MKL03Z32CAF4R [NXP]

Kinetis KL03 32 KB Flash;
MKL03Z32CAF4R
型号: MKL03Z32CAF4R
厂家: NXP    NXP
描述:

Kinetis KL03 32 KB Flash

文件: 总59页 (文件大小:1104K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NXP Semiconductors  
Data Sheet: Technical Data  
Document Number: KL03P24M48SF0  
Rev. 5.1 08/2017  
Kinetis KL03 32 KB Flash  
MKL03ZxxVFG4  
MKL03ZxxVFK4  
MKL03Z32CAF4R  
MKL03Z32CBF4R  
48 MHz Cortex-M0+ Based Microcontroller  
Supports ultra low power 48 MHz devices with up to 32 KB  
Flash.  
World's smallest MCU based on ARM® technology. Ideal  
solution for Internet of Things edge nodes design with ultra small  
form factor and ultra low power consumption. The products  
offers:  
16-pin QFN (FG)  
3 x 3 x 0.65 Pitch 0.5 4 x 4 x 0.65 Pitch 0.5  
mm mm  
24-pin QFN (FK)  
• Tiny footprint packages, including 1.6 x 2.0 mm2 WLCSP  
• Run power consumption as low as 50 µA/MHz  
• Static power consumption as low as 2.2 µA with 7.5 µs  
wakeup time for full retention and lowest static mode down  
to 77 nA in deep sleep  
• Highly integrated peripherals, including new boot ROM and  
high accurate internal voltage reference, etc  
20 WLCSP  
2 x 1.61 x 0.56 Pitch 0.4 mm(AF) 2 x 1.61 x  
0.32 Pitch 0.4 mm (BF)  
Core  
• ARM® Cortex®-M0+ core up to 48 MHz  
• Temperature range (ambient): -40 to 105°C for QFN  
packages; -40 to 85°C for WLCSP packages  
Memories  
• Up to 32 KB program flash memory  
Human-machine interface  
• General-purpose input/output up to 22  
• 2 KB SRAM  
• 8 KB ROM with build-in bootloader  
• 16 bytes regfile  
Communication interfaces  
• One 8-bit SPI module  
• One LPUART module  
System peripherals  
• One I2C module supporting up to 1 Mbit/s, with  
double buffer  
• Nine low-power modes to provide power optimization  
based on application requirements  
• COP Software watchdog  
Analog Modules  
• Low-leakage wakeup unit  
• SWD debug interface and Micro Trace Buffer  
• Bit Manipulation Engine  
• 12-bit SAR ADC with internal voltage reference, up  
to 818 ksps and 7 channels  
• High-speed analog comparator containing a 6-bit  
DAC and programmable reference input  
• 1.2 V voltage reference (Vref)  
Clocks  
• 48 MHz high accuracy internal reference clock  
• 8/2 MHz low power internal reference clock  
• 32 kHz to 40 kHz crystal oscillator  
• 1 kHz LPO clock  
Timers  
• Two 2-channel Timer/PWM modules  
• One low-power timer  
• Real time clock  
Operating Characteristics  
Security and integrity modules  
• Voltage range: 1.71 to 3.6 V  
• 80-bit unique identification number per chip  
• Flash write voltage range: 1.71 to 3.6 V  
NXP reserves the right to change the production detail specifications as may be  
required to permit improvements in the design of its products.  
Ordering Information1  
Part Number  
Memory  
Maximum number of I\O's  
Flash (KB)  
SRAM (KB)  
MKL03Z8VFG4(R)  
MKL03Z16VFG4(R)  
MKL03Z32VFG4(R)  
MKL03Z32CAF4R  
MKL03Z32CBF4R  
MKL03Z8VFK4(R)  
MKL03Z16VFK4(R)  
MKL03Z32VFK4(R)  
8
2
2
2
2
2
2
2
2
14  
14  
14  
18  
18  
22  
22  
22  
16  
32  
32  
32  
8
16  
32  
1. To confirm current availability of ordererable part numbers, go to http://www.nxp.com and perform a part number search.  
Related Resources  
Type  
Description  
Resource  
Solution Advisor  
Selector Guide The Solution Advisor is a web-based tool that features interactive  
application wizards and a dynamic product selector.  
Product Brief  
The Product Brief contains concise overview/summary information to KL03PB1  
enable quick evaluation of a device for design suitability.  
Reference  
Manual  
The Reference Manual contains a comprehensive description of the KL03P24M48SF0RM1  
structure and function (operation) of a device.  
Data Sheet  
The Data Sheet includes electrical characteristics and signal  
connections.  
KL03P24M48SF01  
Chip Errata  
The chip mask set Errata provides additional or corrective  
information for a particular device mask set.  
KL03Z_xN86K2  
Package  
drawing  
Package dimensions are provided in package drawings.  
QFN 16-pin: 98ASA00525D1  
QFN 24-pin: 98ASA00602D1  
WLCSP 20-pin: 98ASA00676D1  
WLCSP 20-pin (ultra thin):  
98ASA00964D1  
1. To find the associated resource, go to http://www.nxp.com and perform a search using this term.  
2. To find the associated resource, go to http://www.nxp.com and perform a search using this term with the “x” replaced by  
the revision of the device you are using.  
Figure 1 shows the functional modules in the chip.  
2
Kinetis KL03 32 KB Flash, Rev. 5.1 08/2017  
NXP Semiconductors  
Kinetis KL03 Family  
Memories and  
Memory Interfaces  
ARM Cortex-M0+  
Core  
System  
Clocks  
Low  
Internal  
watchdog  
frequency  
oscillator  
Program  
flash  
SWD  
interfaces  
Internal  
reference  
clocks  
BME  
RAM  
ROM  
Interrupt  
controller  
LPO  
MTB  
Register  
file  
Security  
and Integrity  
Human-Machine  
Interface (HMI)  
Analog  
Communication  
Interfaces  
Timers  
Timers  
2x2ch  
12-bit ADC  
x1  
Unique ID  
I2C  
x1  
GPIOs  
with  
interrupt  
Analog  
comparator  
Low Power  
Timer  
Low power  
with  
UART  
x1  
6-bit DAC  
x1  
RTC  
SPI  
x1  
VREF  
Figure 1. Functional block diagram  
Kinetis KL03 32 KB Flash, Rev. 5.1 08/2017  
3
NXP Semiconductors  
Table of Contents  
1 Ratings....................................................................................5  
3.6 Analog............................................................................. 33  
3.6.1 ADC electrical specifications............................... 33  
3.6.2 CMP and 6-bit DAC electrical specifications....... 37  
3.6.3 Voltage reference electrical specifications.......... 39  
3.7 Timers..............................................................................40  
3.8 Communication interfaces............................................... 40  
3.8.1 SPI switching specifications................................ 41  
3.8.2 Inter-Integrated Circuit Interface (I2C) timing...... 45  
3.8.3 UART...................................................................47  
4 Dimensions............................................................................. 47  
4.1 Obtaining package dimensions....................................... 47  
5 Pinout......................................................................................48  
5.1 KL03 signal multiplexing and pin assignments................48  
5.2 KL03 pinouts....................................................................49  
6 Ordering parts......................................................................... 51  
6.1 Determining valid orderable parts....................................51  
7 Part identification.....................................................................51  
7.1 Description.......................................................................51  
7.2 Format............................................................................. 52  
7.3 Fields............................................................................... 52  
7.4 Example...........................................................................52  
8 Terminology and guidelines.................................................... 53  
8.1 Definition: Operating requirement....................................53  
8.2 Definition: Operating behavior......................................... 53  
8.3 Definition: Attribute.......................................................... 54  
8.4 Definition: Rating............................................................. 54  
8.5 Result of exceeding a rating............................................ 55  
8.6 Relationship between ratings and operating  
1.1 Thermal handling ratings................................................. 5  
1.2 Moisture handling ratings................................................ 5  
1.3 ESD handling ratings.......................................................5  
1.4 Voltage and current operating ratings............................. 6  
2 General................................................................................... 6  
2.1 AC electrical characteristics.............................................6  
2.2 Nonswitching electrical specifications..............................7  
2.2.1 Voltage and current operating requirements....... 7  
2.2.2 LVD and POR operating requirements................7  
2.2.3 Voltage and current operating behaviors.............8  
2.2.4 Power mode transition operating behaviors........ 9  
2.2.5 Power consumption operating behaviors............ 10  
2.2.6 EMC radiated emissions operating behaviors.....24  
2.2.7 EMC Radiated Emissions Web Search  
Procedure boilerplate.......................................... 25  
2.2.8 Capacitance attributes.........................................25  
2.3 Switching specifications...................................................25  
2.3.1 Device clock specifications..................................25  
2.3.2 General switching specifications......................... 26  
2.4 Thermal specifications.....................................................26  
2.4.1 Thermal operating requirements......................... 26  
2.4.2 Thermal attributes................................................27  
3 Peripheral operating requirements and behaviors.................. 27  
3.1 Core modules.................................................................. 27  
3.1.1 SWD electricals .................................................. 28  
3.2 System modules.............................................................. 29  
3.3 Clock modules................................................................. 29  
3.3.1 MCG-Lite specifications.......................................29  
3.3.2 Oscillator electrical specifications........................30  
3.4 Memories and memory interfaces................................... 31  
3.4.1 Flash electrical specifications..............................31  
3.5 Security and integrity modules........................................ 33  
requirements....................................................................55  
8.7 Guidelines for ratings and operating requirements..........55  
8.8 Definition: Typical value...................................................56  
8.9 Typical value conditions.................................................. 57  
9 Revision history.......................................................................57  
4
Kinetis KL03 32 KB Flash, Rev. 5.1 08/2017  
NXP Semiconductors  
Ratings  
1 Ratings  
1.1 Thermal handling ratings  
Table 1. Thermal handling ratings  
Symbol  
TSTG  
Description  
Min.  
–55  
Max.  
150  
Unit  
°C  
Notes  
Storage temperature  
Solder temperature, lead-free  
1
2
TSDR  
260  
°C  
1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.  
2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
1.2 Moisture handling ratings  
Table 2. QFN packages moisture handling ratings  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
MSL  
Moisture sensitivity level  
3
1
1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
Table 3. WLCSP packages moisture handling ratings  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
MSL  
Moisture sensitivity level  
1
1
1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
1.3 ESD handling ratings  
Table 4. ESD handling ratings  
Symbol  
VHBM  
Description  
Min.  
–2000  
–500  
Max.  
+2000  
+500  
Unit  
V
Notes  
Electrostatic discharge voltage, human body model  
1
2
VCDM  
Electrostatic discharge voltage, charged-device  
model  
V
ILAT  
Latch-up current at ambient temperature of 105 °C  
–100  
+100  
mA  
3
Kinetis KL03 32 KB Flash, Rev. 5.1 08/2017  
5
NXP Semiconductors  
General  
1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human  
Body Model (HBM).  
2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for  
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.  
3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.  
1.4 Voltage and current operating ratings  
Table 5. Voltage and current operating ratings  
Symbol  
VDD  
IDD  
Description  
Min.  
–0.3  
Max.  
3.8  
Unit  
V
Digital supply voltage  
Digital supply current  
IO pin input voltage  
120  
mA  
V
VIO  
–0.3  
–25  
VDD + 0.3  
25  
