MKW31Z512 [NXP]

2.4 GHz Bluetooth Low Energy ver. 4.2 compliantsupporting up to 2 simultaneous hardware connections;
MKW31Z512
型号: MKW31Z512
厂家: NXP    NXP
描述:

2.4 GHz Bluetooth Low Energy ver. 4.2 compliantsupporting up to 2 simultaneous hardware connections

文件: 总91页 (文件大小:1265K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NXP Semiconductors  
MKW41Z512  
Data Sheet: Technical Data  
Rev. 4, 03/2018  
MKW41Z/31Z/21Z Data Sheet  
MKW41Z512  
A Bluetooth® Low Energy, IEEE® Standard 802.15.4,  
Generic FSK System on a Chip (SoC) Supports the  
following: MKW41Z512VHT4, MKW31Z512VHT4,  
MKW21Z512VHT4, MKW41Z256VHT4, MKW31Z256VHT4,  
MKW21Z256VHT4,MKW41Z512CAT4,MKW31Z512CAT4  
MKW31Z512  
MKW21Z512  
MKW41Z256  
MKW31Z256  
MKW21Z256  
48 LQFN  
7 x 7 x 0.98 mm Pitch 3.893 x 3.797 x 0.564  
0.5 mm mm Pitch 0.4 mm  
75 WLCSP  
Multi-Standard Radio  
System peripherals  
• 2.4 GHz Bluetooth Low Energy ver. 4.2 compliant  
supporting up to 2 simultaneous hardware connections  
• IEEE Std. 802.15.4 compliant with dual-PAN support  
• Generic FSK modulation  
• Nine MCU low-power modes to provide power  
optimization based on application requirements  
• DC-DC Converter supporting Buck, Boost, and  
Bypass operating modes  
• Data Rate: 250, 500 and 1000 kbps  
• Modulations: GFSK BT = 0.3, 0.5, 0.7; FSK/MSK  
• Modulation Index: 0.32, 0.5, or 0.7  
• Direct memory access(DMA) Controller  
• Computer operating properly(COP) watchdog  
• Serial wire debug(SWD) Interface and Micro Trace  
buffer  
• Typical Receiver Sensitivity (BLE) = -95 dBm  
• Typical Receiver Sensitivity (802.15.4) = -100 dBm  
• Typical Receiver Sensitivity (250 kbps GFSK-BT=0.5,  
h=0.5) = -100 dBm  
• Bit Manipulation Engine (BME)  
Analog Modules  
• 16-bit Analog-to-Digital Converter (ADC)  
• 12-bit Digital-to-Analog Converter (DAC)  
• 6-bit High Speed Analog Comparator (CMP)  
• 1.2 V voltage reference (VREF)  
• Prog Transmitter Output Power: -30 dBm to 3.5 dBm  
• Low external component counts for low cost application  
• On-chip balun with single ended bidirectional RF port  
MCU and Memories  
Timers  
• Up to 48 MHz ARM® Cortex-M0+ core  
• On-chip 512/256 KB Flash memory  
• On-chip 128/64 KB SRAM  
• 16-bit low-power timer (LPTMR)  
• 3 Timers Modules(TPM): One 4 channel TPM and  
two 2 channel TPMs  
Low Power Consumption  
• Programmable Interrupt Timer (PIT)  
• Real-Time Clock (RTC)  
• Transceiver current (DC-DC buck mode, 3.6 V supply)  
• Typical Rx Current: 6.8 mA  
Communication interfaces  
• Typical Tx current: 6.1 mA (0 dBm output)  
• Low Power Mode (VLLS0) Current: 182 nA  
• 2 serial peripheral interface (SPI) modules  
• 2 inter-integrated circuit (I2C) modules  
NXP reserves the right to change the production detail specifications as may be  
required to permit improvements in the design of its products.  
Clocks  
• 26 and 32 MHz supported for BLE and FSK modes  
• Low Power UART module  
• Carrier Modulator Timer (CMT)  
• 32 MHz supported for IEEE Standard 802.15.4  
• 32.768 kHz Crystal Oscillator  
Security  
• AES-128 Hardware Accelerator (AESA)  
• True Random Number Generator (TRNG)  
• Advanced flash security  
• 80-bit unique identification number per chip  
• 40-bit unique media access control (MAC) sub-  
address  
Operating Characteristics  
• Voltage range: 0.9 V to 4.2 V  
• Temperature range:  
• –40 to 105 °C (Laminate-QFN)  
• –40 to 85 °C (WLCSP)  
• Bluetooth-LE v4.2 Secure Connections  
• IEEE Standard 802.15.4-2011 compliant security  
Human-machine interface  
• Touch sensing input  
• General-purpose input/output  
2
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
NXP Semiconductors  
Table of Contents  
1
2
3
Introduction......................................................................... 4  
7.2.9 Capacitance attributes..................................... 46  
7.3 Switching electrical specifications................................46  
7.3.1 Device clock specifications.............................. 46  
7.3.2 General switching specifications......................47  
7.4 Thermal specifications................................................. 48  
7.4.1 Thermal operating requirements......................48  
7.4.2 Thermal attributes............................................ 48  
7.5 Peripheral operating requirements and behaviors.......49  
7.5.1 Core modules...................................................49  
7.5.2 System modules.............................................. 51  
7.5.3 Clock modules................................................. 51  
7.5.4 Memories and memory interfaces....................54  
7.5.5 Security and integrity modules.........................56  
7.5.6 Analog..............................................................56  
7.5.7 Timers.............................................................. 67  
7.5.8 Communication interfaces................................67  
7.5.9 Human-machine interfaces (HMI).................... 72  
7.6 DC-DC Converter Operating Requirements................ 73  
7.7 Ratings.........................................................................76  
7.7.1 Thermal handling ratings................................. 76  
7.7.2 Moisture handling ratings.................................76  
7.7.3 ESD handling ratings....................................... 76  
7.7.4 Voltage and current operating ratings..............77  
Pin Diagrams and Pin Assignments....................................77  
8.1 Pinouts.........................................................................77  
8.2 Signal Multiplexing and Pin Assignments.................... 79  
8.3 Module Signal Description Tables............................... 83  
8.3.1 Core Modules...................................................83  
8.3.2 Radio Modules................................................. 83  
8.3.3 System Modules.............................................. 84  
8.3.4 Clock Modules................................................. 85  
8.3.5 Analog Modules............................................... 86  
8.3.6 Timer Modules................................................. 87  
8.3.7 Communication Interfaces............................... 87  
8.3.8 Human-Machine Interfaces(HMI).....................89  
Package Information........................................................... 89  
9.1 Obtaining package dimensions....................................89  
Ordering Information........................................................... 5  
Feature Descriptions........................................................... 5  
3.1 Block Diagram..............................................................5  
3.2 Radio features..............................................................6  
3.3 Microcontroller features............................................... 7  
3.4 System features...........................................................8  
3.5 Peripheral features.......................................................11  
3.6 Security Features.........................................................15  
Transceiver Description.......................................................17  
4.1 Key Specifications........................................................17  
4.2 Channel Map Frequency Plans ...................................18  
4.2.1 Channel Plan for Bluetooth Low Energy.......... 18  
4.2.2 Channel Plan for IEEE 802.15.4 in 2.4GHz  
4
ISM and MBAN frequency bands.....................19  
4.2.3 Other Channel Plans .......................................20  
4.3 Transceiver Functions..................................................21  
Transceiver Electrical Characteristics................................. 21  
5.1 Radio operating conditions.......................................... 21  
5.2 Receiver Feature Summary.........................................22  
5.3 Transmit and PLL Feature Summary...........................25  
System and Power Management........................................ 28  
6.1 Power Management.....................................................28  
6.1.1 DC-DC Converter.............................................29  
6.2 Modes of Operation..................................................... 29  
6.2.1 Power modes................................................... 29  
MCU Electrical Characteristics............................................32  
7.1 AC electrical characteristics.........................................32  
7.2 Nonswitching electrical specifications..........................32  
7.2.1 Voltage and current operating requirements....32  
7.2.2 LVD and POR operating requirements............ 33  
7.2.3 Voltage and current operating behaviors......... 34  
7.2.4 Power mode transition operating behaviors.....35  
7.2.5 Power consumption operating behaviors.........36  
7.2.6 Diagram: Typical IDD_RUN operating  
5
6
8
7
behavior........................................................... 44  
9
10 Revision History.................................................................. 90  
7.2.7 SoC Power Consumption.................................45  
7.2.8 Designing with radiated emissions in mind...... 46  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
3
NXP Semiconductors  
Introduction  
1 Introduction  
The KW41Z/31Z/21Z (called KW41Z throughout this document) is an ultra low-power,  
highly integrated single-chip device that enables Bluetooth low energy (BLE), Generic  
FSK (at 250, 500 and 1000 kbps) or IEEE Standard 802.15.4 RF connectivity for  
portable, extremely low-power embedded systems. Applications include portable health  
care devices, wearable sports and fitness devices, AV remote controls, computer  
keyboards and mice, gaming controllers, access control, security systems, smart energy  
and home area networks.  
The KW41Z SoC integrates a radio transceiver operating in the 2.36 GHz to 2.48 GHz  
range supporting a range of FSK/GFSK and O-QPSK modulations, an ARM Cortex-  
M0+ CPU, up to 512 KB Flash and up to 128 KB SRAM, BLE Link Layer hardware,  
802.15.4 packet processor hardware and peripherals optimized to meet the requirements  
of the target applications.  
The KW41Z SoC’s radio frequency transceiver is compliant with Bluetooth version 4.2  
for Low Energy (aka Bluetooth Smart or BLE), Generic FSK and the IEEE Standard  
802.15.4 using O-QPSK in the 2.4 GHz ISM band. NXP provides fully certified  
Bluetooth Low Energy and IEEE Standard 802.15.4 protocol stacks, including Zigbee  
3.0, Thread, and application profiles to support KW41Z.  
The KW41Z SoC can be used in applications as a "BlackBox" modem by simply  
adding BLE or IEEE Standard 802.15.4 connectivity to an existing embedded controller  
system, or used as a stand-alone smart wireless sensor with embedded application  
where no host controller is required.  
KW41Z has 512/256 KB of on-chip Flash and 128/64 KB of on-chip SRAM memory  
available to be used by customer applications and chosen communication protocol stack  
using a choice of either NXP or 3rd party software development tools.  
The RF section of the KW41Z SoC is optimized to require very few external  
components, achieving the smallest RF footprint possible on a printed circuit board.  
Extremely long battery life is achieved though efficiency of code execution in the  
Cortex-M0+ CPU core and the multiple low power operating modes of the KW41Z  
SoC. Additionally, an integrated DC-DC converter enables a wide operating range from  
0.9 V to 4.2 V. The DC-DC in Buck mode enables KW41Z to operate from a single  
coin cell battery with a significant reduction of peak Rx and Tx current consumption.  
The DC-DC in boost mode enables a single alkaline battery to be used throughout its  
entire useful voltage range of 0.9 V to 1.795 V.  
4
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
NXP Semiconductors  
Ordering Information  
2 Ordering Information  
Table 1. Orderable parts details  
Memory  
Configuration  
Device  
Part Marking  
Package  
Description  
MKW21Z512VHT4(R)  
M21W9VT4  
512 KB Flash  
128 KB SRAM  
256 KB Flash  
64 KB SRAM  
512 KB Flash  
128 KB SRAM  
512 KB Flash  
128 KB SRAM  
256 KB Flash  
64 KB SRAM  
512 KB Flash  
128 KB SRAM  
48-pin Laminate IEEE 802.15.4  
QFN  
MKW21Z256VHT4(R)  
MKW31Z512CAT4R  
MKW31Z512VHT4(R)  
MKW31Z256VHT4(R)  
MKW41Z512CAT4R  
M21W8VT4  
MKW31Z512CAT4  
M31W9VT4  
75-pin WLCSP  
Bluetooth Low Energy and  
Generic FSK  
48-pin Laminate Bluetooth Low Energy and  
QFN  
Generic FSK  
M31W8VT4  
MKW41Z512CAT4  
75-pin WLCSP  
Bluetooth Low Energy and  
IEEE 802.15.4 and Generic  
FSK  
MKW41Z512VHT4(R)  
MKW41Z256VHT4(R)  
M41W9VT4  
M41W8VT4  
512 KB Flash  
128 KB SRAM  
256 KB Flash  
64 KB SRAM  
48-pin Laminate Bluetooth Low Energy and  
QFN  
IEEE 802.15.4 and Generic  
FSK  
3 Feature Descriptions  
This section provides a simplified block diagram and highlights the KW41Z features.  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
5
NXP Semiconductors  
Feature Descriptions  
3.1 Block Diagram  
ARM Cortex M0+ Core  
32K Osc  
IRC  
MCG  
DMA MUX  
4ch DMA  
Serial Wire Debug  
DAP MDM  
NVIC  
WIC  
4 MHz  
DWT  
MTB  
26M or  
32M OSC  
IRC  
32 kHz  
FLL  
IOPORT  
Unified Bus  
AHBLite  
AHBLite  
M2A  
M0  
Crossbar-Lite Switch (XBS)  
S2  
S0  
S1  
SIM  
ADC  
I2C x2  
BME  
PIT  
GPIO  
Flash  
128/64 KB  
SRAM  
Controller  
SMC  
RCM  
PMC  
CMP  
TPM x3  
LPTMR  
RTC  
LPUART  
SPI x2  
CMT  
AIPS-Lite  
Flash  
512/256 KB  
DAC  
Radio  
TRNG  
TSI  
IPS  
VREF  
IPS  
APB  
VDCDC_IN  
DCDC  
Figure 1. KW41Z Detailed Block Diagram  
3.2 Radio features  
Operating frequencies:  
• 2.4 GHz ISM band (2400-2483.5 MHz)  
• MBAN 2360-2400 MHz  
Supported standards:  
• Bluetooth v4.2 Low Energy compliant 1 Mbps GFSK modulation supporting up to  
2 simultaneous connections in hardware (master-slave, master-master, slave-slave)  
• IEEE Standard 802.15.4-2011 compliant O-QPSK modulation and security features  
• Zigbee 3.0  
• Thread Networking Stack  
• Bluetooth Low Energy(BLE) Application Profiles  
Receiver performance:  
• Receive sensitivity of -95 dBm for BLE  
• Receive sensitivity of -100 dBm typical for IEEE Standard 802.15.4  
• Receive sensitivity of up to -100 dBm for a 250 kbps GFSK mode with a  
modulation index of 0.5. Receive sensitivity in generic FSK modes depends on  
mode selection and data rate.  
Other features:  
6
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
NXP Semiconductors  
Feature Descriptions  
• Programmable transmit output power from -30 dBm to 3.5 dBm  
• Integrated on-chip balun  
• Single ended bidirectional RF port shared by transmit and receive  
• Low external component count  
• Supports transceiver range extension using external PA and/or LNA  
• 26 and 32 MHz supported for BLE and FSK modes  
• 32 MHz supported for IEEE Standard 802.15.4  
• Bluetooth Low Energy ver. 4.2 Link Layer hardware with 2 independent  
hardware connection engines  
• Hardware acceleration for IEEE Standard 802.15.4 packet processing/link layer  
• Hardware acceleration for Generic FSK packet processing  
• Supports dual PAN for IEEE Standard 802.15.4 with hardware-assisted address  
matching acceleration  
• Generic FSK modulation at 250, 500 and 1000 kbps  
• Supports antenna diversity option for IEEE Std. 802.15.4  
3.3 Microcontroller features  
ARM Cortex-M0+ CPU  
• Up to 48 MHz CPU  
• As compared to Cortex-M0, the Cortex-M0+ uses an optimized 2-stage pipeline  
microarchitecture for reduced power consumption and improved architectural  
performance (cycles per instruction)  
• Supports up to 32 interrupt request sources  
• Binary compatible instruction set architecture with the Cortex-M0 core  
• Thumb instruction set combines high code density with 32-bit performance  
• Serial Wire Debug (SWD) reduces the number of pins required for debugging  
• Micro Trace Buffer (MTB) provides lightweight program trace capabilities using  
system RAM as the destination memory  
Nested Vectored Interrupt Controller (NVIC)  
• 32 vectored interrupts, 4 programmable priority levels  
• Includes a single non-maskable interrupt  
Wake-up Interrupt Controller (WIC)  
• Supports interrupt handling when system clocking is disabled in low power  
modes  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
7
NXP Semiconductors  
Feature Descriptions  
• Takes over and emulates the NVIC behavior when correctly primed by the NVIC  
on entry to very-deep-sleep  
• A rudimentary interrupt masking system with no prioritization logic signals for  
wake-up as soon as a non-masked interrupt is detected  
Debug Controller  
• Two-wire Serial Wire Debug (SWD) interface  
• Hardware breakpoint unit for 2 code addresses  
• Hardware watchpoint unit for 2 data items  
• Micro Trace Buffer for program tracing  
On-Chip Memory  
• 512/256 KB  
• Firmware distribution protection. Program flash can be marked execute-only  
on a per-sector (8 KB) basis to prevent firmware contents from being read by  
third parties  
• Flash implemented as two equal blocks each of 256 KB block. Code can  
execute or read from one block while the other block is being erased or  
programmed.  
• 128/64 KB SRAM  
• Security circuitry to prevent unauthorized access to RAM and flash contents  
through the debugger  
3.4 System features  
Power Management Control Unit (PMC)  
• Programmable power saving modes  
• Available wake-up from power saving modes via internal and external sources  
• Integrated Power-on Reset (POR)  
• Integrated Low Voltage Detect (LVD) with reset (brownout) capability  
• Selectable LVD trip points  
• Programmable Low Voltage Warning (LVW) interrupt capability  
• Individual peripheral clocks can be gated off to reduce current consumption  
• Internal Buffered bandgap reference voltage  
• Factory programmed trim for bandgap and LVD  
• 1 kHz Low Power Oscillator (LPO)  
DC-DC Converters  
8
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
NXP Semiconductors  
Feature Descriptions  
• Internal switched mode power supply supporting Buck, Boost, and Bypass  
operating modes  
• Buck operation supports external voltage sources of 2.1 V to 4.2 V. This reduces  
peak current consumption during Rx and Tx by ~25%, ideal for single coin-cell  
battery operation (typical CR2032 cell).  
• Boost operation supports external voltage sources of 0.9 V to 1.795 V, which is  
efficiently increased to the static internal core voltage level, ideal for single  
battery operation (typical AA or AAA alkaline cell).  
• When DC-DC is not used, the device supports an external voltage range of 1.5 V  
to 3.6 V (1.5 - 3.6 V on VDD_RF1, VDD_RF2, VDD_XTAL and  
VDD_1P5OUT_PMCIN pins. 1.71 - 3.6 V on VDD_0, VDD_1 and VDDA pins)  
• An external inductor is required to support the Buck or Boost modes  
• The DC-DC Converter 1.8 V output current drive for external devices (MCU in  
RUN mode, Radio is enabled, other peripherals are disabled)  
• Up to 44 mA in buck mode with VDD_1P8 = 1.8 V  
• Up to 31.4 mA in buck mode with VDD_1P8 = 3.0 V  
Direct Memory Access (DMA) Controller  
• All data movement via dual-address transfers: read from source, write to  
destination  
• Programmable source and destination addresses and transfer size  
• Support for enhanced addressing modes  
• 4-channel implementation that performs complex data transfers with minimal  
intervention from a host processor  
• Internal data buffer, used as temporary storage to support 16- and 32-byte  
transfers  
• Connections to the crossbar switch for bus mastering the data movement  
• Transfer control descriptor (TCD) organized to support two-deep, nested transfer  
operations  
• 32-byte TCD stored in local memory for each channel  
• An inner data transfer loop defined by a minor byte transfer count  
• An outer data transfer loop defined by a major iteration count  
• Channel activation via one of three methods:  
• Explicit software initiation  
• Initiation via a channel-to-channel linking mechanism for continuous  
transfers  
• Peripheral-paced hardware requests, one per channel  
• Fixed-priority and round-robin channel arbitration  
• Channel completion reported via optional interrupt requests  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
9
NXP Semiconductors  
Feature Descriptions  
• One interrupt per channel, optionally asserted at completion of major iteration  
count  
• Optional error terminations per channel and logically summed together to form one  
error interrupt to the interrupt controller  
• Optional support for scatter/gather DMA processing  
• Support for complex data structures  
DMA Channel Multiplexer (DMA MUX)  
• 4 independently selectable DMA channel routers  
• 2 periodic trigger sources available  
• Each channel router can be assigned to 1 of the peripheral DMA sources  
COP Watchdog Module  
• Independent clock source input (independent from CPU/bus clock)  
• Choice between two clock sources  
• LPO oscillator  
• Bus clock  
System Clocks  
• Both 26 MHz and 32 MHz crystal reference oscillator supported for BLE and FSK  
radio modes  
• 32 MHz crystal reference oscillator supported for IEEE 802.15.4 radio mode  
• MCU can derive its clock either from the crystal reference oscillator or the  
frequency locked loop (FLL)1  
• 32.768 kHz crystal reference oscillator used to maintain precise Bluetooth radio  
time in low power modes  
• Multipurpose Clock Generator (MCG)  
• Internal reference clocks — Can be used as a clock source for other on-chip  
peripherals  
• On-chip RC oscillator range of 31.25 kHz to 39.0625 kHz with 2% accuracy  
across full temperature range  
• On-chip 4MHz oscillator with 5% accuracy across full temperature range  
• Frequency-locked loop (FLL) controlled by internal or external reference  
