MMPF0100NPEP [NXP]

Power Management IC, i.MX6, no-prog ,4/6 buck, 6 LDO, 1 boost, QFN 56, Tray;
MMPF0100NPEP
型号: MMPF0100NPEP
厂家: NXP    NXP
描述:

Power Management IC, i.MX6, no-prog ,4/6 buck, 6 LDO, 1 boost, QFN 56, Tray

文件: 总149页 (文件大小:1358K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document order number: MMPF0100  
Rev. 8.0, 6/2014  
Freescale Semiconductor  
Advance Information  
14 Channel Configurable Power  
Management Integrated Circuit  
PF0100  
The PF0100 SMARTMOS Power Management Integrated Circuit  
(PMIC) provides a highly programmable/ configurable architecture,  
with fully integrated power devices and minimal external components.  
With up to six buck converters, six linear regulators, RTC supply, and  
coin-cell charger, the PF0100 can provide power for a complete  
system, including applications processors, memory, and system  
peripherals, in a wide range of applications. With on-chip One Time  
Programmable (OTP) memory, the PF0100 is available in pre-  
programmed standard versions, or non-programmed to support  
custom programming. The PF0100 is defined to power an entire  
embedded MCU platform solution such as i.MX6 based eReader,  
IPTV, medical monitoring, and home/factory automation.  
POWER MANAGEMENT  
EP SUFFIX (E-TYPE)  
ES SUFFIX (WF-TYPE)  
98ASA00589D  
98ASA00405D  
56 QFN 8X8  
56 QFN 8X8  
Applications:  
Features:  
• Tablets  
• Four to six buck converters, depending on configuration  
• IPTV  
• eReaders  
Single/Dual phase/ parallel options  
DDR termination tracking mode option  
• Set Top Boxes  
• Industrial control  
• Medical monitoring  
• Boost regulator to 5.0 V output  
• Six general purpose linear regulators  
• Programmable output voltage, sequence, and timing  
• OTP (One Time Programmable) memory for device configuration  
• Coin cell charger and RTC supply  
• Home automation/ alarm/ energy management  
• DDR termination reference voltage  
• Power control logic with processor interface and event detection  
• I2C control  
• Individually programmable ON, OFF, and Standby modes  
PF0100  
i.MX6X  
VREFDDR  
DDR MEMORY  
INTERFACE  
DDR Memory  
SW4  
1000 mA  
SW3A/B  
2500 mA  
SW1A/B  
2500 mA  
Processor Core  
Voltages  
SW1C  
2000 mA  
External AMP  
Microphones  
Speakers  
SW2  
2000 mA  
SATA - FLASH  
SD-MMC/  
NAND Mem.  
SATA  
HDD  
NAND  
- NOR  
SWBST  
600 mA  
Interfaces  
Audio  
Codec  
Parallel control/GPIOS  
I2C Communication  
Control Signals  
I2C Communication  
Sensors  
VGEN1  
100 mA  
Camera  
Camera  
VGEN2  
250 mA  
GPS  
MIPI  
uPCIe  
WAM  
GPS  
MIPI  
VGEN3  
100 mA  
VGEN4  
350 mA  
HDMI  
LDVS Display  
VGEN5  
100 mA  
USB  
Ethernet  
CAN  
LICELL  
Charger  
VGEN6  
200 mA  
Main Supply  
2.8 – 4.5 V  
COINCELL  
Front USB  
POD  
Rear Seat  
Infotaiment  
Rear USB  
POD  
Cluster/HUD  
Figure 1. Simplified Application Diagram  
* This document contains certain information on a new product.  
Specifications and information herein are subject to change without notice.  
© Freescale Semiconductor, Inc., 2012-2014. All rights reserved.  
Table of Contents  
1
2
3
Orderable Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Internal Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
3.1 Pinout Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
3.2 Pin Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
4.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
4.2 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
4.2.1 Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
4.3 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
4.3.1 General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
4.3.2 Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
5.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
5.2 Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
5.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
5.3.1 Power Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
5.3.2 Control Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Functional Block Requirements and Behaviors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
6.1 Start-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
6.1.1 Device Start-up Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
6.1.2 One Time Programmability (OTP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
6.1.3 OTP Prototyping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
6.1.4 Reading OTP Fuses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
6.1.5 Programming OTP Fuses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
6.2 16 MHz and 32 kHz Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
6.2.1 Clock adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
6.3 Bias and References Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
6.3.1 Internal Core Voltage References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
6.3.2 VREFDDR Voltage Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
6.4 Power Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
6.4.1 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
6.4.2 State Machine Flow Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
6.4.3 Power Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
6.4.4 Buck Regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
6.4.5 Boost Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
6.4.6 LDO Regulators Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
6.4.7 VSNVS LDO/Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
6.5 Control Interface I2C Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
6.5.1 I2C Device ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
6.5.2 I2C Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
6.5.3 Interrupt Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
6.5.4 Interrupt Bit Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
6.5.5 Specific Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
6.5.6 Register Bitmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121  
Typical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
7.1.1 Application Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
7.1.2 Bill of Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
4
5
6
7
PF0100  
Analog Integrated Circuit Device Data  
2
Freescale Semiconductor  
7.2 PF0100 Layout Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
7.2.1 General Board Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
7.2.2 Component Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
7.2.3 General Routing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  
7.2.4 Parallel Routing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
7.2.5 Switching Regulator Layout Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138  
7.3 Thermal Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
7.3.1 Rating Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
7.3.2 Estimation of Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139  
Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
8.1 Packaging Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  
Reference Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
9.1 Reference Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147  
8
9
10 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
3
Orderable Parts  
1
Orderable Parts  
The PF0100 is available with both pre-programmed and non-programmed OTP memory configurations. The non-programmed  
device uses “NP” as the programming code. The pre-programmed devices are identified using the program codes from Table 1,  
which also list the associated Freescale reference designs where applicable. Details of the OTP programming for each device  
can be found in Table 10.  
Table 1. Orderable Part Variations  
Qualification  
Temperature (T )  
Part Number  
Package  
Programming Reference Designs  
Notes  
A
Tier  
(2)(1)  
MMPF0100NPEP  
NP  
F0  
N/A  
MCIMX6Q-SDP  
MCIMX6Q-SDB  
MCIMX6DL-SDP  
(2)(1)  
MMPF0100F0EP  
56 QFN 8x8 mm - 0.5 mm pitch  
E-Type QFN (full lead)  
Consumer and  
Industrial  
(2)(1)(3)  
(2)(1)(3)  
(2)(1)  
-40 to 85 °C  
MMPF0100F1EP  
MMPF0100F2EP  
MMPF0100F3EP  
MMPF0100F4EP  
MMPF0100NPAEP  
F1  
F2  
F3  
F4  
NP  
MCIMX6SLEVK  
N/A  
N/A  
N/A  
N/A  
(2)(1)  
(2)(1)  
MCIMX6Q-SDP  
MCIMX6Q-SDB  
MCIMX6DL-SDP  
(2)(1)  
MMPF0100F0AEP  
F0  
56 QFN 8x8 mm - 0.5 mm pitch  
E-Type QFN (full lead)  
(2)(1)(3)  
(2)(1)(3)  
(2)(1)  
-40 to 85 °C  
Consumer  
MMPF0100F1AEP  
MMPF0100F2AEP  
MMPF0100F3AEP  
MMPF0100F4AEP  
MMPF0100NPANES  
F1  
F2  
F3  
F4  
NP  
MCIMX6SLEVK  
N/A  
N/A  
N/A  
N/A  
(2)(1)  
(2)(1)  
MCIMX6Q-SDP  
MCIMX6Q-SDB  
MCIMX6DL-SDP  
(2)(1)  
MMPF0100F0ANES  
F0  
56 QFN 8x8 mm - 0.5 mm pitch  
WF-Type QFN (wettable flank)  
Extended  
Industrial  
-40 to 105 °C  
(2)(1)  
(2)(1)  
MMPF0100F3ANES  
MMPF0100F4ANES  
Notes  
F3  
F4  
N/A  
N/A  
1. For Tape and Reel add an R2 suffix to the part number.  
2. For programming details see Table 10. The available OTP options are not restricted to the listed reference designs. They can be used  
in any application where the listed voltage and sequence details are acceptable.  
3. For designs using the i.MX6 Solo Lite, it is recommended to use the F3 OTP option instead of the F1 OTP option and F4 OTP option  
instead of the F2 OTP option  
PF0100  
Analog Integrated Circuit Device Data  
4
Freescale Semiconductor  
 
 
 
 
Orderable Parts  
PF0100 Version Differences  
1.1  
PF0100 Version Differences  
PF0100A is an improved version of the PF0100 Power Management IC. Table 2 summarizes the difference between the two  
versions and should be referred to when migrating from the PF0100 to the PF0100A. Note that programming options are the  
same for both versions of the device.  
Table 2. Differences between PF0100 and PF0100A  
Description  
PF0100  
PF0100A  
Reading SILICON REV register at address  
0x03 will return 0x11. DEVICEID register at  
address 0x00 will read 0x10 in PF0100 and  
PF0100A  
Reading SILICON REV register at address  
0x03 will return 0x21. DEVICEID register at  
address 0x00 will read 0x10 in PF0100 and  
PF0100A  
Version identification  
VSNVS current limit  
VSNVS current limit increased in the PF0100A  
In the PF0100, FUSE_POR1, FUSE_POR2, In the PF0100A, the XOR function is removed.  
and FUSE_POR3 bits are XOR’ed into the It is required to set FUSE_POR1,  
FUSE_POR_XOR bit. The FUSE_POR_XOR FUSE_POR2, and FUSE_POR3 bits during  
OTP_FUSE_PORx register setting during OTP  
programming  
bit has to be 1 for fuses to be loaded during  
startup. This can be achieved by setting any  
one or all of the FUSE_PORx bits during OTP  
programming.  
OTP programming.  
Erratum ER19 applicable to PF0100.  
Applications expecting to operate in the  
conditions mentioned in ER19 need to  
implement an external workaround to  
overcome the problem. Refer to the product  
errata for details  
Errata ER19 fixed in PF0100A. External  
workaround not required  
Erratum ER19  
Erratum ER20  
Erratum ER22  
Erratum ER20 applicable to PF0100  
Erratum ER22 applicable to PF0100  
Errata ER20 fixed in PF0100A  
Errata ER22 fixed in PF0100A. Workaround  
not required  
In addition to the version differences, Table 3 shows the differences on the test temperature rating for each version of PF0100  
covered on this datasheet.  
Table 3. Ambient Temperature Range  
Ambient Temperature range  
Device  
Qualification Tier  
(TMIN to TMAX  
)
MMPF0100  
Consumer and Industrial  
TA = -40 to 85 °C  
TA = -40 to 85 °C  
TA = -40 to 105 °C  
MMPF0100A  
Consumer  
MMPF0100AN  
Extended Industrial  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
5
 
 
Internal Block Diagram  
PF0100 Version Differences  
2
Internal Block Diagram  
SW1FB  
VGEN1  
100 mA  
VIN1  
PF0100  
SW1AIN  
SW1ALX  
VGEN1  
O/P  
Drive  
SW1A/B  
Single/Dual  
2500 mA  
Buck  
VGEN2  
250 mA  
VGEN2  
SW1BLX  
SW1BIN  
O/P  
Drive  
VIN2  
VGEN3  
100 mA  
VGEN3  
SW1CLX  
SW1CIN  
O/P  
Drive  
SW1C  
2000 mA  
Buck  
VGEN4  
350 mA  
VGEN4  
SW1CFB  
Core Control logic  
SW1VSSSNS  
VIN3  
VGEN5  
100 mA  
VGEN5  
SW2LX  
SW2IN  
SW2IN  
SW2FB  
Initialization State Machine  
SW2  
2000 mA  
Buck  
O/P  
Drive  
VGEN6  
200 mA  
VGEN6  
Supplies  
Control  
OTP  
SW3AFB  
SW3AIN  
SW3ALX  
O/P  
Drive  
VDDOTP  
VDDIO  
SW3A/B  
Single/Dual  
DDR  
2500 mA  
Buck  
CONTROL  
I2C  
Interface  
SW3BLX  
SW3BIN  
O/P  
Drive  
SCL  
SDA  
DVS CONTROL  
SW3BFB  
DVS Control  
SW3VSSSNS  
SW4FB  
SW4  
1000 mA  
Buck  
SW4IN  
O/P  
Drive  
I2C Register  
map  
SW4LX  
Trim-In-Package  
VCOREDIG  
VCOREREF  
GNDREF1  
Reference  
Generation  
SWBSTLX  
Clocks and  
resets  
SWBST  
600 mA  
Boost  
O/P  
Drive  
VCORE  
SWBSTIN  
SWBSTFB  
GNDREF  
VREFDDR  
VINREFDDR  
Clocks  
32 kHz and 16 MHz  
VHALF  
VIN  
Best  
of  
Supply  
Li Cell  
Charger  
LICELL  
VSNVS  
Figure 2. Simplified Internal Block Diagram  
PF0100  
Analog Integrated Circuit Device Data  
6
Freescale Semiconductor  
Pin Connections  
Pinout Diagram  
3
Pin Connections  
3.1  
Pinout Diagram  
56 55 54 53 52 51 50 49 48 47 46 45 44 43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
INTB  
1
2
3
4
5
6
7
8
9
LICELL  
SDWNB  
VGEN6  
RESETBMCU  
STANDBY  
ICTEST  
VIN3  
VGEN5  
SW3AFB  
SW3AIN  
SW3ALX  
SW3BLX  
SW3BIN  
SW3BFB  
SW3VSSSNS  
VREFDDR  
VINREFDDR  
VHALF  
SW1FB  
SW1AIN  
EP  
SW1ALX  
SW1BLX  
SW1BIN 10  
SW1CLX 11  
SW1CIN 12  
SW1CFB 13  
SW1VSSSNS 14  
15 16 17 18 19 20 21 22 23 24 25 26 27 28  
Figure 3. Pinout Diagram  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
7
Pin Connections  
Pin Definitions  
3.2  
Pin Definitions  
Table 4. PF0100 Pin Definitions  
Pin  
Function  
Pin Number  
Pin Name  
Max Rating  
Type  
Definition  
1
2
INTB  
O
O
3.6 V  
3.6 V  
Digital  
Digital  
Open drain interrupt signal to processor  
SDWNB  
Open drain signal to indicate an imminent system shutdown  
Open drain reset output to processor. Alternatively can be used  
as a Power Good output.  
3
4
5
RESETBMCU  
STANDBY  
ICTEST  
O
I
3.6 V  
3.6 V  
7.5 V  
Digital  
Digital  
Standby input signal from processor  
Digital/  
Analog  
I
Reserved pin. Connect to GND in application.  
Output voltage feedback for SW1A/B. Route this trace separately  
from the high current path and terminate at the output  
capacitance.  
6
7
SW1FB (5)  
SW1AIN (5)  
I
I
3.6 V  
4.8 V  
Analog  
Analog  
Input to SW1A regulator. Bypass with at least a 4.7 F ceramic  
capacitor and a 0.1 F decoupling capacitor as close to the pin as  
possible.  
8
9
SW1ALX (5)  
SW1BLX (5)  
O
O
4.8 V  
4.8 V  
Analog  
Analog  
Regulator 1A switch node connection  
Regulator 1B switch node connection  
Input to SW1B regulator. Bypass with at least a 4.7 F ceramic  
capacitor and a 0.1 F decoupling capacitor as close to the pin as  
possible.  
10  
11  
12  
SW1BIN (5)  
SW1CLX (5)  
SW1CIN (5)  
I
O
I
4.8 V  
4.8 V  
4.8 V  
Analog  
Analog  
Analog  
Regulator 1C switch node connection  
Input to SW1C regulator. Bypass with at least a 4.7 F ceramic  
capacitor and a 0.1 F decoupling capacitor as close to the pin as  
possible.  
Output voltage feedback for SW1C. Route this trace separately  
from the high current path and terminate at the output  
capacitance.  
13  
SW1CFB (5)  
I
3.6V  
Analog  
Ground reference for regulators SW1ABC. It is connected  
externally to GNDREF through a board ground plane.  
14  
15  
16  
17  
18  
SW1VSSSNS  
GNDREF1  
VGEN1  
GND  
GND  
O
-
GND  
GND  
Ground reference for regulators SW2 and SW4. It is connected  
externally to GNDREF, via board ground plane.  
-
VGEN1 regulator output, Bypass with a 2.2 F ceramic output  
capacitor.  
2.5 V  
3.6 V  
2.5 V  
Analog  
Analog  
Analog  
VGEN1, 2 input supply. Bypass with a 1.0 F decoupling  
capacitor as close to the pin as possible.  
VIN1  
I
VGEN2 regulator output, Bypass with a 4.7 F ceramic output  
capacitor.  
VGEN2  
O
Output voltage feedback for SW4. Route this trace separately  
from the high current path and terminate at the output  
capacitance.  
19  
20  
SW4FB (5)  
SW4IN (5)  
I
I
3.6 V  
4.8 V  
Analog  
Analog  
Input to SW4 regulator. Bypass with at least a 4.7F ceramic  
capacitor and a 0.1 F decoupling capacitor as close to the pin as  
possible.  
21  
22  
SW4LX (5)  
SW2LX (5)  
O
O
4.8 V  
4.8 V  
Analog  
Analog  
Regulator 4 switch node connection  
Regulator 2 switch node connection  
PF0100  
Analog Integrated Circuit Device Data  
8
Freescale Semiconductor  
 
Pin Connections  
Pin Definitions  
Table 4. PF0100 Pin Definitions (continued)  
Pin  
Pin Number  
Pin Name  
Max Rating  
Type  
Definition  
Function  
23  
24  
SW2IN (5)  
SW2IN (5)  
I
I
4.8 V  
4.8 V  
Analog  
Analog  
Input to SW2 regulator. Connect pin 23 together with pin 24 and  
bypass with at least a 4.7 F ceramic capacitor and a 0.1 F  
decoupling capacitor as close to these pins as possible.  
Output voltage feedback for SW2. Route this trace separately  
from the high current path and terminate at the output  
capacitance.  
25  
SW2FB (5)  
I
3.6 V  
Analog  
VGEN3 regulator output. Bypass with a 2.2 F ceramic output  
capacitor.  
26  
27  
VGEN3  
VIN2  
O
I
3.6 V  
3.6 V  
Analog  
Analog  
VGEN3,4 input. Bypass with a 1.0 F decoupling capacitor as  
close to the pin as possible.  
VGEN4 regulator output, Bypass with a 4.7 F ceramic output  
capacitor.  
28  
29  
30  
31  
32  
VGEN4  
VHALF  
O
3.6 V  
3.6 V  
3.6 V  
3.6 V  
-
Analog  
Analog  
Analog  
Analog  
GND  
I
I
Half supply reference for VREFDDR  
VREFDDR regulator input. Bypass with at least 1.0 F decoupling  
capacitor as close to the pin as possible.  
VINREFDDR  
VREFDDR  
SW3VSSSNS  
O
VREFDDR regulator output  
Ground reference for the SW3 regulator. Connect to GNDREF  
externally via the board ground plane.  
GND  
Output voltage feedback for SW3B. Route this trace separately  
from the high current path and terminate at the output  
capacitance.  
33  
34  
SW3BFB (5)  
SW3BIN (5)  
I
I
3.6 V  
4.8 V  
Analog  
Analog  
Input to SW3B regulator. Bypass with at least a 4.7 F ceramic  
capacitor and a 0.1 F decoupling capacitor as close to the pin as  
possible.  
35  
36  
SW3BLX (5)  
SW3ALX (5)  
O
O
4.8 V  
4.8 V  
Analog  
Analog  
Regulator 3B switch node connection  
Regulator 3A switch node connection  
Input to SW3A regulator. Bypass with at least a 4.7 F ceramic  
capacitor and a 0.1 F decoupling capacitor as close to the pin as  
possible.  
37  
38  
SW3AIN (5)  
SW3AFB (5)  
I
I
4.8 V  
3.6 V  
Analog  
Analog  
Output voltage feedback for SW3A. Route this trace separately  
from the high current path and terminate at the output  
capacitance.  
VGEN5 regulator output. Bypass with a 2.2 F ceramic output  
capacitor.  
39  
40  
41  
VGEN5  
VIN3  
O
I
3.6 V  
4.8 V  
3.6 V  
Analog  
Analog  
Analog  
VGEN5, 6 input. Bypass with a 1.0 F decoupling capacitor as  
close to the pin as possible.  
VGEN6 regulator output. By pass with a 2.2 F ceramic output  
capacitor.  
VGEN6  
O
42  
43  
LICELL  
VSNVS  
I/O  
O
3.6 V  
3.6 V  
Analog  
Analog  
Coin cell supply input/output  
LDO or coin cell output to processor  
Boost regulator feedback. Connect this pin to the output rail close  
to the load. Keep this trace away from other noisy traces and  
planes.  
44  
45  
SWBSTFB (5)  
SWBSTIN (5)  
I
I
5.5 V  
4.8 V  
Analog  
Analog  
Input to SWBST regulator. Bypass with at least a 2.2 F ceramic  
capacitor and a 0.1 F decoupling capacitor as close to the pin as  
possible.  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
9
Pin Connections  
Pin Definitions  
Table 4. PF0100 Pin Definitions (continued)  
Pin  
Pin Number  
Pin Name  
Max Rating  
Type  
Definition  
SWBST switch node connection  
Function  
46  
47  
SWBSTLX (5)  
VDDOTP  
O
7.5 V  
Analog  
Digital &  
Analog  
I
10 V(4)  
Supply to program OTP fuses  
48  
49  
50  
51  
52  
53  
54  
55  
56  
GNDREF  
VCORE  
VIN  
GND  
-
GND  
Ground reference for the main band gap regulator.  
Analog Core supply  
O
I
3.6 V  
4.8 V  
1.5 V  
1.5 V  
3.6 V  
3.6 V  
3.6 V  
3.6 V  
Analog  
Analog  
Analog  
Analog  
Digital  
Digital  
Analog  
Digital  
Main chip supply  
VCOREDIG  
VCOREREF  
SDA  
O
O
I/O  
I
Digital Core supply  
Main band gap reference  
I2C data line (Open drain)  
I2C clock  
SCL  
VDDIO  
I
Supply for I2C bus. Bypass with 0.1 F ceramic capacitor  
Power On/off from processor  
PWRON  
I
Expose pad. Functions as ground return for buck regulators. Tie  
this pad to the inner and external ground planes through vias to  
allow effective thermal dissipation.  
-
EP  
GND  
-
GND  
Notes  
4. 10 V Maximum voltage rating during OTP fuse programming. 7.5 V Maximum DC voltage rated otherwise.  
5. Unused switching regulators should be connected as follow: Pins SWxLX and SWxFB should be unconnected and Pin SWxIN should  
be connected to VIN with a 0.1 F bypass capacitor.  
PF0100  
Analog Integrated Circuit Device Data  
10  
Freescale Semiconductor  
 
 
General Product Characteristics  
Absolute Maximum Ratings  
4
General Product Characteristics  
4.1  
Absolute Maximum Ratings  
Table 5. Absolute Maximum Ratings  
All voltages are with respect to ground, unless otherwise noted. Exceeding these ratings may cause malfunction or permanent  
damage to the device. The detailed maximum voltage rating per pin can be found in the pin list section.  
Symbol  
Description  
Value  
Unit  
ELECTRICAL RATINGS  
V
Main input supply voltage  
-0.3 to 4.8  
-0.3 to 10  
-0.3 to 3.6  
V
V
V
IN  
V
OTP programming input supply voltage  
Coin cell voltage  
DDOTP  
V
LICELL  
ESD Ratings  
V
Human Body Model(6)  
Charge Device Model(6)  
±2000  
±500  
V
ESD  
Notes  
6. ESD testing is performed in accordance with the Human Body Model (HBM) (CZAP = 100 pF, RZAP = 1500 ), and the Charge Device  
Model (CDM), Robotic (CZAP = 4.0 pF).  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
11  
 
General Product Characteristics  
Thermal Characteristics  
4.2  
Thermal Characteristics  
Table 6. Thermal Ratings  
Symbol  
Description (Rating)  
Min.  
Max.  
Unit  
THERMAL RATINGS  
Ambient Operating Temperature Range  
PF0100  
PF0100A  
PF0100AN  
-40  
-40  
-40  
85  
85  
105  
TA  
C  
TJ  
Operating Junction Temperature Range (7)  
Storage Temperature Range  
-40  
-65  
125  
150  
C  
C  
C  
TST  
TPPRT  
Peak Package Reflow Temperature (8)(9)  
Note 9  
QFN56 THERMAL RESISTANCE AND PACKAGE DISSIPATION RATINGS  
Junction to Ambient (10)(11)(12)  
Natural Convection  
Four layer board (2s2p)  
Eight layer board (2s6p)  
RJA  
°C/W  
°C/W  
28  
15  
Junction to Ambient (@200 ft/min)(10)(12)  
RJMA  
Four layer board (2s2p)  
22  
10  
RJB  
Junction to Board(13)  
°C/W  
°C/W  
RJCBOTTOM Junction to Case Bottom(14)  
1.2  
Junction to Package Top(15)  
JT  
2.0  
°C/W  
Natural Convection  
Notes  
7. Do not operate beyond 125 °C for extended periods of time. Operation above 150 °C may cause permanent damage to the IC. See  
Table 7 for thermal protection features.  
8. Pin soldering temperature limit is for 10 seconds maximum duration. Not designed for immersion soldering. Exceeding these limits may  
cause a malfunction or permanent damage to the device.  
9. Freescale’s Package Reflow capability meets Pb-free requirements for JEDEC standard J-STD-020C. For Peak Package Reflow  
Temperature and Moisture Sensitivity Levels (MSL), Go to www.freescale.com, search by part number [e.g. remove prefixes/suffixes  
and enter the core ID to view all orderable parts (i.e. MC33xxxD enter 33xxx), and review parametrics.  
10. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board)  
temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.  
11. The Board uses the JEDEC specifications for thermal testing (and simulation) JESD51-7 and JESD51-5.  
12. Per JEDEC JESD51-6 with the board horizontal.  
13. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top  
surface of the board near the package.  
14. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).  
15. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per  
JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.  
PF0100  
Analog Integrated Circuit Device Data  
12  
Freescale Semiconductor  
 
 
 
 
 
 
 
 
 
 
 
General Product Characteristics  
Electrical Characteristics  
4.2.1 Power Dissipation  
During operation, the temperature of the die should not exceed the operating junction temperature noted in Table 6. To optimize  
the thermal management and to avoid overheating, the PF0100 provides thermal protection. An internal comparator monitors the  
die temperature. Interrupts THERM110I, THERM120I, THERM125I, and THERM130I will be generated when the respective  
thresholds specified in Table 7 are crossed in either direction. The temperature range can be determined by reading the  
THERMxxxS bits in register INTSENSE0.  
In the event of excessive power dissipation, thermal protection circuitry will shut down the PF0100. This thermal protection will  
act above the thermal protection threshold listed in Table 7. To avoid any unwanted power downs resulting from internal noise,  
the protection is debounced for 8.0 ms. This protection should be considered as a fail-safe mechanism and therefore the system  
should be configured such that this protection is not tripped under normal conditions.  
Table 7. Thermal Protection Thresholds  
Parameter  
Thermal 110 °C Threshold (THERM110)  
Min  
Typ  
Max  
Units  
100  
110  
115  
120  
2.0  
110  
120  
125  
130  
120  
130  
135  
140  
4.0  
°C  
°C  
°C  
°C  
°C  
°C  
Thermal 120 °C Threshold (THERM120)  
Thermal 125 °C Threshold (THERM125)  
Thermal 130 °C Threshold (THERM130)  
Thermal Warning Hysteresis  
Thermal Protection Threshold  
130  
140  
150  
4.3  
Electrical Characteristics  
4.3.1 General Specifications  
Table 8. General PMIC Static Characteristics.  
TMIN to TMAX (See Table 3), VIN = 2.8 to 4.5 V, VDDIO = 1.7 to 3.6 V, typical external component values and full load current  
range, unless otherwise noted.  
Pin Name  
Parameter  
Load Condition  
Min  
Max  
Unit  
VIL  
VIH  
0.0  
0.8 * VSNVS  
0.0  
0.2 * VSNVS  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
PWRON  
-2.0 mA  
Open Drain  
3.6  
0.4  
VOL  
VOH  
VIL  
RESETBMCU  
SCL  
0.7* VIN  
0.0  
VIN  
0.2 * VDDIO  
3.6  
VIH  
0.8 * VDDIO  
0.0  
VIL  
0.2 * VDDIO  
3.6  
VIH  
0.8 * VDDIO  
0.0  
SDA  
VOL  
VOH  
VOL  
VOH  
VOL  
VOH  
-2.0 mA  
Open Drain  
-2.0 mA  
Open Drain  
-2.0 mA  
Open Drain  
0.4  
0.7*VDDIO  
0.0  
VDDIO  
0.4  
INTB  
0.7* VIN  
0.0  
VIN  
0.4  
SDWNB  
0.7* VIN  
VIN  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
13  
 
 
General Product Characteristics  
Electrical Characteristics  
Table 8. General PMIC Static Characteristics.  
TMIN to TMAX (See Table 3), VIN = 2.8 to 4.5 V, VDDIO = 1.7 to 3.6 V, typical external component values and full load current  
range, unless otherwise noted.  
VIL  
VIH  
VIL  
VIH  
0.0  
0.8 * VSNVS  
0.0  
0.2 * VSNVS  
V
V
V
V
STANDBY  
VDDOTP  
3.6  
0.3  
1.7  
1.1  
PF0100  
Analog Integrated Circuit Device Data  
14  
Freescale Semiconductor  
General Product Characteristics  
Electrical Characteristics  
4.3.2 Current Consumption  
Table 9. Current Consumption Summary  
TMIN to TMAX (See Table 3), VIN = 3.6 V, VDDIO = 1.7 to 3.6 V, LICELL = 1.8 to 3.3 V, VSNVS = 3.0 V, typical external  
component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VDDIO = 3.3 V, LICELL = 3.0 V,  
VSNVS = 3.0 V and 25 °C, unless otherwise noted.  
Mode  
PF0100 Conditions  
System Conditions  
Typical  
MAX  
Unit  
VSNVS from LICELL  
Coin Cell  
All other blocks off  
VIN = 0.0 V  
No load on VSNVS  
4.0  
7.0  
A  
(16),(18),(22)  
VSNVSVOLT[2:0] = 110  
VSNVS from VIN or LICELL  
Wake-up from PWRON active  
32 k RC on  
All other blocks off  
VIN UVDET  
Off (17),(18)  
MMPF0100  
No load on VSNVS, PMIC able to wake-up  
No load on VSNVS, PMIC able to wake-up  
16  
17  
21  
25  
A  
A  
VSNVS from VIN or LICELL  
Wake-up from PWRON active  
32 k RC on  
Off (17),(18)  
MMPF0100A  
All other blocks off  
VIN UVDET  
VSNVS from VIN  
Wake-up from PWRON active  
Trimmed reference active   
SW3A/B PFM  
Trimmed 16 MHz RC off  
32 k RC on  
122  
122  
220(21)  
250(20)  
No load on VSNVS. DDR memories in self  
refresh  
Sleep (18)  
A  
VREFDDR disabled  
VSNVS from either VIN or LICELL  
SW1A/B combined in PFM  
SW1C in PFM  
SW2 in PFM  
SW3A/B combined in PFM  
SW4 in PFM  
No load on VSNVS. Processor enabled in  
low power mode. All rails powered on  
except boost (load = 0 mA)  
297  
297  
450 (19)  
Standby (18)  
MMPF0100  
A  
SWBST off  
1000 (21)  
Trimmed 16 MHz RC enabled  
Trimmed reference active  
VGEN1-6 enabled  
VREFDDR enabled  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
15  
 
General Product Characteristics  
Electrical Characteristics  
Table 9. Current Consumption Summary (continued)  
TMIN to TMAX (See Table 3), VIN = 3.6 V, VDDIO = 1.7 to 3.6 V, LICELL = 1.8 to 3.3 V, VSNVS = 3.0 V, typical external  
component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VDDIO = 3.3 V, LICELL = 3.0 V,  
VSNVS = 3.0 V and 25 °C, unless otherwise noted.  
Mode  
PF0100 Conditions  
System Conditions  
Typical  
MAX  
Unit  
VSNVS from either VIN or LICELL  
SW1A/B combined in PFM  
SW1C in PFM  
SW2 in PFM  
SW3A/B combined in PFM  
SW4 in PFM  
No load on VSNVS. Processor enabled in  
low power mode. All rails powered on  
except boost (load = 0 mA)  
297  
297  
450 (21)  
550(20)  
Standby (18)  
MMPF0100A  
A  
SWBST off  
Trimmed 16 MHz RC enabled  
Trimmed reference active  
VGEN1-6 enabled  
VREFDDR enabled  
Notes  
16. Refer to Figure 4 for Coin Cell mode characteristics over temperature.  
17. When VIN is below the UVDET threshold, in the range of 1.8 V VIN < 2.65 V, the quiescent current increases by 50 A, typically.  
18. For PFM operation, headroom should be 300 mV or greater.  
19. From 0 °C to 85 °C  
20. From -40 °C to 105 °C, Applicable only to Extended Industrial parts.  
21. From -40 °C to 85 °C, Applicable to Consumer, Industrial and Extended Industrial part numbers.  
22. Additional current may be drawn in the coin cell mode when RESETBMCU is pulled up to VSNVS due an internal path from  
RESETBMCU to VIN. The additional current is <30A with a pull up resistor of 100k. The i.MX6x processors have an internal pull up  
from the POR_B pin to the VDD_SNVS_IN pin. For i.MX6x applications, if additional current in the coin cell mode is not desired, use an  
external switch to disconnect the RESETBMCU path when VIN is removed. For non-i.MX6 applications, pull up RESETBMCU to a rail  
that is off in the coin cell mode.  
Coin Cell Mode  
100  
MMPF0100  
10  
MMPF0100A  
1
40  
20  
0
20  
40  
60  
80  
Temperature(°C)  
Figure 4. Coin cell Mode Current Vs Temperature  
PF0100  
Analog Integrated Circuit Device Data  
16  
Freescale Semiconductor  
 
 
 
 
General Description  
Features  
5
General Description  
The PF0100 is the Power Management Integrated Circuit (PMIC) designed primarily for use with Freescale’s i.MX6 series of  
application processors.  
5.1  
Features  
This section summarizes the PF0100 features.  
• Input voltage range to PMIC: 2.8 - 4.5 V  
• Buck regulators  
Four to six channel configurable  
• SW1A/B/C, 4.5 A (single); 0.3 to 1.875 V  
• SW1A/B, 2.5 A (single/dual); SW1C 2.0 A (independent); 0.3 to 1.875 V  
• SW2, 2.0 A; 0.4 to 3.3 V  
• SW3A/B, 2.5 A (single/dual); 0.4 to 3.3 V  
• SW3A, 1.25 A (independent); SW3B, 1.25 A (independent); 0.4 to 3.3 V  
• SW4, 1.0 A; 0.4 to 3.3 V  
• SW4, VTT mode provide DDR termination at 50% of SW3A  
Dynamic voltage scaling  
Modes: PWM, PFM, APS  
Programmable output voltage  
Programmable current limit  
Programmable soft start  
Programmable PWM switching frequency  
Programmable OCP with fault interrupt  
• Boost regulator  
SWBST, 5.0 to 5.15 V, 0.6 A, OTG support  
Modes: PFM and Auto  
OCP fault interrupt  
• LDOs  
Six user programable LDO  
• VGEN1, 0.80 to 1.55 V, 100 mA  
• VGEN2, 0.80 to 1.55 V, 250 mA  
• VGEN3, 1.8 to 3.3 V, 100 mA  
• VGEN4, 1.8 to 3.3 V, 350 mA  
• VGEN5, 1.8 to 3.3 V, 100 mA  
• VGEN6, 1.8 to 3.3 V, 200 mA  
Soft start  
LDO/Switch supply  
• VSNVS (1.0/1.1/1.2/1.3/1.5/1.8/3.0 V), 400 A  
• DDR memory reference voltage  
VREFDDR, 0.6 to 0.9 V, 10 mA  
• 16 MHz internal master clock  
• OTP(One time programmable) memory for device configuration  
User programmable start-up sequence and timing  
• Battery backed memory including coin cell charger  
• I2C interface  
• User programmable Standby, Sleep, and Off modes  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
17  
General Description  
Functional Block Diagram  
5.2  
Functional Block Diagram  
MMPF0100 Functional Internal Block Diagram  
OTP Startup Configuration  
Power Generation  
OTP Prototyping  
Voltage  
Switching Regulators  
Linear Regulators  
(Try before buy)  
VGEN1  
(0.8 to 1.55V, 100mA)  
SW1A/B/C  
(0.3 to 1.875V)  
Configurable 4.5A or  
2.5A+2.0A  
Sequence and  
timing  
Phasing and  
Frequency Selection  
VGEN2  
(0.8 to 1.55V, 250mA)  
Bias & References  
SW2  
(0.4 to 3.3V, 2A)  
Internal Core Voltage Reference  
DDR Voltage Reference  
VGEN3  
(1.8 to 3.3V, 100mA)  
VGEN4  
(1.8 to 3.3V, 350mA)  
SW3A/B  
(0.4 to 3.3V)  
Logic and Control  
Configurable 2.5A or  
1.25A+1.25A  
VGEN5  
Parallel MCU Interface  
Regulator Control  
(1.8 to 3.3V, 100mA)  
I2C Communication & Registers  
SW4  
(0.4 to 3.3V, 1A)  
VGEN6  
(1.8 to 3.3V, 200mA)  
Fault Detection and Protection  
VSNVS  
(1.0 to 3.0V, 400uA)  
RTC supply with coin cell  
charger  
Boost Regulator  
(5 to 5.15V, 600mA)  
USB OTG Supply  
Thermal  
Current Limit  
Short-Circuit  
Figure 5. Functional Block Diagram  
5.3  
Functional Description  
5.3.1 Power Generation  
The PF0100 PMIC features four buck regulators (up to six independent outputs), one boost regulator, six general purpose LDOs,  
one switch/LDO combination and a DDR voltage reference to supply voltages for the application processor and peripheral  
devices.  
The number of independent buck regulator outputs can be configured from four to six, thereby providing flexibility to operate with  
higher current capability, or to operate as independent outputs for applications requiring more voltage rails with lower current  
demands. Further, SW1 and SW3 regulators can be configured as single/dual phase and/or independent converters. One of the  
buck regulators, SW4, can also operate as a tracking regulator when used for memory termination. The buck regulators provide  
the supply to processor cores and to other low voltage circuits such as IO and memory. Dynamic voltage scaling is provided to  
allow controlled supply rail adjustments for the processor cores and/or other circuitry.  
Depending on the system power path configuration, the six general purpose LDO regulators can be directly supplied from the  
main input supply or from the switching regulators to power peripherals, such as audio, camera, Bluetooth, Wireless LAN, etc. A  
specific VREFDDR voltage reference is included to provide accurate reference voltage for DDR memories operating with or  
without VTT termination. The VSNVS block behaves as an LDO, or as a bypass switch to supply the SNVS/SRTC circuitry on  
the i.MX processors; VSNVS may be powered from VIN, or from a coin cell.  
5.3.2 Control Logic  
The PF0100 PMIC is fully programmable via the I2C interface. Additional communication is provided by direct logic interfacing  
including interrupt and reset. Start-up sequence of the device is selected upon the initial OTP configuration explained in the Start-  
up section, or by configuring the “Try Before Buy” feature to test different power up sequences before choosing the final OTP  
configuration.  
The PF0100 PMIC has the interfaces for the power buttons and dedicated signaling interfacing with the processor. It also ensures  
supply of critical internal logic and other circuits from the coin cell in case of brief interruptions from the main battery. A charger  
for the coin cell is included as well.  
PF0100  
Analog Integrated Circuit Device Data  
18  
Freescale Semiconductor  
General Description  
Functional Description  
5.3.2.1  
Interface Signals  
PWRON  
PWRON is an input signal to the IC that generates a turn-on event. It can be configured to detect a level, or an edge using the  
PWRON_CFG bit. Refer to section Turn On Events for more details.  
STANDBY  
STANDBY is an input signal to the IC. When it is asserted the part enters standby mode and when de-asserted, the part exits  
standby mode. STANDBY can be configured as active high or active low using the STANDBYINV bit. Refer to the section  
Standby Mode for more details.  
Note: When operating the PMIC at VIN 2.85 V and VSNVS is programmed for a 3.0 V output, a coin cell must be present to  
provide VSNVS, or the PMIC will not reliably enter and exit the STANDBY mode.  
RESETBMCU  
RESETBMCU is an open-drain, active low output configurable for two modes of operation. In its default mode, it is de-asserted  
2.0 to 4.0 ms after the last regulator in the start-up sequence is enabled; refer to Figure 6 as an example. In this mode, the signal  
can be used to bring the processor out of reset, or as an indicator that all supplies have been enabled; it is only asserted for a  
turn-off event.  
When configured for its fault mode, RESETBMCU is de-asserted after the start-up sequence is completed only if no faults  
occurred during start-up. At anytime, if a fault occurs and persists for 1.8 ms typically, RESETBMCU is asserted, LOW. The  
PF0100 is turned off if the fault persists for more than 100 ms typically. The PWRON signal restarts the part, though if the fault  
persists, the sequence described above will be repeated. To enter the fault mode, set bit OTP_PG_EN of register  
OTP PWRGD EN to “1”. This register, 0xE8, is located on Extended Page 1 of the register map. To test the fault mode, the bit  
may be set during TBB prototyping, or the mode may be permanently chosen by programming OTP fuses.  
SDWNB  
SDWNB is an open-drain, active low output that notifies the processor of an imminent PMIC shut down. It is asserted low for one  
32 kHz clock cycle before powering down and is then de-asserted in the OFF state.  
INTB  
INTB is an open-drain, active low output. It is asserted when any fault occurs, provided that the fault interrupt is unmasked. INTB  
is de-asserted after the fault interrupt is cleared by software, which requires writing a “1” to the fault interrupt bit.  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
19  
Functional Block Requirements and Behaviors  
Start-up  
6
Functional Block Requirements and Behaviors  
6.1  
Start-up  
The PF0100 can be configured to start-up from either the internal OTP configuration, or with a hard-coded configuration built in  
to the device. The internal hard-coded configuration is enabled by connecting the VDDOTP pin to VCOREDIG through a  
100 kohm resistor. The OTP configuration is enabled by connecting VDDOTP to GND.  
For NP devices, selecting the OTP configuration causes the PF0100 to not start-up. However, the PF0100 can be controlled  
through the I2C port for prototyping and programming. Once programmed, the NP device will startup with the customer  
programmed configuration.  
6.1.1 Device Start-up Configuration  
Table 10 shows the Default Configuration which can be accessed on all devices as described above, as well as the pre-  
programmed OTP configurations.  
Table 10. Start-up Configuration  
Default  
Configuration  
Pre-programmed OTP Configuration  
Registers  
All Devices  
F0  
F1(23)  
F2(23)  
F3  
F4  
Default I2C Address  
VSNVS_VOLT  
SW1AB_VOLT  
SW1AB_SEQ  
SW1C_VOLT  
SW1C_SEQ  
0x08  
0x08  
3.0 V  
1.375 V  
1
0x08  
0x08  
0x08  
0x08  
3.0 V  
3.0 V  
3.0 V  
3.0 V  
3.0 V  
1.375 V  
1.375 V  
1.375 V  
1.375 V  
1.375 V  
1
1
1
2
2
1.375 V  
1.375 V  
2
1.375 V  
1.375 V  
1.375 V  
1.375 V  
1
1
1
2
2
SW2_VOLT  
3.0 V  
3.3 V  
5
3.15 V  
3.15 V  
3.15 V  
3.15 V  
SW2_SEQ  
2
2
2
1
1
SW3A_VOLT  
SW3A_SEQ  
1.5 V  
1.5 V  
3
1.2 V  
1.5 V  
1.2 V  
1.5 V  
3
4
4
4
4
SW3B_VOLT  
SW3B_SEQ  
1.5 V  
1.5 V  
3
1.2 V  
1.5 V  
1.2 V  
1.5 V  
3
4
4
4
4
SW4_VOLT  
1.8 V  
3.15 V  
6
1.8 V  
1.8 V  
1.8 V  
1.8 V  
SW4_SEQ  
3
3
3
3
3
SWBST_VOLT  
SWBST_SEQ  
VREFDDR_SEQ  
VGEN1_VOLT  
VGEN1_SEQ  
VGEN2_VOLT  
VGEN2_SEQ  
VGEN3_VOLT  
VGEN3_SEQ  
-
5.0 V  
13  
5.0 V  
5.0 V  
5.0 V  
5.0 V  
-
6
6
6
6
3
3
4
4
4
4
-
1.5 V  
9
1.2 V  
1.2 V  
1.2 V  
1.2 V  
-
4
-
4
-
4
-
4
-
1.5 V  
1.5 V  
10  
2
-
-
-
-
-
2.5 V  
11  
-
-
-
-
-
-
-
-
-
PF0100  
Analog Integrated Circuit Device Data  
20  
Freescale Semiconductor  
 
