MPC5602CF1MLH4 [NXP]

MICROCONTROLLER, PQFP64, 10 X 10 MM, 1.40 MM HEIGHT, 0.50 MM PITCH, MS-026BCD, LQFP-64;
MPC5602CF1MLH4
型号: MPC5602CF1MLH4
厂家: NXP    NXP
描述:

MICROCONTROLLER, PQFP64, 10 X 10 MM, 1.40 MM HEIGHT, 0.50 MM PITCH, MS-026BCD, LQFP-64

CD 外围集成电路
文件: 总104页 (文件大小:926K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Freescale Semiconductor  
Data Sheet: Advance Information  
Document Number: MPC5604BC  
Rev. 9, 06/2011  
MPC5604B/C  
144 LQFP  
208 MAPBGA  
(20 x 20 x 1.4 mm)  
(17 x 17 x 1.7 mm)  
MPC5604B/C  
Microcontroller Data Sheet  
100 LQFP  
64 LQFP  
(14 x 14 x 1.4 mm)  
(10 x 10 x 1.4 mm)  
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
1.1 Document overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
1.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Package pinouts and signal descriptions . . . . . . . . . . . . . . . . . 7  
3.1 Package pinouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
3.2 Pad configuration during reset phases. . . . . . . . . . . . . 11  
3.3 Voltage supply pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
3.4 Pad types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
3.5 System pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
3.6 Functional ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
3.7 Nexus 2+ pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
4.2 Parameter classification . . . . . . . . . . . . . . . . . . . . . . . . 30  
4.3 NVUSRO register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
4.4 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . 32  
4.5 Recommended operating conditions . . . . . . . . . . . . . . 33  
4.6 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . 35  
4.7 I/O pad electrical characteristics . . . . . . . . . . . . . . . . . 36  
4.8 RESET electrical characteristics . . . . . . . . . . . . . . . . . 46  
4.9 Power management electrical characteristics . . . . . . . 48  
4.10 Power consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
4.11 Flash memory electrical characteristics . . . . . . . . . . . . 55  
4.12 Electromagnetic compatibility (EMC) characteristics . . 58  
4.13 Fast external crystal oscillator (4 to 16 MHz) electrical  
characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
4.14 Slow external crystal oscillator (32 kHz) electrical  
characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
4.15 FMPLL electrical characteristics. . . . . . . . . . . . . . . . . . 64  
4.16 Fast internal RC oscillator (16 MHz) electrical  
characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
4.17 Slow internal RC oscillator (128 kHz) electrical  
characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
4.18 ADC electrical characteristics. . . . . . . . . . . . . . . . . . . . 68  
4.19 On-chip peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
5.1 Package mechanical data. . . . . . . . . . . . . . . . . . . . . . . 85  
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Features  
Single issue, 32-bit CPU core complex (e200z0)  
2
3
®
— Compliant with the Power Architecture  
embedded category  
— Includes an instruction set enhancement  
allowing variable length encoding (VLE) for  
code size footprint reduction. With the optional  
encoding of mixed 16-bit and 32-bit  
instructions, it is possible to achieve significant  
code size footprint reduction.  
4
Up to 512 KB on-chip code flash supported with the  
flash controller  
64 (4 × 16) KB on-chip data flash memory with ECC  
Up to 48 KB on-chip SRAM  
Memory protection unit (MPU) with 8 region  
descriptors and 32-byte region granularity  
Interrupt controller (INTC) with 148 interrupt  
vectors, including 16 external interrupt sources and  
18 external interrupt/wakeup sources  
Frequency modulated phase-locked loop (FMPLL)  
Crossbar switch architecture for concurrent access to  
peripherals, flash memory, or RAM from multiple  
bus masters  
Boot assist module (BAM) supports internal flash  
programming via a serial link (CAN or SCI)  
Timer supports input/output channels providing a  
range of 16-bit input capture, output compare, and  
pulse width modulation functions (eMIOS-lite)  
5
10-bit analog-to-digital converter (ADC)  
3 serial peripheral interface (DSPI) modules  
6
7
Up to 4 serial communication interface (LINFlex)  
modules  
Appendix AAbbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
This document contains information on a product under development. Freescale reserves the  
right to change or discontinue this product without notice.  
© Freescale Semiconductor, Inc., 2009-2011. All rights reserved.  
Introduction  
Up to 6 enhanced full CAN (FlexCAN) modules with configurable buffers  
2
1 inter IC communication interface (I C) module  
Up to 123 configurable general purpose pins supporting input and output operations (package dependent)  
Real Time Counter (RTC) with clock source from 128 kHz or 16 MHz internal RC oscillator supporting autonomous  
wakeup with 1 ms resolution with max timeout of 2 seconds  
Up to 6 periodic interrupt timers (PIT) with 32-bit counter resolution  
1 System Module Timer (STM)  
Nexus development interface (NDI) per IEEE-ISTO 5001-2003 Class Two Plus standard  
Device/board boundary Scan testing supported with per Joint Test Action Group (JTAG) of IEEE (IEEE 1149.1)  
On-chip voltage regulator (VREG) for regulation of input supply for all internal levels  
1
Introduction  
1.1  
Document overview  
This document describes the features of the family and options available within the family members, and highlights important  
electrical and physical characteristics of the device. To ensure a complete understanding of the device functionality, refer also  
to the device reference manual and errata sheet.  
1.2  
Description  
®
The MPC5604B/C is a family of next generation microcontrollers built on the Power Architecture embedded category.  
The MPC5604B/C family of 32-bit microcontrollers is the latest achievement in integrated automotive application controllers.  
It belongs to an expanding family of automotive-focused products designed to address the next wave of body electronics  
applications within the vehicle. The advanced and cost-efficient host processor core of this automotive controller family  
complies with the Power Architecture embedded category and only implements the VLE (variable-length encoding) APU,  
providing improved code density. It operates at speeds of up to 64 MHz and offers high performance processing optimized for  
low power consumption. It capitalizes on the available development infrastructure of current Power Architecture devices and  
is supported with software drivers, operating systems and configuration code to assist with users implementations.  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
2
Freescale Semiconductor  
1
Table 1. MPC5604B/C device comparison  
Device  
Feature  
MPC56 MPC56 MPC56 MPC56 MPC56 MPC56 MPC56 MPC56 MPC56 MPC56 MPC56 MPC56 MPC56 MPC56 MPC56 MPC5604  
02BxLH 02BxLL 02BxLQ 02CxLH 02CxLL 03BxLH 03BxLL 03BxLQ 03CxLH 03CxLL 04BxLH 04BxLL 04BxLQ 04CxLH 04CxLL BxMG  
CPU  
e200z0h  
Execution  
speed2  
Static – up to 64 MHz  
Code Flash  
Data Flash  
RAM  
256 KB  
36 ch  
384 KB  
512 KB  
64 KB (4 × 16 KB)  
24 KB  
28 ch  
32 KB  
28 KB  
28 ch  
40 KB  
32 KB  
28 ch  
48 KB  
28 ch  
MPU  
8-entry  
36 ch 8 ch  
Yes  
ADC (10-bit)  
CTU  
12 ch  
8 ch  
28 ch  
12 ch  
28 ch  
12 ch  
36 ch  
8 ch  
36 ch  
Total timer  
12 ch, 28 ch, 56 ch, 12 ch, 28 ch, 12 ch, 28 ch, 56 ch, 12 ch, 28 ch, 12 ch, 28 ch, 56 ch, 12 ch, 28 ch,  
16-bit 16-bit 16-bit 16-bit 16-bit 16-bit 16-bit 16-bit 16-bit 16-bit 16-bit 16-bit 16-bit 16-bit 16-bit  
56 ch,  
16-bit  
I/O3 eMIOS  
• PWM+MC 2 ch  
+ IC/OC4  
5 ch  
10 ch  
40 ch  
6 ch  
2 ch  
10 ch  
5 ch  
20 ch  
3 ch  
2 ch  
10 ch  
5 ch  
20 ch  
3 ch  
10 ch  
40 ch  
6 ch  
2 ch  
10 ch  
5 ch  
2 ch  
10 ch  
5 ch  
20 ch  
3 ch  
10 ch  
40 ch  
6 ch  
2 ch  
10 ch  
5 ch  
20 ch  
3 ch  
10 ch  
40 ch  
6 ch  
• PWM +  
IC/OC4  
10 ch  
20 ch  
20 ch  
• IC/OC4  
3 ch  
35  
3 ch  
4
SCI (LINFlex)  
SPI (DSPI)  
2
3
2
5
3
6
2
3
2
5
3
2
3
2
5
3
6
CAN  
26  
37  
6
37  
(FlexCAN)  
I2C  
1
32 kHz  
Yes  
oscillator  
GPIO8  
45  
64  
79  
123  
144  
45  
64  
79  
45  
64  
79  
123  
JTAG  
144  
45  
64  
79  
45  
64  
79  
123  
144  
45  
64  
79  
123  
Debug  
Nexus2+  
208  
Package  
100  
100  
100  
100  
100  
100  
LQFP LQFP LQFP LQFP LQFP LQFP LQFP LQFP LQFP LQFP LQFP LQFP LQFP LQFP LQFP MAPBGA9  
1
2
3
4
5
6
7
8
9
Feature set dependent on selected peripheral multiplexing—table shows example implementation  
Based on 125 °C ambient operating temperature  
See the eMIOS section of the device reference manual for information on the channel configuration and functions.  
IC – Input Capture; OC – Output Compare; PWM – Pulse Width Modulation; MC – Modulus counter  
SCI0, SCI1 and SCI2 are available. SCI3 is not available.  
CAN0, CAN1 are available. CAN2, CAN3, CAN4 and CAN5 are not available.  
CAN0, CAN1 and CAN2 are available. CAN3, CAN4 and CAN5 are not available.  
I/O count based on multiplexing with peripherals  
208 MAPBGA available only as development package for Nexus2+  
Block diagram  
2
Block diagram  
Figure 1 shows a top-level block diagram of the MPC5604B/C device series.  
SRAM  
48 KB  
Code Flash Data Flash  
512 KB 64 KB  
JTAG  
JTAG port  
Instructions  
Nexus port  
SRAM  
Flash  
controller  
e200z0h  
Nexus 2+  
(Master)  
Nexus  
controller  
Data  
NMI  
(Slave)  
(Master)  
SIUL  
Voltage  
regulator  
(Slave)  
Interrupt requests  
from peripheral  
blocks  
(Slave)  
NMI  
MPU  
registers  
INTC  
Clocks  
CMU  
FMPLL  
RTC  
MC_RGM MC_CGM MC_ME MC_PCU  
SSCM  
STM  
PIT  
BAM  
SWT  
ECSM  
Peripheral bridge  
SIUL  
36 Ch.  
ADC  
2 x  
eMIOS  
4 x  
LINFlex  
3 x  
DSPI  
6 x  
FlexCAN  
2
CTU  
I C  
Reset control  
Interrupt  
request  
External  
interrupt  
request  
IMUX  
WKPU  
GPIO and  
pad control  
Interrupt  
request with  
wakeup  
. . .  
. . .  
. . .  
. . .  
. . .  
I/O  
functionality  
Legend:  
ADC  
BAM  
Analog-to-Digital Converter  
Boot Assist Module  
MC_ME  
MC_PCU Power Control Unit  
MC_RGM Reset Generation Module  
Mode Entry Module  
FlexCAN Controller Area Network  
CMU  
CTU  
DSPI  
Clock Monitor Unit  
Cross Triggering Unit  
Deserial Serial Peripheral Interface  
MPU  
Nexus  
NMI  
Memory Protection Unit  
Nexus Development Interface (NDI) Level  
Non-Maskable Interrupt  
eMIOS  
FMPLL  
I C  
IMUX  
INTC  
JTAG  
Enhanced Modular Input Output System  
Frequency-Modulated Phase-Locked Loop  
Inter-integrated Circuit Bus  
Internal Multiplexer  
Interrupt Controller  
PIT  
RTC  
SIUL  
SRAM  
SSCM  
STM  
Periodic Interrupt Timer  
Real-Time Clock  
System Integration Unit Lite  
Static Random-Access Memory  
System Status Configuration Module  
System Timer Module  
2
JTAG controller  
LINFlex  
ECSM  
Serial Communication Interface (LIN support)  
Error Correction Status Module  
SWT  
WKPU  
Software Watchdog Timer  
Wakeup Unit  
MC_CGM Clock Generation Module  
Figure 1. MPC5604B/C block diagram  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
5
Block diagram  
Table 2 summarizes the functions of all blocks present in the MPC5604B/C series of microcontrollers. Please note that the  
presence and number of blocks vary by device and package.  
Table 2. MPC5604B/C series block summary  
Block  
Function  
Analog-to-digital converter (ADC) Multi-channel, 10-bit analog-to-digital converter  
Boot assist module (BAM)  
A block of read-only memory containing VLE code which is executed according  
to the boot mode of the device  
Clock monitor unit (CMU)  
Cross triggering unit (CTU)  
Monitors clock source (internal and external) integrity  
Enables synchronization of ADC conversions with a timer event from the eMIOS  
or from the PIT  
Deserial serial peripheral interface Provides a synchronous serial interface for communication with external devices  
(DSPI)  
Error Correction Status Module  
(ECSM)  
Provides a myriad of miscellaneous control functions for the device including  
program-visible information about configuration and revision levels, a reset status  
register, wakeup control for exiting sleep modes, and optional features such as  
information on memory errors reported by error-correcting codes  
Enhanced Direct Memory Access Performs complex data transfers with minimal intervention from a host processor  
(eDMA)  
via “n” programmable channels.  
Enhanced modular input output  
system (eMIOS)  
Provides the functionality to generate or measure events  
Flash memory  
Provides non-volatile storage for program code, constants and variables  
FlexCAN (controller area network) Supports the standard CAN communications protocol  
Frequency-modulated  
Generates high-speed system clocks and supports programmable frequency  
phase-locked loop (FMPLL)  
modulation  
Internal multiplexer (IMUX) SIU  
subblock  
Allows flexible mapping of peripheral interface on the different pins of the device  
Inter-integrated circuit (I2C™) bus A two wire bidirectional serial bus that provides a simple and efficient method of  
data exchange between devices  
Interrupt controller (INTC)  
JTAG controller  
Provides priority-based preemptive scheduling of interrupt requests  
Provides the means to test chip functionality and connectivity while remaining  
transparent to system logic when not in test mode  
LINFlex controller  
Manages a high number of LIN (Local Interconnect Network protocol) messages  
efficiently with a minimum of CPU load  
Clock generation module  
(MC_CGM)  
Provides logic and control required for the generation of system and peripheral  
clocks  
Mode entry module (MC_ME)  
Provides a mechanism for controlling the device operational mode and mode  
transition sequences in all functional states; also manages the power control unit,  
reset generation module and clock generation module, and holds the  
configuration, control and status registers accessible for applications  
Power control unit (MC_PCU)  
Reduces the overall power consumption by disconnecting parts of the device  
from the power supply via a power switching device; device components are  
grouped into sections called “power domains” which are controlled by the PCU  
Reset generation module  
(MC_RGM)  
Centralizes reset sources and manages the device reset sequence of the device  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
6
Freescale Semiconductor  
Package pinouts and signal descriptions  
Table 2. MPC5604B/C series block summary (continued)  
Block  
Function  
Memory protection unit (MPU)  
Provides hardware access control for all memory references generated in a  
device  
Nexus development interface  
(NDI)  
Provides real-time development support capabilities in compliance with the  
IEEE-ISTO 5001-2003 standard  
Periodic interrupt timer (PIT)  
Real-time counter (RTC)  
Produces periodic interrupts and triggers  
A free running counter used for time keeping applications, the RTC can be  
configured to generate an interrupt at a predefined interval independent of the  
mode of operation (run mode or low-power mode)  
System integration unit (SIU)  
Provides control over all the electrical pad controls and up 32 ports with 16 bits  
of bidirectional, general-purpose input and output signals and supports up to 32  
external interrupts with trigger event configuration  
Static random-access memory  
(SRAM)  
Provides storage for program code, constants, and variables  
System status configuration  
module (SSCM)  
Provides system configuration and status data (such as memory size and status,  
device mode and security status), device identification data, debug status port  
enable and selection, and bus and peripheral abort enable/disable  
System timer module (STM)  
Provides a set of output compare events to support AUTOSAR and operating  
system tasks  
System watchdog timer (SWT)  
Wakeup unit (WKPU)  
Provides protection from runaway code  
The wakeup unit supports up to 18 external sources that can generate interrupts  
or wakeup events, of which 1 can cause non-maskable interrupt requests or  
wakeup events.  
Crossbar (XBAR) switch  
Supports simultaneous connections between two master ports and three slave  
ports. The crossbar supports a 32-bit address bus width and a 64-bit data bus  
width.  
3
Package pinouts and signal descriptions  
3.1  
Package pinouts  
The available LQFP pinouts and the 208 MAPBGA ballmap are provided in the following figures. For pin signal descriptions,  
please refer to the device reference manual.  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
7
Package pinouts and signal descriptions  
48 PA[11]  
47 PA[10]  
46 PA[9]  
PB[3]  
PC[9]  
PA[2]  
PA[1]  
PA[0]  
1
2
3
45 PA[8]  
4
44 PA[7]  
43 PA[3]  
5
VSS_HV  
VDD_HV  
VSS_HV  
RESET  
VSS_LV  
VDD_LV  
VDD_BV  
PC[10]  
6
42 PB[15]  
41 PB[14]  
40 PB[13]  
39 PB[12]  
38 PB[11]  
37 PB[7]  
7
8
64 LQFP  
Top view  
9
10  
11  
12  
13  
14  
15  
16  
36 PB[6]  
35 PB[5]  
34 VDD_HV_ADC  
33 VSS_HV_ADC  
PB[0]  
PB[1]  
PC[6]  
Figure 2. MPC560xB LQFP 64-pin configuration  
48 PA[11]  
47 PA[10]  
46 PA[9]  
PB[3]  
PC[9]  
1
2
PA[2]  
3
45 PA[8]  
PA[1]  
PA[0]  
4
44 PA[7]  
5
43 PF[14]  
42 PF[15]  
41 PG[0]  
VSS_HV  
VDD_HV  
VSS_HV  
RESET  
VSS_LV  
VDD_LV  
VDD_BV  
PC[10]  
PB[0]  
6
7
8
64 LQFP  
Top view  
40 PG[1]  
39 PA[3]  
38 PB[15]  
37 PB[14]  
36 PB[11]  
35 PB[7]  
9
10  
11  
12  
13  
14  
15  
16  
PB[1]  
PC[6]  
34 VDD_HV_ADC  
33 VSS_HV_ADC  
Figure 3. MPC560xC LQFP 64-pin configuration  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
8
Freescale Semiconductor  
Package pinouts and signal descriptions  
PB[3]  
PC[9]  
PC[14]  
PC[15]  
PA[2]  
PE[0]  
PA[1]  
PE[1]  
PE[8]  
1
2
3
4
5
6
7
8
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
PA[11]  
PA[10]  
PA[9]  
PA[8]  
PA[7]  
VDD_HV  
VSS_HV  
PA[3]  
9
PB[15]  
PD[15]  
PB[14]  
PD[14]  
PB[13]  
PD[13]  
PB[12]  
PD[12]  
PB[11]  
PD[11]  
PD[10]  
PD[9]  
PB[7]  
PB[6]  
PB[5]  
VDD_HV_ADC  
VSS_HV_ADC  
PE[9]  
PE[10]  
PA[0]  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
PE[11]  
VSS_HV  
VDD_HV  
VSS_HV  
RESET  
VSS_LV  
VDD_LV  
VDD_BV  
PC[11]  
PC[10]  
PB[0]  
100 LQFP  
Top view  
PB[1]  
PC[6]  
Note:  
Availability of port pin alternate functions depends on product selection.  
Figure 4. LQFP 100-pin configuration  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
9
Package pinouts and signal descriptions  
PB[3]  
PC[9]  
PC[14]  
PC[15]  
PG[5]  
PG[4]  
PG[3]  
PG[2]  
PA[2]  
PE[0]  
PA[1]  
PE[1]  
PE[8]  
PE[9]  
PE[10]  
PA[0]  
PE[11]  
VSS_HV  
VDD_HV  
VSS_HV  
RESET  
VSS_LV  
VDD_LV  
VDD_BV  
PG[9]  
1
2
3
4
5
6
7
8
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
PA[11]  
PA[10]  
PA[9]  
PA[8]  
PA[7]  
PE[13]  
PF[14]  
PF[15]  
VDD_HV  
VSS_HV  
PG[0]  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
PG[1]  
PH[3]  
PH[2]  
PH[1]  
PH[0]  
PG[12]  
PG[13]  
PA[3]  
144 LQFP  
Top view  
PB[15]  
PD[15]  
PB[14]  
PD[14]  
PB[13]  
PD[13]  
PB[12]  
PD[12]  
PB[11]  
PD[11]  
PD[10]  
PD[9]  
PB[7]  
PB[6]  
PB[5]  
VDD_HV_ADC  
VSS_HV_ADC  
PG[8]  
PC[11]  
PC[10]  
PG[7]  
PG[6]  
PB[0]  
PB[1]  
PF[9]  
PF[8]  
PF[12]  
PC[6]  
74  
73  
Note:  
Availability of port pin alternate functions depends on product selection.  
Figure 5. LQFP 144-pin configuration  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
10  
Freescale Semiconductor  
Package pinouts and signal descriptions  
1
2
3
4
NC  
5
6
7
8
9
10  
NC  
NC  
NC  
NC  
11  
12  
NC  
13  
PE[15]  
PG[15]  
PE[14]  
PG[10]  
PG[1]  
PH[0]  
VDD_HV  
MDO3  
NC  
14  
15  
NC  
16  
NC  
PC[8]  
PC[9]  
PC[13]  
PB[2]  
NC  
PH[8]  
PE[6]  
PH[7]  
PH[6]  
PH[4]  
PH[5]  
PE[5]  
PE[4]  
PC[5]  
PC[4]  
PE[3]  
PE[2]  
PC[0]  
PH[9]  
VSS_LV  
NC  
PC[2]  
PC[3]  
PA[5]  
PA[6]  
NC  
A
B
C
D
E
F
A
B
C
D
E
F
NC  
PC[12]  
PE[7]  
NC  
PH[10]  
PC[1]  
PG[11]  
NC  
PG[14]  
PE[12]  
PF[14]  
PG[0]  
PH[1]  
NC  
PA[11]  
PA[9]  
PE[13]  
PA[10]  
PA[8]  
PA[7]  
PC[14] VDD_HV  
PB[3]  
PC[15]  
PG[3]  
PA[1]  
PE[10]  
NC  
NC  
VDD_LV VDD_HV  
NC  
PG[4]  
PE[0]  
PE[9]  
PG[5]  
PA[2]  
PE[8]  
PG[2]  
PE[1]  
PA[0]  
NC  
PF[15] VDD_HV  
PH[3]  
NC  
PH[2]  
MSEO  
MDO1  
NC  
VSS_HV VSS_HV VSS_HV VSS_HV  
VSS_HV VSS_HV VSS_HV VSS_HV  
VSS_HV VSS_HV VSS_HV VSS_HV  
VSS_HV VSS_HV VSS_HV VSS_HV  
G
H
J
G
H
J
VSS_HV PE[11] VDD_HV  
MDO2  
NC  
MDO0  
NC  
RESET VSS_LV  
NC  
NC  
EVTI  
PG[9]  
PG[7]  
PB[1]  
PF[8]  
PF[12]  
NC  
NC  
PG[8]  
PG[6]  
PF[9]  
NC  
VDD_BV VDD_LV  
NC  
PG[12]  
PD[15]  
PD[13]  
PD[10]  
PA[3]  
PD[14]  
PD[12]  
PD[9]  
PB[6]  
PG[13]  
PB[14]  
PB[12]  
PD[11]  
PB[7]  
PB[5]  
PB[4]  
16  
K
L
K
L
NC  
PC[10]  
PB[0]  
PC[7]  
PF[10]  
NC  
EVTO  
PC[11]  
NC  
PB[15]  
PB[13]  
PB[11]  
PD[3]  
PD[4]  
PD[5]  
13  
M
N
P
R
T
M
N
P
R
T
NC  
NC  
PA[4]  
VSS_LV  
VDD_LV  
PA[13]  
PA[12]  
7
EXTAL VDD_HV  
PF[0]  
PF[1]  
PF[3]  
PF[2]  
10  
PF[4]  
PF[5]  
PF[7]  
PF[6]  
11  
NC  
VDD_HV  
_ADC  
NC  
PA[14]  
XTAL  
NC  
NC  
8
PB[10]  
PD[0]  
PD[2]  
PD[1]  
12  
OSC32K  
_XTAL  
VSS_HV  
_ADC  
PC[6]  
NC  
PF[11] VDD_HV PA[15]  
PD[7]  
PD[6]  
OSC32K  
_EXTAL  
MCKO  
NC  
PF[13]  
PD[8]  
1
2
3
4
5
6
9
14  
15  
NC  
Note: 208 MAPBGA available only as development package for Nexus 2+.  
= Not connected  
Figure 6. 208 MAPBGA configuration  
3.2  
Pad configuration during reset phases  
All pads have a fixed configuration under reset.  
During the power-up phase, all pads are forced to tristate.  
After power-up phase, all pads are forced to tristate with the following exceptions:  
PA[9] (FAB) is pull-down. Without external strong pull-up the device starts fetching from flash.  
PA[8] (ABS[0]) is pull-up.  
RESET pad is driven low. This is pull-up only after PHASE2 reset completion.  
JTAG pads (TCK, TMS and TDI) are pull-up whilst TDO remains tristate.  
Precise ADC pads (PB[7:4] and PD[11:0]) are left tristate (no output buffer available).  
Main oscillator pads (EXTAL, XTAL) are tristate.  
Nexus output pads (MDO[n], MCKO, EVTO, MSEO) are forced to output.  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
11  
Package pinouts and signal descriptions  
3.3  
Voltage supply pins  
Voltage supply pins are used to provide power to the device. Three dedicated VDD_LV/VSS_LV supply pairs are used for 1.2  
V regulator stabilization.  
Table 3. Voltage supply pin descriptions  
Pin number  
Port pin  
Function  
208  
64 LQFP1  
100 LQFP  
144 LQFP  
MAPBGA2  
VDD_HV  
Digital supply voltage  
7, 28, 56 15, 37, 70, 84 19, 51, 100, C2, D9, E16,  
123  
G13, H3, N9,  
R5  
VSS_HV  
Digital ground  
6, 8, 26, 55  
14, 16, 35,  
69, 83  
18, 20, 49, G7, G8, G9,  
99, 122  
G10, H1, H7,  
H8, H9, H10,  
J7, J8, J9,  
J10, K7, K8,  
K9, K10  
VDD_LV  
VSS_LV  
VDD_BV  
1.2V decoupling pins. Decoupling  
11, 23, 57  
10, 24, 58  
19, 32, 85  
18, 33, 86  
23, 46, 124 D8, K4, P7  
capacitor must be connected between  
these pins and the nearest VSS_LV pin.3  
1.2V decoupling pins. Decoupling  
22, 47, 125  
C8, J2, N7  
capacitor must be connected between  
these pins and the nearest VDD_LV pin.3  
Internal regulator supply voltage  
12  
33  
20  
51  
24  
73  
K3  
VSS_HV_ADC Reference ground and analog ground for  
the ADC  
R15  
VDD_HV_ADC Reference voltage and analog supply for  
the ADC  
34  
52  
74  
P14  
1
2
3
Pin numbers apply to both the MPC560xB and MPC560xC packages.  
208 MAPBGA available only as development package for Nexus2+  
A decoupling capacitor must be placed between each of the three VDD_LV/VSS_LV supply pairs to ensure stable  
voltage (see the recommended operating conditions in the device datasheet for details).  
3.4  
Pad types  
In the device the following types of pads are available for system pins and functional port pins:  
1
S = Slow  
1 2  
M = Medium  
1 2  
F = Fast  
1
I = Input only with analog feature  
J = Input/Output (‘S’ pad) with analog feature  
X = Oscillator  
1. See the I/O pad electrical characteristics in the device datasheet for details.  
2. All medium and fast pads are in slow configuration by default at reset and can be configured as fast or medium (see PCR.SRC  
in section Pad Configuration Registers (PCR0–PCR122) in the device reference manual).  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
12  
Freescale Semiconductor  
Package pinouts and signal descriptions  
3.5  
System pins  
The system pins are listed in Table 4.  
Table 4. System pin descriptions  
Pin number  
Function  
RESET Bidirectional reset with Schmitt-Trigger characteristics  
and noise filter.  
I/O  
M
X
Input, weak  
pull-up only  
after PHASE2  
9
17 21 J1  
EXTAL Analog output of the oscillator amplifier circuit, when the I/O  
oscillator is not in bypass mode.  
Tristate  
27 36 50 N8  
Analog input for the clock generator when the oscillator is  
in bypass mode.3  
XTAL Analog input of the oscillator amplifier circuit. Needs to be  
grounded if oscillator is used in bypass mode.3  
I
X
Tristate  
25 34 48 P8  
1
2
3
Pin numbers apply to both the MPC560xB and MPC560xC packages.  
208 MAPBGA available only as development package for Nexus2+  
See the relevant section of the datasheet  
3.6  
Functional ports  
The functional port pins are listed in Table 5.  
Table 5. Functional port pin descriptions  
Pin number  
PA[0]  
PA[1]  
PCR[0] AF0  
GPIO[0]  
E0UC[0]  
CLKOUT  
SIUL  
eMIOS_0 I/O  
CGL  
WKPU  
I/O  
M
S
Tristate  
Tristate  
5
4
5
4
12 16 G4  
AF1  
AF2  
AF3  
O
I
WKPU[19]4  
PCR[1] AF0  
GPIO[1]  
E0UC[1]  
SIUL  
eMIOS_0 I/O  
WKPU  
WKPU  
I/O  
7
11 F3  
AF1  
AF2  
AF3  
I
NMI5  
WKPU[2]4  
I
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
13  
 
