MK64FN1M0VLL12 [NXP]

RISC MICROCONTROLLER;
MK64FN1M0VLL12
型号: MK64FN1M0VLL12
厂家: NXP    NXP
描述:

RISC MICROCONTROLLER

时钟 外围集成电路
文件: 总87页 (文件大小:1249K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NXP Semiconductors  
Data Sheet: Technical Data  
K64P144M120SF5  
Rev. 7, 10/2016  
Kinetis K64F Sub-Family Data  
MK64FN1M0Vxx12  
MK64FX512Vxx12  
Sheet  
120 MHz ARM® Cortex®-M4-based Microcontroller with FPU  
The K64 product family members are optimized for cost-sensitive  
applications requiring low-power, USB/Ethernet connectivity, and  
up to 256 KB of embedded SRAM. These devices share the  
comprehensive enablement and scalability of the Kinetis family.  
121 XFBGA  
8 x 8 x 0.5 mm Pitch 20 x 20 x 1.6 mm Pitch  
144 LQFP  
0.65 mm  
0.5 mm  
This product offers:  
• Run power consumption down to 250 μA/MHz. Static  
power consumption down to 5.8 μA with full state retention  
and 5 μs wakeup. Lowest Static mode down to 339 nA  
• USB LS/FS OTG 2.0 with embedded 3.3 V, 120 mA LDO  
Vreg, with USB device crystal-less operation  
144 MAPBGA  
13 x 13 x 1.46 mm 14 x 14 x 1.7 mm Pitch  
Pitch 1 mm 0.5 mm  
100 QFP  
• 10/100 Mbit/s Ethernet MAC with MII and RMII interfaces  
Performance  
• Up to 120 MHz ARM® Cortex®-M4 core with DSP  
Communication interfaces  
• Ethernet controller with MII and RMII interface  
• USB full-/low-speed On-the-Go controller  
• Controller Area Network (CAN) module  
• Three SPI modules  
• Three I2C modules. Support for up to 1 Mbit/s  
• Six UART modules  
instructions and floating point unit  
Memories and memory interfaces  
• Up to 1 MB program flash memory and 256 KB RAM  
• Upto 128 KB FlexNVM and 4 KB FlexRAM on devices  
with FlexMemory  
• Secure Digital Host Controller (SDHC)  
• I2S module  
• FlexBus external bus interface  
System peripherals  
Timers  
• Multiple low-power modes, low-leakage wake-up unit  
• Memory protection unit with multi-master protection  
• 16-channel DMA controller  
• Two 8-channel Flex-Timers (PWM/Motor control)  
• Two 2-channel FlexTimers (PWM/Quad decoder)  
• IEEE 1588 timers  
• External watchdog monitor and software watchdog  
• 32-bit PITs and 16-bit low-power timers  
• Real-time clock  
• Programmable delay block  
Security and integrity modules  
• Hardware CRC module  
• Hardware random-number generator  
• Hardware encryption supporting DES, 3DES, AES,  
MD5, SHA-1, and SHA-256 algorithms  
• 128-bit unique identification (ID) number per chip  
Clocks  
• 3 to 32 MHz and 32 kHz crystal oscillator  
• PLL, FLL, and multiple internal oscillators  
• 48 MHz Internal Reference Clock (IRC48M)  
Analog modules  
Operating Characteristics  
• Two 16-bit SAR ADCs  
• Two 12-bit DACs  
• Three analog comparators (CMP)  
• Voltage reference  
• Voltage range: 1.71 to 3.6 V  
• Flash write voltage range: 1.71 to 3.6 V  
• Temperature range (ambient): –40 to 105°C  
NXP reserves the right to change the production detail specifications as may be  
required to permit improvements in the design of its products.  
Ordering Information1  
Memory  
Part Number  
Maximum number of I\O's  
Flash  
SRAM (KB)  
MK64FX512VLL12  
MK64FN1M0VLL12  
MK64FX512VDC12  
MK64FN1M0VDC12  
MK64FX512VLQ12  
MK64FN1M0VLQ12  
MK64FX512VMD12  
MK64FN1M0VMD12  
512 KB  
1 MB  
256  
256  
256  
256  
256  
256  
256  
256  
66  
66  
512 KB  
1 MB  
83  
83  
512 KB  
1 MB  
100  
100  
100  
100  
512 KB  
1 MB  
1. To confirm current availability of ordererable part numbers, go to http://www.nxp.com and perform a part number search.  
Related Resources  
Type  
Selector  
Guide  
Description  
Resource  
Solution Advisor  
The NXP Solution Advisor is a web-based tool that features interactive  
application wizards and a dynamic product selector.  
Product Brief The Product Brief contains concise overview/summary information to  
enable quick evaluation of a device for design suitability.  
K60PB1  
Reference  
Manual  
The Reference Manual contains a comprehensive description of the  
structure and function (operation) of a device.  
K64P144M120SF5RM 1  
K64P144M120SF51  
Data Sheet  
The Data Sheet includes electrical characteristics and signal  
connections.  
Package  
drawing  
Package dimensions are provided in package drawings.  
• MAPBGA 144-pin:  
98ASA00222D1  
• LQFP 144-pin:  
98ASS23177W1  
• LQFP 100-pin:  
98ASS23308W1  
• XFBGA 121-pin:  
98ASA00595D1  
1. To find the associated resource, go to http://www.nxp.com and perform a search using this term.  
2
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
NXP Semiconductors  
 
 
Kinetis K64 Family  
ARM® Cortex™-M4  
Core  
System  
Memories and Memory Interfaces  
Clocks  
Internal  
Program  
flash  
Phase-  
locked loop  
and external  
watchdogs  
RAM  
Debug  
interfaces  
Memory  
protection  
Frequency-  
locked loop  
External  
bus  
FlexMemory  
DSP  
Serial  
Low/high  
frequency  
oscillators  
Interrupt  
controller  
Floating-  
point unit  
programming  
DMA  
interface  
Internal  
reference  
clocks  
Low-leakage  
wakeup  
Security  
Communication Interfaces  
Human-Machine  
Interface (HMI)  
Analog  
Timers  
and Integrity  
I2C  
I2S  
x3  
Timers  
x2 (8ch)  
x2 (2ch)  
16-bit ADC  
CRC  
GPIO  
x2  
Random  
number  
Analog  
comparator  
x3  
UART  
x6  
Secure  
Digital  
Programmable  
delay block  
generator  
Hardware  
encryption  
SPI  
x3  
6-bit DAC  
x3  
USB OTG  
LS/FS  
Periodic  
interrupt  
timers  
12-bit DAC  
x2  
CAN  
x1  
USB LS/FS  
transceiver  
Low power  
timer  
IEEE 1588  
Ethernet  
Voltage  
reference  
USB charger  
detect  
Independent  
real-time  
clock  
USB voltage  
regulator  
IEEE 1588  
Timers  
Figure 1. K64 block diagram  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
3
NXP Semiconductors  
Table of Contents  
1 Ratings....................................................................................5  
3.6.2  
3.6.3  
3.6.4  
CMP and 6-bit DAC electrical specifications.....44  
1.1 Thermal handling ratings................................................. 5  
1.2 Moisture handling ratings................................................ 5  
1.3 ESD handling ratings.......................................................5  
1.4 Voltage and current operating ratings............................. 5  
2 General................................................................................... 6  
2.1 AC electrical characteristics.............................................6  
2.2 Nonswitching electrical specifications..............................6  
12-bit DAC electrical characteristics................. 46  
Voltage reference electrical specifications........49  
3.7 Timers..............................................................................50  
3.8 Communication interfaces............................................... 50  
3.8.1  
3.8.2  
3.8.3  
3.8.4  
3.8.5  
3.8.6  
Ethernet switching specifications...................... 51  
USB electrical specifications.............................53  
USB DCD electrical specifications.................... 53  
USB VREG electrical specifications..................54  
CAN switching specifications............................ 54  
DSPI switching specifications (limited voltage  
range)................................................................55  
DSPI switching specifications (full voltage  
2.2.1  
2.2.2  
2.2.3  
2.2.4  
2.2.5  
2.2.6  
2.2.7  
2.2.8  
Voltage and current operating requirements.....6  
LVD and POR operating requirements............. 8  
Voltage and current operating behaviors.......... 8  
Power mode transition operating behaviors......10  
Power consumption operating behaviors..........11  
EMC radiated emissions operating behaviors...16  
Designing with radiated emissions in mind....... 17  
Capacitance attributes...................................... 17  
3.8.7  
range)................................................................56  
Inter-Integrated Circuit Interface (I2C) timing....58  
UART switching specifications..........................60  
3.8.8  
3.8.9  
2.3 Switching specifications...................................................17  
3.8.10 SDHC specifications......................................... 60  
3.8.11 I2S switching specifications.............................. 61  
4 Dimensions............................................................................. 67  
4.1 Obtaining package dimensions....................................... 67  
5 Pinout......................................................................................67  
5.1 K64 Signal Multiplexing and Pin Assignments.................67  
5.2 Unused analog interfaces................................................75  
5.3 K64 Pinouts..................................................................... 76  
6 Ordering parts......................................................................... 81  
6.1 Determining valid orderable parts....................................81  
7 Part identification.....................................................................82  
7.1 Description.......................................................................82  
7.2 Format............................................................................. 82  
7.3 Fields............................................................................... 82  
7.4 Example...........................................................................83  
8 Terminology and guidelines.................................................... 83  
8.1 Definitions........................................................................83  
8.2 Examples.........................................................................84  
8.3 Typical-value conditions.................................................. 84  
8.4 Relationship between ratings and operating  
2.3.1  
2.3.2  
Device clock specifications............................... 17  
General switching specifications.......................18  
2.4 Thermal specifications.....................................................19  
2.4.1  
2.4.2  
Thermal operating requirements.......................19  
Thermal attributes............................................. 20  
3 Peripheral operating requirements and behaviors.................. 21  
3.1 Core modules.................................................................. 21  
3.1.1  
3.1.2  
Debug trace timing specifications..................... 21  
JTAG electricals................................................22  
3.2 System modules.............................................................. 25  
3.3 Clock modules................................................................. 25  
3.3.1  
3.3.2  
3.3.3  
3.3.4  
MCG specifications........................................... 25  
IRC48M specifications...................................... 27  
Oscillator electrical specifications..................... 28  
32 kHz oscillator electrical characteristics.........30  
3.4 Memories and memory interfaces................................... 31  
3.4.1  
3.4.2  
3.4.3  
Flash (FTFE) electrical specifications............... 31  
EzPort switching specifications.........................36  
Flexbus switching specifications....................... 36  
3.5 Security and integrity modules........................................ 39  
3.6 Analog............................................................................. 39  
requirements....................................................................85  
8.5 Guidelines for ratings and operating requirements..........85  
9 Revision History...................................................................... 86  
3.6.1  
ADC electrical specifications.............................40  
4
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
NXP Semiconductors  
Ratings  
1 Ratings  
1.1 Thermal handling ratings  
Symbol  
TSTG  
Description  
Min.  
–55  
Max.  
150  
260  
245  
Unit  
°C  
Notes  
Storage temperature  
Solder temperature, lead-free  
Solder temperature, leaded  
1
2
TSDR  
°C  
1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.  
2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
1.2 Moisture handling ratings  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
MSL  
Moisture sensitivity level  
3
1
1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
1.3 ESD handling ratings  
Symbol  
VHBM  
Description  
Min.  
-2000  
-500  
Max.  
+2000  
+500  
Unit  
V
Notes  
Electrostatic discharge voltage, human body model  
1
2
VCDM  
Electrostatic discharge voltage, charged-device  
model  
V
ILAT  
Latch-up current at ambient temperature of 105°C  
-100  
+100  
mA  
3
1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human  
Body Model (HBM).  
2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for  
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.  
3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.  
1.4 Voltage and current operating ratings  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
5
NXP Semiconductors  
 
 
 
 
 
 
 
 
 
 
 
General  
Symbol  
Description  
Min.  
–0.3  
Max.  
3.8  
Unit  
V
VDD  
IDD  
Digital supply voltage  
Digital supply current  
185  
mA  
V
VDIO  
Digital input voltage (except RESET, EXTAL, and XTAL)  
–0.3  
–0.3  
5.5  
VDRTC_WAKEU RTC Wakeup input voltage  
VBAT + 0.3  
V
P
VAIO  
ID  
Analog1, RESET, EXTAL, and XTAL input voltage  
–0.3  
–25  
VDD + 0.3  
25  
V
mA  
V
Maximum current single pin limit (applies to all digital pins)  
Analog supply voltage  
VDDA  
VDD – 0.3  
–0.3  
VDD + 0.3  
3.63  
VUSB0_DP  
VUSB0_DM  
VREGIN  
VBAT  
USB0_DP input voltage  
V
USB0_DM input voltage  
–0.3  
3.63  
V
USB regulator input  
–0.3  
6.0  
V
RTC battery supply voltage  
–0.3  
3.8  
V
1. Analog pins are defined as pins that do not have an associated general purpose I/O port function.  
2 General  
2.1 AC electrical characteristics  
Unless otherwise specified, propagation delays are measured from the 50% to the 50%  
point, and rise and fall times are measured at the 20% and 80% points, as shown in the  
following figure.  
High  
Low  
VIH  
80%  
50%  
20%  
Input Signal  
Midpoint1  
VIL  
Fall Time  
Rise Time  
The midpoint is VIL + (VIH - VIL) / 2  
Figure 2. Input signal measurement reference  
2.2 Nonswitching electrical specifications  
6
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
NXP Semiconductors  
 
 
 
 
 
General  
Notes  
2.2.1 Voltage and current operating requirements  
Table 1. Voltage and current operating requirements  
Symbol  
VDD  
Description  
Min.  
1.71  
1.71  
–0.1  
–0.1  
1.71  
Max.  
3.6  
3.6  
0.1  
0.1  
3.6  
Unit  
V
Supply voltage  
VDDA  
Analog supply voltage  
V
VDD – VDDA VDD-to-VDDA differential voltage  
VSS – VSSA VSS-to-VSSA differential voltage  
V
V
VBAT  
VIH  
RTC battery supply voltage  
Input high voltage  
V
• 2.7 V ≤ VDD ≤ 3.6 V  
• 1.7 V ≤ VDD ≤ 2.7 V  
0.7 × VDD  
V
V
0.75 × VDD  
VIL  
Input low voltage  
• 2.7 V ≤ VDD ≤ 3.6 V  
• 1.7 V ≤ VDD ≤ 2.7 V  
0.35 × VDD  
0.3 × VDD  
V
V
VHYS  
IICDIO  
Input hysteresis  
0.06 × VDD  
-5  
V
Digital pin negative DC injection current — single pin  
• VIN < VSS-0.3V  
1
3
mA  
IICAIO  
Analog2, EXTAL, and XTAL pin DC injection current  
— single pin  
mA  
-5  
• VIN < VSS-0.3V (Negative current injection)  
• VIN > VDD+0.3V (Positive current injection)  
+5  
IICcont  
Contiguous pin DC injection current —regional limit,  
includes sum of negative injection currents or sum of  
positive injection currents of 16 contiguous pins  
-25  
mA  
• Negative current injection  
• Positive current injection  
+25  
VODPU  
VRAM  
Open drain pullup voltage level  
VDD  
1.2  
VDD  
V
V
V
4
VDD voltage required to retain RAM  
VRFVBAT VBAT voltage required to retain the VBAT register file VPOR_VBAT  
1. All 5 V tolerant digital I/O pins are internally clamped to VSS through an ESD protection diode. There is no diode  
connection to VDD. If VIN is less than VDIO_MIN, a current limiting resistor is required. If VIN greater than VDIO_MIN  
(=VSS-0.3V) is observed, then there is no need to provide current limiting resistors at the pads. The negative DC  
injection current limiting resistor is calculated as R=(VDIO_MIN-VIN)/|IICDIO|.  
2. Analog pins are defined as pins that do not have an associated general purpose I/O port function. Additionally, EXTAL  
and XTAL are analog pins.  
3. All analog pins are internally clamped to VSS and VDD through ESD protection diodes. If VIN is less than VAIO_MIN or  
greater than VAIO_MAX, a current limiting resistor is required. The negative DC injection current limiting resistor is  
calculated as R=(VAIO_MIN-VIN)/|IICAIO|. The positive injection current limiting resistor is calculated as R=(VIN-  
VAIO_MAX)/|IICAIO|. Select the larger of these two calculated resistances if the pin is exposed to positive and negative  
injection currents.  
4. Open drain outputs must be pulled to VDD.  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
7
NXP Semiconductors  
 
 
 
 
General  
2.2.2 LVD and POR operating requirements  
Table 2. VDD supply LVD and POR operating requirements  
Symbol Description  
Min.  
0.8  
Typ.  
1.1  
Max.  
1.5  
Unit  
V
Notes  
VPOR  
Falling VDD POR detect voltage  
VLVDH  
Falling low-voltage detect threshold — high  
range (LVDV=01)  
2.48  
2.56  
2.64  
V
Low-voltage warning thresholds — high range  
• Level 1 falling (LVWV=00)  
1
VLVW1H  
VLVW2H  
VLVW3H  
VLVW4H  
2.62  
2.72  
2.82  
2.92  
2.70  
2.80  
2.90  
3.00  
2.78  
2.88  
2.98  
3.08  
V
V
V
V
• Level 2 falling (LVWV=01)  
• Level 3 falling (LVWV=10)  
• Level 4 falling (LVWV=11)  
VHYSH  
VLVDL  
Low-voltage inhibit reset/recover hysteresis —  
high range  
80  
mV  
V
Falling low-voltage detect threshold — low  
range (LVDV=00)  
1.54  
1.60  
1.66  
Low-voltage warning thresholds — low range  
• Level 1 falling (LVWV=00)  
1
VLVW1L  
VLVW2L  
VLVW3L  
VLVW4L  
1.74  
1.84  
1.94  
2.04  
1.80  
1.90  
2.00  
2.10  
1.86  
1.96  
2.06  
2.16  
V
V
V
V
• Level 2 falling (LVWV=01)  
• Level 3 falling (LVWV=10)  
• Level 4 falling (LVWV=11)  
VHYSL  
Low-voltage inhibit reset/recover hysteresis —  
low range  
60  
mV  
VBG  
tLPO  
Bandgap voltage reference  
0.97  
900  
1.00  
1.03  
V
Internal low power oscillator period — factory  
trimmed  
1000  
1100  
μs  
1. Rising threshold is the sum of falling threshold and hysteresis voltage  
Table 3. VBAT power operating requirements  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
VPOR_VBAT Falling VBAT supply POR detect voltage  
0.8  
1.1  
1.5  
V
2.2.3 Voltage and current operating behaviors  
Table 4. Voltage and current operating behaviors  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
VOH  
Output high voltage — high drive strength  
Table continues on the next page...  
8
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
NXP Semiconductors  
 
 
 
