IOH = -10mA  
VBAT – 0.5  
VBAT – 0.5  
V
V
• 1.71 V ≤ VBAT ≤ 2.7 V, IOH = -3mA  
Output high voltage — low drive strength  
• 2.7 V ≤ VBAT ≤ 3.6 V, IOH = -2mA  
• 1.71 V ≤ VBAT ≤ 2.7 V, IOH = -0.6mA  
VBAT – 0.5  
VBAT – 0.5  
V
V
Table continues on the next page...  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
Freescale Semiconductor, Inc.  
15  
General  
Table 4. Voltage and current operating behaviors (continued)  
Symbol Description  
IOH_Tamper Output high current total for Tamper pins  
Min.  
Typ.  
Max.  
Unit  
Notes  
100  
mA  
VOL  
Output low voltage — high drive strength  
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 10 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 5 mA  
0.5  
0.5  
V
V
Output low voltage — low drive strength  
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 2 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 1 mA  
0.5  
0.5  
V
V
IOLT  
Output low current total for all ports  
100  
100  
mA  
mA  
IOLT_io60 Output low current total for fast digital ports  
VOL_DDR Output low voltage for DDR pins  
• DDR1 (IOL = 16.2 mA)  
0.37  
0.28  
0.28  
V
V
V
V
V
• DDR2 half strength (IOL = 5.36 mA)  
• DDR2 full strength (IOL = 13.4 mA)  
• LPDDR1 half strength (IOL = 0.1 mA)  
• LPDDR1 full strength (IOL = 0.1 mA)  
0.1 x  
VDD_DDR  
0.1 x  
VDD_DDR  
IOLT_DDR Output low current total for DDR pins  
100  
56  
mA  
mA  
mA  
• DDR1  
• DDR2  
39  
• LPDDR1  
VOL_Tamper Output low voltage — high drive strength  
• 2.7 V ≤ VBAT ≤ 3.6 V, IOL = 10mA  
0.5  
0.5  
V
V
• 1.71 V ≤ VBAT ≤ 2.7 V, IOL = 3mA  
Output low voltage — low drive strength  
• 2.7 V ≤ VBAT ≤ 3.6 V, IOL = 2mA  
• 1.71 V ≤ VBAT ≤ 2.7 V, IOL = 0.6mA  
0.5  
0.5  
V
V
IOL_Tamper Output low current total for Tamper pins  
100  
mA  
IINA  
Input leakage current, analog pins and digital  
pins configured as analog inputs  
1, 2  
• VSS ≤ VIN ≤ VDD  
• All pins except EXTAL32, XTAL32,  
EXTAL, XTAL  
0.002  
0.004  
0.075  
0.5  
1.5  
10  
μA  
μA  
μA  
• EXTAL (PTA18) and XTAL (PTA19)  
• EXTAL32, XTAL32  
Table continues on the next page...  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
16  
Freescale Semiconductor, Inc.  
General  
Table 4. Voltage and current operating behaviors (continued)  
Symbol Description  
IIND Input leakage current, digital pins  
• VSS ≤ VIN ≤ VIL  
• All digital pins  
Min.  
Typ.  
Max.  
Unit  
Notes  
2, 3  
0.002  
0.5  
μA  
• VIN = VDD  
• All digital pins except PTD7  
0.002  
0.004  
0.5  
1
μA  
μA  
• PTD7  
IIND  
Input leakage current, digital pins  
• VIL < VIN < VDD  
• VDD = 3.6 V  
2, 3, 4  
18  
12  
8
26  
19  
13  
6
μA  
μA  
μA  
μA  
• VDD = 3.0 V  
• VDD = 2.5 V  
• VDD = 1.7 V  
3
IIND  
Input leakage current, digital pins  
• VDD < VIN < 5.5 V  
2, 3  
2, 5  
1
50  
μA  
ZIND  
Input impedance examples, digital pins  
• VDD = 3.6 V  
48  
55  
57  
85  
kΩ  
kΩ  
kΩ  
kΩ  
• VDD = 3.0 V  
• VDD = 2.5 V  
• VDD = 1.7 V  
IIN_DDR  
IIN_DDR  
Input leakage current (per DDR pin) for full  
temperature range  
1
μA  
Input leakage current (per DDR pin) at 25°C  
0.025  
1
μA  
μA  
IIN_Tamper Input leakage current (per Tamper pin) for full  
temperature range  
IIN_Tamper Input leakage current (per Tamper pin) at 25°C  
20  
20  
0.025  
50  
μA  
kΩ  
kΩ  
RPU  
RPD  
Internal pullup resistors (except Tamper pins)  
Internal pulldown resistors (except Tamper pins)  
On-die termination (ODT) resistance for DDR2  
6
7
50  
RODT  
60  
90  
Ω
Ω
• Rtt1(eff) - 75 Ω  
• Rtt2(eff) - 150 Ω  
120  
180  
1. Analog pins are defined as pins that do not have an associated general purpose I/O port function.  
2. Digital pins have an associated GPIO port function and have 5V tolerant inputs, except EXTAL and XTAL.  
3. Internal pull-up/pull-down resistors disabled.  
4. Characterized, not tested in production.  
5. Examples calculated using VIL relation, VDD, and max IIND: ZIND=VIL/IIND. This is the impedance needed to pull a high  
signal to a level below VIL due to leakage when VIL < VIN < VDD. These examples assume signal source low = 0 V. See  
Figure 2.  
6. Measured at VDD supply voltage = VDD min and Vinput = VSS  
7. Measured at VDD supply voltage = VDD min and Vinput = VDD  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
Freescale Semiconductor, Inc.  
17  
General  
Figure 2. 5 V Tolerant Input IIND Parameter  
5.2.4 Power mode transition operating behaviors  
All specifications except tPOR, and VLLSxRUN recovery times in the following table  
assume this clock configuration:  
• CPU and system clocks = 100 MHz  
• Bus clock = 50 MHz  
• FlexBus clock = 50 MHz  
• Flash clock = 25 MHz  
• MCG mode: FEI  
Table 5. Power mode transition operating behaviors  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
tPOR  
After a POR event, amount of time from the point VDD  
reaches 1.71 V to execution of the first instruction  
across the operating temperature range of the chip.  
1
μs  
300  
• VDD slew rate ≥ 5.7 kV/s  
• VDD slew rate < 5.7 kV/s  
1.7 V / (VDD  
slew rate)  
160  
114  
114  
5.0  
5
μs  
μs  
μs  
μs  
μs  
μs  
• VLLS1 RUN  
• VLLS2 RUN  
• VLLS3 RUN  
• LLS RUN  
• VLPS RUN  
• STOP RUN  
4.8  
1. Normal boot (FTFE_FOPT[LPBOOT]=1)  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
18  
Freescale Semiconductor, Inc.  
General  
5.2.5 Power consumption operating behaviors  
Table 6. Power consumption operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDDA  
Analog supply current  
See note  
mA  
1
2
IDD_RUN Run mode current — all peripheral clocks  
disabled, code executing from flash  
51.1  
51.7  
160  
162  
mA  
mA  
• @ 1.8V  
• @ 3.0V  
IDD_RUN Run mode current — all peripheral clocks  
enabled, code executing from flash  
3
75.2  
75.9  
175  
177  
mA  
mA  
• @ 1.8V  
• @ 3.0V  
IDD_WAIT Wait mode high frequency current at 3.0 V — all  
peripheral clocks disabled  
35.7  
19.6  
60  
44  
mA  
mA  
2
4
IDD_WAIT Wait mode reduced frequency current at 3.0 V —  
all peripheral clocks disabled  
IDD_STOP Stop mode current at 3.0 V  
• @ –40 to 25°C  
1.3  
3.0  
7.5  
3.8  
27  
42  
mA  
mA  
mA  
• @ 70°C  
• @ 105°C  
IDD_VLPR Very-low-power run mode current at 3.0 V — all  
peripheral clocks disabled  
1.4  
2.2  
32  
38  
22  
mA  
mA  
mA  
5
6
7
IDD_VLPR Very-low-power run mode current at 3.0 V — all  
peripheral clocks enabled  
IDD_VLPW Very-low-power wait mode current at 3.0 V  
0.926  
IDD_VLPS Very-low-power stop mode current at 3.0 V  
0.25  
0.85  
2.4  
1.3  
7.6  
mA  
mA  
mA  
• @ –40 to 25°C  
• @ 70°C  
12.54  
• @ 105°C  
IDD_LLS Low leakage stop mode current at 3.0 V  
8
8
0.25  
0.85  
2.4  
1.3  
7.6  
mA  
mA  
mA  
• @ –40 to 25°C  
• @ 70°C  
12.54  
• @ 105°C  
IDD_VLLS3 Very low-leakage stop mode 3 current at 3.0 V  
5.6  
30.1  
120.8  
20  
μA  
μA  
μA  
• @ –40 to 25°C  
• @ 70°C  
137  
246  
• @ 105°C  
Table continues on the next page...  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
Freescale Semiconductor, Inc.  
19  
General  
Table 6. Power consumption operating behaviors (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDD_VLLS2 Very low-leakage stop mode 2 current at 3.0 V  
3.2  
14  
40  
60  
μA  
μA  
μA  
• @ –40 to 25°C  
• @ 70°C  
11.8  
51.2  
• @ 105°C  
IDD_VLLS1 Very low-leakage stop mode 1 current at 3.0 V  
2.8  
8.7  
12  
29  
43  
μA  
μA  
μA  
• @ –40 to 25°C  
• @ 70°C  
39.3  
• @ 105°C  
IDD_VBAT Average current when CPU is not accessing RTC  
registers at 3.0 V  
9
0.91  
1.5  
1.1  
1.85  
4.3  
μA  
μA  
μA  
• @ –40 to 25°C  
• @ 70°C  
4.3  
• @ 105°C  
1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See  
each module's specification for its supply current.  
2. 120 MHz core and system clock, 60 MHz bus, 30 MHz FlexBus clock, and 20 MHz flash clock. MCG configured for PEE  
mode. All peripheral clocks disabled.  
3. 120 MHz core and system clock, 60 MHz bus, 50 MHz FlexBus clock, and 20 MHz flash clock. MCG configured for PEE  
mode. All peripheral clocks enabled, but peripherals are not in active operation.  
4. 25 MHz core and system clock, 25 MHz bus clock, and 12.5 MHz FlexBus and flash clock. MCG configured for FEI mode.  
5. 4 MHz core, system, 2 MHz FlexBus, and 2 MHz bus clock and 0.5 MHz flash clock. MCG configured for BLPE mode. All  
peripheral clocks disabled.  
6. 4 MHz core, system, 2 MHz FlexBus, and 2 MHz bus clock and 0.5 MHz flash clock. MCG configured for BLPE mode. All  
peripheral clocks disabled.  
7. 4 MHz core, system, 2 MHz FlexBus, and 2 MHz bus clock and 0.5 MHz flash clock. MCG configured for BLPE mode. All  
peripheral clocks disabled.  
8. Data reflects devices with 128 KB of RAM. For devices with 64 KB of RAM, power consumption is reduced by 2 μA.  
9. Includes 32kHz oscillator current and RTC operation.  
5.2.5.1 Diagram: Typical IDD_RUN operating behavior  
The following data was measured under these conditions:  
• MCG in FBE mode for 50 MHz and lower frequencies. MCG in FEE mode at greater  
than 50 MHz frequencies. MCG in PEE mode is greater than 100 MHz frequencies.  
• USB regulator disabled  
• No GPIOs toggled  
• Code execution from flash with cache enabled  
• For the ALLOFF curve, all peripheral clocks are disabled except FTFE  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
20  
Freescale Semiconductor, Inc.  
General  
Figure 3. Run mode supply current vs. core frequency  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
Freescale Semiconductor, Inc.  
21  
General  
Figure 4. VLPR mode supply current vs. core frequency  
5.2.6 EMC radiated emissions operating behaviors  
Table 7. EMC radiated emissions operating behaviors for 256MAPBGA  
Symbol  
Description  
Frequency  
band (MHz)  
Typ.  
Unit  
Notes  
VRE1  
VRE2  
VRE3  
VRE4  
Radiated emissions voltage, band 1  
Radiated emissions voltage, band 2  
Radiated emissions voltage, band 3  
Radiated emissions voltage, band 4  
0.15–50  
50–150  
21  
24  
29  
28  
dBμV  
dBμV  
dBμV  
dBμV  
1, 2, 3  
150–500  
500–1000  
1. Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150  
kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement of  
Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband  
TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported  
emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the  
measured orientations in each frequency range.  
2. VDD = 3.3 V, TA = 25 °C, fOSC = 12 MHz (crystal), fSYS = 72 MHz, fBUS = 72 MHz  
3. Determined according to IEC Standard JESD78, IC Latch-Up Test  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
22  
Freescale Semiconductor, Inc.  
General  
5.2.7 Designing with radiated emissions in mind  
To find application notes that provide guidance on designing your system to minimize  
interference from radiated emissions:  
1. Go to www.freescale.com.  
2. Perform a keyword search for “EMC design.”  
5.2.8 Capacitance attributes  
Table 8. Capacitance attributes  
Symbol  
CIN_A  
Description  
Min.  
Max.  
Unit  
pF  
Input capacitance: analog pins  
Input capacitance: digital pins  
Input capacitance: fast digital pins  
7
7
9
CIN_D  
pF  
CIN_D_io60  
pF  
5.3 Switching specifications  
5.3.1 Device clock specifications  
Table 9. Device clock specifications  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
Normal run mode  
fSYS  
System and core clock  
120  
MHz  
MHz  
fSYS_USBFS  
System and core clock when Full Speed USB in  
operation  
20  
fSYS_USBHS  
fENET  
System and core clock when High Speed USB in  
operation  
60  
MHz  
MHz  
System and core clock when ethernet in operation  
• 10 Mbps  
• 100 Mbps  
5
50  
fBUS  
FB_CLK  
fFLASH  
fDDR  
Bus clock  
60  
50  
25  
150  
25  
MHz  
MHz  
MHz  
MHz  
MHz  
FlexBus clock  
Flash clock  
DDR clock  
fLPTMR  
LPTMR clock  
VLPR mode1  
Table continues on the next page...  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
Freescale Semiconductor, Inc.  
23  
General  
Table 9. Device clock specifications (continued)  
Symbol  
fSYS  
fBUS  
Description  
System and core clock  
Bus clock  
Min.  
Max.  
Unit  
MHz  
MHz  
MHz  
MHz  
MHz  
Notes  
4
4
FB_CLK  
fFLASH  
fLPTMR  
FlexBus clock  
Flash clock  
4
0.5  
4
LPTMR clock  
1. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any  
other module.  
5.3.2 General switching specifications  
These general purpose specifications apply to all pins configured for:  
• GPIO signaling  
• Other peripheral module signaling not explicitly stated elsewhere  
Table 10. General switching specifications  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
GPIO pin interrupt pulse width (digital glitch filter  
disabled) — Synchronous path  
1.5  
Bus clock  
cycles  
1, 2  
GPIO pin interrupt pulse width (digital glitch filter  
disabled, analog filter enabled) — Asynchronous path  
100  
16  
ns  
ns  
ns  
3
3
3
GPIO pin interrupt pulse width (digital glitch filter  
disabled, analog filter disabled) — Asynchronous path  
External reset pulse width (digital glitch filter disabled)  
100  
2
Mode select (EZP_CS) hold time after reset  
deassertion  
Bus clock  
cycles  
Port rise and fall time (high drive strength)  
• Slew disabled  
4
• 1.71 ≤ VDD ≤ 2.7V  
• 2.7 ≤ VDD ≤ 3.6V  
14  
8
ns  
ns  
• Slew enabled  
• 1.71 ≤ VDD ≤ 2.7V  
• 2.7 ≤ VDD ≤ 3.6V  
36  
24  
ns  
ns  
Table continues on the next page...  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
24  
Freescale Semiconductor, Inc.  
General  
Table 10. General switching specifications (continued)  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
Port rise and fall time (low drive strength)  
• Slew disabled  
5
• 1.71 ≤ VDD ≤ 2.7V  
• 2.7 ≤ VDD ≤ 3.6V  
• Slew enabled  
14  
8
ns  
ns  
• 1.71 ≤ VDD ≤ 2.7V  
• 2.7 ≤ VDD ≤ 3.6V  
36  
24  
ns  
ns  
tio50  
tio50  
tio60  
tio60  
Port rise and fall time (high drive strength)  
• Slew disabled  
6
• 1.71 ≤ VDD ≤ 2.7V  
• 2.7 ≤ VDD ≤ 3.6V  
7
3
ns  
ns  
• Slew enabled  
• 1.71 ≤ VDD ≤ 2.7V  
• 2.7 ≤ VDD ≤ 3.6V  
28  
14  
ns  
ns  
Port rise and fall time (low drive strength)  
• Slew disabled  
7
• 1.71 ≤ VDD ≤ 2.7V  
• 2.7 ≤ VDD ≤ 3.6V  
18  
9
ns  
ns  
• Slew enabled  
• 1.71 ≤ VDD ≤ 2.7V  
• 2.7 ≤ VDD ≤ 3.6V  
48  
24  
ns  
ns  
Port rise and fall time (high drive strength)  
• Slew disabled  
6
• 1.71 ≤ VDD ≤ 2.7V  
• 2.7 ≤ VDD ≤ 3.6V  
6
3
ns  
ns  
• Slew enabled  
• 1.71 ≤ VDD ≤ 2.7V  
• 2.7 ≤ VDD ≤ 3.6V  
28  
14  
ns  
ns  
Port rise and fall time (low drive strength)  
• Slew disabled  
7
• 1.71 ≤ VDD ≤ 2.7V  
• 2.7 ≤ VDD ≤ 3.6V  
18  
6
ns  
ns  
• Slew enabled  
• 1.71 ≤ VDD ≤ 2.7V  
• 2.7 ≤ VDD ≤ 3.6V  
48  
24  
ns  
ns  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
Freescale Semiconductor, Inc.  
25  
General  
1. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or  
may not be recognized. In Stop, VLPS, LLS, and VLLSx modes, the synchronizer is bypassed so shorter pulses can be  
recognized in that case.  
2. The greater synchronous and asynchronous timing must be met.  
3. This is the minimum pulse width that is guaranteed to be recognized as a pin interrupt request in Stop, VLPS, LLS, and  
VLLSx modes.  
4. 75 pF load  
5. 15 pF load  
6. 25 pF load  
7. 15 pF load  
5.4 Thermal specifications  
5.4.1 Thermal operating requirements  
Table 11. Thermal operating requirements  
Symbol  
TJ  
Description  
Min.  
–40  
–40  
Max.  
125  
Unit  
°C  
Die junction temperature  
Ambient temperature  
TA  
105  
°C  
5.4.2 Thermal attributes  
Board type  
Symbol  
Description  
256 MAPBGA  
Unit  
Notes  
Single-layer (1s)  
RθJA  
Thermal  
43  
°C/W  
1, 2  
resistance, junction  
to ambient (natural  
convection)  
Four-layer (2s2p)  
Single-layer (1s)  
Four-layer (2s2p)  
RθJA  
Thermal  
28  
36  
25  
17  
°C/W  
°C/W  
°C/W  
°C/W  
1,2, 3  
1,3  
1,3  
4
resistance, junction  
to ambient (natural  
convection)  
RθJMA  
RθJMA  
RθJB  
Thermal  
resistance, junction  
to ambient (200 ft./  
min. air speed)  
Thermal  
resistance, junction  
to ambient (200 ft./  
min. air speed)  
Thermal  
resistance, junction  
to board  
Table continues on the next page...  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
26  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Board type  
Symbol  
Description  
256 MAPBGA  
Unit  
Notes  
RθJC  
Thermal  
8
°C/W  
5
resistance, junction  
to case  
ΨJT  
Thermal  
2
°C/W  
6
characterization  
parameter, junction  
to package top  
outside center  
(natural  
convection)  
1.  
Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site  
(board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board  
thermal resistance.  
2.  
3.  
4.  
5.  
Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental  
Conditions—Natural Convection (Still Air) with the single layer board horizontal. Board meets JESD51-9 specification.  
Determined according to JEDEC Standard JESD51-6, Integrated Circuits Thermal Test Method Environmental  
Conditions—Forced Convection (Moving Air) with the board horizontal.  
Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental  
Conditions—Junction-to-Board. Board temperature is measured on the top surface of the board near the package.  
Determined according to Method 1012.1 of MIL-STD 883, Test Method Standard, Microcircuits, with the cold plate  
temperature used for the case temperature. The value includes the thermal resistance of the interface material  
between the top of the package and the cold plate.  
6.  
Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental  
Conditions—Natural Convection (Still Air).  
5.5 Power sequencing  
Voltage supplies must be sequenced in the proper order to avoid damaging internal  
diodes. There is no limit on how long after one supply powers up before the next supply  
must power up. Note that VDD and VDD_INT can use the same power source.  
The power-up sequence is:  
1. VDD  
2. VDD_INT  
3. VDDA  