Package pinouts and signal descriptions  
Table 5. Functional port pin descriptions (continued)  
Pin number  
PA[2]  
PA[3]  
PA[4]  
PCR[2] AF0  
GPIO[2]  
E0UC[2]  
SIUL  
eMIOS_0 I/O  
WKPU  
I/O  
S
S
S
Tristate  
Tristate  
Tristate  
3
3
5
9
F2  
AF1  
AF2  
AF3  
I
WKPU[3]4  
PCR[3] AF0  
GPIO[3]  
E0UC[3]  
EIRQ[0]  
SIUL  
eMIOS_0 I/O  
SIUL  
I/O  
43 39 68 90 K15  
AF1  
AF2  
AF3  
I
PCR[4] AF0  
GPIO[4]  
E0UC[4]  
SIUL  
eMIOS_0 I/O  
WKPU  
I/O  
20 20 29 43 N6  
AF1  
AF2  
AF3  
I
WKPU[9]4  
PA[5]  
PA[6]  
PCR[5] AF0  
GPIO[5]  
E0UC[5]  
SIUL  
eMIOS_0 I/O  
I/O  
M
S
Tristate  
Tristate  
51 51 79 118 C11  
52 52 80 119 D11  
AF1  
AF2  
AF3  
PCR[6] AF0  
GPIO[6]  
E0UC[6]  
EIRQ[1]  
SIUL  
eMIOS_0 I/O  
SIUL  
I/O  
AF1  
AF2  
AF3  
I
PA[7]  
PA[8]  
PCR[7] AF0  
GPIO[7]  
E0UC[7]  
LIN3TX  
SIUL  
eMIOS_0 I/O  
LINFlex_3  
I/O  
S
S
Tristate  
44 44 71 104 D16  
AF1  
AF2  
AF3  
O
I
EIRQ[2]  
SIUL  
PCR[8] AF0  
GPIO[8]  
E0UC[8]  
SIUL  
eMIOS_0 I/O  
SIUL  
I/O  
Input, weak 45 45 72 105 C16  
pull-up  
AF1  
AF2  
AF3  
I
I
I
EIRQ[3]  
ABS[0]  
LIN3RX  
N/A6  
BAM  
LINFlex_3  
PA[9]  
PCR[9] AF0  
AF1  
GPIO[9]  
E0UC[9]  
FAB  
SIUL  
eMIOS_0 I/O  
BAM  
I/O  
S
Pull-down  
46 46 73 106 C15  
AF2  
I
AF3  
N/A6  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
14  
Freescale Semiconductor  
Package pinouts and signal descriptions  
Table 5. Functional port pin descriptions (continued)  
Pin number  
PA[10] PCR[10] AF0  
GPIO[10]  
E0UC[10]  
SDA  
SIUL  
eMIOS_0 I/O  
I2C_0  
I/O  
S
S
S
Tristate  
Tristate  
Tristate  
47 47 74 107 B16  
48 48 75 108 B15  
22 22 31 45 T7  
AF1  
AF2  
AF3  
I/O  
PA[11] PCR[11] AF0  
GPIO[11]  
E0UC[11]  
SCL  
SIUL  
eMIOS_0 I/O  
I2C_0  
I/O  
AF1  
AF2  
AF3  
I/O  
PA[12] PCR[12] AF0  
GPIO[12]  
SIN_0  
SIUL  
DSPI0  
I/O  
I
AF1  
AF2  
AF3  
PA[13] PCR[13] AF0  
GPIO[13]  
SOUT_0  
SIUL  
DSPI_0  
I/O  
O
M
M
Tristate  
Tristate  
21 21 30 44 R7  
AF1  
AF2  
AF3  
PA[14] PCR[14] AF0  
GPIO[14]  
SCK_0  
CS0_0  
SIUL  
DSPI_0  
DSPI_0  
I/O  
I/O  
I/O  
I
19 19 28 42 P6  
AF1  
AF2  
AF3  
EIRQ[4]  
SIUL  
PA[15] PCR[15] AF0  
GPIO[15]  
CS0_0  
SIUL  
DSPI_0  
DSPI_0  
I/O  
I/O  
I/O  
I
M
Tristate  
18 18 27 40 R6  
AF1  
AF2  
AF3  
SCK_0  
WKPU[10]4  
WKPU  
PB[0]  
PB[1]  
PCR[16] AF0  
GPIO[16]  
CAN0TX  
SIUL  
FlexCAN_0  
I/O  
O
M
S
Tristate  
Tristate  
14 14 23 31 N3  
AF1  
AF2  
AF3  
PCR[17] AF0  
GPIO[17]  
SIUL  
I/O  
I
15 15 24 32 N1  
AF1  
AF2  
AF3  
WKPU[4]4  
CAN0RX  
WKPU  
FlexCAN_0  
I
PB[2]  
PCR[18] AF0  
GPIO[18]  
LIN0TX  
SDA  
SIUL  
LINFlex_0  
I2C_0  
I/O  
O
I/O  
M
Tristate  
64 64 100 144 B2  
AF1  
AF2  
AF3  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
15  
Package pinouts and signal descriptions  
Table 5. Functional port pin descriptions (continued)  
Pin number  
PB[3]  
PCR[19] AF0  
GPIO[19]  
SIUL  
I2C_0  
WKPU  
LINFlex_0  
I/O  
I/O  
I
S
Tristate  
1
1
1
1
C3  
AF1  
AF2  
AF3  
SCL  
WKPU[11]4  
LIN0RX  
I
PB[4]  
PB[5]  
PB[6]  
PB[7]  
PB[8]  
PCR[20] AF0  
GPIO[20]  
GPI[0]  
SIUL  
ADC  
I
I
I
I
I
I
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
32 32 50 72 T16  
AF1  
AF2  
AF3  
I
PCR[21] AF0  
GPIO[21]  
GPI[1]  
SIUL  
ADC  
I
35  
36  
53 75 R16  
AF1  
AF2  
AF3  
I
PCR[22] AF0  
GPIO[22]  
GPI[2]  
SIUL  
ADC  
I
54 76 P15  
AF1  
AF2  
AF3  
I
PCR[23] AF0  
GPIO[23]  
GPI[3]  
SIUL  
ADC  
I
37 35 55 77 P16  
AF1  
AF2  
AF3  
I
PCR[24] AF0  
GPIO[24]  
SIUL  
ADC  
SXOSC  
I
30 30 39 53 R9  
AF1  
AF2  
AF3  
I
ANS[0]  
OSC32K_XTAL7  
I/O  
PB[9]  
PCR[25] AF0  
GPIO[25]  
SIUL  
ADC  
SXOSC  
I
I
Tristate  
29 29 38 52 T9  
AF1  
AF2  
AF3  
I
ANS[1]  
OSC32K_EXTAL7  
I/O  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
16  
Freescale Semiconductor  
Package pinouts and signal descriptions  
Table 5. Functional port pin descriptions (continued)  
Pin number  
PB[10] PCR[26] AF0  
GPIO[26]  
SIUL  
ADC  
WKPU  
I/O  
I
J
Tristate  
31 31 40 54 P9  
AF1  
AF2  
AF3  
ANS[2]  
WKPU[8]4  
I
PB[11]8 PCR[27] AF0  
GPIO[27]  
E0UC[3]  
CS0_0  
ANS[3]  
SIUL  
eMIOS_0 I/O  
DSPI_0  
ADC  
I/O  
J
J
J
J
J
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
38 36 59 81 N13  
AF1  
AF2  
AF3  
I/O  
I
PB[12] PCR[28] AF0  
GPIO[28]  
E0UC[4]  
CS1_0  
ANX[0]  
SIUL  
eMIOS_0 I/O  
DSPI_0  
ADC  
I/O  
39  
40  
61 83 M16  
AF1  
AF2  
AF3  
O
I
PB[13] PCR[29] AF0  
GPIO[29]  
E0UC[5]  
CS2_0  
ANX[1]  
SIUL  
eMIOS_0 I/O  
DSPI_0  
ADC  
I/O  
63 85 M13  
AF1  
AF2  
AF3  
O
I
PB[14] PCR[30] AF0  
GPIO[30]  
E0UC[6]  
CS3_0  
ANX[2]  
SIUL  
eMIOS_0 I/O  
DSPI_0  
ADC  
I/O  
41 37 65 87 L16  
AF1  
AF2  
AF3  
O
I
PB[15] PCR[31] AF0  
GPIO[31]  
E0UC[7]  
CS4_0  
ANX[3]  
SIUL  
eMIOS_0 I/O  
DSPI_0  
ADC  
I/O  
42 38 67 89 L13  
AF1  
AF2  
AF3  
O
I
PC[0]9 PCR[32] AF0  
GPIO[32]  
SIUL  
JTAGC  
I/O  
I
M
M
Input, weak 59 59 87 126 A8  
pull-up  
AF1  
AF2  
AF3  
TDI  
PC[1]9 PCR[33] AF0  
GPIO[33]  
SIUL  
JTAGC  
I/O  
O
Tristate  
54 54 82 121 C9  
AF1  
AF2  
AF3  
TDO10  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
17  
Package pinouts and signal descriptions  
Table 5. Functional port pin descriptions (continued)  
Pin number  
PC[2]  
PC[3]  
PCR[34] AF0  
GPIO[34]  
SCK_1  
CAN4TX11  
SIUL  
DSPI_1  
FlexCAN_4  
I/O  
I/O  
O
I
M
S
Tristate  
Tristate  
50 50 78 117 A11  
AF1  
AF2  
AF3  
EIRQ[5]  
SIUL  
PCR[35] AF0  
GPIO[35]  
CS0_1  
MA[0]  
SIUL  
DSPI_1  
ADC  
I/O  
I/O  
O
I
49 49 77 116 B11  
AF1  
AF2  
AF3  
CAN1RX  
CAN4RX11  
EIRQ[6]  
FlexCAN_1  
FlexCAN_4  
SIUL  
I
I
PC[4]  
PC[5]  
PCR[36] AF0  
GPIO[36]  
SIUL  
I/O  
I
M
M
Tristate  
Tristate  
62 62 92 131 B7  
AF1  
AF2  
AF3  
SIN_1  
DSPI_1  
FlexCAN_3  
CAN3RX11  
I
PCR[37] AF0  
GPIO[37]  
SOUT_1  
CAN3TX11  
SIUL  
DSPI1  
FlexCAN_3  
I/O  
O
O
I
61 61 91 130 A7  
AF1  
AF2  
AF3  
EIRQ[7]  
SIUL  
PC[6]  
PC[7]  
PCR[38] AF0  
GPIO[38]  
LIN1TX  
SIUL  
LINFlex_1  
I/O  
O
S
S
Tristate  
Tristate  
16 16 25 36 R2  
AF1  
AF2  
AF3  
PCR[39] AF0  
GPIO[39]  
SIUL  
I/O  
I
17 17 26 37 P3  
AF1  
AF2  
AF3  
LIN1RX  
LINFlex_1  
WKPU  
WKPU[12]4  
I
PC[8]  
PCR[40] AF0  
GPIO[40]  
LIN2TX  
SIUL  
LINFlex_2  
I/O  
O
S
Tristate  
63 63 99 143 A1  
AF1  
AF2  
AF3  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
18  
Freescale Semiconductor  
Package pinouts and signal descriptions  
Table 5. Functional port pin descriptions (continued)  
Pin number  
PC[9]  
PCR[41] AF0  
GPIO[41]  
SIUL  
I/O  
I
S
Tristate  
2
2
2
2
B1  
AF1  
AF2  
AF3  
LIN2RX  
LINFlex_2  
WKPU  
WKPU[13]4  
I
PC[10] PCR[42] AF0  
GPIO[42]  
CAN1TX  
CAN4TX11  
MA[1]  
SIUL  
FlexCAN_1  
FlexCAN_4  
ADC  
I/O  
O
O
M
S
Tristate  
Tristate  
13 13 22 28 M3  
AF1  
AF2  
AF3  
O
PC[11] PCR[43] AF0  
GPIO[43]  
SIUL  
I/O  
I
21 27 M4  
AF1  
AF2  
AF3  
CAN1RX  
CAN4RX11  
WKPU[5]4  
FlexCAN_1  
FlexCAN_4  
WKPU  
I
I
PC[12] PCR[44] AF0  
GPIO[44]  
E0UC[12]  
SIN_2  
SIUL  
eMIOS_0 I/O  
DSPI_2  
I/O  
M
Tristate  
97 141 B4  
AF1  
AF2  
AF3  
I
PC[13] PCR[45] AF0  
GPIO[45]  
E0UC[13]  
SOUT_2  
SIUL  
eMIOS_0 I/O  
DSPI_2  
I/O  
S
S
Tristate  
Tristate  
98 142 A2  
AF1  
AF2  
AF3  
O
PC[14] PCR[46] AF0  
GPIO[46]  
E0UC[14]  
SCK_2  
SIUL  
eMIOS_0 I/O  
DSPI_2  
SIUL  
I/O  
3
4
3
4
C1  
D3  
AF1  
AF2  
AF3  
I/O  
I
EIRQ[8]  
PC[15] PCR[47] AF0  
GPIO[47]  
E0UC[15]  
CS0_2  
SIUL  
eMIOS_0 I/O  
DSPI_2  
I/O  
M
I
Tristate  
Tristate  
AF1  
AF2  
AF3  
I/O  
PD[0]  
PCR[48] AF0  
GPIO[48]  
GPI[4]  
SIUL  
ADC  
I
41 63 P12  
AF1  
AF2  
AF3  
I
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
19  
Package pinouts and signal descriptions  
Table 5. Functional port pin descriptions (continued)  
Pin number  
PD[1]  
PD[2]  
PD[3]  
PD[4]  
PD[5]  
PD[6]  
PD[7]  
PD[8]  
PCR[49] AF0  
GPIO[49]  
GPI[5]  
SIUL  
ADC  
I
I
I
I
I
I
I
I
I
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
42 64 T12  
43 65 R12  
44 66 P13  
45 67 R13  
46 68 T13  
47 69 T14  
48 70 R14  
49 71 T15  
AF1  
AF2  
AF3  
I
PCR[50] AF0  
GPIO[50]  
GPI[6]  
SIUL  
ADC  
I
AF1  
AF2  
AF3  
I
PCR[51] AF0  
GPIO[51]  
GPI[7]  
SIUL  
ADC  
I
AF1  
AF2  
AF3  
I
PCR[52] AF0  
GPIO[52]  
GPI[8]  
SIUL  
ADC  
I
AF1  
AF2  
AF3  
I
PCR[53] AF0  
GPIO[53]  
GPI[9]  
SIUL  
ADC  
I
AF1  
AF2  
AF3  
I
PCR[54] AF0  
GPIO[54]  
SIUL  
ADC  
I
AF1  
AF2  
AF3  
I
GPI[10]  
PCR[55] AF0  
GPIO[55]  
SIUL  
ADC  
I
AF1  
AF2  
AF3  
I
GPI[11]  
PCR[56] AF0  
GPIO[56]  
SIUL  
ADC  
I
AF1  
AF2  
AF3  
I
GPI[12]  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
20  
Freescale Semiconductor  
Package pinouts and signal descriptions  
Table 5. Functional port pin descriptions (continued)  
Pin number  
PD[9]  
PCR[57] AF0  
GPIO[57]  
SIUL  
ADC  
I
I
I
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
56 78 N15  
57 79 N14  
58 80 N16  
60 82 M15  
62 84 M14  
64 86 L15  
66 88 L14  
AF1  
AF2  
AF3  
I
GPI[13]  
PD[10] PCR[58] AF0  
GPIO[58]  
SIUL  
ADC  
I
AF1  
AF2  
AF3  
I
GPI[14]  
PD[11] PCR[59] AF0  
GPIO[59]  
SIUL  
ADC  
I
I
AF1  
AF2  
AF3  
I
GPI[15]  
PD[12]8 PCR[60] AF0  
GPIO[60]  
CS5_0  
E0UC[24]  
SIUL  
DSPI_0  
eMIOS_0 I/O  
ADC  
I/O  
O
J
J
J
J
S
AF1  
AF2  
AF3  
I
ANS[4]  
PD[13] PCR[61] AF0  
GPIO[61]  
CS0_1  
E0UC[25]  
SIUL  
DSPI_1  
eMIOS_0 I/O  
ADC  
I/O  
I/O  
AF1  
AF2  
AF3  
I
ANS[5]  
PD[14] PCR[62] AF0  
GPIO[62]  
CS1_1  
E0UC[26]  
SIUL  
DSPI_1  
eMIOS_0 I/O  
ADC  
I/O  
O
AF1  
AF2  
AF3  
I
ANS[6]  
PD[15] PCR[63] AF0  
GPIO[63]  
CS2_1  
E0UC[27]  
SIUL  
DSPI_1  
eMIOS_0 I/O  
ADC  
I/O  
O
AF1  
AF2  
AF3  
I
ANS[7]  
PE[0]  
PCR[64] AF0  
GPIO[64]  
E0UC[16]  
SIUL  
eMIOS_0 I/O  
I/O  
6
10 F1  
AF1  
AF2  
AF3  
I
CAN5RX11  
WKPU[6]4  
FlexCAN_5  
WKPU  
I
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
21  
Package pinouts and signal descriptions  
Table 5. Functional port pin descriptions (continued)  
Pin number  
PE[1]  
PE[2]  
PCR[65] AF0  
GPIO[65]  
E0UC[17]  
CAN5TX11  
SIUL  
eMIOS_0 I/O  
FlexCAN_5  
I/O  
M
M
Tristate  
Tristate  
8
12 F4  
AF1  
AF2  
AF3  
O
PCR[66] AF0  
GPIO[66]  
E0UC[18]  
SIN_1  
SIUL  
eMIOS_0 I/O  
DSPI_1  
I/O  
89 128 D7  
AF1  
AF2  
AF3  
I
PE[3]  
PE[4]  
PCR[67] AF0  
GPIO[67]  
E0UC[19]  
SOUT_1  
SIUL  
eMIOS_0 I/O  
DSPI_1  
I/O  
M
M
Tristate  
Tristate  
90 129 C7  
93 132 D6  
AF1  
AF2  
AF3  
O
PCR[68] AF0  
GPIO[68]  
E0UC[20]  
SCK_1  
SIUL  
eMIOS_0 I/O  
DSPI_1  
SIUL  
I/O  
AF1  
AF2  
AF3  
I/O  
I
EIRQ[9]  
PE[5]  
PE[6]  
PE[7]  
PE[8]  
PE[9]  
PCR[69] AF0  
GPIO[69]  
E0UC[21]  
CS0_1  
SIUL  
eMIOS_0 I/O  
DSPI_1  
ADC  
I/O  
M
M
M
M
S
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
94 133 C6  
95 139 B5  
96 140 C4  
AF1  
AF2  
AF3  
I/O  
O
MA[2]  
PCR[70] AF0  
GPIO[70]  
E0UC[22]  
CS3_0  
SIUL  
eMIOS_0 I/O  
DSPI_0  
ADC  
I/O  
AF1  
AF2  
AF3  
O
O
MA[1]  
PCR[71] AF0  
GPIO[71]  
E0UC[23]  
CS2_0  
SIUL  
eMIOS_0 I/O  
DSPI_0  
ADC  
I/O  
AF1  
AF2  
AF3  
O
O
MA[0]  
PCR[72] AF0  
GPIO[72]  
CAN2TX12  
E0UC[22]  
CAN3TX11  
SIUL  
FlexCAN_2  
eMIOS_0 I/O  
FlexCAN_3  
I/O  
O
9
13 G2  
AF1  
AF2  
AF3  
O
PCR[73] AF0  
GPIO[73]  
SIUL  
eMIOS_0 I/O  
WKPU  
I/O  
10 14 G1  
AF1  
AF2  
AF3  
E0UC[23]  
WKPU[7]4  
CAN2RX12  
CAN3RX11  
I
I
I
FlexCAN_2  
FlexCAN_3  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
22  
Freescale Semiconductor  
Package pinouts and signal descriptions  
Table 5. Functional port pin descriptions (continued)  
Pin number  
PE[10] PCR[74] AF0  
GPIO[74]  
LIN3TX  
CS3_1  
SIUL  
LINFlex_3  
DSPI_1  
I/O  
O
O
I
S
S
Tristate  
Tristate  
11 15 G3  
AF1  
AF2  
AF3  
EIRQ[10]  
SIUL  
PE[11] PCR[75] AF0  
GPIO[75]  
CS4_1  
SIUL  
DSPI_1  
LINFlex_3  
WKPU  
I/O  
O
I
13 17 H2  
AF1  
AF2  
AF3  
LIN3RX  
WKPU[14]4  
I
PE[12] PCR[76] AF0  
GPIO[76]  
SIUL  
eMIOS_1 I/O  
DSPI_2  
SIUL  
I/O  
S
Tristate  
76 109 C14  
AF1  
AF2  
AF3  
E1UC[19]13  
I
I
SIN_2  
EIRQ[11]  
PE[13] PCR[77] AF0  
GPIO[77]  
SOUT2  
E1UC[20]  
SIUL  
DSPI_2  
eMIOS_1 I/O  
I/O  
O
S
S
Tristate  
Tristate  
103 D15  
112 C13  
AF1  
AF2  
AF3  
PE[14] PCR[78] AF0  
GPIO[78]  
SCK_2  
E1UC[21]  
SIUL  
DSPI_2  
eMIOS_1 I/O  
SIUL  
I/O  
I/O  
AF1  
AF2  
AF3  
I
EIRQ[12]  
PE[15] PCR[79] AF0  
GPIO[79]  
CS0_2  
E1UC[22]  
SIUL  
DSPI_2  
eMIOS_1 I/O  
I/O  
I/O  
M
J
Tristate  
Tristate  
113 A13  
55 N10  
AF1  
AF2  
AF3  
PF[0]  
PF[1]  
PCR[80] AF0  
GPIO[80]  
E0UC[10]  
CS3_1  
SIUL  
eMIOS_0 I/O  
DSPI_1  
ADC  
I/O  
AF1  
AF2  
AF3  
O
I
ANS[8]  
PCR[81] AF0  
GPIO[81]  
E0UC[11]  
CS4_1  
SIUL  
eMIOS_0 I/O  
DSPI_1  
I/O  
J
Tristate  
56 P10  
AF1  
AF2  
AF3  
O
I
I
ANS[9]  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
23  
Package pinouts and signal descriptions  
Table 5. Functional port pin descriptions (continued)  
Pin number  
PF[2]  
PF[3]  
PF[4]  
PF[5]  
PF[6]  
PF[7]  
PCR[82] AF0  
GPIO[82]  
E0UC[12]  
CS0_2  
SIUL  
eMIOS_0 I/O  
DSPI_2  
ADC  
I/O  
J
J
J
J
J
J
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
57 T10  
AF1  
AF2  
AF3  
I/O  
I
ANS[10]  
PCR[83] AF0  
GPIO[83]  
E0UC[13]  
CS1_2  
SIUL  
eMIOS_0 I/O  
DSPI_2  
ADC  
I/O  
58 R10  
59 N11  
60 P11  
61 T11  
62 R11  
AF1  
AF2  
AF3  
O
I
ANS[11]  
PCR[84] AF0  
GPIO[84]  
E0UC[14]  
CS2_2  
SIUL  
eMIOS_0 I/O  
DSPI_2  
ADC  
I/O  
AF1  
AF2  
AF3  
O
I
ANS[12]  
PCR[85] AF0  
GPIO[85]  
E0UC[22]  
CS3_2  
SIUL  
eMIOS_0 I/O  
DSPI_2  
ADC  
I/O  
AF1  
AF2  
AF3  
O
I
ANS[13]  
PCR[86] AF0  
GPIO[86]  
E0UC[23]  
ANS[14]  
SIUL  
eMIOS_0 I/O  
ADC  
I/O  
AF1  
AF2  
AF3  
I
PCR[87] AF0  
GPIO[87]  
SIUL  
ADC  
I/O  
I
AF1  
AF2  
AF3  
ANS[15]  
PF[8]  
PF[9]  
PCR[88] AF0  
GPIO[88]  
CAN3TX14  
CS4_0  
SIUL  
FlexCAN_3  
DSPI_0  
I/O  
O
O
M
S
Tristate  
Tristate  
34 P1  
33 N2  
AF1  
AF2  
AF3  
CAN2TX15  
FlexCAN_2  
O
PCR[89] AF0  
GPIO[89]  
SIUL  
DSPI_0  
FlexCAN_2  
FlexCAN_3  
I/O  
O
I
AF1  
AF2  
AF3  
CS5_0  
CAN2RX15  
CAN3RX14  
I
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
24  
Freescale Semiconductor  
Package pinouts and signal descriptions  
Table 5. Functional port pin descriptions (continued)  
Pin number  
PF[10] PCR[90] AF0  
GPIO[90]  
SIUL  
I/O  
M
S
Tristate  
Tristate  
38 R3  
AF1  
AF2  
AF3  
PF[11] PCR[91] AF0  
GPIO[91]  
SIUL  
WKPU  
I/O  
I
39 R4  
AF1  
AF2  
AF3  
WKPU[15]4  
PF[12] PCR[92] AF0  
GPIO[92]  
E1UC[25]  
SIUL  
eMIOS_1 I/O  
I/O  
M
S
Tristate  
Tristate  
35 R1  
41 T6  
AF1  
AF2  
AF3  
PF[13] PCR[93] AF0  
GPIO[93]  
E1UC[26]  
SIUL  
eMIOS_1 I/O  
WKPU  
I/O  
AF1  
AF2  
AF3  
I
WKPU[16]4  
PF[14] PCR[94] AF0  
GPIO[94]  
CAN4TX11  
E1UC[27]  
CAN1TX  
SIUL  
FlexCAN_4  
eMIOS_1 I/O  
FlexCAN_4  
I/O  
O
M
S
Tristate  
Tristate  
43  
42  
102 D14  
101 E15  
AF1  
AF2  
AF3  
O
PF[15] PCR[95] AF0  
GPIO[95]  
SIUL  
I/O  
I
AF1  
AF2  
AF3  
CAN1RX  
CAN4RX11  
EIRQ[13]  
FlexCAN_1  
FlexCAN_4  
SIUL  
I
I
PG[0]  
PG[1]  
PCR[96] AF0  
GPIO[96]  
CAN5TX11  
E1UC[23]  
SIUL  
FlexCAN_5  
eMIOS_1 I/O  
I/O  
O
M
S
Tristate  
Tristate  
41  
40  
98 E14  
97 E13  
AF1  
AF2  
AF3  
PCR[97] AF0  
GPIO[97]  
SIUL  
eMIOS_1 I/O  
I/O  
AF1  
AF2  
AF3  
E1UC[24]  
I
I
CAN5RX11  
EIRQ[14]  
FlexCAN_5  
SIUL  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
25  
Package pinouts and signal descriptions  
Table 5. Functional port pin descriptions (continued)  
Pin number  
PG[2]  
PG[3]  
PCR[98] AF0  
GPIO[98]  
E1UC[11]  
SIUL  
eMIOS_1 I/O  
I/O  
M
S
Tristate  
Tristate  
8
7
E4  
E3  
AF1  
AF2  
AF3  
PCR[99] AF0  
GPIO[99]  
E1UC[12]  
SIUL  
eMIOS_1 I/O  
WKPU  
I/O  
AF1  
AF2  
AF3  
I
WKPU[17]4  
PG[4] PCR[100] AF0  
GPIO[100]  
E1UC[13]  
SIUL  
eMIOS_1 I/O  
I/O  
M
S
Tristate  
Tristate  
6
5
E1  
E2  
AF1  
AF2  
AF3  
PG[5] PCR[101] AF0  
GPIO[101]  
E1UC[14]  
SIUL  
eMIOS_1 I/O  
WKPU  
I/O  
AF1  
AF2  
AF3  
I
WKPU[18]4  
PG[6] PCR[102] AF0  
GPIO[102]  
E1UC[15]  
SIUL  
eMIOS_1 I/O  
I/O  
M
M
S
Tristate  
Tristate  
Tristate  
30 M2  
29 M1  
26 L2  
AF1  
AF2  
AF3  
PG[7] PCR[103] AF0  
GPIO[103]  
E1UC[16]  
SIUL  
eMIOS_1 I/O  
I/O  
AF1  
AF2  
AF3  
PG[8] PCR[104] AF0  
GPIO[104]  
E1UC[17]  
CS0_2  
EIRQ[15]  
SIUL  
eMIOS_1 I/O  
DSPI_2  
SIUL  
I/O  
AF1  
AF2  
AF3  
I/O  
I
PG[9] PCR[105] AF0  
GPIO[105]  
E1UC[18]  
SIUL  
eMIOS_1 I/O  
DSPI_2  
I/O  
S
S
Tristate  
Tristate  
25 L1  
AF1  
AF2  
AF3  
I/O  
SCK_2  
PG[10] PCR[106] AF0  
GPIO[106]  
E0UC[24]  
SIUL  
eMIOS_0 I/O  
I/O  
114 D13  
AF1  
AF2  
AF3  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
26  
Freescale Semiconductor  
Package pinouts and signal descriptions  
Table 5. Functional port pin descriptions (continued)  
Pin number  
PG[11] PCR[107] AF0  
GPIO[107]  
E0UC[25]  
SIUL  
eMIOS_0 I/O  
I/O  
M
M
M
S
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
115 B12  
AF1  
AF2  
AF3  
PG[12] PCR[108] AF0  
GPIO[108]  
E0UC[26]  
SIUL  
eMIOS_0 I/O  
I/O  
92 K14  
91 K16  
110 B14  
111 B13  
93 F13  
AF1  
AF2  
AF3  
PG[13] PCR[109] AF0  
GPIO[109]  
E0UC[27]  
SIUL  
eMIOS_0 I/O  
I/O  
AF1  
AF2  
AF3  
PG[14] PCR[110] AF0  
GPIO[110]  
E1UC[0]  
SIUL  
eMIOS_1 I/O  
I/O  
AF1  
AF2  
AF3  
PG[15] PCR[111] AF0  
GPIO[111]  
E1UC[1]  
SIUL  
eMIOS_1 I/O  
I/O  
M
M
AF1  
AF2  
AF3  
PH[0] PCR[112] AF0  
GPIO[112]  
E1UC[2]  
SIUL  
eMIOS_1 I/O  
DSPI_1  
I/O  
AF1  
AF2  
AF3  
I
SIN1  
PH[1] PCR[113] AF0  
GPIO[113]  
E1UC[3]  
SOUT1  
SIUL  
eMIOS_1 I/O  
DSPI_1  
I/O  
M
M
M
Tristate  
Tristate  
Tristate  
94 F14  
95 F16  
96 F15  
AF1  
AF2  
AF3  
O
PH[2] PCR[114] AF0  
GPIO[114]  
E1UC[4]  
SCK_1  
SIUL  
eMIOS_1 I/O  
DSPI_1  
I/O  
AF1  
AF2  
AF3  
I/O  
PH[3] PCR[115] AF0  
GPIO[115]  
E1UC[5]  
CS0_1  
SIUL  
eMIOS_1 I/O  
DSPI_1  
I/O  
AF1  
AF2  
AF3  
I/O  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
27  
Package pinouts and signal descriptions  
Table 5. Functional port pin descriptions (continued)  
Pin number  
PH[4] PCR[116] AF0  
GPIO[116]  
E1UC[6]  
SIUL  
eMIOS_1 I/O  
I/O  
M
S
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
134 A6  
AF1  
AF2  
AF3  
PH[5] PCR[117] AF0  
GPIO[117]  
E1UC[7]  
SIUL  
eMIOS_1 I/O  
I/O  
135 B6  
136 D5  
137 C5  
138 A5  
AF1  
AF2  
AF3  
PH[6] PCR[118] AF0  
GPIO[118]  
E1UC[8]  
SIUL  
eMIOS_1 I/O  
ADC  
I/O  
M
M
M
S
AF1  
AF2  
AF3  
O
MA[2]  
PH[7] PCR[119] AF0  
GPIO[119]  
E1UC[9]  
CS3_2  
SIUL  
eMIOS_1 I/O  
DSPI_2  
ADC  
I/O  
AF1  
AF2  
AF3  
O
O
MA[1]  
PH[8] PCR[120] AF0  
GPIO[120]  
E1UC[10]  
CS2_2  
SIUL  
eMIOS_1 I/O  
DSPI_2  
ADC  
I/O  
AF1  
AF2  
AF3  
O
O
MA[0]  
PH[9]9 PCR[121] AF0  
GPIO[121]  
SIUL  
JTAGC  
I/O  
I
Input, weak 60 53 88 127 B8  
pull-up  
AF1  
AF2  
AF3  
TCK  
PH[10]9 PCR[122] AF0  
GPIO[122]  
SIUL  
JTAGC  
I/O  
I
S
Input, weak 60 53 81 120 B9  
pull-up  
AF1  
AF2  
AF3  
TMS  
1
Alternate functions are chosen by setting the values of the PCR.PA bitfields inside the SIUL module.  
PCR.PA = 00 AF0; PCR.PA = 01 AF1; PCR.PA = 10 AF2; PCR.PA = 11 AF3. This is intended to select  
the output functions; to use one of the input functions, the PCR.IBE bit must be written to ‘1’, regardless of the  
values selected in the PCR.PA bitfields. For this reason, the value corresponding to an input only function is  
reported as “—”.  
2
Multiple inputs are routed to all respective modules internally. The input of some modules must be configured by  
setting the values of the PSMIO.PADSELx bitfields inside the SIUL module.  
3
4
5
6
208 MAPBGA available only as development package for Nexus2+  
All WKPU pins also support external interrupt capability. See wakeup unit chapter for further details.  
NMI has higher priority than alternate function. When NMI is selected, the PCR.AF field is ignored.  
“Not applicable” because these functions are available only while the device is booting. Refer to BAM chapter of the  
reference manual for details.  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
28  
Freescale Semiconductor  
Package pinouts and signal descriptions  
7
8
Value of PCR.IBE bit must be 0  
Be aware that this pad is used on the MPC5607B 100-pin and 144-pin to provide VDD_HV_ADC and  
VSS_HV_ADC1. Therefore, you should be careful in ensuring compatibility between MPC5604B/C and  
MPC5607B.  
9
Out of reset all the functional pins except PC[0:1] and PH[9:10] are available to the user as GPIO.  
PC[0:1] are available as JTAG pins (TDI and TDO respectively).  
PH[9:10] are available as JTAG pins (TCK and TMS respectively).  
If the user configures these JTAG pins in GPIO mode the device is no longer compliant with IEEE 1149.1-2001.  
10 The TDO pad has been moved into the STANDBY domain in order to allow low-power debug handshaking in  
STANDBY mode. However, no pull-resistor is active on the TDO pad while in STANDBY mode. At this time the pad  
is configured as an input. When no debugger is connected the TDO pad is floating causing additional current  
consumption. To avoid the extra consumption TDO must be connected. An external pull-up resistor in the range of  
47–100 kshould be added between the TDO pin and VDD. Only in case the TDO pin is used as application pin  
and a pull-up cannot be used then a pull-down resistor with the same value should be used between TDO pin and  
GND instead.  
11 Available only on MPC560xC versions and MPC5604B 208 MAPBGA devices  
12 Not available on MPC5602B devices  
13 Not available in 100 LQFP package  
14 Available only on MPC5604B 208 MAPBGA devices  
15 Not available on MPC5603B 144-pin devices  
3.7  
Nexus 2+ pins  
In the 208 MAPBGA package, eight additional debug pins are available (see Table 6).  
Table 6. Nexus 2+ pin descriptions  
Pin number  
I/O  
direction  
Function  
after reset  
Debug pin  
Function  
Pad type  
100  
144  
208 MAP  
BGA1  
LQFP  
LQFP  
MCKO  
MDO0  
MDO1  
MDO2  
MDO3  
EVTI  
Message clock out  
Message data out 0  
Message data out 1  
Message data out 2  
Message data out 3  
Event in  
O
O
O
O
O
I
F
T4  
H15  
H16  
H14  
H13  
K1  
M
M
M
M
M
M
M
Pull-up  
EVTO  
MSEO  
Event out  
O
O
L4  
Message start/end out  
G16  
1
208 MAPBGA available only as development package for Nexus2+  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
29  
 
