MKL17Z32VMP4 [NXP]

Kinetis KL17 Microcontroller;
MKL17Z32VMP4
型号: MKL17Z32VMP4
厂家: NXP    NXP
描述:

Kinetis KL17 Microcontroller

微控制器
文件: 总101页 (文件大小:1983K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Freescale Semiconductor, Inc.  
Document Number: KL17P64M48SF2  
Data Sheet: Technical Data  
Rev. 5, 04/2015  
Kinetis KL17 Microcontroller  
MKL17Z32Vxx4(R)  
MKL17Z64Vxx4(R)  
48 MHz ARM® Cortex®-M0+ and 32/64 KB Flash  
The KL17 series is optimized for cost-sensitive and battery-  
powered applications requiring low-power general purpose  
connectivity. The product offers:  
64 LQFP (LH)  
10x10x1.6 mm P .5  
36 XFBGA (DA)  
3.5x3.5x.5 mm P .5  
• Embedded ROM with boot loader for flexible program  
upgrade  
• High accuracy internal voltage and clock reference  
• FlexIO to support any standard and customized serial  
peripheral emulation  
48 & 32 QFN(FT&FM)  
7x7x.65 mm P .5(FT)  
5x5x.65 mm P .5(FM)  
• Hardware CRC module  
• Down to 46 µA/MHz in very low power run mode and 1.68  
µA in stop mode (RAM + RTC retained)  
64 MAPBGA (MP)  
5x5x1.23 mm P .5 mm  
Core Processor  
Peripherals  
• ARM® Cortex®-M0+ core up to 48 MHz  
• One UART module supporting ISO7816, operating  
up to 1.5 Mbit/s  
Memories  
• Two low-power UART modules supporting  
asynchronous operation in low-power modes  
• Two I2C modules supporting up to 1 Mbit/s  
• Two 16-bit SPI modules supporting up to 24 Mbit/s  
for SPI1 and 12 Mbit/s for SPI0  
• 32/64 KB program flash memory  
• 8/16 KB SRAM  
• 16 KB ROM with build-in bootloader  
• 32-byte backup register  
• One FlexIO module supporting emulation of  
additional UART, SPI, I2C, I2S, PWM and other  
serial modules, etc.  
• One 16-bit ADC module with high accurate internal  
voltage reference, up to 20 channels and up to 818  
ksps at equal to or less than 13-bit mode  
• High-speed analog comparator containing a 6-bit  
DAC for programmable reference input  
System  
• 4-channel asynchronous DMA controller  
• Watchdog  
• Low-leakage wakeup unit  
• Two-pin SWD (serial wire debug) programming and  
debug interface  
• Micro trace buffer  
• Bit manipulation engine  
• Interrupt controller  
Timers  
• One 6-channel Timer/PWM module  
• Two 2-channel Timer/PWM modules  
• One low-power timer  
• Periodic interrupt timer  
• Real time clock  
Clocks  
• 48 MHz high accuracy (up to 0.5%) internal reference  
clock  
• 8 MHz high accuracy (up to 3%) internal reference  
clock  
• 1 kHz reference clock active under all low power  
modes (except VLLS0)  
• 32–40 kHz and 3–32 MHz crystal oscillator  
© 2014–2015 Freescale Semiconductor, Inc. All rights reserved.  
Operating Characteristics  
Security and Integrity  
• Voltage range: 1.71 to 3.6 V  
• Flash write voltage range: 1.71 to 3.6 V  
• Temperature range: –40 to 105 °C  
• 80-bit unique identification number per chip  
• Advanced flash security  
• Hardware CRC module  
Packages  
I/O  
• 64 LQFP 10mm x 10mm, 0.5mm pitch, 1.6mm  
thickness  
• 36 XFBGA 3.5mm x 3.5mm, 0.5mm pitch, 0.5mm  
thickness  
• 32 QFN 5mm x 5mm, 0.5mm pitch, 0.65mm thickness  
• 64 MAPBGA 5mm x 5mm, 0.5mm pitch, 1.23mm  
thickness (Package Your Way)  
• Up to 54 general-purpose input/output pins  
Low Power  
• Down to 46 µA/MHz in very low power run mode  
• Down to 1.68 µA in stop mode (RAM + RTC  
retained)  
• Six flexible static modes  
• 48 QFN 7mm x 7mm, 0.5mm pitch, 0.65mm thickness  
(Package Your Way)  
NOTE  
The 48 QFN and 64 MAPBGA packages supporting MKLx7ZxxVFT4 and  
MKLx7ZxxVMP4 part numbers for this product are not yet available. However, these  
packages are included in Package Your Way program for Kinetis MCUs. Visit  
Freescale.com/KPYW for more details.  
Related Resources  
Type  
Description  
Resource  
Selector Guide The Freescale Solution Advisor is a web-based tool that features  
interactive application wizards and a dynamic product selector.  
Solution Advisor  
Product Brief  
The Product Brief contains concise overview/summary information to KL1xPB1  
enable quick evaluation of a device for design suitability.  
Reference  
Manual  
The Reference Manual contains a comprehensive description of the KL17P64M48SF2RM1  
structure and function (operation) of a device.  
Data Sheet  
The Data Sheet includes electrical characteristics and signal  
connections.  
KL17P64M48SF21  
Chip Errata  
The chip mask set Errata provides additional or corrective  
information for a particular device mask set.  
xN87M2  
Package  
drawing  
Package dimensions are provided in package drawings.  
XFBGA 36-pin: 98ASA00708D  
LQFP 64-pin: 98ASS23234W  
QFN 32-pin: 98ASA00615D  
QFN 48-pin: 98ASA00616D  
MAPBGA 64-pin: 98ASA00420D  
1. To find the associated resource, go to http://www.freescale.com and perform a search using this term.  
2. To find the associated resource, go to http://www.freescale.com and perform a search using this term with the “x”  
replaced by the revision of the device you are using.  
2
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
Freescale Semiconductor, Inc.  
Table of Contents  
1 Ordering information............................................................. 4  
4.3.7  
Human-machine interfaces (HMI)....................38  
2 Overview............................................................................... 4  
2.1 System features.............................................................5  
4.4 KL17 Family Pinouts......................................................38  
4.5 Package dimensions......................................................43  
5 Electrical characteristics........................................................51  
5.1 Ratings...........................................................................51  
2.1.1  
2.1.2  
2.1.3  
2.1.4  
2.1.5  
2.1.6  
2.1.7  
2.1.8  
2.1.9  
ARM Cortex-M0+ core.....................................5  
NVIC................................................................ 6  
AWIC............................................................... 6  
Memory............................................................7  
Reset and boot................................................ 7  
Clock options................................................... 9  
Security............................................................12  
Power management........................................ 12  
LLWU...............................................................14  
5.1.1  
5.1.2  
5.1.3  
5.1.4  
Thermal handling ratings................................. 51  
Moisture handling ratings................................ 52  
ESD handling ratings.......................................52  
Voltage and current absolute operating  
ratings..............................................................52  
5.2 General.......................................................................... 53  
5.2.1  
5.2.2  
5.2.3  
5.2.4  
AC electrical characteristics............................ 53  
Nonswitching electrical specifications............. 53  
Switching specifications...................................68  
Thermal specifications.....................................69  
2.1.10 Debug controller.............................................. 15  
2.1.11 COP.................................................................15  
2.2 Peripheral features........................................................ 16  
2.2.1  
2.2.2  
2.2.3  
2.2.4  
2.2.5  
2.2.6  
2.2.7  
2.2.8  
2.2.9  
BME.................................................................16  
DMA and DMAMUX.........................................16  
TPM................................................................. 17  
ADC................................................................. 17  
VREF............................................................... 18  
CMP.................................................................19  
RTC................................................................. 19  
PIT................................................................... 20  
LPTMR............................................................ 20  
5.3 Peripheral operating requirements and behaviors.........70  
5.3.1  
5.3.2  
5.3.3  
5.3.4  
5.3.5  
5.3.6  
Core modules.................................................. 70  
System modules.............................................. 72  
Clock modules................................................. 72  
Memories and memory interfaces................... 75  
Security and integrity modules........................ 77  
Analog............................................................. 77  
5.4 Timers............................................................................85  
5.5 Communication interfaces............................................. 85  
2.2.10 CRC.................................................................21  
2.2.11 UART...............................................................21  
2.2.12 LPUART.......................................................... 22  
2.2.13 SPI...................................................................22  
2.2.14 I2C................................................................... 23  
2.2.15 FlexIO.............................................................. 23  
2.2.16 Port control and GPIO..................................... 24  
3 Memory map......................................................................... 26  
4 Pinouts.................................................................................. 27  
4.1 KL17 Signal Multiplexing and Pin Assignments.............27  
4.2 Pin properties.................................................................30  
4.3 Module Signal Description Tables................................. 33  
5.5.1  
5.5.2  
5.5.3  
SPI switching specifications............................ 85  
Inter-Integrated Circuit Interface (I2C) timing.. 89  
UART...............................................................91  
6 Design considerations...........................................................91  
6.1 Hardware design considerations................................... 91  
6.1.1  
6.1.2  
6.1.3  
6.1.4  
6.1.5  
Printed circuit board recommendations........... 92  
Power delivery system.....................................92  
Analog design..................................................93  
Digital design................................................... 93  
Crystal oscillator.............................................. 96  
6.2 Software considerations................................................ 98  
7 Part identification...................................................................99  
7.1 Description.....................................................................99  
7.2 Format........................................................................... 99  
7.3 Fields............................................................................. 99  
7.4 Example.........................................................................100  
8 Revision history.....................................................................100  
4.3.1  
4.3.2  
4.3.3  
4.3.4  
4.3.5  
4.3.6  
Core modules.................................................. 33  
System modules.............................................. 33  
Clock modules................................................. 34  
Analog............................................................. 34  
Timer Modules.................................................35  
Communication interfaces............................... 36  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
3
Freescale Semiconductor, Inc.  
Ordering information  
1 Ordering information  
The following chips are available for ordering.  
Table 1. Ordering information  
Product  
Memory  
Package  
IO and ADC channel  
Part number  
Marking  
Flash  
(KB)  
SRAM  
(KB)  
Pin  
count  
Package  
GPIOs  
GPIOs  
ADC  
(INT/HD)1 channels  
(SE/DP)  
(Line1/Line2)  
MKL17Z64VLH4  
MKL17Z32VLH4  
MKL17Z64VDA4  
MKL17Z32VDA4  
MKL17Z64VFM4  
MKL17Z32VFM4  
MKL17Z64VMP4  
MKL17Z32VMP4  
MKL17Z64VFT4  
MKL17Z32VFT4  
MKL17Z64 / VLH4  
MKL17Z32 / VLH4  
M17M6  
64  
32  
64  
32  
64  
32  
64  
32  
64  
32  
16  
8
64  
64  
36  
36  
32  
32  
64  
64  
48  
48  
LQFP  
LQFP  
54  
54  
32  
32  
28  
28  
54  
54  
40  
40  
54/6  
54/6  
32/6  
32/6  
28/6  
28/6  
54/6  
54/6  
40/6  
40/6  
20/4  
20/4  
15/4  
15/4  
11/2  
11/2  
20/4  
20/4  
18/3  
18/3  
16  
8
XFBGA  
XFBGA  
QFN  
M17M5  
M17M6V  
M17M5V  
TBD  
16  
8
QFN  
16  
8
MAPBGA  
MAPBGA  
QFN  
TBD  
TBD  
16  
8
TBD  
QFN  
1. INT: interrupt pin numbers; HD: high drive pin numbers  
NOTE  
The 48 QFN and 64 MAPBGA packages supporting MKLx7ZxxVFT4 and  
MKLx7ZxxVMP4 part numbers for this product are not yet available.  
However, these packages are included in Package Your Way program for  
Kinetis MCUs. Visit Freescale.com/KPYW for more details.  
2 Overview  
The following figure shows the system diagram of this device  
4
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
Freescale Semiconductor, Inc.  
Overview  
GPIOA  
GPIOB  
GPIOC  
GPIOD  
GPIOE  
Slave  
Master  
M0  
Cortex M0+  
IOPORT  
ADC(16 bit 16ch)  
64 KB  
Flash  
FMC  
CMP  
Debug  
(SWD)  
CM0+ Core  
1.2 V Voltage reference  
TPM0(6 channel)  
TPM1(2 channel)  
TPM2(2 channel)  
S0  
S1  
NVIC  
16 KB ROM  
16 KB RAM  
Low Power Timer  
PIT  
M2  
RTC  
4-ch  
DMA  
DMA  
MUX  
LPUART0  
LPUART1  
UART2  
SPI0  
S2  
SPI1  
BME  
I2C0  
I2C1  
FlexIO  
Watchdog(COP)  
Register File(32 Bytes)  
CRC  
MCG - Lite  
OSC  
LLWU  
RCM  
SMC  
PMC  
HIRC48M  
LIRC2M/8M  
Figure 1. System diagram  
The crossbar switch connects bus masters and slaves using a crossbar switch structure.  
This structure allows up to four bus masters to access different bus slaves  
simultaneously, while providing arbitration among the bus masters when they access  
the same slave.  
2.1 System features  
The following sections describe the high-level system features.  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
5
Freescale Semiconductor, Inc.  
Overview  
2.1.1 ARM Cortex-M0+ core  
The enhanced ARM Cortex M0+ is the member of the Cortex-M series of processors  
targeting microcontroller cores focused on very cost sensitive, low power applications.  
It has a single 32-bit AMBA AHB-Lite interface and includes an NVIC component. It  
also has hardware debug functionality including support for simple program trace  
capability. The processor supports the ARMv6-M instruction set (Thumb) architecture  
including all but three 16-bit Thumb opcodes (52 total) plus seven 32-bit instructions. It  
is upward compatible with other Cortex-M profile processors.  
2.1.2 NVIC  
The Nested Vectored Interrupt Controller supports nested interrupts and 4 priority  
levels for interrupts. In the NVIC, each source in the IPR registers contains two bits. It  
also differs in number of interrupt sources and supports 32 interrupt vectors.  
The Cortex-M family uses a number of methods to improve interrupt latency to up to 15  
clock cycles for Cortex-M0+. It also can be used to wake the MCU core from Wait and  
VLPW modes.  
2.1.3 AWIC  
The asynchronous wake-up interrupt controller (AWIC) is used to detect asynchronous  
wake-up events in Stop mode and signal to clock control logic to resume system  
clocking. After clock restarts, the NVIC observes the pending interrupt and performs  
the normal interrupt or event processing. The AWIC can be used to wake MCU core  
from Stop and VLPS modes.  
Wake-up sources are listed as below:  
Table 2. AWIC stop wake-up sources  
Wake-up source  
Description  
Available system resets  
RESET pin with filter mode disabled or enabled when LPO is its clock source, COP when its  
clock source is enabled. COP can also work when its clock source is enabled during Stop  
mode.  
Low-voltage detect  
Low-voltage warning  
Pin interrupts  
ADC  
Power management controller—functional in Stop mode  
Power management controller—functional in Stop mode  
Port control module—any enabled pin interrupt is capable of waking the system  
The ADC is functional when using internal clock source or external crystal clock  
Interrupt in normal or trigger mode  
CMP0  
Table continues on the next page...  
6
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
Freescale Semiconductor, Inc.  
Overview  
Table 2. AWIC stop wake-up sources (continued)  
Wake-up source  
Description  
Address match wakeup  
I2Cx  
LPUART0 , LPUART1  
Any enabled interrupt can be a source as long as the module remains clocked  
Active edge on RXD  
UART2  
RTC  
Alarm or seconds interrupt  
NMI  
NMI pin  
TPMx  
LPTMR  
SPIx  
Any enabled interrupt can be a source as long as the module remains clocked  
Any enabled interrupt can be a source as long as the module remains clocked  
Slave mode interrupt  
FlexIO  
Any enabled interrupt can be a source as long as the module remains clocked  
2.1.4 Memory  
This device has the following features:  
• 8/16 KB of embedded RAM accessible (read/write) at CPU clock speed with 0  
wait states.  
• The non-volatile memory is divided into two arrays  
• 32/64 KB of embedded program memory  
• 16 KB ROM (built-in bootloader to support UART, I2C, and SPI interfaces)  
The program flash memory contains a 16-byte flash configuration field that stores  
default protection settings and security information. The page size of program  
flash is 1 KB.  
The protection setting can protect 32 regions of the program flash memory from  
unintended erase or program operations.  
The security circuitry prevents unauthorized access to RAM or flash contents  
from debug port.  
• System register file  
This device contains a 32-byte register file that is powered in all power modes.  
Also, it retains contents during low power modes and is reset only during a  
power-on reset.  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
7
Freescale Semiconductor, Inc.  
Overview  
2.1.5 Reset and boot  
The following table lists all the reset sources supported by this device.  
NOTE  
In the following table, Y means the specific module, except  
for the registers, bits or conditions mentioned in the footnote,  
is reset by the corresponding Reset source. N means the  
specific module is not reset by the corresponding Reset  
source.  
Table 3. Reset source  
Reset  
Descriptions  
Modules  
sources  
PMC  
SIM  
SMC RCM LLWU Reset pin RTC LPTMR Others  
is  
negated  
POR reset  
Power-on reset (POR)  
Y
Y1  
N
Y
Y
Y2  
Y
Y
N
Y
Y
Y
Y
Y
N
Y
Y
Y3  
Y
N
N
Y
Y
N
Y
Y
Y
System resets Low-voltage detect (LVD)  
Low leakage wakeup  
(LLWU) reset  
External pin reset  
(RESET)  
Y1  
Y1  
Y2  
Y2  
Y4  
Y4  
Y
Y
Y
Y
Y
N
N
N
N
Y
Y
Computer operating  
properly (COP) watchdog  
reset  
Y5  
