MKM35Z256VLQ7 [NXP]

Kinetis KM35 Sub-Family Data Sheet;
MKM35Z256VLQ7
型号: MKM35Z256VLQ7
厂家: NXP    NXP
描述:

Kinetis KM35 Sub-Family Data Sheet

文件: 总59页 (文件大小:910K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NXP Semiconductors  
Data Sheet: Technical Data  
KM35P144M75SF0  
Rev. 2, March 2020  
Kinetis KM35 Sub-Family Data  
Sheet  
MKM35Z256VLL7  
MKM35Z256VLQ7  
MKM35Z512VLL7  
MKM35Z512VLQ7  
Enabling high accuracy, secure 1-, 2- and 3-phase electricity  
metering solutions through a powerful analog front end (AFE),  
auto-compensated iRTC with hardware tamper detection,  
segment LCD controller, rich security protection and multiple low  
power features in a 32-bit Arm® Cortex®-M0+ MCU. This product  
offers:  
• Enabling single-chip 1-, 2- and 3-phase metering designs  
• AFE, Security and HMI. Single crystal implementation  
• Single point of calibration during manufacture  
• Highest accuracy metrology with regional feature support  
• Multiple ƩΔ ADCs with PGA  
100 LQFP  
14 mm × 14 mm Pitch 20 mm × 20 mm Pitch  
0.5 mm 0.5 mm  
144 LQFP  
• Supports neutral disconnect use case  
• Compliance with WELMEC/OIML recommendations  
• Memory and peripheral protection  
• Hardware tamper detect with time stamping  
• Low-power RTC, battery backup with tamper memory  
Core  
• Arm® Cortex®-M0+ core up to 75 MHz  
Memories  
• Up to 512 KB program flash memory  
• Up to 64 KB SRAM  
• Metering specific Memory Mapped Arithmetic Unit  
(MMAU)  
Operating Characteristics  
Clocks  
• Voltage range: 1.71 to 3.6 V (without AFE)  
• Voltage range: 2.7 to 3.6 V (with AFE)  
• Temperature range (ambient): –40 to 105 °C  
• 75 MHz high-accuracy internal reference clock  
• 32 kHz, and 4 MHz internal reference clock  
• 1 kHz LPO clock  
Low power features  
• 32.768 kHz crystal oscillator in iRTC power domain  
• 1 MHz to 32 MHz crystal oscillator  
• FLL and PLL  
• 13 power modes to provide power optimization  
based on application requirements  
• 8.82 mA @ 75 MHz run current  
• Less than 220 μA very low power run current  
• 6.05 μA very low power stop current  
• Down to 261 nA deep sleep current  
• VBAT domain current < 1 μA with iRTC operational  
• Low-power boot with less than 2.33 mA peak  
current  
System peripherals  
• Memory Protection Unit (MPU)  
• 4-channel DMA controller  
• Watchdog and EWM  
• Low-leakage Wakeup Unit (LLWU)  
• SWD debug interface and Micro Trace Buffer (MTB)  
• Bit Manipulation Engine (BME)  
• Inter-peripheral Crossbar Switch (XBAR)  
Communication interfaces  
• 16-bit SPI modules  
Analog Modules  
• Low-power UART module  
• UART module complying with ISO7816-3  
• Basic UART module  
• 4 AFE channels (4× 24-bit ƩΔ ADCs with PGA)  
• 16-channel 16-bit SAR ADC with 4 result registers  
• High-speed analog comparator containing a 6-bit DAC  
and programmable reference input  
• I2C with SMBus  
• Internal 1.2 V reference voltage 10–15 ppm/℃  
NXP reserves the right to change the production detail specifications as may be  
required to permit improvements in the design of its products.  
Timers  
• Quad Timer (QTMR)  
Security and integrity modules  
• Memory Mapped Cryptographic Acceleration Unit  
(MMCAU) for AES encryption  
• Random Number Generator (RNGA), complying  
with NIST: SP800-90  
• Programmable Cyclic Redundancy Check (PCRC)  
• 80-bit unique identification number per chip  
• Periodic Interrupt Timer (PIT)  
• Low Power Timer (LPTMR)  
• Programmable Delay Block (PDB)  
• Independent Real Time Clock (iRTC)  
Human-machine interface  
• Up to 4×60 (8×56, 6×58) segment LCD controller  
operating in all low-power modes  
• General purpose input/output (GPIO)  
The following figure shows the functional modules in the chip.  
Accessed by Micro Transfer Buffer (MTB) for trace  
MMAU  
TCU  
MMCAU  
Serial  
Wire  
Serial  
SRAM  
(64 KB)  
S1  
S0  
Wire  
MTB  
Debug  
Debug  
MPU  
BME  
M0  
(part of PPB)  
Flash  
Controller  
Flash  
(512 KB)  
Interrupt  
from  
Modules  
IOPORT  
(part of PPB)  
NVIC  
Port P0  
Port P1  
Arm ® Cortex®  
M0+ Core  
AIPS  
(AHB to IPS)  
GPIO  
Pins  
eGPIO  
(dual port)  
S2  
Multiple  
DMA  
DMA  
MUX  
4-ch  
DMA  
Requests  
from  
M2  
IPS Bus  
Modules  
Single Ended  
Channels  
SAR  
ADC  
AHB  
Crossbar  
Switch  
Digital  
I/Os  
PIT  
x2  
PCRC  
I2C  
x2  
XBAR  
SMC  
PDB  
RNGA  
Comparator  
Inputs  
CMP  
x3  
LCD  
Pins  
WDOG  
EWM  
AFE  
Modulator  
Clock  
QTMR  
SIM  
SLCD  
UART  
x4,  
LPUART  
Dec  
Filter  
x4  
MCG  
Digital  
I/Os  
LPTMR  
x2  
CLK  
GEN  
LLWU  
PMC  
VREF  
PLL  
IRC  
4 MHz  
Digital  
I/Os  
OSC  
MHz  
OSC  
32k  
RTC  
POR  
SD ADC x4  
+ PGA x4  
SPI  
x3  
IRTC  
IRC  
32 kHz  
FLL  
Refer Clocking  
Chapter for more  
detailed diagram  
on MCG  
TAMPER  
Core, System and  
Flash Clocks  
SD ADC Channels  
Analog Front End  
x4  
Fine Compensation Clock  
Modules in  
VDDA Domain  
Modules in  
VBAT Domain  
Modules in  
VDD Domain  
Figure 1. Functional block diagram  
2
Kinetis KM35 Sub-Family Data Sheet, Rev. 2, March 2020  
NXP Semiconductors  
Ordering Information  
Part Number 1  
Memory  
ADC  
Channels  
Maximum  
number of  
GPIOs  
Security  
SLCD  
Package  
Type  
Packaging  
Type  
Flash SRAM  
(KB)  
(KB)  
MKM35Z256VLL  
7
256  
64  
12  
16  
12  
16  
12  
16  
12  
16  
72  
99  
72  
99  
72  
99  
72  
99  
CRC, MMCAU,  
RNG  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
LQFP 100  
LQFP 144  
LQFP 100  
LQFP 144  
LQFP 100  
LQFP 144  
LQFP 100  
LQFP 144  
Tray  
Tray  
Reel  
Reel  
Tray  
Tray  
Reel  
Reel  
MKM35Z256VLQ  
7
256  
256  
256  
512  
512  
512  
512  
64  
64  
64  
64  
64  
64  
64  
CRC, MMCAU,  
RNG  
MKM35Z256VLL  
7R  
CRC, MMCAU,  
RNG  
MKM35Z256VLQ  
7R  
CRC, MMCAU,  
RNG  
MKM35Z512VLL  
7
CRC, MMCAU,  
RNG  
MKM35Z512VLQ  
7
CRC, MMCAU,  
RNG  
MKM35Z512VLL  
7R  
CRC, MMCAU,  
RNG  
MKM35Z512VLQ  
7R  
CRC, MMCAU,  
RNG  
1. To confirm current availability of orderable part numbers, go to http://www.nxp.com and perform a part number search.  
Related Resources  
Type  
Selector  
Guide  
Description  
Resource  
The NXP Solution Advisor is a web-based tool that features interactive Solution Advisor  
application wizards and a dynamic product selector.  
Product Brief The Product Brief contains concise overview/summary information to  
KM3xPB 1  
enable quick evaluation of a device for design suitability.  
Reference  
Manual  
The Reference Manual contains a comprehensive description of the  
structure and function (operation) of a device.  
KM35P144M75SF0RM  
Data Sheet  
The Data Sheet includes electrical characteristics and signal  
connections.  
This document:  
KM35P144M75SF0  
Chip Errata  
The chip mask set Errata provides additional or corrective information  
for a particular device mask set.  
KINETIS_M_P90A  
Package  
Drawing  
Package dimensions are provided in package drawings.  
100-LQFP: 98ASS23308W 1  
144-LQFP: 98ASS23177W 1  
1. To find the associated resource, go to http://www.nxp.com and perform a search using this term.  
Kinetis KM35 Sub-Family Data Sheet, Rev. 2, March 2020  
3
NXP Semiconductors  
Table of Contents  
1 Ratings....................................................................................5  
3.4.3 Voltage reference electrical specifications.......... 30  
3.4.4 AFE electrical specifications................................31  
3.5 Timers..............................................................................35  
3.6 Communication interfaces............................................... 35  
3.6.1 I2C switching specifications.................................35  
3.6.2 UART switching specifications............................ 36  
3.6.3 SPI switching specifications................................ 36  
3.7 Human-Machine Interfaces (HMI)....................................40  
3.7.1 LCD electrical characteristics.............................. 40  
4 Dimensions............................................................................. 42  
4.1 Obtaining package dimensions....................................... 42  
5 Pinout......................................................................................42  
5.1 KM35 Signal multiplexing and pin assignments.............. 42  
5.2 KM35 Pinouts.................................................................. 50  
6 Ordering parts......................................................................... 51  
6.1 Determining valid orderable parts....................................51  
7 Part identification.....................................................................52  
7.1 Description.......................................................................52  
7.2 Format............................................................................. 52  
7.3 Fields............................................................................... 52  
7.4 Example...........................................................................53  
8 Terminology and guidelines.................................................... 53  
8.1 Definition: Operating requirement....................................53  
8.2 Definition: Operating behavior......................................... 53  
8.3 Definition: Attribute.......................................................... 54  
8.4 Definition: Rating............................................................. 54  
8.5 Result of exceeding a rating............................................ 55  
8.6 Relationship between ratings and operating  
1.1 Thermal handling ratings................................................. 5  
1.2 Moisture handling ratings................................................ 5  
1.3 ESD handling ratings.......................................................5  
1.4 Voltage and current operating ratings............................. 6  
2 General................................................................................... 6  
2.1 AC electrical characteristics.............................................6  
2.2 Nonswitching electrical specifications..............................6  
2.2.1 Voltage and current operating requirements....... 6  
2.2.2 LVD and POR operating requirements................7  
2.2.3 Voltage and current operating behaviors.............8  
2.2.4 Power mode transition operating behaviors........ 9  
2.2.5 Power consumption operating behaviors............ 10  
2.2.6 Designing with radiated emissions in mind..........12  
2.2.7 Capacitance attributes.........................................12  
2.3 Switching specifications...................................................12  
2.3.1 Device clock specifications..................................12  
2.3.2 General switching specifications......................... 13  
2.4 Thermal specifications.....................................................14  
2.4.1 Thermal operating requirements......................... 14  
2.4.2 Thermal attributes................................................14  
3 Peripheral operating requirements and behaviors.................. 14  
3.1 Core modules.................................................................. 14  
3.1.1 Single Wire Debug (SWD)...................................14  
3.1.2 Analog Front End (AFE)...................................... 15  
3.2 Clock modules................................................................. 16  
3.2.1 MCG specifications..............................................16  
3.2.2 Oscillator electrical specifications........................18  
3.2.3 32 kHz oscillator electrical characteristics...........21  
3.3 Memories and memory interfaces................................... 23  
3.3.1 Flash electrical specifications..............................23  
3.4 Analog............................................................................. 24  
3.4.1 ADC electrical specifications............................... 24  
3.4.2 CMP and 6-bit DAC electrical specifications....... 28  
requirements....................................................................55  
8.7 Guidelines for ratings and operating requirements..........55  
8.8 Definition: Typical value...................................................56  
8.9 Typical value conditions.................................................. 57  
9 Revision History...................................................................... 57  
4
Kinetis KM35 Sub-Family Data Sheet, Rev. 2, March 2020  
NXP Semiconductors  
Ratings  
1 Ratings  
1.1 Thermal handling ratings  
Symbol  
TSTG  
Description  
Min.  
–55  
Max.  
150  
Unit  
°C  
Notes  
Storage temperature  
Solder temperature, lead-free  
1
2
TSDR  
260  
°C  
1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.  