Electrical characteristics  
4
Electrical characteristics  
4.1  
Introduction  
This section contains electrical characteristics of the device as well as temperature and power considerations.  
This product contains devices to protect the inputs against damage due to high static voltages. However, it is advisable to take  
precautions to avoid applying any voltage higher than the specified maximum rated voltages.  
To enhance reliability, unused inputs can be driven to an appropriate logic voltage level (V or V ). This could be done by  
DD  
SS  
the internal pull-up and pull-down, which is provided by the product for most general purpose pins.  
The parameters listed in the following tables represent the characteristics of the device and its demands on the system.  
In the tables where the device logic provides signals with their respective timing characteristics, the symbol “CC” for Controller  
Characteristics is included in the Symbol column.  
In the tables where the external system must provide signals with their respective timing characteristics to the device, the symbol  
“SR” for System Requirement is included in the Symbol column.  
4.2  
Parameter classification  
The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better  
understanding, the classifications listed in Table 7 are used and the parameters are tagged accordingly in the tables where  
appropriate.  
Table 7. Parameter classifications  
Classification tag  
Tag description  
P
C
Those parameters are guaranteed during production testing on each individual device.  
Those parameters are achieved by the design characterization by measuring a statistically  
relevant sample size across process variations.  
T
Those parameters are achieved by design characterization on a small sample size from typical  
devices under typical conditions unless otherwise noted. All values shown in the typical column  
are within this category.  
D
Those parameters are derived mainly from simulations.  
NOTE  
The classification is shown in the column labeled “C” in the parameter tables where  
appropriate.  
4.3  
NVUSRO register  
Bit values in the Non-Volatile User Options (NVUSRO) Register control portions of the device configuration, namely electrical  
parameters such as high voltage supply and oscillator margin, as well as digital functionality (watchdog enable/disable after  
reset).  
For a detailed description of the NVUSRO register, please refer to the device reference manual.  
4.3.1  
NVUSRO[PAD3V5V] field description  
The DC electrical characteristics are dependent on the PAD3V5V bit value. Table 8 shows how NVUSRO[PAD3V5V] controls  
the device configuration.  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
30  
Freescale Semiconductor  
 
Electrical characteristics  
Table 8. PAD3V5V field description  
Description  
Value1  
0
1
High voltage supply is 5.0 V  
High voltage supply is 3.3 V  
1
Default manufacturing value is ‘1’. Value can be programmed by customer in Shadow Flash.  
4.3.2  
NVUSRO[OSCILLATOR_MARGIN] field description  
The fast external crystal oscillator consumption is dependent on the OSCILLATOR_MARGIN bit value. Table 9 shows how  
NVUSRO[OSCILLATOR_MARGIN] controls the device configuration.  
Table 9. OSCILLATOR_MARGIN field description  
Value1  
Description  
0
1
Low consumption configuration (4 MHz/8 MHz)  
High margin configuration (4 MHz/16 MHz)  
1
Default manufacturing value is ‘1’. Value can be programmed by customer in Shadow Flash.  
4.3.3  
NVUSRO[WATCHDOG_EN] field description  
The watchdog enable/disable configuration after reset is dependent on the WATCHDOG_EN bit value. Table 10 shows how  
NVUSRO[WATCHDOG_EN] controls the device configuration.  
Table 10. WATCHDOG_EN field description  
Value1  
Description  
0
1
Disable after reset  
Enable after reset  
1
Default manufacturing value is ‘1’. Value can be programmed by customer in Shadow Flash.  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
31  
 
 
 