4. VDD_DDR  
The power-down sequence is the reverse:  
1. VDD_DDR  
2. VDDA  
3. VDD_INT  
4. VDD  
6 Peripheral operating requirements and behaviors  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
Freescale Semiconductor, Inc.  
27  
Peripheral operating requirements and behaviors  
6.1 Core modules  
6.1.1 Debug trace timing specifications  
Table 12. Debug trace operating behaviors  
Symbol  
Tcyc  
Twl  
Description  
Min.  
Max.  
Unit  
MHz  
ns  
Clock period  
Frequency dependent  
Low pulse width  
High pulse width  
Clock and data rise time  
Clock and data fall time  
Data setup  
2
2
3
Twh  
Tr  
ns  
3
ns  
Tf  
3
ns  
Ts  
ns  
Th  
Data hold  
2
ns  
Figure 5. TRACE_CLKOUT specifications  
TRACE_CLKOUT  
TRACE_D[3:0]  
Ts  
Th  
Ts  
Th  
Figure 6. Trace data specifications  
6.1.2 JTAG electricals  
Table 13. JTAG limited voltage range electricals  
Symbol  
Description  
Operating voltage  
Min.  
Max.  
Unit  
2.7  
3.6  
V
Table continues on the next page...  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
28  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 13. JTAG limited voltage range electricals (continued)  
Symbol  
Description  
Min.  
Max.  
Unit  
J1  
TCLK frequency of operation  
• Boundary Scan  
MHz  
0
0
0
10  
25  
50  
• JTAG and CJTAG  
• Serial Wire Debug  
J2  
J3  
TCLK cycle period  
TCLK clock pulse width  
• Boundary Scan  
1/J1  
ns  
50  
20  
10  
ns  
ns  
ns  
• JTAG and CJTAG  
• Serial Wire Debug  
J4  
J5  
TCLK rise and fall times  
20  
2.4  
8
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Boundary scan input data setup time to TCLK rise  
Boundary scan input data hold time after TCLK rise  
TCLK low to boundary scan output data valid  
TCLK low to boundary scan output high-Z  
TMS, TDI input data setup time to TCLK rise  
TMS, TDI input data hold time after TCLK rise  
TCLK low to TDO data valid  
25  
25  
17  
17  
J6  
J7  
J8  
J9  
J10  
J11  
J12  
J13  
J14  
1
100  
8
TCLK low to TDO high-Z  
TRST assert time  
TRST setup time (negation) to TCLK high  
Table 14. JTAG full voltage range electricals  
Symbol  
Description  
Min.  
Max.  
Unit  
V
Operating voltage  
1.71  
3.6  
J1  
TCLK frequency of operation  
• Boundary Scan  
MHz  
0
0
0
10  
20  
40  
• JTAG and CJTAG  
• Serial Wire Debug  
J2  
J3  
TCLK cycle period  
TCLK clock pulse width  
• Boundary Scan  
1/J1  
ns  
50  
25  
ns  
ns  
ns  
• JTAG and CJTAG  
• Serial Wire Debug  
12.5  
J4  
J5  
J6  
TCLK rise and fall times  
20  
3
ns  
ns  
ns  
Boundary scan input data setup time to TCLK rise  
Boundary scan input data hold time after TCLK rise  
2.4  
Table continues on the next page...  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
Freescale Semiconductor, Inc.  
29  
Peripheral operating requirements and behaviors  
Table 14. JTAG full voltage range electricals (continued)  
Symbol  
J7  
Description  
Min.  
Max.  
25  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TCLK low to boundary scan output data valid  
TCLK low to boundary scan output high-Z  
TMS, TDI input data setup time to TCLK rise  
TMS, TDI input data hold time after TCLK rise  
TCLK low to TDO data valid  
J8  
25  
J9  
8
J10  
J11  
J12  
J13  
J14  
1.4  
22.1  
22.1  
TCLK low to TDO high-Z  
TRST assert time  
100  
8
TRST setup time (negation) to TCLK high  
J2  
J4  
J3  
J3  
TCLK (input)  
J4  
Figure 7. Test clock input timing  
TCLK  
J5  
J6  
Input data valid  
Data inputs  
Data outputs  
Data outputs  
Data outputs  
J7  
Output data valid  
J8  
J7  
Output data valid  
Figure 8. Boundary scan (JTAG) timing  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
30  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
TCLK  
TDI/TMS  
TDO  
J9  
J10  
Input data valid  
J11  
Output data valid  
J12  
J11  
TDO  
Output data valid  
TDO  
Figure 9. Test Access Port timing  
TCLK  
TRST  
J14  
J13  
Figure 10. TRST timing  
6.2 System modules  
There are no specifications necessary for the device's system modules.  
6.3 Clock modules  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
Freescale Semiconductor, Inc.  
31  
Peripheral operating requirements and behaviors  
6.3.1 MCG specifications  
Table 15. MCG specifications  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
fints_ft Internal reference frequency (slow clock) —  
32.768  
kHz  
factory trimmed at nominal VDD and 25 °C  
fints_t  
Internal reference frequency (slow clock) — user  
trimmed  
31.25  
39.0625  
0.6  
kHz  
Δfdco_res_t Resolution of trimmed average DCO output  
frequency at fixed voltage and temperature —  
using SCTRIM and SCFTRIM  
0.3  
%fdco  
1
1
1
Δfdco_res_t Resolution of trimmed average DCO output  
frequency at fixed voltage and temperature —  
using SCTRIM only  
0.2  
4.5  
0.5  
%fdco  
%fdco  
Δfdco_t  
Total deviation of trimmed average DCO output  
frequency over fixed voltage and temperature  
range of 0–70°C  
fintf_ft  
fintf_t  
floc_low  
floc_high  
Internal reference frequency (fast clock) —  
factory trimmed at nominal VDD and 25°C  
3
4
5
MHz  
MHz  
kHz  
kHz  
Internal reference frequency (fast clock) — user  
trimmed at nominal VDD and 25 °C  
Loss of external clock minimum frequency —  
RANGE = 00  
(3/5) x  
fints_t  
Loss of external clock minimum frequency —  
RANGE = 01, 10, or 11  
(16/5) x  
fints_t  
FLL  
ffll_ref  
fdco  
FLL reference frequency range  
31.25  
20  
39.0625  
25  
kHz  
DCO output  
Low range (DRS=00)  
640 × ffll_ref  
20.97  
MHz  
2, 3  
frequency range  
Mid range (DRS=01)  
1280 × ffll_ref  
40  
60  
80  
41.94  
62.91  
83.89  
23.99  
47.97  
71.99  
95.98  
50  
75  
100  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
Mid-high range (DRS=10)  
1920 × ffll_ref  
High range (DRS=11)  
2560 × ffll_ref  
fdco_t_DMX32 DCO output  
frequency  
Low range (DRS=00)  
732 × ffll_ref  
4, 5  
Mid range (DRS=01)  
1464 × ffll_ref  
Mid-high range (DRS=10)  
2197 × ffll_ref  
High range (DRS=11)  
2929 × ffll_ref  
Table continues on the next page...  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
32  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 15. MCG specifications (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
Jcyc_fll  
FLL period jitter  
ps  
180  
150  
• fVCO = 48 MHz  
• fVCO = 98 MHz  
tfll_acquire FLL target frequency acquisition time  
1
ms  
6
PLL0,1  
fpll_ref  
PLL reference frequency range  
8
180  
90  
90  
16  
360  
180  
180  
MHz  
MHz  
fvcoclk_2x VCO output frequency  
fvcoclk  
fvcoclk_90 PLL quadrature output frequency  
Ipll PLL0 operating current  
PLL output frequency  
MHz  
MHz  
7
7
7
7
8
9
2.8  
4.7  
2.3  
mA  
mA  
mA  
• VCO @ 180 MHz (fosc_hi_1 = 32 MHz, fpll_ref  
= 8 MHz, VDIV multiplier = 22)  
Ipll  
PLL0 operating current  
• VCO @ 360 MHz (fosc_hi_1 = 32 MHz, fpll_ref  
= 8 MHz, VDIV multiplier = 45)  
Ipll  
PLL1 operating current  
• VCO @ 180 MHz (fosc_hi_1 = 32 MHz, fpll_ref  
= 8 MHz, VDIV multiplier = 22)  
Ipll  
PLL1 operating current  
3.6  
mA  
s
• VCO @ 360 MHz (fosc_hi_1 = 32 MHz, fpll_ref  
= 8 MHz, VDIV multiplier = 45)  
tpll_lock  
Lock detector detection time  
100 × 10-6  
+ 1075(1/  
fpll_ref  
)
Jcyc_pll  
PLL period jitter (RMS)  
• fvco = 180 MHz  
100  
75  
ps  
ps  
• fvco = 360 MHz  
Jacc_pll  
PLL accumulated jitter over 1µs (RMS)  
• fvco = 180 MHz  
10  
600  
300  
ps  
ps  
• fvco = 360 MHz  
1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock  
mode).  
2. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0.  
3. The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency deviation  
(Δfdco_t) over voltage and temperature should be considered.  
4. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1.  
5. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.  
6. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed,  
DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE,  
FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.  
7. Excludes any oscillator currents that are also consuming power while PLL is in operation.  
8. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled  
(BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes  
it is already running.  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
Freescale Semiconductor, Inc.  
33  
Peripheral operating requirements and behaviors  
9. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of  
each PCB and results will vary.  
10. Accumulated jitter depends on VCO frequency and VDIV.  
6.3.2 Oscillator electrical specifications  
6.3.2.1 Oscillator DC electrical specifications  
Table 16. Oscillator DC electrical specifications  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
VDD  
Supply voltage  
1.71  
3.6  
V
IDDOSC  
Supply current — low-power mode (HGO=0)  
1
• 32 kHz  
500  
200  
300  
950  
1.2  
nA  
μA  
μA  
μA  
mA  
mA  
• 4 MHz  
• 8 MHz (RANGE=01)  
• 16 MHz  
• 24 MHz  
• 32 MHz  
1.5  
IDDOSC  
Supply current — high-gain mode (HGO=1)  
1
• 32 kHz  
25  
400  
500  
2.5  
3
μA  
μA  
• 4 MHz  
• 8 MHz (RANGE=01)  
• 16 MHz  
μA  
mA  
mA  
mA  
• 24 MHz  
• 32 MHz  
4
Cx  
Cy  
RF  
EXTAL load capacitance  
XTAL load capacitance  
2, 3  
2, 3  
2, 4  
Feedback resistor — low-frequency, low-power  
mode (HGO=0)  
MΩ  
MΩ  
MΩ  
MΩ  
Feedback resistor — low-frequency, high-gain  
mode (HGO=1)  
10  
1
Feedback resistor — high-frequency, low-power  
mode (HGO=0)  
Feedback resistor — high-frequency, high-gain  
mode (HGO=1)  
Table continues on the next page...  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
34  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 16. Oscillator DC electrical specifications (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
RS Series resistor — low-frequency, low-power  
kΩ  
mode (HGO=0)  
Series resistor — low-frequency, high-gain mode  
(HGO=1)  
200  
kΩ  
kΩ  
Series resistor — high-frequency, low-power  
mode (HGO=0)  
Series resistor — high-frequency, high-gain  
mode (HGO=1)  
0
kΩ  
V
5
Vpp  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — low-frequency, low-power mode  
(HGO=0)  
0.6  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — low-frequency, high-gain mode  
(HGO=1)  
VDD  
0.6  
V
V
V
Peak-to-peak amplitude of oscillation (oscillator  
mode) — high-frequency, low-power mode  
(HGO=0)  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — high-frequency, high-gain mode  
(HGO=1)  
VDD  
1. VDD=3.3 V, Temperature =25 °C  
2. See crystal or resonator manufacturer's recommendation  
3. Cx and Cy can be provided by using either integrated capacitors or external components.  
4. When low-power mode is selected, RF is integrated and must not be attached externally.  
5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any  
other device.  
6.3.2.2 Oscillator frequency specifications  
Table 17. Oscillator frequency specifications  
Symbol Description  
fosc_lo Oscillator crystal or resonator frequency — low-  
frequency mode (MCG_C2[RANGE]=00)  
Min.  
Typ.  
Max.  
Unit  
Notes  
32  
40  
kHz  
fosc_hi_1 Oscillator crystal or resonator frequency — high-  
frequency mode (low range)  
3
8
8
MHz  
MHz  
1
(MCG_C2[RANGE]=01)  
fosc_hi_2 Oscillator crystal or resonator frequency — high  
frequency mode (high range)  
32  
(MCG_C2[RANGE]=1x)  
fec_extal  
tdc_extal  
Input clock frequency (external clock mode)  
Input clock duty cycle (external clock mode)  
60  
60  
MHz  
%
2, 3  
40  
50  
Table continues on the next page...  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
Freescale Semiconductor, Inc.  
35  
Peripheral operating requirements and behaviors  
Table 17. Oscillator frequency specifications (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
tcst Crystal startup time — 32 kHz low-frequency,  
1000  
ms  
4, 5  
low-power mode (HGO=0)  
Crystal startup time — 32 kHz low-frequency,  
high-gain mode (HGO=1)  
500  
0.6  
ms  
ms  
Crystal startup time — 8 MHz high-frequency  
(MCG_C2[RANGE]=01), low-power mode  
(HGO=0)  
Crystal startup time — 8 MHz high-frequency  
(MCG_C2[RANGE]=01), high-gain mode  
(HGO=1)  
1
ms  
1. Frequencies less than 8 MHz are not in the PLL range.  
2. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL.  
3. When transitioning from FEI or FBI to FBE mode, restrict the frequency of the input clock so that, when it is divided by  
FRDIV, it remains within the limits of the DCO input clock frequency.  
4. Proper PC board layout procedures must be followed to achieve specifications.  
5. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register  
being set.  
NOTE  
The 32 kHz oscillator works in low power mode by default and  
cannot be moved into high power/gain mode.  
6.3.3 32 kHz oscillator electrical characteristics  
6.3.3.1 32 kHz oscillator DC electrical specifications  
Table 18. 32kHz oscillator DC electrical specifications  
Symbol  
VBAT  
RF  
Description  
Min.  
1.71  
Typ.  
Max.  
3.6  
Unit  
V
Supply voltage  
Internal feedback resistor  
Parasitical capacitance of EXTAL32 and XTAL32  
Peak-to-peak amplitude of oscillation  
100  
5
MΩ  
pF  
V
Cpara  
7
1
Vpp  
0.6  
1. When a crystal is being used with the 32 kHz oscillator, the EXTAL32 and XTAL32 pins should only be connected to  
required oscillator components and must not be connected to any other devices.  
6.3.3.2 32 kHz oscillator frequency specifications  
Table 19. 32 kHz oscillator frequency specifications  
Symbol Description  
fosc_lo Oscillator crystal  
Min.  
Typ.  
Max.  
Unit  
Notes  
32.768  
kHz  
Table continues on the next page...  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
36  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 19. 32 kHz oscillator frequency specifications (continued)  
Symbol Description  
Min.  
Typ.  
1000  
Max.  
Unit  
ms  
Notes  
1
tstart  
Crystal start-up time  
vec_extal32 Externally provided input clock amplitude  
700  
VBAT  
mV  
2, 3  
1. Proper PC board layout procedures must be followed to achieve specifications.  
2. This specification is for an externally supplied clock driven to EXTAL32 and does not apply to any other clock input. The  
oscillator remains enabled and XTAL32 must be left unconnected.  
3. The parameter specified is a peak-to-peak value and VIH and VIL specifications do not apply. The voltage of the applied  
clock must be within the range of VSS to VBAT  
.
6.4 Memories and memory interfaces  
6.4.1 Flash (FTFE) electrical specifications  
This section describes the electrical characteristics of the FTFE module.  
6.4.1.1 Flash timing specifications — program and erase  
The following specifications represent the amount of time the internal charge pumps are  
active and do not include command overhead.  
Table 20. NVM program/erase timing specifications  
Symbol Description  
Min.  
Typ.  
7.5  
Max.  
18  
Unit  
μs  
Notes  
thvpgm8  
Program Phrase high-voltage time  
thversscr Erase Flash Sector high-voltage time  
thversblk128k Erase Flash Block high-voltage time for 128 KB  
thversblk256k Erase Flash Block high-voltage time for 256 KB  
13  
113  
ms  
ms  
ms  
1
1
1
104  
208  
1808  
3616  
1. Maximum time based on expectations at cycling end-of-life.  
6.4.1.2 Flash timing specifications — commands  
Table 21. Flash command timing specifications  
Symbol Description  
Read 1s Block execution time  
Min.  
Typ.  
Max.  
Unit  
Notes  
trd1blk128k  
trd1blk256k  
• 128 KB data flash  
0.5  
1.0  
ms  
ms  
• 256 KB program flash  
trd1sec4k Read 1s Section execution time (4 KB flash)  
100  
80  
μs  
μs  
1
1
tpgmchk  
Program Check execution time  
Table continues on the next page...  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
Freescale Semiconductor, Inc.  
37  
Peripheral operating requirements and behaviors  
Table 21. Flash command timing specifications (continued)  
Symbol Description  
trdrsrc Read Resource execution time  
tpgm8  
Min.  
Typ.  
Max.  
40  
Unit  
μs  
Notes  
1
Program Phrase execution time  
Erase Flash Block execution time  
• 128 KB data flash  
70  
150  
μs  
2
2
tersblk128k  
tersblk256k  
110  
220  
925  
ms  
ms  
• 256 KB program flash  
1850  
tersscr  
Erase Flash Sector execution time  
15  
20  
115  
ms  
ms  
tpgmsec4k Program Section execution time (4KB flash)  
Read 1s All Blocks execution time  
trd1allx  
trd1alln  
• FlexNVM devices  
3.4  
3.4  
ms  
ms  
• Program flash only devices  
trdonce  
Read Once execution time  
70  
30  
μs  
μs  
ms  
μs  
1
tpgmonce Program Once execution time  
tersall  
Erase All Blocks execution time  
Verify Backdoor Access Key execution time  
Swap Control execution time  
• control code 0x01  
650  
5600  
30  
2
1
tvfykey  
tswapx01  
tswapx02  
tswapx04  
tswapx08  
200  
70  
70  
150  
150  
30  
μs  
μs  
μs  
μs  
• control code 0x02  
• control code 0x04  
• control code 0x08  
Program Partition for EEPROM execution time  
• 64 KB FlexNVM  
tpgmpart64k  
tpgmpart256k  
235  
240  
ms  
ms  
• 256 KB FlexNVM  
Set FlexRAM Function execution time:  
• Control Code 0xFF  
tsetramff  
tsetram64k  
tsetram128k  
tsetram256k  
205  
1.6  
2.7  
4.8  
μs  
ms  
ms  
ms  
• 64 KB EEPROM backup  
• 128 KB EEPROM backup  
• 256 KB EEPROM backup  
2.5  
3.8  
6.2  
teewr8bers Byte-write to erased FlexRAM location execution  
time  
140  
225  
μs  
3
Byte-write to FlexRAM execution time:  
teewr8b64k  
teewr8b128k  
teewr8b256k  
• 64 KB EEPROM backup  
• 128 KB EEPROM backup  
• 256 KB EEPROM backup  
400  
450  
525  
1700  
1800  
2000  
μs  
μs  
μs  
teewr16bers 16-bit write to erased FlexRAM location  
execution time  
140  
225  
μs  
Table continues on the next page...  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
38  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 21. Flash command timing specifications (continued)  
Symbol Description  
16-bit write to FlexRAM execution time:  