 
Functional Block Requirements and Behaviors  
Start-up  
Table 10. Start-up Configuration  
Default  
Configuration  
Pre-programmed OTP Configuration  
Registers  
All Devices  
F0  
F1(23)  
F2(23)  
F3  
F4  
VGEN4_VOLT  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
VGEN4_SEQ  
3
2.5 V  
3
7
2.8 V  
3
3
3
3
VGEN5_VOLT  
VGEN5_SEQ  
2.5 V  
2.5 V  
2.5 V  
2.5 V  
12  
5
5
5
5
VGEN6_VOLT  
VGEN6_SEQ  
2.8 V  
3
3.3 V  
-
-
-
-
-
-
-
8
-
PU CONFIG, SEQ_CLK_SPEED  
PU CONFIG, SWDVS_CLK  
PU CONFIG, PWRON  
SW1AB CONFIG  
SW1C CONFIG  
SW2 CONFIG  
1.0 ms  
6.25 mV/s  
2.0 ms  
1.5625 mV/s  
1.0 ms  
1.0 ms  
12.5 mV/s  
1.0 ms  
12.5 mV/s  
1.0 ms  
12.5 mV/s  
12.5 mV/s  
Level sensitive  
SW1AB Single Phase, SW1C Independent Mode, 2.0 MHz  
2.0 MHz  
2.0 MHz  
SW3A CONFIG  
SW3B CONFIG  
SW4 CONFIG  
SW3AB Single Phase, 2.0 MHz  
2.0 MHz  
No VTT, 2.0 MHz  
PG EN  
RESETBMCU in Default Mode  
Notes  
23. For designs using the i.MX 6-SoloLite, it is recommended to use the F3 OTP option instead of the F1 OTP option and F4 OTP option  
instead of the F2 OTP option  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
21  
Functional Block Requirements and Behaviors  
Start-up  
LICELL  
UVDET  
tr1  
VIN  
td1  
1V  
td2  
tr2  
VSNVS  
td3  
tr3  
PWRON  
SW1A/B  
SW1C  
td4  
tr3  
SW2  
VGEN2  
SW3A/B  
td4  
tr3  
SW4  
VREFDDR  
VGEN4  
VGEN5  
td5  
tr4  
VGEN6  
RESETBMCU  
*VSNVS will start from 1.0 V if LICELL is valid before VIN.  
Figure 6. Default Start-up Sequence  
Table 11. Default Start-up Sequence Timing  
Parameter  
Description  
Min  
Typ  
Max  
Unit  
tD1  
tR1  
tD2  
tR2  
Turn-on delay of VSNVS (24)  
Rise time of VSNVS  
5.0  
3.0  
ms  
ms  
ms  
ms  
User determined delay  
Rise time of PWRON  
1.0  
(25)  
Turn-on delay of first regulator  
SEQ_CLK_SPEED[1:0] = 00  
SEQ_CLK_SPEED[1:0] = 01(26)  
SEQ_CLK_SPEED[1:0] = 10  
SEQ_CLK_SPEED[1:0] = 11  
2.0  
2.5  
4.0  
7.0  
tD3  
ms  
PF0100  
Analog Integrated Circuit Device Data  
22  
Freescale Semiconductor  
Functional Block Requirements and Behaviors  
Start-up  
Table 11. Default Start-up Sequence Timing  
Parameter  
Description  
Min  
Typ  
Max  
Unit  
tR3  
Rise time of regulators(27)  
Delay between regulators  
0.2  
ms  
SEQ_CLK_SPEED[1:0] = 00  
SEQ_CLK_SPEED[1:0] = 01  
SEQ_CLK_SPEED[1:0] = 10  
SEQ_CLK_SPEED[1:0] = 11  
Rise time of RESETBMCU  
0.5  
1.0  
2.0  
4.0  
0.2  
2.0  
tD4  
ms  
tR4  
tD5  
ms  
ms  
Turn-on delay of RESETBMCU  
Notes  
24. Assumes LICELL voltage is valid before VIN is applied. If LICELL is not valid before VIN is applied then VSNVS turn-on delay may  
extend to a maximum of 24 ms.  
25. Depends on the external signal driving PWRON.  
26. Default configuration.  
27. Rise time is a function of slew rate of regulators and nominal voltage selected.  
6.1.2 One Time Programmability (OTP)  
OTP allows the programming of start-up configurations for a variety of applications. Before permanently programming the IC by  
programming fuses, a configuration may be prototyped by using the “Try Before Buy” (TBB) feature. Further, an error correction  
code(ECC) algorithm is available to correct a single bit error and to detect multiple bit errors when fuses are programmed.  
The parameters that can be configured by OTP are listed below.  
• General: I2C slave address, PWRON pin configuration, start-up sequence and timing  
• Buck regulators: Output voltage, dual/single phase or independent mode configuration, switching frequency, and soft  
start ramp rate  
• Boost regulator and LDOs: Output voltage  
NOTE: When prototyping or programming fuses, the user must ensure that register settings are consistent with the hardware  
configuration. This is most important for the buck regulators, where the quantity, size, and value of the inductors depend on the  
configuration (single/dual phase or independent mode) and the switching frequency. Additionally, if an LDO is powered by a buck  
regulator, it will be gated by the buck regulator in the start-up sequence.  
6.1.2.1  
Start-up Sequence and Timing  
Each regulator has 5-bits allocated to program its start-up time slot from a turn on event; therefore, each can be placed from  
position one to thirty-one in the start-up sequence. The all zeros code indicates that a regulator is not part of the start-up  
sequence and will remain off. See Table 12. The delay between each position is equal; however, four delay options are available.  
See Table 13. The start-up sequence will terminate at the last programmed regulator.  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
23  
 
 
Functional Block Requirements and Behaviors  
Start-up  
Table 12. Start-up Sequence  
SWxx_SEQ[4:0]/  
VGENx_SEQ[4:0]/  
VREFDDR_SEQ[4:0]  
Sequence  
00000  
Off  
00001  
SEQ_CLK_SPEED[1:0] * 1  
00010  
SEQ_CLK_SPEED[1:0] * 2  
*
*
*
*
*
*
*
*
11111  
SEQ_CLK_SPEED[1:0] * 31  
Table 13. Start-up Sequence Clock Speed  
SEQ_CLK_SPEED[1:0]  
Time (s)  
00  
01  
10  
11  
500  
1000  
2000  
4000  
6.1.2.2  
PWRON Pin Configuration  
The PWRON pin can be configured as either a level sensitive input (PWRON_CFG = 0), or as an edge sensitive input  
(PWRON_CFG = 1). As a level sensitive input, an active high signal turns on the part and an active low signal turns off the part,  
or puts it into Sleep mode. As an edge sensitive input, such as when connected to a mechanical switch, a falling edge will turn  
on the part and if the switch is held low for greater than or equal to 4.0 seconds, the part will turn off or enter Sleep mode.  
Table 14. PWRON Configuration  
PWRON_CFG  
Mode  
PWRON pin HIGH = ON  
PWRON pin LOW = OFF or Sleep mode  
0
PWRON pin pulled LOW momentarily = ON   
PWRON pin LOW for 4.0 seconds = OFF or Sleep mode  
1
2
6.1.2.3  
I C Address Configuration  
The I2C device address can be programmed from 0x08 to 0x0F. This allows flexibility to change the I2C address to avoid bus  
conflicts. Address bit, I2C_SLV_ADDR[3] in OTP_I2C_ADDR register is hard coded to “1” while the lower three LSBs of the I2C  
address (I2C_SLV_ADDR[2:0]) are programmable as shown in Table 15.  
Table 15. I2C Address Configuration  
I2C_SLV_ADDR[3]  
Hard Coded  
I2C Device Address  
(Hex)  
I2C_SLV_ADDR[2:0]  
1
1
1
000  
001  
010  
0x08  
0x09  
0x0A  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
24  
 
Functional Block Requirements and Behaviors  
Start-up  
Table 15. I2C Address Configuration  
I2C_SLV_ADDR[3]  
I2C_SLV_ADDR[2:0]  
Hard Coded  
I2C Device Address  
(Hex)  
1
1
1
1
1
011  
100  
101  
110  
111  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
6.1.2.4  
Soft Start Ramp Rate  
The start-up ramp rate or soft start ramp rate can be chosen from the same options as shown in Dynamic Voltage Scaling.  
6.1.3 OTP Prototyping  
Before permanently programming fuses, it is possible to test the desired configuration by using the “Try Before Buy” feature. With  
this feature, the configuration is loaded from the OTP registers. These registers merely serve as temporary storage for the values  
to be written to the fuses, for the values read from the fuses, or for the values read from the default configuration. To avoid  
confusion, these registers will be referred to as the TBBOTP registers. The portion of the register map that concerns OTP is  
shown in Table 137 and Table 138.  
The contents of the TBBOTP registers are initialized to zero when a valid VIN is first applied. The values that are then loaded  
into the TBBOTP registers depend on the setting of the VDDOTP pin and on the value of the TBB_POR and FUSE_POR_XOR  
bits. Refer to Table 16.  
• If VDDOTP = VCOREDIG (1.5 V), the values are loaded from the default configuration.  
• If VDDOTP = 0.0 V, TBB_POR = 0 and FUSE_POR_XOR = 1, the values are loaded from the fuses. In the MMPF0100,  
FUSE_POR1, FUSE_POR2, and FUSE_POR3 are XOR’ed into the FUSE_POR_XOR bit. The FUSE_POR_XOR has to  
be 1 for fuses to be loaded. This can be achieved by setting any one or all of the FUSE_PORx bits. In the MMPF0100A,  
the XOR function is removed. It is required to set all of the FUSE_PORx bits to be able to load the fuses.  
• If VDDOTP = 0.0 V, TBB_POR = 0 and FUSE_POR_XOR = 0, the TBBOTP registers remain initialized at zero.  
The initial value of TBB_POR is always “0”; only when VDDOTP = 0.0 V and TBB_POR is set to “1” are the values from the  
TBBOTP registers maintained and not loaded from a different source.  
The contents of the TBBOTP registers are modified by I2C. To communicate with I2C, VIN must be valid and VDDIO, to which  
SDA and SCL are pulled up, must be powered by a 1.7 to 3.6 V supply. VIN, or the coin cell voltage must be valid to maintain  
the contents of the registers. To power on with the contents of the TBBOTP registers, the following conditions must exist; VIN is  
valid, VDDOTP = 0.0 V, TBB_POR = 1 and there is a valid turn-on event. Refer to the application note AN4536 for an example  
of prototyping.  
6.1.4 Reading OTP Fuses  
As described in the previous section, the contents of the fuses are loaded to the TBBOTP registers when the following conditions  
are met; VIN is valid, VDDOTP = 0.0 V, TBB_POR = 0 and FUSE_POR_XOR = 1. If ECC were enabled at the time the fuses  
were programmed, the error corrected values can be loaded into the TBBOTP registers if desired. Once the fuses are loaded  
and a turn-on event occurs, the PMIC will power on with the configuration programmed in the fuses. For more details on reading  
the OTP fuses, see application note AN4536.  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
25  
Functional Block Requirements and Behaviors  
16 MHz and 32 kHz Clocks  
6.1.5 Programming OTP Fuses  
The parameters that can be programmed are shown in the TBBOTP registers in the Extended Page 1 of the register map. The  
PF0100 offers ECC, the control registers for which functions are located in Extended Page 2 of the register map. There are ten  
banks of twenty-six fuses each that can be programmed. Programming the fuses requires an 8.25 V, 100 mA supply powering  
the VDDOTP pin, bypassed with 10 to 20 F of capacitance. For more details on programming the OTP fuses, see application  
note AN4536.  
Table 16. Source of Start-up Sequence  
VDDOTP(V)  
TBB_POR FUSE_POR_XOR  
Start-up Sequence  
0
0
0
0
1
x
0
1
x
x
None  
OTP fuses  
0
TBBOTP registers  
Factory defined  
1.5  
6.2  
16 MHz and 32 kHz Clocks  
There are two clocks: a trimmed 16 MHz, RC oscillator and an untrimmed 32 kHz, RC oscillator. The 16 MHz oscillator is  
specified within -8.0/+8.0%. The 32 kHz untrimmed clock is only used in the following conditions:  
• VIN < UVDET  
• All regulators are in SLEEP mode  
• All regulators are in PFM switching mode  
A 32 kHz clock, derived from the 16 MHz trimmed clock, is used when accurate timing is needed under the following conditions:  
• During start-up, VIN > UVDET  
• PWRON_CFG = 1, for power button debounce timing  
In addition, when the 16 MHz is active in the ON mode, the debounce times in Table 27 are referenced to the 32 kHz derived  
from the 16 MHz clock. The exceptions are the LOWVINI and PWRONI interrupts, which are referenced to the 32 kHz untrimmed  
clock.  
Table 17. 16 MHz Clock Specifications  
TMIN to TMAX (See Table 3), VIN = 2.8 to 4.5 V, LICELL = 1.8 to 3.3 V and typical external component values. Typical values are  
characterized at VIN = 3.6 V, LICELL = 3.0 V, and 25 °C, unless otherwise noted.  
Parameters  
Symbol  
Min  
Typ  
Max  
Units  
Operating Voltage From VIN  
16 MHz Clock Frequency  
VIN16MHz  
f16MHZ  
f2MHZ  
2.8  
16  
4.5  
V
14.7  
1.84  
17.2  
2.15  
MHz  
MHz  
2.0 MHz Clock Frequency (28)  
Notes  
28. 2.0 MHz clock is derived from the 16 MHz clock.  
6.2.1 Clock adjustment  
The 16 MHz clock and hence the switching frequency of the regulators, can be adjusted to improve the noise integrity of the  
system. By changing the factory trim values of the 16MHz clock, the user may add an offset as small as 3.0% of the nominal  
frequency. Contact your Freescale representative for detailed information on this feature.  
PF0100  
Analog Integrated Circuit Device Data  
26  
Freescale Semiconductor  
 
 
 
Functional Block Requirements and Behaviors  
Bias and References Block Description  
6.3  
Bias and References Block Description  
6.3.1 Internal Core Voltage References  
All regulators use the main bandgap as the reference. The main bandgap is bypassed with a capacitor at VCOREREF. The  
bandgap and the rest of the core circuitry are supplied from VCORE. The performance of the regulators is directly dependent on  
the performance of the bandgap. No external DC loading is allowed on VCORE, VCOREDIG, or VCOREREF. VCOREDIG is  
kept powered as long as there is a valid supply and/or valid coin cell. Table 18 shows the main characteristics of the core circuitry.  
Table 18. Core Voltages Electrical Specifications(30)  
TMIN to TMAX (See Table 3), VIN = 2.8 to 4.5 V, LICELL = 1.8 to 3.3 V, and typical external component values. Typical values are  
characterized at VIN = 3.6 V, LICELL = 3.0 V, and 25 °C, unless otherwise noted.  
Parameters  
Symbol  
Min  
Typ  
Max  
Units  
VCOREDIG (DIGITAL CORE SUPPLY)  
Output Voltage  
ON mode (29)  
Coin cell mode and OFF  
VCOREDIG  
1.5  
1.3  
V
VCORE (ANALOG CORE SUPPLY)  
Output Voltage  
ON mode and charging(29)  
OFF and Coin cell mode  
VCORE  
2.775  
0.0  
V
VCOREREF (BANDGAP / REGULATOR REFERENCE)  
Output Voltage(29)  
Absolute Accuracy  
Temperature Drift  
Notes  
VCOREREF  
VCOREREFACC  
VCOREREFTACC  
1.2  
0.5  
V
%
%
0.25  
29. 3.0 V < VIN < 4.5 V, no external loading on VCOREDIG, VCORE, or VCOREREF. Extended operation down to UVDET, but no system  
malfunction.  
30. For information only.  
6.3.1.1  
External Components  
Table 19. External Components for Core Voltages  
Regulator  
Capacitor Value (F)  
VCOREDIG  
VCORE  
1.0  
1.0  
VCOREREF  
0.22  
6.3.2 VREFDDR Voltage Reference  
VREFDDR is an internal PMOS half supply voltage follower capable of supplying up to 10 mA. The output voltage is at one half  
the input voltage. Its typically used as the reference voltage for DDR memories. A filtered resistor divider is utilized to create a  
low frequency pole. This divider then utilizes a voltage follower to drive the load.  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
27  
 
 
 
 
Functional Block Requirements and Behaviors  
Bias and References Block Description  
VINREFDDR  
VINREFDDR  
CHALF1  
100 nf  
VHALF  
_
+
CHALF2  
100 nf  
Discharge  
VREFDDR  
VREFDDR  
CREFDDR  
1.0 uf  
Figure 7. VREFDDR Block Diagram  
6.3.2.1  
VREFDDR Control Register  
The VREFDDR voltage reference is controlled by a single bit in VREFDDCRTL register in Table 20.  
Table 20. Register VREFDDCRTL - ADDR 0x6A  
Name  
UNUSED  
Bit #  
R/W Default  
Description  
3:0  
R/W  
0x00  
0x00  
0x00  
UNUSED  
Enable or disables VREFDDR output voltage  
0 = VREFDDR Disabled  
VREFDDREN  
4
1 = VREFDDR Enabled  
UNUSED  
7:5  
UNUSED  
External Components  
Table 21. VREFDDR External Components(31)  
Capacitor  
Capacitance (F)  
VINREFDDR(32) to VHALF  
VHALF to GND  
VREFDDR  
0.1  
0.1  
1.0  
Notes  
31. Use X5R or X7R capacitors.  
32. VINREFDDR to GND, 1.0 F minimum  
capacitance is provided by buck regulator output.  
PF0100  
Analog Integrated Circuit Device Data  
28  
Freescale Semiconductor  
 
 
 
Functional Block Requirements and Behaviors  
Bias and References Block Description  
VREFDDR Specifications  
Table 22. VREFDDR Electrical Characteristics  
TMIN to TMAX (See Table 3), VIN = 3.6 V, IREFDDR = 0.0 mA, VINREFDDR = 1.5 V and typical external component values, unless  
otherwise noted. Typical values are characterized at VIN = 3.6 V, IREFDDR = 0.0 mA, VINREFDDR = 1.5 V, and 25 °C, unless  
otherwise noted.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
VREFDDR  
Operating Input Voltage Range  
Operating Load Current Range  
Current Limit  
VINREFDDR  
IREFDDR  
1.2  
0.0  
1.8  
10  
V
mA  
IREFDDRLIM  
IREFDDRQ  
10.5  
15  
25  
mA  
I
REFDDR when VREFDDR is forced to VINREFDDR/4  
Quiescent Current(33)  
8.0  
A  
ACTIVE MODE – DC  
Output Voltage  
1.2 V < VINREFDDR < 1.8 V  
0.0 mA < IREFDDR < 10 mA  
VREFDDR  
VINREFDDR/2  
V
Output Voltage Tolerance (TA = -40 to 85 °C)  
1.2 V < VINREFDDR < 1.8 V  
VREFDDRTOL  
–1.0  
1.0  
%
0.6 mA IREFDDR 10 mA  
Output Voltage Tolerance (TA = -40 to 105 °C), Applicable only to  
the Extended Industrial version  
VREFDDRTOL  
–1.2  
1.2  
%
1.2 V < VINREFDDR < 1.8 V  
0.6 mA IREFDDR 10 mA  
Load Regulation  
1.0 mA < IREFDDR < 10 mA  
1.2 V < VINREFDDR < 1.8 V  
VREFDDRLOR  
0.40  
mV/mA  
ACTIVE MODE – AC  
Turn-on Time  
Enable to 90% of end value  
tONREFDDR  
100  
10  
s  
V
INREFDDR = 1.2 V, 1.8 V  
I
REFDDR = 0.0 mA  
Turn-Off Time  
Disable to 10% of initial value  
INREFDDR = 1.2 V, 1.8 V  
REFDDR = 0.0 mA  
tOFFREFDDR  
ms  
V
I
Start-up Overshoot  
INREFDDR = 1.2 V, 1.8 V  
REFDDR = 0.0 mA  
V
I
VREFDDROSH  
1.0  
5.0  
6.0  
%
Transient Load Response  
VREFDDRTLR  
mV  
V
INREFDDR = 1.2 V, 1.8 V  
Notes  
33. When VREFDDR is off there is a quiescent current of 1.5 A typical.  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
29  
 
 
Functional Block Requirements and Behaviors  
Power Generation  
6.4  
Power Generation  
6.4.1 Modes of Operation  
The operation of the PF0100 can be reduced to five states, or modes: ON, OFF, Sleep, Standby, and Coin Cell. Figure 8 shows  
the state diagram of the PF0100, along with the conditions to enter and exit from each state.  
Coin Cell  
VIN < UVDET  
VIN < UVDET  
VIN > UVDET  
PWRON = 0 held >= 4.0 sec  
Any SWxOMODE bits=1  
& PWRONRSTEN = 1  
(PWRON_CFG=1)  
Thermal shutdown  
OFF  
PWRON=1  
& VIN > UVDET  
(PWRON_CFG = 0)  
Or  
VIN < UVDET  
Sleep  
PWRON = 0  
Any SWxOMODE bits=1  
(PWRON_CFG=0)  
Or  
PWRON=0 held >= 4.0 sec  
Any SWxOMODE bits=1  
& PWRONRSTEN = 1  
(PWRON_CFG=1)  
PWRON= 0 < 4.0 sec  
& VIN > UVDET  
(PWRON_CFG=1)  
PWRON = 0  
All SWxOMODE bits= 0  
(PWRON_CFG = 0)  
Or  
VIN < UVDET  
PWRON = 0  
Any SWxOMODE bits=1  
(PWRON_CFG=0)  
Or  
PWRON=0 held >= 4.0 sec  
Any SWxOMODE bits=1  
& PWRONRSTEN = 1  
(PWRON_CFG=1)  
PWRON = 0 held >= 4.0 sec  
All SWxOMODE bits= 0  
& PWRONRSTEN = 1  
(PWRON_CFG = 1)  
PWRON=1  
& VIN > UVDET  
(PWRON_CFG =0)  
Or  
PWRON= 0 < 4.0 sec  
& VIN > UVDET  
(PWRON_CFG=1)  
ON  
Thermal shudown  
PWRON = 0  
All SWxOMODE bits= 0  
(PWRON_CFG = 0)  
Or  
STANDBY asserted  
STANDBY de-asserted  
PWRON = 0 held >= 4.0 sec  
All SWxOMODE bits= 0  
& PWRONRSTEN = 1  
(PWRON_CFG = 1)  
Thermal shutdown  
Standby  
Figure 8. State Diagram  
To complement the state diagram in Figure 8, a description of the states is provided in following sections. Note that VIN must  
exceed the rising UVDET threshold to allow a power up. Refer to Table 29 for the UVDET thresholds. Additionally, I2C control is  
not possible in the Coin Cell mode and the interrupt signal, INTB, is only active in Sleep, Standby, and ON states.  
6.4.1.1  
ON Mode  
The PF0100 enters the On mode after a turn-on event. RESETBMCU is de-asserted, high, in this mode of operation.  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
30  
 
Functional Block Requirements and Behaviors  
Power Generation  
6.4.1.2  
OFF Mode  
The PF0100 enters the Off mode after a turn-off event. A thermal shutdown event also forces the PF0100 into the Off mode. Only  
VCOREDIG and VSNVS are powered in the mode of operation. To exit the Off mode, a valid turn-on event is required.  
RESETBMCU is asserted, LOW, in this mode.  
6.4.1.3  
Standby Mode  
• Depending on STANDBY pin configuration, Standby is entered when the STANDBY pin is asserted. This is typically used  
for low-power mode of operation.  
• When STANDBY is de-asserted, Standby mode is exited.  
A product may be designed to go into a Low-power mode after periods of inactivity. The STANDBY pin is provided for board level  
control of going in and out of such deep sleep modes (DSM).  
When a product is in DSM, it may be able to reduce the overall platform current by lowering the regulator output voltage, changing  
the operating mode of the regulators or disabling some regulators. The configuration of the regulators in Standby is pre-  
programmed through the I2C interface.  
Note that the STANDBY pin is programmable for Active High or Active Low polarity, and that decoding of a Standby event will  
take into account the programmed input polarity as shown in Table 23. When the PF0100 is powered up first, regulator settings  
for the Standby mode are mirrored from the regulator settings for the ON mode. To change the STANDBY pin polarity to Active  
Low, set the STANDBYINV bit via software first, and then change the regulator settings for Standby mode as required. For  
simplicity, STANDBY will generally be referred to as active high throughout this document.  
Table 23. Standby Pin and Polarity Control  
STANDBY (Pin)(35)  
STANDBYINV (I2C bit)(36)  
STANDBY Control (34)  
0
0
1
0
1
0
1
1
0
0
1
1
Notes  
34. STANDBY = 0: System is not in Standby, STANDBY = 1: System is in Standby  
35. The state of the STANDBY pin only has influence in On mode.  
36. Bit 6 in Power Control Register (ADDR - 0x1B)  
Since STANDBY pin activity is driven asynchronously to the system, a finite time is required for the internal logic to qualify and  
respond to the pin level changes. A programmable delay is provided to hold off the system response to a Standby event. This  
allows the processor and peripherals some time after a standby instruction has been received to terminate processes to facilitate  
seamless entering into Standby mode.  
When enabled (STBYDLY = 01, 10, or 11) per Table 24, STBYDLY will delay the Standby initiated response for the entire IC,  
until the STBYDLY counter expires.  
An allowance should be made for three additional 32 k cycles required to synchronize the Standby event.  
Table 24. STANDBY Delay - Initiated Response  
STBYDLY[1:0](37)  
Function  
00  
01  
10  
11  
No Delay  
One 32 k period (default)  
Two 32 k periods  
Three 32 k periods  
Notes  
37. Bits [5:4] in Power Control Register (ADDR - 0x1B)  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
31  
 
 
 
 
 
 
Functional Block Requirements and Behaviors  
Power Generation  
6.4.1.4  
Sleep Mode  
• Depending on PWRON pin configuration, Sleep mode is entered when PWRON is de-asserted and SWxOMODE bit is set.  
• To exit Sleep mode, assert the PWRON pin.  
In the Sleep mode, the regulator will use the set point as programmed by SW1xOFF[5:0] for SW1A/B/C and by SWxOFF[6:0] for  
SW2, SW3A/B, and SW4. The activated regulators will maintain settings for this mode and voltage until the next turn-on event.  
Table 25 shows the control bits in Sleep mode. During Sleep mode, interrupts are active and the INTB pin will report any  
unmasked fault event.  
Table 25. Regulator Mode Control  
SWxOMODE  
Off Operational Mode (Sleep) (38)  
0
1
Off  
PFM  
Notes  
38. For sleep mode, an activated switching regulator, should use the off  
mode set point as programmed by SW1xOFF[5:0] for SW1A/B/C and  
SWxOFF[6:0] for SW2, SW3A/B, and SW4.  
6.4.1.5  
Coin Cell Mode  
In the Coin Cell state, the coin cell is the only valid power source (VIN = 0.0 V) to the PMIC. No turn-on event is accepted in the  
Coin Cell state. Transition to the OFF state requires that VIN surpasses UVDET threshold. RESETBMCU is held low in this mode.  
If the coin cell is depleted, a complete system reset will occur. At the next application of power and the detection of a Turn-on  
event, the system will be re-initialized with all I2C bits including, those that reset on COINPORB are restored to their default  
states.  
PF0100  
Analog Integrated Circuit Device Data  
32  
Freescale Semiconductor  
 
 
Functional Block Requirements and Behaviors  
Power Generation  
6.4.2 State Machine Flow Summary  
Table 26 provides a summary matrix of the PF0100 flow diagram to show the conditions needed to transition from one state to  
another.  
Table 26. State Machine Flow Summary  
Next State  
STATE  
OFF  
X
Coin cell  
IN < UVDET  
X
Sleep  
Standby  
ON  
PWRON_CFG = 0  
PWRON = 1 & VIN > UVDET  
or  
OFF  
Coin cell  
Sleep  
V
X
X
X
X
X
X
PWRON_CFG = 1  
PWRON = 0 < 4.0 s  
& VIN > UNDET  
V
IN > UVDET  
X
Thermal Shutdown  
PWRON_CFG = 0  
PWRON = 1 & VIN > UVDET  
or  
PWRON_CFG = 1  
PWRON = 0 4.0 s  
Any SWxOMODE = 1 &  
PWRONRSTEN = 1  
VIN < UVDET  
PWRON_CFG = 1  
PWRON = 0 < 4.0 s &  
V
IN > UNDET  
Thermal Shutdown  
PWRON_CFG = 0  
PWRON = 0  
Any SWxOMODE = 1  
or  
PWRON_CFG = 1  
PWRON = 0 4.0 s  
Any SWxOMODE = 1 &  
PWRONRSTEN = 1  
PWRON_CFG = 0  
PWRON = 0  
All SWxOMODE = 0  
or  
PWRON_CFG = 1  
PWRON = 0 4.0 s  
All SWxOMODE = 0 &  
PWRONRSTEN = 1  
Standby  
V
IN < UVDET  
X
Standby de-asserted  
Thermal Shutdown  
PWRON_CFG = 0  
PWRON = 0  
Any SWxOMODE = 1  
or  
PWRON_CFG = 1  
PWRON = 0 4.0 s  
Any SWxOMODE = 1 &  
PWRONRSTEN = 1  
PWRON_CFG = 0  
PWRON = 0  
All SWxOMODE = 0  
or  
PWRON_CFG = 1  
PWRON = 0 4.0 s  
All SWxOMODE = 0 &  
PWRONRSTEN = 1  
Standby  
asserted  
ON  
V
IN < UVDET  
X
6.4.2.1  
Turn On Events  
From OFF and Sleep modes, the PMIC is powered on by a turn-on event. The type of Turn-on event depends on the configuration  
of PWRON. PWRON may be configured as an active high when PWRON_CFG = 0, or as the input of a mechanical switch when  
PWRON_CFG = 1. VIN must be greater than UVDET for the PMIC to turn-on. When PWRON is configured as an active high and  
PWRON is high (pulled up to VSNVS) before VIN is valid, a VIN transition from 0.0 V to a voltage greater than UVDET is also a  
Turn-on event. See the State diagram, Figure 8, and the Table 26 for more details. Any regulator enabled in the Sleep mode will  
remain enabled when transitioning from Sleep to ON, i.e., the regulator will not be turned off and then on again to match the start-  
up sequence. The following is a more detailed description of the PWRON configurations:  
• If PWRON_CFG = 0, the PWRON signal is high and VIN > UVDET, the PMIC will turn on; the interrupt and sense bits,  
PWRONI and PWRONS respectively, will be set.  
• If PWRON_CFG = 1, VIN > UVDET and PWRON transitions from high to low, the PMIC will turn on; the interrupt and sense  
bits, PWRONI and PWRONS respectively, will be set.  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
33  
 
Functional Block Requirements and Behaviors  
Power Generation  
The sense bit will show the real time status of the PWRON pin. In this configuration, the PWRON input can be a mechanical  
switch debounced through a programmable debouncer, PWRONDBNC[1:0], to avoid a response to a very short (i.e.,  
unintentional) key press. The interrupt is generated for both the falling and the rising edge of the PWRON pin. By default, a 30 ms  
interrupt debounce is applied to both falling and rising edges. The falling edge debounce timing can be extended with  
PWRONDBNC[1:0] as defined in the table below. The interrupt is cleared by software, or when cycling through the OFF mode.  
Table 27. PWRON Hardware Debounce Bit Settings  
Turn On  
Debounce (ms)  
Falling Edge INT  
Debounce (ms)  
Rising Edge INT  
Debounce (ms)  
Bits  
State  
00  
01  
10  
11  
0.0  
31.25  
125  
31.25  
31.25  
125  
31.25  
31.25  
31.25  
31.25  
PWRONDBNC[1:0]  
Notes  
750  
750  
39. The sense bit, PWRONS, is not debounced and follows the state of the PWRON pin.  
6.4.2.2  
Turn Off Events  
PWRON Pin  
The PWRON pin is used to power off the PF0100. The PWRON pin can be configured with OTP to power off the PMIC under  
the following two conditions:  
1. PWRON_CFG bit = 0, SWxOMODE bit = 0 and PWRON pin is low.  
2. PWRON_CFG bit = 1, SWxOMODE bit = 0, PWRONRSTEN = 1 and PWRON is held low for longer than 4.0  
seconds. Alternatively, the system can be configured to restart automatically by setting the RESTARTEN bit.  
Thermal Protection  
If the die temperature surpasses a given threshold, the thermal protection circuit will power off the PMIC to avoid damage. A turn-  
on event will not power on the PMIC while it is in thermal protection. The part will remain in Off mode until the die temperature  
decreases below a given threshold. There are no specific interrupts related to this other than the warning interrupt. See Power  
Dissipation section for more detailed information.  
Undervoltage Detection  
When the voltage at VIN drops below the undervoltage falling threshold, UVDET, the state machine will transition to the Coin Cell  
mode.  
6.4.3 Power Tree  
The PF0100 PMIC features six buck regulators, one boost regulator, six general purpose LDOs, one switch/LDO combination,  
and a DDR voltage reference to supply voltages for the application processor and peripheral devices. The buck regulators as  
well as the boost regulator are supplied directly from the main input supply (VIN). The inputs to all of the buck regulators must be  
tied to VIN, whether they are powered on or off. The six general use LDO regulators are directly supplied from the main input  
supply or from the switching regulators depending on the application requirements. Since VREFDDR is intended to provide DDR  
memory reference voltage, it should be supplied by any rail supplying voltage to DDR memories; the typical application  
recommends the use of SW3 as the input supply for VREFDDR. VSNVS is supplied by either the main input supply or the coin  
cell. Refer to Table 28 for a summary of all power supplies provided by the PF0100.  
PF0100  
Analog Integrated Circuit Device Data  
34  
Freescale Semiconductor  
Functional Block Requirements and Behaviors  
Power Generation  
Table 28. Power Tree Summary  
Supply  
Output Voltage (V)  
Step Size (mV)  
Maximum Load Current (mA)  
SW1A/B  
SW1C  
SW2  
0.3 - 1.875  
0.3 - 1.875  
0.4 - 3.3  
25  
25  
2500  
2000  
25/50  
25/50  
2000  
SW3A/B  
0.4 - 3.3  
1250(40)  
0.5*SW3A_OUT,  
0.4 - 3.3  
SW4  
25/50  
1000  
SWBST  
VGEN1  
VGEN2  
VGEN3  
VGEN4  
VGEN5  
VGEN6  
VSNVS  
VREFDDR  
5.00/5.05/5.10/5.15  
0.80 – 1.55  
0.80 – 1.55  
1.8 – 3.3  
50  
50  
600  
100  
250  
100  
350  
100  
200  
0.4  
50  
100  
100  
100  
100  
NA  
NA  
1.8 – 3.3  
1.8 – 3.3  
1.8 – 3.3  
1.0 - 3.0  
0.5*SW3A_OUT  
10  
Notes  
40. Current rating per independent phase, when SW3A/B is set in single or dual phase, current capability is up  
to 2500 mA.  
Figure 9 shows a simplified power map with various recommended options to supply the different block within the PF0100, as  
well as the typical application voltage domain on the i.MX6X processor. Note that each application power tree is dependent upon  
the system’s voltage and current requirements, therefore a proper input voltage should be selected for the regulators.  
The minimum operating voltage for the main VIN supply is 2.8 V, for lower voltages proper operation is not guaranteed. However  
at initial power up, the input voltage must surpass the rising UVDET threshold before proper operation is guaranteed. Refer to  
the representative tables and text specifying each supply for information on performance metrics and operating ranges. Table 29  
summarizes the UVDET thresholds.  
Table 29. UVDET Threshold  
UVDET Threshold  
VIN  
Rising  
Falling  
3.1 V  
2.65 V  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
35  
 