Electrical characteristics  
4.4  
Absolute maximum ratings  
Table 11. Absolute maximum ratings  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Max  
VSS  
VDD  
SR Digital ground on VSS_HV pins  
0
0
V
V
SR Voltage on VDD_HV pins with respect to  
0.3  
6.0  
ground (VSS  
)
VSS_LV SR Voltage on VSS_LV (low voltage digital  
supply) pins with respect to ground  
VSS0.1 VSS+0.1  
V
(VSS  
)
VDD_BV SR Voltage on VDD_BV pin (regulator  
supply) with respect to ground (VSS  
0.3  
0.3  
6.0  
V
V
)
Relative to VDD  
VDD+0.3  
VSS_ADC SR Voltage on VSS_HV_ADC (ADC  
VSS0.1 VSS+0.1  
reference) pin with respect to ground  
(VSS  
)
VDD_ADC SR Voltage on VDD_HV_ADC pin (ADC  
reference) with respect to ground (VSS  
0.3  
6.0  
V
V
)
Relative to VDD  
Relative to VDD  
VDD 0.3 VDD+0.3  
VIN  
SR Voltage on any GPIO pin with respect to  
ground (VSS  
0.3  
6.0  
VDD+0.3  
10  
)
IINJPAD SR Injected input current on any pin during  
overload condition  
10  
mA  
IINJSUM SR Absolute sum of all injected input  
currents during overload condition  
50  
50  
IAVGSEG SR Sum of all the static I/O current within a VDD = 5.0 V 10%, PAD3V5V = 0  
70  
64  
mA  
supply segment  
VDD = 3.3 V 10%, PAD3V5V = 1  
ICORELV SR Low voltage static current sink through  
VDD_BV  
150  
mA  
°C  
TSTORAGE SR Storage temperature  
55  
150  
NOTE  
Stresses exceeding the recommended absolute maximum ratings may cause permanent  
damage to the device. This is a stress rating only and functional operation of the device at  
these or any other conditions above those indicated in the operational sections of this  
specification are not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect device reliability. During overload conditions (V > V or  
IN  
DD  
V
< V ), the voltage on pins with respect to ground (V ) must not exceed the  
IN  
SS SS  
recommended values.  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
32  
Freescale Semiconductor  
Electrical characteristics  
4.5  
Recommended operating conditions  
Table 12. Recommended operating conditions (3.3 V)  
Value  
Unit  
Symbol  
Parameter  
Conditions  
Min  
Max  
VSS  
SR Digital ground on VSS_HV pins  
0
0
V
V
1
VDD  
SR Voltage on VDD_HV pins with respect to ground  
3.0  
3.6  
(VSS  
)
2
VSS_LV  
SR Voltage on VSS_LV (low voltage digital supply)  
VSS0.1 VSS+0.1  
3.0 3.6  
V
V
pins with respect to ground (VSS  
)
3
VDD_BV  
SR Voltage on VDD_BV pin (regulator supply) with  
respect to ground (VSS  
)
Relative to VDD VDD0.1 VDD+0.1  
VSS_ADC  
SR Voltage on VSS_HV_ADC (ADC reference) pin  
with respect to ground (VSS  
VSS0.1 VSS+0.1  
V
V
)
VDD_ADC  
SR Voltage on VDD_HV_ADC pin (ADC reference)  
with respect to ground (VSS  
3.05  
3.6  
4
)
Relative to VDD VDD0.1 VDD+0.1  
VIN  
SR Voltage on any GPIO pin with respect to ground  
(VSS  
Relative to VDD  
VSS0.1  
VDD+0.1  
5
V
)
IINJPAD  
IINJSUM  
TVDD  
SR Injected input current on any pin during overload  
condition  
5  
mA  
SR Absolute sum of all injected input currents during  
overload condition  
50  
50  
SR VDD slope to ensure correct power up6  
0.25  
85  
V/µs  
°C  
TA C-Grade Part SR Ambient temperature under bias  
TJ C-Grade Part SR Junction temperature under bias  
TA V-Grade Part SR Ambient temperature under bias  
TJ V-Grade Part SR Junction temperature under bias  
TA M-Grade Part SR Ambient temperature under bias  
TJ M-Grade Part SR Junction temperature under bias  
100 nF capacitance needs to be provided between each VDD/VSS pair  
fCPU 64 MHz  
40  
40  
40  
40  
40  
40  
110  
105  
130  
125  
150  
1
2
3
330 nF capacitance needs to be provided between each VDD_LV/VSS_LV supply pair.  
400 nF capacitance needs to be provided between VDD_BV and the nearest VSS_LV (higher value may be needed  
depending on external regulator characteristics).  
4
5
100 nF capacitance needs to be provided between VDD_ADC/VSS_ADC pair.  
Full electrical specification cannot be guaranteed when voltage drops below 3.0 V. In particular, ADC electrical  
characteristics and I/Os DC electrical specification may not be guaranteed. When voltage drops below VLVDHVL  
device is reset.  
,
6
Guaranteed by device validation  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
33  
 
Electrical characteristics  
Symbol  
Table 13. Recommended operating conditions (5.0 V)  
Value  
Parameter  
Conditions  
Unit  
Min  
Max  
VSS  
SR Digital ground on VSS_HV pins  
0
0
V
V
1
VDD  
SR Voltage on VDD_HV pins with respect to  
Voltage drop2  
4.5  
3.0  
5.5  
5.5  
ground (VSS  
)
3
VSS_LV  
SR Voltage on VSS_LV (low voltage digital  
supply) pins with respect to ground (VSS  
VSS0.1 VSS+0.1  
V
V
)
4
VDD_BV  
SR Voltage on VDD_BV pin (regulator supply)  
with respect to ground (VSS  
4.5  
3.0  
5.5  
5.5  
)
Voltage drop2  
Relative to VDD VDD0.1 VDD+0.1  
VSS_ADC  
SR Voltage on VSS_HV_ADC (ADC reference)  
pin with respect to ground (VSS  
VSS0.1 VSS+0.1  
V
V
5
VDD_ADC  
SR Voltage on VDD_HV_ADC pin (ADC  
4.5  
3.0  
5.5  
5.5  
reference) with respect to ground (VSS  
)
Voltage drop2  
Relative to VDD VDD0.1 VDD+0.1  
VIN  
SR Voltage on any GPIO pin with respect to  
ground (VSS  
Relative to VDD  
VSS0.1  
VDD+0.1  
5
V
)
IINJPAD  
IINJSUM  
SR Injected input current on any pin during  
overload condition  
5  
mA  
SR Absolute sum of all injected input currents  
during overload condition  
50  
50  
TVDD  
SR VDD slope to ensure correct power up6  
SR Ambient temperature under bias  
SR Junction temperature under bias  
SR Ambient temperature under bias  
SR Junction temperature under bias  
SR Ambient temperature under bias  
SR Junction temperature under bias  
0.25  
85  
V/µs  
°C  
TA C-Grade Part  
TJ C-Grade Part  
TA V-Grade Part  
TJ V-Grade Part  
TA M-Grade Part  
TJ M-Grade Part  
fCPU 64 MHz  
40  
40  
40  
40  
40  
40  
110  
105  
130  
125  
150  
1
2
100 nF capacitance needs to be provided between each VDD/VSS pair.  
Full device operation is guaranteed by design when the voltage drops below 4.5 V down to 3.0 V. However, certain  
analog electrical characteristics will not be guaranteed to stay within the stated limits.  
3
4
330 nF capacitance needs to be provided between each VDD_LV/VSS_LV supply pair.  
100 nF capacitance needs to be provided between VDD_BV and the nearest VSS_LV (higher value may be needed  
depending on external regulator characteristics).  
5
6
100 nF capacitance needs to be provided between VDD_ADC/VSS_ADC pair.  
Guaranteed by device validation  
NOTE  
RAM data retention is guaranteed with V  
not below 1.08 V.  
DD_LV  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
34  
Freescale Semiconductor  
Electrical characteristics  
4.6  
Thermal characteristics  
4.6.1  
Package thermal characteristics  
1
Table 14. LQFP thermal characteristics  
Conditions2  
Symbol  
C
Parameter  
Thermal resistance,  
Pin count Value Unit  
RJA CC  
D
Single-layer board - 1s  
Four-layer board - 2s2p  
Single-layer board - 1s  
Four-layer board - 2s2p  
Single-layer board - 1s  
Four-layer board - 2s2p  
Single-layer board - 1s  
Four-layer board - 2s2p  
Single-layer board - 1s  
Four-layer board - 2s2p  
64  
100  
144  
64  
60  
64  
64  
42  
51  
49  
24  
36  
37  
24  
34  
35  
11  
22  
22  
11  
22  
22  
°C/W  
°C/W  
°C/W  
junction-to-ambient natural  
convection3  
100  
144  
64  
RJB CC  
RJC CC  
JB CC  
JC CC  
D
D
D
D
Thermal resistance,  
junction-to-board4  
100  
144  
64  
100  
144  
64  
Thermal resistance,  
junction-to-case5  
100  
144  
64  
100  
144  
64  
Junction-to-board thermal  
characterization parameter,  
natural convection  
TBD °C/W  
100  
144  
64  
33  
34  
TBD  
100  
144  
64  
34  
35  
Junction-to-case thermal  
characterization parameter,  
natural convection  
TBD °C/W  
100  
144  
64  
9
10  
TBD  
9
100  
144  
10  
1
Thermal characteristics are based on simulation.  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
35  
Electrical characteristics  
2
VDD = 3.3 V 10% / 5.0 V 10%, TA = 40 to 125 °C  
3
4
5
Junction-to-ambient thermal resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test  
board meets JEDEC specification for this package.  
Junction-to-board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC  
specification for the specified package.  
Junction-to-case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate  
temperature is used for the case temperature. Reported value includes the thermal resistance of the interface  
layer.  
4.6.2  
Power considerations  
The average chip-junction temperature, T , in degrees Celsius, may be calculated using Equation 1:  
J
T = T + (P x R )  
JA  
Eqn. 1  
J
A
D
Where:  
T is the ambient temperature in °C.  
A
R
is the package junction-to-ambient thermal resistance, in °C/W.  
JA  
P is the sum of P  
and P (P = P  
+ P ).  
D
INT  
I/O  
D
INT I/O  
P
P
is the product of I and V , expressed in watts. This is the chip internal power.  
DD DD  
INT  
I/O  
represents the power dissipation on input and output pins; user determined.  
Most of the time for the applications, P < P  
and may be neglected. On the other hand, P may be significant, if the device  
I/O  
INT  
I/O  
is configured to continuously drive external modules and/or memories.  
An approximate relationship between P and T (if P is neglected) is given by:  
D
J
I/O  
P = K / (T + 273 °C)  
Eqn. 2  
Eqn. 3  
D
J
Therefore, solving equations 1 and 2:  
Where:  
2
K = P x (T + 273 °C) + R  
x P  
D
D
A
JA  
K is a constant for the particular part, which may be determined from Equation 3 by measuring P (at equilibrium)  
D
for a known T Using this value of K, the values of P and T may be obtained by solving equations 1 and 2  
A.  
D
J
iteratively for any value of T .  
A
4.7  
I/O pad electrical characteristics  
I/O pad types  
4.7.1  
The device provides four main I/O pad types depending on the associated alternate functions:  
Slow pads—These pads are the most common pads, providing a good compromise between transition time and low  
electromagnetic emission.  
Medium pads—These pads provide transition fast enough for the serial communication channels with controlled  
current to reduce electromagnetic emission.  
Fast pads—These pads provide maximum speed. There are used for improved Nexus debugging capability.  
Input only pads—These pads are associated to ADC channels and the external 32 kHz crystal oscillator (SXOSC)  
providing low input leakage.  
Medium and Fast pads can use slow configuration to reduce electromagnetic emission, at the cost of reducing AC performance.  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
36  
Freescale Semiconductor  
 
 
Electrical characteristics  
4.7.2  
I/O input DC characteristics  
Table 15 provides input DC electrical characteristics as described in Figure 7.  
V
IN  
V
DD  
V
IH  
V
HYS  
V
IL  
PDIx = ‘1’  
(GPDI register of SIUL)  
PDIx = ‘0’  
Figure 7. I/O input DC electrical characteristics definition  
Table 15. I/O input DC electrical characteristics  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
VIH SR P Input high level CMOS (Schmitt  
Trigger)  
0.65VDD  
VDD+0.4  
V
VIL SR P Input low level CMOS (Schmitt  
Trigger)  
0.4  
0.35VDD  
VHYS CC C Input hysteresis CMOS (Schmitt  
Trigger)  
0.1VDD  
ILKG CC D Digital input leakage  
No injection  
on adjacent  
pin  
TA = 40 °C  
TA = 25 °C  
TA = 85 °C  
TA = 105 °C  
TA = 125 °C  
2
2
200  
200  
300  
500  
1000  
40  
nA  
D
D
D
P
5
12  
70  
2
WFI SR P Wakeup input filtered pulse  
ns  
ns  
2
WNFI SR P Wakeup input not filtered pulse  
1000  
1
VDD = 3.3 V 10% / 5.0 V 10%, TA = 40 to 125 °C, unless otherwise specified  
In the range from 40 to 1000 ns, pulses can be filtered or not filtered, according to operating temperature and  
voltage.  
2
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
37  
 
 
Electrical characteristics  
4.7.3  
I/O output DC characteristics  
The following tables provide DC characteristics for bidirectional pads:  
Table 16 provides weak pull figures. Both pull-up and pull-down resistances are supported.  
Table 17 provides output driver characteristics for I/O pads when in SLOW configuration.  
Table 18 provides output driver characteristics for I/O pads when in MEDIUM configuration.  
Table 19 provides output driver characteristics for I/O pads when in FAST configuration.  
Table 16. I/O pull-up/pull-down DC electrical characteristics  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min Typ Max  
|IWPU| CC P Weak pull-up current  
VIN = VIL, VDD = 5.0 V 10% PAD3V5V = 0  
10  
150 µA  
250  
absolute value  
C
PAD3V5V = 12 10  
P
VIN = VIL, VDD = 3.3 V 10% PAD3V5V = 1  
10  
10  
10  
10  
150  
|IWPD| CC P Weak pull-down current VIN = VIH, VDD = 5.0 V 10% PAD3V5V = 0  
absolute value  
150 µA  
250  
C
P
PAD3V5V = 1  
VIN = VIH, VDD = 3.3 V 10% PAD3V5V = 1  
150  
1
2
VDD = 3.3 V 10% / 5.0 V 10%, TA = 40 to 125 °C, unless otherwise specified.  
The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but  
RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.  
Table 17. SLOW configuration output buffer electrical characteristics  
Value  
Symbol C  
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
VOH CC P Output high level  
SLOW configuration  
Push Pull IOH = 2 mA,  
0.8VDD  
V
VDD = 5.0 V 10%, PAD3V5V = 0  
(recommended)  
C
C
I
OH = 2 mA,  
0.8VDD  
VDD = 5.0 V 10%, PAD3V5V = 12  
IOH = 1 mA,  
VDD0.8  
VDD = 3.3 V 10%, PAD3V5V = 1  
(recommended)  
VOL CC P Output low level  
SLOW configuration  
Push Pull IOL = 2 mA,  
0.1VDD  
V
VDD = 5.0 V 10%, PAD3V5V = 0  
(recommended)  
C
C
I
OL = 2 mA,  
0.1VDD  
0.5  
VDD = 5.0 V 10%, PAD3V5V = 12  
IOL = 1 mA,  
VDD = 3.3 V 10%, PAD3V5V = 1  
(recommended)  
1
VDD = 3.3 V 10% / 5.0 V 10%, TA = 40 to 125 °C, unless otherwise specified  
The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but  
RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.  
2
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
38  
Freescale Semiconductor  
 
 
Electrical characteristics  
Table 18. MEDIUM configuration output buffer electrical characteristics  
Value  
Typ Max  
Symbol C  
Parameter  
Conditions1  
Unit  
Min  
VOH CC C Output high level  
MEDIUM configuration  
Push Pull IOH = 3.8 mA,  
VDD = 5.0 V 10%, PAD3V5V = 0  
0.8VDD  
V
P
I
OH = 2 mA,  
0.8VDD  
VDD = 5.0 V 10%, PAD3V5V = 0  
(recommended)  
C
C
I
OH = 1 mA,  
0.8VDD  
VDD = 5.0 V 10%, PAD3V5V = 12  
I
OH = 1 mA,  
DD = 3.3 V 10%, PAD3V5V = 1  
(recommended)  
VDD0.8  
V
C
I
OH = 100 µA,  
0.8VDD  
VDD = 5.0 V 10%, PAD3V5V = 0  
VOL CC C Output low level  
Push Pull IOL = 3.8 mA,  
0.2VDD  
0.1VDD  
V
MEDIUM configuration  
VDD = 5.0 V 10%, PAD3V5V = 0  
P
IOL = 2 mA,  
VDD = 5.0 V 10%, PAD3V5V = 0  
(recommended)  
C
C
IOL = 1 mA,  
0.1VDD  
0.5  
VDD = 5.0 V 10%, PAD3V5V = 12  
IOL = 1 mA,  
VDD = 3.3 V 10%, PAD3V5V = 1  
(recommended)  
C
I
OL = 100 µA,  
0.1VDD  
VDD = 5.0 V 10%, PAD3V5V = 0  
1
2
VDD = 3.3 V 10% / 5.0 V 10%, TA = 40 to 125 °C, unless otherwise specified  
The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but  
RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.  
Table 19. FAST configuration output buffer electrical characteristics  
Value  
Symbol C  
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
VOH CC P Output high level  
FAST configuration  
Push Pull IOH = 14mA,  
0.8VDD  
V
VDD = 5.0 V 10%, PAD3V5V = 0  
(recommended)  
C
C
I
OH = 7mA,  
0.8VDD  
VDD = 5.0 V 10%, PAD3V5V = 12  
IOH = 11mA,  
VDD0.8  
VDD = 3.3 V 10%, PAD3V5V = 1  
(recommended)  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
39  
 
 
Electrical characteristics  
Table 19. FAST configuration output buffer electrical characteristics (continued)  
Value  
Symbol C  
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
VOL CC P Output low level  
FAST configuration  
Push Pull IOL = 14mA,  
0.1VDD  
V
VDD = 5.0 V 10%, PAD3V5V = 0  
(recommended)  
C
C
I
OL = 7mA,  
0.1VDD  
0.5  
VDD = 5.0 V 10%, PAD3V5V = 12  
IOL = 11mA,  
VDD = 3.3 V 10%, PAD3V5V = 1  
(recommended)  
1
VDD = 3.3 V 10% / 5.0 V 10%, TA = 40 to 125 °C, unless otherwise specified  
The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but  
RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.  
2
4.7.4  
Output pin transition times  
Table 20. Output pin transition times  
Value  
Symbol C  
Parameter  
Conditions1  
Unit  
Min Typ Max  
ttr CC D Output transition time output CL = 25 pF VDD = 5.0 V 10%, PAD3V5V = 0  
pin2  
50 ns  
100  
125  
50  
T
D
D
T
CL = 50 pF  
SLOW configuration  
CL = 100 pF  
CL = 25 pF VDD = 3.3 V 10%, PAD3V5V = 1  
CL = 50 pF  
100  
125  
10 ns  
20  
D
CL = 100 pF  
ttr CC D Output transition time output CL = 25 pF VDD = 5.0 V 10%, PAD3V5V = 0  
pin2  
SIUL.PCRx.SRC = 1  
T
D
D
T
CL = 50 pF  
MEDIUM configuration  
CL = 100 pF  
40  
CL = 25 pF VDD = 3.3 V 10%, PAD3V5V = 1  
12  
SIUL.PCRx.SRC = 1  
CL = 50 pF  
25  
D
CL = 100 pF  
40  
ttr CC D Output transition time output CL = 25 pF VDD = 5.0 V 10%, PAD3V5V = 0  
4
6
ns  
pin2  
CL = 50 pF  
FAST configuration  
CL = 100 pF  
CL = 25 pF VDD = 3.3 V 10%, PAD3V5V = 1  
CL = 50 pF  
12  
4
7
CL = 100 pF  
12  
1
VDD = 3.3 V 10% / 5.0 V 10%, TA = 40 to 125 °C, unless otherwise specified  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
40  
Freescale Semiconductor  
Electrical characteristics  
2
CL includes device and package capacitances (CPKG < 5 pF).  
4.7.5  
I/O pad current specification  
The I/O pads are distributed across the I/O supply segment. Each I/O supply segment is associated to a V /V supply pair as  
DD SS  
described in Table 21.  
Table 21. I/O supply segment  
Supply segment  
Package  
1
2
3
4
5
6
208 MAPBGA1  
144 LQFP  
100 LQFP  
64 LQFP  
Equivalent to 144 LQFP segment pad distribution  
pin20–pin49 pin51–pin99 pin100–pin122 pin 123–pin19  
MCKO  
MDOn/MSEO  
pin16–pin35  
pin8–pin26  
pin37–pin69  
pin28–pin55  
pin70–pin83  
pin56–pin7  
pin 84–pin15  
1
208 MAPBGA available only as development package for Nexus2+  
Table 22 provides I/O consumption figures.  
In order to ensure device reliability, the average current of the I/O on a single segment should remain below the I  
maximum value.  
AVGSEG  
Table 22. I/O consumption  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ Max  
,2  
ISWTSLW CC D Dynamic I/O current for CL = 25 pF  
SLOW configuration  
VDD = 5.0 V 10%,  
PAD3V5V = 0  
20  
16  
29  
17  
mA  
VDD = 3.3 V 10%,  
PAD3V5V = 1  
2
ISWTMED CC D Dynamic I/O current for CL = 25 pF  
VDD = 5.0 V 10%,  
PAD3V5V = 0  
mA  
MEDIUM configuration  
VDD = 3.3 V 10%,  
PAD3V5V = 1  
2
ISWTFST CC D Dynamic I/O current for CL = 25 pF  
VDD = 5.0 V 10%,  
PAD3V5V = 0  
110 mA  
50  
FAST configuration  
VDD = 3.3 V 10%,  
PAD3V5V = 1  
IRMSSLW CC D Root mean square I/O CL = 25 pF, 2 MHz  
VDD = 5.0 V 10%,  
PAD3V5V = 0  
2.3 mA  
3.2  
current for SLOW  
CL = 25 pF, 4 MHz  
configuration  
CL = 100 pF, 2 MHz  
CL = 25 pF, 2 MHz  
CL = 25 pF, 4 MHz  
CL = 100 pF, 2 MHz  
6.6  
VDD = 3.3 V 10%,  
PAD3V5V = 1  
1.6  
2.3  
4.7  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
41  
 
 
Electrical characteristics  
Table 22. I/O consumption (continued)  
Conditions1  
Value  
Symbol  
C
Parameter  
Unit  
Min  
Typ Max  
IRMSMED CC D Root mean square I/O CL = 25 pF, 13 MHz VDD = 5.0 V 10%,  
6.6 mA  
current for MEDIUM  
configuration  
PAD3V5V = 0  
CL = 25 pF, 40 MHz  
CL = 100 pF, 13 MHz  
13.4  
18.3  
5
CL = 25 pF, 13 MHz VDD = 3.3 V 10%,  
PAD3V5V = 1  
CL = 25 pF, 40 MHz  
8.5  
11  
CL = 100 pF, 13 MHz  
IRMSFST CC D Root mean square I/O CL = 25 pF, 40 MHz VDD = 5.0 V 10%,  
22  
33  
56  
14  
20  
35  
70  
65  
mA  
current for FAST  
configuration  
PAD3V5V = 0  
CL = 25 pF, 64 MHz  
CL = 100 pF, 40 MHz  
CL = 25 pF, 40 MHz VDD = 3.3 V 10%,  
PAD3V5V = 1  
CL = 25 pF, 64 MHz  
CL = 100 pF, 40 MHz  
IAVGSEG SR D Sum of all the static I/O VDD = 5.0 V 10%, PAD3V5V = 0  
current within a supply  
mA  
VDD = 3.3 V 10%, PAD3V5V = 1  
segment  
VDD = 3.3 V 10% / 5.0 V 10%, TA = 40 to125 °C, unless otherwise specified  
Stated maximum values represent peak consumption that lasts only a few ns during I/O transition.  
1
2
Table 23 provides the weight of concurrent switching I/Os.  
Due to the dynamic current limitations, the sum of the weight of concurrent switching I/Os on a single segment must not exceed  
100% to ensure device functionality.  
1
Table 23. I/O weight  
144/100 LQFP  
Weight 5 V Weight 3.3 V  
SRC3 = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1  
64 LQFP  
Supply segment  
Weight 5 V  
Weight 3.3 V  
Pad  
144  
100  
64  
LQFP LQFP LQFP2  
4
4
3
PB[3]  
PC[9]  
PC[14]  
PC[15]  
PG[5]  
PG[4]  
PG[3]  
10%  
10%  
9%  
12%  
12%  
11%  
11%  
11%  
10%  
10%  
10%  
10%  
12%  
12%  
9%  
13%  
12%  
9%  
9%  
12%  
11%  
9%  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
42  
Freescale Semiconductor  
 