• 20 MHz to 48 MHz FLL output  
Unique Identifiers  
• 10 bytes(or 80-bits) of the Unique ID represents a unique identifier for each chip  
• 40 bits of unique media access control (MAC) address, which can be used to build  
a unique 48-bit Bluetooth-LE or 64-bit IEEE 802.15.4 device address  
1. Clock options can have restrictions based on the chosen SoC configuration.  
10  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
NXP Semiconductors  
Feature Descriptions  
3.5 Peripheral features  
16-bit Analog-to-Digital Converter (ADC)  
• Linear successive approximation algorithm with 16-bit resolution  
• Output formatted in differential-ended 16-, 13-, 11-, and 9-bit mode  
• Output formatted in single-ended 16-, 12-, 10-, and 8-bit mode  
• Single or continuous conversion  
• Configurable sample time and conversion speed / power  
• Conversion rates in 16-bit mode with no averaging up to ~500Ksamples/sec  
• Input clock selection  
• Operation in low power modes for lower noise operation  
• Asynchronous clock source for lower noise operation  
• Selectable asynchronous hardware conversion trigger  
• Automatic compare with interrupt for less-than, or greater than, or equal to  
programmable value  
• Temperature sensor  
• Battery voltage measurement  
• Hardware average function  
• Selectable voltage reverence  
• Self-calibration mode  
12-Bit Digital-to-Analog Converter (DAC)  
• 12-bit resolution  
• Guaranteed 6-sigma monotonicity over input word  
• High- and low-speed conversions  
• 1 μs conversion rate for high speed, 2 μs for low speed  
• Power-down mode  
• Automatic mode allows the DAC to generate its own output waveforms including  
square, triangle, and sawtooth  
• Automatic mode allows programmable period, update rate, and range  
• DMA support with configurable watermark level  
High-Speed Analog Comparator (CMP)  
• 6-bit DAC programmable reference generator output  
• Up to eight selectable comparator inputs; each input can be compared with any  
input by any polarity sequence  
• Selectable interrupt on rising edge, falling edge, or either rising or falling edges of  
comparator output  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
11  
NXP Semiconductors  
Feature Descriptions  
• Two performance modes:  
• Shorter propagation delay at the expense of higher power  
• Low power, with longer propagation delay  
• Operational in all MCU power modes except VLLS0 mode  
Voltage Reference(VREF1)  
• Programmable trim register with 0.5 mV steps, automatically loaded with factory  
trimmed value upon reset  
• Programmable buffer mode selection:  
• Off  
• Bandgap enabled/standby (output buffer disabled)  
• High power buffer mode (output buffer enabled)  
• 1.2 V output at room temperature  
• VREF_OUT output signal  
Low Power Timer (LPTMR)  
• One channel  
• Operation as timer or pulse counter  
• Selectable clock for prescaler/glitch filter  
• 1 kHz internal LPO  
• External low power crystal oscillator  
• Internal reference clock  
• Configurable glitch filter or prescaler  
• Interrupt generated on timer compare  
• Hardware trigger generated on timer compare  
• Functional in all power modes  
Timer/PWM (TPM)  
• TPM0: 4 channels, TPM1 and TPM2: 2 channels each  
• Selectable source clock  
• Programmable prescaler  
• 16-bit counter supporting free-running or initial/final value, and counting is up or  
up-down  
• Input capture, output compare, and edge-aligned and center-aligned PWM modes  
• Input capture and output compare modes  
• Generation of hardware triggers  
• TPM1 and TPM2: Quadrature decoder with input filters  
• Global time base mode shares single time base across multiple TPM instances  
Programmable Interrupt Timer (PIT)  
12  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
NXP Semiconductors  
Feature Descriptions  
• Up to 2 interrupt timers for triggering ADC conversions  
• 32-bit counter resolution  
• Clocked by bus clock frequency  
Real-Time Clock (RTC)  
• 32-bit seconds counter with 32-bit alarm  
• Can be invalidated on detection of tamper detect  
• 16-bit prescaler with compensation  
• Register write protection  
• Hard Lock requires MCU POR to enable write access  
• Soft lock requires POR or software reset to enable write/read access  
• Capable of waking up the system from low power modes  
Inter-Integrated Circuit (I2C)  
• Two channels  
• Compatible with I2C bus standard and SMBus Specification Version 2 features  
• Up to 400 kHz operation  
• Multi-master operation  
• Software programmable for one of 64 different serial clock frequencies  
• Programmable slave address and glitch input filter  
• Interrupt driven byte-by-byte data transfer  
• Arbitration lost interrupt with automatic mode switching from master to slave  
• Calling address identification interrupt  
• Bus busy detection broadcast and 10-bit address extension  
• Address matching causes wake-up when processor is in low power mode  
LPUART  
• One channel  
• Full-duplex operation  
• Standard mark/space non-return-to-zero (NRZ) format  
• 13-bit baud rate selection with fractional divide of 32  
• Programmable 8-bit or 9-bit data format  
• Programmable 1 or 2 stop bits  
• Separately enabled transmitter and receiver  
• Programmable transmitter output polarity  
• Programmable receive input polarity  
• 13-bit break character option  
• 11-bit break character detection option  
• Two receiver wakeup methods:  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
13  
NXP Semiconductors  
Feature Descriptions  
• Idle line wakeup  
• Address mark wakeup  
• Address match feature in receiver to reduce address mark wakeup ISR overhead  
• Interrupt or DMA driven operation  
• Receiver framing error detection  
• Hardware parity generation and checking  
• Configurable oversampling ratio to support from 1/4 to 1/32 bit-time noise  
detection  
• Operation in low power modes  
• Hardware Flow Control RTS\CTS  
• Functional in Stop/VLPS modes  
Serial Peripheral Interface (DSPI)  
• Two independent SPI channels  
• Master and slave mode  
• Full-duplex, three-wire synchronous transfers  
• Programmable transmit bit rate  
• Double-buffered transmit and receive data registers  
• Serial clock phase and polarity options  
• Slave select output  
• Control of SPI operation during wait mode  
• Selectable MSB-first or LSB-first shifting  
• Support for both transmit and receive by DMA  
Carrier Modulator Timer (CMT)  
• Four modes of operation  
• Time; with independent control of high and low times  
• Baseband  
• Frequency shift key (FSK)  
• Direct software control of CMT_IRO signal  
• Extended space operation in time, baseband, and FSK modes  
• Selectable input clock divider  
• Interrupt on end of cycle  
• Ability to disable CMT_IRO signal and use as timer interrupt  
General Purpose Input/Output (GPIO)  
• Hysteresis and configurable pull up device on all input pins  
• Independent pin value register to read logic level on digital pin  
• All GPIO pins can generate IRQ and wakeup events  
• Configurable drive strength on some output pins  
14  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
NXP Semiconductors  
Feature Descriptions  
Touch Sensor Input (TSI)  
• Support up to 16 external electrodes  
• Automatic detection of electrode capacitance across all operational power modes  
• Internal reference oscillator for high-accuracy measurement  
• Configurable software or hardware scan trigger  
• Capability to wake MCU from low power modes  
• Compensate for temperature and supply voltage variations  
• High sensitivity change with 16-bit resolution register  
• Configurable up to 4096 scan times  
• Support DMA data transfer  
Keyboard Interface  
• GPIO can be configured to function as a interrupt driven keyboard scanning  
matrix  
• In the 48-pin package there are a total of 26 digital pins  
• These pins can be configured as needed by the application as GPIO,  
LPUART, SPI, I2C, ADC, timer I/O as well as other functions  
3.6 Security Features  
Advanced Encryption Standard Accelerator(AES-128 Accelerator)  
The advanced encryption standard accelerator (AESA) module is a standalone  
hardware coprocessor capable of accelerating the 128-bit advanced encryption  
standard (AES) cryptographic algorithms.  
The AESA engine supports the following cryptographic features.  
LTC includes the following features:  
• Cryptographic authentication  
• Message authentication codes (MAC)  
• Cipher-based MAC (AES-CMAC)  
• Extended cipher block chaining message authentication code (AES-  
XCBC-MAC)  
• Auto padding  
• Integrity Check Value(ICV) checking  
• Authenticated encryption algorithms  
• Counter with CBC-MAC (AES-CCM)  
• Galois counter mode (AES-GCM)  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
15  
NXP Semiconductors  
Feature Descriptions  
• Symmetric key block ciphers  
• AES (128-bit keys)  
• Cipher modes:  
• AES-128 modes  
• Electronic codebook (ECB)  
• Cipher block chaining (CBC)  
• Counter (CTR)  
• DES modes  
• Electronic codebook (ECB)  
• Cipher block chaining (CBC)  
• Cipher feedback (CFB)  
• Output Feedback (OFB)  
• Secure scan  
True Random Number Generator (TRNG)  
True Random Number Generator (TRNG) is a hardware accelerator module that  
constitutes a high-quality entropy source.  
• TRNG generates a 512-bit (4x 128-bit) entropy as needed by an entropy-consuming  
module, such as a deterministic random number generator.  
• TRNG output can be read and used by a deterministic pseudo-random number  
generator (PRNG) implemented in software.  
• TRNG-PRNG combination achieves NIST compliant true randomness and  
cryptographic-strength random numbers using the TRNG output as the entropy  
source.  
• A fully FIPS 180 compliant solution can be realized using the TRNG together with  
a FIPS compliant deterministic random number generator and the SoC-level  
security.  
Flash Memory Protection  
The on-chip flash memory controller enables the following useful features:  
• Program flash protection scheme prevents accidental program or erase of stored  
data.  
• Program flash access control scheme prevents unauthorized access to selected code  
segments.  
• The flash can be protected from mass erase even when the MCU is not secured.  
• Automated, built-in, program and erase algorithms with verify.  
• Read access to one program flash block is possible while programming or erasing  
data in the other program flash block.  
16  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
NXP Semiconductors  
Transceiver Description  
4 Transceiver Description  
• Direct Conversion Receiver  
• Constant Envelope Transmitter  
• 2.36 GHz to 2.483 GHz PLL Range  
• Low Transmit and Receive Current Consumption  
• Low BOM  
4.1 Key Specifications  
The KW41Z SoC meets or exceeds all Bluetooth Low Energy v4.2 and IEEE 802.15.4  
performance specifications applicable to 2.4 GHz ISM and MBAN (Medical Band  
Area Network) bands. Key specification for the KW41 are:  
Frequency Band:  
• ISM Band: 2400 to 2483.5MHz  
• MBAN Band: 2360 to 2400MHz  
Bluetooth Low Energy v4.2 modulation scheme:  
• Symbol rate: 1000 kbps  
• Modulation: GFSK  
• Receiver sensitivity: -95 dBm, typical  
• Programmable transmitter output power: -30 dBm to 3.5 dBm  
IEEE Standard 802.15.4 2.4 GHz modulation scheme:  
• Chip rate: 2000 kbps  
• Data rate: 250 kbps  
• Symbol rate: 62.5 kbps  
• Modulation: OQPSK  
• Receiver sensitivity: -100 dBm, typical (@1% PER for 20 byte payload packet)  
• Single ended bidirectional RF input/output port with integrated transmit/receive  
switch  
• Programmable transmitter output power: -30 dBm to 3.5 dBm  
Generic FSK modulation scheme:  
• Symbol rate: 250, 500 and 1000 kbps  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
17  
NXP Semiconductors  
Transceiver Description  
• Modulation(s): GFSK (modulation index = 0.32, 0.5, and 0.7, BT =0.5, 0.3 and  
0.7), MSK  
• Receiver Sensitivity: Mode and data rate dependant. -100 dBm typical for GFSK  
(r=250 kbps, BT = 0.5, h = 0.5)  
4.2 Channel Map Frequency Plans  
4.2.1 Channel Plan for Bluetooth Low Energy  
This section describes the frequency plan / channels associated with 2.4GHz ISM and  
MBAN bands for Bluetooth Low Energy.  
2.4 GHz ISM Channel numbering:  
• Fc=2402 + k * 2 MHz, k=0,.........,39.  
MBAN Channel numbering:  
• Fc=2363 + 5*k in MHz, for k=0,.....,6  
• Fc=2367 + 5*(k-7) in MHz, for k=7,8.....,13)  
where k is the channel number.  
Table 2. 2.4 GHz ISM and MBAN frequency plan and channel designations  
2.4 GHz ISM1  
MBAN2  
2.4GHz ISM + MBAN  
Channel  
Freq (MHz)  
2402  
Channel  
Freq (MHz)  
2360  
Channel  
Freq (MHz)  
2390  
0
1
0
1
28  
29  
30  
31  
32  
33  
34  
35  
36  
0
2404  
2361  
2391  
2
2406  
2
2362  
2392  
3
2408  
3
2363  
2393  
4
2410  
4
2364  
2394  
5
2412  
5
2365  
2395  
6
2414  
6
2366  
2396  
7
2416  
7
2367  
2397  
8
2418  
8
2368  
2398  
9
2420  
9
2369  
2402  
10  
2422  
10  
2370  
1
2404  
Table continues on the next page...  
18  
NXP Semiconductors  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
Transceiver Description  
Table 2. 2.4 GHz ISM and MBAN frequency plan and channel designations (continued)  
2.4 GHz ISM1  
MBAN2  
2.4GHz ISM + MBAN  
Channel  
Channel  
Freq (MHz)  
2424  
2426  
2428  
2430  
2432  
2434  
2436  
2438  
2440  
2442  
2444  
2446  
2448  
2450  
2452  
2454  
2456  
2458  
2460  
2462  
2464  
2466  
2468  
2470  
2472  
2474  
2476  
2478  
2480  
Channel  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
Freq (MHz)  
2371  
2372  
2373  
2374  
2375  
2376  
2377  
2378  
2379  
2380  
2381  
2382  
2383  
2384  
2385  
2386  
2387  
2388  
2389  
2390  
2391  
2392  
2393  
2394  
2395  
2396  
2397  
2398  
2399  
Freq (MHz)  
2406  
2408  
2410  
2412  
2414  
2416  
2418  
2420  
2422  
2424  
2426  
2428  
2430  
2432  
2434  
2436  
2438  
2440  
2442  
2444  
2446  
2448  
2450  
2452  
2454  
2456  
2476  
2478  
2480  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
37  
38  
39  
1. ISM frequency of operation spans from 2400.0 MHz to 2483.5 MHz  
2. Per FCC guideline rules, IEEE (R) 802.15.1 and Bluetooth Low Energy single mode operation is allowed in these  
channels.  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
19  
NXP Semiconductors  
Transceiver Description  
4.2.2 Channel Plan for IEEE 802.15.4 in 2.4GHz ISM and MBAN  
frequency bands  
This section describes the frequency plan / channels associated with 2.4GHz ISM and  
MBAN bands for IEEE 802.15.4.  
2.4GHz ISM Channel numbering:  
• Fc=2405 + 5*(k-11) MHz, k=11, 12, ..,26.  
MBAN Channel numbering:  
• Fc=2363.0 + 5*k in MHz, for k=0,.....,6  
• Fc=2367.0 + 5*(k-7) in MHz, for k=7,.....,14  
where k is the channel number.  
Table 3. 2.4 GHz ISM and MBAN frequency plan and channel designations  
2.4 GHz ISM  
MBAN1  
Channel #  
11  
Frequency (MHz)  
2405  
Channel #  
Frequency (MHz)  
2363  
0
1
12  
2410  
2368  
13  
2415  
2
2373  
14  
2420  
3
2378  
15  
2425  
4
2383  
16  
2430  
5
2388  
17  
2435  
6
2393  
18  
2440  
7
2367  
19  
2445  
8
2372  
20  
2450  
9
2377  
21  
2455  
10  
11  
12  
13  
14  
2382  
22  
2460  
2387  
23  
2465  
2392  
24  
2470  
2397  
25  
2475  
2395  
26  
2480  
1. Usable channel spacing to assit in co-existence.  
20  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
NXP Semiconductors  
Transceiver Electrical Characteristics  
4.2.3 Other Channel Plans  
The RF synthesizer can be configured to use any channel frequency between 2.36 and  
2.487 GHz.  
4.3 Transceiver Functions  
Receive  
The receiver architecture is Zero IF (ZIF) where the received signal after passing  
through RF front end is down-converted to a baseband signal. The signal is filtered  
and amplified before it is fed to analog-to-digital converter. The digital signal is then  
decimated to a baseband clock frequency before it is digitally processed, demodulated  
and passed on to packet processing/link-layer processing.  
Transmit  
The transmitter transmits O-QPSK or GFSK/FSK modulation having power and  
channel selection adjustment per user application. After the channel of operation is  
determined, coarse and fine tuning is executed within the Frac-N PLL to engage  
signal lock. After signal lock is established, the modulated buffered signal is then  
routed to a multi-stage amplifier for transmission. The differential signals at the output  
of the PA (RF_P, RF_N) are converted to a single ended(SE) output signal by an on-  
chip balun.  
5 Transceiver Electrical Characteristics  
5.1 Radio operating conditions  
Table 4. Radio operating conditions  
Characteristic  
Symbol  
fin  
Min  
2.360  
-40  
Typ  
Max  
2.480  
105  
Unit  
GHz  
°C  
Input Frequency  
Ambient Temperature Range  
Logic Input Voltage Low  
TA  
25  
VIL  
0
30%  
V
VDDINT  
1
Table continues on the next page...  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
21  
NXP Semiconductors  
Transceiver Electrical Characteristics  
Table 4. Radio operating conditions (continued)  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Logic Input Voltage High  
VIH  
70%  
VDDINT  
V
VDDINT  
SPI Clock Rate  
RF Input Power  
fSPI  
Pmax  
fref  
12.0  
10  
MHz  
dBm  
Crystal Reference Oscillator Frequency ( 40 ppm  
over operating conditions to meet the 802.15.4  
Standard.)  
26 MHz or 32 MHz  
1. VDDINT is the internal LDO regulated voltage supplying various circuit blocks, VDDINT=1.2 V  
5.2 Receiver Feature Summary  
Table 5. Top Level Receiver Specifications (TA=25°C, nominal process unless otherwise  
noted)  
Characteristic1  
Symbol  
Ipdn  
Min.  
Typ.  
200  
Max.  
1000  
Unit  
nA  
Supply current power down on VDD_RFx supplies  
Supply current Rx On with DC-DC converter enable  
(Buck; VDDDCDC_in = 3.6 V) , 2  
IRxon  
6.76  
mA  
Supply current Rx On with DC-DC converter disabled  
(Bypass) 2  
IRxon  
16.2  
mA  
Input RF Frequency  
fin  
2.360  
-100  
-95  
-100  
7.5  
2.4835  
GHz  
dBm  
dBm  
dBm  
dB  
GFSK Rx Sensitivity(250 kbps GFSK-BT=0.5, h=0.5)  
BLE Rx Sensitivity 3  
IEEE 802.15.4 Rx Sensitivity 4  
SENSGFSK  
SENSBLE  
SENS15.4  
NFHG  
5
Noise Figure for max gain mode @ typical sensitivity  
Receiver Signal Strength Indicator Range5  
Receiver Signal Strength Indicator Resolution  
Typical RSSI variation over frequency  
Typical RSSI variation over temperature  
Narrowband RSSI accuracy6  
RSSIRange  
RSSIRes  
-100  
dBm  
dBm  
dB  
1
2
-2  
-2  
2
dB  
RSSIAcc  
-3  
3
dB  
BLE Co-channel Interference (Wanted signal at -67  
dBm , BER <0.1%. Measurement resolution 1 MHz).  
BLEco-channel  
-7  
dB  
IEEE 802.15.4 Co-channel Interference (Wanted signal  
3 dB over reference sensitivity level)  
Adjacent/Alternate Channel Performance7  
15.4co-channel  
-2  
2
dB  
dB  
BLE Adjacent +/- 1 MHz Interference offset (Wanted  
signal at -67 dBm , BER <0.1%. Measurement  
resolution 1 MHz.)  
SELBLE, 1 MHz  
Table continues on the next page...  
22  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
NXP Semiconductors  
Transceiver Electrical Characteristics  
Table 5. Top Level Receiver Specifications (TA=25°C, nominal process unless otherwise  
noted) (continued)  
Characteristic1  
Symbol  
Min.  
Typ.  
Max.  
Unit  
BLE Adjacent +/- 2 MHz Interference offset (Wanted  
signal at -67 dBm , BER <0.1%. Measurement  
resolution 1 MHz.)  
SELBLE, 2 MHz  
40  
dB  
BLE Alternate ≥ +/-3 MHz Interference offset (Wanted  
signal at -67 dBm, BER <0.1%. Measurement resolution  
1 MHz.)  
SELBLE, 3 MHz  
SEL15.4,5 MHz  
SEL15.4,5 MHz  
50  
45  
60  
dB  
dB  
dB  
IEEE 802.15.4 Adjacent +/- 5 MHz Interference offset  
(Wanted signal 3 dB over reference sensitivity level ,  
PER <1%)  
IEEE 802.15.4 Alternate ≥ +/- 10 MHz Interference  
offset (Wanted signal 3 dB over reference sensitivity  
level , PER <1%.)  
Intermodulation Performance  
BLE Intermodulation with continuous wave interferer at  
3MHz and modulated interferer is at 6MHz (Wanted  
signal at -67 dBm , BER<0.1%.)  
-42  
-35  
dBm  
dBm  
BLE Intermodulation with continuous wave interferer at  
5MHz and modulated interferer is at 10MHz (Wanted  
signal at -67 dBm , BER<0.1%.)  
Blocking Performance7  
BLE Out of band blocking from 30 MHz to 1000 MHz  
and 4000 MHz to 5000 MHz (Wanted signal at -67  
dBm , BER<0.1%. Interferer continuous wave signal.)8  
-5  
-12  
-20  
0
dBm  
dBm  
dBm  
dBm  
dBm  
BLE Out of band blocking from 1000 MHz to 2000 MHz  
and 3000 MHz to 4000MHz (Wanted signal at -67 dBm ,  
BER<0.1%. Interferer continuous wave signal.)  
BLE Out of band blocking from 2001 MHz to 2339MHz  
and 2484 MHz to 2999 MHz (Wanted signal at -67  
dBm , BER<0.1%. Interferer continuous wave signal.)  
BLE Out of band blocking from 5000 MHz to 12750  
MHz (Wanted signal at -67 dBm , BER<0.1%. Interferer  
continuous wave signal.)8  
IEEE 802.15.4 Out of band blocking for frequency  
offsets > 10 MHz and <= 80 MHz(Wanted signal 3 dB  
over reference sensitivity level , PER <1%. Interferer  
continuous wave signal.)9  
-36  
IEEE 802.15.4 Out of band blocking from carrier  
frequencies in 1GHz to 4GHz range excluding  
frequency offsets < 80 MHz (Wanted signal 3 dB over  
reference sensitivity level , PER <1%. Interferer  
continuous wave signal.)  
-25  
-15  
dBm  
dBm  
IEEE 802.15.4 Out of band blocking frequency from  
carrier frequencies < 1 GHz and > 4 GHz (Wanted  
signal 3 dB over reference sensitivity level , PER <1%.  
Interferer continuous wave signal.8  
Table continues on the next page...  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
23  
NXP Semiconductors  
Transceiver Electrical Characteristics  
Table 5. Top Level Receiver Specifications (TA=25°C, nominal process unless otherwise  
noted) (continued)  
