MKL33Z128VMP4 [NXP]

Kinetis KL33 Microcontroller;
MKL33Z128VMP4
型号: MKL33Z128VMP4
厂家: NXP    NXP
描述:

Kinetis KL33 Microcontroller

微控制器
文件: 总65页 (文件大小:1327K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Freescale Semiconductor, Inc.  
Data Sheet: Technical Data  
KL33P64M48SF6  
Rev. 5, 08/2015  
Kinetis KL33 Microcontroller  
MKL33Z256Vxx4(R)  
MKL33Z128Vxx4(R)  
48 MHz ARM® Cortex®-M0+ and 128/256 KB Flash  
The KL33 series is optimized for cost-sensitive and battery-  
powered applications requiring low-power segment LCD. The  
product offers:  
• Low power segment LCD up to 28x8 or 32x4  
• Embedded ROM with boot loader for flexible program  
upgrade  
• High accuracy internal voltage and clock reference  
• FlexIO to support any standard and customized serial  
peripheral emulation  
64 LQFP  
10x10 mm P 0.5 mm  
64 BGA  
5x5 mm P 0.5 mm  
• Down to 54uA/MHz in very low power run mode and  
1.96uA in deep sleep mode (RAM + RTC retained)  
Core Processor  
Peripherals  
• ARM® Cortex®-M0+ core up to 48 MHz  
• Segment LCD supporting up to 28x8 or 32x4  
segments  
Memories  
• One UART module supporting ISO7816, operating  
up to 1.5 Mbit/s  
• Two low-power UART modules supporting  
asynchronous operation in low-power modes  
• Two I2C modules and I2C0 supporting up to 1  
Mbit/s  
• Two 16-bit SPI modules supporting up to 24 Mbit/s  
• One FlexIO module supporting emulation of  
additional UART, IrDA, SPI, I2C, I2S, PWM and  
other serial modules, etc.  
• 128/256 KB program flash memory  
• 16/32 KB SRAM  
• 16 KB ROM with build-in bootloader  
• 32-byte backup register  
System  
• 4-channel asynchronous DMA controller  
• Watchdog  
• Low-leakage wakeup unit  
• Two-pin Serial Wire Debug (SWD) programming and  
debug interface  
• Micro Trace Buffer  
• Bit manipulation engine  
• Interrupt controller  
• One serial audio interface I2S  
• One 16-bit 818 ksps ADC module with high  
accuracy internal voltage reference (Vref) and up to  
16 channels  
• High-speed analog comparator containing a 6-bit  
DAC for programmable reference input  
• One 12-bit DAC  
Clocks  
• 48MHz high accuracy (up to 0.5%) internal reference  
clock  
• 1.2 V internal voltage reference  
• 8MHz/2MHz high accuracy (up to 3%) internal  
reference clock  
• 1KHz reference clock active under all low-power  
modes (except VLLS0)  
Timers  
• One 6-channel Timer/PWM module  
• Two 2-channel Timer/PWM modules  
• One low-power timer  
• 32–40KHz and 3–32MHz crystal oscillator  
• Periodic interrupt timer  
• Real time clock  
Freescale reserves the right to change the detail specifications as may be required to  
permit improvements in the design of its products. © 2012–2015 Freescale  
Semiconductor, Inc. All rights reserved.  
Operating Characteristics  
Security and Integrity  
• Voltage range: 1.71 to 3.6 V  
• Flash write voltage range: 1.71 to 3.6 V  
• Temperature range: –40 to 105 °C  
• 80-bit unique identification number per chip  
• Advanced flash security  
I/O  
Packages  
• Up to 54 general-purpose input/output pins (GPIO)  
and 6 high-drive pad  
• 64 LQFP 10mm x 10mm, 0.5mm pitch, 1.6mm  
thickness  
• 64 MAPBGA 5mm x 5mm, 0.5mm pitch, 1.23mm  
thickness  
Low Power  
• Down to 54uA/MHz in very low power run mode  
• Down to 1.96uA in VLLS3 mode (RAM + RTC  
retained)  
• Six flexible static modes  
Ordering Information  
Product  
Part number Marking (Line1/  
Line2)  
Memory  
Package  
IO and ADC channel  
Flash  
SRAM  
(KB)  
Pin  
Package  
GPIOs  
GPIOs  
ADC  
(KB)  
count  
(INT/HD)1 channels  
(SE/DP)  
MKL33Z128VLH4 MKL33Z128V//LH4  
MKL33Z256VLH4 MKL33Z256V//LH4  
128  
256  
128  
256  
16  
32  
16  
32  
64  
64  
64  
64  
LQFP  
LQFP  
54  
54  
54  
54  
31/6  
31/6  
31/6  
31/6  
20/4  
20/4  
20/4  
20/4  
MKL33Z128VMP4  
MKL33Z256VMP4  
M33P7V  
M33P8V  
MAPBGA  
MAPBGA  
1. INT: interrupt pin numbers; HD: high drive pin numbers  
Related Resources  
Type  
Selector  
Guide  
Description  
Resource  
The Freescale Solution Advisor is a web-based tool that features  
interactive application wizards and a dynamic product selector.  
Solution Advisor  
Product Brief The Product Brief contains concise overview/summary information to  
enable quick evaluation of a device for design suitability.  
KLX3PB1  
Reference  
Manual  
The Reference Manual contains a comprehensive description of the  
structure and function (operation) of a device.  
KL33P64M48SF6RM1  
This document.  
Data Sheet  
The Data Sheet includes electrical characteristics and signal  
connections.  
Chip Errata  
The chip mask set Errata provides additional or corrective information for KINETIS_L_1N71K1  
a particular device mask set.  
Package  
drawing  
Package dimensions are provided in package drawings.  
64-LQFP: 98ASS23234W1 64  
MAPBGA: 98ASA00420D1  
1. To find the associated resource, go to http://www.freescale.com and perform a search using this term.  
2
Kinetis KL33 Microcontroller, Rev.5, 08/2015.  
Freescale Semiconductor, Inc.  
Table of Contents  
1 Ratings..................................................................................4  
3.6.1 ADC electrical specifications..............................30  
3.6.2 Voltage reference electrical specifications.........35  
3.6.3 CMP and 6-bit DAC electrical specifications......36  
3.6.4 12-bit DAC electrical characteristics.................. 38  
3.7 Timers............................................................................41  
3.8 Communication interfaces............................................. 41  
3.8.1 SPI switching specifications...............................41  
3.8.2 I2C..................................................................... 46  
3.8.3 UART................................................................. 48  
3.8.4 I2S/SAI switching specifications........................ 48  
3.9 Human-machine interfaces (HMI)..................................52  
3.9.1 LCD electrical characteristics.............................52  
4 Dimensions........................................................................... 54  
4.1 Obtaining package dimensions......................................54  
5 Pinouts and Packaging......................................................... 54  
5.1 KL33 Signal Multiplexing and Pin Assignments.............54  
5.2 KL33 Family Pinouts......................................................57  
6 Ordering parts....................................................................... 59  
6.1 Determining valid orderable parts..................................59  
7 Part identification...................................................................59  
7.1 Description.....................................................................59  
7.2 Format........................................................................... 60  
7.3 Fields............................................................................. 60  
7.4 Example.........................................................................60  
8 Terminology and guidelines.................................................. 61  
8.1 Definitions...................................................................... 61  
8.2 Examples....................................................................... 61  
8.3 Typical-value conditions................................................ 62  
8.4 Relationship between ratings and operating  
1.1 Thermal handling ratings............................................... 4  
1.2 Moisture handling ratings...............................................4  
1.3 ESD handling ratings..................................................... 4  
1.4 Voltage and current operating ratings............................4  
2 General................................................................................. 5  
2.1 AC electrical characteristics...........................................5  
2.2 Nonswitching electrical specifications............................5  
2.2.1 Voltage and current operating requirements......6  
2.2.2 LVD and POR operating requirements.............. 6  
2.2.3 Voltage and current operating behaviors...........7  
2.2.4 Power mode transition operating behaviors.......8  
2.2.5 Power consumption operating behaviors...........9  
2.2.6 EMC radiated emissions operating behaviors... 19  
2.2.7 Designing with radiated emissions in mind........20  
2.2.8 Capacitance attributes....................................... 20  
2.3 Switching specifications.................................................20  
2.3.1 Device clock specifications................................ 20  
2.3.2 General switching specifications........................21  
2.4 Thermal specifications................................................... 21  
2.4.1 Thermal operating requirements........................21  
2.4.2 Thermal attributes..............................................22  
3 Peripheral operating requirements and behaviors................ 22  
3.1 Core modules................................................................ 22  
3.1.1 SWD electricals .................................................23  
3.2 System modules............................................................ 24  
3.3 Clock modules............................................................... 24  
3.3.1 MCG-Lite specifications.....................................24  
3.3.2 Oscillator electrical specifications...................... 26  
3.4 Memories and memory interfaces................................. 28  
3.4.1 Flash electrical specifications............................ 28  
3.5 Security and integrity modules.......................................30  
3.6 Analog............................................................................30  
requirements..................................................................62  
8.5 Guidelines for ratings and operating requirements........63  
9 Revision History.................................................................... 63  
Kinetis KL33 Microcontroller, Rev.5, 08/2015.  
3
Freescale Semiconductor, Inc.  
Ratings  
1 Ratings  
1.1 Thermal handling ratings  
Table 1. Thermal handling ratings  
Symbol  
TSTG  
Description  
Min.  
–55  
Max.  
150  
Unit  
°C  
Notes  
Storage temperature  
Solder temperature, lead-free  
1
2
TSDR  
260  
°C  
1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.  
2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
1.2 Moisture handling ratings  
Table 2. Moisture handling ratings  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
MSL  
Moisture sensitivity level  
3
1
1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
1.3 ESD handling ratings  
Table 3. ESD handling ratings  
Symbol  
VHBM  
Description  
Min.  
–2000  
–500  
Max.  
+2000  
+500  
Unit  
V
Notes  
Electrostatic discharge voltage, human body model  
1
2
VCDM  
Electrostatic discharge voltage, charged-device  
model  
V
ILAT  
Latch-up current at ambient temperature of 105 °C  
–100  
+100  
mA  
3
1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human  
Body Model (HBM).  
2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for  
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.  
3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.  
4
Kinetis KL33 Microcontroller, Rev.5, 08/2015.  
Freescale Semiconductor, Inc.  
General  
1.4 Voltage and current operating ratings  
Table 4. Voltage and current operating ratings  
Symbol  
VDD  
IDD  
Description  
Min.  
–0.3  
Max.  
3.8  
Unit  
Digital supply voltage  
Digital supply current  
IO pin input voltage  
V
mA  
V
120  
VIO  
–0.3  
–25  
VDD + 0.3  
25  
ID  
Instantaneous maximum current single pin limit (applies to  
all port pins)  
mA  
VDDA  
Analog supply voltage  
VDD – 0.3  
VDD + 0.3  
V
2 General  
2.1 AC electrical characteristics  
Unless otherwise specified, propagation delays are measured from the 50% to the 50%  
point, and rise and fall times are measured at the 20% and 80% points, as shown in the  
following figure.  
High  
Low  
VIH  
80%  
50%  
20%  
Input Signal  
Midpoint1  
VIL  
Fall Time  
Rise Time  
The midpoint is VIL + (VIH - VIL) / 2  
Figure 1. Input signal measurement reference  
All digital I/O switching characteristics, unless otherwise specified, assume that the  
output pins have the following characteristics.  
• CL=30 pF loads  
• Slew rate disabled  
• Normal drive strength  
2.2 Nonswitching electrical specifications  
Kinetis KL33 Microcontroller, Rev.5, 08/2015.  
5
Freescale Semiconductor, Inc.  
General  
2.2.1 Voltage and current operating requirements  
Table 5. Voltage and current operating requirements  
Symbol  
VDD  
Description  
Min.  
1.71  
1.71  
–0.1  
–0.1  
Max.  
3.6  
Unit  
V
Notes  
Supply voltage  
VDDA  
Analog supply voltage  
3.6  
V
VDD – VDDA VDD-to-VDDA differential voltage  
VSS – VSSA VSS-to-VSSA differential voltage  
0.1  
V
0.1  
V
VIH  
Input high voltage  
• 2.7 V ≤ VDD ≤ 3.6 V  
• 1.7 V ≤ VDD ≤ 2.7 V  
0.7 × VDD  
V
V
0.75 × VDD  
VIL  
Input low voltage  
• 2.7 V ≤ VDD ≤ 3.6 V  
• 1.7 V ≤ VDD ≤ 2.7 V  
0.35 × VDD  
0.3 × VDD  
V
V
VHYS  
IICIO  
Input hysteresis  
0.06 × VDD  
-3  
V
IO pin negative DC injection current — single pin  
• VIN < VSS-0.3V  
1
mA  
IICcont  
Contiguous pin DC injection current —regional limit,  
includes sum of negative injection currents of 16  
contiguous pins  
-25  
mA  
• Negative current injection  
VODPU  
VRAM  
Open drain pullup voltage level  
VDD  
1.2  
VDD  
V
V
2
VDD voltage required to retain RAM  
1. All I/O pins are internally clamped to VSS through a ESD protection diode. There is no diode connection to VDD. If VIN  