General  
Notes  
Table 4. Voltage and current operating behaviors (continued)  
Symbol  
Description  
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = -8mA  
Min.  
Max.  
Unit  
VDD – 0.5  
V
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = -3mA  
VDD – 0.5  
V
Output high voltage — low drive strength  
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = -2mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = -0.6mA  
VDD – 0.5  
VDD – 0.5  
V
V
IOHT  
Output high current total for all ports  
100  
mA  
V
VOH_RTC_WA Output high voltage — high drive strength  
VBAT – 0.5  
VBAT – 0.5  
KEUP  
• 2.7 V ≤ VBAT ≤ 3.6 V, IOH = -10mA  
V
• 1.71 V ≤ VBAT ≤ 2.7 V, IOH = -3mA  
Output high voltage — low drive strength  
• 2.7 V ≤ VBAT ≤ 3.6 V, IOH = -2mA  
• 1.71 V ≤ VBAT ≤ 2.7 V, IOH = -0.6mA  
VBAT – 0.5  
VBAT – 0.5  
V
V
IOH_RTC_WAK Output high current total for RTC_WAKEUP pins  
100  
mA  
EUP  
VOL  
Output low voltage — high drive strength  
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 9mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 3mA  
0.5  
0.5  
V
V
Output low voltage — low drive strength  
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 2mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 0.6mA  
0.5  
0.5  
V
V
IOLT  
Output low current total for all ports  
100  
0.5  
0.5  
mA  
V
VOL_RTC_WA Output low voltage — high drive strength  
KEUP  
• 2.7 V ≤ VBAT ≤ 3.6 V, IOL = 10mA  
V
• 1.71 V ≤ VBAT ≤ 2.7 V, IOL = 3mA  
Output low voltage — low drive strength  
• 2.7 V ≤ VBAT ≤ 3.6 V, IOL = 2mA  
• 1.71 V ≤ VBAT ≤ 2.7 V, IOL = 0.6mA  
0.5  
0.5  
V
V
IOL_RTC_WAK Output low current total for RTC_WAKEUP pins  
100  
1
mA  
μA  
EUP  
IIN  
Input leakage current (per pin) for full temperature  
range  
1
1
IIN  
Input leakage current (per pin) at 25°C  
0.025  
1
μA  
μA  
IIN_RTC_WAK Input leakage current (per RTC_WAKEUP pin) for full  
temperature range  
EUP  
IIN_RTC_WAK Input leakage current (per RTC_WAKEUP pin) at  
0.025  
μA  
25°C  
EUP  
Table continues on the next page...  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
9
NXP Semiconductors  
General  
Table 4. Voltage and current operating behaviors (continued)  
Symbol  
IOZ  
Description  
Min.  
Max.  
0.25  
0.25  
Unit  
μA  
Notes  
Hi-Z (off-state) leakage current (per pin)  
IOZ_RTC_WAK Hi-Z (off-state) leakage current (per RTC_WAKEUP  
μA  
pin)  
EUP  
RPU  
RPD  
Internal pullup resistors (except RTC_WAKEUP pins)  
20  
20  
50  
50  
kΩ  
kΩ  
2
3
Internal pulldown resistors (except RTC_WAKEUP  
pins)  
1. Measured at VDD=3.6V  
2. Measured at VDD supply voltage = VDD min and Vinput = VSS  
3. Measured at VDD supply voltage = VDD min and Vinput = VDD  
2.2.4 Power mode transition operating behaviors  
All specifications except tPOR, and VLLSxRUN recovery times in the following table  
assume this clock configuration:  
• CPU and system clocks = 100 MHz  
• Bus clock = 50 MHz  
• FlexBus clock = 50 MHz  
• Flash clock = 25 MHz  
Table 5. Power mode transition operating behaviors  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
tPOR  
After a POR event, amount of time from the point VDD  
reaches 1.71 V to execution of the first instruction  
across the operating temperature range of the chip.  
300  
μs  
156  
156  
78  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
• VLLS0 RUN  
• VLLS1 RUN  
• VLLS2 RUN  
• VLLS3 RUN  
• LLS RUN  
78  
4.8  
4.5  
4.5  
• VLPS RUN  
• STOP RUN  
10  
NXP Semiconductors  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
 
 
 
 
General  
2.2.5 Power consumption operating behaviors  
NOTE  
The maximum values represent characterized results  
equivalent to the mean plus three times the standard  
deviation (mean + 3 sigma).  
Table 6. Power consumption operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDDA  
Analog supply current  
See note  
mA  
1
2
IDD_RUN Run mode current — all peripheral clocks  
disabled, code executing from flash  
31.1  
31  
36.65  
36.75  
mA  
mA  
• @ 1.8V  
• @ 3.0V  
IDD_RUN Run mode current — all peripheral clocks  
enabled, code executing from flash  
3, 4  
42.7  
48.35  
mA  
• @ 1.8V  
• @ 3.0V  
• @ 25°C  
• @ 105°C  
40  
41.60  
51.50  
mA  
mA  
48.33  
IDD_WAIT Wait mode high frequency current at 3.0 V —  
all peripheral clocks disabled  
17.9  
6.9  
mA  
mA  
mA  
mA  
mA  
2
5
6
7
8
IDD_WAIT Wait mode reduced frequency current at 3.0 V  
— all peripheral clocks disabled  
IDD_VLPR Very-low-power run mode current at 3.0 V —  
all peripheral clocks disabled  
1.0  
IDD_VLPR Very-low-power run mode current at 3.0 V —  
all peripheral clocks enabled  
1.7  
IDD_VLPW Very-low-power wait mode current at 3.0 V —  
all peripheral clocks disabled  
0.678  
IDD_STOP Stop mode current at 3.0 V  
• @ –40 to 25°C  
0.49  
1.18  
3.0  
1.24  
4.3  
mA  
mA  
mA  
• @ 70°C  
12.5  
• @ 105°C  
IDD_VLPS Very-low-power stop mode current at 3.0 V  
57  
139.31  
679.33  
1869.85  
μA  
μA  
μA  
• @ –40 to 25°C  
• @ 70°C  
291  
927.3  
• @ 105°C  
IDD_LLS Low leakage stop mode current at 3.0 V  
9
Table continues on the next page...  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
11  
NXP Semiconductors  
 
General  
Table 6. Power consumption operating behaviors (continued)  
Symbol Description  
• @ –40 to 25°C  
Min.  
Typ.  
Max.  
Unit  
Notes  
5.8  
10.48  
μA  
• @ 70°C  
26.7  
47.99  
μA  
μA  
• @ 105°C  
114.9  
196.49  
IDD_VLLS3 Very low-leakage stop mode 3 current at 3.0 V  
4.4  
21  
5.54  
36.46  
150.17  
μA  
μA  
μA  
• @ –40 to 25°C  
• @ 70°C  
90.2  
• @ 105°C  
IDD_VLLS2 Very low-leakage stop mode 2 current at 3.0 V  
2.1  
2.34  
10.36  
46.74  
μA  
μA  
μA  
• @ –40 to 25°C  
• @ 70°C  
6.84  
29.4  
• @ 105°C  
IDD_VLLS1 Very low-leakage stop mode 1 current at 3.0 V  
0.817  
3.97  
21.3  
0.86  
5.77  
μA  
μA  
μA  
• @ –40 to 25°C  
• @ 70°C  
33.99  
• @ 105°C  
IDD_VLLS0 Very low-leakage stop mode 0 current at 3.0 V  
with POR detect circuit enabled  
0.52  
3.67  
0.62  
5.7  
μA  
μA  
μA  
• @ –40 to 25°C  
• @ 70°C  
21.20  
34.9  
• @ 105°C  
IDD_VLLS0 Very low-leakage stop mode 0 current at 3.0 V  
with POR detect circuit disabled  
0.339  
3.36  
20.3  
0.412  
4.2  
μA  
μA  
μA  
• @ –40 to 25°C  
• @ 70°C  
29.9  
• @ 105°C  
IDD_VBAT Average current with RTC and 32 kHz disabled  
• @ 1.8 V  
• @ –40 to 25°C  
• @ 70°C  
0.16  
0.55  
2.5  
0.19  
0.72  
3.68  
μA  
μA  
μA  
• @ 105°C  
• @ 3.0 V  
0.18  
0.66  
2.92  
0.21  
0.86  
4.30  
μA  
μA  
μA  
• @ –40 to 25°C  
• @ 70°C  
• @ 105°C  
Table continues on the next page...  
12  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
NXP Semiconductors  
General  
Table 6. Power consumption operating behaviors (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDD_VBAT Average current when CPU is not accessing  
RTC registers  
10  
• @ 1.8 V  
• @ –40 to 25°C  
• @ 70°C  
0.59  
1.0  
0.70  
1.30  
4.42  
μA  
μA  
μA  
• @ 105°C  
• @ 3.0 V  
3.0  
• @ –40 to 25°C  
• @ 70°C  
0.71  
1.22  
3.5  
0.84  
1.59  
5.15  
μA  
μA  
μA  
• @ 105°C  
1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device.  
See each module's specification for its supply current.  
2. 120 MHz core and system clock, 60 MHz bus, 30 Mhz FlexBus clock, and 20 MHz flash clock. MCG configured for  
PEE mode. All peripheral clocks disabled.  
3. 120 MHz core and system clock, 60 MHz bus clock, 30 MHz Flexbus clock, and 20 MHz flash clock. MCG configured  
for PEE mode. All peripheral clocks enabled.  
4. Max values are measured with CPU executing DSP instructions.  
5. 25 MHz core and system clock, 25 MHz bus clock, and 25 MHz FlexBus and flash clock. MCG configured for FEI  
mode.  
6. 4 MHz core, system, FlexBus, and bus clock and 0.5 MHz flash clock. MCG configured for BLPE mode. All peripheral  
clocks disabled. Code executing from flash.  
7. 4 MHz core, system, FlexBus, and bus clock and 0.5 MHz flash clock. MCG configured for BLPE mode. All peripheral  
clocks enabled but peripherals are not in active operation. Code executing from flash.  
8. 4 MHz core, system, FlexBus, and bus clock and 0.5 MHz flash clock. MCG configured for BLPE mode. All peripheral  
clocks disabled.  
9. Data reflects devices with 256 KB of RAM.  
10. Includes 32kHz oscillator current and RTC operation.  
Table 7. Low power mode peripheral adders — typical value  
Symbol  
Description  
Temperature (°C)  
Unit  
-40  
25  
50  
70  
85  
105  
IIREFSTEN4MHz  
4 MHz internal reference clock (IRC)  
adder. Measured by entering STOP or  
VLPS mode with 4 MHz IRC enabled.  
56  
56  
56  
56  
56  
56  
µA  
IIREFSTEN32KHz  
IEREFSTEN4MHz  
IEREFSTEN32KHz  
32 kHz internal reference clock (IRC)  
adder. Measured by entering STOP  
mode with the 32 kHz IRC enabled.  
52  
52  
52  
52  
52  
52  
µA  
uA  
External 4 MHz crystal clock adder.  
Measured by entering STOP or VLPS  
mode with the crystal enabled.  
206  
228  
237  
245  
251  
258  
External 32 kHz crystal clock adder by  
means of the OSC0_CR[EREFSTEN  
and EREFSTEN] bits. Measured by  
Table continues on the next page...  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
13  
NXP Semiconductors  
 
 
 
 
 
 
 
 
 
 
General  
Table 7. Low power mode peripheral adders — typical value (continued)  
Symbol  
Description  
Temperature (°C)  
Unit  
-40  
25  
50  
70  
85  
105  
entering all modes with the crystal  
enabled.  
440  
440  
490  
510  
510  
490  
490  
490  
560  
560  
540  
540  
540  
560  
560  
560  
560  
560  
560  
560  
570  
570  
570  
610  
610  
580  
580  
680  
680  
680  
VLLS1  
VLLS3  
nA  
LLS  
VLPS  
STOP  
I48MIRC  
ICMP  
48 Mhz internal reference clock  
350  
22  
350  
22  
350  
22  
350  
22  
350  
22  
350  
22  
µA  
µA  
CMP peripheral adder measured by  
placing the device in VLLS1 mode with  
CMP enabled using the 6-bit DAC and  
a single external input for compare.  
Includes 6-bit DAC power  
consumption.  
IRTC  
RTC peripheral adder measured by  
placing the device in VLLS1 mode with  
external 32 kHz crystal enabled by  
means of the RTC_CR[OSCE] bit and  
the RTC ALARM set for 1 minute.  
Includes ERCLK32K (32 kHz external  
crystal) power consumption.  
432  
357  
388  
475  
532  
810  
nA  
IUART  
UART peripheral adder measured by  
placing the device in STOP or VLPS  
mode with selected clock source  
waiting for RX data at 115200 baud  
rate. Includes selected clock source  
power consumption.  
66  
66  
66  
66  
66  
66  
µA  
MCGIRCLK (4 MHz internal reference  
clock)  
214  
45  
237  
45  
246  
45  
254  
45  
260  
45  
268  
45  
OSCERCLK (4 MHz external crystal)  
IBG  
Bandgap adder when BGEN bit is set  
and device is placed in VLPx, LLS, or  
VLLSx mode.  
µA  
µA  
IADC  
ADC peripheral adder combining the  
measured values at VDD and VDDA by  
placing the device in STOP or VLPS  
mode. ADC is configured for low power  
mode using the internal clock and  
continuous conversions.  
42  
42  
42  
42  
42  
42  
2.2.5.1 Diagram: Typical IDD_RUN operating behavior  
The following data was measured under these conditions:  
14  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
NXP Semiconductors  
General  
• No GPIOs toggled  
• Code execution from flash with cache enabled  
• For the ALLOFF curve, all peripheral clocks are disabled except FTFE  
Run Mode Current Consumption vs Core Frequency  
Temp (C)=25, V =3.6V, CACHE=ENABLE, Code Residence=Flash  
DD  
40.00E-03  
35.00E-03  
30.00E-03  
25.00E-03  
20.00E-03  
15.00E-03  
10.00E-03  
5.00E-03  
All Peripheral Clk Gates  
ALLOFF  
ALLON  
Clk Ratio  
Core-Bus-  
000.00E+00  
Flaxbus-Flash  
'1-1-1  
1
'1-1-1  
2
'1-1-1  
4
'1-1-1  
6.25  
'1-1-1  
12.5  
'1-1-1  
25  
'1-1-2  
50  
'1-2-3  
75  
'1-2-4  
100  
'1-2-5  
120  
Core Freq (MHz)  
Figure 3. Run mode supply current vs. core frequency  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
15  
NXP Semiconductors  
General  
Very Low Power Run (VLPR) Current vs Core Frequency  
Temp (C)=25, V =3.6V, CACHE=ENABLE, Code Residence=Flash  
DD  
1.40E-03  
1.20E-03  
1.00E-03  
800.00E-06  
600.00E-06  
400.00E-06  
200.00E-06  
000.00E+00  
All Peripheral Clk Gates  
ALLOFF  
ALLON  
Clk Ratio  
Core-Bus-Flash  
'1-1-2  
'1-1-1  
'1-2-4  
'1-1-4  
2
'1-1-2  
'1-2-4  
'1-1-4  
Core Freq (MHz)  
1
4
Figure 4. VLPR mode supply current vs. core frequency  
2.2.6 EMC radiated emissions operating behaviors  
Table 8. EMC radiated emissions operating behaviors  
Symbol  
Description  
Frequency  
band  
Typ.  
Unit  
Notes  
(MHz)  
144 LQFP  
VRE1  
VRE2  
Radiated emissions voltage, band 1  
Radiated emissions voltage, band 2  
Radiated emissions voltage, band 3  
Radiated emissions voltage, band 4  
IEC level  
0.15–50  
50–150  
16  
22  
21  
16  
L
dBμV  
dBμV  
dBμV  
dBμV  
1, 2  
VRE3  
150–500  
500–1000  
0.15–1000  
VRE4  
VRE_IEC  
2, 3  
1. Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150  
kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement  
of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and  
16  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
NXP Semiconductors  
 
 
General  
Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic application code.  
The reported emission level is the value of the maximum measured emission, rounded up to the next whole number,  
from among the measured orientations in each frequency range.  
2. VDD = 3.3 V, TA = 25 °C, fOSC = 12 MHz (crystal), fSYS = 96 MHz, fBUS = 48MHz  
3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and  
Wideband TEM Cell Method  
2.2.7 Designing with radiated emissions in mind  
To find application notes that provide guidance on designing your system to minimize  
interference from radiated emissions:  
1. Go to www.nxp.com.  
2. Perform a keyword search for “EMC design.”  
2.2.8 Capacitance attributes  
Table 9. Capacitance attributes  
Symbol  
CIN_A  
Description  
Min.  
Max.  
Unit  
pF  
Input capacitance: analog pins  
Input capacitance: digital pins  
7
7
CIN_D  
pF  
2.3 Switching specifications  
2.3.1 Device clock specifications  
Table 10. Device clock specifications  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
Normal run mode  
fSYS  
System and core clock  
120  
MHz  
MHz  
System and core clock when Full Speed USB in  
operation  
20  
fENET  
System and core clock when ethernet in operation  
MHz  
• 10 Mbps  
• 100 Mbps  
5
60  
50  
25  
50  
fBUS  
Bus clock  
MHz  
MHz  
MHz  
FB_CLK  
fFLASH  
FlexBus clock  
Flash clock  
Table continues on the next page...  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
17  
NXP Semiconductors  
 
 
 
 
 
 
General  
Table 10. Device clock specifications (continued)  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
fLPTMR  
LPTMR clock  
25  
MHz  
VLPR mode1  
fSYS  
fBUS  
System and core clock  
Bus clock  
4
4
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
FB_CLK  
fFLASH  
FlexBus clock  
4
Flash clock  
0.8  
16  
25  
16  
8
fERCLK  
fLPTMR_pin  
External reference clock  
LPTMR clock  
fLPTMR_ERCLK LPTMR external reference clock  
fFlexCAN_ERCLK FlexCAN external reference clock  
fI2S_MCLK  
fI2S_BCLK  
I2S master clock  
I2S bit clock  
12.5  
4
1. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for  
any other module.  
2.3.2 General switching specifications  
These general purpose specifications apply to all signals configured for GPIO, UART,  
CAN, CMT, IEEE 1588 timer, timers, and I2C signals.  
Table 11. General switching specifications  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
GPIO pin interrupt pulse width (digital glitch filter  
disabled) — Synchronous path  
1.5  
Bus clock  
cycles  
1, 2  
GPIO pin interrupt pulse width (digital glitch filter  
disabled, analog filter enabled) — Asynchronous path  
100  
50  
ns  
ns  
ns  
3
3
3
GPIO pin interrupt pulse width (digital glitch filter  
disabled, analog filter disabled) — Asynchronous path  
External reset pulse width (digital glitch filter disabled)  
100  
2
Mode select (EZP_CS) hold time after reset  
deassertion  
Bus clock  
cycles  
Port rise and fall time (high drive strength) - 3 V  
• Slew disabled  
4
• 1.71 ≤ VDD ≤ 2.7V  
8
6
ns  
ns  
• 2.7 ≤ VDD ≤ 3.6V  
• Slew enabled  
18  
ns  
Table continues on the next page...  
18  
NXP Semiconductors  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
 
 
General  
Notes  
4
Table 11. General switching specifications (continued)  
Symbol  
Description  
• 1.71 ≤ VDD ≤ 2.7V  
Min.  
Max.  
Unit  
12  
ns  
• 2.7 ≤ VDD ≤ 3.6V  
Port rise and fall time (high drive strength) - 5 V  
• Slew disabled  
• 1.71 ≤ VDD ≤ 2.7V  
6
4
ns  
ns  
• 2.7 ≤ VDD ≤ 3.6V  
• Slew enabled  
• 1.71 ≤ VDD ≤ 2.7V  
24  
14  
ns  
ns  
• 2.7 ≤ VDD ≤ 3.6V  
Port rise and fall time (low drive strength) - 3 V  
• Slew disabled  
5
• 1.71 ≤ VDD ≤ 2.7V  
12  
6
ns  
ns  
• 2.7 ≤ VDD ≤ 3.6V  
• Slew enabled  
• 1.71 ≤ VDD ≤ 2.7V  
24  
16  
ns  
ns  
• 2.7 ≤ VDD ≤ 3.6V  
Port rise and fall time (low drive strength) - 5 V  
• Slew disabled  
5
• 1.71 ≤ VDD ≤ 2.7V  
17  
10  
ns  
ns  
• 2.7 ≤ VDD ≤ 3.6V  
• Slew enabled  
• 1.71 ≤ VDD ≤ 2.7V  
36  
20  
ns  
ns  
• 2.7 ≤ VDD ≤ 3.6V  
1. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses  
may or may not be recognized. In Stop, VLPS, LLS, and VLLSx modes, the synchronizer is bypassed so shorter  
pulses can be recognized in that case.  
2. The greater synchronous and asynchronous timing must be met.  
3. This is the minimum pulse width that is guaranteed to be recognized as a pin interrupt request in Stop, VLPS, LLS,  
and VLLSx modes.  
4. 25 pF load  
5. 15 pF load  
2.4 Thermal specifications  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
19  
NXP Semiconductors  
 
 
 
 
 
 
 
General  
2.4.1 Thermal operating requirements  
Table 12. Thermal operating requirements  
Symbol  
TJ  
Description  
Min.  
–40  
–40  
Max.  
125  
Unit  
°C  
Die junction temperature  
Ambient temperature1  
TA  
105  
°C  
1. Maximum TA can be exceeded only if the user ensures that TJ does not exceed maximum TJ. The simplest method to  
determine TJ is:  
TJ = TA + RθJA x chip power dissipation  
2.4.2 Thermal attributes  
Table 13. Thermal attributes  
Board type  
Symbol  
Descriptio 144 LQFP  
n
144  
MAPBGA  
121  
XFBGA  
100 LQFP  
51  
Unit  
°C/W  
Notes  
Single-layer RθJA  
(1s)  
Thermal  
51  
43  
42  
36  
38.1  
33.3  
1
1
1
1
resistance,  
junction to  
ambient  
(natural  
convection)  
Four-layer  
(2s2p)  
RθJA  
Thermal  
21.6  
30.8  
18  
21.1  
26.2  
17.8  
39  
41  
32  
°C/W  
°C/W  
°C/W  
resistance,  
junction to  
ambient  
(natural  
convection)  
Single-layer RθJMA  
(1s)  
Thermal  
resistance,  
junction to  
ambient  
(200 ft./min.  
air speed)  
Four-layer  
(2s2p)  
RθJMA  
Thermal  
resistance,  
junction to  
ambient  
(200 ft./min.  
air speed)  
RθJB  
Thermal  
resistance,  
junction to  
board  
30  
11  
16.5  
8.9  
16.3  
12  
24  
11  
°C/W  
°C/W  
2
3
RθJC  
Thermal  
resistance,  
Table continues on the next page...  
20  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
NXP Semiconductors  
 