2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
1.2 Moisture handling ratings  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
MSL  
Moisture sensitivity level  
3
1
1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
1.3 ESD handling ratings  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
VHBM  
Electrostatic discharge voltage, human body model  
(All pins except RESET pin)  
–4000  
+4000  
V
Electrostatic discharge voltage, human body model  
(RESET pin only)  
–2500  
–750  
–500  
–100  
+2500  
+750  
+500  
+100  
V
V
1
VCDM  
VCDM  
ILAT  
Electrostatic discharge voltage, charged-device  
model (for corner pins)  
Electrostatic discharge voltage, charged-device  
model  
V
2
Latch-up current at ambient temperature of 105 °C  
mA  
1. Determined according to JEDEC Standard JS-001-2014, Electrostatic Discharge (ESD) Sensitivity Testing Human  
Body Model (HBM).  
2. Determined according to JEDEC Standard JS-001-2014, Field-Induced Charged-Device Model Test Method for  
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.  
Kinetis KM35 Sub-Family Data Sheet, Rev. 2, March 2020  
5
NXP Semiconductors  
General  
1.4 Voltage and current operating ratings  
Symbol  
VDD  
Description  
Min.  
–0.3  
–0.3  
–0.3  
–0.3  
–25  
Max.  
3.6  
Unit  
V
Digital supply voltage  
VDIO  
Digital input voltage (except RESET, EXTAL, and XTAL)  
VDD + 0.3  
VBAT + 0.3  
VDD + 0.3  
25  
V
VDTamper  
VAIO  
Tamper input voltage  
Analog1, RESET, EXTAL, and XTAL input voltage  
V
V
ID  
Instantaneous maximum current single pin limit (applies to  
all port pins)  
mA  
VDDA  
VBAT  
Analog supply voltage  
VDD – 0.3  
–0.3  
VDD + 0.3  
3.6  
V
V
RTC battery supply voltage  
1. Analog pins are defined as pins that do not have an associated general purpose I/O port function.  
2 General  
2.1 AC electrical characteristics  
Unless otherwise specified, propagation delays are measured from the 50% to the 50%  
point, and rise and fall times are measured at the 20% and 80% points, as shown in the  
following figure.  
Figure 2. Input signal measurement reference  
2.2 Nonswitching electrical specifications  
6
Kinetis KM35 Sub-Family Data Sheet, Rev. 2, March 2020  
NXP Semiconductors  
General  
Notes  
2.2.1 Voltage and current operating requirements  
Table 1. Voltage and current operating requirements  
Symbol  
Description  
Min.  
2.7  
Max.  
3.6  
3.6  
3.6  
0.1  
0.1  
3.6  
Unit  
V
VDD  
Supply voltage when AFE is operational  
Supply voltage when AFE is NOT operational  
Analog supply voltage  
1.71  
2.7  
V
VDDA  
V
VDD – VDDA VDD-to-VDDA differential voltage  
VSS – VSSA VSS-to-VSSA differential voltage  
–0.1  
–0.1  
1.71  
V
V
VBAT  
VIH  
RTC battery supply voltage  
Input high voltage  
V
1
• 2.7 V ≤ VDD ≤ 3.6 V  
• 1.7 V ≤ VDD ≤ 2.7 V  
0.7 × VDD  
V
V
0.75 × VDD  
VIL  
Input low voltage  
• 2.7 V ≤ VDD ≤ 3.6 V  
• 1.7 V ≤ VDD ≤ 2.7 V  
0.35 × VDD  
0.3 × VDD  
V
V
VHYS  
IICDIO  
Input hysteresis  
0.06 × VDD  
–5  
V
Digital pin negative DC injection current — single pin  
• VIN < VSS–0.3 V  
mA  
IICAIO  
Analog2, EXTAL, and XTAL pin DC injection current  
— single pin  
mA  
–3  
• VIN < VSS–0.3 V (Negative current injection)  
• VIN > VDD+0.3 V (Positive current injection)  
+3  
IICcont  
Contiguous pin DC injection current —regional limit,  
includes sum of negative injection currents or sum of  
positive injection currents of 16 contiguous pins  
–25  
mA  
V
• Negative current injection  
• Positive current injection  
+25  
VRFVBAT VBAT voltage required to retain the VBAT register file VPOR_VBAT  
1. VBAT always needs to be there for the chip to be operational.  
2. Analog pins are defined as pins that do not have an associated general purpose I/O port function.  
2.2.2 LVD and POR operating requirements  
Table 2. VDD supply LVD and POR operating requirements  
Symbol Description  
VPOR Falling VDD POR detect voltage  
Min.  
Typ.  
Max.  
Unit  
Notes  
0.8  
1.1  
1.5  
V
Table continues on the next page...  
Kinetis KM35 Sub-Family Data Sheet, Rev. 2, March 2020  
7
NXP Semiconductors  
General  
Table 2. VDD supply LVD and POR operating requirements (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
VLVDH  
Falling low-voltage detect threshold — high  
range (LVDV=01)  
2.48  
2.56  
2.64  
V
Low-voltage warning thresholds — high range  
• Level 1 falling (LVWV=00)  
1
VLVW1H  
VLVW2H  
VLVW3H  
VLVW4H  
2.62  
2.72  
2.82  
2.92  
2.70  
2.80  
2.90  
3.00  
2.78  
2.88  
2.98  
3.08  
V
V
V
V
• Level 2 falling (LVWV=01)  
• Level 3 falling (LVWV=10)  
• Level 4 falling (LVWV=11)  
VHYSH  
VLVDL  
Low-voltage inhibit reset/recover hysteresis —  
high range  
80  
mV  
V
Falling low-voltage detect threshold — low  
range (LVDV=00)  
1.54  
1.60  
1.66  
Low-voltage warning thresholds — low range  
• Level 1 falling (LVWV=00)  
1
VLVW1L  
VLVW2L  
VLVW3L  
VLVW4L  
1.74  
1.84  
1.94  
2.04  
1.80  
1.90  
2.00  
2.10  
1.86  
1.96  
2.06  
2.16  
V
V
V
V
• Level 2 falling (LVWV=01)  
• Level 3 falling (LVWV=10)  
• Level 4 falling (LVWV=11)  
VHYSL  
Low-voltage inhibit reset/recover hysteresis —  
low range  
60  
mV  
VBG  
tLPO  
Bandgap voltage reference  
0.97  
900  
1.00  
1.03  
V
Internal low power oscillator period — factory  
trimmed  
1000  
1100  
μs  
1. Rising threshold is the sum of falling threshold and hysteresis voltage.  
Table 3. VBAT power operating requirements  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
VPOR_VBAT Falling VBAT supply POR detect voltage  
0.8  
1.1  
1.5  
V
2.2.3 Voltage and current operating behaviors  
Table 4. Voltage and current operating behaviors  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
VOH  
Output high voltage — low-drive strength  
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = 5 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = 2.5 mA  
VDD – 0.5  
VDD – 0.5  
V
V
IOHT  
Output high current total for all ports  
100  
mA  
Table continues on the next page...  
8
Kinetis KM35 Sub-Family Data Sheet, Rev. 2, March 2020  
NXP Semiconductors  
General  
Notes  
Table 4. Voltage and current operating behaviors (continued)  
Symbol  
Description  
Min.  
Max.  
Unit  
VOL  
Output low voltage — low-drive strength  
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 5 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 2.5 mA  
0.5  
0.5  
V
V
IOLT  
IOZ  
Output low current total for all ports  
Hi-Z (off-state) leakage current (per pin)  
Internal pull-up resistors  
30  
30  
100  
1
mA  
μA  
kΩ  
kΩ  
RPU  
RPD  
60  
60  
1
2
Internal pull-down resistors  
1. Measured at Vinput = VSS  
.
2. Measured at Vinput = VDD  
.
2.2.4 Power mode transition operating behaviors  
All specifications except tPOR, and VLLSxRUN recovery times in the following  
table assume this clock configuration:  
• CPU and system clocks = 75 MHz  
• Bus clock = 25 MHz  
• Flash clock = 25 MHz  
• Temperature: −40 °C, 25 °C, and 105 °C  
• VDD: 1.71 V, 3.3 V, and 3.6 V  
Table 5. Power mode transition operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
tPOR After a POR event, amount of time from the  
563  
659  
μs  
1
point VDD reaches 1.71 V to execute the first  
instruction across the operating temperature  
range of the chip.  
370  
370  
270  
270  
5
382  
382  
275  
275  
6
μs  
μs  
μs  
μs  
μs  
μs  
• VLLS0 RUN  
• VLLS1 RUN  
• VLLS2 RUN  
• VLLS3 RUN  
• VLPS RUN  
• STOP RUN  
5
6
Kinetis KM35 Sub-Family Data Sheet, Rev. 2, March 2020  
9
NXP Semiconductors  
General  
1. Normal boot (FTFA_OPT[LPBOOT]=1)  
2.2.5 Power consumption operating behaviors  
NOTE  
The maximum (Max.) values stated in the following table  
represent characterized results equivalent to the mean plus  
three times the standard deviation (mean + 3×sigma).  
Table 6. Power consumption operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDDA  
Analog supply current  
See note  
mA  
1
2
IDD_RUN Run mode current — all peripheral clocks  
disabled, code executing from flash  
8.82  
8.80  
9.19  
9.15  
9.13  
9.59  
mA  
mA  
mA  
• @ 3.0 V  
• 25 °C  
• –40 °C  
• 105 °C  
IDD_RUN Run mode current — all peripheral clocks  
enabled, code executing from flash  
2
12.38  
12.32  
12.67  
12.83  
12.76  
13.1  
mA  
mA  
mA  
• @ 3.0 V  
• 25 °C  
• –40 °C  
• 105 °C  
IDD_WAIT Wait mode high frequency current at 3.0 V— all  
2
2
peripheral clocks disabled and Flash is not in  
low-power  
• 25 °C  
5.78  
5.76  
6.34  
5.90  
5.88  
6.52  
mA  
mA  
mA  
• –40 °C  
• 105 °C  
IDD_WAIT Wait mode high frequency current at 3.0 V— all  
peripheral clocks disabled and Flash disabled  
(put in low-power)  
• 25 °C  
4.56  
4.56  
4.98  
4.6  
mA  
mA  
mA  
4.68  
5.15  
• –40 °C  
• 105 °C  
IDD_VLPR Very-low-power run mode current at 3.0 V — all  
3
4
peripheral clocks disabled  
• 25 °C  
212  
212  
550  
500  
470  
900  
μA  
μA  
μA  
• –40 °C  
• 105 °C  
IDD_VLPR Very-low-power run mode current at 3.0 V — all  
peripheral clocks enabled  
• 25 °C  
343  
327  
638  
530  
507  
μA  
μA  
μA  
• –40 °C  
• 105 °C  
1000  
Table continues on the next page...  
Kinetis KM35 Sub-Family Data Sheet, Rev. 2, March 2020  
10  
NXP Semiconductors  
General  
Table 6. Power consumption operating behaviors (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDD_VLPW Very-low-power wait mode current at 3.0 V — all  
5
peripheral clocks disabled  
• 25 °C  
133  
132  
475  
350  
330  
800  
μA  
μA  
μA  
• –40 °C  
• 105 °C  
IDD_STOP Stop mode current at 3.0 V  
• 25 °C  
• –40 °C  
• 105 °C  
406  
386  
792  
730  
700  
898  
μA  
μA  
μA  
IDD_VLPS Very-low-power stop mode current at 3.0 V  
• 25 °C  
• –40 °C  
• 105 °C  
6.05  
2.68  
347  
46  
44  
μA  
μA  
μA  
700  
IDD_VLLS3 Very low-leakage stop mode 3 current at 3.0 V  
• 25 °C  
• –40 °C  
• 105 °C  
2.78  
2.16  
61.9  
3.86  
3.85  
μA  
μA  
μA  
85.0  
IDD_VLLS2 Very low-leakage stop mode 2 current at 3.0 V  
• 25 °C  
• –40 °C  
• 105 °C  
2.45  
2.10  
40.2  
3.06  
3.04  
59.5  
μA  
μA  
μA  
IDD_VLLS1 Very low-leakage stop mode 1 current at 3.0 V  
• 25 °C  
• –40 °C  
• 105 °C  
1.20  
1.07  
30.8  
2.14  
1.84  
38.8  
μA  
μA  
μA  
IDD_VLLS0 Very low-leakage stop mode 0 current at 3.0 V  
with POR detect circuit disabled  
0.261  
0.222  
29.1  
0.67  
0.64  
38.0  
μA  
μA  
μA  
• 25 °C  
• –40 °C  
• 105 °C  
IDD_VLLS0 Very low-leakage stop mode 0 current at 3.0 V  
with POR detect circuit enabled  
0.559  
0.494  
29.5  
0.790  
0.784  
38.4  
μA  
μA  
μA  
• 25 °C  
• –40 °C  
• 105 °C  
IDD_VBAT Average current with RTC and 32 kHz disabled  
at 3.0 V and VDD is OFF  
• 25 °C  
0.243  
0.143  
6.05  
1.00  
0.95  
15  
μA  
μA  
μA  
• –40 °C  
• 105 °C  
Table continues on the next page...  
Kinetis KM35 Sub-Family Data Sheet, Rev. 2, March 2020  
11  
NXP Semiconductors  
General  
Table 6. Power consumption operating behaviors (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDD_VBAT Average current when VDD is OFF and LFSR  
and Tamper clocks set to 2 Hz.  
6, 7  
1.42  
1.24  
8.04  
3.00  
2.96  
16.0  
μA  
μA  
μA  
• @ 3.0 V  
• 25 °C  
• –40 °C  
• 105 °C  
1. See all related analog peripheral specifications for IDDA  
.
2. 75 MHz core and system clock, 25 MHz bus clock, and 25 MHz flash clock. MCG configured for FBE mode. All  
peripheral clocks disabled.  
3. 2 MHz core/system clock, and 1 MHz bus/flash clock. MCG configured for BLPE mode. All peripheral clocks disabled.  
Code executing while (1) loop from flash.  
4. 2 MHz core/system clock, and 1 MHz bus/flash clock. MCG configured for BLPE mode. All peripheral clocks enabled but  
peripherals are not in active operation. Code executing while (1) loop from flash.  
5. 2 MHz core/system clock, and 1 MHz bus/flash clock. MCG configured for BLPE mode. All peripheral clocks disabled.  
No flash accesses; some activity on DMA & RAM assumed.  
6. Includes 32 kHz oscillator current and RTC operation.  
7. An external power switch for VBAT should be present on board to have better battery life and keep VBAT pin powered in  
all conditions. There is no internal power switch in RTC.  
2.2.6 Designing with radiated emissions in mind  
To find application notes that provide guidance on designing your system to minimize  
interference from radiated emissions:  
1. Go to www.nxp.com.  
2. Perform a keyword search for “EMC design.”  
2.2.7 Capacitance attributes  
Table 7. Capacitance attributes  
Symbol  
CIN_A  
Description  
Min.  
Max.  
Unit  
pF  
Input capacitance: analog pins  
Input capacitance: digital pins  
Input capacitance: fast digital pins  
7
7
9
CIN_D  
pF  
CIN_D_io60  
pF  
2.3 Switching specifications  
12  
Kinetis KM35 Sub-Family Data Sheet, Rev. 2, March 2020  
NXP Semiconductors  