greater than VIO_MIN (= VSS-0.3 V) is observed, then there is no need to provide current limiting resistors at the pads. If  
this limit cannot be observed then a current limiting resistor is required. The negative DC injection current limiting  
resistor is calculated as R = (VIO_MIN - VIN)/|IICIO|.  
2. Open drain outputs must be pulled to VDD  
.
2.2.2 LVD and POR operating requirements  
Table 6. VDD supply LVD and POR operating requirements  
Symbol Description  
Min.  
0.8  
Typ.  
1.1  
Max.  
1.5  
Unit  
V
Notes  
VPOR  
Falling VDD POR detect voltage  
VLVDH  
Falling low-voltage detect threshold — high  
range (LVDV = 01)  
2.48  
2.56  
2.64  
V
Low-voltage warning thresholds — high range  
1
Table continues on the next page...  
6
Kinetis KL33 Microcontroller, Rev.5, 08/2015.  
Freescale Semiconductor, Inc.  
General  
Notes  
Table 6. VDD supply LVD and POR operating requirements (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
VLVW1H  
VLVW2H  
VLVW3H  
VLVW4H  
• Level 1 falling (LVWV = 00)  
2.62  
2.70  
2.78  
V
• Level 2 falling (LVWV = 01)  
• Level 3 falling (LVWV = 10)  
• Level 4 falling (LVWV = 11)  
2.72  
2.82  
2.92  
2.80  
2.90  
3.00  
2.88  
2.98  
3.08  
V
V
V
VHYSH  
VLVDL  
Low-voltage inhibit reset/recover hysteresis —  
high range  
60  
mV  
V
1
Falling low-voltage detect threshold — low  
range (LVDV=00)  
1.54  
1.60  
1.66  
Low-voltage warning thresholds — low range  
• Level 1 falling (LVWV = 00)  
VLVW1L  
VLVW2L  
VLVW3L  
VLVW4L  
1.74  
1.84  
1.94  
2.04  
1.80  
1.90  
2.00  
2.10  
40  
1.86  
1.96  
2.06  
2.16  
V
V
• Level 2 falling (LVWV = 01)  
• Level 3 falling (LVWV = 10)  
V
• Level 4 falling (LVWV = 11)  
V
VHYSL  
Low-voltage inhibit reset/recover hysteresis —  
low range  
mV  
VBG  
tLPO  
Bandgap voltage reference  
0.97  
900  
1.00  
1.03  
V
Internal low power oscillator period — factory  
trimmed  
1000  
1100  
μs  
1. Rising thresholds are falling threshold + hysteresis voltage  
2.2.3 Voltage and current operating behaviors  
Table 7. Voltage and current operating behaviors  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
VOH  
Output high voltage — normal drive pad  
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = –5 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = –1.5 mA  
1
VDD – 0.5  
VDD – 0.5  
V
V
VOH  
Output high voltage — high drive pad  
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = –18 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = –6 mA  
1
VDD – 0.5  
VDD – 0.5  
V
V
IOHT  
VOL  
Output high current total for all ports  
100  
mA  
Output low voltage — normal drive pad  
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 5 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 1.5 mA  
1
1
0.5  
0.5  
V
V
VOL  
Output low voltage — high drive pad  
0.5  
V
Table continues on the next page...  
Kinetis KL33 Microcontroller, Rev.5, 08/2015.  
7
Freescale Semiconductor, Inc.  
General  
Table 7. Voltage and current operating behaviors (continued)  
Symbol  
Description  
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 18 mA  
Min.  
Max.  
Unit  
Notes  
0.5  
V
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 6 mA  
IOLT  
IIN  
Output low current total for all ports  
100  
1
mA  
μA  
Input leakage current (per pin) for full temperature  
range  
2
IIN  
IIN  
Input leakage current (per pin) at 25 °C  
0.025  
64  
μA  
μA  
2
2
Input leakage current (total all pins) for full  
temperature range  
IOZ  
Hi-Z (off-state) leakage current (per pin)  
Internal pullup resistors  
1
μA  
kΩ  
RPU  
20  
50  
3
1. PTB0, PTB1, PTC3, PTC4, PTD6, and PTD7 I/O have both high drive and normal drive capability selected by the  
associated PTx_PCRn[DSE] control bit. All other GPIOs are normal drive only.  
2. Measured at VDD = 3.6 V  
3. Measured at VDD supply voltage = VDD min and Vinput = VSS  
2.2.4 Power mode transition operating behaviors  
All specifications except tPOR and VLLSxRUN recovery times in the following table  
assume this clock configuration:  
• CPU and system clocks = 48 MHz  
• Bus and flash clock = 24 MHz  
• HIRC clock mode  
Table 8. Power mode transition operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
tPOR After a POR event, amount of time from the  
300  
μs  
1
point VDD reaches 1.8 V to execution of the first  
instruction across the operating temperature  
range of the chip.  
• VLLS0 RUN  
• VLLS1 RUN  
• VLLS3 RUN  
• LLS RUN  
152  
152  
93  
166  
166  
104  
8
μs  
μs  
μs  
μs  
7.5  
Table continues on the next page...  
8
Kinetis KL33 Microcontroller, Rev.5, 08/2015.  
Freescale Semiconductor, Inc.  
General  
Notes  
Table 8. Power mode transition operating behaviors (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
• VLPS RUN  
7.5  
8
8
μs  
• STOP RUN  
7.5  
μs  
1. Normal boot (FTFA_FOPT[LPBOOT]=11)  
2.2.5 Power consumption operating behaviors  
The maximum values stated in the following table represent characterized results  
equivalent to the mean plus three times the standard deviation (mean + 3 sigma).  
NOTE  
The while (1) test is executed with flash cache enabled.  
Table 9. Power consumption operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDDA  
Analog supply current  
See note  
mA  
1
2
IDD_RUNCO Running CoreMark in flash in compute operation  
mode—48M HIRC mode, 48 MHz core / 24 MHz  
flash, VDD = 3.0 V  
5.76  
6.04  
6.40  
6.68  
mA  
mA  
mA  
• at 25 °C  
• at 105 °C  
IDD_RUNCO Running While(1) loop in flash in compute  
operation mode—48M HIRC mode, 48 MHz  
core / 24 MHz flash, VDD = 3.0 V  
• at 25 °C  
3.21  
3.49  
3.85  
4.13  
• at 105 °C  
IDD_RUN Run mode current—48M HIRC mode, running  
CoreMark in Flash all peripheral clock disable 48  
MHz core/24 MHz flash, VDD = 3.0 V  
• at 25 °C  
2
2
6.45  
6.75  
7.09  
7.39  
• at 105 °C  
IDD_RUN Run mode current—48M HIRC mode, running  
CoreMark in flash all peripheral clock disable, 24  
MHz core/12 MHz flash, VDD = 3.0 V  
3.95  
4.23  
4.59  
4.87  
• at 25 °C  
mA  
• at 105 °C  
Table continues on the next page...  
Kinetis KL33 Microcontroller, Rev.5, 08/2015.  
9
Freescale Semiconductor, Inc.  
General  
Table 9. Power consumption operating behaviors (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDD_RUN Run mode current—48M HIRC mode, running  
CoreMark in Flash all peripheral clock disable 12  
MHz core/6 MHz flash, VDD = 3.0 V  
• at 25 °C  
2
2.68  
2.96  
3.32  
3.60  
mA  
• at 105 °C  
IDD_RUN Run mode current—48M HIRC mode, running  
CoreMark in Flash all peripheral clock enable 48  
MHz core/24 MHz flash, VDD = 3.0 V  
• at 25 °C  
2
8.08  
8.39  
8.72  
9.03  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
• at 105 °C  
IDD_RUN Run mode current—48M HIRC mode, running  
While(1) loop in flash all peripheral clock disable,  
48 MHz core/24 MHz flash, VDD = 3.0 V  
• at 25 °C  
3.90  
4.21  
4.54  
4.85  
• at 105 °C  
IDD_RUN Run mode current—48M HIRC mode, running  
While(1) loop in Flash all peripheral clock  
disable, 24 MHz core/12 MHz flash, VDD = 3.0 V  
• at 25 °C  
2.66  
2.94  
3.30  
3.58  
• at 105 °C  
IDD_RUN Run mode current—48M HIRC mode, Running  
While(1) loop in Flash all peripheral clock  
disable, 12 MHz core/6 MHz flash, VDD = 3.0 V  
• at 25 °C  
2.03  
2.31  
2.67  
2.95  
• at 105 °C  
IDD_RUN Run mode current—48M HIRC mode, Running  
While(1) loop in Flash all peripheral clock  
enable, 48 MHz core/24 MHz flash, VDD = 3.0 V  
• at 25 °C  
5.52  
5.83  
6.16  
6.47  
• at 105 °C  
IDD_RUN Run mode current—48M HIRC mode, running  
While(1) loop in SRAM all peripheral clock  
disable, 48 MHz core/24 MHz flash, VDD = 3.0 V  
• at 25 °C  
5.29  
5.56  
5.93  
6.20  
• at 105 °C  
IDD_RUN Run mode current—48M HIRC mode, running  
While(1) loop in SRAM all peripheral clock  
enable, 48 MHz core/24 MHz flash, VDD = 3.0 V  
• at 25 °C  
6.91  
7.19  
7.55  
7.91  
• at 105 °C  
Table continues on the next page...  
10  
Kinetis KL33 Microcontroller, Rev.5, 08/2015.  
Freescale Semiconductor, Inc.  
General  
Notes  
Table 9. Power consumption operating behaviors (continued)  
Symbol Description  
Min.  
Typ.  
826  
405  
154  
108  
39  
Max.  
907  
486  
235  
189  
120  
Unit  
μA  
μA  
μA  
μA  
μA  
IDD_VLPRC Very Low Power Run Core Mark in Flash in  
Compute Operation mode: Core@4MHz, Flash  
O
@1MHz, VDD = 3.0 V  
• at 25 °C  
IDD_VLPRC Very-low-power-run While(1) loop in SRAM in  
compute operation mode— 8 MHz LIRC mode, 4  
O
MHz core / 1 MHz flash, VDD = 3.0 V  
• at 25 °C  
IDD_VLPRC Very-low-power run While(1) loop in SRAM in  
compute operation mode:—2 MHz LIRC mode, 2  
O
MHz core / 0.5 MHz flash, VDD = 3.0 V  
• at 25 °C  
IDD_VLPR Very-low-power run mode current— 2 MHz LIRC  
mode, While(1) loop in flash all peripheral clock  
disable, 2 MHz core / 0.5 MHz flash, VDD = 3.0 V  
• at 25 °C  
IDD_VLPR Very-low-power run mode current— 2 MHz LIRC  
mode, While(1) loop in flash all peripheral clock  
disable, 125 kHz core / 31.25 kHz flash, VDD  
=
3.0 V  
• at 25 °C  
IDD_VLPR Very-low-power run mode current— 8 MHz LIRC  
mode, While(1) loop in flash all peripheral clock  
disable, 4 MHz core / 1 MHz flash, VDD = 3.0 V  
• at 25 °C  
249  
337  
416  
330  
418  
497  
μA  
μA  
μA  
IDD_VLPR Very-low-power run mode current— 8 MHz LIRC  
mode, While(1) loop in flash all peripheral clock  
enable, 4 MHz core / 1 MHz flash, VDD = 3.0 V  
• at 25 °C  
IDD_VLPR Very-low-power run mode current— 8 MHz LIRC  
mode, While(1) loop in SRAM in all peripheral  
clock disable, 4 MHz core / 1 MHz flash, VDD  
=
3.0 V  
• at 25 °C  
IDD_VLPR Very-low-power run mode current— 8 MHz LIRC  
mode, While(1) loop in SRAM all peripheral clock  
enable, 4 MHz core / 1 MHz flash, VDD = 3.0 V  
• at 25 °C  
494  
166  
575  
247  
μA  
μA  
IDD_VLPR Very-low-power run mode current—2 MHz LIRC  
mode, While(1) loop in SRAM in all peripheral  
clock disable, 2 MHz core / 0.5 MHz flash, VDD  
=
3.0 V  
• at 25 °C  
IDD_VLPR Very-low-power run mode current—2 MHz LIRC  
mode, While(1) loop in SRAM all peripheral clock  
disable, 125 kHz core / 31.25 kHz flash, VDD  
=
50  
131  
μA  
3.0 V  
• at 25 °C  
Table continues on the next page...  
Kinetis KL33 Microcontroller, Rev.5, 08/2015.  
11  
Freescale Semiconductor, Inc.  
General  
Table 9. Power consumption operating behaviors (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDD_VLPR Very-low-power run mode current—2 MHz LIRC  
mode, While(1) loop in SRAM all peripheral clock  
enable, 2 MHz core / 0.5 MHz flash, VDD = 3.0 V  
• at 25 °C  
208  
289  
μA  
IDD_WAIT Wait mode current—core disabled, 48 MHz  
system/24 MHz bus, flash disabled (flash doze  
enabled), all peripheral clocks disabled,  
1.81  
1.89  
mA  
MCG_Lite under HIRC mode, VDD = 3.0 V  
IDD_WAIT Wait mode current—core disabled, 24 MHz  
system/12 MHz bus, flash disabled (flash doze  
enabled), all peripheral clocks disabled,  
1.22  
172  
1.39  
182  
mA  
μA  
MCG_Lite under HIRC mode, VDD = 3.0 V  
IDD_VLPW Very-low-power wait mode current, core  
disabled, 4 MHz system/ 1 MHz bus and flash,  
all peripheral clocks disabled, VDD = 3.0 V  
IDD_VLPW Very-low-power wait mode current, core  
disabled, 2 MHz system/ 0.5 MHz bus and flash,  
all peripheral clocks disabled, VDD = 3.0 V  
69  
36  
76  
40  
μA  
μA  
IDD_VLPW Very-low-power wait mode current, core  
disabled, 125 kHz system/ 31.25 kHz bus and  
flash, all peripheral clocks disabled, VDD = 3.0 V  
IDD_PSTOP2 Partial Stop 2, core and system clock disabled,  
12 MHz bus and flash, VDD = 3.0 V  
1.81  
1.00  
2.06  
1.25  
mA  
mA  
IDD_PSTOP2 Partial Stop 2, core and system clock disabled,  
flash doze enabled, 12 MHz bus, VDD = 3.0 V  
IDD_STOP Stop mode current at 3.0 V  
• at 25 °C and below  
161.93  
181.45  
236.29  
390.33  
171.82  
191.96  
271.17  
465.58  
• at 50 °C  
• at 85 °C  
• at 105 °C  
μA  
μA  
μA  
IDD_VLPS Very-low-power stop mode current at 3.0 V  
• at 25 °C and below  
3.31  
10.43  
34.14  
104.38  
5.14  
17.68  
61.06  
164.44  
• at 50 °C  
• at 85 °C  
• at 105 °C  
IDD_VLPS Very-low-power stop mode current at 1.8 V  
• at 25 °C and below  
3.21  
10.26  
33.49  
5.22  
17.62  
60.19  
• at 50 °C  
Table continues on the next page...  
12  
Kinetis KL33 Microcontroller, Rev.5, 08/2015.  
Freescale Semiconductor, Inc.  
General  
Notes  
Table 9. Power consumption operating behaviors (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
• at 85 °C  
102.92  
162.20  
• at 105 °C  
IDD_LLS Low-leakage stop mode current, all peripheral  
disable, at 3.0 V  
μA  
2.06  
4.72  
3.33  
6.85  
• at 25 °C and below  
• at 50 °C  
• at 70 °C  
• at 85 °C  
• at 105 °C  
8.13  
13.30  
24.70  
52.43  
13.34  
41.08  
IDD_LLS Low-leakage stop mode current with RTC  
current, at 3.0 V  
μA  
μA  
μA  
μA  
2.46  
5.12  
3.73  
7.25  
• at 25 °C and below  
• at 50 °C  
• at 70 °C  
• at 85 °C  
• at 105 °C  
8.53  
11.78  
18.91  
52.83  
13.74  
41.48  
IDD_LLS Low-leakage stop mode current with RTC  
current, at 1.8 V  
3
2.35  
4.91  
2.70  
6.75  
• at 25 °C and below  
• at 50 °C  
• at 70 °C  
• at 85 °C  
• at 105 °C  
8.32  
11.78  
18.21  
51.85  
13.44  
40.47  
IDD_VLLS3 Very-low-leakage stop mode 3 current, all  
peripheral disable, at 3.0 V  
1.45  
3.37  
5.76  
9.72  
30.41  
1.85  
4.39  
• at 25 °C and below  
• at 50 °C  
• at 70 °C  
• at 85 °C  
• at 105 °C  
8.48  
14.30  
37.50  
IDD_VLLS3 Very-low-leakage stop mode 3 current with RTC  
current, at 3.0 V  
3
2.05  
3.97  
2.45  
4.99  
• at 25 °C and below  
• at 50 °C  
• at 70 °C  
• at 85 °C  
