MPC8313CVRAFFC [NXP]

PowerQUICC, 32 Bit Power Architecture SoC, 333MHz, DDR1/2, PCI, GbE, USB, -40 to 105C, Rev 3;
MPC8313CVRAFFC
型号: MPC8313CVRAFFC
厂家: NXP    NXP
描述:

PowerQUICC, 32 Bit Power Architecture SoC, 333MHz, DDR1/2, PCI, GbE, USB, -40 to 105C, Rev 3

时钟 PC 双倍数据速率 外围集成电路
文件: 总99页 (文件大小:1124K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: MPC8313EEC  
Rev. 4, 11/2011  
Freescale Semiconductor  
Datasheet: Technical Data  
MPC8313E  
PowerQUICC II Pro Processor  
Hardware Specifications  
Contents  
This document provides an overview of the MPC8313E  
PowerQUICC™ II Pro processor features, including a block  
diagram showing the major functional components. The  
MPC8313E is a cost-effective, low-power, highly integrated  
host processor that addresses the requirements of several  
printing and imaging, consumer, and industrial applications,  
including main CPUs and I/O processors in printing systems,  
networking switches and line cards, wireless LANs  
(WLANs), network access servers (NAS), VPN routers,  
intelligent NIC, and industrial controllers. The MPC8313E  
extends the PowerQUICC™ family, adding higher CPU  
performance, additional functionality, and faster interfaces  
while addressing the requirements related to time-to-market,  
price, power consumption, and package size.  
1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
2. Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . 6  
3. Power Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 11  
4. Clock Input Timing . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
5. RESET Initialization . . . . . . . . . . . . . . . . . . . . . . . . . 13  
6. DDR and DDR2 SDRAM . . . . . . . . . . . . . . . . . . . . . 14  
7. DUART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
8. Ethernet: Three-Speed Ethernet, MII Management . 21  
9. High-Speed Serial Interfaces (HSSI) . . . . . . . . . . . . 36  
10. USB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
11. Enhanced Local Bus . . . . . . . . . . . . . . . . . . . . . . . . . 47  
12. JTAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
13. I2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
14. PCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
15. Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
16. GPIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
17. IPIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
18. SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
19. Package and Pin Listings . . . . . . . . . . . . . . . . . . . . . 63  
20. Clocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
21. Thermal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
22. System Design Information . . . . . . . . . . . . . . . . . . . 87  
23. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . 93  
24. Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
NOTE  
The information in this document is accurate for  
revisions 1.0, 2.x, and later. See Section 23.1, “Part  
Numbers Fully Addressed by this Document.”  
© Freescale Semiconductor, Inc., 2007–2011. All rights reserved.  
1 Overview  
The MPC8313E incorporates the e300c3 core, which includes 16 Kbytes of L1 instruction and data caches  
and on-chip memory management units (MMUs). The MPC8313E has interfaces to dual enhanced  
three-speed 10/100/1000 Mbps Ethernet controllers, a DDR1/DDR2 SDRAM memory controller, an  
enhanced local bus controller, a 32-bit PCI controller, a dedicated security engine, a USB 2.0 dual-role  
2
controller and an on-chip high-speed PHY, a programmable interrupt controller, dual I C controllers, a  
4-channel DMA controller, and a general-purpose I/O port. This figure shows a block diagram of the  
MPC8313E.  
DUART  
Dual I2C  
Timers  
GPIO  
e300c3 Core w/FPU and  
Power Management  
Interrupt  
16-KB  
16-KB  
D-Cache  
Local Bus,  
SPI  
DDR1/DDR2  
Controller  
I-Cache  
Controller  
USB 2.0  
Host/Device/OTG  
Gb Ethernet  
MAC  
Gb Ethernet  
MAC  
Security Engine 2.2  
I/O Sequencer  
(IOS)  
On-Chip  
ULPI  
FS PHY  
PCI  
DMA  
Note: The MPC8313 does not include a security engine.  
Figure 1. MPC8313E Block Diagram  
The MPC8313E security engine (SEC 2.2) allows CPU-intensive cryptographic operations to be offloaded  
from the main CPU core. The security-processing accelerator provides hardware acceleration for the DES,  
3DES, AES, SHA-1, and MD-5 algorithms.  
1.1  
MPC8313E Features  
The following features are supported in the MPC8313E:  
Embedded PowerPC™ e300 processor core built on Power Architecture™ technology; operates at  
up to 333 MHz.  
High-performance, low-power, and cost-effective host processor  
DDR1/DDR2 memory controller—one 16-/32-bit interface at up to 333 MHz supporting both  
DDR1 and DDR2  
16-Kbyte instruction cache and 16-Kbyte data cache, a floating point unit, and two integer units  
Peripheral interfaces such as 32-bit PCI interface with up to 66-MHz operation, 16-bit enhanced  
local bus interface with up to 66-MHz operation, and USB 2.0 (high speed) with an on-chip PHY.  
Security engine provides acceleration for control and data plane security protocols  
Power management controller for low-power consumption  
High degree of software compatibility with previous-generation PowerQUICC processor-based  
designs for backward compatibility and easier software migration  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
2
Freescale Semiconductor  
1.2  
Serial Interfaces  
2
The following interfaces are supported in the MPC8313E: dual UART, dual I C, and an SPI interface.  
1.3  
Security Engine  
The security engine is optimized to handle all the algorithms associated with IPSec, IEEE Std 802.11i®,  
and iSCSI. The security engine contains one crypto-channel, a controller, and a set of crypto execution  
units (EUs). The execution units are as follows:  
Data encryption standard execution unit (DEU), supporting DES and 3DES  
Advanced encryption standard unit (AESU), supporting AES  
Message digest execution unit (MDEU), supporting MD5, SHA1, SHA-224, SHA-256, and  
HMAC with any algorithm  
One crypto-channel supporting multi-command descriptor chains  
1.4  
DDR Memory Controller  
The MPC8313E DDR1/DDR2 memory controller includes the following features:  
Single 16- or 32-bit interface supporting both DDR1 and DDR2 SDRAM  
Support for up to 333 MHz  
Support for two physical banks (chip selects), each bank independently addressable  
64-Mbit to 2-Gbit (for DDR1) and to 4-Gbit (for DDR2) devices with x8/x16/x32 data ports (no  
direct x4 support)  
Support for one 16-bit device or two 8-bit devices on a 16-bit bus, or one 32-bit device or two  
16-bit devices on a 32-bit bus  
Support for up to 16 simultaneous open pages  
Supports auto refresh  
On-the-fly power management using CKE  
1.8-/2.5-V SSTL2 compatible I/O  
1.5  
PCI Controller  
The MPC8313E PCI controller includes the following features:  
PCI specification revision 2.3 compatible  
Single 32-bit data PCI interface operates at up to 66 MHz  
PCI 3.3-V compatible (not 5-V compatible)  
Support for host and agent modes  
On-chip arbitration, supporting three external masters on PCI  
Selectable hardware-enforced coherency  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
3
1.6  
USB Dual-Role Controller  
The MPC8313E USB controller includes the following features:  
Supports USB on-the-go mode, which includes both device and host functionality, when using an  
external ULPI (UTMI + low-pin interface) PHY  
Compatible with Universal Serial Bus Specification, Rev. 2.0  
Supports operation as a stand-alone USB device  
— Supports one upstream facing port  
— Supports three programmable USB endpoints  
Supports operation as a stand-alone USB host controller  
— Supports USB root hub with one downstream-facing port  
— Enhanced host controller interface (EHCI) compatible  
Supports high-speed (480 Mbps), full-speed (12 Mbps), and low-speed (1.5 Mbps) operation.  
Low-speed operation is supported only in host mode.  
Supports UTMI + low pin interface (ULPI) or on-chip USB 2.0 full-speed/high-speed PHY  
1.7  
Dual Enhanced Three-Speed Ethernet Controllers (eTSECs)  
The MPC8313E eTSECs include the following features:  
Two RGMII/SGMII/MII/RMII/RTBI interfaces  
Two controllers designed to comply with IEEE Std 802.3®, 802.3u®, 802.3x®, 802.3z®,  
802.3au®, and 802.3ab®  
Support for Wake-on-Magic Packet™, a method to bring the device from standby to full operating  
mode  
MII management interface for external PHY control and status  
Three-speed support (10/100/1000 Mbps)  
On-chip high-speed serial interface to external SGMII PHY interface  
Support for IEEE Std 1588™  
Support for two full-duplex FIFO interface modes  
Multiple PHY interface configuration  
TCP/IP acceleration and QoS features available  
IP v4 and IP v6 header recognition on receive  
IP v4 header checksum verification and generation  
TCP and UDP checksum verification and generation  
Per-packet configurable acceleration  
Recognition of VLAN, stacked (queue in queue) VLAN, IEEE Std 802.2®, PPPoE session, MPLS  
stacks, and ESP/AH IP-security headers  
Transmission from up to eight physical queues.  
Reception to up to eight physical queues  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
4
Freescale Semiconductor  
Full and half-duplex Ethernet support (1000 Mbps supports only full-duplex):  
— IEEE 802.3 full-duplex flow control (automatic PAUSE frame generation or  
software-programmed PAUSE frame generation and recognition)  
— Programmable maximum frame length supports jumbo frames (up to 9.6 Kbytes) and  
IEEE 802.1 virtual local area network (VLAN) tags and priority  
— VLAN insertion and deletion  
– Per-frame VLAN control word or default VLAN for each eTSEC  
– Extracted VLAN control word passed to software separately  
— Retransmission following a collision  
— CRC generation and verification of inbound/outbound packets  
— Programmable Ethernet preamble insertion and extraction of up to 7 bytes  
MAC address recognition:  
— Exact match on primary and virtual 48-bit unicast addresses  
– VRRP and HSRP support for seamless router fail-over  
— Up to 16 exact-match MAC addresses supported  
— Broadcast address (accept/reject)  
— Hash table match on up to 512 multicast addresses  
— Promiscuous mode  
Buffer descriptors backward compatible with MPC8260 and MPC860T 10/100 Ethernet  
programming models  
RMON statistics support  
10-Kbyte internal transmit and 2-Kbyte receive FIFOs  
MII management interface for control and status  
1.8  
Programmable Interrupt Controller (PIC)  
The programmable interrupt controller (PIC) implements the necessary functions to provide a flexible  
solution for general-purpose interrupt control. The PIC programming model supports 5 external and 34  
internal discrete interrupt sources. Interrupts can also be redirected to an external interrupt controller.  
1.9  
Power Management Controller (PMC)  
The MPC8313E power management controller includes the following features:  
Provides power management when the device is used in both host and agent modes  
Supports PCI power management 1.2 D0, D1, D2, D3hot, and D3cold states  
On-chip split power supply controlled through external power switch for minimum standby power  
Support for PME generation in PCI agent mode, PME detection in PCI host mode  
Supports wake-up from Ethernet (Magic Packet), USB, GPIO, and PCI (PME input as host)  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
5
1.10 Serial Peripheral Interface (SPI)  
The serial peripheral interface (SPI) allows the MPC8313E to exchange data between other PowerQUICC  
family chips, Ethernet PHYs for configuration, and peripheral devices such as EEPROMs, real-time  
clocks, A/D converters, and ISDN devices.  
The SPI is a full-duplex, synchronous, character-oriented channel that supports a four-wire interface  
(receive, transmit, clock, and slave select). The SPI block consists of transmitter and receiver sections, an  
independent baud-rate generator, and a control unit.  
2
1.11 DMA Controller, Dual I C, DUART, Local Bus Controller, and  
Timers  
The MPC8313E provides an integrated four-channel DMA controller with the following features:  
Allows chaining (both extended and direct) through local memory-mapped chain descriptors  
(accessible by local masters)  
Supports misaligned transfers  
2
There are two I C controllers. These synchronous, multi-master buses can be connected to additional  
devices for expansion and system development.  
The DUART supports full-duplex operation and is compatible with the PC16450 and PC16550  
programming models. The 16-byte FIFOs are supported for both the transmitter and the receiver.  
The MPC8313E local bus controller (LBC) port allows connections with a wide variety of external DSPs  
and ASICs. Three separate state machines share the same external pins and can be programmed separately  
to access different types of devices. The general-purpose chip select machine (GPCM) controls accesses  
to asynchronous devices using a simple handshake protocol. The three user programmable machines  
(UPMs) can be programmed to interface to synchronous devices or custom ASIC interfaces. Each chip  
select can be configured so that the associated chip interface can be controlled by the GPCM or UPM  
controller. The FCM provides a glueless interface to parallel-bus NAND Flash E2PROM devices. The  
FCM contains three basic configuration register groups—BRn, ORn, and FMR. Both may exist in the  
same system. The local bus can operate at up to 66 MHz.  
The MPC8313E system timers include the following features: periodic interrupt timer, real time clock,  
software watchdog timer, and two general-purpose timer blocks.  
2 Electrical Characteristics  
This section provides the AC and DC electrical specifications and thermal characteristics for the  
MPC8313E. The MPC8313E is currently targeted to these specifications. Some of these specifications are  
independent of the I/O cell, but are included for a more complete reference. These are not purely I/O buffer  
design specifications.  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
6
Freescale Semiconductor  
2.1  
Overall DC Electrical Characteristics  
This section covers the ratings, conditions, and other characteristics.  
2.1.1  
Absolute Maximum Ratings  
This table provides the absolute maximum ratings.  
1
Table 1. Absolute Maximum Ratings  
Characteristic  
Symbol  
Max Value  
Unit Note  
Core supply voltage  
PLL supply voltage  
VDD  
–0.3 to 1.26  
–0.3 to 1.26  
–0.3 to 1.26  
–0.3 to 1.26  
V
V
V
V
V
AVDD  
Core power supply for SerDes transceivers  
Pad power supply for SerDes transceivers  
DDR and DDR2 DRAM I/O voltage  
XCOREVDD  
XPADVDD  
GVDD  
–0.3 to 2.75  
–0.3 to 1.98  
PCI, local bus, DUART, system control and power management, I2C,  
and JTAG I/O voltage  
NVDD/LVDD  
–0.3 to 3.6  
V
eTSEC, USB  
LVDDA/LVDDB  
MVIN  
–0.3 to 3.6  
V
V
V
V
Input voltage  
DDR DRAM signals  
–0.3 to (GVDD + 0.3)  
–0.3 to (GVDD + 0.3)  
2, 5  
2, 5  
4, 5  
DDR DRAM reference  
MVREF  
LVIN  
Enhanced three-speed Ethernet signals  
–0.3 to (LVDDA + 0.3)  
or  
–0.3 to (LVDDB + 0.3)  
Local bus, DUART, SYS_CLK_IN, system control,  
and power management, I2C, and JTAG signals  
NVIN  
–0.3 to (NVDD + 0.3)  
V
3, 5  
PCI  
NVIN  
TSTG  
–0.3 to (NVDD + 0.3)  
–55 to 150  
V
6
Storage temperature range  
C  
Notes:  
1. Functional and tested operating conditions are given in Table 2. Absolute maximum ratings are stress ratings only, and  
functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause  
permanent damage to the device.  
2. Caution: MVIN must not exceed GVDD by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during  
power-on reset and power-down sequences.  
3. Caution: NVIN must not exceed NVDD by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during  
power-on reset and power-down sequences.  
4. Caution: LVIN must not exceed LVDDA/LVDDB by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during  
power-on reset and power-down sequences.  
2.1.2  
Power Supply Voltage Specification  
This table provides the recommended operating conditions for the MPC8313E. Note that the values in this  
table are the recommended and tested operating conditions. If a particular block is given a voltage falling  
within the range in the Recommended Value column, the MPC8313E is capable of delivering the amount  
of current listed in the Current Requirement column; this is the maximum current possible. Proper device  
operation outside of these conditions is not guaranteed.  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
7
 