Electrical characteristics  
1
Table 23. I/O weight (continued)  
144/100 LQFP  
64 LQFP  
Weight 3.3 V  
SRC3 = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1  
Supply segment  
Weight 5 V  
Weight 3.3 V  
Weight 5 V  
Pad  
144  
100  
64  
LQFP LQFP LQFP2  
4
4
3
PG[2]  
PA[2]  
8%  
8%  
12%  
10%  
9%  
10%  
8%  
9%  
3
PE[0]  
PA[1]  
8%  
9%  
7%  
9%  
7%  
9%  
3
PE[1]  
PE[8]  
PE[9]  
PE[10]  
PA[0]  
7%  
10%  
9%  
8%  
9%  
8%  
7%  
8%  
6%  
7%  
6%  
7%  
5%  
8%  
6%  
7%  
5%  
8%  
6%  
7%  
1
PE[11]  
PG[9]  
PG[8]  
PC[11]  
PC[10]  
PG[7]  
PG[6]  
PB[0]  
PB[1]  
PF[9]  
5%  
6%  
1
1
9%  
10%  
11%  
11%  
11%  
11%  
12%  
12%  
12%  
12%  
12%  
12%  
12%  
12%  
12%  
11%  
10%  
10%  
9%  
9%  
9%  
9%  
13%  
14%  
14%  
14%  
12%  
12%  
12%  
12%  
9%  
13%  
11%  
12%  
1
1
10%  
10%  
10%  
10%  
10%  
10%  
10%  
10%  
10%  
10%  
10%  
9%  
10%  
10%  
14%  
12%  
12%  
12%  
1
1
PF[8]  
15%  
15%  
13%  
13%  
PF[12]  
PC[6]  
PC[7]  
PF[10]  
PF[11]  
PA[15]  
PF[13]  
PA[14]  
PA[4]  
10%  
10%  
12%  
12%  
1
1
14%  
12%  
12%  
11%  
9%  
12%  
10%  
11%  
1
1
8%  
8%  
11%  
10%  
8%  
8%  
7%  
7%  
11%  
9%  
9%  
9%  
8%  
10%  
8%  
9%  
PA[13]  
PA[12]  
7%  
10%  
9%  
9%  
10%  
9%  
7%  
8%  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
43  
Electrical characteristics  
Supply segment  
1
Table 23. I/O weight (continued)  
144/100 LQFP  
64 LQFP  
Weight 3.3 V  
SRC3 = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1  
Weight 5 V  
Weight 3.3 V  
Weight 5 V  
Pad  
144  
100  
64  
LQFP LQFP LQFP2  
2
2
2
PB[9]  
PB[8]  
PB[10]  
PF[0]  
PF[1]  
PF[2]  
PF[3]  
PF[4]  
PF[5]  
PF[6]  
PF[7]  
PD[0]  
PD[1]  
PD[2]  
PD[3]  
PD[4]  
PD[5]  
PD[6]  
PD[7]  
PD[8]  
PB[4]  
PB[5]  
PB[6]  
PB[7]  
PD[9]  
PD[10]  
PD[11]  
PB[11]  
PD[12]  
PB[12]  
PD[13]  
1%  
1%  
6%  
6%  
7%  
7%  
7%  
8%  
8%  
8%  
9%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
11%  
11%  
11%  
10%  
1%  
1%  
7%  
7%  
8%  
8%  
9%  
9%  
10%  
10%  
10%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
13%  
13%  
13%  
12%  
1%  
1%  
6%  
1%  
1%  
7%  
2
2
1%  
1%  
1%  
1%  
1%  
2%  
2%  
2%  
2
17%  
21%  
2
18%  
21%  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
44  
Freescale Semiconductor  
Electrical characteristics  
1
Table 23. I/O weight (continued)  
144/100 LQFP  
64 LQFP  
Weight 3.3 V  
SRC3 = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1  
Supply segment  
Weight 5 V  
Weight 3.3 V  
Weight 5 V  
Pad  
144  
100  
64  
LQFP LQFP LQFP2  
2
2
2
2
PB[13]  
PD[14]  
PB[14]  
PD[15]  
PB[15]  
PA[3]  
10%  
10%  
10%  
10%  
9%  
9%  
9%  
9%  
5%  
5%  
5%  
4%  
4%  
3%  
3%  
4%  
4%  
5%  
5%  
5%  
6%  
6%  
7%  
7%  
7%  
7%  
7%  
6%  
6%  
6%  
6%  
12%  
12%  
12%  
11%  
11%  
11%  
10%  
10%  
6%  
6%  
5%  
5%  
4%  
4%  
4%  
5%  
5%  
6%  
6%  
6%  
7%  
8%  
8%  
8%  
8%  
8%  
8%  
8%  
7%  
7%  
7%  
18%  
9%  
21%  
8%  
18%  
21%  
2
18%  
18%  
21%  
21%  
3
2
PG[13]  
PG[12]  
PH[0]  
13%  
12%  
8%  
7%  
6%  
6%  
11%  
11%  
7%  
6%  
6%  
5%  
PH[1]  
PH[2]  
PH[3]  
PG[1]  
PG[0]  
PF[15]  
PF[14]  
PE[13]  
PA[7]  
4%  
4%  
3
5%  
5%  
16%  
16%  
15%  
15%  
14%  
19%  
19%  
18%  
18%  
17%  
PA[8]  
PA[9]  
PA[10]  
PA[11]  
PE[12]  
PG[14]  
PG[15]  
PE[14]  
PE[15]  
PG[10]  
PG[11]  
PC[3]  
2
3
10%  
9%  
9%  
8%  
9%  
8%  
7%  
6%  
9%  
8%  
PC[2]  
8%  
7%  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
45  
Electrical characteristics  
Supply segment  
1
Table 23. I/O weight (continued)  
144/100 LQFP  
64 LQFP  
Weight 3.3 V  
SRC3 = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1  
Weight 5 V  
Weight 3.3 V  
Weight 5 V  
Pad  
144  
100  
64  
LQFP LQFP LQFP2  
3
4
3
4
2
PA[5]  
PA[6]  
5%  
5%  
4%  
5%  
6%  
7%  
6%  
6%  
6%  
6%  
5%  
5%  
5%  
6%  
7
8%  
7%  
6%  
6%  
5%  
7%  
8
7%  
PH[10]  
PC[1]  
PC[0]  
PH[9]  
PE[2]  
PE[3]  
PC[5]  
PC[4]  
PE[4]  
PE[5]  
PH[4]  
PH[5]  
PH[6]  
PH[7]  
PH[8]  
PE[6]  
PE[7]  
PC[12]  
PC[13]  
PC[8]  
PB[2]  
6%  
5%  
5%  
7%  
6%  
5%  
3
9%  
7%  
8%  
9%  
7
8%  
8
7
7
8
8
3
7%  
10%  
11%  
11%  
12%  
12%  
12%  
13%  
9%  
9%  
8%  
9%  
9%  
8%  
9%  
10%  
10%  
11%  
11%  
11%  
8%  
8%  
11%  
12%  
9%  
10%  
10%  
10%  
8%  
8%  
10%  
10%  
10%  
11%  
11%  
11%  
11%  
11%  
12%  
12%  
12%  
12%  
12%  
12%  
3
9%  
4
9%  
9%  
9%  
13%  
13%  
14%  
14%  
14%  
14%  
12%  
12%  
12%  
12%  
12%  
13%  
9%  
10%  
10%  
10%  
10%  
10%  
10%  
10%  
10%  
10%  
12%  
12%  
15%  
13%  
15%  
13%  
1
2
3
VDD = 3.3 V 10% / 5.0 V 10%, TA = 40 to125 °C, unless otherwise specified  
Segments shown apply to MPC560xB devices only  
SRC: “Slew Rate Control” bit in SIU_PCR  
4.8  
RESET electrical characteristics  
The device implements a dedicated bidirectional RESET pin.  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
46  
Freescale Semiconductor  
Electrical characteristics  
V
DD  
V
DDMIN  
RESET  
V
IH  
V
IL  
device reset forced by RESET  
device start-up phase  
Figure 8. Start-up reset requirements  
VRESET  
hw_rst  
‘1’  
V
DD  
V
IH  
V
IL  
‘0’  
filtered by  
lowpass filter  
unknown reset  
state  
filtered by  
hysteresis  
filtered by  
lowpass filter  
device under hardware reset  
W
W
FRST  
FRST  
W
NFRST  
Figure 9. Noise filtering on reset signal  
Table 24. Reset electrical characteristics  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
VIH  
SR P Input High Level CMOS  
(Schmitt Trigger)  
0.65VDD  
VDD+0.4  
V
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
47  
Electrical characteristics  
Table 24. Reset electrical characteristics (continued)  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
VIL SR P Input low Level CMOS  
(Schmitt Trigger)  
0.4  
0.35VDD  
V
V
V
VHYS CC C Input hysteresis CMOS  
(Schmitt Trigger)  
0.1VDD  
VOL CC P Output low level  
Push Pull, IOL = 2mA,  
0.1VDD  
VDD = 5.0 V 10%, PAD3V5V = 0  
(recommended)  
C
C
Push Pull, IOL = 1mA,  
0.1VDD  
0.5  
VDD = 5.0 V 10%, PAD3V5V = 12  
Push Pull, IOL = 1mA,  
VDD = 3.3 V 10%, PAD3V5V = 1  
(recommended)  
ttr  
CC D Output transition time  
output pin3  
CL = 25pF,  
VDD = 5.0 V 10%, PAD3V5V = 0  
10  
20  
40  
12  
25  
40  
40  
ns  
CL = 50pF,  
VDD = 5.0 V 10%, PAD3V5V = 0  
CL = 100pF,  
VDD = 5.0 V 10%, PAD3V5V = 0  
CL = 25pF,  
VDD = 3.3 V 10%, PAD3V5V = 1  
CL = 50pF,  
VDD = 3.3 V 10%, PAD3V5V = 1  
CL = 100pF,  
VDD = 3.3 V 10%, PAD3V5V = 1  
WFRST SR P RESET input filtered  
pulse  
ns  
ns  
µA  
WNFRST SR P RESET input not filtered  
pulse  
1000  
|IWPU  
|
CC P Weak pull-up current  
VDD = 3.3 V 10%, PAD3V5V = 1  
VDD = 5.0 V 10%, PAD3V5V = 0  
VDD = 5.0 V 10%, PAD3V5V = 12  
10  
10  
10  
150  
150  
250  
absolute value  
D
P
1
2
3
VDD = 3.3 V 10% / 5.0 V 10%, TA = 40 to 125 °C, unless otherwise specified  
This transient configuration does not occurs when device is used in the VDD = 3.3 V 10% range.  
CL includes device and package capacitance (CPKG < 5 pF).  
4.9 Power management electrical characteristics  
4.9.1  
Voltage regulator electrical characteristics  
The device implements an internal voltage regulator to generate the low voltage core supply V  
from the high voltage  
DD_LV  
ballast supply V  
. The regulator itself is supplied by the common I/O supply V . The following supplies are involved:  
DD_BV  
DD  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
48  
Freescale Semiconductor  
Electrical characteristics  
HV—High voltage external power supply for voltage regulator module. This must be provided externally through V  
power pin.  
DD  
BV—High voltage external power supply for internal ballast module. This must be provided externally through  
V
power pin. Voltage values should be aligned with V  
.
DD_BV  
DD  
LV—Low voltage internal power supply for core, FMPLL and flash digital logic. This is generated by the internal  
voltage regulator but provided outside to connect stability capacitor. It is further split into four main domains to ensure  
noise isolation between critical LV modules within the device:  
LV_COR—Low voltage supply for the core. It is also used to provide supply for FMPLL through double bonding.  
LV_CFLA—Low voltage supply for code flash module. It is supplied with dedicated ballast and shorted to  
LV_COR through double bonding.  
LV_DFLA—Low voltage supply for data flash module. It is supplied with dedicated ballast and shorted to  
LV_COR through double bonding.  
LV_PLL—Low voltage supply for FMPLL. It is shorted to LV_COR through double bonding.  
C
(LV_COR/LV_CFLA)  
REG2  
V
DD  
V
V
DD_LV  
SS_LV  
V
DD_BV  
DD_LVn  
SS_LVn  
V
REF  
V
DD_BV  
V
DD_LV  
DEVICE  
V
Voltage Regulator  
I
V
SS_LV  
V
V
V
V
V
DD  
SS_LV  
DD_LV  
SS  
DEVICE  
C
C
DEC2  
REG3  
(LV_COR/LV_PLL)  
(supply/IO decoupling)  
Figure 10. Voltage regulator capacitance connection  
The internal voltage regulator requires external capacitance (C ) to be connected to the device in order to provide a stable  
REGn  
low voltage digital supply to the device. Capacitances should be placed on the board as near as possible to the associated pins.  
Care should also be taken to limit the serial inductance of the board to less than 5 nH.  
Each decoupling capacitor must be placed between each of the three V  
/V  
supply pairs to ensure stable voltage (see  
DD_LV SS_LV  
Section 4.5, “Recommended operating conditions).  
The internal voltage regulator requires controlled slew rate of V /V  
as described on Figure 11.  
DD DD_BV  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
49  
Electrical characteristics  
V
DD_HV  
V
(MAX)  
DD_HV  
d
dt  
VDD  
V
(MIN)  
DD_HV  
POWER UP  
FUNCTIONAL RANGE  
POWER DOWN  
Figure 11. V and V  
maximum slope  
DD_BV  
DD  
When STANDBY mode is used, further constraints apply to the V /V  
in order to guarantee correct regulator  
DD DD_BV  
functionality during STANDBY exit. This is described on Figure 12.  
STANDBY regulator constraints should normally be guaranteed by implementing equivalent of CSTDBY capacitance on  
application board (capacitance and ESR typical values), but would actually depend on exact characteristics of application  
external regulator.  
V
V
V
DD_HV  
DD_HV  
DD_HV  
(MAX)  
d
dt  
VDDSTDBY  
VDD(STDBY)  
VDD(STDBY)  
V
(MIN)  
DD_LV  
DD_HV  
d
dt  
VDDSTDBY  
V
V
(NOMINAL)  
DD_LV  
0V  
Figure 12. VDD and VDD_BV supply constraints during STANDBY mode exit  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
50  
Freescale Semiconductor  
 
 
Electrical characteristics  
Table 25. Voltage regulator electrical characteristics  
Value  
Unit  
Symbol  
C
Parameter  
Conditions1  
Min Typ Max  
CREGn  
RREG  
SR — Internal voltage regulator external  
capacitance  
200  
500  
0.2  
nF  
SR — Stability capacitor equivalent serial Range:  
resistance  
10 kHz to 20 MHz  
CDEC1  
SR — Decoupling capacitance2 ballast VDD_BV/VSS_LV pair:  
1003 4704  
400  
nF  
V
DD_BV = 4.5 V to 5.5 V  
V
DD_BV/VSS_LV pair:  
VDD_BV = 3 V to 3.6 V  
SR — Decoupling capacitance regulator VDD/VSS pair  
CDEC2  
10  
100  
nF  
supply  
SR — Maximum slope on VDD  
250 mV/µs  
d
VDD  
dt  
VDD(STDBY)  
|
SR — Maximum instant variation on VDD  
during standby exit  
30  
mV  
SR — Maximum slope on VDD during  
standby exit  
15 mV/µs  
d
dt  
VDDSTDBY  
VMREG  
CC T Main regulator output voltage  
Before exiting from  
reset  
1.32  
V
P
After trimming  
1.16 1.28  
IMREG  
SR — Main regulator current provided to  
VDD_LV domain  
150  
mA  
mA  
IMREGINT  
CC D Main regulator module current  
consumption  
IMREG = 200 mA  
IMREG = 0 mA  
After trimming  
2
1
VLPREG  
ILPREG  
CC P Low power regulator output  
voltage  
1.16 1.28  
V
SR — Low power regulator current  
provided to VDD_LV domain  
5
15  
600  
mA  
µA  
ILPREGINT  
CC D Low power regulator module  
current consumption  
ILPREG = 15 mA;  
TA = 55 °C  
ILPREG = 0 mA;  
TA = 55 °C  
VULPREG  
IULPREG  
CC P Ultra low power regulator output  
voltage  
After trimming  
1.16 1.28  
V
SR — Ultra low power regulator current  
provided to VDD_LV domain  
2
5
mA  
µA  
IULPREGINT  
CC D Ultra low power regulator module IULPREG = 5 mA;  
100  
current consumption  
TA = 55 °C  
IULPREG = 0 mA;  
TA = 55 °C  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
51  
 
Electrical characteristics  
Symbol  
Table 25. Voltage regulator electrical characteristics (continued)  
Value  
C
Parameter  
Conditions1  
Unit  
Min Typ Max  
IDD_BV  
CC D In-rush average current on VDD_BV  
during power-up5  
3006 mA  
1
VDD = 3.3 V 10% / 5.0 V 10%, TA = 40 to 125 °C, unless otherwise specified  
This capacitance value is driven by the constraints of the external voltage regulator supplying the VDD_BV voltage.  
A typical value is in the range of 470 nF.  
2
3
4
This value is acceptable to guarantee operation from 4.5 V to 5.5 V  
External regulator and capacitance circuitry must be capable of providing IDD_BV while maintaining supply VDD_BV  
in operating range.  
5
6
In-rush average current is seen only for short time (maximum 20 µs) during power-up and on standby exit. It is  
dependant on the sum of the CREGn capacitances.  
The duration of the in-rush current depends on the capacitance placed on LV pins. BV decoupling capacitors must  
be sized accordingly. Refer to IMREG value for minimum amount of current to be provided in cc.  
The   
| and dVDD(STDBY)/dt system requirement can be used to define the component used for the V supply  
VDD(STDBY)  
DD  
generation. The following two examples describe how to calculate capacitance size:  
Example 1. No regulator (worst case)  
The   
capacitor when the I  
| parameter can be seen as the V voltage drop through the ESR resistance of the regulator stability  
DD  
VDD(STDBY)  
current required to load V  
domain during the standby exit. It is thus possible to define the  
DD_BV  
DD_LV  
maximum equivalent resistance ESR  
(MAX) of the total capacitance on the V supply:  
STDBY  
DD  
1
ESR  
(MAX) =   
|/I  
= (30 mV)/(300 mA) = 0.1  
STDBY  
VDD(STDBY) DD_BV  
The dVDD(STDBY)/dt parameter can be seen as the V voltage drop at the capacitance pin (excluding ESR drop) while  
DD  
providing the I  
supply required to load V  
domain during the standby exit. It is thus possible to define the minimum  
DD_BV  
DD_LV  
equivalent capacitance C  
(MIN) of the total capacitance on the V supply:  
STDBY  
DD  
C
(MIN) = I  
/dVDD(STDBY)/dt = (300 mA)/(15 mV/µs) = 20 µF  
DD_BV  
STDBY  
This configuration is a worst case, with the assumption no regulator is available.  
Example 2. Simplified regulator  
The regulator should be able to provide significant amount of the current during the standby exit process. For example, in case  
of an ideal voltage regulator providing 200 mA current, it is possible to recalculate the equivalent ESR  
(MAX) and  
STDBY  
C
(MIN) as follows:  
STDBY  
ESR  
(MAX) =   
|/(I  
200 mA) = (30 mV)/(100 mA) = 0.3   
STDBY  
VDD(STDBY) DD_BV  
C
(MIN) = (I  
200 mA)/dVDD(STDBY)/dt = (300 mA 200 mA)/(15 mV/µs) = 6.7 µF  
DD_BV  
STDBY  
In case optimization is required, C  
(MIN) and ESR  
(MAX) should be calculated based on the regulator  
STDBY  
STDBY  
characteristics as well as the board V plane characteristics.  
DD  
4.9.2  
Low voltage detector electrical characteristics  
The device implements a Power-on Reset (POR) module to ensure correct power-up initialization, as well as four low voltage  
detectors (LVDs) to monitor the V and the V voltage while device is supplied:  
DD  
DD_LV  
1. Based on typical time for standby exit sequence of 20 µs, ESR(MIN) can actually be considered at ~50 kHz.  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
52  
Freescale Semiconductor  
Electrical characteristics  
POR monitors V during the power-up phase to ensure device is maintained in a safe reset state (refer to RGM  
Destructive Event Status (RGM_DES) Register flag F_POR in device reference manual)  
DD  
LVDHV3 monitors V to ensure device reset below minimum functional supply (refer to RGM Destructive Event  
DD  
Status (RGM_DES) Register flag F_LVD27 in device reference manual)  
LVDHV5 monitors V when application uses device in the 5.0 V ± 10% range (refer to RGM Functional Event Status  
DD  
(RGM_FES) Register flag F_LVD45 in device reference manual)  
LVDLVCOR monitors power domain No. 1 (refer to RGM Destructive Event Status (RGM_DES) Register flag  
F_LVD12_PD1 in device reference manual  
LVDLVBKP monitors power domain No. 0 (refer to RGM Destructive Event Status (RGM_DES) Register flag  
F_LVD12_PD0 in device reference manual)  
NOTE  
When enabled, power domain No. 2 is monitored through LVDLVBKP.  
V
DD  
V
V
LVDHVxH  
LVDHVxL  
RESET  
Figure 13. Low voltage detector vs reset  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
53  
Electrical characteristics  
Table 26. Low voltage detector electrical characteristics  
Value  
Typ  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Max  
VPORUP  
VPORH  
SR P Supply for functional POR module  
CC P Power-on reset threshold  
1.0  
1.5  
5.5  
2.6  
V
TA = 25 °C,  
after trimming  
T
1.5  
2.6  
2.95  
2.9  
VLVDHV3H CC T LVDHV3 low voltage detector high threshold  
VLVDHV3L CC P LVDHV3 low voltage detector low threshold  
VLVDHV5H CC T LVDHV5 low voltage detector high threshold  
VLVDHV5L CC P LVDHV5 low voltage detector low threshold  
VLVDLVCORL CC P LVDLVCOR low voltage detector low threshold  
VLVDLVBKPL CC P LVDLVBKP low voltage detector low threshold  
2.6  
4.5  
3.8  
1.08  
1.08  
4.4  
1.16  
1.16  
1
VDD = 3.3 V 10% / 5.0 V 10%, TA = 40 to 125 °C, unless otherwise specified  
4.10 Power consumption  
Table 27 provides DC electrical characteristics for significant application modes. These values are indicative values; actual  
consumption depends on the application.  
Table 27. Power consumption on VDD_BV and VDD_HV  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
115 1403 mA  
Min Typ Max  
2
IDDMAX  
CC D RUN mode maximum  
average current  
4
IDDRUN  
CC T RUNmodetypicalaverage fCPU = 8 MHz  
current5  
7
mA  
T
fCPU = 16 MHz  
18  
29  
40  
51  
8
T
fCPU = 32 MHz  
P
fCPU = 48 MHz  
100  
125  
15  
P
fCPU = 64 MHz  
IDDHALT  
CC C HALT mode current6  
Slow internal RC oscillator TA = 25 °C  
mA  
(128 kHz) running  
P
TA = 125 °C  
14  
25  
IDDSTOP CC P STOP mode current7  
Slow internal RC oscillator TA = 25 °C  
180 7008 µA  
(128 kHz) running  
D
D
D
P
TA = 55 °C  
500  
1
68  
TA = 85 °C  
TA = 105 °C  
TA = 125 °C  
mA  
2
98  
4.5  
128  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
54  
Freescale Semiconductor  
 