General  
Notes  
2.3.1 Device clock specifications  
Table 8. Device clock specifications  
Symbol  
Description  
Min.  
Max.  
Unit  
Normal run mode  
fSYS  
fBUS  
fFLASH  
fAFE  
System and core clock  
Bus clock  
75  
25  
25  
6.5  
MHz  
MHz  
MHz  
MHz  
Flash clock  
AFE Modulator clock  
VLPR mode1  
fSYS  
fBUS  
fFLASH  
fAFE  
System and core clock  
Bus clock  
4
1
MHz  
MHz  
MHz  
MHz  
Flash clock  
AFE Modulator clock2  
1
1.6  
1. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for  
any other module.  
2. AFE working in low-power mode.  
2.3.2 General switching specifications  
These general purpose specifications apply to all signals configured for GPIO, UART,  
and I2C signals.  
Table 9. General switching specifications  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
GPIO pin interrupt pulse width (digital glitch filter  
disabled) — Synchronous path  
1.5  
Bus clock  
cycles  
1
GPIO pin interrupt pulse width (digital glitch filter  
disabled) — Asynchronous path  
16  
ns  
External reset pulse width (digital glitch filter  
disabled)  
100  
ns  
2
Port rise and fall time  
• Slew disabled  
• 1.71 ≤ VDD ≤ 2.7 V  
• 2.7 ≤ VDD ≤ 3.6 V  
• Slew enabled  
8
5
ns  
ns  
• 1.71 ≤ VDD ≤ 2.7 V  
• 2.7 ≤ VDD ≤ 3.6 V  
27  
16  
ns  
ns  
1. The greater synchronous and asynchronous timing must be met.  
2. This is the shortest pulse that is guaranteed to be recognized.  
Kinetis KM35 Sub-Family Data Sheet, Rev. 2, March 2020  
13  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
2.4 Thermal specifications  
2.4.1 Thermal operating requirements  
Table 10. Thermal operating requirements  
Symbol  
TJ  
Description  
Min.  
–40  
–40  
Max.1  
125  
Unit  
°C  
Die junction temperature  
Ambient temperature  
TA  
105  
°C  
1. Maximum TA can be exceeded only if the user ensures that TJ does not exceed maximum TJ . The simplest method to  
determine TJ is:  
TJ = TA + RθJA × chip power dissipation.  
2.4.2 Thermal attributes  
Rating  
Board Type1  
Symbol  
100 LQFP  
144 LQFP  
Unit  
Junction to  
JESD51-7, 2s2p  
RθJA  
48.6  
41.7  
°C/W  
°C/W  
Ambient Thermal  
Resistance2  
Junction-to-Top of JESD51-7, 2s2p  
Package Thermal  
ΨJT  
0.52  
0.63  
Characterization  
Parameter 2  
1. Thermal test board meets JEDEC specification for this package (JESD51-7).  
2. Determined in accordance to JEDEC JESD51-2A natural convection environment. Thermal resistance data in this report  
is solely for a thermal performance comparison of one package to another in a standardized specified environment. It is  
not meant to predict the performance of a package in an application-specific environment.  
3 Peripheral operating requirements and behaviors  
3.1 Core modules  
14  
Kinetis KM35 Sub-Family Data Sheet, Rev. 2, March 2020  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
3.1.1 Single Wire Debug (SWD)  
Table 11. SWD switching characteristics at 2.7 V (2.7–3.6 V)  
Symbol  
SWD CLK  
Description  
Value  
Unit  
Notes  
Frequency of SWD  
operation  
20  
MHz  
Inputs, tSUI  
inputs, tHI  
Data setup time  
Data hold time  
5
ns  
ns  
ns  
ns  
1
1
1
1
0
after clock edge, tDVO Data valid Time  
tHO Data Valid Hold  
32  
0
1. Input transition assumed = 1 ns. Output transition assumed = 50 pF.  
Table 12. Switching characteristics at 1.7 V (1.7–3.6 V)  
Symbol  
SWD CLK  
Description  
Value  
Unit  
Notes  
Frequency of SWD  
operation  
18  
MHz  
Inputs, tSUI  
inputs, tHI  
Data setup time  
Data hold time  
4.7  
0
ns  
ns  
ns  
ns  
1
1
2
1
after clock edge, tDVO Data valid Time  
tHO Data Valid Hold  
49.4  
0
1. Input transition assumed = 1 ns. Output transition assumed = 50 pF.  
2. Frequency of SWD clock (18 MHz) is applicable only in case the input setup time of the device outside is not more  
than 6.15 ns, else the frequency of SWD clock would need to be lowered.  
3.1.2 Analog Front End (AFE)  
AFE switching characteristics at (2.7 V–3.6 V)  
Case 1: Clock is coming In and Data is also coming In (XBAR ports timed with  
respect to AFE clock defined at pad PTB7, PTE3, and PTK4).  
Table 13. AFE switching characteristics (2.7 V–3.6 V)  
Symbol  
AFE CLK  
Description  
Value  
Unit  
Notes  
Frequency of operation 10  
MHz  
ns  
Inputs, tSUI  
inputs, tHI  
Data setup time  
Data hold time  
5
0
1
1
ns  
1. Input Transition: 1 ns. Output Load: 50 pF.  
Kinetis KM35 Sub-Family Data Sheet, Rev. 2, March 2020  
15  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
Case 2: Clock is going Out and Data is coming In (XBAR ports timed with respect to  
generated clock defined at the XBAR out ports).  
Table 14. AFE switching characteristics (2.7 V–3.6 V)  
Symbol  
AFE CLK  
Description  
Value  
Unit  
Notes  
Frequency of operation 6.2  
MHz  
ns  
Inputs, tSUI  
inputs, tHI  
Data setup time  
Data hold time  
36  
0
1
1
ns  
1. Input Transition: 1 ns. Output Load: 50 pF.  
AFE switching characteristics at (1.7 V–3.6 V)  
Case 1: Clock is coming In and Data is also coming In (XBAR ports timed with respect  
to AFE clock defined at pad PTB7, PTE3, and PTK4).  
Table 15. AFE switching characteristics (1.7 V–3.6 V)  
Symbol  
AFE CLK  
Description  
Value  
Unit  
Notes  
Frequency of operation 13  
MHz  
ns  
Inputs, tSUI  
inputs, tHI  
Data setup time  
Data hold time  
30  
5
1
1
ns  
1. Input Transition: 1 ns. Output Load: 50 pF.  
Case 2: Clock is going Out and Data is coming In (XBAR ports timed with respect to  
generated clock defined at XBAR out ports).  
Table 16. AFE switching characteristics (1.7 V–3.6 V)  
Symbol  
AFE CLK  
Description  
Value  
Unit  
Notes  
Frequency of operation 6.5  
MHz  
ns  
Inputs, tSUI  
inputs, tHI  
Data setup time  
Data hold time  
36  
0
1
1
ns  
1. Input Transition: 1 ns. Output Load: 50 pF.  
3.2 Clock modules  
16  
Kinetis KM35 Sub-Family Data Sheet, Rev. 2, March 2020  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
3.2.1 MCG specifications  
Table 17. MCG specifications  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
fints_ft  
Internal reference frequency (slow clock) —  
32.768  
kHz  
factory trimmed at nominal VDD and 25 °C  
Δfints_t  
Total deviation of internal reference  
frequency (slow clock) over voltage and  
temperature  
-2  
+0.5/-0.7  
%
%
Δfints_t  
Total deviation of internal reference  
frequency (slow clock) over fixed voltage  
and full operating temperature range  
+2  
fints_t  
Internal reference frequency (slow clock) —  
user trimmed  
31.25  
39.0625  
0.6  
kHz  
Δfdco_res_t Resolution of trimmed average DCO output  
frequency at fixed voltage and temperature  
— using SCTRIM and SCFTRIM  
0.3  
%fdco  
Δfdco_t  
Total deviation of trimmed average DCO  
output frequency over voltage and  
temperature  
+0.5/-0.7  
0.4  
%fdco  
%fdco  
1
1
Δfdco_t  
Total deviation of trimmed average DCO  
output frequency over fixed voltage and  
temperature range of 0–70 °C  
fintf_ft  
Internal reference frequency (fast clock) —  
factory trimmed at nominal VDD and 25 °C  
4
MHz  
%
Δfintf_t  
Total deviation of internal reference  
frequency (fast clock) over voltage and  
temperature — factory trimmed at nominal  
VDD and 25 °C  
+1/-2  
fintf_t  
Internal reference frequency (fast clock) —  
user trimmed at nominal VDD and 25 °C  
3
5
MHz  
kHz  
kHz  
floc_low  
floc_high  
Loss of external clock minimum frequency  
— RANGE = 00  
(3/5) x  
fints_t  
Loss of external clock minimum frequency  
— RANGE = 01, 10, or 11  
(16/5) x  
fints_t  
FLL  
fdco  
DCO output  
frequency  
range  
Low-range (DRS=00)  
640 × fints_t  
20  
40  
60  
80  
20.97  
41.94  
62.91  
83.89  
23.99  
22  
45  
67  
90  
MHz  
MHz  
MHz  
MHz  
MHz  
2, 3  
Mid-range (DRS=01)  
1280 × fints_t  
Mid-high range (DRS=10)  
1920 × fints_t  
High-range (DRS=11)  
2560 × fints_t  
fdco_t_DMX32 DCO output  
frequency  
Low-range (DRS=00)  
732 × fints_t  
4, 5, 6  
Table continues on the next page...  
Kinetis KM35 Sub-Family Data Sheet, Rev. 2, March 2020  
17  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
Table 17. MCG specifications (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
Mid-range (DRS=01)  
1464 × fints_t  
47.97  
MHz  
Mid-high range (DRS=10)  
2197 × fints_t  
71.99  
95.98  
MHz  
MHz  
High-range (DRS=11)  
2929 × fints_t  
Jcyc_fll  
FLL period jitter  
70  
140  
1
ps  
7
8
tfll_acquire FLL target frequency acquisition time  
ms  
PLL  
11.71875 12.288 14.6484375  
fvco  
Ipll  
VCO operating frequency  
MHz  
µA  
PLL operating current  
• IO 3.3 V current  
300  
100  
39.0625  
700  
• Max core voltage current  
fpll_ref  
PLL reference frequency range  
PLL period jitter (RMS)  
• fvco = 12 MHz  
31.25  
32.768  
kHz  
ps  
Jcyc_pll  
Dlock  
Dunl  
Lock entry frequency tolerance  
Lock exit frequency tolerance  
Lock detector detection time  
1.49  
4.47  
2.98  
5.97  
150 × 10-6  
+ 1075(1/  
%
%
s
tpll_lock  
fpll_ref  
)
1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock  
mode).  
2. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0.  
3. Chip maximum freq is 75 MHz, so high-range of DCO cannot be used and should not be configured.  
4. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1.  
5. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.  
6. Chip max freq is 75 MHz, so High-range of DCO cannot be used and should not be configured.  
7. This specification is based on standard deviation (RMS) of period or frequency.  
8. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed,  
DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE,  
FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.  
3.2.2 Oscillator electrical specifications  
18  
Kinetis KM35 Sub-Family Data Sheet, Rev. 2, March 2020  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
3.2.2.1 Oscillator DC electrical specifications  
Table 18. Oscillator DC electrical specifications  
Symbol Description  
VDD Supply voltage  
Min.  
1.71  
Typ.  
Max.  
3.6  
Unit  
Notes  
V
IDDOSC Supply current — low-power mode (HGO=0)  
1
• 32 kHz  
500  
200  
200  
300  
950  
1.2  
nA  
μA  
μA  
μA  
μA  
mA  
mA  
• 1 MHz  
• 4 MHz  
• 8 MHz (RANGE=01)  
• 16 MHz  
• 24 MHz  
• 32 MHz  
1.5  
IDDOSC Supply current — high-gain mode (HGO=1)  
1
• 32 kHz  
25  
300  
400  
500  
2.5  
3
μA  
μA  
• 1 MHz  
• 4 MHz  
μA  
• 8 MHz (RANGE=01)  
• 16 MHz  
μA  
mA  
mA  
mA  
• 24 MHz  
• 32 MHz  
4
Cx  
Cy  
RF  
EXTAL load capacitance  
XTAL load capacitance  
2, 3  
2, 3  
2, 4  
Feedback resistor — low-frequency, low-power  
mode (HGO=0)  
MΩ  
MΩ  
MΩ  
MΩ  
kΩ  
Feedback resistor — low-frequency, high-gain  
mode (HGO=1)  
10  
Feedback resistor — high-frequency, low-  
power mode (HGO=0)  
Feedback resistor — high-frequency, high-gain  
mode (HGO=1)  
1
RS  
Series resistor — low-frequency, low-power  
mode (HGO=0)  
Series resistor — low-frequency, high-gain  
mode (HGO=1)  
200  
kΩ  
Series resistor — high-frequency, low-power  
mode (HGO=0)  
kΩ  
Series resistor — high-frequency, high-gain  
mode (HGO=1)  
• 1 MHz resonator  
• 2 MHz resonator  
6.6  
3.3  
kΩ  
kΩ  
Table continues on the next page...  
Kinetis KM35 Sub-Family Data Sheet, Rev. 2, March 2020  
19  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
Table 18. Oscillator DC electrical specifications (continued)  
Symbol Description  
• 4 MHz resonator  
Min.  
Typ.  
Max.  
Unit  
Notes  
0
kΩ  
• 8 MHz resonator  
• 16 MHz resonator  
• 20 MHz resonator  
• 32 MHz resonator  
0
0
0
0
kΩ  
kΩ  
kΩ  
kΩ  
5
Vpp  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — low-frequency, low-power mode  
(HGO=0)  
0.6  
VDD  
0.6  
V
V
V
V
Peak-to-peak amplitude of oscillation (oscillator  
mode) — low-frequency, high-gain mode  
(HGO=1)  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — high-frequency, low-power mode  
(HGO=0)  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — high-frequency, high-gain mode  
(HGO=1)  
VDD  
1. VDD=3.3 V, Temperature =25 °C  
2. See crystal or resonator manufacturer's recommendation.  
3. Cx and Cy can be provided by using either integrated capacitors or external components.  
4. When low-power mode is selected, RF is integrated and must not be attached externally.  
5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to  
any other device.  
3.2.2.2 Oscillator frequency specifications  
Table 19. Oscillator frequency specifications  
Symbol Description  
fosc_lo Oscillator crystal or resonator frequency — low-  
frequency mode (MCG_C2[RANGE]=00)  
Min.  
Typ.  
Max.  
Unit  
Notes  
32  
40  
kHz  
fosc_hi_1 Oscillator crystal or resonator frequency — high-  
frequency mode (low range)  
1
8
8
MHz  
MHz  
(MCG_C2[RANGE]=01)  
fosc_hi_2 Oscillator crystal or resonator frequency — high  