ID  
Instantaneous maximum current single pin limit (applies to  
all port pins)  
mA  
VDDA  
Analog supply voltage  
VDD – 0.3  
VDD + 0.3  
V
2 General  
2.1 AC electrical characteristics  
Unless otherwise specified, propagation delays are measured from the 50% to the 50%  
point, and rise and fall times are measured at the 20% and 80% points, as shown in the  
following figure.  
High  
Low  
VIH  
80%  
50%  
20%  
Input Signal  
Midpoint1  
VIL  
Fall Time  
Rise Time  
The midpoint is VIL + (VIH - VIL) / 2  
Figure 2. Input signal measurement reference  
All digital I/O switching characteristics, unless otherwise specified, assume the output  
pins have the following characteristics.  
• CL=30 pF loads  
6
Kinetis KL03 32 KB Flash, Rev. 5.1 08/2017  
NXP Semiconductors  
General  
• Slew rate disabled  
• Normal drive strength  
2.2 Nonswitching electrical specifications  
2.2.1 Voltage and current operating requirements  
Table 6. Voltage and current operating requirements  
Symbol  
VDD  
Description  
Min.  
1.71  
1.71  
–0.1  
–0.1  
Max.  
3.6  
Unit  
V
Notes  
Supply voltage  
VDDA  
Analog supply voltage  
3.6  
V
VDD – VDDA VDD-to-VDDA differential voltage  
VSS – VSSA VSS-to-VSSA differential voltage  
0.1  
V
0.1  
V
VIH  
Input high voltage  
• 2.7 V ≤ VDD ≤ 3.6 V  
• 1.7 V ≤ VDD ≤ 2.7 V  
0.7 × VDD  
V
V
0.75 × VDD  
VIL  
Input low voltage  
• 2.7 V ≤ VDD ≤ 3.6 V  
• 1.7 V ≤ VDD ≤ 2.7 V  
0.35 × VDD  
0.3 × VDD  
V
V
VHYS  
IICIO  
Input hysteresis  
0.06 × VDD  
–5  
V
1
IO pin negative DC injection current—single pin  
• VIN < VSS–0.3V  
mA  
IICcont  
Contiguous pin DC injection current —regional limit,  
includes sum of negative injection currents of 16  
contiguous pins  
–25  
1.2  
mA  
V
• Negative current injection  
VRAM  
VDD voltage required to retain RAM  
1. All I/O pins are internally clamped to VSS through a ESD protection diode. There is no diode connection to VDD. If VIN  
greater than VIO_MIN (= VSS-0.3 V) is observed, then there is no need to provide current limiting resistors at the pads. If  
this limit cannot be observed then a current limiting resistor is required. The negative DC injection current limiting  
resistor is calculated as R = (VIO_MIN - VIN)/|IICIO|.  
Kinetis KL03 32 KB Flash, Rev. 5.1 08/2017  
7
NXP Semiconductors  
General  
2.2.2 LVD and POR operating requirements  
Table 7. VDD supply LVD and POR operating requirements  
Symbol Description  
Min.  
0.8  
Typ.  
1.1  
Max.  
1.5  
Unit  
V
Notes  
VPOR  
Falling VDD POR detect voltage  
VLVDH  
Falling low-voltage detect threshold — high  
range (LVDV = 01)  
2.48  
2.56  
2.64  
V
Low-voltage warning thresholds — high range  
• Level 1 falling (LVWV = 00)  
1
VLVW1H  
VLVW2H  
VLVW3H  
VLVW4H  
2.62  
2.72  
2.82  
2.92  
2.70  
2.80  
2.90  
3.00  
60  
2.78  
2.88  
2.98  
3.08  
V
V
• Level 2 falling (LVWV = 01)  
• Level 3 falling (LVWV = 10)  
V
• Level 4 falling (LVWV = 11)  
V
VHYSH  
VLVDL  
Low-voltage inhibit reset/recover hysteresis —  
high range  
mV  
1
Falling low-voltage detect threshold — low  
range (LVDV=00)  
1.54  
1.60  
1.66  
V
Low-voltage warning thresholds — low range  
• Level 1 falling (LVWV = 00)  
VLVW1L  
VLVW2L  
VLVW3L  
VLVW4L  
1.74  
1.84  
1.94  
2.04  
1.80  
1.90  
2.00  
2.10  
40  
1.86  
1.96  
2.06  
2.16  
V
V
• Level 2 falling (LVWV = 01)  
• Level 3 falling (LVWV = 10)  
V
• Level 4 falling (LVWV = 11)  
V
VHYSL  
Low-voltage inhibit reset/recover hysteresis —  
low range  
mV  
VBG  
tLPO  
Bandgap voltage reference  
0.97  
900  
1.00  
1.03  
V
Internal low power oscillator period — factory  
trimmed  
1000  
1100  
μs  
1. Rising thresholds are falling threshold + hysteresis voltage  
2.2.3 Voltage and current operating behaviors  
Table 8. Voltage and current operating behaviors  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
VOH  
Output high voltage — Normal drive pad (except  
RESET)  
1, 2  
VDD – 0.5  
VDD – 0.5  
V
V
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = –5 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = –2.5 mA  
VOH  
Output high voltage — High drive pad (except  
RESET)  
1, 2  
VDD – 0.5  
VDD – 0.5  
V
V
Table continues on the next page...  
8
Kinetis KL03 32 KB Flash, Rev. 5.1 08/2017  
NXP Semiconductors  
General  
Notes  
Table 8. Voltage and current operating behaviors (continued)  
Symbol  
Description  
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = –20 mA  
Min.  
Max.  
Unit  
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = –10 mA  
IOHT  
VOL  
Output high current total for all ports  
Output low voltage — Normal drive pad  
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 5 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 2.5 mA  
100  
mA  
1
0.5  
0.5  
V
V
VOL  
Output low voltage — High drive pad  
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 20 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 10 mA  
1
0.5  
0.5  
100  
1
V
V
IOLT  
IIN  
Output low current total for all ports  
mA  
μA  
3
Input leakage current (per pin) for full temperature  
range  
IIN  
IIN  
Input leakage current (per pin) at 25 °C  
0.025  
41  
μA  
μA  
3
3
Input leakage current (total all pins) for full  
temperature range  
IOZ  
Hi-Z (off-state) leakage current (per pin)  
Internal pullup resistors  
1
μA  
kΩ  
4
RPU  
20  
50  
1. I/O have both high drive and normal drive capability selected by the associated PTx_PCRn[DSE] control bit. All other  
GPIOs are normal drive only.  
2. The reset pin only contains an active pull down device when configured as the RESET signal or as a GPIO. When  
configured as a GPIO output, it acts as a pseudo open drain output.  
3. Measured at VDD = 3.6 V  
4. Measured at VDD supply voltage = VDD min and Vinput = VSS  
2.2.4 Power mode transition operating behaviors  
All specifications except tPOR and VLLSxRUN recovery times in the following  
table assume this clock configuration:  
• CPU and system clocks = 48 MHz  
• Bus and flash clock = 24 MHz  
• HIRC clock mode  
VLLSxRUN recovery uses LIRC clock mode at the default CPU and system  
frequency of 8 MHz, and a bus and flash clock frequency of 4 MHz.  
Kinetis KL03 32 KB Flash, Rev. 5.1 08/2017  
9
NXP Semiconductors  
General  
Table 9. Power mode transition operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Note  
tPOR  
After a POR event, amount of time from the  
point VDD reaches 1.8 V to execution of the first  
instruction across the operating temperature  
range of the chip.  
300  
μs  
1
• VLLS0 RUN  
• VLLS1 RUN  
• VLLS3 RUN  
• VLPS RUN  
• STOP RUN  
152  
152  
93  
166  
166  
104  
8
μs  
μs  
μs  
μs  
μs  
7.5  
7.5  
8
1. Normal boot (FTFA_FOPT[LPBOOT]=11).  
2.2.5 Power consumption operating behaviors  
Table 10. KL03 QFN packages power consumption operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.1  
Unit  
Notes  
IDDA  
Analog supply current  
See note  
mA  
2
3
IDD_RUNCO Running CoreMark in flash in compute operation  
mode—48M HIRC mode, 48 MHz core / 24 MHz  
flash, VDD = 3.0 V  
5.49  
5.62  
5.71  
5.84  
mA  
mA  
mA  
• at 25 °C  
• at 105 °C  
IDD_RUNCO Running While(1) loop in flash in compute  
operation mode—48M HIRC mode, 48 MHz  
core / 24 MHz flash, VDD = 3.0 V  
• at 25 °C  
3
3
3
5.16  
5.27  
5.37  
5.48  
• at 105 °C  
IDD_RUN Run mode current—48M HIRC mode, running  
CoreMark in Flash all peripheral clock disable  
48 MHz core/24 MHz flash, VDD = 3.0 V  
• at 25 °C  
6.03  
6.16  
6.27  
6.41  
• at 105 °C  
IDD_RUN Run mode current—48M HIRC mode, running  
CoreMark in flash all peripheral clock disable,  
24 MHz core/12 MHz flash, VDD = 3.0 V  
Table continues on the next page...  
10  
Kinetis KL03 32 KB Flash, Rev. 5.1 08/2017  
NXP Semiconductors  
General  
Table 10. KL03 QFN packages power consumption operating behaviors (continued)  
Symbol Description  
Min.  
Typ.  
Max.1  
Unit  
Notes  
• at 25 °C  
3.71  
3.86  
mA  
• at 105 °C  
3.81  
3.96  
IDD_RUN Run mode current—48M HIRC mode, running  
CoreMark in Flash all peripheral clock disable  
12 MHz core/6 MHz flash, VDD = 3.0 V  
• at 25 °C  
3
2.47  
2.58  
2.57  
2.68  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
• at 105 °C  
IDD_RUN Run mode current—48M HIRC mode, running  
CoreMark in Flash all peripheral clock enable 48  
MHz core/24 MHz flash, VDD = 3.0 V  
• at 25 °C  
3
6.43  
6.56  
6.69  
6.82  
• at 105 °C  
IDD_RUN Run mode current—48M HIRC mode, running  
While(1) loop in flash all peripheral clock  
disable, 48 MHz core/24 MHz flash, VDD = 3.0 V  
• at 25 °C  
5.71  
5.82  
5.94  
6.05  
• at 105 °C  
IDD_RUN Run mode current—48M HIRC mode, running  
While(1) loop in Flash all peripheral clock  
disable, 24 MHz core/12 MHz flash, VDD = 3.0 V  
• at 25 °C  
3.3  
3.4  
3.43  
3.54  
• at 105 °C  
IDD_RUN Run mode current—48M HIRC mode, Running  
While(1) loop in Flash all peripheral clock  
disable, 12 MHz core/6 MHz flash, VDD = 3.0 V  
• at 25 °C  
2.28  
2.38  
2.37  
2.48  
• at 105 °C  
IDD_RUN Run mode current—48M HIRC mode, Running  
While(1) loop in Flash all peripheral clock  
enable, 48 MHz core/24 MHz flash, VDD = 3.0 V  
• at 25 °C  
6.1  
6.34  
6.47  
6.22  
• at 105 °C  
IDD_RUN Run mode current—48M HIRC mode, running  
While(1) loop in SRAM all peripheral clock  
disable, 48 MHz core/24 MHz flash, VDD = 3.0 V  
• at 25 °C  
3.14  
3.27  
3.23  
3.36  
• at 105 °C  
IDD_RUN Run mode current—48M HIRC mode, running  
While(1) loop in SRAM all peripheral clock  
enable, 48 MHz core/24 MHz flash, VDD = 3.0 V  
3.54  
3.67  
3.63  
3.76  
Table continues on the next page...  
Kinetis KL03 32 KB Flash, Rev. 5.1 08/2017  
11  
NXP Semiconductors  
General  
Table 10. KL03 QFN packages power consumption operating behaviors (continued)  
Symbol Description  
Min.  
Typ.  
Max.1  
Unit  
Notes  
• at 25 °C  
• at 105 °C  
IDD_VLPRCO Very-low-power run While(1) loop in flash in  
compute operation mode— 2 MHz LIRC mode,  
2 MHz core/0.5 MHz flash, VDD = 3.0 V  
• at 25 °C  
500  
188  
82  
750  
217  
123  
754  
μA  
μA  
μA  
μA  
IDD_VLPRCO Very-low-power-run While(1) loop in SRAM in  
compute operation mode— 8 MHz LIRC mode,  
4 MHz core / 1 MHz flash, VDD = 3.0 V  
• at 25 °C  
IDD_VLPRCO Very-low-power run While(1) loop in SRAM in  
compute operation mode:—2 MHz LIRC mode,  
2 MHz core / 0.5 MHz flash, VDD = 3.0 V  
• at 25 °C  
IDD_VLPR Very-low-power run mode current— 2 MHz  
LIRC mode, While(1) loop in flash all peripheral  
clock disable, 2 MHz core / 0.5 MHz flash, VDD  
= 3.0 V  
503  
• at 25 °C  
IDD_VLPR Very-low-power run mode current— 2 MHz  
LIRC mode, While(1) loop in flash all peripheral  
clock disable, 125 kHz core / 31.25 kHz flash,  
VDD = 3.0 V  
60  
516  
209  
229  
93  
90  
774  
350  
370  
140  
81  
μA  
μA  
μA  
μA  
μA  
μA  
• at 25 °C  
IDD_VLPR Very-low-power run mode current— 2 MHz  
LIRC mode, While(1) loop in flash all peripheral  
clock enable, 2 MHz core / 0.5 MHz flash, VDD  
=
3.0 V  
• at 25 °C  
IDD_VLPR Very-low-power run mode current— 8 MHz  
LIRC mode, While(1) loop in SRAM in all  
peripheral clock disable, 4 MHz core / 1 MHz  
flash, VDD = 3.0 V  
• at 25 °C  
IDD_VLPR Very-low-power run mode current— 8 MHz  
LIRC mode, While(1) loop in SRAM all  
peripheral clock enable, 4 MHz core / 1 MHz  
flash, VDD = 3.0 V  
• at 25 °C  
IDD_VLPR Very-low-power run mode current—2 MHz LIRC  
mode, While(1) loop in SRAM in all peripheral  
clock disable, 2 MHz core / 0.5 MHz flash, VDD  
= 3.0 V  
• at 25 °C  
IDD_VLPR Very-low-power run mode current—2 MHz LIRC  
mode, While(1) loop in SRAM all peripheral  
clock disable, 125 kHz core / 31.25 kHz flash,  
VDD = 3.0 V  
31  
Table continues on the next page...  
12  
Kinetis KL03 32 KB Flash, Rev. 5.1 08/2017  
NXP Semiconductors  
General  
Table 10. KL03 QFN packages power consumption operating behaviors (continued)  
Symbol Description  
Min.  
Typ.  
Max.1  
Unit  
Notes  
• at 25 °C  
IDD_VLPR Very-low-power run mode current—2 MHz LIRC  
mode, While(1) loop in SRAM all peripheral  
clock enable, 2 MHz core / 0.5 MHz flash, VDD  
=
103  
1.4  
154  
μA  
3.0 V  
• at 25 °C  
IDD_WAIT Wait mode current—core disabled, 48 MHz  
system/24 MHz bus, flash disabled (flash doze  
enabled), all peripheral clocks disabled,  