• at 105 °C  
6.36  
9.08  
10.32  
31.01  
14.73  
38.10  
Table continues on the next page...  
Kinetis KL33 Microcontroller, Rev.5, 08/2015.  
13  
Freescale Semiconductor, Inc.  
General  
Table 9. Power consumption operating behaviors (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDD_VLLS3 Very-low-leakage stop mode 3 current with RTC  
current, at 1.8 V  
3
μA  
1.96  
3.86  
2.36  
5.67  
• at 25 °C and below  
• at 50 °C  
• at 70 °C  
• at 85 °C  
• at 105 °C  
6.23  
8.53  
10.21  
30.25  
13.37  
37.02  
IDD_VLLS1 Very-low-leakage stop mode 1 current all  
peripheral disabled at 3.0 V  
0.66  
1.78  
2.55  
4.83  
16.42  
0.80  
3.87  
4.26  
6.64  
20.49  
• at 25 °C and below  
• at 50°C  
• at 70°C  
• at 85°C  
• at 105 °C  
μA  
IDD_VLLS1 Very-low-leakage stop mode 1 current RTC  
enabled at 3.0 V  
3
1.26  
2.38  
3.15  
5.43  
17.02  
1.40  
4.47  
4.86  
7.24  
21.09  
• at 25 °C and below  
• at 50°C  
• at 70°C  
• at 85°C  
• at 105 °C  
μA  
IDD_VLLS1 Very-low-leakage stop mode 1 current RTC  
enabled at 1.8 V  
3
1.16  
1.96  
2.78  
4.85  
15.78  
1.30  
2.28  
3.37  
6.88  
18.81  
• at 25 °C and below  
• at 50°C  
• at 70°C  
• at 85°C  
• at 105 °C  
μA  
μA  
IDD_VLLS0 Very-low-leakage stop mode 0 current all  
peripheral disabled (SMC_STOPCTRL[PORPO]  
= 0) at 3.0 V  
0.35  
1.25  
2.53  
4.40  
16.09  
0.47  
1.44  
3.24  
5.24  
19.29  
• at 25 °C and below  
• at 50 °C  
• at 70 °C  
• at 85 °C  
• at 105 °C  
IDD_VLLS0 Very-low-leakage stop mode 0 current all  
peripheral disabled (SMC_STOPCTRL[PORPO]  
= 1) at 3 V  
14  
Freescale Semiconductor, Inc.  
Kinetis KL33 Microcontroller, Rev.5, 08/2015.  
General  
Notes  
Table 9. Power consumption operating behaviors  
Symbol Description  
• at 25 °C and below  
Min.  
Typ.  
Max.  
Unit  
0.18  
0.28  
• at 50 °C  
• at 70 °C  
• at 85 °C  
• at 105 °C  
1.09  
2.25  
1.31  
2.94  
μA  
4.25  
5.10  
15.95  
19.10  
1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device.  
See each module's specification for its supply current.  
2. MCG_Lite configured for HIRC mode. CoreMark benchmark compiled using IAR 7.10 with optimization level high,  
optimized for balanced.  
3. RTC uses external 32 kHz crystal as clock source, and the current includes ERCLK32K power consumption.  
Table 10. Low power mode peripheral adders — typical value  
Symbol  
Description  
Temperature (°C)  
Unit  
-40  
25  
50  
70  
85  
105  
IIRC8MHz  
8 MHz internal reference clock (IRC)  
adder. Measured by entering STOP or  
VLPS mode with 8 MHz IRC enabled,  
MCG_SC[FCRDIV]=000b,  
93  
93  
93  
93  
93  
93  
µA  
MCG_MC[LIRC_DIV2]=000b.  
IIRC2MHz  
2 MHz internal reference clock (IRC)  
adder. Measured by entering STOP mode  
with the 2 MHz IRC enabled,  
MCG_SC[FCRDIV]=000b,  
MCG_MC[LIRC_DIV2]=000b.  
29  
29  
29  
29  
29  
29  
µA  
µA  
IEREFSTEN4MHz  
External 4 MHz crystal clock adder.  
Measured by entering STOP or VLPS  
mode with the crystal enabled.  
206  
224  
230  
238  
245  
253  
IEREFSTEN32KHz  
External 32 kHz crystal clock adder by  
means of the OSC0_CR[EREFSTEN and  
EREFSTEN] bits. Measured by entering  
all modes with the crystal enabled.  
• VLLS1  
440  
440  
490  
510  
510  
490  
490  
490  
560  
560  
540  
540  
540  
560  
560  
560  
560  
560  
560  
560  
570  
570  
570  
610  
610  
580  
580  
680  
680  
680  
• VLLS3  
• LLS  
• VLPS  
• STOP  
nA  
ILPTMR  
LPTMR peripheral adder measured by  
placing the device in VLLS1 mode with  
LPTMR enabled using LPO.  
30  
30  
30  
85  
100  
200  
Table continues on the next page...  
Kinetis KL33 Microcontroller, Rev.5, 08/2015.  
15  
Freescale Semiconductor, Inc.  
General  
Table 10. Low power mode peripheral adders — typical value (continued)  
Symbol  
Description  
Temperature (°C)  
Unit  
-40  
25  
50  
70  
85  
105  
nA  
µA  
ICMP  
CMP peripheral adder measured by  
placing the device in VLLS1 mode with  
CMP enabled using the 6-bit DAC and a  
single external input for compare.  
22  
22  
22  
22  
22  
22  
Includes 6-bit DAC power consumption.  
IUART  
UART peripheral adder measured by  
placing the device in STOP or VLPS  
mode with selected clock source waiting  
for RX data at 115200 baud rate. Includes  
selected clock source power  
consumption.  
114  
34  
114  
34  
114  
34  
114  
34  
114  
34  
114  
34  
µA  
• IRC8M (8 MHz internal reference  
clock)  
• IRC2M (2 MHz internal reference  
clock)  
ITPM  
TPM peripheral adder measured by  
placing the device in STOP or VLPS  
mode with selected clock source  
configured for output compare generating  
100 Hz clock signal. No load is placed on  
the I/O generating the clock signal.  
Includes selected clock source and I/O  
switching currents.  
147  
42  
147  
42  
147  
42  
147  
42  
147  
42  
147  
42  
µA  
• IRC8M (8 MHz internal reference  
clock)  
• IRC2M (2 MHz internal reference  
clock)  
IBG  
Bandgap adder when BGEN bit is set and  
device is placed in VLPx or VLLSx mode.  
45  
45  
45  
45  
45  
45  
µA  
µA  
IADC  
ADC peripheral adder combining the  
measured values at VDD and VDDA by  
placing the device in STOP or VLPS  
mode. ADC is configured for low power  
mode using the internal clock and  
continuous conversions.  
330  
330  
330  
330  
330  
330  
ILCD  
LCD peripheral adder measured by  
placing the device in VLLS1 mode with  
external 32 kHz crystal enabled by means  
of the OSC0_CR[EREFSTEN,  
4.5  
4.5  
4.5  
4.5  
4.5  
4.5  
µA  
EREFSTEN] bits. VIREG disabled,  
resistor bias network enabled, 1/8 duty  
cycle, 8 x 36 configuration for driving 288  
Segments, 32 Hz frame rate, no LCD  
glass connected. Includes ERCLK32K (32  
kHz external crystal) power consumption.  
16  
Freescale Semiconductor, Inc.  
Kinetis KL33 Microcontroller, Rev.5, 08/2015.  
General  
2.2.5.1 Diagram: Typical IDD_RUN operating behavior  
The following data was measured under these conditions:  
• MCG-Lite in HIRC for run mode, and LIRC for VLPR mode  
• No GPIOs toggled  
• Code execution from flash  
• For the ALLOFF curve, all peripheral clocks are disabled except FTFA  
Figure 2. Run mode supply current vs. core frequency  
Kinetis KL33 Microcontroller, Rev.5, 08/2015.  
17  
Freescale Semiconductor, Inc.  
General  
18  
Kinetis KL33 Microcontroller, Rev.5, 08/2015.  
Freescale Semiconductor, Inc.  
General  
Figure 3. VLPR mode current vs. core frequency  
2.2.6 EMC radiated emissions operating behaviors  
Table 11. EMC radiated emissions operating behaviors for 64-pin LQFP  
package  
Symbol  
Description  
Frequency  
band  
Typ.  
Unit  
Notes  
(MHz)  
VRE1  
VRE2  
Radiated emissions voltage, band 1  
Radiated emissions voltage, band 2  
Radiated emissions voltage, band 3  
Radiated emissions voltage, band 4  
IEC level  
0.15–50  
50–150  
11  
12  
10  
6
dBμV  
dBμV  
dBμV  
dBμV  
1, 2  
VRE3  
150–500  
500–1000  
0.15–1000  
VRE4  
VRE_IEC  
N
2, 3  
1. Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions,  
150 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits -  
Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM  
Kinetis KL33 Microcontroller, Rev.5, 08/2015.  
19  
Freescale Semiconductor, Inc.  
General  
Cell and Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic  
application code. The reported emission level is the value of the maximum measured emission, rounded up to the next  
whole number, from among the measured orientations in each frequency range.  
2. VDD = 3.3 V, TA = 25 °C, fOSC = IRC48M, fSYS = 48 MHz, fBUS = 24 MHz  
3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and  
Wideband TEM Cell Method  
2.2.7 Designing with radiated emissions in mind  
To find application notes that provide guidance on designing your system to minimize  
interference from radiated emissions:  
1. Go to www.freescale.com.  
2. Perform a keyword search for “EMC design.”  
2.2.8 Capacitance attributes  
Table 12. Capacitance attributes  
Symbol  
Description  
Min.  
Max.  
Unit  
CIN  
Input capacitance  
7
pF  
2.3 Switching specifications  
2.3.1 Device clock specifications  
Table 13. Device clock specifications  
Symbol  
Description  
Min.  
Max.  
Unit  
Normal run mode  
fSYS  
fBUS  
fFLASH  
fLPTMR  
System and core clock1  
Bus clock1  
Flash clock1  
48  
24  
24  
24  
MHz  
MHz  
MHz  
MHz  
LPTMR clock  
VLPR and VLPS modes2  
fSYS  
fBUS  
fFLASH  
fLPTMR  
System and core clock  
Bus clock  
4
1
MHz  
MHz  
MHz  
MHz  
MHz  
Flash clock  
LPTMR clock3  
1
24  
16  
fLPTMR_ERCLK LPTMR external reference clock  
Table continues on the next page...  
20  
Kinetis KL33 Microcontroller, Rev.5, 08/2015.  
Freescale Semiconductor, Inc.  
General  
Table 13. Device clock specifications (continued)  
Symbol  
Description  
Min.  
Max.  
Unit  
fosc_hi_2  
Oscillator crystal or resonator frequency — high frequency  
mode (high range) (MCG_C2[RANGE]=1x)  
16  
MHz  
fTPM  
TPM asynchronous clock  
8
8
MHz  
MHz  
fLPUART0/1  
LPUART0/1 asynchronous clock  
1. The maximum value of system clock, core clock, bus clock, and flash clock under normal run mode can be 3% higher  
than the specified maximum frequency when IRC 48MHz is used as the clock source.  
2. The frequency limitations in VLPR and VLPS modes here override any frequency specification listed in the timing  
specification for any other module. These same frequency limits apply to VLPS, whether VLPS was entered from RUN  
or from VLPR.  
3. The LPTMR can be clocked at this speed in VLPR or VLPS only when the source is an external pin.  
2.3.2 General switching specifications  
These general-purpose specifications apply to all signals configured for GPIO and  
UART signals.  
Table 14. General switching specifications  
Description  
Min.  
Max.  
Unit  
Notes  
GPIO pin interrupt pulse width (digital glitch filter disabled)  
— Synchronous path  
1.5  
Bus clock  
cycles  
1
External RESET and NMI pin interrupt pulse width —  
Asynchronous path  
100  
ns  
2
GPIO pin interrupt pulse width — Asynchronous path  
Port rise and fall time  
16  
ns  
ns  
2
3
36  
1. The synchronous and asynchronous timing must be met.  
2. This is the shortest pulse that is guaranteed to be recognized.  
3. 75 pF load  
2.4 Thermal specifications  
2.4.1 Thermal operating requirements  
Table 15. Thermal operating requirements  
Symbol  
TJ  
Description  
Min.  
–40  
–40  
Max.  
125  
Unit  
°C  
Notes  
Die junction temperature  
Ambient temperature  
TA  
105  
°C  
1
Kinetis KL33 Microcontroller, Rev.5, 08/2015.  
21  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
1. Maximum TA can be exceeded only if the user ensures that TJ does not exceed the maximum. The simplest method to  
determine TJ is: TJ = TA + RθJA × chip power dissipation.  
2.4.2 Thermal attributes  
Table 16. Thermal attributes  
Board type  
Single-layer (1S)  
Four-layer (2s2p)  
Single-layer (1S)  
Four-layer (2s2p)  
Symbol  
RθJA  
Description  
64 LQFP  
64  
MAPBGA  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Notes  
Thermal resistance, junction to  
ambient (natural convection)  
70  
51  
58  
45  
33  
20  
4
50.3  
42.9  
41.4  
38.0  
39.6  
27.3  
0.4  
1
RθJA  
Thermal resistance, junction to  
ambient (natural convection)  
RθJMA  
RθJMA  
RθJB  
Thermal resistance, junction to  
ambient (200 ft./min. air speed)  
Thermal resistance, junction to  
ambient (200 ft./min. air speed)  
Thermal resistance, junction to  
board  
2
3
4
RθJC  
Thermal resistance, junction to  
case  
ΨJT  
Thermal characterization  
parameter, junction to package top  
outside center (natural convection)  
ΨJB  
Thermal characterization  
-
12.6  
°C/W  
5
parameter, junction to package  
bottom (natural convection)  
1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental  
Conditions—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method  
Environmental Conditions—Forced Convection (Moving Air).  
2. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental  
Conditions—Junction-to-Board.  
3. Determined according to Method 1012.1 of MIL-STD 883, Test Method Standard, Microcircuits, with the cold plate  
temperature used for the case temperature. The value includes the thermal resistance of the interface material between  
the top of the package and the cold plate.  
4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental  
Conditions—Natural Convection (Still Air).  
5. Thermal characterization parameter indicating the temperature difference between package bottom center and the  
junction temperature per JEDEC JESD51-12. When Greek letters are not available, the thermal characterization  
parameter is written as Psi-JB.  
3 Peripheral operating requirements and behaviors  
3.1 Core modules  
22  
Kinetis KL33 Microcontroller, Rev.5, 08/2015.  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
3.1.1 SWD electricals  
Table 17. SWD full voltage range electricals  
Symbol  
Description  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
3.6  
V
J1  
SWD_CLK frequency of operation  
• Serial wire debug  
0
25  
MHz  
ns  
J2  
J3  
SWD_CLK cycle period  
SWD_CLK clock pulse width  
• Serial wire debug  
1/J1  
20  
ns  
J4  
J9  
SWD_CLK rise and fall times  
10  
0
3
ns  
ns  
ns  
ns  
ns  
SWD_DIO input data setup time to SWD_CLK rise  
SWD_DIO input data hold time after SWD_CLK rise  
SWD_CLK high to SWD_DIO data valid  
SWD_CLK high to SWD_DIO high-Z  
32  
J10  
J11  
J12  
5
J2  
J4  
J3  
J3  
SWD_CLK (input)  
J4  
Figure 4. Serial wire clock input timing  
Kinetis KL33 Microcontroller, Rev.5, 08/2015.  
23  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