frequency mode (high range)  
32  
(MCG_C2[RANGE]=1x)  
fec_extal Input clock frequency (external clock mode)  
tdc_extal Input clock duty cycle (external clock mode)  
40  
48  
60  
MHz  
%
1, 2  
3, 4  
50  
tcst  
Crystal startup time — 32 kHz low-frequency,  
low-power mode (HGO=0)  
ms  
Crystal startup time — 32 kHz low-frequency,  
high-gain mode (HGO=1)  
ms  
Table continues on the next page...  
20  
NXP Semiconductors  
Kinetis KM35 Sub-Family Data Sheet, Rev. 2, March 2020  
Peripheral operating requirements and behaviors  
Table 19. Oscillator frequency specifications (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
Crystal startup time — 8 MHz high-frequency  
0.6  
ms  
(MCG_C2[RANGE]=01), low-power mode  
(HGO=0)  
Crystal startup time — 8 MHz high-frequency  
(MCG_C2[RANGE]=01), high-gain mode  
(HGO=1)  
1
ms  
1. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL.  
2. When transitioning from FEI or FBI to FBE mode, restrict the frequency of the input clock so that, when it is divided by  
FRDIV, it remains within the limits of the DCO input clock frequency.  
3. Proper PC board layout procedures must be followed to achieve specifications.  
4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S  
register being set.  
3.2.3 32 kHz oscillator electrical characteristics  
3.2.3.1 32 kHz Oscillator Maximum Ratings  
NOTE  
Functional operating conditions are given in DC Electrical  
Specifications. Absolute Maximum Ratings are stress ratings  
only, and functional operation at the maxima is not  
guaranteed. Stress beyond those listed may affect device  
reliability or cause permanent damage to the device.  
Table 20. 32 kHz oscillator absolute maximum ratings  
Num  
Symbol  
Description  
Min.  
Max.  
Unit  
1
RTC oscillator  
(A_IP_OSC_3v32k  
VLP_NN_C90LP)  
Module 3.3V  
–0.3  
3.6  
V
VDD33OSC  
Analog Supply  
Voltage  
2
3
4
VEXTAL  
VXTAL  
TA  
EXTAL Input  
Voltage  
–0.3  
–0.3  
–40  
3.6  
3.6  
135  
V
V
XTAL Input  
Voltage  
Operating  
°C  
Temperature  
Range (Packaged)  
Table continues on the next page...  
Kinetis KM35 Sub-Family Data Sheet, Rev. 2, March 2020  
21  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
Table 20. 32 kHz oscillator absolute maximum ratings (continued)  
Num  
Symbol  
Description  
Min.  
Max.  
Unit  
5
TJ  
Operating  
–40  
135  
°C  
Temperature  
Range (Junction)  
6
Tstg  
Storage  
–65  
150  
°C  
Temperature  
Range  
3.2.3.2 32 kHz oscillator DC electrical specifications  
Table 21. 32 kHz oscillator DC electrical specifications  
Symbol  
VBAT  
RF  
Description  
Min.  
1.71  
Typ.  
Max.  
3.6  
Unit  
V
Supply voltage  
Internal feedback resistor  
100  
5
MΩ  
pF  
Cpara  
Parasitical capacitance of EXTAL32 and  
XTAL32  
7
1
Vpp  
Peak-to-peak amplitude of oscillation  
0.6  
V
1. When a crystal is being used with the 32 kHz oscillator, the EXTAL32 and XTAL32 pins should only be connected to  
required oscillator components and must not be connected to any other devices.  
3.2.3.3 32 kHz oscillator frequency specifications  
Table 22. 32 kHz Crystal and Oscillator Specifications  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
fosc_lo  
Crystal  
32.768  
kHz  
frequency  
TA  
Operating  
temperature  
-40  
105  
500  
°C  
1
Total crystal  
frequency  
tolerance  
-500  
ppm  
2,3  
CL  
Load  
capacitance  
12.5  
pF  
2
2
ESR  
Equivalent  
series  
80  
kOhms  
resistance  
tstart  
Crystal start-up  
time  
1000  
32.768  
ms  
kHz  
V
4
5
6
fec_extal32  
vec_xtal32  
External input  
clock frequency  
External input  
0.7  
VDD  
clock amplitude  
22  
Kinetis KM35 Sub-Family Data Sheet, Rev. 2, March 2020  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
1. Full temperature range of this device. A reduced range can be chosen to meet application needs.  
2. Recommended crystal specification.  
3. Sum of crystal initial frequency tolerance, crystal frequency stability, and aging tolerances given by crystal vendor.  
4. Time from oscillator enable to clock stable. Dependent on the complete hardware configuration of the oscillator.  
5. External oscillator connected to EXTAL32K. XTAL32K must be unconnected.  
6. The parameter specified is a peak-to-peak value and VIH and VIL specifications do not apply. The voltage of the  
applied clock must be within the range of VSS to VDD.  
3.3 Memories and memory interfaces  
3.3.1 Flash electrical specifications  
This section describes the electrical characteristics of the flash memory module.  
3.3.1.1 Flash timing specifications — program and erase  
The following specifications represent the amount of time the internal charge pumps  
are active and do not include command overhead.  
Table 23. NVM program/erase timing specifications  
Symbol Description  
Min.  
Typ.  
7.5  
13  
Max.  
18  
Unit  
μs  
Notes  
thvpgm4 Longword Program high-voltage time  
thversscr Sector Erase high-voltage time  
1
113  
ms  
ms  
thversall  
Erase All high-voltage time  
1
1. Maximum time based on expectations at cycling end-of-life.  
3.3.1.2 Flash timing specifications — commands  
Table 24. Flash command timing specifications  
Symbol Description  
Min.  
Typ.  
Max.  
45  
Unit  
μs  
Notes  
tpgmchk Program Check execution time  
1
1
trdrsrc  
tpgm4  
tersscr  
trd1all  
trdonce  
Read Resource execution time  
Program Longword execution time  
Erase Flash Sector execution time  
Read 1s All Blocks execution time  
Read Once execution time  
30  
μs  
65  
14  
145  
114  
μs  
2
ms  
ms  
μs  
1
25  
1
tpgmonce Program Once execution time  
65  
μs  
2
tersall  
Erase All Blocks execution time  
ms  
μs  
tvfykey  
Verify Backdoor Access Key execution time  
30  
1
Kinetis KM35 Sub-Family Data Sheet, Rev. 2, March 2020  
23  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
1. Assumes 25 MHz flash clock frequency.  
2. Maximum times for erase parameters based on expectations at cycling end-of-life.  
3.3.1.3 Flash high voltage current behaviors  
Table 25. Flash high voltage current behaviors  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
IDD_PGM  
Average current adder during high voltage  
flash programming operation  
2.5  
6.0  
mA  
IDD_ERS  
Average current adder during high voltage  
flash erase operation  
1.5  
4.0  
mA  
3.3.1.4 Reliability specifications  
Table 26. NVM reliability specifications  
Symbol Description  
Min.  
Program Flash  
Typ.1  
Max.  
Unit  
Notes  
tnvmretp10k Data retention after up to 10 K cycles  
tnvmretp1k Data retention after up to 1 K cycles  
nnvmcycp Cycling endurance  
5
50  
years  
years  
cycles  
2
20  
100  
50 K  
10 K  
1. Typical data retention values are based on measured response accelerated at high temperature and derated to a  
constant 25 °C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in  
Engineering Bulletin EB619.  
2. Cycling endurance represents number of program/erase cycles at –40 °C ≤ Tj ≤ 105 °C.  
3.4 Analog  
3.4.1 ADC electrical specifications  
All ADC channels meet the 12-bit single-ended accuracy specifications.  
3.4.1.1 16-bit ADC operating conditions  
Table 27. 16-bit ADC operating conditions  
Symbol Description  
Conditions  
Min.  
1.71  
Typ.1  
Max.  
3.6  
Unit  
V
Notes  
VDDA  
ΔVDDA  
ΔVSSA  
Supply voltage  
Supply voltage  
Absolute  
0
Delta to VDD (VDD – VDDA  
)
–100  
–100  
+100  
+100  
mV  
mV  
2
2
Ground voltage Delta to VSS (VSS – VSSA  
)
0
Table continues on the next page...  
24  
NXP Semiconductors  
Kinetis KM35 Sub-Family Data Sheet, Rev. 2, March 2020  
Peripheral operating requirements and behaviors  
Table 27. 16-bit ADC operating conditions (continued)  
Symbol Description  
Conditions  
Min.  
Typ.1  
Max.  
Unit  
Notes  
VREFH  
ADC reference  
voltage high  
Absolute  
VDDA  
VDDA  
VDDA  
V
3
VREFL  
ADC reference  
voltage low  
Absolute  
VSSA  
VSSA  
VSSA  
V
4
VADIN  
CADIN  
Input voltage  
VSSA  
8
VDDA  
10  
V
Input  
• 16-bit mode  
pF  
capacitance  
• 8-bit / 10-bit / 12-bit  
modes  
4
5
RADIN  
RAS  
Input series  
resistance  
2
5
5
kΩ  
kΩ  
Analog source  
resistance  
(external)  
12-bit modes  
fADCK < 4 MHz  
5
fADCK  
fADCK  
Crate  
ADC conversion ≤ 12-bit mode  
clock frequency  
1.0  
2.0  
18.0  
12.0  
MHz  
MHz  
6
6
7
ADC conversion 16-bit mode  
clock frequency  
ADC conversion ≤ 12-bit modes  
rate  
No ADC hardware averaging  
20.000  
37.037  
818.330  
461.467  
kS/s  
kS/s  
Continuous conversions  
enabled, subsequent  
conversion time  
Crate  
ADC conversion 16-bit mode  
7
rate  
No ADC hardware averaging  
Continuous conversions  
enabled, subsequent  
conversion time  
1. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 1.0 MHz, unless otherwise stated. Typical values are for  
reference only, and are not tested in production.  
2. DC potential difference.  
3. VREFH is internally tied to VDDA  
4. VREFL is internally tied to VSSA  
.
.
5. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as  
possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The  
RAS/CAS time constant should be kept to < 1 ns.  
6. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.  
7. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.  
Kinetis KM35 Sub-Family Data Sheet, Rev. 2, March 2020  
25  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
SIMPLIFIED  
INPUT PIN EQUIVALENT  
CIRCUIT  
ZADIN  
SIMPLIFIED  
CHANNEL SELECT  
CIRCUIT  
Pad  
leakage  
ZAS  
ADC SAR  
ENGINE  
RAS  
RADIN  
VADIN  
CAS  
VAS  
RADIN  
RADIN  
RADIN  
INPUT PIN  
INPUT PIN  
INPUT PIN  
CADIN  
Figure 3. ADC input impedance equivalency diagram  
3.4.1.2 16-bit ADC electrical characteristics  
Table 28. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA  
)
Symbol Description  
Conditions1  
Min.  
0.215  
1.2  
Typ.2  
Max.  
1.7  
3.9  
6.1  
7.3  
9.5  
Unit  
mA  
Notes  
IDDA_ADC Supply current  
3
ADC  
asynchronous  
• ADLPC = 1, ADHSC = 0  
• ADLPC = 1, ADHSC = 1  
• ADLPC = 0, ADHSC = 0  
• ADLPC = 0, ADHSC = 1  
2.4  
4.0  
5.2  
6.2  
MHz  
MHz  
MHz  
MHz  
tADACK =  
1/fADACK  
2.4  
clock source  
fADACK  
3.0  
4.4  
Sample Time  
See Reference Manual chapter for sample times  
TUE  
DNL  
Total  
unadjusted error  
• 12-bit modes  
• <12-bit modes  
4
6.8  
2.1  
LSB4  
LSB4  
5
5
1.4  
Differential non-  
linearity  
• 12-bit modes  
• <12-bit modes  
0.7  
0.2  
–1.1 to  
+1.9  
–0.3 to  
+0.5  
INL  
Integral non-  
linearity  
• 12-bit modes  
1.0  
0.5  
–2.7 to  
+1.9  
LSB4  
5
Table continues on the next page...  
26  
NXP Semiconductors  
Kinetis KM35 Sub-Family Data Sheet, Rev. 2, March 2020  
Peripheral operating requirements and behaviors  
Table 28. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)  
Symbol Description  
Conditions1  
Min.  
Typ.2  
Max.  
Unit  
Notes  
–0.7 to  
+0.5  
• <12-bit modes  
EFS  
EQ  
Full-scale error  
• 12-bit modes  
• <12-bit modes  
• 16-bit modes  
• 12-bit modes  
–4  
–1.4  
–1 to 0  
–5.4  
–1.8  
LSB4  
LSB4  
VADIN  
VDDA  
=
5
Quantization  
error  
0.5  
ENOB Effective  
number of bits  
16-bit single-ended mode  
• Avg = 32  
6
bits  
bits  
12.8  
11.9  
14.5  
13.8  
• Avg = 4  
bits  
bits  
12.2  
11.4  
13.9  
13.1  
Signal-to-noise See ENOB  
plus distortion  
SINAD  
THD  
6.02 × ENOB + 1.76  
dB  
Total harmonic 16-bit single-ended mode  
7
7
dB  
dB  
distortion  
–94  
• Avg = 32  
–85  
95  
SFDR  
Spurious free  
dynamic range  
16-bit single-ended mode  
• Avg = 32  
dB  
dB  
82  
78  
90  
EIL  
Input leakage  
error  
IIn × RAS  
mV  
IIn =  
leakage  
current  
(refer to  
the MCU's  
voltage  
and  
current  
operating  
ratings)  
Temp sensor  
slope  
Across the full temperature range  
of the device  
1.55  
706  
1.62  
716  
1.69  
726  
mV/°C  
mV  
8
VTEMP25 Temp sensor  
voltage  
25 °C  
8
1. All accuracy numbers assume the ADC is calibrated with VREFH = VDDA  
2. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 2.0 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
Kinetis KM35 Sub-Family Data Sheet, Rev. 2, March 2020  
27  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low  
power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with 1  
MHz ADC conversion clock speed.  
4. 1 LSB = (VREFH - VREFL)/2N  
5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)  
6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.  
7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.  
8. ADC conversion clock < 3 MHz  
Typical ADC 16-bit Single-Ended ENOB vs ADC Clock  
100Hz, 90% FS Sine Input  
14.00  
13.75  
13.50  
13.25  
13.00  
12.75  
12.50  
12.25  
12.00  
11.75  
11.50  
11.25  
Averaging of 4 samples  
Averaging of 32 samples  
11.00  
1
2
3
4
5
6
7
8
9
10  
11  
12  
ADC Clock Frequency (MHz)  