1.94  
mA  
MCG_Lite under HIRC mode, VDD = 3.0 V  
IDD_WAIT Wait mode current—core disabled, 24 MHz  
system/12 MHz bus, flash disabled (flash doze  
enabled), all peripheral clocks disabled,  
1.02  
121  
1.24  
181  
mA  
μA  
MCG_Lite under HIRC mode, VDD = 3.0 V  
IDD_VLPW Very-low-power wait mode current, core  
disabled, 4 MHz system/ 1 MHz bus and flash,  
all peripheral clocks disabled, VDD = 3.0 V  
IDD_VLPW Very-low-power wait mode current, core  
59  
28  
97  
42  
μA  
μA  
disabled, 2 MHz system/ 0.5 MHz bus and flash,  
all peripheral clocks disabled, VDD = 3.0 V  
IDD_VLPW Very-low-power wait mode current, core  
disabled, 125 kHz system/ 31.25 kHz bus and  
flash, all peripheral clocks disabled, VDD = 3.0 V  
IDD_PSTOP2 Partial Stop 2, core and system clock disabled,  
12 MHz bus and flash, VDD = 3.0 V  
1.53  
2.03  
1.18  
mA  
mA  
IDD_PSTOP2 Partial Stop 2, core and system clock disabled,  
flash doze enabled, 12 MHz bus, VDD = 3.0 V  
0.881  
IDD_STOP Stop mode current at 3.0 V  
• at 25 °C and below  
158  
164  
187  
219  
175.7  
179.48  
199.54  
236.43  
• at 50 °C  
• at 85 °C  
• at 105 °C  
μA  
μA  
IDD_VLPS Very-low-power stop mode current at 3.0 V  
• at 25 °C and below  
2.2  
3.9  
2.71  
6.63  
• at 50 °C  
• at 85 °C  
• at 105 °C  
13.9  
28.4  
18.25  
36.59  
IDD_VLPS Very-low-power stop mode current at 1.8 V  
• at 25 °C and below  
2.2  
3.8  
2.674  
6.44  
• at 50 °C  
Table continues on the next page...  
Kinetis KL03 32 KB Flash, Rev. 5.1 08/2017  
13  
NXP Semiconductors  
General  
Table 10. KL03 QFN packages power consumption operating behaviors (continued)  
Symbol Description  
Min.  
Typ.  
Max.1  
Unit  
Notes  
• at 85 °C  
13.2  
17.37  
μA  
• at 105 °C  
27.8  
35.54  
IDD_VLLS3 Very-low-leakage stop mode 3 current, all  
peripheral disable, at 3.0 V  
μA  
μA  
μA  
1.08  
1.4  
1.17  
1.52  
3.96  
8.19  
• at 25 °C and below  
• at 50 °C  
• at 85 °C  
• at 105 °C  
3.45  
7.02  
IDD_VLLS3 Very-low-leakage stop mode 3 current with RTC  
current, at 3.0 V  
1.47  
1.82  
3.93  
7.6  
1.56  
1.94  
4.44  
8.77  
• at 25 °C and below  
• at 50 °C  
• at 85 °C  
• at 105 °C  
IDD_VLLS3 Very-low-leakage stop mode 3 current with RTC  
current, at 1.8 V  
1.33  
1.65  
3.56  
6.92  
1.42  
1.77  
4.07  
8.09  
• at 25 °C and below  
• at 50 °C  
• at 85 °C  
• at 105 °C  
IDD_VLLS1 Very-low-leakage stop mode 1 current all  
peripheral disabled at 3.0 V  
566  
788  
690  
839  
• at 25 °C and below  
• at 50°C  
• at 85°C  
• at 105 °C  
2270  
4980  
2600  
5820  
nA  
nA  
nA  
IDD_VLLS1 Very-low-leakage stop mode 1 current RTC  
enabled at 3.0 V  
969  
1059  
1251  
3070  
6450  
• at 25 °C and below  
1200  
2740  
5610  
• at 50°C  
• at 85°C  
• at 105 °C  
IDD_VLLS1 Very-low-leakage stop mode 1 current RTC  
enabled at 1.8 V  
826  
916  
• at 25 °C and below  
1040  
2400  
4910  
1091  
2730  
5750  
• at 50°C  
• at 85°C  
• at 105 °C  
Table continues on the next page...  
14  
Kinetis KL03 32 KB Flash, Rev. 5.1 08/2017  
NXP Semiconductors  
General  
Table 10. KL03 QFN packages power consumption operating behaviors (continued)  
Symbol Description  
Min.  
Typ.  
Max.1  
Unit  
Notes  
IDD_VLLS0 Very-low-leakage stop mode 0 current all  
peripheral disabled (SMC_STOPCTRL[PORPO]  
= 0) at 3.0 V  
265  
467  
373  
512.9  
2256  
5395  
• at 25 °C and below  
nA  
• at 50 °C  
• at 85 °C  
• at 105 °C  
1920  
4540  
IDD_VLLS0 Very-low-leakage stop mode 0 current all  
peripheral disabled (SMC_STOPCTRL[PORPO]  
= 1) at 3 V  
4
77  
350  
465.70  
1994  
• at 25 °C and below  
255  
nA  
• at 50 °C  
• at 85 °C  
• at 105 °C  
1640  
4080  
4956  
1. The maximum values represent characterized results equivalent to the mean plus three times the standard deviation  
(mean + 3 sigma).  
2. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device.  
See each module's specification for its supply current.  
3. MCG_Lite configured for HIRC mode. CoreMark benchmark compiled using IAR 7.10 with optimization level high,  
optimized for balanced.  
4. No brownout  
Table 11. KL03 WLCSP package power consumption operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.1  
Unit  
Notes  
IDDA  
Analog supply current  
See note  
mA  
2
3
IDD_RUNCO Running CoreMark in flash in compute  
operation mode—48M HIRC mode, 48 MHz  
core / 24 MHz flash, VDD = 3.0 V  
• at 25 °C  
5.49  
5.59  
5.71  
5.81  
mA  
mA  
mA  
• at 85 °C  
IDD_RUNCO Running While(1) loop in flash in compute  
operation mode—48M HIRC mode, 48 MHz  
core / 24 MHz flash, VDD = 3.0 V  
• at 25 °C  
3
3
5.16  
5.24  
5.37  
5.45  
• at 85 °C  
IDD_RUN Run mode current—48M HIRC mode, running  
CoreMark in Flash all peripheral clock disable  
48 MHz core/24 MHz flash, VDD = 3.0 V  
• at 25 °C  
6.03  
6.13  
6.27  
6.38  
• at 85 °C  
Table continues on the next page...  
Kinetis KL03 32 KB Flash, Rev. 5.1 08/2017  
15  
NXP Semiconductors  
General  
Table 11. KL03 WLCSP package power consumption operating behaviors (continued)  
Symbol Description  
Min.  
Typ.  
Max.1  
Unit  
Notes  
IDD_RUN Run mode current—48M HIRC mode, running  
CoreMark in flash all peripheral clock disable,  
24 MHz core/12 MHz flash, VDD = 3.0 V  
3
3.71  
3.78  
3.86  
3.93  
mA  
• at 25 °C  
• at 85 °C  
IDD_RUN Run mode current—48M HIRC mode, running  
CoreMark in Flash all peripheral clock disable  
12 MHz core/6 MHz flash, VDD = 3.0 V  
• at 25 °C  
3
3
2.47  
2.55  
2.57  
2.65  
mA  
mA  
mA  
• at 85 °C  
IDD_RUN Run mode current—48M HIRC mode, running  
CoreMark in Flash all peripheral clock enable  
48 MHz core/24 MHz flash, VDD = 3.0 V  
• at 25 °C  
6.43  
6.53  
6.69  
6.79  
• at 85 °C  
IDD_RUN Run mode current—48M HIRC mode, running  
While(1) loop in flash all peripheral clock  
disable, 48 MHz core/24 MHz flash, VDD = 3.0  
V
5.71  
5.79  
5.94  
6.02  
• at 25 °C  
• at 85 °C  
IDD_RUN Run mode current—48M HIRC mode, running  
While(1) loop in Flash all peripheral clock  
disable, 24 MHz core/12 MHz flash, VDD = 3.0  
3.3  
3.43  
3.50  
mA  
V
• at 25 °C  
3.37  
• at 85 °C  
IDD_RUN Run mode current—48M HIRC mode, Running  
While(1) loop in Flash all peripheral clock  
disable, 12 MHz core/6 MHz flash, VDD = 3.0 V  
• at 25 °C  
2.28  
2.35  
2.37  
2.44  
mA  
mA  
• at 85 °C  
IDD_RUN Run mode current—48M HIRC mode, Running  
While(1) loop in Flash all peripheral clock  
enable, 48 MHz core/24 MHz flash, VDD = 3.0  
V
6.1  
6.34  
6.44  
• at 25 °C  
6.19  
• at 85 °C  
IDD_RUN Run mode current—48M HIRC mode, running  
While(1) loop in SRAM all peripheral clock  
disable, 48 MHz core/24 MHz flash, VDD = 3.0  
V
3.14  
3.24  
3.23  
3.33  
mA  
Table continues on the next page...  
16  
Kinetis KL03 32 KB Flash, Rev. 5.1 08/2017  
NXP Semiconductors  
General  
Table 11. KL03 WLCSP package power consumption operating behaviors (continued)  
Symbol Description  
Min.  
Typ.  
Max.1  
Unit  
Notes  
• at 25 °C  
• at 85 °C  
IDD_RUN Run mode current—48M HIRC mode, running  
While(1) loop in SRAM all peripheral clock  
enable, 48 MHz core/24 MHz flash, VDD = 3.0  
3.54  
3.64  
3.63  
3.73  
mA  
V
• at 25 °C  
• at 85 °C  
IDD_VLPRCO Very-low-power run While(1) loop in flash in  
compute operation mode— 2 MHz LIRC mode,  
2 MHz core/0.5 MHz flash, VDD = 3.0 V  
• at 25 °C  
500  
188  
82  
750  
217  
123  
754  
μA  
μA  
μA  
μA  
IDD_VLPRCO Very-low-power-run While(1) loop in SRAM in  
compute operation mode— 8 MHz LIRC mode,  
4 MHz core / 1 MHz flash, VDD = 3.0 V  
• at 25 °C  
IDD_VLPRCO Very-low-power run While(1) loop in SRAM in  
compute operation mode:—2 MHz LIRC mode,  
2 MHz core / 0.5 MHz flash, VDD = 3.0 V  
• at 25 °C  
IDD_VLPR Very-low-power run mode current— 2 MHz  
LIRC mode, While(1) loop in flash all peripheral  
clock disable, 2 MHz core / 0.5 MHz flash, VDD  
= 3.0 V  
503  
• at 25 °C  
IDD_VLPR Very-low-power run mode current— 2 MHz  
LIRC mode, While(1) loop in flash all peripheral  
clock disable, 125 kHz core / 31.25 kHz flash,  
VDD = 3.0 V  
60  
90  
μA  
μA  
μA  
μA  
• at 25 °C  
IDD_VLPR Very-low-power run mode current— 2 MHz  
LIRC mode, While(1) loop in flash all peripheral  
clock enable, 2 MHz core / 0.5 MHz flash, VDD  
= 3.0 V  
516  
209  
229  
774  
350  
370  
• at 25 °C  
IDD_VLPR Very-low-power run mode current— 8 MHz  
LIRC mode, While(1) loop in SRAM in all  
peripheral clock disable, 4 MHz core / 1 MHz  
flash, VDD = 3.0 V  
• at 25 °C  
IDD_VLPR Very-low-power run mode current— 8 MHz  
LIRC mode, While(1) loop in SRAM all  
peripheral clock enable, 4 MHz core / 1 MHz  
flash, VDD = 3.0 V  
• at 25 °C  
IDD_VLPR Very-low-power run mode current—2 MHz  
LIRC mode, While(1) loop in SRAM in all  
Table continues on the next page...  
Kinetis KL03 32 KB Flash, Rev. 5.1 08/2017  
17  
NXP Semiconductors  
General  
Table 11. KL03 WLCSP package power consumption operating behaviors (continued)  
Symbol Description  
peripheral clock disable, 2 MHz core / 0.5 MHz  
Min.  
Typ.  
Max.1  
Unit  
Notes  
93  
140  
μA  
flash, VDD = 3.0 V  
• at 25 °C  
IDD_VLPR Very-low-power run mode current—2 MHz  
LIRC mode, While(1) loop in SRAM all  
peripheral clock disable, 125 kHz core / 31.25  
kHz flash, VDD = 3.0 V  
31  
103  
1.4  
81  
μA  
μA  
• at 25 °C  
IDD_VLPR Very-low-power run mode current—2 MHz  
LIRC mode, While(1) loop in SRAM all  
peripheral clock enable, 2 MHz core / 0.5 MHz  
flash, VDD = 3.0 V  
154  
1.94  
• at 25 °C  
IDD_WAIT Wait mode current—core disabled, 48 MHz  
system/24 MHz bus, flash disabled (flash doze  
enabled), all peripheral clocks disabled,  
mA  
MCG_Lite under HIRC mode, VDD = 3.0 V  
IDD_WAIT Wait mode current—core disabled, 24 MHz  
system/12 MHz bus, flash disabled (flash doze  
enabled), all peripheral clocks disabled,  
1.02  
121  
1.24  
181  
mA  
μA  
MCG_Lite under HIRC mode, VDD = 3.0 V  
IDD_VLPW Very-low-power wait mode current, core  
disabled, 4 MHz system/ 1 MHz bus and flash,  
all peripheral clocks disabled, VDD = 3.0 V  
IDD_VLPW Very-low-power wait mode current, core  
disabled, 2 MHz system/ 0.5 MHz bus and  
flash, all peripheral clocks disabled, VDD = 3.0  
V
59  
28  
97  
42  
μA  
μA  
IDD_VLPW Very-low-power wait mode current, core  
disabled, 125 kHz system/ 31.25 kHz bus and  
flash, all peripheral clocks disabled, VDD = 3.0  
V
IDD_PSTOP2 Partial Stop 2, core and system clock disabled,  
12 MHz bus and flash, VDD = 3.0 V  
1.53  
2.03  
1.18  
mA  
mA  
IDD_PSTOP2 Partial Stop 2, core and system clock disabled,  
flash doze enabled, 12 MHz bus, VDD = 3.0 V  
0.881  
IDD_STOP Stop mode current at 3.0 V  
• at 25 °C and below  
158  
164  
187  
175.7  
179.48  
199.54  
• at 50 °C  
• at 85 °C  
μA  
IDD_VLPS Very-low-power stop mode current at 3.0 V  
• at 25 °C and below  
2.2  
3.9  
2.71  
6.63  
Table continues on the next page...  
18  
Kinetis KL03 32 KB Flash, Rev. 5.1 08/2017  
NXP Semiconductors  
General  
Table 11. KL03 WLCSP package power consumption operating behaviors (continued)  
Symbol Description  
Min.  
Typ.  
Max.1  
Unit  
Notes  
• at 50 °C  
13.9  
18.25  
μA  
• at 85 °C  
IDD_VLPS Very-low-power stop mode current at 1.8 V  
• at 25 °C and below  
2.2  
3.8  
2.674  
6.44  
• at 50 °C  
• at 85 °C  
13.2  
17.37  
μA  
μA  
IDD_VLLS3 Very-low-leakage stop mode 3 current, all  
peripheral disable, at 3.0 V  
1.08  
1.4  
1.17  
1.52  
3.96  
• at 25 °C and below  
• at 50 °C  
• at 85 °C  
3.45  
IDD_VLLS3 Very-low-leakage stop mode 3 current with  
RTC current, at 3.0 V  
μA  
μA  
1.47  
1.82  
3.93  
1.56  
1.94  
4.44  
• at 25 °C and below  
• at 50 °C  
• at 85 °C  
IDD_VLLS3 Very-low-leakage stop mode 3 current with  
RTC current, at 1.8 V  
1.33  
1.65  
3.56  
1.42  
1.77  
4.07  
• at 25 °C and below  
• at 50 °C  
• at 85 °C  
IDD_VLLS1 Very-low-leakage stop mode 1 current all  
peripheral disabled at 3.0 V  
566  
788  
690  
839  
• at 25 °C and below  
• at 50°C  
• at 85°C  
2270  
2600  
nA  
nA  
nA  
IDD_VLLS1 Very-low-leakage stop mode 1 current RTC  
enabled at 3.0 V  
969  
1200  
2740  
1059  
1251  
3070  
• at 25 °C and below  
• at 50°C  
• at 85°C  
IDD_VLLS1 Very-low-leakage stop mode 1 current RTC  
enabled at 1.8 V  
826  
1040  
2400  
916  
1091  
2730  
• at 25 °C and below  