Characteristic1  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Spurious Emission < 1.6 MHz offset (Measured with  
100 kHz resolution and average detector. Device  
transmit on RF channel with center frequency fc and  
spurious power measured in 1 MHz at RF frequency f),  
where |f-fc|< 1.6 MHz  
-54  
dBc  
Spurious Emission > 2.5 MHz offset (Measured with  
100 kHz resolution and average detector. Device  
transmit on RF channel with center frequency fc and  
spurious power measured in 1 MHz at RF frequency f),  
where |f-fc|> 2.5 MHz10  
-70  
dBc  
1. All the RX parameters are measured at the KW41 RF pins  
2. Transceiver power consumption  
3. Measured at 0.1% BER using 37 byte long packets in max gain mode and nominal conditions  
4. In max gain mode and nominal conditions  
5. RSSI performance in narrowband mode  
6. With one point calibration over frequency and temperature  
7. BLE Adjacent and Block parameters are measured with modulated interference signals  
8. Exceptions allowed for carrier frequency harmonics.  
9. Exception to the 10 MHz > freq offset <= 80 MHz out-of-band blocking limit allowed for frequency offsets of twice the  
reference frequency(fref).  
10. Exceptions allowed for twice the reference clock frequency(fref) multiples.  
Table 6. Receiver Specifications with Generic FSK Modulations  
Adjacent/Alternate Channel Selectivity (dB)1  
Modulation  
Type  
Data  
Rate  
(kbps)  
Channel  
BW (kHz) Sensitivity  
(dBm)  
Typical  
Desired Interferer Interferer Interferer Interferer  
Co-  
channel  
signal  
level  
at -/+1*  
channel  
at -/+ 2*  
channel  
at -/+ 3*  
channel  
at -/+ 4*  
channel  
(dBm) BW offset BW offset BW offset BW offset  
GFSK BT =  
0.5, h=0.5  
1000  
500  
2000  
1000  
500  
-95  
-97  
-100  
-89  
-91  
-93  
-96  
-98  
-99  
-91  
-93  
-95  
-96  
-97  
-67  
-85  
-85  
-67  
-85  
-85  
-85  
-85  
-85  
-85  
-85  
-85  
-85  
-85  
45  
33  
20  
30  
25  
25  
35  
32  
30  
35  
30  
20  
35  
30  
50  
44  
33  
36  
36  
25  
45  
44  
34  
40  
40  
32  
45  
45  
52  
49  
42  
41  
37  
37  
50  
47  
46  
45  
40  
32  
50  
48  
52  
51  
46  
42  
43  
37  
55  
50  
45  
50  
45  
40  
55  
50  
-7  
-7  
250  
-7  
GFSK, BT =  
0.5, h=0.3  
1000  
500  
1000  
800  
-7  
-13  
-13  
-7  
250  
500  
GFSK, BT =  
0.5, h=0.7  
1000  
500  
2000  
1000  
600  
-7  
250  
-7  
GMSK  
BT=0.3  
1000  
500  
1600  
800  
-8  
-7  
250  
500  
-7  
GMSK, BT =  
0.7  
1000  
500  
2000  
1000  
-7  
-7  
Table continues on the next page...  
24  
NXP Semiconductors  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
Transceiver Electrical Characteristics  
Table 6. Receiver Specifications with Generic FSK Modulations  
(continued)  
Adjacent/Alternate Channel Selectivity (dB)1  
Modulation  
Type  
Data  
Rate  
(kbps)  
Channel  
BW (kHz) Sensitivity  
(dBm)  
Typical  
Desired Interferer Interferer Interferer Interferer  
Co-  
channel  
signal  
level  
at -/+1*  
channel  
at -/+ 2*  
channel  
at -/+ 3*  
channel  
at -/+ 4*  
channel  
(dBm) BW offset BW offset BW offset BW offset  
250  
1000  
500  
600  
3000  
1600  
800  
-99  
-96  
-98  
-99  
-85  
-85  
-85  
-85  
30  
39  
38  
30  
33  
50  
47  
46  
45  
58  
50  
45  
45  
63  
55  
50  
-7  
-7  
-7  
-7  
Generic  
MSK  
250  
1. Selectivity measured with an unmodulated blocker  
5.3 Transmit and PLL Feature Summary  
• Supports constant envelope modulation of 2.4 GHz ISM and 2.36 GHz MBAN  
frequency bands  
• Fast PLL Lock time: < 25 µs  
• Reference Frequency:  
• 26 and 32 MHz supported for BLE and FSK modes  
• 32 MHz supported for IEEE Standard 802.15.4  
Table 7. Top level Transmitter Specifications (TA=25°C, nominal process unless otherwise  
noted)  
Characteristic1  
Symbol  
Ipdn  
Min.  
Typ.  
200  
Max.  
Unit  
nA  
Supply current power down on VDD_RFx supplies  
Supply current Tx On with PRF = 0dBm and DC-DC  
converter enabled (Buck; VDDDCDC_in = 3.6 V) , 2  
ITxone  
6.08  
mA  
Supply current Tx On with PRF = 0 dBm and DC-DC  
converter disabled (Bypass) 2  
ITxond  
14.7  
mA  
Output Frequency  
Maximum RF Output power 3  
Minimum RF Output power 3  
fc  
2.360  
2.4835  
GHz  
dBm  
dBm  
dB  
PRF,max  
PRF,min  
3.5  
-30  
34  
RF Output power control range  
PRFCR  
IEEE 802.15.4 Peak Frequency Deviation  
IEEE 802.15.4 Error Vector Magnitude4  
IEEE 802.15.4 Offset Error Vector Magnitude5  
IEEE 802.15.4 TX spectrum level at 3.5MHz offset4, 6  
BLE TX Output Spectrum 20dB BW  
Fdev15.4  
EVM15.4  
OEVM15.4  
TXPSD15.4  
TXBWBLE  
500  
4.5  
0.5  
kHz  
%
8
2
%
-40  
dBc  
MHz  
1.0  
Table continues on the next page...  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
25  
NXP Semiconductors  
Transceiver Electrical Characteristics  
Table 7. Top level Transmitter Specifications (TA=25°C, nominal process unless otherwise  
noted) (continued)  
Characteristic1  
Symbol  
Min.  
Typ.  
Max.  
Unit  
BLE average frequency deviation using a 00001111  
modulation sequence  
Δf1avg,BLE  
250  
kHz  
BLE average frequency deviation using a 01010101  
modulation sequence  
Δf2avg,BLE  
220  
kHz  
BLE RMS FSK Error  
FSKerr BLE  
,
3%  
10  
BLE Maximum Deviation of the Center Frequency7  
BLE Adjacent Channel Transmit Power at 2MHz offset6  
Fcdev,BLE  
kHz  
dBm  
dBm  
PRF2MHz,BLE  
PRF3MHz,BLE  
-50  
-55  
BLE Adjacent Channel Transmit Power at >= 3MHz  
offset6  
BLE Frequency Hopping Support  
2nd Harmonic of Transmit Carrier Frequency (Pout =  
PRF,max), 8  
3rd Harmonic of Transmit Carrier Frequency (Pout =  
PRF,max)8  
YES  
-46  
TXH2  
TXH3  
dBm/MHz  
dBm/MHz  
-58  
1. All the TX parameters are measured at test hardware SMA connector  
2. Transceiver power consumption  
3. Measured at the KW41Z RF pins  
4. Measured as per IEEE Standard 802.15.4  
5. Offset EVM is computed at one point per symbol, by combining the I value from the beginning of each symbol and the Q  
value from the middle of each symbol into a single complex value for EVM computations  
6. Measured at Pout = 5dBm and recommended TX match  
7. Maximum drift of carrier frequency of the PLL during a BLE packet with a nominal 32MHz reference crystal  
8. Harmonic Levels based on recommended 2 component match. Transmit harmonic levels depend on the tolerances and  
quality of the matching components.  
Transmit PA driver output as a function of the PA_POWER[5:0] field when measured  
at the IC pins is as follows:  
26  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
NXP Semiconductors  
Transceiver Electrical Characteristics  
Table 8. Transmit Output Power as a function of PA_POWER[5:0]  
TX Pout (dBm)  
T = 25 °C  
-31.1  
PA_POWER[5:0]  
T = -40 °C  
-30.1  
-24.0  
-17.9  
-14.5  
-12.0  
-10.1  
-8.5  
T = 105 °C  
-32.6  
-26.4  
-20.4  
-17.0  
-14.5  
-12.6  
-11.0  
-9.7  
1
2
-25.0  
4
-19.0  
6
-15.6  
8
-13.1  
10  
12  
14  
16  
18  
-11.2  
-9.6  
-7.2  
-8.3  
-6.1  
-7.2  
-8.6  
-5.1  
-6.2  
-7.6  
Table continues on the next page...  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
27  
NXP Semiconductors  
System and Power Management  
Table 8. Transmit Output Power as a function of PA_POWER[5:0] (continued)  
TX Pout (dBm)  
PA_POWER[5:0]  
T = -40 °C  
-4.2  
-3.4  
-2.7  
-2.0  
-1.4  
-0.8  
-0.3  
0.2  
T = 25 °C  
-5.3  
-4.5  
-3.8  
-3.1  
-2.5  
-1.9  
-1.4  
-1.0  
-0.5  
-0.1  
0.3  
T = 105 °C  
-6.7  
-5.9  
-5.2  
-4.5  
-3.9  
-3.3  
-2.8  
-2.4  
-1.9  
-1.5  
-1.1  
-0.7  
-0.3  
0.0  
20  
22  
24  
26  
28  
30  
32  
34  
36  
38  
40  
42  
44  
46  
48  
50  
52  
54  
56  
58  
60  
62  
0.6  
1.1  
1.5  
1.9  
0.7  
2.2  
1.1  
2.6  
1.4  
2.9  
1.8  
0.3  
3.2  
2.1  
0.6  
3.5  
2.4  
0.9  
3.7  
2.6  
1.2  
3.9  
2.9  
1.5  
4.2  
3.1  
1.7  
4.4  
3.3  
1.9  
4.5  
3.5  
2.1  
6 System and Power Management  
6.1 Power Management  
The KW41Z includes internal power management features that can be used to control  
the power usage. The power management of the KW41Z includes power management  
controller (PMC) and a DC-DC converter which can operate in a buck, boost or bypass  
configuration. The PMC is designed such that the RF radio will remain in state-  
28  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
NXP Semiconductors  
System and Power Management  
retention while the core is in various stop modes. It can make sure the device can stay  
in low current consumption mode while the RF radio can wakeup quick enough for  
communication.  
6.1.1 DC-DC Converter  
The features of the DC-DC converter include the following:  
• Single inductor, multiple outputs.  
• Boost mode (pin selectable; CFG=GND).  
• Buck mode (pin selectable; CFG=VDCDC_IN).  
• Continuous or pulsed operation (hardware/software configurable).  
• Power switch input to allow external control of power up, and to select bypass  
mode.  
• Output signal to indicate power stable. Purpose is for the rest of the chip to be  
used as a POR.  
• Scaled battery output voltage suitable for SAR ADC utilization.  
• Internal oscillator for support when the reference oscillator is not present.  
• 1.8 V output is capable of supplying the external device a maximum of 38.9 mA  
(VDD_1P8OUT = 1.8 V, VDCDC_IN = 3.0 V) and 20.9 mA (VDD_1P8OUT =  
3.0 V, VDCDC_IN = 3.0 V), with MCU in RUN mode, peripherals are disabled.  
6.2 Modes of Operation  
The ARM Cortex-M0+ core in the KW41Z has three primary modes of operation:  
Run, Wait, and Stop modes. For each run mode, there is a corresponding wait and stop  
mode. Wait modes are similar to ARM sleep modes. Stop modes are similar to ARM  
deep sleep modes. The very low power run (VLPR) operation mode can drastically  
reduce runtime power when the maximum bus frequency is not required to handle the  
application needs.  
The WFI instruction invokes both wait and stop modes. The primary modes are  
augmented in a number of ways to provide lower power based on application needs.  
6.2.1 Power modes  
The power management controller (PMC) provides multiple power options to allow  
the user to optimize power consumption for the level of functionality needed.  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
29  
NXP Semiconductors  
System and Power Management  
Depending on the stop requirements of the user application, a variety of stop modes are  
available that provide state retention, partial power down or full power down of certain  
logic and/or memory. I/O states are held in all modes of operation. The following table  
compares the various power modes available.  
For each run mode there is a corresponding wait and stop mode. Wait modes are similar  
to ARM sleep modes. Stop modes (VLPS, STOP) are similar to ARM sleep deep mode.  
The very low power run (VLPR) operating mode can drastically reduce runtime power  
when the maximum bus frequency is not required to handle the application needs.  
The three primary modes of operation are run, wait and stop. The WFI instruction  
invokes either wait or stop depending on the SLEEPDEEP bit in Cortex-M0+ System  
Control Register. The primary modes are augmented in a number of ways to provide  
lower power based on application needs.  
Table 9. Power modes (At 25 deg C)  
Power mode  
Description  
CPU  
Radio  
recovery  
method  
Normal Run (all  
Allows maximum performance of chip.  
Radio can be active  
peripherals clock off)  
Normal Wait - via WFI Allows peripherals to function, while allowing CPU to  
go to sleep reducing power.  
Interrupt  
Interrupt  
Interrupt  
Normal Stop - via  
WFI  
Places chip in static state. Lowest power mode that  
retains all registers while maintaining LVD protection.  
PStop2 (Partial Stop Core and system clocks are gated. Bus clock  
2)  
remains active. Masters and slaves clocked by bus  
clock remain in Run or VLPRun mode. The clock  
generators in MCG and the on-chip regulator in the  
PMC also remain in Run or VLPRun mode.  
PStop1 (Partial Stop Core, system clocks and bus clock are gated. All bus  
Interrupt  
1)  
masters and slaves enter Stop mode. The clock  
generators in MCG and the on-chip regulator in the  
PMC also remain in Run or VLPRun mode.  
VLPR (Very Low  
Power Run) (all  
peripherals off)  
Reduced frequency (1MHz) Flash access mode,  
regulator in low power mode, LVD off. Internal  
oscillator can provide low power 4 MHz source for  
core. (Values @2MHz core/ 1MHz bus and flash,  
module off, execution from flash).  
Radio operation is possible  
only when DC-DC is  
configured for continuous  
mode.1 However, there may  
be insufficient MIPS with a  
4MHz MCU to support much  
in the way of radio operation.  
Biasing is disabled when DC-DC is configured for  
continuous mode in VLPR/W  
VLPW (Very Low  
Similar to VLPR, with CPU in sleep to further reduce  
Interrupt  
Power Wait) - via WFI power. (Values @4MHz core/ 1MHz bus, module off)  
(all peripherals off)  
Biasing is disabled when DC-DC is configured for  
continous mode in VLPR/W  
Table continues on the next page...  
30  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
NXP Semiconductors  
System and Power Management  
Table 9. Power modes (At 25 deg C) (continued)  
Power mode  
Description  
CPU  
Radio  
recovery  
method  
VLPS (Very Low  
Places MCU in static state with LVD operation off.  
Interrupt  
Power Stop) via WFI Lowest power mode with ADC and all pin interrupts  
functional. LPTMR, RTC, CMP, TSI can be  
operational.  
Biasing is disabled when DC-DC is configured for  
continuous mode in VLPS  
LLS3 (Low Leakage State retention power mode. LLWU, LPTMR, RTC,  
Wakeup  
Interrupt  
Radio SOG is in state  
retention in LLSx. The BLE/  
802.15.4/Generic FSK DSM2  
logic can be active using the  
32 kHz clock  
Stop)  
CMP, TSI can be operational. All of the radio Sea of  
Gates (SOG) logic is in state retention  
LLS2 (Low Leakage State retention power mode. LLWU, LPTMR, RTC,  
Wakeup  
Interrupt  
Stop)  
CMP, TSI can be operational. 16 KB or 32 KB of  
programmable RAM can be powered on. All of the  
radio SOG logic is in state retention  
VLLS3 (Very Low  
Leakage Stop3)  
Full SRAM retention. LLWU, LPTMR, RTC, CMP,  
TSI can be operational. All of the radio SOG logic is  
in state retention  
Wakeup  
Reset  
Radio SOG is in state  
retention in VLLS3/2. The  
BLE/802.15.4/Generic FSK  
DSM logic can be active  
using the 32 kHz clock  
VLLS2 (Very Low  
Leakage Stop2)  
Partial SRAM retention. 16 KB or 32 KB of  
programmable RAM can be powered on.. LLWU,  
LPTMR, RTC, CMP, TSI can be operational.All of  
the radio SOG logic is in state retention -  
Wakeup  
Reset  
VLLS1 (Very Low  
Leakage Stop1) with file remains powered for customer-critical data.  
RTC + 32 kHz OSC  
All SRAM powered off. The 32-byte system register  
Wakeup  
Reset  
Radio operation not  
supported. The Radio SOG is  
power-gated in VLLS1/0.  
Radio state is lost at VLLS1  
and lower power states  
LLWU, LPTMR, RTC, CMP can be operational.  
Radio logic is power gated.  
VLLS1 (Very Low  
Leakage Stop1) with file remains powered for customer-critical data.  
All SRAM powered off. The 32-byte system register  
Wakeup  
Reset  
LPTMR + LPO  
LLWU, LPTMR, RTC, CMP, TSI can be operational.  
VLLS0 (Very Low  
Leakage Stop0) with  
Brown-out Detection  
VLLS0 is not supported with DC-DC  
Wakeup  
Reset  
Radio operation not  
supported. The Radio digital  
is power-gated in VLLS1/0  
The 32-byte system register file remains powered for  
customer-critical data. Disable all analog modules in  
PMC and retains I/O state and DGO state. LPO  
disabled, POR brown-out detection enabled, Pin  
interrupt only. Radio logic is power gated.  
VLLS0 (Very Low  
Leakage Stop0)  
without Brown-out  
Detection  
VLLS0 is not supported with DC-DC buck/boost  
configuration but is supported with bypass  
configuration  
Wakeup  
Reset  
The 32-byte system register file remains powered for  
customer-critical data. Disable all analog modules in  
PMC and retains I/O state and DGO state. LPO  
disabled, POR brown-out detection disabled, Pin  
interrupt only. Radio logic is power gated.  
1. Biasing is disabled, but the Flash is in a low power mode for VLPx, so this configuration can realize some power  
savings over use of Run/Wait/Stop  
2. DSM refers to Radio's deepsleep mode. DSM does not refer to the ARM sleep deep mode.  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
31  
NXP Semiconductors  
MCU Electrical Characteristics  
7 MCU Electrical Characteristics  
7.1 AC electrical characteristics  
Unless otherwise specified, propagation delays are measured from the 50% to the 50%  
point, and rise and fall times are measured at the 20% and 80% points, as shown in the  
following figure.  
High  
Low  
VIH  
80%  
50%  
20%  
Input Signal  
Midpoint1  
VIL  
Fall Time  
Rise Time  
The midpoint is VIL + (VIH - VIL) / 2  
Figure 2. Input signal measurement reference  
All digital I/O switching characteristics, unless otherwise specified, assume that the  
output pins have the following characteristics.  
• CL=30 pF loads  
• Slew rate disabled  
• Normal drive strength  
7.2 Nonswitching electrical specifications  
7.2.1 Voltage and current operating requirements  
Table 10. Voltage and current operating requirements  
Symbol  
VDD  
Description  
Min.  
1.71  
1.71  
–0.1  
–0.1  
Max.  
3.6  
Unit  
V
Notes  
Supply voltage  
VDDA  
Analog supply voltage  
3.6  
V
VDD – VDDA VDD-to-VDDA differential voltage  
VSS – VSSA VSS-to-VSSA differential voltage  
0.1  
V
0.1  
V
VIH  
Input high voltage  
Table continues on the next page...  
32  
NXP Semiconductors  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
MCU Electrical Characteristics  
Table 10. Voltage and current operating requirements (continued)  
Symbol  
Description  
• 2.7 V ≤ VDD ≤ 3.6 V  
Min.  
Max.  
Unit  
Notes  
0.7 × VDD  
V
• 1.7 V ≤ VDD ≤ 2.7 V  
0.75 × VDD  
V
VIL  
Input low voltage  
• 2.7 V ≤ VDD ≤ 3.6 V  
• 1.7 V ≤ VDD ≤ 2.7 V  
0.35 × VDD  
0.3 × VDD  
V
V
VHYS  
IICIO  
Input hysteresis  
0.06 × VDD  
-3  
V
IO pin negative DC injection current — single pin  
• VIN < VSS-0.3V  
1
mA  
IICcont  
Contiguous pin DC injection current —regional limit,  
includes sum of negative injection currents of 16  
contiguous pins  
-25  
mA  
• Negative current injection  
VODPU  
VRAM  
Open drain pullup voltage level  
VDD  
1.2  
VDD  
V
V
2
VDD voltage required to retain RAM  
1. All I/O pins are internally clamped to VSS through a ESD protection diode. There is no diode connection to VDD. If VIN  
greater than VIO_MIN (= VSS-0.3 V) is observed, then there is no need to provide current limiting resistors at the pads. If  
this limit cannot be observed then a current limiting resistor is required. The negative DC injection current limiting  
resistor is calculated as R = (VIO_MIN - VIN)/|IICIO|.  
2. Open drain outputs must be pulled to VDD  
.
7.2.2 LVD and POR operating requirements  
Table 11. VDD supply LVD and POR operating requirements  
Symbol Description  
Min.  
0.8  
Typ.  
1.1  
Max.  
1.5  
Unit  
V
Notes  
VPOR  
Falling VDD POR detect voltage  
VLVDH  
Falling low-voltage detect threshold — high  
range (LVDV = 01)  
2.48  
2.56  
2.64  
V
Low-voltage warning thresholds — high range  
• Level 1 falling (LVWV = 00)  
1
VLVW1H  
VLVW2H  
VLVW3H  
VLVW4H  
2.62  
2.72  
2.82  
2.92  
2.70  
2.80  
2.90  
3.00  
60  
2.78  
2.88  
2.98  
3.08  
V
V
• Level 2 falling (LVWV = 01)  
• Level 3 falling (LVWV = 10)  
V
• Level 4 falling (LVWV = 11)  
V
VHYSH  
VLVDL  
Low-voltage inhibit reset/recover hysteresis —  
high range  
mV  
Falling low-voltage detect threshold — low  
range (LVDV=00)  
1.54  
1.60  
1.66  
V
Low-voltage warning thresholds — low range  
1
Table continues on the next page...  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
33  
NXP Semiconductors  
MCU Electrical Characteristics  
Table 11. VDD supply LVD and POR operating requirements (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
VLVW1L  
VLVW2L  
VLVW3L  
VLVW4L  
• Level 1 falling (LVWV = 00)  
1.74  
1.84  
1.94  
1.80  
1.90  
2.00  
1.86  
1.96  
2.06  
V
V
V
• Level 2 falling (LVWV = 01)  
• Level 3 falling (LVWV = 10)  
• Level 4 falling (LVWV = 11)  
2.04  
2.10  
40  
2.16  
V
VHYSL  
Low-voltage inhibit reset/recover hysteresis —  
low range  
mV  
VBG  
tLPO  
Bandgap voltage reference  
0.97  
900  
1.00  
1.03  
V
Internal low power oscillator period — factory  
trimmed  
1000  
1100  
μs  
1. Rising thresholds are falling threshold + hysteresis voltage  
7.2.3 Voltage and current operating behaviors  
Table 12. Voltage and current operating behaviors  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
VOH  
Output high voltage — Normal drive pad (except  
RESET_b)  
1, 2  
VDD – 0.5  
VDD – 0.5  
V
V
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = -5 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = -2.5 mA  
VOH  
Output high voltage — High drive pad (except  
RESET_b)  
1, 2  
VDD – 0.5  
VDD – 0.5  
V
V
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = -20 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = -10 mA  
IOHT  
VOL  
Output high current total for all ports  
Output low voltage — Normal drive pad  
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 5 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 2.5 mA  
100  
mA  
1
1
0.5  
0.5  
V
V
VOL  
Output low voltage — High drive pad  
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 20 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 10 mA  
0.5  
0.5  
V
V
IOLT  
IIN  
Output low current total for all ports  
100  
500  
mA  
nA  
Input leakage current (per pin) for full temperature  
range  
3
IIN  
IIN  
Input leakage current (per pin) at 25 °C  
0.025  
5
μA  
μA  
3
3
Input leakage current (total all pins) for full  