Electrical characteristics  
Table 27. Power consumption on VDD_BV and VDD_HV (continued)  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min Typ Max  
IDDSTDBY2 CC P STANDBY2 mode current9 Slow internal RC oscillator TA = 25 °C  
(128 kHz) running  
30  
75  
100  
µA  
D
TA = 55 °C  
TA = 85 °C  
D
180  
700  
D
TA = 105 °C  
315 1000  
560 1700  
P
TA = 125 °C  
IDDSTDBY1 CC T STANDBY1 mode  
Slow internal RC oscillator TA = 25 °C  
20  
45  
60  
µA  
current10  
D
(128 kHz) running  
TA = 55 °C  
D
D
D
TA = 85 °C  
TA = 105 °C  
TA = 125 °C  
100  
165  
280  
350  
500  
900  
1
2
VDD = 3.3 V 10% / 5.0 V 10%, TA = 40 to 125 °C, unless otherwise specified  
--------Running consumption does not include I/Os toggling which is highly dependent on the application. The given  
value is thought to be a worst case value with all peripherals running, and code fetched from code flash while modify  
operation ongoing on data flash. Notice that this value can be significantly reduced by application: switch off not used  
peripherals (default), reduce peripheral frequency through internal prescaler, fetch from RAM most used functions,  
use low power mode when possible.  
3
4
5
Higher current may be sinked by device during power-up and standby exit. Please refer to in rush current on Table 25.  
RUN current measured with typical application with accesses on both flash and RAM.  
Only for the “P” classification: Data and Code Flash in Normal Power. Code fetched from RAM: Serial IPs CAN and  
LIN in loop back mode, DSPI as Master, PLL as system Clock (4 x Multiplier) peripherals on (eMIOS/CTU/ADC) and  
running at max frequency, periodic SW/WDG timer reset enabled.  
6
Data Flash Power Down. Code Flash in Low Power. SIRC (128 kHz) and FIRC (16 MHz) on. 10 MHz XTAL clock.  
FlexCAN: instances: 0, 1, 2 ON (clocked but not reception or transmission), instances: 4, 5, 6 clock gated. LINFlex:  
instances: 0, 1, 2 ON (clocked but not reception or transmission), instance: 3 clock gated. eMIOS: instance: 0 ON (16  
channels on PA[0]–PA[11] and PC[12]–PC[15]) with PWM 20 kHz, instance: 1 clock gated. DSPI: instance: 0 (clocked  
but no communication). RTC/API ON. PIT ON. STM ON. ADC ON but not conversion except 2 analog watchdog.  
7
8
Only for the “P” classification: No clock, FIRC (16 MHz) off, SIRC (128 kHz) on, PLL off, HPvreg off,  
ULPVreg/LPVreg on. All possible peripherals off and clock gated. Flash in power down mode.  
When going from RUN to STOP mode and the core consumption is > 6 mA, it is normal operation for the main  
regulator module to be kept on by the on-chip current monitoring circuit. This is most likely to occur with junction  
temperatures exceeding 125 °C and under these circumstances, it is possible for the current to initially exceed the  
maximum STOP specification by up to 2 mA. After entering stop, the application junction temperature will reduce to  
the ambient level and the main regulator will be automatically switched off when the load current is below 6 mA.  
9
Only for the “P” classification: ULPreg on, HP/LPVreg off, 32 KB RAM on, device configured for minimum  
consumption, all possible modules switched off.  
10 ULPreg on, HP/LPVreg off, 8 KB RAM on, device configured for minimum consumption, all possible modules  
switched off.  
4.11 Flash memory electrical characteristics  
4.11.1 Program/Erase characteristics  
Table 28 shows the program and erase characteristics.  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
55  
Electrical characteristics  
Table 28. Program and erase specifications  
Parameter  
Value  
Symbol  
C
Unit  
Initial  
max2  
Min  
Typ1  
Max3  
Tdwprogram CC C Double word (64 bits) program time4  
22  
300  
400  
800  
50  
500  
600  
1300  
30  
500  
5000  
5000  
7500  
30  
µs  
ms  
ms  
ms  
µs  
T16Kpperase  
T32Kpperase  
T128Kpperase  
Tesus  
16 KB block preprogram and erase time  
32 KB block preprogram and erase time  
128 KB block preprogram and erase time  
CC D Erase suspend latency  
1
2
3
Typical program and erase times assume nominal supply values and operation at 25 °C.  
Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage.  
The maximum program and erase times occur after the specified number of program/erase cycles. These maximum  
values are characterized but not guaranteed.  
4
Actual hardware programming times. This does not include software overhead.  
Table 29. Flash module life  
Value  
Symbol  
C
Parameter  
Conditions  
Unit  
Min  
Typ  
Max  
P/E  
CC C Number of program/erase cycles 16 KB blocks  
100,000  
cycles  
per block over the operating  
temperature range (TJ)  
32 KB blocks  
10,000 100,000  
1,000 100,000  
128 KB blocks  
Retention CC C Minimum data retention at 85 °C Blocks with  
average ambient temperature1  
0–1,000 P/E cycles  
20  
10  
5
years  
Blocks with  
1,001–10,000 P/E cycles  
Blocks with  
10,001–100,000 P/E cycles  
1
Ambient temperature averaged over duration of application, not to exceed recommended product operating  
temperature range.  
ECC circuitry provides correction of single bit faults and is used to improve further automotive reliability results. Some units  
will experience single bit corrections throughout the life of the product with no impact to product reliability.  
Table 30. Flash read access timing  
Symbol  
C
Parameter  
Conditions1  
Max Unit  
fREAD CC P Maximum frequency for Flash reading  
2 wait states  
1 wait state  
0 wait states  
64  
40  
20  
MHz  
C
C
1
VDD = 3.3 V 10% / 5.0 V 10%, TA = 40 to 125 °C, unless otherwise specified  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
56  
Freescale Semiconductor  
 
Electrical characteristics  
4.11.2 Flash power supply DC characteristics  
Table 31 shows the power supply DC characteristics on external supply.  
Table 31. Flash memory power supply DC electrical characteristics  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min Typ Max  
2
IFREAD CC D Sum of the current consumption on  
VDD_HV and VDD_BV on read access  
Code flash memory module read  
fCPU = 64 MHz3  
15  
15  
15  
33 mA  
Data flash memory module read  
33  
f
CPU = 64 MHz3  
2
IFMOD CC D Sum of the current consumption on  
Program/Erase ongoing while  
reading code flash memory  
registers fCPU = 64 MHz3  
33 mA  
VDD_HV and VDD_BV on matrix  
modification (program/erase)  
Program/Erase ongoing while  
reading data flash memory  
registers fCPU = 64 MHz3  
15  
33  
IFLPW CC D Sum of the current consumption on  
VDD_HV and VDD_BV  
During code flash memory  
low-power mode  
900 µA  
900  
During data flash memory  
low-power mode  
IFPWD CC D Sum of the current consumption on  
VDD_HV and VDD_BV  
During code flash memory  
power-down mode  
150 µA  
150  
During data flash memory  
power-down mode  
1
VDD = 3.3 V 10% / 5.0 V 10%, TA = 40 to 125 °C, unless otherwise specified  
This value is only relative to the actual duration of the read cycle  
fCPU 64 MHz can be achieved only at up to 105 °C  
2
3
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
57  
 
Electrical characteristics  
4.11.3 Start-up/Switch-off timings  
Table 32. Start-up time/Switch-off time  
Value  
Typ  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Max  
TFLARSTEXIT CC T Delay for Flash module to exit reset mode  
T
Code Flash  
Data Flash  
Code Flash  
Data Flash  
Code Flash  
Data Flash  
Code Flash  
Data Flash  
Code Flash  
Data Flash  
125  
125  
0.5  
0.5  
30  
µs  
TFLALPEXIT  
CC T Delay for Flash module to exit low-power  
mode  
T
TFLAPDEXIT  
CC T Delay for Flash module to exit power-down  
mode  
T
30  
TFLALPENTRY CC T Delay for Flash module to enter low-power  
0.5  
0.5  
1.5  
1.5  
mode  
T
TFLAPDENTRY CC T  
Delay for Flash module to enter power-down  
mode  
T
1
VDD = 3.3 V 10% / 5.0 V 10%, TA = 40 to 125 °C, unless otherwise specified  
4.12 Electromagnetic compatibility (EMC) characteristics  
Susceptibility tests are performed on a sample basis during product characterization.  
4.12.1 Designing hardened software to avoid noise problems  
EMC characterization and optimization are performed at component level with a typical application environment and simplified  
MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in  
particular.  
Therefore it is recommended that the user apply EMC software optimization and prequalification tests in relation with the EMC  
level requested for his application.  
Software recommendations:The software flowchart must include the management of runaway conditions such as:  
— Corrupted program counter  
— Unexpected reset  
— Critical data corruption (control registers...)  
Prequalification trials:Most of the common failures (unexpected reset and program counter corruption) can be  
reproduced by manually forcing a low state on the reset pin or the oscillator pins for 1 second.  
To complete these trials, ESD stress can be applied directly on the device. When unexpected behavior is detected, the  
software can be hardened to prevent unrecoverable errors occurring.  
4.12.2 Electromagnetic interference (EMI)  
The product is monitored in terms of emission based on a typical application. This emission test conforms to the IEC 61967-1  
standard, which specifies the general conditions for EMI measurements.  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
58  
Freescale Semiconductor  
Electrical characteristics  
1,2  
Table 33. EMI radiated emission measurement  
Value  
Unit  
Symbol  
C
Parameter  
Conditions  
Min Typ Max  
SR — Scan range  
0.150  
64  
1000 MHz  
fCPU SR — Operating frequency  
VDD_LV SR — LV operating voltages  
SEMI CC T Peak level  
MHz  
V
1.28  
VDD = 5 V, TA = 25 °C,  
LQFP144 package  
No PLL frequency  
modulation  
18 dBµV  
Test conforming to IEC 61967-2,  
fOSC = 8 MHz/fCPU = 64 MHz  
2% PLL frequency  
modulation  
14 dBµV  
1
EMI testing and I/O port waveforms per IEC 61967-1, -2, -4  
2
For information on conducted emission and susceptibility measurement (norm IEC 61967-4), please contact your  
local marketing representative.  
4.12.3 Absolute maximum ratings (electrical sensitivity)  
Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed in order to determine  
its performance in terms of electrical sensitivity.  
4.12.3.1 Electrostatic discharge (ESD)  
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according  
to each pin combination. The sample size depends on the number of supply pins in the device (3 parts*(n+1) supply pin). This  
test conforms to the AEC-Q100-002/-003/-011 standard.  
1 2  
Table 34. ESD absolute maximum ratings  
Symbol  
C
Ratings  
Conditions  
TA = 25 °C  
Class Max value  
Unit  
VESD(HBM) CC T Electrostatic discharge voltage  
(Human Body Model)  
H1C  
2000  
V
conforming to AEC-Q100-002  
VESD(MM) CC T Electrostatic discharge voltage  
(Machine Model)  
TA = 25 °C  
conforming to AEC-Q100-003  
M2  
200  
VESD(CDM) CC T Electrostatic discharge voltage  
(Charged Device Model)  
TA = 25 °C  
conforming to AEC-Q100-011  
C3A  
500  
750 (corners)  
1
All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated  
Circuits.  
2
A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device  
specification requirements. Complete DC parametric and functional testing shall be performed per applicable  
device specification at room temperature followed by hot temperature, unless specified otherwise in the device  
specification.  
4.12.3.2 Static latch-up (LU)  
Two complementary static tests are required on six parts to assess the latch-up performance:  
A supply overvoltage is applied to each power supply pin.  
A current injection is applied to each input, output and configurable I/O pin.  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
59  
Electrical characteristics  
These tests are compliant with the EIA/JESD 78 IC latch-up standard.  
Table 35. Latch-up results  
Parameter Conditions  
Symbol  
LU CC  
C
Class  
T Static latch-up class  
TA = 125 °C  
II level A  
conforming to JESD 78  
4.13 Fast external crystal oscillator (4 to 16 MHz) electrical  
characteristics  
The device provides an oscillator/resonator driver. Figure 14 describes a simple model of the internal oscillator driver and  
provides an example of a connection for an oscillator or a resonator.  
Table 36 provides the parameter description of 4 MHz to 16 MHz crystals used for the design simulations.  
EXTAL  
C1  
EXTAL  
XTAL  
C2  
DEVICE  
V
DD  
I
R
EXTAL  
XTAL  
DEVICE  
XTAL  
DEVICE  
Notes:  
1. XTAL/EXTAL must not be directly used to drive external circuits  
2. A series resistor may be required, according to crystal oscillator supplier recommendations.  
Figure 14. Crystal oscillator and resonator connection scheme  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
60  
Freescale Semiconductor  
 
Electrical characteristics  
Shunt  
Table 36. Crystal description  
Crystal  
Crystal  
motional  
capacitance  
(Cm) fF  
Crystal  
motional  
inductance  
(Lm) mH  
Load on  
xtalin/xtalout  
C1 = C2  
capacitance  
between  
xtalout  
Nominal  
frequency  
(MHz)  
equivalent  
series  
NDK crystal  
reference  
resistance  
ESR   
(pF)1  
and xtalin  
C02 (pF)  
4
NX8045GB  
NX5032GA  
300  
300  
150  
120  
120  
2.68  
2.46  
2.93  
3.11  
3.90  
591.0  
160.7  
86.6  
21  
17  
15  
15  
10  
2.93  
3.01  
2.91  
2.93  
3.00  
8
10  
12  
16  
56.5  
25.3  
1
2
The values specified for C1 and C2 are the same as used in simulations. It should be ensured that the testing  
includes all the parasitics (from the board, probe, crystal, etc.) as the AC / transient behavior depends upon them.  
The value of C0 specified here includes 2 pF additional capacitance for parasitics (to be seen with bond-pads,  
package, etc.).  
S_MTRANS bit (ME_GS register)  
‘1’  
‘0’  
V
XTAL  
1/f  
FXOSC  
V
FXOSC  
90%  
10%  
V
FXOSCOP  
t
valid internal clock  
FXOSCSU  
Figure 15. Fast external crystal oscillator (4 to 16 MHz) timing diagram  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
61  
 
Electrical characteristics  
Table 37. Fast external crystal oscillator (4 to 16 MHz) electrical characteristics  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
fFXOSC SR — Fast external crystal  
oscillator frequency  
4.0  
16.0  
MHz  
gmFXOSC CC C Fast external crystal  
VDD = 3.3 V 10%,  
2.2  
2.0  
2.7  
2.5  
8.2  
7.4  
9.7  
9.2  
mA/V  
oscillator transconductance PAD3V5V = 1  
OSCILLATOR_MARGIN = 0  
CC P  
CC C  
CC C  
VDD = 5.0 V 10%,  
PAD3V5V = 0  
OSCILLATOR_MARGIN = 0  
V
DD = 3.3 V 10%,  
PAD3V5V = 1  
OSCILLATOR_MARGIN = 1  
V
DD = 5.0 V 10%,  
PAD3V5V = 0  
OSCILLATOR_MARGIN = 1  
VFXOSC CC T Oscillation amplitude at  
EXTAL  
fOSC = 4 MHz,  
OSCILLATOR_MARGIN = 0  
1.3  
1.3  
V
f
OSC = 16 MHz,  
OSCILLATOR_MARGIN = 1  
VFXOSCOP CC C Oscillation operating point  
0.95  
2
3
V
,2  
IFXOSC  
CC T Fast external crystal  
oscillator consumption  
mA  
tFXOSCSU CC T Fast external crystal  
oscillator start-up time  
fOSC = 4 MHz,  
OSCILLATOR_MARGIN = 0  
6
ms  
fOSC = 16 MHz,  
OSCILLATOR_MARGIN = 1  
1.8  
VIH  
VIL  
SR P Input high level CMOS  
(Schmitt Trigger)  
Oscillator bypass mode  
Oscillator bypass mode  
0.65VDD  
0.4  
VDD+0.4  
0.35VDD  
V
V
SR P Input low level CMOS  
(Schmitt Trigger)  
1
2
VDD = 3.3 V 10% / 5.0 V 10%, TA = 40 to 125 °C, unless otherwise specified  
Stated values take into account only analog module consumption but not the digital contributor (clock tree and  
enabled peripherals)  
4.14 Slow external crystal oscillator (32 kHz) electrical characteristics  
The device provides a low power oscillator/resonator driver.  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
62  
Freescale Semiconductor  
Electrical characteristics  
OSC32K_EXTAL  
OSC32K_EXTAL  
C1  
C2  
OSC32K_XTAL  
OSC32K_XTAL  
DEVICE  
DEVICE  
Note: OSC32K_XTAL/OSC32K_EXTAL must not be directly used to drive external circuits.  
Figure 16. Crystal oscillator and resonator connection scheme  
C0  
Crystal  
Rm  
Lm  
Cm  
C1  
C2  
C1  
C2  
Figure 17. Equivalent circuit of a quartz crystal  
1
Table 38. Crystal motional characteristics  
Value  
Typ  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Max  
Lm  
Motional inductance  
Motional capacitance  
18  
11.796  
28  
KH  
fF  
Cm  
2
C1/C2 Load capacitance at OSC32K_XTAL and  
OSC32K_EXTAL with respect to ground2  
pF  
AC coupled @ C0 = 2.85 pF4  
AC coupled @ C0 = 4.9 pF4  
AC coupled @ C0 = 7.0 pF4  
AC coupled @ C0 = 9.0 pF4  
65  
50  
35  
30  
k  
3
Rm  
Motional resistance  
1
Crystal used: Epson Toyocom MC306  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
63  
Electrical characteristics  
2
This is the recommended range of load capacitance at OSC32K_XTAL and OSC32K_EXTAL with respect to  
ground. It includes all the parasitics due to board traces, crystal and package.  
3
4
Maximum ESR (Rm) of the crystal is 50 k  
C0 includes a parasitic capacitance of 2.0 pF between OSC32K_XTAL and OSC32K_EXTAL pins  
OSCON bit (OSC_CTL register)  
1
0
V
OSC32K_XTAL  
1/f  
SXOSC  
V
SXOSC  
90%  
10%  
T
valid internal clock  
SXOSCSU  
Figure 18. Slow external crystal oscillator (32 kHz) timing diagram  
Table 39. Slow external crystal oscillator (32 kHz) electrical characteristics  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
fSXOSC SR — Slow external crystal oscillator frequency  
VSXOSC CC T Oscillation amplitude  
32  
32.768  
2.1  
40  
8
kHz  
V
ISXOSCBIAS CC T Oscillation bias current  
2.5  
µA  
µA  
s
ISXOSC CC T Slow external crystal oscillator consumption  
TSXOSCSU CC T Slow external crystal oscillator start-up time  
22  
1
2
VDD = 3.3 V 10% / 5.0 V 10%, TA = 40 to 125 °C, unless otherwise specified. Values are specified for no  
neighbor GPIO pin activity. If oscillator is enabled (OSC32K_XTAL and OSC32K_EXTAL pins), neighboring pins  
should not toggle.  
Start-up time has been measured with EPSON TOYOCOM MC306 crystal. Variation may be seen with other crystal.  
4.15 FMPLL electrical characteristics  
The device provides a frequency-modulated phase-locked loop (FMPLL) module to generate a fast system clock from the main  
oscillator driver.  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
64  
Freescale Semiconductor  
Electrical characteristics  
Table 40. FMPLL electrical characteristics  
Value  
Unit  
Symbol  
C
Parameter  
Conditions1  
Min  
Typ  
Max  
fPLLIN SR — FMPLL reference clock2  
4
64  
60  
MHz  
%
PLLIN SR — FMPLL reference clock duty  
40  
cycle2  
fPLLOUT CC D FMPLL output clock frequency  
16  
64  
MHz  
3
fVCO  
CC P VCO frequency without  
frequency modulation  
256  
512 MHz  
C VCO frequency with frequency  
modulation  
245  
533  
fCPU SR — System clock frequency  
fFREE CC P Free-running frequency  
tLOCK CC P FMPLL lock time  
20  
–4  
40  
64  
MHz  
150 MHz  
Stable oscillator (fPLLIN = 16 MHz)  
fsys maximum  
100  
4
µs  
%
tSTJIT CC — FMPLL short term jitter4  
tLTJIT CC — FMPLL long term jitter  
fPLLIN = 16 MHz (resonator),  
fPLLCLK @ 64 MHz, 4000 cycles  
10  
ns  
IPLL  
CC C FMPLL consumption  
TA = 25 °C  
4
mA  
1
2
VDD = 3.3 V 10% / 5.0 V 10%, TA = 40 to 125 °C, unless otherwise specified.  
PLLIN clock retrieved directly from FXOSC clock. Input characteristics are granted when oscillator is used in  
functional mode. When bypass mode is used, oscillator input clock should verify fPLLIN and PLLIN  
Frequency modulation is considered 4%  
.
3
4
Short term jitter is measured on the clock rising edge at cycle n and n+4.  
4.16 Fast internal RC oscillator (16 MHz) electrical characteristics  
The device provides a 16 MHz fast internal RC oscillator. This is used as the default clock at the power-up of the device.  
Table 41. Fast internal RC oscillator (16 MHz) electrical characteristics  
Value  
Symbol  
fFIRC  
2,  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
CC P Fast internal RC oscillator high  
TA = 25 °C, trimmed  
12  
16  
20  
MHz  
frequency  
SR —  
IFIRCRUN CC T Fast internal RC oscillator high  
frequency current in running mode  
TA = 25 °C, trimmed  
200  
µA  
µA  
IFIRCPWD CC D Fast internal RC oscillator high  
frequency current in power down  
mode  
TA = 125 °C  
10  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
65  
Electrical characteristics  
Table 41. Fast internal RC oscillator (16 MHz) electrical characteristics (continued)  
Value  
Typ  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Max  
IFIRCSTOP CC T Fast internal RC oscillator high  
frequency and system clock current  
in stop mode  
TA = 25 °C sysclk = off  
500  
600  
700  
900  
1250  
1.1  
2.0  
µA  
sysclk = 2 MHz  
sysclk = 4 MHz  
sysclk = 8 MHz  
sysclk = 16 MHz  
tFIRCSU CC C Fast internal RC oscillator start-up VDD = 5.0 V 10%  
time  
µs  
%
%
%
FIRCPRE CC T Fast internal RC oscillator precision TA = 25 °C  
1  
5  
1.6  
+1  
after software trimming of fFIRC  
FIRCTRIM CC T Fast internal RC oscillator trimming TA = 25 °C  
step  
FIRCVAR CC P Fast internal RC oscillator variation  
in overtemperature and supply with  
respect to fFIRC at TA = 25 °C in  
+5  
high-frequency configuration  
1
2
VDD = 3.3 V 10% / 5.0 V 10%, TA = 40 to 125 °C, unless otherwise specified.  
This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is  
ON.  
4.17 Slow internal RC oscillator (128 kHz) electrical characteristics  
The device provides a 128 kHz slow internal RC oscillator. This can be used as the reference clock for the RTC module.  
Table 42. Slow internal RC oscillator (128 kHz) electrical characteristics  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min Typ Max  
fSIRC  
CC P Slow internal RC oscillator low  
TA = 25 °C, trimmed  
100  
128  
150  
5
kHz  
frequency  
SR —  
2,  
ISIRC  
CC C Slow internal RC oscillator low  
frequency current  
TA = 25 °C, trimmed  
µA  
µs  
%
tSIRCSU  
CC P Slow internal RC oscillator start-up TA = 25 °C, VDD = 5.0 V 10%  
time  
2  
8
12  
+2  
SIRCPRE CC C Slow internal RC oscillator precision TA = 25 °C  
2.7  
after software trimming of fSIRC  
SIRCTRIM CC C Slow internal RC oscillator trimming  
step  
SIRCVAR CC C Slow internal RC oscillator variation High frequency configuration  
in temperature and supply with  
10  
+10  
%
respect to fSIRC at TA = 55 °C in high  
frequency configuration  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
66  
Freescale Semiconductor  
Electrical characteristics  
1
2
VDD = 3.3 V 10% / 5.0 V 10%, TA = 40 to 125 °C, unless otherwise specified.  
This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is  
ON.  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
67  
Electrical characteristics  
4.18 ADC electrical characteristics  
4.18.1 Introduction  
The device provides a 10-bit Successive Approximation Register (SAR) analog-to-digital converter.  
Offset error (E )  
Gain error (E )  
G
O
1023  
1022  
1021  
1020  
1019  
1 LSB ideal = V  
/ 1024  
DD_ADC  
1018  
(2)  
code out  
7
(1)  
6
5
(1) Example of an actual transfer curve  
(2) The ideal transfer curve  
(5)  
4
3
(3) Differential non-linearity error (DNL)  
(4) Integral non-linearity error (INL)  
(5) Center of a step of the actual transfer curve  
(4)  
(3)  
2
1
1 LSB (ideal)  
0
1
2
3
4
5
6
7
1017 1018 1019 1020 1021 1022 1023  
(LSB  
V
)
ideal  
in(A)  
Offset error (E )  
O
Figure 19. ADC characteristic and error definitions  
4.18.2 Input impedance and ADC accuracy  
In the following analysis, the input circuit corresponding to the precise channels is considered.  
To preserve the accuracy of the A/D converter, it is necessary that analog input pins have low AC impedance. Placing a capacitor  
with good high frequency characteristics at the input pin of the device can be effective: the capacitor should be as large as  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
68  
Freescale Semiconductor  
Electrical characteristics  
possible, ideally infinite. This capacitor contributes to attenuating the noise present on the input pin; furthermore, it sources  
charge during the sampling phase, when the analog signal source is a high-impedance source.  
A real filter can typically be obtained by using a series resistance with a capacitor on the input pin (simple RC filter). The RC  
filtering may be limited according to the value of source impedance of the transducer or circuit supplying the analog signal to  
be measured. The filter at the input pins must be designed taking into account the dynamic characteristics of the input signal  
(bandwidth) and the equivalent input impedance of the ADC itself.  
In fact a current sink contributor is represented by the charge sharing effects with the sampling capacitance: C being  
S
substantially a switched capacitance, with a frequency equal to the conversion rate of the ADC, it can be seen as a resistive path  
to ground. For instance, assuming a conversion rate of 1 MHz, with C equal to 3 pF, a resistance of 330 kis obtained (R  
S
EQ  
= 1 / (f *C ), where f represents the conversion rate at the considered channel). To minimize the error induced by the voltage  
c
S
c
partitioning between this resistance (sampled voltage on C ) and the sum of R + R + R + R + R , the external circuit  
S
S
F
L
SW  
AD  
must be designed to respect the Equation 4:  
Eqn. 4  
R + R + R + R  
+ R  
S
F
L
SW  
AD  
1
2
--------------------------------------------------------------------------  
V
-- LSB  
A
R
EQ  
Equation 4 generates a constraint for external network design, in particular on a resistive path. Internal switch resistances (R  
SW  
and R ) can be neglected with respect to external resistances.  
AD  
EXTERNAL CIRCUIT  
INTERNAL CIRCUIT SCHEME  
V
DD  
Channel  
Sampling  
Selection  
Source  
Filter  
Current Limiter  
R
R
R
R
R
AD  
S
F
L
SW1  
V
C
C
C
C
S
A
F
P1  
P2  
R : Source impedance  
S
R : Filter resistance  
F
C : Filter capacitance  
F
R : Current limiter resistance  
L
R
R
: Channel selection switch impedance  
: Sampling switch impedance  
SW1  
AD  
C : Pin capacitance (two contributions, C and C )  
P2  
P
P1  
C : Sampling capacitance  
S
Figure 20. Input equivalent circuit (precise channels)  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
69  
 