Table 2. Recommended Operating Conditions  
Current  
Requirement  
Characteristic  
Symbol  
Recommended Value1 Unit  
Core supply voltage  
VDD  
1.0 V ± 50 mV  
1.0 V ± 50 mV  
1.0  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
469 mA  
377 mA  
170 mA  
Internal core logic constant power  
SerDes internal digital power  
VDDC  
XCOREVDD  
XCOREVSS  
XPADVDD  
SerDes internal digital ground  
0.0  
SerDes I/O digital power  
1.0  
10 mA  
SerDes I/O digital ground  
XPADVSS  
0.0  
SerDes analog power for PLL  
SDAVDD  
1.0 V ± 50 mV  
0.0  
10 mA  
SerDes analog ground for PLL  
SDAVSS  
Dedicated 3.3 V analog power for USB PLL  
Dedicated 1.0 V analog power for USB PLL  
Dedicated analog ground for USB PLL  
Dedicated USB power for USB bias circuit  
Dedicated USB ground for USB bias circuit  
Dedicated power for USB transceiver  
Dedicated ground for USB transceiver  
Analog power for e300 core APLL  
Analog power for system APLL  
USB_PLL_PWR3  
USB_PLL_PWR1  
USB_PLL_GND  
USB_VDDA_BIAS  
USB_VSSA_BIAS  
USB_VDDA  
USB_VSSA  
3.3 V ± 300 mV  
1.0 V ± 50 mV  
0.0  
2–3 mA  
2–3 mA  
3.3 V ± 300 mV  
0.0  
4–5 mA  
3.3 V ± 300 mV  
0.0  
75 mA  
6
AVDD1  
1.0 V ± 50 mV  
1.0 V ± 50 mV  
2.5 V ± 125 mV  
1.8 V ± 80 mV  
2–3 mA  
2–3 mA  
131 mA  
140 mA  
6
AVDD2  
DDR1 DRAM I/O voltage (333 MHz, 32-bit operation)  
DDR2 DRAM I/O voltage (333 MHz, 32-bit operation)  
Differential reference voltage for DDR controller  
GVDD  
GVDD  
MVREF  
1/2 DDR supply  
(0.49 GVDD to  
0.51 GVDD  
)
Standard I/O voltage  
eTSEC2 I/O supply  
NVDD  
LVDDA  
3.3 V ± 300 mV2  
V
V
74 mA  
22 mA  
2.5 V ± 125 mV/  
3.3 V ± 300 mV  
eTSEC1/USB DR I/O supply  
LVDDB  
2.5 V ± 125 mV/  
3.3 V ± 300 mV  
V
44 mA  
Supply for eLBC IOs  
LVDD  
VSS  
3.3 V ± 300 mV  
0.0  
V
V
16 mA  
Analog and digital ground  
Junction temperature range  
3
TA/TJ  
0 to 105  
C  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
8
 
Table 2. Recommended Operating Conditions (continued)  
Characteristic Symbol  
Recommended Value1 Unit  
Current  
Requirement  
Note:  
1. GVDD, NVDD, AVDD, and VDD must track each other and must vary in the same direction—either in the positive or negative direction.  
2. Some GPIO pins may operate from a 2.5-V supply when configured for other functions.  
3. Min temperature is specified with TA; Max temperature is specified with TJ.  
4. All Power rails must be connected and power applied to the MPC8313 even if the IP interfaces are not used.  
5. All I/O pins should be interfaced with peripherals operating at same voltage level.  
6. This voltage is the input to the filter discussed in Section 22.2, “PLL Power Supply Filtering” and not necessarily the voltage at the  
AVDD pin, which may be reduced from VDD by the filter.  
This figure shows the undershoot and overshoot voltages at the interfaces of the MPC8313E.  
G/L/NVDD + 20%  
G/L/NVDD + 5%  
G/L/NVDD  
VIH  
VSS  
VSS – 0.3 V  
VIL  
VSS – 0.7 V  
Not to Exceed 10%  
1
of tinterface  
Note:  
1. Note that tinterface refers to the clock period associated with the bus clock  
interface.  
Figure 2. Overshoot/Undershoot Voltage for GV /NV /LV  
DD  
DD  
DD  
2.1.3  
Output Driver Characteristics  
This table provides information on the characteristics of the output driver strengths.  
Table 3. Output Drive Capability  
Driver Type  
Output Impedance ()  
Supply Voltage  
Local bus interface utilities signals  
PCI signals  
42  
25  
18  
NVDD = 3.3 V  
DDR signal  
GVDD = 2.5 V  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
9
Table 3. Output Drive Capability (continued)  
Driver Type  
Output Impedance ()  
Supply Voltage  
DDR2 signal  
18  
42  
42  
42  
42  
GVDD = 1.8 V  
NVDD = 3.3 V  
DUART, system control, I2C, JTAG, SPI  
GPIO signals  
NVDD = 3.3 V  
eTSEC signals  
LVDDA, LVDDB = 2.5/3.3 V  
LVDDB = 2.5/3.3 V  
USB signals  
2.2  
Power Sequencing  
The MPC8313E does not require the core supply voltage (V and V  
) and I/O supply voltages  
DD  
DDC  
(GV , LV , and NV ) to be applied in any particular order. Note that during power ramp-up, before  
DD  
DD  
DD  
the power supplies are stable and if the I/O voltages are supplied before the core voltage, there might be a  
period of time that all input and output pins are actively driven and cause contention and excessive current.  
In order to avoid actively driving the I/O pins and to eliminate excessive current draw, apply the core  
voltage (V and V  
) before the I/O voltage (GV , LV , and NV ) and assert PORESET before  
DD  
DDC  
DD DD DD  
the power supplies fully ramp up. In the case where the core voltage is applied first, the core voltage supply  
must rise to 90% of its nominal value before the I/O supplies reach 0.7 V; see Figure 3. Once both the  
power supplies (I/O voltage and core voltage) are stable, wait for a minimum of 32 clock cycles before  
negating PORESET.  
Note that there is no specific power down sequence requirement for the MPC8313E. I/O voltage supplies  
(GV , LV , and NV ) do not have any ordering requirements with respect to one another.  
DD  
DD  
DD  
I/O Voltage (GVDD, GVDD, and NVDD  
)
V
Core Voltage (VDD, VDDC  
)
0.7 V  
90%  
t
0
PORESET  
tSYS_CLK_IN PCI_SYNC_IN  
/t  
>= 32 clocks  
Figure 3. Power-Up Sequencing Example  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
10  
 
3 Power Characteristics  
The estimated typical power dissipation, not including I/O supply power, for this family of MPC8313E  
devices is shown in this table. Table 5 shows the estimated typical I/O power dissipation.  
1
Table 4. MPC8313E Power Dissipation  
Core Frequency  
(MHz)  
CSB Frequency  
(MHz)  
Maximum for  
Maximum for  
Typical2  
Unit  
Rev. 1.0 Silicon3  
Rev. 2.x or Later Silicon3  
333  
400  
167  
133  
820  
820  
1020  
1020  
1200  
1200  
mW  
mW  
Note:  
1. The values do not include I/O supply power or AVDD, but do include core, USB PLL, and a portion of SerDes digital power  
(not including XCOREVDD, XPADVDD, or SDAVDD, which all have dedicated power supplies for the SerDes PHY).  
2. Typical power is based on a voltage of VDD = 1.05 V and an artificial smoker test running at room temperature.  
3. Maximum power is based on a voltage of VDD = 1.05 V, a junction temperature of TJ = 105C, and an artificial smoker test.  
This table describes a typical scenario where blocks with the stated percentage of utilization and  
impedances consume the amount of power described.  
1
Table 5. MPC8313E Typical I/O Power Dissipation  
LVDDA  
LVDDB  
(3.3 V)  
/
LVDDA/  
LVDDB  
(2.5 V)  
GVDD GVDD NVDD  
(1.8 V) (2.5 V) (3.3 V)  
LVDD  
(3.3 V)  
Interface  
Parameter  
Unit  
Comments  
DDR 1, 60% utilization,  
50% read/write  
Rs = 22   
333 MHz,  
32 bits  
0.355  
0.323  
W
W
266 MHz,  
32 bits  
Rt = 50   
single pair of clock  
capacitive load: data = 8 pF,  
control address = 8 pF,  
clock = 8 pF  
DDR 2, 60% utilization,  
50% read/write  
Rs = 22   
333 MHz,  
32 bits  
0.266  
0.246  
W
W
266 MHz,  
32 bits  
Rt = 75   
single pair of clock  
capacitive load: data = 8 pF,  
control address = 8 pF,  
clock = 8 pF  
PCI I/O load = 50 pF  
33 MHz  
66 MHz  
66 MHz  
50 MHz  
0.120  
0.249  
W
W
W
W
W
Local bus I/O load = 20 pF  
TSEC I/O load = 20 pF  
0.056  
0.040  
MII,  
25 MHz  
0.008  
Multiple by  
number of  
interface used  
RGMII,  
0.078  
0.044  
W
125 MHz  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
11  
 
Table 5. MPC8313E Typical I/O Power Dissipation (continued)  
LVDDA  
LVDDB  
(3.3 V)  
/
LVDDA/  
LVDDB  
(2.5 V)  
GVDD GVDD NVDD  
(1.8 V) (2.5 V) (3.3 V)  
LVDD  
(3.3 V)  
Interface  
Parameter  
Unit  
Comments  
USBDR controller load = 20 pF  
Other I/O  
60 MHz  
0.078  
W
W
0.015  
This table shows the estimated core power dissipation of the MPC8313E while transitioning into the  
D3 warm low-power state.  
1
Table 6. MPC8313E Low-Power Modes Power Dissipation  
2
3
3
333-MHz Core, 167-MHz CSB  
Rev. 1.0  
Rev. 2.x or Later  
Unit  
D3 warm  
400  
425  
mW  
Note:  
1. All interfaces are enabled. For further power savings, disable the clocks to unused blocks.  
2. The interfaces are run at the following frequencies: DDR: 333 MHz, eLBC 83 MHz, PCI 33 MHz,  
eTSEC1 and TSEC2: 167 MHz, SEC: 167 MHz, USB: 167 MHz. See the SCCR register for more  
information.  
3. This is maximum power in D3 Warm based on a voltage of 1.05 V and a junction temperature of 105C.  
4 Clock Input Timing  
This section provides the clock input DC and AC electrical characteristics for the MPC8313E.  
4.1  
DC Electrical Characteristics  
This table provides the system clock input (SYS_CLK_IN/PCI_SYNC_IN) DC timing specifications for  
the MPC8313E.  
Table 7. SYS_CLK_IN DC Electrical Characteristics  
Parameter  
Input high voltage  
Condition  
Symbol  
Min  
Max  
Unit  
VIH  
VIL  
IIN  
2.4  
–0.3  
NVDD + 0.3  
0.4  
V
V
Input low voltage  
SYS_CLK_IN input current  
PCI_SYNC_IN input current  
0 V VIN NVDD  
±10  
A  
A  
0 V VIN 0.5 V  
or  
IIN  
±10  
NVDD – 0.5 V VIN NVDD  
PCI_SYNC_IN input current  
0.5 V VIN NVDD – 0.5 V  
IIN  
±50  
A  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
12  
4.2  
AC Electrical Characteristics  
The primary clock source for the MPC8313E can be one of two inputs, SYS_CLK_IN or PCI_CLK,  
depending on whether the device is configured in PCI host or PCI agent mode. This table provides the  
system clock input (SYS_CLK_IN/PCI_CLK) AC timing specifications for the MPC8313E.  
Table 8. SYS_CLK_IN AC Timing Specifications  
Parameter/Condition  
Symbol  
Min  
Typ  
Max  
Unit  
Note  
SYS_CLK_IN/PCI_CLK frequency  
SYS_CLK_IN/PCI_CLK cycle time  
SYS_CLK_IN rise and fall time  
PCI_CLK rise and fall time  
SYS_CLK_IN/PCI_CLK duty cycle  
SYS_CLK_IN/PCI_CLK jitter  
Notes:  
fSYS_CLK_IN  
tSYS_CLK_IN  
tKH, tKL  
24  
15  
0.6  
0.6  
40  
66.67  
MHz  
ns  
1
2
0.8  
0.8  
4
ns  
tPCH, tPCL  
1.2  
60  
ns  
2
tKHK SYS_CLK_IN  
/t  
%
3
±150  
ps  
4, 5  
1. Caution: The system, core, security block must not exceed their respective maximum or minimum operating frequencies.  
2. Rise and fall times for SYS_CLK_IN/PCI_CLK are measured at 0.4 and 2.4 V.  
3. Timing is guaranteed by design and characterization.  
4. This represents the total input jitter—short term and long term—and is guaranteed by design.  
5. The SYS_CLK_IN/PCI_CLK driver’s closed loop jitter bandwidth should be <500 kHz at –20 dB. The bandwidth must be  
set low to allow cascade-connected PLL-based devices to track SYS_CLK_IN drivers with the specified jitter.  
5 RESET Initialization  
This section describes the DC and AC electrical specifications for the reset initialization timing and  
electrical requirements of the MPC8313E.  
5.1  
RESET DC Electrical Characteristics  
This table provides the DC electrical characteristics for the RESET pins.  
Table 9. RESET Pins DC Electrical Characteristics  
Characteristic  
Input high voltage  
Symbol  
Condition  
Min  
Max  
Unit  
VIH  
VIL  
2.1  
–0.3  
NVDD + 0.3  
V
V
Input low voltage  
Input current  
0.8  
±5  
IIN  
0 V VIN NVDD  
IOH = –8.0 mA  
IOL = 8.0 mA  
A  
V
Output high voltage  
Output low voltage  
Output low voltage  
VOH  
VOL  
2.4  
0.5  
0.4  
V
V
I
= 3.2 mA  
OL  
V
OL  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
13  
 