 
Functional Block Requirements and Behaviors  
Power Generation  
i.MX6X  
MCU  
SW1A  
CORE  
VDDARM_IN  
(0.3 to 1.875 V), 1.25 A  
SW1B  
CORE  
(0.3 to 1.875 V), 1.25 A  
SW1C  
SOC  
(0.3 to 1.875 V), 2.0 A  
VDDSOC_IN  
VDDHIGH_IN  
SW2  
VDDHIGH  
VIN  
2.8 - 4.5 V  
(0.4 to 3.3 V), 2.0 A  
SW3A  
DDR CORE  
(0.4 to 3.3 V), 1.25 A  
SW3B  
DDR IO  
VDD_DDR_IO  
(0.4 to 3.3 V), 1.25 A  
SW4  
System/VTT  
(0.4 to 3.3 V)  
(0.5*VDDR)  
1.0 A  
SWBST  
5.0 V, 0.6 A  
LDO_3p0  
VREFDDR  
0.5*VDDR, 10 mA  
SW3A/B  
VIN  
VSNVS  
MUX /  
VSNVS_IN  
COIN  
CHRG  
1.0 to 3.0 V,  
400 uA  
Coincell  
VGEN1  
(0.80 to 1.55 V),  
100 mA  
USB_OTG  
VIN  
SW2  
VINMAX = 3.4 V  
VGEN2  
(0.80 to 1.55 V),  
250 mA  
SW4  
DDR3  
VGEN3  
(1.8 to 3.3 V),  
100 mA  
Peripherals  
VIN  
VINMAX = 3.6 V  
SW2  
VGEN4  
(1.8 to 3.3 V),  
350 mA  
SW4  
VGEN5  
(1.8 to 3.3 V),  
100 mA  
VIN  
VINMAX = 4.5 V  
SW2  
VGEN6  
(1.8 to 3.3 V),  
200 mA  
SW4  
Figure 9. PF0100 Typical Power Map  
PF0100  
Analog Integrated Circuit Device Data  
36  
Freescale Semiconductor  
Functional Block Requirements and Behaviors  
Power Generation  
6.4.4 Buck Regulators  
Each buck regulator is capable of operating in PFM, APS, and PWM switching modes.  
6.4.4.1  
Current Limit  
Each buck regulator has a programmable current limit. In an overcurrent condition, the current is limited cycle-by-cycle. If the  
current limit condition persists for more than 8.0 ms, a fault interrupt is generated.  
6.4.4.2  
General Control  
To improve system efficiency the buck regulators can operate in different switching modes. Changing between switching modes  
can occur by any of the following means: I2C programming, exiting/entering the Standby mode, exiting/entering Sleep mode, and  
load current variation. Available switching modes for buck regulators are presented in Table 30.  
Table 30. Switching Mode Description  
Mode  
Description  
OFF  
The regulator is switched off and the output voltage is discharged.  
In this mode, the regulator is always in PFM mode, which is useful at light loads for  
optimized efficiency.  
PFM  
PWM  
APS  
In this mode, the regulator is always in PWM mode operation regardless of load conditions.  
In this mode, the regulator moves automatically between pulse skipping mode and PWM  
mode depending on load conditions.  
During soft-start of the buck regulators, the controller transitions through the PFM, APS, and PWM switching modes. 3.0 ms  
(typical) after the output voltage reaches regulation, the controller transitions to the selected switching mode. Depending on the  
particular switching mode selected, additional ripple may be observed on the output voltage rail as the controller transitions  
between switching modes.  
Table 31 summarizes the Buck regulator programmability for Normal and Standby modes.  
Table 31. Regulator Mode Control  
SWxMODE[3:0]  
Normal Mode  
Standby Mode  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
Off  
PWM  
Off  
Off  
Reserved  
PFM  
Reserved  
Off  
APS  
Off  
PWM  
PWM  
PWM  
APS  
Reserved  
APS  
Reserved  
APS  
Reserved  
Reserved  
Reserved  
APS  
Reserved  
Reserved  
Reserved  
PFM  
PWM  
PFM  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
37  
 
 
Functional Block Requirements and Behaviors  
Power Generation  
Table 31. Regulator Mode Control  
SWxMODE[3:0]  
Normal Mode  
Standby Mode  
1110  
1111  
Reserved  
Reserved  
Reserved  
Reserved  
Transitioning between Normal and Standby modes can affect a change in switching modes as well as output voltage. The rate  
of the output voltage change is controlled by the Dynamic Voltage Scaling (DVS), explained in Dynamic Voltage Scaling. For  
each regulator, the output voltage options are the same for Normal and Standby modes.  
When in Standby mode, the regulator outputs the voltage programmed in its standby voltage register and will operate in the mode  
selected by the SWxMODE[3:0] bits. Upon exiting Standby mode, the regulator will return to its normal switching mode and its  
output voltage programmed in its voltage register.  
Any regulators whose SWxOMODE bit is set to “1” will enter Sleep mode if a PWRON turn-off event occurs, and any regulator  
whose SWxOMODE bit is set to “0” will be turned off. In Sleep mode, the regulator outputs the voltage programmed in its off  
(Sleep) voltage register and operates in the PFM mode. The regulator will exit the Sleep mode when a turn-on event occurs. Any  
regulator whose SWxOMODE bit is set to “1” will remain on and change to its normal configuration settings when exiting the Sleep  
state to the ON state. Any regulator whose SWxOMODE bit is set to “0” will be powered up with the same delay in the start-up  
sequence as when powering On from Off. At this point, the regulator returns to its default ON state output voltage and switch  
mode settings.  
Table 25 shows the control bits in Sleep mode. When Sleep mode is activated by the SWxOMODE bit, the regulator will use the  
set point as programmed by SW1xOFF[5:0] for SW1A/B/C and by SWxOFF[6:0] for SW2, SW3A/B, and SW4.  
Dynamic Voltage Scaling  
To reduce overall power consumption, processor core voltages can be varied depending on the mode or activity level of the  
processor.  
1. Normal operation: The output voltage is selected by I2C bits SW1x[5:0] for SW1A/B/C and SWx[6:0] for SW2, SW3A/B,  
and SW4. A voltage transition initiated by I2C is governed by the DVS stepping rates shown in Table 34 and Table 35.  
2. Standby Mode: The output voltage can be higher, or lower than in normal operation, but is typically selected to be the  
lowest state retention voltage of a given processor; it is selected by I2C bits SW1xSTBY[5:0] for SW1A/B/C and by bits  
SWxSTBY[6:0] for SW2, SW3A/B, and SW4. Voltage transitions initiated by a Standby event are governed by the  
SW1xDVSSPEED[1:0] and SWxDVSSPEED[1:0] I2C bits shown in Table 34 and Table 35, respectively.  
3. Sleep Mode: The output voltage can be higher or lower than in normal operation, but is typically selected to be the lowest  
state retention voltage of a given processor; it is selected by I2C bits SW1xOFF[5:0] for SW1A/B/C and by bits  
SWxOFF[6:0] for SW2, SW3A/B, and SW4. Voltage transitions initiated by a turn-off event are governed by the  
SW1xDVSSPEED[1:0] and SWxDVSSPEED[1:0] I2C bits shown in Table 34 and Table 35, respectively.  
Table 32, Table 33, Table 34, and Table 35 summarize the set point control and DVS time stepping applied to all regulators.  
Table 32. DVS Control Logic for SW1A/B/C  
STANDBY  
Set Point Selected by  
0
1
SW1x[5:0]  
SW1xSTBY[5:0]  
Table 33. DVS Control Logic for SW2, SW3A/B, and SW4  
STANDBY  
Set Point Selected by  
0
1
SWx[6:0]  
SWxSTBY[6:0]  
PF0100  
Analog Integrated Circuit Device Data  
38  
Freescale Semiconductor  
 
 
 
Functional Block Requirements and Behaviors  
Power Generation  
Table 34. DVS Speed Selection for SW1A/B/C  
SW1xDVSSPEED[1:0]  
Function  
00  
01 (default)  
10  
25 mV step each 2.0 s  
25 mV step each 4.0 s  
25 mV step each 8.0 s  
25 mV step each 16 s  
11  
Table 35. DVS Speed Selection for SW2, SW3A/B, and SW4  
Function  
SWx[6] = 0 or SWxSTBY[6] = 0  
Function  
SWx[6] = 1 or SWxSTBY[6] = 1  
SWxDVSSPEED[1:0]  
00  
01 (default)  
10  
25 mV step each 2.0 s  
25 mV step each 4.0 s  
25 mV step each 8.0 s  
25 mV step each 16 s  
50 mV step each 4.0 s  
50 mV step each 8.0 s  
50 mV step each 16 s  
50 mV step each 32 s  
11  
The regulators have a strong sourcing capability and sinking capability in PWM mode, therefore the fastest rising and falling  
slopes are determined by the regulator in PWM mode. However, if the regulators are programmed in PFM or APS mode during  
a DVS transition, the falling slope can be influenced by the load. Additionally, as the current capability in PFM mode is reduced,  
controlled DVS transitions in PFM mode could be affected. Critically timed DVS transitions are best assured with PWM mode  
operation.  
The following diagram shows the general behavior for the regulators when initiated with I2C programming, or standby control.  
During the DVS period the overcurrent condition on the regulator should be masked.  
Requested  
Set Point  
Output Voltage  
with light Load  
Internally  
Controlled Steps  
Example  
Output  
Voltage  
Actual Output  
Voltage  
Initial  
Set Point  
Actual  
Output Voltage  
Internally  
Possible  
Output Voltage  
Window  
Controlled Steps  
Request for  
Higher Voltage  
Request for  
Lower Voltage  
Voltage  
Change  
Request  
Initiated by I2C Programming, Standby Control  
Figure 10. Voltage Stepping with DVS  
Regulator Phase Clock  
The SWxPHASE[1:0] bits select the phase of the regulator clock as shown in Table 36. By default, each regulator is initialized at  
90 ° out of phase with respect to each other. For example, SW1x is set to 0 °, SW2 is set to 90 °, SW3A/B is set to 180 °, and  
SW4 is set to 270 ° by default at power up.  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
39  
 
 
Functional Block Requirements and Behaviors  
Power Generation  
Table 36. Regulator Phase Clock Selection  
Phase of Clock Sent to Regulator  
SWxPHASE[1:0]  
(degrees)  
00  
01  
10  
11  
0
90  
180  
270  
The SWxFREQ[1:0] register is used to set the desired switching frequency for each one of the buck regulators. Table 38 shows  
the selectable options for SWxFREQ[1:0]. For each frequency, all phases will be available, this allows regulators operating at  
different frequencies to have different relative switching phases. However, not all combinations are practical. For example,  
2.0 MHz, 90 ° and 4.0 MHz, 180 ° are the same in terms of phasing. Table 37 shows the optimum phasing when using more than  
one switching frequency.  
Table 37. Optimum Phasing  
Frequencies  
Optimum Phasing  
1.0 MHz  
2.0 MHz  
0 °  
180 °  
1.0 MHz  
4.0 MHz  
0 °  
180 °  
2.0 MHz  
4.0 MHz  
0 °  
180 °  
1.0 MHz  
2.0 MHz  
4.0 MHz  
0 °  
90 °  
90 °  
Table 38. Regulator Frequency Configuration  
SWxFREQ[1:0]  
Frequency  
00  
01  
10  
11  
1.0 MHz  
2.0 MHz  
4.0 MHz  
Reserved  
Programmable Maximum Current  
The maximum current, ISWxMAX, of each buck regulator is programmable. This allows the use of smaller inductors where lower  
currents are required. Programmability is accomplished by choosing the number of paralleled power stages in each regulator.  
The SWx_PWRSTG[2:0] bits on the Extended Page 2 of the register map control the number of power stages. See Table 39 for  
the programmable options. Bit[0] must always be enabled to ensure the stage with the current sensor is chosen. The default  
setting, SWx_PWRSTG[2:0] = 111, represents the highest maximum current. The current limit for each option is also scaled by  
the percentage of power stages that are enabled.  
PF0100  
Analog Integrated Circuit Device Data  
40  
Freescale Semiconductor  
 
 
 
Functional Block Requirements and Behaviors  
Power Generation  
Table 39. Programmable Current Configuration  
% of Power Stages  
Regulators  
Control Bits  
Rated Current (A)  
Enabled  
SW1AB_PWRSTG[2:0]  
ISW1ABMAX  
1.0  
0
0
1
1
1
1
40%  
80%  
SW1AB  
0
1
1
1
2.0  
0
60%  
1.5  
1
100%  
2.5  
SW1C_PWRSTG[2:0]  
ISW1CMAX  
0.9  
0
0
1
1
0
1
1
1
1
43%  
58%  
SW1C  
1
1.2  
0
86%  
1.7  
1
100%  
2.0  
SW2_PWRSTG[2:0]  
ISW2MAX  
0.75  
0
0
1
1
0
1
1
1
1
38%  
75%  
SW2  
1
1.5  
0
63%  
1.25  
1
100%  
2.0  
SW3A_PWRSTG[2:0]  
ISW3AMAX  
0.5  
0
0
1
1
0
1
1
1
1
40%  
80%  
SW3A  
SW3B  
SW4  
1
1.0  
0
60%  
0.75  
1
100%  
1.25  
SW3B_PWRSTG[2:0]  
ISW3BMAX  
0.5  
0
0
1
1
0
1
1
1
1
40%  
80%  
1
1.0  
0
60%  
0.75  
1
100%  
1.25  
SW4_PWRSTG[2:0]  
ISW4MAX  
0.5  
0
0
1
1
0
1
0
1
1
1
1
1
50%  
75%  
0.75  
75%  
0.75  
100%  
1.0  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
41  
Functional Block Requirements and Behaviors  
Power Generation  
6.4.4.3  
SW1A/B/C  
SW1/A/B/C are 2.5 to 4.5 A buck regulators that can be configured in various phasing schemes, depending on the desired cost/  
performance trade-offs. The following configurations are available:  
• SW1A/B/C single phase with one inductor  
• SW1A/B as a single phase with one inductor and SW1C in independent mode with one inductor  
• SW1A/B as a dual phase with two inductors and SW1C in independent mode with one inductor  
The desired configuration is programmed by OTP by using SW1_CONFIG[1:0] bits in the register map Extended Page 1, as  
shown in Table 40.  
.
Table 40. SW1 Configuration  
SW1_CONFIG[1:0]  
Description  
A/B/C Single Phase  
00  
A/B Single Phase  
C Independent mode  
01  
A/B Dual Phase  
C Independent mode  
10  
11  
Reserved  
PF0100  
Analog Integrated Circuit Device Data  
42  
Freescale Semiconductor  
 
Functional Block Requirements and Behaviors  
Power Generation  
SW1A/B/C Single Phase  
In this configuration, all phases A, B, and C, are connected together to a single inductor, thus, providing up to 4.50 A current  
capability for high current applications. The feedback and all other controls are accomplished by use of pin SW1CFB and SW1C  
control registers, respectively. Figure 11 shows the connection for SW1A/B/C in single phase mode.  
During Single Phase mode operation, all three phases will use the same configuration for frequency, phase, and DVS speed set  
in SW1CCONF register. However, the same configuration settings for frequency, phase, and DVS speed setting on SW1AB  
registers should be used. The SW1FB pin should be left floating in this configuration.  
VIN  
SW1AIN  
SW1ALX  
SW1AMODE  
ISENSE  
CINSW1A  
Controller  
SW1A/B/C  
Driver  
LSW1  
COSW1A  
SW1AFAULT  
Internal  
I2C  
Compensation  
Z2  
SW1FB  
Z1  
EA  
VREF  
DAC  
VIN  
SW1BIN  
SW1BMODE  
ISENSE  
CINSW1B  
Controller  
I2C  
Interface  
SW1BLX  
Driver  
SW1BFAULT  
SW1CMODE  
VIN  
SW1CIN  
ISENSE  
CINSW1C  
Controller  
SW1CLX  
EP  
Driver  
SW1CFAULT  
Internal  
I2C  
Compensation  
Z2  
SW1CFB  
Z1  
VREF  
EA  
DAC  
Figure 11. SW1A/B/C Single Phase Block Diagram  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
43  
 
Functional Block Requirements and Behaviors  
Power Generation  
SW1A/B Single Phase - SW1C Independent Mode  
In this configuration, SW1A/B is connected as a single phase with a single inductor, while SW1C is used as an independent  
output, using its own inductor and configurations parameters. This configuration allows reduced component count by using only  
one inductor for SW1A/B. As mentioned before, SW1A/B and SW1C operate independently from one another, thus, they can be  
operated with a different voltage set point for Normal, Standby, and Sleep modes, as well as switching mode selection and on/  
off control. Figure 12 shows the physical connection for SW1A/B in single phase and SW1C as an independent output.  
VIN  
SW1AIN  
SW1ALX  
SW1AMODE  
ISENSE  
CINSW1A  
Controller  
SW1A/B  
Driver  
LSW1A  
COSW1A  
SW1AFAULT  
Internal  
I2C  
Compensation  
Z2  
SW1FB  
Z1  
EA  
VREF  
DAC  
VIN  
SW1BIN  
SW1BMODE  
ISENSE  
CINSW1B  
Controller  
I2C  
Interface  
SW1BLX  
Driver  
SW1BFAULT  
SW1CMODE  
VIN  
SW1CIN  
ISENSE  
CINSW1C  
Controller  
SW1C  
SW1CLX  
EP  
Driver  
LSW1C  
COSW1C  
SW1CFAULT  
Internal  
I2C  
Compensation  
Z2  
SW1CFB  
Z1  
VREF  
EA  
DAC  
Figure 12. SW1A/B Single Phase, SW1C Independent Mode Block Diagram  
Both SW1ALX and SW1BLX nodes operate at the same DVS, frequency, and phase configured by the SW1ABCONF register,  
while SW1CLX node operates independently, using the configuration in the SW1CCONF register.  
PF0100  
Analog Integrated Circuit Device Data  
44  
Freescale Semiconductor  
 
Functional Block Requirements and Behaviors  
Power Generation  
SW1A/B Dual Phase - SW1C Independent Mode  
In this mode, SW1A/B is connected in dual phase mode using one inductor per switching node, while SW1C is used as an  
independent output using its own inductor and configuration parameters. This mode provides a smaller output voltage ripple on  
the SW1A/B output. As mentioned before, SW1A/B and SW1C operate independently from one another, thus, they can be  
operated with a different voltage set point for Normal, Standby, and Sleep modes, as well as switching mode selection and on/  
off control. Figure 13 shows the physical connection for SW1A/B in dual phase and SW1C as an independent output.  
VIN  
SW1AIN  
SW1ALX  
SW1AMODE  
ISENSE  
CINSW1A  
Controller  
SW1AB  
Driver  
LSW1A  
COSW1A  
SW1AFAULT  
Internal  
I2C  
Compensation  
Z2  
SW1FB  
Z1  
EA  
VREF  
DAC  
VIN  
SW1BIN  
SW1BLX  
SW1BMODE  
ISENSE  
CINSW1B  
I2C  
Interface  
Controller  
Driver  
LSW1B  
COSW1B  
SW1BFAULT  
SW1CMODE  
VIN  
SW1CIN  
ISENSE  
CINSW1C  
Controller  
SW1C  
SW1CLX  
EP  
Driver  
LSW1C  
COSW1C  
SW1CFAULT  
Internal  
I2C  
Compensation  
Z2  
SW1CFB  
Z1  
VREF  
EA  
DAC  
Figure 13. SW1A/B Dual Phase, SW1C Independent Mode Block Diagram  
In this mode of operation, SW1ALX and SW1BLX nodes operate automatically at 180 ° phase shift from each other and use the  
same frequency and DVS configured by SW1ABCONF register, while SW1CLX node operate independently using the  
configuration in the SW1CCONF register.  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
45  
 
Functional Block Requirements and Behaviors  
Power Generation  
SW1A/B/C Setup and Control Registers  
SW1A/B and SW1C output voltages are programmable from 0.300 to 1.875 V in steps of 25 mV. The output voltage set point is  
independently programmed for Normal, Standby, and Sleep mode by setting the SW1x[5:0], SW1xSTBY[5:0], and  
SW1xOFF[5:0] bits respectively. Table 41 shows the output voltage coding for SW1A/B or SW1C.  
Note: Voltage set points of 0.6 V and below are not supported.  
Table 41. SW1A/B/C Output Voltage Configuration  
SW1x[5:0]  
SW1x[5:0]  
Set Point  
SW1xSTBY[5:0]  
SW1xOFF[5:0]  
SW1x Output (V)  
Set Point  
SW1xSTBY[5:0]  
SW1xOFF[5:0]  
SW1x Output (V)  
0
000000  
000001  
000010  
000011  
000100  
000101  
000110  
000111  
001000  
001001  
001010  
001011  
001100  
001101  
001110  
001111  
010000  
010001  
010010  
010011  
010100  
010101  
010110  
010111  
011000  
011001  
011010  
011011  
011100  
011101  
011110  
011111  
0.3000  
0.3250  
0.3500  
0.3750  
0.4000  
0.4250  
0.4500  
0.4750  
0.5000  
0.5250  
0.5500  
0.5750  
0.6000  
0.6250  
0.6500  
0.6750  
0.7000  
0.7250  
0.7500  
0.7750  
0.8000  
0.8250  
0.8500  
0.8750  
0.9000  
0.9250  
0.9500  
0.9750  
1.0000  
1.0250  
1.0500  
1.0750  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
100000  
100001  
100010  
100011  
100100  
100101  
100110  
100111  
101000  
101001  
101010  
101011  
101100  
101101  
101110  
101111  
110000  
110001  
110010  
110011  
110100  
110101  
110110  
110111  
111000  
111001  
111010  
111011  
111100  
111101  
111110  
111111  
1.1000  
1.1250  
1.1500  
1.1750  
1.2000  
1.2250  
1.2500  
1.2750  
1.3000  
1.3250  
1.3500  
1.3750  
1.4000  
1.4250  
1.4500  
1.4750  
1.5000  
1.5250  
1.5500  
1.5750  
1.6000  
1.6250  
1.6500  
1.6750  
1.7000  
1.7250  
1.7500  
1.7750  
1.8000  
1.8250  
1.8500  
1.8750  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
PF0100  
Analog Integrated Circuit Device Data  
46  
Freescale Semiconductor  
 
Functional Block Requirements and Behaviors  
Power Generation  
Table 42 provides a list of registers used to configure and operate SW1A/B/C and a detailed description on each one of these  
register is provided in Table 43 through Table 52.  
Table 42. SW1A/B/C Register Summary  
Register  
SW1ABVOLT  
Address  
Output  
0x20  
0x21  
0x22  
0x23  
0x24  
0x2E  
0x2F  
0x30  
0x31  
0x32  
SW1AB Output voltage set point in normal operation  
SW1AB Output voltage set point on Standby  
SW1AB Output voltage set point on Sleep  
SW1ABSTBY  
SW1ABOFF  
SW1ABMODE  
SW1ABCONF  
SW1CVOLT  
SW1CSTBY  
SW1COFF  
SW1AB Switching Mode selector register  
SW1AB DVS, Phase, Frequency and ILIM configuration  
SW1C Output voltage set point in normal operation  
SW1C Output voltage set point in Standby  
SW1C Output voltage set point in Sleep  
SW1CMODE  
SW1CCONF  
SW1C Switching Mode selector register  
SW1C DVS, Phase, Frequency and ILIM configuration  
Table 43. Register SW1ABVOLT - ADDR 0x20  
Name  
Bit #  
R/W Default  
Description  
Sets the SW1AB output voltage during normal  
operation mode. See Table 41 for all possible  
configurations.  
SW1AB  
5:0  
7:6  
R/W  
0x00  
0x00  
UNUSED  
UNUSED  
Table 44. Register SW1ABSTBY - ADDR 0x21  
Name  
Bit #  
R/W Default  
Description  
Sets the SW1AB output voltage during Standby  
mode. See Table 41 for all possible  
configurations.  
SW1ABSTBY  
UNUSED  
5:0  
7:6  
R/W  
0x00  
0x00  
UNUSED  
Table 45. Register SW1ABOFF - ADDR 0x22  
Name  
Bit #  
R/W Default  
Description  
Sets the SW1AB output voltage during Sleep  
mode. See Table 41 for all possible  
configurations.  
SW1ABOFF  
5:0  
7:6  
R/W  
0x00  
0x00  
UNUSED  
UNUSED  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
47  
 
 
Functional Block Requirements and Behaviors  
Power Generation  
Table 46. Register SW1ABMODE - ADDR 0x23  
Name  
Bit #  
R/W Default  
Description  
Sets the SW1AB switching operation mode.  
See Table 31 for all possible configurations.  
SW1ABMODE  
UNUSED  
3:0  
4
R/W  
0x80  
0x00  
UNUSED  
Set status of SW1AB when in Sleep mode  
SW1ABOMODE  
UNUSED  
5
R/W  
0x00  
0x00  
0 = OFF  
1 = PFM  
7:6  
UNUSED  
Table 47. Register SW1ABCONF - ADDR 0x24  
Name  
Bit #  
R/W Default  
Description  
SW1AB current limit level selection  
0 = High level current limit  
SW1ABILIM  
0
R/W  
0x00  
1 = Low level current limit  
UNUSED  
1
R/W  
R/W  
0x00  
0x00  
Unused  
SW1A/B switching frequency selector.  
See Table 38.  
SW1ABFREQ  
3:2  
SW1A/B Phase clock selection.  
See Table 36.  
SW1ABPHASE  
5:4  
7:6  
R/W  
R/W  
0x00  
0x00  
SW1A/B DVS speed selection.  
See Table 34.  
SW1ABDVSSPEED  
Table 48. Register SW1CVOLT - ADDR 0x2E  
Name  
Bit #  
R/W Default  
Description  
Sets the SW1C output voltage during normal  
operation mode. See Table 41 for all possible  
configurations.  
SW1C  
5:0  
7:6  
R/W  
0x00  
0x00  
UNUSED  
UNUSED  
Table 49. Register SW1CSTBY - ADDR 0x2F  
Name  
Bit #  
R/W Default  
Description  
Sets the SW1C output voltage during Standby  
mode. See Table 41 for all possible  
configurations.  
SW1CSTBY  
5:0  
7:6  
R/W  
0x00  
0x00  
UNUSED  
UNUSED  
Table 50. Register SW1COFF - ADDR 0x30  
Name  
Bit #  
R/W Default  
Description  
Sets the SW1C output voltage during Sleep  
mode. See Table 41 for all possible  
configurations.  
SW1COFF  
5:0  
7:6  
R/W  
0x00  
0x00  
UNUSED  
UNUSED  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
48  
Functional Block Requirements and Behaviors  
Power Generation  
Table 51. Register SW1CMODE - ADDR 0x31  
Name  
Bit #  
R/W Default  
Description  
Sets the SW1C switching operation mode.  
See Table 30 for all possible configurations.  
SW1CMODE  
UNUSED  
3:0  
4
R/W  
0x80  
0x00  
UNUSED  
Set status of SW1C when in Sleep mode  
SW1COMODE  
UNUSED  
5
R/W  
0x00  
0x00  
0 = OFF  
1 = PFM  
7:6  
UNUSED  
Table 52. Register SW1CCONF - ADDR 0x32  
Name  
Bit #  
R/W Default  
Description  
SW1C current limit level selection  
0 = High level current limit  
1 = Low level current limit  
SW1CILIM  
0
R/W  
0x00  
UNUSED  
1
R/W  
R/W  
0x00  
0x00  
Unused  
SW1C switching frequency selector.  
See Table 38.  
SW1CFREQ  
3:2  
SW1C Phase clock selection.  
See Table 36.  
SW1CPHASE  
5:4  
7:6  
R/W  
R/W  
0x00  
0x00  
SW1C DVS speed selection.  
See Table 34.  
SW1CDVSSPEED  
SW1A/B/C External Components  
Table 53. SW1A/B/C External Component Recommendations  
Mode  
A/B/C Single  
A/B Single - C  
Independent Mode Independent Mode  
A/B Dual - C  
Components  
Description  
Phase  
(41)  
CINSW1A  
SW1A Input capacitor  
4.7 F  
0.1 F  
4.7 F  
0.1 F  
4.7 F  
0.1 F  
6 x 22 F  
4.7 F  
0.1 F  
4.7 F  
0.1 F  
(41)  
CIN1AHF  
SW1A Decoupling input capacitor  
SW1B Input capacitor  
(41)  
CINSW1B  
4.7 F  
4.7 F  
(41)  
CIN1BHF  
SW1B Decoupling input capacitor  
SW1C Input capacitor  
0.1 F  
0.1 F  
(41)  
CINSW1C  
4.7 F  
4.7 F  
(41)  
CIN1CHF  
SW1C Decoupling input capacitor  
SW1A/B Output capacitor  
SW1C Output capacitor  
0.1 F  
0.1 F  
(41)  
COSW1AB  
4 x 22 F  
2 x 22 F  
4 x 22 F  
2 x 22 F  
(41)  
COSW1C  
1.0 H  
1.0 H  
1.0 H  
LSW1A  
SW1A Inductor  
SW1B Inductor  
DCR = 12 m  
DCR = 12 m  
DCR = 60 m  
I
SAT = 6.0 A  
I
SAT = 4.5 A  
I
SAT = 2.4 A  
1.0 H  
LSW1B  
DCR = 60 m  
SAT = 2.4 A  
I
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
49  
Functional Block Requirements and Behaviors  
Power Generation  
Table 53. SW1A/B/C External Component Recommendations  
Mode  
A/B/C Single  
A/B Single - C  
Independent Mode Independent Mode  
A/B Dual - C  
Components  
Description  
Phase  
1.0 H  
1.0 H  
LSW1C  
Notes  
SW1C Inductor  
DCR = 60 m  
DCR = 60 m  
ISAT = 2.4 A  
I
SAT = 2.4 A  
41. Use X5R or X7R capacitors.  
SW1A/B/C Specifications  
Table 54. SW1A/B/C Electrical Characteristics  
All parameters are specified at TMIN to TMAX (See Table 3), VIN = VINSW1x = 3.6 V, VSW1x = 1.2 V, ISW1x = 100 mA,  
SW1x_PWRSTG[2:0] = [111], typical external component values, fSW1x = 2.0 MHz, unless otherwise noted. Typical values are  
characterized at VIN = VINSW1x = 3.6 V, VSW1x = 1.2 V, ISW1x = 100 mA, SW1x_PWRSTG[2:0] = [111], and 25 °C, unless  
otherwise noted.  
Parameter  
SW1A/B/C (SINGLE PHASE)  
Symbol  
Min  
Typ  
Max  
Unit  
VINSW1A  
VINSW1B  
VINSW1C  
Operating Input Voltage  
2.8  
4.5  
V
V
Nominal Output Voltage  
Output Voltage Accuracy  
VSW1ABC  
Table 41  
PWM, APS, 2.8 V < VIN < 4.5 V, 0 < ISW1ABC < 4.5 A  
0.625 V VSW1ABC 1.450 V  
1.475 V VSW1ABC 1.875 V  
-25  
-3.0%  
25  
3.0%  
mV  
%
VSW1ABCACC  
PFM, steady state, 2.8 V < VIN < 4.5 V, 0 < ISW1ABC < 150 mA  
-65  
-45  
-3.0%  
65  
45  
3.0%  
0.625 V < VSW1ABC < 0.675 V  
0.7 V < VSW1ABC < 0.85 V  
0.875 V < VSW1ABC < 1.875 V  
Rated Output Load Current,  
ISW1ABC  
4500  
mA  
A
2.8 V < VIN < 4.5 V, 0.625 V < VSW1ABC < 1.875 V  
Current Limiter Peak Current Detection  
Current through Inductor  
SW1ABILIM = 0  
ISW1ABCLIM  
7.1  
5.3  
10.5  
7.9  
13.7  
10.3  
SW1ABILIM = 1  
Start-up Overshoot  
ISW1ABC = 0 mA  
DVS clk = 25 mV/4 s, VIN = VINSW1x = 4.5 V, VSW1ABC = 1.875 V  
VSW1ABCOSH  
66  
mV  
µs  
Turn-on Time  
Enable to 90% of end value  
ISW1x = 0 mA  
tONSW1ABC  
500  
DVS clk = 25 mV/4.0 s, VIN = VINSW1x = 4.5 V,  
V
SW1ABC = 1.875 V  
Switching Frequency  
SW1xFREQ[1:0] = 00  
SW1xFREQ[1:0] = 01  
SW1xFREQ[1:0] = 10  
1.0  
2.0  
4.0  
fSW1ABC  
MHz  
PF0100  
Analog Integrated Circuit Device Data  
50  
Freescale Semiconductor  
Functional Block Requirements and Behaviors  
Power Generation  
Table 54. SW1A/B/C Electrical Characteristics  
All parameters are specified at TMIN to TMAX (See Table 3), VIN = VINSW1x = 3.6 V, VSW1x = 1.2 V, ISW1x = 100 mA,  
SW1x_PWRSTG[2:0] = [111], typical external component values, fSW1x = 2.0 MHz, unless otherwise noted. Typical values are  
characterized at VIN = VINSW1x = 3.6 V, VSW1x = 1.2 V, ISW1x = 100 mA, SW1x_PWRSTG[2:0] = [111], and 25 °C, unless  
otherwise noted.  
Parameter  
SW1A/B/C (SINGLE PHASE) (CONTINUED)  
Efficiency  
Symbol  
Min  
Typ  
Max  
Unit  
VIN = 3.6 V, fSW1ABC = 2.0 MHz, LSW1ABC = 1.0 H  
77  
82  
86  
84  
80  
68  
PFM, 0.9 V, 1.0 mA  
PFM, 1.2 V, 50 mA  
APS, PWM, 1.2 V, 850 mA  
APS, PWM, 1.2 V, 1275 mA  
APS, PWM, 1.2 V, 2125 mA  
APS, PWM, 1.2 V, 4500 mA  
SW1ABC  
%
Output Ripple  
VSW1ABC  
VSW1ABCLIR  
VSW1ABCLOR  
10  
mV  
mV  
mV  
Line Regulation (APS, PWM)  
DC Load Regulation (APS, PWM)  
Transient Load Regulation  
20  
20  
Transient load = 0 to 2.25 A, di/dt = 100 mA/s  
Overshoot  
Undershoot  
VSW1ABCLOTR  
mV  
50  
50  
Quiescent Current  
PFM Mode  
ISW1ABCQ  
18  
145  
µA  
APS Mode  
Discharge Resistance  
RSW1ABCDIS  
600  
SW1A/B (SINGLE/DUAL PHASE)  
VINSW1A  
VINSW1B  
Operating Input Voltage  
2.8  
4.5  
V
V
Nominal Output Voltage  
Output Voltage Accuracy  
VSW1AB  
Table 41  
PWM, APS, 2.8 V < VIN < 4.5 V, 0 < ISW1AB < 2.5 A  
0.625 V VSW1AB 1.450 V  
1.475 V VSW1AB 1.875 V  
-25  
-3.0%  
-
-
25  
3.0%  
mV  
%
VSW1ABACC  
PFM, steady state, 2.8 V < VIN < 4.5 V, 0 < ISW1AB < 150 mA  
-65  
-45  
-3.0%  
65  
45  
3.0%  
0.625 V < VSW1AB < 0.675 V  
0.7 V < VSW1AB < 0.85 V  
0.875 V < VSW1AB < 1.875 V  
Rated Output Load Current, (43)  
ISW1AB  
2500  
mA  
2.8 V < VIN < 4.5 V, 0.625 V < VSW1AB < 1.875 V  
Current Limiter Peak Current Detection (43)  
SW1A/B Single Phase (current through inductor)  
SW1ABILIM = 0  
4.5  
3.3  
6.5  
4.9  
8.5  
6.4  
SW1ABILIM = 1  
ISW1ABLIM  
A
SW1A/B Dual Phase (current through inductor per phase)  
SW1ABILIM = 0  
SW1ABILIM = 1  
2.2  
1.6  
3.2  
2.4  
4.3  
3.2  
Start-up Overshoot  
ISW1AB = 0.0 mA  
VSW1ABOSH  
66  
mV  
DVS clk = 25 mV/4 s, VIN = VINSW1x = 4.5 V, VSW1AB = 1.875 V  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
51  
Functional Block Requirements and Behaviors  
Power Generation  
Table 54. SW1A/B/C Electrical Characteristics  
All parameters are specified at TMIN to TMAX (See Table 3), VIN = VINSW1x = 3.6 V, VSW1x = 1.2 V, ISW1x = 100 mA,  
SW1x_PWRSTG[2:0] = [111], typical external component values, fSW1x = 2.0 MHz, unless otherwise noted. Typical values are  
characterized at VIN = VINSW1x = 3.6 V, VSW1x = 1.2 V, ISW1x = 100 mA, SW1x_PWRSTG[2:0] = [111], and 25 °C, unless  
otherwise noted.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
SW1A/B (SINGLE/DUAL PHASE) (CONTINUED)  
Turn-on Time  
Enable to 90% of end value  
tONSW1AB  
500  
µs  
I
SW1AB = 0.0 mA  
DVS clk = 25 mV/4 s, VIN = VINSW1x = 4.5 V, VSW1AB = 1.875 V  
Switching Frequency  
SW1ABFREQ[1:0] = 00  
SW1ABFREQ[1:0] = 01  
SW1ABFREQ[1:0] = 10  
1.0  
2.0  
4.0  
fSW1AB  
MHz  
Efficiency (Single Phase)  
VIN = 3.6 V, fSW1AB = 2.0 MHz, LSW1AB = 1.0 H  
82  
84  
86  
87  
82  
71  
PFM, 0.9 V, 1.0 mA  
PFM, 1.2 V, 50 mA  
APS, PWM, 1.2 V, 500 mA  
APS, PWM, 1.2 V, 750 mA  
APS, PWM, 1.2 V, 1250 mA  
APS, PWM, 1.2 V, 2500 mA  
SW1AB  
%
Output Ripple  
VSW1AB  
VSW1ABLIR  
VSW1ABLOR  
10  
mV  
mV  
mV  
Line Regulation (APS, PWM)  
DC Load Regulation (APS, PWM)  
Transient Load Regulation  
20  
20  
Transient load = 0 to 1.25 A, di/dt = 100 mA/s  
Overshoot  
Undershoot  
VSW1ABLOTR  
mV  
µA  
50  
50  
Quiescent Current  
PFM Mode  
ISW1ABQ  
18  
235  
APS Mode  
SW1A P-MOSFET RDSON  
VINSW1A = 3.3 V  
RONSW1AP  
RONSW1AN  
ISW1APQ  
215  
258  
245  
326  
7.5  
m  
m  
µA  
SW1A N-MOSFET RDSON  
VINSW1A = 3.3 V  
SW1A P-MOSFET Leakage Current  
VINSW1A = 4.5 V  
SW1A N-MOSFET Leakage Current  
VINSW1A = 4.5 V  
ISW1ANQ  
2.5  
µA  
SW1B P-MOSFET RDSON  
VINSW1B = 3.3 V  
RONSW1BP  
RONSW1BN  
ISW1BPQ  
215  
258  
245  
326  
7.5  
m  
m  
µA  
SW1B N-MOSFET RDSON  
VINSW1B = 3.3 V  
SW1B P-MOSFET Leakage Current  
VINSW1B = 4.5 V  
SW1B N-MOSFET Leakage Current  
VINSW1B = 4.5 V  
ISW1BNQ  
2.5  
µA  
Discharge Resistance  
RSW1ABDIS  
600  
PF0100  
Analog Integrated Circuit Device Data  
52  
Freescale Semiconductor  
Functional Block Requirements and Behaviors  
Power Generation  
Table 54. SW1A/B/C Electrical Characteristics  
All parameters are specified at TMIN to TMAX (See Table 3), VIN = VINSW1x = 3.6 V, VSW1x = 1.2 V, ISW1x = 100 mA,  
SW1x_PWRSTG[2:0] = [111], typical external component values, fSW1x = 2.0 MHz, unless otherwise noted. Typical values are  
characterized at VIN = VINSW1x = 3.6 V, VSW1x = 1.2 V, ISW1x = 100 mA, SW1x_PWRSTG[2:0] = [111], and 25 °C, unless  
otherwise noted.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
SW1C (INDEPENDENT)  
Operating Input Voltage  
Nominal Output Voltage  
Output Voltage Accuracy  
VINSW1C  
VSW1C  
2.8  
4.5  
V
V
Table 41  
PWM, APS, 2.8 V < VIN < 4.5 V, 0 < ISW1C < 2.0 A  
0.625 V VSW1C 1.450 V  
1.475 V VSW1C 1.875 V  
-25  
-3.0%  
25  
3.0%  
VSW1CACC  
mV  
PFM, steady state 2.8 V < VIN < 4.5 V, 0 < ISW1C < 50 mA  
-65  
-45  
-3.0%  
65  
45  
3.0%  
0.625 V < VSW1C < 0.675 V  
0.7 V < VSW1C < 0.85 V  
0.875 V < VSW1C < 1.875 V  
Rated Output Load Current  
ISW1C  
2000  
mA  
A
2.8 V < VIN < 4.5 V, 0.625 V < VSW1C < 1.875 V  
Current Limiter Peak Current Detection  
Current through Inductor  
SW1CILIM = 0  
ISW1CLIM  
2.6(42)  
1.95  
4.0  
3.0  
5.2  
3.9  
SW1CILIM = 1  
Start-up Overshoot  
I
SW1C = 0 mA  
VSW1COSH  
66  
mV  
µs  
DVS clk = 25 mV/4 s, VIN = VINSW1C = 4.5 V, VSW1C = 1.875 V  
Turn-on Time  
Enable to 90% of end value  
SW1C = 0 mA  
tONSW1C  
500  
I
DVS clk = 25 mV/4 s, VIN = VINSW1C = 4.5 V, VSW1C = 1.875 V  
Switching Frequency  
SW1CFREQ[1:0] = 00  
SW1CFREQ[1:0] = 01  
SW1CFREQ[1:0] = 10  
1.0  
2.0  
4.0  
fSW1C  
MHz  
Efficiency  
VIN = 3.6 V, fSW1C = 2.0 MHz, LSW1C = 1.0 H  
77  
78  
86  
84  
78  
65  
PFM, 0.9 V, 1.0 mA  
PFM, 1.2 V, 50 mA  
APS, PWM, 1.2 V, 400 mA  
APS, PWM, 1.2 V, 600 mA  
APS, PWM, 1.2 V, 1000 mA  
APS, PWM, 1.2 V, 2000 mA  
SW1C  
%
Output Ripple  
VSW1C  
VSW1CLIR  
VSW1CLOR  
10  
mV  
mV  
mV  
Line Regulation (APS, PWM)  
DC Load Regulation (APS, PWM)  
Transient Load Regulation  
20  
20  
Transient load = 0.0 mA to 1.0 A, di/dt = 100 mA/s  
Overshoot  
Undershoot  
VSW1CLOTR  
mV  
µA  
50  
50  
Quiescent Current  
PFM Mode  
ISW1CQ  
22  
145  
APS Mode  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
53  
Functional Block Requirements and Behaviors  
Power Generation  
Table 54. SW1A/B/C Electrical Characteristics  
All parameters are specified at TMIN to TMAX (See Table 3), VIN = VINSW1x = 3.6 V, VSW1x = 1.2 V, ISW1x = 100 mA,  
SW1x_PWRSTG[2:0] = [111], typical external component values, fSW1x = 2.0 MHz, unless otherwise noted. Typical values are  
characterized at VIN = VINSW1x = 3.6 V, VSW1x = 1.2 V, ISW1x = 100 mA, SW1x_PWRSTG[2:0] = [111], and 25 °C, unless  
otherwise noted.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
SW1C (INDEPENDENT) (CONTINUED)  
SW1C P-MOSFET RDSON  
at VINSW1C = 3.3 V  
RONSW1CP  
RONSW1CN  
ISW1CPQ  
m  
m  
µA  
184  
206  
SW1C N-MOSFET RDSON  
at VINSW1C = 3.3 V  
211  
260  
SW1C P-MOSFET Leakage Current  
VINSW1C = 4.5 V  
10.5  
SW1C N-MOSFET Leakage Current  
VINSW1C = 4.5 V  
ISW1CNQ  
3.5  
µA  
Discharge Resistance  
RSW1CDIS  
600  
Notes  
42. Meets 1.89 A current rating for VDDSOC_IN domain on i.MX6X processor.  
43. Current rating of SW1AB supports the Power Virus mode of operation of the i.MX6X processor.  
PF0100  
Analog Integrated Circuit Device Data  
54  
Freescale Semiconductor  
Functional Block Requirements and Behaviors  
Power Generation  
Figure 14. SW1AB Efficiency Waveforms: VIN = 4.2 V; VOUT = 1.375 V; Consumer Version  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
55  
Functional Block Requirements and Behaviors  
Power Generation  
Figure 15. SW1AB Efficiency Waveforms: VIN = 4.2 V; VOUT = 1.375 V; Extended Industrial Version  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
56  
Functional Block Requirements and Behaviors  
Power Generation  
Figure 16. SW1C Efficiency Waveforms: VIN = 4.2 V; VOUT = 1.375 V; Consumer Version  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
57  
Functional Block Requirements and Behaviors  
Power Generation  
Figure 17. SW1C Efficiency Waveforms: VIN = 4.2 V; VOUT = 1.375 V; Extended Industrial Version  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
58  
Functional Block Requirements and Behaviors  
Power Generation  
6.4.4.4  
SW2  
SW2 is a single phase, 2.0 A rated buck regulator. Table 30 describes the modes, and Table 31 show the options for the  
SWxMODE[3:0] bits.  
Figure 18 shows the block diagram and the external component connections for SW2 regulator.  
VIN  
SW2IN  
SW2MODE  
ISENSE  
CINSW2  
Controller  
SW2  
SW2LX  
EP  
Driver  
LSW2  
COSW2  
SW2FAULT  
I2C  
Interface  
Internal  
I2C  
Compensation  
Z2  
SW2FB  
Z1  
VREF  
EA  
DAC  
Figure 18. SW2 Block Diagram  
SW2 Setup and Control Registers  
SW2 output voltage is programmable from 0.400 to 3.300 V; however, bit SW2[6] in register SW2VOLT is read-only during  
normal operation. Its value is determined by the default configuration, or may be changed by using the OTP registers. Therefore,  
once SW2[6] is set to “0”, the output will be limited to the lower output voltages from 0.400 to 1.975 V with 25 mV increments, as  
determined by bits SW2[5:0]. Likewise, once bit SW2[6] is set to “1”, the output voltage will be limited to the higher output voltage  
range from 0.800 to 3.300 V with 50 mV increments, as determined by bits SW2[5:0].  
In order to optimize the performance of the regulator, it is recommended that only voltages from 2.000 to 3.300 V be used in the  
high range, and the lower range be used for voltages from 0.400 to 1.975 V.  
The output voltage set point is independently programmed for Normal, Standby, and Sleep mode by setting the SW2[5:0],  
SW2STBY[5:0] and SW2OFF[5:0] bits, respectively. However, the initial state of bit SW2[6] will be copied into bits SW2STBY[6],  
and SW2OFF[6] bits. Therefore, the output voltage range will remain the same in all three operating modes. Table 55 shows the  
output voltage coding valid for SW2.  
Note: Voltage set points of 0.6 V and below are not supported.  
Table 55. SW2 Output Voltage Configuration  
Low Output Voltage Range(44)  
High Output Voltage Range  
Set Point  
SW2[6:0]  
SW2 Output  
Set Point  
SW2[6:0]  
SW2 Output  
0
1
0000000  
0000001  
0000010  
0000011  
0000100  
0000101  
0000110  
0000111  
0001000  
0001001  
0001010  
0.4000  
0.4250  
0.4500  
0.4750  
0.5000  
0.5250  
0.5500  
0.5750  
0.6000  
0.6250  
0.6500  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
1000000  
1000001  
1000010  
1000011  
1000100  
1000101  
1000110  
1000111  
1001000  
1001001  
1001010  
0.8000  
0.8500  
0.9000  
0.9500  
1.0000  
1.0500  
1.1000  
1.1500  
1.2000  
1.2500  
1.3000  
2
3
4
5
6
7
8
9
10  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
59  
 