temperature range  
Table continues on the next page...  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
34  
NXP Semiconductors  
MCU Electrical Characteristics  
Table 12. Voltage and current operating behaviors (continued)  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
RPU  
Internal pullup resistors  
20  
50  
kΩ  
4
1. PTB0-1 and PTC0-3, PTC6, PTC7, PTC17, PTC18 I/O have both high drive and normal drive capability selected by  
the associated PTx_PCRn[DSE] control bit. All other GPIOs are normal drive only.  
2. The reset pin only contains an active pull up device when configured as the RESET signal or as a GPIO. When  
configured as a GPIO output, it acts as a pseudo open drain output.  
3. Measured at VDD = 3.6 V  
4. Measured at VDD supply voltage = VDD min and Vinput = VSS  
7.2.4 Power mode transition operating behaviors  
All specifications except tPOR and VLLSxRUN recovery times in the following  
table assume this clock configuration:  
• CPU and system clocks = 48 MHz  
• Bus and flash clock = 24 MHz  
• FEI clock mode  
POR and VLLSxRUN recovery use FEI clock mode at the default CPU and system  
frequency of 21 MHz, and a bus and flash clock frequency of 10.5 MHz.  
Table 13. Power mode transition operating behaviors  
Symbol  
Description  
Max.  
Unit  
Notes  
tPOR  
After a POR event, amount of time from the point VDD  
reaches 1.8 V to execution of the first instruction across the  
operating temperature range of the chip.  
300  
μs  
1
• VLLS0 RUN  
• VLLS1 RUN  
• VLLS2 RUN  
• VLLS3 RUN  
• LLS2 RUN  
• LLS3 RUN  
147  
144  
76  
μs  
μs  
μs  
μs  
μs  
μs  
76  
5.8  
5.8  
Table continues on the next page...  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
35  
NXP Semiconductors  
MCU Electrical Characteristics  
Table 13. Power mode transition operating behaviors (continued)  
Symbol  
Description  
• VLPS RUN  
Max.  
Unit  
Notes  
6.2  
μs  
• STOP RUN  
6.2  
μs  
1. Normal boot (FTFA_FOPT[LPBOOT]=11). When the DC-DC converter is in bypass mode, TPOR will not meet the 300µs  
spec when 1) VDD_1P5 < 1.6V at 25°C and °C. 2) 1.5V ≤ VDD_1P5 ≤ 1.8V. For the bypass mode special case where  
VDD_1P5 = VDD_1P8, TPOR did not meet the 300µs maximum spec when the supply slew rate <=100V/s.  
7.2.5 Power consumption operating behaviors  
Table 14. Power consumption operating behaviors - Bypass Mode  
Symbol  
Description  
Typ.  
Max.  
Unit  
Notes  
IDDA  
Analog supply current  
See note  
mA  
1
2
IDD_RUNCO_C Run mode current in compute operation - 48 MHz  
core / 24 MHz flash / bus disabled, LPTMR running  
M
using LPO clock at 1kHz, CoreMark benchmark code  
executing from flash at 3.0 V  
7.79  
4.6  
8.64  
5.45  
mA  
mA  
IDD_RUNCO Run mode current in compute operation - 48 MHz  
core / 24 MHz flash / bus clock disabled, code of  
while(1) loop executing from flash at 3.0 V  
3
3
IDD_RUN  
Run mode current - 48 MHz core / 24 MHz bus and  
flash, all peripheral clocks disabled, code of while(1)  
loop executing from flash at 3.0 V  
5.6  
6.45  
mA  
IDD_RUN  
Run mode current - 48 MHz core / 24 MHz bus and  
flash, all peripheral clocks enabled, code of while(1)  
loop executing from flash at 3.0 V  
3, 4  
6.9  
7.2  
7.7  
7.2  
8
mA  
mA  
mA  
at 25 °C  
at 85 °C  
at 105 °C  
8.5  
IDD_WAIT Wait mode current - core disabled / 48 MHz system /  
24 MHz bus / flash disabled (flash doze enabled), all  
peripheral clocks disabled at 3.0 V  
3
3
4.2  
3.5  
5.05  
4.35  
mA  
mA  
IDD_WAIT Wait mode current - core disabled / 24 MHz system /  
24 MHz bus / flash disabled (flash doze enabled), all  
peripheral clocks disabled at 3.0 V  
IDD_PSTOP2 Stop mode current with partial stop 2 clocking option  
- core and system disabled / 10.5 MHz bus at 3.0 V  
3
5
2.7  
3.55  
960  
mA  
μA  
IDD_VLPRCO_ Very-low-power run mode current in compute  
760  
operation - 4 MHz core / 0.8 MHz flash / bus clock  
CM  
disabled, LPTMR running using LPO clock at 1 kHz  
reference clock, CoreMark benchmark code  
executing from flash at 3.0 V  
Table continues on the next page...  
36  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
NXP Semiconductors  
MCU Electrical Characteristics  
Table 14. Power consumption operating behaviors - Bypass Mode (continued)  
Symbol  
Description  
Typ.  
Max.  
Unit  
Notes  
IDD_VLPRCO Very-low-power run mode current in compute  
operation - 4 MHz core / 0.8 MHz flash / bus clock  
disabled, code of while(1) loop executing from flash  
at 3.0 V  
6
157  
357  
μA  
IDD_VLPR Very-low-power run mode current - 4 MHz core / 0.8  
MHz bus and flash, all peripheral clocks disabled,  
6
4, 6  
6
195  
395  
μA  
code of while(1) loop executing from flash at 3.0 V  
IDD_VLPR Very-low-power run mode current - 4 MHz core / 0.8  
MHz bus and flash, all peripheral clocks enabled,  
250  
142  
450  
342  
μA  
μA  
code of while(1) loop executing from flash at 3.0 V  
IDD_VLPW Very-low-power wait mode current - core disabled / 4  
MHz system / 0.8 MHz bus / flash disabled (flash  
doze enabled), all peripheral clocks disabled at 3.0 V  
IDD_STOP Stop mode current at 3.0 V  
at 25 °C  
at 70 °C  
at 85 °C  
at 105 °C  
0.204  
0.275  
0.434  
0.561  
0.294  
0.692  
0.716  
1.3  
mA  
mA  
mA  
mA  
IDD_VLPS Very-low-power stop mode current at Bypass  
mode(3.0 V),  
4.3  
17  
18  
42  
μA  
μA  
μA  
μA  
at 25 °C  
at 70 °C  
at 85 °C  
at 105 °C  
86.2  
157  
166  
328  
IDD_LLS3  
Low-leakage stop mode 3 current at Bypass  
mode(3.0 V),  
2.7  
9
5
μA  
μA  
μA  
μA  
at 25 °C  
at 70 °C  
at 85 °C  
at 105 °C  
16.5  
78.1  
128  
36.6  
69  
IDD_LLS2  
Low-leakage stop mode 2 current at Bypass  
mode(3.0 V),  
2
3.13  
10.5  
45.6  
65.5  
μA  
μA  
μA  
μA  
at 25 °C  
at 70 °C  
at 85 °C  
at 105 °C  
3.2  
20.8  
39  
IDD_VLLS3 Very-low-leakage stop mode 3 current at Bypass  
mode(3.0 V),  
2.3  
15  
4
μA  
μA  
μA  
at 25 °C  
at 70 °C  
at 85 °C  
28.5  
69.3  
31.8  
Table continues on the next page...  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
37  
NXP Semiconductors  
MCU Electrical Characteristics  
Table 14. Power consumption operating behaviors - Bypass Mode (continued)  
Symbol  
Description  
Typ.  
Max.  
Unit  
Notes  
at 105 °C  
58  
108  
μA  
IDD_VLLS2 Very-low-leakage stop mode 2 current at Bypass  
mode(3.0 V),  
1.5  
6.3  
14.5  
27  
2.21  
11.8  
33.5  
42.6  
μA  
μA  
μA  
μA  
at 25 °C  
at 70 °C  
at 85 °C  
at 105 °C  
IDD_VLLS1 Very-low-leakage stop mode 1 current at Bypass  
mode(3.0 V),  
0.56  
3
1.3  
9.4  
μA  
μA  
μA  
μA  
at 25°C  
at 70°C  
at 85°C  
at 105°C  
8.8  
16.8  
23.2  
27.1  
IDD_VLLS0 Very-low-leakage stop mode 0 current  
(SMC_STOPCTRL[PORPO] = 0) at 3.0 V  
0.36  
2.7  
0.949  
8.2  
μA  
μA  
μA  
μA  
at 25 °C  
at 70 °C  
at 85 °C  
at 105 °C  
7.4  
14.3  
27  
16.5  
IDD_VLLS0 Very-low-leakage stop mode 0 current  
(SMC_STOPCTRL[PORPO] = 1) at 3.0 V  
7
0.182  
2.5  
0.765  
6.7  
μA  
μA  
μA  
μA  
at 25 °C  
at 70 °C  
at 85 °C  
at 105 °C  
7.2  
13.3  
26  
16.3  
1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See  
each module's specification for its supply current.  
2. MCG configured for FEImode. CoreMark benchmark compiled using IAR 7.70 with optimization level high, optimized for  
balanced.  
3. MCG configured for FEI mode.  
4. Incremental current consumption from peripheral activity is not included.  
5. MCG configured for BLPI mode. CoreMark benchmark compiled using IAR 7.70 with optimization level high, optimized  
for balanced.  
6. MCG configured for BLPI mode.  
7. No brownout  
Table 15. Power consumption operating behaviors - Buck Mode  
Symbol  
Description  
Typ.  
Max.  
Unit  
Notes  
IDDA  
Analog supply current  
See note  
mA  
1
Table continues on the next page...  
38  
NXP Semiconductors  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
MCU Electrical Characteristics  
Table 15. Power consumption operating behaviors - Buck Mode (continued)  
Symbol  
Description  
Typ.  
Max.  
Unit  
Notes  
IDD_RUNCO Run mode current in compute operation - 48 MHz  
core / 24 MHz flash / bus clock disabled, code of  
while(1) loop executing from flash at 3.0 V  
2
3.1  
mA  
IDD_RUN  
Run mode current - 48 MHz core / 24 MHz bus and  
flash, all peripheral clocks disabled, code of while(1)  
loop executing from flash at 3.0 V  
2
3.85  
mA  
IDD_RUN  
Run mode current - 48 MHz core / 24 MHz bus and  
flash, all peripheral clocks enabled, code of while(1)  
loop executing from flash at 3.0 V  
2, 3  
4.8  
5.3  
5.7  
mA  
mA  
mA  
at 25 °C  
at 85 °C  
at 105 °C  
IDD_WAIT Wait mode current - core disabled / 48 MHz system /  
24 MHz bus / flash disabled (flash doze enabled), all  
peripheral clocks disabled at 3.0 V  
2
2
3.1  
2.9  
mA  
mA  
IDD_WAIT Wait mode current - core disabled / 24 MHz system /  
24 MHz bus / flash disabled (flash doze enabled), all  
peripheral clocks disabled at 3.0 V  
IDD_PSTOP2 Stop mode current with partial stop 2 clocking option  
- core and system disabled / 10.5 MHz bus at 3.0 V  
2
4
1.9  
mA  
μA  
IDD_VLPRCO Very-low-power run mode current in compute  
operation - 4 MHz core / 0.8 MHz flash / bus clock  
disabled, code of while(1) loop executing from flash  
at 3.0 V  
137  
IDD_VLPR Very-low-power run mode current - 4 MHz core / 0.8  
MHz bus and flash, all peripheral clocks disabled,  
-1  
3, 4  
4
154  
μA  
code of while(1) loop executing from flash at 3.0 V  
IDD_VLPR Very-low-power run mode current - 4 MHz core / 0.8  
MHz bus and flash, all peripheral clocks enabled,  
216  
131  
μA  
μA  
code of while(1) loop executing from flash at 3.0 V  
IDD_VLPW Very-low-power wait mode current - core disabled / 4  
MHz system / 0.8 MHz bus / flash disabled (flash  
doze enabled), all peripheral clocks disabled at 3.0 V  
IDD_STOP Stop mode current at 3.0 V  
at 25 °C  
at 70 °C  
at 105 °C  
1.61  
1.73  
2.02  
2.32  
4.35  
4.68  
mA  
mA  
mA  
IDD_VLPS Very-low-power stop mode current at Buck mode(3.0  
V),  
3.58  
15.08  
116.94  
14.98  
37.27  
μA  
μA  
μA  
at 25 °C  
at 70 °C  
at 105 °C  
244.30  
IDD_LLS3  
Low-leakage stop mode 3 current at Buck mode(3.0  
V),  
Table continues on the next page...  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
39  
NXP Semiconductors  
MCU Electrical Characteristics  
Table 15. Power consumption operating behaviors - Buck Mode (continued)  
Symbol  
Description  
Typ.  
Max.  
Unit  
Notes  
at 25 °C  
2.20  
4.08  
μA  
at 70 °C  
7.44  
13.63  
90.49  
μA  
μA  
at 105 °C  
48.78  
IDD_LLS2  
Low-leakage stop mode 2 current at Buck mode(3.0  
V),  
1.86  
3.19  
2.91  
10.48  
52.80  
μA  
μA  
μA  
at 25 °C  
at 70 °C  
at 105 °C  
31.44  
IDD_VLLS3 Very-low-leakage stop mode 3 current at Buck  
mode(3.0 V),  
1.79  
12  
3.12  
22.8  
μA  
μA  
μA  
at 25 °C  
at 70 °C  
at 105 °C  
37.49  
69.81  
IDD_VLLS2 Very-low-leakage stop mode 2 current at Buck  
mode(3.0 V),  
1.09  
5.56  
1.60  
10.40  
29.52  
μA  
μA  
μA  
at 25 °C  
at 70 °C  
at 105 °C  
18.71  
IDD_VLLS1 Very-low-leakage stop mode 1 current at Buck  
mode(3.0 V),  
0.46  
2.17  
1.07  
6.8  
μA  
μA  
μA  
at 25 °C  
at 70 °C  
at 105 °C  
14.08  
22.71  
1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See  
each module's specification for its supply current.  
2. MCG configured for FEI mode.  
3. Incremental current consumption from peripheral activity is not included.  
4. MCG configured for BLPI mode.  
Table 16. Power consumption operating behaviors - Boost Mode  
Symbol  
Description  
Typ.  
Max.  
Unit  
Notes  
IDDA  
Analog supply current  
See note  
mA  
1
2
IDD_RUNCO Run mode current in compute operation - 48 MHz  
core / 24 MHz flash / bus clock disabled, code of  
while(1) loop executing from flash at 1.3 V  
8.1  
mA  
mA  
IDD_RUN  
Run mode current - 48 MHz core / 24 MHz bus and  
flash, all peripheral clocks disabled, code of while(1)  
loop executing from flash at 1.3 V  
2
9.76  
IDD_RUN  
Run mode current - 48 MHz core / 24 MHz bus and  
flash, all peripheral clocks enabled, code of while(1)  
loop executing from flash at 1.3 V  
2, 3  
Table continues on the next page...  
40  
NXP Semiconductors  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
MCU Electrical Characteristics  
Table 16. Power consumption operating behaviors - Boost Mode (continued)  
Symbol  
Description  
Typ.  
Max.  
Unit  
Notes  
at 25 °C  
13.2  
mA  
at 85 °C  
14.1  
15.2  
mA  
mA  
at 105 °C  
IDD_WAIT Wait mode current - core disabled / 48 MHz system /  
24 MHz bus / flash disabled (flash doze enabled), all  
peripheral clocks disabled at 1.3 V  
2
2
6.9  
5.8  
mA  
mA  
IDD_WAIT Wait mode current - core disabled / 24 MHz system /  
24 MHz bus / flash disabled (flash doze enabled), all  
peripheral clocks disabled at 1.3 V  
IDD_PSTOP2 Stop mode current with partial stop 2 clocking option  
- core and system disabled / 10.5 MHz bus at 1.3 V  
2
4
8.3  
mA  
μA  
IDD_VLPRCO Very-low-power run mode current in compute  
operation - 4 MHz core / 0.8 MHz flash / bus clock  
disabled, code of while(1) loop executing from flash  
at 1.3 V  
378  
IDD_VLPR Very-low-power run mode current - 4 MHz core / 0.8  
MHz bus and flash, all peripheral clocks disabled,  
4
3, 4  
4
476  
μA  
code of while(1) loop executing from flash at 1.3 V  
IDD_VLPR Very-low-power run mode current - 4 MHz core / 0.8  
MHz bus and flash, all peripheral clocks enabled,  
606  
357  
μA  
μA  
code of while(1) loop executing from flash at 1.3 V  
IDD_VLPW Very-low-power wait mode current - core disabled / 4  
MHz system / 0.8 MHz bus / flash disabled (flash  
doze enabled), all peripheral clocks disabled at 1.3 V  
IDD_STOP Stop mode current at 1.3 V  
3.22  
3.56  
3.74  
4.64  
8.96  
9.73  
mA  
mA  
mA  
at 25 °C  
at 70 °C  
at 105 °C  
IDD_VLPS Very-low-power stop mode current at Boost  
mode(1.3 V),  
29.89  
191.62  
1429.24  
125.13  
473.41  
2985.93  
μA  
μA  
μA  
at 25 °C  
at 70 °C  
at 105 °C  
IDD_LLS3  
Low-leakage stop mode 3 current at Boost mode(1.3  
V),  
12.16  
84.61  
22.53  
155.12  
990.79  
μA  
μA  
μA  
at 25 °C  
at 70 °C  
at 105 °C  
534.09  
IDD_LLS2  
Low-leakage stop mode 2 current at Boost mode(1.3  
V),  
12.05  
17.36  
18.86  
56.96  
μA  
μA  
at 25 °C  
at 70 °C  
Table continues on the next page...  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
41  
NXP Semiconductors  
MCU Electrical Characteristics  
Table 16. Power consumption operating behaviors - Boost Mode (continued)  
Symbol  
Description  
Typ.  
Max.  
Unit  
Notes  
at 105 °C  
221.29  
371.66  
μA  
IDD_VLLS3 Very-low-leakage stop mode 3 current at Boost  
mode(1.3 V),  
7.99  
88.4  
13.89  
167.96  
534.67  
μA  
μA  
μA  
at 25 °C  
at 70 °C  
at 105 °C  
287.14  
IDD_VLLS2 Very-low-leakage stop mode 2 current at Boost  
mode(1.3 V),  
7.09  
23.38  
95.67  
10.45  
43.79  
μA  
μA  
μA  
at 25 °C  
at 70 °C  
at 105 °C  
150.94  
IDD_VLLS1 Very-low-leakage stop mode 1 current at Boost  
mode(1.3 V),  
3.63  
16.23  
67.77  
8.44  
50.86  
109.32  
μA  
μA  
μA  
at 25 °C  
at 70 °C  
at 105 °C  
1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See  
each module's specification for its supply current.  
2. MCG configured for FEI mode.  
3. Incremental current consumption from peripheral activity is not included.  
4. MCG configured for BLPI mode.  
Table 17. Low power mode peripheral adders — typical value  
Symbol  
Description  
Temperature (°C)  
Unit  
-40  
25  
50  
70  
85  
IIREFSTEN4MHz  
4 MHz internal reference clock (IRC)  
adder. Measured by entering STOP or  
VLPS mode with 4 MHz IRC enabled.  
46  
46  
47  
47  
47  
µA  
IIREFSTEN32KHz  
32 kHz internal reference clock (IRC)  
adder. Measured by entering STOP mode  
with the 32 kHz IRC enabled.  
88  
91  
90  
89  
88  
µA  
IEREFSTEN32KHz  
External 32 kHz crystal clock adder by  
means of the RTC bits. Measured by  
entering all modes with the crystal  
enabled.  
1.4  
1.6  
2.7  
1.8  
2.6  
1.3  
1.5  
1.9  
1.4  
1.7  
1.6  
1.9  
2.9  
1.7  
2.8  
2.4  
4.2  
7.7  
4.1  
7.6  
4.1  
7.7  
15  
VLLS1  
VLLS2  
VLLS3  
LLS2  
μA  
8
15.2  
LLS3  
Table continues on the next page...  
42  
NXP Semiconductors  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
MCU Electrical Characteristics  
Table 17. Low power mode peripheral adders — typical value (continued)  
Symbol  
Description  
Temperature (°C)  
Unit  
-40  
25  
50  
70  
85  
ICMP  
CMP peripheral adder measured by  
placing the device in VLLS1 mode with  
CMP enabled using the 6-bit DAC and a  
single external input for compare. Includes  
6-bit DAC power consumption.  
22  
19  
20  
21  
21  
µA  
IRTC  
RTC peripheral adder measured by placing  
the device in VLLS1 mode with external 32  
kHz crystal enabled by means of the  
1.4  
1.3  
1.6  
2.4  
4.3  
µA  
RTC_CR[OSCE] bit and the RTC ALARM  
set for 1 minute. Includes ERCLK32K (32  
kHz external crystal) power consumption.  
ILPUART  
LPUART peripheral adder measured by  
placing the device in STOP or VLPS mode  
with selected clock source waiting for RX  
data at 115200 baud rate. Includes  
selected clock source power consumption.  
MCGIRCLK (4 MHz internal reference  
clock)  
53  
54  
54  
54  
54  
µA  
ILPTMR  
LPTMR peripheral adder measured by  
placing the device in VLLS1 mode with  
LPTMR enabled using LPO.  
30  
30  
30  
85  
100  
nA  
ITPM  
TPM peripheral adder measured by  
placing the device in STOP or VLPS mode  
with selected clock source configured for  
output compare generating 100 Hz clock  
signal. No load is placed on the I/O  
generating the clock signal. Includes  
selected clock source and I/O switching  
currents.  
58  
76  
59  
82  
59  
85  
59  
87  
59  
87  
µA  
µA  
µA  
MCGIRCLK (4 MHz internal reference  
clock)  
IBG  
Bandgap adder when BGEN bit is set and  
device is placed in VLPx, LLS, or VLLSx  
mode.  
IADC  
ADC peripheral adder combining the  
measured values at VDD and VDDA by  
placing the device in STOP or VLPS mode.  
ADC is configured for low-power mode  
using the internal clock and continuous  
conversions.  
331  
327  
327  
327  
328  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
43  
NXP Semiconductors  
MCU Electrical Characteristics  
7.2.6 Diagram: Typical IDD_RUN operating behavior  
The following data was measured from previous devices with same MCU core (ARM®  
Cortex-M0+) under these conditions:  
• No GPIOs toggled  
• Code execution from flash with cache enabled  
• For the ALLOFF curve, all peripheral clocks are disabled except FTFA  
Figure 3. Run mode supply current vs. core frequency  
44  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
NXP Semiconductors  
MCU Electrical Characteristics  
Figure 4. VLPR mode current vs. core frequency  
7.2.7 SoC Power Consumption  
Full KW41Z/31Z/21Z system-on-chip (SoC) power consumption is a function of the  
many configurations possible for the MCU platform and its peripherals including the  
2.4GHz radio and the DC-DC converter. A few measured SoC configurations are as  
follows:  
Table 18. SoC Power Consumption  
MCU State  
Flash State  
Radio State  
DCDC State  
Typical  
Average IC  
current  
Unit  
STOP  
STOP  
RUN  
Doze  
Doze  
Rx  
Tx(at 0 dBm)  
Rx  
Buck(VDDDCDC_in=3.6 V)  
Buck(VDDDCDC_in=3.6 V)  
Buck(VDDDCDC_in=3.6 V)  
8.4  
7.6  
mA  
mA  
mA  
Enabled  
10.2  
Table continues on the next page...  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
45  
NXP Semiconductors  
MCU Electrical Characteristics  
Table 18. SoC Power Consumption (continued)  
MCU State  
Flash State  
Radio State  
DCDC State  
Typical  
Average IC  
current  
Unit  
RUN  
STOP  
STOP  
RUN  
Enabled  
Doze  
Tx(at 0 dBm)  
Rx  
Buck(VDDDCDC_in=3.6 V)  
Disabled/Bypass  
Disabled/Bypass  
Disabled/Bypass  
Disabled/Bypass  
9.6  
mA  
mA  
mA  
mA  
mA  
16.6  
15.2  
19.7  
19.2  
Doze  
Tx(at 0 dBm)  
Rx  
Enabled  
Enabled  
RUN  
Tx(at 0 dBm)  
7.2.8 Designing with radiated emissions in mind  
To find application notes that provide guidance on designing your system to minimize  
interference from radiated emissions:  
1. Go to www.nxp.com  
2. Perform a keyword search for “EMC design.”  
7.2.9 Capacitance attributes  
Table 19. Capacitance attributes  
Symbol  
Description  
Min.  
Max.  
Unit  
CIN  
Input capacitance  
7
pF  
7.3 Switching electrical specifications  
7.3.1 Device clock specifications  
Table 20. Device clock specifications  
Symbol  
Description  
Min.  
Max.  
Unit  
Normal run mode  
fSYS  
fBUS  
System and core clock  
Bus clock  
48  
24  
24  
MHz  
MHz  
MHz  
fFLASH  
Flash clock  
Table continues on the next page...  
46  
NXP Semiconductors  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
MCU Electrical Characteristics  
Table 20. Device clock specifications (continued)  
Symbol  
Description  
Min.  
Max.  
Unit  
fLPTMR  
LPTMR clock  
24  
MHz  
VLPR and VLPS modes1  
fSYS  
fBUS  
System and core clock  
Bus clock  
4
1
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
fFLASH  
fLPTMR  
fERCLK  
Flash clock  
LPTMR clock2  
1
24  
16  
16  
8
External reference clock  
fLPTMR_ERCLK LPTMR external reference clock  
fTPM  
TPM asynchronous clock  
fLPUART0  
LPUART0 asynchronous clock  
12  
1. The frequency limitations in VLPR and VLPS modes here override any frequency specification listed in the timing  
specification for any other module. These same frequency limits apply to VLPS, whether VLPS was entered from RUN  
or from VLPR.  
2. The LPTMR can be clocked at this speed in VLPR or VLPS only when the source is an external pin.  
7.3.2 General switching specifications  
These general-purpose specifications apply to all signals configured for GPIO,  
LPUART, CMT and I2C signals.  
Table 21. General switching specifications  
Description  
Min.  
Max.  
Unit  
Notes  