Figure 4. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode  
3.4.2 CMP and 6-bit DAC electrical specifications  
Table 29. Comparator and 6-bit DAC electrical specifications  
Symbol  
VDD  
Description  
Min.  
1.71  
Typ.  
Max.  
3.6  
Unit  
V
Supply voltage  
IDDHS  
IDDLS  
VAIN  
Supply current, high-speed mode (EN=1, PMODE=1)  
Supply current, low-speed mode (EN=1, PMODE=0)  
Analog input voltage  
200  
20  
μA  
μA  
V
VSS – 0.3  
VDD  
20  
VAIO  
Analog input offset voltage  
Analog comparator hysteresis1  
• CR0[HYSTCTR] = 00  
mV  
VH  
5
mV  
mV  
mV  
mV  
10  
20  
30  
• CR0[HYSTCTR] = 01  
• CR0[HYSTCTR] = 10  
• CR0[HYSTCTR] = 11  
VCMPOh  
Output high  
VDD – 0.5  
V
Table continues on the next page...  
28  
NXP Semiconductors  
Kinetis KM35 Sub-Family Data Sheet, Rev. 2, March 2020  
Peripheral operating requirements and behaviors  
Table 29. Comparator and 6-bit DAC electrical specifications (continued)  
Symbol  
VCMPOl  
tDHS  
Description  
Min.  
Typ.  
Max.  
0.5  
200  
600  
40  
Unit  
V
Output low  
Propagation delay, high-speed mode (EN=1, PMODE=1)  
Propagation delay, low-speed mode (EN=1, PMODE=0)  
Analog comparator initialization delay2  
6-bit DAC current adder (enabled)  
6-bit DAC integral non-linearity  
20  
50  
250  
ns  
tDLS  
80  
ns  
μs  
IDAC6b  
INL  
7
μA  
LSB3  
–0.5  
–0.3  
0.5  
0.3  
DNL  
6-bit DAC differential non-linearity  
LSB  
1. Typical hysteresis is measured with input voltage range limited to 0.6 to VDD–0.6 V.  
2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to  
CMP_DACCR[DACEN], CMP_DACCR[VRSEL], CMP_DACCR[VOSEL], CMP_MUXCR[PSEL], and  
CMP_MUXCR[MSEL]) and the comparator output settling to a stable level.  
3. 1 LSB = Vreference/64  
0.08  
0.07  
0.06  
HYSTCTR  
Setting  
0.05  
0.04  
0.03  
00  
01  
10  
11  
0.02  
0.01  
0
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
Vin level (V)  
Figure 5. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0)  
Kinetis KM35 Sub-Family Data Sheet, Rev. 2, March 2020  
29  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
0.18  
0.16  
0.14  
0.12  
HYSTCTR  
Setting  
0.1  
00  
01  
10  
11  
0.08  
0.06  
0.04  
0.02  
0
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
Vin level (V)  
Figure 6. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1)  
3.4.3 Voltage reference electrical specifications  
Table 30. 1.2 VREF full-range operating requirements  
Symbol  
VDDA  
TA  
Description  
Min.  
2.7 1  
−40  
Max.  
3.6  
Unit  
V
Notes  
Supply voltage  
Temperature  
105  
°C  
nF  
CL  
Output load capacitance  
100  
2, 3  
1. AFE is enabled.  
2. CL must be connected between VREFH and VREFL.  
3. The load capacitance should not exceed 25% of the nominal specified CL value over the operating temperature range  
of the device.  
30  
Kinetis KM35 Sub-Family Data Sheet, Rev. 2, March 2020  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
Table 31. VREF full-range operating behaviors  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
VREFH  
Voltage reference output with factory  
trim at nominal VDDA and temperature  
= 25 °C  
1.1915  
1.195  
1.2027  
V
VREFH  
Voltage reference output with —  
factory trim  
1.1584  
1.2376  
V
VREFH  
VREFL  
Vstep  
Voltage reference output — user trim  
Voltage reference output  
1.178  
0.38  
0.4  
0.5  
18  
1.202  
0.42  
V
V
Voltage reference trim step  
mV  
Vtdrift  
Temperature drift when ICOMP = 0  
across full temperature range  
ppm/ºC  
Temperature drift when ICOMP = 1  
across full temperature range  
6
5
3
ppm/°C  
ppm/°C  
ppm/°C  
1
Temperature drift when ICOMP = 1  
across -40 ºC to 70 ºC  
1, 2  
1, 2  
Temperature drift when ICOMP = 1  
across 0 ºC to 50 ºC  
Ac  
Ibg  
Aging coefficient  
–2  
400  
80  
uV/yr  
µA  
Bandgap only current  
Low-power buffer current  
High-power buffer current  
VREF buffer current  
Load regulation  
2
2
Ilp  
0.19  
0.5  
2
mA  
mA  
mA  
µV  
Ihp  
2
ILOAD  
ΔVLOAD  
3, 4  
2, 5  
• current = 1.0 mA  
200  
Tstup  
Buffer startup time  
200  
20  
µs  
Tchop_osc_stup  
Internal bandgap start-up delay with  
chop oscilator enabled  
ms  
Vvdrift  
Voltage drift (VREFHmax -VREFHmin  
across the full voltage range)  
0.5  
mV  
2
1. ICOMP=1 is recommended to get best temperature drift. CHOPEN bit = 1 is also recommended.  
2. See the chip's Reference Manual for the appropriate settings of VREF Status and Control register.  
3. 2 mA ILOAD is only achievable for above 2.7 V VDDA condition.  
4. See the chip's Reference Manual for the appropriate settings of SIM Miscellaneous Control register.  
5. Load regulation voltage is the difference between VREFH voltage with no load vs. voltage with defined load.  
NOTE  
Temperature drift per degree is ( (VREFHmax-VREFHmin)/  
(temperature range)/VREFHmin ) in ppm/ºC.  
Kinetis KM35 Sub-Family Data Sheet, Rev. 2, March 2020  
31  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
3.4.4 AFE electrical specifications  
3.4.4.1 ΣΔ ADC + PGA specifications  
Table 32. ΣΔ ADC + PGA specifications  
Symbol  
Description  
Conditions  
Min  
1.5  
1.5  
0
Typ1  
Max  
1.5  
1.5  
0.8  
Unit  
Notes  
fNyq  
Input bandwidth  
Normal Mode  
Low-Power Mode  
1.5  
kHz  
1.5  
VCM  
Input Common Mode  
Reference  
V
VINdiff  
Differential input range  
Gain = 1 (PGA ON/OFF)2  
Gain = 2  
500  
250  
125  
62  
mV  
mV  
mV  
mV  
mV  
mV  
dB  
Gain = 4  
Gain = 8  
Gain = 16  
31  
Gain = 32  
15  
SNR  
Signal to Noise Ratio  
Normal Mode  
90  
92  
• fIN=50 Hz; gain=01, common  
mode=0 V, Vpp=1000 mV (full  
range diff.)  
88  
82  
90  
86  
• fIN=50 Hz; gain=02, common  
mode=0 V, Vpp= 500 mV  
(differential ended)  
• fIN=50 Hz; gain=04, common  
mode=0 V, Vpp= 250 mV  
(differential ended)  
• fIN=50 Hz; gain=08, common  
mode=0 V, Vpp= 125 mV  
(differential ended)  
• fIN=50 Hz; gain=16, common  
mode=0 V, Vpp= 62 mV  
(differential ended)  
76  
70  
82  
78  
• fIN=50 Hz; gain=32, common  
mode=0 V, Vpp= 31 mV  
(differential ended)  
64  
74  
Low-Power Mode  
dB  
82  
76  
82  
78  
• fIN=50 Hz; gain=01, common  
mode=0 V, Vpp=1000 mV (full  
range diff.)  
• fIN=50 Hz; gain=02, common  
mode=0 V, Vpp= 500 mV  
(differential ended)  
• fIN=50 Hz; gain=04, common  
mode=0 V, Vpp= 250 mV  
(differential ended )  
• fIN=50 Hz; gain=08, common  
mode=0 V, Vpp= 125 mV  
(differential ended )  
70  
64  
74  
70  
Table continues on the next page...  
32  
NXP Semiconductors  
Kinetis KM35 Sub-Family Data Sheet, Rev. 2, March 2020  
Peripheral operating requirements and behaviors  
Table 32. ΣΔ ADC + PGA specifications (continued)  
Symbol  
Description  
Conditions  
Min  
Typ1  
Max  
Unit  
Notes  
• fIN=50 Hz; gain=16, common  
58  
66  
mode=0 V, Vpp= 62 mV  
(differential ended )  
• fIN=50 Hz; gain=32, common  
mode=0 V, Vpp= 31 mV  
(differential ended )  
52  
62  
78  
SINAD  
Signal-to-Noise +  
Distortion Ratio  
Normal Mode  
dB  
• fIN=50 Hz; gain=01, common  
mode=0 V, Vpp=500 mV  
(differential ended)  
Low-Power Mode  
dB  
dB  
74  
• fIN=50 Hz; gain=01, common  
mode=0 V, Vpp=500 mV  
(differential ended)  
CMMR  
Eoffset  
Common Mode Rejection  
Ratio  
• fIN=50 Hz; gain=01, common  
mode=0 V, Vid=100 mV  
• fIN=50 Hz; gain=32, common  
mode=0 V, Vid=100 mV  
70  
70  
Offset Error  
Gain=01, Vpp=1000 mV (full range  
diff.)  
5
mV  
ΔOffsetTemp Offset Temperature Drift 3 Gain=01, Vpp=1000 mV (full range  
25 ppm/℃  
75 ppm/℃  
diff.)  
ΔGainTemp Gain Temperature Drift -  
Gain error caused by  
• Gain=01, Vpp=500 mV  
(differential ended)  
temperature drifts 4  
• Gain=32, Vpp=15 mV  
(differential ended)  
PSRRAC AC Power Supply  
Rejection Ratio  
Gain=01, VCC = 3 V 100 mV, fIN  
= 50 Hz  
60  
dB  
XT  
Crosstalk (with the input  
of the affected channel  
grounded)  
Gain=01, Vid = 500 mV, fIN = 50 Hz  
-100  
dB  
fMCLK  
Modulator Clock  
Frequency Range  
Normal Mode  
0.03  
0.03  
6.5  
1.6  
2.6  
MHz  
mA  
Low-Power Mode  
IDDA_PGA Current consumption by  
PGA (each channel)  
Normal Mode (fMCLK = 6.144 MHz,  
OSR= 2048)  
5
0
Low-Power Mode (fMCLK = 0.768  
MHz, OSR= 256)  
IDDA_ADC Current Consumption by Normal Mode (fMCLK = 6.144 MHz,  
1.4  
0.5  
mA  
ADC (each channel)  
OSR= 2048)  
Low-Power Mode (fMCLK = 0.768  
MHz, OSR= 256)  
1. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fMCLK = 6.144 MHz, OSR = 2048 for Normal mode and fMCLK  
=
768 kHz, OSR = 256 for low-power mode unless otherwise stated. All values are for reference only and are not tested  
in production.  
2. The full-scale input range in single-ended mode is 0.5 Vpp.  
3. Represents combined offset temperature drift of the PGA, SD ADC, and Internal 1.2 VREF blocks; Defined by shorting  
both differential inputs to ground.  
Kinetis KM35 Sub-Family Data Sheet, Rev. 2, March 2020  
33  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
4. Represents combined gain temperature drift of the PGA, SD ADC and Internal 1.2 VREF blocks.  
5. PGA is disabled in low-power modes.  
3.4.4.2 ΣΔ ADC Standalone specifications  
Table 33. ΣΔ ADC standalone specifications  
Symbol  
Description  
Conditions  
Min  
1.5  
1.5  
0
Typ1  
Max  
1.5  
1.5  
0.8  
Unit  
Notes  
fNyq  
Input bandwidth  
Normal Mode  
Low-Power Mode  
1.5  
kHz  
1.5  
VCM  
Input Common Mode  
Reference  
V
VINdiff  
Input range  
Differential  
500  
250  
mV  
mV  
dB  
Single-Ended  
Normal Mode  
SNR  
Signal to Noise Ratio  
88  
76  
90  
78  
• fIN=50 Hz; common mode=0  
V, Vpp= 500 mV (differential  
ended )  
• fIN=50 Hz; common mode=0  
V, Vpp= 500 mV (full range  
se.)  
Low-Power Mode  
• fIN=50 Hz; common mode=0  
V, Vpp=500 mV (diff.)  
• fIN=50 Hz; common mode=0  
V, Vpp=500 mV (full range  
se.)  
ΔGainTemp Gain Temperate Drift -  
Gain error caused by  
• Gain bypassed Vpp = 500 mV  
(differential)  
• PGA bypassed Vpp = 500 mV  
(differential), VCM = 0 V  
55  
30  
ppm/℃  
temperature drifts 2  
ΔOffsetTemp Offset Temperate Drift -  
Offset error caused by  
• Gain bypassed Vpp = 500  
mV (differential), VCM = 0 V  
ppm/℃  
temperature drifts 3  
SINAD  
Signal-to-Noise +  
Distortion Ratio  
Normal Mode  
dB  
80  
74  
• fIN=50 Hz; common mode=0  
V, Vpp= 500 mV (diff.)  
• fIN=50 Hz; common mode=0  
V, Vpp= 500 mV (full range  
se.)  
Low-Power Mode  
• fIN=50 Hz; common mode=0  
V, Vpp=500 mV (diff.)  
• fIN=50 Hz; common mode=0  
V, Vpp=500 mV (full range  
se.)  
CMMR  
Common Mode Rejection  
Ratio  
• fIN=50 Hz; common mode=0  
V, Vid=100 mV  
90  
dB  
Table continues on the next page...  
34  
NXP Semiconductors  
Kinetis KM35 Sub-Family Data Sheet, Rev. 2, March 2020  
Peripheral operating requirements and behaviors  
Table 33. ΣΔ ADC standalone specifications (continued)  
Symbol  
Description  
Conditions  
Min  
Typ1  
Max  
Unit  
Notes  
PSRRAC AC Power Supply  
Rejection Ratio  
Gain=01, VCC = 3 V 100 mV, fIN  
= 50 Hz  
60  
dB  
XT  
Crosstalk  
Gain=01, Vid = 500 mV, fIN = 50 Hz  
Normal Mode  
-100  
6.5  
dB  
fMCLK  
Modulator Clock  
Frequency Range  
0.03  
0.03  
MHz  
Low-Power Mode  
1.6  
IDDA_ADC Current Consumption by Normal Mode (fMCLK = 6.144 MHz,  
1.4  
mA  
ADC (each channel)  
OSR= 2048)  
0.5  
Low-Power Mode (fMCLK = 0.768  
MHz, OSR= 256)  
1. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fMCLK = 6.144 MHz, OSR = 2048 for Normal mode and fMCLK  
=
768 kHz, OSR = 256 for low-power mode unless otherwise stated. Typical values are for reference only and are not  
tested in production.  
2. Represents combined gain temperature drift of the SD ADC, and Internal 1.2 VREF blocks.  
3. Represents combined offset temperature drift of the SD ADC, and Internal 1.2 VREF blocks; Defined by shorting both  
differential inputs to ground.  
3.4.4.3 External modulator interface  
The external modulator interface on this device comprises of a Clock signal and 1-bit  
data signal. Depending on the modulator device being used, the interface works as  
follows:  
• Clock supplied to external modulator which drives data on rising edge and the  
KM35 device captures it on falling edge or next rising edge.  
• Clock and data are supplied by external modulator and KM35 device can sample  
it on falling edge or next rising edge.  
Depending on control bit in AFE, the sampling edge is changed.  
3.5 Timers  
See General switching specifications.  
3.6 Communication interfaces  
3.6.1 I2C switching specifications  
See General switching specifications.  
Kinetis KM35 Sub-Family Data Sheet, Rev. 2, March 2020  
35  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
3.6.2 UART switching specifications  
See General switching specifications.  
3.6.3 SPI switching specifications  
The Serial Peripheral Interface (SPI) provides a synchronous serial bus with master and  