Stop mode acknowledge  
error (SACKERR)  
Y1  
Y2  
Y4  
Y5  
Y
Y
N
N
Y
Software reset (SW)  
Y1  
Y1  
Y1  
Y1  
Y2  
Y2  
Y2  
Y2  
Y4  
Y4  
Y4  
Y4  
Y5  
Y5  
Y5  
Y5  
Y
Y
Y
Y
Y
Y
Y
Y
N
N
N
N
N
N
N
N
Y
Y
Y
Y
Lockup reset (LOCKUP)  
MDM DAP system reset  
Debug reset  
Debug reset  
1. Except PMC_LVDSC1[LVDV] and PMC_LVDSC2[LVWV]  
2. Except SIM_SOPT1  
3. Only if RESET is used to wake from VLLS mode.  
4. Except SMC_PMCTRL, SMC_STOPCTRL, SMC_PMSTAT  
5. Except RCM_RPFC, RCM_RPFW, RCM_FM  
The CM0+ core adds support for a programmable Vector Table Offset Register  
(VTOR) to relocate the exception vector table after reset. This device supports booting  
from:  
• internal flash  
• boot ROM  
8
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
Freescale Semiconductor, Inc.  
Overview  
The Flash Option (FOPT) register in the Flash Memory module (FTFA_FOPT) allows  
the user to customize the operation of the MCU at boot time. The register contains  
read-only bits that are loaded from the NVM's option byte in the flash configuration  
field. Below is boot flow chart for this device.  
POR or Reset  
N
RCM[FORCEROM] =00  
Y
N
FOPT[BOOTPIN_OPT]=0  
Y
N
BOOTCFG0 pin=0  
Y
N
FOPT[BOOTSRC  
_SEL]=10/11  
Y
Boot from ROM  
Boot from Flash  
Figure 2. Boot flow chart  
The blank chip is default to boot from ROM and remaps the vector table to ROM base  
address, otherwise, it remaps to flash address.  
2.1.6 Clock options  
This chip provides a wide range of sources to generate the internal clocks. These  
sources include internal resistor capacitor (IRC) oscillators, external oscillators,  
external clock sources, and ceramic resonators. These sources can be configured to  
provide the required performance and optimize the power consumption.  
The IRC oscillators include the high-speed internal resister capacitor (HIRC)  
oscillator, the low-speed internal resister capacitor (LIRC) oscillator, and the low  
power oscillator (LPO).  
The HIRC oscillator generates a 48 MHz clock.  
The LIRC oscillator generates an 8 MHz or 2 MHz clock, and default to 8 MHz  
system clock on reset. The LIRC oscillator cannot be used in any VLLS modes.  
The LPO generates a 1 kHz clock and cannot be used in VLLS0 mode.  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
9
Freescale Semiconductor, Inc.  
Overview  
The system oscillator supports low frequency crystals (32 kHz to 40 kHz), high  
frequency crystals (1 MHz to 32 MHz), and ceramic resonators (1 MHz to 32 MHz). An  
external clock source, DC to 48 MHz, can be used as the system clock through the  
EXTAL0 pin. The external oscillator also supports a low speed external clock (32.768  
kHz) on the RTC_CLKIN pin for use with the RTC.  
For more details on the clock operations and configurations, see Reference Manual.  
The following figure is a high level block diagram of the clock generation.  
Multipurpose Clock  
Generator Lite  
System  
Integration  
MCGPCLK  
MCGIRCLK  
HIRC48M  
IRC_TRIMs  
CG  
LIRC_DIV2  
LIRC  
8MHz  
8MHz/  
2MHz  
IRC  
MCGOUTCLK  
FCRDIV  
OUTDIV1  
OUTDIV4  
CG  
CG  
Core/Platform/System clock  
Bus/Flash clock  
2MHz  
IRCS  
CLKS  
System oscillator  
EREFS0  
OSCCLK  
CG  
EXTAL0  
XTAL_CLK  
OSC  
OSCERCLK  
ERCLK32K  
OSC32KCLK  
logic  
XTAL0  
RTC_CKLIN  
OS32KSEL  
RTCCLKOUTSEL  
LPO  
PMC logic  
PMC  
RTC  
RTC_CLKOUT  
1Hz  
Counter logic  
CG — Clock gate  
Figure 3. Clock block diagram  
In order to provide flexibility, many peripherals can select from multiple clock sources  
for operation. This enables the peripheral to select a clock that will always be available  
during operation in various operational modes.  
The following table summarizes the clocks associated with each module.  
10  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
Freescale Semiconductor, Inc.  
Overview  
Table 4. Module clocks  
Module  
Bus interface clock  
Core modules  
Internal clocks  
I/O interface clocks  
ARM Cortex-M0+ core  
Platform clock  
Platform clock  
Platform clock  
Core clock  
NVIC  
DAP  
SWD_CLK  
System modules  
DMA  
DMA Mux  
System clock  
Bus clock  
Port control  
Bus clock  
Crossbar Switch  
Peripheral bridges  
LLWU, PMC, SIM, RCM  
Mode controller  
MCM  
Platform clock  
System clock  
Bus clock  
Bus clock  
LPO  
Bus clock  
Platform clock  
Bus clock  
COP watchdog  
LPO, Bus Clock,  
MCGIRCLK, OSCERCLK  
CRC  
Bus clock  
Bus clock  
Clocks  
MCG_Lite  
MCGOUTCLK, MCGPCLK,  
MCGIRCLK, OSCERCLK,  
ERCLK32K  
OSC  
Bus clock  
OSCERCLK  
Memory and memory interfaces  
Flash Controller  
Flash memory  
Platform clock  
Flash clock  
Flash clock  
Analog  
ADC  
CMP  
Bus clock  
Bus clock  
Bus clock  
OSCERCLK  
Internal Voltage Reference  
(VREF)  
Timers  
TPM  
PIT  
Bus clock  
Bus clock  
Bus clock  
TPM clock  
TPM_CLKIN0, TPM_CLKIN1  
LPTMR  
LPO, OSCERCLK,  
MCGPCLK, ERCLK32K  
RTC  
Bus clock  
ERCLK32K  
RTC_CLKOUT, RTC_CLKIN  
Communication interfaces  
SPI0  
SPI1  
I2C0  
Bus clock  
SPI0_SCK  
SPI1_SCK  
I2C0_SCL  
System clock  
System Clock  
Table continues on the next page...  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
11  
Freescale Semiconductor, Inc.  
Overview  
Table 4. Module clocks (continued)  
Module  
Bus interface clock  
System Clock  
Bus clock  
Internal clocks  
I/O interface clocks  
I2C1  
I2C1_SCL  
LPUART0, LPUART1  
LPUART0 clock  
LPUART1 clock  
UART2  
FlexIO  
Bus clock  
Bus clock  
FlexIO clock  
Human-machine interfaces  
GPIO  
Platform clock  
2.1.7 Security  
Security state can be enabled via programming flash configuration field (0x40e). After  
enabling device security, the SWD port cannot access the memory resources of the  
MCU, and ROM boot loader is also limited to access flash and not allowed to read out  
flash information via ROM boot loader commands.  
Access interface  
Secure state  
Unsecure operation  
SWD port  
Cannot access memory source by SWD The debugger can write to the Flash  
interface  
Mass Erase in Progress field of the  
MDM-AP Control register to trigger a  
mass erase (Erase All Blocks)  
command  
ROM boot loader Interface (UART/I2C/ Limit access to the flash, cannot read  
SPI) out flash content  
Send “FlashEraseAllUnsecureh"  
command or attempt to unlock flash  
security using the backdoor key  
This device features 80-bit unique identification number, which is programmed in  
factory and loaded to SIM register after power-on reset.  
2.1.8 Power management  
The Power Management Controller (PMC) expands upon ARM’s operational modes of  
Run, Sleep, and Deep Sleep, to provide multiple configurable modes. These modes can  
be used to optimize current consumption for a wide range of applications. The WFI or  
WFE instruction invokes a Wait or a Stop mode, depending on the current  
configuration. For more information on ARM’s operational modes, See the ARM®  
Cortex User Guide.  
12  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
Freescale Semiconductor, Inc.  
Overview  
The PMC provides Run (Run), and Very Low Power Run (VLPR) configurations in  
ARM’s Run operation mode. In these modes, the MCU core is active and can access  
all peripherals. The difference between the modes is the maximum clock frequency of  
the system and therefore the power consumption. The configuration that matches the  
power versus performance requirements of the application can be selected.  
The PMC provides Wait (Wait) and Very Low Power Wait (VLPW) configurations in  
ARM’s Sleep operation mode. In these modes, even though the MCU core is inactive,  
all of the peripherals can be enabled and operate as programmed. The difference  
between the modes is the maximum clock frequency of the system and therefore the  
power consumption.  
The PMC provides Stop (Stop), Very Low Power Stop (VLPS), Low Leakage Stop  
(LLS), and Very Low Leakage Stop (VLLS) configurations in ARM’s Deep Sleep  
operational mode. In these modes, the MCU core and most of the peripherals are  
disabled. Depending on the requirements of the application, different portions of the  
analog, logic, and memory can be retained or disabled to conserve power.  
The Nested Vectored Interrupt Controller (NVIC), the Asynchronous Wake-up  
Interrupt Controller (AWIC), and the Low Leakage Wake-Up Controller (LLWU) are  
used to wake up the MCU from low power states. The NVIC is used to wake up the  
MCU core from WAIT and VLPW modes. The AWIC is used to wake up the MCU  
core from STOP and VLPS modes. The LLWU is used to wake up the MCU core  
from LLS and VLLSx modes.  
For additional information regarding operational modes, power management, the  
NVIC, AWIC, or the LLWU, please refer to the Reference Manual.  
The following table provides information about the state of the peripherals in the  
various operational modes and the modules that can wake MCU from low power  
modes.  
Table 6. Peripherals states in different operational modes  
Core mode  
Device mode  
Descriptions  
Run mode  
Run  
In Run mode, all device modules are operational.  
Very Low Power Run  
In VLPR mode, all device modules are operational at a reduced frequency  
except the Low Voltage Detect (LVD) monitor, which is disabled.  
Sleep mode  
Wait  
In Wait mode, all peripheral modules are operational. The MCU core is  
placed into Sleep mode.  
Very Low Power Wait  
In VLPW mode, all peripheral modules are operational at a reduced  
frequency except the Low Voltage Detect (LVD) monitor, which is disabled.  
The MCU core is placed into Sleep mode.  
Table continues on the next page...  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
13  
Freescale Semiconductor, Inc.  
Overview  
Table 6. Peripherals states in different operational modes (continued)  
Core mode  
Deep sleep  
Device mode  
Descriptions  
Stop  
In Stop mode, most peripheral clocks are disabled and placed in a static  
state. Stop mode retains all registers and SRAMs while maintaining Low  
Voltage Detection protection. In Stop mode, the ADC, CMP, LPTimer, RTC,  
and pin interrupts are operational. The NVIC is disabled, but the AWIC can  
be used to wake up from an interrupt.  
Very Low Power Stop  
Low Leakage Stop  
In VLPS mode, the contents of the SRAM are retained. The CMP (low  
speed), ADC, OSC, RTC, LPTMR, TPM, FlexIO, LPUART, and DMA are  
operational, LVD and NVIC are disabled, AWIC is used to wake up from  
interrupt.  
In LLS mode, the contents of the SRAM and the 32-byte system register file  
are retained. The CMP (low speed), LLWU, LPTMR, and RTC are  
operational. The ADC, CRC, DMA, FlexIO, I2C, LPUART, MCG-Lite, NVIC,  
PIT, SPI, TPM, UART, and COP are static, but retain their programming. The  
GPIO, and VREF are static, retain their programming, and continue to drive  
their previous values.  
Very Low Leakage Stop In VLLS modes, most peripherals are powered off and will resume operation  
from their reset state when the device wakes up. The LLWU, LPTMR, and  
RTC are operational in all VLLS modes.  
In VLLS3, the contents of the SRAM and the 32-byte system register file are  
retained. The CMP (low speed), and PMC are operational. The GPIO, and  
VREF are not operational but continue driving.  
In VLLS1, the contents of the 32-byte system register file are retained. The  
CMP (low speed), and PMC are operational. The GPIO, and VREF are not  
operational but continue driving.  
In VLLS0, the contents of the 32-byte system register file are retained. The  
PMC is operational. The GPIO is not operational but continues driving. The  
POR detection circuit can be enabled or disabled.  
2.1.9 LLWU  
The LLWU module is used to wake MCU from low leakage power mode (LLS and  
VLLSx) and functional only on entry into a low-leakage power mode. After recovery  
from LLS, the LLWU is immediately disabled. After recovery from VLLSx, the LLWU  
continues to detect wake-up events until the user has acknowledged the wake-up event.  
This device uses 8 external wakeup pin inputs and 4 internal modules as wakeup  
sources to the LLWU module.  
The following is internal peripheral and external pin inputs as wakeup sources to the  
LLWU module.  
14  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
Freescale Semiconductor, Inc.  
Overview  
Table 7. Wakeup source  
LLWU pin  
LLWU_P5  
Module source or pin name  
PTB0  
PTC1  
LLWU_P6  
LLWU_P7  
PTC3  
LLWU_P8  
PTC4  
LLWU_P9  
PTC5  
LLWU_P10  
LLWU_P14  
LLWU_P15  
LLWU_M0IF  
LLWU_M1IF  
LLWU_M2IF  
LLWU_M3IF  
LLWU_M4IF  
LLWU_M5IF  
LLWU_M6IF  
LLWU_M7IF  
PTC6  
PTD4  
PTD6  
LPTMR0  
CMP0  
Reserved  
Reserved  
Reserved  
RTC alarm  
Reserved  
RTC seconds  
2.1.10 Debug controller  
This device supports standard ARM 2-pin SWD debug port. It provides register and  
memory accessibility from the external debugger interface, basic run/halt control plus  
2 breakpoints and 2 watchpoints.  
It also supports trace function with the Micro Trace Buffer (MTB), which provides a  
simple execution trace capability for the Cortex-M0+ processor.  
2.1.11 COP  
The COP monitors internal system operation and forces a reset in case of failure. It  
can run from bus clock, LPO, 8/2 MHz internal oscillator or external crystal oscillator.  
Optional window mode can detect deviations in program flow or system frequency.  
The COP has the following features:  
• Support multiple clock input, 1 kHz clock(LPO), bus clock, 8/2 MHz internal  
reference clock, external crystal oscillator  
• Can work in Stop/VLPS and Debug mode  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
15  
Freescale Semiconductor, Inc.  
Overview  
• Configurable for short and long timeout values, the longest timeout is up to 262  
seconds  
• Support window mode  
2.2 Peripheral features  
The following sections describe the features of each peripherals of the chip.  
2.2.1 BME  
The Bit Manipulation Engine (BME) provides hardware support for atomic read-  
modify-write memory operations to the peripheral address space in Cortex-M0+ based  
microcontrollers. It reduces up to 30% of the code size and up to 9% of the cycles for  
bit-oriented operations to peripheral registers.  
The BME supports unsigned bit field extract, load-and-set 1-bit, load-and-clear 1-bit,  
bit field insert, logical AND/OR/XOR operations with byte, halfword or word-sized  
data type.  
2.2.2 DMA and DMAMUX  
The DMA controller module enables fast transfers of data, which provides an efficient  
way to move blocks of data with minimal processor interaction. The DMA controller in  
this device implements four channels which can be routed from up to 63 DMA request  
sources through DMA MUX module. Some of the peripheral request sources have  
asynchronous DMA capability which can be used to wake MCU from Stop mode. The  
peripherals which have such capability include LPUART0, LPUART1, FlexIO, TPM0-  
TPM2, ADC0, CMP0, PORTA-PORTE. The DMA channel 0 and 1 can be periodically  
triggered by PIT via DMA MUX.  
Main features are listed below:  
• Dual-address transfers via 32-bit master connection to the system bus and data  
transfers in 8-, 16-, or 32-bit blocks  
• Supports programmable source and destination address and transfer size, optional  
modulo addressing from 16 bytes to 256 KB  
• Automatic updates of source and destination addresses  
16  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
Freescale Semiconductor, Inc.  
Overview  
• Auto-alignment feature for source or destination accesses allows block transfers  
to occur at the optimal size based on the address, byte count,and programmed  
size, which significantly improves the speed of block transfer  
• Automatic single or double channel linking allows the current DMA channel to  
automatically trigger a DMA request to the linked channels without CPU  
intervention  
For more information on asynchronous DMA, see AN4631.  
2.2.3 TPM  
This device contains three low power TPM modules (TPM). All TPM modules are  
functional in Stop/VLPS mode if the clock source is enabled.  
The TPM features include:  
• TPM clock mode is selectable from external clock input or internal clock source,  
HIRC48M clock, external crystal input clock or LIRC2M/8M clock.  
• Prescaler divide-by 1, 2, 4, 8, 16, 32, 64, or 128  
• TPM includes a 16-bit counter  
• Includes 6 channels that can be configured for input capture, output compare,  
edge-aligned PWM mode, or center-aligned PWM mode  
• Support the generation of an interrupt and/or DMA request per channel or counter  
overflow  
• Support selectable trigger input to optionally reset or cause the counter to start or  
stop incrementing  
• Support the generation of hardware triggers when the counter overflows and per  
channel  
2.2.4 ADC  
this device contains one ADC module. This ADC module supports hardware triggers  
from TPM, LPTMR, PIT, RTC, external trigger pin and CMP output. It supports  
wakeup of MCU in low power mode when using internal clock source or external  
crystal clock.  
ADC module has the following features:  
• Linear successive approximation algorithm with up to 16-bit resolution  
• Up to four pairs of differential and 17 single-ended external analog inputs  
• Support selectable 16-bit, 13-bit, 11-bit, and 9-bit differential output mode, or 16-  
bit, 12-bit, 10-bit, and 8-bit single-ended output modes  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
17  
Freescale Semiconductor, Inc.  
Overview  
• Single or continuous conversion  
• Configurable sample time and conversion speed/power  
• Selectable clock source up to four  
• Operation in low-power modes for lower noise  
• Asynchronous clock source for lower noise operation with option to output the  
clock  
• Selectable hardware conversion trigger  
• Automatic compare with interrupt for less-than, greater-than or equal-to, within  
range, or out-of-range, programmable value  
• Temperature sensor  
• Hardware average function up to 32x  
• Selectable voltage reference: external or alternate  
• Self-Calibration mode  
2.2.4.1 Temperature sensor  
This device contains one temperature sensor internally connected to the input channel  
of AD26, see Table 55 for details of the linearity factor.  
The sensor must be calibrated to gain good accuracy, so as to provide good linearity,  
see also AN3031. We recommend to use internal reference voltage as ADC reference  
with long sample time.  
2.2.5 VREF  
The Voltage Reference (VREF) can supply an accurate voltage output (1.2V typically)  
trimmed in 0.5 mV steps. It can be used in applications to provide a reference voltage to  
external devices or used internally as a reference to analog peripherals such as the ADC  
or CMP.  
The VREF supports the following programmable buffer modes:  
• Bandgap on only, used for stabilization and startup  
• High power buffer mode  
• Low-power buffer mode  
• Buffer disabled  