Min.  
Typ.  
Max.  
Unit  
Notes  
teewr16b64k  
teewr16b128k  
teewr16b256k  
• 64 KB EEPROM backup  
• 128 KB EEPROM backup  
• 256 KB EEPROM backup  
400  
450  
525  
1700  
1800  
2000  
μs  
μs  
μs  
teewr32bers 32-bit write to erased FlexRAM location  
execution time  
180  
275  
μs  
32-bit write to FlexRAM execution time:  
teewr32b64k  
teewr32b128k  
teewr32b256k  
• 64 KB EEPROM backup  
• 128 KB EEPROM backup  
• 256 KB EEPROM backup  
475  
525  
600  
1850  
2000  
2200  
μs  
μs  
μs  
1. Assumes 25MHz or greater flash clock frequency.  
2. Maximum times for erase parameters based on expectations at cycling end-of-life.  
3. For byte-writes to an erased FlexRAM location, the aligned word containing the byte must be erased.  
6.4.1.3 Flash high voltage current behaviors  
Table 22. Flash high voltage current behaviors  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
IDD_PGM  
Average current  
adder during high  
voltage flash  
programming  
operation  
3.5  
7.5  
mA  
IDD_ERS  
Average current  
adder during high  
voltage flash erase  
operation  
1.5  
4.0  
mA  
6.4.1.4 Reliability specifications  
Table 23. NVM reliability specifications  
Symbol Description  
Min.  
Program Flash  
Typ.1  
Max.  
Unit  
Notes  
tnvmretp10k Data retention after up to 10 K cycles  
tnvmretp1k Data retention after up to 1 K cycles  
nnvmcycp Cycling endurance  
5
50  
years  
years  
cycles  
20  
100  
50 K  
10 K  
2
Data Flash  
tnvmretd10k Data retention after up to 10 K cycles  
tnvmretd1k Data retention after up to 1 K cycles  
5
50  
years  
years  
20  
100  
Table continues on the next page...  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
Freescale Semiconductor, Inc.  
39  
Peripheral operating requirements and behaviors  
Table 23. NVM reliability specifications (continued)  
Symbol Description  
Min.  
10 K  
Typ.1  
Max.  
Unit  
Notes  
nnvmcycd Cycling endurance  
50 K  
cycles  
2
FlexRAM as EEPROM  
tnvmretee100 Data retention up to 100% of write endurance  
tnvmretee10 Data retention up to 10% of write endurance  
nnvmcycee Cycling endurance for EEPROM backup  
Write endurance  
5
50  
years  
years  
cycles  
20  
100  
50 K  
20 K  
2
3
nnvmwree16  
nnvmwree128  
nnvmwree512  
nnvmwree2k  
• EEPROM backup to FlexRAM ratio = 16  
• EEPROM backup to FlexRAM ratio = 128  
• EEPROM backup to FlexRAM ratio = 512  
• EEPROM backup to FlexRAM ratio = 2,048  
70 K  
630 K  
2.5 M  
10 M  
175 K  
1.6 M  
6.4 M  
25 M  
writes  
writes  
writes  
writes  
1. Typical data retention values are based on measured response accelerated at high temperature and derated to a constant  
25°C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering  
Bulletin EB619.  
2. Cycling endurance represents number of program/erase cycles at -40°C ≤ Tj ≤ 125°C.  
3. Write endurance represents the number of writes to each FlexRAM location at -40°C ≤Tj ≤ 125°C influenced by the cycling  
endurance of the FlexNVM (same value as data flash) and the allocated EEPROM backup per subsystem. Minimum and  
typical values assume all byte-writes to FlexRAM.  
6.4.1.5 Write endurance to FlexRAM for EEPROM  
When the FlexNVM partition code is not set to full data flash, the EEPROM data set size  
can be set to any of several non-zero values.  
The bytes not assigned to data flash via the FlexNVM partition code are used by the  
FTFE to obtain an effective endurance increase for the EEPROM data. The built-in  
EEPROM record management system raises the number of program/erase cycles that can  
be attained prior to device wear-out by cycling the EEPROM data through a larger  
EEPROM NVM storage space.  
While different partitions of the FlexNVM are available, the intention is that a single  
choice for the FlexNVM partition code and EEPROM data set size is used throughout the  
entire lifetime of a given application. The EEPROM endurance equation and graph  
shown below assume that only one configuration is ever used.  
EEPROM – 2 × EEESPLIT × EEESIZE  
Writes_subsystem =  
× Write_efficiency × nnvmcycee  
EEESPLIT × EEESIZE  
where  
• Writes_subsystem — minimum number of writes to each FlexRAM location for  
subsystem (each subsystem can have different endurance)  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
40  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
• EEPROM — allocated FlexNVM for each EEPROM subsystem based on DEPART;  
entered with Program Partition command  
• EEESPLIT — FlexRAM split factor for subsystem; entered with the Program  
Partition command  
• EEESIZE — allocated FlexRAM based on DEPART; entered with Program Partition  
command  
• Write_efficiency —  
• 0.25 for 8-bit writes to FlexRAM  
• 0.50 for 16-bit or 32-bit writes to FlexRAM  
• nnvmcycee — EEPROM-backup cycling endurance  
Figure 11. EEPROM backup writes to FlexRAM  
6.4.2 EzPort switching specifications  
Table 24. EzPort switching specifications  
Num  
Description  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
3.6  
V
Table continues on the next page...  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
Freescale Semiconductor, Inc.  
41  
Peripheral operating requirements and behaviors  
Table 24. EzPort switching specifications (continued)  
Num  
Description  
Min.  
Max.  
Unit  
EP1  
EZP_CK frequency of operation (all commands except  
READ)  
fSYS/2  
MHz  
EP1a  
EP2  
EP3  
EP4  
EP5  
EP6  
EP7  
EP8  
EP9  
EZP_CK frequency of operation (READ command)  
EZP_CS negation to next EZP_CS assertion  
EZP_CS input valid to EZP_CK high (setup)  
EZP_CK high to EZP_CS input invalid (hold)  
EZP_D input valid to EZP_CK high (setup)  
EZP_CK high to EZP_D input invalid (hold)  
EZP_CK low to EZP_Q output valid  
fSYS/8  
MHz  
ns  
2 x tEZP_CK  
5
5
ns  
ns  
2
ns  
5
ns  
0
16  
ns  
EZP_CK low to EZP_Q output invalid (hold)  
EZP_CS negation to EZP_Q tri-state  
ns  
12  
ns  
EZP_CK  
EP2  
EP3  
EP4  
EZP_CS  
EP9  
EP8  
EP7  
EZP_Q (output)  
EZP_D (input)  
EP5  
EP6  
Figure 12. EzPort Timing Diagram  
6.4.3 NFC specifications  
The NAND flash controller (NFC) implements the interface to standard NAND flash  
memory devices. This section describes the timing parameters of the NFC.  
In the following table:  
• TH is the flash clock high time and  
• TL is flash clock low time,  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
42  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
which are defined as:  
Tinput clock  
SCALER  
TNFC = TL + TH  
=
The SCALER value is derived from the fractional divider specified in the SIM's  
CLKDIV4 register:  
SIM_CLKDIV4[NFCFRAC] + 1  
SIM_CLKDIV4[NFCDIV] + 1  
=
SCALER  
In case the reciprocal of SCALER is an integer, the duty cycle of NFC clock is 50%,  
means TH = TL. In case the reciprocal of SCALER is not an integer:  
TNFC  
TL = (1 + SCALER / 2) x  
2
TNFC  
TH = (1 – SCALER / 2) x  
2
For example, if SCALER is 0.2, then TH = TL = TNFC/2.  
TNFC  
TH TL  
However, if SCALER is 0.667, then TL = 2/3 x TNFC and TH = 1/3 x TNFC  
.
TNFC  
TH TL  
NOTE  
The reciprocal of SCALER must be a multiple of 0.5. For  
example, 1, 1.5, 2, 2.5, etc.  
Table 25. NFC specifications  
Num  
tCLS  
tCLH  
tCS  
Description  
Min.  
2TH + TL – 1  
TH + TL – 1  
2TH + TL – 1  
TH + TL  
Max.  
Unit  
ns  
NFC_CLE setup time  
NFC_CLE hold time  
NFC_CEn setup time  
NFC_CEn hold time  
NFC_WP pulse width  
NFC_ALE setup time  
ns  
ns  
tCH  
ns  
tWP  
TL – 1  
ns  
tALS  
2TH + TL  
ns  
Table continues on the next page...  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
Freescale Semiconductor, Inc.  
43  
Peripheral operating requirements and behaviors  
Table 25. NFC specifications (continued)  
Num  
tALH  
tDS  
Description  
NFC_ALE hold time  
Data setup time  
Min.  
TH + TL  
TL – 1  
Max.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDH  
Data hold time  
TH – 1  
tWC  
tWH  
tRR  
Write cycle time  
TH + TL – 1  
TH – 1  
NFC_WE hold time  
Ready to NFC_RE low  
NFC_RE pulse width  
Read cycle time  
4TH + 3TL + 90  
TL + 1  
tRP  
tRC  
TL + TH – 1  
TH – 1  
tREH  
tIS  
NFC_RE high hold time  
Data input setup time  
11  
NFC_CLE  
tCLS  
tCS  
tCLH  
tCH  
NFC_CEn  
NFC_WE  
NFC_IOn  
tWP  
tDS  
tDH  
Figure 13. Command latch cycle timing  
NFC_ALE  
NFC_CEn  
NFC_WE  
NFC_IOn  
tALS  
tCS  
tALH  
tCH  
tWP  
tDS  
tDH  
address  
Figure 14. Address latch cycle timing  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
44  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
tCS  
tCH  
tWC  
NFC_CEn  
NFC_WE  
NFC_IOn  
tWP  
tDS  
tWH  
tDH  
data  
data  
data  
Figure 15. Write data latch cycle timing  
tCH  
tRC  
tRP  
NFC_CEn  
NFC_RE  
NFC_IOn  
NFC_RB  
tREH  
tIS  
data  
data  
data  
tRR  
Figure 16. Read data latch cycle timing in non-fast mode  
tCH  
tRC  
tRP  
NFC_CEn  
NFC_RE  
NFC_IOn  
NFC_RB  
tREH  
tIS  
data  
data  
data  
tRR  
Figure 17. Read data latch cycle timing in fast mode  
6.4.4 DDR controller specifications  
The following timing numbers must be followed to properly latch or drive data onto the  
DDR memory bus. All timing numbers are relative to the DQS byte lanes.  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
Freescale Semiconductor, Inc.  
45  
Peripheral operating requirements and behaviors  
Table 26. DDR controller — AC timing specifications  
Symbol  
Description  
Frequency of operation  
• DDR1  
Min.  
Max.  
Unit  
Notes  
2
83.3  
1251  
50  
150  
150  
150  
MHz  
MHz  
MHz  
• DDR2  
• LPDDR  
tDDRCK  
Clock period  
• DDR1  
6.6  
6.6  
6.6  
12  
8
ns  
ns  
ns  
• DDR2  
• LPDDR  
20  
VOX-AC  
DDRCK AC differential cross point voltage  
0.5 x VDD_DDR 0.5 x VDD_DDR  
– 0.2 V + 0.2 V  
V
V
V
• DDR1  
• DDR2  
• LPDDR  
0.5 x VDD_DDR 0.5 x VDD_DDR  
– 0.125 V + 0.125 V  
0.4 x VDD_DDR 0.4 x VDD_DDR  
tDDRCKH  
tDDRCKL  
tCMV  
Pulse width high  
Pulse width low  
0.45  
0.45  
0.55  
0.55  
tDDRCK  
tDDRCK  
ns  
3
3
4
Address, DDR_CKE, DDR_CAS, DDR_RAS,  
DDR_WE, DDR_CSn — output setup  
0.5 x tDDRCK  
1
tCMH  
Address, DDR_CKE, DDR_CAS, DDR_RAS,  
DDR_WE, DDR_CSn — output hold  
0.5 x tDDRCK  
1
ns  
tDQSS  
tQS  
DQS rising edge to CK rising edge  
-0.2 x tDDRCK  
0.2 x tDDRCK  
ns  
ns  
Data and data mask output setup (DQDQS)  
relative to DQS (DDR write mode)  
0.25 x tDDRCK  
1
5, 6  
7
tQH  
Data and data mask output hold (DQSDQ)  
relative to DQS (DDR write mode)  
0.25 x tDDRCK  
1
ns  
ns  
tDQSQ  
DQS-DQ skew for DQS and associated DQ  
signals  
– (0.25 x  
tDDRCK – 1)  
0.25 x tDDRCK  
1
8
1. This is minimum frequency of operation according to JEDEC DDR2 specification.  
2. DDR data rate = 2 x DDR clock frequency  
3. Pulse width high plus pulse width low cannot exceed min and max clock period.  
4. Command output setup should be 1/2 the memory bus clock (tDDRCK) plus some minor adjustments for process,  
temperature, and voltage variations.  
5. This specification relates to the required input setup time of DDR memories. The microprocessor's output setup should be  
larger than the input setup of the DDR memories. If it is not larger, then the input setup on the memory is in violation.  
DDR_DQ[15:8] is relative to DDR_DQS[1]; DDR_DQ[7:0] is relative to DDR_DQS[0].  
6. The first data beat is valid before the first rising edge of DQS and after the DQS write preamble. The remaining data beats  
are valid for each subsequent DQS edge.  
7. This specification relates to the required hold time of DDR memories. DDR_DQ[15:8] is relative to DDR_DQS[1];  
DDR_DQ[7:0] is relative to DDR_DQS[0]  
8. Data input skew is derived from each DQS clock edge. It begins with a DQS transition and ends when the last data line  
becomes valid. This input skew must include DDR memory output skew and system level board skew (due to routing or  
other factors).  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
46  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
1
2
3
4
5
6
7
8
9
10  
tDDRCKH  
tDDRCK  
tDDRCKL  
DDR_CLK  
DDR__CLK  
tCMH  
tCMV  
DDR_CSn, DDR_WE  
DDR_CAS, DDR_RAS  
CMD  
CMD  
DDR_An  
ROW  
COL  
tDQSS  
DDR_DQSn  
DDR_DMn  
DDR_DQn  
tQH  
tQS  
WD1  
WD2  
WD3  
WD4  
Figure 18. DDR write timing  
1
2
3
4
5
6
7
8
9
10  
11  
12  
tDDRCHH  
tDDRCKL  
tDDRCK  
DDR_CLK  
tCMH  
DDR__CLK  
tCMV  
DDR_CSn, DDR_WE  
DDR_CAS, DDR_RAS  
CMD  
CMD  
COL  
DDR_An  
ROW  
CL=2.5  
DDR_DQS (CL=2.5)  
DDR_DQn (CL=2.5)  
DDR_DQS (CL=3.0)  
DDR_DQn (CL=3.0)  
DQS read preamble  
RD1  
RD2  
RD3  
RD4  
CL=3.0  
DQS read preamble  
RD1  
RD2  
RD3  
RD4  
Figure 19. DDR read timing  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
Freescale Semiconductor, Inc.  
47  
Peripheral operating requirements and behaviors  
Figure 20. DDR read timing, DQ vs. DQS  
6.4.5 Flexbus switching specifications  
All processor bus timings are synchronous; input setup/hold and output delay are given in  
respect to the rising edge of a reference clock, FB_CLK. The FB_CLK frequency may be  
the same as the internal system bus frequency or an integer divider of that frequency.  
The following timing numbers indicate when data is latched or driven onto the external  
bus, relative to the Flexbus output clock (FB_CLK). All other timing relationships can be  
derived from these values.  
Table 27. Flexbus limited voltage range switching specifications  
Num  
Description  
Min.  
2.7  
Max.  
3.6  
Unit  
V
Notes  
Operating voltage  
Frequency of operation  
Clock period  
FB_CLK  
MHz  
ns  
FB1  
FB2  
FB3  
FB4  
FB5  
20  
Address, data, and control output valid  
Address, data, and control output hold  
Data and FB_TA input setup  
Data and FB_TA input hold  
11.5  
ns  
1
1
2
2
0.5  
8.5  
0.5  
ns  
ns  
ns  
1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W,FB_TBST, FB_TSIZ[1:0], FB_ALE,  
and FB_TS.  
2. Specification is valid for all FB_AD[31:0] and FB_TA.  
Table 28. Flexbus full voltage range switching specifications  
Num  
Description  
Min.  
Max.  
3.6  
Unit  
V
Notes  
Operating voltage  
1.71  
Frequency of operation  
Clock period  
FB_CLK  
MHz  
ns  
FB1  
FB2  
FB3  
1/FB_CLK  
Address, data, and control output valid  
Address, data, and control output hold  
0
13.5  
ns  
1
1
ns  
Table continues on the next page...  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
48  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 28. Flexbus full voltage range switching specifications (continued)  
Num  
FB4  
FB5  
Description  
Min.  
13.7  
0.5  
Max.  
Unit  
ns  
Notes  
Data and FB_TA input setup  
Data and FB_TA input hold  
2
2
ns  
1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W,FB_TBST, FB_TSIZ[1:0], FB_ALE,  
and FB_TS.  
2. Specification is valid for all FB_AD[31:0] and FB_TA.  
FB1  
FB_CLK  
FB3  
FB5  
FB_A[Y]  
FB_D[X]  
FB_RW  
FB_TS  
Address  
FB4  
FB2  
Address  
Data  
FB_ALE  
FB_CSn  
FB_OEn  
FB_BEn  
FB_TA  
AA=1  
AA=0  
FB4  
FB5  
AA=1  
AA=0  
FB_TSIZ[1:0]  
TSIZ  
Figure 21. FlexBus read timing diagram  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
Freescale Semiconductor, Inc.  
49  
Peripheral operating requirements and behaviors  
FB1  
FB_CLK  
FB2  
FB3  
FB_A[Y]  
FB_D[X]  
FB_RW  
FB_TS  
Address  
Address  
Data  
FB_ALE  
FB_CSn  
FB_OEn  
FB_BEn  
FB_TA  
AA=1  
AA=0  
FB4  
FB5  
AA=1  
AA=0  
FB_TSIZ[1:0]  
TSIZ  
Figure 22. FlexBus write timing diagram  
6.5 Security and integrity modules  
6.5.1 DryIce Tamper Electrical Specifications  
Information about security-related modules is not included in this document and is  
available only after a nondisclosure agreement (NDA) has been signed. To request an  
NDA, please contact your local Freescale sales representative.  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
50  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
6.6 Analog  
6.6.1 ADC electrical specifications  
The 16-bit accuracy specifications listed in Table 29 and Table 30 are achievable on the  
differential pins ADCx_DP0, ADCx_DM0.  
The ADCx_DP2 and ADCx_DM2 ADC inputs are connected to the PGA outputs and are  
not direct device pins. Accuracy specifications for these pins are defined in Table 31 and  
Table 32.  
All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy  
specifications.  
6.6.1.1 16-bit ADC operating conditions  
Table 29. 16-bit ADC operating conditions  
Symbol Description  
Conditions  
Min.  
1.71  
-100  
-100  
1.13  
Typ.1  
Max.  
3.6  
Unit  
V
Notes  
VDDA  
ΔVDDA  
ΔVSSA  
VREFH  
Supply voltage  
Supply voltage  
Ground voltage  
Absolute  
Delta to VDD (VDD – VDDA  
)
0
+100  
+100  
VDDA  
mV  
mV  
V
2
2
Delta to VSS (VSS – VSSA  
)
0
ADC reference  
voltage high  
VDDA  
VREFL  
VADIN  
ADC reference  
voltage low  
VSSA  
VSSA  
VSSA  
V
V
Input voltage  
• 16-bit differential mode  
• All other modes  
• 16-bit mode  
VREFL  
VREFL  
31/32 *  
VREFH  
VREFH  
CADIN  
Input capacitance  
8
4
10  
5
pF  
• 8-bit / 10-bit / 12-bit  
modes  
RADIN  
RAS  
Input resistance  
2
5
5
kΩ  
kΩ  
Analog source  
resistance  
13-bit / 12-bit modes  
fADCK < 4 MHz  
3
fADCK  
fADCK  
ADC conversion ≤ 13-bit mode  
clock frequency  
1.0  
2.0  
18.0  
12.0  
MHz  
MHz  
4
4
ADC conversion 16-bit mode  
clock frequency  
Table continues on the next page...  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
Freescale Semiconductor, Inc.  
51  
Peripheral operating requirements and behaviors  
Table 29. 16-bit ADC operating conditions (continued)  
Symbol Description  
Conditions  
Min.  
Typ.1  
Max.  
Unit  
Notes  
Crate  
ADC conversion ≤ 13-bit modes  
rate  
5
No ADC hardware averaging  
20.000  
818.330  
Ksps  
Continuous conversions  
enabled, subsequent  
conversion time  
Crate  
ADC conversion 16-bit mode  
5
rate  
No ADC hardware averaging  
37.037  
461.467  
Ksps  
Continuous conversions  
enabled, subsequent  
conversion time  
1. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 1.0 MHz, unless otherwise stated. Typical values are for  