• at 50°C  
• at 85°C  
IDD_VLLS0 Very-low-leakage stop mode 0 current all  
peripheral disabled  
265  
373  
(SMC_STOPCTRL[PORPO] = 0) at 3.0 V  
Table continues on the next page...  
Kinetis KL03 32 KB Flash, Rev. 5.1 08/2017  
19  
NXP Semiconductors  
General  
Table 11. KL03 WLCSP package power consumption operating behaviors (continued)  
Symbol Description  
• at 25 °C and below  
Min.  
Typ.  
Max.1  
Unit  
Notes  
467  
512.9  
• at 50 °C  
• at 85 °C  
1920  
2256  
nA  
IDD_VLLS0 Very-low-leakage stop mode 0 current all  
peripheral disabled  
4
(SMC_STOPCTRL[PORPO] = 1) at 3 V  
• at 25 °C and below  
77  
350  
465.70  
1994  
255  
nA  
• at 50 °C  
• at 85 °C  
1640  
1. The maximum values represent characterized results equivalent to the mean plus three times the standard deviation  
(mean + 3 sigma).  
2. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See  
each module's specification for its supply current.  
3. MCG_Lite configured for HIRC mode. CoreMark benchmark compiled using IAR 7.10 with optimization level high,  
optimized for balanced.  
4. No brownout  
Table 12. Low power mode peripheral adders — typical value  
Symbol  
Description  
Temperature (°C)  
Unit  
-40  
25  
50  
70  
85  
1051  
ILIRC8MHz  
8 MHz internal reference clock (LIRC)  
adder. Measured by entering STOP or  
VLPS mode with 8 MHz LIRC enabled,  
MCG_SC[FCRDIV]=000b,  
68  
68  
68  
68  
68  
68  
µA  
MCG_MC[LIRC_DIV2]=000b.  
ILIRC2MHz  
2 MHz internal reference clock (LIRC)  
adder. Measured by entering STOP  
mode with the 2 MHz LIRC enabled,  
MCG_SC[FCRDIV]=000b,  
27  
27  
27  
27  
27  
27  
µA  
MCG_MC[LIRC_DIV2]=000b.  
IEREFSTEN32KHz  
External 32 kHz crystal clock adder by  
means of the OSC0_CR[EREFSTEN  
and EREFSTEN] bits. Measured by  
entering all modes with the crystal  
enabled.  
• VLLS1  
• VLLS3  
• VLPS  
• STOP  
340  
340  
340  
340  
410  
410  
420  
420  
460  
460  
480  
480  
470  
490  
570  
570  
480  
530  
610  
610  
600  
600  
850  
850  
nA  
nA  
ILPTMR  
LPTMR peripheral adder measured by  
placing the device in VLLS1 mode with  
LPTMR enabled using LPO.  
30  
30  
30  
85  
100  
200  
Table continues on the next page...  
20  
NXP Semiconductors  
Kinetis KL03 32 KB Flash, Rev. 5.1 08/2017  
General  
Table 12. Low power mode peripheral adders — typical value (continued)  
Symbol  
Description  
Temperature (°C)  
Unit  
-40  
25  
50  
70  
85  
1051  
ICMP  
CMP peripheral adder measured by  
placing the device in VLLS1 mode with  
CMP enabled using the 6-bit DAC and a  
single external input for compare.  
15  
15  
15  
15  
15  
15  
µA  
Includes 6-bit DAC power consumption.  
IRTC  
RTC peripheral adder measured by  
placing the device in VLLS1 mode with  
external 32 kHz crystal enabled by  
means of the RTC_CR[OSCE] bit and  
the RTC ALARM set for 1 minute.  
Includes ERCLK32K (32 kHz external  
crystal) power consumption.  
340  
440  
440  
480  
520  
620  
nA  
IUART  
UART peripheral adder measured by  
placing the device in STOP or VLPS  
mode with selected clock source waiting  
for RX data at 115200 baud rate.  
Includes selected clock source power  
consumption.  
85  
28  
85  
28  
85  
28  
85  
28  
85  
28  
85  
28  
µA  
• LIRC8M (8 MHz internal  
reference clock)  
• LIRC2M (2 MHz internal  
reference clock)  
ITPM  
TPM peripheral adder measured by  
placing the device in STOP or VLPS  
mode with selected clock source  
configured for output compare  
generating 100 Hz clock signal. No load  
is placed on the I/O generating the  
clock signal. Includes selected clock  
source and I/O switching currents.  
• LIRC8M (8 MHz internal  
µA  
93  
93  
93  
93  
93  
93  
reference clock)  
• LIRC2M (2 MHz internal  
reference clock)  
35  
45  
35  
45  
35  
45  
35  
45  
35  
45  
35  
45  
IBG  
Bandgap adder when BGEN bit is set  
and device is placed in VLPx or VLLSx  
mode.  
µA  
µA  
IADC  
ADC peripheral adder combining the  
measured values at VDD and VDDA by  
placing the device in STOP or VLPS  
mode. ADC is configured for low power  
mode using the internal clock and  
continuous conversions.  
340  
340  
340  
340  
340  
340  
1. For QFN packages only.  
Kinetis KL03 32 KB Flash, Rev. 5.1 08/2017  
21  
NXP Semiconductors  
General  
2.2.5.1 Diagram: Typical IDD_RUN operating behavior  
The following data was measured under these conditions:  
• MCG-Lite in HIRC for run mode, and LIRC for VLPR mode  
• No GPIOs toggled  
• Code execution from flash  
• For the ALLOFF curve, all peripheral clocks are disabled except FTFA  
Temperature=25, VDD=3, MCGMode=HIRC, whileloop located in Flash  
All Peripheral CLKGates  
CLKRatio  
Flash - Core  
CoreFreq (MHz)  
Figure 3. Run mode supply current vs. core frequency (loop located in flash)  
22  
NXP Semiconductors  
Kinetis KL03 32 KB Flash, Rev. 5.1 08/2017  
General  
Temperature=25, VDD=3, MCGMode=HIRC, whileloop located in SRAM  
All Peripheral CLKGates  
CLKRatio  
Flash - Core  
CoreFreq (MHz)  
Figure 4. Run mode supply current vs. core frequency (loop located in SRAM)  
Kinetis KL03 32 KB Flash, Rev. 5.1 08/2017  
23  
NXP Semiconductors  
General  
Temperature=25, VDD=3, MCG=LIRC8M, whileloop in SRAM  
All Peripheral CLKGates  
CLKRatio  
Flash - Core  
CoreFreq (MHz)  
Figure 5. VLPR mode current vs. core frequency (loop in SRAM)  
2.2.6 EMC radiated emissions operating behaviors  
Table 13. EMC radiated emissions operating behaviors for 24-pin QFN package  
Symbol  
Description  
Frequency  
band  
Typ.  
Unit  
Notes  
(MHz)  
VRE1  
VRE2  
Radiated emissions voltage, band 1  
Radiated emissions voltage, band 2  
Radiated emissions voltage, band 3  
Radiated emissions voltage, band 4  
IEC/SAE level  
0.15–50  
50–150  
5
7
5
5
N
dBμV  
dBμV  
dBμV  
dBμV  
1, 2  
VRE3  
150–500  
500–1000  
0.15–1000  
VRE4  
VRE_IEC  
2, 3  
1. Determined according to IEC 61967-2 (and SAE J1752/3) radiated radio frequency (RF) emissions measurement  
standard. Typical Configuration: Appendix B: DUT Software Configuration—2. Typical Configuration.  
2. VDD = 3.3 V, TA = 25 °C, firc48m = 48 MHz, fSYS = 48 MHz, fBUS = 24 MHz  
3. IEC/SAE Level Maximums: N≤12 dBµV, M≤18 dBµV, L≤24 dBµV, K≤30 dBµV, I ≤ 36 dBµV, H ≤ 42 dBµV, G≤48 dBµV.  
24  
Kinetis KL03 32 KB Flash, Rev. 5.1 08/2017  
NXP Semiconductors  
General  
2.2.7 EMC Radiated Emissions Web Search Procedure boilerplate  
To find application notes that provide guidance on designing your system to minimize  
interference from radiated emissions:  
1. Go to www.nxp.com.  
2. Perform a keyword search for "EMC design"  
2.2.8 Capacitance attributes  
Table 14. Capacitance attributes  
Symbol  
Description  
Min.  
Max.  
Unit  
CIN  
Input capacitance  
7
pF  
2.3 Switching specifications  
2.3.1 Device clock specifications  
Table 15. Device clock specifications  
Symbol  
Description  
Min.  
Max.  
Unit  
Normal run mode  
fSYS  
fBUS  
fFLASH  
fLPTMR  
System and core clock  
Bus clock  
48  
24  
24  
24  
MHz  
MHz  
MHz  
MHz  
Flash clock  
LPTMR clock  
VLPR and VLPS modes1  
fSYS  
System and core clock  
Bus clock  
4
MHz  
MHz  
MHz  
MHz  
MHz  
kHz  
fBUS  
1
1
fFLASH  
fLPTMR  
fERCLK  
fERCLK  
Flash clock  
LPTMR clock2  
24  
External reference clock  
External reference clock  
16  
32.768  
16  
fLPTMR_ERCLK LPTMR external reference clock  
MHz  
MHz  
MHz  
fTPM  
TPM asynchronous clock  
8
fUART0  
UART0 asynchronous clock  
8
Kinetis KL03 32 KB Flash, Rev. 5.1 08/2017  
25  
NXP Semiconductors  
General  
1. The frequency limitations in VLPR and VLPS modes here override any frequency specification listed in the timing  
specification for any other module. These same frequency limits apply to VLPS, whether VLPS was entered from RUN  
or from VLPR.  
2. The LPTMR can be clocked at this speed in VLPR or VLPS only when the source is an external pin.  
2.3.2 General switching specifications  
These general-purpose specifications apply to all signals configured for GPIO and  
UART signals.  
Table 16. General switching specifications  
Description  
Min.  
Max.  
Unit  
Notes  
GPIO pin interrupt pulse width (digital glitch filter disabled) —  
Synchronous path  
1.5  
Bus clock  
cycles  
1
External RESET and NMI pin interrupt pulse width —  
Asynchronous path  
100  
ns  
2
GPIO pin interrupt pulse width — Asynchronous path  
Port rise and fall time  
16  
ns  
ns  
2
3
36  
1. The greater synchronous and asynchronous timing must be met.  
2. This is the shortest pulse that is guaranteed to be recognized.  
3. 75 pF load  
2.4 Thermal specifications  
2.4.1 Thermal operating requirements  
Table 17. Thermal operating requirements of WLCSP package  
Symbol  
TJ  
Description  
Min.  
–40  
–40  
Max.  
95  
Unit  
°C  
Note  
Die junction temperature  
Ambient temperature  
TA  
85  
°C  
1
1. Maximum TA can be exceeded only if the user ensures that TJ does not exceed the maximum. The simplest method to  
determine TJ is: TJ = TA + RθJA × chip power dissipation.  
Table 18. Thermal operating requirements of other packages  
Symbol  
TJ  
Description  
Min.  
–40  
–40  
Max.  
125  
Unit  
°C  
Note  
Die junction temperature  
Ambient temperature  
TA  
105  
°C  
1
1. Maximum TA can be exceeded only if the user ensures that TJ does not exceed the maximum. The simplest method to  
determine TJ is: TJ = TA + RθJA × chip power dissipation.  
26  
Kinetis KL03 32 KB Flash, Rev. 5.1 08/2017  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
2.4.2 Thermal attributes  
Table 19. Thermal attributes  
Board type  
Single-layer (1S)  
Four-layer (2s2p)  
Single-layer (1S)  
Four-layer (2s2p)  
Symbol  
RθJA  
Description  
16 QFN  
64.2  
53.3  
55.4  
48.9  
33.5  
20.9  
0.2  
20  
WLCSP  
24 QFN  
60.7  
48.5  
51.0  
43.6  
30.4  
9.8  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Notes  
1,2  
1,2,3  
1,3  
1,3  
4
Thermal resistance, junction to  
ambient (natural convection)  
69.8  
57.5  
62.03  
54.3  
51.64  
0.73  
0.2  
RθJA  
Thermal resistance, junction to  
ambient (natural convection)  
RθJMA Thermal resistance, junction to  
ambient (200 ft./min. air speed)  
RθJMA Thermal resistance, junction to  
ambient (200 ft./min. air speed)  
RθJB  
RθJC  
ΨJT  
Thermal resistance, junction to  
board  
Thermal resistance, junction to  
case  
5
Thermal characterization  
parameter, junction to package  
top outside center (natural  
convection)  
0.2  
6
ΨJB  
Thermal characterization  
parameter, junction to package  
bottom outside center (natural  
convection)  
22.4  
21.8  
°C/W  
7
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site  
(board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board  
thermal resistance.  
2. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.  
3. Per JEDEC JESD51-6 with the board horizontal.  
4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is  
measured on the top surface of the board near the package.  
5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883  
Method 1012.1).  
6. Thermal characterization parameter indicating the temperature difference between package top and the junction  
temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is  
written as Psi-JT.  
7. Thermal characterization parameter indicating the temperature difference between package bottom center and the  
junction temperature per JEDEC JESD51-12. When Greek letters are not available, the thermal characterization  
parameter is written as Psi-JB.  
3 Peripheral operating requirements and behaviors  
3.1 Core modules  
Kinetis KL03 32 KB Flash, Rev. 5.1 08/2017  
27  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
3.1.1 SWD electricals  
Table 20. SWD full voltage range electricals  
Symbol  
Description  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
3.6  
V
J1  
SWD_CLK frequency of operation  
• Serial wire debug  
0
25  
MHz  
ns  
J2  
J3  
SWD_CLK cycle period  
SWD_CLK clock pulse width  
• Serial wire debug  
1/J1  
20  
ns  
J4  
J9  
SWD_CLK rise and fall times  
10  
0
3
ns  
ns  
ns  
ns  
ns  
SWD_DIO input data setup time to SWD_CLK rise  
SWD_DIO input data hold time after SWD_CLK rise  
SWD_CLK high to SWD_DIO data valid  
SWD_CLK high to SWD_DIO high-Z  
32  
J10  
J11  
J12  
5