 
Peripheral operating requirements and behaviors  
Table 13. Thermal attributes (continued)  
Board type  
Symbol  
Descriptio 144 LQFP  
n
144  
MAPBGA  
121  
XFBGA  
100 LQFP  
Unit  
Notes  
junction to  
case  
ΨJT  
Thermal  
characteriza  
tion  
2
0.9  
0.2  
2
°C/W  
4
parameter,  
junction to  
package top  
outside  
center  
(natural  
convection)  
1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental  
Conditions—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test  
Method Environmental Conditions—Forced Convection (Moving Air).  
2. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental  
Conditions—Junction-to-Board.  
3. Determined according to Method 1012.1 of MIL-STD 883, Test Method Standard, Microcircuits, with the cold plate  
temperature used for the case temperature. The value includes the thermal resistance of the interface material  
between the top of the package and the cold plate.  
4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental  
Conditions—Natural Convection (Still Air).  
3 Peripheral operating requirements and behaviors  
3.1 Core modules  
3.1.1 Debug trace timing specifications  
Table 14. Debug trace operating behaviors  
Symbol  
Tcyc  
Twl  
Description  
Min.  
Max.  
Unit  
MHz  
ns  
Clock period  
Frequency dependent  
Low pulse width  
High pulse width  
Clock and data rise time  
Clock and data fall time  
Data setup  
2
2
3
Twh  
Tr  
ns  
1.5  
1
ns  
Tf  
3
ns  
Ts  
ns  
Th  
Data hold  
ns  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
21  
NXP Semiconductors  
 
 
 
 
 
 
 
Peripheral operating requirements and behaviors  
TRACECLK  
T
r
T
f
T
wh  
T
wl  
T
cyc  
Figure 5. TRACE_CLKOUT specifications  
TRACE_CLKOUT  
TRACE_D[3:0]  
Ts  
Th  
Ts  
Th  
Figure 6. Trace data specifications  
3.1.2 JTAG electricals  
Table 15. JTAG limited voltage range electricals  
Symbol  
Description  
Min.  
Max.  
Unit  
V
Operating voltage  
2.7  
3.6  
J1  
TCLK frequency of operation  
• Boundary Scan  
MHz  
0
0
0
10  
25  
50  
• JTAG and CJTAG  
• Serial Wire Debug  
J2  
J3  
TCLK cycle period  
TCLK clock pulse width  
• Boundary Scan  
1/J1  
ns  
50  
20  
10  
ns  
ns  
ns  
• JTAG and CJTAG  
• Serial Wire Debug  
J4  
J5  
TCLK rise and fall times  
20  
2.6  
8
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Boundary scan input data setup time to TCLK rise  
Boundary scan input data hold time after TCLK rise  
TCLK low to boundary scan output data valid  
TCLK low to boundary scan output high-Z  
TMS, TDI input data setup time to TCLK rise  
TMS, TDI input data hold time after TCLK rise  
25  
25  
J6  
J7  
J8  
J9  
J10  
1
Table continues on the next page...  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
22  
NXP Semiconductors  
 
Peripheral operating requirements and behaviors  
Table 15. JTAG limited voltage range electricals (continued)  
Symbol  
J11  
Description  
Min.  
Max.  
17  
Unit  
ns  
TCLK low to TDO data valid  
TCLK low to TDO high-Z  
TRST assert time  
J12  
17  
ns  
J13  
100  
8
ns  
J14  
TRST setup time (negation) to TCLK high  
ns  
Table 16. JTAG full voltage range electricals  
Symbol  
Description  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
3.6  
V
J1  
TCLK frequency of operation  
• Boundary Scan  
MHz  
0
0
0
10  
20  
40  
• JTAG and CJTAG  
• Serial Wire Debug  
J2  
J3  
TCLK cycle period  
TCLK clock pulse width  
• Boundary Scan  
1/J1  
ns  
50  
25  
ns  
ns  
ns  
• JTAG and CJTAG  
• Serial Wire Debug  
12.5  
J4  
J5  
TCLK rise and fall times  
20  
0
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Boundary scan input data setup time to TCLK rise  
Boundary scan input data hold time after TCLK rise  
TCLK low to boundary scan output data valid  
TCLK low to boundary scan output high-Z  
TMS, TDI input data setup time to TCLK rise  
TMS, TDI input data hold time after TCLK rise  
TCLK low to TDO data valid  
J6  
J7  
8
25  
25  
J8  
J9  
J10  
J11  
J12  
J13  
J14  
2.9  
100  
8
22.1  
22.1  
TCLK low to TDO high-Z  
TRST assert time  
TRST setup time (negation) to TCLK high  
J2  
J4  
J3  
J3  
TCLK (input)  
J4  
Figure 7. Test clock input timing  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
23  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
TCLK  
J5  
J6  
Input data valid  
Data inputs  
Data outputs  
Data outputs  
Data outputs  
J7  
Output data valid  
J8  
J7  
Output data valid  
Figure 8. Boundary scan (JTAG) timing  
TCLK  
TDI/TMS  
TDO  
J9  
J10  
Input data valid  
J11  
Output data valid  
J12  
J11  
TDO  
Output data valid  
TDO  
Figure 9. Test Access Port timing  
24  
NXP Semiconductors  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
Peripheral operating requirements and behaviors  
TCLK  
TRST  
J14  
J13  
Figure 10. TRST timing  
3.2 System modules  
There are no specifications necessary for the device's system modules.  
3.3 Clock modules  
3.3.1 MCG specifications  
Table 17. MCG specifications  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
fints_ft  
fints_t  
Iints  
Internal reference frequency (slow clock) —  
factory trimmed at nominal VDD and 25 °C  
32.768  
kHz  
Internal reference frequency (slow clock) —  
user trimmed  
31.25  
39.0625  
kHz  
Internal reference (slow clock) current  
20  
µA  
Δfdco_res_t Resolution of trimmed average DCO output  
frequency at fixed voltage and temperature —  
using SCTRIM and SCFTRIM  
0.3  
0.6  
%fdco  
1
1
Δfdco_res_t Resolution of trimmed average DCO output  
frequency at fixed voltage and temperature —  
using SCTRIM only  
0.2  
0.5  
%fdco  
Δfdco_t  
Total deviation of trimmed average DCO output  
frequency over voltage and temperature  
0.5  
0.3  
2
1
%fdco  
%fdco  
1 , 2  
1
Δfdco_t  
Total deviation of trimmed average DCO output  
frequency over fixed voltage and temperature  
range of 0–70°C  
fintf_ft  
fintf_t  
Iintf  
Internal reference frequency (fast clock) —  
factory trimmed at nominal VDD and 25°C  
3
4
5
MHz  
MHz  
µA  
Internal reference frequency (fast clock) —  
user trimmed at nominal VDD and 25 °C  
25  
Internal reference (fast clock) current  
Table continues on the next page...  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
25  
NXP Semiconductors  
 
 
 
Peripheral operating requirements and behaviors  
Table 17. MCG specifications (continued)  
Symbol Description  
floc_low Loss of external clock minimum frequency —  
RANGE = 00  
Min.  
Typ.  
Max.  
Unit  
Notes  
(3/5) x  
fints_t  
kHz  
floc_high Loss of external clock minimum frequency —  
RANGE = 01, 10, or 11  
(16/5) x  
fints_t  
kHz  
FLL  
ffll_ref  
fdco  
FLL reference frequency range  
31.25  
20  
39.0625  
25  
kHz  
DCO output  
Low range (DRS=00)  
20.97  
MHz  
3, 4  
frequency range  
640 × ffll_ref  
Mid range (DRS=01)  
1280 × ffll_ref  
40  
60  
80  
41.94  
62.91  
83.89  
23.99  
47.97  
71.99  
95.98  
50  
75  
100  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
ps  
Mid-high range (DRS=10)  
1920 × ffll_ref  
High range (DRS=11)  
2560 × ffll_ref  
fdco_t_DMX3 DCO output  
Low range (DRS=00)  
732 × ffll_ref  
5, 6  
frequency  
2
Mid range (DRS=01)  
1464 × ffll_ref  
Mid-high range (DRS=10)  
2197 × ffll_ref  
High range (DRS=11)  
2929 × ffll_ref  
Jcyc_fll  
FLL period jitter  
180  
150  
• fDCO = 48 MHz  
• fDCO = 98 MHz  
tfll_acquire FLL target frequency acquisition time  
1
ms  
7
PLL  
fvco  
Ipll  
VCO operating frequency  
48.0  
120  
MHz  
µA  
PLL operating current  
8
8
1060  
• PLL @ 96 MHz (fosc_hi_1 = 8 MHz, fpll_ref  
= 2 MHz, VDIV multiplier = 48)  
Ipll  
PLL operating current  
600  
µA  
• PLL @ 48 MHz (fosc_hi_1 = 8 MHz, fpll_ref  
= 2 MHz, VDIV multiplier = 24)  
fpll_ref  
PLL reference frequency range  
PLL period jitter (RMS)  
• fvco = 48 MHz  
2.0  
4.0  
MHz  
Jcyc_pll  
9
9
120  
80  
ps  
ps  
• fvco = 120 MHz  
Jacc_pll  
PLL accumulated jitter over 1µs (RMS)  
Table continues on the next page...  
26  
NXP Semiconductors  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
Peripheral operating requirements and behaviors  
Table 17. MCG specifications (continued)  
Symbol Description  
• fvco = 48 MHz  
Min.  
Typ.  
Max.  
Unit  
Notes  
1350  
ps  
• fvco = 120 MHz  
600  
ps  
Dlock  
Dunl  
Lock entry frequency tolerance  
Lock exit frequency tolerance  
Lock detector detection time  
1.49  
4.47  
2.98  
5.97  
150 × 10-6  
+ 1075(1/  
%
%
s
tpll_lock  
10  
fpll_ref  
)
1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock  
mode).  
2. 2 V <= VDD <= 3.6 V.  
3. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0.  
4. The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency  
deviation (Δfdco_t) over voltage and temperature should be considered.  
5. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1.  
6. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.  
7. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed,  
DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE,  
FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.  
8. Excludes any oscillator currents that are also consuming power while PLL is in operation.  
9. This specification was obtained using a NXP developed PCB. PLL jitter is dependent on the noise characteristics of  
each PCB and results will vary.  
10. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL  
disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this  
specification assumes it is already running.  
3.3.2 IRC48M specifications  
Table 18. IRC48M specifications  
Symbol  
VDD  
Description  
Min.  
1.71  
Typ.  
Max.  
3.6  
Unit  
V
Notes  
Supply voltage  
IDD48M  
firc48m  
Supply current  
400  
48  
500  
μA  
Internal reference frequency  
MHz  
Δfirc48m_ol_lv Open loop total deviation of IRC48M frequency at  
low voltage (VDD=1.71V-1.89V) over full  
temperature  
1
0.5  
0.5  
1.5  
2.0  
%firc48m  
• Regulator disable  
(USB_CLK_RECOVER_IRC_EN[REG_EN]=0)  
• Regulator enable  
(USB_CLK_RECOVER_IRC_EN[REG_EN]=1)  
Δfirc48m_ol_hv Open loop total deviation of IRC48M frequency at  
high voltage (VDD=1.89V-3.6V) over full  
temperature  
1
0.5  
1.5  
%firc48m  
• Regulator enable  
(USB_CLK_RECOVER_IRC_EN[REG_EN]=1)  
Table continues on the next page...  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
27  
NXP Semiconductors  
 
 
 
 
 
 
 
 
 
 
 
Peripheral operating requirements and behaviors  
Table 18. IRC48M specifications (continued)  
Symbol  
Description  
Min.  
Typ.  
0.5  
Max.  
1.0  
Unit  
%firc48m  
%fhost  
Notes  
Δfirc48m_ol_hv Open loop total deviation of IRC48M frequency at  
high voltage (VDD=1.89V-3.6V) over 0 to 85 °C  
• Regulator enable  
1
(USB_CLK_RECOVER_IRC_EN[REG_EN]=1)  
Δfirc48m_cl Closed loop total deviation of IRC48M frequency  
0.1  
2
3
over voltage and temperature  
Jcyc_irc48m Period Jitter (RMS)  
35  
2
150  
3
ps  
μs  
tirc48mst  
Startup time  
1. The maximum value represents characterized results equivalent to the mean plus or minus three times the standard  
deviation (mean 3 sigma)  
2. Closed loop operation of the IRC48M is only feasible for USB device operation; it is not usable for USB host operation. It  
is enabled by configuring for USB Device, selecting IRC48M as USB clock source, and enabling the clock recover  
function (USB_CLK_RECOVER_IRC_CTRL[CLOCK_RECOVER_EN]=1, USB_CLK_RECOVER_IRC_EN[IRC_EN]=1).  
3. IRC48M startup time is defined as the time between clock enablement and clock availability for system use. Enable the  
clock by setting USB_CLK_RECOVER_IRC_EN[IRC_EN]=1.  
3.3.3 Oscillator electrical specifications  
3.3.3.1 Oscillator DC electrical specifications  
Table 19. Oscillator DC electrical specifications  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
VDD  
Supply voltage  
1.71  
3.6  
V
IDDOSC  
Supply current — low-power mode (HGO=0)  
1
• 32 kHz  
500  
200  
300  
950  
1.2  
nA  
μA  
μA  
μA  
mA  
mA  
• 4 MHz  
• 8 MHz (RANGE=01)  
• 16 MHz  
• 24 MHz  
• 32 MHz  
1.5  
IDDOSC  
Supply current — high-gain mode (HGO=1)  
1
• 32 kHz  
25  
400  
500  
2.5  
3
μA  
μA  
• 4 MHz  
• 8 MHz (RANGE=01)  
• 16 MHz  
μA  
mA  
mA  
mA  
• 24 MHz  
• 32 MHz  
4
Table continues on the next page...  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
28  
NXP Semiconductors  
 
 
 
 
Peripheral operating requirements and behaviors  
Table 19. Oscillator DC electrical specifications (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
2, 3  
Cx  
Cy  
RF  
EXTAL load capacitance  
XTAL load capacitance  
2, 3  
Feedback resistor — low-frequency, low-power  
mode (HGO=0)  
MΩ  
MΩ  
MΩ  
MΩ  
kΩ  
2, 4  
Feedback resistor — low-frequency, high-gain  
mode (HGO=1)  
10  
Feedback resistor — high-frequency, low-power  
mode (HGO=0)  
Feedback resistor — high-frequency, high-gain  
mode (HGO=1)  
1
RS  
Series resistor — low-frequency, low-power  
mode (HGO=0)  
Series resistor — low-frequency, high-gain  
mode (HGO=1)  
200  
kΩ  
Series resistor — high-frequency, low-power  
mode (HGO=0)  
kΩ  
Series resistor — high-frequency, high-gain  
mode (HGO=1)  
0
kΩ  
V
5
Vpp  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — low-frequency, low-power mode  
(HGO=0)  
0.6  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — low-frequency, high-gain mode  
(HGO=1)  
VDD  
0.6  
V
V
V
Peak-to-peak amplitude of oscillation (oscillator  
mode) — high-frequency, low-power mode  
(HGO=0)  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — high-frequency, high-gain mode  
(HGO=1)  
VDD  
1. VDD=3.3 V, Temperature =25 °C  
2. See crystal or resonator manufacturer's recommendation  
3. Cx and Cy can be provided by using either integrated capacitors or external components.  
4. When low-power mode is selected, RF is integrated and must not be attached externally.  
5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to  
any other device.  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
29  
NXP Semiconductors  
 
 
 
 
 
Peripheral operating requirements and behaviors  
3.3.3.2 Oscillator frequency specifications  
Table 20. Oscillator frequency specifications  
Symbol Description  
fosc_lo Oscillator crystal or resonator frequency — low-  
frequency mode (MCG_C2[RANGE]=00)  
Min.  
Typ.  
Max.  
Unit  
Notes  
32  
40  
kHz  
fosc_hi_1 Oscillator crystal or resonator frequency — high-  
frequency mode (low range)  
3
8
8
MHz  
MHz  
(MCG_C2[RANGE]=01)  
fosc_hi_2 Oscillator crystal or resonator frequency — high  
frequency mode (high range)  
32  
(MCG_C2[RANGE]=1x)  
fec_extal Input clock frequency (external clock mode)  
tdc_extal Input clock duty cycle (external clock mode)  
40  
50  
50  
60  
MHz  
%
1, 2  
3, 4  
tcst  
Crystal startup time — 32 kHz low-frequency,  
low-power mode (HGO=0)  
750  
ms  
Crystal startup time — 32 kHz low-frequency,  
high-gain mode (HGO=1)  
250  
0.6  
ms  
ms  
Crystal startup time — 8 MHz high-frequency  
(MCG_C2[RANGE]=01), low-power mode  
(HGO=0)  
Crystal startup time — 8 MHz high-frequency  
(MCG_C2[RANGE]=01), high-gain mode  
(HGO=1)  
1
ms  
1. Other frequency limits may apply when external clock is being used as a reference for the FLL  
2. When transitioning from FEI or FBI to FBE mode, restrict the frequency of the input clock so that, when it is divided by  
FRDIV, it remains within the limits of the DCO input clock frequency.  
3. Proper PC board layout procedures must be followed to achieve specifications.  
4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S  
register being set.  
NOTE  
The 32 kHz oscillator works in low power mode by default  
and cannot be moved into high power/gain mode.  
3.3.4 32 kHz oscillator electrical characteristics  
3.3.4.1 32 kHz oscillator DC electrical specifications  
Table 21. 32kHz oscillator DC electrical specifications  
Symbol  
VBAT  
RF  
Description  
Min.  
1.71  
Typ.  
Max.  
3.6  
Unit  
V
Supply voltage  
Internal feedback resistor  
100  
MΩ  
Table continues on the next page...  
30  
NXP Semiconductors  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
 
 
 
 
 
Peripheral operating requirements and behaviors  
Table 21. 32kHz oscillator DC electrical specifications (continued)  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
Cpara  
Parasitical capacitance of EXTAL32 and  
XTAL32  
5
7
pF  
1
Vpp  
Peak-to-peak amplitude of oscillation  
0.6  
V
1. When a crystal is being used with the 32 kHz oscillator, the EXTAL32 and XTAL32 pins should only be connected to  
required oscillator components and must not be connected to any other devices.  
3.3.4.2 32 kHz oscillator frequency specifications  
Table 22. 32 kHz oscillator frequency specifications  
Symbol Description  
Min.  
Typ.  
32.768  
1000  
32.768  
Max.  
Unit  
kHz  
ms  
Notes  
fosc_lo  
tstart  
Oscillator crystal  
Crystal start-up time  
1
2
fec_extal32 Externally provided input clock frequency  
vec_extal32 Externally provided input clock amplitude  
kHz  
mV  
700  
VBAT  
2, 3  
1. Proper PC board layout procedures must be followed to achieve specifications.  
2. This specification is for an externally supplied clock driven to EXTAL32 and does not apply to any other clock input.  
The oscillator remains enabled and XTAL32 must be left unconnected.  
3. The parameter specified is a peak-to-peak value and VIH and VIL specifications do not apply. The voltage of the  
applied clock must be within the range of VSS to VBAT  
.
3.4 Memories and memory interfaces  
3.4.1 Flash (FTFE) electrical specifications  
This section describes the electrical characteristics of the FTFE module.  
3.4.1.1 Flash timing specifications — program and erase  
The following specifications represent the amount of time the internal charge pumps  
are active and do not include command overhead.  
Table 23. NVM program/erase timing specifications  
Symbol Description  
Min.  
Typ.  
7.5  
Max.  
18  
Unit  
μs  
Notes  
thvpgm8 Program Phrase high-voltage time  
thversscr Erase Flash Sector high-voltage time  
thversblk128k Erase Flash Block high-voltage time for 128 KB  
thversblk512k Erase Flash Block high-voltage time for 512 KB  
13  
113  
904  
3616  
ms  
ms  
ms  
1
1
1
104  
416  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
31  
NXP Semiconductors  
 
 
 
 
 