The VREF voltage output signal, bonded on VREFH for 48 QFN, 64 LQFP and 64  
MAPBGA packages and on PTE30 for 32 QFN and 36 XFBGA packages, can be used  
by both internal and external peripherals in low and high power buffer mode. A 100 nF  
capacitor must always be connected between this pin and VSSA if the VREF is used.  
This capacitor must be as close to VREFO pin as possible.  
18  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
Freescale Semiconductor, Inc.  
Overview  
2.2.6 CMP  
The device contains one high-speed comparator and two 8-input multiplexers for both  
the inverting and non-inverting inputs of the comparator. Each CMP input channel  
connects to both muxes.  
The CMP includes one 6-bit DAC, which provides a selectable voltage reference for  
various user application cases. Besides, the CMP also has several module-to-module  
interconnects in order to facilitate ADC triggering, TPM triggering, and interfaces.  
The CMP has the following features:  
• Inputs may range from rail to rail  
• Programmable hysteresis control  
• Selectable interrupt on rising-edge, falling-edge, or both rising or falling edges of  
the comparator output  
• Selectable inversion on comparator output  
• Capability to produce a wide range of outputs such as sampled, digitally filtered  
• External hysteresis can be used at the same time that the output filter is used for  
internal functions  
• Two software selectable performance levels: shorter propagation delay at the  
expense of higher power and Low power with longer propagation delay  
• DMA transfer support  
• Functional in all modes of operation except in VLLS0 mode  
• The filter functions are not available in Stop, VLPS, LLS, or VLLSx modes  
• Integrated 6-bit DAC with selectable supply reference source and can be power  
down to conserve power  
• Two 8-to-1 channel mux  
2.2.7 RTC  
The RTC is an always powered-on block that remains active in all low power modes.  
The time counter within the RTC is clocked by a 32.768 kHz clock sourced from an  
external crystal using the oscillator or clock directly from RTC_CLKIN pin.  
RTC is reset on power-on reset, and a software reset bit in RTC can also initialize all  
RTC registers.  
The RTC module has the following features  
• 32-bit seconds counter with roll-over protection and 32-bit alarm  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
19  
Freescale Semiconductor, Inc.  
Overview  
• 16-bit prescaler with compensation that can correct errors between 0.12 ppm and  
3906 ppm  
• Register write protection with register lock mechanism  
• 1 Hz square wave or second pulse output with optional interrupt  
2.2.8 PIT  
The Periodic Interrupt Timer (PIT) is used to generate periodic interrupt to the CPU. It  
has two independent channels and each channel has a 32-bit counter. Both channels can  
be chained together to form a 64-bit counter.  
Channel 0 can be used to periodically trigger DMA channel 0, and channel 1 can be  
used to periodically trigger DMA channel 1. Either channel can be programmed as an  
ADC trigger source, or TPM trigger source. Channel 0 can be programmed to trigger  
DAC.  
The PIT module has the following features:  
• Each 32-bit timers is able to generate DMA trigger  
• Each 32-bit timers is able to generate timeout interrupts  
• Two timers can be cascaded to form a 64-bit timer  
• Each timer can be programmed as ADC/TPM trigger source  
• Timer 0 is able to trigger DAC  
2.2.9 LPTMR  
The low-power timer (LPTMR) can be configured to operate as a time counter with  
optional prescaler, or as a pulse counter with optional glitch filter, across all power  
modes, including the low-leakage modes. It can also continue operating through most  
system reset events, allowing it to be used as a time of day counter.  
The LPTMR module has the following features:  
• 16-bit time counter or pulse counter with compare  
• Optional interrupt can generate asynchronous wakeup from any low-power  
mode  
• Hardware trigger output  
• Counter supports free-running mode or reset on compare  
• Configurable clock source for prescaler/glitch filter  
• Configurable input source for pulse counter  
20  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
Freescale Semiconductor, Inc.  
Overview  
2.2.10 CRC  
This device contains one cyclic redundancy check (CRC) module which can generate  
16/32-bit CRC code for error detection.  
The CRC module provides a programmable polynomial, WAS, and other parameters  
required to implement a 16-bit or 32-bit CRC standard.  
The CRC module has the following features:  
• Hardware CRC generator circuit using a 16-bit or 32-bit programmable shift  
register  
• Programmable initial seed value and polynomial  
• Option to transpose input data or output data (the CRC result) bitwise or bytewise.  
• Option for inversion of final CRC result  
• 32-bit CPU register programming interface  
2.2.11 UART  
This device contains a basic universal asynchronous receiver/transmitter (UART)  
module with DMA function supported. Generally, this module is used in RS-232,  
RS-485, and other communications and supports LIN slave operation and ISO7816.  
The UART module has the following features:  
• Full-duplex operation  
• 13-bit baud rate selection with /32 fractional divide, based on the module clock  
frequency  
• Programmable 8-bit or 9-bit data format  
• Programmable transmitter output polarity  
• Programmable receive input polarity  
• Up to 14-bit break character transmission.  
• 11-bit break character detection option  
• Two receiver wakeup methods with idle line or address mark wakeup  
• Address match feature in the receiver to reduce address mark wakeup ISR  
overhead  
• Ability to select MSB or LSB to be first bit on wire  
• Support for ISO 7816 protocol to interface with SIM cards and smart cards  
• Receiver framing error detection  
• Hardware parity generation and checking  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
21  
Freescale Semiconductor, Inc.  
Overview  
• 1/16 bit-time noise detection  
• DMA interface  
2.2.12 LPUART  
This product contains two Low-Power UART modules, both of their clock sources are  
selectable from IRC48M, IRC8M/2M or external crystal clock, and can work in Stop  
and VLPS modes. They also support 4× to 32× data oversampling rate to meet different  
applications.  
The LPUART module has the following features:  
• Programmable baud rates (13-bit modulo divider) with configurable oversampling  
ratio from 4× to 32×  
• Transmit and receive baud rate can operate asynchronous to the bus clock and can  
be configured independently of the bus clock frequency, support operation in Stop  
mode  
• Interrupt, DMA or polled operation  
• Hardware parity generation and checking  
• Programmable 8-bit, 9-bit or 10-bit character length  
• Programmable 1-bit or 2-bit stop bits  
• Three receiver wakeup methods  
• Idle line wakeup  
• Address mark wakeup  
• Receive data match  
• Automatic address matching to reduce ISR overhead:  
• Address mark matching  
• Idle line address matching  
• Address match start, address match end  
• Optional 13-bit break character generation / 11-bit break character detection  
• Configurable idle length detection supporting 1, 2, 4, 8, 16, 32, 64 or 128 idle  
characters  
• Selectable transmitter output and receiver input polarity  
2.2.13 SPI  
This device contains two SPI modules. SPI modules support 8-bit and 16-bit modes.  
FIFO function is available only on SPI1 module.  
The SPI modules have the following features:  
22  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
Freescale Semiconductor, Inc.  
Overview  
• Full-duplex or single-wire bidirectional mode  
• Programmable transmit bit rate  
• Double-buffered transmit and receive data register  
• Serial clock phase and polarity options  
• Slave select output  
• Mode fault error flag with CPU interrupt capability  
• Control of SPI operation during wait mode  
• Selectable MSB-first or LSB-first shifting  
• Programmable 8- or 16-bit data transmission length  
• Receive data buffer hardware match feature  
• 64-bit FIFO mode for high speed/large amounts of data transfers  
• Support DMA  
2.2.14 I2C  
This device contains two I2C modules, which support up to 1 Mbits/s by dual buffer  
features, and address match to wake MCU from the low power mode.  
I2C modules support DMA transfer, and the interrupt condition can trigger DMA  
request when DMA function is enabled.  
The I2C modules have the following features:  
• Support for system management bus (SMBus) Specification, version 2  
• Software programmable for one of 64 different serial clock frequencies  
• Software-selectable acknowledge bit  
• Arbitration-lost interrupt with automatic mode switching from master to slave  
• Calling address identification interrupt  
• START and STOP signal generation and detection  
• Repeated START signal generation and detection  
• Acknowledge bit generation and detection  
• Bus busy detection  
• General call recognition  
• 10-bit address extension  
• Programmable input glitch filter  
• Low power mode wakeup on slave address match  
• Range slave address support  
• DMA support  
• Double buffering support to achieve higher baud rate  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
23  
Freescale Semiconductor, Inc.  
Overview  
2.2.15 FlexIO  
The FlexIO is a highly configurable module providing a wide range of protocols  
including, but not limited to UART, I2C, SPI, I2S, Camera IF, LCD RGB, PWM/  
Waveform generation. The module supports programmable baud rates independent of  
bus clock frequency, with automatic start/stop bit generation.  
The FlexIO module has the following features:  
• Functional in VLPR/VLPW/Stop/VLPS mode provided the clock it is using  
remains enabled  
• Four 32-bit double buffered shift registers with transmit, receive, and data match  
modes, and continuous data transfer  
• The timing of the shifter’ shift, load and store events are controlled by the highly  
flexible 16-bit timer assigned to the shifter  
• Two or more shifter can be concatenated to support large data transfer sizes  
• Each 16-bit timers operates independently, supports for reset, enable and disable on  
a variety of internal or external trigger conditions with programmable trigger  
polarity  
• Flexible pin configuration supporting output disabled, open drain, bidirectional  
output data and output mode  
• Supports interrupt, DMA or polled transmit/receive operation  
2.2.16 Port control and GPIO  
The Port Control and Interrupt (PORT) module provides support for port control, digital  
filtering, and external interrupt functions. The GPIO data direction and output data  
registers control the direction and output data of each pin when the pin is configured for  
the GPIO function. The GPIO input data register displays the logic value on each pin  
when the pin is configured for any digital function, provided the corresponding Port  
Control and Interrupt module for that pin is enabled.  
The following figure shows the basic I/O pad structure. This diagram applies to all I/O  
pins except PTA20/RESET_b and those configured as pseudo open-drain outputs.  
PTA20/RESET_b is a true open-drain pin without p-channel output driver or diode to  
the ESD bus. Pseudo open-drain pins have the p-channel output driver disabled when  
configured for open-drain operation. None of the I/O pins, including open-drain and  
pseudo open-drain pins, are allowed to go above VDD.  
24  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
Freescale Semiconductor, Inc.  
Overview  
Digital input  
IBE=1 whenever  
MUX000  
PFE  
IBE  
ESD  
Bus  
VDD  
RPULL  
PE  
PS  
Analog input  
Digital output  
DSE  
SRE  
Figure 4. I/O simplified block diagram  
The PORT module has the following features:  
• all PIN support interrupt enable .  
• Configurable edge(rising,falling,both) or level sensitive interrupt type  
• Support DMA request  
• Asynchronous wake-up in low-power modes  
• Configurable pullup, pulldown, and pull-disable on select pins  
• Configurable high and low drive strength on selected pins  
• Configurable fast and slow slew rates on selected pins  
• Configurable passive filter on selected pins  
• Individual mux control field supporting analog or pin disabled, GPIO, and up to  
chip-specific digital functions  
• Pad configuration fields are functional in all digital pin muxing modes.  
The GPIO module has the following features:  
• Port Data Input register visible in all digital pin-multiplexing modes  
• Port Data Output register with corresponding set/clear/toggle registers  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
25  
Freescale Semiconductor, Inc.  
Memory map  
• Port Data Direction register  
• GPIO support single-cycle access via fast GPIO.  
3 Memory map  
This device contains various memories and memory-mapped peripherals which are  
located in a 4 GB memory space. The following figure shows the system memory and  
peripheral locations  
0x4000_0000  
Reserved  
0x4000_8000  
DMA controller  
Reserved  
0x4000_E000  
Reserved  
0x4000_F000  
GPIO controller(alias to 0x400F_F000)  
0x0000_0000  
Reserved  
0x4002_0000  
Flash memory  
DMA Channel Multiplexer  
Reserved  
CRC32  
Flash  
ROM  
0x4002_1000  
0x4003_2000  
0x0000_0000  
0x07FF_FFFF  
0x1C00_0000  
Code space  
Reserved  
0x07FF_FFFF  
0x1C00_0000  
Reserved  
PIT  
LPTPM0  
LPTPM1  
LPTPM2  
ADC0  
Reserved  
RTC  
Reserved  
LPTMR  
0x4003_7000  
0x4003_8000  
0x4003_9000  
0x4003_A000  
0x4003_B000  
0x1
Boot ROM  
Reserved  
0x1C00_3FFF  
0x1C00_4000  
0x1FFF_F000  
0x4003_D000  
0x1FFF_F000  
0x2000_0000  
0x4004_0000  
0x4004_1000  
SRAM_L  
SRAM_U  
Data Space  
Reserved  
0x4004_7000  
0x4004_8000  
0x4004_9000  
0x0000_A000  
0x4004_B000  
0x4004_C000  
0x4004_D000  
System register file  
Reserved  
SIM low power logic  
SIM  
0x2000_3000  
0x4000_0000  
0x2000_2FFF  
0x4000_0000  
Public  
peripheral  
PORT A  
PORT B  
PORT C  
PORT D  
AIPS  
peripherals  
0x4007_FFFF  
0x400F_E000  
0x400F_F000  
0x4400_0000  
Reserved  
BME  
Reserved  
GPIO  
0x4005_4000  
0x4005_5000  
0x400F_E1FF  
0x400F_F000  
PORT E  
0x6000_0000  
0xE000_0000  
Reserved  
LPUART0  
LPUART1  
Reserved  
FlexIO  
Reserved  
MCG Lite  
OSC  
0x4005_F000  
0x400F_FFFF  
Reserved  
0x4006_4000  
Private  
peripherals  
0xE010_0000  
0xF000_0000  
Reserved  
MTB  
0x4006_5000  
0x4006_6000  
0x4006_7000  
0xE010_0000  
0xFFFF_FFFF  
0xF000_1000  
0xF000_2000  
0xF000_3000  
MTBDWT  
ROM Table  
MCM  
0x4006_C000  
I2C0  
I2C1  
Others  
0x4007_2000  
0x4007_3000  
0x4007_4000  
Reserved  
UART2  
Reserved  
Reserved  
CMP  
VREF  
Reserved  
SPI0  
0xF000_4000  
0xF800_0000  
0x4007_6000  
0x4007_7000  
Reserved  
IOPORT  
0x4007_C000  
0xFFFF_FFFF  
0x4007_D000  
0x4007_E000  
0x4007_F000  
SPI1  
Figure 5. Memory map  
26  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
Freescale Semiconductor, Inc.  
Pinouts  
4 Pinouts  
4.1 KL17 Signal Multiplexing and Pin Assignments  
The following table shows the signals available on each pin and the locations of these  
pins on the devices supported by this document. The Port Control Module is  
responsible for selecting which ALT functionality is available on each pin.  
NOTE  
The 48 QFN and 64 MAPBGA packages for this product are  
not yet available. However, these packages are included in  
Package Your Way program for Kinetis MCUs. Visit  
freescale.com/KPYW for more details.  
64  
LQFP  
36  
XFB  
GA  
32  
QFN  
48  
QFN  
64  
MAP  
BGA  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
1
F2  
9
1
C5  
A1  
VREF0  
NC  
VREF0_B  
NC  
VREF0_B  
NC  
A1  
PTE0  
DISABLED  
PTE0/  
CLKOUT32  
K
SPI1_MISO LPUART1_  
TX  
RTC_  
CLKOUT  
CMP0_OUT I2C1_SDA  
SPI1_MISO I2C1_SCL  
2
B1  
2
B1  
PTE1  
DISABLED  
PTE1  
SPI1_MOSI LPUART1_  
RX  
3
4
5
C4  
C2  
3
1
2
3
C4  
E1  
VDD  
VDD  
VSS  
VDD  
VSS  
VSS  
PTE16  
ADC0_DP1/ ADC0_DP1/ PTE16  
SPI0_PCS0 UART2_TX  
TPM_  
FXIO0_D0  
ADC0_SE1  
ADC0_SE1  
CLKIN0  
6
C1  
4
4
D1  
PTE17  
ADC0_  
DM1/  
ADC0_  
DM1/  
PTE17  
SPI0_SCK  
UART2_RX TPM_  
LPTMR0_  
ALT3  
FXIO0_D1  
CLKIN1  
ADC0_  
SE5a  
ADC0_  
SE5a  
7
8
D1  
D2  
5
6
5
6
E2  
D2  
PTE18  
PTE19  
ADC0_DP2/ ADC0_DP2/ PTE18  
SPI0_MOSI  
SPI0_MISO  
I2C0_SDA  
I2C0_SCL  
SPI0_MISO FXIO0_D2  
SPI0_MOSI FXIO0_D3  
ADC0_SE2  
ADC0_SE2  
ADC0_  
DM2/  
ADC0_  
DM2/  
PTE19  
ADC0_  
SE6a  
ADC0_  
SE6a  
9
E3  
E2  
7
8
G1  
F1  
PTE20  
PTE21  
ADC0_DP0/ ADC0_DP0/ PTE20  
TPM1_CH0 LPUART0_  
TX  
FXIO0_D4  
FXIO0_D5  
ADC0_SE0  
ADC0_SE0  
10  
ADC0_  
DM0/  
ADC0_  
DM0/  
PTE21  
TPM1_CH1 LPUART0_  
RX  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
27  
Freescale Semiconductor, Inc.  
Pinouts  
64  
36  
32  
48  
64  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
LQFP  
XFB  
GA  
QFN  
QFN  
MAP  
BGA  
ADC0_  
SE4a  
ADC0_  
SE4a  
11  
12  
E1  
F1  
G2  
F2  
PTE22  
PTE23  
ADC0_DP3/ ADC0_DP3/ PTE22  
TPM2_CH0 UART2_TX  
TPM2_CH1 UART2_RX  
FXIO0_D6  
FXIO0_D7  
ADC0_SE3  
ADC0_SE3  
ADC0_  
DM3/  
ADC0_  
DM3/  
PTE23  
ADC0_  
SE7a  
ADC0_  
SE7a  
13  
14  
14  
15  
16  
17  
D3  
D3  
7
7
9
F4  
G4  
G4  
G3  
F3  
H1  
VDDA  
VDDA  
VDDA  
10  
10  
11  
12  
13  
VREFH  
VREFO  
VREFL  
VSSA  
VREFH  
VREFO_A  
VREFL  
VSSA  
VREFH  
VREFO_A  
VREFL  
VSSA  
8
D4  
D4  
8
PTE29  
CMP0_IN5/  
ADC0_  
SE4b  
CMP0_IN5/  
ADC0_  
SE4b  
PTE29  
PTE30  
TPM0_CH2 TPM_  
CLKIN0  
18  
F2  
9
14  
H2  
PTE30  
ADC0_  
SE23/  
ADC0_  
SE23/  
TPM0_CH3 TPM_  
CLKIN1  
LPUART1_  
TX  
LPTMR0_  
ALT1  
CMP0_IN4  
CMP0_IN4  
19  
20  
21  
22  
23  
F3  
F4  
10  
11  
15  
16  
17  
18  
H3  
H4  
H5  
D3  
D4  
PTE31  
PTE24  
PTE25  
PTA0  
DISABLED  
DISABLED  
DISABLED  
SWD_CLK  
DISABLED  
PTE31  
PTE24  
PTE25  
PTA0  
TPM0_CH4  
TPM0_CH0  
TPM0_CH1  
TPM0_CH5  
TPM2_CH0  
I2C0_SCL  
I2C0_SDA  
SWD_CLK  
PTA1  
PTA1  
LPUART0_  
RX  
24  
E4  
12  
19  
E5  
PTA2  
DISABLED  
PTA2  
LPUART0_  
TX  
TPM2_CH1  
25  
26  
27  
28  
29  
30  
31  
32  
E5  
F5  
13  
14  
15  
16  
17  
20  
21  
22  
23  
24  
D5  
G5  
F5  
PTA3  
PTA4  
PTA5  
PTA12  
PTA13  
VDD  
SWD_DIO  
NMI_b  
PTA3  
PTA4  
PTA5  
PTA12  
PTA13  
I2C1_SCL  
I2C1_SDA  
TPM0_CH0  
TPM0_CH1  
TPM0_CH2  
TPM1_CH0  
TPM1_CH1  
SWD_DIO  
NMI_b  
DISABLED  
DISABLED  
DISABLED  
VDD  
H6  
G6  
G7  
H7  
H8  
C3  
C4  
F6  
VDD  
VSS  
VSS  
VSS  
PTA18  
EXTAL0  
EXTAL0  
PTA18  
PTA19  
PTA20  
LPUART1_  
RX  
TPM_  
CLKIN0  
33  
E6  
18  
25  
G8  
PTA19  
PTA20  
XTAL0  
XTAL0  
LPUART1_  
TX  
TPM_  
CLKIN1  
LPTMR0_  
ALT1  
34  
35  
D5  
D6  
19  
20  
26  
27  
F8  
F7  
RESET_b  
RESET_b  
PTB0/  
LLWU_P5  
ADC0_SE8  
ADC0_SE8  
ADC0_SE9  
PTB0/  
LLWU_P5  