reference only, and are not tested in production.  
2. DC potential difference.  
3. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as  
possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The RAS/CAS  
time constant should be kept to < 1 ns.  
4. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.  
5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.  
SIMPLIFIED  
INPUT PIN EQUIVALENT  
ZADIN  
CIRCUIT  
SIMPLIFIED  
CHANNEL SELECT  
CIRCUIT  
Pad  
leakage  
due to  
input  
protection  
ZAS  
ADC SAR  
ENGINE  
RAS  
RADIN  
VADIN  
CAS  
VAS  
RADIN  
RADIN  
RADIN  
INPUT PIN  
INPUT PIN  
INPUT PIN  
CADIN  
Figure 23. ADC input impedance equivalency diagram  
6.6.1.2 16-bit ADC electrical characteristics  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
52  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 30. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA  
)
Symbol Description  
Conditions1.  
Min.  
0.215  
1.2  
Typ.2  
Max.  
1.7  
3.9  
6.1  
7.3  
9.5  
Unit  
Notes  
IDDA_ADC Supply current  
mA  
3
ADC  
asynchronous  
• ADLPC = 1, ADHSC = 0  
• ADLPC = 1, ADHSC = 1  
• ADLPC = 0, ADHSC = 0  
• ADLPC = 0, ADHSC = 1  
2.4  
4.0  
5.2  
6.2  
tADACK = 1/  
fADACK  
MHz  
MHz  
MHz  
MHz  
2.4  
clock source  
fADACK  
3.0  
4.4  
Sample Time  
See Reference Manual chapter for sample times  
TUE  
DNL  
Total unadjusted  
error  
• 12-bit modes  
• <12-bit modes  
4
6.8  
2.1  
LSB4  
LSB4  
5
5
1.4  
Differential non-  
linearity  
• 12-bit modes  
0.7  
–1.1 to  
+1.9  
–0.3 to 0.5  
• <12-bit modes  
• 12-bit modes  
0.2  
1.0  
INL  
Integral non-  
linearity  
–2.7 to  
+1.9  
LSB4  
5
–0.7 to  
+0.5  
• <12-bit modes  
0.5  
EFS  
EQ  
Full-scale error  
• 12-bit modes  
• <12-bit modes  
• 16-bit modes  
• ≤13-bit modes  
–4  
–1.4  
–1 to 0  
–5.4  
–1.8  
LSB4  
LSB4  
VADIN  
VDDA  
=
5
Quantization  
error  
0.5  
ENOB  
Effective number 16-bit differential mode  
6
of bits  
• Avg = 32  
12.8  
11.9  
14.5  
13.8  
bits  
bits  
• Avg = 4  
16-bit single-ended mode  
• Avg = 32  
12.2  
11.4  
13.9  
13.1  
bits  
bits  
• Avg = 4  
Signal-to-noise  
plus distortion  
See ENOB  
SINAD  
THD  
6.02 × ENOB + 1.76  
dB  
Total harmonic  
distortion  
16-bit differential mode  
• Avg = 32  
7
7
-94  
-85  
dB  
dB  
16-bit single-ended mode  
• Avg = 32  
SFDR  
Spurious free  
dynamic range  
16-bit differential mode  
• Avg = 32  
82  
78  
95  
90  
dB  
dB  
16-bit single-ended mode  
• Avg = 32  
Table continues on the next page...  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
Freescale Semiconductor, Inc.  
53  
Peripheral operating requirements and behaviors  
Table 30. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)  
Symbol Description  
Conditions1.  
Min.  
Typ.2  
Max.  
Unit  
Notes  
IIn  
leakage  
current  
EIL  
Input leakage  
error  
IIn × RAS  
mV  
=
(refer to  
the MCU's  
voltage  
and current  
operating  
ratings)  
Temp sensor  
slope  
Across the full temperature  
range of the device  
1.55  
706  
1.62  
716  
1.69  
726  
mV/°C  
mV  
8
VTEMP25 Temp sensor  
voltage  
25 °C  
8
1. All accuracy numbers assume the ADC is calibrated with VREFH = VDDA  
2. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 2.0 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low  
power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with 1  
MHz ADC conversion clock speed.  
4. 1 LSB = (VREFH - VREFL)/2N  
5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)  
6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.  
7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.  
8. ADC conversion clock < 3 MHz  
Figure 24. Typical ENOB vs. ADC_CLK for 16-bit differential mode  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
54  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Figure 25. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode  
6.6.1.3 16-bit ADC with PGA operating conditions  
Table 31. 16-bit ADC with PGA operating conditions  
Symbol Description  
VDDA Supply voltage  
VREFPGA PGA ref voltage  
Conditions  
Min.  
Typ.1  
Max.  
Unit  
V
Notes  
Absolute  
1.71  
3.6  
VREF_OU VREF_OU VREF_OU  
V
2, 3  
T
T
T
VADIN  
VCM  
Input voltage  
VSSA  
VSSA  
VDDA  
VDDA  
V
V
Input Common  
Mode range  
RPGAD  
Differential input Gain = 1, 2, 4, 8  
128  
64  
kΩ  
IN+ to IN-4  
impedance  
Gain = 16, 32  
Gain = 64  
32  
RAS  
TS  
Analog source  
resistance  
100  
Ω
5
6
ADC sampling  
time  
1.25  
µs  
Table continues on the next page...  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
Freescale Semiconductor, Inc.  
55  
Peripheral operating requirements and behaviors  
Table 31. 16-bit ADC with PGA operating conditions (continued)  
Symbol Description  
Conditions  
Min.  
Typ.1  
Max.  
Unit  
Notes  
Crate  
ADC conversion ≤ 13 bit modes  
18.484  
450  
Ksps  
7
rate  
No ADC hardware  
averaging  
Continuous conversions  
enabled  
Peripheral clock = 50  
MHz  
16 bit modes  
37.037  
250  
Ksps  
8
No ADC hardware  
averaging  
Continuous conversions  
enabled  
Peripheral clock = 50  
MHz  
1. Typical values assume VDDA = 3.0 V, Temp = 25°C, fADCK = 6 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
2. ADC must be configured to use the internal voltage reference (VREF_OUT)  
3. PGA reference is internally connected to the VREF_OUT pin. If the user wishes to drive VREF_OUT with a voltage other  
than the output of the VREF module, the VREF module must be disabled.  
4. For single ended configurations the input impedance of the driven input is RPGAD/2  
5. The analog source resistance (RAS), external to MCU, should be kept as minimum as possible. Increased RAS causes drop  
in PGA gain without affecting other performances. This is not dependent on ADC clock frequency.  
6. The minimum sampling time is dependent on input signal frequency and ADC mode of operation. A minimum of 1.25µs  
time should be allowed for Fin=4 kHz at 16-bit differential mode. Recommended ADC setting is: ADLSMP=1, ADLSTS=2 at  
8 MHz ADC clock.  
7. ADC clock = 18 MHz, ADLSMP = 1, ADLST = 00, ADHSC = 1  
8. ADC clock = 12 MHz, ADLSMP = 1, ADLST = 01, ADHSC = 1  
6.6.1.4 16-bit ADC with PGA characteristics  
Table 32. 16-bit ADC with PGA characteristics  
Symbol  
Description  
Conditions  
Min.  
Typ.1  
Max.  
Unit  
Notes  
IDDA_PGA Supply current  
Low power  
420  
644  
μA  
2
(ADC_PGA[PGALPb]=0)  
IDC_PGA  
Input DC current  
A
3
Gain =1, VREFPGA=1.2V,  
VCM=0.5V  
1.54  
0.57  
μA  
μA  
Gain =64, VREFPGA=1.2V,  
VCM=0.1V  
Table continues on the next page...  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
56  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 32. 16-bit ADC with PGA characteristics (continued)  
Symbol  
Description  
Conditions  
• PGAG=0  
• PGAG=1  
• PGAG=2  
• PGAG=3  
• PGAG=4  
• PGAG=5  
• PGAG=6  
Min.  
0.95  
1.9  
Typ.1  
Max.  
1.05  
2.1  
Unit  
Notes  
G
Gain4  
1
R
AS < 100Ω  
2
3.8  
4
4.2  
7.6  
8
8.4  
15.2  
30.0  
58.8  
16  
31.6  
63.3  
16.6  
33.2  
67.8  
BW  
Input signal  
bandwidth  
• 16-bit modes  
• < 16-bit modes  
4
kHz  
kHz  
dB  
40  
PSRR  
Power supply  
rejection ratio  
Gain=1  
-84  
VDDA= 3V  
100mV,  
fVDDA= 50Hz,  
60Hz  
CMRR  
VOFS  
Common mode  
rejection ratio  
• Gain=1  
-84  
-85  
dB  
dB  
VCM=  
500mVpp,  
fVCM= 50Hz,  
100Hz  
• Gain=64  
Input offset  
voltage  
• Chopping disabled  
(ADC_PGA[PGACHPb]  
=1)  
2.4  
0.2  
mV  
mV  
Output offset =  
VOFS*(Gain+1)  
• Chopping enabled  
(ADC_PGA[PGACHPb]  
=0)  
TGSW  
Gain switching  
settling time  
10  
µs  
5
dG/dT  
Gain drift over full  
temperature range  
• Gain=1  
• Gain=64  
6
31  
10  
42  
ppm/°C  
ppm/°C  
%/V  
dG/dVDDA Gain drift over  
supply voltage  
• Gain=1  
• Gain=64  
0.07  
0.21  
0.31  
VDDA from 1.71  
to 3.6V  
0.14  
%/V  
EIL  
Input leakage  
error  
All modes  
IIn × RAS  
mV  
IIn = leakage  
current  
(refer to the  
MCU's voltage  
and current  
operating  
ratings)  
VPP,DIFF Maximum  
differential input  
V
6
signal swing  
where VX = VREFPGA × 0.583  
SNR  
Signal-to-noise  
ratio  
• Gain=1  
80  
52  
90  
66  
dB  
dB  
16-bit  
differential  
mode,  
• Gain=64  
Average=32  
Table continues on the next page...  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
Freescale Semiconductor, Inc.  
57  
Peripheral operating requirements and behaviors  
Table 32. 16-bit ADC with PGA characteristics (continued)  
Symbol  
Description  
Conditions  
• Gain=1  
Min.  
85  
Typ.1  
100  
95  
Max.  
Unit  
dB  
Notes  
THD  
Total harmonic  
distortion  
16-bit  
differential  
mode,  
• Gain=64  
49  
dB  
Average=32,  
fin=100Hz  
SFDR  
ENOB  
Spurious free  
dynamic range  
• Gain=1  
85  
53  
105  
88  
dB  
dB  
16-bit  
differential  
mode,  
Average=32,  
fin=100Hz  
• Gain=64  
Effective number  
of bits  
• Gain=1, Average=4  
• Gain=1, Average=8  
• Gain=64, Average=4  
• Gain=64, Average=8  
• Gain=1, Average=32  
• Gain=2, Average=32  
• Gain=4, Average=32  
• Gain=8, Average=32  
• Gain=16, Average=32  
• Gain=32, Average=32  
• Gain=64, Average=32  
11.6  
8.0  
13.4  
13.6  
9.6  
bits  
bits  
bits  
bits  
bits  
bits  
bits  
bits  
bits  
bits  
bits  
16-bit  
differential  
mode,fin=100Hz  
7.2  
6.3  
9.6  
12.8  
11.0  
7.9  
14.5  
14.3  
13.8  
13.1  
12.5  
11.5  
10.6  
7.3  
6.8  
6.8  
7.5  
SINAD  
Signal-to-noise  
plus distortion  
ratio  
See ENOB  
6.02 × ENOB + 1.76  
dB  
1. Typical values assume VDDA =3.0V, Temp=25°C, fADCK=6MHz unless otherwise stated.  
2. This current is a PGA module adder, in addition to ADC conversion currents.  
3. Between IN+ and IN-. The PGA draws a DC current from the input terminals. The magnitude of the DC current is a strong  
function of input common mode voltage (VCM) and the PGA gain.  
4. Gain = 2PGAG  
5. After changing the PGA gain setting, a minimum of 2 ADC+PGA conversions should be ignored.  
6. Limit the input signal swing so that the PGA does not saturate during operation. Input signal swing is dependent on the  
PGA reference voltage and gain setting.  
6.6.2 CMP and 6-bit DAC electrical specifications  
Table 33. Comparator and 6-bit DAC electrical specifications  
Symbol  
VDD  
Description  
Min.  
1.71  
Typ.  
Max.  
3.6  
Unit  
V
Supply voltage  
IDDHS  
IDDLS  
VAIN  
Supply current, High-speed mode (EN=1, PMODE=1)  
Supply current, low-speed mode (EN=1, PMODE=0)  
Analog input voltage  
200  
20  
μA  
μA  
V
VSS – 0.3  
VDD  
20  
VAIO  
Analog input offset voltage  
mV  
Table continues on the next page...  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
58  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 33. Comparator and 6-bit DAC electrical specifications (continued)  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
VH  
Analog comparator hysteresis1  
• CR0[HYSTCTR] = 00  
• CR0[HYSTCTR] = 01  
• CR0[HYSTCTR] = 10  
• CR0[HYSTCTR] = 11  
5
mV  
mV  
mV  
mV  
10  
20  
30  
VCMPOh  
VCMPOl  
tDHS  
Output high  
Output low  
VDD – 0.5  
50  
0.5  
200  
V
V
Propagation delay, high-speed mode (EN=1,  
PMODE=1)  
20  
ns  
tDLS  
Propagation delay, low-speed mode (EN=1,  
PMODE=0)  
80  
250  
600  
ns  
Analog comparator initialization delay2  
6-bit DAC current adder (enabled)  
6-bit DAC integral non-linearity  
7
40  
μs  
μA  
LSB3  
IDAC6b  
INL  
–0.5  
–0.3  
0.5  
0.3  
DNL  
6-bit DAC differential non-linearity  
LSB  
1. Typical hysteresis is measured with input voltage range limited to 0.6 to VDD–0.6 V.  
2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to  
CMP_DACCR[DACEN], CMP_DACCR[VRSEL], CMP_DACCR[VOSEL], CMP_MUXCR[PSEL], and  
CMP_MUXCR[MSEL]) and the comparator output settling to a stable level.  
3. 1 LSB = Vreference/64  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
Freescale Semiconductor, Inc.  
59  
Peripheral operating requirements and behaviors  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
HYSTCTR  
Setting  
00  
01  
10  
11  
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
Vinlevel (V)  
Figure 26. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0)  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
60  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
0.18  
0.16  
0.14  
0.12  
0.1  
HYSTCTR  
Setting  
00  
01  
10  
11  
0.08  
0.06  
0.04  
0.02  
0
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
Vinlevel (V)  
Figure 27. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1)  
6.6.3 12-bit DAC electrical characteristics  
6.6.3.1 12-bit DAC operating requirements  
Table 34. 12-bit DAC operating requirements  
Symbol  
VDDA  
VDACR  
TA  
Desciption  
Min.  
1.71  
1.13  
Max.  
3.6  
Unit  
V
Notes  
Supply voltage  
Reference voltage  
Temperature  
3.6  
V
1
Operating temperature  
range of the device  
°C  
CL  
IL  
Output load capacitance  
Output load current  
100  
1
pF  
2
mA  
1. The DAC reference can be selected to be VDDA or the voltage output of the VREF module (VREF_OUT)  
2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
Freescale Semiconductor, Inc.  
61  
Peripheral operating requirements and behaviors  
6.6.3.2 12-bit DAC operating behaviors  
Table 35. 12-bit DAC operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDDA_DACL Supply current — low-power mode  
150  
μA  
P
IDDA_DACH Supply current — high-speed mode  
100  
15  
0.7  
700  
200  
30  
μA  
μs  
P
tDACLP Full-scale settling time (0x080 to 0xF7F) —  
low-power mode  
1
1
1
tDACHP Full-scale settling time (0x080 to 0xF7F) —  
high-power mode  
μs  
tCCDACLP Code-to-code settling time (0xBF8 to 0xC08)  
— low-power mode and high-speed mode  
1
μs  
Vdacoutl DAC output voltage range low — high-speed  
mode, no load, DAC set to 0x000  
100  
VDACR  
8
mV  
mV  
LSB  
LSB  
LSB  
Vdacouth DAC output voltage range high — high-  
speed mode, no load, DAC set to 0xFFF  
VDACR  
−100  
INL  
DNL  
DNL  
Integral non-linearity error — high speed  
mode  
2
3
4
Differential non-linearity error — VDACR > 2  
V
1
Differential non-linearity error — VDACR  
VREF_OUT  
=
1
VOFFSET Offset error  
EG Gain error  
PSRR Power supply rejection ratio, VDDA ≥ 2.4 V  
60  
0.4  
0.1  
0.8  
0.6  
90  
%FSR  
%FSR  
dB  
5
5
TCO  
TGE  
Rop  
SR  
Temperature coefficient offset voltage  
Temperature coefficient gain error  
Output resistance (load = 3 kΩ)  
Slew rate -80hF7Fh80h  
3.7  
μV/C  
%FSR/C  
Ω
6
0.000421  
250  
V/μs  
• High power (SPHP  
• Low power (SPLP  
)
1.2  
1.7  
)
0.05  
0.12  
CT  
Channel to channel cross talk  
3dB bandwidth  
-80  
dB  
BW  
kHz  
• High power (SPHP  
• Low power (SPLP  
)
550  
40  
)
1. Settling within 1 LSB  
2. The INL is measured for 0 + 100 mV to VDACR −100 mV  
3. The DNL is measured for 0 + 100 mV to VDACR −100 mV  
4. The DNL is measured for 0 + 100 mV to VDACR −100 mV with VDDA > 2.4 V  
5. Calculated by a best fit curve from VSS + 100 mV to VDACR − 100 mV  
6. VDDA = 3.0 V, reference select set for VDDA (DACx_CO:DACRFS = 1), high power mode (DACx_C0:LPEN = 0), DAC set to  
0x800, temperature range is across the full range of the device  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
62  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Figure 28. Typical INL error vs. digital code  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
Freescale Semiconductor, Inc.  
63  
Peripheral operating requirements and behaviors  
Figure 29. Offset at half scale vs. temperature  
6.6.4 Voltage reference electrical specifications  
Table 36. VREF full-range operating requirements  
Symbol  
VDDA  
TA  
Description  
Supply voltage  
Temperature  
Min.  
Max.  
Unit  
V
Notes  
1.71  
3.6  
Operating temperature  
range of the device  
°C  
CL  
Output load capacitance  
100  
nF  
1, 2  
1. CL must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external  
reference.  
2. The load capacitance should not exceed +/-25% of the nominal specified CL value over the operating temperature range of  
the device.  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
64  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 37. VREF full-range operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
Vout  
Voltage reference output with factory trim at  
1.1915  
1.195  
1.1977  
V
1
nominal VDDA and temperature=25C  
Voltage reference output — factory trim  
Voltage reference output — user trim  
Voltage reference trim step  
Vout  
Vout  
1.1584  
1.193  
1.2376  
1.197  
V
V
1
1
1
1
Vstep  
Vtdrift  
0.5  
mV  
mV  
Temperature drift (Vmax -Vmin across the full  
temperature range)  
80  
Ibg  
Ihp  
Bandgap only current  
80  
1
µA  
mA  
mV  
1
1
High-power buffer current  
ΔVLOAD Load regulation  
• current = + 1.0 mA  
1, 2  
2
5
• current = - 1.0 mA  
Tstup  
Buffer startup time  
2
100  
µs  
Vvdrift  
Voltage drift (Vmax -Vmin across the full voltage  
range)  
mV  
1
1. See the chip's Reference Manual for the appropriate settings of the VREF Status and Control register.  
2. Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load  
Table 38. VREF limited-range operating requirements  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
TA  
Temperature  
0
50  
°C  
Table 39. VREF limited-range operating behaviors  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
Vout  
Voltage reference output with factory trim  
1.173  
1.225  
V
6.7 Timers  
See General switching specifications.  
6.8 Communication interfaces  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
Freescale Semiconductor, Inc.  
65  
Peripheral operating requirements and behaviors  
6.8.1 Ethernet switching specifications  
The following timing specs are defined at the chip I/O pin and must be translated  
appropriately to arrive at timing specs/constraints for the physical interface.  
6.8.1.1 MII signal switching specifications  