 
 
Electrical characteristics  
EXTERNAL CIRCUIT  
Filter  
INTERNAL CIRCUIT SCHEME  
V
DD  
Channel  
Selection  
Extended  
Switch  
Sampling  
Source  
R
Current Limiter  
R
R
R
F
R
L
R
AD  
SW2  
S
SW1  
C
S
C
V
C
F
C
C
P2  
A
P1  
P3  
R : Source impedance  
S
R : Filter resistance  
F
C : Filter capacitance  
F
R : Current limiter resistance  
L
R
R
: Channel selection switch impedance (two contributions, R  
: Sampling switch impedance  
and R  
)
SW1  
SW1  
SW2  
AD  
C : Pin capacitance (two contributions, C , C and C )  
P3  
P
P1  
P2  
C : Sampling capacitance  
S
Figure 21. Input equivalent circuit (extended channels)  
A second aspect involving the capacitance network shall be considered. Assuming the three capacitances C , C and C are  
F
P1  
P2  
initially charged at the source voltage V (refer to the equivalent circuit in Figure 20): A charge sharing phenomenon is installed  
A
when the sampling phase is started (A/D switch close).  
Voltage transient on CS  
V
CS  
V
A
V <0.5 LSB  
V
A2  
1
2
1 < (RSW + RAD) CS << ts  
V
A1  
2 = RL (CS + CP1 + CP2)  
t
t
s
Figure 22. Transient behavior during sampling phase  
In particular two different transient periods can be distinguished:  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
70  
Freescale Semiconductor  
Electrical characteristics  
1. A first and quick charge transfer from the internal capacitance C and C to the sampling capacitance C occurs (C  
P1  
P2  
S
S
is supposed initially completely discharged): considering a worst case (since the time constant in reality would be  
faster) in which C is reported in parallel to C (call C = C + C ), the two capacitances C and C are in series,  
P2  
P1  
P
P1  
P2  
P
S
and the time constant is  
Eqn. 5  
C C  
P
S
--------------------  
   
= R  
+ R  
1
SW  
AD  
C + C  
P
S
Equation 5 can again be simplified considering only C as an additional worst condition. In reality, the transient is  
S
faster, but the A/D converter circuitry has been designed to be robust also in the very worst case: the sampling time t  
is always much longer than the internal time constant:  
s
Eqn. 6  
R  
+ R  
C « t  
1
SW  
AD  
S
s
The charge of C and C is redistributed also on C , determining a new value of the voltage V on the capacitance  
P1  
P2  
S
A1  
according to Equation 7:  
Eqn. 7  
V
C + C + C = V C + C  
A1  
S
P1  
P2  
A
P1  
P2  
2. A second charge transfer involves also C (that is typically bigger than the on-chip capacitance) through the resistance  
F
R : again considering the worst case in which C and C were in parallel to C (since the time constant in reality  
L
P2  
S
P1  
would be faster), the time constant is:  
Eqn. 8  
R C + C + C  
P1 P2  
2
L
S
In this case, the time constant depends on the external circuit: in particular imposing that the transient is completed  
well before the end of sampling time t , a constraints on R sizing is obtained:  
s
L
Eqn. 9  
10 = 10 R C + C + C t  
P1 P2 s  
2
L
S
Of course, R shall be sized also according to the current limitation constraints, in combination with R (source  
L
S
impedance) and R (filter resistance). Being C definitively bigger than C , C and C , then the final voltage V  
F
F
P1 P2  
S
A2  
(at the end of the charge transfer transient) will be much higher than V . Equation 10 must be respected (charge  
A1  
balance assuming now C already charged at V ):  
S
A1  
Eqn. 10  
V
C + C + C + C = V C + V C + C + C   
P1 P2 A1 P1 P2  
A2  
S
F
A
F
S
The two transients above are not influenced by the voltage source that, due to the presence of the R C filter, is not able to  
F
F
provide the extra charge to compensate the voltage drop on C with respect to the ideal source V ; the time constant R C of  
S
A
F F  
the filter is very high with respect to the sampling time (t ). The filter is typically designed to act as anti-aliasing.  
s
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
71  
 
 
 
Electrical characteristics  
Analog source bandwidth (VA)  
tc < 2 RFCF (conversion rate vs. filter pole)  
Noise  
fF = f0 (anti-aliasing filtering condition)  
2 f0 < fC (Nyquist)  
f0  
f
Anti-aliasing filter (fF = RC filter pole)  
Sampled signal spectrum (fC = conversion rate)  
fF  
f0  
fC  
f
f
Figure 23. Spectral representation of input signal  
Calling f the bandwidth of the source signal (and as a consequence the cut-off frequency of the anti-aliasing filter, f ),  
0
F
according to the Nyquist theorem the conversion rate f must be at least 2f ; it means that the constant time of the filter is greater  
C
0
than or at least equal to twice the conversion period (t ). Again the conversion period t is longer than the sampling time t ,  
c
c
s
which is just a portion of it, even when fixed channel continuous conversion mode is selected (fastest conversion rate at a  
specific channel): in conclusion it is evident that the time constant of the filter R C is definitively much higher than the  
F
F
sampling time t , so the charge level on C cannot be modified by the analog signal source during the time in which the sampling  
s
S
switch is closed.  
The considerations above lead to impose new constraints on the external circuit, to reduce the accuracy error due to the voltage  
drop on C ; from the two charge balance equations above, it is simple to derive Equation 11 between the ideal and real sampled  
S
voltage on C :  
S
Eqn. 11  
V
C
+ C + C  
P2  
----------- = -------------------------------------------------------  
A2  
P1  
F
V
C
+ C + C + C  
A
P1  
P2 S  
F
From this formula, in the worst case (when V is maximum, that is for instance 5 V), assuming to accept a maximum error of  
A
half a count, a constraint is evident on C value:  
F
Eqn. 12  
C
2048 C  
F
S
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
72  
Freescale Semiconductor  
 
Electrical characteristics  
4.18.3 ADC electrical characteristics  
Table 43. ADC input leakage current  
Value  
Unit  
Symbol C  
Parameter  
Conditions  
Min  
Typ  
Max  
ILKG CC D Input leakage current TA = 40 °C No current injection on adjacent pin  
1
1
70  
70  
nA  
D
D
D
P
TA = 25 °C  
TA = 85 °C  
TA = 105 °C  
TA = 125 °C  
3
100  
200  
400  
8
45  
Table 44. ADC conversion characteristics  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
0.1  
VSS_ADC SR — Voltage on  
VSS_HV_ADC (ADC  
0.1  
V
reference) pin with  
respect to ground  
2
(VSS  
)
VDD_ADC SR — Voltage on  
VDD_HV_ADC pin  
VDD0.1  
VDD+0.1  
V
V
(ADC reference) with  
respect to ground  
(VSS  
)
VAINx SR — Analog input voltage3  
VSS_ADC0.1  
VDD_ADC+0.1  
fADC SR — ADC analog frequency  
6
32 + 4% MHz  
ADC_SYS SR — ADC digital clock duty ADCLKSEL = 14  
45  
55  
50  
4
%
µA  
mA  
cycle (ipg_clk)  
IADCPWD SR — ADC0 consumption in  
power down mode  
IADCRUN SR — ADC0 consumption in  
running mode  
tADC_PU SR — ADC power up delay  
0.5  
1.5  
µs  
µs  
ts  
CC  
T
Sampling time5  
fADC = 32 MHz, INPSAMP = 17  
fADC = 6 MHz, INPSAMP = 255  
fADC = 32 MHz, INPCMP = 2  
42  
tc  
CC  
P
Conversion time6  
0.625  
µs  
CS  
CC D ADC input sampling  
capacitance  
3
3
1
pF  
CP1  
CP2  
CC D ADC input pin  
capacitance 1  
pF  
pF  
CC D ADC input pin  
capacitance 2  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
73  
Electrical characteristics  
Table 44. ADC conversion characteristics (continued)  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
CP3  
CC D ADC input pin  
capacitance 3  
1
pF  
k  
k  
k  
mA  
RSW1 CC D Internal resistance of  
analog source  
5  
5  
3
2
2
5
5
RSW2 CC D Internal resistance of  
analog source  
RAD CC D Internal resistance of  
analog source  
IINJ  
SR — Input current Injection Current  
VDD =  
injection on one 3.3 V 10%  
ADC input,  
VDD  
=
different from  
the converted  
one  
5.0 V 10%  
| INL | CC  
| DNL | CC  
T
T
Absolute value for  
integral non-linearity  
No overload  
0.5  
0.5  
1.5  
1.0  
LSB  
LSB  
Absolute differential  
non-linearity  
No overload  
| EO  
| EG  
|
|
CC  
CC  
T
T
P
T
Absolute offset error  
2  
3  
0.5  
0.6  
0.6  
2
LSB  
LSB  
LSB  
Absolute gain error  
TUEp CC  
Total unadjusted error7 Without current injection  
for precise channels,  
With current injection  
input only pins  
3
TUEx CC  
T
T
Total unadjusted error7 Without current injection  
3  
4  
1
3
4
LSB  
for extended channel  
With current injection  
1
2
3
VDD = 3.3 V 10% / 5.0 V 10%, TA = 40 to 125 °C, unless otherwise specified.  
Analog and digital VSS must be common (to be tied together externally).  
VAINx may exceed VSS_ADC and VDD_ADC limits, remaining on absolute maximum ratings, but the results of the  
conversion will be clamped respectively to 0x000 or 0x3FF.  
4
5
Duty cycle is ensured by using system clock without prescaling. When ADCLKSEL = 0, the duty cycle is ensured  
by internal divider by 2.  
During the sampling time the input capacitance CS can be charged/discharged by the external source. The internal  
resistance of the analog source must allow the capacitance to reach its final voltage level within ts. After the end of  
the sampling time ts, changes of the analog input voltage have no effect on the conversion result. Values for the  
sample clock ts depend on programming.  
6
7
This parameter does not include the sampling time ts, but only the time for determining the digital result and the time  
to load the result’s register with the conversion result.  
Total Unadjusted Error: The maximum error that occurs without adjusting Offset and Gain errors. This error is a  
combination of Offset, Gain and Integral Linearity errors.  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
74  
Freescale Semiconductor  
Electrical characteristics  
4.19 On-chip peripherals  
4.19.1 Current consumption  
1
Table 45. On-chip peripherals current consumption  
Symbol  
C
Parameter  
Conditions  
Total (static + dynamic)  
Typical value2 Unit  
IDD_BV(CAN)  
CC T CAN (FlexCAN) supply  
current on VDD_BV  
Bitrate:  
500 Kbyte/s consumption:  
8 * fperiph + 85 µA  
• FlexCAN in loop-back  
mode  
• XTAL @ 8 MHz used as  
CAN engine clock source  
• Message sending period  
is 580 µs  
Bitrate:  
125 Kbyte/s  
8 * fperiph + 27  
IDD_BV(eMIOS) CC T eMIOS supply current on Static consumption:  
29 * fperiph  
µA  
VDD_BV  
• eMIOS channel OFF  
• Global prescaler enabled  
Dynamic consumption:  
3
• It does not change varying the  
frequency (0.003 mA)  
IDD_BV(SCI)  
CC T SCI (LINFlex) supply  
current on VDD_BV  
Total (static + dynamic) consumption:  
• LIN mode  
5 * fperiph + 31 µA  
• Baudrate: 20 Kbyte/s  
IDD_BV(SPI)  
CC T SPI (DSPI) supply current Ballast static consumption (only clocked)  
1
µA  
on VDD_BV  
Ballast dynamic consumption  
16 * fperiph  
(continuous communication):  
• Baudrate: 2 Mbit/s  
Transmission every 8 µs  
• Frame: 16 bits  
IDD_BV(ADC)  
CC T ADC supply current on  
VDD_BV  
VDD = 5.5 V Ballast static consumption  
(no conversion)  
41 * fperiph  
5 * fperiph  
µA  
µA  
Ballast dynamic  
consumption  
(continuous conversion)3  
IDD_HV_ADC(ADC) CC T ADC supply current on  
VDD_HV_ADC  
VDD = 5.5 V Analog static consumption  
(no conversion)  
2 * fperiph  
Analog dynamic  
consumption  
75 * fperiph + 32  
(continuous conversion)  
IDD_HV(FLASH) CC T Code Flash + Data Flash VDD = 5.5 V  
supply current on VDD_HV  
8.21  
mA  
µA  
IDD_HV(PLL)  
CC T PLL supply current on  
VDD_HV  
VDD = 5.5 V  
30 * fperiph  
1
2
3
Operating conditions: TA = 25 °C, fperiph = 8 MHz to 64 MHz  
fperiph is an absolute value.  
During the conversion, the total current consumption is given from the sum of the static and dynamic consumption,  
i.e., (41 + 5) * fperiph  
.
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
75  
4.19.2 DSPI characteristics  
1
Table 46. DSPI characteristics  
DSPI0/DSPI1  
DSPI2  
No.  
Symbol  
C
Parameter  
Unit  
Min  
Typ  
Max  
Min  
Typ  
Max  
1
tSCK  
SR D SCK cycle time  
Master mode  
(MTFE = 0)  
125  
333  
ns  
D
D
D
Slave mode  
(MTFE = 0)  
125  
83  
333  
125  
125  
Master mode  
(MTFE = 1)  
Slave mode  
(MTFE = 1)  
83  
fDSPI  
SR D DSPI digital controller frequency  
fCPU  
1302  
fCPU  
153  
MHz  
ns  
tCSC CC D Internal delay between pad Master mode  
associated to SCK and pad  
associated to CSn in  
master mode for CSn10  
tASC CC D Internal delay between pad Master mode  
associated to SCK and pad  
associated to CSn in  
master mode for CSn11  
tCSCext SR D CS to SCK delay  
1303  
1303  
ns  
4
2
3
4
Slave mode  
Slave mode  
Master mode  
Slave mode  
Slave mode  
32  
32  
ns  
ns  
ns  
5
tASCext SR D After SCK delay  
1/fDSPI + 5  
tSCK/2  
1/fDSPI + 5  
tSDC  
CC D SCK duty cycle  
SR D  
tSCK/2  
tSCK/2  
tSCK/2  
1/fDSPI + 70  
1/fDSPI + 130  
5
6
7
8
9
tA  
SR D Slave access time  
7
ns  
ns  
ns  
ns  
ns  
tDI  
SR D Slave SOUT disable time Slave mode  
PCSx to PCSS time  
7
tPCSC  
tPASC  
tSUI  
0
0
PCSS to PCSx time  
0
0
SR D Data setup time for inputs Master mode  
Slave mode  
43  
5
145  
5
 
 
 
 
 
 
 
1
Table 46. DSPI characteristics (continued)  
DSPI0/DSPI1  
DSPI2  
Typ  
No.  
Symbol  
C
Parameter  
Unit  
Min  
Typ  
Max  
Min  
Max  
10  
tHI  
SR D Data hold time for inputs  
Master mode  
Slave mode  
0
26  
0
32  
52  
0
ns  
26  
0
7
11  
12  
tSUO  
CC D Data valid after SCK edge Master mode  
Slave mode  
50  
160  
ns  
ns  
7
tHO  
CC D Data hold time for outputs Master mode  
Slave mode  
8
13  
1
2
Operating conditions: CL = 10 to 50 pF, SlewIN = 3.5 to 15 ns.  
Maximum value is reached when CSn pad is configured as SLOW pad while SCK pad is configured as MEDIUM. A positive value means that SCK  
starts before CSn is asserted. DSPI2 has only SLOW SCK available.  
3
4
5
Maximum value is reached when CSn pad is configured as MEDIUM pad while SCK pad is configured as SLOW. A positive value means that CSn is  
deasserted before SCK. DSPI0 and DSPI1 have only MEDIUM SCK available.  
The tCSC delay value is configurable through a register. When configuring tCSC (using PCSSCK and CSSCK fields in DSPI_CTARx registers), delay  
between internal CS and internal SCK must be higher than tCSC to ensure positive tCSCext  
The tASC delay value is configurable through a register. When configuring tASC (using PASC and ASC fields in DSPI_CTARx registers), delay between  
internal CS and internal SCK must be higher than tASC to ensure positive tASCext  
.
.
6
7
This delay value corresponds to SMPL_PT = 00b which is bit field 9 and 8 of the DSPI_MCR.  
SCK and SOUT configured as MEDIUM pad  
Electrical characteristics  
2
3
PCSx  
1
4
SCK Output  
(CPOL = 0)  
4
SCK Output  
(CPOL = 1)  
10  
9
Last Data  
SIN  
First Data  
Data  
Data  
12  
11  
First Data  
Last Data  
SOUT  
Note: Numbers shown reference Table 46  
Figure 24. DSPI classic SPI timing – master, CPHA = 0  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
78  
Freescale Semiconductor  
Electrical characteristics  
PCSx  
SCK Output  
(CPOL = 0)  
10  
SCK Output  
(CPOL = 1)  
9
Data  
Data  
First Data  
Last Data  
SIN  
12  
11  
SOUT  
Last Data  
First Data  
Note: Numbers shown reference Table 46.  
Figure 25. DSPI classic SPI timing – master, CPHA = 1  
3
2
SS  
1
4
SCK Input  
(CPOL = 0)  
4
SCK Input  
(CPOL = 1)  
5
11  
12  
Data  
6
First Data  
Last Data  
SOUT  
SIN  
9
10  
Data  
Last Data  
First Data  
Note: Numbers shown reference Table 46  
Figure 26. DSPI classic SPI timing – slave, CPHA = 0  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
79  
Electrical characteristics  
SS  
SCK Input  
(CPOL = 0)  
SCK Input  
(CPOL = 1)  
11  
5
6
12  
Last Data  
Data  
Data  
SOUT  
SIN  
First Data  
10  
9
Last Data  
First Data  
Note: Numbers shown reference Table 46  
Figure 27. DSPI classic SPI timing – slave, CPHA = 1  
3
PCSx  
4
1
2
SCK Output  
(CPOL = 0)  
4
SCK Output  
(CPOL = 1)  
9
10  
SIN  
First Data  
12  
Last Data  
Last Data  
Data  
11  
SOUT  
First Data  
Data  
Note: Numbers shown reference Table 46.  
Figure 28. DSPI modified transfer format timing – master, CPHA = 0  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
80  
Freescale Semiconductor  
Electrical characteristics  
PCSx  
SCK Output  
(CPOL = 0)  
SCK Output  
(CPOL = 1)  
10  
9
SIN  
Last Data  
First Data  
Data  
12  
Data  
11  
First Data  
Last Data  
SOUT  
Note: Numbers shown reference Table 46  
Figure 29. DSPI modified transfer format timing – master, CPHA = 1  
3
2
SS  
1
SCK Input  
(CPOL = 0)  
4
4
SCK Input  
(CPOL = 1)  
12  
11  
6
5
First Data  
9
Data  
Data  
Last Data  
10  
SOUT  
SIN  
Last Data  
First Data  
Note: Numbers shown reference Table 46  
Figure 30. DSPI modified transfer format timing – slave, CPHA = 0  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
81  
Electrical characteristics  
SS  
SCK Input  
(CPOL = 0)  
SCK Input  
(CPOL = 1)  
11  
5
6
12  
Last Data  
First Data  
10  
Data  
Data  
SOUT  
SIN  
9
First Data  
Last Data  
Note: Numbers shown reference Table 46  
Figure 31. DSPI modified transfer format timing – slave, CPHA = 1  
8
7
PCSS  
PCSx  
Note: Numbers shown reference Table 46.  
Figure 32. DSPI PCS strobe (PCSS) timing  
4.19.3 Nexus characteristics  
Table 47. Nexus characteristics  
Value  
Typ  
No.  
Symbol  
C
Parameter  
Unit  
Min  
Max  
1
2
3
tTCYC  
tMCYC  
tMDOV  
CC D TCK cycle time  
CC D MCKO cycle time  
64  
32  
8
ns  
ns  
ns  
CC D MCKO low to MDO data valid  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
82  
Freescale Semiconductor  
 