5.2  
RESET AC Electrical Characteristics  
This table provides the reset initialization AC timing specifications.  
Table 10. RESET Initialization Timing Specifications  
Parameter/Condition  
Min  
Max  
Unit  
Note  
Required assertion time of HRESET or SRESET (input) to activate reset flow  
32  
32  
tPCI_SYNC_IN  
tSYS_CLK_IN  
1
2
Required assertion time of PORESET with stable clock and power applied to  
SYS_CLK_IN when the device is in PCI host mode  
Required assertion time of PORESET with stable clock and power applied to  
PCI_SYNC_IN when the device is in PCI agent mode  
32  
tPCI_SYNC_IN  
1
HRESET assertion (output)  
512  
4
tPCI_SYNC_IN  
tSYS_CLK_IN  
1
2
Input setup time for POR configuration signals (CFG_RESET_SOURCE[0:3]  
and CFG_CLK_IN_DIV) with respect to negation of PORESET when the  
device is in PCI host mode  
Input setup time for POR configuration signals (CFG_RESET_SOURCE[0:2]  
and CFG_CLKIN_DIV) with respect to negation of PORESET when the  
device is in PCI agent mode  
4
tPCI_SYNC_IN  
1
Input hold time for POR configuration signals with respect to negation of  
HRESET  
0
1
4
ns  
ns  
3
Time for the device to turn off POR configuration signal drivers with respect  
to the assertion of HRESET  
Time for the device to turn on POR configuration signal drivers with respect to  
the negation of HRESET  
tPCI_SYNC_IN  
1, 3  
Notes:  
1. tPCI_SYNC_IN is the clock period of the input clock applied to PCI_SYNC_IN. When the device is In PCI host mode the  
primary clock is applied to the SYS_CLK_IN input, and PCI_SYNC_IN period depends on the value of CFG_CLKIN_DIV.  
2. tSYS_CLK_IN is the clock period of the input clock applied to SYS_CLK_IN. It is only valid when the device is in PCI host mode.  
3. POR configuration signals consists of CFG_RESET_SOURCE[0:2] and CFG_CLKIN_DIV.  
This table provides the PLL lock times.  
Table 11. PLL Lock Times  
Parameter/Condition  
Min  
Max  
Unit  
Note  
PLL lock times  
100  
s  
6 DDR and DDR2 SDRAM  
This section describes the DC and AC electrical specifications for the DDR SDRAM interface. Note that  
DDR SDRAM is GV (typ) = 2.5 V and DDR2 SDRAM is GV (typ) = 1.8 V.  
DD  
DD  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
14  
6.1  
DDR and DDR2 SDRAM DC Electrical Characteristics  
This table provides the recommended operating conditions for the DDR2 SDRAM component(s) when  
GV (typ) = 1.8 V.  
DD  
Table 12. DDR2 SDRAM DC Electrical Characteristics for GV (typ) = 1.8 V  
DD  
Parameter/Condition  
I/O supply voltage  
Symbol  
Min  
Max  
Unit  
Note  
GVDD  
MVREF  
VTT  
1.7  
0.49 GVDD  
MVREF – 0.04  
MVREF + 0.125  
–0.3  
1.9  
0.51 GVDD  
MVREF + 0.04  
GVDD + 0.3  
MVREF – 0.125  
9.9  
V
V
1
2
I/O reference voltage  
I/O termination voltage  
Input high voltage  
V
3
VIH  
V
4
Input low voltage  
VIL  
V
Output leakage current  
Output high current (VOUT = 1.420 V)  
Output low current (VOUT = 0.280 V)  
Notes:  
IOZ  
–9.9  
A  
mA  
mA  
IOH  
–13.4  
IOL  
13.4  
1. GVDD is expected to be within 50 mV of the DRAM GVDD at all times.  
2. MVREF is expected to be equal to 0.5 GVDD, and to track GVDD DC variations as measured at the receiver. Peak-to-peak  
noise on MVREF may not exceed ±2% of the DC value.  
3. VTT is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be  
equal to MVREF. This rail should track variations in the DC level of MVREF  
.
4. Output leakage is measured with all outputs disabled, 0 V VOUT GVDD  
.
This table provides the DDR2 capacitance when GV (typ) = 1.8 V.  
DD  
Table 13. DDR2 SDRAM Capacitance for GV (typ) = 1.8 V  
DD  
Parameter/Condition  
Symbol  
Min  
Max  
Unit  
Note  
Input/output capacitance: DQ, DQS, DQS  
Delta input/output capacitance: DQ, DQS, DQS  
Note:  
CIO  
6
8
pF  
pF  
1
1
CDIO  
0.5  
1. This parameter is sampled. GVDD = 1.8 V ± 0.090 V, f = 1 MHz, TA = 25°C, VOUT = GVDD/2, VOUT (peak-to-peak) = 0.2 V.  
This table provides the recommended operating conditions for the DDR SDRAM component(s) when  
GV (typ) = 2.5 V.  
DD  
Table 14. DDR SDRAM DC Electrical Characteristics for GV (typ) = 2.5 V  
DD  
Parameter/Condition  
I/O supply voltage  
Symbol  
Min  
Max  
Unit  
Note  
GVDD  
MVREF  
VTT  
2.3  
2.7  
V
V
V
V
V
1
2
I/O reference voltage  
I/O termination voltage  
Input high voltage  
0.49 GVDD  
MVREF – 0.04  
MVREF + 0.15  
–0.3  
0.51 GVDD  
MVREF + 0.04  
GVDD + 0.3  
3
VIH  
Input low voltage  
VIL  
MVREF – 0.15  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
15  
Table 14. DDR SDRAM DC Electrical Characteristics for GV (typ) = 2.5 V (continued)  
DD  
Parameter/Condition  
Output leakage current  
Symbol  
Min  
Max  
Unit  
Note  
IOZ  
IOH  
IOL  
–9.9  
–16.2  
16.2  
–9.9  
A  
mA  
mA  
4
Output high current (VOUT = 1.95 V)  
Output low current (VOUT = 0.35 V)  
Note:  
1. GVDD is expected to be within 50 mV of the DRAM GVDD at all times.  
2. MVREF is expected to be equal to 0.5 GVDD, and to track GVDD DC variations as measured at the receiver. Peak-to-peak  
noise on MVREF may not exceed ±2% of the DC value.  
3. VTT is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be  
equal to MVREF. This rail should track variations in the DC level of MVREF  
.
4. Output leakage is measured with all outputs disabled, 0 V VOUT GVDD  
.
This table provides the DDR capacitance when GVDD(typ) = 2.5 V.  
Table 15. DDR SDRAM Capacitance for GV (typ) = 2.5 V  
DD  
Parameter/Condition  
Symbol  
Min  
Max  
Unit  
Note  
Input/output capacitance: DQ, DQS  
Delta input/output capacitance: DQ, DQS  
Note:  
CIO  
6
8
pF  
pF  
1
1
CDIO  
0.5  
1. This parameter is sampled. GVDD = 2.5 V ± 0.125 V, f = 1 MHz, TA = 25°C, VOUT = GVDD/2, VOUT (peak-to-peak) = 0.2 V.  
This table provides the current draw characteristics for MV  
.
REF  
Table 16. Current Draw Characteristics for MV  
REF  
Parameter/Condition  
Symbol  
Min  
Max  
Unit  
Note  
Current draw for MVREF  
Note:  
IMVREF  
500  
A  
1
1. The voltage regulator for MVREF must be able to supply up to 500 A current.  
6.2  
DDR and DDR2 SDRAM AC Electrical Characteristics  
This section provides the AC electrical characteristics for the DDR SDRAM interface.  
6.2.1  
DDR and DDR2 SDRAM Input AC Timing Specifications  
This table provides the input AC timing specifications for the DDR2 SDRAM when GV (typ) = 1.8 V.  
DD  
Table 17. DDR2 SDRAM Input AC Timing Specifications for 1.8-V Interface  
At recommended operating conditions with GVDD of 1.8 ± 5%.  
Parameter  
Symbol  
Min  
Max  
Unit  
Note  
AC input low voltage  
AC input high voltage  
VIL  
MVREF – 0.25  
V
V
VIH  
MVREF + 0.25  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
16  
This table provides the input AC timing specifications for the DDR SDRAM when GV (typ) = 2.5 V.  
DD  
Table 18. DDR SDRAM Input AC Timing Specifications for 2.5-V Interface  
At recommended operating conditions with GVDD of 2.5 ± 5%.  
Parameter  
Symbol  
Min  
Max  
Unit  
Note  
AC input low voltage  
AC input high voltage  
VIL  
MVREF – 0.31  
V
V
VIH  
MVREF + 0.31  
This table provides the input AC timing specifications for the DDR2 SDRAM interface.  
Table 19. DDR and DDR2 SDRAM Input AC Timing Specifications  
At recommended operating conditions. with GVDD of 2.5 ± 5%.  
Parameter  
Symbol  
Min  
Max  
Unit  
Note  
Controller skew for MDQS—MDQ  
tCISKEW  
ps  
1, 2  
333 MHz  
266 MHz  
Notes:  
–750  
–750  
750  
750  
1. tCISKEW represents the total amount of skew consumed by the controller between MDQS[n] and any corresponding bit that  
is captured with MDQS[n]. This should be subtracted from the total timing budget.  
2. The amount of skew that can be tolerated from MDQS to a corresponding MDQ signal is called tDISKEW. This can be  
determined by the following equation: tDISKEW = ± (T/4 – abs(tCISKEW)) where T is the clock period and abs(tCISKEW) is the  
absolute value of tCISKEW  
.
This figure illustrates the DDR input timing diagram showing the t  
timing parameter.  
DISKEW  
MCK[n]  
MCK[n]  
tMCK  
MDQS[n]  
MDQ[x]  
D0  
D1  
tDISKEW  
tDISKEW  
Figure 4. DDR Input Timing Diagram  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
17  
6.2.2  
DDR and DDR2 SDRAM Output AC Timing Specifications  
Table 20. DDR and DDR2 SDRAM Output AC Timing Specifications for Rev. 1.0 Silicon  
Parameter  
Symbol 1  
Min  
Max  
Unit  
Note  
MCK[n] cycle time, MCK[n]/MCK[n] crossing  
tMCK  
6
10  
ns  
ns  
2
3
ADDR/CMD output setup with respect to MCK  
tDDKHAS  
333 MHz  
266 MHz  
2.1  
2.5  
ADDR/CMD output hold with respect to MCK  
tDDKHAX  
tDDKHCS  
tDDKHCX  
tDDKHMH  
ns  
ns  
ns  
3
3
3
333 MHz  
266 MHz  
2.4  
3.15  
MCS[n] output setup with respect to MCK  
333 MHz  
266 MHz  
2.4  
3.15  
MCS[n] output hold with respect to MCK  
333 MHz  
266 MHz  
2.4  
3.15  
MCK to MDQS Skew  
–0.6  
0.6  
ns  
ps  
4
5
MDQ//MDM output setup with respect to  
MDQS  
tDDKHDS,  
tDDKLDS  
333 MHz  
266 MHz  
800  
900  
MDQ//MDM output hold with respect to MDQS  
tDDKHDX,  
tDDKLDX  
ps  
5
333 MHz  
266 MHz  
900  
1100  
MDQS preamble start  
MDQS epilogue end  
Notes:  
tDDKHMP  
tDDKHME  
–0.5 tMCK – 0.6  
–0.5 tMCK + 0.6  
ns  
ns  
6
6
–0.6  
0.6  
1. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for  
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. Output hold time can be read as DDR timing  
(DD) from the rising or falling edge of the reference clock (KH or KL) until the output went invalid (AX or DX). For example,  
tDDKHAS symbolizes DDR timing (DD) for the time tMCK memory clock reference (K) goes from the high (H) state until outputs  
(A) are setup (S) or output valid time. Also, tDDKLDX symbolizes DDR timing (DD) for the time tMCK memory clock reference  
(K) goes low (L) until data outputs (D) are invalid (X) or data output hold time.  
2. All MCK/MCK referenced measurements are made from the crossing of the two signals ±0.1 V.  
3. ADDR/CMD includes all DDR SDRAM output signals except MCK/MCK, MCS, and MDQ//MDM/MDQS.  
4. Note that tDDKHMH follows the symbol conventions described in note 1. For example, tDDKHMH describes the DDR timing  
(DD) from the rising edge of the MCK[n] clock (KH) until the MDQS signal is valid (MH). tDDKHMH can be modified through  
control of the DQSS override bits in the TIMING_CFG_2 register. This is typically set to the same delay as the clock adjust  
in the CLK_CNTL register. The timing parameters listed in the table assume that these 2 parameters have been set to the  
same adjustment value. See the MPC8313E PowerQUICC II Pro Integrated Processor Family Reference Manual, for a  
description and understanding of the timing modifications enabled by use of these bits.  
5. Determined by maximum possible skew between a data strobe (MDQS) and any corresponding bit of data (MDQ), ECC  
(MECC), or data mask (MDM). The data strobe should be centered inside of the data eye at the pins of the microprocessor.  
6. All outputs are referenced to the rising edge of MCK[n] at the pins of the microprocessor. Note that tDDKHMP follows the  
symbol conventions described in note 1.  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
18  
Freescale Semiconductor  
Table 21. DDR and DDR2 SDRAM Output AC Timing Specifications for Silicon Rev 2.x or Later  
Parameter  
Symbol1  
Min  
Max  
Unit  
Note  
MCK[n] cycle time, MCK[n]/MCK[n] crossing  
tMCK  
6
10  
ns  
ns  
2
3
ADDR/CMD output setup with respect to MCK  
tDDKHAS  
333 MHz  
266 MHz  
2.1  
2.5  
ADDR/CMD output hold with respect to MCK  
tDDKHAX  
tDDKHCS  
tDDKHCX  
tDDKHMH  
ns  
ns  
ns  
3
3
3
333 MHz  
266 MHz  
2.0  
2.7  
MCS[n] output setup with respect to MCK  
333 MHz  
266 MHz  
2.1  
3.15  
MCS[n] output hold with respect to MCK  
333 MHz  
266 MHz  
2.0  
2.7  
MCK to MDQS Skew  
–0.6  
0.6  
ns  
ps  
4
5
MDQ//MDM output setup with respect to  
MDQS  
tDDKHDS,  
tDDKLDS  
333 MHz  
266 MHz  
800  
900  
MDQ//MDM output hold with respect to MDQS  
tDDKHDX,  
tDDKLDX  
ps  
5
333 MHz  
266 MHz  
750  
1000  
MDQS preamble start  
MDQS epilogue end  
Notes:  
tDDKHMP  
tDDKHME  
–0.5 tMCK – 0.6  
–0.5 tMCK + 0.6  
ns  
ns  
6
6
–0.6  
0.6  
1. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for  
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. Output hold time can be read as DDR timing  
(DD) from the rising or falling edge of the reference clock (KH or KL) until the output went invalid (AX or DX). For example,  
tDDKHAS symbolizes DDR timing (DD) for the time tMCK memory clock reference (K) goes from the high (H) state until outputs  
(A) are setup (S) or output valid time. Also, tDDKLDX symbolizes DDR timing (DD) for the time tMCK memory clock reference  
(K) goes low (L) until data outputs (D) are invalid (X) or data output hold time.  
2. All MCK/MCK referenced measurements are made from the crossing of the two signals ±0.1 V.  
3. ADDR/CMD includes all DDR SDRAM output signals except MCK/MCK, MCS, and MDQ//MDM/MDQS.  
4. Note that tDDKHMH follows the symbol conventions described in note 1. For example, tDDKHMH describes the DDR timing  
(DD) from the rising edge of the MCK[n] clock (KH) until the MDQS signal is valid (MH). tDDKHMH can be modified through  
control of the DQSS override bits in the TIMING_CFG_2 register. This is typically set to the same delay as the clock adjust  
in the CLK_CNTL register. The timing parameters listed in the table assume that these 2 parameters have been set to the  
same adjustment value. See the MPC8313E PowerQUICC II Pro Integrated Processor Family Reference Manual, for a  
description and understanding of the timing modifications enabled by use of these bits.  
5. Determined by maximum possible skew between a data strobe (MDQS) and any corresponding bit of data (MDQ), ECC  
(MECC), or data mask (MDM). The data strobe should be centered inside of the data eye at the pins of the microprocessor.  
6. All outputs are referenced to the rising edge of MCK[n] at the pins of the microprocessor. Note that tDDKHMP follows the  
symbol conventions described in note 1.  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
19  
 
NOTE  
For the ADDR/CMD setup and hold specifications in Table 21, it is  
assumed that the clock control register is set to adjust the memory clocks by  
1/2 applied cycle.  
This figure shows the DDR SDRAM output timing for the MCK to MDQS skew measurement  
(t  
).  
DDKHMH  
MCK[n]  
MCK[n]  
tMCK  
tDDKHMH(max) = 0.6 ns  
MDQS  
MDQS  
tDDKHMH(min) = –0.6 ns  
Figure 5. Timing Diagram for t  
DDKHMH  
This figure shows the DDR and DDR2 SDRAM output timing diagram.  
MCK[n]  
MCK[n]  
tMCK  
tDDKHAS DDKHCS  
,t  
tDDKHAX, tDDKHCX  
ADDR/CMD  
Write A0  
tDDKHMP  
NOOP  
tDDKHMH  
MDQS[n]  
MDQ[x]  
tDDKHME  
tDDKHDS  
tDDKLDS  
D0  
D1  
tDDKLDX  
tDDKHDX  
Figure 6. DDR and DDR2 SDRAM Output Timing Diagram  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
20  
Freescale Semiconductor  
This figure provides the AC test load for the DDR bus.  
Output  
GVDD/2  
Z0 = 50   
RL = 50   
Figure 7. DDR AC Test Load  
7 DUART  
This section describes the DC and AC electrical specifications for the DUART interface.  
7.1  
DUART DC Electrical Characteristics  
This table provides the DC electrical characteristics for the DUART interface.  
Table 22. DUART DC Electrical Characteristics  
Parameter  
Symbol  
Min  
Max  
Unit  
High-level input voltage  
VIH  
VIL  
2.0  
–0.3  
NVDD + 0.3  
V
V
Low-level input voltage NVDD  
0.8  
High-level output voltage, IOH = –100 A  
Low-level output voltage, IOL = 100 A  
VOH  
VOL  
IIN  
NVDD – 0.2  
V
0.2  
±5  
V
Input current (0 V VIN NVDD  
)
A  
7.2  
DUART AC Electrical Specifications  
This table provides the AC timing parameters for the DUART interface.  
Table 23. DUART AC Timing Specifications  
Parameter  
Value  
Unit  
Note  
Minimum baud rate  
Maximum baud rate  
Oversample rate  
256  
> 1,000,000  
16  
baud  
baud  
1
2
Notes:  
1. Actual attainable baud rate is limited by the latency of interrupt processing.  
2. The middle of a start bit is detected as the 8th sampled 0 after the 1-to-0 transition of the start bit. Subsequent bit values are  
sampled each 16th sample.  
8 Ethernet: Three-Speed Ethernet, MII Management  
This section provides the AC and DC electrical characteristics for three-speed, 10/100/1000, and MII  
management.  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
21  
8.1  
Enhanced Three-Speed Ethernet Controller (eTSEC)  
(10/100/1000 Mbps)—MII/RMII/RGMII/SGMII/RTBI Electrical  
Characteristics  
The electrical characteristics specified here apply to all the media independent interface (MII), reduced  
gigabit media independent interface (RGMII), serial gigabit media independent interface (SGMII), and  
reduced ten-bit interface (RTBI) signals except management data input/output (MDIO) and management  
data clock (MDC). The RGMII and RTBI interfaces are defined for 2.5 V, while the MII interface can be  
operated at 3.3 V. The RMII and SGMII interfaces can be operated at either 3.3 or 2.5 V. The RGMII and  
RTBI interfaces follow the Hewlett-Packard reduced pin-count interface for Gigabit Ethernet Physical  
Layer Device Specification Version 1.2a (9/22/2000). The electrical characteristics for MDIO and MDC  
are specified in Section 8.5, “Ethernet Management Interface Electrical Characteristics.”  
8.1.1  
TSEC DC Electrical Characteristics  
All RGMII, RMII, and RTBI drivers and receivers comply with the DC parametric attributes specified in  
Table 24 and Table 25. The RGMII and RTBI signals are based on a 2.5-V CMOS interface voltage as  
defined by JEDEC EIA/JESD8-5.  
NOTE  
eTSEC should be interfaced with peripheral operating at same voltage level.  
Table 24. MII DC Electrical Characteristics  
Parameter  
Symbol  
Conditions  
Min  
Max  
Unit  
Supply voltage 3.3 V  
Output high voltage  
LVDDA/LVDDB  
VOH  
2.97  
2.40  
3.63  
V
V
IOH = –4.0 mA  
LVDDA or LVDDB = Min  
LVDDA + 0.3  
or  
LVDDB + 0.3  
Output low voltage  
Input high voltage  
VOL  
VIH  
IOL = 4.0 mA  
LVDDA or LVDDB = Min  
VSS  
2.0  
0.50  
V
V
LVDDA + 0.3  
or  
LVDDB + 0.3  
Input low voltage  
Input high current  
Input low current  
Note:  
VIL  
IIH  
IIL  
–0.3  
0.90  
40  
V
VIN1 = LVDDA or LVDDB  
VIN1 = VSS  
A  
A  
–600  
1. The symbol VIN, in this case, represents the LVIN symbol referenced in Table 1 and Table 2.  
Table 25. RGMII/RTBI DC Electrical Characteristics  
Parameters  
Symbol  
Conditions  
Min  
Max  
Unit  
Supply voltage 2.5 V  
LVDDA/LVDDB  
2.37  
2.63  
V
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
22  
 