The following timing specs meet the requirements for MII style interfaces for a range of  
transceiver devices.  
Table 40. MII signal switching specifications  
Symbol  
Description  
Min.  
Max.  
25  
Unit  
MHz  
RXCLK frequency  
RXCLK pulse width high  
MII1  
35%  
65%  
RXCLK  
period  
RXCLK  
period  
ns  
MII2  
RXCLK pulse width low  
35%  
65%  
MII3  
MII4  
RXD[3:0], RXDV, RXER to RXCLK setup  
RXCLK to RXD[3:0], RXDV, RXER hold  
TXCLK frequency  
5
5
ns  
25  
MHz  
MII5  
TXCLK pulse width high  
35%  
65%  
TXCLK  
period  
TXCLK  
period  
ns  
MII6  
TXCLK pulse width low  
35%  
65%  
MII7  
MII8  
TXCLK to TXD[3:0], TXEN, TXER invalid  
TXCLK to TXD[3:0], TXEN, TXER valid  
2
25  
ns  
MII6  
MII5  
MII7  
TXCLK (input)  
MII8  
Valid data  
TXD[n:0]  
TXEN  
Valid data  
Valid data  
TXER  
Figure 30. RMII/MII transmit signal timing diagram  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
66  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
MII2  
MII3  
MII1  
MII4  
RXCLK (input)  
RXD[n:0]  
RXDV  
Valid data  
Valid data  
Valid data  
RXER  
Figure 31. RMII/MII receive signal timing diagram  
6.8.1.2 RMII signal switching specifications  
The following timing specs meet the requirements for RMII style interfaces for a range of  
transceiver devices.  
Table 41. RMII signal switching specifications  
Num  
Description  
Min.  
Max.  
50  
Unit  
EXTAL frequency (RMII input clock RMII_CLK)  
RMII_CLK pulse width high  
MHz  
RMII1  
35%  
65%  
RMII_CLK  
period  
RMII2  
RMII_CLK pulse width low  
35%  
65%  
RMII_CLK  
period  
RMII3  
RMII4  
RMII7  
RMII8  
RXD[1:0], CRS_DV, RXER to RMII_CLK setup  
RMII_CLK to RXD[1:0], CRS_DV, RXER hold  
RMII_CLK to TXD[1:0], TXEN invalid  
4
2
15  
ns  
ns  
ns  
ns  
4
RMII_CLK to TXD[1:0], TXEN valid  
6.8.2 USB electrical specifications  
The USB electricals for the USB On-the-Go module conform to the standards  
documented by the Universal Serial Bus Implementers Forum. For the most up-to-date  
standards, visit usb.org.  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
Freescale Semiconductor, Inc.  
67  
Peripheral operating requirements and behaviors  
6.8.3 USB DCD electrical specifications  
Table 42. USB DCD electrical specifications  
Symbol  
VDP_SRC  
VLGC  
Description  
Min.  
0.5  
Typ.  
Max.  
0.7  
Unit  
V
USB_DP source voltage (up to 250 μA)  
Threshold voltage for logic high  
USB_DP source current  
USB_DM sink current  
0.8  
2.0  
V
IDP_SRC  
IDM_SINK  
7
10  
13  
μA  
μA  
kΩ  
V
50  
100  
150  
24.8  
0.4  
RDM_DWN D- pulldown resistance for data pin contact detect  
VDAT_REF Data detect voltage  
14.25  
0.25  
0.325  
6.8.4 USB VREG electrical specifications  
Table 43. USB VREG electrical specifications  
Symbol Description  
Min.  
2.7  
Typ.1  
Max.  
5.5  
Unit  
Notes  
VREGIN Input supply voltage  
V
IDDon  
IDDstby  
IDDoff  
Quiescent current — Run mode, load current  
equal zero, input supply (VREGIN) > 3.6 V  
125  
186  
μA  
Quiescent current — Standby mode, load current  
equal zero  
1.1  
10  
μA  
Quiescent current — Shutdown mode  
650  
4
nA  
μA  
• VREGIN = 5.0 V and temperature=25 °C  
• Across operating voltage and temperature  
ILOADrun Maximum load current — Run mode  
ILOADstby Maximum load current — Standby mode  
120  
1
mA  
mA  
VReg33out Regulator output voltage — Input supply  
(VREGIN) > 3.6 V  
• Run mode  
3
3.3  
2.8  
3.6  
3.6  
3.6  
V
V
V
• Standby mode  
2.1  
2.1  
VReg33out Regulator output voltage — Input supply  
(VREGIN) < 3.6 V, pass-through mode  
2
COUT  
ESR  
External output capacitor  
1.76  
1
2.2  
8.16  
100  
μF  
External output capacitor equivalent series  
resistance  
mΩ  
ILIM  
Short circuit current  
290  
mA  
1. Typical values assume VREGIN = 5.0 V, Temp = 25 °C unless otherwise stated.  
2. Operating in pass-through mode: regulator output voltage equal to the input voltage minus a drop proportional to ILoad  
.
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
68  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
6.8.5 ULPI timing specifications  
The ULPI interface is fully compliant with the industry standard UTMI+ Low Pin  
Interface. Control and data timing requirements for the ULPI pins are given in the  
following table. These timings apply to synchronous mode only. All timings are  
measured with respect to the clock as seen at the USB_CLKIN pin.  
Table 44. ULPI timing specifications  
Num  
Description  
Min.  
Typ.  
Max.  
Unit  
USB_CLKIN  
operating  
60  
MHz  
frequency  
USB_CLKIN duty  
cycle  
5
50  
16.67  
9.5  
%
ns  
ns  
ns  
ns  
ns  
U1  
U2  
U3  
U4  
U5  
USB_CLKIN clock  
period  
Input setup (control  
and data)  
Input hold (control  
and data)  
1
Output valid  
(control and data)  
1
Output hold (control  
and data)  
U1  
USB_CLKIN  
U2  
U3  
ULPI_DIR/ULPI_NXT  
(control input)  
ULPI_DATAn (input)  
U5  
U4  
ULPI_STP  
(control output)  
ULPI_DATAn (output)  
Figure 32. ULPI timing diagram  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
Freescale Semiconductor, Inc.  
69  
Peripheral operating requirements and behaviors  
6.8.6 CAN switching specifications  
See General switching specifications.  
6.8.7 DSPI switching specifications (limited voltage range)  
The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with  
master and slave operations. Many of the transfer attributes are programmable. The tables  
below provide DSPI timing characteristics for classic SPI timing modes. Refer to the  
DSPI chapter of the Reference Manual for information on the modified transfer formats  
used for communicating with slower peripheral devices.  
Table 45. Master mode DSPI timing (limited voltage range)  
Num  
Description  
Min.  
2.7  
Max.  
3.6  
30  
Unit  
V
Notes  
Operating voltage  
Frequency of operation  
MHz  
ns  
DS1  
DS2  
DS3  
DSPI_SCK output cycle time  
DSPI_SCK output high/low time  
DSPI_PCSn valid to DSPI_SCK delay  
2 x tBUS  
(tSCK/2) − 2 (tSCK/2) + 2  
ns  
(tBUS x 2) −  
2
ns  
1
2
DS4  
DSPI_SCK to DSPI_PCSn invalid delay  
(tBUS x 2) −  
2
ns  
DS5  
DS6  
DS7  
DS8  
DSPI_SCK to DSPI_SOUT valid  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
−2  
15  
0
8.5  
ns  
ns  
ns  
ns  
1. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].  
2. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].  
DSPI_PCSn  
DS1  
DS3  
DS2  
DS4  
DSPI_SCK  
(CPOL=0)  
DS8  
DS7  
Data  
Last data  
First data  
DSPI_SIN  
DS5  
DS6  
First data  
Data  
Last data  
DSPI_SOUT  
Figure 33. DSPI classic SPI timing — master mode  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
70  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 46. Slave mode DSPI timing (limited voltage range)  
Num  
Description  
Min.  
Max.  
Unit  
V
Operating voltage  
2.7  
3.6  
Frequency of operation  
15  
MHz  
ns  
DS9  
DSPI_SCK input cycle time  
4 x tBUS  
DS10  
DS11  
DS12  
DS13  
DS14  
DS15  
DS16  
DSPI_SCK input high/low time  
(tSCK/2) − 2  
(tSCK/2) + 2  
ns  
DSPI_SCK to DSPI_SOUT valid  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
DSPI_SS active to DSPI_SOUT driven  
DSPI_SS inactive to DSPI_SOUT not driven  
0
10  
14  
14  
ns  
ns  
2
ns  
7
ns  
ns  
ns  
DSPI_SS  
DS10  
DS9  
DSPI_SCK  
(CPOL=0)  
DS15  
DS12  
DS16  
DS11  
First data  
DS14  
Last data  
DSPI_SOUT  
Data  
Data  
DS13  
First data  
Last data  
DSPI_SIN  
Figure 34. DSPI classic SPI timing — slave mode  
6.8.8 DSPI switching specifications (full voltage range)  
The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with  
master and slave operations. Many of the transfer attributes are programmable. The tables  
below provides DSPI timing characteristics for classic SPI timing modes. Refer to the  
DSPI chapter of the Reference Manual for information on the modified transfer formats  
used for communicating with slower peripheral devices.  
Table 47. Master mode DSPI timing (full voltage range)  
Num  
Description  
Min.  
1.71  
Max.  
3.6  
15  
Unit  
V
Notes  
Operating voltage  
1
Frequency of operation  
MHz  
ns  
DS1  
DSPI_SCK output cycle time  
4 x tBUS  
Table continues on the next page...  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
Freescale Semiconductor, Inc.  
71  
Peripheral operating requirements and behaviors  
Table 47. Master mode DSPI timing (full voltage range) (continued)  
Num  
DS2  
DS3  
Description  
DSPI_SCK output high/low time  
DSPI_PCSn valid to DSPI_SCK delay  
Min.  
Max.  
Unit  
ns  
Notes  
(tSCK/2) - 4 (tSCK/2) + 4  
(tBUS x 2) −  
4
ns  
2
3
DS4  
DSPI_SCK to DSPI_PCSn invalid delay  
(tBUS x 2) −  
4
ns  
DS5  
DS6  
DS7  
DS8  
DSPI_SCK to DSPI_SOUT valid  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
-4.5  
20.5  
0
10  
ns  
ns  
ns  
ns  
1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage  
range the maximum frequency of operation is reduced.  
2. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].  
3. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].  
DSPI_PCSn  
DS1  
DS3  
DS2  
DS4  
DSPI_SCK  
(CPOL=0)  
DS8  
DS7  
Data  
Last data  
First data  
DSPI_SIN  
DS5  
DS6  
First data  
Data  
Last data  
DSPI_SOUT  
Figure 35. DSPI classic SPI timing — master mode  
Table 48. Slave mode DSPI timing (full voltage range)  
Num  
Description  
Min.  
Max.  
Unit  
V
Operating voltage  
1.71  
3.6  
Frequency of operation  
7.5  
MHz  
ns  
DS9  
DSPI_SCK input cycle time  
8 x tBUS  
DS10  
DS11  
DS12  
DS13  
DS14  
DS15  
DS16  
DSPI_SCK input high/low time  
(tSCK/2) - 4  
(tSCK/2) + 4  
ns  
DSPI_SCK to DSPI_SOUT valid  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
DSPI_SS active to DSPI_SOUT driven  
DSPI_SS inactive to DSPI_SOUT not driven  
0
20  
19  
19  
ns  
ns  
2
ns  
7
ns  
ns  
ns  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
72  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
DSPI_SS  
DS10  
DS9  
DSPI_SCK  
(CPOL=0)  
DS15  
DS12  
DS16  
DS11  
First data  
DS14  
Last data  
Last data  
DSPI_SOUT  
Data  
Data  
DS13  
First data  
DSPI_SIN  
Figure 36. DSPI classic SPI timing — slave mode  
6.8.9 Inter-Integrated Circuit Interface (I2C) timing  
Table 49. I 2C timing  
Characteristic  
Symbol  
Standard Mode  
Minimum Maximum  
100  
Fast Mode  
Unit  
Minimum  
Maximum  
400  
SCL Clock Frequency  
fSCL  
0
0
kHz  
µs  
Hold time (repeated) START condition.  
After this period, the first clock pulse is  
generated.  
tHD; STA  
4
0.6  
LOW period of the SCL clock  
HIGH period of the SCL clock  
tLOW  
tHIGH  
4.7  
4
1.3  
0.6  
0.6  
µs  
µs  
µs  
Set-up time for a repeated START  
condition  
tSU; STA  
4.7  
Data hold time for I2C bus devices  
Data set-up time  
tHD; DAT  
tSU; DAT  
tr  
01  
2504  
3.452  
03  
1002, 5  
20 +0.1Cb  
20 +0.1Cb  
0.6  
0.91  
µs  
ns  
ns  
ns  
µs  
µs  
6
5
Rise time of SDA and SCL signals  
Fall time of SDA and SCL signals  
Set-up time for STOP condition  
1000  
300  
300  
300  
tf  
tSU; STO  
tBUF  
4
Bus free time between STOP and  
START condition  
4.7  
1.3  
Pulse width of spikes that must be  
suppressed by the input filter  
tSP  
N/A  
N/A  
0
50  
ns  
1. The master mode I2C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves  
acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and SCL  
lines.  
2. The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal.  
3. Input signal Slew = 10 ns and Output Load = 50 pF  
4. Set-up time in slave-transmitter mode is 1 IPBus clock period, if the TX FIFO is empty.  
5. A Fast mode I2C bus device can be used in a Standard mode I2C bus system, but the requirement tSU; DAT ≥ 250 ns must  
then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a  
device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line trmax + tSU; DAT  
= 1000 + 250 = 1250 ns (according to the Standard mode I2C bus specification) before the SCL line is released.  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
Freescale Semiconductor, Inc.  
73  
Peripheral operating requirements and behaviors  
6. Cb = total capacitance of the one bus line in pF.  
SDA  
tSU; DAT  
tf  
tr  
tBUF  
tf  
tr  
tHD; STA  
tSP  
tLOW  
SCL  
tSU; STA  
tHD; STA  
tSU; STO  
S
SR  
P
S
tHD; DAT  
tHIGH  
Figure 37. Timing definition for fast and standard mode devices on the I2C bus  
6.8.10 UART switching specifications  
See General switching specifications.  
6.8.11 SDHC specifications  
The following timing specs are defined at the chip I/O pin and must be translated  
appropriately to arrive at timing specs/constraints for the physical interface.  
Table 50. SDHC switching specifications over a limited operating voltage  
range  
Num  
Symbol  
Description  
Min.  
Max.  
Unit  
Operating voltage  
2.7  
3.6  
V
Card input clock  
SD1  
fpp  
fpp  
fpp  
fOD  
tWL  
tWH  
tTLH  
tTHL  
Clock frequency (low speed)  
0
0
400  
25\50  
20\50  
400  
kHz  
MHz  
MHz  
kHz  
ns  
Clock frequency (SD\SDIO full speed\high speed)  
Clock frequency (MMC full speed\high speed)  
Clock frequency (identification mode)  
Clock low time  
0
0
SD2  
SD3  
SD4  
SD5  
7
Clock high time  
7
ns  
Clock rise time  
3
ns  
Clock fall time  
3
ns  
SDHC output / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)  
SDHC output delay (output valid) -5 6.5  
SDHC input / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)  
SD6  
tOD  
ns  
SD7  
SD8  
tISU  
tIH  
SDHC input setup time  
SDHC input hold time  
5
0
ns  
ns  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
74  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 51. SDHC switching specifications over the full operating voltage  
range  
Num  
Symbol  
Description  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
3.6  
V
Card input clock  
SD1  
fpp  
fpp  
fpp  
fOD  
tWL  
tWH  
tTLH  
tTHL  
Clock frequency (low speed)  
0
0
400  
25\50  
20\50  
400  
kHz  
MHz  
MHz  
kHz  
ns  
Clock frequency (SD\SDIO full speed\high speed)  
Clock frequency (MMC full speed\high speed)  
Clock frequency (identification mode)  
Clock low time  
0
0
SD2  
SD3  
SD4  
SD5  
7
Clock high time  
7
ns  
Clock rise time  
3
ns  
Clock fall time  
3
ns  
SDHC output / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)  
SDHC output delay (output valid) -5 6.5  
SDHC input / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)  
SD6  
tOD  
ns  
SD7  
SD8  
tISU  
tIH  
SDHC input setup time  
SDHC input hold time  
5
ns  
ns  
1.3  
SD3  
SD6  
SD2  
SD1  
SDHC_CLK  
Output SDHC_CMD  
Output SDHC_DAT[3:0]  
Input SDHC_CMD  
SD7  
SD8  
Input SDHC_DAT[3:0]  
Figure 38. SDHC timing  
6.8.12 I2S/SAI switching specifications  
This section provides the AC timing for the I2S/SAI module in master mode (clocks are  
driven) and slave mode (clocks are input). All timing is given for noninverted serial clock  
polarity (TCR2[BCP] is 0, RCR2[BCP] is 0) and a noninverted frame sync (TCR4[FSP]  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
Freescale Semiconductor, Inc.  
75  
Peripheral operating requirements and behaviors  
is 0, RCR4[FSP] is 0). If the polarity of the clock and/or the frame sync have been  
inverted, all the timing remains valid by inverting the bit clock signal (BCLK) and/or the  
frame sync (FS) signal shown in the following figures.  
6.8.12.1 Normal Run, Wait and Stop mode performance over a limited  
operating voltage range  
This section provides the operating performance over a limited operating voltage for the  
device in Normal Run, Wait and Stop modes.  
Table 52. I2S/SAI master mode timing in Normal Run, Wait and Stop modes  
(limited voltage range)  
Num.  
Characteristic  
Min.  
Max.  
Unit  
Operating voltage  
2.7  
40  
3.6  
V
S1  
S2  
S3  
S4  
S5  
I2S_MCLK cycle time  
ns  
I2S_MCLK pulse width high/low  
45%  
80  
55%  
MCLK period  
I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)  
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low  
ns  
45%  
55%  
15  
BCLK period  
ns  
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/  
I2S_RX_FS output valid  
S6  
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/  
I2S_RX_FS output invalid  
0
ns  
S7  
S8  
S9  
I2S_TX_BCLK to I2S_TXD valid  
I2S_TX_BCLK to I2S_TXD invalid  
0
15  
ns  
ns  
ns  
I2S_RXD/I2S_RX_FS input setup before  
I2S_RX_BCLK  
15  
S10  
I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK  
0
ns  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
76  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
S1  
S2  
S2  
I2S_MCLK (output)  
S3  
S4  
I2S_TX_BCLK/  
I2S_RX_BCLK (output)  
S4  
S5  
S6  
I2S_TX_FS/  
I2S_RX_FS (output)  
S10  
S9  
I2S_TX_FS/  
I2S_RX_FS (input)  
S7  
S8  
S7  
S8  
I2S_TXD  
I2S_RXD  
S9  
S10  
Figure 39. I2S/SAI timing — master modes  
Table 53. I2S/SAI slave mode timing in Normal Run, Wait and Stop modes  
(limited voltage range)  
Num.  
Characteristic  
Min.  
Max.  
Unit  
Operating voltage  
2.7  
80  
3.6  
V
S11  
S12  
I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)  
ns  
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low  
(input)  
45%  
55%  
MCLK period  
S13  
S14  
S15  
I2S_TX_FS/I2S_RX_FS input setup before  
I2S_TX_BCLK/I2S_RX_BCLK  
4.5  
2
ns  
ns  
ns  
I2S_TX_FS/I2S_RX_FS input hold after  
I2S_TX_BCLK/I2S_RX_BCLK  
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid  
• Multiple SAI Synchronous mode  
• All other modes  
21  
15  
S16  
S17  
S18  
S19  
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid  
I2S_RXD setup before I2S_RX_BCLK  
0
25  
ns  
ns  
ns  
ns  
4.5  
2
I2S_RXD hold after I2S_RX_BCLK  
I2S_TX_FS input assertion to I2S_TXD output valid1  
1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
Freescale Semiconductor, Inc.  
77  
Peripheral operating requirements and behaviors  
S11  
S12  
I2S_TX_BCLK/  
S12  
I2S_RX_BCLK (input)  
S15  
S16  
I2S_TX_FS/  
I2S_RX_FS (output)  
S13  
S19  
S14  
I2S_TX_FS/  