 
Functional Block Requirements and Behaviors  
Power Generation  
Table 55. SW2 Output Voltage Configuration (continued)  
Low Output Voltage Range(44)  
High Output Voltage Range  
Set Point  
SW2[6:0]  
SW2 Output  
Set Point  
SW2[6:0]  
SW2 Output  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
0001011  
0001100  
0001101  
0001110  
0001111  
0010000  
0010001  
0010010  
0010011  
0010100  
0010101  
0010110  
0010111  
0011000  
0011001  
0011010  
0011011  
0011100  
0011101  
0011110  
0011111  
0100000  
0100001  
0100010  
0100011  
0100100  
0100101  
0100110  
0100111  
0101000  
0101001  
0101010  
0101011  
0101100  
0101101  
0101110  
0101111  
0.6750  
0.7000  
0.7250  
0.7500  
0.7750  
0.8000  
0.8250  
0.8500  
0.8750  
0.9000  
0.9250  
0.9500  
0.9750  
1.0000  
1.0250  
1.0500  
1.0750  
1.1000  
1.1250  
1.1500  
1.1750  
1.2000  
1.2250  
1.2500  
1.2750  
1.3000  
1.3250  
1.3500  
1.3750  
1.4000  
1.4250  
1.4500  
1.4750  
1.5000  
1.5250  
1.5500  
1.5750  
75  
76  
1001011  
1001100  
1001101  
1001110  
1001111  
1010000  
1010001  
1010010  
1010011  
1010100  
1010101  
1010110  
1010111  
1011000  
1011001  
1011010  
1011011  
1011100  
1011101  
1011110  
1011111  
1100000  
1100001  
1100010  
1100011  
1100100  
1100101  
1100110  
1100111  
1101000  
1101001  
1101010  
1101011  
1101100  
1101101  
1101110  
1101111  
1.3500  
1.4000  
1.4500  
1.5000  
1.5500  
1.6000  
1.6500  
1.7000  
1.7500  
1.8000  
1.8500  
1.9000  
1.9500  
2.0000  
2.0500  
2.1000  
2.1500  
2.2000  
2.2500  
2.3000  
2.3500  
2.4000  
2.4500  
2.5000  
2.5500  
2.6000  
2.6500  
2.7000  
2.7500  
2.8000  
2.8500  
2.9000  
2.9500  
3.0000  
3.0500  
3.1000  
3.1500  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
PF0100  
Analog Integrated Circuit Device Data  
60  
Freescale Semiconductor  
Functional Block Requirements and Behaviors  
Power Generation  
Table 55. SW2 Output Voltage Configuration (continued)  
Low Output Voltage Range(44)  
High Output Voltage Range  
Set Point  
SW2[6:0]  
SW2 Output  
Set Point  
SW2[6:0]  
SW2 Output  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
0110000  
0110001  
0110010  
0110011  
0110100  
0110101  
0110110  
0110111  
0111000  
0111001  
0111010  
0111011  
0111100  
0111101  
0111110  
0111111  
1.6000  
1.6250  
1.6500  
1.6750  
1.7000  
1.7250  
1.7500  
1.7750  
1.8000  
1.8250  
1.8500  
1.8750  
1.9000  
1.9250  
1.9500  
1.9750  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
1110000  
1110001  
1110010  
1110011  
1110100  
1110101  
1110110  
1110111  
1111000  
1111001  
1111010  
1111011  
1111100  
1111101  
1111110  
1111111  
3.2000  
3.2500  
3.3000  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Notes  
44. For voltages less than 2.0 V, only use set points 0 to 63.  
Setup and control of SW2 is done through I2C registers listed in Table 56, and a detailed description of each one of the registers  
is provided in Tables 57 to Table 61.  
Table 56. SW2 Register Summary  
Register  
SW2VOLT  
Address  
Description  
0x35  
0x36  
0x37  
0x38  
0x39  
Output voltage set point on normal operation  
Output voltage set point on Standby  
Output voltage set point on Sleep  
SW2STBY  
SW2OFF  
SW2MODE  
SW2CONF  
Switching Mode selector register  
DVS, Phase, Frequency, and ILIM configuration  
Table 57. Register SW2VOLT - ADDR 0x35  
Name  
Bit #  
R/W Default  
Description  
Sets the SW2 output voltage during normal operation  
mode. See Table 55 for all possible configurations.  
SW2  
SW2  
5:0  
R/W  
0x00  
Sets the operating output voltage range for SW2. Set  
during OTP or TBB configuration only. See Table 55  
for all possible configurations.  
6
7
R
0x00  
0x00  
UNUSED  
UNUSED  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
61  
 
 
Functional Block Requirements and Behaviors  
Power Generation  
Table 58. Register SW2STBY - ADDR 0x36  
Name  
SW2STBY  
Bit #  
R/W Default  
Description  
Sets the SW2 output voltage during Standby mode.  
See Table 55 for all possible configurations.  
5:0  
R/W  
0x00  
Sets the operating output voltage range for SW2 on  
Standby mode. This bit inherits the value configured  
on bit SW2[6] during OTP or TBB configuration. See  
Table 55 for all possible configurations.  
SW2STBY  
UNUSED  
6
7
R
0x00  
0x00  
UNUSED  
Table 59. Register SW2OFF - ADDR 0x37  
Name  
SW2OFF  
Bit #  
R/W Default  
Description  
Sets the SW2 output voltage during Sleep mode. See  
Table 55 for all possible configurations.  
5:0  
R/W  
0x00  
Sets the operating output voltage range for SW2 on  
Sleep mode. This bit inherits the value configured on  
bit SW2[6] during OTP or TBB configuration. See  
Table 55 for all possible configurations.  
SW2OFF  
UNUSED  
6
7
R
0x00  
0x00  
UNUSED  
Table 60. Register SW2MODE - ADDR 0x38  
Name  
SW2MODE  
Bit #  
R/W Default  
Description  
Sets the SW2 switching operation mode.  
See Table 30 for all possible configurations.  
3:0  
4
R/W  
0x80  
0x00  
UNUSED  
UNUSED  
Set status of SW2 when in Sleep mode  
SW2OMODE  
UNUSED  
5
R/W  
0x00  
0x00  
0 = OFF  
1 = PFM  
7:6  
UNUSED  
Table 61. Register SW2CONF - ADDR 0x39  
Name  
Bit #  
R/W Default  
Description  
SW2 current limit level selection  
0 = High level current limit  
1 = Low level current limit  
SW2ILIM  
0
R/W  
0x00  
UNUSED  
1
R/W  
R/W  
0x00  
0x00  
Unused  
SW2 switching frequency selector.  
See Table 38.  
SW2FREQ  
3:2  
SW2 Phase clock selection.  
See Table 36.  
SW2PHASE  
5:4  
7:6  
R/W  
R/W  
0x00  
0x00  
SW2 DVS speed selection.  
See Table 35.  
SW2DVSSPEED  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
62  
Functional Block Requirements and Behaviors  
Power Generation  
SW2 External Components  
Table 62. SW2 External Component Recommendations  
Components  
Description  
SW2 Input capacitor  
Values  
(45)  
CINSW2  
4.7 F  
0.1 F  
(45)  
CIN2HF  
COSW2  
SW2 Decoupling input capacitor  
SW2 Output capacitor  
(45)  
2 x 22 F  
1.0 H  
LSW2  
SW2 Inductor  
DCR = 50 m  
I
SAT = 2.65 A  
Notes  
45. Use X5R or X7R capacitors.  
SW2 Specifications  
Table 63. SW2 Electrical Characteristics  
All parameters are specified at TMIN to TMAX (See Table 3), VIN = VINSW2 = 3.6 V, VSW2 = 3.15 V, ISW2 = 100 mA,  
SW2_PWRSTG[2:0] = [111], typical external component values, fSW2 = 2.0 MHz, unless otherwise noted. Typical values are  
characterized at VIN = VINSW2 = 3.6 V, VSW2 = 3.15 V, ISW2 = 100 mA, SW2_PWRSTG[2:0] = [111], and 25 °C, unless otherwise  
noted.  
Parameter  
SWITCH MODE SUPPLY SW2  
Symbol  
Min  
Typ  
Max  
Unit  
Operating Input Voltage(46)  
Nominal Output Voltage  
Output Voltage Accuracy  
VINSW2  
VSW2  
2.8  
4.5  
V
V
Table 55  
PWM, APS, 2.8 V < VIN < 4.5 V, 0 < ISW2 < 2.0 A  
0.625 V < VSW2 < 0.85 V  
0.875 V < VSW2 < 1.975 V  
2.0 V < VSW2 < 3.3 V  
-25  
-3.0%  
-6.0%  
25  
3.0%  
6.0%  
mV  
%
VSW2ACC  
PFM, 2.8 V < VIN < 4.5 V, 0 < ISW2 50 mA  
-65  
-45  
-3.0%  
-3.0%  
65  
45  
3.0%  
3.0%  
0.625 V < VSW2 < 0.675 V  
0.7 V < VSW2 < 0.85 V  
0.875 V < VSW2 < 1.975 V  
2.0 V < VSW2 < 3.3 V  
Rated Output Load Current (47)  
ISW2  
2000  
mA  
A
2.8 V < VIN < 4.5 V, 0.625 V < VSW2 < 3.3 V  
Current Limiter Peak Current Detection  
Current through Inductor  
SW2ILIM = 0  
SW2ILIM = 1  
ISW2LIM  
2.8  
2.1  
4.0  
3.0  
5.2  
3.9  
Start-up Overshoot  
I
SW2 = 0.0 mA  
VSW2OSH  
66  
mV  
µs  
DVS clk = 25 mV/4 s, VIN = VINSW2 = 4.5 V  
Turn-on Time  
Enable to 90% of end value  
SW2 = 0.0 mA  
tONSW2  
550  
I
DVS clk = 50 mV/8 s, VIN = VINSW2 = 4.5 V  
Switching Frequency  
SW2FREQ[1:0] = 00  
SW2FREQ[1:0] = 01  
SW2FREQ[1:0] = 10  
1.0  
2.0  
4.0  
fSW2  
MHz  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
63  
 
Functional Block Requirements and Behaviors  
Power Generation  
Table 63. SW2 Electrical Characteristics (continued)  
All parameters are specified at TMIN to TMAX (See Table 3), VIN = VINSW2 = 3.6 V, VSW2 = 3.15 V, ISW2 = 100 mA,  
SW2_PWRSTG[2:0] = [111], typical external component values, fSW2 = 2.0 MHz, unless otherwise noted. Typical values are  
characterized at VIN = VINSW2 = 3.6 V, VSW2 = 3.15 V, ISW2 = 100 mA, SW2_PWRSTG[2:0] = [111], and 25 °C, unless otherwise  
noted.  
Parameter  
SWITCH MODE SUPPLY SW2 (CONTINUED)  
Efficiency  
Symbol  
Min  
Typ  
Max  
Unit  
VIN = 3.6 V, fSW2 = 2.0 MHz, LSW2 = 1.0 H  
94  
95  
96  
94  
92  
86  
PFM, 3.15 V, 1.0 mA  
PFM, 3.15 V, 50 mA  
APS, PWM, 3.15 V, 400 mA  
APS, PWM, 3.15 V, 600 mA  
APS, PWM, 3.15 V, 1000 mA  
APS, PWM, 3.15 V, 2000 mA  
SW2  
%
Output Ripple  
VSW2  
VSW2LIR  
VSW2LOR  
10  
mV  
mV  
mV  
Line Regulation (APS, PWM)  
DC Load Regulation (APS, PWM)  
Transient Load Regulation  
20  
20  
Transient load = 0.0 mA to 1.0 A, di/dt = 100 mA/s  
Overshoot  
Undershoot  
VSW2LOTR  
mV  
µA  
50  
50  
Quiescent Current  
PFM Mode  
APS Mode (Low output voltage settings)  
APS Mode (High output voltage settings)  
23  
145  
305  
ISW2Q  
SW2 P-MOSFET RDSON  
at VIN = VINSW2 = 3.3 V  
RONSW2P  
RONSW2N  
ISW2PQ  
190  
212  
209  
255  
12  
m  
m  
µA  
SW2 N-MOSFET RDSON  
at VIN = VINSW2 = 3.3 V  
SW2 P-MOSFET Leakage Current  
VIN = VINSW2 = 4.5 V  
SW2 N-MOSFET Leakage Current  
ISW2NQ  
4.0  
µA  
V
IN = VINSW2 = 4.5 V  
Discharge Resistance  
RSW2DIS  
600  
Notes  
46. When output is set to > 2.6 V the output will follow the input down when VIN gets near 2.8 V.  
47. The higher output voltages available depend on the voltage drop in the conduction path as given by the following equation:   
(VINSW2 - VSW2) = ISW2* (DCR of Inductor +RONSW2P + PCB trace resistance).  
PF0100  
Analog Integrated Circuit Device Data  
64  
Freescale Semiconductor  
Functional Block Requirements and Behaviors  
Power Generation  
Figure 19. SW2 Efficiency Waveforms: VIN = 4.2 V; VOUT = 3.0 V; Consumer Version  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
65  
Functional Block Requirements and Behaviors  
Power Generation  
Figure 20. SW2 Efficiency Waveforms: VIN = 4.2 V; VOUT = 3.0 V; Extended Industrial Version  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
66  
Functional Block Requirements and Behaviors  
Power Generation  
6.4.4.5  
SW3A/B  
SW3A/B are 1.25 to 2.5 A rated buck regulators, depending on the configuration. Table 30 describes the available switching  
modes and Table 31 show the actual configuration options for the SW3xMODE[3:0] bits.  
SW3A/B can be configured in various phasing schemes, depending on the desired cost/performance trade-offs. The following  
configurations are available:  
• A single phase  
• A dual phase  
• Independent regulators  
The desired configuration is programmed in OTP by using the SW3_CONFIG[1:0] bits.Table 64 shows the options for the  
SW3CFG[1:0] bits.  
Table 64. SW3 Configuration  
SW3_CONFIG[1:0]  
Description  
00  
01  
10  
11  
A/B Single Phase  
A/B Single Phase  
A/B Dual Phase  
A/B Independent  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
67  
 
Functional Block Requirements and Behaviors  
Power Generation  
SW3A/B Single Phase  
In this configuration, SW3ALX and SW3BLX are connected in single phase with a single inductor a shown in Figure 21. This  
configuration reduces cost and component count. Feedback is taken from the SW3AFB pin and the SW3BFB pin must be left  
open. Although control is from SW3A, registers of both regulators, SW3A and SW3B, must be identically set.  
VIN  
SW3AIN  
SW3ALX  
SW3AMODE  
ISENSE  
CINSW3A  
Controller  
SW3  
Driver  
LSW3A  
COSW3A  
SW3AFAULT  
Internal  
I2C  
Compensation  
Z2  
SW3AFB  
SW3BIN  
I2C  
Interface  
Z1  
VREF  
EA  
DAC  
VIN  
SW3BMODE  
ISENSE  
CINSW3B  
Controller  
SW3BLX  
Driver  
SW3BFAULT  
EP  
I2C  
Internal  
Compensation  
Z2  
VREF  
SW3BFB  
Z1  
DAC  
EA  
Figure 21. SW3A/B Single Phase Block Diagram  
PF0100  
Analog Integrated Circuit Device Data  
68  
Freescale Semiconductor  
 
Functional Block Requirements and Behaviors  
Power Generation  
SW3A/B Dual Phase  
SW3A/B can be connected in dual phase configuration using one inductor per switching node, as shown in Figure 22. This mode  
allows a smaller output voltage ripple. Feedback is taken from pin SW3AFB and pin SW3BFB must be left open. Although control  
is from SW3A, registers of both regulators, SW3A and SW3B, must be identically set. In this configuration, the regulators switch  
180 degrees apart.  
VIN  
SW3AIN  
SW3ALX  
SW3AMODE  
ISENSE  
CINSW3A  
Controller  
SW3  
Driver  
LSW3A  
COSW3A  
SW3AFAULT  
Internal  
I2C  
Compensation  
Z2  
I2C  
Interface  
SW3AFB  
SW3BIN  
Z1  
VREF  
EA  
DAC  
VIN  
SW3BMODE  
ISENSE  
CINSW3B  
Controller  
SW3BLX  
EP  
Driver  
LSW3B  
COSW3B  
SW3BFAULT  
I2C  
Internal  
Compensation  
Z2  
VREF  
SW3BFB  
Z1  
DAC  
EA  
Figure 22. SW3A/B Dual Phase Block Diagram  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
69  
 
Functional Block Requirements and Behaviors  
Power Generation  
SW3A - SW3B Independent Outputs  
SW3A and SW3B can be configured as independent outputs as shown in Figure 23, providing flexibility for applications requiring  
more voltage rails with less current capability. Each output is configured and controlled independently by its respective I2C  
registers as shown in Table 66.  
VIN  
SW3AIN  
SW3ALX  
SW3AMODE  
ISENSE  
CINSW3A  
Controller  
SW3A  
Driver  
LSW3A  
COSW3A  
SW3AFAULT  
Internal  
I2C  
Compensation  
Z2  
SW3AFB  
SW3BIN  
Z1  
VREF  
EA  
DAC  
VIN  
I2C  
Interface  
SW3BMODE  
ISENSE  
CINSW3B  
Controller  
SW3B  
SW3BLX  
EP  
Driver  
LSW3B  
COSW3B  
SW3BFAULT  
Internal  
I2C  
Compensation  
Z2  
SW3BFB  
Z1  
VREF  
EA  
DAC  
Figure 23. SW3A/B Independent Output Block Diagram  
SW3A/B Setup and Control Registers  
SW3A/B output voltage is programmable from 0.400 to 3.300 V; however, bit SW3x[6] in register SW3xVOLT is read-only during  
normal operation. Its value is determined by the default configuration, or may be changed by using the OTP registers. Therefore,  
once SW3x[6] is set to “0”, the output will be limited to the lower output voltages from 0.40 to 1.975 V with 25 mV increments, as  
determined by bits SW3x[5:0]. Likewise, once bit SW3x[6] is set to "1", the output voltage will be limited to the higher output  
voltage range from 0.800 to 3.300 V with 50 mV increments, as determined by bits SW3x[5:0].  
In order to optimize the performance of the regulator, it is recommended that only voltages from 2.00 to 3.300 V be used in the  
high range and that that the lower range be used for voltages from 0.400 to 1.975 V.  
The output voltage set point is independently programmed for Normal, Standby, and Sleep mode by setting the SW3x[5:0],  
SW3xSTBY[5:0], and SW3xOFF[5:0] bits respectively; however, the initial state of the SW3x[6] bit will be copied into the  
SW3xSTBY[6] and SW3xOFF[6] bits. Therefore, the output voltage range will remain the same on all three operating modes.  
Table 65 shows the output voltage coding valid for SW3x.  
Note: Voltage set points of 0.6 V and below are not supported.  
PF0100  
Analog Integrated Circuit Device Data  
70  
Freescale Semiconductor  
 
Functional Block Requirements and Behaviors  
Power Generation  
Table 65. SW3A/B Output Voltage Configuration  
Low Output Voltage Range(48)  
High Output Voltage Range  
Set Point  
SW3x[6:0]  
SW3x Output  
Set Point  
SW3x[6:0]  
SW3xOutput  
0
0000000  
0000001  
0000010  
0000011  
0000100  
0000101  
0000110  
0000111  
0001000  
0001001  
0001010  
0001011  
0001100  
0001101  
0001110  
0001111  
0010000  
0010001  
0010010  
0010011  
0010100  
0010101  
0010110  
0010111  
0011000  
0011001  
0011010  
0011011  
0011100  
0011101  
0011110  
0011111  
0100000  
0100001  
0100010  
0100011  
0.4000  
0.4250  
0.4500  
0.4750  
0.5000  
0.5250  
0.5500  
0.5750  
0.6000  
0.6250  
0.6500  
0.6750  
0.7000  
0.7250  
0.7500  
0.7750  
0.8000  
0.8250  
0.8500  
0.8750  
0.9000  
0.9250  
0.9500  
0.9750  
1.0000  
1.0250  
1.0500  
1.0750  
1.1000  
1.1250  
1.1500  
1.1750  
1.2000  
1.2250  
1.2500  
1.2750  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
1000000  
1000001  
1000010  
1000011  
1000100  
1000101  
1000110  
1000111  
1001000  
1001001  
1001010  
1001011  
1001100  
1001101  
1001110  
1001111  
1010000  
1010001  
1010010  
1010011  
1010100  
1010101  
1010110  
1010111  
1011000  
1011001  
1011010  
1011011  
1011100  
1011101  
1011110  
1011111  
1100000  
1100001  
1100010  
1100011  
0.8000  
0.8500  
0.9000  
0.9500  
1.0000  
1.0500  
1.1000  
1.1500  
1.2000  
1.2500  
1.3000  
1.3500  
1.4000  
1.4500  
1.5000  
1.5500  
1.6000  
1.6500  
1.7000  
1.7500  
1.8000  
1.8500  
1.9000  
1.9500  
2.0000  
2.0500  
2.1000  
2.1500  
2.2000  
2.2500  
2.3000  
2.3500  
2.4000  
2.4500  
2.5000  
2.5500  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
71  
 
Functional Block Requirements and Behaviors  
Power Generation  
Table 65. SW3A/B Output Voltage Configuration  
Low Output Voltage Range(48)  
High Output Voltage Range  
Set Point  
SW3x[6:0]  
SW3x Output  
Set Point  
SW3x[6:0]  
SW3xOutput  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
0100100  
0100101  
0100110  
0100111  
0101000  
0101001  
0101010  
0101011  
0101100  
0101101  
0101110  
0101111  
0110000  
0110001  
0110010  
0110011  
0110100  
0110101  
0110110  
0110111  
0111000  
0111001  
0111010  
0111011  
0111100  
0111101  
0111110  
0111111  
1.3000  
1.3250  
1.3500  
1.3750  
1.4000  
1.4250  
1.4500  
1.4750  
1.5000  
1.5250  
1.5500  
1.5750  
1.6000  
1.6250  
1.6500  
1.6750  
1.7000  
1.7250  
1.7500  
1.7750  
1.8000  
1.8250  
1.8500  
1.8750  
1.9000  
1.9250  
1.9500  
1.9750  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
1100100  
1100101  
1100110  
1100111  
1101000  
1101001  
1101010  
1101011  
1101100  
1101101  
1101110  
1101111  
1110000  
1110001  
1110010  
1110011  
1110100  
1110101  
1110110  
1110111  
1111000  
1111001  
1111010  
1111011  
1111100  
1111101  
1111110  
1111111  
2.6000  
2.6500  
2.7000  
2.7500  
2.8000  
2.8500  
2.9000  
2.9500  
3.0000  
3.0500  
3.1000  
3.1500  
3.2000  
3.2500  
3.3000  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Notes  
48. For voltages less than 2.0 V, only use set points 0 to 63.  
PF0100  
Analog Integrated Circuit Device Data  
72  
Freescale Semiconductor  
Functional Block Requirements and Behaviors  
Power Generation  
Table 66 provides a list of registers used to configure and operate SW3A/B. A detailed description on each of these register is  
provided on Tables 67 through Table 76.  
Table 66. SW3AB Register Summary  
Register  
SW3AVOLT  
Address  
Output  
0x3C  
0x3D  
0x3E  
0x3F  
0x40  
0x43  
0x44  
0x45  
0x46  
0x47  
SW3A Output voltage set point on normal operation  
SW3A Output voltage set point on Standby  
SW3A Output voltage set point on Sleep  
SW3ASTBY  
SW3AOFF  
SW3AMODE  
SW3ACONF  
SW3BVOLT  
SW3BSTBY  
SW3BOFF  
SW3A Switching mode selector register  
SW3A DVS, phase, frequency and ILIM configuration  
SW3B Output voltage set point on normal operation  
SW3B Output voltage set point on Standby  
SW3B Output voltage set point on Sleep  
SW3BMODE  
SW3BCONF  
SW3B Switching mode selector register  
SW3B DVS, phase, frequency and ILIM configuration  
Table 67. Register SW3AVOLT - ADDR 0x3C  
Name  
Bit #  
R/W Default  
Description  
Sets the SW3A output voltage (Independent) or  
SW3A/B output voltage (Single/Dual phase),  
during normal operation mode. See Table 65 for  
all possible configurations.  
SW3A  
SW3A  
5:0  
R/W  
0x00  
Sets the operating output voltage range for SW3A  
(Independent) or SW3A/B (Single/Dual phase).  
Set during OTP or TBB configuration only. See  
Table 65 for all possible configurations.  
6
7
R
0x00  
0x00  
UNUSED  
UNUSED  
Table 68. Register SW3ASTBY - ADDR 0x3D  
Name  
Bit #  
R/W Default  
Description  
Sets the SW3A output voltage (Independent) or  
SW3A/B output voltage (Single/Dual phase),  
during Standby mode. See Table 65 for all  
possible configurations.  
SW3ASTBY  
5:0  
R/W  
0x00  
Sets the operating output voltage range for SW3A  
(Independent) or SW3A/B (Single/Dual phase) on  
Standby mode. This bit inherits the value  
configured on bit SW3A[6] during OTP or TBB  
configuration. See Table 65 for all possible  
configurations.  
SW3ASTBY  
UNUSED  
6
7
R
0x00  
0x00  
UNUSED  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
73  
 
 
Functional Block Requirements and Behaviors  
Power Generation  
Table 69. Register SW3AOFF - ADDR 0x3E  
Name  
Bit #  
R/W Default  
Description  
Sets the SW3A output voltage (Independent) or  
SW3A/B output voltage (Single/Dual phase),  
during Sleep mode. See Table 65 for all possible  
configurations.  
SW3AOFF  
5:0  
R/W  
0x00  
Sets the operating output voltage range for SW3A  
(Independent) or SW3A/B (Single/Dual phase) on  
Sleep mode. This bit inherits the value configured  
on bit SW3A[6] during OTP or TBB configuration.  
See Table 65 for all possible configurations.  
SW3AOFF  
UNUSED  
6
7
R
0x00  
0x00  
UNUSED  
Table 70. Register SW3AMODE - ADDR 0x3F  
Name  
Bit #  
R/W Default  
Description  
Sets the SW3A (Independent) or SW3A/B  
(Single/Dual phase) switching operation mode.  
See Table 30 for all possible configurations.  
SW3AMODE  
UNUSED  
3:0  
4
R/W  
0x80  
0x00  
UNUSED  
Set status of SW3A (Independent) or SW3A/B  
(Single/Dual phase) when in Sleep mode.  
SW3AOMODE  
UNUSED  
5
R/W  
0x00  
0x00  
0 = OFF  
1 = PFM  
7:6  
UNUSED  
Table 71. Register SW3ACONF - ADDR 0x40  
Name  
Bit #  
R/W Default  
Description  
SW3A current limit level selection  
0 = High level current limit  
1 = Low level current limit  
SW3AILIM  
0
R/W  
0x00  
UNUSED  
1
R/W  
R/W  
0x00  
0x00  
Unused  
SW3A switching frequency selector. See  
Table 38.  
SW3AFREQ  
3:2  
SW3APHASE  
5:4  
7:6  
R/W  
R/W  
0x00  
0x00  
SW3A Phase clock selection. See Table 36.  
SW3A DVS speed selection. See Table 35.  
SW3ADVSSPEED  
Table 72. Register SW3BVOLT - ADDR 0x43  
Name  
Bit #  
R/W Default  
Description  
Sets the SW3B output voltage (Independent)  
during normal operation mode. See Table 65 for  
all possible configurations.  
SW3B  
SW3B  
5:0  
R/W  
0x00  
Sets the operating output voltage range for SW3B  
(Independent). Set during OTP or TBB  
configuration only. See Table 65 for all possible  
configurations.  
6
7
R
0x00  
0x00  
UNUSED  
UNUSED  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
74  
Functional Block Requirements and Behaviors  
Power Generation  
Table 73. Register SW3BSTBY - ADDR 0x44  
Name  
Bit #  
R/W Default  
Description  
Sets the SW3B output voltage (Independent)  
during Standby mode. See Table 65 for all  
possible configurations.  
SW3BSTBY  
5:0  
R/W  
0x00  
Sets the operating output voltage range for SW3B  
(Independent) on Standby mode. This bit inherits  
the value configured on bit SW3B[6] during OTP  
or TBB configuration. See Table 65 for all  
possible configurations.  
SW3BSTBY  
UNUSED  
6
7
R
0x00  
0x00  
UNUSED  
Table 74. Register SW3BOFF - ADDR 0x45  
Name  
Bit #  
R/W Default  
Description  
Sets the SW3B output voltage (Independent)  
during Sleep mode. See Table 65 for all possible  
configurations.  
SW3BOFF  
5:0  
R/W  
0x00  
Sets the operating output voltage range for SW3B  
(Independent) on Sleep mode. This bit inherits  
the value configured on bit SW3B[6] during OTP  
or TBB configuration. See Table 65 for all  
possible configurations.  
SW3BOFF  
UNUSED  
6
7
R
0x00  
0x00  
UNUSED  
Table 75. Register SW3BMODE - ADDR 0x46  
Name  
Bit #  
R/W Default  
Description  
Sets the SW3B (Independent) switching  
operation mode. See Table 30 for all possible  
configurations.  
SW3BMODE  
UNUSED  
3:0  
4
R/W  
0x80  
0x00  
UNUSED  
Set status of SW3B (Independent) when in Sleep  
mode.  
SW3BOMODE  
UNUSED  
5
R/W  
0x00  
0x00  
0 = OFF  
1 = PFM  
7:6  
UNUSED  
Table 76. Register SW3BCONF - ADDR 0x47  
Name  
Bit #  
R/W Default  
Description  
SW3B current limit level selection  
0 = High level Current limit  
1 = Low level Current limit  
SW3BILIM  
0
R/W  
0x00  
UNUSED  
1
R/W  
R/W  
R/W  
R/W  
0x00  
0x00  
0x00  
0x00  
Unused  
SW3BFREQ  
SW3BPHASE  
SW3BDVSSPEED  
3:2  
5:4  
7:6  
SW3B switching frequency selector. See Table 38.  
SW3B Phase clock selection. See Table 36.  
SW3B DVS speed selection. See Table 35.  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
75  
Functional Block Requirements and Behaviors  
Power Generation  
SW3A/B External Components  
Table 77. SW3A/B External Component Requirements  
Mode  
SW3A/B Single  
Phase  
SW3A/B Dual  
Phase  
SW3A Independent  
SW3B Independent  
Components  
Description  
(49)  
CINSW3A  
SW3A Input capacitor  
4.7 F  
0.1 F  
4.7 F  
0.1 F  
4 x 22 F  
4.7 F  
0.1 F  
4.7 F  
0.1 F  
(49)  
CIN3AHF  
SW3A Decoupling input capacitor  
SW3B Input capacitor  
(49)  
CINSW3B  
4.7 F  
4.7 F  
(49)  
CIN3BHF  
SW3B Decoupling input capacitor  
SW3A Output capacitor  
0.1 F  
0.1 F  
(49)  
COSW3A  
2 x 22 F  
2 x 22 F  
2 x 22 F  
2 x 22 F  
(49)  
COSW3B  
SW3B Output capacitor  
1.0 H  
1.0 H  
1.0 H  
LSW3A  
SW3A Inductor  
SW3B Inductor  
DCR = 50 m  
DCR = 60 m  
DCR = 60 m  
I
SAT = 3.9 A  
I
SAT = 3.0 A  
I
SAT = 3.0 A  
1.0 H  
1.0 H  
LSW3B  
Notes  
DCR = 60 m  
SAT = 3.0 A  
DCR = 60 m  
SAT = 3.0 A  
I
I
49. Use X5R or X7R capacitors.  
SW3A/B Specifications  
Table 78. SW3A/B Electrical Characteristics  
All parameters are specified at TMIN to TMAX (See Table 3), VIN = VINSW3x = 3.6 V, VSW3x = 1.5 V, ISW3x = 100 mA,  
SW3x_PWRSTG[2:0] = [111], typical external component values, fSW3x = 2.0 MHz, single/dual phase and independent mode  
unless, otherwise noted. Typical values are characterized at VIN = VINSW3x = 3.6 V, VSW3x = 1.5 V, ISW3x = 100 mA,  
SW3x_PWRSTG[2:0] = [111], and 25 °C, unless otherwise noted.  
Parameter  
SWITCH MODE SUPPLY SW3A/B  
Symbol  
Min  
Typ  
Max  
Unit  
Operating Input Voltage(50)  
Nominal Output Voltage  
Output Voltage Accuracy  
VINSW3x  
VSW3x  
2.8  
-
4.5  
-
V
V
Table 65  
PWM, APS 2.8 V < VIN < 4.5 V, 0 < ISW3x < ISW3xMAX  
0.625 V < VSW3x < 0.85 V  
0.875 V < VSW3x < 1.975 V  
2.0 V < VSW3x < 3.3 V  
-25  
-3.0%  
-6.0%  
25  
3.0%  
6.0%  
mV  
%
VSW3xACC  
PFM , steady state (2.8 V < VIN < 4.5 V, 0 < ISW3x < 50 mA)  
-65  
-45  
-3.0%  
-3.0%  
65  
45  
3.0%  
3.0%  
0.625 V < VSW3x < 0.675 V  
0.7 V < VSW3x < 0.85 V  
0.875 V < VSW3x < 1.975 V  
2.0 V < VSW3x < 3.3 V  
Rated Output Load Current (51)  
2.8 V < VIN < 4.5 V, 0.625 V < VSW3x < 3.3 V  
ISW3x  
mA  
2500  
1250  
PWM, APS mode single/dual phase  
PWM, APS mode independent (per phase)  
PF0100  
Analog Integrated Circuit Device Data  
76  
Freescale Semiconductor  
 