Electrical characteristics  
Table 47. Nexus characteristics (continued)  
Value  
Typ  
No.  
Symbol  
C
Parameter  
Min  
Unit  
Max  
4
5
tMSEOV CC D MCKO low to MSEO_b data valid  
15  
15  
5
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tEVTOV  
tNTDIS  
CC D MCKO low to EVTO data valid  
CC D TDI data setup time  
8
10  
tNTMSS CC D TMS data setup time  
tNTDIH CC D TDI data hold time  
tNTMSH CC D TMS data hold time  
11  
5
12  
13  
tTDOV  
tTDOI  
CC D TCK low to TDO data valid  
CC D TCK low to TDO data invalid  
35  
6
TCK  
10  
11  
TMS, TDI  
12  
TDO  
Note: Numbers shown reference Table 47.  
Figure 33. Nexus TDI, TMS, TDO timing  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
83  
Electrical characteristics  
4.19.4 JTAG characteristics  
Table 48. JTAG characteristics  
Value  
Typ  
No.  
Symbol  
C
Parameter  
Unit  
Min  
Max  
1
2
3
4
5
6
7
tJCYC  
tTDIS  
CC D TCK cycle time  
CC D TDI setup time  
CC D TDI hold time  
64  
15  
5
33  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tTDIH  
tTMSS  
tTMSH  
tTDOV  
tTDOI  
CC D TMS setup time  
CC D TMS hold time  
CC D TCK low to TDO valid  
CC D TCK low to TDO invalid  
15  
5
6
TCK  
2/4  
3/5  
INPUT DATA VALID  
DATA INPUTS  
6
DATA OUTPUTS  
DATA OUTPUTS  
OUTPUT DATA VALID  
7
Note: Numbers shown reference Table 48  
Figure 34. Timing diagram – JTAG boundary scan  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
84  
Freescale Semiconductor  
 
Package characteristics  
5
Package characteristics  
Package mechanical data  
64 LQFP  
5.1  
5.1.1  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
85  
Package characteristics  
Figure 35. 64 LQFP package mechanical drawing (1 of 3)  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
86  
Freescale Semiconductor  
Package characteristics  
Figure 36. 64 LQFP package mechanical drawing (2 of 3)  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
87  
Package characteristics  
Figure 37. 64 LQFP package mechanical drawing (3 of 3)  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
88  
Freescale Semiconductor  
Package characteristics  
5.1.2  
100 LQFP  
Figure 38. 100 LQFP package mechanical drawing (1 of 3)  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
89  
Package characteristics  
Figure 39. 100 LQFP package mechanical drawing (2 of 3)  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
90  
Freescale Semiconductor  
Package characteristics  
Figure 40. 100 LQFP package mechanical drawing (3 of 3)  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
91  
Package characteristics  
5.1.3  
144 LQFP  
Figure 41. 144 LQFP package mechanical drawing (1 of 2)  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
92  
Freescale Semiconductor  
Package characteristics  
Figure 42. 144 LQFP package mechanical drawing (2 of 2)  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
93  
Package characteristics  
5.1.4  
208 MAPBGA  
Figure 43. 208 MAPBGA package mechanical drawing (1 of 2)  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
94  
Freescale Semiconductor  
Package characteristics  
Figure 44. 208 MAPBGA package mechanical drawing (2 of 2)  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
95  
Ordering information  
6
Ordering information  
Figure 45. Commercial product code structure  
Example code:  
M
PC  
56  
0
4
B
F1  
M
LL  
4
R
Qualification Status  
PowerPC Core  
Automotive Platform  
Core Version  
Flash Size (core dependent)  
Product  
Fab and Mask Indicator  
Temperature spec.  
Package Code  
Frequency  
R = Tape & Reel (blank if Tray)  
Qualification Status  
Flash Size (z0 core)  
2 = 256 KB  
3 = 384 KB  
Temperature spec.  
C = 40 to 85 °C  
V = 40 to 105 °C  
M = 40 to 125 °C  
M = MC status  
S = Auto qualified  
P = PC status  
4 = 512 KB  
Automotive Platform  
56 = PPC in 90nm  
Product  
B = Body  
Package Code  
LH = 64 LQFP  
C = Gateway  
LL = 100 LQFP  
LQ = 144 LQFP  
MG = 208 MAPBGA  
Core Version  
0 = e200z0  
1
Fab and Mask Indicator  
F = ATMC  
1 = Maskset Revision  
Frequency  
4 = Up to 48 MHz  
6 = Up to 64 MHz  
1
208 MAPBGA available only as development package for Nexus2+  
7
Document revision history  
Table 49 summarizes revisions to this document.  
Table 49. Revision history  
Revision  
Date  
Description of Changes  
1
04-Apr-2008 Initial release.  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
96  
Freescale Semiconductor  
Document revision history  
Table 49. Revision history (continued)  
Description of Changes  
Revision  
Date  
2
06-Mar-2009 Made minor editing and formatting changes to improve readability  
Harmonized oscillator naming throughout document  
Features:  
—Replaced 32 KB with 48 KB as max SRAM size  
—Updated description of INTC  
—Changed max number of GPIO pins from 121 to 123  
Updated Section 1.2, Descrioption  
Updated Table 2  
Added Section 2, “Block diagram  
Section 3, “Package pinouts and signal descriptions: Removed signal descriptions (these  
are found in the device reference manual)  
Updated Figure 5:  
—Replaced VPP with VSS_HV on pin 18  
—Added MA[1] as AF3 for PC[10] (pin 28)  
—Added MA[0] as AF2 for PC[3] (pin 116)  
—Changed description for pin 120 to PH[10] / GPIO[122] / TMS  
—Changed description for pin 127 to PH[9] / GPIO[121] / TCK  
—Replaced NMI[0] with NMI on pin 11  
Updated Figure 4:  
—Replaced VPP with VSS_HV on pin 14  
—Added MA[1] as AF3 for PC[10] (pin 22)  
—Added MA[0] as AF2 for PC[3] (pin 77)  
—Changed description for pin 81 to PH[10] / GPIO[122] / TMS  
—Changed description for pin 88 to PH[9] / GPIO[121] / TCK  
—Removed E1UC[19] from pin 76  
—Replaced [11] with WKUP[11] for PB[3] (pin 1)  
—Replaced NMI[0] with NMI on pin 7  
Updated Figure 6:  
—Changed description for ball B8 from TCK to PH[9]  
—Changed description for ball B9 from TMS to PH[10]  
—Updated descriptions for balls R9 and T9  
Added Section 4.2, “Parameter classification and tagged parameters in tables where  
appropriate  
Added Section 4.3, “NVUSRO register  
Updated Table 5  
Section 4.5, “Recommended operating conditions: Added note on RAM data retention to  
end of section  
Updated Table 6 and Table 7  
Added Section 4.6.1, “Package thermal characteristics  
Updated Section 4.6.2, “Power considerations  
Updated Figure 7  
Updated Table 9, Table 10, Table 11, Table 12 and Table 13  
Added Section 4.7.4, “Output pin transition times  
Updated Table 16  
Updated Figure 8  
Updated Table 18  
Section 4.9.1, “Voltage regulator electrical characteristics: Amended description of  
LV_PLL  
Figure 10: Exchanged position of symbols CDEC1 and CDEC2  
Updated Table 19  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
97  
Document revision history  
Table 49. Revision history (continued)  
Description of Changes  
Revision  
Date  
2
06-Mar-2009 Added Figure 11  
Updated Table 20 and Table 21  
Updated Section 4.11, “Flash memory electrical characteristics  
Added Section 4.12, “Electromagnetic compatibility (EMC) characteristics  
Updated Section 4.13, “Fast external crystal oscillator (4 to 16 MHz) electrical  
characteristics  
Updated Section 4.14, “Slow external crystal oscillator (32 kHz) electrical characteristics  
Updated Table 34, Table 35 and Table 36  
Added Section 4.19, “On-chip peripherals  
Added Table 37  
Updated Table 38  
Updated Table 47  
Added Section Appendix A, “Abbreviations  
4
06-Aug-2009 Updated Figure 6  
Table 5  
• VDD_ADC: changed min value for “relative to VDD” condition  
• VIN: changed min value for “relative to VDD” condition  
• ICORELV: added new row  
Table 7  
TA C-Grade Part, TJ C-Grade Part, TA V-Grade Part, TJ V-Grade Part, TA M-Grade Part, TJ M-Grade Part  
:
added new rows  
• Changed capacitance value in footnote  
Table 14  
• MEDIUM configuration: added condition for PAD3V5V = 0  
Updated Figure 10  
Table 19  
• CDEC1: changed min value  
• IMREG: changed max value  
• IDD_BV: added max value footnote  
Table 20  
• VLVDHV3H: changed max value  
• VLVDHV3L: added max value  
• VLVDHV5H: changed max value  
• VLVDHV5L: added max value  
Updated Table 21  
Table 23  
• Retention: deleted min value footnote for “Blocks with 100,000 P/E cycles“  
Table 31  
• IFXOSC: added typ value  
Table 33  
• VSXOSC: changed typ value  
• TSXOSCSU: added max value footnote  
Table 34  
tLTJIT: added max value  
Updated Figure 36  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
98  
Freescale Semiconductor  
Document revision history  
Table 49. Revision history (continued)  
Description of Changes  
Revision  
Date  
5
02-Nov-2009 In the “MPC5604B/C series block summary” table, added a new row.  
In the “Absolute maximum ratings” table, changed max value of VDD_BV, VDD_ADC, and  
VIN.  
In the “Recommended operating conditions (3.3 V)” table, deleted min value of TVDD  
.
In the “Reset electrical characteristics” table, changed footnotes 3 and 5.  
In the “Voltage regulator electrical characteristics” table:  
• CREGn: changed max value.  
• CDEC1: split into 2 rows.  
• Updated voltage values in footnote 4  
In the “Low voltage monitor electrical characteristics” table:  
• Updated column Conditions.  
• VLVDLVCORL, VLVDLVBKPL: changed min/max value.  
In the “Program and erase specifications” table, added initial max value of Tdwprogram  
In the “Flash module life” table, changed min value for blocks with 100K P/E cycles  
In the “Flash power supply DC electrical characteristics” table:  
• IFREAD, IFMOD: added typ value.  
.
• Added footnote 1.  
Added “NVUSRO[WATCHDOG_EN] field description” section.  
Section 4.18: “ADC electrical characteristics” has been moved up in hierarchy (it was  
Section 4.18.5).  
In the “ADC conversion characteristics” table, changed initial max value of RAD  
.
In the “On-chip peripherals current consumption” table:  
• Removed min/max from the heading.  
• Changed unit of measurement and consequently rounded the values.  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
99  
Document revision history  
Table 49. Revision history (continued)  
Description of Changes  
Revision  
Date  
6
15-Mar-2010 In the “Introduction” section, relocated a note.  
In the “MPC5604B/C device comparison” table, added footnote regarding SCI and CAN.  
In the “Absolute maximum ratings” table, removed the min value of VIN relative to VDD  
.
In the “Recommended operating conditions (3.3 V)” table:  
TA C-Grade Part, TJ C-Grade Part, TA V-Grade Part, TJ V-Grade Part, TA M-Grade Part, TJ M-Grade Part  
added new rows.  
:
• TVDD: made single row.  
In the “LQFP thermal characteristics” table, added more rows.  
Removed “208 MAPBGA thermal characteristics” table.  
In the “I/O consumption” table:  
• Removed IDYNSEG row.  
• Added “I/O weight” table.  
In the “Voltage regulator electrical characteristics” table:  
• Updated the values.  
• Removed IVREGREF and IVREDLVD12  
• Added a note about IDD_BC  
.
.
In the “Low voltage monitor electrical characteristics” table:  
• Updated VPORH values.  
• Updated VLVDLVCORL value.  
Entirely updated the “Low voltage power domain electrical characteristics” table.  
In the “Program and erase specifications” table, inserted Teslat row.  
Entirely updated the “Flash power supply DC electrical characteristics” table.  
Entirely updated the “Start-up time/Switch-off time” table.  
In the “Crystal oscillator and resonator connection scheme” figure, relocated a note.  
In the “Slow external crystal oscillator (32 kHz) electrical characteristics” table:  
• Removed gmSXOSC row.  
• Inserted values of ISXOSCBIAS  
.
Entirely updated the “Fast internal RC oscillator (16 MHz) electrical characteristics” table.  
In the “ADC conversion characteristics” table: updated the description of the conditions of  
tADC_PU and tADC_S.  
Entirely updated the “DSPI characteristics” table.  
In the “Orderable part number summary” table, modified some orderable part number.  
Updated the “Commercial product code structure” figure.  
Removed the note about the condition from “Flash read access timing” table  
Removed the notes that assert the values need to be confirmed before validation  
Exchanged the order of “LQFP 100-pin configuration” and “LQFP 144-pin configuration”  
Exchanged the order of “LQFP 100-pin package mechanical drawing” and “LQFP 144-pin  
package mechanical drawing”  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
100  
Freescale Semiconductor  
Document revision history  
Table 49. Revision history (continued)  
Description of Changes  
Revision  
Date  
7
05-Jul-2010 Added 64 LQFP package information  
Updated the “Features” section.  
Figures “LQFP 100-pin configuration” and “LQFP 100-pin configuration”: removed  
alternate function information  
Added “Functional port pin descriptions” table  
Added eDMA block in the “MPC5604B/C series block diagram” figure  
Deleted the “NVUSRO[WATCHDOG_EN] field description” section  
In the “Recommended operating conditions (3.3 V)” and “Recommended operating  
conditions (5.0 V)” tables, deleted the conditions of TA C-Grade Part, TA V-Grade Part, TA M-Grade  
Part  
In the “LQFP thermal characteristics” table, rounded the values.  
In the “RESET electrical characteristics” section, replaced “nRSTIN” with “RESET”.  
In the “I/O input DC electrical characteristics” table:  
• WFI: inserted a footnote  
• WNFI: inserted a footnote  
In the “Low voltage monitor electrical characteristics” table:  
• changed min value VLVDHV3L, from 2.7 to 2.6  
• Inserted max value of VLVDLVCORL  
In the “FMPLL electrical characteristics” table, rounded the values of fVCO.  
In the “DSPI characteristics” table:  
• Added tASC row  
• Update values of tA  
In the “ADC conversion characteristics” table, added “IADCPWD” and “IADCRUN” rows  
Removed “Orderable part number summary” table.  
8
25-Nov-2010 Editorial changes and improvements.  
In the “MPC5604B/C device comparison” table, changed the temperature value from 105  
to 125 °C, in the footnote regarding “Execution speed”.  
In the “Recommended operating conditions (3.3 V)” and “Recommended operating  
conditions (5.0 V)” tables, restored the conditions of TA C-Grade Part, TA V-Grade Part, TA  
M-Grade Part  
In the “LQFP thermal characteristics” table, added values concerning 64 LQFP package.  
In the “MEDIUM configuration output buffer electrical characteristics” table: fixed a typo in  
last row of conditions column, there was IOH that now is IOL  
.
In the “Reset electrical characteristics” table, changed the parameter classification tag for  
VOL and |IWPU|.  
In the “Low voltage monitor electrical characteristics” table, changed the max value of  
VLVDLVCORL from 1.5V to 1.15V.  
In the “Program and erase specifications” table, replaced “Teslat” with “Tesus”.  
In the “FMPLL electrical characteristics” table, changed the parameter classification tag  
for fVCO  
.
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
101  
Document revision history  
Table 49. Revision history (continued)  
Description of Changes  
Revision  
Date  
9
16 June 2011 Formatting and minor editorial changes throughout  
Harmonized oscillator nomenclature  
Removed all instances of note “All 64 LQFP information is indicative and must be  
confirmed during silicon validation.”  
Device comparison table: changed temperature value in footnote 2 from 105 °C to 125 °C  
MPC560xB LQFP 64-pin configuration and MPC560xC LQFP 64-pin configuration:  
renamed pin 6 from VPP_TEST to VSS_HV  
Removed “Pin Muxing” section; added sections “Pad configuration during reset phases”,  
“Voltage supply pins”, “Pad types”, “System pins,Functional ports”, and “Nexus 2+  
pins”  
Section “NVUSRO register”: edited content to separate configuration into electrical  
parameters and digital functionality; updated footnote describing default value of ‘1’ in  
field descriptions NVUSRO[PAD3V5V] and NVUSRO[OSCILLATOR_MARGIN]  
Added section “NVUSRO[WATCHDOG_EN] field description”  
Recommended operating conditions (3.3 V) and Recommended operating conditions  
(5.0 V): updated conditions for ambient and junction temperature characteristics  
I/O input DC electrical characteristics: updated ILKG characteristics  
Section “I/O pad current specification”: removed content referencing the IDYNSEG  
maximum value  
I/O consumption: replaced instances of “Root medium square” with “Root mean square”  
I/O weight: replaced instances of bit “SRE” with “SRC”; added pads PH[9] and PH[10];  
added supply segments; removed weight values in 64-pin LQFP for pads that do not  
exist in that package  
Reset electrical characteristics: updated parameter classification for |IWPU  
|
Updated Voltage regulator electrical characteristics  
Section “Low voltage detector electrical characteristics”: changed title (was “Voltage  
monitor electrical characteristics”); added event status flag names found in RGM  
chapter of device reference manual to POR module and LVD descriptions; replaced  
instances of “Low voltage monitor” with “Low voltage detector”; updated values for  
VLVDLVBKPL and VLVDLVCORL; replaced “LVD_DIGBKP” with “LVDLVBKP” in note  
Updated section “Power consumption”  
Fast external crystal oscillator (4 to 16 MHz) electrical characteristics: updated parameter  
classification for VFXOSCOP  
Crystal oscillator and resonator connection scheme: added footnote about possibility of  
adding a series resistor  
Slow external crystal oscillator (32 kHz) electrical characteristics: updated footnote 1  
FMPLL electrical characteristics: added short term jitter characteristics; inserted “—” in  
empty min value cell of tlock row  
Section “Input impedance and ADC accuracy”: changed “VA/VA2” to “VA2/VA” in  
Equation 11  
ADC input leakage current: updated ILKG characteristics  
ADC conversion characteristics: updated symbols  
On-chip peripherals current consumption: changed “supply current on “VDD_HV_ADC” to  
“supply current on” VDD_HV” in IDD_HV(FLASH) row; updated IDD_HV(PLL) value—was  
3 * fperiph, is 30 * fperiph; updated footnotes  
DSPI characteristics: added rows tPCSC and tPASC  
Added DSPI PCS strobe (PCSS) timing diagram  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
102  
Freescale Semiconductor  
Abbreviations  
Appendix A Abbreviations  
Table A-1 lists abbreviations used but not defined elsewhere in this document.  
Table A-1. Abbreviations  
Abbreviation  
Meaning  
CMOS  
CPHA  
CPOL  
CS  
Complementary metal–oxide–semiconductor  
Clock phase  
Clock polarity  
Peripheral chip select  
Event out  
EVTO  
MCKO  
MDO  
MSEO  
MTFE  
SCK  
Message clock out  
Message data out  
Message start/end out  
Modified timing format enable  
Serial communications clock  
Serial data out  
SOUT  
TBD  
To be defined  
TCK  
Test clock input  
TDI  
Test data input  
TDO  
Test data output  
TMS  
Test mode select  
MPC5604B/C Microcontroller Data Sheet, Rev. 9  
Freescale Semiconductor  
103  
 
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
1-800-521-6274 or +1-480-768-2130  
www.freescale.com/support  
Information in this document is provided solely to enable system and  
software implementers to use Freescale Semiconductor products. There are  
no express or implied copyright licenses granted hereunder to design or  
fabricate any integrated circuits or integrated circuits based on the  
information in this document.  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Freescale Semiconductor reserves the right to make changes without further  
notice to any products herein. Freescale Semiconductor makes no warranty,  
representation or guarantee regarding the suitability of its products for any  
particular purpose, nor does Freescale Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation consequential or  
incidental damages. “Typical” parameters that may be provided in Freescale  
Semiconductor data sheets and/or specifications can and do vary in different  
applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer  
application by customer’s technical experts. Freescale Semiconductor does  
not convey any license under its patent rights nor the rights of others.  
Freescale Semiconductor products are not designed, intended, or authorized  
for use as components in systems intended for surgical implant into the body,  
or other applications intended to support or sustain life, or for any other  
application in which the failure of the Freescale Semiconductor product could  
create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended  
or unauthorized application, Buyer shall indemnify and hold Freescale  
Semiconductor and its officers, employees, subsidiaries, affiliates, and  
distributors harmless against all claims, costs, damages, and expenses, and  
reasonable attorney fees arising out of, directly or indirectly, any claim of  
personal injury or death associated with such unintended or unauthorized  
use, even if such claim alleges that Freescale Semiconductor was negligent  
regarding the design or manufacture of the part.  
Japan:  
Freescale Semiconductor Japan Ltd. Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
Beijing 100022  
China  
+86 10 5879 8000  
support.asia@freescale.com  
Freescale Semiconductor Literature Distribution Center  
1-800-441-2447 or +1-303-675-2140  
Fax: +1-303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Freescale™ and the Freescale logo are trademarks of Freescale  
Semiconductor, Inc. The described product contains a PowerPC processor  
core. The PowerPC name is a trademark of IBM Corp. and used under license.  
All other product or service names are the property of their respective owners.  
© Freescale Semiconductor, Inc. 2009-2011. All rights reserved.  
MPC5604BC  
Rev. 9  
06/2011  

相关型号:

MPC5602CF1MLH4R

MICROCONTROLLER, PQFP64, 10 X 10 MM, 1.40 MM HEIGHT, 0.50 MM PITCH, MS-026BCD, LQFP-64
NXP

MPC5602CF1MLH6

MICROCONTROLLER, PQFP64, 10 X 10 MM, 1.40 MM HEIGHT, 0.50 MM PITCH, MS-026BCD, LQFP-64
NXP

MPC5602CF1MLH6R

MICROCONTROLLER, PQFP64, 10 X 10 MM, 1.40 MM HEIGHT, 0.50 MM PITCH, MS-026BCD, LQFP-64
NXP

MPC5602CF1MLL6R

MICROCONTROLLER, PQFP100
NXP

MPC5602CF1VLH4R

MICROCONTROLLER, PQFP64, 10 X 10 MM, 1.40 MM HEIGHT, 0.50 MM PITCH, MS-026BCD, LQFP-64
NXP

MPC5602CF1VLH6

MICROCONTROLLER, PQFP64
NXP

MPC5602CF1VLH6R

MICROCONTROLLER, PQFP64, 10 X 10 MM, 1.40 MM HEIGHT, 0.50 MM PITCH, MS-026BCD, LQFP-64
NXP

MPC5602CF1VLL4

MICROCONTROLLER, PQFP100
NXP

MPC5602CF1VLL6

MICROCONTROLLER, PQFP100
NXP

MPC5602CF1VLL6R

MICROCONTROLLER, PQFP100, 14 X 14 MM, 1.40 MM HEIGHT, 0.50 MM PITCH, LQFP-100
NXP

MPC5602CFCLH4R

MPC5604B/C Microcontroller Data Sheet
NXP

MPC5602CFCLH6R

MPC5604B/C Microcontroller Data Sheet
NXP