I2S_RX_FS (input)  
S15  
S16  
S15  
S16  
I2S_TXD  
I2S_RXD  
S17  
S18  
Figure 40. I2S/SAI timing — slave modes  
6.8.12.2 Normal Run, Wait and Stop mode performance over the full  
operating voltage range  
This section provides the operating performance over the full operating voltage for the  
device in Normal Run, Wait and Stop modes.  
Table 54. I2S/SAI master mode timing in Normal Run, Wait and Stop modes  
(full voltage range)  
Num.  
Characteristic  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
40  
3.6  
V
S1  
S2  
S3  
S4  
S5  
I2S_MCLK cycle time  
ns  
I2S_MCLK pulse width high/low  
45%  
80  
55%  
MCLK period  
I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)  
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low  
ns  
45%  
55%  
15  
BCLK period  
ns  
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/  
I2S_RX_FS output valid  
S6  
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/  
I2S_RX_FS output invalid  
-1.0  
ns  
S7  
S8  
S9  
I2S_TX_BCLK to I2S_TXD valid  
I2S_TX_BCLK to I2S_TXD invalid  
15  
ns  
ns  
ns  
0
I2S_RXD/I2S_RX_FS input setup before  
I2S_RX_BCLK  
20.5  
S10  
I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK  
0
ns  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
78  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
S1  
S2  
S2  
I2S_MCLK (output)  
S3  
S4  
I2S_TX_BCLK/  
I2S_RX_BCLK (output)  
S4  
S5  
S6  
I2S_TX_FS/  
I2S_RX_FS (output)  
S10  
S9  
I2S_TX_FS/  
I2S_RX_FS (input)  
S7  
S8  
S7  
S8  
I2S_TXD  
I2S_RXD  
S9  
S10  
Figure 41. I2S/SAI timing — master modes  
Table 55. I2S/SAI slave mode timing in Normal Run, Wait and Stop modes  
(full voltage range)  
Num.  
Characteristic  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
80  
3.6  
V
S11  
S12  
I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)  
ns  
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low  
(input)  
45%  
55%  
MCLK period  
S13  
S14  
S15  
I2S_TX_FS/I2S_RX_FS input setup before  
I2S_TX_BCLK/I2S_RX_BCLK  
5.8  
2
ns  
ns  
ns  
I2S_TX_FS/I2S_RX_FS input hold after  
I2S_TX_BCLK/I2S_RX_BCLK  
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid  
• Multiple SAI Synchronous mode  
• All other modes  
24  
20.6  
S16  
S17  
S18  
S19  
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid  
I2S_RXD setup before I2S_RX_BCLK  
0
25  
ns  
ns  
ns  
ns  
5.8  
2
I2S_RXD hold after I2S_RX_BCLK  
I2S_TX_FS input assertion to I2S_TXD output valid1  
1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
Freescale Semiconductor, Inc.  
79  
Peripheral operating requirements and behaviors  
S11  
S12  
I2S_TX_BCLK/  
S12  
I2S_RX_BCLK (input)  
S15  
S16  
I2S_TX_FS/  
I2S_RX_FS (output)  
S13  
S19  
S14  
I2S_TX_FS/  
I2S_RX_FS (input)  
S15  
S16  
S15  
S16  
I2S_TXD  
I2S_RXD  
S17  
S18  
Figure 42. I2S/SAI timing — slave modes  
6.8.12.3 VLPR, VLPW, and VLPS mode performance over the full  
operating voltage range  
This section provides the operating performance over the full operating voltage for the  
device in VLPR, VLPW, and VLPS modes.  
Table 56. I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes  
(full voltage range)  
Num.  
Characteristic  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
62.5  
45%  
250  
45%  
3.6  
V
S1  
S2  
S3  
S4  
S5  
I2S_MCLK cycle time  
ns  
I2S_MCLK pulse width high/low  
55%  
MCLK period  
I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)  
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low  
ns  
55%  
45  
BCLK period  
ns  
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/  
I2S_RX_FS output valid  
S6  
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/  
I2S_RX_FS output invalid  
0
ns  
S7  
S8  
S9  
I2S_TX_BCLK to I2S_TXD valid  
I2S_TX_BCLK to I2S_TXD invalid  
45  
ns  
ns  
ns  
-1.6  
45  
I2S_RXD/I2S_RX_FS input setup before  
I2S_RX_BCLK  
S10  
I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK  
0
ns  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
80  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
S1  
S2  
S2  
I2S_MCLK (output)  
S3  
S4  
I2S_TX_BCLK/  
I2S_RX_BCLK (output)  
S4  
S5  
S6  
I2S_TX_FS/  
I2S_RX_FS (output)  
S10  
S9  
I2S_TX_FS/  
I2S_RX_FS (input)  
S7  
S8  
S7  
S8  
I2S_TXD  
I2S_RXD  
S9  
S10  
Figure 43. I2S/SAI timing — master modes  
Table 57. I2S/SAI slave mode timing in VLPR, VLPW, and VLPS modes (full  
voltage range)  
Num.  
Characteristic  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
250  
3.6  
V
S11  
S12  
I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)  
ns  
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low  
(input)  
45%  
55%  
MCLK period  
S13  
S14  
I2S_TX_FS/I2S_RX_FS input setup before  
I2S_TX_BCLK/I2S_RX_BCLK  
30  
3
ns  
ns  
I2S_TX_FS/I2S_RX_FS input hold after  
I2S_TX_BCLK/I2S_RX_BCLK  
S15  
S16  
S17  
S18  
S19  
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid  
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid  
I2S_RXD setup before I2S_RX_BCLK  
0
63  
72  
ns  
ns  
ns  
ns  
ns  
30  
2
I2S_RXD hold after I2S_RX_BCLK  
I2S_TX_FS input assertion to I2S_TXD output valid1  
1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
Freescale Semiconductor, Inc.  
81  
Peripheral operating requirements and behaviors  
S11  
S12  
I2S_TX_BCLK/  
S12  
I2S_RX_BCLK (input)  
S15  
S16  
I2S_TX_FS/  
I2S_RX_FS (output)  
S13  
S19  
S14  
I2S_TX_FS/  
I2S_RX_FS (input)  
S15  
S16  
S15  
S16  
I2S_TXD  
I2S_RXD  
S17  
S18  
Figure 44. I2S/SAI timing — slave modes  
6.9 Human-machine interfaces (HMI)  
6.9.1 TSI electrical specifications  
Table 58. TSI electrical specifications  
Symbol Description  
VDDTSI Operating voltage  
CELE Target electrode capacitance range  
Min.  
1.71  
1
Typ.  
20  
8
Max.  
3.6  
500  
15  
Unit  
V
Notes  
pF  
1
fREFmax Reference oscillator frequency  
fELEmax Electrode oscillator frequency  
MHz  
MHz  
pF  
2, 3  
2, 4  
1
1.8  
CREF  
VDELTA  
IREF  
Internal reference capacitor  
Oscillator delta voltage  
1
600  
mV  
μA  
2, 5  
2, 6  
Reference oscillator current source base current  
2 μA setting (REFCHRG = 0)  
2
3
36  
50  
32 μA setting (REFCHRG = 15)  
IELE  
Electrode oscillator current source base current  
2 μA setting (EXTCHRG = 0)  
μA  
2, 7  
2
36  
3
50  
32 μA setting (EXTCHRG = 15)  
Pres5  
Electrode capacitance measurement precision  
8.3333  
8.3333  
8.3333  
1.46  
38400  
38400  
38400  
fF/count  
fF/count  
fF/count  
fF/count  
bits  
8
9
Pres20 Electrode capacitance measurement precision  
Pres100 Electrode capacitance measurement precision  
MaxSens Maximum sensitivity  
10  
11  
0.008  
Res  
Resolution  
16  
TCon20  
Response time @ 20 pF  
8
15  
25  
μs  
12  
13  
ITSI_RUN Current added in run mode  
ITSI_LP Low power mode current adder  
55  
μA  
1.3  
2.5  
μA  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
82  
Freescale Semiconductor, Inc.  
Dimensions  
1. The TSI module is functional with capacitance values outside this range. However, optimal performance is not guaranteed.  
2. Fixed external capacitance of 20 pF.  
3. REFCHRG = 2, EXTCHRG=0.  
4. REFCHRG = 0, EXTCHRG = 10.  
5. VDD = 3.0 V.  
6. The programmable current source value is generated by multiplying the SCANC[REFCHRG] value and the base current.  
7. The programmable current source value is generated by multiplying the SCANC[EXTCHRG] value and the base current.  
8. Measured with a 5 pF electrode, reference oscillator frequency of 10 MHz, PS = 128, NSCN = 8; Iext = 16.  
9. Measured with a 20 pF electrode, reference oscillator frequency of 10 MHz, PS = 128, NSCN = 2; Iext = 16.  
10. Measured with a 20 pF electrode, reference oscillator frequency of 10 MHz, PS = 16, NSCN = 3; Iext = 16.  
11. Sensitivity defines the minimum capacitance change when a single count from the TSI module changes. Sensitivity  
depends on the configuration used. The documented values are provided as examples calculated for a specific  
configuration of operating conditions using the following equation: (Cref * Iext)/( Iref * PS * NSCN)  
The typical value is calculated with the following configuration:  
I
ext = 6 μA (EXTCHRG = 2), PS = 128, NSCN = 2, Iref = 16 μA (REFCHRG = 7), Cref = 1.0 pF  
The minimum value is calculated with the following configuration:  
ext = 2 μA (EXTCHRG = 0), PS = 128, NSCN = 32, Iref = 32 μA (REFCHRG = 15), Cref = 0.5 pF  
I
The highest possible sensitivity is the minimum value because it represents the smallest possible capacitance that can be  
measured by a single count.  
12. Time to do one complete measurement of the electrode. Sensitivity resolution of 0.0133 pF, PS = 0, NSCN = 0, 1  
electrode, EXTCHRG = 7.  
13. REFCHRG=0, EXTCHRG=4, PS=7, NSCN=0F, LPSCNITV=F, LPO is selected (1 kHz), and fixed external capacitance of  
20 pF. Data is captured with an average of 7 periods window.  
7 Dimensions  
7.1 Obtaining package dimensions  
Package dimensions are provided in package drawings.  
To find a package drawing, go to freescale.com and perform a keyword search for the  
drawing’s document number:  
If you want the drawing for this package  
256-pin MAPBGA  
Then use this document number  
98ASA00346D  
8 Pinout  
8.1 Pins with active pull control after reset  
The following pins are actively pulled up or down after reset:  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
Freescale Semiconductor, Inc.  
83  
Pinout  
Table 59. Pins with active pull control after reset  
Pin  
Active pull direction after reset  
PTA0  
pulldown  
pullup  
pullup  
pullup  
pullup  
PTA1  
PTA3  
PTA4  
RESET_b  
8.2 K61 Signal Multiplexing and Pin Assignments  
The following table shows the signals available on each pin and the locations of these  
pins on the devices supported by this document. The Port Control Module is responsible  
for selecting which ALT functionality is available on each pin.  
256  
MAP  
BGA  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
E2  
F2  
PTE0  
ADC1_SE4a  
ADC1_SE5a  
ADC1_SE4a  
ADC1_SE5a  
PTE0  
SPI1_PCS1  
SPI1_SOUT  
UART1_TX  
UART1_RX  
SDHC0_D1  
SDHC0_D0  
I2C1_SDA  
I2C1_SCL  
RTC_CLKOUT  
SPI1_SIN  
PTE1/  
PTE1/  
LLWU_P0  
LLWU_P0  
F3  
PTE2/  
LLWU_P1  
ADC1_SE6a  
ADC1_SE6a  
PTE2/  
LLWU_P1  
SPI1_SCK  
SPI1_SIN  
UART1_CTS_b SDHC0_DCLK  
UART1_RTS_b SDHC0_CMD  
G2  
G7  
H7  
H8  
F1  
PTE3  
VDD  
ADC1_SE7a  
VDD  
ADC1_SE7a  
VDD  
PTE3  
SPI1_SOUT  
VDDINT  
VSS  
VDDINT  
VSS  
VDDINT  
VSS  
PTF17  
PTF18  
DISABLED  
DISABLED  
DISABLED  
PTF17  
PTF18  
SPI2_SCK  
SPI2_SOUT  
SPI1_PCS0  
FTM0_CH4  
FTM1_CH0  
UART3_TX  
UART0_RX  
UART0_TX  
SDHC0_D3  
G1  
G3  
PTE4/  
PTE4/  
LLWU_P2  
LLWU_P2  
G4  
H2  
PTE5  
PTE6  
DISABLED  
DISABLED  
PTE5  
PTE6  
SPI1_PCS2  
SPI1_PCS3  
UART3_RX  
SDHC0_D2  
FTM3_CH0  
FTM3_CH1  
UART3_CTS_b I2S0_MCLK  
USB_SOF_  
OUT  
H1  
H5  
H3  
H4  
J1  
PTF19  
PTF20  
PTE7  
DISABLED  
DISABLED  
DISABLED  
ADC2_SE16  
ADC2_SE17  
DISABLED  
ADC3_SE16  
ADC3_SE17  
VDD  
PTF19  
PTF20  
PTE7  
SPI2_SIN  
FTM1_CH1  
FTM2_CH0  
UART5_RX  
UART5_TX  
SPI2_PCS1  
UART3_RTS_b I2S0_RXD0  
FTM3_CH2  
FTM3_CH3  
FTM3_CH4  
FTM3_CH5  
FTM3_CH6  
FTM3_CH7  
PTE8  
ADC2_SE16  
ADC2_SE17  
PTE8  
I2S0_RXD1  
I2S0_TXD1  
UART5_TX  
UART5_RX  
I2S0_RX_FS  
PTE9  
PTE9  
I2S0_RX_BCLK  
J2  
PTE10  
PTE11  
PTE12  
VDD  
PTE10  
PTE11  
PTE12  
UART5_CTS_b I2S0_TXD0  
UART5_RTS_b I2S0_TX_FS  
I2S0_TX_BCLK  
K1  
K3  
G8  
ADC3_SE16  
ADC3_SE17  
VDD  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
84  
Freescale Semiconductor, Inc.  
Pinout  
256  
MAP  
BGA  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
H9  
J3  
VSS  
VSS  
VSS  
PTE16  
ADC0_SE4a  
ADC0_SE5a  
ADC0_SE6a  
ADC0_SE7a  
VSS  
ADC0_SE4a  
ADC0_SE5a  
ADC0_SE6a  
ADC0_SE7a  
VSS  
PTE16  
SPI0_PCS0  
SPI0_SCK  
SPI0_SOUT  
SPI0_SIN  
UART2_TX  
UART2_RX  
FTM_CLKIN0  
FTM_CLKIN1  
FTM0_FLT3  
K2  
L4  
PTE17  
PTE17  
PTE18  
PTE19  
LPTMR0_ALT3  
PTE18  
UART2_CTS_b I2C0_SDA  
UART2_RTS_b I2C0_SCL  
M3  
L2  
PTE19  
CMP3_OUT  
VSS  
M1  
M2  
L1  
USB0_DP  
USB0_DM  
VOUT33  
VREGIN  
USB0_DP  
USB0_DM  
VOUT33  
USB0_DP  
USB0_DM  
VOUT33  
L3  
VREGIN  
VREGIN  
N1  
PGA2_DP/  
ADC2_DP0/  
ADC3_DP3/  
ADC0_DP1  
PGA2_DP/  
ADC2_DP0/  
ADC3_DP3/  
ADC0_DP1  
PGA2_DP/  
ADC2_DP0/  
ADC3_DP3/  
ADC0_DP1  
N2  
P1  
P2  
PGA2_DM/  
ADC2_DM0/  
ADC3_DM3/  
ADC0_DM1  
PGA2_DM/  
ADC2_DM0/  
ADC3_DM3/  
ADC0_DM1  
PGA2_DM/  
ADC2_DM0/  
ADC3_DM3/  
ADC0_DM1  
PGA3_DP/  
ADC3_DP0/  
ADC2_DP3/  
ADC1_DP1  
PGA3_DP/  
ADC3_DP0/  
ADC2_DP3/  
ADC1_DP1  
PGA3_DP/  
ADC3_DP0/  
ADC2_DP3/  
ADC1_DP1  
PGA3_DM/  
ADC3_DM0/  
ADC2_DM3/  
ADC1_DM1  
PGA3_DM/  
ADC3_DM0/  
ADC2_DM3/  
ADC1_DM1  
PGA3_DM/  
ADC3_DM0/  
ADC2_DM3/  
ADC1_DM1  
R1  
R2  
T1  
T2  
PGA0_DP/  
ADC0_DP0/  
ADC1_DP3  
PGA0_DP/  
ADC0_DP0/  
ADC1_DP3  
PGA0_DP/  
ADC0_DP0/  
ADC1_DP3  
PGA0_DM/  
ADC0_DM0/  
ADC1_DM3  
PGA0_DM/  
ADC0_DM0/  
ADC1_DM3  
PGA0_DM/  
ADC0_DM0/  
ADC1_DM3  
PGA1_DP/  
ADC1_DP0/  
ADC0_DP3  
PGA1_DP/  
ADC1_DP0/  
ADC0_DP3  
PGA1_DP/  
ADC1_DP0/  
ADC0_DP3  
PGA1_DM/  
ADC1_DM0/  
ADC0_DM3  
PGA1_DM/  
ADC1_DM0/  
ADC0_DM3  
PGA1_DM/  
ADC1_DM0/  
ADC0_DM3  
N5  
P4  
M4  
N4  
P3  
VDDA  
VREFH  
VREFL  
VSSA  
VDDA  
VREFH  
VREFL  
VSSA  
VDDA  
VREFH  
VREFL  
VSSA  
ADC1_SE16/  
CMP2_IN2/  
ADC0_SE22  
ADC1_SE16/  
CMP2_IN2/  
ADC0_SE22  
ADC1_SE16/  
CMP2_IN2/  
ADC0_SE22  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
Freescale Semiconductor, Inc.  
85  
Pinout  
256  
MAP  
BGA  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
N3  
ADC0_SE16/  
CMP1_IN2/  
ADC0_SE21  
ADC0_SE16/  
CMP1_IN2/  
ADC0_SE21  
ADC0_SE16/  
CMP1_IN2/  
ADC0_SE21  
T3  
VREF_OUT/  
CMP1_IN5/  
CMP0_IN5/  
ADC1_SE18  
VREF_OUT/  
CMP1_IN5/  
CMP0_IN5/  
ADC1_SE18  
VREF_OUT/  
CMP1_IN5/  
CMP0_IN5/  
ADC1_SE18  
R3  
R4  
DAC0_OUT/  
CMP1_IN3/  
ADC0_SE23  
DAC0_OUT/  
CMP1_IN3/  
ADC0_SE23  
DAC0_OUT/  
CMP1_IN3/  
ADC0_SE23  
DAC1_OUT/  
CMP0_IN4/  
CMP2_IN3/  
ADC1_SE23  
DAC1_OUT/  
CMP0_IN4/  
CMP2_IN3/  
ADC1_SE23  
DAC1_OUT/  
CMP0_IN4/  
CMP2_IN3/  
ADC1_SE23  
M5  
TAMPER0/  
RTC_  
TAMPER0/  
RTC_  
TAMPER0/  
RTC_  
WAKEUP_B  
WAKEUP_B  
WAKEUP_B  
L5  
L6  
TAMPER1  
TAMPER2  
TAMPER3  
TAMPER4  
TAMPER5  
XTAL32  
EXTAL32  
VBAT  
TAMPER1  
TAMPER2  
TAMPER3  
TAMPER4  
TAMPER5  
XTAL32  
EXTAL32  
VBAT  
TAMPER1  
TAMPER2  
TAMPER3  
TAMPER4  
TAMPER5  
XTAL32  
EXTAL32  
VBAT  
R5  
P6  
R6  
T6  
T5  
P5  
N6  
M6  
G9  
H10  
J8  
TAMPER6  
TAMPER7  
VDD  
TAMPER6  
TAMPER7  
VDD  
TAMPER6  
TAMPER7  
VDD  
VDDINT  
VSS  
VDDINT  
VSS  
VDDINT  
VSS  
P7  
PTE24  
ADC0_SE17/  
EXTAL1  
ADC0_SE17/  
EXTAL1  
PTE24  
CAN1_TX  
CAN1_RX  
UART4_TX  
UART4_RX  
I2S1_TX_FS  
EWM_OUT_b  
EWM_IN  
I2S1_RXD1  
I2S1_TXD1  
USB_CLKIN  
R7  
M7  
PTE25  
PTE26  
ADC0_SE18/  
XTAL1  
ADC0_SE18/  
XTAL1  
PTE25  
PTE26  
I2S1_TX_BCLK  
ADC3_SE5b  
ADC3_SE5b  
ENET_1588_  
CLKIN  
UART4_CTS_b I2S1_TXD0  
UART4_RTS_b I2S1_MCLK  
RTC_CLKOUT  
K7  
L7  
T7  
PTE27  
PTE28  
PTA0  
ADC3_SE4b  
ADC3_SE7a  
ADC3_SE4b  
ADC3_SE7a  
TSI0_CH1  
PTE27  
PTE28  
PTA0  
JTAG_TCLK/  
SWD_CLK/  
EZP_CLK  
UART0_CTS_  
b/  
UART0_COL_b  
FTM0_CH5  
JTAG_TCLK/  
SWD_CLK  
EZP_CLK  
N8  
T8  
PTA1  
PTA2  
JTAG_TDI/  
EZP_DI  
TSI0_CH2  
TSI0_CH3  
PTA1  
PTA2  
UART0_RX  
UART0_TX  
FTM0_CH6  
FTM0_CH7  
JTAG_TDI  
EZP_DI  
JTAG_TDO/  
TRACE_SWO/  
EZP_DO  
JTAG_TDO/  
TRACE_SWO  
EZP_DO  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
86  
Freescale Semiconductor, Inc.  
Pinout  
256  
MAP  
BGA  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
P8  
PTA3  
JTAG_TMS/  
SWD_DIO  
TSI0_CH4  
TSI0_CH5  
PTA3  
UART0_RTS_b FTM0_CH0  
FTM0_CH1  
JTAG_TMS/  
SWD_DIO  
R8  
PTA4/  
NMI_b/  
PTA4/  
NMI_b  
EZP_CS_b  
LLWU_P3  
EZP_CS_b  
LLWU_P3  
T12  
PTA5  
DISABLED  
PTA5  
USB_CLKIN  
FTM0_CH2  
RMII0_RXER/  
MII0_RXER  
CMP2_OUT  
I2S0_TX_BCLK JTAG_TRST_b  
G10  
J9  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
P9  
PTF21  
PTF22  
PTA6  
ADC3_SE6b  
ADC3_SE7b  
ADC3_SE6a  
ADC3_SE6b  
ADC3_SE7b  
ADC3_SE6a  
PTF21  
PTF22  
PTA6  
FTM2_CH1  
FTM1_CH0  
FTM0_CH3  
UART5_RTS_b  
UART5_CTS_b  
I2S1_RXD0  
N9  
I2C0_SCL  
ULPI_CLK  
R12  
TRACE_  
CLKOUT  
P12  
N12  
PTA7  
PTA8  
ADC0_SE10  
ADC0_SE11  
ADC0_SE10  
ADC0_SE11  
PTA7  
PTA8  
ULPI_DIR  
ULPI_NXT  
FTM0_CH4  
FTM1_CH0  
I2S1_RX_BCLK  
I2S1_RX_FS  
TRACE_D3  
FTM1_QD_  
PHA  
TRACE_D2  
TRACE_D1  
TRACE_D0  
T13  
P13  
R13  
M10  
N10  
R11  
PTA9  
ADC3_SE5a  
ADC3_SE4a  
ADC3_SE15  
CMP2_IN0  
CMP2_IN1  
CMP3_IN0  
ADC3_SE5a  
ADC3_SE4a  
ADC3_SE15  
CMP2_IN0  
CMP2_IN1  
CMP3_IN0  
PTA9  
ULPI_STP  
ULPI_DATA0  
ULPI_DATA1  
CAN0_TX  
FTM1_CH1  
FTM2_CH0  
FTM2_CH1  
FTM1_CH0  
FTM1_CH1  
UART0_TX  
MII0_RXD3  
MII0_RXD2  
MII0_RXCLK  
FTM1_QD_  
PHB  
PTA10  
PTA11  
PTA12  
PTA10  
PTA11  
PTA12  
FTM2_QD_  
PHA  
FTM2_QD_  
PHB  
RMII0_RXD1/  
MII0_RXD1  
I2S0_TXD0  
FTM1_QD_  
PHA  
PTA13/  
LLWU_P4  
PTA13/  
LLWU_P4  
CAN0_RX  
RMII0_RXD0/  
MII0_RXD0  
I2S0_TX_FS  
FTM1_QD_  
PHB  
PTA14  
PTA14  
SPI0_PCS0  
RMII0_CRS_  
DV/  
I2S0_RX_BCLK I2S0_TXD1  
MII0_RXDV  
P11  
PTA15  
CMP3_IN1  
CMP3_IN1  
PTA15  
SPI0_SCK  
UART0_RX  
RMII0_TXEN/  
MII0_TXEN  
I2S0_RXD0  
T14  
N11  
VSS  
VSS  
VSS  
PTA16  
CMP3_IN2  
CMP3_IN2  
PTA16  
SPI0_SOUT  
UART0_CTS_  
b/  
UART0_COL_b  
RMII0_TXD0/  
MII0_TXD0  
I2S0_RX_FS  
I2S0_MCLK  
I2S0_RXD1  
T11  
P10  
R10  
R9  
PTA17  
PTF23  
PTF24  
PTF25  
PTF26  
PTF27  
ADC1_SE17  
ADC3_SE10  
ADC3_SE11  
ADC3_SE12  
ADC3_SE13  
ADC3_SE14  
ADC1_SE17  
ADC3_SE10  
ADC3_SE11  
ADC3_SE12  
ADC3_SE13  
ADC3_SE14  
PTA17  
PTF23  
PTF24  
PTF25  
PTF26  
PTF27  
SPI0_SIN  
I2C0_SDA  
CAN1_RX  
CAN1_TX  
UART0_RTS_b RMII0_TXD1/  
MII0_TXD1  
FTM1_CH1  
TRACE_  
CLKOUT  
FTM1_QD_  
PHA  
TRACE_D3  
TRACE_D2  
TRACE_D1  
TRACE_D0  
FTM1_QD_  
PHB  
T9  
FTM2_QD_  