Functional Block Requirements and Behaviors  
Power Generation  
Table 78. SW3A/B Electrical Characteristics (continued)  
All parameters are specified at TMIN to TMAX (See Table 3), VIN = VINSW3x = 3.6 V, VSW3x = 1.5 V, ISW3x = 100 mA,  
SW3x_PWRSTG[2:0] = [111], typical external component values, fSW3x = 2.0 MHz, single/dual phase and independent mode  
unless, otherwise noted. Typical values are characterized at VIN = VINSW3x = 3.6 V, VSW3x = 1.5 V, ISW3x = 100 mA,  
SW3x_PWRSTG[2:0] = [111], and 25 °C, unless otherwise noted.  
Parameter  
SWITCH MODE SUPPLY SW3A/B (CONTINUED)  
Current Limiter Peak Current Detection  
Symbol  
Min  
Typ  
Max  
Unit  
Single phase (Current through inductor)  
SW3xILIM = 0  
3.5  
2.7  
5.0  
3.8  
6.5  
4.9  
SW3xILIM = 1  
ISW3xLIM  
A
Independent mode or Dual phase (Current through inductor per  
phase)  
SW3xILIM = 0  
SW3xILIM = 1  
1.8  
1.3  
2.5  
1.9  
3.3  
2.5  
Start-up Overshoot  
SW3x = 0.0 mA  
DVS clk = 25 mV/4 s, VIN = VINSW3x = 4.5 V  
I
VSW3xOSH  
66  
mV  
µs  
Turn-on Time  
Enable to 90% of end value  
SW3x = 0 mA  
tONSW3x  
500  
I
DVS clk = 25 mV/4 s, VIN = VINSW3x = 4.5 V  
Switching Frequency  
SW3xFREQ[1:0] = 00  
SW3xFREQ[1:0] = 01  
SW3xFREQ[1:0] = 10  
1.0  
2.0  
4.0  
fSW3x  
MHz  
Efficiency (Single Phase)  
f
SW3 = 2.0 MHz, LSW3x 1.0 H  
84  
85  
85  
84  
80  
74  
PFM, 1.5 V, 1.0 mA  
PFM, 1.5 V, 50 mA  
APS, PWM 1.5 V, 500 mA  
APS, PWM 1.5 V, 750 mA  
APS, PWM 1.5 V, 1250 mA  
APS, PWM 1.5 V, 2500 mA  
SW3AB  
%
Output Ripple  
VSW3x  
VSW3xLIR  
VSW3xLOR  
10  
mV  
mV  
mV  
Line Regulation (APS, PWM)  
DC Load Regulation (APS, PWM)  
Transient Load Regulation  
20  
20  
Transient Load = 0.0 mA to ISW3x/2, di/dt = 100 mA/s  
Overshoot  
Undershoot  
VSW3xLOTR  
mV  
50  
50  
Quiescent Current  
PFM Mode (Single/Dual Phase)  
APS Mode (Single/Dual Phase)  
PFM Mode (Independent mode)  
APS Mode (SW3A Independent mode)  
APS Mode (SW3B Independent mode)  
22  
300  
50  
250  
150  
ISW3xQ  
µA  
SW3A P-MOSFET RDSON  
at VIN = VINSW3A = 3.3 V  
RONSW3AP  
RONSW3AN  
ISW3APQ  
m  
m  
µA  
215  
245  
SW3A N-MOSFET RDSON  
at VIN = VINSW3A = 3.3 V  
258  
326  
7.5  
SW3A P-MOSFET Leakage Current  
VIN = VINSW3A = 4.5 V  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
77  
Functional Block Requirements and Behaviors  
Power Generation  
Table 78. SW3A/B Electrical Characteristics (continued)  
All parameters are specified at TMIN to TMAX (See Table 3), VIN = VINSW3x = 3.6 V, VSW3x = 1.5 V, ISW3x = 100 mA,  
SW3x_PWRSTG[2:0] = [111], typical external component values, fSW3x = 2.0 MHz, single/dual phase and independent mode  
unless, otherwise noted. Typical values are characterized at VIN = VINSW3x = 3.6 V, VSW3x = 1.5 V, ISW3x = 100 mA,  
SW3x_PWRSTG[2:0] = [111], and 25 °C, unless otherwise noted.  
Parameter  
SWITCH MODE SUPPLY SW3A/B (CONTINUED)  
SW3A N-MOSFET Leakage Current  
Symbol  
Min  
Typ  
Max  
Unit  
ISW3ANQ  
RONSW3BP  
RONSW3BN  
ISW3BPQ  
2.5  
µA  
m  
m  
µA  
V
IN = VINSW3A = 4.5 V  
SW3B P-MOSFET RDSON  
at VIN = VINSW3B = 3.3 V  
215  
245  
SW3B N-MOSFET RDSON  
at VIN = VINSW3B = 3.3 V  
258  
326  
7.5  
SW3B P-MOSFET Leakage Current  
VIN = VINSW3B = 4.5 V  
SW3B N-MOSFET Leakage Current  
ISW3BPQ  
2.5  
µA  
V
IN = VINSW3B = 4.5 V  
Discharge Resistance  
RSW3xDIS  
600  
Notes  
50. When output is set to > 2.6 V the output will follow the input down when VIN gets near 2.8 V.  
51. The higher output voltages available depend on the voltage drop in the conduction path as given by the following equation:   
(VINSW3x - VSW3x) = ISW3x* (DCR of Inductor +RONSW3xP + PCB trace resistance).  
PF0100  
Analog Integrated Circuit Device Data  
78  
Freescale Semiconductor  
Functional Block Requirements and Behaviors  
Power Generation  
Figure 24. SW3AB Efficiency Waveforms: VIN = 4.2 V; VOUT = 1.5 V; Consumer Version  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
79  
Functional Block Requirements and Behaviors  
Power Generation  
Figure 25. SW3AB Efficiency Waveforms: VIN = 4.2 V; VOUT = 1.5 V; Extended Industrial Version  
6.4.4.6  
SW4  
SW4 is a 1.0 A rated single phase buck regulator capable of operating in two modes. In its default mode, it operates as a normal  
buck regulator with a programmable output between 0.400 and 3.300 V. It is capable of operating in the three available switching  
modes: PFM, APS, and PWM, described on Table 30 and configured by the SW4MODE[3:0] bits, as shown in Table 31.  
If the system requires DDR memory termination, SW4 can be used in its VTT mode. In the VTT mode, its reference voltage will  
track the output voltage of SW3A, scaled by 0.5. Furthermore, when in VTT mode, only the PWM switching mode is allowed. The  
VTT mode can be configured by use of VTT bit in the OTP_SW4_CONFIG register.  
Figure 26 shows the block diagram and the external component connections for the SW4 regulator.  
PF0100  
Analog Integrated Circuit Device Data  
80  
Freescale Semiconductor  
Functional Block Requirements and Behaviors  
Power Generation  
VIN  
SW4IN  
SW4MODE  
ISENSE  
CINSW4  
Controller  
SW4  
SW4LX  
EP  
Driver  
LSW4  
COSW4  
SW4FAULT  
I2C  
Interface  
Internal  
I2C  
Compensation  
Z2  
SW4FB  
Z1  
VREF  
EA  
DAC  
Figure 26. SW4 Block Diagram  
SW4 Setup and Control Registers  
To set the SW4 in regulator or VTT mode, bit VTT of the register OTP_SW4_CONF register on Extended Page 1, is programmed  
during OTP or TBB configuration; setting bit VTT to “1” will enable SW4 to operate in VTT mode and “0” in Regulator mode. See  
One Time Programmability (OTP) for detailed information on OTP configuration.  
In Regulator mode, the SW4 output voltage is programmable from 0.400 to 3.300 V; however, bit SW4[6] in the SW4VOLT  
register is read-only during normal operation. Its value is determined by the default configuration, or may be changed by using  
the OTP registers. Once SW4[6] is set to “0”, the output will be limited to the lower output voltages, from 0.400 to 1.975 V with  
25 mV increments, as determined by the SW4[5:0] bits. Likewise, once the SW4[6] bit is set to "1", the output voltage will be  
limited to the higher output voltage range from 0.800 to 3.300 V with 50 mV increments, as determined by the SW4[5:0] bits.  
In order to optimize the performance of the regulator, it is recommended that only voltages from 2.000 to 3.300 V be used in the  
high range and that that the lower range be used for voltages from 0.400 to 1.975 V.  
The output voltage set point is independently programmed for Normal, Standby, and Sleep mode by setting the SW4[5:0],  
SW4STBY[5:0], and SW4OFF[5:0] bits, respectively. However, the initial state of the SW4[6] bit will be copied into bits  
SW4STBY[6], and SW4OFF[6] bits, so the output voltage range will remain the same on all three operating modes. Table 79  
shows the output voltage coding valid for SW4.  
Note: Voltage set points of 0.6 V and below are not supported, except in the VTT mode.  
Table 79. SW4 Output Voltage Configuration  
Low Output Voltage Range(52)  
High Output Voltage Range  
Set Point  
SW4[6:0]  
SW4 Output  
Set Point  
SW4[6:0]  
SW4 Output  
0
1
0000000  
0000001  
0000010  
0000011  
0000100  
0000101  
0000110  
0000111  
0001000  
0001001  
0001010  
0001011  
0.4000  
0.4250  
0.4500  
0.4750  
0.5000  
0.5250  
0.5500  
0.5750  
0.6000  
0.6250  
0.6500  
0.6750  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
1000000  
1000001  
1000010  
1000011  
1000100  
1000101  
1000110  
1000111  
1001000  
1001001  
1001010  
1001011  
0.8000  
0.8500  
0.9000  
0.9500  
1.0000  
1.0500  
1.1000  
1.1500  
1.2000  
1.2500  
1.3000  
1.3500  
2
3
4
5
6
7
8
9
10  
11  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
81  
 
Functional Block Requirements and Behaviors  
Power Generation  
Table 79. SW4 Output Voltage Configuration (continued)  
Low Output Voltage Range(52)  
High Output Voltage Range  
Set Point  
SW4[6:0]  
SW4 Output  
Set Point  
SW4[6:0]  
SW4 Output  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
0001100  
0001101  
0001110  
0001111  
0010000  
0010001  
0010010  
0010011  
0010100  
0010101  
0010110  
0010111  
0011000  
0011001  
0011010  
0011011  
0011100  
0011101  
0011110  
0011111  
0100000  
0100001  
0100010  
0100011  
0100100  
0100101  
0100110  
0100111  
0101000  
0101001  
0101010  
0101011  
0101100  
0101101  
0101110  
0101111  
0110000  
0.7000  
0.7250  
0.7500  
0.7750  
0.8000  
0.8250  
0.8500  
0.8750  
0.9000  
0.9250  
0.9500  
0.9750  
1.0000  
1.0250  
1.0500  
1.0750  
1.1000  
1.1250  
1.1500  
1.1750  
1.2000  
1.2250  
1.2500  
1.2750  
1.3000  
1.3250  
1.3500  
1.3750  
1.4000  
1.4250  
1.4500  
1.4750  
1.5000  
1.5250  
1.5500  
1.5750  
1.6000  
76  
77  
1001100  
1001101  
1001110  
1001111  
1010000  
1010001  
1010010  
1010011  
1010100  
1010101  
1010110  
1010111  
1011000  
1011001  
1011010  
1011011  
1011100  
1011101  
1011110  
1011111  
1100000  
1100001  
1100010  
1100011  
1100100  
1100101  
1100110  
1100111  
1101000  
1101001  
1101010  
1101011  
1101100  
1101101  
1101110  
1101111  
1110000  
1.4000  
1.4500  
1.5000  
1.5500  
1.6000  
1.6500  
1.7000  
1.7500  
1.8000  
1.8500  
1.9000  
1.9500  
2.0000  
2.0500  
2.1000  
2.1500  
2.2000  
2.2500  
2.3000  
2.3500  
2.4000  
2.4500  
2.5000  
2.5500  
2.6000  
2.6500  
2.7000  
2.7500  
2.8000  
2.8500  
2.9000  
2.9500  
3.0000  
3.0500  
3.1000  
3.1500  
3.2000  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
PF0100  
Analog Integrated Circuit Device Data  
82  
Freescale Semiconductor  
Functional Block Requirements and Behaviors  
Power Generation  
Table 79. SW4 Output Voltage Configuration (continued)  
Low Output Voltage Range(52)  
High Output Voltage Range  
Set Point  
SW4[6:0]  
SW4 Output  
Set Point  
SW4[6:0]  
SW4 Output  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
0110001  
0110010  
0110011  
0110100  
0110101  
0110110  
0110111  
0111000  
0111001  
0111010  
0111011  
0111100  
0111101  
0111110  
0111111  
1.6250  
1.6500  
1.6750  
1.7000  
1.7250  
1.7500  
1.7750  
1.8000  
1.8250  
1.8500  
1.8750  
1.9000  
1.9250  
1.9500  
1.9750  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
1110001  
1110010  
1110011  
1110100  
1110101  
1110110  
1110111  
1111000  
1111001  
1111010  
1111011  
1111100  
1111101  
1111110  
1111111  
3.2500  
3.3000  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Notes  
52. For voltages less than 2.0 V, only use set points 0 to 63.  
Full setup and control of SW4 is done through the I2C registers listed on Table 80, and a detailed description of each one of the  
registers is provided in Tables 81 to Table 85.  
Table 80. SW4 Register Summary  
Register  
SW4VOLT  
Address  
Description  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
Output voltage set point on normal operation  
Output voltage set point on Standby  
Output voltage set point on Sleep  
SW4STBY  
SW4OFF  
SW4MODE  
SW4CONF  
Switching mode selector register  
DVS, phase, frequency and ILIM configuration  
Table 81. Register SW4VOLT - ADDR 0x4A  
Name  
Bit #  
R/W Default  
Description  
Sets the SW4 output voltage during normal  
operation mode. See Table 79 for all possible  
configurations.  
SW4  
SW4  
5:0  
R/W  
0x00  
Sets the operating output voltage range for SW4.  
Set during OTP or TBB configuration only. See  
Table 79 for all possible configurations.  
6
7
R
0x00  
0x00  
UNUSED  
UNUSED  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
83  
 
 
Functional Block Requirements and Behaviors  
Power Generation  
Table 82. Register SW4STBY - ADDR 0x4B  
Name  
Bit #  
R/W Default  
Description  
Sets the SW4 output voltage during Standby  
mode. See Table 79 for all possible  
configurations.  
SW4STBY  
5:0  
R/W  
0x00  
Sets the operating output voltage range for SW4  
on Standby mode. This bit inherits the value  
configured on bit SW4[6] during OTP or TBB  
configuration. See Table 79 for all possible  
configurations.  
SW4STBY  
UNUSED  
6
7
R
0x00  
0x00  
UNUSED  
Table 83. Register SW4OFF - ADDR 0x4C  
Name  
SW4OFF  
Bit #  
R/W Default  
Description  
Sets the SW4 output voltage during Sleep mode.  
See Table 79 for all possible configurations.  
5:0  
R/W  
0x00  
Sets the operating output voltage range for SW4  
on Sleep mode. This bit inherits the value  
configured on bit SW4[6] during OTP or TBB  
configuration. See Table 79 for all possible  
configurations.  
SW4OFF  
UNUSED  
6
7
R
0x00  
0x00  
UNUSED  
Table 84. Register SW4MODE - ADDR 0x4D  
Name  
SW4MODE  
Bit #  
R/W Default  
Description  
Sets the SW4 switching operation mode.  
See Table 30 for all possible configurations.  
3:0  
4
R/W  
0x80  
0x00  
UNUSED  
UNUSED  
Set status of SW4 when in Sleep mode  
SW4OMODE  
UNUSED  
5
R/W  
0x00  
0x00  
0 = OFF  
1 = PFM  
7:6  
UNUSED  
Table 85. Register SW4CONF - ADDR 0x4E  
Name  
Bit #  
R/W Default  
Description  
SW4 current limit level selection  
0 = High level Current limit  
1 = Low level Current limit  
SW4ILIM  
0
R/W  
0x00  
UNUSED  
1
R/W  
R/W  
R/W  
R/W  
0x00  
0x00  
0x00  
0x00  
Unused  
SW4FREQ  
3:2  
5:4  
7:6  
SW4 switching frequency selector. See Table 38.  
SW4 Phase clock selection. See Table 36.  
SW4 DVS speed selection. See Table 35.  
SW4PHASE  
SW4DVSSPEED  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
84  
Functional Block Requirements and Behaviors  
Power Generation  
SW4 External Components  
Table 86. SW4 External Component Requirements  
Components  
Description  
SW4 Input capacitor  
Values  
(53)  
CINSW4  
4.7 F  
0.1 F  
(53)  
CIN4HF  
COSW4  
SW4 Decoupling input capacitor  
SW4 Output capacitor  
(53)  
2 x 22 F  
1.0 H  
LSW4  
SW4 Inductor  
DCR = 60 m  
I
SAT = 3.0 A  
Notes  
53. Use X5R or X7R capacitors.  
SW4 Specifications  
Table 87. SW4 Electrical Characteristics  
All parameters are specified at TMIN to TMAX (See Table 3), VIN = VINSW4 = 3.6 V, VSW4 = 1.8 V, ISW4 = 100 mA,  
SW4_PWRSTG[2:0] = [101], typical external component values, fSW4 = 2.0 MHz, single/dual phase and independent mode  
unless, otherwise noted. Typical values are characterized at VIN = VINSW4 = 3.6 V, VSW4 = 1.8 V, ISW4 = 100 mA,  
SW4_PWRSTG[2:0] = [101], and 25 °C, unless otherwise noted.  
Parameter  
SWITCH MODE SUPPLY SW4  
Symbol  
Min  
Typ  
Max  
Unit  
Operating Input Voltage (54)  
VINSW4  
2.8  
4.5  
V
V
Nominal Output Voltage  
Normal operation  
VTT Mode  
VSW4  
Table 79  
VSW3AFB/2  
SWITCH MODE SUPPLY SW4 (CONTINUED)  
Output Voltage Accuracy  
PWM, APS, 2.8 V < VIN < 4.5 V, 0 < ISW4 < 1.0 A  
0.625 V < VSW4 < 0.85 V  
0.875 V < VSW4 < 1.975 V  
2.0 V < VSW4 < 3.3 V  
-25  
-3.0  
-6.0  
25  
3.0  
6.0  
mV  
%
%
PFM, steady state, 2.8 V < VIN < 4.5 V, 0 < ISW4 < 50 mA  
VSW4ACC  
-65  
-45  
-3.0  
-3.0  
65  
45  
3.0  
3.0  
mV  
mV  
%
0.625 V < VSW4 < 0.675 V  
0.7 V < VSW4 < 0.85 V  
0.875 V < VSW4 < 1.975 V  
2.0 V < VSW4 < 3.3 V  
%
-40  
40  
mV  
mA  
VTT Mode , 2.8 V < VIN < 4.5 V, 0 < ISW4 < 1.0 A  
Rated Output Load Current (55)  
ISW4  
1000  
2.8 V < VIN < 4.5 V, 0.625 V < VSW4 < 3.3 V  
Current Limiter Peak Current Detection  
Current through inductor  
SW4ILIM = 0  
ISW4LIM  
A
1.4  
1.0  
2.0  
1.5  
3.0  
2.4  
SW4ILIM = 1  
Start-up Overshoot  
I
SW4 = 0.0 mA  
VSW4OSH  
66  
mV  
DVS clk = 25 mV/4 s, VIN = VINSW4 = 4.5 V  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
85  
 
Functional Block Requirements and Behaviors  
Power Generation  
Table 87. SW4 Electrical Characteristics (continued)  
All parameters are specified at TMIN to TMAX (See Table 3), VIN = VINSW4 = 3.6 V, VSW4 = 1.8 V, ISW4 = 100 mA,  
SW4_PWRSTG[2:0] = [101], typical external component values, fSW4 = 2.0 MHz, single/dual phase and independent mode  
unless, otherwise noted. Typical values are characterized at VIN = VINSW4 = 3.6 V, VSW4 = 1.8 V, ISW4 = 100 mA,  
SW4_PWRSTG[2:0] = [101], and 25 °C, unless otherwise noted.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Turn-on Time  
Enable to 90% of end value  
SW4 = 0.0 mA  
tONSW4  
500  
µs  
I
DVS clk = 25 mV/4 s, VIN = VINSW4 = 4.5 V  
Switching Frequency  
SW4FREQ[1:0] = 00  
SW4FREQ[1:0] = 01  
SW4FREQ[1:0] = 10  
1.0  
2.0  
4.0  
fSW4  
MHz  
Efficiency  
f
SW4 = 2.0 MHz, LSW4 = 1.0 H  
81  
78  
87  
88  
83  
PFM, 1.8 V, 1.0 mA  
PFM, 1.8 V, 50 mA  
APS, PWM 1.8 V, 200 mA  
APS, PWM 1.8 V, 500 mA  
APS, PWM 1.8 V, 1000 mA  
SW4  
%
78  
76  
66  
PWM 0.75 V, 200 mA  
PWM 0.75 V, 500 mA  
PWM 0.75 V, 1000 mA  
Output Ripple  
VSW4  
VSW4LIR  
VSW4LOR  
10  
mV  
mV  
mV  
Line Regulation (APS, PWM)  
DC Load Regulation (APS, PWM)  
Transient Load Regulation  
20  
20  
Transient Load = 0.0 mA to 500 mA, di/dt = 100 mA/s  
Overshoot  
Undershoot  
VSW4LOTR  
mV  
50  
50  
SWITCH MODE SUPPLY SW4 (CONTINUED)  
Quiescent Current  
PFM Mode  
ISW4Q  
22  
145  
µA  
APS Mode  
SW4 P-MOSFET RDSON  
at VIN = VINSW4 = 3.3 V  
RONSW4P  
RONSW4N  
ISW4PQ  
236  
293  
274  
378  
6.0  
m  
m  
µA  
SW4 N-MOSFET RDSON  
at VIN = VINSW4 = 3.3 V  
SW4 P-MOSFET Leakage Current  
V
IN = VINSW4 = 4.5 V  
SW4 N-MOSFET Leakage Current  
VIN = VINSW4 = 4.5 V  
ISW4NQ  
2.0  
µA  
Discharge Resistance  
RSW4DIS  
600  
Notes  
54. When output is set to > 2.6 V the output will follow the input down when VIN gets near 2.8 V.  
55. The higher output voltages available depend on the voltage drop in the conduction path as given by the following equation:   
(VINSW4 - VSW4) = ISW4* (DCR of Inductor +RONSW4P + PCB trace resistance).  
PF0100  
Analog Integrated Circuit Device Data  
86  
Freescale Semiconductor  
Functional Block Requirements and Behaviors  
Power Generation  
Figure 27. SW4 Efficiency Waveforms: VIN = 4.2 V; VOUT = 1.8 V; Consumer Version  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
87  
Functional Block Requirements and Behaviors  
Power Generation  
Figure 28. SW4 Efficiency Waveforms: VIN = 4.2 V; VOUT = 1.8 V; Extended Industrial Version  
6.4.5 Boost Regulator  
SWBST is a boost regulator with a programmable output from 5.0 to 5.15 V. SWBST can supply the VUSB regulator for the USB  
PHY in OTG mode, as well as the VBUS voltage. Note that the parasitic leakage path for a boost regulator will cause the  
SWBSTOUT and SWBSTFB voltage to be a Schottky drop below the input voltage whenever SWBST is disabled. The switching  
NMOS transistor is integrated on-chip. Figure 29 shows the block diagram and component connection for the boost regulator.  
PF0100  
Analog Integrated Circuit Device Data  
88  
Freescale Semiconductor  
Functional Block Requirements and Behaviors  
Power Generation  
VIN  
CINBST  
SWBSTIN  
SWBSTLX  
LBST  
DBST  
SWBSTMODE  
VOBST  
Driver  
I2C  
Interface  
OC  
SWBSTFAULT  
Controller  
RSENSE  
EP  
VREFSC  
VREFUV  
SC  
UV  
SWBSTFB  
Internal  
Compensation  
COSWBST  
Z2  
Z1  
EA  
VREF  
Figure 29. Boost Regulator Architecture  
6.4.5.1  
SWBST Setup and Control  
Boost regulator control is done through a single register SWBSTCTL described in Table 88. SWBST is included in the power-up  
sequence if its OTP power-up timing bits, SWBST_SEQ[4:0], are not all zeros.  
Table 88. Register SWBSTCTL - ADDR 0x66  
Name  
Bit #  
R/W  
Default  
Description  
Set the output voltage for SWBST  
00 = 5.000 V  
SWBST1VOLT  
1:0  
R/W  
0x00  
01 = 5.050 V  
10 = 5.100 V  
11 = 5.150 V  
Set the Switching mode on Normal operation  
00 = OFF  
SWBST1MODE  
UNUSED  
3:2  
4
R
0x02  
0x00  
0x02  
0x00  
01 = PFM  
10 = Auto (Default)(56)  
11 = APS  
UNUSED  
Set the Switching mode on Standby  
00 = OFF  
SWBST1STBYMODE  
6:5  
7
R/W  
01 = PFM  
10 = Auto (Default)(56)  
11 = APS  
UNUSED  
Notes  
UNUSED  
56. In Auto mode, the controller automatically switches between PFM and APS modes depending on the load current.  
The SWBST regulator starts up by default in the Auto mode if SWBST is part of the startup sequence.  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
89  
 
 
Functional Block Requirements and Behaviors  
Power Generation  
6.4.5.2  
SWBST External Components  
Table 89. SWBST External Component Requirements  
Components  
Description  
Values  
(57)  
CINBST  
SWBST input capacitor  
SWBST decoupling input capacitor  
SWBST output capacitor  
SWBST inductor  
10 F  
0.1 F  
(57)  
CINBSTHF  
(57)  
COBST  
LSBST  
DBST  
2 x 22 F  
2.2 H  
SWBST boost diode  
1.0 A, 20 V Schottky  
Notes  
57. Use X5R or X7R capacitors.  
6.4.5.3  
SWBST Specifications  
Table 90. SWBST Electrical Specifications  
All parameters are specified at TMIN to TMAX (See Table 3), VIN = VINSWBST = 3.6 V, VSWBST = 5.0 V, ISWBST = 100 mA, typical  
external component values, fSWBST = 2.0 MHz, otherwise noted. Typical values are characterized at VIN = VINSWBST = 3.6 V,  
VSWBST = 5.0 V, ISWBST = 100 mA, and 25 °C, unless otherwise noted.  
Parameters  
SWITCH MODE SUPPLY SWBST  
Symbol  
Min  
Typ  
Max  
Units  
Input Voltage Range  
VINSWBST  
VSWBST  
2.8  
4.5  
V
V
Nominal Output Voltage  
Table 88  
Output Voltage Accuracy  
2.8 V VIN 4.5 V  
VSWBSTACC  
-4.0  
3.0  
%
0 < ISWBST < ISWBSTMAX  
Output Ripple  
2.8 V VIN 4.5 V  
0 < ISWBST < ISWBSTMAX, excluding reverse recovery of  
mV  
Vp-p  
VSWBST  
120  
Schottky diode  
DC Load Regulation  
mV/  
mA  
VSWBSTLOR  
VSWBSTLIR  
0.5  
50  
0 < ISWBST < ISWBSTMAX  
DC Line Regulation  
mV  
mA  
A  
2.8 V VIN 4.5 V, ISWBST = ISWBSTMAX  
Continuous Load Current  
2.8 V VIN 3.0 V  
ISWBST  
500  
600  
3.0 V VIN 4.5 V  
Quiescent Current  
AUTO  
ISWBSTQ  
222  
289  
MOSFET on Resistance  
Peak Current Limit (58)  
Start-up Overshoot  
RDSONBST  
ISWBSTLIM  
206  
306  
m  
1400  
2200  
3200  
mA  
VSWBSTOSH  
500  
300  
mV  
mV  
I
SWBST = 0.0 mA  
Transient Load Response  
SWBST from 1.0 to 100 mA in 1.0 µs  
I
VSWBSTTR  
Maximum transient Amplitude  
Transient Load Response  
I
SWBST from 100 to 1.0 mA in 1.0 µs  
VSWBSTTR  
300  
mV  
Maximum transient Amplitude  
PF0100  
Analog Integrated Circuit Device Data  
90  
Freescale Semiconductor  
 
Functional Block Requirements and Behaviors  
Power Generation  
Table 90. SWBST Electrical Specifications (continued)  
All parameters are specified at TMIN to TMAX (See Table 3), VIN = VINSWBST = 3.6 V, VSWBST = 5.0 V, ISWBST = 100 mA, typical  
external component values, fSWBST = 2.0 MHz, otherwise noted. Typical values are characterized at VIN = VINSWBST = 3.6 V,  
VSWBST = 5.0 V, ISWBST = 100 mA, and 25 °C, unless otherwise noted.  
Parameters  
Symbol  
Min  
Typ  
Max  
Units  
Transient Load Response  
SWBST from 1.0 to 100 mA in 1.0 µs  
Time to settle 80% of transient  
I
tSWBSTTR  
500  
µs  
Transient Load Response  
SWBST from 100 to 1.0 mA in 1.0 µs  
I
tSWBSTTR  
20  
ms  
µA  
Time to settle 80% of transient  
NMOS Off Leakage  
ISWBSTHSQ  
1.0  
5.0  
SWBSTIN = 4.5 V, SWBSTMODE [1:0] = 00  
Turn-on Time  
tONSWBST  
fSWBST  
2.0  
ms  
MHz  
%
Enable to 90% of VSWBST, ISWBST = 0.0 mA  
Switching Frequency  
2.0  
86  
Efficiency  
SWBST  
ISWBST = ISWBSTMAX  
Notes  
58. Only in Auto mode.  
6.4.6 LDO Regulators Description  
This section describes the LDO regulators provided by the PF0100. All regulators use the main bandgap as reference. Refer to  
Bias and References Block Description section for further information on the internal reference voltages.  
A Low Power mode is automatically activated by reducing bias currents when the load current is less than I_Lmax/5. However,  
the lowest bias currents may be attained by forcing the part into its Low Power mode by setting the VGENxLPWR bit. The use  
of this bit is only recommended when the load is expected to be less than I_Lmax/50, otherwise performance may be degraded.  
When a regulator is disabled, the output will be discharged by an internal pull-down. The pull-down is also activated when  
RESETBMCU is low.  
VINx  
VINx  
VREF  
_
+
VGENxEN  
VGENxLPWR  
VGENx  
VGENx  
I2C  
Interface  
CGENx  
VGENx  
Discharge  
Figure 30. General LDO Block Diagram  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
91  
Functional Block Requirements and Behaviors  
Power Generation  
6.4.6.1  
Transient Response Waveforms  
Idealized stimulus and response waveforms for transient line and transient load tests are depicted in Figure 31. Note that the  
transient line and load response refers to the overshoot, or undershoot only, excluding the DC shift.  
IMAX  
ILOAD  
IMAX/10  
1.0 us  
1.0 us  
Transient Load Stimulus  
IL = IMAX/10  
IL = IMAX  
Overshoot  
VOUT  
Undershoot  
VOUT Transient Load Response  
VINx_INITIAL  
VINx  
VINx_FINAL  
10 us  
10 us  
Transient Line Stimulus  
VINx_FINAL  
VINx_INITIAL  
Overshoot  
VOUT  
Undershoot  
VOUT Transient Line Response  
Figure 31. Transient Waveforms  
PF0100  
Analog Integrated Circuit Device Data  
92  
Freescale Semiconductor  
 
Functional Block Requirements and Behaviors  
Power Generation  
6.4.6.2  
Short-circuit Protection  
All general purpose LDOs have short-circuit protection capability. The Short-circuit Protection (SCP) system includes debounced  
fault condition detection, regulator shutdown, and processor interrupt generation, to contain failures and minimize the chance of  
product damage. If a short-circuit condition is detected, the LDO will be disabled by resetting its VGENxEN bit, while at the same  
time, an interrupt VGENxFAULTI will be generated to flag the fault to the system processor. The VGENxFAULTI interrupt is  
maskable through the VGENxFAULTM mask bit.  
The SCP feature is enabled by setting the REGSCPEN bit. If this bit is not set, the regulators will not automatically be disabled  
upon a short-circuit detection. However, the current limiter will continue to limit the output current of the regulator. By default, the  
REGSCPEN is not set; therefore, at start-up none of the regulators will be disabled if an overloaded condition occurs. A fault  
interrupt, VGENxFAULTI, will be generated in an overload condition regardless of the state of the REGSCPEN bit. See Table 91  
for SCP behavior configuration.  
Table 91. Short-circuit Behavior  
REGSCPEN[0]  
Short-circuit Behavior  
0
1
Current limit  
Shutdown  
6.4.6.3  
LDO Regulator Control  
Each LDO is fully controlled through its respective VGENxCTL register. This register enables the user to set the LDO output  
voltage according to Table 92 for VGEN1 and VGEN2; and uses the voltage set point on Table 93 for VGEN3 through VGEN6.  
Table 92. VGEN1, VGEN2 Output Voltage Configuration  
Set Point  
VGENx[3:0]  
VGENx Output (V)  
0
1
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
0.800  
0.850  
0.900  
0.950  
1.000  
1.050  
1.100  
1.150  
1.200  
1.250  
1.300  
1.350  
1.400  
1.450  
1.500  
1.550  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
93  
 
 
Functional Block Requirements and Behaviors  
Power Generation  
Table 93. VGEN3/ 4/ 5/ 6 Output Voltage Configuration  
Set Point  
VGENx[3:0]  
VGENx Output (V)  
0
1
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
1.80  
1.90  
2.00  
2.10  
2.20  
2.30  
2.40  
2.50  
2.60  
2.70  
2.80  
2.90  
3.00  
3.10  
3.20  
3.30  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
Besides the output voltage configuration, the LDOs can be enabled or disabled at anytime during normal mode operation, as well  
as programmed to stay “ON” or be disabled when the PMIC enters Standby mode. Each regulator has associated I2C bits for  
this. Table 94 presents a summary of all valid combinations of the control bits on VGENxCTL register and the expected behavior  
of the LDO output.  
Table 94. LDO Control  
VGENxEN  
VGENxLPWR  
VGENxSTBY STANDBY(59)  
VGENxOUT  
0
1
1
1
1
1
X
0
1
X
0
1
X
0
0
1
1
1
X
X
X
0
Off  
On  
Low Power  
On  
1
Off  
1
Low Power  
Notes  
59. STANDBY refers to a Standby event as described earlier.  
PF0100  
Analog Integrated Circuit Device Data  
94  
Freescale Semiconductor  
 
 
 
Functional Block Requirements and Behaviors  
Power Generation  
For more detail information, Table 95 through Table 100 provide a description of all registers necessary to operate all six general  
purpose LDO regulators.  
Table 95. Register VGEN1CTL - ADDR 0x6C  
Name  
Bit #  
R/W Default  
Description  
Sets VGEN1 output voltage.  
See Table 92 for all possible configurations.  
VGEN1  
3:0  
R/W  
0x80  
0x00  
0x00  
Enables or Disables VGEN1 output  
VGEN1EN  
4
5
0 = OFF  
1 = ON  
Set VGEN1 output state when in Standby. Refer  
to Table 94.  
VGEN1STBY  
R/W  
Enable Low Power Mode for VGEN1. Refer to  
Table 94.  
VGEN1LPWR  
UNUSED  
6
7
R/W  
0x00  
0x00  
UNUSED  
Table 96. Register VGEN2CTL - ADDR 0x6D  
Name  
Bit #  
R/W Default  
Description  
Sets VGEN2 output voltage.  
See Table 92 for all possible configurations.  
VGEN2  
3:0  
R/W  
0x80  
0x00  
0x00  
Enables or Disables VGEN2 output  
VGEN2EN  
4
5
0 = OFF  
1 = ON  
Set VGEN2 output state when in Standby. Refer  
to Table 94.  
VGEN2STBY  
R/W  
Enable Low Power Mode for VGEN2. Refer to  
Table 94.  
VGEN2LPWR  
UNUSED  
6
7
R/W  
0x00  
0x00  
UNUSED  
Table 97. Register VGEN3CTL - ADDR 0x6E  
Name  
Bit #  
R/W Default  
Description  
Sets VGEN3 output voltage.  
See Table 93 for all possible configurations.  
VGEN3  
3:0  
R/W  
0x80  
0x00  
0x00  
Enables or Disables VGEN3 output  
VGEN3EN  
4
5
0 = OFF  
1 = ON  
Set VGEN3 output state when in Standby. Refer  
to Table 94.  
VGEN3STBY  
R/W  
Enable Low Power Mode for VGEN3. Refer to  
Table 94.  
VGEN3LPWR  
UNUSED  
6
7
R/W  
0x00  
0x00  
UNUSED  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
95  
 
Functional Block Requirements and Behaviors  
Power Generation  
Table 98. Register VGEN4CTL - ADDR 0x6F  
Name  
Bit #  
R/W Default  
Description  
Sets VGEN4 output voltage.  
See Table 93 for all possible configurations.  
VGEN4  
3:0  
R/W  
0x80  
0x00  
0x00  
Enables or Disables VGEN4 output  
VGEN4EN  
4
5
0 = OFF  
1 = ON  
Set VGEN4 output state when in Standby. Refer  
to Table 94.  
VGEN4STBY  
R/W  
Enable Low Power Mode for VGEN4. Refer to  
Table 94.  
VGEN4LPWR  
UNUSED  
6
7
R/W  
0x00  
0x00  
UNUSED  
Table 99. Register VGEN5CTL - ADDR 0x70  
Name  
Bit #  
R/W Default  
Description  
Sets VGEN5 output voltage.  
See Table 93 for all possible configurations.  
VGEN5  
3:0  
R/W  
0x80  
0x00  
0x00  
Enables or Disables VGEN5 output  
VGEN5EN  
4
5
0 = OFF  
1 = ON  
Set VGEN5 output state when in Standby. Refer  
to Table 94.  
VGEN5STBY  
R/W  
Enable Low Power Mode for VGEN5. Refer to  
Table 94.  
VGEN5LPWR  
UNUSED  
6
7
R/W  
0x00  
0x00  
UNUSED  
Table 100. Register VGEN6CTL - ADDR 0x71  
Name  
Bit #  
R/W Default  
Description  
Sets VGEN6 output voltage.  
See Table 93 for all possible configurations.  
VGEN6  
3:0  
R/W  
0x80  
0x00  
0x00  
Enables or Disables VGEN6 output  
VGEN6EN  
4
5
0 = OFF  
1 = ON  
Set VGEN6 output state when in Standby. Refer  
to Table 94.  
VGEN6STBY  
R/W  
Enable Low Power Mode for VGEN6. Refer to  
Table 94.  
VGEN6LPWR  
UNUSED  
6
7
R/W  
0x00  
0x00  
UNUSED  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
96  
Functional Block Requirements and Behaviors  
Power Generation  
6.4.6.4  
External Components  
Table 101 lists the typical component values for the general purpose LDO regulators.  
Table 101. LDO External Components  
Regulator  
Output Capacitor (F)(60)  
VGEN1  
VGEN2  
VGEN3  
VGEN4  
VGEN5  
VGEN6  
2.2  
4.7  
2.2  
4.7  
2.2  
2.2  
Notes  
60. Use X5R/X7R ceramic capacitors.  
6.4.6.5  
VGEN1  
LDO Specifications  
Table 102. VGEN1 Electrical Characteristics  
All parameters are specified at TMIN to TMAX (See Table 3), VIN = 3.6 V, VIN1 = 3.0 V, VGEN1[3:0] = 1111, IGEN1 = 10 mA, typical  
external component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, IN1 = 3.0 V,  
VGEN1[3:0] = 1111, IGEN1 = 10 mA, and 25 °C, unless otherwise noted.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
VGEN1  
Operating Input Voltage  
Nominal Output Voltage  
Operating Load Current  
VGEN1 DC  
VIN1  
VGEN1NOM  
IGEN1  
1.75  
Table 92  
3.40  
V
V
0.0  
100  
mA  
Output Voltage Tolerance  
1.75 V < VIN1 < 3.4 V  
VGEN1TOL  
-3.0  
3.0  
%
0.0 mA < IGEN1 < 100 mA  
VGEN1[3:0] = 0000 to 1111  
Load Regulation  
mV/  
mA  
(VGEN1 at IGEN1 = 100 mA) - (VGEN1 at IGEN1 = 0.0 mA)  
For any 1.75 V < VIN1 < 3.4 V  
VGEN1LOR  
0.15  
Line Regulation  
mV/  
mA  
(VGEN1 at VIN1 = 3.4 V) - (VGEN1 at VIN1 = 1.75 V)  
For any 0.0 mA < IGEN1 < 100 mA  
VGEN1LIR  
IGEN1LIM  
IGEN1OCP  
0.30  
167  
Current Limit  
122  
115  
200  
200  
mA  
mA  
I
GEN1 when VGEN1 is forced to VGEN1NOM/2  
Overcurrent Protection Threshold  
IGEN1 required to cause the SCP function to disable LDO when  
REGSCPEN = 1  
Quiescent Current  
No load, Change in IVIN and IVIN1  
When VGEN1 enabled  
IGEN1Q  
14  
A  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
97  
 