GPIO pin interrupt pulse width (digital glitch filter  
disabled) — Synchronous path  
1.5  
Bus clock cycles  
1, 2  
NMI_b pin interrupt pulse width (analog filter enabled) —  
Asynchronous path  
200  
20  
ns  
ns  
ns  
3
3
GPIO pin interrupt pulse width (digital glitch filter  
disabled, analog filter disabled) — Asynchronous path  
External RESET_b input pulse width (digital glitch filter  
disabled)  
100  
Port rise and fall time(high drive strength)  
4, 5  
25  
16  
ns  
ns  
• Slew enabled  
• 1.71 ≤ VDD ≤ 2.7 V  
• 2.7 ≤ VDD ≤ 3.6 V  
• Slew disabled  
8
6
ns  
ns  
• 1.71 ≤ VDD ≤ 2.7 V  
• 2.7 ≤ VDD ≤ 3.6 V  
Port rise and fall time(low drive strength)  
• Slew enabled  
6, 7  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
47  
NXP Semiconductors  
MCU Electrical Characteristics  
Table 21. General switching specifications  
Description  
• 1.71 ≤ VDD ≤ 2.7 V  
• 2.7 ≤ VDD ≤ 3.6 V  
• Slew disabled  
Min.  
Max.  
Unit  
Notes  
24  
ns  
16  
10  
6
ns  
• 1.71 ≤ VDD ≤ 2.7 V  
• 2.7 ≤ VDD ≤ 3.6 V  
ns  
ns  
1. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry in run modes.  
2. The greater of synchronous and asynchronous timing must be met.  
3. This is the minimum pulse width that is guaranteed to be recognized.  
4. PTB0, PTB1, PTC0, PTC1, PTC2, PTC3, PTC6, PTC7, PTC17, PTC18.  
5. 75 pF load.  
6. Ports A, B, and C.  
7. 25 pF load.  
7.4 Thermal specifications  
7.4.1 Thermal operating requirements  
Table 22. Thermal operating requirements  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
TJ  
Die junction temperature  
• For Laminate QFN package  
Die junction temperature  
• For WLCSP package  
Ambient temperature  
–40  
125  
°C  
TJ  
TA  
TA  
–40  
–40  
–40  
95  
105  
85  
°C  
°C  
°C  
1
1
• For Laminate QFN package  
Ambient temperature  
• For WLCSP package  
1. Maximum TA can be exceeded only if the user ensures that TJ does not exceed the maximum. The simplest method to  
determine TJ is: TJ = TA + RθJA × chip power dissipation.  
48  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
NXP Semiconductors  
MCU Electrical Characteristics  
7.4.2 Thermal attributes  
Table 23. Thermal attributes  
Board type  
Symbol  
Description  
48-pin  
75-pin  
Unit  
Notes  
Laminate WLCSP  
QFN  
Single-layer (1S)  
RθJA  
RθJA  
RθJMA  
RθJMA  
RθJB  
RθJC  
ΨJT  
Thermal resistance, junction to  
ambient (natural convection)  
59.3  
42.9  
51.6  
38.9  
37.7  
0.48  
0.2  
106.7  
57.2  
88.0  
51.7  
24.7  
4.3  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
2, 1  
2, 1  
2, 1  
2, 1  
3
Four-layer (2s2p)  
Thermal resistance, junction to  
ambient (natural convection)  
Single-layer (1S)  
Thermal resistance, junction to  
ambient (200 ft./min. air speed)  
Four-layer (2s2p)  
Thermal resistance, junction to  
ambient (200 ft./min. air speed)  
Thermal resistance, junction to  
board  
Thermal resistance, junction to  
case  
4
Thermal characterization  
0.2  
5
parameter, junction to package top  
outside center (natural convection)  
RθJB_CSB Thermal characterization  
parameter, junction to package  
bottom outside center (natural  
convection)  
13.7  
°C/W  
6
1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental  
Conditions—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test  
Method Environmental Conditions—Forced Convection (Moving Air).  
2. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.  
3. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental  
Conditions—Junction-to-Board. Board temperature is measured on the top surface of the board near the package.  
4. Determined according to Method 1012.1 of MIL-STD 883, Test Method Standard, Microcircuits, with the cold plate  
temperature used for the case temperature. The value includes the thermal resistance of the interface material  
between the top of the package and the cold plate.  
5. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental  
Conditions—Natural Convection (Still Air).  
6. Thermal resistance between the die and the central solder balls on the bottom of the package based on simulation.  
7.5 Peripheral operating requirements and behaviors  
7.5.1 Core modules  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
49  
NXP Semiconductors  
MCU Electrical Characteristics  
7.5.1.1 SWD electricals  
Table 24. SWD full voltage range electricals  
Symbol  
Description  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
3.6  
V
J1  
SWD_CLK frequency of operation  
• Serial wire debug  
0
25  
MHz  
ns  
J2  
J3  
SWD_CLK cycle period  
SWD_CLK clock pulse width  
• Serial wire debug  
1/J1  
20  
ns  
J4  
J9  
SWD_CLK rise and fall times  
10  
0
3
ns  
ns  
ns  
ns  
ns  
SWD_DIO input data setup time to SWD_CLK rise  
SWD_DIO input data hold time after SWD_CLK rise  
SWD_CLK high to SWD_DIO data valid  
SWD_CLK high to SWD_DIO high-Z  
32  
J10  
J11  
J12  
5
J2  
J4  
J3  
J3  
SWD_CLK (input)  
J4  
Figure 5. Serial wire clock input timing  
50  
NXP Semiconductors  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
MCU Electrical Characteristics  
SWD_CLK  
SWD_DIO  
SWD_DIO  
SWD_DIO  
SWD_DIO  
J9  
J10  
Input data valid  
J11  
Output data valid  
J12  
J11  
Output data valid  
Figure 6. Serial wire data timing  
7.5.2 System modules  
There are no specifications necessary for the device's system modules.  
7.5.3 Clock modules  
7.5.3.1 MCG specifications  
Table 25. MCG specifications  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
fints_ft Internal reference frequency (slow clock) —  
32.768  
kHz  
factory trimmed at nominal VDD and 25 °C  
fints_t  
Internal reference frequency (slow clock) —  
user trimmed  
31.25  
39.0625  
0.6  
kHz  
Δfdco_res_t Resolution of trimmed average DCO output  
frequency at fixed voltage and temperature —  
using C3[SCTRIM] and C4[SCFTRIM]  
0.3  
%fdco  
1
Δfdco_t  
Total deviation of trimmed average DCO output  
frequency over voltage and temperature  
+0.5/-0.7  
3
%fdco  
1, 2  
Table continues on the next page...  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
51  
NXP Semiconductors  
MCU Electrical Characteristics  
Symbol Description  
Table 25. MCG specifications (continued)  
Min.  
Typ.  
Max.  
Unit  
Notes  
Δfdco_t  
Total deviation of trimmed average DCO output  
frequency over fixed voltage and temperature  
range of 0–70 °C  
0.4  
1.5  
%fdco  
1, 2  
fintf_ft  
Internal reference frequency (fast clock) —  
factory trimmed at nominal VDD and 25 °C  
4
3
MHz  
Δfintf_ft  
Frequency deviation of internal reference clock  
(fast clock) over temperature and voltage —  
factory trimmed at nominal VDD and 25 °C  
+1/-2  
%fintf_ft  
2
fintf_t  
Internal reference frequency (fast clock) —  
user trimmed at nominal VDD and 25 °C  
3
5
MHz  
kHz  
kHz  
floc_low  
Loss of external clock minimum frequency —  
RANGE = 00  
(3/5) x  
fints_t  
floc_high Loss of external clock minimum frequency —  
RANGE = 01, 10, or 11  
(16/5) x  
fints_t  
FLL  
FLL reference frequency range  
31.25  
20  
39.0625  
25  
kHz  
ffll_ref  
fdco  
DCO output  
Low range (DRS = 00)  
20.97  
MHz  
3, 4  
5, 6  
frequency range  
640 × ffll_ref  
Mid range (DRS = 01)  
1280 × ffll_ref  
40  
41.94  
23.99  
47.97  
180  
48  
1
MHz  
MHz  
MHz  
ps  
fdco_t_DMX3 DCO output  
Low range (DRS = 00)  
732 × ffll_ref  
frequency  
2
Mid range (DRS = 01)  
1464 × ffll_ref  
Jcyc_fll  
FLL period jitter  
• fVCO = 48 MHz  
7
8
tfll_acquire FLL target frequency acquisition time  
ms  
1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock  
mode).  
2. The deviation is relative to the factory trimmed frequency at nominal VDD and 25 °C, fints_ft  
.
3. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32 = 0.  
4. The resulting system clock frequencies must not exceed their maximum specified values. The DCO frequency deviation  
(Δfdco_t) over voltage and temperature must be considered.  
5. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32 = 1.  
6. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.  
7. This specification is based on standard deviation (RMS) of period or frequency.  
8. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed,  
DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE,  
FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.  
7.5.3.2 Reference Oscillator Specification  
52  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
NXP Semiconductors  
MCU Electrical Characteristics  
The KW41Z has been designed to meet targeted specifications with a +/-20 ppm  
frequency error over the life of the part, which includes the temperature, mechanical  
and aging excursions.  
The table below shows the recommended crystal specifications. Note that these are  
recommendations only and deviation may be allowed. However, deviations may result  
in degraded RF performance or possibly a failure to meet RF protocol certification  
standards. Designers should do due diligence to ensure that the crystal(s) they use will  
meet the requirements of their application.  
Table 26. Recommended Crystal Specification  
Symbol  
Description  
Comment  
32M  
Typ  
26M  
Typ  
Unit  
Min  
Max  
Min  
Max  
Operating  
Temperature  
-40  
105  
-40  
105  
Faging  
Frequency  
accuracy over  
aging  
1st year  
-5  
5
-5  
5
ppm -  
1st yr  
iFacc  
Fstab  
Initial Frequency with respect  
-10  
-10  
10  
10  
-10  
-10  
10  
10  
ppm  
ppm  
accuracy  
to XO  
Frequency  
stability  
across  
temperature,  
mechanical ,  
load and  
voltage  
changes  
CL  
Values of CL  
supported(Integr  
ated on die and  
programmable)  
7
10  
13  
7
10  
13  
pF  
Co  
Shunt parasitic  
capacitance  
0.469  
1.435  
0.67  
2.05  
0.871  
2.665  
0.42  
0.6  
0.78  
pF  
fF  
Cm1  
Motional  
capacitance  
Cm1  
1.435  
2.05  
2.665  
Lm1  
TS  
Motional  
inductance Lm1  
8.47  
6.30  
12.1  
9.00  
15.73  
11.70  
12.81  
6.39  
18.3  
9.12  
23.79  
11.86  
mH  
Trim Sensitivity  
(TS) for the  
ppm/pF  
supported  
[Co,CL] values  
TOSC  
Rm1  
Oscillator  
Startup Time  
680  
25  
60  
680  
35  
60  
μs  
Ohms  
μW  
ESR: Maximum  
value of Rm1  
Maximum crystal  
drive level limit  
200  
200  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
53  
NXP Semiconductors  
MCU Electrical Characteristics  
Figure 7. Crystal Electrical Block Diagram  
7.5.3.3 32 kHz Oscillator Frequency Specifications  
Table 27. 32 kHz oscillator frequency specifications  
Symbol  
fosc_lo  
tstart  
Description  
Min.  
Typ.  
32.768  
1000  
Max.  
Unit  
kHz  
ms  
Notes  
Oscillator crystal  
Crystal start-up  
time  
1
2
fec_extal32  
Externally  
provided input  
clock frequency  
32.678  
kHz  
mV  
vec_extal32  
Externally  
700  
VDD  
2, 3  
provided input  
clock amplitude  
1. Proper PC board layout procedures must be followed to acheive specifications.  
2. This specification is for an externally supplied clock driven to EXTAL32 and does not apply to any other clock input. The  
oscillator remains enabled and XTAL32 must be left unconnected.  
3. The parameter specified is a peak-to-peak value and VIH and VIL specifications do not apply. The voltage of the applied  
clock must be within the range of VSS to VDD  
.
7.5.4 Memories and memory interfaces  
54  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
NXP Semiconductors  
MCU Electrical Characteristics  
7.5.4.1 Flash electrical specifications  
This section describes the electrical characteristics of the flash memory module.  
7.5.4.1.1 Flash timing specifications — program and erase  
The following specifications represent the amount of time the internal charge pumps  
are active and do not include command overhead.  
Table 28. NVM program/erase timing specifications  
Symbol Description  
Min.  
Typ.  
7.5  
Max.  
18  
Unit  
μs  
Notes  
thvpgm4 Longword Program high-voltage time  
thversscr Sector Erase high-voltage time  
thversblk256k Erase Block high-voltage time for 256 KB  
1
13  
113  
904  
ms  
ms  
104  
1
1. Maximum time based on expectations at cycling end-of-life.  
7.5.4.1.2 Flash timing specifications — commands  
Table 29. Flash command timing specifications  
Symbol Description  
Read 1s Block execution time  
• 256 KB program flash  
Min.  
Typ.  
Max.  
Unit  
Notes  
1
trd1blk256k  
1.7  
ms  
trd1sec2k Read 1s Section execution time (flash sector)  
tpgmchk Program Check execution time  
65  
60  
45  
μs  
μs  
μs  
μs  
1
1
trdrsrc  
tpgm4  
Read Resource execution time  
Program Longword execution time  
Erase Flash Block execution time  
• 256 KB program flash  
30  
1
145  
2
tersblk256k  
250  
1500  
ms  
tersscr  
trd1all  
Erase Flash Sector execution time  
Read 1s All Blocks execution time  
Read Once execution time  
14  
114  
1.8  
ms  
ms  
μs  
2
1
trdonce  
30  
1
tpgmonce Program Once execution time  
100  
500  
μs  
2
tersall  
tvfykey  
tersallu  
Erase All Blocks execution time  
3000  
30  
ms  
μs  
Verify Backdoor Access Key execution time  
Erase All Blocks Unsecure execution time  
1
500  
3000  
ms  
2
1. Assumes 25 MHz flash clock frequency.  
2. Maximum times for erase parameters based on expectations at cycling end-of-life.  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
55  
NXP Semiconductors  
MCU Electrical Characteristics  
7.5.4.1.3 Flash high voltage current behaviors  
Table 30. Flash high voltage current behaviors  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
IDD_PGM  
Average current adder during high voltage  
flash programming operation  
2.5  
6.0  
mA  
IDD_ERS  
Average current adder during high voltage  
flash erase operation  
1.5  
4.0  
mA  
7.5.4.1.4 Reliability specifications  
Table 31. NVM reliability specifications  
Symbol Description  
Min.  
Program Flash  
Typ.1  
Max.  
Unit  
Notes  
tnvmretp10k Data retention after up to 10 K cycles  
tnvmretp1k Data retention after up to 1 K cycles  
nnvmcycp Cycling endurance  
5
50  
years  
years  
cycles  
2
20  
100  
50 K  
10 K  
1. Typical data retention values are based on measured response accelerated at high temperature and derated to a  
constant 25 °C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in  
Engineering Bulletin EB619.  
2. Cycling endurance represents number of program/erase cycles at –40 °C ≤ Tj ≤ 125 °C.  
7.5.5 Security and integrity modules  
There are no specifications necessary for the device's security and integrity modules.  
7.5.6 Analog  
7.5.6.1 ADC electrical specifications  
All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy  
specifications. The following specification is defined with the DC-DC converter  
operating in Bypass mode.  
7.5.6.1.1 16-bit ADC operating conditions  
Table 32. 16-bit ADC operating conditions  
Symbol Description  
VDDA Supply voltage  
Conditions  
Min.  
Typ.1  
Max.  
Unit  
Notes  
Absolute  
1.71  
3.6  
V
Table continues on the next page...  
56  
NXP Semiconductors  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
MCU Electrical Characteristics  
Table 32. 16-bit ADC operating conditions (continued)  
Symbol Description  
Conditions  
Min.  
-100  
-100  
1.13  
Typ.1  
Max.  
+100  
+100  
VDDA  
Unit  
mV  
mV  
V
Notes  
ΔVDDA  
ΔVSSA  
VREFH  
Supply voltage  
Delta to VDD (VDD – VDDA  
)
0
2
2
3
Ground voltage Delta to VSS (VSS – VSSA  
)
0
ADC reference  
voltage high  
VDDA  
VREFL  
VADIN  
ADC reference  
voltage low  
VSSA  
VSSA  
VSSA  
V
V
3
Input voltage  
• 16-bit differential mode  
• All other modes  
• 16-bit mode  
VSSA  
VSSA  
31/32 ×  
VREFH  
VREFH  
CADIN  
Input  
capacitance  
8
4
10  
5
pF  
• 8-bit / 10-bit / 12-bit  
modes  
RADIN  
RAS  
Input series  
resistance  
2
5
5
kΩ  
kΩ  
Analog source  
resistance  
(external)  
13-bit / 12-bit modes  
fADCK < 4 MHz  
4
fADCK  
fADCK  
Crate  
ADC conversion ≤ 13-bit mode  
clock frequency  
1.0  
2.0  
18.0  
12.0  
MHz  
MHz  
5
5
6
ADC conversion 16-bit mode  
clock frequency  
ADC conversion ≤ 13-bit modes  
rate  
No ADC hardware averaging  
20.000  
37.037  
818.330  
461.467  
kS/s  
kS/s  
Continuous conversions  
enabled, subsequent  
conversion time  
Crate  
ADC conversion 16-bit mode  
6
rate  
No ADC hardware averaging  
Continuous conversions  
enabled, subsequent  
conversion time  
1. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 1.0 MHz, unless otherwise stated. Typical values are for  
reference only, and are not tested in production.  
2. DC potential difference.  
3. For packages without dedicated VREFH and VREFL pins, VREFH is internally tied to VDDA, and VREFL is internally tied  
to VSSA  
.
4. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as  
possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The  
RAS/CAS time constant should be kept to < 1 ns.  
5. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.  
6. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
57  
NXP Semiconductors  
MCU Electrical Characteristics  
SIMPLIFIED  
INPUT PIN EQUIVALENT  
CIRCUIT  
ZADIN  
SIMPLIFIED  
CHANNEL SELECT  
CIRCUIT  
Pad  
leakage  
ZAS  
ADC SAR  
ENGINE  
RAS  
RADIN  
VADIN  
CAS  
VAS  
RADIN  
RADIN  
RADIN  
INPUT PIN  
INPUT PIN  
INPUT PIN  
CADIN  
Figure 8. ADC input impedance equivalency diagram  
7.5.6.1.2 16-bit ADC electrical characteristics  
Table 33. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA  
)
Symbol Description  
Conditions1  
Min.  
0.215  
1.2  
Typ.2  
Max.  
1.7  
3.9  
6.1  
7.3  
9.5  
Unit  
Notes  
IDDA_ADC Supply current  
mA  
3
ADC asynchronous  
clock source  
• ADLPC=1, ADHSC=0  
• ADLPC=1, ADHSC=1  
• ADLPC=0, ADHSC=0  
• ADLPC=0, ADHSC=1  
2.4  
4.0  
5.2  
6.2  
MHz tADACK =  
1/fADACK  
2.4  
fADACK  
3.0  
4.4  
Sample Time  
See Reference Manual chapter for sample times  
TUE  
DNL  
Total unadjusted  
error  
• 12-bit modes  
• <12-bit modes  
4
6.8  
2.1  
LSB4  
LSB4  
5
5
1.4  
Differential non-  
linearity  
• 12-bit mode; Buck  
Mode6  
0.7  
0.5  
0.5  
–1.1 to +1.9  
–1.1 to +1.9  
–1.1 to +1.9  
• 12-bit mode; Boost  
Mode6  
• 12-bit mode; Bypass  
Mode  
Table continues on the next page...  
58  
NXP Semiconductors  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
MCU Electrical Characteristics  
Table 33. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)  
Symbol Description  
Conditions1  
Min.  
Typ.2  
Max.  
Unit  
Notes  
INL  
Integral non-  
linearity  
• 12-bit mode; Buck  
Mode6  
1.0  
–2.7 to +1.9  
LSB4  
5
0.7  
0.6  
–2.7 to +1.9  
–2.7 to +1.9  
• 12-bit mode; Boost  
Mode6  
• 12-bit mode; Bypass  
Mode  
EFS  
EQ  
Full-scale error  
• 12-bit modes  
• <12-bit modes  
• 16-bit modes  
• ≤13-bit modes  
–4  
–1.4  
–1 to 0  
–5.4  
–1.8  
LSB4 VADIN  
VDDA  
=
5
Quantization error  
LSB4  
0.5  
ENOB Effective number of 16-bit differential mode; Buck  
bits  
Mode6  
7
12  
12.75  
11.75  
bits  
• Avg = 32  
• Avg = 4  
11.25  
16-bit single-ended mode;  
Buck Mode6  
• Avg = 32  
• Avg = 4  
11  
11.5  
10.5  
9.5  
16-bit differential mode; Boost  
Mode6  
• Avg = 32  
• Avg = 4  
11.5  
9.75  
12  
11  
16-bit single-ended mode;  
Boost Mode6  
• Avg = 32  
• Avg = 4  
11  
11.5  
10.5  
9.75  
16-bit differential mode;  
Bypass Mode  
• Avg = 32  
• Avg = 4  
12.5  
13  
12  
11.25  
16-bit single-ended mode;  
Bypass Mode  
• Avg = 32  
• Avg = 4  
11  
10  
11.75  
10.5  
Signal-to-noise plus See ENOB  
distortion  
SINAD  
6.02 × ENOB + 1.76  
dB  
THD Total harmonic  
distortion  
16-bit differential mode; Buck  
Mode6  
8
• Avg = 32  
-90  
dB  
Table continues on the next page...  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
59  
NXP Semiconductors  
MCU Electrical Characteristics  
Table 33. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)  
Symbol Description  
Conditions1  
Min.  
Typ.2  
Max.  
Unit  
Notes  
16-bit single-ended mode;  
Buck Mode6  
-88  
• Avg = 32  
16-bit differential mode; Boost  
Mode6  
-89  
-89  
-89  
-87  
• Avg = 32  
16-bit single-ended mode;  
Boost Mode6  
• Avg = 32  
16-bit differential mode;  
Bypass Mode  
• Avg = 32  
16-bit single-ended mode;  
Bypass Mode  
• Avg = 32  
Signal-to-noise plus See ENOB  
distortion  
SINAD  
6.02 × ENOB + 1.76  
dB  
dB  
SFDR Spurious free  
dynamic range  
distortion  
16-bit differential mode; Buck  
Mode6  
8
• Avg = 32  
85  
85  
89  
87  
16-bit single-ended mode;  
Buck Mode6  
• Avg = 32  
16-bit differential mode; Boost  
Mode6  
• Avg = 32  
78  
85  
87  
85  
86  
87  
94  
88  
16-bit single-ended mode;  
Boost Mode6  
• Avg = 32  
16-bit differential mode;  
Bypass Mode  
• Avg = 32  
16-bit single-ended mode;  
Bypass Mode  
• Avg = 32  
EIL  
Input leakage error  
IIn × RAS  
mV  
IIn =  
leakage  
current  
Table continues on the next page...  
60  
NXP Semiconductors  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
MCU Electrical Characteristics  
Table 33. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)  
Symbol Description  
Conditions1  
Min.  
Typ.2  
Max.  
Unit  
Notes  
(see  
Voltage  
and  
current  
operating  
ratings)  
Temp sensor slope Across the full temperature  
range of the device  
1.67  
706  
1.74  
716  
1.81  
726  
mV/°  
C
9
VTEMP25 Temp sensor  
voltage  
25 °C  
mV  
9
1. All accuracy numbers assume the ADC is calibrated with VREFH = VDDA  
.
2. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 2.0 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low  
power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with  
1 MHz ADC conversion clock speed.  
4. 1 LSB = (VREFH - VREFL)/2N.  
5. ADC conversion clock < 16 MHz, maximum hardware averaging (AVGE = %1, AVGS = %11).  
6. VREFH = Output of Voltage Reference(VREF).  
7. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.  
8. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.  
9. ADC conversion clock < 3 MHz.  
7.5.6.2 Voltage reference electrical specifications  