 
 
 
Table 25. RGMII/RTBI DC Electrical Characteristics (continued)  
Parameters  
Symbol  
Conditions  
LVDDA or LVDDB = Min  
Min  
Max  
Unit  
Output high voltage  
VOH  
IOH = –1.0 mA  
2.00  
LVDDA + 0.3  
or  
V
LVDDB + 0.3  
Output low voltage  
Input high voltage  
VOL  
VIH  
IOL = 1.0 mA  
LVDDA or LVDDB = Min  
LVDDA or LVDDB = Min  
VSS– 0.3  
0.40  
V
V
1.7  
LVDDA + 0.3  
or  
LVDDB + 0.3  
Input low voltage  
Input high current  
Input low current  
Note:  
VIL  
IIH  
IIL  
LVDDA or LVDDB = Min  
–0.3  
0.70  
10  
V
VIN1 = LVDDA or LVDDB  
VIN1 = VSS  
A  
A  
–15  
1. Note that the symbol VIN, in this case, represents the LVIN symbol referenced in Table 1 and Table 2.  
8.2  
MII, RGMII, and RTBI AC Timing Specifications  
The AC timing specifications for MII, RMII, RGMII, and RTBI are presented in this section.  
8.2.1  
MII AC Timing Specifications  
This section describes the MII transmit and receive AC timing specifications.  
8.2.1.1  
MII Transmit AC Timing Specifications  
This table provides the MII transmit AC timing specifications.  
Table 26. MII Transmit AC Timing Specifications  
At recommended operating conditions with LVDDA/LVDDB/NVDD of 3.3 V ± 0.3 V.  
Parameter/Condition  
TX_CLK clock period 10 Mbps  
Symbol1  
Min  
Typ  
Max  
Unit  
tMTX  
tMTX  
tMTXH/ MTX  
tMTKHDX  
tMTXR  
400  
40  
5
ns  
ns  
%
TX_CLK clock period 100 Mbps  
TX_CLK duty cycle  
t
35  
1
65  
15  
4.0  
4.0  
TX_CLK to MII data TXD[3:0], TX_ER, TX_EN delay  
TX_CLK data clock rise VIL(min) to VIH(max)  
TX_CLK data clock fall VIH(max) to VIL(min)  
Note:  
ns  
ns  
ns  
1.0  
1.0  
tMTXF  
1. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for  
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tMTKHDX symbolizes MII transmit  
timing (MT) for the time tMTX clock reference (K) going high (H) until data outputs (D) are invalid (X). Note that, in general,  
the clock reference symbol representation is based on two to three letters representing the clock of a particular functional.  
For example, the subscript of tMTX represents the MII(M) transmit (TX) clock. For rise and fall times, the latter convention is  
used with the appropriate letter: R (rise) or F (fall).  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
23  
This figure shows the MII transmit AC timing diagram.  
tMTXR  
tMTX  
TX_CLK  
tMTXF  
tMTXH  
TXD[3:0]  
TX_EN  
TX_ER  
tMTKHDX  
Figure 8. MII Transmit AC Timing Diagram  
8.2.1.2  
MII Receive AC Timing Specifications  
This table provides the MII receive AC timing specifications.  
Table 27. MII Receive AC Timing Specifications  
At recommended operating conditions with LVDDA/LVDDB/NVDD of 3.3 V ± 0.3 V.  
Parameter/Condition  
RX_CLK clock period 10 Mbps  
Symbol1  
Min  
Typ  
Max  
Unit  
tMRX  
tMRX  
tMRXH/tMRX  
400  
40  
ns  
ns  
%
RX_CLK clock period 100 Mbps  
RX_CLK duty cycle  
35  
65  
RXD[3:0], RX_DV, RX_ER setup time to RX_CLK  
RXD[3:0], RX_DV, RX_ER hold time to RX_CLK  
RX_CLK clock rise VIL(min) to VIH(max)  
RX_CLK clock fall time VIH(max) to VIL(min)  
Note:  
tMRDVKH  
tMRDXKH  
tMRXR  
10.0  
10.0  
1.0  
1.0  
ns  
ns  
ns  
ns  
4.0  
4.0  
tMRXF  
1. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for  
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tMRDVKH symbolizes MII receive  
timing (MR) with respect to the time data input signals (D) reach the valid state (V) relative to the tMRX clock reference (K)  
going to the high (H) state or setup time. Also, tMRDXKL symbolizes MII receive timing (GR) with respect to the time data  
input signals (D) went invalid (X) relative to the tMRX clock reference (K) going to the low (L) state or hold time. Note that, in  
general, the clock reference symbol representation is based on three letters representing the clock of a particular functional.  
For example, the subscript of tMRX represents the MII (M) receive (RX) clock. For rise and fall times, the latter convention  
is used with the appropriate letter: R (rise) or F (fall).  
2. The frequency of RX_CLK should not exceed the TX_CLK by more than 300 ppm  
This figure provides the AC test load for TSEC.  
Output  
LVDDA/2 or LVDDB/2  
Z0 = 50   
RL = 50   
Figure 9. TSEC AC Test Load  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
24  
 
This figure shows the MII receive AC timing diagram.  
tMRXR  
tMRX  
RX_CLK  
tMRXF  
Valid Data  
tMRXH  
RXD[3:0]  
RX_DV  
RX_ER  
tMRDVKH  
tMRDXKH  
Figure 10. MII Receive AC Timing Diagram RMII AC Timing Specifications  
8.2.1.3  
RMII Transmit AC Timing Specifications  
This table provides the RMII transmit AC timing specifications.  
Table 28. RMII Transmit AC Timing Specifications  
At recommended operating conditions with NVDD of 3.3 V ± 0.3 V.  
Parameter/Condition  
Symbol1  
Min  
Typ  
Max  
Unit  
REF_CLK clock  
tRMX  
35  
2
20  
65  
ns  
%
REF_CLK duty cycle  
tRMXH/ RMX  
tRMTKHDX  
tRMXR  
t
REF_CLK to RMII data TXD[1:0], TX_EN delay  
REF_CLK data clock rise VIL(min) to VIH(max)  
REF_CLK data clock fall VIH(max) to VIL(min)  
Note:  
10  
ns  
ns  
ns  
1.0  
1.0  
4.0  
4.0  
tRMXF  
1. The symbols used for timing specifications follow the pattern of t(first three letters of functional block)(signal)(state)(reference)(state) for  
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tRMTKHDX symbolizes RMII  
transmit timing (RMT) for the time tRMX clock reference (K) going high (H) until data outputs (D) are invalid (X). Note that,  
in general, the clock reference symbol representation is based on two to three letters representing the clock of a particular  
functional. For example, the subscript of tRMX represents the RMII(RM) reference (X) clock. For rise and fall times, the latter  
convention is used with the appropriate letter: R (rise) or F (fall).  
This figure shows the RMII transmit AC timing diagram.  
tRMX  
tRMXR  
REF_CLK  
tRMXF  
tRMXH  
TXD[1:0]  
TX_EN  
tRMTKHDX  
Figure 11. RMII Transmit AC Timing Diagram  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
25  
8.2.1.4  
RMII Receive AC Timing Specifications  
This table provides the RMII receive AC timing specifications.  
Table 29. RMII Receive AC Timing Specifications  
At recommended operating conditions with NVDD of 3.3 V ± 0.3 V.  
Parameter/Condition  
Symbol1  
Min  
Typ  
Max  
Unit  
REF_CLK clock period  
tRMX  
35  
20  
65  
ns  
%
REF_CLK duty cycle  
tRMXH/tRMX  
RXD[1:0], CRS_DV, RX_ER setup time to REF_CLK  
RXD[1:0], CRS_DV, RX_ER hold time to REF_CLK  
REF_CLK clock rise VIL(min) to VIH(max)  
REF_CLK clock fall time VIH(max) to VIL(min)  
Note:  
tRMRDVKH  
tRMRDXKH  
tRMXR  
4.0  
2.0  
1.0  
1.0  
ns  
ns  
ns  
ns  
4.0  
4.0  
tRMXF  
1. The symbols used for timing specifications follow the pattern of t(first three letters of functional block)(signal)(state)(reference)(state) for  
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tRMRDVKH symbolizes RMII  
receive timing (RMR) with respect to the time data input signals (D) reach the valid state (V) relative to the tRMX clock  
reference (K) going to the high (H) state or setup time. Also, tRMRDXKL symbolizes RMII receive timing (RMR) with respect  
to the time data input signals (D) went invalid (X) relative to the tRMX clock reference (K) going to the low (L) state or hold  
time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a  
particular functional. For example, the subscript of tRMX represents the RMII (RM) reference (X) clock. For rise and fall times,  
the latter convention is used with the appropriate letter: R (rise) or F (fall).  
This table provides the AC test load.  
Output  
NVDD/2  
Z0 = 50   
RL = 50   
Figure 12. AC Test Load  
This table shows the RMII receive AC timing diagram.  
tRMXR  
tRMX  
REF_CLK  
tRMXH  
tRMXF  
Valid Data  
RXD[1:0]  
CRS_DV  
RX_ER  
tRMRDVKH  
tRMRDXKH  
Figure 13. RMII Receive AC Timing Diagram  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
26  
8.2.2  
RGMII and RTBI AC Timing Specifications  
This table presents the RGMII and RTBI AC timing specifications.  
Table 30. RGMII and RTBI AC Timing Specifications  
At recommended operating conditions with LVDDA/LVDDB of 2.5 V ± 5%.  
Parameter/Condition  
Symbol1  
Min  
Typ  
Max  
Unit  
Data to clock output skew (at transmitter)  
Data to clock input skew (at receiver) 2  
tSKRGT  
tSKRGT  
–0.5  
1.0  
0.5  
2.6  
ns  
ns  
Clock cycle duration 3  
tRGT  
7.2  
45  
40  
8.0  
50  
50  
8.8  
55  
ns  
%
Duty cycle for 1000Base-T 4, 5  
Duty cycle for 10BASE-T and 100BASE-TX 3, 5  
Rise time (20%–80%)  
tRGTH RGT  
tRGTH/tRGT  
tRGTR  
tRGTF  
/t  
60  
%
0.75  
0.75  
ns  
ns  
ns  
%
Fall time (20%–80%)  
6
GTX_CLK125 reference clock period  
GTX_CLK125 reference clock duty cycle  
Note:  
tG12  
8.0  
tG125H G125  
/t  
47  
53  
1. Note that, in general, the clock reference symbol representation for this section is based on the symbols RGT to represent  
RGMII and RTBI timing. For example, the subscript of tRGT represents the RTBI (T) receive (RX) clock. Note also that the  
notation for rise (R) and fall (F) times follows the clock symbol that is being represented. For symbols representing skews,  
the subscript is skew (SK) followed by the clock that is being skewed (RGT).  
2. This implies that PC board design requires clocks to be routed such that an additional trace delay of greater than 1.5 ns is  
added to the associated clock signal.  
3. For 10 and 100 Mbps, tRGT scales to 400 ns ± 40 ns and 40 ns ± 4 ns, respectively.  
4. Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet's clock domains as  
long as the minimum duty cycle is not violated and stretching occurs for no more than three tRGT of the lowest speed  
transitioned between.  
5. Duty cycle reference is LVDDA/2 or LVDDB/2.  
6. This symbol is used to represent the external GTX_CLK125 and does not follow the original symbol naming convention.  
7. The frequency of RX_CLK should not exceed the GTX_CLK125 by more than 300 ppm  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
27  
 
This figure shows the RGMII and RTBI AC timing and multiplexing diagrams.  
tRGT  
tRGTH  
GTX_CLK  
(At Transmitter)  
tSKRGT  
TXD[8:5][3:0]  
TXD[7:4][3:0]  
TXD[8:5]  
TXD[7:4]  
TXD[3:0]  
TXD[9]  
TXERR  
TXD[4]  
TXEN  
TX_CTL  
tSKRGT  
TX_CLK  
(At PHY)  
RXD[8:5][3:0]  
RXD[7:4][3:0]  
RXD[8:5]  
RXD[7:4]  
RXD[3:0]  
tSKRGT  
RXD[9]  
RXERR  
RXD[4]  
RXDV  
RX_CTL  
tSKRGT  
RX_CLK  
(At PHY)  
Figure 14. RGMII and RTBI AC Timing and Multiplexing Diagrams  
8.3  
SGMII Interface Electrical Characteristics  
Each SGMII port features a 4-wire AC-coupled serial link from the dedicated SerDes interface of  
MPC8313E as shown in Figure 15, where C is the external (on board) AC-coupled capacitor. Each  
TX  
output pin of the SerDes transmitter differential pair features a 50-output impedance. Each input of the  
SerDes receiver differential pair features 50-on-die termination to XCOREVSS. The reference circuit  
of the SerDes transmitter and receiver is shown in Figure 33.  
When an eTSEC port is configured to operate in SGMII mode, the parallel interface’s output signals of  
this eTSEC port can be left floating. The input signals should be terminated based on the guidelines  
described in Section 22.5, “Connection Recommendations,” as long as such termination does not violate  
the desired POR configuration requirement on these pins, if applicable.  
When operating in SGMII mode, the TSEC_GTX_CLK125 clock is not required for this port. Instead, the  
SerDes reference clock is required on SD_REF_CLK and SD_REF_CLK pins.  
8.3.1  
DC Requirements for SGMII SD_REF_CLK and SD_REF_CLK  
The characteristics and DC requirements of the separate SerDes reference clock are described in Section 9,  
“High-Speed Serial Interfaces (HSSI).”  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
28  
Freescale Semiconductor  
 
8.3.2  
AC Requirements for SGMII SD_REF_CLK and SD_REF_CLK  
This table lists the SGMII SerDes reference clock AC requirements. Note that SD_REF_CLK and  
SD_REF_CLK are not intended to be used with, and should not be clocked by, a spread spectrum clock  
source.  
Table 31. SD_REF_CLK and SD_REF_CLK AC Requirements  
Symbol  
Parameter Description  
Min  
Typ  
Max  
Unit  
tREF  
REFCLK cycle time  
8
ns  
ps  
tREFCJ  
REFCLK cycle-to-cycle jitter. Difference in the period of any two  
adjacent REFCLK cycles  
100  
tREFPJ  
Phase jitter. Deviation in edge location with respect to mean  
edge location  
–50  
50  
ps  
8.3.3  
SGMII Transmitter and Receiver DC Electrical Characteristics  
Table 32 and Table 33 describe the SGMII SerDes transmitter and receiver AC-coupled DC electrical  
characteristics. Transmitter DC characteristics are measured at the transmitter outputs (SD_TX[n] and  
SD_TX[n]) as depicted in Figure 16.  
Table 32. SGMII DC Transmitter Electrical Characteristics  
Parameter  
Supply voltage  
Symbol  
Min  
Typ  
Max  
Unit  
Note  
XCOREVDD  
VOH  
0.95  
1.0  
1.05  
V
Output high voltage  
XCOREVDD-Typ/2 mV  
+ |VOD -max/2  
1
1
|
Output low voltage  
VOL  
XCOREVDD-Typ/2  
mV  
– |VOD -max/2  
|
Output ringing  
VRING  
10  
%
Output differential voltage2, 3  
|VOD  
|
323  
500  
725  
mV  
Equalization  
setting: 1.0x  
Output offset voltage  
VOS  
RO  
425  
40  
500  
575  
60  
mV  
1, 4  
Output impedance  
(single-ended)  
Mismatch in a pair  
RO  
|VOD  
VOS  
10  
25  
25  
40  
%
Change in VOD between 0 and 1  
Change in VOS between 0 and 1  
Output current on short to GND  
Notes:  
|
mV  
mV  
mA  
ISA, ISB  
1. This will not align to DC-coupled SGMII. XCOREVDD-Typ = 1.0 V.  
2. |VOD| = |VTXn – VTXn|. |VOD| is also referred as output differential peak voltage. VTX-DIFFp-p = 2*|VOD|.  
3. The |VOD| value shown in the Typ column is based on the condition of XCOREVDD-Typ = 1.0 V, no common mode offset  
variation (VOS = 500 mV), SerDes transmitter is terminated with 100-differential load between TX[n] and TX[n].  
4. VOS is also referred to as output common mode voltage.  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
29  
 