I2C0_SCL  
I2C0_SDA  
TPM1_CH0 SPI1_MOSI SPI1_MISO  
TPM1_CH1 SPI1_MISO SPI1_MOSI  
36  
C6  
21  
28  
F6  
PTB1  
ADC0_SE9  
PTB1  
28  
Freescale Semiconductor, Inc.  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
Pinouts  
64  
LQFP  
36  
XFB  
GA  
32  
QFN  
48  
QFN  
64  
MAP  
BGA  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
37  
38  
39  
40  
29  
30  
31  
32  
E7  
E8  
E6  
D7  
PTB2  
ADC0_  
SE12  
ADC0_  
SE12  
PTB2  
I2C0_SCL  
I2C0_SDA  
TPM2_CH0  
TPM2_CH1  
PTB3  
ADC0_  
SE13  
ADC0_  
SE13  
PTB3  
PTB16  
PTB17  
DISABLED  
PTB16  
PTB17  
SPI1_MOSI LPUART0_  
RX  
TPM_  
CLKIN0  
SPI1_MISO  
SPI1_MOSI  
DISABLED  
SPI1_MISO LPUART0_  
TX  
TPM_  
CLKIN1  
41  
42  
43  
33  
D6  
C7  
D8  
PTB18  
PTB19  
PTC0  
DISABLED  
DISABLED  
PTB18  
PTB19  
PTC0  
TPM2_CH0  
TPM2_CH1  
EXTRG_IN  
ADC0_  
SE14  
ADC0_  
SE14  
CMP0_OUT  
44  
C5  
22  
34  
C6  
PTC1/  
LLWU_P6/  
RTC_CLKIN  
ADC0_  
SE15  
ADC0_  
SE15  
PTC1/  
LLWU_P6/  
RTC_CLKIN  
I2C1_SCL  
I2C1_SDA  
TPM0_CH0  
TPM0_CH1  
45  
46  
B6  
B5  
23  
24  
35  
36  
B7  
C8  
PTC2  
ADC0_  
SE11  
ADC0_  
SE11  
PTC2  
PTC3/  
LLWU_P7  
DISABLED  
PTC3/  
LLWU_P7  
SPI1_SCK  
LPUART1_  
RX  
TPM0_CH2 CLKOUT  
47  
48  
49  
25  
37  
E3  
E4  
B8  
VSS  
VDD  
VSS  
VSS  
VDD  
VDD  
A6  
PTC4/  
LLWU_P8  
DISABLED  
PTC4/  
LLWU_P8  
SPI0_PCS0 LPUART1_  
TX  
TPM0_CH3 SPI1_PCS0  
50  
51  
A5  
B4  
26  
27  
38  
39  
A8  
A7  
PTC5/  
LLWU_P9  
DISABLED  
CMP0_IN0  
PTC5/  
LLWU_P9  
SPI0_SCK  
LPTMR0_  
ALT2  
CMP0_OUT  
PTC6/  
LLWU_P10  
CMP0_IN0  
PTC6/  
LLWU_P10  
SPI0_MOSI EXTRG_IN  
SPI0_MISO  
SPI0_MOSI  
52  
53  
54  
55  
56  
57  
58  
A4  
28  
40  
41  
42  
B6  
A6  
B5  
B4  
A5  
C3  
A4  
PTC7  
PTC8  
PTC9  
PTC10  
PTC11  
PTD0  
PTD1  
CMP0_IN1  
CMP0_IN2  
CMP0_IN3  
DISABLED  
DISABLED  
DISABLED  
CMP0_IN1  
CMP0_IN2  
CMP0_IN3  
PTC7  
PTC8  
PTC9  
PTC10  
PTC11  
PTD0  
PTD1  
SPI0_MISO  
I2C0_SCL  
I2C0_SDA  
I2C1_SCL  
I2C1_SDA  
SPI0_PCS0  
SPI0_SCK  
TPM0_CH4  
TPM0_CH5  
TPM0_CH0  
TPM0_CH1  
FXIO0_D0  
FXIO0_D1  
ADC0_  
SE5b  
ADC0_  
SE5b  
59  
60  
61  
29  
43  
44  
45  
C2  
B3  
A3  
PTD2  
PTD3  
DISABLED  
DISABLED  
DISABLED  
PTD2  
PTD3  
SPI0_MOSI UART2_RX TPM0_CH2 SPI0_MISO FXIO0_D2  
SPI0_MISO UART2_TX TPM0_CH3 SPI0_MOSI FXIO0_D3  
SPI1_PCS0 UART2_RX TPM0_CH4  
A3  
PTD4/  
LLWU_P14  
PTD4/  
LLWU_P14  
FXIO0_D4  
FXIO0_D5  
62  
63  
B3  
B2  
30  
31  
46  
47  
C1  
B2  
PTD5  
ADC0_  
SE6b  
ADC0_  
SE6b  
PTD5  
SPI1_SCK  
UART2_TX  
TPM0_CH5  
I2C1_SDA  
PTD6/  
LLWU_P15  
ADC0_  
SE7b  
ADC0_  
SE7b  
PTD6/  
LLWU_P15  
SPI1_MOSI LPUART0_  
RX  
SPI1_MISO FXIO0_D6  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
29  
Freescale Semiconductor, Inc.  
Pinouts  
64  
36  
32  
48  
64  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
LQFP  
XFB  
GA  
QFN  
QFN  
MAP  
BGA  
64  
A2  
32  
48  
A2  
PTD7  
DISABLED  
PTD7  
SPI1_MISO LPUART0_  
TX  
I2C1_SCL  
SPI1_MOSI FXIO0_D7  
4.2 Pin properties  
The following table lists the pin properties.  
1
F2  
9
1
1
C5  
A1  
B1  
VREF0  
NC  
N
ND  
ND  
N
Y
A1  
B1  
PTE0  
Hi-Z  
Hi-Z  
FS  
FS  
2
2
PTE1  
N
N
Y
3
3
VDD  
N
N
Y
4
C4  
C2  
C1  
D1  
D2  
E3  
E2  
E1  
F1  
D3  
D3  
2
C4  
E1  
D1  
E2  
D2  
G1  
F1  
G2  
F2  
F4  
G4  
G4  
G3  
F3  
H1  
VSS  
5
3
PTE16  
PTE17  
PTE18  
PTE19  
PTE20  
PTE21  
PTE22  
PTE23  
VDDA  
VREFH  
VREFO  
VREFL  
VSSA  
PTE29  
ND  
ND  
ND  
ND  
ND  
ND  
ND  
ND  
Hi-Z  
HI-Z  
Hi-Z  
HI-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
FS  
FS  
FS  
FS  
SS  
SS  
SS  
SS  
6
4
4
N
N
Y
7
5
5
N
N
Y
8
6
6
N
N
Y
9
7
7
N
N
Y
10  
11  
12  
13  
14  
14  
15  
16  
17  
8
N
N
Y
9
N
N
Y
N
N
Y
N
N
Y
7
10  
10  
11  
12  
13  
8
D4  
D4  
8
ND  
Hi-Z  
SS  
Table continues on the next page...  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
30  
Freescale Semiconductor, Inc.  
Pinouts  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
F2  
9
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
H2  
H3  
H4  
H5  
D3  
D4  
E5  
D5  
G5  
F5  
H6  
G6  
G7  
H7  
H8  
G8  
F8  
F7  
F6  
E7  
E8  
E6  
D7  
D6  
C7  
D8  
C6  
PTE30  
PTE31  
PTE24  
PTE25  
PTA0  
ND  
ND  
ND  
ND  
ND  
ND  
ND  
ND  
ND  
ND  
ND  
ND  
ND  
ND  
ND  
ND  
ND  
HD  
HD  
ND  
ND  
ND  
ND  
ND  
ND  
ND  
ND  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
L
PD  
PU  
PU  
PU  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
FS  
SS  
SS  
SS  
SS  
N
N
N
N
N
N
N
N
Y
N
N
N
N
N
N
N
N
N
N
N
N
N
N
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
F3  
F4  
E4  
E5  
F5  
PTA1  
Hi-Z  
Hi-Z  
H
PTA2  
PTA3  
PTA4  
H
PTA5  
Hi-Z  
Hi-Z  
Hi-Z  
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
PTA12  
PTA13  
VDD  
C3  
C4  
F6  
E6  
D5  
D6  
C6  
VSS  
PTA18  
PTA19  
PTA20  
PTB0/LLWU_P5  
PTB1  
Hi-Z  
Hi-Z  
H
SS  
SS  
SS  
FS  
FS  
SS  
SS  
FS  
FS  
SS  
SS  
SS  
SS  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
N
N
N
N
N
N
N
N
N
N
PTB2  
PTB3  
PTB16  
PTB17  
PTB18  
PTB19  
PTC0  
C5  
PTC1/  
LLWU_P6/  
RTC_CLKIN  
45  
B6  
23  
35  
B7  
PTC2  
ND  
Hi-Z  
SS  
N
N
Y
Table continues on the next page...  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
31  
Freescale Semiconductor, Inc.  
Pinouts  
46  
B5  
24  
36  
C8  
PTC3/  
HD  
Hi-Z  
FS  
N
N
Y
LLWU_P7  
47  
48  
49  
25  
37  
E3  
E4  
B8  
VSS  
VDD  
N
N
Y
A6  
PTC4/  
HD  
Hi-Z  
FS  
LLWU_P8  
50  
51  
A5  
B4  
26  
27  
38  
39  
A8  
A7  
PTC5/  
LLWU_P9  
ND  
ND  
Hi-Z  
Hi-Z  
FS  
FS  
N
N
N
N
Y
Y
PTC6/  
LLWU_P10  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
A4  
A3  
28  
29  
40  
41  
42  
43  
44  
45  
B6  
A6  
B5  
B4  
A5  
C3  
A4  
C2  
B3  
A3  
PTC7  
PTC8  
PTC9  
PTC10  
PTC11  
PTD0  
PTD1  
PTD2  
PTD3  
ND  
ND  
ND  
ND  
ND  
ND  
ND  
ND  
ND  
ND  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
FS  
SS  
SS  
SS  
SS  
FS  
FS  
FS  
FS  
FS  
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
PTD4/  
LLWU_P14  
62  
63  
B3  
B2  
30  
31  
46  
47  
C1  
B2  
PTD5  
ND  
HD  
Hi-Z  
Hi-Z  
FS  
FS  
N
N
N
N
Y
Y
PTD6/  
LLWU_P15  
64  
A2  
32  
48  
A2  
PTD7  
HD  
Hi-Z  
FS  
N
N
Y
Properties  
Abbreviation  
Descriptions  
Normal drive  
High drive  
Driver strength  
ND  
HD  
Default status after POR  
Hi-Z  
High impendence  
Table continues on the next page...  
32  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
Freescale Semiconductor, Inc.  
Pinouts  
Properties  
Abbreviation  
Descriptions  
High level  
Low level  
Pullup  
H
L
Pullup/ pulldown setting  
after POR  
PD  
PU  
FS  
SS  
N
Pulldown  
Fast slew rate  
Slow slew rate  
Disabled  
Slew rate after POR  
Passive Pin Filter after  
POR  
Y
Enabled  
Open drain  
N
Disabled1  
Enabled2  
Yes  
Y
Pin interrupt  
Y
1. When I2C module is enabled and a pin is functional for I2C, this pin is (pseudo-) open drain enabled. When UART or  
LPUART module is enabled and a pin is functional for UART or LPUART, this pin is (pseudo-) open drain  
configurable.  
2. PTA20 is a true open drain pin that must never be pulled above VDD.  
4.3 Module Signal Description Tables  
The following sections correlate the chip-level signal name with the signal name used  
in the module's chapter. They also briefly describe the signal function and direction.  
4.3.1 Core modules  
Table 9. SWD signal descriptions  
Chip signal name  
Module signal  
name  
Description  
I/O  
SWD_DIO  
SWD_DIO  
SWD_CLK  
Serial Wire Debug Data Input/Output  
Input /  
Output  
The SWD_DIO pin is used by an external debug tool for  
communication and device control. This pin is pulled up  
internally.  
SWD_CLK  
Serial Wire Clock  
Input  
This pin is the clock for debug logic when in the Serial Wire  
Debug mode. This pin is pulled down internally.  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
33  
Freescale Semiconductor, Inc.  
Pinouts  
4.3.2 System modules  
Table 10. System signal descriptions  
Chip signal name  
Module signal  
name  
Description  
I/O  
NMI  
Non-maskable interrupt  
I
NOTE: Driving the NMI signal low forces a non-maskable  
interrupt, if the NMI function is selected on the  
corresponding pin.  
RESET  
VDD  
Reset bidirectional signal  
MCU power  
I/O  
I
I
VSS  
MCU ground  
Table 11. LLWU signal descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
LLWU_Pn  
LLWU_Pn  
Wakeup inputs (n = 5, 6, 7, 8, 9, 10, 14, 15)  
I
4.3.3 Clock modules  
Table 12. OSC signal descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
EXTAL  
XTAL  
EXTAL0  
XTAL0  
External clock/Oscillator input  
Oscillator output  
I
O
4.3.4 Analog  
This table presents the signal descriptions of the ADC0 module.  
Table 13. ADC0 signal descriptions  
Chip signal name  
Module signal  
name  
Description  
I/O  
ADC0_DPn  
ADC0_DMn  
ADC0_SEn  
VREFH  
DADP3–DADP0  
Differential Analog Channel Inputs  
I
I
I
I
DADM3–DADM0 Differential Analog Channel Inputs  
ADn  
Single-Ended Analog Channel Inputs  
Voltage Reference Select High  
VREFSH  
Table continues on the next page...  
34  
Freescale Semiconductor, Inc.  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
Pinouts  
I/O  
Table 13. ADC0 signal descriptions (continued)  
Chip signal name  
Module signal  
name  
Description  
VREFL  
VDDA  
VREFSL  
VDDA  
Voltage Reference Select Low  
Analog Power Supply  
Analog Ground  
I
I
I
I
VSSA  
VSSA  
EXTRG_IN  
ADHWT  
Hardware trigger  
This table presents the signal descriptions of the CMP0 module.  
Table 14. CMP0 signal descriptions  
Chip signal name  
Module signal  
name  
Description  
I/O  
CMP0_IN[5:0]  
CMP0_OUT  
IN[5:0]  
CMPO  
Analog voltage inputs  
Comparator output  
I
O
Table 15. VREF signal descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
VREF_OUT  
VREF_OUT  
Internally-generated voltage reference output  
O
4.3.5 Timer Modules  
Table 16. TPM0 signal descriptions  
Chip signal name  
Module signal  
name  
Description  
I/O  
TPM_CLKIN[1:0]  
TPM_EXTCLK  
External clock. TPM external clock can be selected to increment  
the TPM counter on every rising edge synchronized to the  
counter clock.  
I
TPM0_CH[5:0]  
TPM_CHn  
TPM channel (n = 5 to 0). A TPM channel pin is configured as  
output when configured in an output compare or PWM mode and  
the TPM counter is enabled, otherwise the TPM channel pin is an  
input.  
I/O  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
35  
Freescale Semiconductor, Inc.  
Pinouts  
Table 17. TPM1 signal descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
TPM_CLKIN[1:0]  
TPM1_CH[1:0]  
TPM_EXTCLK  
External clock. TPM external clock can be selected to increment  
the TPM counter on every rising edge synchronized to the counter  
clock.  
I
TPM_CHn  
TPM channel (n = 1 to 0). A TPM channel pin is configured as  
output when configured in an output compare or PWM mode and  
the TPM counter is enabled, otherwise the TPM channel pin is an  
input.  
I/O  
Table 18. TPM2 signal descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
TPM_CLKIN[1:0]  
TPM_EXTCLK  
External clock. TPM external clock can be selected to increment  
the TPM counter on every rising edge synchronized to the counter  
clock.  
I
TPM2_CH[1:0]  
TPM_CHn  
TPM channel (n = 1 to 0). A TPM channel pin is configured as  
output when configured in an output compare or PWM mode and  
the TPM counter is enabled, otherwise the TPM channel pin is an  
input.  
I/O  
Table 19. LPTMR0 signal descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
LPTMR0_ALT[3:1]  
LPTMR0_ALTn  
Pulse Counter Input pin  
I
Table 20. RTC signal descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
RTC_CLKOUT1  
RTC_CLKOUT  
1 Hz square-wave output or OSCERCLK  
O
1. RTC_CLKOUT can also be driven with OSCERCLK via SIM control bit SIM_SOPT[RCTCLKOUTSEL]  
4.3.6 Communication interfaces  
Table 21. SPI0 signal descriptions  
Chip signal name  
Module signal  
name  
Description  
I/O  
SPI0_MISO  
MISO  
Master Data In, Slave Data Out  
I/O  
Table continues on the next page...  
36  
Freescale Semiconductor, Inc.  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
Pinouts  
I/O  
Table 21. SPI0 signal descriptions (continued)  
Chip signal name  
Module signal  
name  
Description  
SPI0_MOSI  
SPI0_SCLK  
SPI0_PCS0  
MOSI  
SPSCK  
SS  
Master Data Out, Slave Data In  
SPI Serial Clock  
I/O  
I/O  
I/O  
Slave Select  
Table 22. SPI1 signal descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
MISO  
MOSI  
SPSCK  
SS  
SPI1_MISO  
SPI1_MOSI  
SPI1_SCLK  
SPI1_PCS0  
Master Data In, Slave Data Out  
Master Data Out, Slave Data In  
SPI Serial Clock  
I/O  
I/O  
I/O  
I/O  
Slave Select  
Table 23. I2C0 signal descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
I2C0_SCL  
I2C0_SDA  
SCL  
Bidirectional serial clock line of the I2C system.  
Bidirectional serial data line of the I2C system.  
I/O  
I/O  
SDA  
Table 24. I2C1 signal descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
I2C1_SCL  
I2C1_SDA  
SCL  
Bidirectional serial clock line of the I2C system.  
Bidirectional serial data line of the I2C system.  
I/O  
I/O  
SDA  
Table 25. LPUART0 signal descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
LPUART0_TX  
LPUART0_RX  
TxD  
Transmit data  
Receive data  
I/O  
I
RxD  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
37  
Freescale Semiconductor, Inc.  
Pinouts  
Table 26. LPUART1 signal descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
LPUART1_TX  
LPUART1_RX  
TxD  
Transmit data  
Receive data  
I/O  
I
RxD  
Table 27. UART2 signal descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
UART2_TX  
UART2_RX  
TxD  
Transmit data  
Receive data  
O
I
RxD  
Table 28. FlexIO signal descriptions  
Chip signal name  
Module signal name  
Description  
I/O  
FXIO0_Dx  
FXIO_Dn (n=0...7)  
Bidirectional FlexIO Shifter  
and Timer pin inputs/outputs  
I/O  
4.3.7 Human-machine interfaces (HMI)  
Table 29. GPIO Signal Descriptions  
Chip signal name  
Module signal  
name  
Description  
I/O  
PTA[31:0]  
PTB[31:0]  
PTC[11:0]  
PTD[7:0]  
PORTA31–PORTA0 General-purpose input/output  
PORTB31–PORTB0 General-purpose input/output  
PORTC11–PORTC0 General-purpose input/output  
PORTD7–PORTD0 General-purpose input/output  
PORTE31–PORTE0 General-purpose input/output  
I/O  
I/O  
I/O  
I/O  
I/O  
PTE[31:0]  
4.4 KL17 Family Pinouts  
The figure below shows the 32 QFN pinouts.  
38  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
Freescale Semiconductor, Inc.  
Pinouts  
PTC3/LLWU_P7  
PTE0  
PTE1  
24  
23  
22  
21  
20  
19  
1
2
3
4
5
6
7
8
PTC2  
PTC1/LLWU_P6/RTC_CLKIN  
PTE16  
PTB1  
PTE17  
PTB0/LLWU_P5  
PTA20  
PTE18  
PTE19  
VDDA VREFH  
VREFL VSSA  
PTA19  
18  
17  
PTA18  
Figure 6. 32 QFN Pinout diagram (transparent top view)  
The figure below shows the 48 QFN pinouts.  
NOTE  
The 48 QFN package for this product is not yet available.  
However, it is included in Package Your Way program for  
Kinetis MCUs. Visit freescale.com/KPYW for more details.  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
39  
Freescale Semiconductor, Inc.  
Pinouts  
PTC3/LLWU_P7  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
VDD  
VSS  
1
2
PTC2  
PTC1/LLWU_P6/RTC_CLKIN  
PTE16  
3
PTC0  
PTE17  
4
PTB17  
PTB16  
PTB3  
PTE18  
5
PTE19  
6
PTE20  
7
PTE21  
PTB2  
8
VDDA  
PTB1  
9
VREFH VREFO  
VREFL  
PTB0/LLWU_P5  
PTA20  
10  
11  
12  
VSSA  
PTA19  
Figure 7. 48 QFN Pinout diagram (transparent top view)  
The figure below shows the 64 MAPBGA pinouts.  
NOTE  
The 64 MAPBGA package for this product is not yet  
available. However, it is included in Package Your Way  
program for Kinetis MCUs. Visit freescale.com/KPYW for  
more details.  
40  
Freescale Semiconductor, Inc.  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
Pinouts  
1
2
3
4
5
6
7
8
PTC6/  
LLWU_P10 LLWU_P9  
PTC5/  
PTD4/  
LLWU_P14  
A
B
C
D
E
F
PTE0  
PTD7  
PTD1  
PTC11  
PTC8  
A
B
C
D
E
F
PTD6/  
LLWU_P15  
PTC4/  
LLWU_P8  
PTE1  
PTD5  
PTD3  
PTD0  
PTA0  
VSS  
PTC10  
VSS  
PTC9  
NC  
PTC7  
PTC2  
PTB19  
PTB17  
PTB2  
PTC1/  
LLWU_P6/  
RTC_CLKIN  
PTC3/  
LLWU_P7  
PTD2  
PTE19  
PTE18  
PTE23  
PTE22  
PTE17  
PTE16  
PTE21  
PTE20  
PTA1  
VDD  
PTA3  
PTA2  
PTA5  
PTA4  
PTB18  
PTB16  
PTB1  
PTC0  
PTB3  
PTB0/  
LLWU_P5  
VSSA  
VREFL  
VDDA  
PTA20  
PTA19  
VREFH  
VREFO  
G
H
PTA13  
VDD  
G
H
PTE29  
1
PTE30  
2
PTE31  
3
PTE24  
4
PTE25  
5
PTA12  
6
VSS  
7
PTA18  
8
Figure 8. 64 MAPBGA Pinout diagram (transparent top view)  
The figure below shows the 64 LQFP pinouts:  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
41  
Freescale Semiconductor, Inc.  
Pinouts  
PTE0  
PTE1  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
VDD  
2
VSS  
VDD  
3
PTC3/LLWU_P7  
VSS  
4
PTC2  
PTE16  
PTE17  
PTE18  
PTE19  
PTE20  
PTE21  
PTE22  
PTE23  
VDDA  
5
PTC1/LLWU_P6/RTC_CLKIN  
6
PTC0  
7
PTB19  
PTB18  
PTB17  
PTB16  
PTB3  
8
9
10  
11  
12  
13  
14  
15  
16  
PTB2  
PTB1  
VREFH VREFO  
VREFL  
PTB0/LLWU_P5  
PTA20  
PTA19  
VSSA  
Figure 9. 64 LQFP Pinout diagram (top view)  
The figure below shows the 36 XFBGA pinouts:  
42  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
Freescale Semiconductor, Inc.  
Pinouts  
1
2
3
4
5
6
PTD4/  
LLWU_P14  
PTC4/  
LLWU_P8  
PTC5/  
LLWU_P9  
A
B
C
D
E
F
PTE0  
PTD7  
PTC7  
A
B
C
D
E
F
PTD6/  
LLWU_P15  
PTC6/  
PTC3/  
LLWU_P10 LLWU_P7  
PTE1  
PTE17  
PTE18  
PTE22  
PTD5  
VDD  
PTC2  
PTB1  
PTC1/  
LLWU_P6/  
RTC_CLKIN  
PTE16  
PTE19  
PTE21  
VSS  
PTB0/  
LLWU_P5  
VDDA/  
VREFH  
VREFL/  
VSSA  
PTA20  
PTA3  
PTE20  
PTA2  
PTA19  
VREF0/  
PTE30  
PTE23  
1
PTA0  
3
PTA1  
4
PTA4  
5
PTA18  
6
2
Figure 10. 36 XFBGA Pinout diagram (transparent top view)  
4.5 Package dimensions  
The following figures show the dimensions of the package options for the devices  
supported by this document.  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
43  
Freescale Semiconductor, Inc.  
Pinouts  
Figure 11. 64-pin LQFP package dimensions 1  
44  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
Freescale Semiconductor, Inc.  
Pinouts  
Figure 12. 64-pin LQFP package dimensions 2  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
45  
Freescale Semiconductor, Inc.  
Pinouts  
Figure 13. 64-pin MAPBGA package dimension  
46  
Freescale Semiconductor, Inc.  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
Pinouts  
Figure 14. 48-pin QFN package dimension 1  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
47  
Freescale Semiconductor, Inc.  
Pinouts  
Figure 15. 48-pin QFN package dimension 2  
48  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
Freescale Semiconductor, Inc.  
Pinouts  
Figure 16. 36-pin XFBGA package dimension  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