slave operations. Many of the transfer attributes are programmable. The following  
tables provide timing characteristics for classic SPI timing modes. See the SPI chapter  
of the chip's Reference Manual for information about the modified transfer formats used  
for communicating with slower peripheral devices.  
All timing is shown with respect to 20% VDD and 80% VDD thresholds, unless noted, as  
well as input signal transitions of 3 ns and a 30 pF maximum load on all SPI pins.  
Table 34. SPI master mode timing on slew rate disabled pads  
Num.  
Symbol Description  
Min.  
Max.  
Unit  
Hz  
Note  
1
2
fop  
Frequency of operation  
fperiph/2048  
2 x tperiph  
fperiph/2  
1
2
tSPSCK  
SPSCK period  
2048 x  
tperiph  
ns  
3
4
5
tLead  
tLag  
Enable lead time  
Enable lag time  
1/2  
1/2  
tSPSCK  
tSPSCK  
ns  
tWSPSCK Clock (SPSCK) high or low time  
tperiph - 30  
1024 x  
tperiph  
6
7
tSU  
tHI  
Data setup time (inputs)  
Data hold time (inputs)  
Data valid (after SPSCK edge)  
Data hold time (outputs)  
Rise time input  
18  
0
ns  
ns  
ns  
ns  
ns  
15  
8
tv  
0
9
tHO  
tRI  
10  
tperiph - 25  
tFI  
Fall time input  
11  
tRO  
tFO  
Rise time output  
25  
ns  
Fall time output  
1. For both SPI0 and SPI1, fperiph is the system clock (fSYS).  
2. tperiph = 1/fperiph  
Table 35. SPI master mode timing on slew rate enabled pads  
Num.  
Symbol Description  
fop Frequency of operation  
Min.  
Max.  
Unit  
Note  
1
fperiph/2048  
fperiph/2  
Hz  
1
Table continues on the next page...  
36  
NXP Semiconductors  
Kinetis KM35 Sub-Family Data Sheet, Rev. 2, March 2020  
Peripheral operating requirements and behaviors  
Table 35. SPI master mode timing on slew rate enabled pads (continued)  
Num.  
Symbol Description  
Min.  
Max.  
Unit  
Note  
2
tSPSCK  
SPSCK period  
2 x tperiph  
2048 x  
tperiph  
ns  
2
3
4
5
tLead  
tLag  
Enable lead time  
Enable lag time  
1/2  
1/2  
tSPSCK  
tSPSCK  
ns  
tWSPSCK Clock (SPSCK) high or low time  
tperiph - 30  
1024 x  
tperiph  
6
7
tSU  
tHI  
Data setup time (inputs)  
Data hold time (inputs)  
Data valid (after SPSCK edge)  
Data hold time (outputs)  
Rise time input  
96  
0
ns  
ns  
ns  
ns  
ns  
52  
8
tv  
0
9
tHO  
tRI  
10  
tperiph - 25  
tFI  
Fall time input  
11  
tRO  
tFO  
Rise time output  
36  
ns  
Fall time output  
1. For both SPI0 and SPI1, fperiph is the system clock (fSYS).  
2. tperiph = 1/fperiph  
1
SS  
(OUTPUT)  
3
2
10  
10  
11  
11  
4
SPSCK  
(CPOL=0)  
(OUTPUT)  
5
5
SPSCK  
(CPOL=1)  
(OUTPUT)  
6
7
MISO  
(INPUT)  
2
BIT 6 . . . 1  
8
MSB IN  
LSB IN  
9
MOSI  
(OUTPUT)  
2
BIT 6 . . . 1  
MSB OUT  
LSB OUT  
1. If configured as an output.  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 7. SPI master mode timing (CPHA = 0)  
Kinetis KM35 Sub-Family Data Sheet, Rev. 2, March 2020  
37  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
1
SS  
(OUTPUT)  
2
10  
10  
11  
11  
4
3
SPSCK  
(CPOL=0)  
(OUTPUT)  
5
5
SPSCK  
(CPOL=1)  
(OUTPUT)  
6
7
MISO  
(INPUT)  
2
BIT 6 . . . 1  
LSB IN  
MSB IN  
9
8
MOSI  
(OUTPUT)  
2
PORT DATA  
BIT 6 . . . 1  
MASTER MSB OUT  
PORT DATA  
MASTER LSB OUT  
1.If configured as output  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 8. SPI master mode timing (CPHA = 1)  
Table 36. SPI slave mode timing on slew rate disabled pads  
Num.  
1
Symbol Description  
Min.  
Max.  
fperiph/4  
Unit  
Hz  
Note  
1
fop  
tSPSCK  
tLead  
tLag  
Frequency of operation  
0
2
SPSCK period  
Enable lead time  
Enable lag time  
4 x tperiph  
ns  
2
3
1
tperiph  
tperiph  
ns  
3
4
1
5
tWSPSCK Clock (SPSCK) high or low time  
tperiph - 30  
6
tSU  
tHI  
ta  
Data setup time (inputs)  
Data hold time (inputs)  
Slave access time  
2.5  
3.5  
0
ns  
7
ns  
8
tperiph  
tperiph  
31  
ns  
9
tdis  
tv  
Slave MISO disable time  
Data valid (after SPSCK edge)  
Data hold time (outputs)  
Rise time input  
ns  
4
10  
11  
12  
ns  
tHO  
tRI  
tFI  
ns  
tperiph - 25  
ns  
Fall time input  
13  
tRO  
tFO  
Rise time output  
25  
ns  
Fall time output  
1. For both SPI0 and SPI1, fperiph is the system clock (fSYS).  
2. tperiph = 1/fperiph  
3. Time to data active from high-impedance state  
4. Hold time to high-impedance state  
38  
Kinetis KM35 Sub-Family Data Sheet, Rev. 2, March 2020  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
Table 37. SPI slave mode timing on slew rate enabled pads  
Num.  
1
Symbol Description  
Min.  
Max.  
fperiph/4  
Unit  
Hz  
Note  
1
fop  
tSPSCK  
tLead  
tLag  
Frequency of operation  
0
2
SPSCK period  
Enable lead time  
Enable lag time  
4 x tperiph  
ns  
2
3
1
tperiph  
tperiph  
ns  
3
4
1
5
tWSPSCK Clock (SPSCK) high or low time  
tperiph - 30  
6
tSU  
tHI  
ta  
Data setup time (inputs)  
Data hold time (inputs)  
Slave access time  
2
7
ns  
7
ns  
8
0
tperiph  
tperiph  
122  
ns  
9
tdis  
tv  
Slave MISO disable time  
Data valid (after SPSCK edge)  
Data hold time (outputs)  
Rise time input  
ns  
4
10  
11  
12  
ns  
tHO  
tRI  
tFI  
ns  
tperiph - 25  
ns  
Fall time input  
13  
tRO  
tFO  
Rise time output  
36  
ns  
Fall time output  
1. For both SPI0 and SPI1, fperiph is the system clock (fSYS).  
2. tperiph = 1/fperiph  
3. Time to data active from high-impedance state  
4. Hold time to high-impedance state  
SS  
(INPUT)  
2
12  
13  
4
SPSCK  
(CPOL=0)  
(INPUT)  
5
5
3
12  
13  
11  
SPSCK  
(CPOL=1)  
(INPUT)  
9
8
10  
11  
see  
note  
SEE  
NOTE  
MISO  
(OUTPUT)  
BIT 6 . . . 1  
SLAVE MSB  
7
SLAVE LSB OUT  
6
MOSI  
(INPUT)  
LSB IN  
MSB IN  
BIT 6 . . . 1  
NOTE: Not defined  
Figure 9. SPI slave mode timing (CPHA = 0)  
Kinetis KM35 Sub-Family Data Sheet, Rev. 2, March 2020  
39  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
SS  
(INPUT)  
4
2
12  
12  
13  
13  
3
SPSCK  
(CPOL=0)  
(INPUT)  
5
5
SPSCK  
(CPOL=1)  
(INPUT)  
11  
9
10  
SLAVE MSB OUT  
see  
note  
MISO  
(OUTPUT)  
BIT 6 . . . 1  
BIT 6 . . . 1  
SLAVE LSB OUT  
LSB IN  
8
6
7
MOSI  
(INPUT)  
MSB IN  
NOTE: Not defined  
Figure 10. SPI slave mode timing (CPHA = 1)  
3.7 Human-Machine Interfaces (HMI)  
3.7.1 LCD electrical characteristics  
Table 38. LCD electricals  
Symbol Description  
fFrame LCD frame frequency  
Min.  
Typ.  
Max.  
Unit  
Notes  
• GCR[FFR]=0  
• GCR[FFR]=1  
23.3  
46.6  
73.1  
Hz  
Hz  
146.2  
CLCD  
LCD charge pump capacitance — nominal value  
100  
100  
nF  
nF  
pF  
V
CBYLCD LCD bypass capacitance — nominal value  
1
2
3
CGlass  
VIREG  
LCD glass capacitance  
VIREG  
2000  
8000  
• RVTRIM=0000  
• RVTRIM=1000  
• RVTRIM=0100  
• RVTRIM=1100  
• RVTRIM=0010  
• RVTRIM=1010  
• RVTRIM=0110  
0.91  
0.92  
0.93  
0.94  
0.96  
0.97  
0.98  
0.99  
Table continues on the next page...  
40  
NXP Semiconductors  
Kinetis KM35 Sub-Family Data Sheet, Rev. 2, March 2020  
Peripheral operating requirements and behaviors  
Table 38. LCD electricals (continued)  
Symbol Description  
• RVTRIM=1110  
Min.  
Typ.  
Max.  
Unit  
Notes  
1.01  
• RVTRIM=0001  
• RVTRIM=1001  
• RVTRIM=0101  
• RVTRIM=1101  
• RVTRIM=0011  
• RVTRIM=1011  
• RVTRIM=0111  
• RVTRIM=1111  
1.02  
1.03  
1.05  
1.06  
1.07  
1.08  
1.09  
ΔRTRIM VIREG TRIM resolution  
1
3.0  
% VIREG  
µA  
IVIREG  
IRBIAS  
VIREG current adder — RVEN = 1  
RBIAS current adder  
• LADJ = 10 or 11 — High load (LCD glass  
capacitance ≤ 8000 pF)  
10  
1
µA  
µA  
• LADJ = 00 or 01 — Low load (LCD glass  
capacitance ≤ 2000 pF)  
RRBIAS  
RBIAS resistor values  
• LADJ = 10 or 11 — High load (LCD glass  
capacitance ≤ 8000 pF)  
0.28  
2.98  
MΩ  
MΩ  
• LADJ = 00 or 01 — Low load (LCD glass  
capacitance ≤ 2000 pF)  
VLL1  
VLL2  
VLL3  
VLL1  
VLL2  
VLL3  
VLL1 voltage  
VLL2 voltage  
VLL3 voltage  
VLL1 voltage  
VLL2 voltage  
VLL3 voltage  
VIREG  
2 x VIREG  
3 x VIREG  
VDDA / 3  
VDDA / 1.5  
VDDA  
V
V
V
V
V
V
4
4
4
5
5
5
1. The actual value used could vary with tolerance.  
2. For highest glass capacitance values, LCD_GCR[LADJ] should be configured as specified in the LCD Controller  
chapter within the device's reference manual.  
3. VIREG maximum should never be externally driven to any level other than VDD - 0.15 V  
4. VLL1, VLL2 and VLL3 are a function of VIREG only when the regulator is enabled (GCR[RVEN]=1) and the charge  
pump is enabled (GCR[CPSEL]=1).  
5. VLL1, VLL2 and VLL3 are a function of VDDA only under either of the following conditions:  
• The charge pump is enabled (GCR[CPSEL]=1), the regulator is disabled (GCR[RVEN]=0), and VLL3 = VDDA  
through the internal power switch (GCR[VSUPPLY]=0).  
• The resistor bias string is enabled (GCR[CPSEL]=0), the regulator is disabled (GCR[RVEN]=0), and VLL3 is  
connected to VDDA externally (GCR[VSUPPLY]=1).  
Kinetis KM35 Sub-Family Data Sheet, Rev. 2, March 2020  
41  
NXP Semiconductors  
Dimensions  
4 Dimensions  
4.1 Obtaining package dimensions  
Package dimensions are provided in package drawings.  
To find a package drawing, go to nxp.com and perform a keyword search for the  
drawing’s document number:  
If you want the drawing for this package  
100-pin LQFP  
Then use this document number  
98ASS23308W  
98ASS23177W  
144-pin LQFP  
5 Pinout  
5.1 KM35 Signal multiplexing and pin assignments  
NOTE  
If use SLCD Fault Detection function, then corresponding  
SLCD functions at ALT6 or ALT7 need to be enabled.  
Otherwise don’t need to enable them.  
Table 39. Signal Multiplexing and Pin Assignments  
100  
LQFP  
144  
LQFP  
Pin  
Name  
DEFAU  
LT  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
143  
PTI4  
LCD_P4 LCD_P4  
PTI4  
LCD_P4  
4
4
4
144  
1
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
2
NC  
3
PTI5  
LCD_P4 LCD_P4  
PTI5  
LCD_P4  
5
5
5
1
4
PTA0/ LCD_P2 LCD_P2 PTA0/  
LCD_P2  
3
LLWU_P  
16  
3
3
LLWU_P  
16  
Table continues on the next page...  
42  
NXP Semiconductors  
Kinetis KM35 Sub-Family Data Sheet, Rev. 2, March 2020  
Pinout  
ALT7  
Table 39. Signal Multiplexing and Pin Assignments (continued)  
100  
LQFP  
144  
Pin  
DEFAU  
LT  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
LQFP  
Name  
2
3
5
PTA1 LCD_P2 LCD_P2 PTA1  
LCD_P2  
4
4
4
6
PTI6  
PTI7  
LCD_P4 LCD_P4  
PTI6  
PTI7  
UART2_  
RX  
LCD_P4  
6
6
6
7
LCD_P4 LCD_P4  
UART2_  
TX  
LCD_P4  
7
7
7
8
PTA2 LCD_P2 LCD_P2 PTA2  
LCD_P2  
5
5
5
4
9
PTA3 LCD_P2 LCD_P2 PTA3  
LCD_P2  
6
6
6
5
10  
PTA4/  
LLWU_P  
15  
NMI_b LCD_P2 PTA4/  
LCD_P2 NMI_b  
7
7
LLWU_P  
15  
6
7
11  
12  
PTA5 LCD_P2 LCD_P2 PTA5  
CMP0_  
OUT  
LCD_P2  
8
8
8
PTA6/ LCD_P2 LCD_P2 PTA6/ XBAR_I  
LCD_P2  
9
LLWU_P  
14  
9
9
LLWU_P  
14  
N0  
8
13  
14  
15  
16  
17  
PTA7 LCD_P3 LCD_P3 PTA7 XBAR_O  
LCD_P3  
0
0
0
UT0  
9
PTJ0  
PTJ1  
LCD_P4 LCD_P4  
PTJ0 I2C1_SD  
A
LCD_P4  
8
8
8
LCD_P4 LCD_P4  
PTJ1 I2C1_SC  
L
LCD_P4  
9
9
9
PTB0 LCD_P3 LCD_P3 PTB0  
LCD_P3  
1
1
1
PTJ2  
LCD_P5 LCD_P5  
PTJ2  
LCD_P5  
0
0
0
10  
11  
12  
18  
19  
20  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
PTB1/ LCD_P3 LCD_P3 PTB1/  
LLWU_P  
17  
LCD_P3  
2
2
2
LLWU_P  
17  
13  
14  
15  
16  
21  
22  
23  
24  
PTB2 LCD_P3 LCD_P3 PTB2  
SPI2_P  
CS0  
LCD_P3  
3
3
3
PTB3 LCD_P3 LCD_P3 PTB3  
SPI2_S  
CK  
LCD_P3  
4
4
4
PTB4 LCD_P3 LCD_P3 PTB4 SPI2_MI  
LCD_P3  
5
5
5
SO  
PTB5 LCD_P3 LCD_P3 PTB5  
SPI2_M  
OSI  
LCD_P3  
6
6
6
Table continues on the next page...  
Kinetis KM35 Sub-Family Data Sheet, Rev. 2, March 2020  
43  
NXP Semiconductors  
Pinout  
Table 39. Signal Multiplexing and Pin Assignments (continued)  
100  
LQFP  
144  
LQFP  
Pin  
Name  
DEFAU  
LT  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
17  
25  
PTB6 LCD_P3 LCD_P3 PTB6  
7/ 7/  
CMP1_I CMP1_I  
N0 N0  
LCD_P3  
7
18  
19  
20  
26  
27  
28  
PTB7 LCD_P3 LCD_P3 PTB7 AFE_CL  
LCD_P3  
8
8
8
K
PTC0 LCD_P3 LCD_P3 PTC0 UART3_ XBAR_I PDB0_E  
LCD_P3  
9
9
9
RTS_b  
PTC1 LCD_P4 LCD_P4 PTC1 UART3_  
0/ 0/ CTS_b  
CMP1_I CMP1_I  
N1 N1  
PTC2 LCD_P4 LCD_P4 PTC2 UART3_ XBAR_O  
N1  
XTRG  
LCD_P4  
0
21  
22  
29  
30  
LCD_P4  
1
1
1
TX  
UT1  
PTC3/ LCD_P4 LCD_P4 PTC3/ UART3_  
LCD_P4  
2
LLWU_P  
13  
2/  
CMP0_I CMP0_I  
N3 N3  
2/  
LLWU_P  
13  
RX  
23  
31  
PTC4 LCD_P4 LCD_P4 PTC4  
LCD_P4  
3
3
3
24  
25  
26  
32  
33  
34  
VBAT  
VBAT  
VBAT  
XTAL32 XTAL32 XTAL32  
EXTAL3 EXTAL3 EXTAL3  
2
2
2
27  
28  
35  
36  
37  
38  
39  
40  
NC  
NC  
NC  
NC  
VSS  
NC  
NC  
NC  
NC  
VSS  
NC  
NC  
NC  
NC  
VSS  
TAMPE TAMPE TAMPE  
R2 R2 R2  
29  
30  
31  
32  
33  
34  
41  
42  
43  
44  
45  
46  
TAMPE TAMPE TAMPE  
R1 R1 R1  
TAMPE TAMPE TAMPE  
R0 R0 R0  
AFE_VD AFE_VD AFE_VD  
DA DA DA  
AFE_VS AFE_VS AFE_VS  
SA SA SA  
AFE_SD AFE_SD AFE_SD  
ADP0 ADP0 ADP0  
AFE_SD AFE_SD AFE_SD  
ADM0 ADM0 ADM0  
Table continues on the next page...  
44  
Kinetis KM35 Sub-Family Data Sheet, Rev. 2, March 2020  