PHA  
T10  
FTM2_QD_  
PHB  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
Freescale Semiconductor, Inc.  
87  
Pinout  
256  
MAP  
BGA  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
J7  
VDD  
VSS  
VDD  
VDD  
VSS  
K8  
VSS  
T15  
T16  
R16  
N13  
R14  
M13  
R15  
P14  
N14  
P16  
L13  
M12  
PTA18  
PTA19  
RESET_b  
PTA24  
PTA25  
PTA26  
PTA27  
PTA28  
PTA29  
PTF0  
EXTAL0  
EXTAL0  
PTA18  
FTM0_FLT2  
FTM1_FLT0  
FTM_CLKIN0  
FTM_CLKIN1  
XTAL0  
XTAL0  
PTA19  
LPTMR0_ALT1  
RESET_b  
CMP3_IN4  
CMP3_IN5  
ADC2_SE15  
ADC2_SE14  
ADC2_SE13  
ADC2_SE12  
ADC2_SE11  
ADC2_SE10  
RESET_b  
CMP3_IN4  
CMP3_IN5  
ADC2_SE15  
ADC2_SE14  
ADC2_SE13  
ADC2_SE12  
ADC2_SE11  
ADC2_SE10  
PTA24  
PTA25  
PTA26  
PTA27  
PTA28  
PTA29  
PTF0  
ULPI_DATA2  
ULPI_DATA3  
ULPI_DATA4  
ULPI_DATA5  
ULPI_DATA6  
ULPI_DATA7  
CAN0_TX  
MII0_TXD2  
MII0_TXCLK  
MII0_TXD3  
MII0_CRS  
MII0_TXER  
MII0_COL  
FB_A29  
FB_A28  
FB_A27  
FB_A26  
FB_A25  
FB_A24  
FTM3_CH0  
FTM3_CH1  
FTM1_CH0  
I2S1_RXD1  
PTF1  
PTF1  
CAN0_RX  
I2S1_RX_BCLK  
PTB0/  
LLWU_P5  
ADC0_SE8/  
ADC1_SE8/  
ADC2_SE8/  
ADC3_SE8/  
TSI0_CH0  
ADC0_SE8/  
ADC1_SE8/  
ADC2_SE8/  
ADC3_SE8/  
TSI0_CH0  
PTB0/  
LLWU_P5  
I2C0_SCL  
RMII0_MDIO/  
MII0_MDIO  
FTM1_QD_  
PHA  
M11  
PTB1  
ADC0_SE9/  
ADC1_SE9/  
ADC2_SE9/  
ADC3_SE9/  
TSI0_CH6  
ADC0_SE9/  
ADC1_SE9/  
ADC2_SE9/  
ADC3_SE9/  
TSI0_CH6  
PTB1  
I2C0_SDA  
FTM1_CH1  
RMII0_MDC/  
MII0_MDC  
FTM1_QD_  
PHB  
P15  
M14  
PTB2  
PTB3  
ADC0_SE12/  
TSI0_CH7  
ADC0_SE12/  
TSI0_CH7  
PTB2  
PTB3  
I2C0_SCL  
I2C0_SDA  
UART0_RTS_b ENET0_1588_  
TMR0  
FTM0_FLT3  
FTM0_FLT0  
ADC0_SE13/  
TSI0_CH8  
ADC0_SE13/  
TSI0_CH8  
UART0_CTS_  
b/  
ENET0_1588_  
TMR1  
UART0_COL_b  
N15  
M15  
PTB4  
PTB5  
ADC1_SE10  
ADC1_SE11  
ADC1_SE10  
ADC1_SE11  
PTB4  
PTB5  
ENET0_1588_  
TMR2  
FTM1_FLT0  
FTM2_FLT0  
ENET0_1588_  
TMR3  
L14  
L15  
K14  
K15  
J13  
J14  
K9  
PTB6  
PTB7  
PTB8  
PTB9  
PTB10  
PTB11  
VSS  
ADC1_SE12  
ADC1_SE13  
DISABLED  
DISABLED  
ADC1_SE14  
ADC1_SE15  
VSS  
ADC1_SE12  
ADC1_SE13  
PTB6  
PTB7  
PTB8  
PTB9  
PTB10  
PTB11  
FB_AD23  
FB_AD22  
FB_AD21  
FB_AD20  
UART3_RTS_b  
UART3_CTS_b  
UART3_RX  
SPI1_PCS1  
SPI1_PCS0  
SPI1_SCK  
ADC1_SE14  
ADC1_SE15  
VSS  
I2S1_TX_BCLK FB_AD19  
FTM0_FLT1  
FTM0_FLT2  
UART3_TX  
I2S1_TX_FS  
FB_AD18  
J10  
N16  
M16  
L16  
J15  
VDD  
VDD  
VDD  
PTF2  
PTF3  
PTF4  
PTB16  
ADC2_SE6a  
ADC2_SE7a  
ADC2_SE4b  
TSI0_CH9  
ADC2_SE6a  
ADC2_SE7a  
ADC2_SE4b  
TSI0_CH9  
PTF2  
PTF3  
PTF4  
PTB16  
I2C1_SCL  
I2C1_SDA  
FTM3_CH2  
FTM3_CH3  
FTM3_CH4  
UART0_RX  
I2S1_RX_FS  
I2S1_RXD0  
I2S1_TXD0  
FB_AD17  
SPI1_SOUT  
I2S1_TXD0  
EWM_IN  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
88  
Freescale Semiconductor, Inc.  
Pinout  
256  
MAP  
BGA  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
H13  
H14  
PTB17  
TSI0_CH10  
TSI0_CH11  
TSI0_CH10  
TSI0_CH11  
PTB17  
SPI1_SIN  
CAN0_TX  
UART0_TX  
FTM2_CH0  
I2S1_TXD1  
FB_AD16  
EWM_OUT_b  
PTB18  
PTB18  
I2S0_TX_BCLK FB_AD15  
FTM2_QD_  
PHA  
K16  
J16  
H15  
PTF5  
PTF6  
PTB19  
ADC2_SE5b  
ADC2_SE6b  
TSI0_CH12  
ADC2_SE5b  
ADC2_SE6b  
TSI0_CH12  
PTF5  
PTF6  
PTB19  
FTM3_CH5  
FTM3_CH6  
FTM2_CH1  
I2S1_TX_FS  
I2S1_TX_BCLK  
CAN0_RX  
I2S0_TX_FS  
FB_OE_b  
FTM2_QD_  
PHB  
G13  
G14  
G15  
H16  
G16  
F13  
F14  
PTB20  
PTB21  
PTB22  
PTB23  
PTC0  
ADC2_SE4a  
ADC2_SE5a  
DISABLED  
DISABLED  
ADC2_SE4a  
ADC2_SE5a  
PTB20  
PTB21  
PTB22  
PTB23  
PTC0  
SPI2_PCS0  
SPI2_SCK  
SPI2_SOUT  
SPI2_SIN  
FB_AD31/  
NFC_DATA15  
CMP0_OUT  
CMP1_OUT  
CMP2_OUT  
CMP3_OUT  
I2S0_TXD1  
I2S0_TXD0  
I2S0_TX_FS  
FB_AD30/  
NFC_DATA14  
FB_AD29/  
NFC_DATA13  
SPI0_PCS5  
FB_AD28/  
NFC_DATA12  
ADC0_SE14/  
TSI0_CH13  
ADC0_SE14/  
TSI0_CH13  
SPI0_PCS4  
SPI0_PCS3  
SPI0_PCS2  
PDB0_EXTRG  
FB_AD14/  
NFC_DATA11  
PTC1/  
LLWU_P6  
ADC0_SE15/  
TSI0_CH14  
ADC0_SE15/  
TSI0_CH14  
PTC1/  
LLWU_P6  
UART1_RTS_b FTM0_CH0  
UART1_CTS_b FTM0_CH1  
FB_AD13/  
NFC_DATA10  
PTC2  
ADC0_SE4b/  
CMP1_IN0/  
TSI0_CH15  
ADC0_SE4b/  
CMP1_IN0/  
TSI0_CH15  
PTC2  
FB_AD12/  
NFC_DATA9  
E13  
PTC3/  
LLWU_P7  
CMP1_IN1  
CMP1_IN1  
PTC3/  
LLWU_P7  
SPI0_PCS1  
UART1_RX  
FTM3_CH7  
FTM0_CH2  
UART3_RX  
CLKOUT  
I2S0_TX_BCLK  
F15  
L9  
PTF7  
VSS  
ADC2_SE7b  
VSS  
ADC2_SE7b  
VSS  
PTF7  
I2S1_TXD1  
K10  
F16  
E14  
VDD  
PTF8  
VDD  
VDD  
DISABLED  
DISABLED  
PTF8  
FTM3_FLT0  
UART1_TX  
UART3_TX  
FTM0_CH3  
I2S1_MCLK  
PTC4/  
LLWU_P8  
PTC4/  
LLWU_P8  
SPI0_PCS0  
SPI0_SCK  
SPI0_SOUT  
SPI0_SIN  
FB_AD11/  
NFC_DATA8  
CMP1_OUT  
CMP0_OUT  
I2S0_MCLK  
I2S1_TX_BCLK  
I2S1_TX_FS  
E15  
F12  
G12  
H12  
F11  
G11  
H11  
PTC5/  
LLWU_P9  
DISABLED  
CMP0_IN0  
CMP0_IN1  
PTC5/  
LLWU_P9  
LPTMR0_ALT2  
PDB0_EXTRG  
I2S0_RXD0  
FB_AD10/  
NFC_DATA7  
PTC6/  
LLWU_P10  
CMP0_IN0  
CMP0_IN1  
PTC6/  
LLWU_P10  
I2S0_RX_BCLK FB_AD9/  
NFC_DATA6  
PTC7  
PTC8  
PTC9  
PTC10  
PTC7  
PTC8  
PTC9  
PTC10  
USB_SOF_  
OUT  
I2S0_RX_FS  
FB_AD8/  
NFC_DATA5  
ADC1_SE4b/  
CMP0_IN2  
ADC1_SE4b/  
CMP0_IN2  
FTM3_CH4  
FTM3_CH5  
FTM3_CH6  
FTM3_CH7  
I2S0_MCLK  
FB_AD7/  
NFC_DATA4  
ADC1_SE5b/  
CMP0_IN3  
ADC1_SE5b/  
CMP0_IN3  
I2S0_RX_BCLK FB_AD6/  
NFC_DATA3  
FTM2_FLT0  
I2S1_MCLK  
ADC1_SE6b  
ADC1_SE6b  
I2C1_SCL  
I2C1_SDA  
I2S0_RX_FS  
FB_AD5/  
NFC_DATA2  
PTC11/  
LLWU_P11  
ADC1_SE7b  
ADC1_SE7b  
PTC11/  
LLWU_P11  
I2S0_RXD1  
FB_RW_b/  
NFC_WE  
J12  
PTC12  
PTC13  
DISABLED  
DISABLED  
PTC12  
PTC13  
UART4_RTS_b  
UART4_CTS_b  
FB_AD27  
FB_AD26  
FTM3_FLT0  
K13  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
Freescale Semiconductor, Inc.  
89  
Pinout  
256  
MAP  
BGA  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
J11  
K12  
L12  
F10  
N7  
PTC14  
PTF9  
DISABLED  
CMP2_IN4  
CMP2_IN5  
DISABLED  
VSS  
PTC14  
UART4_RX  
FB_AD25  
CMP2_IN4  
CMP2_IN5  
PTF9  
UART3_RTS_b  
UART3_CTS_b  
PTF10  
PTC15  
VSS  
PTF10  
PTC15  
UART4_TX  
FB_AD24  
VSS  
VDD  
L10  
K11  
L11  
F9  
VDD  
VDD  
PTF11  
PTF12  
PTC16  
DISABLED  
DISABLED  
DISABLED  
PTF11  
PTF12  
PTC16  
UART2_RTS_b  
UART2_CTS_b  
CAN1_RX  
CAN1_TX  
UART3_RX  
UART3_TX  
ENET0_1588_  
TMR0  
FB_CS5_b/  
FB_TSIZ1/  
FB_BE23_16_b  
NFC_RB  
E9  
PTC17  
PTC18  
PTC19  
DISABLED  
DISABLED  
PTC17  
PTC18  
PTC19  
ENET0_1588_  
TMR1  
FB_CS4_b/  
FB_TSIZ0/  
FB_BE31_24_b  
NFC_CE0_b  
NFC_CE1_b  
M9  
UART3_RTS_b ENET0_1588_  
TMR2  
FB_TBST_b/  
FB_CS2_b/  
FB_BE15_8_b  
M8  
L8  
DISABLED  
DISABLED  
UART3_CTS_b ENET0_1588_  
TMR3  
FB_CS3_b/  
FB_BE7_0_b  
FB_TA_b  
PTD0/  
PTD0/  
SPI0_PCS0  
UART2_RTS_b FTM3_CH0  
FB_ALE/  
I2S1_RXD1  
LLWU_P12  
LLWU_P12  
FB_CS1_b/  
FB_TS_b  
F8  
K6  
PTD1  
ADC0_SE5b  
DISABLED  
ADC0_SE5b  
PTD1  
SPI0_SCK  
UART2_CTS_b FTM3_CH1  
FB_CS0_b  
FB_AD4  
I2S1_RXD0  
PTD2/  
LLWU_P13  
PTD2/  
LLWU_P13  
SPI0_SOUT  
UART2_RX  
UART2_TX  
FTM3_CH2  
FTM3_CH3  
I2S1_RX_FS  
J6  
PTD3  
DISABLED  
DISABLED  
PTD3  
SPI0_SIN  
FB_AD3  
I2S1_RX_BCLK  
EWM_IN  
K5  
PTD4/  
PTD4/  
SPI0_PCS1  
UART0_RTS_b FTM0_CH4  
FB_AD2/  
LLWU_P14  
LLWU_P14  
NFC_DATA1  
J5  
PTD5  
ADC0_SE6b  
ADC0_SE7b  
ADC0_SE6b  
ADC0_SE7b  
PTD5  
SPI0_PCS2  
SPI0_PCS3  
UART0_CTS_  
b/  
UART0_COL_b  
FTM0_CH5  
FTM0_CH6  
FB_AD1/  
NFC_DATA0  
EWM_OUT_b  
FTM0_FLT0  
K4  
PTD6/  
PTD6/  
UART0_RX  
FB_AD0  
LLWU_P15  
LLWU_P15  
H6  
G6  
T4  
E7  
J4  
PTF13  
PTF14  
VSS  
DISABLED  
DISABLED  
VSS  
PTF13  
PTF14  
UART2_RX  
UART2_TX  
VSS  
PTD7  
PTD8  
DISABLED  
DISABLED  
PTD7  
PTD8  
CMT_IRO  
I2C0_SCL  
UART0_TX  
UART5_RX  
FTM0_CH7  
FTM0_FLT1  
FB_A16/  
NFC_CLE  
F7  
E6  
PTD9  
DISABLED  
DISABLED  
PTD9  
I2C0_SDA  
UART5_TX  
FB_A17/  
NFC_ALE  
PTD10  
PTD10  
UART5_RTS_b  
FB_A18/  
NFC_RE  
G5  
F5  
PTD11  
PTD12  
DISABLED  
DISABLED  
PTD11  
PTD12  
SPI2_PCS0  
SPI2_SCK  
UART5_CTS_b SDHC0_CLKIN  
FTM3_FLT0 SDHC0_D4  
FB_A19  
FB_A20  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
90  
Freescale Semiconductor, Inc.  
Pinout  
256  
MAP  
BGA  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
F4  
E5  
E4  
F6  
E1  
PTD13  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
PTD13  
SPI2_SOUT  
SPI2_SIN  
SDHC0_D5  
SDHC0_D6  
SDHC0_D7  
UART0_RTS_b  
FB_A21  
PTD14  
PTD15  
PTF15  
PTF16  
PTD14  
PTD15  
PTF15  
PTF16  
FB_A22  
FB_A23  
SPI2_PCS1  
SPI2_PCS0  
FTM0_CH3  
UART0_CTS_  
b/  
UART0_COL_b  
B1  
A1  
D3  
D1  
C1  
B5  
A5  
D5  
C2  
B2  
C3  
B8  
A12  
C4  
B3  
A2  
A3  
E8  
B12  
A16  
C6  
C5  
B4  
A4  
C16  
C7  
B6  
D6  
A6  
A7  
E11  
D2  
C9  
B7  
DDR_VDD  
DDR_VSS  
DDR_DQS1  
DDR_DQ8  
DDR_DQ9  
DDR_VDD  
DDR_VSS  
DDR_VSS  
DDR_DQ10  
DDR_DQ11  
DDR_DQ12  
DDR_VDD  
DDR_VSS  
DDR_DQ13  
DDR_DQ14  
DDR_DQ15  
DDR_DM1  
DDR_VSS  
DDR_VDD  
DDR_VSS  
DDR_VREF  
DDR_DQ0  
DDR_DQ1  
DDR_DQ2  
DDR_VDD  
DDR_VSS  
DDR_DQ3  
DDR_DQ4  
DDR_DQ5  
DDR_ODT  
DDR_VSS  
DDR_VDD  
DDR_VSS  
DDR_DQ6  
DDR_VDD  
DDR_VSS  
DISABLED  
DISABLED  
DISABLED  
DDR_VDD  
DDR_VSS  
DDR_VSS  
DISABLED  
DISABLED  
DISABLED  
DDR_VDD  
DDR_VSS  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
DDR_VSS  
DDR_VDD  
DDR_VSS  
DDR_VREF  
DISABLED  
DISABLED  
DISABLED  
DDR_VDD  
DDR_VSS  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
DDR_VSS  
DDR_VDD  
DDR_VSS  
DISABLED  
DDR_VDD  
DDR_VSS  
DDR_DQS1  
DDR_DQ8  
DDR_DQ9  
DDR_VDD  
DDR_VSS  
DDR_VSS  
DDR_DQ10  
DDR_DQ11  
DDR_DQ12  
DDR_VDD  
DDR_VSS  
DDR_DQ13  
DDR_DQ14  
DDR_DQ15  
DDR_DM1  
DDR_VSS  
DDR_VDD  
DDR_VSS  
DDR_VREF  
DDR_DQ0  
DDR_DQ1  
DDR_DQ2  
DDR_VDD  
DDR_VSS  
DDR_DQ3  
DDR_DQ4  
DDR_DQ5  
DDR_ODT  
DDR_VSS  
DDR_VDD  
DDR_VSS  
DDR_DQ6  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
Freescale Semiconductor, Inc.  
91  
Pinout  
256  
MAP  
BGA  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
A8  
C8  
DDR_DQ7  
DDR_DQS0  
DDR_DM0  
DDR_VDD  
DDR_VSS  
DDR_BA0  
DDR_BA1  
DDR_BA2  
DDR_CKB  
DDR_CK  
DISABLED  
DISABLED  
DISABLED  
DDR_VDD  
DDR_VSS  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
DDR_VDD  
DDR_VSS  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
DDR_VDD  
DDR_VSS  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
DDR_VDD  
DDR_VSS  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
DDR_DQ7  
DDR_DQS0  
DDR_DM0  
DDR_VDD  
DDR_VSS  
DDR_BA0  
DDR_BA1  
DDR_BA2  
DDR_CKB  
DDR_CK  
D9  
D4  
C14  
A9  
B10  
B9  
A10  
A11  
D7  
DDR_VDD  
DDR_VSS  
DDR_A0  
DDR_VDD  
DDR_VSS  
DDR_A0  
D8  
D10  
C11  
B11  
C12  
E10  
D12  
C10  
A13  
A14  
D11  
A15  
E12  
E3  
DDR_A1  
DDR_A1  
DDR_A2  
DDR_A2  
DDR_A3  
DDR_A3  
DDR_VDD  
DDR_VSS  
DDR_A4  
DDR_VDD  
DDR_VSS  
DDR_A4  
DDR_A5  
DDR_A5  
DDR_A6  
DDR_A6  
DDR_A7  
DDR_A7  
DDR_A8  
DDR_A8  
DDR_VDD  
DDR_VSS  
DDR_CKE  
DDR_A9  
DDR_VDD  
DDR_VSS  
DDR_CKE  
DDR_A9  
B16  
B15  
B13  
B14  
C15  
D16  
D15  
E16  
C13  
D14  
D13  
DDR_A10  
DDR_A11  
DDR_A12  
DDR_A13  
DDR_A14  
DDR_RAS_B  
DDR_CAS_B  
DDR_CS_B  
DDR_WE_B  
DDR_A10  
DDR_A11  
DDR_A12  
DDR_A13  
DDR_A14  
DDR_RAS_B  
DDR_CAS_B  
DDR_CS_B  
DDR_WE_B  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
92  
Freescale Semiconductor, Inc.  
Pinout  
8.3 K61 Pinouts  
The below figure shows the pinout diagram for the devices supported by this document.  
Many signals may be multiplexed onto a single pin. To determine what signals can be  
used on which pin, see the previous section.  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
A
B
C
D
E
F
DDR_VSS DDR_DQ15 DDR_DM1 DDR_DQ2 DDR_VSS DDR_DQ5 DDR_ODT DDR_DQ7 DDR_BA0 DDR_CKB DDR_CK DDR_VSS DDR_A5  
DDR_A6  
DDR_A8 DDR_VSS  
A
B
C
D
E
F
DDR_VDD DDR_DQ11 DDR_DQ14 DDR_DQ1 DDR_VDD DDR_DQ3 DDR_DQ6 DDR_VDD DDR_BA2 DDR_BA1 DDR_A2 DDR_VDD DDR_A10 DDR_A11 DDR_A9 DDR_CKE  
DDR_  
CAS_B  
DDR_DQ9 DDR_DQ10 DDR_DQ12 DDR_DQ13 DDR_DQ0 DDR_VREF DDR_VSS DDR_DQS0 DDR_VSS DDR_A4  
DDR_DQ8 DDR_VDD DDR_DQS1 DDR_VDD DDR_VSS DDR_DQ4 DDR_VDD DDR_VSS DDR_DM0 DDR_A0  
DDR_A1  
DDR_A3  
DDR_VSS DDR_A12 DDR_VDD  
DDR_A7 DDR_VSS DDR_WE_B DDR_CS_B DDR_A14 DDR_A13  
PTC3/  
PTC4/  
PTC5/  
DDR_  
RAS_B  
PTF16  
PTF17  
PTF18  
PTF19  
PTE9  
PTE0  
DDR_VSS  
PTE2/  
PTD15  
PTD13  
PTE5  
PTD14  
PTD12  
PTD11  
PTF20  
PTD10  
PTF15  
PTF14  
PTF13  
PTD7  
PTD9  
VDD  
DDR_VSS  
PTD1  
VDD  
PTC17  
PTC16  
VDD  
DDR_VDD DDR_VSS DDR_VDD  
LLWU_P7 LLWU_P8 LLWU_P9  
PTE1/  
LLWU_P0 LLWU_P1  
PTC6/  
PTC1/  
LLWU_P10 LLWU_P6  
PTC15  
VDD  
PTC9  
PTC2  
PTB21  
PTB18  
PTB11  
PTB8  
PTF7  
PTB22  
PTB19  
PTB16  
PTB9  
PTB7  
PTB5  
PTB4  
PTB2  
PTA27  
PTF8  
PTC0  
PTE4/  
PTE3  
G
H
J
PTC10  
PTC7  
PTC8  
PTC12  
PTF9  
PTB20  
PTB17  
PTB10  
PTC13  
PTF1  
G
H
J
LLWU_P2  
PTC11/  
LLWU_P11  
PTE6  
PTE10  
PTE17  
VSS  
PTE7  
PTE16  
PTE12  
VREGIN  
PTE19  
PTE8  
VDDINT  
VDD  
VSS  
VSS  
VDDINT  
VDD  
PTB23  
PTF6  
PTD8  
PTD5  
PTD3  
VSS  
VSS  
PTC14  
PTF11  
PTF12  
PTB1  
PTD6/  
PTD4/  
PTD2/  
K
L
PTE11  
VOUT33  
PTE27  
PTE28  
PTE26  
VSS  
VSS  
VSS  
VDD  
PTF5  
K
L
LLWU_P15 LLWU_P14 LLWU_P13  
PTD0/  
LLWU_P12  
PTE18  
VREFL  
VSSA  
TAMPER1 TAMPER2  
TAMPER0/  
RTC_  
WAKEUP_B  
VSS  
VDD  
PTF10  
PTB6  
PTF4  
PTB0/  
LLWU_P5  
M
N
P
R
T
USB0_DP USB0_DM  
TAMPER7  
TAMPER6  
TAMPER4  
PTC19  
PTA1  
PTA3  
PTC18  
PTF22  
PTF21  
PTF25  
PTA12  
PTA26  
PTA24  
PTA10  
PTA11  
PTB3  
PTF3  
M
N
P
R
T
PGA2_DP/ PGA2_DM/  
ADC2_DP0/ ADC2_DM0/  
ADC3_DP3/ ADC3_DM3/  
ADC0_DP1 ADC0_DM1  
ADC0_SE16/  
CMP1_IN2/  
ADC0_SE21  
PTA13/  
LLWU_P4  
VDDA  
VBAT  
PTA16  
PTA15  
PTA14  
PTA8  
PTA7  
PTA6  
PTA29  
PTA28  
PTA25  
PTF2  
PGA3_DP/ PGA3_DM/  
ADC3_DP0/ ADC3_DM0/  
ADC2_DP3/ ADC2_DM3/  
ADC1_DP1 ADC1_DM1  
ADC1_SE16/  
CMP2_IN2/ VREFH  
ADC0_SE22  
PTE24  
PTE25  
PTF23  
PTF24  
PTF0  
DAC1_OUT/  
PGA0_DP/ PGA0_DM/ DAC0_OUT/  
ADC0_DP0/ ADC0_DM0/ CMP1_IN3/  
ADC1_DP3 ADC1_DM3 ADC0_SE23  
CMP0_IN4/  
CMP2_IN3/  
ADC1_SE23  
PTA4/  
LLWU_P3  
TAMPER3 TAMPER5  
RESET_b  
VREF_OUT/  
PGA1_DP/ PGA1_DM/  
CMP1_IN5/  
ADC1_DP0/ ADC1_DM0/  
CMP0_IN5/  
VSS  
4
EXTAL32  
5
XTAL32  
6
PTA0  
7
PTA2  
8
PTF26  
9
PTF27  
10  
PTA17  
11  
PTA5  
12  
PTA9  
13  
VSS  
14  
PTA18  
15  
PTA19  
16  
ADC0_DP3 ADC0_DM3  
ADC1_SE18  
1
2
3
Figure 45. K61 256 MAPBGA Pinout Diagram  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
Freescale Semiconductor, Inc.  
93  
Revision History  
9 Revision History  
The following table provides a revision history for this document.  
Table 60. Revision History  
Rev. No.  
Date  
Substantial Changes  
Initial public release  
3
4
5
3/2012  
10/2012  
10/2013  
Replaced TBDs throughout.  
Changes for 4N96B mask set:  
• Min VDD operating requirement specification updated to support operation down to  
1.71V.  
New specifications:  
• Updated Vdd_ddr min specification.  
• Added Vodpu specification.  
• Removed Ioz, Ioz_ddr, and Ioz_tamper Hi-Z leakage specfications. They have been  
replaced by new Iina, Iind, and Zind specifications.  
• Fpll_ref_acc specification has been added.  
• I2C module was previously covered by the general switching specifications. To provide  
more detail on I2C operation a dedicated Inter-Integrated Circuit Interface (I2C) timing  
section has been added.  
Modified specifications:  
• Vref_ddr max spec has been updated.  
• Tpor spec has been split into two specifications based on VDD slew rate.  
• Trd1allx and Trd1alln max have been updated.  
• 16-bit ADC Temp sensor slope and Temp sensor voltage (Vtemp25) have been  
modified. The typical values that were listed previously have been updated, and min  
and max specifications have been added.  
Corrections:  
• Some versions of the datasheets listed incorrect clock mode information in the  
"Diagram: Typical IDD_RUN operating behavior section." These errors have been  
corrected.  
• Fintf_ft specification was previously shown as a max value. It has been corrected to be  
shown as a typical value as originally intended.  
• Corrected DDR write and read timing diagrams to show the correct location of the Tcmv  
specification.  
• SDHC peripheral 50MHz high speed mode options were left out of the last datasheet.  
These have been added to the SDHC specifications section.  
K61 Sub-Family Data Sheet, Rev. 5, 10/2013.  
94  
Freescale Semiconductor, Inc.  
Information in this document is provided solely to enable system and software  
implementers to use Freescale products. There are no express or implied copyright  
licenses granted hereunder to design or fabricate any integrated circuits based on the  
information in this document.  
How to Reach Us:  
Home Page:  
freescale.com  
Web Support:  
freescale.com/support  
Freescale reserves the right to make changes without further notice to any products  
herein. Freescale makes no warranty, representation, or guarantee regarding the  
suitability of its products for any particular purpose, nor does Freescale assume any  
liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation consequential or incidental  
damages. “Typical” parameters that may be provided in Freescale data sheets and/or  
specifications can and do vary in different applications, and actual performance may  
vary over time. All operating parameters, including “typicals,” must be validated for each  
customer application by customer’s technical experts. Freescale does not convey any  
license under its patent rights nor the rights of others. Freescale sells products pursuant  
to standard terms and conditions of sale, which can be found at the following address:  
freescale.com/SalesTermsandConditions.  
Freescale, the Freescale logo, Energy Efficient Solutions logo, and Kinetis are  
trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other  
product or service names are the property of their respective owners. ARM and Cortex  
are the registered trademarks of ARM Limited.  
© 2012-2013 Freescale Semiconductor, Inc.  
Document Number: K61P256M120SF3  
Rev. 5  
10/2013  