Table 34. VREF full-range operating requirements  
Symbol  
VDDA  
TA  
Description  
Min.  
Max.  
Unit  
V
Notes  
Supply voltage  
Temperature  
1.71  
3.6  
-40 to 105  
100  
°C  
nF  
CL  
Output load capacitance  
1, 2  
1. CL must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external  
reference.  
2. The load capacitance should not exceed +/-25% of the nominal specified CL value over the operating temperature  
range of the device.  
Table 35. VREF full-range operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
Vout  
Voltage reference output with factory trim at  
1.190  
1.1950  
1.2  
V
1
nominal VDDA and temperature=25°C  
Vout  
Voltage reference output with user trim at  
nominal VDDA and temperature=25°C  
1.1945  
1.1950  
0.5  
1.1955  
V
1
1
Vstep  
Voltage reference trim step  
mV  
Table continues on the next page...  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
61  
NXP Semiconductors  
MCU Electrical Characteristics  
Table 35. VREF full-range operating behaviors (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
Vtdrift  
Temperature drift (Vmax -Vmin across the full  
20  
mV  
1
temperature range)  
Ibg  
Ilp  
Bandgap only current  
Low-power buffer current  
High-power buffer current  
80  
360  
1
µA  
uA  
mA  
µV  
1
1
Ihp  
ΔVLOAD Load regulation  
• current = 1.0 mA  
1, 2  
200  
Tstup  
Buffer startup time  
100  
35  
µs  
Tchop_osc_st Internal bandgap start-up delay with chop  
ms  
oscillator enabled  
up  
Vvdrift  
Voltage drift (Vmax -Vmin across the full voltage  
range)  
2
mV  
1
1. See the chip's Reference Manual for the appropriate settings of the VREF Status and Control register.  
2. Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load  
Table 36. VREF limited-range operating requirements  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
TA  
Temperature  
0
70  
°C  
Table 37. VREF limited-range operating behaviors  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
Vtdrift  
Temperature drift (Vmax -Vmin across the limited  
temperature range)  
15  
mV  
7.5.6.3 CMP and 6-bit DAC electrical specifications  
Table 38. Comparator and 6-bit DAC electrical specifications  
Symbol  
VDD  
Description  
Min.  
1.71  
Typ.  
Max.  
3.6  
Unit  
V
Supply voltage  
IDDHS  
IDDLS  
VAIN  
Supply current, High-speed mode (EN=1, PMODE=1)  
Supply current, low-speed mode (EN=1, PMODE=0)  
Analog input voltage  
200  
20  
μA  
μA  
V
VSS – 0.3  
VDD  
20  
VAIO  
Analog input offset voltage  
mV  
VH  
Analog comparator hysteresis1  
5
mV  
• CR0[HYSTCTR] = 00  
Table continues on the next page...  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
62  
NXP Semiconductors  
MCU Electrical Characteristics  
Table 38. Comparator and 6-bit DAC electrical specifications (continued)  
Symbol  
Description  
• CR0[HYSTCTR] = 01  
Min.  
Typ.  
Max.  
Unit  
10  
mV  
• CR0[HYSTCTR] = 10  
• CR0[HYSTCTR] = 11  
20  
30  
mV  
mV  
VCMPOh  
VCMPOl  
tDHS  
Output high  
VDD – 0.5  
50  
250  
7
0.5  
200  
600  
40  
V
V
Output low  
Propagation delay, high-speed mode (EN=1, PMODE=1)  
Propagation delay, low-speed mode (EN=1, PMODE=0)  
Analog comparator initialization delay2  
6-bit DAC current adder (enabled)  
6-bit DAC integral non-linearity  
20  
ns  
tDLS  
80  
ns  
μs  
IDAC6b  
INL  
μA  
LSB3  
LSB  
–0.5  
–0.3  
0.5  
0.3  
DNL  
6-bit DAC differential non-linearity  
1. Typical hysteresis is measured with input voltage range limited to 0.6 to VDD–0.6 V.  
2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to  
CMP_DACCR[DACEN], CMP_DACCR[VRSEL], CMP_DACCR[VOSEL], CMP_MUXCR[PSEL], and  
CMP_MUXCR[MSEL]) and the comparator output settling to a stable level.  
3. 1 LSB = Vreference/64  
0.08  
0.07  
0.06  
HYSTCTR  
Setting  
0.05  
0.04  
0.03  
00  
01  
10  
11  
0.02  
0.01  
0
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
Vin level (V)  
Figure 9. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0)  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
63  
NXP Semiconductors  
MCU Electrical Characteristics  
0.18  
0.16  
0.14  
0.12  
HYSTCTR  
Setting  
0.1  
00  
01  
10  
11  
0.08  
0.06  
0.04  
0.02  
0
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
Vin level (V)  
Figure 10. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1)  
7.5.6.4 12-bit DAC electrical characteristics  
7.5.6.4.1 12-bit DAC operating requirements  
Table 39. 12-bit DAC operating requirements  
Symbol  
VDDA  
VDACR  
CL  
Desciption  
Min.  
1.71  
1.13  
Max.  
3.6  
3.6  
100  
1
Unit  
V
Notes  
Supply voltage  
Reference voltage  
Output load capacitance  
Output load current  
V
1
2
pF  
mA  
IL  
1. The DAC reference can be selected to be VDDA or VREF_OUT  
.
2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC.  
64  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
NXP Semiconductors  
MCU Electrical Characteristics  
7.5.6.4.2 12-bit DAC operating behaviors  
Table 40. 12-bit DAC operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDDA_DACL Supply current — low-power mode  
250  
μA  
P
IDDA_DACH Supply current — high-speed mode  
100  
15  
900  
200  
30  
μA  
μs  
μs  
μs  
P
tDACLP Full-scale settling time (0x080 to 0xF7F) —  
low-power mode  
1
1
1
tDACHP Full-scale settling time (0x080 to 0xF7F) —  
high-power mode  
tCCDACLP Code-to-code settling time (0xBF8 to  
0xC08) — low-power mode and high-  
speed mode  
0.7  
1
Vdacoutl DAC output voltage range low — high-  
speed mode, no load, DAC set to 0x000  
100  
mV  
mV  
Vdacouth DAC output voltage range high — high-  
speed mode, no load, DAC set to 0xFFF  
VDACR  
−100  
VDACR  
INL  
DNL  
DNL  
Integral non-linearity error — high speed  
mode  
8
1
1
LSB  
LSB  
LSB  
2
3
4
Differential non-linearity error — VDACR > 2  
V
Differential non-linearity error — VDACR  
VREF_OUT  
=
VOFFSET Offset error  
EG Gain error  
PSRR Power supply rejection ratio, VDDA ≥ 2.4 V  
60  
0.4  
0.1  
0.8  
0.6  
90  
%FSR  
%FSR  
dB  
5
5
TCO  
TGE  
Rop  
SR  
Temperature coefficient offset voltage  
Temperature coefficient gain error  
Output resistance (load = 3 kΩ)  
Slew rate -80hF7Fh80h  
3.7  
μV/C  
%FSR/C  
Ω
6
0.000421  
250  
V/μs  
• High power (SPHP  
)
1.2  
1.7  
• Low power (SPLP  
3dB bandwidth  
)
0.05  
0.12  
BW  
kHz  
• High power (SPHP  
• Low power (SPLP  
)
550  
40  
)
1. Settling within 1 LSB  
2. The INL is measured for 0 + 100 mV to VDACR −100 mV  
3. The DNL is measured for 0 + 100 mV to VDACR −100 mV  
4. The DNL is measured for 0 + 100 mV to VDACR −100 mV with VDDA > 2.4 V  
5. Calculated by a best fit curve from VSS + 100 mV to VDACR − 100 mV  
6. VDDA = 3.0 V, reference select set for VDDA (DACx_CO:DACRFS = 1), high power mode (DACx_C0:LPEN = 0), DAC  
set to 0x800, temperature range is across the full range of the device  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
65  
NXP Semiconductors  
MCU Electrical Characteristics  
8
6
4
2
0
-2  
-4  
-6  
-8  
0
500  
1000  
1500  
2000  
2500  
3000  
3500  
4000  
Digital Code  
Figure 11. Typical INL error vs. digital code  
66  
NXP Semiconductors  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
MCU Electrical Characteristics  
1.499  
1.4985  
1.498  
1.4975  
1.497  
1.4965  
1.496  
55  
85  
25  
105  
125  
-40  
Temperature °C  
Figure 12. Offset at half scale vs. temperature  
7.5.7 Timers  
See General switching specifications.  
7.5.8 Communication interfaces  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
67  
NXP Semiconductors  
MCU Electrical Characteristics  
7.5.8.1 DSPI switching specifications (limited voltage range)  
The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with  
master and slave operations. Many of the transfer attributes are programmable. The  
tables below provide DSPI timing characteristics for classic SPI timing modes. See the  
DSPI chapter of the Reference Manual for information on the modified transfer formats  
used for communicating with slower peripheral devices.  
Table 41. Master mode DSPI timing (limited voltage range)  
Num  
Description  
Min.  
2.7  
Max.  
3.6  
12  
Unit  
V
Notes  
Operating voltage  
Frequency of operation  
MHz  
ns  
DS1  
DS2  
DS3  
DSPI_SCK output cycle time  
DSPI_SCK output high/low time  
DSPI_PCSn valid to DSPI_SCK delay  
2 x tBUS  
(tSCK/2) − 2 (tSCK/2) + 2  
ns  
(tBUS x 2) −  
2
ns  
1
2
DS4  
DSPI_SCK to DSPI_PCSn invalid delay  
(tBUS x 2) −  
2
ns  
DS5  
DS6  
DS7  
DS8  
DSPI_SCK to DSPI_SOUT valid  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
-2  
8.5  
ns  
ns  
ns  
ns  
16.2  
0
1. The delay is programmable in SPIx_CTARn[PCSSCK] and SPIx_CTARn[CSSCK].  
2. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].  
SPI_PCSn  
DS1  
DS3  
DS2  
DS4  
SPI_SCK  
(CPOL=0)  
DS8  
DS7  
Data  
Last data  
First data  
SPI_SIN  
DS5  
DS6  
First data  
Data  
Last data  
SPI_SOUT  
Figure 13. DSPI classic SPI timing — master mode  
Table 42. Slave mode DSPI timing (limited voltage range)  
Num  
Description  
Min.  
Max.  
3.6  
6
Unit  
V
Operating voltage  
2.7  
Frequency of operation  
MHz  
Table continues on the next page...  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
68  
NXP Semiconductors  
MCU Electrical Characteristics  
Table 42. Slave mode DSPI timing (limited voltage range) (continued)  
Num  
DS9  
Description  
DSPI_SCK input cycle time  
Min.  
Max.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
4 x tBUS  
DS10  
DS11  
DS12  
DS13  
DS14  
DS15  
DS16  
DSPI_SCK input high/low time  
(tSCK/2) − 2  
(tSCK/2) + 2  
DSPI_SCK to DSPI_SOUT valid  
0
21.4  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
DSPI_SS active to DSPI_SOUT driven  
DSPI_SS inactive to DSPI_SOUT not driven  
2.6  
7.0  
14  
14  
SPI_SS  
DS10  
DS9  
SPI_SCK  
(POL=0)  
DS15  
DS12  
DS16  
DS11  
First data  
DS14  
Last data  
SPI_SOUT  
Data  
Data  
DS13  
First data  
Last data  
SPI_SIN  
Figure 14. DSPI classic SPI timing — slave mode  
7.5.8.2 DSPI switching specifications (full voltage range)  
The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with  
master and slave operations. Many of the transfer attributes are programmable. The  
tables below provide DSPI timing characteristics for classic SPI timing modes. See  
the DSPI chapter of the Reference Manual for information on the modified transfer  
formats used for communicating with slower peripheral devices.  
Table 43. Master mode DSPI timing (full voltage range)  
Num  
Description  
Min.  
1.71  
Max.  
3.6  
12  
Unit  
V
Notes  
Operating voltage  
1
Frequency of operation  
MHz  
ns  
DS1  
DS2  
DSPI_SCK output cycle time  
DSPI_SCK output high/low time  
2 x tBUS  
(tSCK/2) - 4 (tSCK/2) + 4  
Table continues on the next page...  
ns  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
69  
NXP Semiconductors  
MCU Electrical Characteristics  
Table 43. Master mode DSPI timing (full voltage range) (continued)  
Num  
Description  
Min.  
Max.  
Unit  
Notes  
DS3  
DSPI_PCSn valid to DSPI_SCK delay  
(tBUS x 2) −  
4
ns  
2
DS4  
DSPI_SCK to DSPI_PCSn invalid delay  
(tBUS x 2) −  
4
ns  
3
DS5  
DS6  
DS7  
DS8  
DSPI_SCK to DSPI_SOUT valid  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
-1.2  
23.3  
0
10  
ns  
ns  
ns  
ns  
1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage  
range the maximum frequency of operation is reduced.  
2. The delay is programmable in SPIx_CTARn[PCSSCK] and SPIx_CTARn[CSSCK].  
3. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].  
SPI_PCSn  
DS1  
DS3  
DS2  
DS4  
SPI_SCK  
(CPOL=0)  
DS8  
DS7  
Data  
Last data  
First data  
SPI_SIN  
DS5  
DS6  
First data  
Data  
Last data  
SPI_SOUT  
Figure 15. DSPI classic SPI timing — master mode  
Table 44. Slave mode DSPI timing (full voltage range)  
Num  
Description  
Min.  
Max.  
Unit  
V
Operating voltage  
1.71  
3.6  
Frequency of operation  
6
MHz  
ns  
DS9  
DSPI_SCK input cycle time  
4 x tBUS  
DS10  
DS11  
DS12  
DS13  
DS14  
DS15  
DS16  
DSPI_SCK input high/low time  
(tSCK/2) - 4  
(tSCK/2) + 4  
ns  
DSPI_SCK to DSPI_SOUT valid  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
DSPI_SS active to DSPI_SOUT driven  
DSPI_SS inactive to DSPI_SOUT not driven  
0
29.1  
ns  
ns  
3.2  
7.0  
ns  
ns  
25  
25  
ns  
ns  
70  
NXP Semiconductors  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
MCU Electrical Characteristics  
SPI_SS  
DS10  
DS9  
SPI_SCK  
(POL=0)  
DS15  
DS12  
DS16  
DS11  
First data  
DS14  
Last data  
SPI_SOUT  
Data  
Data  
DS13  
First data  
Last data  
SPI_SIN  
Figure 16. DSPI classic SPI timing — slave mode  
7.5.8.3 Inter-Integrated Circuit Interface (I2C) timing  
Table 45. I 2C timing  
Characteristic  
Symbol  
Standard Mode  
Fast Mode  
Unit  
Minimum Maximum  
Minimum Maximum  
SCL Clock Frequency  
fSCL  
0
4
100  
0
400  
kHz  
µs  
Hold time (repeated) START condition. tHD; STA  
After this period, the first clock pulse is  
generated.  
0.6  
LOW period of the SCL clock  
HIGH period of the SCL clock  
tLOW  
tHIGH  
4.7  
4
1.3  
0.6  
0.6  
µs  
µs  
µs  
Set-up time for a repeated START  
condition  
tSU; STA  
4.7  
Data hold time for I2C bus devices  
tHD; DAT  
tSU; DAT  
tr  
01  
2504  
3.452  
03  
1002, 5  
20 +0.1Cb  
20 +0.1Cb  
0.6  
0.91  
µs  
ns  
ns  
ns  
µs  
µs  
Data set-up time  
6
5
Rise time of SDA and SCL signals  
Fall time of SDA and SCL signals  
Set-up time for STOP condition  
1000  
300  
300  
300  
tf  
tSU; STO  
tBUF  
4
Bus free time between STOP and  
START condition  
4.7  
1.3  
Pulse width of spikes that must be  
suppressed by the input filter  
tSP  
N/A  
N/A  
0
50  
ns  
1. The master mode I2C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves  
acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and  
SCL lines.  
2. The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal.  
3. Input signal Slew = 10 ns and Output Load = 50 pF.  
4. Set-up time in slave-transmitter mode is 1 IP Bus clock period, if the TX FIFO is empty.  
5. A Fast mode I2C bus device can be used in a Standard mode I2C bus system, but the requirement tSU; DAT ≥ 250 ns  
must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If  
such a device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line trmax  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
71  
NXP Semiconductors  
MCU Electrical Characteristics  
+ tSU; DAT = 1000 + 250 = 1250 ns (according to the Standard mode I2C bus specification) before the SCL line is  
released.  
6. Cb = total capacitance of the one bus line in pF.  
SDA  
tSU; DAT  
tf  
tr  
tBUF  
tf  
tr  
tHD; STA  
tSP  
tLOW  
SCL  
tSU; STA  
tSU; STO  
HD; STA  
S
SR  
P
S
tHD; DAT  
tHIGH  
Figure 17. Timing definition for fast and standard mode devices on the I2C bus  
7.5.8.4 LPUART  
See General switching specifications.  
7.5.9 Human-machine interfaces (HMI)  
7.5.9.1 TSI electrical specifications  
Table 46. TSI electrical specifications  
Symbol  
Ta  
Description  
Temperature  
Min.  
-30  
Typ.  
Max.  
105  
Unit  
°C  
TSI_RUNF  
TSI_RUNV  
Fixed power consumption in run mode  
100  
µA  
Variable power consumption in run mode  
(depends on oscillator's current selection)  
1.0  
128  
µA  
TSI_EN  
TSI_DIS  
Power consumption in enable mode  
Power consumption in disable mode  
TSI analog enable time  
100  
1.2  
66  
µA  
µA  
µs  
pF  
V
TSI_TEN  
TSI_CREF  
TSI_DVOLT  
TSI reference capacitor  
1.0  
Voltage variation of VP & VM around nominal  
values  
0.19  
1.03  
7.5.9.2 GPIO  
The maximum input voltage on PTC0/1/2/3 is VDD+0.3V. For rest of the GPIO  
specification, see General switching specifications.  
72  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
NXP Semiconductors  
MCU Electrical Characteristics  
7.6 DC-DC Converter Operating Requirements  
Table 47. DC-DC Converter Recommended operating conditions  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Bypass Mode Supply Voltage (RF and Analog)  
VDDRF1  
VDDRF2  
,
,
1.425  
3.6  
Vdc  
VDDRF3  
Bypass Mode Supply Voltage (Digital)  
VDDX, VDCDC_IN  
,
1.71  
1.12  
3.6  
Vdc  
Vdc  
VDDA  
Boost Mode Supply Voltage  
VDDDCDC_IN  
1.795  
1
Buck Mode Supply Voltage3, 1, 4  
External Inductor5  
VDDDCDC_IN  
L_DCDC  
ESR  
2.1  
10  
0.2  
4.25  
Vdc  
uH  
Inductor Resistance in Buck Mode  
Inductor Resistance in Boost Mode  
0.5  
0.2  
Ohms  
Ohms  
ESR  
1. VDD_1P5 is 1.8 V by default in Boost mode. VDD_1P8OUT should supply to VDD1, VDD2 and VDDA.  
VDD_1P5OUT_PMCIN should supply to VDD_RF1 and VDD_RF2. VDDXTAL can be either supplied by 1.5 V or 1.8 V  
2. In boost mode, DC-DC converter needs minimum 1.1 V to start, the supply can drop to 0.9 V after the DC-DC  
converter settles.  
3. In Buck mode, DC-DC converter needs 2.1 V min to start, the supply can drop to 1.8 V after DC-DC converter settles  
4. When 3.6 V < VDDDCDC_IN / DCDC_CFG / PSWITCH <= 4.25 V, TA and TJ are constrained to a maximum of +45 °C  
and +65 °C respectively (typical Li-ion maximum temperatures when charging). When VDDDCDC_IN / DCDC_CFG /  
PSWITCH <= 3.6 V, TA and TJ are constrained to a maximum of +105 °C and +125 °C respectively.  
5. In both Buck and Boost modes, LN and LP are connected to external inductor. In boost mode, LP is also shorted to  
VDCDC_IN.  
Table 48. DC-DC Converter Specifications  
Characteristics  
Conditions  
Symbol  
Min  
Typ  
Max  
Unit  
DC-DC Converter Output  
Power  
Total power  
output of 1P8V  
and 1P5V  
Pdcdc_out  
1251  
mW  
Switching Frequency2  
Half FET Threshold  
Double FET Threshold  
Boost Mode  
DCDC_FREQ  
I_half_FET  
2
5
MHz  
mA  
I_double_FET  
40  
mA  
EN_THRESH_b  
oost  
Enable Threshold  
-
50  
-
mV  
DCDC_EFF_bo  
ost  
DC-DC Conversion Efficiency  
1.8 V Output Voltage  
-
90 %  
1.83  
-
VDD_1P8_boos  
t
1.71  
3.5  
Vdc  
Table continues on the next page...  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
73  
NXP Semiconductors  
MCU Electrical Characteristics  
Table 48. DC-DC Converter Specifications (continued)  
Characteristics  
Conditions  
Symbol  
Min  
Typ  
Max  
Unit  
VDD_1P8 = 1.8 IDD_1P8_boost  
45  
mA  
V, VDCDC_IN =  
1.7 V  
1
VDD_1P8 = 3.0 IDD_1P8_boost  
27  
20  
10  
mA  
mA  
mA  
V, VDCDC_IN =  
1.7 V  
2
1.8 V Output Current4, 5  
VDD_1P8 = 1.8 IDD_1P8_boost  
V, VDCDC_IN =  
0.9 V  
3
VDD_1P8 = 3.0 IDD_1P8_boost  
V, VDCDC_IN =  
0.9 V  
4
VDD_1P5_boos 1.4256, 7  
t
1.86, 7  
2.0  
30  
Vdc  
mA  
us  
1.5V Output Voltage  
VDD_1P5_boos  
t
1.5 V Output Current4, 8  
DCDC Transition Operating LSSRun  
t_DCDCboost_L  
50  
Behavior  
S SRUN  
DCDC Turn on Time  
TDCDC_ON_boost  
2.39  
ms  
ms  
DCDC Settling Time for  
increasing voltage  
TDCDC_SETTLE_bo  
0.271  
ost  
C = capacitance TDCDC_SETTLE_bo  
(C*(V1-V2)/I2  
s
attached to the  
DCDC V1P8  
output rail.  
ost  
V1 = the initial  
output voltage of  
the DCDC.  
DCDC Settling Time for  
decreasing voltage  
V2 = the final  
output voltage of  
the DCDC.  
I2 = the load on  
the DCDC output  
expressed in  
Amperes.  
Buck Mode  
DC-DC Conversion Efficiency  
DCDC_EFF_bu  
ck  
90 %  
VDD_1P8_buck  
1.71  
min(VDCDC Vdc  
_IN_buck,  
1.8 V Output Voltage  
3.5)10, 3  
VDD_1P8 = 1.8 IDD_1P8_buck1  
45  
mA  
1.8 V Output Current4, 5 V, VDC_1P5 =  
1.5 V  
Table continues on the next page...  
74  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
NXP Semiconductors  
MCU Electrical Characteristics  
Table 48. DC-DC Converter Specifications (continued)  
Characteristics  
Conditions  
Symbol  
Min  
Typ  
Max  
Unit  
VDD_1P8 = 3.0 IDD_1P8_buck2  
27  
mA  
V, VDC_1P5 =  
1.5 V  
Radio section  
requires 1.5 V  
VDD_1P5_buck 1.42511  
1.511  
1.65  
Vdc  
1.5 V Output Voltage  
1.5 V Output Current4, 8  
IDD_1P5_buck  
30  
mA  
us  
DCDC Transition Operating LSSRun  
t_DCDCbuck_L  
50  
Behavior  
S SRUN  
DCDC Turn on Time  
TDCDC_ON_buck  
2.29  
ms  
ms  
DCDC Settling Time for  
increasing voltage  
TDCDC_SETTLE_bu  
0.371  
ck  
C = capacitance TDCDC_SETTLE_bu  
(C*(V1-V2)/I2  
s
attached to the  
DCDC V1P8  
output rail.  
ck  
V1 = the initial  
output voltage of  
the DCDC  
DCDC Settling Time for  
decreasing voltage  
V2 = the final  
output voltage of  
the DCDC  
I2 = the load on  
the DCDC output  
expressed in  
Amperes.  
1. This is the steady state DC output power. It requires VDCDC_IN >= 1.7V in boost mode. Excessive transient current  
load from external device will cause 1p8V and 1P5 output voltage unregulated temporary.  
2. This is the frequency that will be observed at LN and LP pins.  
3. The voltage output level can be controlled by programming DCDC_VDD1P8CTRL_TRG field in DCDC_REG3.  
4. The output current specification in both buck and boost modes represents the maximum current the DC-DC converter  
can deliver. The KW41Z radio and MCU blocks current consumption is not excluded. Note that the maxium output  
power of the DC-DC converter is 125mW. The available supply current for external device depends on the energy  
consumed by the internal peripherals in KW41Z.  
5. When using DC-DC in low power mode(pulsed mode), current load must be less than 0.5 mA.  
6. The minimum VDD_1P5_boost is the maximum of either what is programmed using  
DCDC_VDD1P5CTRL_TRG_BOOST field in DCDC_REG3 or VDCDC_IN_boost + 0.05V. For example, if VDCDC_IN  
= 0.9V, minimum VDD_1P5 is as programmed in DCDC_VDD1P5CTRL_ TRG_BOOST. If VDCDC_IN = 1.5V,  
minimum VDD_1P5 = 1.5 + 0.05V is 1.55V.  
7. 1.8 V is the default value of the DC-DC 1.5 V output voltage in boost mode. The user can program  
DCDC_VDD1P5CTRL_TRG_BOOST field in register DCDC_REG3 to control 1.5 V output voltage level. For reliable  
radio operation, a voltage level of 1.425 V is required. VDD_1P5 must not be programmed higher than VDD_1P8.  
8. 1.5 V is intended to supply power to KW41Z only. It is not designed to supply power to an external device.  