 
TXn  
TXn  
RXm  
RXm  
50   
50   
CTX  
50   
50   
Receiver  
Transmitter  
CTX  
MPC8313E SGMII  
SerDes Interface  
CTX  
RXn  
TXm  
50   
50   
50   
Receiver  
Transmitter  
50   
CTX  
RXn  
TXm  
Figure 15. 4-Wire AC-Coupled SGMII Serial Link Connection Example  
MPC8313E SGMII  
SerDes Interface  
TXn  
50   
50  
50  
Transmitter  
Vos  
VOD  
50   
TXn  
Figure 16. SGMII Transmitter DC Measurement Circuit  
Table 33. SGMII DC Receiver Electrical Characteristics  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Note  
Supply voltage  
XCOREVDD  
0.95  
1.0  
N/A  
1.05  
V
DC Input voltage range  
1
2
Input differential voltage  
VRX_DIFFp-p  
VLOS  
100  
30  
1200  
100  
100  
120  
35  
mV  
mV  
mV  
Loss of signal threshold  
Input AC common mode voltage  
Receiver differential input impedance  
Receiver common mode input impedance  
VCM_ACp-p  
ZRX_DIFF  
ZRX_CM  
3
80  
20  
100  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
30  
Table 33. SGMII DC Receiver Electrical Characteristics (continued)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Note  
Common mode input voltage  
VCM  
Vxcorevss  
V
4
Notes:  
1. Input must be externally AC-coupled.  
2. VRX_DIFFp-p is also referred to as peak to peak input differential voltage  
3. VCM_ACp-p is also referred to as peak to peak AC common mode voltage.  
4. On-chip termination to XCOREVSS  
.
8.3.4  
SGMII AC Timing Specifications  
This section describes the SGMII transmit and receive AC timing specifications. Transmitter and receiver  
characteristics are measured at the transmitter outputs (TX[n] and TX[n]) or at the receiver inputs (RX[n]  
and RX[n]) as depicted in Figure 18, respectively.  
8.3.4.1  
SGMII Transmit AC Timing Specifications  
This table provides the SGMII transmit AC timing targets. A source synchronous clock is not provided.  
Table 34. SGMII Transmit AC Timing Specifications  
At recommended operating conditions with XCOREVDD = 1.0 V ± 5%.  
Parameter  
Deterministic jitter  
Symbol  
Min  
Typ  
Max  
Unit  
Note  
JD  
JT  
0.17  
0.35  
UI p-p  
UI p-p  
ps  
Total jitter  
Unit interval  
UI  
799.92  
50  
800  
800.08  
120  
1
VOD fall time (80%–20%)  
VOD rise time (20%–80%)  
tfall  
trise  
ps  
50  
120  
ps  
Note:  
1. Each UI is 800 ps ± 100 ppm.  
8.3.4.2  
SGMII Receive AC Timing Specifications  
This table provides the SGMII receive AC timing specifications. Source synchronous clocking is not  
supported. Clock is recovered from the data. Figure 17 shows the SGMII receiver input compliance mask  
eye diagram.  
Table 35. SGMII Receive AC Timing Specifications  
At recommended operating conditions with XCOREVDD = 1.0 V ± 5%.  
Parameter  
Deterministic jitter tolerance  
Symbol  
Min  
Typ  
Max  
Unit  
Note  
JD  
0.37  
0.55  
0.1  
UI p-p  
UI p-p  
UI p-p  
1
1
1
Combined deterministic and random jitter tolerance  
Sinusoidal jitter tolerance  
JDR  
JSIN  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
31  
Table 35. SGMII Receive AC Timing Specifications (continued)  
At recommended operating conditions with XCOREVDD = 1.0 V ± 5%.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Note  
Total jitter tolerance  
Bit error ratio  
JT  
BER  
UI  
0.65  
UI p-p  
1
10–12  
800.08  
200  
Unit interval  
799.92  
5
800  
ps  
2
3
AC coupling capacitor  
CTX  
nF  
Notes:  
1. Measured at receiver.  
2. Each UI is 800 ps ± 100 ppm.  
3. The external AC coupling capacitor is required. It is recommended to be placed near the device transmitter outputs.  
VRX_DIFFp-p-max/2  
VRX_DIFFp-p-min/2  
0
VRX_DIFFp-p-min/2  
VRX_DIFFp-p-max/2  
1
0
0.275  
0.4  
0.6  
0.725  
Time (UI)  
Figure 17. SGMII Receiver Input Compliance Mask  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
32  
Freescale Semiconductor  
D+ Package  
Pin  
C = TX  
C = TX  
TX  
Silicon  
+ Package  
D– Package  
Pin  
R = 50   
R = 50   
Figure 18. SGMII AC Test/Measurement Load  
8.4  
eTSEC IEEE 1588 AC Specifications  
This figure provides the data and command output timing diagram.  
tT1588CLKOUT  
tT1588CLKOUTH  
TSEC_1588_CLK_OUT  
tT1588OV  
TSEC_1588_PULSE_OUT  
TSEC_1588_TRIG_OUT  
Note: The output delay is count starting rising edge if tT1588CLKOUT is non-inverting. Otherwise, it is  
count starting falling edge.  
Figure 19. eTSEC IEEE 1588 Output AC Timing  
This figure provides the data and command input timing diagram.  
tT1588CLK  
tT1588CLKH  
TSEC_1588_CLK  
TSEC_1588_TRIG_IN  
tT1588TRIGH  
Figure 20. eTSEC IEEE 1588 Input AC Timing  
This table lists the IEEE 1588 AC timing specifications.  
Table 36. eTSEC IEEE 1588 AC Timing Specifications  
At recommended operating conditions with L/TVDD of 3.3 V ± 5%.  
Parameter/Condition  
Symbol  
Min  
Typ  
Max  
Unit  
Note  
TSEC_1588_CLK clock period  
TSEC_1588_CLK duty cycle  
tT1588CLK  
3.8  
40  
TRX_CLK 9  
ns  
%
1, 3  
tT1588CLKH T1588CLK  
/t  
50  
60  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
33  
Table 36. eTSEC IEEE 1588 AC Timing Specifications (continued)  
At recommended operating conditions with L/TVDD of 3.3 V ± 5%.  
Parameter/Condition  
Symbol  
Min  
Typ  
Max  
Unit  
Note  
TSEC_1588_CLK peak-to-peak jitter  
tT1588CLKINJ  
tT1588CLKINR  
250  
2.0  
ps  
ns  
Rise time eTSEC_1588_CLK  
1.0  
(20%–80%)  
Fall time eTSEC_1588_CLK  
tT1588CLKINF  
1.0  
2.0  
ns  
(80%–20%)  
TSEC_1588_CLK_OUT clock period  
TSEC_1588_CLK_OUT duty cycle  
tT1588CLKOUT  
tT1588CLKOTH  
2 tT1588CLK  
ns  
%
30  
50  
70  
/tT1588CLKOUT  
TSEC_1588_PULSE_OUT  
TSEC_1588_TRIG_IN pulse width  
Notes:  
tT1588OV  
0.5  
3.0  
ns  
ns  
tT1588TRIGH  
2 tT1588CLK_MAX  
2
1. TRX_CLK is the max clock period of eTSEC receiving clock selected by TMR_CTRL[CKSEL]. See the MPC8313E  
PowerQUICC II Pro Integrated Processor Family Reference Manual, for a description of TMR_CTRL registers.  
2. It need to be at least two times of clock period of clock selected by TMR_CTRL[CKSEL]. See the MPC8313E PowerQUICC II  
Pro Integrated Processor Family Reference Manual, for a description of TMR_CTRL registers.  
3. The maximum value of tT1588CLK is not only defined by the value of TRX_CLK, but also defined by the recovered clock. For  
example, for 10/100/1000 Mbps modes, the maximum value of tT1588CLK is 3600, 280, and 56 ns, respectively.  
8.5  
Ethernet Management Interface Electrical Characteristics  
The electrical characteristics specified here apply to MII management interface signals MDIO  
(management data input/output) and MDC (management data clock). The electrical characteristics for  
MII, RMII, RGMII, SGMII, and RTBI are specified in Section 8.1, “Enhanced Three-Speed Ethernet  
Controller (eTSEC) (10/100/1000 Mbps)—MII/RMII/RGMII/SGMII/RTBI Electrical Characteristics.”  
8.5.1  
MII Management DC Electrical Characteristics  
The MDC and MDIO are defined to operate at a supply voltage of 3.3 V. Table 37 provide the DC  
electrical characteristics for MDIO and MDC.  
Table 37. MII Management DC Electrical Characteristics When Powered at 3.3 V  
Parameter  
Symbol  
Conditions  
Min  
Max  
Unit  
Supply voltage (3.3 V)  
Output high voltage  
Output low voltage  
Input high voltage  
Input low voltage  
Input high current  
Input low current  
NVDD  
VOH  
VOL  
VIH  
VIL  
2.97  
2.10  
VSS  
2.0  
3.63  
NVDD + 0.3  
0.50  
V
V
IOH = –1.0 mA  
IOL = 1.0 mA  
NVDD = Min  
NVDD = Min  
V
V
0.80  
V
IIH  
NVDD = Max  
NVDD = Max  
VIN1 = 2.1 V  
VIN = 0.5 V  
40  
A  
A  
IIL  
–600  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
34  
 
 
Table 37. MII Management DC Electrical Characteristics When Powered at 3.3 V (continued)  
Note:  
1. Note that the symbol VIN, in this case, represents the NVIN symbol referenced in Table 1 and Table 2.  
8.5.2  
MII Management AC Electrical Specifications  
This table provides the MII management AC timing specifications.  
Table 38. MII Management AC Timing Specifications  
At recommended operating conditions with NVDD is 3.3 V ± 0.3V  
Parameter/Condition  
MDC frequency  
Symbol 1  
Min  
Typ  
Max  
Unit  
Note  
fMDC  
tMDC  
32  
10  
5
2.5  
400  
MHz  
ns  
2
MDC period  
MDC clock pulse width high  
MDC to MDIO delay  
MDIO to MDC setup time  
MDIO to MDC hold time  
MDC rise time  
tMDCH  
ns  
tMDKHDX  
tMDDVKH  
tMDDXKH  
tMDCR  
170  
ns  
ns  
0
ns  
10  
10  
ns  
MDC fall time  
tMDHF  
ns  
Notes:  
1. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for  
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tMDKHDX symbolizes  
management data timing (MD) for the time tMDC from clock reference (K) high (H) until data outputs (D) are invalid (X) or  
data hold time. Also, tMDDVKH symbolizes management data timing (MD) with respect to the time data input signals (D)  
reach the valid state (V) relative to the tMDC clock reference (K) going to the high (H) state or setup time. For rise and fall  
times, the latter convention is used with the appropriate letter: R (rise) or F (fall).  
2. This parameter is dependent on the csb_clk speed. (The MIIMCFG[Mgmt Clock Select] field determines the clock frequency  
of the Mgmt Clock EC_MDC.)  
This figure shows the MII management AC timing diagram.  
tMDCR  
tMDC  
MDC  
tMDCF  
tMDCH  
MDIO  
(Input)  
tMDDVKH  
tMDDXKH  
MDIO  
(Output)  
tMDKHDX  
Figure 21. MII Management Interface Timing Diagram  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
35  
9 High-Speed Serial Interfaces (HSSI)  
This section describes the common portion of SerDes DC electrical specifications, which is the DC  
requirement for SerDes reference clocks. The SerDes data lane’s transmitter and receiver reference circuits  
are also shown.  
9.1  
Signal Terms Definition  
The SerDes utilizes differential signaling to transfer data across the serial link. This section defines terms  
used in the description and specification of differential signals.  
Figure 22 shows how the signals are defined. For illustration purpose, only one SerDes lane is used for  
description. The figure shows waveform for either a transmitter output (TXn and TXn) or a receiver input  
(RXn and RXn). Each signal swings between A volts and B volts where A > B.  
Using this waveform, the definitions are as follows. To simplify illustration, the following definitions  
assume that the SerDes transmitter and receiver operate in a fully symmetrical differential signaling  
environment.  
1. Single-ended swing  
The transmitter output signals and the receiver input signals TXn, TXn, RXn, and RXn each have  
a peak-to-peak swing of A – B volts. This is also referred as each signal wire’s single-ended swing.  
2. Differential output voltage, V (or differential output swing):  
OD  
The differential output voltage (or swing) of the transmitter, V , is defined as the difference of  
OD  
the two complimentary output voltages: V  
negative.  
– V  
The V value can be either positive or  
TXn  
TXn. OD  
3. Differential input voltage, V (or differential input swing):  
ID  
The differential input voltage (or swing) of the receiver, V , is defined as the difference of the two  
ID  
complimentary input voltages: V  
– V  
. The V value can be either positive or negative.  
RXn  
RXn ID  
4. Differential peak voltage, V  
The peak value of the differential transmitter output signal or the differential receiver input signal  
is defined as differential peak voltage, V = |A – B| volts.  
DIFFp  
DIFFp  
5. Differential peak-to-peak, V  
DIFFp-p  
Since the differential output signal of the transmitter and the differential input signal of the receiver  
each range from A – B to –(A – B) volts, the peak-to-peak value of the differential transmitter  
output signal or the differential receiver input signal is defined as differential peak-to-peak voltage,  
V
= 2 V  
= 2 |(A – B)| volts, which is twice of differential swing in amplitude, or  
DIFFp-p  
DIFFp  
twice of the differential peak. For example, the output differential peak-peak voltage can also be  
calculated as V = 2 |V |.  
TX-DIFFp-p  
OD  
6. Differential waveform  
The differential waveform is constructed by subtracting the inverting signal (TXn, for example)  
from the non-inverting signal (TXn, for example) within a differential pair. There is only one signal  
trace curve in a differential waveform. The voltage represented in the differential waveform is not  
referenced to ground. Refer to Figure 22 as an example for differential waveform.  
7. Common mode voltage, V  
cm  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
36  
The common mode voltage is equal to one half of the sum of the voltages between each conductor  
of a balanced interchange circuit and ground. In this example, for SerDes output, V  
=
cm_out  
(V  
+ V )/2 = (A + B)/2, which is the arithmetic mean of the two complimentary output  
TXn  
TXn  
voltages within a differential pair. In a system, the common mode voltage may often differ from  
one component’s output to the other’s input. Sometimes, it may be even different between the  
receiver input and driver output circuits within the same component. It’s also referred as the DC  
offset in some occasion.  
TXn or RXn  
A Volts  
V
cm = (A + B)/2  
TXn or RXn  
B Volts  
Differential Swing, VID or VOD = A – B  
Differential Peak Voltage, VDIFFp = |A – B|  
Differential Peak-Peak Voltage, VDIFFpp = 2*VDIFFp (not shown)  
Figure 22. Differential Voltage Definitions for Transmitter or Receiver  
To illustrate these definitions using real values, consider the case of a CML (current mode logic)  
transmitter that has a common mode voltage of 2.25 V and each of its outputs, TD and TD, has a swing  
that goes between 2.5 and 2.0 V. Using these values, the peak-to-peak voltage swing of each signal (TD or  
TD) is 500 mV p-p, which is referred as the single-ended swing for each signal. In this example, since the  
differential signaling environment is fully symmetrical, the transmitter output’s differential swing (V  
)
OD  
has the same amplitude as each signal’s single-ended swing. The differential output signal ranges between  
500 and –500 mV, in other words, V is 500 mV in one phase and –500 mV in the other phase. The peak  
OD  
differential voltage (V  
) is 500 mV. The peak-to-peak differential voltage (V  
) is 1000 mV p-p.  
DIFFp  
DIFFp-p  
9.2  
SerDes Reference Clocks  
The SerDes reference clock inputs are applied to an internal PLL whose output creates the clock used by  
the corresponding SerDes lanes. The SerDes reference clocks input is SD_REF_CLK and SD_REF_CLK  
for SGMII interface.  
The following sections describe the SerDes reference clock requirements and some application  
information.  
9.2.1  
SerDes Reference Clock Receiver Characteristics  
Figure 23 shows a receiver reference diagram of the SerDes reference clocks.  
The supply voltage requirements for XCOREV are specified in Table 1 and Table 2.  
DD  
SerDes reference clock receiver reference circuit structure:  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
37  
 