 
Peripheral operating requirements and behaviors  
1. Maximum time based on expectations at cycling end-of-life.  
3.4.1.2 Flash timing specifications — commands  
Table 24. Flash command timing specifications  
Symbol Description  
Read 1s Block execution time  
Min.  
Typ.  
Max.  
Unit  
Notes  
trd1blk128k  
trd1blk512k  
• 128 KB data flash  
0.5  
1.8  
ms  
ms  
• 512 KB program flash  
trd1sec4k Read 1s Section execution time (4 KB flash)  
90  
100  
95  
μs  
μs  
μs  
μs  
1
1
1
tpgmchk  
trdrsrc  
Program Check execution time  
Read Resource execution time  
Program Phrase execution time  
Erase Flash Block execution time  
• 128 KB data flash  
40  
tpgm8  
150  
2
tersblk128k  
tersblk512k  
110  
435  
925  
ms  
ms  
• 512 KB program flash  
3700  
tersscr  
Erase Flash Sector execution time  
15  
5
115  
ms  
ms  
2
tpgmsec1k Program Section execution time (1KB flash)  
Read 1s All Blocks execution time  
trd1allx  
trd1alln  
• FlexNVM devices  
2.2  
3.4  
ms  
ms  
• Program flash only devices  
trdonce  
Read Once execution time  
70  
30  
μs  
μs  
ms  
μs  
1
tpgmonce Program Once execution time  
tersall  
Erase All Blocks execution time  
Verify Backdoor Access Key execution time  
Swap Control execution time  
• control code 0x01  
870  
7400  
30  
2
1
tvfykey  
tswapx01  
tswapx02  
tswapx04  
tswapx08  
200  
70  
70  
150  
150  
30  
μs  
μs  
μs  
μs  
• control code 0x02  
• control code 0x04  
• control code 0x08  
Program Partition for EEPROM execution time  
• 32 KB FlexNVM  
tpgmpart32k  
tpgmpart128k  
70  
75  
ms  
ms  
• 128 KB FlexNVM  
Set FlexRAM Function execution time:  
• Control Code 0xFF  
tsetramff  
tsetram32k  
tsetram64k  
tsetram128k  
70  
0.8  
1.3  
2.4  
μs  
ms  
ms  
ms  
• 32 KB EEPROM backup  
• 64 KB EEPROM backup  
• 128 KB EEPROM backup  
1.2  
1.9  
3.1  
Table continues on the next page...  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
32  
NXP Semiconductors  
 
Peripheral operating requirements and behaviors  
Table 24. Flash command timing specifications (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
teewr8bers Byte-write to erased FlexRAM location  
execution time  
175  
275  
μs  
3
Byte-write to FlexRAM execution time:  
teewr8b32k  
teewr8b64k  
teewr8b128k  
• 32 KB EEPROM backup  
• 64 KB EEPROM backup  
• 128 KB EEPROM backup  
385  
475  
650  
1700  
2000  
2350  
μs  
μs  
μs  
teewr16bers 16-bit write to erased FlexRAM location  
execution time  
175  
275  
μs  
16-bit write to FlexRAM execution time:  
teewr16b32k  
teewr16b64k  
teewr16b128k  
• 32 KB EEPROM backup  
• 64 KB EEPROM backup  
• 128 KB EEPROM backup  
385  
475  
650  
1700  
2000  
2350  
μs  
μs  
μs  
teewr32bers 32-bit write to erased FlexRAM location  
execution time  
360  
550  
μs  
32-bit write to FlexRAM execution time:  
teewr32b32k  
teewr32b64k  
teewr32b128k  
• 32 KB EEPROM backup  
• 64 KB EEPROM backup  
• 128 KB EEPROM backup  
630  
810  
2000  
2250  
2650  
μs  
μs  
μs  
1200  
1. Assumes 25MHz or greater flash clock frequency.  
2. Maximum times for erase parameters based on expectations at cycling end-of-life.  
3. For byte-writes to an erased FlexRAM location, the aligned word containing the byte must be erased.  
3.4.1.3 Flash high voltage current behaviors  
Table 25. Flash high voltage current behaviors  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
IDD_PGM  
Average current adder during high voltage flash  
programming operation  
3.5  
7.5  
mA  
IDD_ERS  
Average current adder during high voltage flash  
erase operation  
1.5  
4.0  
mA  
3.4.1.4 Reliability specifications  
Table 26. NVM reliability specifications  
Symbol Description  
Min.  
Program Flash  
Typ.1  
Max.  
Unit  
Notes  
tnvmretp10k Data retention after up to 10 K cycles  
5
50  
years  
Table continues on the next page...  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
33  
NXP Semiconductors  
 
 
 
Peripheral operating requirements and behaviors  
Table 26. NVM reliability specifications (continued)  
Symbol Description  
Min.  
20  
Typ.1  
Max.  
Unit  
years  
cycles  
Notes  
tnvmretp1k Data retention after up to 1 K cycles  
nnvmcycp Cycling endurance  
100  
10 K  
50 K  
2
Data Flash  
tnvmretd10k Data retention after up to 10 K cycles  
tnvmretd1k Data retention after up to 1 K cycles  
nnvmcycd Cycling endurance  
5
50  
years  
years  
cycles  
20  
100  
50 K  
10 K  
2
FlexRAM as EEPROM  
tnvmretee100 Data retention up to 100% of write endurance  
tnvmretee10 Data retention up to 10% of write endurance  
nnvmcycee Cycling endurance for EEPROM backup  
Write endurance  
5
50  
years  
years  
cycles  
20  
100  
50 K  
20 K  
2
3
nnvmwree16  
nnvmwree128  
nnvmwree512  
nnvmwree2k  
nnvmwree4k  
• EEPROM backup to FlexRAM ratio = 16  
• EEPROM backup to FlexRAM ratio = 128  
• EEPROM backup to FlexRAM ratio = 512  
• EEPROM backup to FlexRAM ratio = 2,048  
• EEPROM backup to FlexRAM ratio = 4,096  
140 K  
1.26 M  
5 M  
400 K  
3.2 M  
12.8 M  
50 M  
writes  
writes  
writes  
writes  
writes  
20 M  
40 M  
100 M  
1. Typical data retention values are based on measured response accelerated at high temperature and derated to a  
constant 25°C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in  
Engineering Bulletin EB619.  
2. Cycling endurance represents number of program/erase cycles at -40°C ≤ Tj ≤ 125°C.  
3. Write endurance represents the number of writes to each FlexRAM location at -40°C ≤Tj ≤ 125°C influenced by the  
cycling endurance of the FlexNVM and the allocated EEPROM backup per subsystem. Minimum and typical values  
assume all 16-bit or 32-bit writes to FlexRAM; all 8-bit writes result in 50% less endurance.  
3.4.1.5 Write endurance to FlexRAM for EEPROM  
When the FlexNVM partition code is not set to full data flash, the EEPROM data set  
size can be set to any of several non-zero values.  
The bytes not assigned to data flash via the FlexNVM partition code are used by the  
FTFE to obtain an effective endurance increase for the EEPROM data. The built-in  
EEPROM record management system raises the number of program/erase cycles that  
can be attained prior to device wear-out by cycling the EEPROM data through a larger  
EEPROM NVM storage space.  
While different partitions of the FlexNVM are available, the intention is that a single  
choice for the FlexNVM partition code and EEPROM data set size is used throughout  
the entire lifetime of a given application. The EEPROM endurance equation and graph  
shown below assume that only one configuration is ever used.  
34  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
NXP Semiconductors  
 
 
 
Peripheral operating requirements and behaviors  
EEPROM – 2 × EEESPLIT × EEESIZE  
Writes_subsystem =  
× Write_efficiency × nnvmcycee  
EEESPLIT × EEESIZE  
where  
• Writes_subsystem — minimum number of writes to each FlexRAM location for  
subsystem (each subsystem can have different endurance)  
• EEPROM — allocated FlexNVM for each EEPROM subsystem based on  
DEPART; entered with the Program Partition command  
• EEESPLIT — FlexRAM split factor for subsystem; entered with the Program  
Partition command  
• EEESIZE — allocated FlexRAM based on DEPART; entered with the Program  
Partition command  
• Write_efficiency —  
• 0.25 for 8-bit writes to FlexRAM  
• 0.50 for 16-bit or 32-bit writes to FlexRAM  
• nnvmcycee — EEPROM-backup cycling endurance  
16/32-bit  
8-bit  
Ratio of EEPROM Backup to FlexRAM  
Figure 11. EEPROM backup writes to FlexRAM  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
35  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
3.4.2 EzPort switching specifications  
Table 27. EzPort switching specifications  
Num  
Description  
Min.  
1.71  
Max.  
3.6  
Unit  
V
Operating voltage  
EP1  
EZP_CK frequency of operation (all commands except  
READ)  
fSYS/2  
MHz  
EP1a  
EP2  
EP3  
EP4  
EP5  
EP6  
EP7  
EP8  
EP9  
EZP_CK frequency of operation (READ command)  
EZP_CS negation to next EZP_CS assertion  
EZP_CS input valid to EZP_CK high (setup)  
EZP_CK high to EZP_CS input invalid (hold)  
EZP_D input valid to EZP_CK high (setup)  
EZP_CK high to EZP_D input invalid (hold)  
EZP_CK low to EZP_Q output valid  
fSYS/8  
MHz  
ns  
2 x tEZP_CK  
5
5
ns  
ns  
2
ns  
5
ns  
0
18  
ns  
EZP_CK low to EZP_Q output invalid (hold)  
EZP_CS negation to EZP_Q tri-state  
ns  
12  
ns  
EZP_CK  
EP2  
EP3  
EP4  
EZP_CS  
EP9  
EP8  
EP7  
EZP_Q (output)  
EZP_D (input)  
EP5  
EP6  
Figure 12. EzPort Timing Diagram  
36  
NXP Semiconductors  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
 
 
Peripheral operating requirements and behaviors  
3.4.3 Flexbus switching specifications  
All processor bus timings are synchronous; input setup/hold and output delay are  
given in respect to the rising edge of a reference clock, FB_CLK. The FB_CLK  
frequency may be the same as the internal system bus frequency or an integer divider  
of that frequency.  
The following timing numbers indicate when data is latched or driven onto the  
external bus, relative to the Flexbus output clock (FB_CLK). All other timing  
relationships can be derived from these values.  
Table 28. Flexbus limited voltage range switching specifications  
Num  
Description  
Min.  
2.7  
Max.  
3.6  
Unit  
V
Notes  
Operating voltage  
Frequency of operation  
Clock period  
FB_CLK  
MHz  
ns  
FB1  
FB2  
FB3  
FB4  
FB5  
20  
Address, data, and control output valid  
Address, data, and control output hold  
Data and FB_TA input setup  
Data and FB_TA input hold  
11.5  
ns  
1
1
2
2
0.5  
8.5  
0.5  
ns  
ns  
ns  
1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W,FB_TBST, FB_TSIZ[1:0],  
FB_ALE, and FB_TS.  
2. Specification is valid for all FB_AD[31:0] and FB_TA.  
Table 29. Flexbus full voltage range switching specifications  
Num  
Description  
Min.  
1.71  
Max.  
3.6  
Unit  
V
Notes  
Operating voltage  
Frequency of operation  
Clock period  
FB_CLK  
MHz  
ns  
FB1  
FB2  
FB3  
FB4  
FB5  
1/FB_CLK  
Address, data, and control output valid  
Address, data, and control output hold  
Data and FB_TA input setup  
Data and FB_TA input hold  
13.5  
ns  
1
1
2
2
0
ns  
15.5  
0.5  
ns  
ns  
1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W,FB_TBST, FB_TSIZ[1:0],  
FB_ALE, and FB_TS.  
2. Specification is valid for all FB_AD[31:0] and FB_TA.  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
37  
NXP Semiconductors  
 
 
 
 
Peripheral operating requirements and behaviors  
Read Timing Parameters  
S0  
S1  
S2  
S3  
S0  
FB1  
FB_CLK  
FB_A[Y]  
FB_D[X]  
FB_RW  
FB5  
FB3  
Address  
FB4  
FB2  
Address  
Data  
FB_TS  
FB_ALE  
FB_CSn  
FB_OEn  
FB_BEn  
FB_TA  
AA=1  
AA=0  
FB4  
FB5  
AA=1  
AA=0  
FB_TSIZ[1:0]  
TSIZ  
S1  
S0  
S2  
S3  
S0  
Figure 13. FlexBus read timing diagram  
38  
NXP Semiconductors  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
Peripheral operating requirements and behaviors  
Write Timing Parameters  
FB1  
FB_CLK  
FB_A[Y]  
FB_D[X]  
FB_RW  
FB2  
FB3  
Address  
Address  
Data  
FB_TS  
FB_ALE  
FB_CSn  
FB_OEn  
FB_BEn  
FB_TA  
AA=1  
AA=0  
FB4  
FB5  
AA=1  
AA=0  
FB_TSIZ[1:0]  
TSIZ  
Figure 14. FlexBus write timing diagram  
3.5 Security and integrity modules  
There are no specifications necessary for the device's security and integrity modules.  
3.6 Analog  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
39  
NXP Semiconductors  
 
 
Peripheral operating requirements and behaviors  
3.6.1 ADC electrical specifications  
The 16-bit accuracy specifications listed in Table 30 and Table 31 are achievable on the  
differential pins ADCx_DP0, ADCx_DM0.  
All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy  
specifications.  
3.6.1.1 16-bit ADC operating conditions  
Table 30. 16-bit ADC operating conditions  
Symbol Description  
Conditions  
Min.  
1.71  
-100  
-100  
1.13  
Typ.1  
Max.  
3.6  
Unit  
V
Notes  
VDDA  
ΔVDDA  
ΔVSSA  
VREFH  
Supply voltage  
Supply voltage  
Absolute  
Delta to VDD (VDD – VDDA  
)
0
+100  
+100  
VDDA  
mV  
mV  
V
2
2
Ground voltage Delta to VSS (VSS – VSSA  
)
0
ADC reference  
voltage high  
VDDA  
VREFL  
ADC reference  
voltage low  
VSSA  
VSSA  
VSSA  
V
VADIN  
CADIN  
Input voltage  
VREFL  
8
VREFH  
10  
V
Input  
• 16-bit mode  
pF  
capacitance  
• 8-bit / 10-bit / 12-bit  
modes  
4
5
RADIN  
RAS  
Input series  
resistance  
2
5
5
kΩ  
kΩ  
Analog source  
resistance  
(external)  
13-bit / 12-bit modes  
fADCK < 4 MHz  
3
fADCK  
fADCK  
Crate  
ADC conversion ≤ 13-bit mode  
clock frequency  
1.0  
2.0  
18.0  
12.0  
MHz  
MHz  
4
4
5
ADC conversion 16-bit mode  
clock frequency  
ADC conversion ≤ 13-bit modes  
rate  
No ADC hardware averaging  
20.000  
37.037  
818.330  
461.467  
ksps  
ksps  
Continuous conversions  
enabled, subsequent  
conversion time  
Crate  
ADC conversion 16-bit mode  
5
rate  
No ADC hardware averaging  
Continuous conversions  
enabled, subsequent  
conversion time  
40  
NXP Semiconductors  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
 
 
Peripheral operating requirements and behaviors  
1. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 1.0 MHz, unless otherwise stated. Typical values are for  
reference only, and are not tested in production.  
2. DC potential difference.  
3. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as  
possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The  
RAS/CAS time constant should be kept to < 1 ns.  
4. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.  
5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.  
SIMPLIFIED  
INPUT PIN EQUIVALENT  
ZADIN  
CIRCUIT  
SIMPLIFIED  
CHANNEL SELECT  
CIRCUIT  
Pad  
ZAS  
leakage  
due to  
input  
ADC SAR  
ENGINE  
RAS  
RADIN  
protection  
VADIN  
CAS  
VAS  
RADIN  
RADIN  
RADIN  
INPUT PIN  
INPUT PIN  
INPUT PIN  
CADIN  
Figure 15. ADC input impedance equivalency diagram  
3.6.1.2 16-bit ADC electrical characteristics  
Table 31. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA  
)
Symbol Description  
Conditions1  
Min.  
0.215  
1.2  
Typ.2  
Max.  
1.7  
3.9  
6.1  
7.3  
9.5  
Unit  
Notes  
IDDA_ADC Supply current  
mA  
3
ADC asynchronous  
clock source  
• ADLPC = 1, ADHSC = 0  
• ADLPC = 1, ADHSC = 1  
• ADLPC = 0, ADHSC = 0  
• ADLPC = 0, ADHSC = 1  
2.4  
4.0  
5.2  
6.2  
MHz  
MHz  
MHz  
MHz  
tADACK = 1/  
fADACK  
2.4  
fADACK  
3.0  
4.4  
Sample Time  
See Reference Manual chapter for sample times  
Table continues on the next page...  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
41  
NXP Semiconductors  
 
 
 
 
 
 
Peripheral operating requirements and behaviors  
Table 31. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)  
Symbol Description  
Conditions1  
Min.  
Typ.2  
Max.  
6.8  
Unit  
Notes  
TUE  
Total unadjusted  
error  
• 12-bit modes  
• <12-bit modes  
4
LSB4  
5
1.4  
2.1  
DNL  
Differential non-  
linearity  
• 12-bit modes  
• <12-bit modes  
0.7  
0.2  
–1.1 to  
+1.9  
LSB4  
LSB4  
5
–0.3 to  
0.5  
INL  
Integral non-linearity  
• 12-bit modes  
• <12-bit modes  
1.0  
0.5  
–2.7 to  
+1.9  
5
–0.7 to  
+0.5  
5
EFS  
EQ  
Full-scale error  
• 12-bit modes  
• <12-bit modes  
• 16-bit modes  
• ≤13-bit modes  
–4  
–1.4  
–1 to 0  
–5.4  
–1.8  
LSB4  
LSB4  
VADIN = VDDA  
Quantization error  
0.5  
ENOB Effective number of 16-bit differential mode  
6
bits  
12.8  
11.9  
14.5  
13.8  
bits  
bits  
• Avg = 32  
• Avg = 4  
16-bit single-ended mode  
• Avg = 32  
12.2  
11.4  
13.9  
13.1  
bits  
bits  
dB  
• Avg = 4  
Signal-to-noise plus See ENOB  
SINAD  
6.02 × ENOB + 1.76  
distortion  
THD  
Total harmonic  
distortion  
16-bit differential mode  
• Avg = 32  
7
7
dB  
dB  
-94  
-85  
16-bit single-ended mode  
• Avg = 32  
SFDR Spurious free  
dynamic range  
16-bit differential mode  
• Avg = 32  
dB  
dB  
82  
78  
95  
90  
16-bit single-ended mode  
• Avg = 32  
EIL  
Input leakage error  
IIn × RAS  
mV  
IIn = leakage  
current  
(refer to the  
MCU's  
voltage and  
Table continues on the next page...  
42  
NXP Semiconductors  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
Peripheral operating requirements and behaviors  
Table 31. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)  
Symbol Description  
Conditions1  
Min.  
Typ.2  
Max.  
Unit  
Notes  
current  
operating  
ratings)  
Temp sensor slope Across the full temperature  
range of the device  
1.55  
706  
1.62  
716  
1.69  
726  
mV/°C  
mV  
8
VTEMP25 Temp sensor  
voltage  
25 °C  
8
1. All accuracy numbers assume the ADC is calibrated with VREFH = VDDA  
2. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 2.0 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low  
power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with  
1 MHz ADC conversion clock speed.  
4. 1 LSB = (VREFH - VREFL)/2N  
5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)  
6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.  
7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.  
8. ADC conversion clock < 3 MHz  
Typical ADC 16-bit Differential ENOB vs ADC Clock  
100Hz, 90% FS Sine Input  
15.00  
14.70  
14.40  
14.10  
13.80  
13.50  
13.20  
12.90  
12.60  
Hardware Averaging Disabled  
Averaging of 4 samples  
12.30  
12.00  
Averaging of 8 samples  
Averaging of 32 samples  
1
2
3
4
5
6
7
8
9
10  
11  
12  
ADC Clock Frequency (MHz)  
Figure 16. Typical ENOB vs. ADC_CLK for 16-bit differential mode  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
43  
NXP Semiconductors  
 
 
 
 
 
 
 
 
Peripheral operating requirements and behaviors  
Typical ADC 16-bit Single-Ended ENOB vs ADC Clock  
100Hz, 90% FS Sine Input  
14.00  
13.75  
13.50  
13.25  
13.00  
12.75  
12.50  
12.25  
12.00  
11.75  
11.50  
11.25  
11.00  
Averaging of 4 samples  
Averaging of 32 samples  
1
2
3
4
5
6
7
8
9
10  
11  
12  
ADC Clock Frequency (MHz)  
Figure 17. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode  
3.6.2 CMP and 6-bit DAC electrical specifications  
Table 32. Comparator and 6-bit DAC electrical specifications  
Symbol  
VDD  
Description  
Min.  
1.71  
Typ.  
Max.  
3.6  
Unit  
V
Supply voltage  
IDDHS  
IDDLS  
VAIN  
Supply current, High-speed mode (EN=1, PMODE=1)  
Supply current, low-speed mode (EN=1, PMODE=0)  
Analog input voltage  
200  
20  
μA  
μA  
V
VSS – 0.3  
VDD  
20  
VAIO  
Analog input offset voltage  
Analog comparator hysteresis1  
• CR0[HYSTCTR] = 00  
mV  
VH  
5
mV  
mV  
mV  
mV  
10  
20  
30  
• CR0[HYSTCTR] = 01  
• CR0[HYSTCTR] = 10  
• CR0[HYSTCTR] = 11  
VCMPOh  
VCMPOl  
tDHS  
Output high  
VDD – 0.5  
50  
250  
7
0.5  
200  
600  
40  
V
V
Output low  
Propagation delay, high-speed mode (EN=1, PMODE=1)  
Propagation delay, low-speed mode (EN=1, PMODE=0)  
Analog comparator initialization delay2  
6-bit DAC current adder (enabled)  
6-bit DAC integral non-linearity  
20  
ns  
tDLS  
80  
ns  
μs  
IDAC6b  
INL  
μA  
LSB3  
LSB  
–0.5  
–0.3  
0.5  
0.3  
DNL  
6-bit DAC differential non-linearity  
44  
NXP Semiconductors  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
 