9. Turn on time is measured from the application of power (to DCDC_IN) to when the  
DCDC_REG0[DCDC_STS_DC_OK] bit is set. Code execution may begin before the  
DCDC_REG0[DCDC_STS_DC_OK] bit is set. Full device specification is not guaranteed until the bit sets.  
10. In Buck mode, the maximum VDD_1P8 output is the minimum of either VDCDC_IN_BUCK minus 50 mV or 3.5 V. For  
example, if VDCDC_IN = 1.85V, maximum VDD_1P8 is 1.8V. If VDCDC_IN = 4.2V, maximum VDD_1P8 is 3V.  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
75  
NXP Semiconductors  
MCU Electrical Characteristics  
11. 1.5 V is the default value of DCDC VDD_1P5 in buck mode. The user can program DCDC_VDD1P5CTRL_TRG_BUCK  
field in register DCDC_REG3 to control 1P5 output voltage level. For Radio operation, minimum 1.425 V is required.  
VDD_1P5 must not be programmed higher than VDD_1P8.  
7.7 Ratings  
7.7.1 Thermal handling ratings  
Table 49. Thermal handling ratings  
Symbol  
TSTG  
Description  
Min.  
–55  
Max.  
150  
Unit  
°C  
Notes  
Storage temperature  
Solder temperature, lead-free  
1
2
TSDR  
260  
°C  
1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.  
2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
7.7.2 Moisture handling ratings  
Table 50. Moisture handling ratings  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
MSL  
Moisture sensitivity level  
3
1
1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
7.7.3 ESD handling ratings  
Table 51. ESD handling ratings  
Symbol  
VHBM  
Description  
Min.  
–2000  
–500  
Max.  
+2000  
+500  
Unit  
V
Notes  
Electrostatic discharge voltage, human body model  
1
2
VCDM  
Electrostatic discharge voltage, charged-device  
model  
V
ILAT  
Latch-up current at ambient temperature of 105 °C  
–100  
+100  
mA  
3
1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human  
Body Model (HBM).  
2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for  
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.  
3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.  
76  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
NXP Semiconductors  
Pin Diagrams and Pin Assignments  
7.7.4 Voltage and current operating ratings  
Table 52. Voltage and current operating ratings  
Symbol  
VDD  
IDD  
Description  
Min.  
–0.3  
Max.  
3.8  
Unit  
V
Digital supply voltage  
Digital supply current  
IO pin input voltage  
120  
mA  
V
VIO  
–0.3  
–25  
VDD + 0.3  
25  
ID  
Instantaneous maximum current single pin limit (applies to  
all port pins)  
mA  
VDDA  
Analog supply voltage  
VDD – 0.3  
GND  
VDD + 0.3  
VDCDC  
V
V
VIO_DCDC  
IO pins in the DCDC voltage domain (DCDC_CFG and  
PSWITCH)  
8 Pin Diagrams and Pin Assignments  
8.1 Pinouts  
Device pinout are shown in figures below.  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
77  
NXP Semiconductors  
Pin Diagrams and Pin Assignments  
PTA0  
PTA1  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
VDD_RF1  
VDD_RF2  
GANT  
2
PTA2  
3
61  
57  
53  
49  
62  
58  
54  
50  
63  
59  
55  
51  
64  
60  
56  
52  
PTA16  
4
ANT  
PTA17  
5
VDD_RF3  
XTAL  
PTA18  
6
PTA19  
7
EXTAL  
PSWITCH  
DCDC_CFG  
VDCDC_IN  
DCDC_LP  
DCDC_LN  
8
XTAL_OUT  
VDDA  
9
10  
11  
12  
VREFH/VREF_OUT  
VSSA  
ADC0_DM0  
*pin 49 - 64 are ground  
Figure 18. 48-pin Laminate QFN pinout diagram  
78  
NXP Semiconductors  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
Pin Diagrams and Pin Assignments  
1
2
3
4
VSS  
5
6
7
8
9
A
B
C
D
E
F
PTC3  
VSS  
PTC4  
PTC2  
PTC1  
VSS  
PTC7  
PTC6  
PTC5  
VDD_1  
PTA16  
VSS  
PTC16  
PTC17  
PTC19  
PTA0  
PTC18  
PTA1  
GANT  
XTAL  
ANT  
VDD_RF3  
VSS  
VDD_RF2  
VSS  
VDD_RF1  
VSS  
PTC0  
VSS  
PTA2  
EXTAL  
VSS  
VSS  
PTA17  
PTA19  
PSWITCH  
XTAL_OUT  
VDDA  
VSS  
VSS  
VSS  
VSS  
VDD_1  
VSS  
PTA18  
VREFH_VREF  
OUT  
PTB18  
VSS  
VSS  
VSS  
DCDC_CFG  
G
H
J
VSSA  
VSSA  
VSS  
VSS  
PTB3  
VSS  
PTB2  
PTB1  
PTB0  
VDD_1P8OUT DCDC_GND VDCDC_IN  
VDD_1P5_P  
ADC0_DM0  
ADC0_DP0  
PTB17  
PTB16  
DCDC_LN  
DCDC_LP  
MCIN  
VDD_1P5_C  
AP  
VSS  
VDD_0  
VSS  
= No Ball  
Figure 19. KW41 75-pin WLCSP Pinout Diagram  
8.2 Signal Multiplexing and Pin Assignments  
The following table shows the signals available on each pin and locations of these  
pins on the packages supported by this device. The Port Control Module is responsible  
for selecting which ALT functional is available on each PTxy pin.  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
79  
NXP Semiconductors  
Pin Diagrams and Pin Assignments  
NOTE  
On the 75 WLCSP, VDD_1P5_CAP and VDD_1P5_PMCIN  
should be tied together external to the device.  
Table 53. KW41Z Pin Assignments  
KW41  
Z(48 (WLCSP  
KW41  
Pin  
Name  
DEFAUL  
T
ALT0  
ALT1  
ALT2 ALT3 ALT4 ALT AL ALT7  
5
T6  
LGA /  
Lamin  
ate  
)
QFN)  
1
D8  
B9  
C9  
E7  
D9  
E8  
E9  
PTA0  
SWD_DIO TSIO_CH8  
PTA0  
SPI0_P  
CS1  
TPM  
1_CH  
0
SWD_  
DIO  
2
3
4
5
6
7
PTA1  
SWD_CL TSI0_CH9  
K
PTA1  
PTA2  
SPI1_P  
CS0  
TPM  
1_CH  
1
SWD_  
CLK  
PTA2  
RESET_b  
TPM  
0_CH  
3
RESE  
T_b  
PTA16  
PTA17  
PTA18  
PTA19  
DISABLE TSI0_CH10  
D
PTA16/  
LLWU_P4  
SPI1_S  
OUT  
TPM  
0_CH  
0
DISABLE TSI0_CH11  
D
PTA17/  
LLWU_P5/  
RF_RESET  
SPI1_SI  
N
TPM  
_CLK  
IN1  
DISABLE TSI0_CH12  
D
PTA18/  
LLWU_P6  
SPI1_S  
CK  
TPM  
2_CH  
0
DISABLE TSI0_CH13/  
PTA19/  
LLWU_P7  
SPI1_P  
CS0  
TPM  
2_CH  
1
D
ADC0_SE5  
8
9
F9  
F8  
PSWITCH PSWITCH PSWITCH  
DCDC_C DCDC_CF DCDC_CFG  
FG  
G
10  
11  
12  
13  
14  
15  
G9  
H9  
H8  
G8  
G7  
VDCDC_I VDCDC_I VDCDC_IN  
N
N
DCDC_L DCDC_LP DCDC_LP  
P
DCDC_L DCDC_LN DCDC_LN  
N
DCDC_G DCDC_G DCDC_GND  
ND  
VDD_1P8 VDD_1P8 VDD_1P8OUT  
OUT OUT  
ND  
VDD_1P5 VDD_1P5 VDD_1P5OUT_  
OUT_PM OUT_PM PMCIN  
CIN  
CIN  
Table continues on the next page...  
80  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
NXP Semiconductors  
Pin Diagrams and Pin Assignments  
Table 53. KW41Z Pin Assignments (continued)  
KW41  
Z(48 (WLCSP  
KW41  
Pin  
Name  
DEFAUL  
T
ALT0  
ALT1  
ALT2 ALT3 ALT4 ALT AL ALT7  
5
T6  
LGA /  
Lamin  
ate  
)
QFN)  
J8  
H7  
J6  
VDD_1P5 VDD_1P5 VDD_1P5_CAP  
_CAP _CAP  
VDD_1P5 VDD_1P5 VDD_1P5_PM  
_PMCIN _PMCIN CIN  
16  
PTB0  
DISABLE  
D
PTB0/  
I2C0_ CMP0_ TPM  
CLKO  
UT  
LLWU_P8/  
XTAL_OUT_E  
N
SCL OUT  
0_CH  
1
17  
18  
19  
H6  
G6  
G5  
PTB1  
PTB2  
PTB3  
DISABLE ADC0_SE1/  
CMP0_IN5  
PTB1  
PTB2  
PTB3  
DTM_R I2C0_ LPTM TPM  
CMT_I  
RO  
D
X
SDA R0_AL 0_CH  
T1  
2
DISABLE ADC0_SE3/  
CMP0_IN3  
RF_NO DTM_  
T_ALLO TX  
WED  
TPM  
1_CH  
0
D
DISABLE ADC0_SE2/  
CLKO TPM  
RTC_  
CLKO  
UT  
D
CMP0_IN4  
UT  
1_CH  
1
20  
21  
J5  
VDD_0  
PTB16  
VDD_0  
VDD_0  
H4  
EXTAL32 EXTAL32K  
K
PTB16  
PTB17  
PTB18  
I2C1_  
SCL  
TPM  
2_CH  
0
22  
23  
24  
H3  
F3  
J1  
PTB17  
PTB18  
XTAL32K XTAL32K  
I2C1_  
SDA  
TPM  
2_CH  
1
BSM_  
CLK  
NMI_b  
DAC0_OUT/  
ADC0_SE4/  
CMP0_IN2  
I2C1_ TPM_ TPM  
SCL CLKIN 0_CH  
NMI_b  
0
0
ADC0_DP ADC0_DP ADC0_DP0/  
0
0/  
CMP0_IN0  
CMP0_IN  
0
25  
H1  
ADC0_D ADC0_DM ADC0_DM0/  
M0  
0/  
CMP0_IN1  
CMP0_IN  
1
26  
27  
G1, G2  
F2  
VSSA  
VSSA  
VSSA  
VREFH/ VREFH/  
VREFH/  
VREF_O VREF_OU VREF_OUT  
UT  
T
28  
29  
F1  
E1  
VDDA  
VDDA  
VDDA  
XTAL_OU XTAL_OU XTAL_OUT  
T
T
Table continues on the next page...  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
81  
NXP Semiconductors  
Pin Diagrams and Pin Assignments  
Table 53. KW41Z Pin Assignments (continued)  
KW41  
Z(48 (WLCSP  
KW41  
Pin  
Name  
DEFAUL  
T
ALT0  
ALT1  
ALT2 ALT3 ALT4 ALT AL ALT7  
5
T6  
LGA /  
Lamin  
ate  
)
QFN)  
30  
31  
32  
33  
34  
35  
36  
D1  
C1  
C2  
B2  
B1  
B3  
B4  
C5  
EXTAL  
XTAL  
EXTAL  
XTAL  
EXTAL  
XTAL  
VDD_RF3 VDD_RF3 VDD_RF3  
ANT  
ANT  
ANT  
GANT  
GANT  
GANT  
VDD_RF2 VDD_RF2 VDD_RF2  
VDD_RF1 VDD_RF1 VDD_RF1  
PTC0  
DISABLE  
D
PTC0/  
LLWU_P9  
ANT_A I2C0_ LPUAR TPM  
SCL T0_CT 0_CH  
S_b  
1
37  
C6  
PTC1  
DISABLE  
D
PTC1  
ANT_B I2C0_ LPUAR TPM  
SDA T0_RT 0_CH  
BLE_  
RF_A  
CTIVE  
S_b  
TX_SWI I2C1_ LPUAR CMT  
TCH SCL T0_RX _IRO  
RX_SWI I2C1_ LPUAR TPM  
2
38  
39  
B6  
A5  
PTC2  
PTC3  
DISABLE TSI0_CH14/  
PTC2/  
LLWU_P10  
DTM_  
RX  
D
DIAG1  
DISABLE TSI0_CH15/  
DIAG2  
PTC3/  
LLWU_P11  
DTM_  
TX  
D
TCH  
SDA T0_TX 0_CH  
1
40  
41  
42  
A6  
C7  
B7  
PTC4  
PTC5  
PTC6  
DISABLE TSI0_CH0/  
DIAG3  
PTC4/  
LLWU_P12  
ANT_A EXTR LPUAR TPM  
G_IN T0_CT 1_CH  
BSM_  
DATA  
D
S_b  
0
DISABLE TSI0_CH1/  
DIAG4  
PTC5/  
LLWU_P13  
RF_NO LPTM LPUAR TPM  
T_ALLO R0_A T0_RT 1_CH  
BSM_  
CLK  
D
WED  
LT2  
S_b  
1
DISABLE TSI0_CH2  
D
PTC6/  
I2C1_ LPUAR TPM  
SCL T0_RX 2_CH  
0
BSM_  
FRAM  
E
LLWU_P14/  
XTAL_OUT_E  
N
43  
A7  
PTC7  
DISABLE TSI0_CH3  
D
PTC7/  
LLWU_P15  
SPI0_P I2C1_ LPUAR TPM  
BSM_  
DATA  
CS2  
SDA T0_TX 2_CH  
1
44  
45  
E6, D7  
A8  
VDD_1  
PTC16  
VDD_1  
VDD_1  
DISABLE TSI0_CH4  
D
PTC16/  
LLWU_P0  
SPI0_S I2C0_ LPUAR TPM  
CK SDA T0_RT 0_CH  
S_b  
3
46  
47  
B8  
A9  
PTC17  
PTC18  
DISABLE TSI0_CH5  
D
PTC17/  
LLWU_P1  
SPI0_S I2C1_ LPUAR BSM  
DTM_  
RX  
OUT  
SCL T0_RX _FRA  
ME  
DISABLE TSI0_CH6  
D
PTC18/  
LLWU_P2  
SPI0_SI I2C1_ LPUAR BSM  
DTM_  
TX  
N
SDA T0_TX _DAT  
A
Table continues on the next page...  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
82  
NXP Semiconductors  
Pin Diagrams and Pin Assignments  
Table 53. KW41Z Pin Assignments (continued)  
KW41  
Z(48 (WLCSP  
KW41  
Pin  
Name  
DEFAUL  
T
ALT0  
ALT1  
ALT2 ALT3 ALT4 ALT AL ALT7  
5
T6  
LGA /  
Lamin  
ate  
)
QFN)  
48  
C8  
PTC19  
Ground  
DISABLE TSI0_CH7  
D
PTC19/  
LLWU_P3  
SPI0_P I2C0_ LPUAR BSM  
BLE_  
RF_A  
CTIVE  
CS0  
SCL T0_CT _CLK  
S_b  
49-64 A4, B5,  
C3, C4,  
D2, D3,  
D4, D5,  
D6, E2,  
E3, E4,  
E5, F4,  
F5, F6,  
F7, G3,  
G4, H2,  
H5, J2,  
J7  
NA  
8.3 Module Signal Description Tables  
The following sections correlate the chip-level signal name with the signal name used  
in the module's chapter. They also briefly describe the signal function and direction.  
8.3.1 Core Modules  
This section contains tables describing the core module signal descriptions.  
Table 54. SWD Module Signal Descriptions  
SoC Signal Name  
SWD_DIO  
Module Signal Name  
SWD_DIO  
Description  
I/O  
Serial Wire Debug Data  
Input/Output1  
Serial Wire Clock2  
I/O  
I
SWD_CLK  
SWD_CLK  
1. Pulled up internally by default  
2. Pulled down internally by default  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
83  
NXP Semiconductors  
Pin Diagrams and Pin Assignments  
8.3.2 Radio Modules  
This section contains tables describing the radio signals.  
Table 55. Radio Module Signal Descriptions  
SoC Signal Name  
Module Signal Name  
ANT  
Description  
I/O  
ANT  
Antenna  
O
I
GANT  
GANT  
Antenna ground  
BLE_RF_ACTIVE  
BLE_RF_ACTIVE  
Signal to indicate future BLE  
activity. Refer BLE Link Layer  
for more details.  
O
RF_NOT_ALLOWED  
RF_NOT_ALLOWED  
Radio off signal, intended for  
WiFi coexistence control  
I
RF_RESET  
DTM_RX  
DTM_TX  
RF_RESET  
DTM_RX  
DTM_TX  
Radio reset signal  
I
Direct Test Mode Receive  
Direct Test Mode Transmit  
I
O
O
BSM_CLK  
BSM_CLK  
Bit Streaming Mode (BSM)  
Clock signal, 802.15.4 packet  
data stream clock line  
BSM_FRAME  
BSM_DATA  
BSM_FRAME  
BSM_DATA  
Bit Streaming Mode Frame  
signal, 802.15.4 packet data  
stream frame line  
O
Bit Streaming Mode Data  
signal, 802.15.4 packet data  
stream data line  
I/O  
ANT_A  
ANT_A  
Antenna selection A for Front O  
End Module support  
ANT_B  
ANT_B  
Antenna selection B for Front O  
End Module support  
TX_SWITCH  
RX_SWITCH  
TX_SWITCH  
RX_SWITCH  
Front End Module Transmit  
mode signal  
O
Front End Module Receive  
mode signal  
O
8.3.3 System Modules  
This section contains tables describing the system signals.  
Table 56. System Module Signal Descriptions  
SoC Signal Name  
NMI_b  
Module Signal Name  
Description  
Non-maskable interrupt  
Reset bidirectional signal  
Power supply  
I/O  
I
RESET_b  
VDD_[1:0]  
I/O  
I
VDD  
Table continues on the next page...  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
84  
NXP Semiconductors  
Pin Diagrams and Pin Assignments  
Table 56. System Module Signal Descriptions (continued)  
SoC Signal Name  
Ground  
Module Signal Name  
VSS  
Description  
I/O  
Ground  
I
VDD_RF[3:1]  
VDCDC_IN  
VDD_RF  
Radio power supply  
VDCDC_IN  
I
VDCDC_IN  
VDD_1P8  
I
VDD_1P8OUT  
DCDC 1.8 V Regulated  
Output / Input in bypass  
I/O  
VDD_1P5OUT_PMCIN  
VDD_1P5_CAP1  
VDD_1P5/VDD_PMC  
VDD_1P5  
DCDC 1.5 V Regulated  
Output / PMC Input in bypass  
(LQFN only)  
I/O  
DCDC 1.5V Regulated output O  
(WLCSP Only)  
VDD_1P5_PMCIN1  
PSWITCH  
VDD_PMC  
PSWITCH  
DCDC_CFG  
DCDC_LP  
DCDC_LN  
DCDC_GND  
PMC Input (WLCSP Only)  
DCDC enable switch  
I
I
I
DCDC_CFG  
DCDC_LP  
DCDC switch mode select  
DCDC inductor input positive I/O  
DCDC inductor input negative I/O  
DCDC_LN  
DCDC_GND  
DCDC ground  
I
1. VDD_1P5_CAP and VDD_1P5_PMCIN should always be connected together via PCB trace. System designers  
should take care to ensure this connection is as short as possible.  
Table 57. LLWU Module Signal Descriptions  
SoC Signal Name  
LLWU_P[15:0]  
Module Signal Name  
LLWU_P[15:0]  
Description  
Wakeup inputs  
I/O  
I
8.3.4 Clock Modules  
This section contains tables for Clock signal descriptions.  
Table 58. Clock Module Signal Descriptions  
SoC Signal Name  
EXTAL  
Module Signal Name  
EXTAL  
Description  
I/O  
26 MHz/32 MHz External  
clock/Oscillator input  
I
XTAL  
XTAL  
26 MHz/32 MHz Oscillator  
input  
I
XTAL_OUT  
XTAL_OUT_EN  
XTAL_OUT  
26 MHz/32 MHz Clock  
output  
O
I
XTAL_OUT_ENABLE  
26 MHz/32 MHz Clock  
output enable for XTAL_OUT  
Table continues on the next page...  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
85  
NXP Semiconductors  
Pin Diagrams and Pin Assignments  
Table 58. Clock Module Signal Descriptions (continued)  
SoC Signal Name  
EXTAL32K  
Module Signal Name  
EXTAL32K  
Description  
I/O  
32 kHz External clock/  
Oscillator input  
I
XTAL32K  
CLKOUT  
XTAL32K  
CLKOUT  
32 kHz Oscillator input  
Internal clocks monitor  
I
O
8.3.5 Analog Modules  
This section contains tables for Analog signal descriptions.  
Table 59. ADC0 Signal Descriptions  
SoC Signal Name  
ADC0_DM0  
Module Signal Name  
DADM0  
Description  
I/O  
ADC Channel 0 Differential  
Input Negative  
I
ADC0_DP0  
ADC0_SE[5:1]  
VREFH  
DADP0  
AD[5:1]  
VREFSH  
ADC Channel 0 Differential  
Input Positive  
I
ADC Channel 0 Single-ended I  
Input n  
Voltage Reference Select  
High  
I
VDDA  
VSSA  
VDDA  
VSSA  
Analog Power Supply  
Analog Ground  
I
I
Table 60. CMP0 Signal Descriptions  
SoC Signal Name  
Module Signal Name  
IN[5:0]  
CMP0  
Description  
Analog voltage inputs  
Comparator output  
I/O  
CMP0_IN[5:0]  
CMP0_OUT  
I
O
Table 61. DAC0 Signal Descriptions  
SoC Signal Name  
DAC0_OUT  
Module Signal Name  
VOUT  
Description  
DAC output  
I/O  
I/O  
O
O
Table 62. VREF Signal Descriptions  
SoC Signal Name  
Module Signal Name  
VREF_OUT  
Description  
VREF_OUT  
Internally generated voltage  
reference output  
86  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
NXP Semiconductors  
Pin Diagrams and Pin Assignments  
8.3.6 Timer Modules  
This section contains tables describing timer module signals.  
Table 63. TPM0 Module Signal Descriptions  
SoC Signal Name  
TPM_CLKIN[1:0]  
TPM0_CH[3:0]  
Module Signal Name  
TPM_EXTCLK  
TPM_CH[3:0]  
Description  
External clock  
TPM channel  
I/O  
I/O  
I/O  
I
I/O  
Table 64. TPM1 Module Signal Descriptions  
SoC Signal Name  
Module Signal Name  
TPM_EXTCLK  
TPM_CH[1:0]  
Description  
External clock  
TPM channel  
TPM_CLKIN[1:0]  
TPM1_CH[1:0]  
I
I/O  
Table 65. TPM2 Module Signal Descriptions  
SoC Signal Name  
Module Signal Name  
TPM_EXTCLK  
TPM_CH[1:0]  
Description  
External clock  
TPM channel  
TPM_CLKIN[1:0]  
TPM2_CH[1:0]  
I
I/O  
Table 66. LPTMR0 Module Signal Descriptions  
SoC Signal Name  
LPTMR0_ALT[2:1]  
Module Signal Name  
Description  
I/O  
I/O  
LPTMR0_ALT[2:1]  
Pulse counter input pin  
I
Table 67. RTC Module Signal Descriptions  
SoC Signal Name  
RTC_CLKOUT  
Module Signal Name  
RTC_CLKOUT  
Description  
1 Hz square-wave output  
O
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
87  
NXP Semiconductors  
Pin Diagrams and Pin Assignments  
8.3.7 Communication Interfaces  
This section contains tables for the signal descriptions for the communication modules.  
Table 68. SPI0 Module Signal Descriptions  
SoC Signal Name  
SPI0_PCS0  
Module Signal Name  
PCS0/SS  
Description  
Chip Select/Slave Select  
Chip Select  
I/O  
I/O  
O
SPI0_PCS[2:1]  
SPI0_SCK  
PCS[2:1]  
SCK  
Serial Clock  
I/O  
I
SPI0_SIN  
SIN  
Data In  
SPI0_SOUT  
SOUT  
Data Out  
O
Table 69. SPI1 Module Signal Descriptions  
SoC Signal Name  
Module Signal Name  
SPI1_PCS0  
Description  
Chip Select/Slave Select  
Serial Clock  
I/O  
SPI1_PCS0  
SPI1_SCK  
SPI1_SIN  
I/O  
I/O  
I
SCK  
SIN  
Data In  
SPI1_SOUT  
SOUT  
Data Out  
O
Table 70. I2C0 Module Signal Descriptions  
SoC Signal Name  
Module Signal Name  
SCL  
SDA  
Description  
I2C serial clock line  
I2C serial data line  
I/O  
I/O  
I/O  
I2C0_SCL  
I2C0_SDA  
I/O  
I/O  
Table 71. I2C1 Module Signal Descriptions  
SoC Signal Name  
Module Signal Name  
SCL  
SDA  
Description  
I2C serial clock line  
I2C serial data line  
I2C1_SCL  
I2C1_SDA  
I/O  
I/O  
Table 72. LPUART0 Module Signal Descriptions  
SoC Signal Name  
Module Signal Name  
LPUART CTS  
Description  
Clear To Send  
LPUART0_CTS_b  
LPUART0_RTS_b  
LPUART0_RX  
I
LPUART RTS  
LPUART RxD  
LPUART TxD  
Request To Send  
Receive Data  
Transmit Data1  
O
I
LPUART0_TX  
I/O  
1. This pin is normally an output, but is an input (tristated) in single wire mode whenever the transmitter is disabled or  
transmit direction is configured for receive data  
88  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
NXP Semiconductors  
Package Information  
8.3.8 Human-Machine Interfaces(HMI)  
This section contains tables describing the HMI signals.  
Table 73. GPIO Module Signal Descriptions  
SoC Signal Name  
PTA[19:16][2:0]  
Module Signal Name  
Description  
I/O  
PORTA19-16, 2-0  
General Purpose Input/  
Output  
I/O  
I/O  
I/O  
PTB[18:16][3:0]  
PTC[19:16][7:1]  
PORTB18-16, 3-0  
PORTC19-16, 7-1  
General Purpose Input/  
Output  
General Purpose Input/  
Output  
Table 74. TSI0 Module Signal Descriptions  
SoC Signal Name  
TSI0_CH[15:0]  
Module Signal Name  
TSI[15:0]  
Description  
I/O  
Touch Sensing Input  
capacitive pins  
I/O  
9 Package Information  
9.1 Obtaining package dimensions  
Package dimensions are provided in package drawings.  
To find a package drawing, go to nxp.com and perform a keyword search for the  
drawing’s document number:  
Table 75. Packaging Dimensions  
If you want the drawing for this package  
48-pin Laminate QFN (7x7)  
Then use this document number  
98ASA00694D  
98ASA00956D  
75-pin WLCSP (3.893x3.797)  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
89  
NXP Semiconductors  
Revision History  
10 Revision History  
Table 76. MKW41Z Revision History  
Rev. No.  
Date  
Substantial Changes  
4
03/2018  
• Added Zigbee 3.0 in supported  
standards  
• Updated Flash memory protection  
features  
• Updated Table 12 Voltage and  
current operating behaviors  
footnotes  
• Corrected Table 21 typos  
• Updated Table 26 Reference  
crystal specifications verbiage  
• Updated Temperature sensor  
slow information (Table 33 16-bit  
ADC characteristics)  
• Updated DCDC converter  
operating requirements and  
specifications  
• Added DCDC pin voltage  
operating range to Table 52.  
Voltage and current operating  
ratings  
Rev 3  
Rev 2  
Rev 1  
07/2017  
07/2017  
10/2016  
Added "32 kHz oscillator frequency  
specifications" table in Clock Modules  
section.  
• Added WLCSP package details  
• Updated "DC-DC Converter  
Specifications" table  
Initial Release  
90  
MKW41Z/31Z/21Z Data Sheet, Rev. 4, 03/2018  
NXP Semiconductors  
How to Reach Us:  
Information in this document is provided solely to enable system and software  
implementers to use NXP products. There are no express or implied copyright  
licenses granted hereunder to design or fabricate any integrated circuits based  
on the information in this document. NXP reserves the right to make changes  
without further notice to any products herein.  
Home Page:  
nxp.com  
Web Support:  
nxp.com/support  
NXP makes no warranty, representation, or guarantee regarding the suitability of  
its products for any particular purpose, nor does NXP assume any liability arising  
out of the application or use of any product or circuit, and specifically disclaims  
any and all liability, including without limitation consequential or incidental  
damages. “Typical” parameters that may be provided in NXP data sheets and/or  
specifications can and do vary in different applications, and actual performance  
may vary over time. All operating parameters, including “typicals” must be  
validated for each customer application by customer‚ customer's technical  
experts. NXP does not convey any license under its patent rights nor the rights of  
others. NXP sells products pursuant to standard terms and conditions of sale,  
which can be found at the following address: nxp.com/  
SalesTermsandConditions.  
NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER  
WORLD, Freescale, the Freescale logo, and Kinetis are trademarks of NXP B.V.  
All other product or service names are the property of their respective owners.  
Arm, the Arm Powered logo, and Cortex are registered trademarks of Arm  
Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved.  
© 2016-2018 NXP B.V.  
Document Number MKW41Z512  
Revision 4, 03/2018  