— The SD_REF_CLK and SD_REF_CLK are internally AC-coupled differential inputs as shown  
in Figure 23. Each differential clock input (SD_REF_CLK or SD_REF_CLK) has a 50-  
termination to XCOREV followed by on-chip AC coupling.  
SS  
— The external reference clock driver must be able to drive this termination.  
— The SerDes reference clock input can be either differential or single-ended. Refer to the  
differential mode and single-ended mode description below for further detailed requirements.  
The maximum average current requirement that also determines the common mode voltage range:  
— When the SerDes reference clock differential inputs are DC coupled externally with the clock  
driver chip, the maximum average current allowed for each input pin is 8 mA. In this case, the  
exact common mode input voltage is not critical as long as it is within the range allowed by the  
maximum average current of 8 mA (refer to the following bullet for more detail), since the  
input is AC-coupled on-chip.  
— This current limitation sets the maximum common mode input voltage to be less than 0.4 V  
(0.4 V/50 = 8 mA) while the minimum common mode input level is 0.1 V above XCOREV .  
SS  
For example, a clock with a 50/50 duty cycle can be produced by a clock driver with output  
driven by its current source from 0 to 16 mA (0–0.8 V), such that each phase of the differential  
input has a single-ended swing from 0 V to 800 mV with the common mode voltage at 400 mV.  
— If the device driving the SD_REF_CLK and SD_REF_CLK inputs cannot drive 50 to  
XCOREV DC, or it exceeds the maximum input current limitations, then it must be  
SS  
AC-coupled off-chip.  
The input amplitude requirement. This requirement is described in detail in the following sections.  
50   
SDn_REF_CLK  
Input  
Amp  
SDn_REF_CLK  
50   
Figure 23. Receiver of SerDes Reference Clocks  
9.2.2  
DC Level Requirement for SerDes Reference Clocks  
The DC level requirement for the MPC8313E SerDes reference clock inputs is different depending on the  
signaling mode used to connect the clock driver chip and SerDes reference clock inputs as described  
below.  
Differential mode  
— The input amplitude of the differential clock must be between 400 and 1600 mV differential  
peak-to-peak (or between 200 and 800 mV differential peak). In other words, each signal wire  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
38  
Freescale Semiconductor  
 
of the differential pair must have a single-ended swing less than 800 mV and greater than  
200 mV. This requirement is the same for both external DC-coupled or AC-coupled  
connection.  
— For external DC-coupled connection, as described in Section 9.2.1, “SerDes Reference Clock  
Receiver Characteristics,” the maximum average current requirements sets the requirement for  
average voltage (common mode voltage) to be between 100 and 400 mV. Figure 24 shows the  
SerDes reference clock input requirement for the DC-coupled connection scheme.  
— For external AC-coupled connection, there is no common mode voltage requirement for the  
clock driver. Since the external AC-coupling capacitor blocks the DC level, the clock driver  
and the SerDes reference clock receiver operate in different command mode voltages. The  
SerDes reference clock receiver in this connection scheme has its common mode voltage set to  
XCOREV . Each signal wire of the differential inputs is allowed to swing below and above  
SS  
the command mode voltage (XCOREV ). Figure 25 shows the SerDes reference clock input  
SS  
requirement for AC-coupled connection scheme.  
Single-ended mode  
— The reference clock can also be single-ended. The SD_REF_CLK input amplitude  
(single-ended swing) must be between 400 and 800 mV peak-to-peak (from V to V ) with  
min  
max  
SD_REF_CLK either left unconnected or tied to ground.  
— The SD_REF_CLK input average voltage must be between 200 and 400 mV. Figure 26 shows  
the SerDes reference clock input requirement for the single-ended signaling mode.  
— To meet the input amplitude requirement, the reference clock inputs might need to be DC or  
AC coupled externally. For the best noise performance, the reference of the clock could be DC  
or AC coupled into the unused phase (SD_REF_CLK) through the same source impedance as  
the clock input (SD_REF_CLK) in use.  
200 mV < Input Amplitude or Differential Peak < 800 mV  
SD_REF_CLK  
Vmax < 800 mV  
100 mV < Vcm < 400 mV  
Vmin > 0 V  
SD_REF_CLK  
Figure 24. Differential Reference Clock Input DC Requirements (External DC-Coupled)  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
39  
 
200 mV < Input Amplitude or Differential Peak < 800 mV  
SD_REF_CLK  
SD_REF_CLK  
Vmax < Vcm + 400 mV  
Vcm  
Vmin > Vcm – 400 mV  
Figure 25. Differential Reference Clock Input DC Requirements (External AC-Coupled)  
400 mV < SD_REF_CLK Input Amplitude < 800 mV  
SD_REF_CLK  
0 V  
SD_REF_CLK  
Figure 26. Single-Ended Reference Clock Input DC Requirements  
9.2.3  
Interfacing With Other Differential Signaling Levels  
With on-chip termination to XCOREV , the differential reference clocks inputs are HCSL  
SS  
(high-speed current steering logic) compatible DC coupled.  
Many other low voltage differential type outputs like LVDS (low voltage differential signaling) can  
be used but may need to be AC coupled due to the limited common mode input range allowed (100  
to 400 mV) for DC-coupled connection.  
LVPECL outputs can produce a signal with too large of an amplitude and may need to be  
DC-biased at the clock driver output first, then followed with series attenuation resistor to reduce  
the amplitude, in addition to AC coupling.  
NOTE  
Figure 27 through Figure 30 are for conceptual reference only. Due to the  
fact that the clock driver chip's internal structure, output impedance, and  
termination requirements are different between various clock driver chip  
manufacturers, it is possible that the clock circuit reference designs  
provided by clock driver chip vendors are different from what is shown in  
the figures. They might also vary from one vendor to the other. Therefore,  
Freescale can neither provide the optimal clock driver reference circuits, nor  
guarantee the correctness of the following clock driver connection reference  
circuits. It is recommended that the system designer contact the selected  
clock driver chip vendor for the optimal reference circuits for the  
MPC8313E SerDes reference clock receiver requirement provided in this  
document.  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
40  
Freescale Semiconductor  
This figure shows the SerDes reference clock connection reference circuits for HCSL type clock driver. It  
assumes that the DC levels of the clock driver chip is compatible with MPC8313E SerDes reference clock  
input’s DC requirement.  
HCSL CLK Driver Chip  
MPC8313E  
50   
CLK_Out  
SDn_REF_CLK  
33   
33   
SerDes Refer.  
CLK Receiver  
100 Differential PWB Trace  
Clock Driver  
CLK_Out  
SDnn_REF_CLK  
50   
Clock driver vendor dependent  
source termination resistor  
Total 50 Assume clock driver’s  
output impedance is about 16   
Figure 27. DC-Coupled Differential Connection with HCSL Clock Driver (Reference Only)  
This figure shows the SerDes reference clock connection reference circuits for LVDS type clock driver.  
Since LVDS clock driver’s common mode voltage is higher than the MPC8313E SerDes reference clock  
input’s allowed range (100 to 400 mV), the AC-coupled connection scheme must be used. It assumes the  
LVDS output driver features a 50-termination resistor. It also assumes that the LVDS transmitter  
establishes its own common mode level without relying on the receiver or other external component.  
LVDS CLK Driver Chip  
MPC8313E  
50   
CLK_Out  
SDn_REF_CLK  
SDn_REF_CLK  
10 nF  
SerDes Refer.  
CLK Receiver  
100 Differential PWB Trace  
Clock Driver  
CLK_Out  
10 nF  
50   
Figure 28. AC-Coupled Differential Connection with LVDS Clock Driver (Reference Only)  
This figure shows the SerDes reference clock connection reference circuits for LVPECL type clock driver.  
Since LVPECL driver’s DC levels (both common mode voltages and output swing) are incompatible with  
the MPC8313E SerDes reference clock input’s DC requirement, AC coupling has to be used. Figure 29  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
41  
assumes that the LVPECL clock driver’s output impedance is 50 R1 is used to DC-bias the LVPECL  
outputs prior to AC coupling. Its value could be ranged from 140to 240 depending on the clock driver  
vendor’s requirement. R2 is used together with the SerDes reference clock receiver’s 50-termination  
resistor to attenuate the LVPECL output’s differential peak level such that it meets the MPC8313E  
SerDes3 reference clock’s differential input amplitude requirement (between 200 and 800 mV differential  
peak). For example, if the LVPECL output’s differential peak is 900 mV and the desired SerDes reference  
clock input amplitude is selected as 600 mV, the attenuation factor is 0.67, which requires R2 = 25   
Consult with the clock driver chip manufacturer to verify whether this connection scheme is compatible  
with a particular clock driver chip.  
LVPECL CLK Driver Chip  
MPC8313E  
50   
SDn_REF_CLK  
SDn_REF_CLK  
CLK_Out  
10 nF  
R2  
SerDes Refer.  
CLK Receiver  
R1  
R1  
100 Differential PWB Trace  
10 nF  
Clock Driver  
CLK_Out  
R2  
50   
Figure 29. AC-Coupled Differential Connection with LVPECL Clock Driver (Reference Only)  
This figure shows the SerDes reference clock connection reference circuits for a single-ended clock driver.  
It assumes the DC levels of the clock driver are compatible with the MPC8313E SerDes reference clock  
input’s DC requirement.  
Single-Ended CLK  
Driver Chip  
MPC8313E  
Total 50 Assume clock driver’s  
output impedance is about 16   
50   
SDn_REF_CLK  
33   
Clock Driver  
CLK_Out  
SerDes Refer.  
CLK Receiver  
100 Differential PWB Trace  
SDn_REF_CLK  
50  
50   
Figure 30. Single-Ended Connection (Reference Only)  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
42  
9.2.4  
AC Requirements for SerDes Reference Clocks  
The clock driver selected should provide a high quality reference clock with low-phase noise and  
cycle-to-cycle jitter. Phase noise less than 100 kHz can be tracked by the PLL and data recovery loops and  
is less of a problem. Phase noise above 15 MHz is filtered by the PLL. The most problematic phase noise  
occurs in the 1–15 MHz range. The source impedance of the clock driver should be 50 to match the  
transmission line and reduce reflections which are a source of noise to the system.  
This table describes some AC parameters for SGMII protocol.  
Table 39. SerDes Reference Clock Common AC Parameters  
At recommended operating conditions with XVDD_SRDS1 or XVDD_SRDS2 = 1.0 V ± 5%.  
Parameter  
Symbol  
Min  
Max  
Unit  
Note  
Rising edge rate  
Falling edge rate  
Rise edge rate  
Fall edge rate  
VIH  
1.0  
1.0  
+200  
4.0  
4.0  
V/ns  
V/ns  
mV  
mV  
%
2, 3  
2, 3  
2
Differential input high voltage  
Differential input low voltage  
VIL  
–200  
20  
2
Rising edge rate (SDn_REF_CLK) to falling edge rate  
(SDn_REF_CLK) matching  
Rise-fall matching  
1, 4  
Notes:  
1. Measurement taken from single-ended waveform.  
2. Measurement taken from differential waveform.  
3. Measured from –200 to +200 mV on the differential waveform (derived from SDn_REF_CLK minus SDn_REF_CLK). The  
signal must be monotonic through the measurement region for rise and fall time. The 400 mV measurement window is  
centered on the differential zero crossing. See Figure 31.  
4. Matching applies to rising edge rate for SDn_REF_CLK and falling edge rate for SDn_REF_CLK. It is measured using a  
200 mV window centered on the median cross point, where SDn_REF_CLK rising meets SDn_REF_CLK falling. The median  
cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations. The rise edge  
rate of SDn_REF_CLK should be compared to the fall edge rate of SDn_REF_CLK, the maximum allowed difference should  
not exceed 20% of the slowest edge rate. See Figure 32.  
Rise Edge Rage  
Fall Edge Rate  
VIH = +200 mV  
0.0 V  
VIL = –200 mV  
SDn_REF_CLK  
Minus  
SDn_REF_CLK  
Figure 31. Differential Measurement Points for Rise and Fall Time  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
43  
 
TFALL  
TRISE  
SDn_REF_CLK  
VCROSS MEDIAN  
SDn_REF_CLK  
SDn_REF_CLK  
VCROSS MEDIAN + 100 mV  
VCROSS MEDIAN  
V
CROSS MEDIAN – 100 mV  
SDn_REF_CLK  
Figure 32. Single-Ended Measurement Points for Rise and Fall Time Matching  
The other detailed AC requirements of the SerDes reference clocks is defined by each interface protocol  
based on application usage. Refer to the following section for detailed information:  
Section 8.3.2, “AC Requirements for SGMII SD_REF_CLK and SD_REF_CLK”  
9.2.4.1 Spread Spectrum Clock  
SD_REF_CLK/SD_REF_CLK are not intended to be used with, and should not be clocked by, a spread  
spectrum clock source.  
9.3  
SerDes Transmitter and Receiver Reference Circuits  
This figure shows the reference circuits for the SerDes data lane’s transmitter and receiver.  
RXn  
TXn  
50   
50   
50   
Receiver  
Transmitter  
50   
TXn  
RXn  
Figure 33. SerDes Transmitter and Receiver Reference Circuits  
The SerDes data lane’s DC and AC specifications are defined in the interface protocol section listed below  
(SGMII) based on the application usage:  
Section 8.3, “SGMII Interface Electrical Characteristics”  
Please note that a external AC-coupling capacitor is required for the above serial transmission protocol  
with the capacitor value defined in the specifications of the protocol section.  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
44  
Freescale Semiconductor  
10 USB  
10.1 USB Dual-Role Controllers  
This section provides the AC and DC electrical specifications for the USB interface.  
10.1.1 USB DC Electrical Characteristics  
This table provides the DC electrical characteristics for the USB interface.  
Table 40. USB DC Electrical Characteristics  
Parameter  
High-level input voltage  
Symbol  
Min  
Max  
Unit  
VIH  
VIL  
2.0  
–0.3  
LVDDB + 0.3  
V
V
Low-level input voltage  
0.8  
±5  
Input current  
IIN  
A  
V
High-level output voltage, IOH = –100 A  
Low-level output voltage, IOL = 100 A  
VOH  
VOL  
LVDDB – 0.2  
0.2  
V
10.1.2 USB AC Electrical Specifications  
This table describes the general timing parameters of the USB interface.  
Table 41. USB General Timing Parameters (ULPI Mode Only)  
Parameter  
Symbol1  
Min  
Max  
Unit  
Note  
USB clock cycle time  
tUSCK  
tUSIVKH  
tUSIXKH  
tUSKHOV  
tUSKHOX  
15  
4
7
ns  
ns  
ns  
ns  
ns  
Input setup to USB clock—all inputs  
input hold to USB clock—all inputs  
USB clock to output valid—all outputs  
Output hold from USB clock—all outputs  
Note:  
1
2
1. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for  
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tUSIXKH symbolizes USB timing  
(USB) for the input (I) to go invalid (X) with respect to the time the USB clock reference (K) goes high (H). Also, tUSKHOX  
symbolizes us timing (USB) for the USB clock reference (K) to go high (H), with respect to the output (O) going invalid (X)  
or output hold time.  
The following two figures provide the AC test load and signals for the USB, respectively.  
Output  
NVDD/2  
Z0 = 50   
RL = 50   
Figure 34. USB AC Test Load  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
45  
 
USBDR_CLK  
Input Signals  
tUSIXKH  
tUSIVKH  
tUSKHOV  
tUSKHOX  
Output Signals  
Figure 35. USB Signals  
10.2 On-Chip USB PHY  
This section describes the DC and AC electrical specifications for the on-chip USB PHY of the  
MPC8313E. See Chapter 7 in the USB Specifications Rev. 2, for more information.  
This table provides the USB clock input (USB_CLK_IN) DC timing specifications.  
Table 42. USB_CLK_IN DC Electrical Characteristics  
Parameter  
Symbol  
Min  
Max  
Unit  
Input high voltage  
Input low voltage  
VIH  
VIL  
2.7  
NVDD + 0.3  
0.4  
V
V
–0.3  
This table provides the USB clock input (USB_CLK_IN) AC timing specifications.  
Table 43. USB_CLK_IN AC Timing Specifications  
Parameter/Condition  
Frequency range  
Conditions  
Symbol  
Min  
Typ  
Max  
Unit  
fUSB_CLK_IN  
tCLK_TOL  
24  
0
48  
MHz  
%
Clock frequency tolerance  
–0.005  
0.005  
Reference clock duty cycle  
Measured at 1.6 V  
tCLK_DUTY  
tCLK_PJ  
40  
50  
60  
%
Total input jitter/time interval  
error  
Peak-to-peak value measured with a second  
order high-pass filter of 500 kHz bandwidth  
200  
ps  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
46  
 