49  
Freescale Semiconductor, Inc.  
Pinouts  
Figure 17. 32-pin QFN package dimension 1  
50  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
Freescale Semiconductor, Inc.  
Electrical characteristics  
Figure 18. 32-pin QFN package dimension 2  
5 Electrical characteristics  
5.1 Ratings  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
51  
Freescale Semiconductor, Inc.  
Electrical characteristics  
5.1.1 Thermal handling ratings  
Table 30. Thermal handling ratings  
Symbol  
TSTG  
Description  
Min.  
–55  
Max.  
150  
Unit  
°C  
Notes  
Storage temperature  
Solder temperature, lead-free  
1
2
TSDR  
260  
°C  
1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.  
2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
5.1.2 Moisture handling ratings  
Table 31. Moisture handling ratings  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
MSL  
Moisture sensitivity level  
3
1
1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
5.1.3 ESD handling ratings  
Table 32. ESD handling ratings  
Symbol  
VHBM  
Description  
Min.  
–2000  
–500  
Max.  
+2000  
+500  
Unit  
V
Notes  
Electrostatic discharge voltage, human body model  
1
2
VCDM  
Electrostatic discharge voltage, charged-device  
model  
V
ILAT  
Latch-up current at ambient temperature of 105 °C  
–100  
+100  
mA  
3
1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human  
Body Model (HBM).  
2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for  
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.  
3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.  
5.1.4 Voltage and current absolute operating ratings  
Table 33. Voltage and current absolute operating ratings  
Symbol  
VDD  
Description  
Min.  
–0.3  
Max.  
3.8  
Unit  
V
Digital supply voltage  
Digital supply current  
IDD  
120  
mA  
Table continues on the next page...  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
52  
Freescale Semiconductor, Inc.  
Electrical characteristics  
Table 33. Voltage and current absolute operating ratings (continued)  
Symbol  
VIO  
Description  
Min.  
–0.3  
–25  
Max.  
VDD + 0.3  
25  
Unit  
V
IO pin input voltage  
ID  
Instantaneous maximum current single pin limit (applies to  
all port pins)  
mA  
VDDA  
Analog supply voltage  
VDD – 0.3  
VDD + 0.3  
V
5.2 General  
5.2.1 AC electrical characteristics  
Unless otherwise specified, propagation delays are measured from the 50% to the 50%  
point, and rise and fall times are measured at the 20% and 80% points, as shown in the  
following figure.  
High  
Low  
VIH  
80%  
50%  
20%  
Input Signal  
Midpoint1  
VIL  
Fall Time  
Rise Time  
The midpoint is VIL + (VIH - VIL) / 2  
Figure 19. Input signal measurement reference  
All digital I/O switching characteristics, unless otherwise specified, assume that the  
output pins have the following characteristics.  
• CL=30 pF loads  
• Slew rate disabled  
• Normal drive strength  
5.2.2 Nonswitching electrical specifications  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
53  
Freescale Semiconductor, Inc.  
Electrical characteristics  
5.2.2.1 Voltage and current operating requirements  
Table 34. Voltage and current operating requirements  
Symbol  
VDD  
Description  
Min.  
1.71  
1.71  
–0.1  
–0.1  
Max.  
3.6  
Unit  
V
Notes  
Supply voltage  
VDDA  
Analog supply voltage  
3.6  
V
VDD – VDDA VDD-to-VDDA differential voltage  
VSS – VSSA VSS-to-VSSA differential voltage  
0.1  
V
0.1  
V
VIH  
Input high voltage  
• 2.7 V ≤ VDD ≤ 3.6 V  
• 1.7 V ≤ VDD ≤ 2.7 V  
0.7 × VDD  
V
V
0.75 × VDD  
VIL  
Input low voltage  
• 2.7 V ≤ VDD ≤ 3.6 V  
• 1.7 V ≤ VDD ≤ 2.7 V  
0.35 × VDD  
0.3 × VDD  
V
V
VHYS  
IICIO  
Input hysteresis  
0.06 × VDD  
-3  
V
IO pin negative DC injection current — single pin  
• VIN < VSS-0.3V  
1
mA  
IICcont  
Contiguous pin DC injection current —regional limit,  
includes sum of negative injection currents of 16  
contiguous pins  
-25  
mA  
• Negative current injection  
VODPU  
VRAM  
Open drain pullup voltage level  
VDD  
1.2  
VDD  
V
V
2
VDD voltage required to retain RAM  
1. All I/O pins are internally clamped to VSS through a ESD protection diode. There is no diode connection to VDD. If VIN  
greater than VIO_MIN (= VSS-0.3 V) is observed, then there is no need to provide current limiting resistors at the pads. If  
this limit cannot be observed then a current limiting resistor is required. The negative DC injection current limiting  
resistor is calculated as R = (VIO_MIN - VIN)/|IICIO|.  
2. Open drain outputs must be pulled to VDD  
.
5.2.2.2 LVD and POR operating requirements  
Table 35. VDD supply LVD and POR operating requirements  
Symbol Description  
Min.  
0.8  
Typ.  
1.1  
Max.  
1.5  
Unit  
V
Notes  
VPOR  
Falling VDD POR detect voltage  
VLVDH  
Falling low-voltage detect threshold — high  
range (LVDV = 01)  
2.48  
2.56  
2.64  
V
Low-voltage warning thresholds — high range  
• Level 1 falling (LVWV = 00)  
1
VLVW1H  
VLVW2H  
VLVW3H  
2.62  
2.72  
2.82  
2.70  
2.80  
2.90  
2.78  
2.88  
2.98  
V
V
V
• Level 2 falling (LVWV = 01)  
Table continues on the next page...  
54  
Freescale Semiconductor, Inc.  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
Electrical characteristics  
Table 35. VDD supply LVD and POR operating requirements (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
VLVW4H  
• Level 3 falling (LVWV = 10)  
2.92  
3.00  
3.08  
V
• Level 4 falling (LVWV = 11)  
VHYSH  
VLVDL  
Low-voltage inhibit reset/recover hysteresis —  
high range  
60  
mV  
V
1
Falling low-voltage detect threshold — low  
range (LVDV=00)  
1.54  
1.60  
1.66  
Low-voltage warning thresholds — low range  
• Level 1 falling (LVWV = 00)  
VLVW1L  
VLVW2L  
VLVW3L  
VLVW4L  
1.74  
1.84  
1.94  
2.04  
1.80  
1.90  
2.00  
2.10  
40  
1.86  
1.96  
2.06  
2.16  
V
V
• Level 2 falling (LVWV = 01)  
• Level 3 falling (LVWV = 10)  
V
• Level 4 falling (LVWV = 11)  
V
VHYSL  
Low-voltage inhibit reset/recover hysteresis —  
low range  
mV  
VBG  
tLPO  
Bandgap voltage reference  
0.97  
900  
1.00  
1.03  
V
Internal low power oscillator period — factory  
trimmed  
1000  
1100  
μs  
1. Rising thresholds are falling threshold + hysteresis voltage  
5.2.2.3 Voltage and current operating behaviors  
Table 36. Voltage and current operating behaviors  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
VOH  
Output high voltage — normal drive pad  
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = –5 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = –2.5 mA  
1
VDD – 0.5  
VDD – 0.5  
V
V
VOH  
Output high voltage — high drive pad  
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = –20 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = –10 mA  
1
VDD – 0.5  
VDD – 0.5  
V
V
IOHT  
VOL  
Output high current total for all ports  
Output low voltage — normal drive pad  
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 5 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 2.5 mA  
100  
mA  
1
1
0.5  
0.5  
V
V
VOL  
Output low voltage — high drive pad  
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 20 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 10 mA  
0.5  
0.5  
V
V
IOLT  
Output low current total for all ports  
100  
mA  
Table continues on the next page...  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
55  
Freescale Semiconductor, Inc.  
Electrical characteristics  
Table 36. Voltage and current operating behaviors (continued)  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
IIN  
Input leakage current (per pin) for full temperature  
range  
1
μA  
2
IIN  
IIN  
Input leakage current (per pin) at 25 °C  
0.025  
64  
μA  
μA  
2
2
Input leakage current (total all pins) for full  
temperature range  
IOZ  
Hi-Z (off-state) leakage current (per pin)  
Internal pullup resistors  
1
μA  
kΩ  
RPU  
20  
50  
3
1. PTB0, PTB1, PTC3, PTC4, PTD6, and PTD7 I/O have both high drive and normal drive capability selected by the  
associated PTx_PCRn[DSE] control bit. All other GPIOs are normal drive only.  
2. Measured at VDD = 3.6 V  
3. Measured at VDD supply voltage = VDD min and Vinput = VSS  
5.2.2.4 Power mode transition operating behaviors  
All specifications except tPOR and VLLSx RUN recovery times in the following table  
assume this clock configuration:  
• CPU and system clocks = 48 MHz  
• Bus and flash clock = 24 MHz  
• HIRC clock mode  
Table 37. Power mode transition operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
tPOR After a POR event, amount of time from the  
300  
μs  
point VDD reaches 1.8 V to execution of the first  
instruction across the operating temperature  
range of the chip.  
• VLLS0 RUN  
• VLLS1 RUN  
• VLLS3 RUN  
• LLS RUN  
152  
152  
93  
166  
166  
104  
8
μs  
μs  
μs  
μs  
μs  
μs  
7.5  
7.5  
7.5  
• VLPS RUN  
• STOP RUN  
8
8
56  
Freescale Semiconductor, Inc.  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
Electrical characteristics  
5.2.2.5 Power consumption operating behaviors  
The maximum values stated in the following table represent the characterized results  
equivalent to the mean plus three times the standard deviation (mean + 3 sigma).  
NOTE  
The while(1) test is executed with flash cache enabled.  
Table 38. Power consumption operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDDA  
Analog supply current  
See note  
mA  
1
2
IDD_RUNCO Running CoreMark in flash in compute  
operation mode—48M HIRC mode, 48 MHz  
core / 24 MHz flash, VDD = 3.0 V  
• at 25 °C  
4.79  
4.94  
4.98  
5.14  
mA  
mA  
mA  
• at 105 °C  
IDD_RUNCO Running While(1) loop in flash in compute  
operation mode—48M HIRC mode, 48 MHz  
core / 24 MHz flash, VDD = 3.0 V  
• at 25 °C  
2.73  
2.9  
2.87  
3.05  
• at 105 °C  
IDD_RUN Run mode current—48M HIRC mode, running  
CoreMark in Flash all peripheral clock disable  
48 MHz core/24 MHz flash, VDD = 3.0 V  
• at 25 °C  
2
2
5.45  
5.6  
5.67  
5.82  
• at 105 °C  
IDD_RUN Run mode current—48M HIRC mode, running  
CoreMark in flash all peripheral clock disable,  
24 MHz core/12 MHz flash, VDD = 3.0 V  
• at 25 °C  
3.41  
3.56  
3.55  
3.70  
mA  
mA  
• at 105 °C  
IDD_RUN Run mode current—48M HIRC mode, running  
CoreMark in Flash all peripheral clock disable  
12 MHz core/6 MHz flash, VDD = 3.0 V  
• at 25 °C  
2
2
2.37  
2.52  
2.49  
2.65  
mA  
mA  
• at 105 °C  
IDD_RUN Run mode current—48M HIRC mode, running  
CoreMark in Flash all peripheral clock enable  
48 MHz core/24 MHz flash, VDD = 3.0 V  
• at 25 °C  
7.05  
7.2  
7.33  
7.49  
• at 105 °C  
Table continues on the next page...  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
57  
Freescale Semiconductor, Inc.  
Electrical characteristics  
Table 38. Power consumption operating behaviors (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDD_RUN Run mode current—48M HIRC mode, running  
While(1) loop in flash all peripheral clock  
disable, 48 MHz core/24 MHz flash, VDD = 3.0  
3.39  
3.57  
3.53  
3.71  
mA  
V
• at 25 °C  
• at 105 °C  
IDD_RUN Run mode current—48M HIRC mode, running  
While(1) loop in Flash all peripheral clock  
disable, 24 MHz core/12 MHz flash, VDD = 3.0  
2.36  
2.53  
2.48  
2.66  
mA  
V
• at 25 °C  
• at 105 °C  
IDD_RUN Run mode current—48M HIRC mode, Running  
While(1) loop in Flash all peripheral clock  
disable, 12 MHz core/6 MHz flash, VDD = 3.0 V  
• at 25 °C  
1.84  
2
1.93  
2.10  
mA  
mA  
• at 105 °C  
IDD_RUN Run mode current—48M HIRC mode, Running  
While(1) loop in Flash all peripheral clock  
enable, 48 MHz core/24 MHz flash, VDD = 3.0  
V
4.98  
5.16  
5.18  
5.37  
• at 25 °C  
• at 105 °C  
IDD_VLPRCO Very-low-power run core mark in flash in  
compute operation mode— 8 MHz LIRC mode,  
4 MHz core/1 MHz flash, VDD = 3.0 V  
• at 25 °C  
710  
251  
115  
91  
752.6  
376.5  
143.75  
136.5  
μA  
μA  
μA  
μA  
IDD_VLPRCO Very-low-power-run While(1) loop in SRAM in  
compute operation mode— 8 MHz LIRC mode,  
4 MHz core / 1 MHz flash, VDD = 3.0 V  
• at 25 °C  
IDD_VLPRCO Very-low-power run While(1) loop in SRAM in  
compute operation mode:—2 MHz LIRC mode,  
2 MHz core / 0.5 MHz flash, VDD = 3.0 V  
• at 25 °C  
IDD_VLPR Very-low-power run mode current— 2 MHz  
LIRC mode, While(1) loop in flash all peripheral  
clock disable, 2 MHz core / 0.5 MHz flash, VDD  
= 3.0 V  
• at 25 °C  
IDD_VLPR Very-low-power run mode current— 2 MHz  
LIRC mode, While(1) loop in flash all peripheral  
clock disable, 125 kHz core / 31.25 kHz flash,  
VDD = 3.0 V  
34  
51  
μA  
• at 25 °C  
Table continues on the next page...  
58  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
Freescale Semiconductor, Inc.  
Electrical characteristics  
Table 38. Power consumption operating behaviors (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDD_VLPR Very-low-power run mode current— 8 MHz  
LIRC mode, While(1) loop in flash all peripheral  
clock disable, 4 MHz core / 1 MHz flash, VDD  
=
212  
318  
μA  
3.0 V  
• at 25 °C  
IDD_VLPR Very-low-power run mode current—8 MHz  
LIRC mode, While(1) loop in flash all peripheral  
clock enable, 4 MHz core / 1 MHz flash, VDD  
=
302  
392.6  
2.12  
μA  
3.0 V  
• at 25 °C  
IDD_WAIT Wait mode current—core disabled, 48 MHz  
system/24 MHz bus, flash disabled (flash doze  
enabled), all peripheral clocks disabled,  
MCG_Lite under HIRC mode, VDD = 3.0 V  
• at 25 °C  
1.81  
mA  
IDD_WAIT Wait mode current—core disabled, 24 MHz  
system/12 MHz bus, flash disabled (flash doze  
enabled), all peripheral clocks disabled,  
MCG_Lite under HIRC mode, VDD = 3.0 V  
• at 25 °C  
1.27  
156  
1.46  
mA  
μA  
IDD_VLPW Very-low-power wait mode current, core  
disabled, 4 MHz system/ 1 MHz bus and flash,  
all peripheral clocks disabled, VDD = 3.0 V  
• at 25 °C  
193.2  
IDD_VLPW Very-low-power wait mode current, core  
63  
32  
100.8  
48  
μA  
μA  
disabled, 2 MHz system/ 0.5 MHz bus and  
flash, all peripheral clocks disabled, VDD = 3.0  
V
• at 25 °C  
IDD_VLPW Very-low-power wait mode current, core  
disabled, 125 kHz system/ 31.25 kHz bus and  
flash, all peripheral clocks disabled, VDD = 3.0  
V
• at 25 °C  
IDD_PSTOP2 Partial Stop 2, core and system clock disabled,  
12 MHz bus and flash, VDD = 3.0 V  
• at 25 °C  
1.68  
1.05  
2.05  
1.26  
mA  
mA  
IDD_PSTOP2 Partial Stop 2, core and system clock disabled,  
flash doze enabled, 12 MHz bus, VDD = 3.0 V  
• at 25 °C  
IDD_STOP Stop mode current at 3.0 V  
• at 25 °C and below  
158.1  
171  
175.81  
180.24  
228.64  
300.06  
• at 50 °C  
• at 85 °C  
• at 105 °C  
203.8  
251.7  
μA  
Table continues on the next page...  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
59  
Freescale Semiconductor, Inc.  
Electrical characteristics  
Table 38. Power consumption operating behaviors (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDD_VLPS Very-low-power stop mode current at 3.0 V  
• at 25 °C and below  
2.34  
5.04  
3.80  
8.03  
• at 50 °C  
• at 85 °C  
• at 105 °C  
20.48  
42.34  
31.97  
65.78  
μA  
IDD_VLPS Very-low-power stop mode current at 1.8 V  
• at 25 °C and below  
2.33  
4.95  
3.80  
7.94  
• at 50 °C  
• at 85 °C  
• at 105 °C  
20.18  
41.93  
31.57  
65.17  
μA  
μA  
IDD_LLS Low-leakage stop mode current, all peripheral  
disable, at 3.0 V  
1.71  
2.59  
4.46  
7.55  
17.03  
1.96  
3.30  
• at 25 °C and below  
• at 50 °C  
• at 70 °C  
• at 85 °C  
• at 105 °C  
7.06  
10.15  
22.67  
IDD_LLS Low-leakage stop mode current with RTC  
current, at 3.0 V  
3
μA  
μA  
μA  
2.27  
3.1  
2.52  
3.81  
• at 25 °C and below  
• at 50 °C  
• at 70 °C  
• at 85 °C  
• at 105 °C  
4.99  
8.1  
7.59  
10.70  
22.96  
17.32  
IDD_LLS Low-leakage stop mode current with RTC  
current, at 1.8 V  
3
2.1  
2.89  
4.65  
7.61  
16.38  
2.35  
3.60  
• at 25 °C and below  
• at 50 °C  
• at 70 °C  
• at 85 °C  
• at 105 °C  
7.25  
10.21  
22.02  
IDD_VLLS3 Very-low-leakage stop mode 3 current, all  
peripheral disable, at 3.0 V  
1.43  
2.06  
3.51  
5.91  
13.36  
1.58  
2.52  
5.20  
7.60  
17.08  
• at 25 °C and below  
• at 50 °C  
• at 70 °C  
Table continues on the next page...  
60  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
Freescale Semiconductor, Inc.  
Electrical characteristics  
Table 38. Power consumption operating behaviors (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
• at 85 °C  
• at 105 °C  
IDD_VLLS3 Very-low-leakage stop mode 3 current with  
RTC current, at 3.0 V  
3
μA  
1.83  
2.47  
3.96  
6.44  
13.84  
1.98  
2.93  
5.65  
8.13  
17.56  
• at 25 °C and below  
• at 50 °C  
• at 70 °C  
• at 85 °C  
• at 105 °C  
IDD_VLLS3 Very-low-leakage stop mode 3 current with  
RTC current, at 1.8 V  
3
μA  
1.68  
2.27  
3.66  
5.97  
12.92  
1.83  
2.73  
5.35  
7.66  
16.64  
• at 25 °C and below  
• at 50 °C  
• at 70 °C  
• at 85 °C  
• at 105 °C  
IDD_VLLS1 Very-low-leakage stop mode 1 current all  
peripheral disabled at 3.0 V  
0.84  
1.19  
2.03  
3.54  
8.53  
1.06  
1.33  
2.62  
4.13  
9.98  
• at 25 °C and below  
• at 50°C  
• at 70°C  
• at 85°C  
• at 105 °C  
μA  
μA  
μA  
IDD_VLLS1 Very-low-leakage stop mode 1 current RTC  
enabled at 3.0 V  
3
1.26  
1.61  
2.5  
1.48  
1.75  
3.09  
4.66  
10.45  
• at 25 °C and below  
• at 50°C  
• at 70°C  
• at 85°C  
• at 105 °C  
4.07  
9
IDD_VLLS1 Very-low-leakage stop mode 1 current RTC  
enabled at 1.8 V  
3
1.08  
1.42  
2.21  
3.59  
8.02  
1.30  
1.56  
2.80  
4.18  
9.47  
• at 25 °C and below  
• at 50°C  
• at 70°C  
• at 85°C  
• at 105 °C  
Table continues on the next page...  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
61  
Freescale Semiconductor, Inc.  
Electrical characteristics  
Table 38. Power consumption operating behaviors (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDD_VLLS0 Very-low-leakage stop mode 0 current all  
peripheral disabled  
262  
593  
360  
725  
(SMC_STOPCTRL[PORPO] = 0) at 3.0 V  
• at 25 °C and below  
1430  
2930  
7930  
2014  
3514  
9895  
nA  
• at 50 °C  
• at 70 °C  
• at 85 °C  
• at 105 °C  
IDD_VLLS0 Very-low-leakage stop mode 0 current all  
peripheral disabled  
4
87  
185  
549  
(SMC_STOPCTRL[PORPO] = 1) at 3 V  
• at 25 °C and below  
417  
1230  
2720  
7780  
1230  
3304  
9745  
nA  
• at 50 °C  
• at 70 °C  
• at 85 °C  
• at 105 °C  
1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See  
each module's specification for its supply current.  
2. MCG_Lite configured for HIRC mode. CoreMark benchmark compiled using IAR 7.10 with optimization level high,  
optimized for balanced.  
3. RTC uses external 32 kHz crystal as clock source, and the current includes ERCLK32K power consumption.  
4. No brownout  
Table 39. Low power mode peripheral adders — typical value  
Symbol  
Description  
Temperature (°C)  
Unit  
-40  
25  
50  
70  
85  
105  
IIRC8MHz  
8 MHz internal reference clock (IRC)  