J2  
J4  
J3  
J3  
SWD_CLK (input)  
J4  
Figure 6. Serial wire clock input timing  
28  
NXP Semiconductors  
Kinetis KL03 32 KB Flash, Rev. 5.1 08/2017  
Peripheral operating requirements and behaviors  
SWD_CLK  
SWD_DIO  
SWD_DIO  
SWD_DIO  
SWD_DIO  
J9  
J10  
Input data valid  
J11  
Output data valid  
J12  
J11  
Output data valid  
Figure 7. Serial wire data timing  
3.2 System modules  
There are no specifications necessary for the device's system modules.  
3.3 Clock modules  
3.3.1 MCG-Lite specifications  
Table 21. HIRC48M specification  
Symbol  
VDD  
Description  
Min.  
1.71  
Typ.  
Max.  
3.6  
Unit  
V
Notes  
Supply voltage  
IDD48M  
firc48m  
Supply current  
400  
48  
500  
μA  
Internal reference frequency  
MHz  
Δfirc48m_ol_lv total deviation of IRC48M frequency at low voltage  
(VDD=1.71V-1.89V) over temperature  
%firc48m  
0.5  
1.5  
Table continues on the next page...  
Kinetis KL03 32 KB Flash, Rev. 5.1 08/2017  
29  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
Table 21. HIRC48M specification (continued)  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
Δfirc48m_ol_hv total deviation of IRC48M frequency at high voltage  
(VDD=1.89V-3.6V) over temperature  
0.5  
35  
2
1.0  
150  
3
%firc48m  
ps  
Jcyc_irc48m Period Jitter (RMS)  
1
tirc48mst  
Startup time  
μs  
1. IRC48M startup time is defined as the time between clock enablement and clock availability for system use. Enable the  
clock by setting MCG_MC[HIRCEN] = 1. See reference manual for details.  
Table 22. LIRC8M/2M specification  
Symbol  
VDD  
Description  
Supply voltage  
Min.  
1.08  
-40  
Typ.  
14  
30  
2
Max.  
1.47  
125  
17  
Unit  
V
Notes  
T
Temperature range  
°C  
IDD_2M  
IDD_8M  
fIRC_2M  
fIRC_8M  
fIRC_T_2M  
fIRC_T_8M  
Tsu_2M  
Tsu_8M  
Supply current in 2 MHz mode  
Supply current in 8 MHz mode  
Output frequency  
µA  
35  
µA  
MHz  
MHz  
%fIRC  
%fIRC  
µs  
Output frequency  
8
VDD≥1.89 V  
VDD≥1.89 V  
Output frequency range (trimmed)  
Output frequency range (trimmed)  
Startup time  
3
3
12.5  
12.5  
Startup time  
µs  
3.3.2 Oscillator electrical specifications  
3.3.2.1 Oscillator DC electrical specifications  
Table 23. Oscillator DC electrical specifications  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
VDD  
Supply voltage  
1.71  
3.6  
V
1
IDDOSC  
Supply current — low-power mode  
• 32 kHz  
500  
nA  
Cx  
Cy  
RF  
EXTAL load capacitance  
XTAL load capacitance  
2, 3  
2, 3  
2, 4  
Feedback resistor — low-frequency, low-power  
mode  
MΩ  
kΩ  
RS  
Series resistor — low-frequency, low-power  
mode  
Table continues on the next page...  
30  
NXP Semiconductors  
Kinetis KL03 32 KB Flash, Rev. 5.1 08/2017  
Peripheral operating requirements and behaviors  
Table 23. Oscillator DC electrical specifications (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
5
Vpp  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — low-frequency, low-power mode  
0.6  
V
1. VDD=3.3 V, Temperature =25 °C  
2. See crystal or resonator manufacturer's recommendation  
3. Cx,Cy can be provided by using either the integrated capacitors or by using external components.  
4. When low power mode is selected, RF is integrated and must not be attached externally.  
5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to  
any other devices.  
3.3.2.2 Oscillator frequency specifications  
Table 24. Oscillator frequency specifications  
Symbol Description  
fosc_lo Oscillator crystal or resonator frequency — low  
frequency mode  
tdc_extal Input clock duty cycle (external clock mode)  
Min.  
Typ.  
Max.  
Unit  
Notes  
32  
40  
kHz  
40  
50  
60  
%
tcst  
Crystal startup time — 32 kHz low-frequency,  
low-power mode  
750  
ms  
1, 2  
1. Proper PC board layout procedures must be followed to achieve specifications.  
2. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S  
register being set.  
3.4 Memories and memory interfaces  
3.4.1 Flash electrical specifications  
This section describes the electrical characteristics of the flash memory module.  
3.4.1.1 Flash timing specifications — program and erase  
The following specifications represent the amount of time the internal charge pumps  
are active and do not include command overhead.  
Table 25. NVM program/erase timing specifications  
Symbol Description  
Min.  
Typ.  
7.5  
13  
Max.  
18  
Unit  
μs  
Notes  
thvpgm4 Longword Program high-voltage time  
thversscr Sector Erase high-voltage time  
1
113  
452  
ms  
ms  
thversall  
Erase All high-voltage time  
52  
1
Kinetis KL03 32 KB Flash, Rev. 5.1 08/2017  
31  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
1. Maximum time based on expectations at cycling end-of-life.  
3.4.1.2 Flash timing specifications — commands  
Table 26. Flash command timing specifications  
Symbol Description  
Min.  
Typ.  
Max.  
60  
Unit  
μs  
Notes  
trd1sec1k Read 1s Section execution time (flash sector)  
1
1
tpgmchk  
trdrsrc  
tpgm4  
Program Check execution time  
Read Resource execution time  
Program Longword execution time  
Erase Flash Sector execution time  
Read 1s All Blocks execution time  
Read Once execution time  
45  
μs  
30  
μs  
1
65  
14  
145  
114  
0.5  
25  
μs  
2
tersscr  
trd1all  
ms  
ms  
μs  
1
trdonce  
tpgmonce Program Once execution time  
65  
61  
μs  
2
tersall  
Erase All Blocks execution time  
500  
30  
ms  
μs  
tvfykey  
Verify Backdoor Access Key execution time  
1
1. Assumes 25 MHz flash clock frequency.  
2. Maximum times for erase parameters based on expectations at cycling end-of-life.  
3.4.1.3 Flash high voltage current behaviors  
Table 27. Flash high voltage current behaviors  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
IDD_PGM  
Average current adder during high voltage  
flash programming operation  
2.5  
6.0  
mA  
IDD_ERS  
Average current adder during high voltage  
flash erase operation  
1.5  
4.0  
mA  
3.4.1.4 Reliability specifications  
Table 28. NVM reliability specifications  
Symbol Description  
Min.  
Program Flash  
Typ.1  
Max.  
Unit  
Notes  
tnvmretp10k Data retention after up to 10 K cycles  
tnvmretp1k Data retention after up to 1 K cycles  
nnvmcycp Cycling endurance  
5
50  
years  
years  
cycles  
2
20  
100  
50 K  
10 K  
1. Typical data retention values are based on measured response accelerated at high temperature and derated to a  
constant 25 °C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in  
Engineering Bulletin EB619.  
2. Cycling endurance represents number of program/erase cycles at -40 °C ≤ Tj ≤ 125 °C.  
32  
Kinetis KL03 32 KB Flash, Rev. 5.1 08/2017  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
3.5 Security and integrity modules  
There are no specifications necessary for the device's security and integrity modules.  
3.6 Analog  
3.6.1 ADC electrical specifications  
All ADC channels meet the 12-bit single-ended accuracy specifications.  
3.6.1.1 12-bit ADC operating conditions  
Table 29. 12-bit ADC operating conditions  
Symbol Description  
VDDA Supply voltage  
ΔVDDA Supply voltage  
Conditions  
Min.  
1.71  
-100  
-100  
1.13  
Typ.1  
Max.  
3.6  
Unit  
V
Notes  
Absolute  
2
Delta to VDD (VDD – VDDA  
)
0
+100  
+100  
VDDA  
mV  
mV  
V
ΔVSSA  
Ground voltage Delta to VSS (VSS – VSSA  
)
0
2
VREFH  
ADC reference  
voltage high  
VDDA  
3
VREFL  
ADC reference  
voltage low  
VSSA  
VSSA  
VSSA  
V
3
VADIN  
CADIN  
Input voltage  
VREFL  
4
VREFH  
5
V
Input  
capacitance  
• 8-bit / 10-bit / 12-bit  
modes  
pF  
RADIN  
RAS  
Input series  
resistance  
2
5
kΩ  
4
Analog source  
resistance  
(external)  
12-bit modes  
fADCK < 4 MHz  
5
kΩ  
fADCK  
Crate  
ADC conversion ≤ 12-bit mode  
clock frequency  
1.0  
18.0  
MHz  
5
6
ADC conversion ≤ 12-bit modes  
rate  
No ADC hardware averaging  
20.000  
818.330  
Ksps  
Continuous conversions  
enabled, subsequent  
conversion time  
1. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 1.0 MHz, unless otherwise stated. Typical values are for  
reference only, and are not tested in production.  
2. DC potential difference.  
Kinetis KL03 32 KB Flash, Rev. 5.1 08/2017  
33  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
3. For packages without dedicated VREFH and VREFL pins, VREFH is internally tied to VDDA, and VREFL is internally tied to  
VSSA  
.
4. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as  
possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The  
RAS/CAS time constant should be kept to < 1 ns.  
5. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.  
6. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.  
SIMPLIFIED  
INPUT PIN EQUIVALENT  
ZADIN  
CIRCUIT  
SIMPLIFIED  
CHANNEL SELECT  
CIRCUIT  
Pad  
ZAS  
leakage  
due to  
input  
ADC SAR  
ENGINE  
RAS  
RADIN  
protection  
VADIN  
CAS  
VAS  
RADIN  
RADIN  
RADIN  
INPUT PIN  
INPUT PIN  
INPUT PIN  
CADIN  
Figure 8. ADC input impedance equivalency diagram  
3.6.1.2 12-bit ADC electrical characteristics  
Table 30. 12-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA  
)
Symbol Description  
Conditions1.  
Min.  
0.215  
1.2  
Typ.2  
Max.  
1.7  
3.9  
6.1  
7.3  
9.5  
Unit  
Notes  
IDDA_ADC Supply current  
mA  
3
ADC  
asynchronous  
• ADLPC = 1, ADHSC = 0  
• ADLPC = 1, ADHSC = 1  
• ADLPC = 0, ADHSC = 0  
• ADLPC = 0, ADHSC = 1  
2.4  
4.0  
5.2  
6.2  
tADACK =  
1/fADACK  
MHz  
MHz  
MHz  
MHz  
2.4  
clock source  
fADACK  
3.0  
4.4  
Sample Time  
See Reference Manual chapter for sample times  
TUE  
Total  
unadjusted error  
• 12-bit modes  
• <12-bit modes  
6
3
6
LSB4  
5
Table continues on the next page...  
34  
NXP Semiconductors  
Kinetis KL03 32 KB Flash, Rev. 5.1 08/2017  
Peripheral operating requirements and behaviors  
Table 30. 12-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)  
Symbol Description  
Conditions1.  
Min.  
Typ.2  
Max.  
Unit  
Notes  
DNL  
Differential non-  
linearity  
• 12-bit modes  
0.9  
–1.1 to  
+1.9  
LSB4  
5
–0.3 to 0.5  
• <12-bit modes  
• 12-bit modes  
0.4  
1.5  
INL  
Integral non-  
linearity  
–2.7 to  
+1.9  
LSB4  
5
–0.7 to  
+0.5  
• <12-bit modes  
0.5  
EFS  
Full-scale error  
• 12-bit modes  
• <12-bit modes  
• 12-bit modes  
5
2
3
LSB4  
VADIN  
VDDA  
=
5
EQ  
EIL  
Quantization  
error  
0.5  
LSB4  
mV  
Input leakage  
error  
IIn × RAS  
IIn =  
leakage  
current  
(refer to  
the MCU's  
voltage  
and  
current  
operating  
ratings)  
Temp sensor  
slope  
Across the full temperature range  
of the device  
1.55  
706  
1.62  
716  
1.69  
726  
mV/°C  
mV  
6
VTEMP25 Temp sensor  
voltage  
25 °C  
6
1. All accuracy numbers assume the ADC is calibrated with VREFH = VDDA  
2. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 2.0 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low  
power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with  
1 MHz ADC conversion clock speed.  
4. 1 LSB = (VREFH - VREFL)/2N  
5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)  
6. ADC conversion clock < 3 MHz  
Table 31. 12-bit ADC characteristics (VREFH = VREFO, VREFL = VSSA  
)
Symbol Description  
Conditions1.  
Min.  
0.215  
1.2  
Typ.2  
Max.  
1.7  
3.9  
6.1  
7.3  
9.5  
Unit  
Notes  
IDDA_ADC Supply current  
mA  
3
ADC  
asynchronous  
• ADLPC = 1, ADHSC = 0  
• ADLPC = 1, ADHSC = 1  
• ADLPC = 0, ADHSC = 0  
• ADLPC = 0, ADHSC = 1  
2.4  
4.0  
5.2  
6.2  
tADACK =  
1/fADACK  
MHz  
MHz  
MHz  
MHz  
2.4  
clock source  
fADACK  
3.0  
4.4  
Table continues on the next page...  
Kinetis KL03 32 KB Flash, Rev. 5.1 08/2017  
35  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
Table 31. 12-bit ADC characteristics (VREFH = VREFO, VREFL = VSSA) (continued)  
Symbol Description  
Conditions1.  
Min.  
Typ.2  
Max.  
Unit  
Notes  
Sample Time  
See Reference Manual chapter for sample times  
TUE  
DNL  
Total  
unadjusted  
error  
• 12-bit modes  
• <12-bit modes  
4
6.8  
2.1  
LSB4  
5
1.4  
Differential non-  
linearity  
• 12-bit modes  
0.7  
–1.1 to  
+1.9  
LSB4  
LSB4  
LSB4  
5
5
–0.3 to  
0.5  
• <12-bit modes  
• 12-bit modes  
0.2  
1.0  
INL  
EFS  
Integral non-  
linearity  
–2.7 to  
+1.9  
–0.7 to  
+0.5  
• <12-bit modes  
0.5  
Full-scale error  
• 12-bit modes  
• <12-bit modes  
• 12-bit modes  
–4  