SWD_CLK  
SWD_DIO  
J9  
J10  
Input data valid  
J11  
Output data valid  
SWD_DIO  
J12  
SWD_DIO  
J11  
Output data valid  
SWD_DIO  
Figure 5. Serial wire data timing  
3.2 System modules  
There are no specifications necessary for the device's system modules.  
3.3 Clock modules  
3.3.1 MCG-Lite specifications  
Table 18. IRC48M specification  
Symbol  
IDD  
Description  
Supply current  
Output frequency  
Min.  
Typ.  
400  
48  
Max.  
500  
Unit  
µA  
Notes  
fIRC  
MHz  
Δfirc48m_ol_lv  
Open loop total deviation of IRC48M  
frequency at low voltage  
(VDD=1.71V-1.89V) over temperature  
1
0.5  
1.5  
%firc48m  
Δfirc48m_ol_hv Open loop total deviation of IRC48M  
frequency at high voltage  
1
0.5  
1.0  
%firc48m  
(VDD=1.89V-3.6V) over temperature  
Table continues on the next page...  
Kinetis KL33 Microcontroller, Rev.5, 08/2015.  
24  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 18. IRC48M specification (continued)  
Symbol  
Tj  
Description  
Period jitter (RMS)  
Startup time  
Min.  
Typ.  
35  
Max.  
150  
3
Unit  
ps  
Notes  
Tsu  
2
µs  
1. The maximum value represents characterized results equivalent to mean plus or minus three times the standard  
deviation (mean +/-3sigma).  
Table 19. IRC8M/2M specification  
Symbol  
IDD_2M  
Description  
Supply current in 2 MHz mode  
Supply current in 8 MHz mode  
Output frequency  
Min.  
Typ.  
14  
30  
2
Max.  
17  
Unit  
µA  
Notes  
IDD_8M  
35  
µA  
fIRC_2M  
fIRC_8M  
fIRC_T_2M  
fIRC_T_8M  
Tsu_2M  
MHz  
MHz  
%fIRC  
%fIRC  
µs  
Output frequency  
8
Output frequency range (trimmed)  
Output frequency range (trimmed)  
Startup time  
3
3
12.5  
12.5  
Tsu_8M  
Startup time  
µs  
Kinetis KL33 Microcontroller, Rev.5, 08/2015.  
25  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Figure 6. IRC8M Frequency Drift vs Temperature curve  
3.3.2 Oscillator electrical specifications  
3.3.2.1 Oscillator DC electrical specifications  
Table 20. Oscillator DC electrical specifications  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
VDD  
Supply voltage  
1.71  
3.6  
V
IDDOSC  
Supply current — low-power mode (HGO=0)  
1
• 32 kHz  
500  
200  
300  
950  
1.2  
nA  
μA  
μA  
μA  
mA  
• 4 MHz  
• 8 MHz (RANGE=01)  
• 16 MHz  
Table continues on the next page...  
26  
Freescale Semiconductor, Inc.  
Kinetis KL33 Microcontroller, Rev.5, 08/2015.  
Peripheral operating requirements and behaviors  
Table 20. Oscillator DC electrical specifications (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
• 24 MHz  
1.5  
mA  
• 32 MHz  
IDDOSC  
Supply current — high gain mode (HGO=1)  
1
• 32 kHz  
25  
400  
500  
2.5  
3
μA  
μA  
• 4 MHz  
• 8 MHz (RANGE=01)  
• 16 MHz  
μA  
mA  
mA  
mA  
• 24 MHz  
• 32 MHz  
4
Cx  
Cy  
RF  
EXTAL load capacitance  
XTAL load capacitance  
2, 3  
2, 3  
2, 4  
Feedback resistor — low-frequency, low-power  
mode (HGO=0)  
MΩ  
MΩ  
MΩ  
MΩ  
kΩ  
Feedback resistor — low-frequency, high-gain  
mode (HGO=1)  
10  
Feedback resistor — high-frequency, low-power  
mode (HGO=0)  
Feedback resistor — high-frequency, high-gain  
mode (HGO=1)  
1
RS  
Series resistor — low-frequency, low-power  
mode (HGO=0)  
Series resistor — low-frequency, high-gain  
mode (HGO=1)  
200  
kΩ  
Series resistor — high-frequency, low-power  
mode (HGO=0)  
kΩ  
Series resistor — high-frequency, high-gain  
mode (HGO=1)  
0
kΩ  
V
5
Vpp  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — low-frequency, low-power mode  
(HGO=0)  
0.6  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — low-frequency, high-gain mode  
(HGO=1)  
VDD  
0.6  
V
V
V
Peak-to-peak amplitude of oscillation (oscillator  
mode) — high-frequency, low-power mode  
(HGO=0)  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — high-frequency, high-gain mode  
(HGO=1)  
VDD  
1. VDD=3.3 V, Temperature =25 °C  
2. See crystal or resonator manufacturer's recommendation  
Kinetis KL33 Microcontroller, Rev.5, 08/2015.  
27  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
3. Cx,Cy can be provided by using the integrated capacitors when the low frequency oscillator (RANGE = 00) is used. For  
all other cases external capacitors must be used.  
4. When low power mode is selected, RF is integrated and must not be attached externally.  
5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to  
any other devices.  
3.3.2.2 Oscillator frequency specifications  
Table 21. Oscillator frequency specifications  
Symbol Description  
fosc_lo Oscillator crystal or resonator frequency — low-  
frequency mode (MCG_C2[RANGE]=00)  
Min.  
Typ.  
Max.  
Unit  
Notes  
32  
40  
kHz  
fosc_hi_1 Oscillator crystal or resonator frequency — high-  
frequency mode (low range)  
3
8
8
MHz  
MHz  
(MCG_C2[RANGE]=01)  
fosc_hi_2 Oscillator crystal or resonator frequency — high  
frequency mode (high range)  
32  
(MCG_C2[RANGE]=1x)  
fec_extal Input clock frequency (external clock mode)  
tdc_extal Input clock duty cycle (external clock mode)  
40  
50  
48  
60  
MHz  
%
1, 2  
3, 4  
tcst  
Crystal startup time — 32 kHz low-frequency,  
low-power mode (HGO=0)  
750  
ms  
Crystal startup time — 32 kHz low-frequency,  
high-gain mode (HGO=1)  
250  
0.6  
ms  
ms  
Crystal startup time — 8 MHz high-frequency  
(MCG_C2[RANGE]=01), low-power mode  
(HGO=0)  
Crystal startup time — 8 MHz high-frequency  
(MCG_C2[RANGE]=01), high-gain mode  
(HGO=1)  
1
ms  
1. Other frequency limits may apply when external clock is being used as a reference for the FLL  
2. When transitioning from FEI or FBI to FBE mode, restrict the frequency of the input clock so that, when it is divided by  
FRDIV, it remains within the limits of the DCO input clock frequency.  
3. Proper PC board layout procedures must be followed to achieve specifications.  
4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S  
register being set.  
3.4 Memories and memory interfaces  
3.4.1 Flash electrical specifications  
This section describes the electrical characteristics of the flash memory module.  
28  
Kinetis KL33 Microcontroller, Rev.5, 08/2015.  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
3.4.1.1 Flash timing specifications — program and erase  
The following specifications represent the amount of time the internal charge pumps  
are active and do not include command overhead.  
Table 22. NVM program/erase timing specifications  
Symbol Description  
Min.  
Typ.  
7.5  
13  
Max.  
18  
Unit  
μs  
Notes  
thvpgm4 Longword Program high-voltage time  
thversscr Sector Erase high-voltage time  
thversblk128k Erase Block high-voltage time for 128 KB  
1
113  
452  
ms  
ms  
52  
1
1. Maximum time based on expectations at cycling end-of-life.  
3.4.1.2 Flash timing specifications — commands  
Table 23. Flash command timing specifications  
Symbol Description  
Read 1s Block execution time  
• 128 KB program flash  
Min.  
Typ.  
Max.  
Unit  
Notes  
1
trd1blk128k  
1.7  
ms  
trd1sec1k Read 1s Section execution time (flash sector)  
tpgmchk Program Check execution time  
65  
60  
45  
μs  
μs  
μs  
μs  
1
1
trdrsrc  
tpgm4  
Read Resource execution time  
Program Longword execution time  
Erase Flash Block execution time  
• 128 KB program flash  
30  
1
145  
2
tersblk128k  
88  
600  
ms  
tersscr  
trd1all  
Erase Flash Sector execution time  
Read 1s All Blocks execution time  
Read Once execution time  
14  
114  
1.8  
ms  
ms  
μs  
2
1
trdonce  
25  
1
tpgmonce Program Once execution time  
65  
μs  
2
tersall  
tvfykey  
tersallu  
Erase All Blocks execution time  
175  
1300  
30  
ms  
μs  
Verify Backdoor Access Key execution time  
Erase All Blocks Unsecure execution time  
1
175  
1300  
ms  
2
1. Assumes 25 MHz flash clock frequency.  
2. Maximum times for erase parameters based on expectations at cycling end-of-life.  
Kinetis KL33 Microcontroller, Rev.5, 08/2015.  
29  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
3.4.1.3 Flash high voltage current behaviors  
Table 24. Flash high voltage current behaviors  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
IDD_PGM  
Average current adder during high voltage  
flash programming operation  
2.5  
6.0  
mA  
IDD_ERS  
Average current adder during high voltage  
flash erase operation  
1.5  
4.0  
mA  
3.4.1.4 Reliability specifications  
Table 25. NVM reliability specifications  
Symbol Description  
Min.  
Program Flash  
Typ.1  
Max.  
Unit  
Notes  
tnvmretp10k Data retention after up to 10 K cycles  
tnvmretp1k Data retention after up to 1 K cycles  
nnvmcycp Cycling endurance  
5
50  
years  
years  
cycles  
2
20  
100  
50 K  
10 K  
1. Typical data retention values are based on measured response accelerated at high temperature and derated to a  
constant 25 °C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in  
Engineering Bulletin EB619.  
2. Cycling endurance represents number of program/erase cycles at –40 °C ≤ Tj ≤ 125 °C.  
3.5 Security and integrity modules  
There are no specifications necessary for the device's security and integrity modules.  
3.6 Analog  
3.6.1 ADC electrical specifications  
Using differential inputs can achieve better system accuracy than using single-end  
inputs.  
30  
Kinetis KL33 Microcontroller, Rev.5, 08/2015.  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
3.6.1.1 16-bit ADC operating conditions  
Table 26. 16-bit ADC operating conditions  
Symbol Description  
VDDA Supply voltage  
ΔVDDA Supply voltage  
Conditions  
Min.  
1.71  
-100  
-100  
1.13  
Typ.1  
Max.  
3.6  
Unit  
V
Notes  
Absolute  
2
Delta to VDD (VDD – VDDA  
)
0
+100  
+100  
VDDA  
mV  
mV  
V
ΔVSSA  
Ground voltage Delta to VSS (VSS – VSSA  
)
0
2
VREFH  
ADC reference  
voltage high  
VDDA  
3
VREFL  
VADIN  
ADC reference  
voltage low  
VSSA  
VSSA  
VSSA  
V
V
3
Input voltage  
• 16-bit differential mode  
• All other modes  
• 16-bit mode  
VREFL  
VREFL  
31/32 ×  
VREFH  
VREFH  
CADIN  
Input  
capacitance  
8
4
10  
5
pF  
• 8-bit / 10-bit / 12-bit  
modes  
RADIN  
RAS  
Input series  
resistance  
2
5
5
kΩ  
kΩ  
4
Analog source  
resistance  
(external)  
13-bit / 12-bit modes  
fADCK < 4 MHz  
fADCK  
fADCK  
Crate  
ADC conversion ≤ 13-bit mode  
clock frequency  
1.0  
2.0  
24  
MHz  
MHz  
5
5
6
ADC conversion 16-bit mode  
clock frequency  
12.0  
ADC conversion ≤ 13-bit modes  
rate  
No ADC hardware averaging  
20.000  
37.037  
1200  
ksps  
ksps  
Continuous conversions  
enabled, subsequent  
conversion time  
Crate  
ADC conversion 16-bit mode  
6
rate  
No ADC hardware averaging  
461.467  
Continuous conversions  
enabled, subsequent  
conversion time  
1. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 1.0 MHz, unless otherwise stated. Typical values are for  
reference only, and are not tested in production.  
2. DC potential difference.  
3. VREFH can act as VREF_OUT when VREFV1 module is enabled.  
4. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as  
possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The  
RAS/CAS time constant should be kept to < 1 ns.  
5. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.  
6. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.  
Kinetis KL33 Microcontroller, Rev.5, 08/2015.  
31  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
SIMPLIFIED  
INPUT PIN EQUIVALENT  
CIRCUIT  
ZADIN  
SIMPLIFIED  
CHANNEL SELECT  
CIRCUIT  
Pad  
ZAS  
leakage  
due to  
input  
ADC SAR  
ENGINE  
RAS  
RADIN  
protection  
VADIN  
CAS  
VAS  
RADIN  
RADIN  
RADIN  
INPUT PIN  
INPUT PIN  
INPUT PIN  
CADIN  
Figure 7. ADC input impedance equivalency diagram  
3.6.1.2 16-bit ADC electrical characteristics  
Table 27. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA  
)
Symbol Description  
Conditions1  
Min.  
0.215  
1.2  
Typ.2  
Max.  
1.7  
3.9  
6.1  
7.3  
9.5  
Unit  
mA  
Notes  
IDDA_ADC Supply current  
3
ADC  
asynchronous  
• ADLPC = 1, ADHSC = 0  
• ADLPC = 1, ADHSC = 1  
• ADLPC = 0, ADHSC = 0  
• ADLPC = 0, ADHSC = 1  
2.4  
4.0  
5.2  
6.2  
MHz  
MHz  
MHz  
MHz  
tADACK =  
1/fADACK  
2.4  
clock source  
fADACK  
3.0  
4.4  
Sample Time  
See Reference Manual chapter for sample times  
TUE  
DNL  
Total  
unadjusted error  
• 12-bit modes  
• <12-bit modes  
4
6.8  
2.1  
LSB4  
LSB4  
5
5
1.4  
Differential non-  
linearity  
• 12-bit modes  
• <12-bit modes  
• 12-bit modes  
• <12-bit modes  
0.7  
0.2  
1.0  
0.5  
–1.1 to  
+1.9  
–0.3 to 0.5  
INL  
Integral non-  
linearity  
–2.7 to  
+1.9  
LSB4  
5
Table continues on the next page...  
32  
Freescale Semiconductor, Inc.  
Kinetis KL33 Microcontroller, Rev.5, 08/2015.  
Peripheral operating requirements and behaviors  
Table 27. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)  
Symbol Description  
Conditions1  
Min.  
Typ.2  
Max.  
Unit  
Notes  
–0.7 to  
+0.5  
EFS  
EQ  
Full-scale error  
• 12-bit modes  
• <12-bit modes  
• 16-bit modes  
• ≤13-bit modes  
–4  
–1.4  
–1 to 0  
–5.4  
–1.8  
LSB4  
LSB4  
VADIN  
VDDA  
=
5
Quantization  
error  
0.5  
ENOB Effective  
number of bits  
16-bit differential mode  
• Avg = 32  
6
bits  
bits  
12.8  
11.9  
14.5  
13.8  
• Avg = 4  
bits  
bits  
16-bit single-ended mode  
• Avg = 32  
12.2  
11.4  
13.9  
13.1  
• Avg = 4  
Signal-to-noise See ENOB  
plus distortion  
SINAD  
THD  
6.02 × ENOB + 1.76  
dB  
Total harmonic 16-bit differential mode  
7
7
dB  
dB  
distortion  
-94  
-85  
• Avg = 32  
16-bit single-ended mode  
• Avg = 32  
SFDR  
Spurious free  
dynamic range  
16-bit differential mode  
• Avg = 32  
dB  
dB  
82  
78  
95  
90  
16-bit single-ended mode  
• Avg = 32  
EIL  
Input leakage  
error  
IIn × RAS  
mV  