Peripheral operating requirements and behaviors  
1. Typical hysteresis is measured with input voltage range limited to 0.6 to VDD–0.6 V.  
2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to  
CMP_DACCR[DACEN], CMP_DACCR[VRSEL], CMP_DACCR[VOSEL], CMP_MUXCR[PSEL], and  
CMP_MUXCR[MSEL]) and the comparator output settling to a stable level.  
3. 1 LSB = Vreference/64  
0.08  
0.07  
0.06  
HYSTCTR  
Setting  
0.05  
0.04  
0.03  
00  
01  
10  
11  
0.02  
0.01  
0
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
Vin level (V)  
Figure 18. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0)  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
45  
NXP Semiconductors  
 
 
 
Peripheral operating requirements and behaviors  
0.18  
0.16  
0.14  
0.12  
HYSTCTR  
Setting  
0.1  
00  
01  
10  
11  
0.08  
0.06  
0.04  
0.02  
0
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
Vin level (V)  
Figure 19. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1)  
3.6.3 12-bit DAC electrical characteristics  
3.6.3.1 12-bit DAC operating requirements  
Table 33. 12-bit DAC operating requirements  
Symbol  
VDDA  
VDACR  
CL  
Desciption  
Min.  
1.71  
1.13  
Max.  
3.6  
3.6  
100  
1
Unit  
V
Notes  
Supply voltage  
Reference voltage  
Output load capacitance  
Output load current  
V
1
2
pF  
mA  
IL  
1. The DAC reference can be selected to be VDDA or VREFH  
.
2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC.  
46  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
NXP Semiconductors  
 
 
 
Peripheral operating requirements and behaviors  
3.6.3.2 12-bit DAC operating behaviors  
Table 34. 12-bit DAC operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
150  
Unit  
Notes  
IDDA_DACL Supply current — low-power mode  
μA  
P
IDDA_DACH Supply current — high-speed mode  
100  
15  
700  
200  
30  
μA  
μs  
μs  
μs  
P
tDACLP Full-scale settling time (0x080 to 0xF7F) —  
low-power mode  
1
1
1
tDACHP Full-scale settling time (0x080 to 0xF7F) —  
high-power mode  
tCCDACLP Code-to-code settling time (0xBF8 to  
0xC08) — low-power mode and high-  
speed mode  
0.7  
1
Vdacoutl DAC output voltage range low — high-  
speed mode, no load, DAC set to 0x000  
100  
mV  
mV  
Vdacouth DAC output voltage range high — high-  
speed mode, no load, DAC set to 0xFFF  
VDACR  
−100  
VDACR  
INL  
DNL  
DNL  
Integral non-linearity error — high speed  
mode  
8
1
1
LSB  
LSB  
LSB  
2
3
4
Differential non-linearity error — VDACR > 2  
V
Differential non-linearity error — VDACR  
VREF_OUT  
=
VOFFSET Offset error  
EG Gain error  
PSRR Power supply rejection ratio, VDDA ≥ 2.4 V  
60  
0.4  
0.1  
0.8  
0.6  
90  
%FSR  
%FSR  
dB  
5
5
TCO  
TGE  
AC  
Temperature coefficient offset voltage  
Temperature coefficient gain error  
Offset aging coefficient  
3.7  
μV/C  
%FSR/C  
μV/yr  
Ω
6
0.000421  
100  
250  
Rop  
SR  
Output resistance (load = 3 kΩ)  
Slew rate -80hF7Fh80h  
V/μs  
• High power (SPHP  
• Low power (SPLP  
)
1.2  
1.7  
)
0.05  
0.12  
CT  
Channel to channel cross talk  
3dB bandwidth  
-80  
dB  
BW  
kHz  
• High power (SPHP  
• Low power (SPLP  
)
550  
40  
)
1. Settling within 1 LSB  
2. The INL is measured for 0 + 100 mV to VDACR −100 mV  
3. The DNL is measured for 0 + 100 mV to VDACR −100 mV  
4. The DNL is measured for 0 + 100 mV to VDACR −100 mV with VDDA > 2.4 V  
5. Calculated by a best fit curve from VSS + 100 mV to VDACR − 100 mV  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
47  
NXP Semiconductors  
 
 
 
 
 
Peripheral operating requirements and behaviors  
6. VDDA = 3.0 V, reference select set for VDDA (DACx_CO:DACRFS = 1), high power mode (DACx_C0:LPEN = 0), DAC set  
to 0x800, temperature range is across the full range of the device  
8
6
4
2
0
-2  
-4  
-6  
-8  
0
500  
1000  
1500  
2000  
2500  
3000  
3500  
4000  
Digital Code  
Figure 20. Typical INL error vs. digital code  
48  
NXP Semiconductors  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
 
Peripheral operating requirements and behaviors  
1.499  
1.4985  
1.498  
1.4975  
1.497  
1.4965  
1.496  
55  
85  
25  
105  
125  
-40  
Temperature °C  
Figure 21. Offset at half scale vs. temperature  
3.6.4 Voltage reference electrical specifications  
Table 35. VREF full-range operating requirements  
Symbol  
VDDA  
TA  
Description  
Supply voltage  
Temperature  
Min.  
Max.  
Unit  
Notes  
1.71  
3.6  
V
Operating temperature  
range of the device  
°C  
CL  
Output load capacitance  
100  
nF  
1, 2  
1. CL must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external  
reference.  
2. The load capacitance should not exceed +/-25% of the nominal specified CL value over the operating temperature  
range of the device.  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
49  
NXP Semiconductors  
 
 
 
Peripheral operating requirements and behaviors  
Table 36. VREF full-range operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
Vout  
Voltage reference output with factory trim at  
1.192  
1.195  
1.198  
V
1
nominal VDDA and temperature= 25 °C  
Vout  
Voltage reference output with user trim at  
nominal VDDA and temperature= 25 °C  
1.1945  
1.195  
1.1955  
V
1
Vstep  
Vtdrift  
Voltage reference trim step  
0.5  
2
mV  
mV  
1
1
Temperature drift (Vmax -Vmin across the full  
temperature range)  
15  
Ibg  
Ilp  
Bandgap only current  
60  
80  
µA  
uA  
mA  
µV  
1
1
Low-power buffer current  
High-power buffer current  
180  
480  
360  
960  
Ihp  
1
ΔVLOAD Load regulation  
• current = 1.0 mA  
1, 2  
200  
Tstup  
Buffer startup time  
100  
35  
µs  
1
Tchop_osc_st Internal bandgap start-up delay with chop  
ms  
oscillator enabled  
up  
Vvdrift  
Voltage drift (Vmax -Vmin across the full voltage  
range)  
0.5  
2
mV  
1. See the chip's Reference Manual for the appropriate settings of the VREF Status and Control register.  
2. Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load  
Table 37. VREF limited-range operating requirements  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
TA  
Temperature  
0
50  
°C  
Table 38. VREF limited-range operating behaviors  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
Vout  
Voltage reference output with factory trim  
1.173  
1.225  
V
3.7 Timers  
See General switching specifications.  
3.8 Communication interfaces  
50  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
NXP Semiconductors  
 
 
 
 
Peripheral operating requirements and behaviors  
3.8.1 Ethernet switching specifications  
The following timing specs are defined at the chip I/O pin and must be translated  
appropriately to arrive at timing specs/constraints for the physical interface.  
3.8.1.1 MII signal switching specifications  
The following timing specs meet the requirements for MII style interfaces for a range  
of transceiver devices.  
Table 39. MII signal switching specifications  
Symbol  
Description  
Min.  
Max.  
25  
Unit  
MHz  
RXCLK frequency  
RXCLK pulse width high  
MII1  
35%  
65%  
RXCLK  
period  
RXCLK  
period  
ns  
MII2  
RXCLK pulse width low  
35%  
65%  
MII3  
MII4  
RXD[3:0], RXDV, RXER to RXCLK setup  
RXCLK to RXD[3:0], RXDV, RXER hold  
TXCLK frequency  
5
5
ns  
25  
MHz  
MII5  
TXCLK pulse width high  
35%  
65%  
TXCLK  
period  
TXCLK  
period  
ns  
MII6  
TXCLK pulse width low  
35%  
65%  
MII7  
MII8  
TXCLK to TXD[3:0], TXEN, TXER invalid  
TXCLK to TXD[3:0], TXEN, TXER valid  
2
25  
ns  
MII6  
MII5  
MII7  
TXCLK (input)  
MII8  
Valid data  
TXD[n:0]  
TXEN  
Valid data  
Valid data  
TXER  
Figure 22. RMII/MII transmit signal timing diagram  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
51  
NXP Semiconductors  
 
Peripheral operating requirements and behaviors  
MII2  
MII3  
MII1  
MII4  
RXCLK (input)  
RXD[n:0]  
RXDV  
Valid data  
Valid data  
Valid data  
RXER  
Figure 23. RMII/MII receive signal timing diagram  
3.8.1.2 RMII signal switching specifications  
The following timing specs meet the requirements for RMII style interfaces for a range  
of transceiver devices.  
Table 40. RMII signal switching specifications  
Num  
Description  
Min.  
Max.  
50  
Unit  
EXTAL frequency (RMII input clock RMII_CLK)  
RMII_CLK pulse width high  
MHz  
RMII1  
35%  
65%  
RMII_CLK  
period  
RMII2  
RMII_CLK pulse width low  
35%  
65%  
RMII_CLK  
period  
RMII3  
RMII4  
RMII7  
RMII8  
RXD[1:0], CRS_DV, RXER to RMII_CLK setup  
RMII_CLK to RXD[1:0], CRS_DV, RXER hold  
RMII_CLK to TXD[1:0], TXEN invalid  
4
2
15  
ns  
ns  
ns  
ns  
4
RMII_CLK to TXD[1:0], TXEN valid  
3.8.1.3 MDIO serial management timing specifications  
Table 41. MDIO serial management channel signal timing  
Num  
E10  
E11  
E12  
E13  
E14  
E15  
Characteristic  
MDC cycle time  
Symbol  
Min  
400  
40  
Max  
Unit  
ns  
tMDC  
MDC pulse width  
60  
% tMDC  
ns  
MDC to MDIO output valid  
MDC to MDIO output invalid  
MDIO input to MDC setup  
MDIO input to MDC hold  
375  
25  
10  
0
ns  
ns  
ns  
52  
NXP Semiconductors  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
Peripheral operating requirements and behaviors  
E10  
E11  
MDC (Output)  
MDIO (Output)  
MDIO (Input)  
E11  
E12  
E13  
Valid Data  
E14  
E15  
Valid Data  
Figure 24. MDIO serial management channel timing diagram  
3.8.2 USB electrical specifications  
The USB electricals for the USB On-the-Go module conform to the standards  
documented by the Universal Serial Bus Implementers Forum. For the most up-to-  
date standards, visit usb.org.  
NOTE  
The MCGPLLCLK meets the USB jitter and signaling rate  
specifications for certification with the use of an external  
clock/crystal for both Device and Host modes.  
The MCGFLLCLK does not meet the USB jitter or  
signaling rate specifications for certification.  
The IRC48M meets the USB jitter and signaling rate  
specifications for certification in Device mode when the  
USB clock recovery mode is enabled. It does not meet the  
USB signaling rate specifications for certification in Host  
mode operation.  
3.8.3 USB DCD electrical specifications  
Table 42. USB0 DCD electrical specifications  
Symbol  
VDP_SRC USB_DP source voltage (up to 250 μA)  
VLGC Threshold voltage for logic high  
Description  
Min.  
0.5  
Typ.  
Max.  
0.7  
Unit  
V
0.8  
2.0  
V
Table continues on the next page...  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
53  
NXP Semiconductors  
 
 
Peripheral operating requirements and behaviors  
Table 42. USB0 DCD electrical specifications (continued)  
Symbol  
Description  
Min.  
7
Typ.  
10  
Max.  
13  
Unit  
μA  
μA  
kΩ  
V
IDP_SRC  
USB_DP source current  
IDM_SINK USB_DM sink current  
50  
100  
150  
24.8  
0.4  
RDM_DWN D- pulldown resistance for data pin contact detect  
VDAT_REF Data detect voltage  
14.25  
0.25  
0.33  
3.8.4 USB VREG electrical specifications  
Table 43. USB VREG electrical specifications  
Symbol Description  
Min.  
2.7  
Typ.1  
Max.  
5.5  
Unit  
Notes  
VREGIN Input supply voltage  
V
IDDon  
IDDstby  
IDDoff  
Quiescent current — Run mode, load current  
equal zero, input supply (VREGIN) > 3.6 V  
125  
186  
μA  
Quiescent current — Standby mode, load  
current equal zero  
1.1  
10  
μA  
Quiescent current — Shutdown mode  
650  
4
nA  
μA  
• VREGIN = 5.0 V and temperature=25 °C  
• Across operating voltage and temperature  
ILOADrun Maximum load current — Run mode  
ILOADstby Maximum load current — Standby mode  
120  
1
mA  
mA  
VReg33out Regulator output voltage — Input supply  
(VREGIN) > 3.6 V  
• Run mode  
3
3.3  
2.8  
3.6  
3.6  
3.6  
V
V
V
• Standby mode  
2.1  
2.1  
VReg33out Regulator output voltage — Input supply  
(VREGIN) < 3.6 V, pass-through mode  
2
COUT  
ESR  
External output capacitor  
1.76  
1
2.2  
8.16  
100  
μF  
External output capacitor equivalent series  
resistance  
mΩ  
ILIM  
Short circuit current  
290  
mA  
1. Typical values assume VREGIN = 5.0 V, Temp = 25 °C unless otherwise stated.  
2. Operating in pass-through mode: regulator output voltage equal to the input voltage minus a drop proportional to ILoad  
.
3.8.5 CAN switching specifications  
See General switching specifications.  
54  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
NXP Semiconductors  
 
 
 
 
Peripheral operating requirements and behaviors  
3.8.6 DSPI switching specifications (limited voltage range)  
The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with  
master and slave operations. Many of the transfer attributes are programmable. The  
tables below provide DSPI timing characteristics for classic SPI timing modes. Refer  
to the DSPI chapter of the Reference Manual for information on the modified transfer  
formats used for communicating with slower peripheral devices.  
Table 44. Master mode DSPI timing (limited voltage range)  
Num  
Description  
Min.  
2.7  
Max.  
3.6  
30  
Unit  
V
Notes  
Operating voltage  
Frequency of operation  
MHz  
ns  
DS1  
DS2  
DS3  
DSPI_SCK output cycle time  
DSPI_SCK output high/low time  
DSPI_PCSn valid to DSPI_SCK delay  
2 x tBUS  
(tSCK/2) − 2 (tSCK/2) + 2  
ns  
(tBUS x 2) −  
2
ns  
1
2
DS4  
DSPI_SCK to DSPI_PCSn invalid delay  
(tBUS x 2) −  
2
ns  
DS5  
DS6  
DS7  
DS8  
DSPI_SCK to DSPI_SOUT valid  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
−2  
15  
0
8.5  
ns  
ns  
ns  
ns  
1. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].  
2. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].  
DSPI_PCSn  
DS1  
DS3  
DS2  
DS4  
DSPI_SCK  
(CPOL=0)  
DS8  
DS7  
Data  
Last data  
First data  
DSPI_SIN  
DS5  
DS6  
First data  
Data  
Last data  
DSPI_SOUT  
Figure 25. DSPI classic SPI timing — master mode  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
55  
NXP Semiconductors  
 
 
 
Peripheral operating requirements and behaviors  
Table 45. Slave mode DSPI timing (limited voltage range)  
Num  
Description  
Min.  
Max.  
Unit  
V
Operating voltage  
2.7  
3.6  
Frequency of operation  
151  
MHz  
ns  
DS9  
DSPI_SCK input cycle time  
4 x tBUS  
DS10  
DS11  
DS12  
DS13  
DS14  
DS15  
DS16  
DSPI_SCK input high/low time  
(tSCK/2) − 2  
(tSCK/2) + 2  
ns  
DSPI_SCK to DSPI_SOUT valid  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
DSPI_SS active to DSPI_SOUT driven  
DSPI_SS inactive to DSPI_SOUT not driven  
0
10  
14  
14  
ns  
ns  
2
ns  
7
ns  
ns  
ns  
1. The maximum operating frequency is measured with non-continuous CS and SCK. When DSPI is configured with  
continuous CS and SCK, there is a constraint that SPI clock should not be greater than 1/6 of bus clock, for example,  
when bus clock is 60MHz, SPI clock should not be greater than 10MHz  
DSPI_SS  
DS10  
DS9  
DSPI_SCK  
(CPOL=0)  
DS15  
DS12  
DS16  
DS11  
First data  
DS14  
Last data  
DSPI_SOUT  
Data  
Data  
DS13  
First data  
Last data  
DSPI_SIN  
Figure 26. DSPI classic SPI timing — slave mode  
56  
NXP Semiconductors  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
 
 
Peripheral operating requirements and behaviors  
3.8.7 DSPI switching specifications (full voltage range)  
The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with  
master and slave operations. Many of the transfer attributes are programmable. The  
tables below provides DSPI timing characteristics for classic SPI timing modes. Refer  
to the DSPI chapter of the Reference Manual for information on the modified transfer  
formats used for communicating with slower peripheral devices.  
Table 46. Master mode DSPI timing (full voltage range)  
Num  
Description  
Min.  
1.71  
Max.  
3.6  
15  
Unit  
V
Notes  
Operating voltage  
1
Frequency of operation  
MHz  
ns  
DS1  
DS2  
DS3  
DSPI_SCK output cycle time  
DSPI_SCK output high/low time  
DSPI_PCSn valid to DSPI_SCK delay  
4 x tBUS  
(tSCK/2) - 4 (tSCK/2) + 4  
ns  
(tBUS x 2) −  
4
ns  
2
3
DS4  
DSPI_SCK to DSPI_PCSn invalid delay  
(tBUS x 2) −  
4
ns  
DS5  
DS6  
DS7  
DS8  
DSPI_SCK to DSPI_SOUT valid  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
-4.5  
21  
0
10  
ns  
ns  
ns  
ns  
1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage  
range the maximum frequency of operation is reduced.  
2. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].  
3. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].  
DSPI_PCSn  
DS1  
DS3  
DS2  
DS4  
DSPI_SCK  
(CPOL=0)  
DS8  
DS7  
Data  
Last data  
First data  
DSPI_SIN  
DS5  
DS6  
First data  
Data  
Last data  
DSPI_SOUT  
Figure 27. DSPI classic SPI timing — master mode  
Table 47. Slave mode DSPI timing (full voltage range)  
Num  
Description  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
3.6  
V
Table continues on the next page...  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
57  
NXP Semiconductors  
 
 
 
Peripheral operating requirements and behaviors  
Table 47. Slave mode DSPI timing (full voltage range) (continued)  
Num  
Description  
Min.  
Max.  
Unit  
MHz  
ns  
Frequency of operation  
7.5  
DS9  
DSPI_SCK input cycle time  
8 x tBUS  
DS10  
DS11  
DS12  
DS13  
DS14  
DS15  
DS16  
DSPI_SCK input high/low time  
(tSCK/2) - 4  
(tSCK/2) + 4  
ns  
DSPI_SCK to DSPI_SOUT valid  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
DSPI_SS active to DSPI_SOUT driven  
DSPI_SS inactive to DSPI_SOUT not driven  
0
23.5  
ns  
ns  
4
ns  
7
ns  
21  
19  
ns  
ns  
DSPI_SS  
DS10  
DS9  
DSPI_SCK  
(CPOL=0)  
DS15  
DS12  
DS16  
DS11  
First data  
DS14  
Last data  
DSPI_SOUT  
Data  
Data  
DS13  
First data  
Last data  
DSPI_SIN  
Figure 28. DSPI classic SPI timing — slave mode  
3.8.8 Inter-Integrated Circuit Interface (I2C) timing  
Table 48. I 2C timing  
Characteristic  
Symbol  
Standard Mode  
Minimum Maximum  
100  
Fast Mode  
Unit  
Minimum  
Maximum  
4001  
SCL Clock Frequency  
fSCL  
0
0
kHz  
µs  
Hold time (repeated) START condition.  
After this period, the first clock pulse is  
generated.  
tHD; STA  
4
0.6  
LOW period of the SCL clock  
HIGH period of the SCL clock  
tLOW  
tHIGH  
4.7  
4
1.25  
0.6  
µs  
µs  
µs  
Set-up time for a repeated START  
condition  
tSU; STA  
4.7  
0.6  
Data hold time for I2C bus devices  
tHD; DAT  
02  
3.453  
04  
0.92  
µs  
Table continues on the next page...  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
58  
NXP Semiconductors  
 