–1.4  
–5.4  
–1.8  
0.5  
VADIN  
VDDA  
=
5
EQ  
EIL  
Quantization  
error  
LSB4  
mV  
Input leakage  
error  
IIn × RAS  
IIn =  
leakage  
current  
(refer to  
the MCU's  
voltage  
and  
current  
operating  
ratings)  
Temp sensor  
slope  
Across the full temperature range  
of the device  
1.55  
706  
1.62  
716  
1.69  
726  
mV/°C  
mV  
6
VTEMP25 Temp sensor  
voltage  
25 °C  
6
1. All accuracy numbers assume the ADC is calibrated with VREFH = VREFO  
2. Typical values assume VREFO = 1.2 V, Temp = 25 °C, fADCK = 2.0 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low  
power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with 1  
MHz ADC conversion clock speed.  
4. 1 LSB = (VREFH - VREFL)/2N  
5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)  
6. ADC conversion clock < 3 MHz  
36  
Kinetis KL03 32 KB Flash, Rev. 5.1 08/2017  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
Typical ADC 12-bit Single Ended ENOB vs ADC Clock  
100Hz, 90% FS Sine Input  
11.9  
11.8  
11.7  
11.6  
11.5  
11.4  
11.3  
11.2  
11.1  
11  
10.9  
10.8  
10.7  
10.6  
10.5  
10.4  
10.3  
10.2  
10.1  
10  
Hardware Averaging Disabled  
Averaging of 8 samples  
Averaging of 32 samples  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
22  
ADC Clock Frequency (MHz)  
Figure 9. Typical ENOB vs. ADC_CLK for 12-bit single-ended mode  
3.6.2 CMP and 6-bit DAC electrical specifications  
Table 32. Comparator and 6-bit DAC electrical specifications  
Symbol  
VDD  
Description  
Min.  
1.71  
Typ.  
Max.  
3.6  
Unit  
V
Supply voltage  
IDDHS  
Supply current, High-speed mode (EN=1,  
PMODE=1)  
200  
μA  
IDDLS  
VAIN  
VAIO  
VH  
Supply current, low-speed mode (EN=1, PMODE=0)  
Analog input voltage  
VSS – 0.3  
20  
VDD  
20  
μA  
V
Analog input offset voltage  
Analog comparator hysteresis1  
• CR0[HYSTCTR] = 00  
mV  
5
mV  
mV  
mV  
mV  
• CR0[HYSTCTR] = 01  
10  
20  
30  
• CR0[HYSTCTR] = 10  
• CR0[HYSTCTR] = 11  
VCMPOh  
VCMPOl  
tDHS  
Output high  
Output low  
VDD – 0.5  
50  
0.5  
200  
V
V
Propagation delay, high-speed mode (EN=1,  
PMODE=1)  
20  
ns  
tDLS  
Propagation delay, low-speed mode (EN=1,  
PMODE=0)  
Analog comparator initialization delay2  
80  
250  
600  
40  
ns  
μs  
Table continues on the next page...  
Kinetis KL03 32 KB Flash, Rev. 5.1 08/2017  
37  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
Table 32. Comparator and 6-bit DAC electrical specifications (continued)  
Symbol  
IDAC6b  
INL  
Description  
Min.  
Typ.  
7
Max.  
Unit  
6-bit DAC current adder (enabled)  
6-bit DAC integral non-linearity  
6-bit DAC differential non-linearity  
μA  
–0.5  
–0.3  
0.5  
0.3  
LSB3  
LSB  
DNL  
1. Typical hysteresis is measured with input voltage range limited to 0.6 to VDD–0.6 V.  
2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to  
CMP_DACCR[DACEN], CMP_DACCR[VRSEL], CMP_DACCR[VOSEL], CMP_MUXCR[PSEL], and  
CMP_MUXCR[MSEL]) and the comparator output settling to a stable level.  
3. 1 LSB = Vreference/64  
0.08  
0.07  
0.06  
HYSTCTR  
Setting  
0.05  
0.04  
0.03  
00  
01  
10  
11  
0.02  
0.01  
0
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
Vin level (V)  
Figure 10. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0)  
38  
NXP Semiconductors  
Kinetis KL03 32 KB Flash, Rev. 5.1 08/2017  
Peripheral operating requirements and behaviors  
0.18  
0.16  
0.14  
0.12  
HYSTCTR  
Setting  
0.1  
00  
01  
10  
11  
0.08  
0.06  
0.04  
0.02  
0
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
Vin level (V)  
Figure 11. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1)  
3.6.3 Voltage reference electrical specifications  
Table 33. VREF full-range operating requirements  
Symbol  
VDDA  
TA  
Description  
Supply voltage  
Temperature  
Min.  
Max.  
Unit  
V
Notes  
1.71  
3.6  
Operating temperature  
range of the device  
°C  
CL  
Output load capacitance  
100  
nF  
1, 2  
1. CL must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external  
reference.  
2. The load capacitance should not exceed +/-25% of the nominal specified CL value over the operating temperature  
range of the device.  
Table 34 is tested under the condition of setting VREF_TRM[CHOPEN],  
VREF_SC[REGEN] and VREF_SC[ICOMPEN] bits to 1.  
Kinetis KL03 32 KB Flash, Rev. 5.1 08/2017  
39  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
Table 34. VREF full-range operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
Vout  
Voltage reference output with factory trim at  
1.1915  
1.195  
1.1977  
V
1
nominal VDDA and temperature=25C  
Voltage reference output — factory trim  
Voltage reference output — user trim  
Voltage reference trim step  
Vout  
Vout  
1.1584  
1.193  
1.2376  
1.197  
V
V
1
1
1
1
Vstep  
Vtdrift  
0.5  
mV  
mV  
Temperature drift (Vmax -Vmin across the full  
temperature range: 0 to 70°C)  
50  
Ac  
Ibg  
Ilp  
Aging coefficient  
400  
80  
uV/yr  
µA  
1
Bandgap only current  
Low-power buffer current  
High-power buffer current  
360  
1
uA  
1
Ihp  
mA  
µV  
1
ΔVLOAD Load regulation  
• current = 1.0 mA  
1, 2  
200  
Tstup  
Buffer startup time  
2
100  
µs  
1
Vvdrift  
Voltage drift (Vmax -Vmin across the full voltage  
range)  
mV  
1. See the chip's Reference Manual for the appropriate settings of the VREF Status and Control register.  
2. Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load  
Table 35. VREF limited-range operating requirements  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
TA  
Temperature  
0
50  
°C  
Table 36. VREF limited-range operating behaviors  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
Vout  
Voltage reference output with factory trim  
1.173  
1.225  
V
3.7 Timers  
See General switching specifications.  
3.8 Communication interfaces  
40  
Kinetis KL03 32 KB Flash, Rev. 5.1 08/2017  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
3.8.1 SPI switching specifications  
The Serial Peripheral Interface (SPI) provides a synchronous serial bus with master  
and slave operations. Many of the transfer attributes are programmable. The following  
tables provide timing characteristics for classic SPI timing modes. See the SPI chapter  
of the chip's Reference Manual for information about the modified transfer formats  
used for communicating with slower peripheral devices.  
All timing is shown with respect to 20% VDD and 80% VDD thresholds, unless noted,  
as well as input signal transitions of 3 ns and a 30 pF maximum load on all SPI pins.  
Table 37. SPI master mode timing on slew rate disabled pads  
Num.  
Symbol Description  
Min.  
Max.  
Unit  
Hz  
Note  
1
2
fop  
Frequency of operation  
fperiph/2048  
2 x tperiph  
fperiph/2  
1
2
tSPSCK  
SPSCK period  
2048 x  
tperiph  
ns  
3
4
5
tLead  
tLag  
Enable lead time  
Enable lag time  
1/2  
1/2  
tSPSCK  
tSPSCK  
ns  
tWSPSCK Clock (SPSCK) high or low time  
tperiph – 30  
1024 x  
tperiph  
6
7
tSU  
tHI  
Data setup time (inputs)  
Data hold time (inputs)  
Data valid (after SPSCK edge)  
Data hold time (outputs)  
Rise time input  
22  
0
ns  
ns  
ns  
ns  
ns  
10  
8
tv  
0
9
tHO  
tRI  
10  
tperiph – 25  
tFI  
Fall time input  
11  
tRO  
tFO  
Rise time output  
25  
ns  
Fall time output  
1. For SPI0, fperiph is the bus clock (fBUS).  
2. tperiph = 1/fperiph  
Table 38. SPI master mode timing on slew rate enabled pads  
Num.  
Symbol Description  
Min.  
Max.  
Unit  
Hz  
Note  
1
2
fop  
Frequency of operation  
fperiph/2048  
2 x tperiph  
fperiph/2  
1
2
tSPSCK  
SPSCK period  
2048 x  
tperiph  
ns  
3
4
tLead  
tLag  
Enable lead time  
Enable lag time  
1/2  
1/2  
tSPSCK  
tSPSCK  
Table continues on the next page...  
Kinetis KL03 32 KB Flash, Rev. 5.1 08/2017  
41  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
Table 38. SPI master mode timing on slew rate enabled pads (continued)  
Num.  
Symbol Description  
Min.  
Max.  
Unit  
Note  
5
tWSPSCK Clock (SPSCK) high or low time  
tperiph – 30  
1024 x  
tperiph  
ns  
6
7
tSU  
tHI  
Data setup time (inputs)  
Data hold time (inputs)  
Data valid (after SPSCK edge)  
Data hold time (outputs)  
Rise time input  
96  
0
ns  
ns  
ns  
ns  
ns  
52  
8
tv  
0
9
tHO  
tRI  
10  
tperiph – 25  
tFI  
Fall time input  
11  
tRO  
tFO  
Rise time output  
36  
ns  
Fall time output  
1. For SPI0, fperiph is the bus clock (fBUS).  
2. tperiph = 1/fperiph  
1
SS  
(OUTPUT)  
3
2
10  
10  
11  
11  
4
SPSCK  
(CPOL=0)  
(OUTPUT)  
5
5
SPSCK  
(CPOL=1)  
(OUTPUT)  
6
7
MISO  
(INPUT)  
2
BIT 6 . . . 1  
8
MSB IN  
LSB IN  
9
MOSI  
(OUTPUT)  
2
BIT 6 . . . 1  
MSB OUT  
LSB OUT  
1. If configured as an output.  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 12. SPI master mode timing (CPHA = 0)  
42  
Kinetis KL03 32 KB Flash, Rev. 5.1 08/2017  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
1
SS  
(OUTPUT)  
2
10  
10  
11  
11  
4
3
SPSCK  
(CPOL=0)  
(OUTPUT)  
5
5
SPSCK  
(CPOL=1)  
(OUTPUT)  
6
7
MISO  
(INPUT)  
2
BIT 6 . . . 1  
LSB IN  
MSB IN  
9
8
MOSI  
(OUTPUT)  
2
PORT DATA  
BIT 6 . . . 1  
MASTER MSB OUT  
PORT DATA  
MASTER LSB OUT  
1.If configured as output  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 13. SPI master mode timing (CPHA = 1)  
Table 39. SPI slave mode timing on slew rate disabled pads  
Num.  
1
Symbol Description  
Min.  
Max.  
fperiph/4  
Unit  
Hz  
Note  
1
fop  
tSPSCK  
tLead  
tLag  
Frequency of operation  
0
2
SPSCK period  
Enable lead time  
Enable lag time  
4 x tperiph  
ns  
2
3
1
tperiph  
tperiph  
ns  
3
4
1
5
tWSPSCK Clock (SPSCK) high or low time  
tperiph – 30  
6
tSU  
tHI  
ta  
Data setup time (inputs)  
Data hold time (inputs)  
Slave access time  
3
7
ns  
7
ns  
8
23  
23  
0
tperiph  
tperiph  
25.7  
ns  
9
tdis  
tv  
Slave MISO disable time  
Data valid (after SPSCK edge)  
Data hold time (outputs)  
Rise time input  
ns  
4
10  
11  
12  
ns  
tHO  
tRI  
tFI  
ns  
tperiph – 25  
ns  
Fall time input  
13  
tRO  
tFO  
Rise time output  
25  
ns  
Fall time output  
1. For SPI0, fperiph is the bus clock (fBUS).  
2. tperiph = 1/fperiph  
3. Time to data active from high-impedance state  
4. Hold time to high-impedance state  
Kinetis KL03 32 KB Flash, Rev. 5.1 08/2017  
43  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
Table 40. SPI slave mode timing on slew rate enabled pads  
Num.  
1
Symbol Description  
Min.  
Max.  
fperiph/4  
Unit  
Hz  
Note  
1
fop  
tSPSCK  
tLead  
tLag  
Frequency of operation  
0
2
SPSCK period  
Enable lead time  
Enable lag time  
4 x tperiph  
ns  
2
3
1
tperiph  
tperiph  
ns  
3
4
1
5
tWSPSCK Clock (SPSCK) high or low time  
tperiph – 30  
6
tSU  
tHI  
ta  
Data setup time (inputs)  
Data hold time (inputs)  
Slave access time  
2
7
ns  
7
ns  
8
0
tperiph  
tperiph  
122  
ns  
9
tdis  
tv  
Slave MISO disable time  
Data valid (after SPSCK edge)  
Data hold time (outputs)  
Rise time input  
ns  
4
10  
11  
12  
ns  
tHO  
tRI  
tFI  
ns  
tperiph – 25  
ns  
Fall time input  
13  
tRO  
tFO  
Rise time output  
36  
ns  
Fall time output  
1. For SPI0, fperiph is the bus clock (fBUS).  
2. tperiph = 1/fperiph  
3. Time to data active from high-impedance state  
4. Hold time to high-impedance state  
SS  
(INPUT)  
2
12  
12  
13  
13  
4
SPSCK  
(CPOL=0)  
(INPUT)  
5
5
3
SPSCK  
(CPOL=1)  
(INPUT)  
9
8
10  
11  
11  
see  
note  
SEE  
NOTE  
MISO  
(OUTPUT)  
BIT 6 . . . 1  
SLAVE MSB  
7
SLAVE LSB OUT  
6
MOSI  
(INPUT)  
LSB IN  
MSB IN  
BIT 6 . . . 1  
NOTE: Not defined  
Figure 14. SPI slave mode timing (CPHA = 0)  
44  
NXP Semiconductors  
Kinetis KL03 32 KB Flash, Rev. 5.1 08/2017  
Peripheral operating requirements and behaviors  
SS  
(INPUT)  
4
2
12  
12  
13  
3
SPSCK  
(CPOL=0)  
(INPUT)  
5
5
13  
SPSCK  
(CPOL=1)  
(INPUT)  
11  
9
10  
SLAVE MSB OUT  
see  
note  
MISO  
(OUTPUT)  
BIT 6 . . . 1  
BIT 6 . . . 1  
SLAVE LSB OUT  
8
6
7
MOSI  
(INPUT)  
MSB IN  
LSB IN  
NOTE: Not defined  
Figure 15. SPI slave mode timing (CPHA = 1)  
3.8.2 Inter-Integrated Circuit Interface (I2C) timing  
Table 41. I2C timing  
Characteristic  
Symbol  
Standard Mode  
Fast Mode  
Unit  
Minimum Maximum Minimum Maximum  
SCL Clock Frequency  
fSCL  
0
4
1001  
0
4002  
kHz  
µs  
Hold time (repeated) START condition. tHD; STA  