IIn =  
leakage  
current  
(refer to  
the MCU's  
voltage  
and  
current  
operating  
ratings)  
Temp sensor  
slope  
Across the full temperature range  
of the device  
1.55  
706  
1.62  
716  
1.69  
726  
mV/°C  
mV  
8
VTEMP25 Temp sensor  
voltage  
25 °C  
8
1. All accuracy numbers assume the ADC is calibrated with VREFH = VDDA  
Kinetis KL33 Microcontroller, Rev.5, 08/2015.  
33  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
2. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 2.0 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low  
power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with 1  
MHz ADC conversion clock speed.  
4. 1 LSB = (VREFH - VREFL)/2N  
5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)  
6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.  
7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.  
8. ADC conversion clock < 3 MHz  
Typical ADC 16-bit Differential ENOB vs ADC Clock  
100Hz, 90% FS Sine Input  
15.00  
14.70  
14.40  
14.10  
13.80  
13.50  
13.20  
12.90  
12.60  
Hardware Averaging Disabled  
Averaging of 4 samples  
12.30  
12.00  
Averaging of 8 samples  
Averaging of 32 samples  
1
2
3
4
5
6
7
8
9
10  
11  
12  
ADC Clock Frequency (MHz)  
Figure 8. Typical ENOB vs. ADC_CLK for 16-bit differential mode  
Typical ADC 16-bit Single-Ended ENOB vs ADC Clock  
100Hz, 90% FS Sine Input  
14.00  
13.75  
13.50  
13.25  
13.00  
12.75  
12.50  
12.25  
12.00  
11.75  
11.50  
11.25  
11.00  
Averaging of 4 samples  
Averaging of 32 samples  
1
2
3
4
5
6
7
8
9
10  
11  
12  
ADC Clock Frequency (MHz)  
Figure 9. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode  
34  
Kinetis KL33 Microcontroller, Rev.5, 08/2015.  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
3.6.2 Voltage reference electrical specifications  
Table 28. VREF full-range operating requirements  
Symbol  
VDDA  
TA  
Description  
Supply voltage  
Temperature  
Min.  
Max.  
Unit  
V
Notes  
3.6  
Operating temperature  
range of the device  
°C  
CL  
Output load capacitance  
100  
nF  
1, 2  
1. CL must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external  
reference.  
2. The load capacitance should not exceed +/-25% of the nominal specified CL value over the operating temperature  
range of the device.  
Table 29 is tested under the condition of setting VREF_TRM[CHOPEN],  
VREF_SC[REGEN] and VREF_SC[ICOMPEN] bits to 1.  
Table 29. VREF full-range operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
Vout  
Voltage reference output with factory trim at  
1.1915  
1.195  
1.1977  
V
1
nominal VDDA and temperature=25C  
Voltage reference output — factory trim  
Voltage reference output — user trim  
Voltage reference trim step  
Vout  
Vout  
1.1584  
1.193  
1.2376  
1.197  
V
V
1
1
1
1
Vstep  
Vtdrift  
0.5  
mV  
mV  
Temperature drift (Vmax -Vmin across the full  
temperature range: 0 to 70°C)  
50  
Ibg  
Ilp  
Bandgap only current  
80  
360  
1
µA  
uA  
mA  
µV  
1
1
Low-power buffer current  
High-power buffer current  
Ihp  
1
ΔVLOAD Load regulation  
• current = 1.0 mA  
1, 2  
200  
Tstup  
Buffer startup time  
100  
35  
µs  
Tchop_osc_st Internal bandgap start-up delay with chop  
ms  
oscillator enabled  
up  
Vvdrift  
Voltage drift (Vmax -Vmin across the full  
voltage range)  
2
mV  
1
1. See the chip's Reference Manual for the appropriate settings of the VREF Status and Control register.  
2. Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load  
Kinetis KL33 Microcontroller, Rev.5, 08/2015.  
35  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 30. VREF limited-range operating requirements  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
TA  
Temperature  
0
50  
°C  
Table 31. VREF limited-range operating behaviors  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
Vout  
Voltage reference output with factory trim  
1.173  
1.225  
V
3.6.3 CMP and 6-bit DAC electrical specifications  
Table 32. Comparator and 6-bit DAC electrical specifications  
Symbol  
VDD  
Description  
Min.  
1.71  
Typ.  
Max.  
3.6  
Unit  
V
Supply voltage  
IDDHS  
IDDLS  
VAIN  
Supply current, High-speed mode (EN=1, PMODE=1)  
Supply current, low-speed mode (EN=1, PMODE=0)  
Analog input voltage  
200  
20  
μA  
μA  
V
VSS – 0.3  
VDD  
20  
VAIO  
Analog input offset voltage  
Analog comparator hysteresis1  
• CR0[HYSTCTR] = 00  
mV  
VH  
5
mV  
mV  
mV  
mV  
10  
20  
30  
• CR0[HYSTCTR] = 01  
• CR0[HYSTCTR] = 10  
• CR0[HYSTCTR] = 11  
VCMPOh  
VCMPOl  
tDHS  
Output high  
VDD – 0.5  
50  
250  
7
0.5  
200  
600  
40  
V
V
Output low  
Propagation delay, high-speed mode (EN=1, PMODE=1)  
Propagation delay, low-speed mode (EN=1, PMODE=0)  
Analog comparator initialization delay2  
6-bit DAC current adder (enabled)  
6-bit DAC integral non-linearity  
20  
ns  
tDLS  
80  
ns  
μs  
IDAC6b  
INL  
μA  
LSB3  
LSB  
–0.5  
–0.3  
0.5  
0.3  
DNL  
6-bit DAC differential non-linearity  
1. Typical hysteresis is measured with input voltage range limited to 0.6 to VDD–0.6 V.  
2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to  
CMP_DACCR[DACEN], CMP_DACCR[VRSEL], CMP_DACCR[VOSEL], CMP_MUXCR[PSEL], and  
CMP_MUXCR[MSEL]) and the comparator output settling to a stable level.  
3. 1 LSB = Vreference/64  
36  
Kinetis KL33 Microcontroller, Rev.5, 08/2015.  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
HYSTCTR  
Setting  
00  
01  
10  
11  
0.02  
0.01  
0
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
Vin level (V)  
Figure 10. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0)  
Kinetis KL33 Microcontroller, Rev.5, 08/2015.  
37  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
0.18  
0.16  
0.14  
0.12  
HYSTCTR  
Setting  
0.1  
00  
01  
10  
11  
0.08  
0.06  
0.04  
0.02  
0
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
Vin level (V)  
Figure 11. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1)  
3.6.4 12-bit DAC electrical characteristics  
3.6.4.1 12-bit DAC operating requirements  
Table 33. 12-bit DAC operating requirements  
Symbol  
VDDA  
VDACR  
CL  
Desciption  
Min.  
Max.  
3.6  
3.6  
100  
1
Unit  
V
Notes  
Supply voltage  
Reference voltage  
Output load capacitance  
Output load current  
1.13  
V
1
2
pF  
mA  
IL  
1. The DAC reference can be selected to be VDDA or VREFH  
.
2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC.  
38  
Kinetis KL33 Microcontroller, Rev.5, 08/2015.  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
3.6.4.2 12-bit DAC operating behaviors  
Table 34. 12-bit DAC operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
250  
Unit  
Notes  
IDDA_DACL Supply current — low-power mode  
μA  
P
IDDA_DACH Supply current — high-speed mode  
100  
15  
900  
200  
30  
μA  
μs  
μs  
μs  
P
tDACLP Full-scale settling time (0x080 to 0xF7F) —  
low-power mode  
1
1
1
tDACHP Full-scale settling time (0x080 to 0xF7F) —  
high-power mode  
tCCDACLP Code-to-code settling time (0xBF8 to  
0xC08) — low-power mode and high-  
speed mode  
0.7  
1
Vdacoutl DAC output voltage range low — high-  
speed mode, no load, DAC set to 0x000  
100  
mV  
mV  
Vdacouth DAC output voltage range high — high-  
speed mode, no load, DAC set to 0xFFF  
VDACR  
−100  
VDACR  
INL  
DNL  
DNL  
Integral non-linearity error — high speed  
mode  
8
1
1
LSB  
LSB  
LSB  
2
3
4
Differential non-linearity error — VDACR > 2  
V
Differential non-linearity error — VDACR  
VREF_OUT  
=
VOFFSET Offset error  
EG Gain error  
PSRR Power supply rejection ratio, VDDA ≥ 2.4 V  
60  
0.4  
0.1  
0.8  
0.6  
90  
%FSR  
%FSR  
dB  
5
5
TCO  
TGE  
Rop  
SR  
Temperature coefficient offset voltage  
Temperature coefficient gain error  
Output resistance (load = 3 kΩ)  
Slew rate -80hF7Fh80h  
3.7  
μV/C  
%FSR/C  
Ω
6
0.000421  
250  
V/μs  
• High power (SPHP  
)
1.2  
1.7  
• Low power (SPLP  
)
0.05  
0.12  
BW  
3dB bandwidth  
kHz  
• High power (SPHP  
• Low power (SPLP  
)
550  
40  
)
1. Settling within 1 LSB  
2. The INL is measured for 0 + 100 mV to VDACR −100 mV  
3. The DNL is measured for 0 + 100 mV to VDACR −100 mV  
4. The DNL is measured for 0 + 100 mV to VDACR −100 mV with VDDA > 2.4 V  
5. Calculated by a best fit curve from VSS + 100 mV to VDACR − 100 mV  
6. VDDA = 3.0 V, reference select set for VDDA (DACx_CO:DACRFS = 1), high power mode (DACx_C0:LPEN = 0), DAC  
set to 0x800, temperature range is across the full range of the device  
Kinetis KL33 Microcontroller, Rev.5, 08/2015.  
39  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
8
6
4
2
0
-2  
-4  
-6  
-8  
0
500  
1000  
1500  
2000  
2500  
3000  
3500  
4000  
Digital Code  
Figure 12. Typical INL error vs. digital code  
40  
Freescale Semiconductor, Inc.  
Kinetis KL33 Microcontroller, Rev.5, 08/2015.  
Peripheral operating requirements and behaviors  
1.499  
1.4985  
1.498  
1.4975  
1.497  
1.4965  
1.496  
55  
85  
25  
105  
125  
-40  
Temperature °C  
Figure 13. Offset at half scale vs. temperature  
3.7 Timers  
See General switching specifications.  
3.8 Communication interfaces  
Kinetis KL33 Microcontroller, Rev.5, 08/2015.  
41  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
3.8.1 SPI switching specifications  
The Serial Peripheral Interface (SPI) provides a synchronous serial bus with master and  
slave operations. Many of the transfer attributes are programmable. The following  
tables provide timing characteristics for classic SPI timing modes. See the SPI chapter  
of the chip's Reference Manual for information about the modified transfer formats used  
for communicating with slower peripheral devices.  
All timing is shown with respect to 20% VDD and 80% VDD thresholds, unless noted, as  
well as input signal transitions of 3 ns and a 30 pF maximum load on all SPI pins.  
Table 35. SPI master mode timing on slew rate disabled pads  
Num.  
Symbol Description  
Min.  
Max.  
Unit  
Hz  
Note  
1
2
fop  
Frequency of operation  
fperiph/2048  
2 x tperiph  
fperiph/2  
1
2
tSPSCK  
SPSCK period  
2048 x  
tperiph  
ns  
3
4
5
tLead  
tLag  
Enable lead time  
Enable lag time  
1/2  
1/2  
tSPSCK  
tSPSCK  
ns  
tWSPSCK Clock (SPSCK) high or low time  
tperiph - 30  
1024 x  
tperiph  
6
7
tSU  
tHI  
Data setup time (inputs)  
Data hold time (inputs)  
Data valid (after SPSCK edge)  
Data hold time (outputs)  
Rise time input  
18  
0
ns  
ns  
ns  
ns  
ns  
15  
8
tv  
0
9
tHO  
tRI  
10  
tperiph - 25  
tFI  
Fall time input  
11  
tRO  
tFO  
Rise time output  
25  
ns  
Fall time output  
1. For SPI0 fperiph is the bus clock (fBUS). For SPI1 fperiph is the system clock (fSYS).  
2. tperiph = 1/fperiph  
Table 36. SPI master mode timing on slew rate enabled pads  
Num.  
Symbol Description  
Min.  
Max.  
Unit  
Hz  
Note  
1
2
fop  
Frequency of operation  
fperiph/2048  
2 x tperiph  
fperiph/2  
1
2
tSPSCK  
SPSCK period  
2048 x  
tperiph  
ns  
3
4
5
tLead  
tLag  
Enable lead time  
Enable lag time  
1/2  
1/2  
tSPSCK  
tSPSCK  
ns  
tWSPSCK Clock (SPSCK) high or low time  
tperiph - 30  
1024 x  
tperiph  
6
7
tSU  
tHI  
Data setup time (inputs)  
Data hold time (inputs)  
96  
0
ns  
ns  
Table continues on the next page...  
Kinetis KL33 Microcontroller, Rev.5, 08/2015.  
42  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 36. SPI master mode timing on slew rate enabled pads (continued)  
Num.  
Symbol Description  
Min.  
Max.  
52  
Unit  
ns  
Note  
8
9
tv  
Data valid (after SPSCK edge)  
tHO  
tRI  
Data hold time (outputs)  
Rise time input  
0
ns  
10  
tperiph - 25  
ns  
tFI  
Fall time input  
11  
tRO  
tFO  
Rise time output  
Fall time output  
36  
ns  
1. For SPI0 fperiph is the bus clock (fBUS). For SPI1 fperiph is the system clock (fSYS).  
2. tperiph = 1/fperiph  
1
SS  
(OUTPUT)  
3
2
10  
10  
11  
11  
4
SPSCK  
(CPOL=0)  
(OUTPUT)  
5
5
SPSCK  
(CPOL=1)  
(OUTPUT)  
6
7
MISO  
(INPUT)  
2
BIT 6 . . . 1  
8
MSB IN  
LSB IN  
9
MOSI  
(OUTPUT)  
2
BIT 6 . . . 1  
MSB OUT  
LSB OUT  
1. If configured as an output.  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 14. SPI master mode timing (CPHA = 0)  
Kinetis KL33 Microcontroller, Rev.5, 08/2015.  
43  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
1
SS  
(OUTPUT)  
2
10  
10  
11  
11  
4
3
SPSCK  
(CPOL=0)  
(OUTPUT)  
5
5
SPSCK  
(CPOL=1)  
(OUTPUT)  
6
7
MISO  
(INPUT)  
2
BIT 6 . . . 1  
LSB IN  
MSB IN  
9
8
MOSI  
(OUTPUT)  
2
PORT DATA  
BIT 6 . . . 1  
MASTER MSB OUT  
PORT DATA  
MASTER LSB OUT  
1.If configured as output  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 15. SPI master mode timing (CPHA = 1)  
Table 37. SPI slave mode timing on slew rate disabled pads  
Num.  
1
Symbol Description  
Min.  
Max.  
fperiph/4  
Unit  
Hz  
Note  
1
fop  
tSPSCK  
tLead  
tLag  
Frequency of operation  
0
2
SPSCK period  
Enable lead time  
Enable lag time  
4 x tperiph  
ns  
2
3
1
tperiph  
tperiph  
ns  
3
4
1
5
tWSPSCK Clock (SPSCK) high or low time  
tperiph - 30  
6
tSU  
tHI  
ta  
Data setup time (inputs)  
Data hold time (inputs)  
Slave access time  
2.5  
3.5  
0
ns  
7
ns  
8
tperiph  
tperiph  
31  
ns  
9
tdis  
tv  
Slave MISO disable time  
Data valid (after SPSCK edge)  
Data hold time (outputs)  
Rise time input  
ns  
4
10  
11  
12  
ns  
tHO  
tRI  
tFI  
ns  
tperiph - 25  
ns  
Fall time input  
13  
tRO  
tFO  
Rise time output  
25  
ns  
Fall time output  
1. For SPI0 fperiph is the bus clock (fBUS). For SPI1 fperiph is the system clock (fSYS).  
2. tperiph = 1/fperiph  
3. Time to data active from high-impedance state  
4. Hold time to high-impedance state  
44  