Peripheral operating requirements and behaviors  
Table 48. I 2C timing (continued)  
Characteristic  
Symbol  
Standard Mode  
Fast Mode  
Unit  
Minimum Maximum  
Minimum  
Maximum  
Data set-up time  
tSU; DAT  
2505  
1000  
300  
1003, 6  
20 +0.1Cb  
20 +0.1Cb  
0.6  
300  
300  
ns  
ns  
ns  
µs  
µs  
7
6
Rise time of SDA and SCL signals  
Fall time of SDA and SCL signals  
Set-up time for STOP condition  
tr  
tf  
tSU; STO  
tBUF  
4
Bus free time between STOP and  
START condition  
4.7  
1.3  
Pulse width of spikes that must be  
suppressed by the input filter  
tSP  
N/A  
N/A  
0
50  
ns  
1. The maximum SCL Clock Frequency in Fast mode with maximum bus loading can only be achieved when using the  
High drive pins across the full voltage range and when using the Normal drive pins and VDD ≥ 2.7 V.  
2. The master mode I2C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves  
acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and  
SCL lines.  
3. The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal.  
4. Input signal Slew = 10 ns and Output Load = 50 pF  
5. Set-up time in slave-transmitter mode is 1 IPBus clock period, if the TX FIFO is empty.  
6. A Fast mode I2C bus device can be used in a Standard mode I2C bus system, but the requirement tSU; DAT ≥ 250 ns  
must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If  
such a device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line trmax  
+ tSU; DAT = 1000 + 250 = 1250 ns (according to the Standard mode I2C bus specification) before the SCL line is  
released.  
7. Cb = total capacitance of the one bus line in pF.  
Table 49. I 2C 1 Mbps timing  
Characteristic  
Symbol  
fSCL  
Minimum  
Maximum  
Unit  
MHz  
µs  
SCL Clock Frequency  
0
11  
Hold time (repeated) START condition. After this  
period, the first clock pulse is generated.  
tHD; STA  
0.26  
LOW period of the SCL clock  
HIGH period of the SCL clock  
Set-up time for a repeated START condition  
Data hold time for I2C bus devices  
Data set-up time  
tLOW  
tHIGH  
0.5  
0.26  
0.26  
0
µs  
µs  
µs  
µs  
ns  
ns  
ns  
µs  
µs  
tSU; STA  
tHD; DAT  
tSU; DAT  
tr  
50  
, 2  
Rise time of SDA and SCL signals  
Fall time of SDA and SCL signals  
Set-up time for STOP condition  
20 +0.1Cb  
20 +0.1Cb  
0.26  
120  
120  
2
tf  
tSU; STO  
tBUF  
Bus free time between STOP and START  
condition  
0.5  
Pulse width of spikes that must be suppressed by  
the input filter  
tSP  
0
50  
ns  
1. The maximum SCL clock frequency of 1 Mbps can support maximum bus loading when using the High drive pins  
across the full voltage range.  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
59  
NXP Semiconductors  
 
 
 
 
 
 
 
 
Peripheral operating requirements and behaviors  
2. Cb = total capacitance of the one bus line in pF.  
SDA  
tSU; DAT  
tf  
tr  
tBUF  
tf  
tr  
tHD; STA  
tSP  
tLOW  
SCL  
tSU; STA  
tSU; STO  
HD; STA  
S
SR  
P
S
tHD; DAT  
tHIGH  
Figure 29. Timing definition for devices on the I2C bus  
3.8.9 UART switching specifications  
See General switching specifications.  
3.8.10 SDHC specifications  
The following timing specs are defined at the chip I/O pin and must be translated  
appropriately to arrive at timing specs/constraints for the physical interface.  
Table 50. SDHC switching specifications  
Num  
Symbol  
Description  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
3.6  
V
Card input clock  
SD1  
fpp  
fpp  
fpp  
fOD  
tWL  
tWH  
tTLH  
tTHL  
Clock frequency (low speed)  
0
0
400  
25\50  
20\50  
400  
kHz  
MHz  
MHz  
kHz  
ns  
Clock frequency (SD\SDIO full speed\high speed)  
Clock frequency (MMC full speed\high speed)  
Clock frequency (identification mode)  
Clock low time  
0
0
SD2  
SD3  
SD4  
SD5  
7
Clock high time  
7
ns  
Clock rise time  
3
ns  
Clock fall time  
3
ns  
SDHC output / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)  
SDHC output delay (output valid) -5 8.3  
SDHC input / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)  
SD6  
tOD  
ns  
SD7  
SD8  
tISU  
tIH  
SDHC input setup time  
SDHC input hold time  
5.5  
0
ns  
ns  
60  
NXP Semiconductors  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
 
 
 
Peripheral operating requirements and behaviors  
SD3  
SD6  
SD2  
SD1  
SDHC_CLK  
Output SDHC_CMD  
Output SDHC_DAT[3:0]  
Input SDHC_CMD  
Input SDHC_DAT[3:0]  
SD7  
SD8  
Figure 30. SDHC timing  
3.8.11 I2S switching specifications  
This section provides the AC timings for the I2S in master (clocks driven) and slave  
modes (clocks input). All timings are given for non-inverted serial clock polarity  
(TCR[TSCKP] = 0, RCR[RSCKP] = 0) and a non-inverted frame sync (TCR[TFSI] =  
0, RCR[RFSI] = 0). If the polarity of the clock and/or the frame sync have been  
inverted, all the timings remain valid by inverting the clock signal (I2S_BCLK) and/or  
the frame sync (I2S_FS) shown in the figures below.  
Table 51. I2S master mode timing  
Num  
Description  
Min.  
2.7  
40  
45%  
80  
45%  
Max.  
3.6  
Unit  
Operating voltage  
V
S1  
S2  
S3  
S4  
S5  
S6  
S7  
S8  
S9  
S10  
I2S_MCLK cycle time  
ns  
I2S_MCLK pulse width high/low  
I2S_BCLK cycle time  
55%  
MCLK period  
ns  
I2S_BCLK pulse width high/low  
I2S_BCLK to I2S_FS output valid  
I2S_BCLK to I2S_FS output invalid  
I2S_BCLK to I2S_TXD valid  
I2S_BCLK to I2S_TXD invalid  
I2S_RXD/I2S_FS input setup before I2S_BCLK  
I2S_RXD/I2S_FS input hold after I2S_BCLK  
55%  
15  
BCLK period  
ns  
ns  
ns  
ns  
ns  
ns  
0
15  
0
17  
0
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
61  
NXP Semiconductors  
 
Peripheral operating requirements and behaviors  
S1  
S2  
S2  
I2S_MCLK (output)  
I2S_BCLK (output)  
I2S_FS (output)  
I2S_FS (input)  
I2S_TXD  
S3  
S4  
S4  
S5  
S7  
S6  
S10  
S9  
S7  
S8  
S8  
S9  
S10  
I2S_RXD  
Figure 31. I2S timing — master mode  
Table 52. I2S slave mode timing  
Num  
Description  
Operating voltage  
Min.  
Max.  
3.6  
Unit  
2.7  
V
S11  
S12  
S13  
S14  
S15  
S16  
S17  
S18  
S19  
I2S_BCLK cycle time (input)  
80  
45%  
5
ns  
I2S_BCLK pulse width high/low (input)  
I2S_FS input setup before I2S_BCLK  
I2S_FS input hold after I2S_BCLK  
55%  
MCLK period  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2
I2S_BCLK to I2S_TXD/I2S_FS output valid  
I2S_BCLK to I2S_TXD/I2S_FS output invalid  
I2S_RXD setup before I2S_BCLK  
0
19.5  
5
I2S_RXD hold after I2S_BCLK  
I2S_TX_FS input assertion to I2S_TXD output valid1  
2
21  
1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear  
62  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
NXP Semiconductors  
 
Peripheral operating requirements and behaviors  
S11  
S12  
I2S_BCLK (input)  
I2S_FS (output)  
I2S_FS (input)  
I2S_TXD  
S12  
S15  
S16  
S13  
S14  
S19  
S15  
S16  
S15  
S16  
S17  
S18  
I2S_RXD  
Figure 32. I2S timing — slave modes  
3.8.11.1 Normal Run, Wait and Stop mode performance over the full  
operating voltage range  
This section provides the operating performance over the full operating voltage for the  
device in Normal Run, Wait and Stop modes.  
Table 53. I2S/SAI master mode timing  
Num.  
Characteristic  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
40  
3.6  
V
S1  
S2  
S3  
S4  
S5  
I2S_MCLK cycle time  
ns  
I2S_MCLK (as an input) pulse width high/low  
I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)  
45%  
80  
55%  
MCLK period  
ns  
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low 45%  
55%  
15  
BCLK period  
ns  
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/  
I2S_RX_FS output valid  
S6  
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/  
I2S_RX_FS output invalid  
-1  
ns  
S7  
S8  
S9  
I2S_TX_BCLK to I2S_TXD valid  
I2S_TX_BCLK to I2S_TXD invalid  
15  
ns  
ns  
ns  
0
I2S_RXD/I2S_RX_FS input setup before  
I2S_RX_BCLK  
22.5  
S10  
I2S_RXD/I2S_RX_FS input hold after  
I2S_RX_BCLK  
0
ns  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
63  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
S1  
S2  
S2  
I2S_MCLK (output)  
S3  
S4  
I2S_TX_BCLK/  
I2S_RX_BCLK (output)  
S4  
S5  
S7  
S6  
I2S_TX_FS/  
I2S_RX_FS (output)  
S10  
S9  
I2S_TX_FS/  
I2S_RX_FS (input)  
S7  
S8  
S8  
I2S_TXD  
I2S_RXD  
S9  
S10  
Figure 33. I2S/SAI timing — master modes  
Table 54. I2S/SAI slave mode timing  
Num.  
Characteristic  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
80  
3.6  
V
S11  
S12  
I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)  
ns  
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low  
(input)  
45%  
55%  
MCLK period  
S13  
S14  
I2S_TX_FS/I2S_RX_FS input setup before  
I2S_TX_BCLK/I2S_RX_BCLK  
7
2
ns  
ns  
I2S_TX_FS/I2S_RX_FS input hold after  
I2S_TX_BCLK/I2S_RX_BCLK  
S15  
S16  
S17  
S18  
S19  
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid  
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid  
I2S_RXD setup before I2S_RX_BCLK  
3
25.5  
ns  
ns  
ns  
ns  
ns  
5.8  
2
I2S_RXD hold after I2S_RX_BCLK  
I2S_TX_FS input assertion to I2S_TXD output valid1  
25  
1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear  
64  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
NXP Semiconductors  
 
Peripheral operating requirements and behaviors  
S11  
S12  
I2S_TX_BCLK/  
I2S_RX_BCLK (input)  
S12  
S15  
S15  
S16  
I2S_TX_FS/  
I2S_RX_FS (output)  
S13  
S14  
I2S_TX_FS/  
I2S_RX_FS (input)  
S15  
S19  
S16  
S16  
I2S_TXD  
I2S_RXD  
S17  
S18  
Figure 34. I2S/SAI timing — slave modes  
3.8.11.2 VLPR, VLPW, and VLPS mode performance over the full  
operating voltage range  
This section provides the operating performance over the full operating voltage for the  
device in VLPR, VLPW, and VLPS modes.  
Table 55. I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes (full voltage range)  
Num.  
Characteristic  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
62.5  
3.6  
V
S1  
S2  
S3  
S4  
S5  
I2S_MCLK cycle time  
ns  
I2S_MCLK pulse width high/low  
I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)  
45%  
250  
55%  
MCLK period  
ns  
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low 45%  
55%  
45  
BCLK period  
ns  
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/  
I2S_RX_FS output valid  
S6  
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/  
I2S_RX_FS output invalid  
0
ns  
S7  
S8  
S9  
I2S_TX_BCLK to I2S_TXD valid  
I2S_TX_BCLK to I2S_TXD invalid  
45  
ns  
ns  
ns  
I2S_RXD/I2S_RX_FS input setup before  
I2S_RX_BCLK  
45  
0
S10  
I2S_RXD/I2S_RX_FS input hold after  
I2S_RX_BCLK  
ns  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
65  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
S1  
S2  
S2  
I2S_MCLK (output)  
S3  
S4  
I2S_TX_BCLK/  
I2S_RX_BCLK (output)  
S4  
S5  
S7  
S6  
I2S_TX_FS/  
I2S_RX_FS (output)  
S10  
S9  
I2S_TX_FS/  
I2S_RX_FS (input)  
S7  
S8  
S8  
I2S_TXD  
I2S_RXD  
S9  
S10  
Figure 35. I2S/SAI timing — master modes  
Table 56. I2S/SAI slave mode timing in VLPR, VLPW, and VLPS modes (full voltage range)  
Num.  
Characteristic  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
250  
3.6  
V
S11  
I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)  
ns  
S12  
S13  
S14  
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low  
(input)  
45%  
55%  
MCLK period  
I2S_TX_FS/I2S_RX_FS input setup before  
I2S_TX_BCLK/I2S_RX_BCLK  
30  
11  
ns  
ns  
I2S_TX_FS/I2S_RX_FS input hold after  
I2S_TX_BCLK/I2S_RX_BCLK  
S15  
S16  
S17  
S18  
S19  
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid  
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid  
I2S_RXD setup before I2S_RX_BCLK  
0
ns  
ns  
ns  
ns  
ns  
72  
30  
11  
I2S_RXD hold after I2S_RX_BCLK  
I2S_TX_FS input assertion to I2S_TXD output valid1  
1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear  
66  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
NXP Semiconductors  
 
Dimensions  
S11  
S12  
I2S_TX_BCLK/  
I2S_RX_BCLK (input)  
S12  
S15  
S15  
S16  
I2S_TX_FS/  
I2S_RX_FS (output)  
S13  
S14  
I2S_TX_FS/  
I2S_RX_FS (input)  
S15  
S19  
S16  
S16  
I2S_TXD  
I2S_RXD  
S17  
S18  
Figure 36. I2S/SAI timing — slave modes  
4 Dimensions  
4.1 Obtaining package dimensions  
Package dimensions are provided in package drawings.  
To find a package drawing, go to nxp.com and perform a keyword search for the  
drawing’s document number:  
If you want the drawing for this package  
100-pin LQFP  
Then use this document number  
98ASS23308W  
121-pin XFBGA  
144-pin LQFP  
98ASA00595D  
98ASS23177W  
98ASA00222D  
144-pin MAPBGA  
5 Pinout  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
67  
NXP Semiconductors  
 
 
 