After this period, the first clock pulse is  
generated.  
0.6  
LOW period of the SCL clock  
HIGH period of the SCL clock  
tLOW  
tHIGH  
4.7  
4
1.25  
0.6  
µs  
µs  
µs  
Set-up time for a repeated START  
condition  
tSU; STA  
4.7  
0.6  
Data hold time for I2C bus devices  
tHD; DAT  
tSU; DAT  
tr  
03  
2506  
3.454  
05  
1004, 7  
20 +0.1Cb  
20 +0.1Cb  
0.6  
0.93  
µs  
ns  
ns  
ns  
µs  
µs  
Data set-up time  
8
7
Rise time of SDA and SCL signals  
Fall time of SDA and SCL signals  
Set-up time for STOP condition  
1000  
300  
300  
300  
tf  
tSU; STO  
tBUF  
4
Bus free time between STOP and  
START condition  
4.7  
1.3  
Pulse width of spikes that must be  
suppressed by the input filter  
tSP  
N/A  
N/A  
0
50  
ns  
1. The PTB3 and PTB4 pins can support only the Standard mode.  
2. The maximum SCL Clock Frequency in Fast mode with maximum bus loading can be achieved only when using the  
normal drive pins and VDD ≥ 2.7 V.  
Kinetis KL03 32 KB Flash, Rev. 5.1 08/2017  
45  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
3. The master mode I2C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves  
acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and SCL  
lines.  
4. The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal.  
5. Input signal Slew = 10 ns and Output Load = 50 pF  
6. Set-up time in slave-transmitter mode is 1 IPBus clock period, if the TX FIFO is empty.  
7. A Fast mode I2C bus device can be used in a Standard mode I2C bus system, but the requirement tSU; DAT ≥ 250 ns  
must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such  
a device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line trmax + tSU;  
DAT = 1000 + 250 = 1250 ns (according to the Standard mode I2C bus specification) before the SCL line is released.  
8. Cb = total capacitance of the one bus line in pF.  
To achieve 1MHz I2C clock rates, consider the following recommendations:  
• To counter the effects of clock stretching, the I2C baud Rate select bits can be  
configured for faster than desired baud rate.  
• Use high drive pad and DSE bit should be set in PORTx_PCRn register.  
• Minimize loading on the I2C SDA and SCL pins to ensure fastest rise times for the  
SCL line to avoid clock stretching.  
• Use smaller pull up resistors on SDA and SCL to reduce the RC time constant.  
Table 42. I 2C 1Mbit/s timing  
Characteristic  
Symbol  
fSCL  
Minimum  
Maximum  
Unit  
MHz  
µs  
SCL Clock Frequency  
0
11  
Hold time (repeated) START condition. After this  
period, the first clock pulse is generated.  
tHD; STA  
0.26  
LOW period of the SCL clock  
HIGH period of the SCL clock  
tLOW  
tHIGH  
0.5  
0.26  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
µs  
µs  
ns  
Set-up time for a repeated START condition  
Data hold time for I2C bus devices  
Data set-up time  
tSU; STA  
tHD; DAT  
tSU; DAT  
tr  
0.26  
0
50  
Rise time of SDA and SCL signals  
Fall time of SDA and SCL signals  
Set-up time for STOP condition  
20 +0.1Cb  
120  
120  
2
tf  
20 +0.1Cb  
tSU; STO  
tBUF  
0.26  
0.5  
0
Bus free time between STOP and START condition  
Pulse width of spikes that must be suppressed by  
the input filter  
tSP  
50  
1. The maximum SCL clock frequency of 1 Mbit/s can support 200 pF bus loading when using the normal drive pins and  
VDD ≥ 2.7 V.  
2. Cb = total capacitance of the one bus line in pF.  
46  
Kinetis KL03 32 KB Flash, Rev. 5.1 08/2017  
NXP Semiconductors  
Dimensions  
SDA  
tSU; DAT  
tf  
tr  
tBUF  
tf  
tr  
tHD; STA  
tSP  
tLOW  
SCL  
tSU; STA  
tSU; STO  
HD; STA  
S
SR  
P
S
tHD; DAT  
tHIGH  
Figure 16. Timing definition for devices on the I2C bus  
3.8.3 UART  
See General switching specifications.  
4 Dimensions  
4.1 Obtaining package dimensions  
Package dimensions are provided in package drawings.  
To find a package drawing, go to nxp.com and perform a keyword search for the  
drawing’s document number:  
If you want the drawing for this package  
16-pin QFN  
Then use this document number  
98ASA00525D  
24-pin QFN  
98ASA00602D  
98ASA00676D  
98ASA00964D  
20-pin WLCSP  
20-pin WLCSP (ultra thin)  
Kinetis KL03 32 KB Flash, Rev. 5.1 08/2017  
47  
NXP Semiconductors  
Pinout  
5 Pinout  
5.1 KL03 signal multiplexing and pin assignments  
The following table shows the signals available on each pin and the locations of these  
pins on the devices supported by this document. The Port Control Module is responsible  
for selecting which ALT functionality is available on each pin.  
NOTE  
PTB3 and PTB4 are true open drain pins. The external pullup  
resistor must be added to make them output correct values in  
using I2C, GPIO, and LPUART0.  
24  
QFN  
20  
WLC  
SP  
16  
QFN  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
TPM1_CH1  
TPM1_CH0  
ALT3  
ALT4  
ALT5  
1
2
PTB6/  
IRQ_2/  
LPTMR0_ALT3  
DISABLED  
PTB6/  
TPM_CLKIN1  
IRQ_2/  
LPTMR0_ALT3  
PTB7/  
IRQ_3  
DISABLED  
PTB7/  
IRQ_3  
3
4
5
6
7
B5  
C5  
C4  
C3  
D3  
1
2
3
4
5
VDD  
VSS  
VDD  
VDD  
VSS  
VSS  
PTA3  
PTA4  
EXTAL0  
XTAL0  
DISABLED  
EXTAL0  
XTAL0  
PTA3  
PTA4  
I2C0_SCL  
I2C0_SDA  
TPM0_CH1  
I2C0_SDA  
I2C0_SCL  
SPI0_SS_b  
LPUART0_TX  
LPUART0_RX  
CLKOUT  
PTA5/  
PTA5/  
RTC_CLK_IN  
RTC_CLK_IN  
8
9
D5  
6
7
PTA6  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
PTA6  
TPM0_CH0  
TPM0_CH1  
TPM0_CH0  
SPI0_MISO  
SPI0_MISO  
SPI0_SS_b  
SPI0_MISO  
SPI0_MOSI  
PTB10  
PTB11  
PTB10  
PTB11  
10  
11  
D4  
PTA7/  
IRQ_4  
PTA7/  
IRQ_4  
12  
C1  
8
PTB0/  
IRQ_5/  
LLWU_P4  
ADC0_SE9  
ADC0_SE9  
PTB0/  
IRQ_5/  
LLWU_P4  
EXTRG_IN  
SPI0_SCK  
I2C0_SCL  
I2C0_SDA  
13  
14  
D1  
B1  
9
PTB1/  
IRQ_6  
ADC0_SE8/  
CMP0_IN3  
ADC0_SE8/  
CMP0_IN3  
PTB1/  
IRQ_6  
LPUART0_TX  
LPUART0_RX  
LPUART0_RX  
LPUART0_TX  
10  
PTB2/  
IRQ_7  
VREF_OUT/  
CMP0_IN5  
VREF_OUT/  
CMP0_IN5  
PTB2/  
IRQ_7  
15  
16  
D2  
C2  
PTA8  
PTA9  
ADC0_SE3  
ADC0_SE2  
ADC0_SE3  
ADC0_SE2  
PTA8  
PTA9  
I2C0_SCL  
I2C0_SDA  
SPI0_MOSI  
SPI0_SCK  
48  
NXP Semiconductors  
Kinetis KL03 32 KB Flash, Rev. 5.1 08/2017  
Pinout  
24  
QFN  
20  
WLC  
SP  
16  
QFN  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
17  
18  
19  
20  
A1  
B2  
A2  
B3  
11  
12  
13  
PTB3/  
IRQ_10  
DISABLED  
PTB3/  
IRQ_10  
I2C0_SCL  
LPUART0_TX  
LPUART0_RX  
NMI_b  
PTB4/  
IRQ_11  
DISABLED  
NMI_b  
PTB4/  
IRQ_11  
I2C0_SDA  
TPM1_CH1  
TPM1_CH0  
PTB5/  
IRQ_12  
ADC0_SE1/  
CMP0_IN1  
PTB5/  
IRQ_12  
PTA12/  
IRQ_13/  
ADC0_SE0/  
CMP0_IN0  
ADC0_SE0/  
CMP0_IN0  
PTA12/  
IRQ_13/  
TPM_CLKIN0  
CLKOUT  
LPTMR0_ALT2  
LPTMR0_ALT2  
21  
22  
A3  
A4  
PTB13/  
CLKOUT32K  
DISABLED  
SWD_CLK  
PTB13/  
CLKOUT32K  
TPM1_CH1  
TPM1_CH0  
RTC_CLKOUT  
SWD_CLK  
14  
PTA0/  
IRQ_0/  
ADC0_SE15/  
CMP0_IN2  
PTA0/  
IRQ_0/  
LLWU_P7  
LLWU_P7  
23  
24  
B4  
A5  
15  
16  
PTA1/  
IRQ_1/  
LPTMR0_ALT1  
RESET_b  
SWD_DIO  
PTA1/  
IRQ_1/  
LPTMR0_ALT1  
TPM_CLKIN0  
CMP0_OUT  
RESET_b  
SWD_DIO  
PTA2  
PTA2  
5.2 KL03 pinouts  
The following figures show the pinout diagrams for the devices supported by this  
document. Many signals may be multiplexed onto a single pin. To determine what  
signals can be used on which pin, see KL03 signal multiplexing and pin assignments.  
Kinetis KL03 32 KB Flash, Rev. 5.1 08/2017  
49  
NXP Semiconductors  
Pinout  
PTB4/IRQ_11  
PTB3/IRQ_10  
PTA9  
PTB6/IRQ_2/LPTMR0_ALT3  
18  
17  
16  
15  
14  
13  
1
2
3
4
5
6
PTB7/IRQ_3  
VDD  
PTA8  
VSS  
PTB2/IRQ_7  
PTB1/IRQ_6  
PTA3  
PTA4  
Figure 17. KL03 24-pin QFN pinout diagram  
1
2
3
4
5
A
B
PTB3  
PTB5  
PTB13  
PTA0  
PTA2  
PTB2  
PTB4  
PTA12  
PTA1  
VDD  
C
D
PTB0  
PTB1  
PTA9  
PTA8  
PTA4  
PTA5  
PTA3  
PTA7  
VSS  
PTA6  
Figure 18. KL03 20-pin WLCSP pinout diagram  
50  
Kinetis KL03 32 KB Flash, Rev. 5.1 08/2017  
NXP Semiconductors  
Ordering parts  
VDD  
VSS  
1
2
3
4
12  
11  
10  
9
PTB4/IRQ_11  
PTB3/IRQ_10  
PTB2/IRQ_7  
PTB1/IRQ_6  
PTA3  
PTA4  
Figure 19. KL03 16-pin QFN pinout diagram  
6 Ordering parts  
6.1 Determining valid orderable parts  
Valid orderable part numbers are provided on the web. To determine the orderable  
part numbers for this device, go to nxp.com and perform a part number search.  
7 Part identification  
7.1 Description  
Part numbers for the chip have fields that identify the specific part. You can use the  
values of these fields to determine the specific part you have received.  
Kinetis KL03 32 KB Flash, Rev. 5.1 08/2017  
51  
NXP Semiconductors  
Part identification  
7.2 Format  
Part numbers for this device have the following format:  
Q KL## A FFF R T PP CC N  
7.3 Fields  
This table lists the possible values for each field in the part number (not all  
combinations are valid):  
Table 43. Part number fields description  
Field  
Description  
Values  
Q
Qualification status  
• M = Fully qualified, general market flow(full  
reels for WLCSP)  
• P = Prequalification  
• K = Fully qualified, general market flow, 100  
pieces reels (WLCSP only)  
KL##  
A
Kinetis family  
Key attribute  
• KL03  
• Z = Cortex-M0+  
FFF  
Program flash memory size  
• 8 = 8 KB  
• 16 = 16 KB  
• 32 = 32 KB  
R
Silicon revision  
• (Blank) = Main  
• A = Revision after main  
T
Temperature range (°C)  
Package identifier  
• V = –40 to 105  
• C = –40 to 85  
PP  
• FG = 16 QFN (3 mm x 3 mm)  
• AF = 20 WLCSP (2 mm x 1.61 mm x 0.56  
mm)  
• BF = 20 WLCSP (2 mm x 1.61 mm x 0.32  
mm)  
• FK = 24 QFN (4 mm x 4 mm)  
CC  
N
Maximum CPU frequency (MHz)  
Packaging type  
• 4 = 48 MHz  
• R = Tape and reel  
• (Blank) = Trays  
7.4 Example  
This is an example part number:  
52  
Kinetis KL03 32 KB Flash, Rev. 5.1 08/2017  
NXP Semiconductors  
Terminology and guidelines  
MKL03Z32VFK4  
8 Terminology and guidelines  
8.1 Definition: Operating requirement  
An operating requirement is a specified value or range of values for a technical  
characteristic that you must guarantee during operation to avoid incorrect operation  
and possibly decreasing the useful life of the chip.  
8.1.1 Example  
This is an example of an operating requirement:  
Symbol  
Description  
Min.  
Max.  
Unit  
VDD  
1.0 V core supply  
voltage  
0.9  
1.1  
V
8.2 Definition: Operating behavior  
Unless otherwise specified, an operating behavior is a specified value or range of  
values for a technical characteristic that are guaranteed during operation if you meet  
the operating requirements and any other specified conditions.  
8.2.1 Example  
This is an example of an operating behavior:  
Symbol  
Description  
Min.  
Max.  
Unit  
IWP  
Digital I/O weak pullup/ 10  
pulldown current  
130  
µA  
Kinetis KL03 32 KB Flash, Rev. 5.1 08/2017  
53  
NXP Semiconductors  
Terminology and guidelines  
8.3 Definition: Attribute  
An attribute is a specified value or range of values for a technical characteristic that are  
guaranteed, regardless of whether you meet the operating requirements.  
8.3.1 Example  
This is an example of an attribute:  
Symbol  
Description  
Min.  
Max.  
Unit  
CIN_D  
Input capacitance:  
digital pins  
7
pF  
8.4 Definition: Rating  
A rating is a minimum or maximum value of a technical characteristic that, if exceeded,  
may cause permanent chip failure:  
Operating ratings apply during operation of the chip.  
Handling ratings apply when the chip is not powered.  
8.4.1 Example  
This is an example of an operating rating:  
Symbol  
Description  
Min.  
Max.  
Unit  
VDD  
1.0 V core supply  
voltage  
–0.3  
1.2  
V
54  
Kinetis KL03 32 KB Flash, Rev. 5.1 08/2017  
NXP Semiconductors  
Terminology and guidelines  
8.5 Result of exceeding a rating  
40  
30  
The likelihood of permanent chip failure increases rapidly as  
soon as a characteristic begins to exceed one of its operating ratings.  
20  
10  
0
Operating rating  
Measured characteristic  
8.6 Relationship between ratings and operating requirements  
Fatal range  
Degraded operating range  
Normal operating range  
Degraded operating range  
Fatal range  
Expected permanent failure  
- No permanent failure  
- No permanent failure  
- Correct operation  
- No permanent failure  
Expected permanent failure  
- Possible decreased life  
- Possible incorrect operation  
- Possible decreased life  
- Possible incorrect operation  
 