adder. Measured by entering STOP or  
VLPS mode with 8 MHz IRC enabled,  
MCG_SC[FCRDIV]=000b,  
77  
77  
77  
77  
77  
77  
µA  
MCG_MC[LIRC_DIV2]=000b.  
IIRC2MHz  
2 MHz internal reference clock (IRC)  
adder. Measured by entering STOP  
mode with the 2 MHz IRC enabled,  
MCG_SC[FCRDIV]=000b,  
25  
25  
25  
25  
25  
25  
µA  
µA  
MCG_MC[LIRC_DIV2]=000b.  
IEREFSTEN4MHz  
[C: ] External 4 MHz crystal clock adder. 206  
Measured by entering STOP or VLPS  
mode with the crystal enabled.  
224  
230  
238  
245  
253  
IEREFSTEN32KHz  
External 32 kHz crystal clock adder by  
means of the OSC0_CR[EREFSTEN  
and EREFSTEN] bits. Measured by  
440  
490  
540  
560  
570  
580  
Table continues on the next page...  
62  
Freescale Semiconductor, Inc.  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
Electrical characteristics  
Table 39. Low power mode peripheral adders — typical value (continued)  
Symbol  
Description  
Temperature (°C)  
Unit  
-40  
25  
50  
70  
85  
105  
entering all modes with the crystal  
440  
490  
540  
560  
570  
580  
enabled.  
• VLLS1  
• VLLS3  
• LLS  
490  
510  
510  
490  
560  
560  
540  
560  
560  
560  
560  
560  
570  
610  
610  
680  
680  
680  
nA  
• VLPS  
• STOP  
ILPTMR  
LPTMR peripheral adder measured by  
placing the device in VLLS1 mode with  
LPTMR enabled using LPO.  
30  
30  
30  
85  
100  
200  
nA  
µA  
ICMP  
CMP peripheral adder measured by  
placing the device in VLLS1 mode with  
CMP enabled using the 6-bit DAC and a  
single external input for compare.  
16  
16  
16  
16  
16  
16  
Includes 6-bit DAC power consumption.  
IRTC  
RTC peripheral adder measured by  
placing the device in VLLS1 mode with  
external 32 kHz crystal enabled by  
means of the RTC_CR[OSCE] bit and  
the RTC ALARM set for 1 minute.  
Includes ERCLK32K (32 kHz external  
crystal) power consumption.  
430  
500  
500  
530  
530  
760  
nA  
IUART  
UART peripheral adder measured by  
placing the device in STOP or VLPS  
mode with selected clock source waiting  
for RX data at 115200 baud rate.  
Includes selected clock source power  
consumption.  
96  
31  
96  
31  
96  
31  
96  
31  
96  
31  
96  
31  
µA  
• IRC8M (8 MHz internal reference  
clock)  
• IRC2M (2 MHz internal reference  
clock)  
ITPM  
TPM peripheral adder measured by  
placing the device in STOP or VLPS  
mode with selected clock source  
configured for output compare  
generating 100 Hz clock signal. No load  
is placed on the I/O generating the  
clock signal. Includes selected clock  
source and I/O switching currents.  
• IRC8M (8 MHz internal reference  
clock)  
µA  
• IRC2M (2 MHz internal reference  
clock)  
130  
130  
130  
130  
130  
130  
Table continues on the next page...  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
63  
Freescale Semiconductor, Inc.  
Electrical characteristics  
Table 39. Low power mode peripheral adders — typical value (continued)  
Symbol  
Description  
Temperature (°C)  
Unit  
-40  
25  
50  
70  
85  
105  
40  
40  
40  
40  
40  
40  
IBG  
Bandgap adder when BGEN bit is set  
and device is placed in VLPx or VLLSx  
mode.  
45  
45  
45  
45  
45  
45  
µA  
µA  
IADC  
ADC peripheral adder combining the  
measured values at VDD and VDDA by  
placing the device in STOP or VLPS  
mode. ADC is configured for low power  
mode using the internal clock and  
continuous conversions.  
320  
320  
320  
320  
320  
320  
5.2.2.5.1 Diagram: Typical IDD_RUN operating behavior  
The following data was measured under these conditions:  
• MCG-Lite in HIRC for run mode, and LIRC for VLPR mode  
• No GPIOs toggled  
• Code execution from flash  
• For the ALLOFF curve, all peripheral clocks are disabled except FTFA  
64  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
Freescale Semiconductor, Inc.  
Electrical characteristics  
Figure 20. Run mode supply current vs. core frequency  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
65  
Freescale Semiconductor, Inc.  
Electrical characteristics  
66  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
Freescale Semiconductor, Inc.  
Electrical characteristics  
Figure 21. VLPR mode current vs. core frequency  
5.2.2.6 EMC performance  
Electromagnetic compatibility (EMC) performance is highly dependent on the  
environment in which the MCU resides. Board design and layout, circuit topology  
choices, location and characteristics of external components, and MCU software  
operation play a significant role in the EMC performance. The system designer can  
consult the following Freescale applications notes, available on freescale.com for  
advice and guidance specifically targeted at optimizing EMC performance.  
• AN2321: Designing for Board Level Electromagnetic Compatibility  
• AN1050: Designing for Electromagnetic Compatibility (EMC) with HCMOS  
Microcontrollers  
• AN1263: Designing for Electromagnetic Compatibility with Single-Chip  
Microcontrollers  
• AN2764: Improving the Transient Immunity Performance of Microcontroller-  
Based Applications  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
67  
Freescale Semiconductor, Inc.  
Electrical characteristics  
• AN1259: System Design and Layout Techniques for Noise Reduction in MCU-  
Based Systems  
• KL-QRUG (Kinetis L-series Quick Reference).  
5.2.2.7 Capacitance attributes  
Table 40. Capacitance attributes  
Symbol  
Description  
Min.  
Max.  
Unit  
CIN  
Input capacitance  
7
pF  
5.2.3 Switching specifications  
5.2.3.1 Device clock specifications  
Table 41. Device clock specifications  
Symbol  
Description  
Min.  
Max.  
Unit  
Normal run mode  
fSYS  
fBUS  
fFLASH  
fLPTMR  
System and core clock  
Bus clock  
48  
24  
24  
24  
MHz  
MHz  
MHz  
MHz  
Flash clock  
LPTMR clock  
VLPR and VLPS modes1  
fSYS  
fBUS  
System and core clock  
Bus clock  
4
1
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
fFLASH  
fLPTMR  
fERCLK  
Flash clock  
LPTMR clock2  
1
24  
16  
16  
16  
External reference clock  
fLPTMR_ERCLK LPTMR external reference clock  
fosc_hi_2  
Oscillator crystal or resonator frequency — high frequency  
mode (high range) (MCG_C2[RANGE]=1x)  
fTPM  
TPM asynchronous clock  
8
8
MHz  
MHz  
fUART0  
UART0 asynchronous clock  
1. The frequency limitations in VLPR and VLPS modes here override any frequency specification listed in the timing  
specification for any other module. These same frequency limits apply to VLPS, whether VLPS was entered from RUN  
or from VLPR.  
2. The LPTMR can be clocked at this speed in VLPR or VLPS only when the source is an external pin.  
68  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
Freescale Semiconductor, Inc.  
Electrical characteristics  
5.2.3.2 General switching specifications  
These general-purpose specifications apply to all signals configured for GPIO and  
UART signals.  
Table 42. General switching specifications  
Description  
Min.  
Max.  
Unit  
Notes  
GPIO pin interrupt pulse width (digital glitch filter disabled)  
— Synchronous path  
1.5  
Bus clock  
cycles  
1
External RESET and NMI pin interrupt pulse width —  
Asynchronous path  
100  
ns  
2
GPIO pin interrupt pulse width — Asynchronous path  
Port rise and fall time  
16  
ns  
ns  
2
3
36  
1. The synchronous and asynchronous timing must be met.  
2. This is the shortest pulse that is guaranteed to be recognized.  
3. 75 pF load  
5.2.4 Thermal specifications  
5.2.4.1 Thermal operating requirements  
Table 43. Thermal operating requirements  
Symbol  
TJ  
Description  
Min.  
–40  
–40  
Max.  
125  
Unit  
°C  
Notes  
Die junction temperature  
Ambient temperature  
TA  
105  
°C  
1
1. Maximum TA can be exceeded only if the user ensures that TJ does not exceed the maximum. The simplest method to  
determine TJ is: TJ = TA + RθJA × chip power dissipation.  
5.2.4.2 Thermal attributes  
NOTE  
The 48 QFN and 64 MAPBGA packages for this product are  
not yet available. However, it is included in Package Your  
Way program for Kinetis MCUs. Visit freescale.com/  
KPYW for more details.  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
69  
Freescale Semiconductor, Inc.  
Electrical characteristics  
Table 44. Thermal attributes  
Board type  
Single-layer (1S)  
Four-layer (2s2p)  
Single-layer (1S)  
Four-layer (2s2p)  
Symbol  
RθJA  
RθJA  
Description  
32 QFN  
101  
33  
36  
XFBGA  
64 LQFP  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Notes  
1, 2, 3  
1, 2, 3,4  
1, 4, 5  
1, 4, 5  
6
Thermal resistance, junction to  
ambient (natural convection)  
81.5  
54.7  
71.3  
50.0  
58.0  
45.3  
1.2  
71  
53  
60  
47  
35  
21  
5
Thermal resistance, junction to  
ambient (natural convection)  
RθJMA Thermal resistance, junction to  
ambient (200 ft./min. air speed)  
84  
RθJMA Thermal resistance, junction to  
ambient (200 ft./min. air speed)  
28  
RθJB  
RθJC  
ΨJT  
Thermal resistance, junction to  
board  
13  
Thermal resistance, junction to  
case  
1.7  
3
7
Thermal characterization  
parameter, junction to package  
top outside center (natural  
convection)  
8
ΨJB  
Thermal characterization  
-
44.5  
-
°C/W  
9
parameter, junction to package  
bottom (natural convection)  
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site  
(board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board  
thermal resistance.  
2. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.  
3. Per JEDEC JESD51-2 with natural convection for horizontally oriented board. Board meets JESD51-9 specification for  
1s or 2s2p board, respectively.  
4. Per JEDEC JESD51-6 with the board horizontal.  
5. Per JEDEC JESD51-6 with forced convection for horizontally oriented board. Board meets JESD51-9 specification for 1s  
or 2s2p board, respectively.  
6. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured  
on the top surface of the board near the package.  
7. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883  
Method 1012.1).  
8. Thermal characterization parameter indicating the temperature difference between package top and the junction  
temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is  
written as Psi-JT.  
9. Thermal characterization parameter indicating the temperature difference between package bottom center and the  
junction temperature per JEDEC JESD51-12. When Greek letters are not available, the thermal characterization  
parameter is written as Psi-JB.  
5.3 Peripheral operating requirements and behaviors  
5.3.1 Core modules  
70  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
Freescale Semiconductor, Inc.  
Electrical characteristics  
5.3.1.1 SWD electricals  
Table 45. SWD full voltage range electricals  
Symbol  
Description  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
3.6  
V
J1  
SWD_CLK frequency of operation  
• Serial wire debug  
0
25  
MHz  
ns  
J2  
J3  
SWD_CLK cycle period  
SWD_CLK clock pulse width  
• Serial wire debug  
1/J1  
20  
ns  
J4  
J9  
SWD_CLK rise and fall times  
10  
0
3
ns  
ns  
ns  
ns  
ns  
SWD_DIO input data setup time to SWD_CLK rise  
SWD_DIO input data hold time after SWD_CLK rise  
SWD_CLK high to SWD_DIO data valid  
SWD_CLK high to SWD_DIO high-Z  
32  
J10  
J11  
J12  
5
J2  
J4  
J3  
J3  
SWD_CLK (input)  
J4  
Figure 22. Serial wire clock input timing  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
71  
Freescale Semiconductor, Inc.  
Electrical characteristics  
SWD_CLK  
J9  
J10  
Input data valid  
SWD_DIO  
SWD_DIO  
SWD_DIO  
SWD_DIO  
J11  
Output data valid  
J12  
J11  
Output data valid  
Figure 23. Serial wire data timing  
5.3.2 System modules  
There are no specifications necessary for the device's system modules.  
5.3.3 Clock modules  
5.3.3.1 MCG-Lite specifications  
Table 46. IRC48M specifications  
Symbol  
IDD48M  
firc48m  
Description  
Min.  
Typ.  
400  
48  
Max.  
500  
Unit  
μA  
Notes  
Supply current  
Internal reference frequency  
MHz  
Δfirc48m_ol_lv Open loop total deviation of IRC48M frequency at low  
voltage (VDD=1.71V-1.89V) over temperature  
0.5  
1.5  
%firc48m  
Δfirc48m_ol_hv Open loop total deviation of IRC48M frequency at  
1
2
high voltage (VDD=1.89V-3.6V) over temperature  
0.5  
35  
2
1.0  
150  
3
%firc48m  
ps  
Jcyc_irc48m Period Jitter (RMS)  
tirc48mst  
Startup time  
μs  
72  
Freescale Semiconductor, Inc.  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
Electrical characteristics  
1. The maximum value represents characterized results equivalent to the mean plus or minus three times the standard  
deviation (mean 3 sigma).  
2. IRC48M startup time is defined as the time between clock enablement and clock availability for system use. Enable  
the clock by one of the following settings:  
• MCG operating in an external clocking mode and MCG_C7[OSCSEL]=10, or  
• SIM_SOPT2[PLLFLLSEL]=11  
Table 47. IRC8M/2M specification  
Symbol  
IDD_2M  
Description  
Supply current in 2 MHz mode  
Supply current in 8 MHz mode  
Output frequency  
Min.  
Typ.  
14  
30  
2
Max.  
17  
Unit  
µA  
Notes  
IDD_8M  
35  
µA  
fIRC_2M  
fIRC_8M  
fIRC_T_2M  
fIRC_T_8M  
Tsu_2M  
MHz  
MHz  
%fIRC  
%fIRC  
µs  
Output frequency  
8
Output frequency range (trimmed)  
Output frequency range (trimmed)  
Startup time  
3
3
12.5  
12.5  
Tsu_8M  
Startup time  
µs  
5.3.3.2 Oscillator electrical specifications  
5.3.3.2.1 Oscillator DC electrical specifications  
Table 48. Oscillator DC electrical specifications  
Symbol Description  
VDD Supply voltage  
Min.  
Typ.  
Max.  
Unit  
Notes  
1.71  
3.6  
V
IDDOSC Supply current — low-power mode (HGO=0)  
1
• 32 kHz  
500  
200  
300  
950  
1.2  
nA  
μA  
μA  
μA  
mA  
mA  
• 4 MHz  
• 8 MHz (RANGE=01)  
• 16 MHz  
• 24 MHz  
• 32 MHz  
1.5  
IDDOSC Supply current — high gain mode (HGO=1)  
1
• 32 kHz  
25  
400  
500  
2.5  
3
μA  
μA  
• 4 MHz  
• 8 MHz (RANGE=01)  
• 16 MHz  
μA  
mA  
mA  
mA  
• 24 MHz  
• 32 MHz  
4
Table continues on the next page...  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
73  
Freescale Semiconductor, Inc.  
Electrical characteristics  
Table 48. Oscillator DC electrical specifications (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
2, 3  
Cx  
Cy  
RF  
EXTAL load capacitance  
XTAL load capacitance  
2, 3  
Feedback resistor — low-frequency, low-power  
mode (HGO=0)  
MΩ  
MΩ  
MΩ  
MΩ  
kΩ  
2, 4  
Feedback resistor — low-frequency, high-gain  
mode (HGO=1)  
10  
Feedback resistor — high-frequency, low-  
power mode (HGO=0)  
Feedback resistor — high-frequency, high-gain  
mode (HGO=1)  
1
RS  
Series resistor — low-frequency, low-power  
mode (HGO=0)  
Series resistor — low-frequency, high-gain  
mode (HGO=1)  
200  
kΩ  
Series resistor — high-frequency, low-power  
mode (HGO=0)  
kΩ  
Series resistor — high-frequency, high-gain  
mode (HGO=1)  
0
kΩ  
V
5
Vpp  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — low-frequency, low-power mode  
(HGO=0)  
0.6  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — low-frequency, high-gain mode  
(HGO=1)  
VDD  
0.6  
V
V
V
Peak-to-peak amplitude of oscillation (oscillator  
mode) — high-frequency, low-power mode  
(HGO=0)  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — high-frequency, high-gain mode  
(HGO=1)  
VDD  
1. VDD=3.3 V, Temperature =25 °C  
2. See crystal or resonator manufacturer's recommendation  
3. Cx,Cy can be provided by using the integrated capacitors when the low frequency oscillator (RANGE = 00) is used. For  
all other cases external capacitors must be used.  
4. When low power mode is selected, RF is integrated and must not be attached externally.  
5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to  
any other devices.  
74  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
Freescale Semiconductor, Inc.  
Electrical characteristics  
5.3.3.2.2 Oscillator frequency specifications  
Table 49. Oscillator frequency specifications  
Symbol Description  
fosc_lo Oscillator crystal or resonator frequency — low-  
frequency mode (MCG_C2[RANGE]=00)  
Min.  
Typ.  
Max.  
Unit  
Notes  
32  
40  
kHz  
fosc_hi_1 Oscillator crystal or resonator frequency —  
high-frequency mode (low range)  
3
8
8
MHz  
MHz  
(MCG_C2[RANGE]=01)  
fosc_hi_2 Oscillator crystal or resonator frequency —  
high frequency mode (high range)  
(MCG_C2[RANGE]=1x)  
32  
fec_extal Input clock frequency (external clock mode)  
tdc_extal Input clock duty cycle (external clock mode)  
40  
50  
48  
60  
MHz  
%
1, 2  
3, 4  
tcst  
Crystal startup time — 32 kHz low-frequency,  
low-power mode (HGO=0)  
750  
ms  
Crystal startup time — 32 kHz low-frequency,  
high-gain mode (HGO=1)  
250  
0.6  
ms  
ms  
Crystal startup time — 8 MHz high-frequency  
(MCG_C2[RANGE]=01), low-power mode  
(HGO=0)  
Crystal startup time — 8 MHz high-frequency  
(MCG_C2[RANGE]=01), high-gain mode  
(HGO=1)  
1
ms  
1. Other frequency limits may apply when external clock is being used as a reference for the FLL  
2. When transitioning from FEI or FBI to FBE mode, restrict the frequency of the input clock so that, when it is divided by  
FRDIV, it remains within the limits of the DCO input clock frequency.  
3. Proper PC board layout procedures must be followed to achieve specifications.  
4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S  
register being set.  
5.3.4 Memories and memory interfaces  
5.3.4.1 Flash electrical specifications  
This section describes the electrical characteristics of the flash memory module.  
5.3.4.1.1 Flash timing specifications — program and erase  
The following specifications represent the amount of time the internal charge pumps  
are active and do not include command overhead.  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
75  
Freescale Semiconductor, Inc.  
Electrical characteristics  
Table 50. NVM program/erase timing specifications  
Symbol Description  
Min.  
Typ.  
7.5  
13  
Max.  
18  
Unit  
μs  
Notes  
thvpgm4  
Longword Program high-voltage time  
1
thversscr Sector Erase high-voltage time  
113  
452  
ms  
ms  
thversall  
Erase All high-voltage time  
52  
1
1. Maximum time based on expectations at cycling end-of-life.  
5.3.4.1.2 Flash timing specifications — commands  
Table 51. Flash command timing specifications  
Symbol Description  
Min.  
Typ.  
Max.  
60  
Unit  
μs  
Notes  
trd1sec1k Read 1s Section execution time (flash sector)  
1
1
tpgmchk  
trdrsrc  
tpgm4  
Program Check execution time  
Read Resource execution time  
Program Longword execution time  
Erase Flash Sector execution time  
Read 1s All Blocks execution time  
Read Once execution time  
45  
μs  
30  
μs  
1
65  
14  
145  
114  
0.9  
25  
μs  
2
tersscr  
trd1all  
ms  
ms  
μs  
1
trdonce  
1
tpgmonce Program Once execution time  
65  
70  
μs  
2
tersall  
tvfykey  
tersallu  
Erase All Blocks execution time  
575  
30  