 
Pinout  
5.1 K64 Signal Multiplexing and Pin Assignments  
The following table shows the signals available on each pin and the locations of these  
pins on the devices supported by this document. The Port Control Module is responsible  
for selecting which ALT functionality is available on each pin.  
144  
144  
100  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
ALT8  
ALT9  
QFP  
MAP LQFP  
BGA  
L5  
TAMPER0/ TAMPER0/  
RTC_ RTC_  
WAKEUP_ WAKEUP_  
B
B
A1  
100  
PTD7 CMT_IRO  
UART0_TX FTM0_CH7  
FTM0_  
FLT1  
SPI1_SIN  
A10  
PTD8 I2C0_SCL  
/
UART5_  
RX  
FB_A16  
x_LLWU_  
P24  
x_LL  
WU_  
P24  
A9  
B1  
PTD9 I2C0_SDA  
UART5_TX  
FB_A17  
FB_A18  
PTD1  
0
UART5_  
RTS_b  
C2  
PTD1 SPI2_  
UART5_  
CTS_b  
SDHC0_  
CLKIN  
FB_A19  
x_LLWU_  
P25  
1/  
PCS0  
x_LL  
WU_  
P25  
C1  
D2  
D1  
E1  
PTD1 SPI2_SCK  
2
FTM3_  
FLT0  
SDHC0_  
D4  
FB_A20  
FB_A21  
FB_A22  
FB_A23  
PTD1 SPI2_  
SDHC0_  
D5  
3
SOUT  
PTD1 SPI2_SIN  
4
SDHC0_  
D6  
PTD1 SPI2_  
SDHC0_  
D7  
5
PCS1  
A11  
D3  
NC  
NC  
NC  
NC  
NC  
1
K3  
H4  
1
ADC1_  
SE4a  
ADC1_  
SE4a  
PTE0  
SPI1_  
PCS1  
UART1_TX SDHC0_  
D1  
TRACE_  
CLKOUT  
I2C1_SDA  
I2C1_SCL  
RTC_  
CLKOUT  
2
3
D2  
D1  
2
3
ADC1_  
SE5a  
ADC1_  
SE5a  
PTE1/  
LLWU_P0  
SPI1_  
SOUT  
UART1_  
RX  
SDHC0_  
D0  
TRACE_  
D3  
SPI1_SIN  
LLWU_P0  
LLWU_P1  
ADC0_  
DP2/  
ADC0_  
DP2/  
PTE2/  
LLWU_P1  
SPI1_SCK  
UART1_  
CTS_b  
SDHC0_  
DCLK  
TRACE_  
D2  
ADC1_  
SE6a  
ADC1_  
SE6a  
68  
NXP Semiconductors  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
Pinout  
144  
144  
100  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
ALT8  
ALT9  
QFP  
MAP LQFP  
BGA  
4
E4  
4
ADC0_  
DM2/  
ADC0_  
DM2/  
PTE3  
SPI1_SIN  
UART1_  
RTS_b  
SDHC0_  
CMD  
TRACE_  
D1  
SPI1_  
SOUT  
ADC1_  
SE7a  
ADC1_  
SE7a  
5
6
7
E5  
F6  
E3  
5
VDD  
VDD  
VSS  
VSS  
DISABLED  
PTE4/  
LLWU_P2  
SPI1_  
PCS0  
UART3_TX SDHC0_  
D3  
TRACE_  
D0  
LLWU_P2  
8
9
E2  
E1  
6
7
DISABLED  
DISABLED  
PTE5  
SPI1_  
PCS2  
UART3_  
RX  
SDHC0_  
D2  
FTM3_CH0  
PTE6/  
x_LLWU_  
P16  
SPI1_  
PCS3  
UART3_  
CTS_b  
I2S0_  
MCLK  
FTM3_CH1 USB_  
SOF_OUT  
x_LLWU_  
P16  
10  
11  
12  
F4  
F3  
F2  
DISABLED  
DISABLED  
DISABLED  
PTE7  
UART3_  
RTS_b  
I2S0_  
RXD0  
FTM3_CH2  
FTM3_CH3  
FTM3_CH4  
PTE8  
I2S0_  
RXD1  
UART5_TX I2S0_RX_  
FS  
PTE9/  
x_LLWU_  
P17  
I2S0_TXD1 UART5_  
RX  
I2S0_RX_  
BCLK  
x_LLWU_  
P17  
13  
F1  
DISABLED  
PTE10/  
x_LLWU_  
P18  
UART5_  
CTS_b  
I2S0_TXD0  
FTM3_CH5  
x_LLWU_  
P18  
14  
15  
G4  
G3  
DISABLED  
DISABLED  
PTE11  
UART5_  
RTS_b  
I2S0_TX_  
FS  
FTM3_CH6  
FTM3_CH7  
PTE12  
I2S0_TX_  
BCLK  
16  
17  
18  
19  
20  
21  
22  
23  
24  
E6  
F7  
H3  
H1  
H2  
G1  
G2  
J1  
8
VDD  
VDD  
9
VSS  
VSS  
10  
11  
12  
13  
14  
15  
VSS  
VSS  
USB0_DP  
USB0_DM  
VOUT33  
VREGIN  
USB0_DP  
USB0_DM  
VOUT33  
VREGIN  
ADC0_DP1 ADC0_DP1  
J2  
ADC0_  
DM1  
ADC0_  
DM1  
25  
26  
K1  
K2  
16  
17  
ADC1_DP1 ADC1_DP1  
ADC1_  
DM1  
ADC1_  
DM1  
27  
L1  
18  
ADC0_  
DP0/  
ADC0_  
DP0/  
ADC1_DP3 ADC1_DP3  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
69  
NXP Semiconductors  
Pinout  
144  
144  
100  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
ALT8  
ALT9  
QFP  
MAP LQFP  
BGA  
28  
L2  
19  
ADC0_  
DM0/  
ADC1_  
DM3  
ADC0_  
DM0/  
ADC1_  
DM3  
29  
30  
M1  
M2  
20  
21  
ADC1_  
DP0/  
ADC0_DP3 ADC0_DP3  
ADC1_  
DP0/  
ADC1_  
DM0/  
ADC1_  
DM0/  
ADC0_  
DM3  
ADC0_  
DM3  
31  
32  
33  
34  
35  
H5  
G5  
G6  
H6  
K3  
22  
23  
24  
25  
VDDA  
VREFH  
VREFL  
VSSA  
VDDA  
VREFH  
VREFL  
VSSA  
ADC1_  
SE16/  
ADC1_  
SE16/  
CMP2_IN2/ CMP2_IN2/  
ADC0_  
SE22  
ADC0_  
SE22  
36  
37  
J3  
ADC0_  
SE16/  
CMP1_IN2/ CMP1_IN2/  
ADC0_  
SE21  
ADC0_  
SE16/  
ADC0_  
SE21  
M3  
26  
VREF_  
OUT/  
VREF_  
OUT/  
CMP1_IN5/ CMP1_IN5/  
CMP0_IN5/ CMP0_IN5/  
ADC1_  
SE18  
ADC1_  
SE18  
38  
39  
L3  
L4  
27  
DAC0_  
OUT/  
CMP1_IN3/ CMP1_IN3/  
ADC0_  
SE23  
DAC0_  
OUT/  
ADC0_  
SE23  
DAC1_  
OUT/  
DAC1_  
OUT/  
CMP0_IN4/ CMP0_IN4/  
CMP2_IN3/ CMP2_IN3/  
ADC1_  
SE23  
ADC1_  
SE23  
40  
41  
42  
43  
44  
M7  
M6  
L6  
28  
29  
30  
XTAL32  
EXTAL32  
VBAT  
XTAL32  
EXTAL32  
VBAT  
VDD  
VDD  
VSS  
VSS  
70  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
NXP Semiconductors  
Pinout  
144  
144  
100  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
ALT8  
ALT9  
QFP  
MAP LQFP  
BGA  
45  
46  
M4  
31  
ADC0_  
SE17  
ADC0_  
SE17  
PTE24  
UART4_TX  
I2C0_SCL  
I2C0_SDA  
EWM_  
OUT_b  
K5  
32  
ADC0_  
SE18  
ADC0_  
SE18  
PTE25/  
x_LLWU_  
P21  
UART4_  
RX  
EWM_IN  
x_LLWU_  
P21  
47  
48  
K4  
J4  
33  
DISABLED  
PTE26  
ENET_  
1588_  
CLKIN  
UART4_  
CTS_b  
RTC_  
CLKOUT  
USB_  
CLKIN  
DISABLED  
DISABLED  
PTE27  
UART4_  
RTS_b  
49  
50  
H4  
J5  
PTE28  
PTA0  
34  
JTAG_  
TCLK/  
SWD_CLK/  
EZP_CLK  
UART0_  
CTS_b/  
UART0_  
COL_b  
FTM0_CH5  
JTAG_  
TCLK/  
SWD_CLK  
EZP_CLK  
51  
52  
J6  
35  
36  
JTAG_TDI/  
EZP_DI  
PTA1  
PTA2  
UART0_  
RX  
FTM0_CH6  
JTAG_TDI  
EZP_DI  
K6  
JTAG_  
TDO/  
UART0_TX FTM0_CH7  
JTAG_  
TDO/  
EZP_DO  
TRACE_  
SWO/  
TRACE_  
SWO  
EZP_DO  
53  
K7  
37  
JTAG_  
TMS/  
SWD_DIO  
PTA3  
UART0_  
RTS_b  
FTM0_CH0  
FTM0_CH1  
JTAG_  
TMS/  
SWD_DIO  
54  
55  
L7  
38  
39  
NMI_b/  
EZP_CS_b  
PTA4/  
LLWU_P3  
NMI_b  
LLWU_P3  
EZP_CS_b  
M8  
DISABLED  
PTA5  
USB_  
CLKIN  
FTM0_CH2 RMII0_  
CMP2_  
OUT  
I2S0_TX_  
BCLK  
JTAG_  
TRST_b  
RXER/  
MII0_  
RXER  
56  
57  
58  
E7  
G7  
J7  
40  
41  
VDD  
VDD  
VSS  
VSS  
DISABLED  
PTA6  
PTA7  
PTA8  
PTA9  
FTM0_CH3  
CLKOUT  
TRACE_  
CLKOUT  
59  
60  
61  
62  
J8  
K8  
L8  
ADC0_  
SE10  
ADC0_  
SE10  
FTM0_CH4  
TRACE_  
D3  
ADC0_  
SE11  
ADC0_  
SE11  
FTM1_CH0  
FTM1_  
QD_PHA  
TRACE_  
D2  
DISABLED  
FTM1_CH1 MII0_RXD3  
FTM2_CH0 MII0_RXD2  
FTM1_  
QD_PHB  
TRACE_  
D1  
M9  
DISABLED  
PTA10/  
x_LLWU_  
P22  
FTM2_  
QD_PHA  
TRACE_  
D0  
x_LLWU_  
P22  
63  
L9  
DISABLED  
PTA11/  
x_LLWU_  
P23  
FTM2_CH1 MII0_  
RXCLK  
I2C2_SDA  
FTM2_  
QD_PHB  
x_LLWU_  
P23  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
71  
NXP Semiconductors  
Pinout  
144  
144  
100  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
ALT8  
ALT9  
QFP  
MAP LQFP  
BGA  
64  
65  
66  
K9  
J9  
42  
43  
44  
CMP2_IN0 CMP2_IN0 PTA12  
CAN0_TX  
CAN0_RX  
FTM1_CH0 RMII0_  
RXD1/  
I2C2_SCL  
I2C2_SDA  
I2C2_SCL  
I2S0_TXD0 FTM1_  
QD_PHA  
MII0_RXD1  
CMP2_IN1 CMP2_IN1 PTA13/  
FTM1_CH1 RMII0_  
RXD0/  
MII0_RXD0  
UART0_TX RMII0_  
CRS_DV/  
I2S0_TX_  
FS  
FTM1_  
QD_PHB  
LLWU_P4  
LLWU_P4  
L10  
DISABLED  
PTA14  
SPI0_  
PCS0  
I2S0_RX_  
BCLK  
I2S0_TXD1  
MII0_  
RXDV  
67  
68  
L11  
K10  
45  
46  
DISABLED  
DISABLED  
PTA15  
PTA16  
SPI0_SCK  
UART0_  
RX  
RMII0_  
TXEN/  
MII0_TXEN  
I2S0_  
RXD0  
SPI0_  
SOUT  
UART0_  
CTS_b/  
UART0_  
COL_b  
RMII0_  
TXD0/  
MII0_TXD0  
I2S0_RX_  
FS  
I2S0_  
RXD1  
69  
K11  
47  
ADC1_  
SE17  
ADC1_  
SE17  
PTA17  
SPI0_SIN  
UART0_  
RTS_b  
RMII0_  
TXD1/  
I2S0_  
MCLK  
MII0_TXD1  
70  
71  
72  
E8  
G8  
48  
49  
50  
VDD  
VDD  
VSS  
VSS  
M12  
EXTAL0  
EXTAL0  
PTA18  
PTA19  
FTM0_  
FLT2  
FTM_  
CLKIN0  
EXTAL0  
73  
M11  
51  
XTAL0  
XTAL0  
FTM1_  
FLT0  
FTM_  
CLKIN1  
LPTMR0_  
ALT1  
LPTMR0_  
ALT1  
74  
75  
76  
L12  
K12  
J12  
52  
RESET_b  
DISABLED  
DISABLED  
RESET_b  
RESET_b  
PTA24  
PTA25  
MII0_TXD2  
FB_A29  
FB_A28  
MII0_  
TXCLK  
77  
78  
79  
80  
81  
J11  
J10  
H12  
H11  
H10  
53  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
PTA26  
PTA27  
PTA28  
PTA29  
MII0_TXD3  
MII0_CRS  
MII0_TXER  
MII0_COL  
FB_A27  
FB_A26  
FB_A25  
FB_A24  
ADC0_  
SE8/  
ADC1_SE8 ADC1_SE8  
ADC0_  
SE8/  
PTB0/  
LLWU_P5  
I2C0_SCL  
I2C0_SDA  
I2C0_SCL  
I2C0_SDA  
FTM1_CH0 RMII0_  
MDIO/  
FTM1_  
QD_PHA  
LLWU_P5  
MII0_MDIO  
82  
83  
84  
H9  
54  
55  
56  
ADC0_  
SE9/  
ADC1_SE9 ADC1_SE9  
ADC0_  
SE9/  
PTB1  
PTB2  
PTB3  
FTM1_CH1 RMII0_  
MDC/  
FTM1_  
QD_PHB  
MII0_MDC  
G12  
G11  
ADC0_  
SE12  
ADC0_  
SE12  
UART0_  
RTS_b  
ENET0_  
1588_  
TMR0  
FTM0_  
FLT3  
ADC0_  
SE13  
ADC0_  
SE13  
UART0_  
CTS_b/  
ENET0_  
1588_  
FTM0_  
FLT0  
TMR1  
72  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
NXP Semiconductors  
Pinout  
144  
144  
100  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
ALT8  
ALT9  
QFP  
MAP LQFP  
BGA  
UART0_  
COL_b  
85  
86  
G10  
G9  
ADC1_  
SE10  
ADC1_  
SE10  
PTB4  
ENET0_  
1588_  
TMR2  
FTM1_  
FLT0  
ADC1_  
SE11  
ADC1_  
SE11  
PTB5  
ENET0_  
1588_  
FTM2_  
FLT0  
TMR3  
87  
88  
89  
90  
91  
92  
F12  
F11  
F10  
F9  
57  
58  
59  
ADC1_  
SE12  
ADC1_  
SE12  
PTB6  
PTB7  
PTB8  
PTB9  
PTB10  
PTB11  
FB_AD23  
FB_AD22  
FB_AD21  
FB_AD20  
FB_AD19  
FB_AD18  
ADC1_  
SE13  
ADC1_  
SE13  
DISABLED  
UART3_  
RTS_b  
DISABLED  
SPI1_  
PCS1  
UART3_  
CTS_b  
E12  
E11  
ADC1_  
SE14  
ADC1_  
SE14  
SPI1_  
PCS0  
UART3_  
RX  
FTM0_  
FLT1  
ADC1_  
SE15  
ADC1_  
SE15  
SPI1_SCK  
UART3_TX  
FTM0_  
FLT2  
93  
94  
95  
H7  
F5  
60  
61  
62  
VSS  
VSS  
VDD  
VDD  
E10  
DISABLED  
PTB16  
PTB17  
PTB18  
PTB19  
PTB20  
PTB21  
PTB22  
PTB23  
PTC0  
SPI1_  
SOUT  
UART0_  
RX  
FTM_  
CLKIN0  
FB_AD17  
FB_AD16  
FB_AD15  
FB_OE_b  
FB_AD31  
FB_AD30  
FB_AD29  
FB_AD28  
FB_AD14  
EWM_IN  
96  
97  
E9  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
SPI1_SIN  
CAN0_TX  
CAN0_RX  
UART0_TX FTM_  
CLKIN1  
EWM_  
OUT_b  
D12  
D11  
D10  
D9  
FTM2_CH0 I2S0_TX_  
BCLK  
FTM2_  
QD_PHA  
98  
FTM2_CH1 I2S0_TX_  
FS  
FTM2_  
QD_PHB  
99  
SPI2_  
PCS0  
CMP0_  
OUT  
100  
101  
102  
103  
104  
105  
SPI2_SCK  
CMP1_  
OUT  
C12  
C11  
B12  
B11  
A12  
SPI2_  
SOUT  
CMP2_  
OUT  
SPI2_SIN  
SPI0_  
PCS5  
ADC0_  
SE14  
ADC0_  
SE14  
SPI0_  
PCS4  
PDB0_  
EXTRG  
USB_  
SOF_OUT  
I2S0_TXD1  
I2S0_TXD0  
ADC0_  
SE15  
ADC0_  
SE15  
PTC1/  
LLWU_P6  
SPI0_  
PCS3  
UART1_  
RTS_b  
FTM0_CH0 FB_AD13  
FTM0_CH1 FB_AD12  
LLWU_P6  
ADC0_  
SE4b/  
ADC0_  
SE4b/  
PTC2  
SPI0_  
PCS2  
UART1_  
CTS_b  
I2S0_TX_  
FS  
CMP1_IN0 CMP1_IN0  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
73  
NXP Semiconductors  
Pinout  
144  
144  
100  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
ALT8  
ALT9  
QFP  
MAP LQFP  
BGA  
106  
A11  
73  
CMP1_IN1 CMP1_IN1 PTC3/  
SPI0_  
PCS1  
UART1_  
RX  
FTM0_CH2 CLKOUT/  
CLKOUT  
I2S0_TX_  
BCLK  
LLWU_P7  
LLWU_P7  
107  
108  
109  
H8  
74  
75  
76  
VSS  
VSS  
VDD  
VDD  
A9  
DISABLED  
PTC4/  
LLWU_P8  
SPI0_  
PCS0  
UART1_TX FTM0_CH3 FB_AD11  
CMP1_  
OUT  
LLWU_P8  
110  
D8  
77  
DISABLED  
PTC5/  
LLWU_P9  
SPI0_SCK  
LPTMR0_  
ALT2  
I2S0_  
RXD0  
FB_AD10  
CMP0_  
OUT  
FTM0_CH2  
LLWU_P9/  
LPTMR0_  
ALT2  
111  
112  
113  
C8  
B8  
A8  
78  
79  
80  
CMP0_IN0 CMP0_IN0 PTC6/  
CMP0_IN1 CMP0_IN1 PTC7  
SPI0_  
LLWU_P10 SOUT  
PDB0_  
EXTRG  
I2S0_RX_  
BCLK  
FB_AD9  
FB_AD8  
FB_AD7  
I2S0_  
MCLK  
LLWU_P10  
SPI0_SIN  
USB_  
SOF_OUT  
I2S0_RX_  
FS  
ADC1_  
SE4b/  
CMP0_IN2 CMP0_IN2  
ADC1_  
SE4b/  
PTC8  
PTC9  
PTC10  
FTM3_CH4 I2S0_  
MCLK  
114  
D7  
81  
ADC1_  
SE5b/  
CMP0_IN3 CMP0_IN3  
ADC1_  
SE5b/  
FTM3_CH5 I2S0_RX_  
BCLK  
FB_AD6  
FTM2_  
FLT0  
115  
116  
117  
118  
119  
C7  
B7  
A7  
D6  
C6  
82  
83  
84  
85  
86  
ADC1_  
SE6b  
ADC1_  
SE6b  
I2C1_SCL  
I2C1_SDA  
FTM3_CH6 I2S0_RX_  
FS  
FB_AD5  
ADC1_  
SE7b  
ADC1_  
SE7b  
PTC11/  
LLWU_P11  
FTM3_CH7 I2S0_  
RXD1  
FB_RW_b  
FB_AD27  
FB_AD26  
FB_AD25  
FB_AD24  
LLWU_P11  
DISABLED  
DISABLED  
DISABLED  
PTC12  
PTC13  
PTC14  
PTC15  
UART4_  
RTS_b  
FTM3_  
FLT0  
UART4_  
CTS_b  
UART4_  
RX  
120  
121  
122  
123  
B6  
87  
88  
89  
90  
DISABLED  
VSS  
UART4_TX  
VSS  
VDD  
VDD  
A6  
DISABLED  
PTC16  
UART3_  
RX  
ENET0_  
1588_  
TMR0  
FB_CS5_b/  
FB_TSIZ1/  
FB_BE23_  
16_  
BLS15_8_  
b
124  
125  
D5  
C5  
91  
92  
DISABLED  
DISABLED  
PTC17  
PTC18  
UART3_TX ENET0_  
FB_CS4_b/  
FB_TSIZ0/  
FB_BE31_  
24_BLS7_  
0_b  
1588_  
TMR1  
UART3_  
RTS_b  
ENET0_  
1588_  
FB_TBST_  
b/  
TMR2  
FB_CS2_b/  
FB_BE15_  
74  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
NXP Semiconductors  
Pinout  
144  
144  
100  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
ALT8  
ALT9  
QFP  
MAP LQFP  
BGA  
8_BLS23_  
16_b  
126  
127  
B5  
A5  
DISABLED  
DISABLED  
PTC19  
UART3_  
CTS_b  
ENET0_  
1588_  
TMR3  
FB_CS3_b/ FB_TA_b  
FB_BE7_  
0_BLS31_  
24_b  
93  
PTD0/  
LLWU_P12 PCS0  
SPI0_  
UART2_  
RTS_b  
FTM3_CH0 FB_ALE/  
FB_CS1_b/  
LLWU_P12  
FB_TS_b  
128  
129  
D4  
C4  
94  
95  
ADC0_  
SE5b  
ADC0_  
SE5b  
PTD1  
SPI0_SCK  
UART2_  
CTS_b  
FTM3_CH1 FB_CS0_b  
DISABLED  
PTD2/  
LLWU_P13 SOUT  
SPI0_  
UART2_  
RX  
FTM3_CH2 FB_AD4  
I2C0_SCL  
I2C0_SDA  
LLWU_P13  
LLWU_P14  
130  
131  
B4  
A4  
96  
97  
DISABLED  
DISABLED  
PTD3  
SPI0_SIN  
UART2_TX FTM3_CH3 FB_AD3  
PTD4/  
LLWU_P14 PCS1  
SPI0_  
UART0_  
RTS_b  
FTM0_CH4 FB_AD2  
EWM_IN  
SPI1_  
PCS0  
132  
A3  
98  
ADC0_  
SE6b  
ADC0_  
SE6b  
PTD5  
SPI0_  
PCS2  
UART0_  
CTS_b/  
UART0_  
COL_b  
FTM0_CH5 FB_AD1  
EWM_  
OUT_b  
SPI1_SCK  
133  
A2  
99  
ADC0_  
SE7b  
ADC0_  
SE7b  
PTD6/  
LLWU_P15 PCS3  
SPI0_  
UART0_  
RX  
FTM0_CH6 FB_AD0  
FTM0_  
FLT0  
SPI1_  
SOUT  
LLWU_P15  
134  
135  
M10  
F8  
VSS  
VDD  
VSS  
VDD  
5.2 Unused analog interfaces  
Table 57. Unused analog interfaces  
Module name  
Pins  
Recommendation if unused  
ADC  
ADC0_DP1, ADC0_DM1, ADC1_DP1, Ground  
ADC1_DM1, ADC0_DP0/ADC1_DP3,  
ADC0_DM0/ADC1_DM3, ADC1_DP0/  
ADC0_DP3, ADC1_DM0/ADC0_DM3,  
ADC1_SE16/ADC0_SE22,  
ADC0_SE16/ADC0_SE21,  
ADC1_SE18  
DAC 1  
USB  
DAC0_OUT, DAC1_OUT  
VREGIN, USB0_GND, VOUT332  
Float  
Connect VREGIN and VOUT33  
together and tie to ground through a 10  
kΩ resistor. Do not tie directly to  
ground, as this causes a latch-up risk.  
USB0_DM, USB0_DP  
Float  
1. Unused DAC signals do not apply to all parts. See the Pinout section for details.  
2. USB0_VBUS and USB0_GND are board level signals  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
75  
NXP Semiconductors  
 
 
 
Pinout  
5.3 K64 Pinouts  
The below figure shows the pinout diagram for the devices supported by this document.  
Many signals may be multiplexed onto a single pin. To determine what signals can be  
used on which pin, see the previous section.  
76  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
NXP Semiconductors  
 