11 Enhanced Local Bus  
This section describes the DC and AC electrical specifications for the local bus interface.  
11.1 Local Bus DC Electrical Characteristics  
This table provides the DC electrical characteristics for the local bus interface.  
Table 44. Local Bus DC Electrical Characteristics at 3.3 V  
Parameter  
High-level input voltage for Rev 1.0  
Symbol  
Min  
Max  
Unit  
VIH  
VIH  
VIL  
2.0  
2.1  
LVDD + 0.3  
V
V
High-level input voltage for Rev 2.x or later  
Low-level input voltage  
LVDD + 0.3  
–0.3  
0.8  
±5  
V
Input current, (VIN1 = 0 V or VIN = LVDD  
)
IIN  
A  
V
High-level output voltage, (LVDD = min, IOH = –2 mA)  
Low-level output voltage, (LVDD = min, IOH = 2 mA)  
VOH  
VOL  
LVDD – 0.2  
0.2  
V
Note: The parameters stated in above table are valid for all revisions unless explicitly mentioned.  
11.2 Local Bus AC Electrical Specifications  
This table describes the general timing parameters of the local bus interface.  
Table 45. Local Bus General Timing Parameters  
Parameter  
Symbol1  
Min  
Max  
Unit  
Note  
Local bus cycle time  
tLBK  
15  
7
3.0  
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2
3, 4  
3, 4  
5
Input setup to local bus clock  
tLBIVKH  
Input hold from local bus clock  
tLBIXKH  
1.0  
1.5  
3
LALE output fall to LAD output transition (LATCH hold time)  
LALE output fall to LAD output transition (LATCH hold time)  
LALE output fall to LAD output transition (LATCH hold time)  
LALE output rise to LCLK negative edge  
LALE output fall to LCLK negative edge  
LALE output fall to LCLK negative edge  
LALE output fall to LCLK negative edge  
Local bus clock to output valid  
tLBOTOT1  
tLBOTOT2  
tLBOTOT3  
tLALEHOV  
tLALETOT1  
tLALETOT2  
tLALETOT3  
tLBKHOV  
tLBKHOZ  
6
2.5  
7
–1.5  
–5.0  
–4.5  
5
6
7
3
8
Local bus clock to output high impedance for LAD  
4
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
47  
Table 45. Local Bus General Timing Parameters (continued)  
Symbol1  
Parameter  
Min  
Max  
Unit  
Note  
Notes:  
1. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for inputs  
and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tLBIXKH1 symbolizes local bus timing (LB)  
for the input (I) to go invalid (X) with respect to the time the tLBK clock reference (K) goes high (H), in this case for clock one (1).  
2. All timings are in reference to falling edge of LCLK0 (for all outputs and for LGTA and LUPWAIT inputs) or rising edge of LCLK0  
(for all other inputs).  
3. All signals are measured from NVDD/2 of the rising/falling edge of LCLK0 to 0.4 NVDD of the signal in question for 3.3-V  
signaling levels.  
4. Input timings are measured at the pin.  
5. tLBOTOT1 and tLALETOT1 should be used when RCWH[LALE] is not set and the load on LALE output pin is at least 10 pF less than  
the load on LAD output pins.  
6. tLBOTOT2 and tLALETOT2 should be used when RCWH[LALE] is set and the load on LALE output pin is at least 10 pF less than  
the load on LAD output pins.  
7. tLBOTOT3 and tLALETOT3 should be used when RCWH[LALE] is set and the load on LALE output pin equals to the load on LAD  
output pins.  
8. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through  
the component pin is less than or equal to the leakage current specification.  
This figure provides the AC test load for the local bus.  
Output  
NVDD/2  
Z0 = 50   
RL = 50   
Figure 36. Local Bus AC Test Load  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
48  
Figure 37 through Figure 40 show the local bus signals.  
LCLK[n]  
tLBIXKH  
tLBIVKH  
Input Signals:  
LAD[0:15]  
tLBIXKH  
tLBIVKH  
Input Signal:  
LGTA  
tLBIXKH  
tLBKHOV  
Output Signals:  
LBCTL/LBCKE/LOE  
tLBKHOZ  
tLBKHOV  
Output Signals:  
LAD[0:15]  
tLBOTOT  
LALE  
Figure 37. Local Bus Signals, Non-Special Signals Only  
LCLK  
T1  
T3  
tLBKHOZ  
tLBKHOV  
GPCM Mode Output Signals:  
LCS[0:3]/LWE  
tLBIXKH  
tLBIVKH  
UPM Mode Input Signal:  
LUPWAIT  
tLBIXKH  
tLBIVKH  
Input Signals:  
LAD[0:15]  
tLBKHOZ  
tLBKHOV  
UPM Mode Output Signals:  
LCS[0:3]/LBS[0:1]/LGPL[0:5]  
Figure 38. Local Bus Signals, GPCM/UPM Signals for LCRR[CLKDIV] = 2  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
49  
 
LCLK  
T1  
T2  
T3  
T4  
tLBKHOZ  
tLBKHOV  
GPCM Mode Output Signals:  
LCS[0:3]/LWE  
tLBIXKH  
tLBIVKH  
UPM Mode Input Signal:  
LUPWAIT  
tLBIXKH  
tLBIVKH  
Input Signals:  
LAD[0:15]  
tLBKHOZ  
tLBKHOV  
UPM Mode Output Signals:  
LCS[0:3]/LBS[0:1]/LGPL[0:5]  
Figure 39. Local Bus Signals, GPCM/UPM Signals for LCRR[CLKDIV] = 4  
LCLK[n]  
t
LBIXKH  
t
LBIVKH  
Input Signals:  
LAD[0:15]  
t
t
LBIXKH  
LBIXKH  
t
LBIVKH  
Input Signal:  
LGTA  
t
LBKHOV  
Output Signals:  
LBCTL/LBCKE/LOE  
t
LBKHOZ  
t
LBKHOV  
Output Signals:  
LAD[0:15]  
t
LBOTOT  
t
t
LALEHOV  
LALETOT  
LALE  
Figure 40. Local Bus Signals, LALE with Respect to LCLK  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
50  
12 JTAG  
This section describes the DC and AC electrical specifications for the IEEE Std 1149.1™ (JTAG)  
interface.  
12.1 JTAG DC Electrical Characteristics  
This table provides the DC electrical characteristics for the IEEE Std 1149.1 (JTAG) interface.  
Table 46. JTAG Interface DC Electrical Characteristics  
Characteristic  
Input high voltage  
Symbol  
Condition  
Min  
Max  
Unit  
VIH  
VIL  
2.1  
–0.3  
NVDD + 0.3  
V
V
Input low voltage  
Input current  
0.8  
±5  
IIN  
A  
V
Output high voltage  
Output low voltage  
Output low voltage  
VOH  
VOL  
IOH = –8.0 mA  
IOL = 8.0 mA  
2.4  
0.5  
0.4  
V
V
I
= 3.2 mA  
OL  
V
OL  
12.2 JTAG AC Timing Specifications  
This section describes the AC electrical specifications for the IEEE Std 1149.1 (JTAG) interface. This table  
provides the JTAG AC timing specifications as defined in Figure 41 through Figure 45.  
1
Table 47. JTAG AC Timing Specifications (Independent of SYS_CLK_IN)  
At recommended operating conditions (see Table 2).  
Parameter  
Symbol2  
Min  
Max  
Unit  
Note  
JTAG external clock frequency of operation  
JTAG external clock cycle time  
JTAG external clock pulse width measured at 1.4 V  
JTAG external clock rise and fall times  
TRST assert time  
fJTG  
t JTG  
0
33.3  
MHz  
ns  
30  
15  
0
tJTKHKL  
tJTGR & tJTGF  
tTRST  
ns  
2
ns  
25  
ns  
3
4
Input setup times:  
ns  
Boundary-scan data  
tJTDVKH  
tJTIVKH  
4
4
TMS, TDI  
Input hold times:  
Valid times:  
ns  
ns  
Boundary-scan data  
TMS, TDI  
tJTDXKH  
tJTIXKH  
10  
10  
4
5
5
Boundary-scan data  
TDO  
tJTKLDV  
tJTKLOV  
2
2
11  
11  
Output hold times:  
Boundary-scan data  
TDO  
tJTKLDX  
tJTKLOX  
2
2
ns  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
51  
1
Table 47. JTAG AC Timing Specifications (Independent of SYS_CLK_IN) (continued)  
At recommended operating conditions (see Table 2).  
Parameter  
Symbol2  
Min  
Max  
Unit  
Note  
JTAG external clock to output high impedance:  
Boundary-scan data  
TDO  
tJTKLDZ  
tJTKLOZ  
2
2
19  
9
ns  
5, 6  
Notes:  
1. All outputs are measured from the midpoint voltage of the falling/rising edge of tTCLK to the midpoint of the signal in question.  
The output timings are measured at the pins. All output timings assume a purely resistive 50-load (see Figure 34).  
Time-of-flight delays must be added for trace lengths, vias, and connectors in the system.  
2. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for  
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tJTDVKH symbolizes JTAG device  
timing (JT) with respect to the time data input signals (D) reaching the valid state (V) relative to the tJTG clock reference (K)  
going to the high (H) state or setup time. Also, tJTDXKH symbolizes JTAG timing (JT) with respect to the time data input  
signals (D) went invalid (X) relative to the tJTG clock reference (K) going to the high (H) state. Note that, in general, the clock  
reference symbol representation is based on three letters representing the clock of a particular functional. For rise and fall  
times, the latter convention is used with the appropriate letter: R (rise) or F (fall).  
3. TRST is an asynchronous level sensitive signal. The setup time is for test purposes only.  
4. Non-JTAG signal input timing with respect to tTCLK  
.
5. Non-JTAG signal output timing with respect to tTCLK  
.
6. Guaranteed by design and characterization.  
This figure provides the AC test load for TDO and the boundary-scan outputs.  
Output  
NVDD/2  
Z0 = 50   
RL = 50   
Figure 41. AC Test Load for the JTAG Interface  
This figure provides the JTAG clock input timing diagram.  
JTAG  
External Clock  
VM  
tJTKHKL  
VM  
VM  
tJTGR  
tJTG  
VM = Midpoint Voltage (NVDD/2)  
Figure 42. JTAG Clock Input Timing Diagram  
tJTGF  
This figure provides the TRST timing diagram.  
TRST  
VM  
VM  
tTRST  
VM = Midpoint Voltage (NVDD/2)  
Figure 43. TRST Timing Diagram  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
52  
This figure provides the boundary-scan timing diagram.  
JTAG  
VM  
VM  
External Clock  
tJTDVKH  
tJTDXKH  
Boundary  
Data Inputs  
Input  
Data Valid  
tJTKLDV  
tJTKLDX  
Boundary  
Data Outputs  
Output Data Valid  
tJTKLDZ  
Output Data Valid  
Boundary  
Data Outputs  
VM = Midpoint Voltage (NVDD/2)  
Figure 44. Boundary-Scan Timing Diagram  
This figure provides the test access port timing diagram.  
JTAG  
VM  
VM  
External Clock  
tJTIVKH  
tJTIXKH  
Input  
TDI, TMS  
TDO  
Data Valid  
tJTKLOV  
tJTKLOX  
Output Data Valid  
tJTKLOZ  
TDO  
Output Data Valid  
VM = Midpoint Voltage (NVDD/2)  
Figure 45. Test Access Port Timing Diagram  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
53  
13 I2C  
2
This section describes the DC and AC electrical characteristics for the I C interface.  
2
13.1 I C DC Electrical Characteristics  
2
This table provides the DC electrical characteristics for the I C interface.  
2
Table 48. I C DC Electrical Characteristics  
At recommended operating conditions with NVDD of 3.3 V ± 0.3 V.  
Parameter  
Symbol  
Min  
Max  
Unit  
Note  
Input high voltage level  
Input low voltage level  
Low level output voltage  
VIH  
VIL  
0.7 NVDD  
NVDD + 0.3  
0.3 NVDD  
0.2 NVDD  
250  
V
V
–0.3  
0
VOL  
V
1
2
Output fall time from VIH(min) to VIL(max) with a bus  
capacitance from 10 to 400 pF  
t
20 + 0.1 CB  
ns  
I2KLKV  
Pulse width of spikes which must be suppressed by the input  
filter  
tI2KHKL  
0
50  
ns  
3
4
Capacitance for each I/O pin  
CI  
10  
pF  
Input current, (0 V VIN NVDD  
)
IIN  
± 5  
A  
Notes:  
1. Output voltage (open drain or open collector) condition = 3 mA sink current.  
2. CB = capacitance of one bus line in pF.  
3. Refer to the MPC8313E PowerQUICC II Pro Integrated Processor Family Reference Manual, for information on the digital  
filter used.  
4. I/O pins obstruct the SDA and SCL lines if NVDD is switched off.  
2
13.2 I C AC Electrical Specifications  
2
This table provides the AC timing parameters for the I C interface.  
2
Table 49. I C AC Electrical Specifications  
All values refer to VIH (min) and VIL (max) levels (see Table 48).  
Parameter  
Symbol1  
Min  
Max  
Unit  
SCL clock frequency  
fI2C  
tI2CL  
0
400  
kHz  
s  
Low period of the SCL clock  
High period of the SCL clock  
1.3  
0.6  
0.6  
0.6  
tI2CH  
s  
Setup time for a repeated START condition  
tI2SVKH  
tI2SXKL  
s  
Hold time (repeated) START condition (after this period, the first clock  
pulse is generated)  
s  
Data setup time  
tI2DVKH  
100  
ns  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
54  
 