ms  
μs  
Verify Backdoor Access Key execution time  
Erase All Blocks Unsecure execution time  
1
70  
575  
ms  
2
1. Assumes 25 MHz flash clock frequency.  
2. Maximum times for erase parameters based on expectations at cycling end-of-life.  
5.3.4.1.3 Flash high voltage current behaviors  
Table 52. Flash high voltage current behaviors  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
IDD_PGM  
Average current adder during high voltage  
flash programming operation  
2.5  
6.0  
mA  
IDD_ERS  
Average current adder during high voltage  
flash erase operation  
1.5  
4.0  
mA  
5.3.4.1.4 Reliability specifications  
Table 53. NVM reliability specifications  
Symbol Description  
Min.  
Program Flash  
Table continues on the next page...  
Typ.1  
Max.  
Unit  
Notes  
76  
Freescale Semiconductor, Inc.  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
Electrical characteristics  
Table 53. NVM reliability specifications (continued)  
Symbol Description  
Min.  
5
Typ.1  
Max.  
Unit  
years  
years  
cycles  
Notes  
tnvmretp10k Data retention after up to 10 K cycles  
tnvmretp1k Data retention after up to 1 K cycles  
nnvmcycp Cycling endurance  
50  
20  
100  
50 K  
10 K  
2
1. Typical data retention values are based on measured response accelerated at high temperature and derated to a  
constant 25 °C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in  
Engineering Bulletin EB619.  
2. Cycling endurance represents number of program/erase cycles at –40 °C ≤ Tj ≤ 125 °C.  
5.3.5 Security and integrity modules  
There are no specifications necessary for the device's security and integrity modules.  
5.3.6 Analog  
5.3.6.1 ADC electrical specifications  
Using differential inputs can achieve better system accuracy than using single-end  
inputs.  
5.3.6.1.1 16-bit ADC operating conditions  
Table 54. 16-bit ADC operating conditions  
Symbol Description  
VDDA Supply voltage  
ΔVDDA Supply voltage  
Conditions  
Min.  
1.71  
Typ.1  
Max.  
3.6  
Unit  
V
Notes  
Absolute  
2
Delta to VDD (VDD – VDDA  
)
-100  
0
+100  
+100  
mV  
mV  
V
ΔVSSA  
Ground voltage Delta to VSS (VSS – VSSA  
)
-100  
0
2
VADIN  
Input voltage  
• 16-bit differential mode  
• All other modes  
• 16-bit mode  
VREFL  
31/32 ×  
VREFH  
VREFL  
VREFH  
CADIN  
Input  
8
4
10  
5
pF  
capacitance  
• 8-bit / 10-bit / 12-bit  
modes  
RADIN  
RAS  
Input series  
resistance  
2
5
5
kΩ  
kΩ  
3
Analog source  
resistance  
(external)  
13-bit / 12-bit modes  
fADCK < 4 MHz  
Table continues on the next page...  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
77  
Freescale Semiconductor, Inc.  
Electrical characteristics  
Table 54. 16-bit ADC operating conditions (continued)  
Symbol Description  
Conditions  
Min.  
Typ.1  
Max.  
Unit  
Notes  
fADCK  
fADCK  
Crate  
ADC conversion ≤ 13-bit mode  
clock frequency  
1.0  
18.0  
MHz  
4
ADC conversion 16-bit mode  
clock frequency  
2.0  
12.0  
MHz  
ksps  
4
5
ADC conversion ≤ 13-bit modes  
rate  
No ADC hardware averaging  
20.000  
818.330  
Continuous conversions  
enabled, subsequent  
conversion time  
Crate  
ADC conversion 16-bit mode  
5
rate  
No ADC hardware averaging  
37.037  
461.467  
ksps  
Continuous conversions  
enabled, subsequent  
conversion time  
1. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 1.0 MHz, unless otherwise stated. Typical values are for  
reference only, and are not tested in production.  
2. DC potential difference.  
3. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as  
possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The  
RAS/CAS time constant should be kept to < 1 ns.  
4. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.  
5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.  
SIMPLIFIED  
INPUT PIN EQUIVALENT  
ZADIN  
CIRCUIT  
SIMPLIFIED  
CHANNEL SELECT  
CIRCUIT  
Pad  
ZAS  
leakage  
due to  
input  
ADC SAR  
ENGINE  
RAS  
RADIN  
protection  
VADIN  
CAS  
VAS  
RADIN  
RADIN  
RADIN  
INPUT PIN  
INPUT PIN  
INPUT PIN  
CADIN  
Figure 24. ADC input impedance equivalency diagram  
78  
Freescale Semiconductor, Inc.  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
Electrical characteristics  
5.3.6.1.2 16-bit ADC electrical characteristics  
Table 55. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA  
)
Symbol Description  
Conditions1  
Min.  
0.215  
1.2  
Typ.2  
Max.  
1.7  
3.9  
6.1  
7.3  
9.5  
Unit  
mA  
Notes  
IDDA_ADC Supply current  
3
ADC  
asynchronous  
• ADLPC = 1, ADHSC = 0  
• ADLPC = 1, ADHSC = 1  
• ADLPC = 0, ADHSC = 0  
• ADLPC = 0, ADHSC = 1  
2.4  
4.0  
5.2  
6.2  
MHz  
MHz  
MHz  
MHz  
tADACK =  
1/fADACK  
2.4  
clock source  
fADACK  
3.0  
4.4  
Sample Time  
See Reference Manual chapter for sample times  
TUE  
DNL  
Total  
unadjusted  
error  
• 12-bit modes  
• <12-bit modes  
2
6.8  
2.1  
LSB4  
LSB4  
5
5
1.4  
Differential non-  
linearity  
• 12-bit modes  
• <12-bit modes  
0.7  
0.2  
–1.1 to  
+1.9  
–0.3 to  
0.5  
INL  
Integral non-  
linearity  
• 12-bit modes  
• <12-bit modes  
0.9  
0.4  
–2.7 to  
+1.9  
LSB4  
5
–0.7 to  
+0.5  
EFS  
EQ  
Full-scale error  
• 12-bit modes  
• <12-bit modes  
• 16-bit modes  
• ≤13-bit modes  
–4  
–1.4  
–1 to 0  
–5.4  
–1.8  
LSB4  
LSB4  
VADIN  
VDDA  
=
5
Quantization  
error  
0.5  
ENOB Effective  
number of bits  
16-bit differential mode  
• Avg = 32  
6
12.8  
11.9  
14.5  
13.8  
bits  
bits  
• Avg = 4  
16-bit single-ended mode  
• Avg = 32  
12.2  
11.4  
13.9  
13.1  
bits  
bits  
• Avg = 4  
Signal-to-noise See ENOB  
plus distortion  
SINAD  
THD  
6.02 × ENOB + 1.76  
dB  
Total harmonic 16-bit differential mode  
7
distortion  
–94  
–85  
dB  
dB  
• Avg = 32  
16-bit single-ended mode  
Table continues on the next page...  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
79  
Freescale Semiconductor, Inc.  
Electrical characteristics  
Table 55. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)  
Symbol Description  
Conditions1  
Min.  
Typ.2  
Max.  
Unit  
Notes  
• Avg = 32  
SFDR Spurious free  
dynamic range  
16-bit differential mode  
• Avg = 32  
7
82  
78  
95  
90  
dB  
dB  
16-bit single-ended mode  
• Avg = 32  
EIL  
Input leakage  
error  
IIn × RAS  
mV  
IIn =  
leakage  
current  
(refer to  
the MCU's  
voltage  
and  
current  
operating  
ratings)  
Temp sensor  
slope  
Across the full temperature range  
of the device  
1.55  
706  
1.62  
716  
1.69  
726  
mV/°C  
mV  
8
VTEMP25 Temp sensor  
voltage  
25 °C  
8
1. All accuracy numbers assume the ADC is calibrated with VREFH = VDDA  
2. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 2.0 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low  
power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with 1  
MHz ADC conversion clock speed.  
4. 1 LSB = (VREFH - VREFL)/2N  
5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)  
6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.  
7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.  
8. ADC conversion clock < 3 MHz  
80  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
Freescale Semiconductor, Inc.  
Electrical characteristics  
Typical ADC 16-bit Differential ENOB vs ADC Clock  
100Hz, 90% FS Sine Input  
15.00  
14.70  
14.40  
14.10  
13.80  
13.50  
13.20  
12.90  
12.60  
Hardware Averaging Disabled  
Averaging of 4 samples  
Averaging of 8 samples  
Averaging of 32 samples  
12.30  
12.00  
1
2
3
4
5
6
7
8
9
10  
11  
12  
ADC Clock Frequency (MHz)  
Figure 25. Typical ENOB vs. ADC_CLK for 16-bit differential mode  
Typical ADC 16-bit Single-Ended ENOB vs ADC Clock  
100Hz, 90% FS Sine Input  
14.00  
13.75  
13.50  
13.25  
13.00  
12.75  
12.50  
12.25  
12.00  
11.75  
11.50  
11.25  
Averaging of 4 samples  
Averaging of 32 samples  
11.00  
1
2
3
4
5
6
7
8
9
10  
11  
12  
ADC Clock Frequency (MHz)  
Figure 26. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode  
5.3.6.1.3 Voltage reference electrical specifications  
Table 56. VREF full-range operating requirements  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
VDDA  
Supply voltage  
3.6  
V
Table continues on the next page...  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
81  
Freescale Semiconductor, Inc.  
Electrical characteristics  
Table 56. VREF full-range operating requirements (continued)  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
TA  
Temperature  
Operating temperature  
range of the device  
°C  
CL  
Output load capacitance  
100  
nF  
1, 2  
1. CL must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external  
reference.  
2. The load capacitance should not exceed +/-25% of the nominal specified CL value over the operating temperature range  
of the device.  
Table 57 is tested under the condition of setting VREF_TRM[CHOPEN],  
VREF_SC[REGEN] and VREF_SC[ICOMPEN] bits to 1.  
Table 57. VREF full-range (-40 – 105°C) operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
Vout  
Voltage reference output with factory trim at  
1.1915  
1.195  
1.1977  
V
1
nominal VDDA and temperature=25C  
Voltage reference output — factory trim  
Voltage reference output — user trim  
Voltage reference trim step  
Vout  
Vout  
Vstep  
Ibg  
1.1584  
1.193  
1.2376  
1.197  
V
1
1
V
0.5  
mV  
µA  
mA  
µV  
µs  
1
Bandgap only current  
80  
1
Ihp  
High-power buffer current  
1
1
ΔVLOAD Load regulation  
Tstup Buffer startup time  
Tchop_osc_st Internal bandgap start-up delay with chop  
200  
1, 2  
100  
35  
ms  
1
oscillator enabled  
up  
Vvdrift  
Voltage drift (Vmax -Vmin across the full voltage  
range)  
2
mV  
1. See the chip's Reference Manual for the appropriate settings of the VREF Status and Control register.  
2. Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load  
Table 58. VREF limited-range (0 – 50°C) operating behaviors  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
Vout  
Voltage reference output with factory trim  
1.173  
1.225  
V
82  
Freescale Semiconductor, Inc.  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
Electrical characteristics  
5.3.6.2 CMP and 6-bit DAC electrical specifications  
Table 59. Comparator and 6-bit DAC electrical specifications  
Symbol  
VDD  
Description  
Min.  
1.71  
Typ.  
Max.  
3.6  
Unit  
V
Supply voltage  
IDDHS  
IDDLS  
VAIN  
Supply current, High-speed mode (EN=1, PMODE=1)  
Supply current, low-speed mode (EN=1, PMODE=0)  
Analog input voltage  
200  
20  
μA  
μA  
V
VSS – 0.3  
VDD  
20  
VAIO  
Analog input offset voltage  
Analog comparator hysteresis1  
• CR0[HYSTCTR] = 00  
mV  
VH  
5
mV  
mV  
mV  
mV  
10  
20  
30  
• CR0[HYSTCTR] = 01  
• CR0[HYSTCTR] = 10  
• CR0[HYSTCTR] = 11  
VCMPOh  
VCMPOl  
tDHS  
Output high  
VDD – 0.5  
50  
250  
7
0.5  
200  
600  
40  
V
V
Output low  
Propagation delay, high-speed mode (EN=1, PMODE=1)  
Propagation delay, low-speed mode (EN=1, PMODE=0)  
Analog comparator initialization delay2  
6-bit DAC current adder (enabled)  
6-bit DAC integral non-linearity  
20  
ns  
tDLS  
80  
ns  
μs  
IDAC6b  
INL  
μA  
LSB3  
LSB  
–0.5  
–0.3  
0.5  
0.3  
DNL  
6-bit DAC differential non-linearity  
1. Typical hysteresis is measured with input voltage range limited to 0.6 to VDD–0.6 V.  
2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to  
CMP_DACCR[DACEN], CMP_DACCR[VRSEL], CMP_DACCR[VOSEL], CMP_MUXCR[PSEL], and  
CMP_MUXCR[MSEL]) and the comparator output settling to a stable level.  
3. 1 LSB = Vreference/64  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
83  
Freescale Semiconductor, Inc.  
Electrical characteristics  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
HYSTCTR  
Setting  
00  
01  
10  
11  
0.02  
0.01  
0
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
Vin level (V)  
Figure 27. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0)  
84  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
Freescale Semiconductor, Inc.  
Electrical characteristics  
0.18  
0.16  
0.14  
0.12  
HYSTCTR  
Setting  
0.1  
00  
01  
10  
11  
0.08  
0.06  
0.04  
0.02  
0
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
Vin level (V)  
Figure 28. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1)  
5.4 Timers  
See General switching specifications.  
5.5 Communication interfaces  
5.5.1 SPI switching specifications  
The Serial Peripheral Interface (SPI) provides a synchronous serial bus with master  
and slave operations. Many of the transfer attributes are programmable. The following  
tables provide timing characteristics for classic SPI timing modes. See the SPI chapter  
of the chip's Reference Manual for information about the modified transfer formats  
used for communicating with slower peripheral devices.  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
85  
Freescale Semiconductor, Inc.  
Electrical characteristics  
All timing is shown with respect to 20% VDD and 80% VDD thresholds, unless noted, as  
well as input signal transitions of 3 ns and a 30 pF maximum load on all SPI pins.  
Table 60. SPI master mode timing on slew rate disabled pads  
Num.  
Symbol Description  
Min.  
Max.  
Unit  
Hz  
Note  
1
2
fop  
Frequency of operation  
fperiph/2048  
2 x tperiph  
fperiph/2  
1
2
tSPSCK  
SPSCK period  
2048 x  
tperiph  
ns  
3
4
5
tLead  
tLag  
Enable lead time  
Enable lag time  
1/2  
1/2  
tSPSCK  
tSPSCK  
ns  
tWSPSCK Clock (SPSCK) high or low time  
tperiph - 30  
1024 x  
tperiph  
6
7
tSU  
tHI  
Data setup time (inputs)  
Data hold time (inputs)  
Data valid (after SPSCK edge)  
Data hold time (outputs)  
Rise time input  
18  
0
ns  
ns  
ns  
ns  
ns  
15  
8
tv  
0
9
tHO  
tRI  
10  
tperiph - 25  
tFI  
Fall time input  
11  
tRO  
tFO  
Rise time output  
25  
ns  
Fall time output  
1. For SPI0 fperiph is the bus clock (fBUS). For SPI1 fperiph is the system clock (fSYS).  
2. tperiph = 1/fperiph  
Table 61. SPI master mode timing on slew rate enabled pads  
Num.  
Symbol Description  
Min.  
Max.  
Unit  
Hz  
Note  
1
2
fop  
Frequency of operation  
fperiph/2048  
2 x tperiph  
fperiph/2  
1
2
tSPSCK  
SPSCK period  
2048 x  
tperiph  
ns  
3
4
5
tLead  
tLag  
Enable lead time  
Enable lag time  
1/2  
1/2  
tSPSCK  
tSPSCK  
ns  
tWSPSCK Clock (SPSCK) high or low time  
tperiph - 30  
1024 x  
tperiph  
6
7
tSU  
tHI  
Data setup time (inputs)  
Data hold time (inputs)  
Data valid (after SPSCK edge)  
Data hold time (outputs)  
Rise time input  
96  
0
ns  
ns  
ns  
ns  
ns  
52  
8
tv  
0
9
tHO  
tRI  
10  
tperiph - 25  
tFI  
Fall time input  
11  
tRO  
tFO  
Rise time output  
36  
ns  
Fall time output  
1. For SPI0 fperiph is the bus clock (fBUS). For SPI1 fperiph is the system clock (fSYS).  
2. tperiph = 1/fperiph  
86  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
Freescale Semiconductor, Inc.  
Electrical characteristics  
1
SS  
(OUTPUT)  
3
2
10  
10  
11  
11  
4
SPSCK  
(CPOL=0)  
(OUTPUT)  
5
5
SPSCK  
(CPOL=1)  
(OUTPUT)  
6
7
MISO  
(INPUT)  
2
BIT 6 . . . 1  
8
MSB IN  
LSB IN  
9
MOSI  
(OUTPUT)  
2
BIT 6 . . . 1  
MSB OUT  
LSB OUT  
1. If configured as an output.  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 29. SPI master mode timing (CPHA = 0)  
1
SS  
(OUTPUT)  
2
10  
10  
11  
11  
4
3
SPSCK  
(CPOL=0)  
(OUTPUT)  
5
5
SPSCK  
(CPOL=1)  
(OUTPUT)  
6
7
MISO  
(INPUT)  
2
BIT 6 . . . 1  
LSB IN  
MSB IN  
9
8
MOSI  
(OUTPUT)  
2
PORT DATA  
BIT 6 . . . 1  
MASTER MSB OUT  
PORT DATA  
MASTER LSB OUT  
1.If configured as output  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 30. SPI master mode timing (CPHA = 1)  
Table 62. SPI slave mode timing on slew rate disabled pads  
Num.  
Symbol Description  
Min.  
Max.  
fperiph/4  
Unit  
Hz  
Note  
1
1
2
3
fop  
Frequency of operation  
0
4 x tperiph  
1
tSPSCK  
tLead  
SPSCK period  
ns  
2
Enable lead time  
tperiph  
Table continues on the next page...  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
87  
Freescale Semiconductor, Inc.  
Electrical characteristics  
Table 62. SPI slave mode timing on slew rate disabled pads (continued)  
Num.  
4
Symbol Description  
tLag Enable lag time  
tWSPSCK Clock (SPSCK) high or low time  
Min.  
Max.  
Unit  
tperiph  
ns  
Note  
3
1
5
tperiph - 30  
6
tSU  
tHI  
ta  
Data setup time (inputs)  
Data hold time (inputs)  
Slave access time  
2.5  
3.5  
0
ns  
7
ns  
8
tperiph  
tperiph  
31  
ns  
9
tdis  
tv  
Slave MISO disable time  
Data valid (after SPSCK edge)  
Data hold time (outputs)  
Rise time input  
ns  
4
10  
11  
12  
ns  
tHO  
tRI  
tFI  
ns  
tperiph - 25  
ns  
Fall time input  
13  
tRO  
tFO  
Rise time output  
25  
ns  
Fall time output  
1. For SPI0 fperiph is the bus clock (fBUS). For SPI1 fperiph is the system clock (fSYS).  
2. tperiph = 1/fperiph  
3. Time to data active from high-impedance state  
4. Hold time to high-impedance state  
Table 63. SPI slave mode timing on slew rate enabled pads  
Num.  
1
Symbol Description  
Min.  
Max.  
fperiph/4  
Unit  
Note  
fop  
tSPSCK  
tLead  
tLag  
Frequency of operation  
0
Hz  
ns  
1
2
SPSCK period  
Enable lead time  
Enable lag time  
4 x tperiph  
2
3
1
tperiph  
tperiph  
ns  
3
4
1
5
tWSPSCK Clock (SPSCK) high or low time  
tperiph - 30  
6
tSU  
tHI  
ta  
Data setup time (inputs)  
Data hold time (inputs)  
Slave access time  
2
7
ns  
7
ns  
8
0
tperiph  
tperiph  
122  
ns  
9
tdis  
tv  
Slave MISO disable time  
Data valid (after SPSCK edge)  
Data hold time (outputs)  
Rise time input  
ns  
4
10  
11  
12  
ns  
tHO  
tRI  
tFI  
ns  
tperiph - 25  
ns  
Fall time input  
13  
tRO  
tFO  
Rise time output  
36  
ns  
Fall time output  
1. For SPI0 fperiph is the bus clock (fBUS). For SPI1 fperiph is the system clock (fSYS).  
2. tperiph = 1/fperiph  
3. Time to data active from high-impedance state  
4. Hold time to high-impedance state  
88  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
Freescale Semiconductor, Inc.  
Electrical characteristics  
SS  
(INPUT)  
2
12  
12  
13  
13  
4
SPSCK  
(CPOL=0)  
(INPUT)  
5
5
3
SPSCK  
(CPOL=1)  
(INPUT)  
9
8
10  
11  
11  
see  
note  
SEE  
NOTE  
MISO  
(OUTPUT)  
BIT 6 . . . 1  
SLAVE MSB  
7
SLAVE LSB OUT  
6
MOSI  
(INPUT)  
LSB IN  
MSB IN  
BIT 6 . . . 1  
NOTE: Not defined  
Figure 31. SPI slave mode timing (CPHA = 0)  
SS  
(INPUT)  
4
2
12  
12  
13  
13  
3
SPSCK  
(CPOL=0)  
(INPUT)  
5
5
SPSCK  
(CPOL=1)  
(INPUT)  
11  
9
10  
SLAVE MSB OUT  
see  
note  
MISO  
(OUTPUT)  
BIT 6 . . . 1  
BIT 6 . . . 1  
SLAVE LSB OUT  
LSB IN  
8
6
7
MOSI  
(INPUT)  
MSB IN  
NOTE: Not defined  
Figure 32. SPI slave mode timing (CPHA = 1)  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
89  
Freescale Semiconductor, Inc.  
Electrical characteristics  
5.5.2 Inter-Integrated Circuit Interface (I2C) timing  
Table 64. I2C timing  
Characteristic  
Symbol  
Standard Mode  
Minimum Maximum  
100  
Fast Mode  