Kinetis KL33 Microcontroller, Rev.5, 08/2015.  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 38. SPI slave mode timing on slew rate enabled pads  
Num.  
1
Symbol Description  
Min.  
Max.  
fperiph/4  
Unit  
Hz  
Note  
1
fop  
tSPSCK  
tLead  
tLag  
Frequency of operation  
0
2
SPSCK period  
Enable lead time  
Enable lag time  
4 x tperiph  
ns  
2
3
1
tperiph  
tperiph  
ns  
3
4
1
5
tWSPSCK Clock (SPSCK) high or low time  
tperiph - 30  
6
tSU  
tHI  
ta  
Data setup time (inputs)  
Data hold time (inputs)  
Slave access time  
2
7
ns  
7
ns  
8
0
tperiph  
tperiph  
122  
ns  
9
tdis  
tv  
Slave MISO disable time  
Data valid (after SPSCK edge)  
Data hold time (outputs)  
Rise time input  
ns  
4
10  
11  
12  
ns  
tHO  
tRI  
tFI  
ns  
tperiph - 25  
ns  
Fall time input  
13  
tRO  
tFO  
Rise time output  
36  
ns  
Fall time output  
1. For SPI0 fperiph is the bus clock (fBUS). For SPI1 fperiph is the system clock (fSYS).  
2. tperiph = 1/fperiph  
3. Time to data active from high-impedance state  
4. Hold time to high-impedance state  
SS  
(INPUT)  
2
12  
12  
13  
13  
4
SPSCK  
(CPOL=0)  
(INPUT)  
5
5
3
SPSCK  
(CPOL=1)  
(INPUT)  
9
8
10  
11  
11  
see  
note  
SEE  
NOTE  
MISO  
(OUTPUT)  
BIT 6 . . . 1  
SLAVE MSB  
7
SLAVE LSB OUT  
6
MOSI  
(INPUT)  
LSB IN  
MSB IN  
BIT 6 . . . 1  
NOTE: Not defined  
Figure 16. SPI slave mode timing (CPHA = 0)  
Kinetis KL33 Microcontroller, Rev.5, 08/2015.  
45  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
SS  
(INPUT)  
4
2
12  
12  
13  
13  
3
SPSCK  
(CPOL=0)  
(INPUT)  
5
5
SPSCK  
(CPOL=1)  
(INPUT)  
11  
9
10  
SLAVE MSB OUT  
see  
note  
MISO  
(OUTPUT)  
BIT 6 . . . 1  
BIT 6 . . . 1  
SLAVE LSB OUT  
LSB IN  
8
6
7
MOSI  
(INPUT)  
MSB IN  
NOTE: Not defined  
Figure 17. SPI slave mode timing (CPHA = 1)  
3.8.2 I2C  
3.8.2.1 Inter-Integrated Circuit Interface (I2C) timing  
Table 39. I2C timing  
Characteristic  
Symbol  
Standard Mode  
Minimum Maximum  
100  
Fast Mode  
Unit  
Minimum  
Maximum  
4001  
SCL Clock Frequency  
fSCL  
0
0
kHz  
µs  
Hold time (repeated) START condition.  
After this period, the first clock pulse is  
generated.  
tHD; STA  
4
0.6  
LOW period of the SCL clock  
HIGH period of the SCL clock  
tLOW  
tHIGH  
4.7  
4
1.25  
0.6  
µs  
µs  
µs  
Set-up time for a repeated START  
condition  
tSU; STA  
4.7  
0.6  
Data hold time for I2C bus devices  
tHD; DAT  
tSU; DAT  
tr  
02  
2505  
3.453  
04  
1003, 6  
20 +0.1Cb  
20 +0.1Cb  
0.6  
0.92  
µs  
ns  
ns  
ns  
µs  
µs  
Data set-up time  
7
6
Rise time of SDA and SCL signals  
Fall time of SDA and SCL signals  
Set-up time for STOP condition  
1000  
300  
300  
300  
tf  
tSU; STO  
tBUF  
4
Bus free time between STOP and  
START condition  
4.7  
1.3  
Pulse width of spikes that must be  
suppressed by the input filter  
tSP  
N/A  
N/A  
0
50  
ns  
46  
Freescale Semiconductor, Inc.  
Kinetis KL33 Microcontroller, Rev.5, 08/2015.  
Peripheral operating requirements and behaviors  
1. The maximum SCL Clock Frequency in Fast mode with maximum bus loading can be achieved only when using the  
high drive pins across the full voltage range and when using the normal drive pins and VDD ≥ 2.7 V.  
2. The master mode I2C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves  
acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and  
SCL lines.  
3. The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal.  
4. Input signal Slew = 10 ns and Output Load = 50 pF  
5. Set-up time in slave-transmitter mode is 1 IPBus clock period, if the TX FIFO is empty.  
6. A Fast mode I2C bus device can be used in a Standard mode I2C bus system, but the requirement tSU; DAT ≥ 250 ns  
must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If  
such a device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line trmax  
+ tSU; DAT = 1000 + 250 = 1250 ns (according to the Standard mode I2C bus specification) before the SCL line is  
released.  
7. Cb = total capacitance of the one bus line in pF.  
To achieve 1MHz I2C clock rates, consider the following recommendations:  
• To counter the effects of clock stretching, the I2C baud Rate select bits can be  
configured for faster than desired baud rate.  
• Use high drive pad and DSE bit should be set in PORTx_PCRn register.  
• Minimize loading on the I2C SDA and SCL pins to ensure fastest rise times for  
the SCL line to avoid clock stretching.  
• Use smaller pull up resistors on SDA and SCL to reduce the RC time constant.  
Table 40. I 2C 1Mbit/s timing  
Characteristic  
Symbol  
fSCL  
Minimum  
Maximum  
Unit  
MHz  
µs  
SCL Clock Frequency  
0
11  
Hold time (repeated) START condition. After this  
period, the first clock pulse is generated.  
tHD; STA  
0.26  
LOW period of the SCL clock  
HIGH period of the SCL clock  
Set-up time for a repeated START condition  
Data hold time for I2C bus devices  
Data set-up time  
tLOW  
tHIGH  
0.5  
0.26  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
µs  
µs  
tSU; STA  
tHD; DAT  
tSU; DAT  
tr  
0.26  
0
50  
Rise time of SDA and SCL signals  
Fall time of SDA and SCL signals  
Set-up time for STOP condition  
20 +0.1Cb  
120  
120  
2
tf  
20 +0.1Cb  
0.26  
tSU; STO  
tBUF  
Bus free time between STOP and START  
condition  
0.5  
Pulse width of spikes that must be suppressed by  
the input filter  
tSP  
0
50  
ns  
1. The maximum SCL clock frequency of 1 Mbit/s can support maximum bus loading when using the high drive pins  
across the full voltage range.  
2. Cb = total capacitance of the one bus line in pF.  
Kinetis KL33 Microcontroller, Rev.5, 08/2015.  
47  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
SDA  
tSU; DAT  
tf  
tr  
tBUF  
tf  
tr  
tHD; STA  
tSP  
tLOW  
SCL  
tSU; STA  
tSU; STO  
HD; STA  
S
SR  
P
S
tHD; DAT  
tHIGH  
Figure 18. Timing definition for devices on the I2C bus  
3.8.3 UART  
See General switching specifications.  
3.8.4 I2S/SAI switching specifications  
This section provides the AC timing for the I2S/SAI module in master mode (clocks are  
driven) and slave mode (clocks are input). All timing is given for noninverted serial  
clock polarity (TCR2[BCP] is 0, RCR2[BCP] is 0) and a noninverted frame sync  
(TCR4[FSP] is 0, RCR4[FSP] is 0). If the polarity of the clock and/or the frame sync  
have been inverted, all the timing remains valid by inverting the bit clock signal  
(BCLK) and/or the frame sync (FS) signal shown in the following figures.  
3.8.4.1 Normal Run, Wait and Stop mode performance over the full  
operating voltage range  
This section provides the operating performance over the full operating voltage for the  
device in Normal Run, Wait and Stop modes.  
Table 41. I2S/SAI master mode timing  
Num.  
Characteristic  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
40  
3.6  
V
S1  
S2  
S3  
S4  
S5  
I2S_MCLK cycle time  
ns  
I2S_MCLK (as an input) pulse width high/low  
I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)  
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low  
45%  
80  
55%  
MCLK period  
ns  
45%  
55%  
15.5  
BCLK period  
ns  
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/  
I2S_RX_FS output valid  
Table continues on the next page...  
48  
Kinetis KL33 Microcontroller, Rev.5, 08/2015.  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 41. I2S/SAI master mode timing (continued)  
Num.  
Characteristic  
Min.  
Max.  
Unit  
S6  
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/  
I2S_RX_FS output invalid  
0
ns  
S7  
S8  
S9  
I2S_TX_BCLK to I2S_TXD valid  
I2S_TX_BCLK to I2S_TXD invalid  
0
19  
ns  
ns  
ns  
I2S_RXD/I2S_RX_FS input setup before  
I2S_RX_BCLK  
26  
S10  
I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK  
0
ns  
S1  
S2  
S2  
I2S_MCLK (output)  
S3  
S4  
I2S_TX_BCLK/  
I2S_RX_BCLK (output)  
S4  
S5  
S7  
S6  
I2S_TX_FS/  
I2S_RX_FS (output)  
S10  
S9  
I2S_TX_FS/  
I2S_RX_FS (input)  
S7  
S8  
S8  
I2S_TXD  
I2S_RXD  
S9  
S10  
Figure 19. I2S/SAI timing — master modes  
Table 42. I2S/SAI slave mode timing  
Num.  
Characteristic  
Min.  
Max.  
Unit  
Operating voltage  
I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)  
1.71  
80  
3.6  
V
S11  
S12  
ns  
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low 45%  
(input)  
55%  
MCLK period  
S13  
S14  
I2S_TX_FS/I2S_RX_FS input setup before  
I2S_TX_BCLK/I2S_RX_BCLK  
10  
ns  
ns  
I2S_TX_FS/I2S_RX_FS input hold after  
I2S_TX_BCLK/I2S_RX_BCLK  
2
S15  
S16  
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid  
0
33  
ns  
ns  
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output  
invalid  
S17  
I2S_RXD setup before I2S_RX_BCLK  
10  
ns  
Table continues on the next page...  
Kinetis KL33 Microcontroller, Rev.5, 08/2015.  
49  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 42. I2S/SAI slave mode timing (continued)  
Num.  
S18  
S19  
Characteristic  
Min.  
Max.  
Unit  
I2S_RXD hold after I2S_RX_BCLK  
I2S_TX_FS input assertion to I2S_TXD output valid1  
2
ns  
ns  
28  
1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear  
S11  
S12  
I2S_TX_BCLK/  
I2S_RX_BCLK (input)  
S12  
S15  
S15  
S16  
I2S_TX_FS/  
I2S_RX_FS (output)  
S13  
S14  
I2S_TX_FS/  
I2S_RX_FS (input)  
S15  
S19  
S16  
S16  
I2S_TXD  
I2S_RXD  
S17  
S18  
Figure 20. I2S/SAI timing — slave modes  
3.8.4.2 VLPR, VLPW, and VLPS mode performance over the full  
operating voltage range  
This section provides the operating performance over the full operating voltage for the  
device in VLPR, VLPW, and VLPS modes.  
Table 43. I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes  
(full voltage range)  
Num.  
Characteristic  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
62.5  
45%  
250  
45%  
3.6  
V
S1  
S2  
S3  
S4  
S5  
I2S_MCLK cycle time  
ns  
I2S_MCLK pulse width high/low  
55%  
MCLK period  
I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)  
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low  
ns  
55%  
45  
BCLK period  
ns  
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/  
I2S_RX_FS output valid  
S6  
S7  
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/  
I2S_RX_FS output invalid  
0
ns  
ns  
I2S_TX_BCLK to I2S_TXD valid  
45  
Table continues on the next page...  
50  
Kinetis KL33 Microcontroller, Rev.5, 08/2015.  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 43. I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes (full voltage range)  
(continued)  
Num.  
Characteristic  
Min.  
Max.  
Unit  
S8  
S9  
I2S_TX_BCLK to I2S_TXD invalid  
0
0
ns  
ns  
I2S_RXD/I2S_RX_FS input setup before  
I2S_RX_BCLK  
S10  
I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK  
ns  
S1  
S2  
S2  
I2S_MCLK (output)  
S3  
S4  
I2S_TX_BCLK/  
I2S_RX_BCLK (output)  
S4  
S5  
S7  
S6  
I2S_TX_FS/  
I2S_RX_FS (output)  
S10  
S9  
I2S_TX_FS/  
I2S_RX_FS (input)  
S7  
S8  
S8  
I2S_TXD  
I2S_RXD  
S9  
S10  
Figure 21. I2S/SAI timing — master modes  
Table 44. I2S/SAI slave mode timing in VLPR, VLPW, and VLPS modes (full  
voltage range)  
Num.  
Characteristic  
Min.  
Max.  
Unit  
Operating voltage  
I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)  
1.71  
250  
3.6  
V
S11  
ns  
S12  
S13  
S14  
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low 45%  
(input)  
55%  
MCLK period  
I2S_TX_FS/I2S_RX_FS input setup before  
I2S_TX_BCLK/I2S_RX_BCLK  
30  
ns  
ns  
I2S_TX_FS/I2S_RX_FS input hold after  
I2S_TX_BCLK/I2S_RX_BCLK  
2
S15  
S16  
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid  
0
87  
ns  
ns  
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output  
invalid  
S17  
S18  
S19  
I2S_RXD setup before I2S_RX_BCLK  
I2S_RXD hold after I2S_RX_BCLK  
I2S_TX_FS input assertion to I2S_TXD output valid1  
30  
2
72  
ns  
ns  
ns  
Kinetis KL33 Microcontroller, Rev.5, 08/2015.  
51  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear  
S11  
S12  
I2S_TX_BCLK/  
I2S_RX_BCLK (input)  
S12  
S15  
S15  
S16  
I2S_TX_FS/  
I2S_RX_FS (output)  
S13  
S14  
I2S_TX_FS/  
I2S_RX_FS (input)  
S15  
S19  
S16  
S16  
I2S_TXD  
I2S_RXD  
S17  
S18  
Figure 22. I2S/SAI timing — slave modes  
3.9 Human-machine interfaces (HMI)  
3.9.1 LCD electrical characteristics  
Table 45. LCD electricals  
Symbol Description  
fFrame LCD frame frequency  
Min.  
Typ.  
Max.  
Unit  
Notes  
• GCR[FFR]=0  
• GCR[FFR]=1  
23.3  
46.6  
73.1  
Hz  
Hz  
146.2  
CLCD  
LCD charge pump capacitance — nominal value  
100  
100  
nF  
nF  
pF  
V
CBYLCD LCD bypass capacitance — nominal value  
1
2
3
CGlass  
VIREG  
LCD glass capacitance  
VIREG  
2000  
8000  
• RVTRIM=0000  
• RVTRIM=1000  
• RVTRIM=0100  
• RVTRIM=1100  
• RVTRIM=0010  
• RVTRIM=1010  
• RVTRIM=0110  
0.91  
0.92  
0.93  
0.94  
0.96  
0.97  
0.98  
0.99  
Table continues on the next page...  
52  
Freescale Semiconductor, Inc.  
Kinetis KL33 Microcontroller, Rev.5, 08/2015.  
Peripheral operating requirements and behaviors  
Table 45. LCD electricals (continued)  
Symbol Description  
• RVTRIM=1110  
Min.  
Typ.  
Max.  
Unit  
Notes  
1.01  
• RVTRIM=0001  
• RVTRIM=1001  
• RVTRIM=0101  
• RVTRIM=1101  
• RVTRIM=0011  
• RVTRIM=1011  
• RVTRIM=0111  
• RVTRIM=1111  
1.02  
1.03  
1.05  
1.06  
1.07  
1.08  
1.09  
ΔRTRIM VIREG TRIM resolution  
1
3.0  
% VIREG  
µA  
IVIREG  
IRBIAS  
VIREG current adder — RVEN = 1  
RBIAS current adder  
• LADJ = 10 or 11 — High load (LCD glass  
capacitance ≤ 8000 pF)  
10  
1
µA  
µA  
• LADJ = 00 or 01 — Low load (LCD glass  
capacitance ≤ 2000 pF)  
RRBIAS  
RBIAS resistor values  
• LADJ = 10 or 11 — High load (LCD glass  
capacitance ≤ 8000 pF)  
0.28  
2.98  
MΩ  
MΩ  