相关型号:

MKW31Z512VHT4

Microprocessor Circuit
NXP

MKW3267

DC/DC CONVERTER 15W 2”x 1”x 0.4” Metal Package
MINMAX

MKW35A

An ultra low power, highly integrated Bluetooth® Low Energy 5.0 wireless microcontroller
NXP

MKW35A512VFP4

An ultra low power, highly integrated Bluetooth® Low Energy 5.0 wireless microcontroller
NXP

MKW35A512VFT4

An ultra low power, highly integrated Bluetooth® Low Energy 5.0 wireless microcontroller
NXP

MKW36A

An ultra low power, highly integrated Bluetooth® Low Energy 5.0 wireless microcontroller
NXP

MKW36A512

An ultra low power, highly integrated Bluetooth® Low Energy 5.0 wireless microcontroller
NXP

MKW36A512VFP4

An ultra low power, highly integrated Bluetooth® Low Energy 5.0 wireless microcontroller
NXP

MKW36A512VFT4

An ultra low power, highly integrated Bluetooth® Low Energy 5.0 wireless microcontroller
NXP

MKW36A512VFT4R

RISC Microcontroller
NXP

MKW36A512VHT4

An ultra low power, highly integrated Bluetooth® Low Energy 5.0 wireless microcontroller
NXP

MKW36Z512

An ultra low power, highly integrated Bluetooth® Low Energy 5.0 wireless microcontroller
NXP