 
Functional Block Requirements and Behaviors  
Power Generation  
Table 102. VGEN1 Electrical Characteristics (continued)  
All parameters are specified at TMIN to TMAX (See Table 3), VIN = 3.6 V, VIN1 = 3.0 V, VGEN1[3:0] = 1111, IGEN1 = 10 mA, typical  
external component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, IN1 = 3.0 V,  
VGEN1[3:0] = 1111, IGEN1 = 10 mA, and 25 °C, unless otherwise noted.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
VGEN1 AC AND TRANSIENT  
PSRR(61)  
IGEN1 = 75 mA, 20 Hz to 20 kHz  
PSRRVGEN1  
dB  
50  
37  
60  
45  
VGEN1[3:0] = 0000 - 1101  
VGEN1[3:0] = 1110, 1111  
Output Noise Density  
V
IN1 = 1.75 V, IGEN1 = 75 mA  
dBV/  
Hz  
100 Hz – <1.0 kHz  
1.0 kHz – <10 kHz  
10 kHz – 1.0 MHz  
NOISEVGEN1  
-108  
-118  
-124  
-100  
-108  
-112  
Turn-on Slew Rate  
10% to 90% of end value  
1.75 V VIN1  3.4 V, IGEN1 = 0.0 mA  
VGEN1[3:0] = 0000 to 0111  
VGEN1[3:0] = 1000 to 1111  
SLWRVGEN1  
mVs  
s  
12.5  
16.5  
Turn-On Time  
Enable to 90% of end value, VIN1 = 1.75 V, 3.4 V  
GEN1 = 0.0 mA  
GEN1tON  
60  
500  
I
Turn-Off Time  
Disable to 10% of initial value, VIN1 = 1.75 V  
GEN1tOFF  
GEN1OSHT  
10  
ms  
%
IGEN1 = 0.0 mA  
Start-Up Overshoot  
1.0  
2.0  
VIN1 = 1.75 V, 3.4 V, IGEN1 = 0.0 mA  
Transient Load Response  
VIN1 = 1.75 V, 3.4 V  
VGEN1LOTR  
3.0  
8.0  
%
IGEN1 = 10 to 100 mA in 1.0 s. Peak of overshoot or undershoot  
of VGEN1 with respect to final value  
Refer to Figure 31  
Transient Line Response  
I
GEN1 = 75 mA  
VIN1INITIAL = 1.75 V to VIN1FINAL = 2.25 V for   
VGEN1[3:0] = 0000 to 1101  
VGEN1LITR  
5.0  
mV  
VIN1INITIAL = VGEN1+0.3 V to VIN1FINAL = VGEN1+0.8 V for  
VGEN1[3:0] = 1110, 1111  
Refer to Figure 31  
Notes  
61. The PSRR of the regulators is measured with the perturbing signal at the input of the regulator. The power management IC is supplied  
separately from the input of the regulator and does not contain the perturbed signal. During measurements, care must be taken not to  
operate in the dropout region of the regulator under test.  
PF0100  
Analog Integrated Circuit Device Data  
98  
Freescale Semiconductor  
 
Functional Block Requirements and Behaviors  
Power Generation  
VGEN2  
Table 103. VGEN2 Electrical Characteristics  
All parameters are specified at TMIN to TMAX (See Table 3), VIN = 3.6 V, VIN1 = 3.0 V, VGEN2[3:0] = 1111, IGEN2 = 10 mA, typical  
external component values, unless otherwise noted. Typical values are characterized at VIN = 3.6V, VIN1 = 3.0 V,  
VGEN2[3:0] = 1111, IGEN2 = 10mA and 25°C, unless otherwise noted.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
VGEN2  
Operating Input Voltage  
Nominal Output Voltage  
Operating Load Current  
VIN1  
VGEN2NOM  
IGEN2  
1.75  
Table 92  
3.40  
V
V
0.0  
250  
mA  
VGEN2 ACTIVE MODE - DC  
Output VoltageTolerance  
1.75 V < VIN1 < 3.4 V  
VGEN2TOL  
-3.0  
3.0  
%
0.0 mA < IGEN2 < 250 mA  
VGEN2[3:0] = 0000 to 1111  
Load Regulation  
mV/  
mA  
(VGEN2 at IGEN2 = 250 mA) - (VGEN2 at IGEN2 = 0.0 mA)  
For any 1.75 V < VIN1 < 3.4 V  
VGEN2LOR  
0.05  
0.50  
Line Regulation  
mV/  
mA  
(VGEN2 at VIN1 = 3.4 V) - (VGEN2 at VIN1 = 1.75 V)  
For any 0.0 mA < IGEN2 < 250 mA  
VGEN2LIR  
Current Limit  
I
GEN2 when VGEN2 is forced to VGEN2NOM/2  
IGEN2LIM  
mA  
MMPF0100  
MMPF0100A  
333  
305  
417  
417  
510  
510  
Overcurrent Protection Threshold  
I
GEN2 required to cause the SCP function to disable LDO when  
REGSCPEN = 1  
MMPF0100  
MMPF0100A  
IGEN2OCP  
mA  
300  
290  
500  
500  
Quiescent Current  
No load, Change in IVIN and IVIN1  
When VGEN2 enabled  
IGEN2Q  
16  
A  
VGEN2 AC AND TRANSIENT  
PSRR(62)  
IGEN2 = 187.5 mA, 20 Hz to 20 kHz  
PSRRVGEN2  
dB  
50  
37  
60  
45  
VGEN2[3:0] = 0000 - 1101  
VGEN2[3:0] = 1110, 1111  
Output Noise Density  
IN1 = 1.75 V, IGEN2 = 187.5 mA  
V
dBV/  
Hz  
NOISEVGEN2  
-108  
-118  
-124  
-100  
-108  
-112  
100 Hz – <1.0 kHz  
1.0 kHz – <10 kHz  
10 kHz – 1.0 MHz  
Turn-On Slew Rate  
10% to 90% of end value  
1.75 V VIN1 3.4 V, IGEN2 = 0.0 mA  
VGEN2[3:0] = 0000 to 0111  
VGEN2[3:0] = 1000 to 1111  
SLWRVGEN2  
mVs  
s  
12.5  
16.5  
Turn-On Time  
Enable to 90% of end value, VIN1 = 1.75 V, 3.4 V  
GEN2 = 0.0 mA  
GEN2tON  
60  
500  
I
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
99  
Functional Block Requirements and Behaviors  
Power Generation  
Table 103. VGEN2 Electrical Characteristics  
All parameters are specified at TMIN to TMAX (See Table 3), VIN = 3.6 V, VIN1 = 3.0 V, VGEN2[3:0] = 1111, IGEN2 = 10 mA, typical  
external component values, unless otherwise noted. Typical values are characterized at VIN = 3.6V, VIN1 = 3.0 V,  
VGEN2[3:0] = 1111, IGEN2 = 10mA and 25°C, unless otherwise noted.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
VGEN2 AC AND TRANSIENT (CONTINUED)  
Turn-Off Time  
Disable to 10% of initial value, VIN1 = 1.75 V  
IGEN2 = 0.0 mA  
GEN2tOFF  
GEN2OSHT  
10  
ms  
%
Start-up Overshoot  
1.0  
2.0  
V
IN1 = 1.75 V, 3.4 V, IGEN2 = 0.0 mA  
Transient Load Response  
V
IN1 = 1.75 V, 3.4 V  
I
GEN2 = 25 to 250 mA in 1.0 s  
VGEN2LOTR  
3.0  
8.0  
%
Peak of overshoot or undershoot of VGEN2 with respect to final  
value  
Refer to Figure 31  
Transient Line Response  
IGEN2 = 187.5 mA  
VIN1INITIAL = 1.75 V to VIN1FINAL = 2.25 V for   
VGEN2[3:0] = 0000 to 1101  
VGEN2LITR  
5.0  
mV  
VIN1INITIAL = VGEN2+0.3 V to VIN1FINAL = VGEN2+0.8 V for  
VGEN2[3:0] = 1110, 1111  
Refer to Figure 31  
Notes  
62. The PSRR of the regulators is measured with the perturbing signal at the input of the regulator. The power management IC is supplied  
separately from the input of the regulator and does not contain the perturbed signal. During measurements, care must be taken not to  
operate in the dropout region of the regulator under test.  
PF0100  
Analog Integrated Circuit Device Data  
100  
Freescale Semiconductor  
Functional Block Requirements and Behaviors  
Power Generation  
VGEN3  
Table 104. VGEN3 Electrical Characteristics  
All parameters are specified at TMIN to TMAX (See Table 3), VIN = 3.6 V, VIN2 = 3.6 V, VGEN3[3:0] = 1111, IGEN3 = 10 mA, typical  
external component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VIN2 = 3.6 V,  
VGEN3[3:0] = 1111, IGEN3 = 10 mA, and 25 °C, unless otherwise noted.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
VGEN3  
Operating Input Voltage  
2.8  
VGEN3NOM  
0.250  
1.8 V VGEN3NOM 2.5 V  
VIN2  
3.6  
3.6  
V
+
2.6 V VGEN3NOM 3.3 V(63)  
Nominal Output Voltage  
Operating Load Current  
VGEN3 DC  
VGEN3NOM  
IGEN3  
Table 93  
V
0.0  
100  
mA  
Output Voltage Tolerance  
VIN2MIN < VIN2 < 3.6 V  
VGEN3TOL  
-3.0  
3.0  
%
0.0 mA < IGEN3 < 100 mA  
VGEN3[3:0] = 0000 to 1111  
Load Regulation  
mV/  
mA  
(VGEN3 at IGEN3 = 100 mA) - (VGEN3 at IGEN3 = 0.0 mA)  
For any VIN2MIN < VIN2 < 3.6 V  
VGEN3LOR  
0.07  
Line Regulation  
mV/  
mA  
(VGEN3 at VIN2 = 3.6 V) - (VGEN3 at VIN2MIN  
For any 0.0 mA < IGEN3 < 100 mA  
)
VGEN3LIR  
IGEN3LIM  
IGEN3OCP  
0.8  
167  
Current Limit  
GEN3 when VGEN3 is forced to VGEN3NOM/2  
127  
120  
200  
200  
mA  
mA  
I
Over-current Protection Threshold  
GEN3 required to cause the SCP function to disable LDO when  
I
REGSCPEN = 1  
Quiescent Current  
No load, Change in IVIN and IVIN2  
When VGEN3 enabled  
IGEN3Q  
13  
A  
VGEN3 AC AND TRANSIENT  
PSRR(64)  
IGEN3 = 75 mA, 20 Hz to 20 kHz  
PSRRVGEN3  
dB  
35  
55  
40  
60  
VGEN3[3:0] = 0000 - 1110, VIN2 = VIN2MIN + 100 mV  
VGEN3[3:0] = 0000 - 1000, VIN2 = VGEN3NOM + 1.0 V  
Output Noise Density  
IN2 = VIN2MIN, IGEN3 = 75 mA  
V
dBV/  
Hz  
NOISEVGEN3  
-114  
-129  
-135  
-102  
-123  
-130  
100 Hz – <1.0 kHz  
1.0 kHz – <10 kHz  
10 kHz – 1.0 MHz  
Turn-On Slew Rate  
10% to 90% of end value  
VIN2MINVIN2 3.6 V, IGEN3 = 0.0 mA  
SLWRVGEN3  
22.0  
26.5  
30.5  
34.5  
mVs  
VGEN3[3:0] = 0000 to 0011  
VGEN3[3:0] = 0100 to 0111  
VGEN3[3:0] = 1000 to 1011  
VGEN3[3:0] = 1100 to 1111  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
101  
Functional Block Requirements and Behaviors  
Power Generation  
Table 104. VGEN3 Electrical Characteristics (continued)  
All parameters are specified at TMIN to TMAX (See Table 3), VIN = 3.6 V, VIN2 = 3.6 V, VGEN3[3:0] = 1111, IGEN3 = 10 mA, typical  
external component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VIN2 = 3.6 V,  
VGEN3[3:0] = 1111, IGEN3 = 10 mA, and 25 °C, unless otherwise noted.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
VGEN3 AC AND TRANSIENT (CONTINUED)  
Turn-On Time  
Enable to 90% of end value, VIN2 = VIN2MIN, 3.6 V  
GEN3tON  
60  
500  
s  
I
GEN3 = 0.0 mA  
Turn-Off Time  
Disable to 10% of initial value, VIN2 = VIN2MIN  
IGEN3 = 0.0 mA  
GEN3tOFF  
GEN3OSHT  
10  
ms  
%
Start-up Overshoot  
1.0  
2.0  
V
IN2 = VIN2MIN, 3.6 V, IGEN3 = 0.0 mA  
Transient Load Response  
V
IN2 = VIN2MIN, 3.6 V  
I
GEN3 = 10 to 100 mA in 1.0s  
VGEN3LOTR  
3.0  
8.0  
%
Peak of overshoot or undershoot of VGEN3 with respect to final  
value. Refer to Figure 31  
Transient Line Response  
I
GEN3 = 75 mA  
VIN2INITIAL = 2.8 V to VIN2FINAL = 3.3 V for   
GEN3[3:0] = 0000 to 0111  
VIN2INITIAL = VGEN3+0.3 V to VIN2FINAL = VGEN3+0.8 V for  
VGEN3[3:0] = 1000 to 1010  
VGEN3LITR  
5.0  
mV  
VIN2INITIAL = VGEN3+0.25 V to VIN2FINAL = 3.6 V for   
VGEN3[3:0] = 1011 to 1111  
Refer to Figure 31  
Notes  
63. When the LDO Output voltage is set above 2.6 V, the minimum allowed input voltage needs to be at least the output voltage plus 0.25 V,  
for proper regulation due to the dropout voltage generated through the internal LDO transistor.  
64. The PSRR of the regulators is measured with the perturbing signal at the input of the regulator. The power management IC is supplied  
separately from the input of the regulator and does not contain the perturbed signal. During measurements, care must be taken not to  
operate in the dropout region of the regulator under test. VIN2MIN refers to the minimum allowed input voltage for a particular output  
voltage.  
PF0100  
Analog Integrated Circuit Device Data  
102  
Freescale Semiconductor  
Functional Block Requirements and Behaviors  
Power Generation  
VGEN4  
Table 105. VGEN4 Electrical Characteristics  
All parameters are specified at TMIN to TMAX (See Table 3), VIN = 3.6 V, VIN2 = 3.6 V, VGEN4[3:0] = 1111, IGEN4 = 10 mA, typical  
external component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VIN2 = 3.6 V,  
VGEN4[3:0] = 1111, IGEN4 = 10 mA, and 25 °C, unless otherwise noted.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
VGEN4  
Operating Input Voltage  
2.8  
VGEN4NOM  
0.250  
1.8 V VGEN4NOM 2.5 V  
VIN2  
3.6  
3.6  
V
+
2.6 V VGEN4NOM 3.3 V(65)  
Nominal Output Voltage  
Operating Load Current  
VGEN4 DC  
VGEN4NOM  
IGEN4  
Table 93  
V
0.0  
350  
mA  
Output Voltage Tolerance  
VIN2MIN < VIN2 < 3.6 V  
VGEN4TOL  
-3.0  
3.0  
%
0.0 mA < IGEN4 < 350 mA  
VGEN4[3:0] = 0000 to 1111  
Load Regulation  
mV/  
mA  
(VGEN4 at IGEN4 = 350 mA) - (VGEN4 at IGEN4 = 0.0 mA )  
For any VIN2MIN < VIN2 < 3.6 V  
VGEN4LOR  
0.07  
Line Regulation  
mV/  
mA  
(VGEN4 at 3.6 V) - (VGEN4 at VIN2MIN  
For any 0.0 mA < IGEN4 < 350 mA  
)
VGEN4LIR  
IGEN4LIM  
IGEN4OCP  
0.80  
584.5  
Current Limit  
GEN4 when VGEN4 is forced to VGEN4NOM/2  
435  
420  
700  
700  
mA  
mA  
I
Over-current Protection Threshold  
GEN4 required to cause the SCP function to disable LDO when  
I
REGSCPEN = 1  
Quiescent Current  
No load, Change in IVIN and IVIN2  
When VGEN4 enabled  
IGEN4Q  
13  
A  
VGEN4 AC AND TRANSIENT  
PSRR(66)  
IGEN4 = 262.5 mA, 20 Hz to 20 kHz  
PSRRVGEN4  
dB  
35  
55  
40  
60  
VGEN4[3:0] = 0000 - 1110, VIN2 = VIN2MIN + 100 mV  
VGEN4[3:0] = 0000 - 1000, VIN2 = VGEN4NOM + 1.0 V  
Output Noise Density  
IN2 = VIN2MIN, IGEN4 = 262.5 mA  
V
dBV/  
Hz  
NOISEVGEN4  
-114  
-129  
-135  
-102  
-123  
-130  
100 Hz – <1.0 kHz  
1.0 kHz – <10 kHz  
10 kHz – 1.0 MHz  
Turn-On Slew Rate  
10% to 90% of end value  
VIN2MIN VIN2 3.6 V, IGEN4 = 0.0 mA  
SLWRVGEN4  
22.0  
26.5  
30.5  
34.5  
mVs  
VGEN4[3:0] = 0000 to 0011  
VGEN4[3:0] = 0100 to 0111  
VGEN4[3:0] = 1000 to 1011  
VGEN4[3:0] = 1100 to 1111  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
103  
Functional Block Requirements and Behaviors  
Power Generation  
Table 105. VGEN4 Electrical Characteristics (continued)  
All parameters are specified at TMIN to TMAX (See Table 3), VIN = 3.6 V, VIN2 = 3.6 V, VGEN4[3:0] = 1111, IGEN4 = 10 mA, typical  
external component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VIN2 = 3.6 V,  
VGEN4[3:0] = 1111, IGEN4 = 10 mA, and 25 °C, unless otherwise noted.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
VGEN4 AC AND TRANSIENT (CONTINUED)  
Turn-On Time  
Enable to 90% of end value, VIN2 = VIN2MIN, 3.6 V  
GEN4tON  
60  
500  
s  
I
GEN4 = 0.0 mA  
Turn-Off Time  
Disable to 10% of initial value, VIN2 = VIN2MIN  
IGEN4 = 0.0 mA  
GEN4tOFF  
GEN4OSHT  
10  
ms  
%
Start-up Overshoot  
1.0  
2.0  
V
IN2 = VIN2MIN, 3.6 V, IGEN4 = 0.0 mA  
Transient Load Response  
V
IN2 = VIN2MIN, 3.6 V  
I
GEN4 = 35 to 350 mA in 1.0 s  
VGEN4LOTR  
3.0  
8.0  
%
Peak of overshoot or undershoot of VGEN4 with respect to final  
value. Refer to Figure 31  
Transient Line Response  
I
GEN4 = 262.5 mA  
VIN2INITIAL = 2.8 V to VIN2FINAL = 3.3 V for   
VGEN4[3:0] = 0000 to 0111  
VIN2INITIAL = VGEN4+0.3 V to VIN2FINAL = VGEN4+0.8 V for  
VGEN4[3:0] = 1000 to 1010  
VGEN4LITR  
5.0  
mV  
VIN2INITIAL = VGEN4+0.25 V to VIN2FINAL = 3.6 V for   
VGEN4[3:0] = 1011 to 1111  
Refer to Figure 31  
Notes  
65. When the LDO Output voltage is set above 2.6 V the minimum allowed input voltage need to be at least the output voltage plus 0.25 V  
for proper regulation due to the dropout voltage generated through the internal LDO transistor.  
66. The PSRR of the regulators is measured with the perturbing signal at the input of the regulator. The power management IC is supplied  
separately from the input of the regulator and does not contain the perturbed signal. During measurements, care must be taken not to  
operate in the dropout region of the regulator under test. VIN2MIN refers to the minimum allowed input voltage for a particular output  
voltage.  
PF0100  
Analog Integrated Circuit Device Data  
104  
Freescale Semiconductor  
Functional Block Requirements and Behaviors  
Power Generation  
VGEN5  
Table 106. VGEN5 Electrical Characteristics  
All parameters are specified at TMIN to TMAX (See Table 3), VIN = 3.6 V, VIN3 = 3.6 V, VGEN5[3:0] = 1111, IGEN5 = 10 mA, typical  
external component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VIN3 = 3.6 V,  
VGEN5[3:0] = 1111, IGEN5 = 10 mA, and 25 °C, unless otherwise noted.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
VGEN5  
Operating Input Voltage  
2.8  
VGEN5NOM  
0.250  
4.5  
4.5  
1.8 V VGEN5NOM 2.5 V  
VIN3  
V
+
2.6 V VGEN5NOM 3.3 V(67)  
Nominal Output Voltage  
Operating Load Current  
VGEN5 ACTIVE MODE – DC  
VGEN5NOM  
IGEN5  
Table 93  
V
0.0  
100  
mA  
Output Voltage Tolerance  
VIN3MIN < VIN3 < 4.5 V  
VGEN5TOL  
-3.0  
3.0  
%
0.0 mA < IGEN5 < 100 mA  
VGEN5[3:0] = 0000 to 1111  
Load Regulation  
mV/  
mA  
(VGEN5 at IGEN5 = 100 mA) - (VGEN5 at IGEN5 = 0.0 mA)  
For any VIN3MIN < VIN3 < 4.5 mV  
VGEN5LOR  
0.10  
Line Regulation  
mV/  
mA  
(VGEN5 at VIN3 = 4.5 V) - (VGEN5 at VIN3MIN  
For any 0.0 mA < IGEN5 < 100 mA  
)
VGEN5LIR  
IGEN5LIM  
IGEN5OCP  
0.50  
167  
Current Limit  
GEN5 when VGEN5 is forced to VGEN5NOM/2  
122  
120  
200  
200  
mA  
mA  
I
Over-current Protection threshold  
GEN5 required to cause the SCP function to disable LDO when  
I
REGSCPEN = 1  
Quiescent Current  
No load, Change in IVIN and IVIN3  
When VGEN5 enabled  
IGEN5Q  
13  
A  
VGEN5 AC AND TRANSIENT  
PSRR(68)  
IGEN5 = 75 mA, 20 Hz to 20 kHz  
PSRRVGEN5  
dB  
35  
52  
40  
60  
VGEN5[3:0] = 0000 - 1111, VIN3 = VIN3MIN + 100 mV  
VGEN5[3:0] = 0000 - 1111, VIN3 = VGEN5NOM + 1.0 V  
Output Noise Density  
IN3 = VIN3MIN, IGEN5 = 75 mA  
V
dBV/  
Hz  
NOISEVGEN5  
-114  
-129  
-135  
-102  
-123  
-130  
100 Hz – <1.0 kHz  
1.0 kHz – <10 kHz  
10 kHz – 1.0 MHz  
Turn-On Slew Rate  
10% to 90% of end value  
VIN3MIN VIN3 4.5 mV, IGEN5 = 0.0 mA  
SLWRVGEN5  
22.0  
26.5  
30.5  
34.5  
mVs  
VGEN5[3:0] = 0000 to 0011  
VGEN5[3:0] = 0100 to 0111  
VGEN5[3:0] = 1000 to 1011  
VGEN5[3:0] = 1100 to 1111  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
105  
Functional Block Requirements and Behaviors  
Power Generation  
Table 106. VGEN5 Electrical Characteristics (continued)  
All parameters are specified at TMIN to TMAX (See Table 3), VIN = 3.6 V, VIN3 = 3.6 V, VGEN5[3:0] = 1111, IGEN5 = 10 mA, typical  
external component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VIN3 = 3.6 V,  
VGEN5[3:0] = 1111, IGEN5 = 10 mA, and 25 °C, unless otherwise noted.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
VGEN5 ACTIVE MODE – DC (CONTINUED)  
Turn-On Time  
Enable to 90% of end value, VIN3 = VIN3MIN, 4.5 V  
GEN5tON  
60  
500  
s  
I
GEN5 = 0.0 mA  
Turn-Off Time  
Disable to 10% of initial value, VIN3 = VIN3MIN  
IGEN5 = 0.0 mA  
GEN5tOFF  
GEN5OSHT  
10  
ms  
%
Start-Up Overshoot  
1.0  
2.0  
V
IN3 = VIN3MIN, 4.5 V, IGEN5 = 0.0 mA  
Transient Load Response  
V
IN3 = VIN3MIN, 4.5 V  
I
GEN5 = 10 to 100 mA in 1.0 s  
VGEN5LOTR  
3.0  
8.0  
%
Peak of overshoot or undershoot of VGEN5 with respect to final  
value.  
Refer to Figure 31  
Transient Line Response  
IGEN5 = 75 mA  
VIN3INITIAL = 2.8 V to VIN3FINAL = 3.3 V for   
VGEN5[3:0] = 0000 to 0111  
VGEN5LITR  
-
5.0  
mV  
VIN3INITIAL = VGEN5+0.3 V to VIN3FINAL = VGEN5+0.8 V for  
VGEN5[3:0] = 1000 to 1111  
Refer to Figure 31  
Notes  
67. When the LDO Output voltage is set above 2.6 V the minimum allowed input voltage need to be at least the output voltage plus 0.25 V  
for proper regulation due to the dropout voltage generated through the internal LDO transistor.  
68. The PSRR of the regulators is measured with the perturbing signal at the input of the regulator. The power management IC is supplied  
separately from the input of the regulator and does not contain the perturbed signal. During measurements, care must be taken not to  
operate in the dropout region of the regulator under test. VIN3MIN refers to the minimum allowed input voltage for a particular output  
voltage.  
PF0100  
Analog Integrated Circuit Device Data  
106  
Freescale Semiconductor  
Functional Block Requirements and Behaviors  
Power Generation  
VGEN6  
Table 107. VGEN6 Electrical Characteristics  
All parameters are specified at TMIN to TMAX (See Table 3), VIN = 3.6 V, VIN3 = 3.6 V, VGEN6[3:0] = 1111, IGEN6 = 10 mA, typical  
external component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VIN3 = 3.6 V,  
VGEN6[3:0] = 1111, IGEN6 = 10 mA, and 25 °C, unless otherwise noted.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
VGEN6  
Operating Input Voltage  
2.8  
VGEN6NOM  
0.250  
4.5  
4.5  
1.8 V VGEN6NOM 2.5 V  
VIN3  
+
V
2.6 V VGEN6NOM 3.3 V(69)  
Nominal Output Voltage  
Operating Load Current  
VGEN6 DC  
VGEN6NOM  
IGEN6  
Table 93  
V
0.0  
200  
mA  
Output Voltage Tolerance  
VIN3MIN < VIN3 < 4.5 V  
VGEN6TOL  
-3.0  
3.0  
%
0.0 mA < IGEN6 < 200 mA  
VGEN6[3:0] = 0000 to 1111  
Load Regulation  
mV/  
mA  
(VGEN6 at IGEN6 = 200 mA) - (VGEN6 at IGEN6 = 0.0 mA)  
For any VIN3MIN < VIN3 < 4.5 V  
VGEN6LOR  
0.10  
0.50  
Line Regulation  
mV/  
mA  
(VGEN6 at VIN3 = 4.5 V) - (VGEN6 at VIN3MIN  
For any 0.0 mA < IGEN6 < 200 mA  
)
VGEN6LIR  
Current Limit  
GEN6 when VGEN6 is forced to VGEN6NOM/2  
I
IGEN6LIM  
mA  
MMPF0100  
MMPF0100A  
232  
232  
333  
333  
400  
475  
Over Current Protection Threshold  
I
GEN6 required to cause the SCP function to disable LDO when  
REGSCPEN = 1  
MMPF0100  
MMPF0100A  
IGEN6OCP  
mA  
220  
220  
400  
475  
Quiescent Current  
No load, Change in IVIN and IVIN3  
When VGEN6 enabled  
IGEN6Q  
13  
A  
VGEN6 AC AND TRANSIENT  
PSRR(70)  
IGEN6 = 150 mA, 20 Hz to 20 kHz  
PSRRVGEN6  
dB  
35  
52  
40  
60  
VGEN6[3:0] = 0000 - 1111, VIN3 = VIN3MIN + 100 mV  
VGEN6[3:0] = 0000 - 1111, VIN3 = VGEN6NOM + 1.0 V  
Output Noise Density  
IN3 = VIN3MIN, IGEN6 = 150 mA  
V
dBV/  
Hz  
NOISEVGEN6  
-114  
-129  
-135  
-102  
-123  
-130  
100 Hz – <1.0 kHz  
1.0 kHz – <10 kHz  
10 kHz – 1.0 MHz  
Turn-On Slew Rate  
10% to 90% of end value  
VIN3MIN VIN3 4.5 V. IGEN6 = 0.0 mA  
SLWRVGEN6  
22.0  
26.5  
30.5  
34.5  
mVs  
VGEN6[3:0] = 0000 to 0011  
VGEN6[3:0] = 0100 to 0111  
VGEN6[3:0] = 1000 to 1011  
VGEN6[3:0] = 1100 to 1111  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
107  
Functional Block Requirements and Behaviors  
Power Generation  
Table 107. VGEN6 Electrical Characteristics (continued)  
All parameters are specified at TMIN to TMAX (See Table 3), VIN = 3.6 V, VIN3 = 3.6 V, VGEN6[3:0] = 1111, IGEN6 = 10 mA, typical  
external component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VIN3 = 3.6 V,  
VGEN6[3:0] = 1111, IGEN6 = 10 mA, and 25 °C, unless otherwise noted.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
VGEN6 AC AND TRANSIENT (CONTINUED)  
Turn-On Time  
Enable to 90% of end value, VIN3 = VIN3MIN, 4.5 V  
GEN6tON  
60  
500  
s  
I
GEN6 = 0.0 mA  
Turn-Off Time  
Disable to 10% of initial value, VIN3 = VIN3MIN  
GEN6tOFF  
GEN6OSHT  
10  
ms  
%
IGEN6 = 0.0 mA  
Start-Up Overshoot  
1.0  
2.0  
V
IN3 = VIN3MIN, 4.5 V, IGEN6 = 0 mA  
Transient Load Response  
VIN3 = VIN3MIN, 4.5 V  
I
GEN6 = 20 to 200 mA in 1.0 s  
VGEN6LOTR  
3.0  
8.0  
%
Peak of overshoot or undershoot of VGEN6 with respect to final  
value. Refer to Figure 31  
Transient Line Response  
IGEN6 = 150 mA  
VIN3INITIAL = 2.8 V to VIN3FINAL = 3.3 V for   
VGEN6[3:0] = 0000 to 0111  
VGEN6LITR  
5.0  
mV  
VIN3INITIAL = VGEN6+0.3 V to VIN3FINAL = VGEN6+0.8 V for  
VGEN6[3:0] = 1000 to 1111  
Refer to Figure 31  
Notes  
69. When the LDO Output voltage is set above 2.6 V the minimum allowed input voltage need to be at least the output voltage plus 0.25 V  
for proper regulation due to the dropout voltage generated through the internal LDO transistor.  
70. The PSRR of the regulators is measured with the perturbing signal at the input of the regulator. The power management IC is supplied  
separately from the input of the regulator and does not contain the perturbed signal. During measurements, care must be taken not to  
operate in the dropout region of the regulator under test. VIN3MIN refers to the minimum allowed input voltage for a particular output  
voltage.  
6.4.7 VSNVS LDO/Switch  
VSNVS powers the low power, SNVS/RTC domain on the processor. It derives its power from either VIN, or coin cell, and cannot  
be disabled. When powered by both, VIN takes precedence when above the appropriate comparator threshold. When powered  
by VIN, VSNVS is an LDO capable of supplying seven voltages: 3.0, 1.8, 1.5, 1.3, 1.2, 1.1, and 1.0 V. The bits VSNVSVOLT[2:0]  
in register VSNVS_CONTROL determine the output voltage. When powered by coin cell, VSNVS is an LDO capable of supplying  
1.8, 1.5, 1.3, 1.2, 1.1, or 1.0 V as shown in Table 108. If the 3.0 V option is chosen with the coin cell, VSNVS tracks the coin cell  
voltage by means of a switch, whose maximum resistance is 100 . In this case, the VSNVS voltage is simply the coin cell  
voltage minus the voltage drop across the switch, which is 40 mV at a rated maximum load current of 400 A.  
The default setting of the VSNVSVOLT[2:0] is 110, or 3.0 V, unless programmed otherwise in OTP. However, when the coin cell  
is applied for the very first time, VSNVS will output 1.0 V. Only when VIN is applied thereafter will VSNVS transition to its default,  
or programmed value if different. Upon subsequent removal of VIN, with the coin cell attached, VSNVS will change configuration  
from an LDO to a switch for the “110” setting, and will remain as an LDO for the other settings, continuing to output the same  
voltages as when VIN is applied, providing certain conditions are met as described in Table 108.  
PF0100  
Analog Integrated Circuit Device Data  
108  
Freescale Semiconductor  
Functional Block Requirements and Behaviors  
Power Generation  
PF0100  
VIN  
2.25 V (VTL0) -  
4.5 V  
LDO/SWITCH  
Input  
LICELL  
Charger  
VREF  
Sense/  
Selector  
_
+
VSNVS  
Z
Coin Cell  
1.8 - 3.3 V  
I2C Interface  
Figure 32. VSNVS Supply Switch Architecture  
Table 108 provides a summary of the VSNVS operation at different input voltage VIN and with or without coin cell connected to  
the system.  
Table 108. VSNVS Modes of Operation  
VSNVSVOLT[2:0]  
110  
VIN  
MODE  
> VTH1  
< VTL1  
> VTH0  
< VTL0  
VIN LDO 3.0 V  
Coin cell switch  
VIN LDO  
110  
000 – 101  
000 – 101  
Coin cell LDO  
VSNVS Control  
The VSNVS output level is configured through the VSNVSVOLT[2:0]bits on VSNVSCTL register as shown in table Table 109.  
Table 109. Register VSNVSCTL - ADDR 0x6B  
Name  
Bit #  
R/W Default  
Description  
Configures VSNVS output voltage.(71)  
000 = 1.0 V  
001 = 1.1 V  
010 = 1.2 V  
VSNVSVOLT  
2:0  
7:3  
R/W  
0x80  
0x00  
011 = 1.3 V  
100 = 1.5 V  
101 = 1.8 V  
110 = 3.0 V  
111 = RSVD  
UNUSED  
Notes  
UNUSED  
71. Only valid when a valid input voltage is present.  
VSNVS External Components  
Table 110. VSNVS External Components  
Capacitor  
Value (F)  
VSNVS  
0.47  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
109  
 
 
 
Functional Block Requirements and Behaviors  
Power Generation  
VSNVS Specifications  
Table 111. VSNVS Electrical Characteristics  
All parameters are specified at TMIN to TMAX (See Table 3), VIN = 3.6 V, VSNVS = 3.0 V, ISNVS = 5.0 A, typical external  
component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VSNVS = 3.0 V, ISNVS = 5.0 A, and  
25 °C, unless otherwise noted.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
VSNVS  
Operating Input Voltage  
Valid Coin Cell range  
Valid VIN  
VINSNVS  
1.8  
2.25  
3.3  
4.5  
V
Operating Load Current  
VINMIN < VIN < VINMAX  
ISNVS  
5.0  
400  
A  
VSNVS DC, LDO  
Output Voltage  
5.0 A < ISNVS < 400 A (OFF)  
3.20 V < VIN < 4.5 V, VSNVSVOLT[2:0] = 110  
VTL0/VTH < VIN < 4.5 V, VSNVSVOLT[2:0] = [000] - [101]  
-5.0%  
-8.0%  
3.0  
1.0 - 1.8  
7.0%  
7.0%  
5.0A < ISNVS < 400A (ON)  
3.20 V < VIN < 4.5 V, VSNVSVOLT[2:0] = 110  
UVDET < VIN < 4.5 V, VSNVSVOLT[2:0] = [000] - [101]  
VSNVS  
V
-5.0%  
-4.0%  
3.0  
1.0 - 1.8  
5.0%  
4.0%  
50A < ISNVS < 400 A (Coin Cell mode)  
V
COIN-0.04  
-8.0%  
VCOIN  
7.0%  
2.84 V < VCOIN < 3.3 V, VSNVSVOLT[2:0] = 110  
1.8 V < VCOIN < 3.3 V, VSNVSVOLT[2:0] = [000] - [101](72)  
1.0 - 1.8  
Dropout Voltage  
VSNVSDROP  
50  
mV  
VIN = VCOIN = 2.85 V, VSNVSVOLT[2:0] = 110, ISNVS = 400 A  
Current Limit  
MMPF0100  
V
V
V
IN > VTH1, VSNVSVOLT[2:0] = 110  
IN > VTH0, VSNVSVOLT[2:0] = 000 to 101  
IN < VTL0, VSNVSVOLT[2:0] = 000 to 101  
750  
500  
480  
5900  
5900  
3600  
ISNVSLIM  
A  
MMPF0100A  
V
V
V
IN > VTH1, VSNVSVOLT[2:0] = 110  
IN > VTH0, VSNVSVOLT[2:0] = 000 to 101  
IN < VTL0, VSNVSVOLT[2:0] = 000 to 101  
1100  
500  
480  
6750  
6750  
4500  
VIN Threshold (Coin Cell Powered to VIN Powered) VIN going high  
with valid coin cell  
V
V
VSNVSVOLT[2:0] = 000, 001, 010, 011, 100, 101  
VTH0  
2.25  
2.40  
2.55  
VIN Threshold (VIN Powered to Coin Cell Powered) VIN going low  
with valid coin cell  
VSNVSVOLT[2:0] = 000, 001, 010, 011, 100, 101  
VTL0  
2.20  
5.0  
2.35  
2.50  
VIN Threshold Hysteresis for VTH1-VTL1  
VIN Threshold Hysteresis for VTH0-VTL0  
VHYST1  
VHYST0  
mV  
mV  
5.0  
Output Voltage During Crossover  
VSNVSVOLT[2:0] = 110  
VCOIN > 2.9 V  
VSNVSCROSS  
2.80  
V
Switch to LDO: VIN > 2.825 V, ISNVS = 100 A  
LDO to Switch: VIN < 3.05 V, ISNVS = 100 A  
PF0100  
Analog Integrated Circuit Device Data  
110  
Freescale Semiconductor  
 
Functional Block Requirements and Behaviors  
Power Generation  
Table 111. VSNVS Electrical Characteristics  
All parameters are specified at TMIN to TMAX (See Table 3), VIN = 3.6 V, VSNVS = 3.0 V, ISNVS = 5.0 A, typical external  
component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VSNVS = 3.0 V, ISNVS = 5.0 A, and  
25 °C, unless otherwise noted.  
Parameter  
VSNVS AC AND TRANSIENT  
Symbol  
Min  
Typ  
Max  
Unit  
Turn-on Time(73),(74) (Load capacitor, 0.47 F)  
VIN > UVDET to 90% of VSNVS  
VCOIN = 0.0 V, ISNVS = 5.0 A  
VSNVSVOLT[2:0] = 000 to 110  
tONSNVS  
24  
70  
ms  
Start-up Overshoot  
VSNVSVOLT[2:0] = 000 to 110  
VSNVSOSH  
40  
mV  
mV  
V
ISNVS = 5.0 A  
dVIN/dt = 50 mV/s  
Transient Line Response ISNVS = 75% of ISNVSMAX  
3.2 V < VIN < 4.5 V, VSNVSVOLT[2:0] = 110  
32  
22  
VSNVSLITR  
2.45 V < VIN < 4.5 V, VSNVSVOLT[2:0] = [000] - [101]  
Transient Load Response  
VSNVSVOLT[2:0] = 110  
3.1 V (UVDETL)< VIN 4.5 V  
2.8  
ISNVS = 75 to 750 A  
VSNVSVOLT[2:0] = 000 to 101  
2.45 V < VIN 4.5 V  
VTL0 > VIN, 1.8 V VCOIN 3.3 V  
VSNVSLOTR  
1.0  
2.0  
%
ISNVS = 40 to 400 A  
Refer to Figure 31  
VSNVS DC, SWITCH  
Operating Input voltage  
Valid Coin Cell range  
VINSNVS  
ISNVS  
1.8  
5.0  
3.3  
400  
100  
V
A  
Operating Load Current  
Internal Switch Rdson  
RDSONSNVS  
VCOIN = 2.6 V  
VIN Threshold (VIN Powered to Coin Cell Powered)  
VSNVSVOLT[2:0] = 110  
VTL1  
VTH1  
2.825  
2.85  
2.90  
2.95  
3.00  
3.1  
V
V
VIN Threshold (Coin Cell Powered to VIN Powered)  
VSNVSVOLT[2:0] = 110  
Notes  
72. For 1.8 V ISNVS limited to 100 A for VCOIN < 2.1 V  
73. The start-up of VSNVS is not monotonic. It first rises to 1.0 V and then settles to its programmed value within the specified tr1 time.  
74. From coin cell insertion to VSNVS =1.0 V, the delay time is typically 400 ms.  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
111  
 
 
 