Pinout  
PTE0  
1
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
VDD  
PTE1/LLWU_P0  
2
VSS  
PTE2/LLWU_P1  
3
PTC3/LLWU_P7  
PTC2  
PTE3  
4
VDD  
5
PTC1/LLWU_P6  
PTC0  
VSS  
6
PTE4/LLWU_P2  
7
PTB23  
PTB22  
PTB21  
PTB20  
PTB19  
PTB18  
PTB17  
PTB16  
VDD  
PTE5  
8
PTE6  
9
PTE7  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
PTE8  
98  
PTE9  
97  
PTE10  
96  
PTE11  
95  
PTE12  
VDD  
94  
VSS  
93  
VSS  
PTB11  
PTB10  
PTB9  
92  
VSS  
91  
USB0_DP  
90  
USB0_DM  
PTB8  
89  
VOUT33  
PTB7  
88  
VREGIN  
PTB6  
87  
ADC0_DP1  
PTB5  
86  
ADC0_DM1  
PTB4  
85  
ADC1_DP1  
PTB3  
84  
ADC1_DM1  
PTB2  
83  
ADC0_DP0/ADC1_DP3  
ADC0_DM0/ADC1_DM3  
ADC1_DP0/ADC0_DP3  
ADC1_DM0/ADC0_DM3  
VDDA  
PTB1  
82  
PTB0/LLWU_P5  
PTA29  
PTA28  
PTA27  
PTA26  
PTA25  
PTA24  
RESET_b  
PTA19  
81  
80  
79  
78  
VREFH  
77  
VREFL  
76  
VSSA  
75  
_SE16/CMP2_IN2/ADC0_SE22  
_SE16/CMP1_IN2/ADC0_SE21  
74  
73  
Figure 37. 144 LQFP Pinout Diagram  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
77  
NXP Semiconductors  
Pinout  
1
2
3
4
5
6
7
8
9
10  
11  
12  
PTC4/  
LLWU_P8  
PTC3/  
LLWU_P7  
PTD6/  
PTD4/  
LLWU_P14  
PTD0/  
LLWU_P12  
A
B
C
D
E
F
PTC8  
NC  
PTC2  
A
B
C
D
E
F
PTD7  
PTD5  
PTC16  
PTC12  
LLWU_P15  
PTC11/  
LLWU_P11  
PTC1/  
LLWU_P6  
PTD12  
PTD15  
PTD11  
PTD14  
PTD10  
PTD13  
PTE0  
PTD3  
PTC19  
PTC18  
PTC17  
VDD  
PTC15  
PTC14  
PTC13  
VDD  
PTC7  
PTD9  
PTD8  
PTB21  
PTB17  
PTB9  
PTB5  
PTB1  
NC  
NC  
PTC0  
PTB22  
PTB18  
PTB10  
PTB6  
PTD2/  
LLWU_P13  
PTC6/  
LLWU_P10  
PTC10  
PTC9  
VDD  
VSS  
PTB23  
PTB19  
PTB11  
PTB7  
PTE2/  
LLWU_P1  
PTE1/  
LLWU_P0  
PTC5/  
LLWU_P9  
PTD1  
PTE3  
PTB20  
PTB16  
PTB8  
PTB4  
PTE4/  
LLWU_P2  
PTE6  
PTE5  
PTE9  
VDD  
VDD  
VSS  
PTE10  
PTE8  
PTE7  
VDD  
VSS  
G
H
G
H
J
VOUT33  
VREGIN  
PTE12  
PTE11  
PTE28  
PTE27  
PTE26  
VREFH  
VDDA  
PTA0  
VREFL  
VSSA  
PTA1  
VSS  
PTB3  
PTB2  
PTB0/  
LLWU_P5  
USB0_DP  
ADC0_DP1  
ADC1_DP1  
USB0_DM  
ADC0_DM1  
ADC1_DM1  
VSS  
VSS  
VSS  
PTA29  
PTA26  
PTA17  
PTA15  
PTA28  
PTA25  
PTA24  
RESET_b  
ADC0_SE16/  
CMP1_IN2/  
ADC0_SE21  
PTA13/  
LLWU_P4  
J
K
L
PTA6  
PTA3  
PTA7  
PTA8  
PTA9  
PTA27  
PTA16  
PTA14  
ADC1_SE16/  
CMP2_IN2/  
ADC0_SE22  
K
L
PTE25  
RTC_  
PTA2  
PTA12  
PTA11  
DAC1_OUT/  
CMP0_IN4/  
CMP2_IN3/ WAKEUP_B  
ADC1_SE23  
DAC0_OUT/  
CMP1_IN3/  
ADC0_SE23  
ADC0_DP0/ ADC0_DM0/  
ADC1_DM3  
ADC1_DP3  
PTA4/  
LLWU_P3  
VBAT  
VREF_OUT/  
CMP1_IN5/  
CMP0_IN5/  
ADC1_SE18  
ADC1_DP0/ ADC1_DM0/  
M
M
PTE24  
NC  
EXTAL32  
XTAL32  
PTA5  
PTA10  
VSS  
PTA19  
PTA18  
ADC0_DM3  
ADC0_DP3  
1
2
3
4
5
6
7
8
9
10  
11  
12  
Figure 38. 144 MAPBGA Pinout Diagram  
78  
NXP Semiconductors  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
Pinout  
1
2
3
4
5
6
7
8
9
10  
11  
PTD4/  
LLWU_P14  
PTC4/  
LLWU_P8  
A
B
C
D
E
F
G
H
J
PTD7  
PTD5  
PTC19  
PTC14  
PTC13  
PTC8  
PTD9  
PTD8  
NC  
A
B
C
D
E
F
G
H
J
PTD6/  
LLWU_P15  
PTC3/  
LLWU_P7  
PTD10  
PTD12  
PTD14  
PTD15  
PTD3  
PTC18  
PTC17  
PTC15  
PTC12  
PTC10  
PTC9  
VDD  
PTC7  
PTC0  
PTB19  
PTB18  
PTB17  
PTB21  
PTB2  
PTB16  
PTB11  
PTB10  
PTB9  
PTB12  
PTB13  
PTB8  
PTB7  
PTB6  
PTD2/  
LLWU_P13  
PTC11/  
LLWU_P11  
PTC6/  
LLWU_P10  
PTD11  
PTC2  
PTD0/  
LLWU_P12  
PTC5/  
PTC1/  
LLWU_P9 LLWU_P6  
PTD13  
PTE2/  
PTD1  
PTC16  
VDD  
PTE1/  
LLWU_P1 LLWU_P0  
PTE0  
PTE3  
PTE5  
NC  
VDD  
VSS  
VSS  
PTB23  
PTB22  
PTB3  
PTA1  
USB0_DP USB0_DM  
PTE6  
VSS  
VDDA  
VREFH  
PTE24  
PTE25  
VSSA  
VREFL  
PTE26  
PTA0  
PTB20  
PTB1  
PTB0/  
LLWU_P5  
VOUT33  
VREGIN  
ADC0_SE16/  
CMP1_IN2/  
ADC0_SE21  
PTE4/  
LLWU_P2  
ADC0_DP1 ADC0_DM1  
ADC1_DP1 ADC1_DM1  
PTA3  
PTA17  
PTA16  
VSS  
PTA29  
RESET_b  
PTA19  
ADC1_SE16/  
CMP2_IN2/  
ADC0_SE22  
PTA4/  
LLWU_P3  
PTA11  
PTA2  
PTA10  
PTA14  
DAC1_OUT/  
CMP0_IN4/  
CMP2_IN3/  
ADC1_SE23  
DAC0_OUT/  
CMP1_IN3/  
ADC0_SE23  
ADC0_DP0/ ADC0_DM0/  
ADC1_DP3 ADC1_DM3  
K
L
NC  
VBAT  
PTA5  
RTC_  
PTA12  
K
L
VREF_OUT/  
CMP1_IN5/  
CMP0_IN5/  
ADC1_SE18  
ADC1_DP0/ ADC1_DM0/  
ADC0_DP3 ADC0_DM3  
PTA13/  
WAKEUP_B LLWU_P4  
XTAL32  
4
EXTAL32  
5
VSS  
6
PTA15  
9
VDD  
10  
PTA18  
11  
1
2
3
7
8
Figure 39. 121 XFBGA Pinout Diagram  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
79  
NXP Semiconductors  
Pinout  
1
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
PTE0  
VDD  
2
PTE1/LLWU_P0  
PTE2/LLWU_P1  
PTE3  
VSS  
3
PTC3/LLWU_P7  
PTC2  
4
5
PTC1/LLWU_P6  
PTC0  
PTE4/LLWU_P2  
PTE5  
6
7
PTB23  
PTB22  
PTB21  
PTB20  
PTB19  
PTB18  
PTB17  
PTB16  
VDD  
PTE6  
8
VDD  
9
VSS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
USB0_DP  
USB0_DM  
VOUT33  
VREGIN  
ADC0_DP1  
ADC0_DM1  
ADC1_DP1  
ADC1_DM1  
ADC0_DP0/ADC1_DP3  
ADC0_DM0/ADC1_DM3  
ADC1_DP0/ADC0_DP3  
ADC1_DM0/ADC0_DM3  
VDDA  
VSS  
PTB11  
PTB10  
PTB9  
PTB3  
PTB2  
PTB1  
PTB0/LLWU_P5  
RESET_b  
PTA19  
VREFH  
VREFL  
VSSA  
Figure 40. 100 LQFP Pinout Diagram  
80  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
NXP Semiconductors  
Ordering parts  
1
2
3
4
5
6
7
8
9
10  
11  
PTC4/  
LLWU_P8  
A
B
C
D
E
F
PTC7  
PTC9  
PTC12  
PTC15  
PTC17  
PTD1  
PTD5  
PTD7  
PTD9  
PTD14  
A
B
C
D
E
F
PTC3/  
LLWU_P7 LLWU_P10  
PTC6/  
PTC11/  
LLWU_P11  
PTD6/  
LLWU_P15  
PTC8  
PTC14  
PTC16  
PTC19  
VDD  
PTC18  
PTD2/  
PTD3  
PTD8  
PTD12  
PTD15  
PTE3  
PTC5/  
PTC2  
PTD4/  
PTC10  
PTC13  
PTB22  
PTB21  
VSS  
PTD11  
PTD13  
PTE2/  
PTE0  
LLWU_P9  
LLWU_P13 LLWU_P14  
PTC1/  
LLWU_P6  
PTD0/  
PTD10  
PTE1/  
PTE4/  
PTB23  
PTB18  
PTB16  
PTB10  
PTB7  
PTC0  
PTB19  
PTB17  
PTB11  
PTB6  
PTB2  
PTA28  
PTA24  
VSS  
PTE5  
LLWU_P12  
LLWU_P0 LLWU_P1 LLWU_P2  
PTB20  
VDD  
VSS  
VDD  
PTE6  
VDD  
PTE7  
ADC0_DP1  
ADC0_DM1  
VDD  
PTE8  
PTE9  
PTE12  
PTE10  
VSS  
VSS  
PTE11  
ADC0_DP0/  
ADC1_DP3  
G
H
J
PTB9  
PTB5  
PTB1  
PTA27  
PTA25  
PTA17  
PTB8  
PTB4  
VDD  
VSS  
VOUT33  
USB0_DP  
G
H
J
ADC0_DM0/  
ADC1_DM3  
VSS  
VSS  
PTA11  
PTA8  
PTA5  
VDD  
VREGIN USB0_DM  
PTB0/  
LLWU_P5  
RTC_  
ADC1_DP0/  
ADC1_DP1  
PTB3  
PTA14  
PTA12  
PTA9  
PTA7  
PTA2  
PTA1  
PTA0  
PTE28  
PTE27  
WAKEUP_B ADC0_DP3  
ADC0_SE16/  
ADC1_DM0/  
CMP1_IN2/  
K
L
PTA29  
RESET_b  
PTA19  
PTA26  
PTA16  
PTE25  
ADC1_DM1  
VDDA  
K
L
ADC0_DM3  
ADC0_SE21  
VREF_OUT/  
CMP1_IN5/  
CMP0_IN5/  
ADC1_SE18  
PTE24  
VREFH  
DAC1_OUT/  
ADC1_SE16/  
PTA13/  
LLWU_P4  
PTA4/  
LLWU_P3  
CMP0_IN4/  
CMP2_IN2/  
M
N
VBAT  
VREFL  
M
N
CMP2_IN3/  
ADC0_SE22  
ADC1_SE23  
DAC0_OUT/  
CMP1_IN3/  
ADC0_SE23  
PTA18  
1
VDD  
2
PTA15  
3
PTA10  
4
PTA6  
5
PTA3  
6
PTE26  
7
EXTAL32  
8
XTAL32  
9
VSSA  
11  
10  
Figure 41. 142 CSP Pinout Diagram  
6 Ordering parts  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
81  
NXP Semiconductors  
 
 
Part identification  
6.1 Determining valid orderable parts  
Valid orderable part numbers are provided on the web. To determine the orderable part  
numbers for this device, go to nxp.com and perform a part number search for the  
following device numbers: MK64  
7 Part identification  
7.1 Description  
Part numbers for the chip have fields that identify the specific part. You can use the  
values of these fields to determine the specific part you have received.  
7.2 Format  
Part numbers for this device have the following format:  
Q K## A M FFF R T PP CC N  
7.3 Fields  
This table lists the possible values for each field in the part number (not all  
combinations are valid):  
Field  
Description  
Values  
Q
Qualification status  
• M = Fully qualified, general market flow  
• P = Prequalification  
K##  
A
Kinetis family  
Key attribute  
• K64 = Ethernet with high RAM density  
• D = Cortex-M4 w/ DSP  
• F = Cortex-M4 w/ DSP and FPU  
M
Flash memory type  
• N = Program flash only  
• X = Program flash and FlexMemory  
FFF  
Program flash memory size  
• 32 = 32 KB  
• 64 = 64 KB  
• 128 = 128 KB  
• 256 = 256 KB  
• 512 = 512 KB  
• 1M0 = 1 MB  
• 2M0 = 2 MB  
Table continues on the next page...  
82  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
NXP Semiconductors  
 
 
 
 
Terminology and guidelines  
Values  
Field  
Description  
R
Silicon revision  
• Z = Initial  
• (Blank) = Main  
• A = Revision after main  
T
Temperature range (°C)  
Package identifier  
• V = –40 to 105  
• C = –40 to 85  
PP  
• FM = 32 QFN (5 mm x 5 mm)  
• FT = 48 QFN (7 mm x 7 mm)  
• LF = 48 LQFP (7 mm x 7 mm)  
• LH = 64 LQFP (10 mm x 10 mm)  
• MP = 64 MAPBGA (5 mm x 5 mm)  
• LK = 80 LQFP (12 mm x 12 mm)  
• LL = 100 LQFP (14 mm x 14 mm)  
• MC = 121 MAPBGA (8 mm x 8 mm)  
• DC = 121 XFBGA (8 mm x 8 mm x 0.5 mm)  
• LQ = 144 LQFP (20 mm x 20 mm)  
• MD = 144 MAPBGA (13 mm x 13 mm)  
CC  
Maximum CPU frequency (MHz)  
• 5 = 50 MHz  
• 7 = 72 MHz  
• 10 = 100 MHz  
• 12 = 120 MHz  
• 15 = 150 MHz  
• 16 = 168 MHz  
• 18 = 180 MHz  
N
Packaging type  
• R = Tape and reel  
• (Blank) = Trays  
7.4 Example  
This is an example part number:  
MK64FN1M0VMD12  
8 Terminology and guidelines  
8.1 Definitions  
Key terms are defined in the following table:  
Term  
Definition  
Rating  
A minimum or maximum value of a technical characteristic that, if exceeded, may cause  
permanent chip failure:  
Table continues on the next page...  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
83  
NXP Semiconductors  
 
 
 
Terminology and guidelines  
Term  
Definition  
Operating ratings apply during operation of the chip.  
Handling ratings apply when the chip is not powered.  
NOTE: The likelihood of permanent chip failure increases rapidly as soon as a characteristic  
begins to exceed one of its operating ratings.  
Operating requirement A specified value or range of values for a technical characteristic that you must guarantee during  
operation to avoid incorrect operation and possibly decreasing the useful life of the chip  
Operating behavior  
A specified value or range of values for a technical characteristic that are guaranteed during  
operation if you meet the operating requirements and any other specified conditions  
Typical value  
A specified value for a technical characteristic that:  
• Lies within the range of values specified by the operating behavior  
• Is representative of that characteristic during operation when you meet the typical-value  
conditions or other specified conditions  
NOTE: Typical values are provided as design guidelines and are neither tested nor  
guaranteed.  
8.2 Examples  
Operating rating:  
EXAMPLE  
EXAMPLE  
Operating requirement:  
Operating behavior that includes a typical value:  
EXAMPLE  
84  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
NXP Semiconductors  
 
 
Terminology and guidelines  
8.3 Typical-value conditions  
Typical values assume you meet the following conditions (or other conditions as  
specified):  
Symbol  
Description  
Ambient temperature  
Supply voltage  
Value  
Unit  
TA  
25  
°C  
V
VDD  
3.3  
8.4 Relationship between ratings and operating requirements  
Fatal range  
Degraded operating range  
Normal operating range  
Degraded operating range  
Fatal range  
Expected permanent failure  
- No permanent failure  
- No permanent failure  
- Correct operation  
- No permanent failure  
Expected permanent failure  
- Possible decreased life  
- Possible incorrect operation  
- Possible decreased life  
- Possible incorrect operation  
 
Operating (power on)  
Fatal range  
Handling range  
Fatal range  
Expected permanent failure  
No permanent failure  
Expected permanent failure  
∞  
Handling (power off)  
8.5 Guidelines for ratings and operating requirements  
Follow these guidelines for ratings and operating requirements:  
• Never exceed any of the chip’s ratings.  
• During normal operation, don’t exceed any of the chip’s operating requirements.  
• If you must exceed an operating requirement at times other than during normal  
operation (for example, during power sequencing), limit the duration as much as  
possible.  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
85  
NXP Semiconductors  
 
 
Revision History  
9 Revision History  
The following table provides a revision history for this document.  
Table 58. Revision History  
Rev. No.  
Date  
Substantial Changes  
2
3
01/2014  
04/2014  
Initial public release.  
• Format changes  
• Updated Table 23 "Flash command timing specifications."  
4
09/2014  
• Updated Table 6 "Power consumption operating behavior."  
• Updated Table 17 "IRC48M specifications  
• Updated Table 35 "VREF full-range operating behavior"  
5
6
12/2014  
08/2015  
• Updated Table 6 "Power consumption operating behavior."  
• Added a note to the section "Power consumption operating behaviors."  
• Added a footnote to the maximum SCL clock frequency value in the table "I2C timing"  
• Changed the title of the table "I2C 1 MHZ timing" to "I2C 1 Mbps timing"  
• Added a footnote and updated the table "IRC48M specifications" for open loop total  
deviation of IRC48M frequency at high voltage and low voltage.  
• Added a footnote on the ambient temperature entry to the section "Thermal operating  
requirements."  
• Added a note to the section "Power consumption operating behaviors" and updated  
values in the table "Power consumption operating behaviors."  
• Added a note to the maximum frequency value in the table "Slave mode DSPI timing  
(limited voltage range)."  
• Redeveloped the section "Terminology and guidelines."  
7
10/2016  
• Updated the values of IDD_STOP and IDD_VLLS0 in the table "Power consumption  
operating behaviors"  
86  
NXP Semiconductors  
Kinetis K64F Sub-Family Data Sheet, Rev. 7, 10/2016  
 
Information in this document is provided solely to enable system and software  
implementers to use NXP products. There are no express or implied copyright  
licenses granted hereunder to design or fabricate any integrated circuits based  
on the information in this document. NXP reserves the right to make changes  
without further notice to any products herein.  
How to Reach Us:  
Home Page:  
nxp.com  
Web Support:  
nxp.com/support  
NXP makes no warranty, representation, or guarantee regarding the suitability of  
its products for any particular purpose, nor does NXP assume any liability arising  
out of the application or use of any product or circuit, and specifically disclaims  
any and all liability, including without limitation consequential or incidental  
damages. “Typical” parameters that may be provided in NXP data sheets and/or  
specifications can and do vary in different applications, and actual performance  
may vary over time. All operating parameters, including “typicals,” must be  
validated for each customer application by customer's technical experts. NXP  
does not convey any license under its patent rights nor the rights of others. NXP  
sells products pursuant to standard terms and conditions of sale, which can be  
found at the following address: nxp.com/salestermsandconditions.  
NXP, NXP logo, and Kinetis are trademarks of NXP B.V. All other product or  
service names are the property of their respective owners. ARM and Cortex are  
registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or  
elsewhere. The USB-IF Logo is a registered trademark of USB Implementers  
Forum, Inc. All rights reserved.  
©2014–2016 NXP B.V.  
Document Number K64P144M120SF5  
Revision 7, 10/2016  

相关型号:

MK64FN1M0VLQ12

RISC MICROCONTROLLER
NXP

MK64FN1M0VMD12

Kinetis K64F Sub-Family
NXP

MK64FX512VDC12

Kinetis K64F Sub-Family
NXP

MK64FX512VLL12

Kinetis K64F Sub-Family
NXP

MK64FX512VLQ12

Kinetis K64F Sub-Family
NXP

MK64FX512VMD12

Kinetis K64F Sub-Family
NXP

MK65FN2M0VMI18

Kinetis K65 Sub-Family
NXP

MK65FN2M0VMI18R

RISC MICROCONTROLLER
NXP

MK65FX1M0CAC18R

Kinetis K 32-bit MCU, ARM Cortex-M4 core, 1 MB Flash, 180MHz, Ethernet, WLCSP 169
NXP

MK65FX1M0VMI18

Kinetis K65 Sub-Family
NXP

MK65FX1M0VMI18R

RISC MICROCONTROLLER
NXP

MK66FN2M0VLQ18

Kinetis K66 Sub-Family
NXP