Unit  
Minimum  
Maximum  
4001  
SCL Clock Frequency  
fSCL  
0
0
kHz  
µs  
Hold time (repeated) START condition.  
After this period, the first clock pulse is  
generated.  
tHD; STA  
4
0.6  
LOW period of the SCL clock  
HIGH period of the SCL clock  
tLOW  
tHIGH  
4.7  
4
1.25  
0.6  
µs  
µs  
µs  
Set-up time for a repeated START  
condition  
tSU; STA  
4.7  
0.6  
Data hold time for I2C bus devices  
tHD; DAT  
tSU; DAT  
tr  
02  
2505  
3.453  
04  
1003, 6  
20 +0.1Cb  
20 +0.1Cb  
0.6  
0.92  
µs  
ns  
ns  
ns  
µs  
µs  
Data set-up time  
7
6
Rise time of SDA and SCL signals  
Fall time of SDA and SCL signals  
Set-up time for STOP condition  
1000  
300  
300  
300  
tf  
tSU; STO  
tBUF  
4
Bus free time between STOP and  
START condition  
4.7  
1.3  
Pulse width of spikes that must be  
suppressed by the input filter  
tSP  
N/A  
N/A  
0
50  
ns  
1. The maximum SCL Clock Frequency in Fast mode with maximum bus loading can be achieved only when using the high  
drive pins across the full voltage range and when using the normal drive pins and VDD ≥ 2.7 V.  
2. The master mode I2C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves  
acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and SCL  
lines.  
3. The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal.  
4. Input signal Slew = 10 ns and Output Load = 50 pF  
5. Set-up time in slave-transmitter mode is 1 IPBus clock period, if the TX FIFO is empty.  
6. A Fast mode I2C bus device can be used in a Standard mode I2C bus system, but the requirement tSU; DAT ≥ 250 ns  
must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such  
a device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line trmax + tSU;  
DAT = 1000 + 250 = 1250 ns (according to the Standard mode I2C bus specification) before the SCL line is released.  
7. Cb = total capacitance of the one bus line in pF.  
To achieve 1MHz I2C clock rates, consider the following recommendations:  
• To counter the effects of clock stretching, the I2C baud Rate select bits can be  
configured for faster than desired baud rate.  
• Use high drive pad and DSE bit should be set in PORTx_PCRn register.  
• Minimize loading on the I2C SDA and SCL pins to ensure fastest rise times for the  
SCL line to avoid clock stretching.  
• Use smaller pull up resistors on SDA and SCL to reduce the RC time constant.  
90  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
Freescale Semiconductor, Inc.  
Design considerations  
Table 65. I 2C 1Mbit/s timing  
Characteristic  
Symbol  
fSCL  
Minimum  
Maximum  
Unit  
MHz  
µs  
SCL Clock Frequency  
0
11  
Hold time (repeated) START condition. After this  
period, the first clock pulse is generated.  
tHD; STA  
0.26  
LOW period of the SCL clock  
HIGH period of the SCL clock  
Set-up time for a repeated START condition  
Data hold time for I2C bus devices  
Data set-up time  
tLOW  
tHIGH  
0.5  
0.26  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
µs  
µs  
tSU; STA  
tHD; DAT  
tSU; DAT  
tr  
0.26  
0
50  
Rise time of SDA and SCL signals  
Fall time of SDA and SCL signals  
Set-up time for STOP condition  
20 +0.1Cb  
120  
120  
2
tf  
20 +0.1Cb  
0.26  
tSU; STO  
tBUF  
Bus free time between STOP and START  
condition  
0.5  
Pulse width of spikes that must be suppressed by  
the input filter  
tSP  
0
50  
ns  
1. The maximum SCL clock frequency of 1 Mbit/s can support maximum bus loading when using the high drive pins  
across the full voltage range.  
2. Cb = total capacitance of the one bus line in pF.  
SDA  
tSU; DAT  
tf  
tr  
tBUF  
tf  
tr  
tHD; STA  
tSP  
tLOW  
SCL  
tSU; STA  
tSU; STO  
HD; STA  
S
SR  
P
S
tHD; DAT  
tHIGH  
Figure 33. Timing definition for devices on the I2C bus  
5.5.3 UART  
See General switching specifications.  
6 Design considerations  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
91  
Freescale Semiconductor, Inc.  
Design considerations  
6.1 Hardware design considerations  
This device contains protective circuitry to guard against damage due to high static  
voltage or electric fields. However, take normal precautions to avoid application of any  
voltages higher than maximum-rated voltages to this high-impedance circuit.  
6.1.1 Printed circuit board recommendations  
• Place connectors or cables on one edge of the board and do not place digital circuits  
between connectors.  
• Drivers and filters for I/O functions must be placed as close to the connectors as  
possible. Connect TVS devices at the connector to a good ground. Connect filter  
capacitors at the connector to a good ground.  
• Physically isolate analog circuits from digital circuits if possible.  
• Place input filter capacitors as close to the MCU as possible.  
• For best EMC performance, route signals as transmission lines; use a ground plane  
directly under LQFP packages; and solder the exposed pad (EP) to ground directly  
under QFN packages.  
6.1.2 Power delivery system  
Consider the following items in the power delivery system:  
• Use a plane for ground.  
• Use a plane for MCU VDD supply if possible.  
• Always route ground first, as a plane or continuous surface, and never as sequential  
segments.  
• Route power next, as a plane or traces that are parallel to ground traces.  
• Place bulk capacitance, 10 μF or more, at the entrance of the power plane.  
• Place bypass capacitors for MCU power domain as close as possible to each  
VDD/VSS pair, including VDDA/VSSA and VREFH/VREFL.  
• The minimum bypass requirement is to place 0.1 μF capacitors positioned as near  
as possible to the package supply pins.  
• Take special care to minimize noise levels on the VREFH/VREFL inputs. An  
option is to use the internal reference voltage (output 1.2 V typically) as the ADC  
reference.  
NOTE  
The internal reference voltage output (VREFO) is bonded to  
the VREFH pin on some packages and to PTE30 on other  
packages. When the VREFO output is used, a 0.1 μF capacitor  
92  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
Freescale Semiconductor, Inc.  
Design considerations  
is required as a filter. Do not connect any other supply  
voltage to the pin that has VREFO activated.  
6.1.3 Analog design  
Each ADC input must have an RC filter as shown in the following figure. The  
maximum value of R must be RAS max if fast sampling and high resolution are  
required. The value of C must be chosen to ensure that the RC time constant is very  
small compared to the sample period.  
MCU  
1
2
Input signal  
ADCx  
R
C
Figure 34. RC circuit for ADC input  
High voltage measurement circuits require voltage division, current limiting, and  
over-voltage protection as shown the following figure. The voltage divider formed by  
R1 – R4 must yield a voltage less than or equal to VREFH. The current must be  
limited to less than the injection current limit. Since the ADC pins do not have diodes  
to VDD, external clamp diodes must be included to protect against transient over-  
voltages.  
MCU  
R1  
R2  
R3  
VDD  
1
1
1
2
2
2
R5  
1
2
ADCx  
High voltage input  
R4  
1
2
C
BAT54SW  
Figure 35. High voltage measurement with an ADC input  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
93  
Freescale Semiconductor, Inc.  
Design considerations  
6.1.4 Digital design  
Ensure that all I/O pins cannot get pulled above VDD (Max I/O is VDD+0.3V).  
CAUTION  
Do not provide power to I/O pins prior to VDD, especially the  
RESET_b pin.  
• RESET_b pin  
The RESET_b pin is an open-drain I/O pin that has an internal pullup resistor. An  
external RC circuit is recommended to filter noise as shown in the following figure.  
The resistor value must be in the range of 4.7 kΩ to 10 kΩ; the recommended  
capacitance value is 0.1 μF. The RESET_b pin also has a selectable digital filter to  
reject spurious noise.  
VDD  
MCU  
10k  
RESET_b  
RESET_b  
0.1uF  
Figure 36. Reset circuit  
When an external supervisor chip is connected to the RESET_b pin, a series  
resistor must be used to avoid damaging the supervisor chip or the RESET_b pin,  
as shown in the following figure. The series resistor value (RS below) must be in  
the range of 100 Ω to 1 kΩ depending on the external reset chip drive strength. The  
supervisor chip must have an active high, open-drain output.  
94  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
Freescale Semiconductor, Inc.  
Design considerations  
VDD  
Supervisor Chip  
MCU  
10k  
1
2
OUT  
RESET_b  
RS  
Active high,  
open drain  
0.1uF  
Figure 37. Reset signal connection to external reset chip  
• NMI pin  
Do not add a pull-down resistor or capacitor on the NMI_b pin, because a low  
level on this pin will trigger non-maskable interrupt. When this pin is enabled as  
the NMI function, an external pull-up resistor (10 kΩ) as shown in the following  
figure is recommended for robustness.  
If the NMI_b pin is used as an I/O pin, the non-maskable interrupt handler is  
required to disable the NMI function by remapping to another function. The NMI  
function is disabled by programming the FOPT[NMI_DIS] bit to zero.  
VDD  
MCU  
10k  
NMI_b  
Figure 38. NMI pin biasing  
• Debug interface  
This MCU uses the standard ARM SWD interface protocol as shown in the  
following figure. While pull-up or pull-down resistors are not required  
(SWD_DIO has an internal pull-up and SWD_CLK has an internal pull-down),  
external 10 kΩ pull resistors are recommended for system robustness. The  
RESET_b pin recommendations mentioned above must also be considered.  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
95  
Freescale Semiconductor, Inc.  
Design considerations  
VDD  
10k  
VDD  
J1  
SWD_DIO  
SWD_CLK  
1
3
5
7
9
2
4
6
8
RESET_b  
10k  
10  
0.1uF  
HDR_5X2  
Figure 39. SWD debug interface  
• Low leakage stop mode wakeup  
Select low leakage wakeup pins (LLWU_Px) to wake the MCU from one of the  
low leakage stop modes (LLS/VLLSx). See KL17 Signal Multiplexing and Pin  
Assignments for pin selection.  
• Unused pin  
Unused GPIO pins must be left floating (no electrical connections) with the MUX  
field of the pin’s PORTx_PCRn register equal to 0:0:0. This disables the digital  
input path to the MCU.  
6.1.5 Crystal oscillator  
When using an external crystal or ceramic resonator as the frequency reference for the  
MCU clock system, refer to the following table and diagrams.  
The feedback resistor, RF, is incorporated internally with the low power oscillators. An  
external feedback is required when using high gain (HGO=1) mode.  
The series resistor, RS, is required in high gain (HGO=1) mode when the crystal or  
resonator frequency is below 2MHz. Otherwise, the low power oscillator (HGO=0)  
must not have any series resistance; and the high frequency, high gain oscillator with a  
frequency above 2MHz does not require any series resistance.  
Internal load capacitors (Cx, Cy) are provided in the low frequency (32.786kHz) mode.  
Use the SCxP bits in the OSC0_CR register to adjust the load capacitance for the  
crystal. Typically, values of 10pf to 16pF are sufficient for 32.768kHz crystals that have  
a 12.5pF CL specification. The internal load capacitor selection must not be used for  
high frequency crystals and resonators.  
96  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
Freescale Semiconductor, Inc.  
Design considerations  
Table 66. External crystal/resonator connections  
Oscillator mode  
Low frequency (32.768kHz), low power  
Low frequency (32.768kHz), high gain  
High frequency (1-32MHz), low power  
High frequency (1-32MHz), high gain  
Oscillator mode  
Diagram 1  
Diagram 2, Diagram 4  
Diagram 3  
Diagram 4  
OSCILLATOR  
EXTAL  
XTAL  
1
2
CRYSTAL  
Figure 40. Crystal connection – Diagram 1  
OSCILLATOR  
EXTAL  
XTAL  
1
2
RF  
RS  
1
2
CRYSTAL  
Figure 41. Crystal connection – Diagram 2  
OSCILLATOR  
EXTAL  
OSCILLATOR  
EXTAL  
XTAL  
XTAL  
1
2
1
3
CRYSTAL  
Cx  
Cy  
RESONATOR  
Figure 42. Crystal connection – Diagram 3  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
97  
Freescale Semiconductor, Inc.  
Design considerations  
OSCILLATOR  
EXTAL  
OSCILLATOR  
EXTAL  
XTAL  
XTAL  
1
2
1
2
RF  
RF  
RS  
RS  
1
2
1
3
CRYSTAL  
Cx  
Cy  
RESONATOR  
Figure 43. Crystal connection – Diagram 4  
6.2 Software considerations  
All Kinetis MCUs are supported by comprehensive Freescale and third-party hardware  
and software enablement solutions, which can reduce development costs and time to  
market. Featured software and tools are listed below. Visit http://www.freescale.com/  
kinetis/sw for more information and supporting collateral.  
Evaluation and Prototyping Hardware  
• Freescale Freedom Development Platform: http://www.freescale.com/freedom  
• Tower System Development Platform: http://www.freescale.com/tower  
IDEs for Kinetis MCUs  
• Kinetis Design Studio IDE: http://www.freescale.com/kds  
• Partner IDEs: http://www.freescale.com/kide  
Development Tools  
• PEG Graphics Software: http://www.freescale.com/peg  
• Processor Expert Software and Embedded Components: http://www.freescale.com/  
processorexpert )  
Run-time Software  
• Kinetis SDK: http://www.freescale.com/ksdk  
• Kinetis Bootloader: http://www.freescale.com/kboot  
• ARM mbed Development Platform: http://www.freescale.com/mbed  
• MQX RTOS: http://www.freescale.com/mqx  
98  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
Freescale Semiconductor, Inc.  
Part identification  
For all other partner-developed software and tools, visit http://www.freescale.com/  
partners.  
7 Part identification  
7.1 Description  
Part numbers for the chip have fields that identify the specific part. You can use the  
values of these fields to determine the specific part you have received.  
7.2 Format  
Part numbers for this device have the following format:  
Q KL## A FFF R T PP CC N  
7.3 Fields  
This table lists the possible values for each field in the part number (not all  
combinations are valid):  
Table 67. Part number fields description  
Field  
Description  
Values  
Q
Qualification status  
• M = Fully qualified, general market flow  
• P = Prequalification  
KL##  
A
Kinetis family  
Key attribute  
• KL17  
• Z = Cortex-M0+  
FFF  
Program flash memory size  
• 32 = 32 KB  
• 64 = 64 KB  
R
Silicon revision  
• (Blank) = Main  
• A = Revision after main  
T
Temperature range (°C)  
Package identifier  
• V = –40 to 105  
PP  
• FM = 32 QFN (5 mm x 5 mm)  
• FT = 48 QFN (7 mm x 7 mm)1  
• LH = 64 LQFP (10 mm x 10 mm)  
• MP = 64 MAPBGA (5 mm x 5 mm)1  
• DA = 36 XFBGA (3.5 mm x 3.5 mm)  
CC  
Maximum CPU frequency (MHz)  
• 4 = 48 MHz  
Table continues on the next page...  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
99  
Freescale Semiconductor, Inc.  
Revision history  
Table 67. Part number fields description (continued)  
Field  
Description  
Values  
• R = Tape and reel  
• (Blank) = Trays  
N
Packaging type  
1. This package for this product is not yet available. However, it is included in Package Your Way program for Kinetis  
MCUs. Visit freescale.com/KPYW for more details.  
7.4 Example  
This is an example part number:  
MKL17Z64VLH4  
8 Revision history  
The following table provides a revision history for this document.  
Table 68. Revision history  
Rev. No.  
Date  
Substantial Changes  
4
28 January/ Initial public release  
2015  
• Updated the features and completed the ordering information.  
• Updated Table 9 - Power consumption operating behaviors with Max. values.  
• Added a note before Table 9.  
• Updated Table 17 - IRC48M specifications.  
• Updated Table 28. VREF full-range (-40 – 105 °C) operating behaviors with Min.,  
Max., and Typical values.  
• Added Table 36 - I2C 1Mbit/s timing.  
4.1  
5
2 February/  
2015  
• Moved the ordering information out of the front page to be a separate chapter.  
• Added Module signal description table and Package dimension sections.  
21 April/2015  
• 32-pin QFN package is now standard part, added Marking information and thermal  
attributes of this package  
• Added Overview chapter  
• Added Memory map chapter  
• Added Pin properties  
• Added a note to the trd1all in Flash timing specifications — commands  
• Added a note to the Maximum of fSCL in the fast mode in Inter-Integrated Circuit  
Interface (I2C) timing  
• Added a footnote to the Δfirc48m_ol_hv in MCG-Lite specifications  
• Added Design considerations chapter  
100  
Freescale Semiconductor, Inc.  
Kinetis KL17 Microcontroller, Rev. 5, 04/2015  
Information in this document is provided solely to enable system and  
software implementers to use Freescale products. There are no express  
or implied copyright licenses granted hereunder to design or fabricate  
any integrated circuits based on the information in this document.  
Freescale reserves the right to make changes without further notice to  
any products herein.  
How to Reach Us:  
Home Page:  
freescale.com  
Web Support:  
freescale.com/support  
Freescale makes no warranty, representation, or guarantee regarding  
the suitability of its products for any particular purpose, nor does  
Freescale assume any liability arising out of the application or use of  
any product or circuit, and specifically disclaims any and all liability,  
including without limitation consequential or incidental damages.  
“Typical” parameters that may be provided in Freescale data sheets  
and/or specifications can and do vary in different applications, and  
actual performance may vary over time. All operating parameters,  
including “typicals,” must be validated for each customer application by  
customer's technical experts. Freescale does not convey any license  
under its patent rights nor the rights of others. Freescale sells products  
pursuant to standard terms and conditions of sale, which can be found  
at the following address: freescale.com/SalesTermsandConditions.  
Freescale, Freescale logo, Energy Efficient Solutions logo, and Kinetis  
are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm.  
Off. All other product or service names are the property of their  
respective owners. ARM and Cortex are registered trademarks of ARM  
Limited (or its subsidiaries) in the EU and/or elsewhere. All rights  
reserved.  
©2014-2015 Freescale Semiconductor, Inc.  
Document Number KL17P64M48SF2  
Revision 5, 04/2015  

相关型号:

MKL17Z64VDA4

Kinetis KL17 Microcontroller
NXP

MKL17Z64VFM4

Kinetis KL17 Microcontroller
NXP

MKL17Z64VFT4

Kinetis KL17 Microcontroller
NXP

MKL17Z64VLH4

Kinetis KL17 Microcontroller
NXP

MKL17Z64VMP4

Kinetis KL17 Microcontroller
NXP

MKL2010

Industry Standard Package
MMD

MKL201048

Industry Standard Package
MMD

MKL201048A

Industry Standard Package
MMD

MKL2010A

Industry Standard Package
MMD

MKL2020

Industry Standard Package
MMD
MMD