NXP Semiconductors  
Pinout  
Table 39. Signal Multiplexing and Pin Assignments (continued)  
100  
LQFP  
144  
LQFP  
Pin  
Name  
DEFAU  
LT  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
35  
47  
AFE_SD AFE_SD AFE_SD  
ADP1 ADP1 ADP1  
36  
48  
AFE_SD AFE_SD AFE_SD  
ADM1 ADM1 ADM1  
37  
38  
39  
49  
50  
51  
VREFH VREFH VREFH  
VREFL VREFL VREFL  
AFE_SD AFE_SD AFE_SD  
ADP2/  
CMP1_I CMP1_I CMP1_I  
N2 N2 N2  
ADP2/  
ADP2/  
40  
52  
AFE_SD AFE_SD AFE_SD  
ADM2/ ADM2/ ADM2/  
CMP1_I CMP1_I CMP1_I  
N3  
N3  
N3  
41  
42  
53  
54  
VREF  
VREF  
VREF  
AFE_SD AFE_SD AFE_SD  
ADP3/ ADP3/ ADP3/  
CMP1_I CMP1_I CMP1_I  
N4 N4 N4  
43  
55  
AFE_SD AFE_SD AFE_SD  
ADM3/ ADM3/ ADM3/  
CMP1_I CMP1_I CMP1_I  
N5  
NC  
NC  
N5  
NC  
NC  
N5  
NC  
NC  
44  
56  
57  
58  
PTC5/ ADC0_S ADC0_S PTC5/ UART0_  
LLWU_P  
12  
LPTMR1  
_ALT1  
E0/  
CMP2_I CMP2_I  
N0 N0  
E0/  
LLWU_P RTS_b  
12  
45  
46  
59  
60  
PTC6 ADC0_S ADC0_S PTC6 UART0_ QTMR0_ PDB0_E  
E1/  
CMP2_I CMP2_I  
N1 N1  
E1/  
CTS_b  
TMR1  
XTRG  
PTC7 ADC0_S ADC0_S PTC7 UART0_ XBAR_O  
E2/ E2/ TX UT2  
CMP2_I CMP2_I  
N2 N2  
47  
61  
62  
63  
PTD0/ CMP0_I CMP0_I PTD0/ UART0_ XBAR_I  
LLWU_P  
11  
N0  
N0  
LLWU_P  
11  
RX  
N2  
PTJ3  
PTJ4  
DISABL  
ED  
PTJ3 LPUART CMP2_  
0_RTS_  
b
OUT  
DISABL  
ED  
PTJ4 LPUART LPTMR1  
0_CTS_ _ALT1  
b
Table continues on the next page...  
Kinetis KM35 Sub-Family Data Sheet, Rev. 2, March 2020  
45  
NXP Semiconductors  
Pinout  
Table 39. Signal Multiplexing and Pin Assignments (continued)  
100  
LQFP  
144  
LQFP  
Pin  
Name  
DEFAU  
LT  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
48  
64  
PTD1  
DISABL  
ED  
PTD1 UART1_ SPI0_P XBAR_O QTMR0_  
TX  
CS0  
UT3  
TMR3  
49  
65  
PTD2/ CMP0_I CMP0_I PTD2/ UART1_ SPI0_S XBAR_I  
LLWU_P  
10  
N1  
N1  
LLWU_P  
10  
RX  
CK  
N3  
66  
67  
PTJ5  
DISABL  
ED  
PTJ5 LPUART  
0_TX  
PTJ6/ DISABL  
LLWU_P  
18  
PTJ6/ LPUART  
LLWU_P 0_RX  
18  
ED  
50  
68  
69  
70  
PTJ7  
DISABL  
ED  
PTJ7 LPTMR1  
_ALT2  
PTD3  
DISABL  
ED  
PTD3 UART1_ SPI0_M LPTMR1  
CTS_b  
OSI  
_ALT2  
PTK0 ADC0_S ADC0_S PTK0 LPTMR1  
E12  
NC  
NC  
NC  
NC  
E12  
NC  
NC  
NC  
NC  
_ALT3  
71  
72  
73  
74  
75  
NC  
NC  
NC  
NC  
PTK1 ADC0_S ADC0_S PTK1  
E13 E13  
51  
76  
PTD4/ ADC0_S ADC0_S PTD4/ UART1_ SPI0_MI LPTMR1  
LLWU_P  
9
E3  
E3  
LLWU_P RTS_b  
9
SO  
_ALT3  
52  
53  
77  
78  
PTD5 ADC0_S ADC0_S PTD5 LPTMR0 QTMR0_ UART3_  
E4a E4a _ALT3 TMR0 CTS_b  
PTD6/ ADC0_S ADC0_S PTD6/ LPTMR0 CMP1_ UART3_  
LLWU_P  
8
E5a  
E5a  
LLWU_P _ALT2  
8
OUT  
RTS_b  
54  
79  
PTD7/ CMP0_I CMP0_I PTD7/ I2C0_SC XBAR_I UART3_  
LLWU_P  
7
N4  
N4  
LLWU_P  
7
L
N4  
RX  
55  
80  
81  
82  
PTE0  
DISABL  
ED  
PTE0 I2C0_SD XBAR_O UART3_ CLKOUT  
A
UT4  
TX  
PTK2 ADC0_S ADC0_S PTK2 UART0_  
E14 E14 TX  
PTK3/ ADC0_S ADC0_S PTK3/ UART0_  
LLWU_P  
19  
E15  
E15  
LLWU_P  
19  
RX  
56  
57  
83  
84  
PTE1 RESET_  
b
PTE1  
RESET_  
b
PTE2  
EXTAL EXTAL  
PTE2 EWM_IN XBAR_I I2C1_SD  
N6  
A
Table continues on the next page...  
46  
Kinetis KM35 Sub-Family Data Sheet, Rev. 2, March 2020  
NXP Semiconductors  
Pinout  
Table 39. Signal Multiplexing and Pin Assignments (continued)  
100  
LQFP  
144  
LQFP  
Pin  
Name  
DEFAU  
LT  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
58  
85  
PTE3  
XTAL  
XTAL  
PTE3 EWM_O AFE_CL I2C1_SC  
UT_b  
K
L
59  
60  
61  
62  
63  
86  
87  
88  
89  
90  
VSS  
VSSA  
VDDA  
VDD  
VSS  
VSSA  
VDDA  
VDD  
VSS  
VSSA  
VDDA  
VDD  
PTE4  
DISABL  
ED  
PTE4 LPTMR0 UART2_ EWM_IN  
_ALT1 CTS_b  
64  
65  
91  
92  
PTE5/ DISABL  
PTE5/ QTMR0_ UART2_ EWM_O  
LLWU_P  
6
ED  
LLWU_P TMR3  
6
RTS_b  
UT_b  
PTE6/ SWD_DI CMP0_I PTE6/ XBAR_I UART2_  
I2C0_SC  
L
SWD_DI  
O
LLWU_P  
5
O
N2  
LLWU_P  
5
N5  
RX  
66  
67  
93  
94  
PTE7  
SWD_C ADC0_S PTE7 XBAR_O UART2_  
LK E6a UT5 TX  
I2C0_SD  
A
SWD_C  
LK  
PTF0/ ADC0_S ADC0_S PTF0/ RTC_CL QTMR0_ CMP0_  
LLWU_P  
4
E7a/  
CMP2_I CMP2_I  
N3 N3  
E7a/  
LLWU_P KOUT  
4
TMR2  
OUT  
68  
69  
95  
96  
PTF1 LCD_P0/ LCD_P0/ PTF1 QTMR0_ XBAR_O  
ADC0_S ADC0_S TMR0 UT6  
E8/ E8/  
CMP2_I CMP2_I  
N4 N4  
LCD_P0  
PTF2 LCD_P1/ LCD_P1/ PTF2  
ADC0_S ADC0_S  
CMP1_ RTC_CL  
OUT KOUT  
LCD_P1  
E9/  
CMP2_I CMP2_I  
N5 N5  
E9/  
70  
97  
98  
PTK4 LCD_P5 LCD_P5 PTK4  
XBAR_I AFE_CL  
LCD_P5  
1
1
1
N9  
K
PTK5  
PTK6  
DISABL  
ED  
PTK5 UART1_  
RX  
99  
DISABL  
ED  
PTK6 UART1_  
TX  
100  
PTF3/ LCD_P2 LCD_P2 PTF3/  
SPI1_P LPTMR0 UART0_  
CS0 _ALT2 RX  
LCD_P2  
LLWU_P  
20  
LLWU_P  
20  
71  
72  
101  
102  
PTF4 LCD_P3 LCD_P3 PTF4  
SPI1_S LPTMR0 UART0_  
LCD_P3  
LCD_P4  
CK  
PTF5 LCD_P4 LCD_P4 PTF5 SPI1_MI I2C1_SC  
SO  
Table continues on the next page...  
_ALT1  
TX  
L
Kinetis KM35 Sub-Family Data Sheet, Rev. 2, March 2020  
47  
NXP Semiconductors  
Pinout  
Table 39. Signal Multiplexing and Pin Assignments (continued)  
100  
LQFP  
144  
LQFP  
Pin  
Name  
DEFAU  
LT  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
73  
103  
PTF6/ LCD_P5 LCD_P5 PTF6/ SPI1_M I2C1_SD  
LCD_P5  
LLWU_P  
3
LLWU_P  
3
OSI  
A
74  
104  
105  
106  
PTF7 LCD_P6 LCD_P6 PTF7 QTMR0_ CLKOUT CMP2_  
LCD_P6  
TMR2  
OUT  
PTK7 LCD_P5 LCD_P5 PTK7 I2C0_SC XBAR_O  
LCD_P5  
2
2
2
L
UT9  
PTL0 LCD_P5 LCD_P5 PTL0 I2C0_SD  
LCD_P5  
3
3
3
A
75  
107  
108  
109  
110  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
PTG0 LCD_P7 LCD_P7 PTG0 QTMR0_ LPTMR0  
LCD_P7  
TMR1  
_ALT3  
76  
77  
111  
112  
PTG1/ LCD_P8/ LCD_P8/ PTG1/  
LLWU_P ADC0_S ADC0_S LLWU_P  
LPTMR0  
_ALT1  
LCD_P8  
LCD_P9  
2
E10  
PTG2/ LCD_P9/ LCD_P9/ PTG2/ SPI0_P  
LLWU_P ADC0_S ADC0_S LLWU_P CS0  
E11 E11  
PTG3 LCD_P1 LCD_P1 PTG3  
E10  
2
1
1
78  
79  
80  
81  
113  
114  
115  
116  
SPI0_S I2C0_SC  
CK  
LCD_P1  
0
0
0
L
PTG4 LCD_P1 LCD_P1 PTG4 SPI0_M I2C0_SD  
OSI  
LCD_P1  
1
1
1
A
PTG5 LCD_P1 LCD_P1 PTG5 SPI0_MI LPTMR0  
LCD_P1  
2
2
2
SO  
_ALT2  
PTG6/ LCD_P1 LCD_P1 PTG6/  
LPTMR0  
_ALT3  
LCD_P1  
3
LLWU_P  
0
3
3
LLWU_P  
0
82  
83  
117  
118  
PTG7 LCD_P1 LCD_P1 PTG7  
LPTMR1  
_ALT1  
LCD_P1  
4
4
4
PTH0 LCD_P1 LCD_P1 PTH0 LPUART  
LCD_P1  
5
5
5
0_CTS_  
b
84  
119  
PTH1 LCD_P1 LCD_P1 PTH1 LPUART  
LCD_P1  
6
6
6
0_RTS_  
b
85  
86  
87  
120  
121  
122  
PTH2 LCD_P1 LCD_P1 PTH2 LPUART  
0_RX  
LCD_P1  
7
7
7
PTH3 LCD_P1 LCD_P1 PTH3 LPUART  
LCD_P1  
8
8
8
0_TX  
PTH4 LCD_P1 LCD_P1 PTH4  
LPTMR1  
_ALT2  
LCD_P1  
9
9
9
Table continues on the next page...  
48  
Kinetis KM35 Sub-Family Data Sheet, Rev. 2, March 2020  
NXP Semiconductors  
Pinout  
ALT7  
Table 39. Signal Multiplexing and Pin Assignments (continued)  
100  
LQFP  
144  
Pin  
DEFAU  
LT  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
LQFP  
Name  
88  
89  
90  
91  
123  
124  
125  
126  
PTH5 LCD_P2 LCD_P2 PTH5  
LPTMR1  
_ALT3  
LCD_P2  
0
0
0
PTH6  
PTH7  
DISABL  
ED  
PTH6 UART1_ SPI1_P XBAR_I  
CTS_b CS0 N7  
DISABL  
ED  
PTH7 UART1_ SPI1_S XBAR_O  
RTS_b CK UT7  
PTI0/  
LLWU_P  
21  
CMP0_I CMP0_I  
PTI0/ UART1_ XBAR_I SPI1_MI SPI1_M  
LLWU_P  
21  
N5  
N5  
RX  
N8  
SO  
OSI  
92  
93  
127  
128  
129  
130  
PTI1  
DISABL  
ED  
PTI1  
UART1_ XBAR_O SPI1_M SPI1_MI  
TX  
UT8  
OSI  
SO  
PTL1 LCD_P5 LCD_P5 PTL1  
XBAR_I  
N10  
LCD_P5  
4
4
4
PTL2 LCD_P5 LCD_P5 PTL2 XBAR_O  
UT10  
LCD_P5  
5
5
5
PTI2/ LCD_P2 LCD_P2 PTI2/ LPUART  
LLWU_P  
22  
LCD_P2  
1
1
1
LLWU_P 0_RX  
22  
94  
131  
PTI3  
LCD_P2 LCD_P2  
PTI3  
LPUART CMP2_  
LCD_P2  
2
2
2
0_TX  
OUT  
95  
96  
97  
132  
133  
134  
135  
VSS  
VDD  
VLL3  
VLL2  
VSS  
VDD  
VLL3  
VLL2/  
VSS  
VDD  
VLL3  
VLL2/  
PTM0  
LCD_P6  
0
LCD_P6 LCD_P6  
0
0
98  
99  
136  
137  
138  
VLL1  
VLL1/  
LCD_P6 LCD_P6  
VLL1/  
PTM1  
LCD_P6  
1
1
1
VCAP2 VCAP2/ VCAP2/ PTM2  
LCD_P6 LCD_P6  
LCD_P6  
2
2
2
100  
VCAP1 VCAP1/ VCAP1/ PTM3  
LCD_P6 LCD_P6  
LCD_P6  
3
3
3
139  
140  
141  
PTL3 LCD_P5 LCD_P5 PTL3 EWM_IN  
LCD_P5  
6
6
6
PTL4 LCD_P5 LCD_P5 PTL4 EWM_O  
LCD_P5  
7
7
7
UT_b  
PTL5/ LCD_P5 LCD_P5 PTL5/  
LCD_P5  
8
LLWU_P  
23  
8
8
LLWU_P  
23  
142  
PTL6 LCD_P5 LCD_P5 PTL6  
LCD_P5  
9
9
9
Kinetis KM35 Sub-Family Data Sheet, Rev. 2, March 2020  
49  
NXP Semiconductors  
Pinout  
5.2 KM35 Pinouts  
5.2.1 100-pin LQFP  
The following figure represents the KM35 100 LQFP pinouts.  
Figure 11. 100-pin LQFP Pinout Diagram  
50  
Kinetis KM35 Sub-Family Data Sheet, Rev. 2, March 2020  
NXP Semiconductors  
Ordering parts  
5.2.2 144-pin LQFP  
The following figure represents the KM35 144 LQFP pinouts:  
Figure 12. 144-pin LQFP Pinout Diagram  
6 Ordering parts  
Kinetis KM35 Sub-Family Data Sheet, Rev. 2, March 2020  
51  
NXP Semiconductors  
Part identification  
6.1 Determining valid orderable parts  
Valid orderable part numbers are provided on the web. To determine the orderable part  
numbers for this device, go to nxp.com and perform a part number search for the  
following device numbers:  
• MKM35Z256VLL7  
• MKM35Z256VLQ7  
• MKM35Z512VLL7  
• MKM35Z512VLQ7  
7 Part identification  
7.1 Description  
Part numbers for the chip have fields that identify the specific part. You can use the  
values of these fields to determine the specific part you have received.  
7.2 Format  
Part numbers for this device have the following format:  
Q KM## A FFF R T PP CC N  
7.3 Fields  
Following table lists the possible values for each field in the part number (not all  
combinations are valid):  
Field  
Description  
Values  
Q
Qualification status  
• M = Fully qualified, general market flow  
• P = Pre-qualification  
KM##  
A
Kinetis family  
Key attribute  
• KM35  
• Z = Cortex®-M0+  
FFF  
Program flash memory size  
• 256 = 256 KB  
• 512 = 512 KB  
R
Silicon revision  
• (Blank) = Main  
• A = Revision after main  
Table continues on the next page...  
52  
Kinetis KM35 Sub-Family Data Sheet, Rev. 2, March 2020  
NXP Semiconductors  
Terminology and guidelines  
Values  
Field  
Description  
Temperature range (°C)  
T
• V = –40 to 105  
PP  
Package identifier  
• LL = 100 LQFP (14 mm x 14 mm)  
• LQ = 144 LQFP (20 mm × 20 mm)  
CC  
N
Maximum CPU frequency (MHz)  
Packaging type  
• 7 = 75 MHz  
• R = Tape and reel  
• (Blank) = Trays  
7.4 Example  
This is an example part number:  
• MKM35Z512VLL7  
8 Terminology and guidelines  
8.1 Definition: Operating requirement  
An operating requirement is a specified value or range of values for a technical  
characteristic that you must guarantee during operation to avoid incorrect operation  
and possibly decreasing the useful life of the chip.  
8.1.1 Example  
This is an example of an operating requirement:  
Symbol  
Description  
Min.  
Max.  
Unit  
VDD  
1.0 V core supply  
voltage  
0.9  
1.1  
V
8.2 Definition: Operating behavior  
Unless otherwise specified, an operating behavior is a specified value or range of  
values for a technical characteristic that are guaranteed during operation if you meet  
the operating requirements and any other specified conditions.  
Kinetis KM35 Sub-Family Data Sheet, Rev. 2, March 2020  
53  
NXP Semiconductors  
Terminology and guidelines  
8.2.1 Example  
This is an example of an operating behavior:  
Symbol  
Description  
Min.  
Max.  
Unit  
IWP  
Digital I/O weak pullup/ 10  
pulldown current  
130  
µA  
8.3 Definition: Attribute  
An attribute is a specified value or range of values for a technical characteristic that are  
guaranteed, regardless of whether you meet the operating requirements.  
8.3.1 Example  
This is an example of an attribute:  
Symbol  
Description  
Min.  
Max.  
Unit  
CIN_D  
Input capacitance:  
digital pins  
7
pF  
8.4 Definition: Rating  
A rating is a minimum or maximum value of a technical characteristic that, if exceeded,  
may cause permanent chip failure:  
Operating ratings apply during operation of the chip.  
Handling ratings apply when the chip is not powered.  
8.4.1 Example  
This is an example of an operating rating:  
54  
Kinetis KM35 Sub-Family Data Sheet, Rev. 2, March 2020  
NXP Semiconductors  
Terminology and guidelines  
Symbol  
Description  
Min.  
Max.  
Unit  
VDD  
1.0 V core supply  
voltage  
–0.3  
1.2  
V
8.5 Result of exceeding a rating  
40  
30  
The likelihood of permanent chip failure increases rapidly as  
soon as a characteristic begins to exceed one of its operating ratings.  
20  
10  
0
Operating rating  
Measured characteristic  
8.6 Relationship between ratings and operating requirements  
Fatal range  
Degraded operating range  
Normal operating range  
Degraded operating range  
Fatal range  
Expected permanent failure  
- No permanent failure  
- No permanent failure  
- Correct operation  
- No permanent failure  
Expected permanent failure  
- Possible decreased life  
- Possible incorrect operation  
- Possible decreased life  
- Possible incorrect operation  
 