• LADJ = 00 or 01 — Low load (LCD glass  
capacitance ≤ 2000 pF)  
VLL1  
VLL2  
VLL3  
VLL1  
VLL2  
VLL3  
VLL1 voltage  
VLL2 voltage  
VLL3 voltage  
VLL1 voltage  
VLL2 voltage  
VLL3 voltage  
VIREG  
2 x VIREG  
3 x VIREG  
VDDA / 3  
VDDA / 1.5  
VDDA  
V
V
V
V
V
V
4
4
4
5
5
5
1. The actual value used could vary with tolerance.  
2. For highest glass capacitance values, LCD_GCR[LADJ] should be configured as specified in the LCD Controller  
chapter within the device's reference manual.  
3. VIREG maximum should never be externally driven to any level other than VDD - 0.15 V  
4. VLL1, VLL2 and VLL3 are a function of VIREG only when the regulator is enabled (GCR[RVEN]=1) and the charge  
pump is enabled (GCR[CPSEL]=1).  
5. VLL1, VLL2 and VLL3 are a function of VDDA only under either of the following conditions:  
• The charge pump is enabled (GCR[CPSEL]=1), the regulator is disabled (GCR[RVEN]=0), and VLL3 = VDDA  
through the internal power switch (GCR[VSUPPLY]=0).  
• The resistor bias string is enabled (GCR[CPSEL]=0), the regulator is disabled (GCR[RVEN]=0), and VLL3 is  
connected to VDDA externally (GCR[VSUPPLY]=1).  
Kinetis KL33 Microcontroller, Rev.5, 08/2015.  
53  
Freescale Semiconductor, Inc.  
Dimensions  
4 Dimensions  
4.1 Obtaining package dimensions  
Package dimensions are provided in package drawings.  
To find a package drawing, go to freescale.com and perform a keyword search for the  
drawing’s document number:  
If you want the drawing for this package  
64-pin LQFP  
Then use this document number  
98ASS23234W  
98ASA00420D  
64-pin MAPBGA  
5 Pinouts and Packaging  
5.1 KL33 Signal Multiplexing and Pin Assignments  
The following table shows the signals available on each pin and the locations of these  
pins on the devices supported by this document. The Port Control Module is responsible  
for selecting which ALT functionality is available on each pin.  
NOTE  
VREFH can act as VREF_OUT when VREFV1 module is  
enabled.  
64  
64  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
LQFP MAP  
BGA  
1
E4  
A1  
VDD  
VDD  
VDD  
PTE0  
DISABLED  
LCD_P48  
PTE0/  
CLKOUT32K  
SPI1_MISO  
SPI1_MOSI  
LPUART1_TX  
LPUART1_RX  
RTC_CLKOUT CMP0_OUT  
SPI1_MISO  
I2C1_SDA  
I2C1_SCL  
LCD_P48  
LCD_P49  
2
3
4
5
B1  
PTE1  
VDD  
DISABLED  
VDD  
LCD_P49  
VDD  
PTE1  
C4  
E1  
VSS  
VSS  
VSS  
PTE16  
ADC0_DP1/  
ADC0_SE1  
LCD_P55/  
ADC0_DP1/  
ADC0_SE1  
PTE16  
SPI0_SS  
UART2_TX  
TPM_CLKIN0  
FXI00_D0  
LCD_P55  
54  
Freescale Semiconductor, Inc.  
Kinetis KL33 Microcontroller, Rev.5, 08/2015.  
Pinouts and Packaging  
64  
64  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
SPI0_SCK  
SPI0_MOSI  
SPI0_MISO  
ALT3  
ALT4  
ALT5  
ALT6  
FXIO0_D1  
FXIO0_D2  
FXIO0_D3  
FXI00_D4  
FXIO0_D5  
ALT7  
LCD_P56  
LCD_P57  
LCD_P58  
LCD_P59  
LCD_P60  
LQFP MAP  
BGA  
6
7
D1  
E2  
D2  
G1  
F1  
PTE17  
ADC0_DM1/  
ADC0_SE5a  
LCD_P56/  
ADC0_DM1/  
ADC0_SE5a  
PTE17  
UART2_RX  
TPM_CLKIN1  
I2C0_SDA  
LPTMR0_  
ALT3  
PTE18  
PTE19  
PTE20  
PTE21  
ADC0_DP2/  
ADC0_SE2  
LCD_P57/  
ADC0_DP2/  
ADC0_SE2  
PTE18  
PTE19  
PTE20  
PTE21  
SPI0_MISO  
SPI0_MOSI  
8
ADC0_DM2/  
ADC0_SE6a  
LCD_P58/  
ADC0_DM2/  
ADC0_SE6a  
I2C0_SCL  
9
ADC0_DP0/  
ADC0_SE0  
LCD_P59/  
ADC0_DP0/  
ADC0_SE0  
TPM1_CH0  
TPM1_CH1  
LPUART0_TX  
LPUART0_RX  
10  
ADC0_DM0/  
ADC0_SE4a  
LCD_P60/  
ADC0_DM0/  
ADC0_SE4a  
11  
12  
G2  
F2  
PTE22  
PTE23  
ADC0_DP3/  
ADC0_SE3  
ADC0_DP3/  
ADC0_SE3  
PTE22  
PTE23  
TPM2_CH0  
TPM2_CH1  
UART2_TX  
UART2_RX  
FXIO0_D6  
FXIO0_D7  
ADC0_DM3/  
ADC0_SE7a  
ADC0_DM3/  
ADC0_SE7a  
13  
14  
15  
16  
17  
F4  
G4  
G3  
F3  
H1  
VDDA  
VREFH  
VREFL  
VSSA  
VDDA  
VREFH  
VREFL  
VSSA  
VDDA  
VREFH  
VREFL  
VSSA  
PTE29  
CMP0_IN5/  
ADC0_SE4b  
CMP0_IN5/  
ADC0_SE4b  
PTE29  
PTE30  
TPM0_CH2  
TPM0_CH3  
TPM_CLKIN0  
TPM_CLKIN1  
18  
H2  
PTE30  
DAC0_OUT/  
ADC0_SE23/  
CMP0_IN4  
DAC0_OUT/  
ADC0_SE23/  
CMP0_IN4  
LPUART1_TX  
LPTMR0_  
ALT1  
19  
20  
21  
22  
23  
24  
25  
26  
27  
H3  
H4  
H5  
D3  
D4  
E5  
D5  
G5  
F5  
PTE31  
PTE24  
PTE25  
PTA0  
PTA1  
PTA2  
PTA3  
PTA4  
PTA5  
DISABLED  
DISABLED  
DISABLED  
SWD_CLK  
DISABLED  
DISABLED  
SWD_DIO  
NMI_b  
PTE31  
PTE24  
PTE25  
PTA0  
PTA1  
PTA2  
PTA3  
PTA4  
PTA5  
TPM0_CH4  
TPM0_CH0  
TPM0_CH1  
TPM0_CH5  
TPM2_CH0  
TPM2_CH1  
TPM0_CH0  
TPM0_CH1  
TPM0_CH2  
I2C0_SCL  
I2C0_SDA  
SWD_CLK  
LPUART0_RX  
LPUART0_TX  
I2C1_SCL  
SWD_DIO  
NMI_b  
I2C1_SDA  
DISABLED  
I2S0_TX_  
BCLK  
28  
29  
30  
31  
32  
H6  
G6  
G7  
H7  
H8  
PTA12  
PTA13  
VDD  
DISABLED  
DISABLED  
VDD  
PTA12  
PTA13  
TPM1_CH0  
TPM1_CH1  
I2S0_TXD0  
I2S0_TX_FS  
VDD  
VSS  
VSS  
VSS  
PTA18  
EXTAL0  
EXTAL0  
PTA18  
LPUART1_RX  
TPM_CLKIN0  
Kinetis KL33 Microcontroller, Rev.5, 08/2015.  
55  
Freescale Semiconductor, Inc.  
Pinouts and Packaging  
64  
64  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
LQFP MAP  
BGA  
33  
G8  
PTA19  
XTAL0  
XTAL0  
PTA19  
LPUART1_TX  
TPM_CLKIN1  
LPTMR0_  
ALT1  
34  
35  
F8  
F7  
PTA20  
RESET_b  
PTA20  
RESET_b  
LCD_P0  
PTB0/  
LLWU_P5  
LCD_P0/  
ADC0_SE8  
LCD_P0/  
ADC0_SE8  
PTB0/  
LLWU_P5  
I2C0_SCL  
I2C0_SDA  
I2C0_SCL  
I2C0_SDA  
TPM1_CH0  
TPM1_CH1  
TPM2_CH0  
TPM2_CH1  
36  
37  
38  
F6  
E7  
E8  
PTB1  
PTB2  
PTB3  
LCD_P1/  
ADC0_SE9  
LCD_P1/  
ADC0_SE9  
PTB1  
PTB2  
PTB3  
LCD_P1  
LCD_P2  
LCD_P3  
LCD_P2/  
ADC0_SE12  
LCD_P2/  
ADC0_SE12  
LCD_P3/  
LCD_P3/  
ADC0_SE13  
ADC0_SE13  
39  
40  
41  
E6  
D7  
D6  
PTB16  
PTB17  
PTB18  
LCD_P12  
LCD_P13  
LCD_P14  
LCD_P12  
LCD_P13  
LCD_P14  
PTB16  
PTB17  
PTB18  
SPI1_MOSI  
SPI1_MISO  
LPUART0_RX  
LPUART0_TX  
TPM2_CH0  
TPM_CLKIN0  
TPM_CLKIN1  
SPI1_MISO  
SPI1_MOSI  
LCD_P12  
LCD_P13  
LCD_P14  
I2S0_TX_  
BCLK  
42  
43  
C7  
D8  
PTB19  
PTC0  
LCD_P15  
LCD_P15  
PTB19  
PTC0  
TPM2_CH1  
EXTRG_IN  
I2S0_TX_FS  
LCD_P15  
LCD_P20  
LCD_P20/  
ADC0_SE14  
LCD_P20/  
ADC0_SE14  
audioUSB_  
SOF_OUT  
CMP0_OUT  
I2S0_TXD0  
I2S0_TXD0  
44  
C6  
PTC1/  
LCD_P21/  
LCD_P21/  
PTC1/  
I2C1_SCL  
TPM0_CH0  
LCD_P21  
LLWU_P6/  
RTC_CLKIN  
ADC0_SE15  
ADC0_SE15  
LLWU_P6/  
RTC_CLKIN  
45  
46  
B7  
C8  
PTC2  
LCD_P22/  
ADC0_SE11  
LCD_P22/  
ADC0_SE11  
PTC2  
I2C1_SDA  
SPI1_SCK  
TPM0_CH1  
TPM0_CH2  
I2S0_TX_FS  
LCD_P22  
LCD_P23  
PTC3/  
LLWU_P7  
LCD_P23  
LCD_P23  
PTC3/  
LLWU_P7  
LPUART1_RX  
CLKOUT  
I2S0_TX_  
BCLK  
47  
48  
49  
E3  
C5  
A6  
VSS  
VSS  
VSS  
VLL3  
VLL2  
VLL3  
VLL2  
VLL3  
VLL2/  
LCD_P4  
PTC20  
PTC21  
PTC22  
PTC23  
LCD_P4  
LCD_P5  
LCD_P6  
LCD_P39  
LCD_P24  
LCD_P25  
LCD_P26  
LCD_P27  
LCD_P40  
50  
51  
52  
53  
54  
55  
56  
57  
B5  
B4  
A5  
B8  
A8  
A7  
B6  
C3  
VLL1  
VLL1  
VLL1/  
LCD_P5  
VCAP2  
VCAP1  
VCAP2  
VCAP1  
LCD_P24  
LCD_P25  
VCAP2/  
LCD_P6  
VCAP1/  
LCD_P39  
PTC4/  
LLWU_P8  
LCD_P24  
LCD_P25  
PTC4/  
LLWU_P8  
SPI0_SS  
LPUART1_TX  
TPM0_CH3  
I2S0_RXD0  
I2S0_MCLK  
PTC5/  
LLWU_P9  
PTC5/  
LLWU_P9  
SPI0_SCK  
SPI0_MOSI  
SPI0_MISO  
SPI0_SS  
LPTMR0_  
ALT2  
CMP0_OUT  
I2S0_MCLK  
PTC6/  
LLWU_P10  
LCD_P26/  
CMP0_IN0  
LCD_P26/  
CMP0_IN0  
PTC6/  
LLWU_P10  
EXTRG_IN  
I2S0_RX_  
BCLK  
SPI0_MISO  
SPI0_MOSI  
PTC7  
PTD0  
LCD_P27/  
CMP0_IN1  
LCD_P27/  
CMP0_IN1  
PTC7  
PTD0  
audioUSB_  
SOF_OUT  
I2S0_RX_FS  
LCD_P40  
LCD_P40  
TPM0_CH0  
FXI00_D0  
56  
Freescale Semiconductor, Inc.  
Kinetis KL33 Microcontroller, Rev.5, 08/2015.  
Pinouts and Packaging  
64  
64  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
LQFP MAP  
BGA  
58  
A4  
PTD1  
LCD_P41/  
LCD_P41/  
PTD1  
SPI0_SCK  
TPM0_CH1  
FXIO0_D1  
LCD_P41  
ADC0_SE5b  
ADC0_SE5b  
59  
60  
61  
C2  
B3  
A3  
PTD2  
PTD3  
LCD_P42  
LCD_P43  
LCD_P44  
LCD_P42  
LCD_P43  
LCD_P44  
PTD2  
PTD3  
SPI0_MOSI  
SPI0_MISO  
SPI1_SS  
UART2_RX  
UART2_TX  
UART2_RX  
TPM0_CH2  
TPM0_CH3  
TPM0_CH4  
SPI0_MISO  
SPI0_MOSI  
FXIO0_D2  
FXIO0_D3  
FXI00_D4  
LCD_P42  
LCD_P43  
LCD_P44  
PTD4/  
PTD4/  
LLWU_P14  
LLWU_P14  
62  
63  
64  
C1  
B2  
A2  
PTD5  
LCD_P45/  
ADC0_SE6b  
LCD_P45/  
ADC0_SE6b  
PTD5  
SPI1_SCK  
SPI1_MOSI  
SPI1_MISO  
UART2_TX  
TPM0_CH5  
FXIO0_D5  
FXIO0_D6  
FXIO0_D7  
LCD_P45  
LCD_P46  
LCD_P47  
PTD6/  
LLWU_P15  
LCD_P46/  
ADC0_SE7b  
LCD_P46/  
ADC0_SE7b  
PTD6/  
LLWU_P15  
LPUART0_RX  
LPUART0_TX  
SPI1_MISO  
SPI1_MOSI  
PTD7  
LCD_P47  
LCD_P47  
PTD7  
5.2 KL33 Family Pinouts  
Figure below shows the 64 LQFP pinouts:  
Kinetis KL33 Microcontroller, Rev.5, 08/2015.  
57  
Freescale Semiconductor, Inc.  
Pinouts and Packaging  
PTE0  
PTE1  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
VLL3  
2
VSS  
VDD  
3
PTC3/LLWU_P7  
VSS  
4
PTC2  
PTE16  
PTE17  
PTE18  
PTE19  
PTE20  
PTE21  
PTE22  
PTE23  
VDDA  
VREFH  
VREFL  
VSSA  
5
PTC1/LLWU_P6/RTC_CLKIN  
6
PTC0  
7
PTB19  
PTB18  
PTB17  
PTB16  
PTB3  
8
9
10  
11  
12  
13  
14  
15  
16  
PTB2  
PTB1  
PTB0/LLWU_P5  
PTA20  
PTA19  
Figure 23. 64 LQFP Pinout diagram  
Figure below shows the 64 MAPBGA pinouts:  
58  
Kinetis KL33 Microcontroller, Rev.5, 08/2015.  
Freescale Semiconductor, Inc.  
Ordering parts  
1
2
3
4
5
6
7
8
PTC6/  
LLWU_P10  
PTD4/  
LLWU_P14  
PTC5/  
LLWU_P9  
A
B
C
D
E
F
PTE0  
PTD7  
PTD1  
VCAP1  
VLL2  
A
B
C
D
E
F
PTC4/  
LLWU_P8  
PTD6/  
LLWU_P15  
PTE1  
PTD5  
PTD3  
PTD0  
PTA0  
VSS  
VCAP2  
VSS  
VLL1  
VLL3  
PTA3  
PTA2  
PTA5  
PTA4  
PTC7  
PTC2  
PTB19  
PTB17  
PTB2  
PTC1/  
LLWU_P6/  
RTC_CLKIN  
PTC3/  
LLWU_P7  
PTD2  
PTE19  
PTE18  
PTE23  
PTE22  
PTE17  
PTE16  
PTE21  
PTE20  
PTA1  
PTB18  
PTB16  
PTB1  
PTC0  
PTB3  
VDD  
PTB0/  
LLWU_P5  
VSSA  
VREFL  
VDDA  
VREFH  
PTA20  
PTA19  
G
H
PTA13  
VDD  
G
H
PTE29  
1
PTE30  
2
PTE31  
3
PTE24  
4
PTE25  
5
PTA12  
6
VSS  
7
PTA18  
8
Figure 24. 64 MAPBGA Pinout diagram  
6 Ordering parts  
6.1 Determining valid orderable parts  
Valid orderable part numbers are provided on the Web. To determine the orderable  
part numbers for this device, go to freescale.com and perform a part number search for  
the following device numbers:  
7 Part identification  
Kinetis KL33 Microcontroller, Rev.5, 08/2015.  
59  
Freescale Semiconductor, Inc.  
Part identification  
7.1 Description  
Part numbers for the chip have fields that identify the specific part. You can use the  
values of these fields to determine the specific part you have received.  
7.2 Format  
Part numbers for this device have the following format:  
Q KL## A FFF R T PP CC N  
7.3 Fields  
This table lists the possible values for each field in the part number (not all  
combinations are valid):  
Table 46. Part number fields descriptions  
Field  
Description  
Values  
Q
Qualification status  
• M = Fully qualified, general market flow  
• P = Prequalification  
KL##  
A
Kinetis family  
Key attribute  
• KL33  
• Z = Cortex-M0+  
FFF  
R
Program flash memory size  
Silicon revision  
• (Blank) = Main  
• A = Revision after main  
T
Temperature range (°C)  
Package identifier  
• V = –40 to 105  
PP  
• LH = 64 LQFP (10 mm x 10 mm)  
• MP = 64 MAPBGA (5 mm x 5 mm)  
CC  
N
Maximum CPU frequency (MHz)  
Packaging type  
• 4 = 48 MHz  
• R = Tape and reel  
7.4 Example  
This is an example part number:  
MKL33Z256VMP4  
60  
Kinetis KL33 Microcontroller, Rev.5, 08/2015.  
Freescale Semiconductor, Inc.  
Terminology and guidelines  
8 Terminology and guidelines  
8.1 Definitions  
Key terms are defined in the following table:  
Term  
Definition  
Rating  
A minimum or maximum value of a technical characteristic that, if exceeded, may cause  
permanent chip failure:  
Operating ratings apply during operation of the chip.  
Handling ratings apply when the chip is not powered.  
NOTE: The likelihood of permanent chip failure increases rapidly as soon as a characteristic  
begins to exceed one of its operating ratings.  
Operating requirement A specified value or range of values for a technical characteristic that you must guarantee during  
operation to avoid incorrect operation and possibly decreasing the useful life of the chip  
Operating behavior  
A specified value or range of values for a technical characteristic that are guaranteed during  
operation if you meet the operating requirements and any other specified conditions  
Typical value  
A specified value for a technical characteristic that:  
• Lies within the range of values specified by the operating behavior  
• Is representative of that characteristic during operation when you meet the typical-value  
conditions or other specified conditions  
NOTE: Typical values are provided as design guidelines and are neither tested nor  
guaranteed.  
Kinetis KL33 Microcontroller, Rev.5, 08/2015.  
61  
Freescale Semiconductor, Inc.  
Terminology and guidelines  
8.2 Examples  
Operating rating:  
Operating requirement:  
Operating behavior that includes a typical value:  
8.3 Typical-value conditions  
Typical values assume you meet the following conditions (or other conditions as  
specified):  
Symbol  
Description  
Ambient temperature  
3.3 V supply voltage  
Value  
Unit  
TA  
25  
°C  
V
VDD  
3.3  
62  
Kinetis KL33 Microcontroller, Rev.5, 08/2015.  
Freescale Semiconductor, Inc.  
Revision History  
8.4 Relationship between ratings and operating requirements  
Fatal range  
Degraded operating range  
Normal operating range  
Degraded operating range  
Fatal range  
Expected permanent failure  
- No permanent failure  
- No permanent failure  
- Correct operation  
- No permanent failure  
Expected permanent failure  
- Possible decreased life  
- Possible incorrect operation  
- Possible decreased life  
- Possible incorrect operation  
 