相关型号:

MK61FX512VMJ15

K61 Sub-Family
FREESCALE

MK61FX512VMJ15R

RISC MICROCONTROLLER
NXP

MK620

Precision Power Film Radial-Lead Resistors
ETC

MK62486

VERY FAXT CMOS 32K x 9 CACHE BRAM
STMICROELECTR

MK6264US70

IC,SRAM,8KX8,CMOS,SOP,28PIN,PLASTIC
STMICROELECTR

MK62940AQ11

32KX9 CACHE SRAM, 11ns, PQCC44, PLASTIC, LCC-44
STMICROELECTR

MK62940AQ12

32KX9 CACHE SRAM, 12ns, PQCC44, PLASTIC, LCC-44
STMICROELECTR

MK62940AQ14

32KX9 CACHE SRAM, 14ns, PQCC44, PLASTIC, LCC-44
STMICROELECTR

MK62940Q19

32KX9 CACHE SRAM, 19ns, PQCC44, PLASTIC, LCC-44
STMICROELECTR

MK62940Q24

32KX9 CACHE SRAM, 24ns, PQCC44, PLASTIC, LCC-44
STMICROELECTR

MK632

Precision Power Film Radial-Lead Resistors
ETC

MK632V

Precision Power Film Radial-Lead Resistors
ETC