Functional Block Requirements and Behaviors  
Power Generation  
6.4.7.1  
Coin Cell Battery Backup  
The LICELL pin provides for a connection of a coin cell backup battery or a “super” capacitor. If the voltage at VIN goes below  
the VIN threshold (VTL1 and VTL0), contact-bounced, or removed, the coin cell maintained logic will be powered by the voltage  
applied to LICELL. The supply for internal logic and the VSNVS rail will switch over to the LICELL pin when VIN goes below VTL1  
or VTL0, even in the absence of a voltage at the LICELL pin, resulting in clearing of memory and turning off of VSNVS. When  
system operation below VTL1 is required, for systems not utilizing a coin cell, connect the LICELL pin to any system voltage  
between 1.8 and 3.0 V.  
A small capacitor should be placed from LICELL to ground under all circumstances.  
Coin Cell Charger Control  
The coin cell charger circuit will function as a current-limited voltage source, resulting in the CC/CV taper characteristic typically  
used for rechargeable Lithium-Ion batteries. The coin cell charger is enabled via the COINCHEN bit while the coin cell voltage is  
programmable through the VCOIN[2:0] bits on register COINCTL on Table 113. The coin cell charger voltage is programmable.  
In the ON state, the charger current is fixed at ICOINHI. In Sleep and Standby modes, the charger current is reduced to a typical  
10 A. In the OFF state, coin cell charging is not available as the main battery could be depleted unnecessarily. The coin cell  
charging will be stopped when VIN is below UVDET.  
Table 112. Coin Cell Charger Voltage  
VCOIN[2:0]  
VCOIN (V)(75)  
000  
001  
010  
011  
100  
101  
110  
111  
2.50  
2.70  
2.80  
2.90  
3.00  
3.10  
3.20  
3.30  
Notes  
75. Coin cell voltages selected based on the  
type of LICELL used on the system.  
Table 113. Register COINCTL - ADDR 0x1A  
Name  
Bit #  
R/W Default  
Description  
Coin cell charger output voltage selection.  
See Table 112 for all options selectable through  
these bits.  
VCOIN  
2:0  
R/W  
0x00  
COINCHEN  
UNUSED  
3
R/W  
0x00  
0x00  
Enable or disable the Coin cell charger  
UNUSED  
7:4  
External Components  
Table 114. Coin Cell Charger External Components  
Component  
Value  
Units  
LICELL Bypass Capacitor  
100  
nF  
PF0100  
Analog Integrated Circuit Device Data  
112  
Freescale Semiconductor  
 
 
 
Functional Block Requirements and Behaviors  
Control Interface I2C Block Description  
Coin Cell Specifications  
Table 115. Coin Cell Charger Specifications  
Parameter  
Typ  
Unit  
Voltage Accuracy  
100  
60  
mV  
A  
%
Coin Cell Charge Current in On mode ICOINHI  
Current Accuracy  
30  
2
6.5  
Control Interface I C Block Description  
The PF0100 contains an I2C interface port which allows access by a processor, or any I2C master, to the register set. Via these  
registers the resources of the IC can be controlled. The registers also provide status information about how the IC is operating.  
The SCL and SDA lines should be routed away from noisy signals and planes to minimize noise pick up. To prevent reflections  
in the SCL and SDA traces from creating false pulses, the rise and fall times of the SCL and SDA signals must be greater than  
20 ns. This can be accomplished by reducing the drive strength of the I2C master via software. The i.MX6 I2C driver defaults to  
a 40 ohm drive strength. It is recommended to use a drive strength of 80 ohm or higher to increase the edge times. Alternatively,  
this can be accomplished by using small capacitors from SCL and SDA to ground. For example, use 5.1 pF capacitors from SCL  
and SDA to ground for bus pull-up resistors of 4.8 kohm.  
2
6.5.1 I C Device ID  
I2C interface protocol requires a device ID for addressing the target IC on a multi-device bus. To allow flexibility in addressing for  
bus conflict avoidance, fuse programmability is provided to allow configuration for the lower 3 address LSB(s). Refer to One Time  
Programmability (OTP) for more details. This product supports 7-bit addressing only; support is not provided for 10-bit or general  
call addressing. Note, when the TBB bits for the I2C slave address are written, the next access to the chip, must then use the  
new slave address; these bits take affect right away.  
6.5.2 I2C Operation  
The I2C mode of the interface is implemented generally following the Fast mode definition which supports up to 400 kbits/s  
operation (exceptions to the standard are noted to be 7-bit only addressing and no support for General Call addressing.) Timing  
diagrams, electrical specifications, and further details can be found in the I2C specification, which is available for download at:  
http://www.nxp.com/acrobat_download/literature/9398/39340011.pdf  
I2C read operations are also performed in byte increments separated by an ACK. Read operations also begin with the MSB and  
each byte will be sent out unless a STOP command or NACK is received prior to completion.  
The following examples show how to write and read data to and from the IC. The host initiates and terminates all communication.  
The host sends a master command packet after driving the start condition. The device will respond to the host if the master  
command packet contains the corresponding slave address. In the following examples, the device is shown always responding  
with an ACK to transmissions from the host. If at any time a NACK is received, the host should terminate the current transaction  
and retry the transaction.  
Host can  
also drive  
another  
Start instead  
Packet  
Type  
Device  
Master Driven Data  
byte 0 )  
Register Address  
Address  
(
of Stop  
7
0
7
0
0
7
0
START  
STOP  
Host SDA  
R / W  
A
C
K
A
C
K
A
C
K
Slave SDA  
Figure 33. I2C Write Example  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
113  
Functional Block Requirements and Behaviors  
Control Interface I2C Block Description  
Host can also  
drive another  
Start instead of  
Stop  
Packet  
Type  
Device  
Address  
Register Address  
Device Address  
PMIC Driven Data  
23  
16  
0
15  
8
7
0
NA  
CK  
START  
START  
1
STOP  
Host SDA  
R/W  
R/W  
7
0
A
C
K
A
C
K
A
C
K
Slave SDA  
Figure 34. I2C Read Example  
6.5.3 Interrupt Handling  
The system is informed about important events based on interrupts. Unmasked interrupt events are signaled to the processor by  
driving the INTB pin low.  
Each interrupt is latched so that even if the interrupt source becomes inactive, the interrupt will remain set until cleared. Each  
interrupt can be cleared by writing a “1” to the appropriate bit in the Interrupt Status register; this will also cause the INTB pin to  
go high. If there are multiple interrupt bits set the INTB pin will remain low until all are either masked or cleared. If a new interrupt  
occurs while the processor clears an existing interrupt bit, the INTB pin will remain low.  
Each interrupt can be masked by setting the corresponding mask bit to a 1. As a result, when a masked interrupt bit goes high,  
the INTB pin will not go low. A masked interrupt can still be read from the Interrupt Status register. This gives the processor the  
option of polling for status from the IC. The IC powers up with all interrupts masked, so the processor must initially poll the device  
to determine if any interrupts are active. Alternatively, the processor can unmask the interrupt bits of interest. If a masked interrupt  
bit was already high, the INTB pin will go low after unmasking.  
The sense registers contain status and input sense bits so the system processor can poll the current state of interrupt sources.  
They are read only, and not latched or clearable.  
Interrupts generated by external events are debounced; therefore, the event needs to be stable throughout the debounce period  
before an interrupt is generated. Nominal debounce periods for each event are documented in the INT summary Table 116 . Due  
to the asynchronous nature of the debounce timer, the effective debounce time can vary slightly.  
6.5.4 Interrupt Bit Summary  
Table 116 summarizes all interrupt, mask, and sense bits associated with INTB control. For more detailed behavioral  
descriptions, refer to the related chapters.  
Table 116. Interrupt, Mask and Sense Bits  
Interrupt  
LOWVINI  
Mask  
LOWVINM  
Sense  
LOWVINS  
Purpose  
Trigger  
Debounce Time (ms)  
Low Input Voltage Detect  
Sense is 1 if below 2.80 V threshold  
H to L  
3.9(76)  
Power on button event  
H to L  
L to H  
31.25(76)  
31.25  
PWRONI  
PWRONM  
PWRONS  
Sense is 1 if PWRON is high.  
Thermal 110 °C threshold  
Sense is 1 if above threshold  
THERM110  
THERM120  
THERM125  
THERM130  
SW1AFAULTI  
SW1BFAULTI  
THERM110M  
THERM120M  
THERM125M  
THERM130M  
SW1AFAULTM  
SW1BFAULTM  
THERM110S  
THERM120S  
THERM125S  
THERM130S  
SW1AFAULTS  
SW1BFAULTS  
Dual  
Dual  
3.9  
3.9  
3.9  
3.9  
8.0  
8.0  
Thermal 120 °C threshold  
Sense is 1 if above threshold  
Thermal 125 °C threshold  
Sense is 1 if above threshold  
Dual  
Thermal 130 °C threshold  
Sense is 1 if above threshold  
Dual  
Regulator 1A over-current limit  
Sense is 1 if above current limit  
L to H  
L to H  
Regulator 1B over-current limit  
Sense is 1 if above current limit  
PF0100  
Analog Integrated Circuit Device Data  
114  
Freescale Semiconductor  
 
Functional Block Requirements and Behaviors  
Control Interface I2C Block Description  
Table 116. Interrupt, Mask and Sense Bits (continued)  
Interrupt  
Mask  
Sense  
Purpose  
Trigger  
Debounce Time (ms)  
Regulator 1C over-current limit  
Sense is 1 if above current limit  
SW1CFAULTI  
SW1CFAULTM  
SW1CFAULTS  
L to H  
8.0  
Regulator 2 over-current limit  
Sense is 1 if above current limit  
SW2FAULTI  
SW2FAULTM  
SW2FAULTS  
L to H  
L to H  
L to H  
L to H  
L to H  
L to H  
L to H  
L to H  
L to H  
L to H  
L to H  
L to H  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Regulator 3A over-current limit  
Sense is 1 if above current limit  
SW3AFAULTI  
SW3BFAULTI  
SW4FAULTI  
SW3AFAULTM  
SW3BFAULTM  
SW4FAULTM  
SW3AFAULTS  
SW3BFAULTS  
SW4FAULTS  
Regulator 3B over-current limit  
Sense is 1 if above current limit  
Regulator 4 over-current limit  
Sense is 1 if above current limit  
SWBST over-current limit  
Sense is 1 if above current limit  
SWBSTFAULTI  
VGEN1FAULTI  
VGEN2FAULTI  
VGEN3FAULTI  
VGEN4FAULTI  
VGEN5FAULTI  
VGEN6FAULTI  
SWBSTFAULTM  
VGEN1FAULTM  
VGEN2FAULTM  
VGEN3FAULTM  
VGEN4FAULTM  
VGEN5FAULTM  
VGEN6FAULTM  
OTP_ECCM  
SWBSTFAULTS  
VGEN1FAULTS  
VGEN2FAULTS  
VGEN3FAULTS  
VGEN4FAULTS  
VGEN1FAULTS  
VGEN6FAULTS  
OTP_ECCS  
VGEN1 over-current limit  
Sense is 1 if above current limit  
VGEN2 over-current limit  
Sense is 1 if above current limit  
VGEN3 over-current limit  
Sense is 1 if above current limit  
VGEN4 over-current limit  
Sense is 1 if above current limit  
VGEN5 over-current limit  
Sense is 1 if above current limit  
VGEN6 over-current limit  
Sense is 1 if above current limit  
1 or 2 bit error detected in OTP registers  
Sense is 1 if error detected  
OTP_ECCI  
Notes  
76. Debounce timing for the falling edge can be extended with PWRONDBNC[1:0].  
A full description of all interrupt, mask, and sense registers is provided in Tables 117 to 128.  
Table 117. Register INTSTAT0 - ADDR 0x05  
Name  
PWRONI  
Bit #  
R/W  
Default  
Description  
Power on interrupt bit  
0
1
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
0
0
LOWVINI  
Low-voltage interrupt bit  
110 °C Thermal interrupt bit  
120 °C Thermal interrupt bit  
125 °C Thermal interrupt bit  
130 °C Thermal interrupt bit  
Unused  
THERM110I  
THERM120I  
THERM125I  
THERM130I  
UNUSED  
2
0
3
0
4
0
5
0
7:6  
00  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
115  
 
Functional Block Requirements and Behaviors  
Control Interface I2C Block Description  
Table 118. Register INTMASK0 - ADDR 0x06  
Name  
PWRONM  
Bit #  
R/W  
Default  
Description  
0
1
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
1
1
Power on interrupt mask bit  
Low-voltage interrupt mask bit  
110 °C Thermal interrupt mask bit  
120 °C Thermal interrupt mask bit  
125 °C Thermal interrupt mask bit  
130 °C Thermal interrupt mask bit  
Unused  
LOWVINM  
THERM110M  
THERM120M  
THERM125M  
THERM130M  
UNUSED  
2
1
3
1
4
1
5
1
7:6  
00  
Table 119. Register INTSENSE0 - ADDR 0x07  
Name  
Bit #  
R/W  
Default  
Description  
Power on sense bit  
0 = PWRON low  
1 = PWRON high  
PWRONS  
0
R
0
Low voltage sense bit  
0 = VIN > 2.8 V  
LOWVINS  
1
2
3
4
R
R
R
R
0
0
0
0
1 = VIN 2.8 V  
110 °C Thermal sense bit  
0 = Below threshold  
1 = Above threshold  
THERM110S  
THERM120S  
THERM125S  
120 °C Thermal sense bit  
0 = Below threshold  
1 = Above threshold  
125 °C Thermal sense bit  
0 = Below threshold  
1 = Above threshold  
130 °C Thermal sense bit  
0 = Below threshold  
1 = Above threshold  
THERM130S  
UNUSED  
5
6
7
R
0
0
Unused  
Additional VDDOTP voltage sense pin  
0 = VDDOTP grounded  
VDDOTPS  
R
00  
1 = VDDOTP to VCOREDIG or greater  
Table 120. Register INTSTAT1 - ADDR 0x08  
Name  
Bit #  
R/W  
Default  
Description  
SW1AFAULTI  
SW1BFAULTI  
SW1CFAULTI  
SW2FAULTI  
SW3AFAULTI  
SW3BFAULTI  
SW4FAULTI  
UNUSED  
0
1
2
3
4
5
6
7
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
0
0
0
0
0
0
0
0
SW1A Over-current interrupt bit  
SW1B Over-current interrupt bit  
SW1C Over-current interrupt bit  
SW2 Over-current interrupt bit  
SW3A Over-current interrupt bit  
SW3B Over-current interrupt bit  
SW4 Over-current interrupt bit  
Unused  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
116  
 
Functional Block Requirements and Behaviors  
Control Interface I2C Block Description  
Table 121. Register INTMASK1 - ADDR 0x09  
Name  
Bit #  
R/W  
Default  
Description  
SW1AFAULTM  
SW1BFAULTM  
SW1CFAULTM  
SW2FAULTM  
SW3AFAULTM  
SW3BFAULTM  
SW4FAULTM  
UNUSED  
0
1
2
3
4
5
6
7
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
1
1
1
1
1
1
1
0
SW1A Over-current interrupt mask bit  
SW1B Over-current interrupt mask bit  
SW1C Over-current interrupt mask bit  
SW2 Over-current interrupt mask bit  
SW3A Over-current interrupt mask bit  
SW3B Over-current interrupt mask bit  
SW4 Over-current interrupt mask bit  
Unused  
Table 122. Register INTSENSE1 - ADDR 0x0A  
Name  
Bit #  
R/W  
Default  
Description  
SW1A Over-current sense bit  
0 = Normal operation  
SW1AFAULTS  
0
R
0
1 = Above current limit  
SW1B Over-current sense bit  
0 = Normal operation  
SW1BFAULTS  
SW1CFAULTS  
SW2FAULTS  
SW3AFAULTS  
SW3BFAULTS  
1
2
3
4
5
R
R
R
R
R
0
0
0
0
0
1 = Above current limit  
SW1C Over-current sense bit  
0 = Normal operation  
1 = Above current limit  
SW2 Over-current sense bit  
0 = Normal operation  
1 = Above current limit  
SW3A Over-current sense bit  
0 = Normal operation  
1 = Above current limit  
SW3B Over-current sense bit  
0 = Normal operation  
1 = Above current limit  
SW4 Over-current sense bit  
0 = Normal operation  
SW4FAULTS  
UNUSED  
6
7
R
0
0
1 = Above current limit  
Unused  
Table 123. Register INTSTAT3 - ADDR 0x0E  
Name  
Bit #  
R/W  
Default  
Description  
SWBSTFAULTI  
UNUSED  
0
6:1  
7
R/W1C  
0
0x00  
0
SWBST over-current limit interrupt bit  
Unused  
OTP_ECCI  
R/W1C  
OTP error interrupt bit  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
117  
Functional Block Requirements and Behaviors  
Control Interface I2C Block Description  
Table 124. Register INTMASK3 - ADDR 0x0F  
Name  
Bit #  
R/W  
Default  
Description  
SWBSTFAULTM  
UNUSED  
0
6:1  
7
R/W  
1
0x00  
1
SWBST over-current limit interrupt mask bit  
Unused  
OTP_ECCM  
R/W  
OTP error interrupt mask bit  
Table 125. Register INTSENSE3 - ADDR 0x10  
Name  
Bit #  
R/W  
Default  
Description  
SWBST over-current limit sense bit  
0 = Normal operation  
SWBSTFAULTS  
UNUSED  
0
6:1  
7
R
0
0x00  
0
1 = Above current limit  
Unused  
OTP error sense bit  
0 = No error detected  
1 = OTP error detected  
OTP_ECCS  
R
Table 126. Register INTSTAT4 - ADDR 0x11  
Name  
Bit #  
R/W  
Default  
Description  
VGEN1FAULTI  
VGEN2FAULTI  
VGEN3FAULTI  
VGEN4FAULTI  
VGEN5FAULTI  
VGEN6FAULTI  
UNUSED  
0
1
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
0
0
VGEN1 Over-current interrupt bit  
VGEN2 Over-current interrupt bit  
VGEN3 Over-current interrupt bit  
VGEN4 Over-current interrupt bit  
VGEN5 Over-current interrupt bit  
VGEN6 Over-current interrupt bit  
Unused  
2
0
3
0
4
0
5
0
7:6  
00  
Table 127. Register INTMASK4 - ADDR 0x12  
Name  
Bit #  
R/W  
Default  
Description  
VGEN1FAULTM  
VGEN2FAULTM  
VGEN3FAULTM  
VGEN4FAULTM  
VGEN5FAULTM  
VGEN6FAULTM  
UNUSED  
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
1
1
VGEN1 Over-current interrupt mask bit  
VGEN2 Over-current interrupt mask bit  
VGEN3 Over-current interrupt mask bit  
VGEN4 Over-current interrupt mask bit  
VGEN5 Over-current interrupt mask bit  
VGEN6 Over-current interrupt mask bit  
Unused  
2
1
3
1
4
1
5
1
7:6  
00  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
118  
Functional Block Requirements and Behaviors  
Control Interface I2C Block Description  
Table 128. Register INTSENSE4 - ADDR 0x13  
Name  
Bit #  
R/W  
Default  
Description  
VGEN1 Over-current sense bit  
VGEN1FAULTS  
0
R
0
0 = Normal operation  
1 = Above current limit  
VGEN2 Over-current sense bit  
0 = Normal operation  
VGEN2FAULTS  
VGEN3FAULTS  
VGEN4FAULTS  
VGEN5FAULTS  
1
2
3
4
R
R
R
R
0
0
0
0
1 = Above current limit  
VGEN3 Over-current sense bit  
0 = Normal operation  
1 = Above current limit  
VGEN4 Over-current sense bit  
0 = Normal operation  
1 = Above current limit  
VGEN5 Over-current sense bit  
0 = Normal operation  
1 = Above current limit  
VGEN6 Over-current sense bit  
0 = Normal operation  
VGEN6FAULTS  
UNUSED  
5
R
0
1 = Above current limit  
7:6  
00  
Unused  
6.5.5 Specific Registers  
6.5.5.1  
IC and Version Identification  
The IC and other version details can be read via identification bits. These are hard-wired on chip and described in Tables 129 to  
131.  
Table 129. Register DEVICEID - ADDR 0x00  
Name  
DEVICEID  
UNUSED  
Bit #  
R/W  
Default  
Description  
Die version.  
0000 = PF0100  
3:0  
7:4  
R
0x00  
0x01  
Unused  
Table 130. Register SILICON REV- ADDR 0x03  
Name  
Bit #  
R/W  
Default  
Description  
Represents the metal mask revision  
Pass 0.0 = 0000  
METAL_LAYER_REV  
3:0  
R
0x00  
.
.
Pass 0.15 = 1111  
Represents the full mask revision  
Pass 1.0 = 0001  
FULL_LAYER_REV  
7:4  
R
0x01  
.
.
Pass 15.0 = 1111  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
119  
 
Functional Block Requirements and Behaviors  
Control Interface I2C Block Description  
Table 131. Register FABID - ADDR 0x04  
Name  
Bit #  
R/W  
Default  
Description  
Allows for characterizing different options within  
the same reticule  
FIN  
1:0  
R
0x00  
FAB  
3:2  
7:0  
R
R
0x00  
0x00  
Represents the wafer manufacturing facility  
Unused  
Unused  
6.5.5.2  
Embedded Memory  
There are four register banks of general purpose embedded memory to store critical data. The data written to MEMA[7:0],  
MEMB[7:0], MEMC[7:0], and MEMD[7:0] is maintained by the coin cell when the main battery is deeply discharged, removed, or  
contact-bounced. The contents of the embedded memory are reset by COINPORB. The banks can be used for any system need  
for bit retention with coin cell backup.  
Table 132. Register MEMA ADDR 0x1C  
Name  
Bit #  
R/W  
Default  
Description  
Description  
Description  
Description  
MEMA  
7:0  
R/W  
0
Memory bank A  
Memory bank B  
Memory bank C  
Memory bank D  
Table 133. Register MEMB ADDR 0x1D  
Name  
Bit #  
R/W  
Default  
MEMB  
7:0  
R/W  
0
Table 134. Register MEMC ADDR 0x1E  
Name  
Bit #  
R/W  
Default  
MEMC  
7:0  
R/W  
0
Table 135. Register MEMD ADDR 0x1F  
Name  
Bit #  
R/W  
Default  
MEMD  
7:0  
R/W  
0
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
120  
Functional Block Requirements and Behaviors  
Control Interface I2C Block Description  
6.5.6 Register Bitmap  
The register map is comprised of thirty-two pages, and its address and data fields are each eight bits wide. Only the first two  
pages can be accessed. On each page, registers 0 to 0x7F are referred to as 'functional', and registers 0x80 to 0xFF as  
'extended'. On each page, the functional registers are the same, but the extended registers are different. To access registers on  
Extended Page 1, one must first write 0x01 to the page register at address 0x7F, and to access registers Extended Page 2, one  
must first write 0x02 to the page register at address 0x7F. To access the Functional Page from one of the extended pages, no  
write to the page register is necessary.  
Registers that are missing in the sequence are reserved; reading from them will return a value 0x00, and writing to them will have  
no effect.  
The contents of all registers are given in the tables defined in this chapter; each table is structure as follows:  
Name: Name of the bit.  
Bit #: The bit location in the register (7-0)  
R/W: Read / Write access and control  
• R is read-only access  
• R/W is read and write access  
• RW1C is read and write access with write 1 to clear  
Reset: Reset signals are color coded based on the following legend.  
Bits reset by SC and VCOREDIG_PORB  
Bits reset by PWRON or loaded default or OTP configuration  
Bits reset by DIGRESETB  
Bits reset by PORB or RESETBMCU  
Bits reset by VCOREDIG_PORB  
Bits reset by POR or OFFB  
Default: The value after reset, as noted in the Default column of the memory map.  
• Fixed defaults are explicitly declared as 0 or 1.  
• “X” corresponds to Read / Write bits that are initialized at start-up, based on the OTP fuse settings or default if  
VDDOTP = 1.5 V. Bits are subsequently I2C modifiable, when their reset has been released. “X” may also refer to bits that  
may have other dependencies. For example, some bits may depend on the version of the IC, or a value from an analog  
block, for instance the sense bits for the interrupts.  
6.5.6.1  
Register map  
Table 136. Functional Page  
BITS[7:0]  
Register  
Name  
Add  
R/W  
Default  
7
6
5
4
3
2
1
0
0
0
0
1
DEVICE ID [3:0]  
0
00  
DeviceID  
R
8'b0001_0000  
0
0
0
FULL_LAYER_REV[3:0]  
METAL_LAYER_REV[3:0]  
03  
04  
05  
SILICONREVID  
FABID  
R
R
8'b0001_0000  
8'b0000_0000  
X
0
0
X
0
0
X
X
0
X
0
X
X
X
FAB[1:0]  
FIN[1:0]  
0
0
0
LOWVINI  
0
0
PWRONI  
0
THERM130I  
0
THERM125I  
0
THERM120I  
0
THERM110I  
0
INTSTAT0  
RW1C 8'b0000_0000  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
121  
 
Functional Block Requirements and Behaviors  
Control Interface I2C Block Description  
Table 136. Functional Page (continued)  
BITS[7:0]  
Register  
Name  
Add  
R/W  
Default  
7
6
5
4
3
2
1
0
THERM130M  
THERM125M THERM120M THERM110M  
LOWVINM  
PWRONM  
06  
INTMASK0  
R/W 8'b0011_1111  
0
0
1
1
1
1
1
1
VDDOTPS  
RSVD  
THERM130S  
x
THERM125S  
x
THERM120S  
THERM110S  
x
LOWVINS  
x
PWRONS  
07  
08  
09  
0A  
INTSENSE0  
INTSTAT1  
R
8'b00xx_xxxx  
0
0
0
0
0
x
x
SW4FAULTI  
0
SW3BFAULTI SW3AFAULTI  
SW2FAULTI  
0
SW1CFAULTI SW1BFAULTI  
SW1AFAULTI  
0
RW1C 8'b0000_0000  
R/W 8'b0111_1111  
0
0
0
0
SW4FAULTM SW3BFAULTM SW3AFAULTM SW2FAULTM SW1CFAULTM SW1BFAULTM SW1AFAULTM  
INTMASK1  
INTSENSE1  
1
1
1
1
1
1
1
SW4FAULTS SW3BFAULTS SW3AFAULTS SW2FAULTS SW1CFAULTS SW1BFAULTS SW1AFAULTS  
R
8'b0xxx_xxxx  
x
x
x
x
x
x
x
OTP_ECCI  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
SWBSTFAULTI  
0E  
0F  
10  
11  
INTSTAT3  
INTMASK3  
INTSENSE3  
INTSTAT4  
RW1C 8'b0000_0000  
R/W 8'b1000_0001  
0
0
OTP_ECCM  
SWBSTFAULTM  
1
1
OTP_ECCS  
SWBSTFAULTS  
x
R
8'b0000_000x  
0
0
VGEN6FAULTI VGEN5FAULTI VGEN4FAULTI VGEN3FAULTI VGEN2FAULTI VGEN1FAULTI  
RW1C 8'b0000_0000  
R/W 8'b0011_1111  
0
0
0
0
0
0
VGEN6  
FAULTM  
VGEN5  
FAULTM  
VGEN4  
FAULTM  
VGEN3  
FAULTM  
VGEN2  
FAULTM  
VGEN1  
FAULTM  
0
0
0
0
12  
13  
INTMASK4  
1
1
1
1
1
1
VGEN6  
FAULTS  
VGEN5  
FAULTS  
VGEN4  
FAULTS  
VGEN3  
FAULTS  
VGEN2  
FAULTS  
VGEN1  
FAULTS  
INTSENSE4  
R
8'b00xx_xxxx  
x
x
x
x
x
x
0
0
0
0
COINCHEN  
0
VCOIN[2:0]  
0
1A  
1B  
1C  
1D  
1E  
1F  
COINCTL  
PWRCTL  
MEMA  
R/W 8'b0000_0000  
R/W 8'b0001_0000  
R/W 8'b0000_0000  
R/W 8'b0000_0000  
R/W 8'b0000_0000  
R/W 8'b0000_0000  
0
0
0
0
0
0
0
REGSCPEN STANDBYINV  
STBYDLY[1:0]  
PWRONBDBNC[1:0]  
PWRONRSTEN RESTARTEN  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
MEMA[7:0]  
MEMB[7:0]  
MEMC[7:0]  
MEMD[7:0]  
MEMB  
MEMC  
MEMD  
PF0100  
Analog Integrated Circuit Device Data  
122  
Freescale Semiconductor  
Functional Block Requirements and Behaviors  
Control Interface I2C Block Description  
Table 136. Functional Page (continued)  
BITS[7:0]  
Register  
Name  
Add  
R/W  
Default  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
SW1AB[5:0]  
20  
SW1ABVOLT R/W/M 8'b00xx_xxxx  
x
x
x
x
x
x
x
x
x
x
x
SW1ABSTBY[5:0]  
21  
22  
23  
24  
SW1ABSTBY  
SW1ABOFF  
R/W 8'b00xx_xxxx  
R/W 8'b00xx_xxxx  
R/W 8'b0000_1000  
R/W 8'bxx00_xx00  
x
x
SW1ABOFF[5:0]  
x
x
x
0
x
x
SW1ABOMODE  
0
SW1ABMODE[3:0]  
SW1ABMODE  
SW1ABCONF  
1
0
0
0
SW1ABDVSSPEED[1:0]  
SW1BAPHASE[1:0]  
SW1ABFREQ[1:0]  
SW1ABILIM  
0
x
x
0
0
x
x
0
0
0
0
0
0
0
0
0
SW1C[5:0]  
2E  
2F  
30  
31  
32  
SW1CVOLT  
SW1CSTBY  
SW1COFF  
R/W 8'b00xx_xxxx  
R/W 8'b00xx_xxxx  
R/W 8'b00xx_xxxx  
R/W 8'b0000_1000  
R/W 8'bxx00_xx00  
x
x
x
x
x
x
x
1
x
x
x
x
x
x
SW1CSTBY[5:0]  
x
SW1COFF[5:0]  
x
x
x
0
x
SW1COMODE  
0
SW1CMODE[3:0]  
SW1CMODE  
SW1CCONF  
0
0
0
0
SW1CILIM  
0
SW1CDVSSPEED[1:0]  
SW1CPHASE[1:0]  
SW1CFREQ[1:0]  
x
x
0
0
x
x
0
0
0
0
SW2[6:0]  
35  
36  
37  
38  
39  
SW2VOLT  
SW2STBY  
SW2OFF  
R/W  
R/W  
R/W  
8'b0xxx_xxxx  
8'b0xxx_xxxx  
8'b0xxx_xxxx  
x
x
x
x
x
x
x
x
x
x
0
x
x
x
x
x
x
SW2STBY[6:0]  
x
SW2OFF[6:0]  
x
x
0
x
x
0
x
SW2OMODE  
0
SW2MODE[3:0]  
SW2MODE  
SW2CONF  
R/W 8'b0000_1000  
R/W 8'bxx01_xx00  
1
0
0
0
SW2ILIM  
0
SW2DVSSPEED[1:0]  
SW2PHASE[1:0]  
SW2FREQ[1:0]  
x
x
0
1
x
0
0
SW3A[6:0]  
3C  
3D  
SW3AVOLT  
SW3ASTBY  
R/W  
R/W  
8'b0xxx_xxxx  
8'b0xxx_xxxx  
x
x
x
x
x
x
x
x
x
x
x
x
x
SW3ASTBY[6:0]  
x
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
123  
Functional Block Requirements and Behaviors  
Control Interface I2C Block Description  
Table 136. Functional Page (continued)  
BITS[7:0]  
Register  
Name  
Add  
R/W  
Default  
7
6
5
4
3
2
1
0
0
SW3AOFF[6:0]  
x
3E  
SW3AOFF  
R/W  
8'b0xxx_xxxx  
x
x
x
0
x
x
x
SW3AOMODE  
0
SW3AMODE[3:0]  
3F  
40  
SW3AMODE  
SW3ACONF  
R/W 8'b0000_1000  
R/W 8'bxx10_xx00  
0
0
1
x
0
0
0
0
SW3AILIM  
0
SW3ADVSSPEED[1:0]  
SW3APHASE[1:0]  
SW3AFREQ[1:0]  
x
x
1
0
x
0
0
0
0
SW3B[6:0]  
43  
44  
45  
46  
47  
SW3BVOLT  
SW3BSTBY  
SW3BOFF  
R/W  
R/W  
R/W  
8'b0xxx_xxxx  
8'b0xxx_xxxx  
8'b0xxx_xxxx  
x
x
x
x
x
x
x
x
x
x
0
x
x
x
x
x
x
SW3BSTBY[6:0]  
x
SW3BOFF[6:0]  
x
x
0
x
x
0
x
SW3BOMODE  
0
SW3BMODE[3:0]  
SW3BMODE  
SW3BCONF  
R/W 8'b0000_1000  
R/W 8'bxx10_xx00  
1
0
0
0
SW3BILIM  
0
SW3BDVSSPEED[1:0]  
SW3BPHASE[1:0]  
SW3BFREQ[1:0]  
x
x
1
0
x
0
0
0
0
SW4[6:0]  
4A  
4B  
4C  
4D  
4E  
SW4VOLT  
SW4STBY  
SW4OFF  
R/W  
R/W  
R/W  
8'b0xxx_xxxx  
8'b0xxx_xxxx  
8'b0xxx_xxxx  
x
x
x
x
x
x
x
x
x
x
0
x
x
x
x
x
x
SW4STBY[6:0]  
x
SW4OFF[6:0]  
x
x
0
x
x
0
x
SW4OMODE  
0
SW4MODE[3:0]  
SW4MODE  
SW4CONF  
R/W 8'b0000_1000  
R/W 8'bxx11_xx00  
1
0
0
0
SW4ILIM  
0
SW4DVSSPEED[1:0]  
SW4PHASE[1:0]  
SW4FREQ[1:0]  
x
x
1
1
x
0
SWBST1STBYMODE[1:0]  
0
SWBST1MODE[1:0]  
SWBST1VOLT[1:0]  
66  
SWBSTCTL  
R/W 8'b0xx0_10xx  
x
x
1
0
x
x
0
0
0
0
0
0
VREFDDREN  
0
0
0
0
6A  
6B  
VREFDDRCTL  
VSNVSCTL  
R/W 8'b000x_0000  
R/W 8'b0000_0xxx  
x
0
0
VSNVSVOLT[2:0]  
x
0
x
PF0100  
Analog Integrated Circuit Device Data  
124  
Freescale Semiconductor  
Functional Block Requirements and Behaviors  
Control Interface I2C Block Description  
Table 136. Functional Page (continued)  
BITS[7:0]  
Register  
Name  
Add  
R/W  
Default  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
VGEN1LPWR VGEN1STBY  
VGEN1EN  
VGEN1[3:0]  
VGEN2[3:0]  
VGEN3[3:0]  
VGEN4[3:0]  
VGEN5[3:0]  
VGEN6[3:0]  
6C  
VGEN1CTL  
R/W 8'b000x_xxxx  
R/W 8'b000x_xxxx  
R/W 8'b000x_xxxx  
R/W 8'b000x_xxxx  
R/W 8'b000x_xxxx  
R/W 8'b000x_xxxx  
0
0
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
VGEN2LPWR VGEN2STBY  
VGEN2EN  
6D  
6E  
6F  
70  
71  
VGEN2CTL  
VGEN3CTL  
VGEN4CTL  
VGEN5CTL  
VGEN6CTL  
0
0
x
VGEN3LPWR VGEN3STBY  
VGEN3EN  
0
0
x
VGEN4LPWR VGEN4STBY  
VGEN4EN  
0
0
x
VGEN5LPWR VGEN5STBY  
VGEN5EN  
0
0
x
VGEN6LPWR VGEN6STBY  
VGEN6EN  
x
0
0
0
0
0
PAGE[4:0]  
0
7F  
Page Register  
R/W 8'b0000_0000  
0
0
0
0
Table 137. Extended Page 1  
BITS[7:0]  
Address Register Name TYPE  
Default  
7
0
6
0
5
0
4
3
x
2
x
1
x
0
OTP FUSE  
READ EN  
x
OTP FUSE READ  
80  
84  
R/W  
R/W  
8'b000x_xxx0  
8'b0000_0000  
EN  
0
FORCE  
PWRCTL  
RL OTP  
FUSE  
RL TRIM  
FUSE  
START  
0
RL PWBRTN  
0
RL PWRCTL  
0
RL OTP  
0
RL OTP ECC  
0
OTP LOAD MASK  
0
0
0
x
x
x
x
x
x
x
x
x
x
x
x
ECC5_SE  
ECC4_SE  
ECC3_SE  
ECC2_SE  
ECC1_SE  
8A  
8B  
8C  
8D  
OTP ECC SE1  
OTP ECC SE2  
OTP ECC DE1  
OTP ECC DE2  
R
R
R
R
8'bxxx0_0000  
8'bxxx0_0000  
8'bxxx0_0000  
8'bxxx0_0000  
0
0
0
0
0
ECC10_SE  
ECC9_SE  
ECC8_SE  
ECC7_SE  
ECC6_SE  
0
0
0
0
0
ECC5_DE  
ECC4_DE  
ECC3_DE  
ECC2_DE  
ECC1_DE  
0
0
ECC9_DE  
0
0
ECC8_DE  
0
0
ECC7_DE  
0
0
ECC6_DE  
0
ECC10_DE  
0
0
0
SW1AB_VOLT[5:0]  
OTP SW1AB  
VOLT  
A0  
R/W  
8'b00xx_xxxx  
x
x
x
x
x
x
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
125  
 