Operating (power on)  
Fatal range  
Handling range  
Fatal range  
Expected permanent failure  
No permanent failure  
Expected permanent failure  
∞  
Handling (power off)  
8.7 Guidelines for ratings and operating requirements  
Follow these guidelines for ratings and operating requirements:  
• Never exceed any of the chip’s ratings.  
Kinetis KL03 32 KB Flash, Rev. 5.1 08/2017  
55  
NXP Semiconductors  
Terminology and guidelines  
• During normal operation, don’t exceed any of the chip’s operating requirements.  
• If you must exceed an operating requirement at times other than during normal  
operation (for example, during power sequencing), limit the duration as much as  
possible.  
8.8 Definition: Typical value  
A typical value is a specified value for a technical characteristic that:  
• Lies within the range of values specified by the operating behavior  
• Given the typical manufacturing process, is representative of that characteristic  
during operation when you meet the typical-value conditions or other specified  
conditions  
Typical values are provided as design guidelines and are neither tested nor guaranteed.  
8.8.1 Example 1  
This is an example of an operating behavior that includes a typical value:  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
IWP  
Digital I/O weak  
pullup/pulldown  
current  
10  
70  
130  
µA  
8.8.2 Example 2  
This is an example of a chart that shows typical values for various voltage and  
temperature conditions:  
56  
Kinetis KL03 32 KB Flash, Rev. 5.1 08/2017  
NXP Semiconductors  
Revision history  
5000  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
TJ  
150 °C  
105 °C  
25 °C  
–40 °C  
0
0.90  
0.95  
1.00  
1.05  
1.10  
VDD (V)  
8.9 Typical value conditions  
Typical values assume you meet the following conditions (or other conditions as  
specified):  
Table 44. Typical value conditions  
Symbol  
TA  
Description  
Value  
25  
Unit  
°C  
Ambient temperature  
3.3 V supply voltage  
VDD  
3.3  
V
9 Revision history  
The following table provides a revision history for this document.  
Table 45. Revision history  
Rev. No.  
Date  
Substantial Changes  
3.1  
4
07/2014  
08/2014  
Initial public release.  
Changed pinout signal names ADC0_SE5, ADC0_SE6, and  
ADC0_SE12 to ADC0_SE8, ADC0_SE9 and ADC0_SE15 respectively.  
Table continues on the next page...  
Kinetis KL03 32 KB Flash, Rev. 5.1 08/2017  
57  
NXP Semiconductors  
Revision history  
Table 45. Revision history (continued)  
Rev. No.  
Date  
Substantial Changes  
5
07/2017  
• Added new part of MKL03Z32CBF4R and its package  
information.  
• Updated the Resource and its footnote to the Chip Errata in the  
front page  
• Updated the descriptions to the VLPW to be very low power wait  
mode in the Power consumption operating behaviors  
• Added a note to the TA in the Thermal operating requirements  
• Updated the foot note to the Typ. of the Table 31 to be VREFO =  
1.2 V  
• Added I2C 1 Mbit/s timing specifications in Inter-Integrated Circuit  
Interface (I2C) timing  
• Updated Determining valid orderable parts  
• Updated the 20-pin WLCSP package (AF) size in Fields  
5.1  
08/2017  
Updated the Max. of MSL for WLCSP packages to 1 in the Moisture  
handling ratings  
58  
Kinetis KL03 32 KB Flash, Rev. 5.1 08/2017  
NXP Semiconductors  
Information in this document is provided solely to enable system and software  
implementers to use NXP products. There are no express or implied copyright  
licenses granted hereunder to design or fabricate any integrated circuits based  
on the information in this document. NXP reserves the right to make changes  
without further notice to any products herein.  
How to Reach Us:  
Home Page:  
nxp.com  
Web Support:  
nxp.com/support  
NXP makes no warranty, representation, or guarantee regarding the suitability of  
its products for any particular purpose, nor does NXP assume any liability arising  
out of the application or use of any product or circuit, and specifically disclaims  
any and all liability, including without limitation consequential or incidental  
damages. “Typical” parameters that may be provided in NXP data sheets and/or  
specifications can and do vary in different applications, and actual performance  
may vary over time. All operating parameters, including “typicals,” must be  
validated for each customer application by customerʼs technical experts. NXP  
does not convey any license under its patent rights nor the rights of others. NXP  
sells products pursuant to standard terms and conditions of sale, which can be  
found at the following address: nxp.com/SalesTermsandConditions.  
NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER  
WORLD, Freescale, the Freescale logo, and Kinetis are trademarks of NXP B.V.  
All other product or service names are the property of their respective owners.  
ARM, the ARM powered logo, and Cortex are registered trademarks of ARM  
Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved.  
©2014-2017 NXP B.V.  
Document Number KL03P24M48SF0  
Revision 5.1 08/2017  

相关型号:

MKL03Z32CBF4R

Kinetis KL03 32 KB Flash
NXP

MKL03Z32VFG4

Kinetis KL03 32 KB Flash
NXP

MKL03Z32VFK4

Kinetis KL03 32 KB Flash
NXP

MKL03Z8VFG4

Kinetis KL03 32 KB Flash
NXP

MKL03Z8VFK4

Kinetis KL03 32 KB Flash
NXP

MKL03ZxxVFG4

Kinetis KL03 32 KB Flash
NXP

MKL03ZxxVFK4

Kinetis KL03 32 KB Flash
NXP

MKL04Z16VFK4

KL04 Sub-Family Reference Manual
FREESCALE

MKL04Z16VFM4

KL04 Sub-Family Reference Manual
FREESCALE

MKL04Z16VLC4

KL04 Sub-Family Reference Manual
FREESCALE

MKL04Z16VLF4

KL04 Sub-Family Reference Manual
FREESCALE

MKL04Z32VFK4

KL04 Sub-Family Reference Manual
FREESCALE