Operating (power on)  
Fatal range  
Handling range  
Fatal range  
Expected permanent failure  
No permanent failure  
Expected permanent failure  
∞  
Handling (power off)  
8.7 Guidelines for ratings and operating requirements  
Follow these guidelines for ratings and operating requirements:  
Kinetis KM35 Sub-Family Data Sheet, Rev. 2, March 2020  
55  
NXP Semiconductors  
Terminology and guidelines  
• Never exceed any of the chip’s ratings.  
• During normal operation, don’t exceed any of the chip’s operating requirements.  
• If you must exceed an operating requirement at times other than during normal  
operation (for example, during power sequencing), limit the duration as much as  
possible.  
8.8 Definition: Typical value  
A typical value is a specified value for a technical characteristic that:  
• Lies within the range of values specified by the operating behavior  
• Given the typical manufacturing process, is representative of that characteristic  
during operation when you meet the typical-value conditions or other specified  
conditions  
Typical values are provided as design guidelines and are neither tested nor guaranteed.  
8.8.1 Example 1  
This is an example of an operating behavior that includes a typical value:  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
IWP  
Digital I/O weak  
pullup/pulldown  
current  
10  
70  
130  
µA  
8.8.2 Example 2  
This is an example of a chart that shows typical values for various voltage and  
temperature conditions:  
56  
Kinetis KM35 Sub-Family Data Sheet, Rev. 2, March 2020  
NXP Semiconductors  
Revision History  
5000  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
TJ  
150 °C  
105 °C  
25 °C  
–40 °C  
0
0.90  
0.95  
1.00  
1.05  
1.10  
VDD (V)  
8.9 Typical value conditions  
Typical values assume you meet the following conditions (or other conditions as  
specified):  
Symbol  
Description  
Ambient temperature  
3.3 V supply voltage  
Value  
Unit  
TA  
25  
°C  
V
VDD  
3.3  
9 Revision History  
The following table provides a revision history for this document.  
Table 40. Revision History  
Rev. No.  
Rev.0  
Rev.1  
Date  
Substantial Changes  
08/2019  
12/2019  
Initial release  
• Updated the footnotes of ESD handling ratings  
• Updated Thermal Attributes  
• Removed EzPort column from KM35 Signal Multiplexing and Pin  
Assignments  
Table continues on the next page...  
Kinetis KM35 Sub-Family Data Sheet, Rev. 2, March 2020  
57  
NXP Semiconductors  
Revision History  
Table 40. Revision History (continued)  
Rev. No.  
Date  
03/2020  
Substantial Changes  
Rev.2  
• ADdedd IDD values in Power consumption operating behaviors  
• EDitorial updates  
• Updated Low power features in Front Matter  
58  
Kinetis KM35 Sub-Family Data Sheet, Rev. 2, March 2020  
NXP Semiconductors  
Information in this document is provided solely to enable system and software implementers to use  
NXP products. There are no express or implied copyright licenses granted hereunder to design or  
fabricate any integrated circuits based on the information in this document. NXP reserves the right to  
make changes without further notice to any products herein.  
How to Reach Us:  
Home Page:  
nxp.com  
Web Support:  
nxp.com/support  
NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any  
particular purpose, nor does NXP assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without limitation  
consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets  
and/or specifications can and do vary in different applications, and actual performance may vary over  
time. All operating parameters, including "typicals," must be validated for each customer application  
by customer's technical experts. NXP does not convey any license under its patent rights nor the  
rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be  
found at the following address: nxp.com/SalesTermsandConditions.  
While NXP has implemented advanced security features, all products may be subject to unidentified  
vulnerabilities. Customers are responsible for the design and operation of their applications and  
products to reduce the effect of these vulnerabilities on customer's applications and products, and  
NXP accepts no liability for any vulnerability that is discovered. Customers should implement  
appropriate design and operating safeguards to minimize the risks associated with their applications  
and products.  
NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,  
EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE  
CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,  
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,  
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire, ColdFire+,  
the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC,  
Processor Expert, QorIQ, QorIQ Qonverge, SafeAssure, the SafeAssure logo, StarCore, Symphony,  
VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC  
Engine, Tower, TurboLink, eIQ, Immersiv3D, EdgeLock, and EdgeScale are trademarks of NXP B.V.  
All other product or service names are the property of their respective owners. AMBA, Arm, Arm7,  
Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart,  
DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates,  
Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are  
trademarks or registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.  
The related technology may be protected by any or all of patents, copyrights, designs and trade  
secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates.  
The Power Architecture and Power.org word marks and the Power and Power.org logos and related  
marks are trademarks and service marks licensed by Power.org.  
© 2019–2020 NXP B.V.  
Document Number KM35P144M75SF0  
Revision 2, March 2020  

相关型号:

MKM35Z256VLQ7R

Kinetis KM35 Sub-Family Data Sheet
NXP

MKM35Z512VLL7

Kinetis KM35 Sub-Family Data Sheet
NXP

MKM35Z512VLL7R

Kinetis KM35 Sub-Family Data Sheet
NXP

MKM35Z512VLQ7

Kinetis KM35 Sub-Family Data Sheet
NXP

MKM35Z512VLQ7R

Kinetis KM35 Sub-Family Data Sheet
NXP

MKN1802447/064B

Film Capacitor, Polyethylene Naphthalate, 63V, 5% +Tol, 5% -Tol, 0.47uF, Surface Mount, 2220
VISHAY

MKN1802447/064M

Film Capacitor, Polyethylene Naphthalate, 63V, 5% +Tol, 5% -Tol, 0.47uF, Surface Mount, 2220
VISHAY

MKP

Industry Standard Package
MMD

MKP

BOX CAPACITORS
KEMET

MKP-338-2

Interference suppression film capacitors
ETC

MKP-B32656S

Metallized Polypropylene Film Capacitors (MKP)
TDK

MKP-B32774778

Metallized Polypropylene Film Capacitors
TDK