Functional Block Requirements and Behaviors  
Control Interface I2C Block Description  
Table 137. Extended Page 1 (continued)  
BITS[7:0]  
Address Register Name TYPE  
Default  
7
0
0
6
5
4
3
2
1
0
SW1AB_SEQ[4:0]  
x
A1  
A2  
OTP SW1AB SEQ  
R/W  
R/W  
8'b000x_xxXx  
8'b0000_xxxx  
0
0
0
0
x
0
x
X
x
SW1_CONFIG[1:0]  
SW1AB_FREQ[1:0]  
OTP SW1AB  
CONFIG  
x
x
x
x
0
0
0
0
SW1C_VOLT[5:0]  
x
A8  
A9  
AA  
OTP SW1C VOLT  
OTP SW1C SEQ  
R/W  
R/W  
R/W  
8'b00xx_xxxx  
8'b000x_xxxx  
8'b0000_00xx  
x
x
x
x
x
x
x
SW1C_SEQ[4:0]  
0
0
0
0
x
0
x
0
x
0
SW1C_FREQ[1:0]  
OTP SW1C  
CONFIG  
x
x
0
0
0
SW2_VOLT[5:0]  
x
AC  
AD  
AE  
OTP SW2 VOLT  
OTP SW2 SEQ  
R/W  
R/W  
R/W  
8'b0xxx_xxxx  
8'b000x_xxxx  
8'b0000_00xx  
x
0
0
x
x
x
x
x
x
x
SW2_SEQ[4:0]  
0
0
x
0
x
0
x
0
SW2_FREQ[1:0]  
OTP SW2  
CONFIG  
x
x
0
0
0
SW3A_VOLT[6:0]  
x
B0  
B1  
B2  
OTP SW3A VOLT  
OTP SW3A SEQ  
R/W  
R/W  
R/W  
8'b0xxx_xxxx  
8'b000x_xxxx  
8'b0000_xxxx  
x
0
0
x
x
x
x
x
x
x
SW3A_SEQ[4:0]  
x
0
0
x
0
x
x
SW3_CONFIG[1:0]  
SW3A_FREQ[1:0]  
OTP SW3A  
CONFIG  
x
x
x
0
0
0
SW3B_VOLT[6:0]  
x
B4  
B5  
B6  
OTP SW3B VOLT  
OTP SW3B SEQ  
R/W  
R/W  
R/W  
8'b0xxx_xxxx  
8'b000x_xxxx  
8'b0000_00xx  
x
0
0
x
x
x
x
x
x
x
SW3B_SEQ[4:0]  
0
0
x
0
x
0
x
0
SW3B_CONFIG[1:0]  
OTP SW3B  
CONFIG  
x
x
0
0
SW4_VOLT[6:0]  
x
B8  
B9  
OTP SW4 VOLT  
OTP SW4 SEQ  
R/W  
R/W  
8'b00xx_xxxx  
8'b000x_xxxx  
0
0
x
0
x
x
x
x
x
x
x
SW4_SEQ[4:0]  
x
x
PF0100  
Analog Integrated Circuit Device Data  
126  
Freescale Semiconductor  
Functional Block Requirements and Behaviors  
Control Interface I2C Block Description  
Table 137. Extended Page 1 (continued)  
BITS[7:0]  
Address Register Name TYPE  
Default  
7
0
6
0
5
0
4
3
x
2
x
1
0
VTT  
x
SW4_FREQ[1:0]  
OTP SW4  
CONFIG  
BA  
R/W  
8'b000x_xxxx  
x
x
0
0
0
0
0
0
0
0
SWBST_VOLT[1:0]  
OTP SWBST  
VOLT  
BC  
BD  
R/W  
R/W  
8'b0000_00xx  
8'b0000_xxxx  
0
x
x
SWBST_SEQ[4:0]  
x
OTP SWBST SEQ  
0
x
x
x
0
0
0
0
0
VSNVS_VOLT[2:0]  
x
OTP VSNVS  
VOLT  
C0  
C4  
R/W  
R/W  
8'b0000_0xxx  
8'b000x_x0xx  
0
x
x
0
0
0
VREFDDR_SEQ[4:0]  
0
OTP VREFDDR  
SEQ  
x
x
x
0
0
0
0
0
0
0
VGEN1_VOLT[3:0]  
OTP VGEN1  
VOLT  
C8  
C9  
R/W  
R/W  
8'b0000_xxxx  
8'b000x_xxxx  
x
x
x
x
x
x
VGEN1_SEQ[4:0]  
x
OTP VGEN1 SEQ  
x
x
0
0
0
0
0
0
0
VGEN2_VOLT[3:0]  
OTP VGEN2  
VOLT  
CC  
CD  
R/W  
R/W  
8'b0000_xxxx  
8'b000x_xxxx  
x
x
x
x
x
x
VGEN2_SEQ[4:0]  
x
OTP VGEN2 SEQ  
x
x
0
0
0
0
0
0
0
VGEN3_VOLT[3:0]  
OTP VGEN3  
VOLT  
D0  
D1  
R/W  
R/W  
8'b0000_xxxx  
8'b000x_xxxx  
x
x
x
x
x
x
VGEN3_SEQ[4:0]  
x
OTP VGEN3 SEQ  
x
x
0
0
0
0
0
0
0
VGEN4_VOLT[3:0]  
OTP VGEN4  
VOLT  
D4  
D5  
R/W  
R/W  
8'b0000_xxxx  
8'b000x_xxxx  
x
x
x
x
x
x
VGEN4_SEQ[4:0]  
x
OTP VGEN4 SEQ  
x
x
0
0
0
0
0
0
0
VGEN5_VOLT[3:0]  
OTP VGEN5  
VOLT  
D8  
D9  
R/W  
R/W  
8'b0000_xxxx  
8'b000x_xxxx  
x
x
x
x
x
x
VGEN5_SEQ[4:0]  
x
OTP VGEN5 SEQ  
x
x
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
127  
Functional Block Requirements and Behaviors  
Control Interface I2C Block Description  
Table 137. Extended Page 1 (continued)  
BITS[7:0]  
Address Register Name TYPE  
Default  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
VGEN6_VOLT[3:0]  
OTP VGEN6  
VOLT  
DC  
DD  
R/W  
R/W  
8'b0000_xxxx  
8'b000x_xxxx  
x
x
x
x
x
x
VGEN6_SEQ[4:0]  
x
OTP VGEN6 SEQ  
x
x
PWRON_  
CFG1  
0
0
0
0
0
0
0
0
0
SWDVS_CLK1[1:0]  
SEQ_CLK_SPEED1[1:0]  
E0  
E1  
E2  
OTP PU CONFIG1  
OTP PU CONFIG2  
OTP PU CONFIG3  
R/W  
R/W  
R/W  
8'b000x_xxxx  
8'b000x_xxxx  
8'b000x_xxxx  
x
x
x
x
x
PWRON_  
CFG2  
SWDVS_CLK2[1:0]  
SEQ_CLK_SPEED2[1:0]  
x
x
x
x
x
PWRON_  
CFG3  
SWDVS_CLK3[1:0]  
SEQ_CLK_SPEED3[1:0]  
x
x
x
x
x
PWRON_CFG  
_XOR  
0
SWDVS_CLK3_XOR  
SEQ_CLK_SPEED_XOR  
OTP PU CONFIG  
XOR  
E3  
R
8'b000x_xxxx  
8'b0000_00x0  
0
0
x
x
x
x
x
SOFT_FUSE  
_POR  
TBB_POR  
FUSE_POR1  
(77)  
E4  
OTP FUSE POR1  
R/W  
0
RSVD  
0
0
RSVD  
0
0
0
0
0
0
0
0
0
0
0
0
0
x
0
0
0
FUSE_POR2  
E5  
E6  
OTP FUSE POR1  
OTP FUSE POR1  
R/W  
R/W  
8'b0000_00x0  
8'b0000_00x0  
x
RSVD  
0
RSVD  
0
FUSE_POR3  
x
FUSE_POR_  
XOR  
RSVD  
RSVD  
OTP FUSE POR  
XOR  
E7  
E8  
R
8'b0000_00x0  
0
0
0
0
0
0
0
0
0
0
0
0
x
x
0
OTP_PG_EN  
0
OTP PWRGD EN R/W/M 8'b0000_000x  
EN_ECC_  
BANK5  
EN_ECC_  
BANK4  
EN_ECC_  
BANK3  
EN_ECC_  
BANK2  
EN_ECC_  
BANK1  
0
0
0
0
0
0
F0  
OTP EN ECCO  
OTP EN ECC1  
R/W  
R/W  
8'b000x_xxxx  
8'b000x_xxxx  
x
x
x
x
x
EN_ECC_  
BANK10  
EN_ECC_  
BANK9  
EN_ECC_  
BANK8  
EN_ECC_  
BANK7  
EN_ECC_  
BANK6  
F1  
x
x
x
x
x
Notes  
77. In the MMPF0100 FUSE_POR1, FUSE_POR2, and FUSE_POR3 are XOR’ed into the FUSE_POR_XOR bit. The FUSE_POR_XOR  
has to be 1 for fuses to be loaded. This can be achieved by setting any one or all of the FUSE_PORx bits. In MMPF0100A, the XOR  
function is removed. It is required to set all of the FUSE_PORx bits to be able to load the fuses.  
PF0100  
Analog Integrated Circuit Device Data  
128  
Freescale Semiconductor  
 
Functional Block Requirements and Behaviors  
Control Interface I2C Block Description  
Table 137. Extended Page 1 (continued)  
BITS[7:0]  
Address Register Name TYPE  
Default  
7
0
0
0
0
6
0
0
0
0
5
0
0
0
0
4
3
2
1
0
x
x
0
0
0
0
RSVD  
F4  
F5  
F6  
F7  
OTP SPARE2_4  
OTP SPARE4_3  
OTP SPARE6_2  
OTP SPARE7_1  
R/W  
R/W  
R/W  
R/W  
8'b0000_xxxx  
8'b0000_0xxx  
8'b0000_00xx  
8'b0000_0xxx  
x
0
0
0
x
x
RSVD  
x
x
0
x
RSVD  
x
x
x
RSVD  
x
0
0
0
0
0
0
0
OTP_DONE  
x
FE  
FF  
OTP DONE  
R/W  
R/W  
8'b0000_000x  
8'b0000_0xxx  
I2C_SLV  
ADDR[3]  
0
0
0
0
I2C_SLV ADDR[2:0]  
x
OTP I2C ADDR  
1
x
x
Table 138. Extended Page 2  
BITS[7:0]  
Address Register Name TYPE  
Default  
7
6
5
4
3
2
1
0
RSVD  
1
RSVD  
1
RSVD  
1
RSVD  
1
RSVD  
1
SW1AB_PWRSTG[2:0]  
1
81  
82  
83  
84  
85  
86  
SW1AB PWRSTG  
PWRSTG RSVD  
SW1C PWRSTG  
SW2 PWRSTG  
SW3A PWRSTG  
SW3B PWRSTG  
R/W  
R
8'b1111_1111  
8'b0000_0000  
8'b1111_1111  
8'b1111_1111  
8'b1111_1111  
8'b1111_1111  
1
0
1
1
1
1
1
0
1
1
1
1
PWRSTGRSVD  
0
0
RSVD  
1
0
RSVD  
1
0
RSVD  
1
0
0
RSVD  
RSVD  
SW1C_PWRSTG[2:0]  
R
1
RSVD  
1
1
RSVD  
1
1
RSVD  
1
RSVD  
1
RSVD  
1
SW2_PWRSTG[2:0]  
R
1
RSVD  
1
RSVD  
1
RSVD  
1
RSVD  
1
RSVD  
1
SW3A_PWRSTG[2:0]  
R
1
RSVD  
1
RSVD  
1
RSVD  
1
RSVD  
1
RSVD  
1
SW3B_PWRSTG[2:0]  
1
R
FSLEXT_  
THERM_  
DISABLE  
PWRGD_  
SHDWN_  
DISABLE  
RSVD  
RSVD  
RSVD  
SW4_PWRSTG[2:0]  
87  
88  
SW4 PWRSTG  
R
R
8'b0111_1111  
8'b0000_0001  
0
0
0
0
1
0
1
0
1
0
1
0
1
1
OTP_  
PWRGD_EN  
SHDWN_EN  
PWRCTRL OTP  
CTRL  
0
1
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
129  
 
Functional Block Requirements and Behaviors  
Control Interface I2C Block Description  
Table 138. Extended Page 2 (continued)  
BITS[7:0]  
Address Register Name TYPE  
Default  
7
6
5
4
3
2
1
0
I2C_WRITE_ADDRESS_TRAP[7:0]  
I2C WRITE  
ADDRESS TRAP  
8D  
8E  
R/W  
R/W  
8'b0000_0000  
0
0
RSVD  
0
0
RSVD  
0
0
0
0
0
0
LET_IT_  
ROLL  
I2C_TRAP_PAGE[4:0]  
0
I2C TRAP PAGE  
8'b0000_0000  
0
0
0
0
0
0
0
I2C_WRITE_ADDRESS_COUNTER[7:0]  
8F  
90  
I2C TRAP CNTR  
IO DRV  
R/W  
R/W  
8'b0000_0000  
8'b00xx_xxxx  
0
0
0
0
0
0
0
x
SDA_DRV[1:0]  
SDWNB_DRV[1:0]  
INTB_DRV[1:0]  
RESETBMCU_DRV[1:0]  
0
x
x
x
x
x
AUTO_ECC  
_BANK5  
AUTO_ECC AUTO_ECC_ AUTO_ECC AUTO_ECC_  
0
0
0
0
0
0
_BANK4  
BANK3  
_BANK2  
BANK1  
DO  
D1  
OTP AUTO ECC0  
OTP AUTO ECC1  
R/W  
R/W  
8'b0000_0000  
8'b0000_0000  
0
0
0
0
0
AUTO_ECC_ AUTO_ECC AUTO_ECC_ AUTO_ECCB AUTO_ECC_  
BANK10  
_BANK9  
BANK8  
ANK7  
BANK6  
0
0
0
0
0
RSVD  
(78)  
D8  
D9  
Reserved  
Reserved  
8'b0000_0000  
8'b0000_0000  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RSVD  
(78)  
ECC1_EN_ ECC1_CALC  
ECC1_CIN_TBB[5:0]  
TBB  
_CIN  
E1  
OTP ECC CTRL1  
OTP ECC CTRL2  
OTP ECC CTRL3  
OTP ECC CTRL4  
OTP ECC CTRL5  
OTP ECC CTRL6  
OTP ECC CTRL7  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
8'b0000_0000  
8'b0000_0000  
8'b0000_0000  
8'b0000_0000  
8'b0000_0000  
8'b0000_0000  
8'b0000_0000  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
ECC2_EN_ ECC2_CALC  
TBB  
ECC2_CIN_TBB[5:0]  
_CIN  
E2  
E3  
E4  
E5  
E6  
E7  
0
0
0
0
ECC3_EN_ ECC3_CALC  
TBB  
ECC3_CIN_TBB[5:0]  
_CIN  
0
0
0
0
ECC4_EN_ ECC4_CALC  
TBB  
ECC4_CIN_TBB[5:0]  
_CIN  
0
0
0
0
ECC5_EN_ ECC5_CALC  
TBB  
ECC5_CIN_TBB[5:0]  
_CIN  
0
0
0
0
ECC6_EN_ ECC6_CALC  
TBB  
ECC6_CIN_TBB[5:0]  
_CIN  
0
0
0
0
ECC7_EN_ ECC7_CALC  
TBB  
ECC7_CIN_TBB[5:0]  
_CIN  
0
0
0
0
PF0100  
Analog Integrated Circuit Device Data  
130  
Freescale Semiconductor  
Functional Block Requirements and Behaviors  
Control Interface I2C Block Description  
Table 138. Extended Page 2 (continued)  
BITS[7:0]  
Address Register Name TYPE  
Default  
7
6
5
0
0
0
4
0
0
0
3
2
1
0
0
0
0
0
0
0
ECC8_EN_ ECC8_CALC  
TBB  
ECC8_CIN_TBB[5:0]  
_CIN  
E8  
E9  
EA  
OTP ECC CTRL8  
OTP ECC CTRL9  
OTP ECC CTRL10  
R/W  
R/W  
R/W  
8'b0000_0000  
0
0
0
0
ECC9_EN_ ECC9_CALC  
TBB  
ECC9_CIN_TBB[5:0]  
_CIN  
8'b0000_0000  
8'b0000_0000  
0
0
0
0
ECC10_EN_ ECC10_CAL  
ECC10_CIN_TBB[5:0]  
TBB  
C_CIN  
0
0
0
0
ANTIFUSE1_ ANTIFUSE1_ ANTIFUSE1_  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BYPASS1  
EN  
LOAD  
RW  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
OTP FUSE CTRL1  
OTP FUSE CTRL2  
OTP FUSE CTRL3  
OTP FUSE CTRL4  
OTP FUSE CTRL5  
OTP FUSE CTRL6  
OTP FUSE CTRL7  
OTP FUSE CTRL8  
OTP FUSE CTRL9  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
8'b0000_0000  
8'b0000_0000  
8'b0000_0000  
8'b0000_0000  
8'b0000_0000  
8'b0000_0000  
8'b0000_0000  
8'b0000_0000  
8'b0000_0000  
8'b0000_0000  
0
0
0
0
ANTIFUSE2_ ANTIFUSE2_ ANTIFUSE2_  
BYPASS2  
EN  
LOAD  
RW  
0
0
0
0
ANTIFUSE3_ ANTIFUSE3_ ANTIFUSE3_  
BYPASS3  
EN  
LOAD  
RW  
0
0
0
0
ANTIFUSE4_ ANTIFUSE4_ ANTIFUSE4_  
BYPASS4  
EN  
LOAD  
RW  
0
0
0
0
ANTIFUSE5_ ANTIFUSE5_ ANTIFUSE5_  
BYPASS5  
EN  
LOAD  
RW  
0
0
0
0
ANTIFUSE6_ ANTIFUSE6_ ANTIFUSE6_  
BYPASS6  
EN  
LOAD  
RW  
0
0
0
0
ANTIFUSE7_ ANTIFUSE7_ ANTIFUSE7_  
BYPASS7  
EN  
LOAD  
RW  
0
0
0
0
ANTIFUSE8_ ANTIFUSE8_ ANTIFUSE8_  
BYPASS8  
EN  
LOAD  
RW  
0
0
0
0
ANTIFUSE9_ ANTIFUSE99 ANTIFUSE9_  
BYPASS9  
EN  
_LOAD  
RW  
0
0
0
0
ANTIFUSE10 ANTIFUSE10 ANTIFUSE10  
BYPASS10  
0
_EN  
_LOAD  
_RW  
OTP FUSE  
CTRL10  
FA  
0
0
0
Notes  
78. Do not write in reserved registers.  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
131  
Typical Applications  
Introduction  
7
Typical Applications  
7.1  
Introduction  
Figure 35 provides a typical application diagram of the PF0100 PMIC together with its functional components. For details on  
component references and additional components such as filters, refer to the individual sections.  
7.1.1 Application Diagram  
VIN1  
SW1AB Output  
SW1FB  
1.0uF  
2.2uF  
4.7uF  
Vin  
VIN1  
4.7uF  
PF0100  
VGEN1  
100mA  
SW1AIN  
SW1ALX  
VGEN1  
O/P  
Drive  
1.0uH  
SW1A/B  
Single/Dual  
2500 mA  
Buck  
VGEN2  
250mA  
VGEN2  
4 x22uF  
SW1BLX  
SW1BIN  
O/P  
Drive  
VIN2  
1.0uF  
2.2uF  
VIN2  
4.7uF  
4.7uF  
Vin  
Vin  
VGEN3  
100mA  
SW1C Output  
VGEN3  
1.0uH  
SW1CLX  
SW1CIN  
O/P  
Drive  
SW1C  
1750 mA  
Buck  
VGEN4  
350mA  
2 x 22uF  
4.7uF  
VGEN4  
VIN3  
SW1CFB  
VIN3  
SW1VSSSNS  
Core Control logic  
1.0uF  
2.2uF  
VGEN5  
100mA  
SW2 Output  
1.0uH  
VGEN5  
VGEN6  
SW2LX  
SW2IN  
SW2IN  
SW2FB  
Initialization State Machine  
SW2  
2000 mA  
Buck  
O/P  
Drive  
VGEN6  
200mA  
2.2uF  
2 x 22uF  
4.7uF  
Vin  
SW3AFB  
OTP  
Supplies  
Control  
SW3A Output  
2 x 22uF  
Vin  
4.7uF  
SW3AIN  
SW3ALX  
VDDOTP  
O/P  
Drive  
VDDOTP  
VDDIO  
1.0uH  
1.0uH  
VDDIO  
SW3A/B  
Single/Dual  
DDR  
2500 mA  
Buck  
CONTROL  
SW3BLX  
SW3BIN  
I2C  
Interface  
0.1uF  
O/P  
Drive  
2 x 22uF  
SCL  
SDA  
To  
MCU  
4.7uF  
Vin  
Vin  
SW3BFB  
SW3B Output  
DVS CONTROL  
SW3VSSSNS  
DVS Control  
SW4FB  
SW4 Output  
2 x 22uF  
4.7uF  
2.2uH  
SW4  
1000 mA  
Buck  
SW4IN  
O/P  
Drive  
1.0uH  
I2C  
Register  
map  
SW4LX  
1uF  
Trim-In-Package  
VCOREDIG  
VCOREREF  
GNDREF1  
Vin  
10uF  
220nF  
1uF  
SWBSTLX  
SWBSTIN  
SWBSTFB  
Reference  
Generation  
SWBST  
Output  
Clocks and  
resets  
SWBST  
600 mA  
Boost  
O/P  
Drive  
Vin  
VCORE  
2 x 22uF  
GNDREF  
2.2uF  
1uF  
VREFDDR  
VSW3A  
VINREFDDR  
100nF  
100nF  
Vin  
Clocks  
32kHz and 16MHz  
Package Pin Legend  
VHALF  
Output Pin  
Input Pin  
Bi-directional Pin  
VIN  
1uF  
Best  
of  
Supply  
Li Cell  
Charger  
LICELL  
100nF  
VSNVS  
Coin Cell  
Battery  
VSW2  
VSW2  
VSW2  
VSW2  
0.47uF  
To/From  
AP  
Figure 35. Typical Application Schematic  
PF0100  
Analog Integrated Circuit Device Data  
132  
Freescale Semiconductor  
 
Typical Applications  
Introduction  
7.1.2 Bill of Material  
The following table provides a complete list of the recommended components on a full featured system using the PF0100 Device.  
Critical components such as inductors, transistors, and diodes are provided with a recommended part number, but equivalent  
components may be used.  
(79)  
Table 139. Bill of Material  
Value  
PMIC  
Qty  
Description  
Part#  
Manufacturer  
Component/Pin  
1
Power management IC  
MMPF0100  
Freescale  
BUCK, SW1AB - (0.300-1.875 V), 2.5 A  
4 x 4 x 2.1  
1.0 H  
1.0 H  
1.0 H  
1
ISAT = 4.5 A for 10% drop,  
DCRMAX = 11.9 m  
XFL4020-102MEB  
LPS5015_102ML  
FDSD0412-H-1R0M  
Coilcraft  
Coilcraft  
Toko  
Output Inductor  
5 x 5 x 1.5  
ISAT = 3.6 A for 10% drop,  
DCRMAX = 50 m  
Output Inductor  
(Alternate)  
4 x 4 x 1.2  
Output inductor  
(Alternate)  
ISAT = 6.2 A, DCR = 37 m  
22 F  
4.7 F  
0.1 F  
4
2
1
10 V X5R 0805  
10 V X5R 0603  
10 V X5R 0402  
LMK212BJ226MG-T  
LMK107BJ475KA-T  
C0402C104K8PAC  
Taiyo Yuden  
Taiyo Yuden  
Kemet  
Output capacitance  
Input capacitance  
Input capacitance  
BUCK, SW1C- (0.300-1.875 V), 2.0 A  
4 x 4 x 1.2  
1.0 H  
1.0 H  
1.0 H  
1
ISAT = 2.8 A for 10% drop,  
DCRMAX = 60 m  
LPS4012-102NL  
XFL3012-102ML  
FDSD0412-H-1R0M  
Coilcraft  
Coilcraft  
Toko  
Output Inductor  
3x 3 1.2  
ISAT = 2.5 A for 10% drop,  
DCRMAX = 42 m  
Output Inductor  
(Alternate)  
4 x 4 x 1.2  
Output inductor  
(Alternate)  
ISAT = 6.2 A, DCR = 37 m  
22 F  
4.7 F  
0.1 F  
2
1
1
10 V X5R 0805  
10 V X5R 0603  
10 V X5R 0402  
LMK212BJ226MG-T  
LMK107BJ475KA-T  
C0402C104K8PAC  
Taiyo Yuden  
Taiyo Yuden  
Kemet  
Output capacitance  
Input capacitance  
Input capacitance  
BUCK, SW2- (0.400-3.300 V), 2.0 A  
4 x 4 x 1.2  
1.0 H  
1.0 H  
1.0 H  
1
ISAT = 2.8 A for 10% drop,  
DCRMAX = 60 m  
LPS4012-102NL  
XFL3012-102ML  
FDSD0412-H-1R0M  
Coilcraft  
Coilcraft  
Toko  
Output Inductor  
3x 3 1.2  
ISAT = 2.5 A for 10% drop,  
DCRMAX = 42 m  
Output Inductor  
(Alternate)  
4 x 4 x 1.2  
Output inductor  
(Alternate)  
ISAT = 6.2 A, DCR = 37 m  
22 F  
2
1
10 V X5R 0805  
10 V X5R 0603  
LMK212BJ226MG-T  
LMK107BJ475KA-T  
Taiyo Yuden  
Taiyo Yuden  
Output capacitance  
Input capacitance  
4.7 F  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
133  
Typical Applications  
Introduction  
Table 139. Bill of Material (continued) (79)  
Value  
0.1 F  
Qty  
Description  
Part#  
Manufacturer  
Kemet  
Component/Pin  
1
10 V X5R 0402  
C0402C104K8PAC  
Input capacitance  
BUCK, SW3AB - (0.400-3.300 V), 2.5 A  
4 x 4 x 2.1  
1.0 H  
1.0 H  
1.0 H  
1
ISAT = 4.5 A for 10% drop,  
DCRMAX = 11.9 m  
XFL4020-102MEB  
LPS5015_102ML  
FDSD0412-H-1R0M  
Coilcraft  
Coilcraft  
Toko  
Output Inductor  
5 x 5 x 1.5  
ISAT = 3.6 A for 10% drop,  
DCRMAX = 50 m  
Output Inductor  
(Alternate)  
4 x 4 x 1.2  
Output inductor  
(Alternate)  
ISAT = 6.2 A, DCR = 37 m  
22 F  
4.7 F  
0.1 F  
4
2
1
10 V X5R 0805  
10 V X5R 0603  
10 V X5R 0402  
LMK212BJ226MG-T  
LMK107BJ475KA-T  
C0402C104K8PAC  
Taiyo Yuden  
Taiyo Yuden  
Kemet  
Output capacitance  
Input capacitance  
Input capacitance  
BUCK, SW4 - (0.400-3.300V), 1A  
2.5 x 2 x 1  
1.0 H  
1.0 H  
1.0 H  
1
-
ISAT = 1.8 A for 30% drop,  
DCRMAX = 84 m  
VLS252010ET-1R0N  
XPL2010_102ML  
1239AS-H-1R0M  
TDK  
Output Inductor  
2.2 x 2.1 x 1  
ISAT = 1.2 A for 10% drop,  
DCRMAX = 89 m  
Output Inductor  
(Alternate)  
Coilcraft  
Toko  
2.5 x 2 x 1  
Output inductor  
(Alternate)  
ISAT = 3.4 A, DCR = 60 m  
22 F  
4.7 F  
0.1 F  
2
1
1
10 V X5R 0805  
10 V X5R 0603  
10 V X5R 0402  
LMK212BJ226MG-T  
LMK107BJ475KA-T  
C0402C104K8PAC  
Taiyo Yuden  
Taiyo Yuden  
Kemet  
Output capacitance  
Input capacitance  
Input capacitance  
BOOST, SWBST - 5.0 V, 600 MA  
3 x 3 x 1.5  
2.2 H  
2.2 H  
1
ISAT = 2.0 A for 10% drop,  
DCRMAX = 110 m  
LPS3015-222ML  
Coilcraft  
Toko  
Output Inductor  
3 x 3 x 1.2  
Output inductor  
(Alternate)  
FDSD0312-H-2R2M  
ISAT = 3.1 A, DCR = 105 m  
22 F  
10 F  
2.2 F  
0.1 F  
1.0 A  
2
1
1
1
1
10 V X5R 0805  
10 V X5R 0805  
6.3 V X5R 0402  
10 V X5R 0402  
20 V SOD-123FL  
LMK212BJ226MG-T  
C2012X5R1A106MT  
C0402C225M9PACTU  
C0402C104K8PAC  
MBR120VLSFT1G  
Taiyo Yuden  
TDK  
Output capacitance  
Input capacitance  
Input capacitance  
Input capacitance  
Schottky Diode  
Kemet  
Kemet  
ON Semiconductor  
LDO, VGEN1 - (0.80-1.55), 100 MA  
2.2 F  
1.0 F  
1
1
6.3 V X5R 0402  
10 V X5R 0402  
C0402C225M9PACTU  
CC0402KRX5R6BB105  
Kemet  
Output capacitance  
Input capacitance  
Yageo America  
PF0100  
Analog Integrated Circuit Device Data  
134  
Freescale Semiconductor  
Typical Applications  
Introduction  
Table 139. Bill of Material (continued) (79)  
Value  
Qty  
Description  
Part#  
Manufacturer  
Component/Pin  
LDO, VGEN2 - (0.80-1.55), 250 MA  
4.7 F  
1
6.3 V X5R 0402  
C0402X5R6R3-475MNP  
Venkel  
Output capacitance  
LDO, VGEN3 - (1.80-3.30), 100 MA  
2.2 F  
1.0 F  
1
1
6.3 V X5R 0402  
10 V X5R 0402  
C0402C225M9PACTU  
CC0402KRX5R6BB105  
Kemet  
Output capacitance  
Input capacitance  
Yageo America  
LDO, VGEN4 - (1.80-3.30), 350 MA  
4.7 F  
1
6.3 V X5R 0402  
C0402X5R6R3-475MNP  
Venkel  
Output capacitance  
LDO, VGEN5 - (1.80-3.30), 150 MA  
2.2 F  
1.0 F  
1
1
6.3 V X5R 0402  
10 V X5R 0402  
C0402C225M9PACTU  
CC0402KRX5R6BB105  
Kemet  
Output capacitance  
Input capacitance  
Yageo America  
LDO, VGEN6 - (1.80-3.30), 200 MA  
2.2 F  
1
6.3 V X5R 0402  
C0402C225M9PACTU  
C1005X5R0J474K  
Kemet  
TDK  
Output capacitance  
Output capacitance  
Output capacitance  
LDO/SWITCH VSNVS - (1.1-3.3), 200 MA  
0.47 F  
1
6.3 V X5R 0402  
REFERENCE, VREFDDR - (0.20-1.65V), 10 MA  
1.0 F  
0.1 F  
1
2
10 V X5R 0402  
10 V X5R 0402  
CC0402KRX5R6BB105  
C0402C104K8PAC  
Yageo America  
Kemet  
VHALF,  
VINREFDDR  
INTERNAL REFERENCES, VCOREDIG, VCOREREF, VCORE  
1.0 F  
1
1
1
10 V X5R 0402  
10 V X5R 0402  
10 V X5R 0402  
CC0402KRX5R6BB105  
CC0402KRX5R6BB105  
GRM155R61A224KE19D  
Yageo America  
Yageo America  
Murata  
VCOREDIG  
VCORE  
1.0 F  
0.22 F  
COIN CELL  
0.1 F  
VCOREREF  
1
10 V X5R 0402  
C0402C104K8PAC  
Kemet  
LICELL  
MISCELLANEOUS  
0.1 F  
1.0 F  
100 k  
100 k  
100 k  
100 k  
Notes  
1
1
1
1
1
1
10 V X5R 0402  
10 V X5R 0402  
1/16 W 0402  
1/16 W 0402  
1/16 W 0402  
1/16 W 0402  
CD402C104K8PAC  
CC0402KRX5R6BB105  
RK73H1ETTP1003F  
RK73H1ETTP1003F  
RK73H1ETTP1003F  
RK73H1ETTP1003F  
Kemet  
VDDIO  
VIN  
Yageo America  
KOA SPEER  
KOA SPEER  
KOA SPEER  
KOA SPEER  
PWRON  
RESETBMCU  
SDWN  
INTB  
79. Freescale does not assume liability, endorse, or warrant components from external manufacturers that are referenced in circuit drawings  
or tables. While Freescale offers component recommendations in this configuration, it is the customer’s responsibility to validate their  
application.  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
135  
 
Typical Applications  
PF0100 Layout Guidelines  
7.2  
PF0100 Layout Guidelines  
7.2.1 General Board Recommendations  
1. It is recommended to use an eight layer board stack-up arranged as follows:  
• High current signal  
• GND  
• Signal  
• Power  
• Power  
• Signal  
• GND  
• High current signal  
2. Allocate TOP and BOTTOM PCB Layers for POWER ROUTING (high current signals), copper-pour the unused area.  
3. Use internal layers sandwiched between two GND planes for the SIGNAL routing.  
7.2.2 Component Placement  
It is desirable to keep all component related to the power stage as close to the PMIC as possible, specially decoupling input and  
output capacitors.  
7.2.3 General Routing Requirements  
1. Some recommended things to keep in mind for manufacturability:  
Via in pads require a 4.5 mil minimum annular ring. Pad must be 9.0 mils larger than the hole  
Maximum copper thickness for lines less than 5.0 mils wide is 0.6 oz copper  
Minimum allowed spacing between line and hole pad is 3.5 mils  
Minimum allowed spacing between line and line is 3.0 mils  
2. Care must be taken with SWxFB pins traces. These signals are susceptible to noise and must be routed far away from  
power, clock, or high power signals, like the ones on the SWxIN, SWx, SWxLX, SWBSTIN, SWBST, and SWBSTLX pins.  
They could be also shielded.  
3. Shield feedback traces of the regulators and keep them as short as possible (trace them on the bottom so the ground and  
power planes shield these traces).  
4. Avoid coupling traces between important signal/low noise supplies (like REFCORE, VCORE, VCOREDIG) from any  
switching node (i.e. SW1ALX, SW1BLX, SW1CLX, SW2LX, SW3ALX, SW3BLX, SW4LX, and SWBSTLX).  
5. Make sure that all components related to a specific block are referenced to the corresponding ground.  
PF0100  
Analog Integrated Circuit Device Data  
136  
Freescale Semiconductor  
Typical Applications  
PF0100 Layout Guidelines  
7.2.4 Parallel Routing Requirements  
1. I2C signal routing  
CLK is the fastest signal of the system, so it must be given special care.  
To avoid contamination of these delicate signals by nearby high power or high frequency signals, it is a good  
practice to shield them with ground planes placed on adjacent layers. Make sure the ground plane is uniform  
throughout the whole signal trace length.  
Figure 36. Recommended Shielding for Critical Signals  
These signals can be placed on an outer layer of the board to reduce their capacitance with respect to the ground  
plane.  
Care must be taken with these signals not to contaminate analog signals, as they are high frequency signals.  
Another good practice is to trace them perpendicularly on different layers, so there is a minimum area of proximity  
between signals.  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
137  
Typical Applications  
PF0100 Layout Guidelines  
7.2.5 Switching Regulator Layout Recommendations  
1. Per design, the switching regulators in PF0100 are designed to operate with only one input bulk capacitor. However, it is  
recommended to add a high frequency filter input capacitor (CIN_hf), to filter out any noise at the regulator input. This  
capacitor should be in the range of 100 nF and should be placed right next to or under the IC, closest to the IC pins.  
2. Make high-current ripple traces low-inductance (short, high W/L ratio).  
3. Make high-current traces wide or copper islands.  
4. Make high-current traces symetrical for dual–phase regulators (SW1, SW3).  
VIN  
SWxIN  
CIN_HF  
CIN  
SWx  
SWxLX  
Driver Controller  
L
COUT  
SWxFB  
Compensation  
Figure 37. Generic Buck Regulator Architecture  
Figure 38. Layout Example for Buck Regulators  
PF0100  
Analog Integrated Circuit Device Data  
138  
Freescale Semiconductor  
Typical Applications  
Thermal Information  
7.3  
Thermal Information  
7.3.1 Rating Data  
The thermal rating data of the packages has been simulated with the results listed in Table 6.  
Junction to Ambient Thermal Resistance Nomenclature: the JEDEC specification reserves the symbol RθJA or θJA (Theta-JA)  
strictly for junction-to-ambient thermal resistance on a 1s test board in natural convection environment. RθJMA or θJMA (Theta-  
JMA) will be used for both junction-to-ambient on a 2s2p test board in natural convection and for junction-to-ambient with forced  
convection on both 1s and 2s2p test boards. It is anticipated that the generic name, Theta-JA, will continue to be commonly used.  
The JEDEC standards can be consulted at http://www.jedec.org.  
7.3.2 Estimation of Junction Temperature  
An estimation of the chip junction temperature TJ can be obtained from the equation:  
TJ = TA + (RθJA x PD)  
with:  
TA = Ambient temperature for the package in °C  
RJA = Junction to ambient thermal resistance in °C/W  
PD = Power dissipation in the package in W  
The junction to ambient thermal resistance is an industry standard value that provides a quick and easy estimation of thermal  
performance. Unfortunately, there are two values in common usage: the value determined on a single layer board RθJA and the  
value obtained on a four layer board RθJMA. Actual application PCBs show a performance close to the simulated four layer board  
value although this may be somewhat degraded in case of significant power dissipated by other components placed close to the  
device.  
At a known board temperature, the junction temperature TJ is estimated using the following equation  
TJ = TB + (RθJB x PD) with  
TB = Board temperature at the package perimeter in °C  
RθJB = Junction to board thermal resistance in °C/W  
PD = Power dissipation in the package in W  
When the heat loss from the package case to the air can be ignored, acceptable predictions of junction temperature can be made.  
See Functional Block Requirements and Behaviors for more details on thermal management.  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
139  
Packaging  
Packaging Dimensions  
8
Packaging  
8.1  
Packaging Dimensions  
Package dimensions are provided in package drawings. To find the most current package outline drawing, go to  
www.freescale.com and perform a keyword search for the drawing’s document number. See the Thermal Characteristics section  
for specific thermal characteristics for each package.  
Table 140. Package Drawing Information  
Package  
Suffix  
Package Outline Drawing Number  
98ASA00405D  
56 QFN 8x8 mm - 0.5 mm pitch.  
E-Type (full lead)  
EP  
56 QFN 8x8 mm - 0.5 mm pitch.  
WF-Type (wettable flank)  
ES  
98ASA00589D  
PF0100  
Analog Integrated Circuit Device Data  
140  
Freescale Semiconductor  
Packaging  
Packaging Dimensions  
EP SUFFIX  
56-PIN QFN  
98ASA00405D  
ISSUE 0  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
141  
Packaging  
Packaging Dimensions  
EP SUFFIX  
56-PIN QFN  
98ASA00405D  
ISSUE 0  
PF0100  
Analog Integrated Circuit Device Data  
142  
Freescale Semiconductor  
Packaging  
Packaging Dimensions  
EP SUFFIX  
56-PIN QFN  
98ASA00405D  
ISSUE 0  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
143  
Packaging  
Packaging Dimensions  
ES SUFFIX  
56-PIN QFN  
98ASA00589D  
ISSUE A  
PF0100  
Analog Integrated Circuit Device Data  
144  
Freescale Semiconductor  
Packaging  
Packaging Dimensions  
ES SUFFIX  
56-PIN QFN  
98ASA00589D  
ISSUE A  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
145  
Packaging  
Packaging Dimensions  
ES SUFFIX  
56-PIN QFN  
98ASA00589D  
ISSUE A  
PF0100  
Analog Integrated Circuit Device Data  
146  
Freescale Semiconductor  
Reference Section  
Reference Documents  
9
Reference Section  
9.1  
Reference Documents  
Table 141. PF0100 Reference Documents  
Reference  
Description  
AN4536  
MMPF0100 OTP Programming Instructions  
PF0100  
Analog Integrated Circuit Device Data  
Freescale Semiconductor  
147  
Revision History  
Reference Documents  
10 Revision History  
REVISION  
DATE  
7/2011  
8/2012  
10/2012  
5/2013  
DESCRIPTION OF CHANGES  
Preliminary specification release  
1.0  
2.0  
3.0  
4.0  
NPI phase: prototype major updates throughout cycle  
Initial production release  
Table 4. Added recommended pin connection when regulators are unused  
Update Table 9. Current Consumption summary  
Table 10. Removed VREFDDR_VOLT row  
Removed automatic fuse programming feature  
Updated Max frequency specification for the 16 MHz clock to 17.2 MHz  
Table 17. Added specification for derived 2.0 Mhz clock  
Added Clock adjustment  
Table 22. Updated VREFDDR minimum Current limit specification  
Updated Block diagram for all Switching Regulators  
Updated current limit and overcurrent protection minimum specification on LDOS  
Table 111. Update VTH0 and VTL0 specification on VSNVS  
Updated Table 137, Address FF  
Updated Table 138, address D8 and D9  
Update Figure 35. Typical application diagram  
Removed Part Identification section  
Added part numbers to the ordering information for the MMPF0100A  
Added corrections and notes to the document to accomodate the new part numbers, where  
identified by MMPF0100A  
5.0  
7/2013  
VIN Threshold (Coin Cell Powered to VIN Powered) Max. changed to 3.1  
Removed LICELL connection to VIN on PF0100A  
Removed 4.7 F LICELL bypass capacitor as coin cell replacement  
6.0  
7.0  
8/2013  
Updated typical and max Off Current  
Add bypass capacitor in VDDIO  
Added industrial part numbers PMPF0100xxANES  
Added parts F3 and F4  
Added Table 3, Ambient Temperature Range and updated specification headers  
accordingly.  
12/2013  
Increased max standby and sleep currents on Extended Industrial parts.  
Update output accuracy on SW1A/B, SW1C, SW2, SW3A/B and SW4.  
Corrected the default value on DEVICEID register, bit4 (unused) from 0 to 1.  
Corrected default register values on Table 118.  
Added VDDIO capacitor to Miscellaneous in the BOM  
Corrected VDDOTP maximum rating  
8.0  
4/2014  
Corrected SWBSTFB maximum rating  
Corrected inductor Isat for SW1ABC single phase mode from 4.5 A to 6.0 A  
Added note to clarify SWBST default operation in Auto mode  
Corrected default value of bits in SILICONREVID register in Table 136  
Changed VSNVS current limit for PF0100A  
Noted that voltage settings 0.6V and below are not supported  
VSNVS Turn On Delay (td1) spec corrected from 15 ms to 5.0 ms  
Updated per GPCN 16298  
Corrected GPCN number in the revision history table (16220 changed to 16298)  
6/2014  
PF0100  
Analog Integrated Circuit Device Data  
148  
Freescale Semiconductor  
Information in this document is provided solely to enable system and software implementers to use Freescale products.  
There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based  
on the information in this document.  
How to Reach Us:  
Home Page:  
freescale.com  
Web Support:  
freescale.com/support  
Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no  
warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any  
and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance  
may vary over time. All operating parameters, including “typicals,” must be validated for each customer application by  
customer’s technical experts. Freescale does not convey any license under its patent rights nor the rights of others.  
Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address:  
freescale.com/SalesTermsandConditions.  
Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off.  
SMARTMOS is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their  
respective owners.  
© 2014 Freescale Semiconductor, Inc.  
Document Number: MMPF0100  
Rev. 8.0  
6/2014  

相关型号:

MMPF0100Z

14 channel configurable power management integrated circuit
NXP

MMPF0200

12 channel configurable power management integrated circuit
NXP

MMPF0200F0AEP

12 channel configurable power management integrated circuit
NXP

MMPF0200F0AEP,557

Power Supply Support Circuit, Adjustable, 12 Channel, MOS
NXP

MMPF0200F0ANES

12 channel configurable power management integrated circuit
NXP

MMPF0200F3AEP

12 channel configurable power management integrated circuit
NXP

MMPF0200F3AEP,557

Power Supply Support Circuit, Adjustable, 12 Channel, MOS
NXP

MMPF0200F3ANES

12 channel configurable power management integrated circuit
NXP

MMPF0200F4AEP

12 channel configurable power management integrated circuit
NXP

MMPF0200F4ANES

12 channel configurable power management integrated circuit
NXP

MMPF0200F6AEP

12 channel configurable power management integrated circuit
NXP

MMPF0200NPAEP

12 channel configurable power management integrated circuit
NXP