Operating (power on)  
Fatal range  
Handling range  
Fatal range  
Expected permanent failure  
No permanent failure  
Expected permanent failure  
∞  
Handling (power off)  
8.5 Guidelines for ratings and operating requirements  
Follow these guidelines for ratings and operating requirements:  
• Never exceed any of the chip’s ratings.  
• During normal operation, don’t exceed any of the chip’s operating requirements.  
• If you must exceed an operating requirement at times other than during normal  
operation (for example, during power sequencing), limit the duration as much as  
possible.  
9 Revision History  
The following table provides a revision history for this document.  
Table 47. Revision History  
Rev. No.  
Date  
Substantial Changes  
3
09 August Initial Public release  
2014  
• Updated Table 9 - Power consumption operating behaviors.  
4
03 March  
2015  
• Updated the features and completed the ordering information.  
• Removed thickness dimension from package diagrams.  
Table continues on the next page...  
Kinetis KL33 Microcontroller, Rev.5, 08/2015.  
63  
Freescale Semiconductor, Inc.  
Revision History  
Rev. No.  
Table 47. Revision History (continued)  
Date  
Substantial Changes  
• Updated Related Resources table to include Chip Errata resource name and  
Package Drawing part numbers in the respective rows.  
• Updated Table 7. Voltage and current operating behaviors.  
• Specified correct max. value for IIN.  
• Updated Table - 9 Power consumption operating behaviors.  
• Rows added for IDD for reset pin hold low (IDD_RESET_LOW) at 1.7V and 3V.  
• Measurement unit updated for IDD_VLLS1 from nA to μA.  
• Footnote 1 was moved in the beginning of the table as text.  
• Added Table - 11 EMC radiated emissions operating behaviors for 64-pin LQFP  
package under section 2.2.6.  
• Updated Table - 18 (IRC48M specification) and Table - 19 (IRC8M/2M specification)  
under section 3.3.1 - 'MCG-Lite specifications'.  
• Removed supply voltage (VDD), temperature range (T), untrimmed (fIRC_UT),  
trim function (ΔfIRC_C, ΔfIRC_F) data from Table - 18 (IRC48M specification).  
• Removed supply voltage (VDD), temperature range (T) data from Table - 19  
(IRC8M/2M specification).  
• Added Figure 6. IRC8M Frequency Drift vs Temperature curve after Table - 19  
(IRC8M/2M specification).  
• Updated Table 29. VREF full-range operating behaviors.  
• Removed Ac(Aging coefficient) row.  
• Added Tchop_osc_stup parameter.  
• Updated typical value of the Vout parameter.  
• Added tables: "I2C timing" and "I2C 1Mbit/s timing" under section - I2C.  
• Added VREF specifications (VREFH and VREFL) to Table 26. 16-bit ADC operating  
conditions.  
• Removed note: “This device does not have the USB_CLKIN signal available.”  
5
12 August  
2015  
• In Table 9. Power consumption operating behaviors:  
• Updated Max. values of IDD_WAIT, IDD_VLPW, IDD_STOP, IDD_VLPS, IDD_LLS  
,
IDD_VLLS3, IDD_VLLS1, IDD_VLLS0  
.
• Modified unit of IDD_VLLS0 from nA to μA.  
• Removed IDD_RESET_LOW information.  
• In Table 13. Device clock specifications, added a footnote for normal run mode.  
• In Table 15. Thermal operating requirements, modified the footnote for Ambient  
temperature.  
• In Table 18. IRC48M specification, removed fIRC_T data and added Δfirc48m_of_lv and  
Δfirc48m_of_hv specifications.  
• In Table 26. 16-bit ADC operating conditions, updated Max. value of fADCK and Crate  
.
64  
Kinetis KL33 Microcontroller, Rev.5, 08/2015.  
Freescale Semiconductor, Inc.  
Information in this document is provided solely to enable system and  
software implementers to use Freescale products. There are no express  
or implied copyright licenses granted hereunder to design or fabricate  
any integrated circuits based on the information in this document.  
Freescale reserves the right to make changes without further notice to  
any products herein.  
How to Reach Us:  
Home Page:  
freescale.com  
Web Support:  
freescale.com/support  
Freescale makes no warranty, representation, or guarantee regarding  
the suitability of its products for any particular purpose, nor does  
Freescale assume any liability arising out of the application or use of  
any product or circuit, and specifically disclaims any and all liability,  
including without limitation consequential or incidental damages.  
“Typical” parameters that may be provided in Freescale data sheets  
and/or specifications can and do vary in different applications, and  
actual performance may vary over time. All operating parameters,  
including “typicals,” must be validated for each customer application by  
customer's technical experts. Freescale does not convey any license  
under its patent rights nor the rights of others. Freescale sells products  
pursuant to standard terms and conditions of sale, which can be found  
at the following address: freescale.com/SalesTermsandConditions.  
Freescale, the Freescale logo, Energy Efficient Solutions logo, and  
Kinetis are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat.  
& Tm. Off. All other product or service names are the property of their  
respective owners. ARM and Cortex are registered trademarks of ARM  
Limited (or its subsidiaries) in the EU and/or elsewhere. All rights  
reserved.  
©2014-2015 Freescale Semiconductor, Inc.  
Document Number KL33P64M48SF6  
Revision 5, 08/2015  

相关型号:

MKL33Z256VLH4

Kinetis KL33 Microcontroller
NXP

MKL33Z256VMP4

Kinetis KL33 Microcontroller
NXP

MKL33Z32VFT4

Kinetis KL33 Microcontroller
NXP

MKL33Z32VLH4

Kinetis KL33 Microcontroller
NXP

MKL33Z32VLK4

Kinetis KL33 Microcontroller
NXP

MKL33Z32VMP4

Kinetis KL33 Microcontroller
NXP

MKL33Z64VFT4

Kinetis KL33 Microcontroller
NXP

MKL33Z64VLH4

Kinetis KL33 Microcontroller
NXP

MKL33Z64VLK4

Kinetis KL33 Microcontroller
NXP

MKL33Z64VMP4

Kinetis KL33 Microcontroller
NXP

MKL34Z64VLH4

Kinetis KL34 Sub-Family
NXP

MKL34Z64VLL4

Kinetis KL34 Sub-Family
NXP