2
Table 49. I C AC Electrical Specifications (continued)  
All values refer to VIH (min) and VIL (max) levels (see Table 48).  
Parameter  
Symbol1  
Min  
Max  
Unit  
Data hold time:  
tI2DXKL  
s  
CBUS compatible masters  
I2C bus devices  
02  
0.93  
Fall time of both SDA and SCL signals5  
Setup time for STOP condition  
t
0.6  
300  
ns  
s  
s  
V
I2CF  
t
I2PVKH  
Bus free time between a STOP and START condition  
tI2KHDX  
VNL  
1.3  
Noise margin at the LOW level for each connected device (including  
hysteresis)  
0.1 NVDD  
Noise margin at the HIGH level for each connected device (including  
hysteresis)  
VNH  
0.2 NVDD  
V
Notes:  
1. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for  
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tI2DVKH symbolizes I2C timing  
(I2) with respect to the time data input signals (D) reach the valid state (V) relative to the tI2C clock reference (K) going to  
the high (H) state or setup time. Also, tI2SXKL symbolizes I2C timing (I2) for the time that the data with respect to the start  
condition (S) went invalid (X) relative to the tI2C clock reference (K) going to the low (L) state or hold time. Also, tI2PVKH  
symbolizes I2C timing (I2) for the time that the data with respect to the stop condition (P) reaching the valid state (V) relative  
to the tI2C clock reference (K) going to the high (H) state or setup time. For rise and fall times, the latter convention is used  
with the appropriate letter: R (rise) or F (fall).  
2. The MPC8313E provides a hold time of at least 300 ns for the SDA signal (referred to the VIHmin of the SCL signal) to bridge  
the undefined region of the falling edge of SCL.  
3. The maximum tI2DVKH has only to be met if the device does not stretch the LOW period (tI2CL) of the SCL signal.  
4. CB = capacitance of one bus line in pF.  
5. The MPC8313E does not follow the I2C-BUS Specifications, Version 2.1, regarding the tI2CF AC parameter.  
2
This figure provides the AC test load for the I C.  
Output  
NVDD/2  
Z0 = 50   
RL = 50   
2
Figure 46. I C AC Test Load  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
55  
2
This figure shows the AC timing diagram for the I C bus.  
SDA  
tI2CF  
tI2CL  
tI2DVKH  
tI2KHKL  
tI2CF  
tI2SXKL  
tI2CR  
SCL  
tI2SXKL  
tI2CH  
tI2SVKH  
tI2PVKH  
tI2DXKL  
S
Sr  
P
S
2
Figure 47. I C Bus AC Timing Diagram  
14 PCI  
This section describes the DC and AC electrical specifications for the PCI bus.  
14.1 PCI DC Electrical Characteristics  
This table provides the DC electrical characteristics for the PCI interface.  
1
Table 50. PCI DC Electrical Characteristics  
Parameter  
Symbol  
Test Condition  
Min  
Max  
Unit  
High-level input voltage  
Low-level input voltage  
High-level output voltage  
Low-level output voltage  
Input current  
VIH  
VIL  
VOUT VOH (min) or  
VOUT VOL (max)  
0.5 NVDD  
NVDD + 0.3  
0.3 NVDD  
V
V
–0.5  
VOH  
VOL  
IIN  
NVDD = min, IOH = –100 A  
NVDD = min, IOL = 100 A  
0 V VIN NVDD  
0.9 NVDD  
V
0.1 NVDD  
±5  
V
A  
Note:  
1. Note that the symbol VIN, in this case, represents the NVIN symbol referenced in Table 1 and Table 2.  
14.2 PCI AC Electrical Specifications  
This section describes the general AC timing parameters of the PCI bus. Note that the PCI_CLK or  
PCI_SYNC_IN signal is used as the PCI input clock depending on whether the MPC8313E is configured  
as a host or agent device.  
This table shows the PCI AC timing specifications at 66 MHz.  
.
Table 51. PCI AC Timing Specifications at 66 MHz  
Parameter  
Symbol1  
Min  
Max  
Unit  
Note  
Clock to output valid  
Output hold from clock  
t
1
6.0  
ns  
ns  
2
2
PCKHOV  
t
PCKHOX  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
56  
Table 51. PCI AC Timing Specifications at 66 MHz (continued)  
Parameter  
Symbol1  
Min  
Max  
Unit  
Note  
Clock to output high impedance  
Input setup to clock  
Input hold from clock  
Notes:  
tPCKHOZ  
tPCIVKH  
tPCIXKH  
3.0  
0
14  
ns  
ns  
ns  
2, 3  
2, 4  
2, 4  
1. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for  
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tPCIVKH symbolizes PCI timing  
(PC) with respect to the time the input signals (I) reach the valid state (V) relative to the PCI_SYNC_IN clock, tSYS, reference  
(K) going to the high (H) state or setup time. Also, tPCRHFV symbolizes PCI timing (PC) with respect to the time hard reset  
(R) went high (H) relative to the frame signal (F) going to the valid (V) state.  
2. See the timing measurement conditions in the PCI 2.3 Local Bus Specifications.  
3. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered  
through the component pin is less than or equal to the leakage current specification.  
4. Input timings are measured at the pin.  
This table shows the PCI AC timing specifications at 33 MHz.  
Table 52. PCI AC Timing Specifications at 33 MHz  
Parameter  
Symbol1  
Min  
Max  
Unit  
Note  
Clock to output valid  
t
2
11  
14  
ns  
ns  
ns  
ns  
ns  
2
PCKHOV  
Output hold from clock  
2
t
PCKHOX  
Clock to output high impedance  
Input setup to clock  
Input hold from clock  
Notes:  
tPCKHOZ  
tPCIVKH  
tPCIXKH  
3.0  
0
2, 3  
2, 4  
2, 4  
1. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for inputs  
and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tPCIVKH symbolizes PCI timing (PC) with  
respect to the time the input signals (I) reach the valid state (V) relative to the PCI_SYNC_IN clock, tSYS, reference (K) going to  
the high (H) state or setup time. Also, tPCRHFV symbolizes PCI timing (PC) with respect to the time hard reset (R) went high (H)  
relative to the frame signal (F) going to the valid (V) state.  
2. See the timing measurement conditions in the PCI 2.3 Local Bus Specifications.  
3. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through  
the component pin is less than or equal to the leakage current specification.  
4. Input timings are measured at the pin.  
This figure provides the AC test load for PCI.  
Output  
NVDD/2  
Z0 = 50   
RL = 50   
Figure 48. PCI AC Test Load  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
57  
This figure shows the PCI input AC timing conditions.  
CLK  
tPCIVKH  
tPCIXKH  
Input  
Figure 49. PCI Input AC Timing Measurement Conditions  
This figure shows the PCI output AC timing conditions.  
CLK  
tPCKHOV  
tPCKHOX  
Output Delay  
tPCKHOZ  
High-Impedance  
Output  
Figure 50. PCI Output AC Timing Measurement Condition  
15 Timers  
This section describes the DC and AC electrical specifications for the timers.  
15.1 Timers DC Electrical Characteristics  
This table provides the DC electrical characteristics for the MPC8313E timers pins, including TIN, TOUT,  
TGATE, and RTC_CLK.  
Table 53. Timers DC Electrical Characteristics  
Characteristic  
Output high voltage  
Symbol  
Condition  
Min  
Max  
Unit  
VOH  
VOL  
IOH = –8.0 mA  
IOL = 8.0 mA  
2.4  
0.5  
V
V
Output low voltage  
Output low voltage  
Input high voltage  
Input low voltage  
Input current  
V
I
= 3.2 mA  
OL  
0.4  
V
OL  
VIH  
VIL  
IIN  
2.1  
–0.3  
NVDD + 0.3  
0.8  
V
V
0 V VIN NVDD  
±5  
A  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
58  
15.2 Timers AC Timing Specifications  
This table provides the Timers input and output AC timing specifications.  
1
Table 54. Timers Input AC Timing Specifications  
Characteristic  
Symbol2  
Min  
Unit  
Timers inputs—minimum pulse width  
Notes:  
tTIWID  
20  
ns  
1. Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of SYS_CLK_IN.  
Timings are measured at the pin.  
2. Timers inputs and outputs are asynchronous to any visible clock. Timers outputs should be synchronized before use by any  
external synchronous logic. Timers inputs are required to be valid for at least tTIWID ns to ensure proper operation  
This figure provides the AC test load for the Timers.  
Output  
NVDD/2  
Z0 = 50   
RL = 50   
Figure 51. Timers AC Test Load  
16 GPIO  
This section describes the DC and AC electrical specifications for the GPIO.  
16.1 GPIO DC Electrical Characteristics  
This table provides the DC electrical characteristics for the GPIO when the GPIO pins are operating from  
a 3.3-V supply.  
Table 55. GPIO (When Operating at 3.3 V) DC Electrical Characteristics  
Characteristic  
Output high voltage  
Symbol  
Condition  
Min  
Max  
Unit  
VOH  
VOL  
IOH = –8.0 mA  
IOL = 8.0 mA  
2.4  
0.5  
V
V
Output low voltage  
Output low voltage  
Input high voltage  
Input low voltage  
Input current  
V
I
= 3.2 mA  
OL  
0.4  
V
OL  
VIH  
VIL  
IIN  
2.0  
–0.3  
NVDD + 0.3  
0.8  
V
V
0 V VIN NVDD  
±5  
A  
Note:  
1. This specification only applies to GPIO pins that are operating from a 3.3-V supply. See Table 62 for the power supply listed  
for the individual GPIO signal.  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
59  
This table provides the DC electrical characteristics for the GPIO when the GPIO pins are operating from  
a 2.5-V supply.  
1
Table 56. GPIO (When Operating at 2.5 V) DC Electrical Characteristics  
Parameters  
Symbol  
Conditions  
Min  
Max  
Unit  
Supply voltage 2.5 V  
Output high voltage  
Output low voltage  
Input high voltage  
Input low voltage  
Input high current  
Input low current  
Note:  
NVDD  
VOH  
VOL  
VIH  
VIL  
2.37  
2.00  
2.63  
NVDD + 0.3  
0.40  
V
V
IOH = –1.0 mA  
NVDD = min  
NVDD = min  
NVDD = min  
NVDD = min  
IOL = 1.0 mA  
VSS– 0.3  
1.7  
V
NVDD + 0.3  
0.70  
V
–0.3  
V
IIH  
VIN = NVDD  
VIN = VSS  
10  
A  
A  
IIL  
–15  
1. This specification only applies to GPIO pins that are operating from a 2.5-V supply. See Table 62 for the power supply listed  
for the individual GPIO signal  
16.2 GPIO AC Timing Specifications  
This table provides the GPIO input and output AC timing specifications.  
1
Table 57. GPIO Input AC Timing Specifications  
Characteristic  
Symbol2  
Min  
Unit  
GPIO inputs—minimum pulse width  
Notes:  
tPIWID  
20  
ns  
1. Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of SYS_CLKIN. Timings  
are measured at the pin.  
2. GPIO inputs and outputs are asynchronous to any visible clock. GPIO outputs should be synchronized before use by any  
external synchronous logic. GPIO inputs are required to be valid for at least tPIWID ns to ensure proper operation.  
This figure provides the AC test load for the GPIO.  
Output  
NVDD/2  
Z0 = 50   
RL = 50   
Figure 52. GPIO AC Test Load  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
60  
17 IPIC  
This section describes the DC and AC electrical specifications for the external interrupt pins.  
17.1 IPIC DC Electrical Characteristics  
This table provides the DC electrical characteristics for the external interrupt pins.  
Table 58. IPIC DC Electrical Characteristics  
Characteristic  
Input high voltage  
Symbol  
Condition  
Min  
Max  
Unit  
VIH  
VIL  
IIN  
2.1  
–0.3  
NVDD + 0.3  
V
V
Input low voltage  
Input current  
0.8  
±5  
A  
V
Output low voltage  
Output low voltage  
VOL  
IOL = 8.0 mA  
0.5  
0.4  
V
I
= 3.2 mA  
OL  
V
OL  
17.2 IPIC AC Timing Specifications  
This table provides the IPIC input and output AC timing specifications.  
1
Table 59. IPIC Input AC Timing Specifications  
Characteristic  
Symbol2  
tPIWID  
Min  
Unit  
IPIC inputs—minimum pulse width  
20  
ns  
Note:  
1. Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of SYS_CLK_IN.  
Timings are measured at the pin.  
2. IPIC inputs and outputs are asynchronous to any visible clock. IPIC outputs should be synchronized before use by any  
external synchronous logic. IPIC inputs are required to be valid for at least tPIWID ns to ensure proper operation when  
working in edge triggered mode.  
18 SPI  
This section describes the DC and AC electrical specifications for the SPI of the MPC8313E.  
18.1 SPI DC Electrical Characteristics  
This table provides the DC electrical characteristics for the MPC8313E SPI.  
Table 60. SPI DC Electrical Characteristics  
Characteristic  
Output high voltage  
Symbol  
Condition  
Min  
Max  
Unit  
VOH  
VOL  
IOH = –6.0 mA  
IOL = 6.0 mA  
2.4  
V
V
V
Output low voltage  
Output low voltage  
0.5  
0.4  
V
I
= 3.2 mA  
OL  
OL  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
61  
Table 60. SPI DC Electrical Characteristics (continued)  
Characteristic  
Input high voltage  
Symbol  
Condition  
Min  
Max  
Unit  
VIH  
VIL  
IIN  
2.1  
–0.3  
NVDD + 0.3  
V
V
Input low voltage  
Input current  
0.8  
±5  
0 V VIN NVDD  
A  
18.2 SPI AC Timing Specifications  
This table and provide the SPI input and output AC timing specifications.  
1
Table 61. SPI AC Timing Specifications  
Characteristic  
Symbol2  
Min  
Max  
Unit  
SPI outputs—master mode (internal clock) delay  
SPI outputs—slave mode (external clock) delay  
SPI inputs—master mode (internal clock) input setup time  
SPI inputs—master mode (internal clock) input hold time  
SPI inputs—slave mode (external clock) input setup time  
SPI inputs—slave mode (external clock) input hold time  
Note:  
tNIKHOV  
tNEKHOV  
tNIIVKH  
0.5  
2
6
ns  
ns  
ns  
ns  
ns  
ns  
8
6
tNIIXKH  
0
tNEIVKH  
tNEIXKH  
4
2
1. Output specifications are measured from the 50% level of the rising edge of SYS_CLK_IN to the 50% level of the signal. Timings  
are measured at the pin.  
2. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for inputs  
and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tNIKHOV symbolizes the NMSI outputs  
internal timing (NI) for the time tSPI memory clock reference (K) goes from the high state (H) until outputs (O) are valid (V).  
This figure provides the AC test load for the SPI.  
Output  
NVDD/2  
Z0 = 50   
RL = 50   
Figure 53. SPI AC Test Load  
Figure 54 and Figure 55 represent the AC timing from Table 61. Note that although the specifications  
generally reference the rising edge of the clock, these AC timing diagrams also apply when the falling edge  
is the active edge.  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
62  
Freescale Semiconductor  
 
This figure shows the SPI timing in slave mode (external clock).  
SPICLK (Input)  
tNEIXKH  
tNEIVKH  
Input Signals:  
SPIMOSI  
(See Note)  
tNEKHOV  
Output Signals:  
SPIMISO  
(See Note)  
Note: The clock edge is selectable on SPI.  
Figure 54. SPI AC Timing in Slave Mode (External Clock) Diagram  
This figure shows the SPI timing in master mode (internal clock).  
SPICLK (Output)  
tNIIXKH  
tNIIVKH  
Input Signals:  
SPIMISO  
(See Note)  
tNIKHOV  
Output Signals:  
SPIMOSI  
(See Note)  
Note: The clock edge is selectable on SPI.  
Figure 55. SPI AC Timing in Master Mode (Internal Clock) Diagram  
19 Package and Pin Listings  
This section details package parameters, pin assignments, and dimensions. The MPC8313E is available in  
a thermally enhanced plastic ball grid array (TEPBGAII), see Section 19.1, “Package Parameters for the  
MPC8313E TEPBGAII,” and Section 19.2, “Mechanical Dimensions of the MPC8313E TEPBGAII,” for  
information on the TEPBGAII.  
19.1 Package Parameters for the MPC8313E TEPBGAII  
The package parameters are as provided in the following list. The package type is 27 mm 27 mm,  
516 TEPBGAII.  
Package outline  
Interconnects  
Pitch  
27 mm 27 mm  
516  
1.00 mm  
2.25 mm  
Module height (typical)  
Solder Balls  
96.5 Sn/3.5 Ag(VR package) ,  
62 Sn/36 Pb/2 Ag (ZQ package) Ball diameter (typical)  
0.6 mm  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
63  
 
 
19.2 Mechanical Dimensions of the MPC8313E TEPBGAII  
This figure shows the mechanical dimensions and bottom surface nomenclature of the 516-TEPBGAII  
package.  
Notes:  
1. All dimensions are in millimeters.  
2. Dimensions and tolerances per ASME Y14.5M-1994.  
3. Maximum solder ball diameter measured parallel to datum A.  
4. Datum A, the seating plane, is determined by the spherical crowns of the solder balls.  
5. Package code 5368 is to account for PGE and the built-in heat spreader.  
Figure 56. Mechanical Dimension and Bottom Surface Nomenclature of the MPC8313E TEPBGAII  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
64  
Freescale Semiconductor  
19.3 Pinout Listings  
This table provides the pin-out listing for the MPC8313E, TEPBGAII package.  
Table 62. MPC8313E TEPBGAII Pinout Listing  
Power  
Supply  
Signal  
Package Pin Number  
Pin Type  
Note  
DDR Memory Controller Interface  
MEMC_MDQ0  
MEMC_MDQ1  
MEMC_MDQ2  
MEMC_MDQ3  
MEMC_MDQ4  
MEMC_MDQ5  
MEMC_MDQ6  
MEMC_MDQ7  
MEMC_MDQ8  
MEMC_MDQ9  
MEMC_MDQ10  
MEMC_MDQ11  
MEMC_MDQ12  
MEMC_MDQ13  
MEMC_MDQ14  
MEMC_MDQ15  
MEMC_MDQ16  
MEMC_MDQ17  
MEMC_MDQ18  
MEMC_MDQ19  
MEMC_MDQ20  
MEMC_MDQ21  
MEMC_MDQ22  
MEMC_MDQ23  
MEMC_MDQ24  
MEMC_MDQ25  
MEMC_MDQ26  
MEMC_MDQ27  
MEMC_MDQ28  
A8  
A9  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
C10  
C9  
E9  
E11  
E10  
C8  
E8  
A6  
B6  
C6  
C7  
D7  
D6  
A5  
A19  
D18  
A17  
E17  
E16  
C18  
D19  
C19  
E19  
A22  
C21  
C20  
A21  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
65  
Table 62. MPC8313E TEPBGAII Pinout Listing (continued)  
Power  
Supply  
Signal  
Package Pin Number  
Pin Type  
Note  
MEMC_MDQ29  
MEMC_MDQ30  
MEMC_MDQ31  
MEMC_MDM0  
MEMC_MDM1  
MEMC_MDM2  
MEMC_MDM3  
MEMC_MDQS0  
MEMC_MDQS1  
MEMC_MDQS2  
MEMC_MDQS3  
MEMC_MBA0  
MEMC_MBA1  
MEMC_MBA2  
MEMC_MA0  
A20  
C22  
B22  
B7  
I/O  
I/O  
I/O  
O
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
E6  
O
E18  
E20  
A7  
O
O
I/O  
I/O  
I/O  
I/O  
O
E7  
B19  
A23  
D15  
A18  
A15  
E12  
D11  
B11  
A11  
A12  
E13  
C12  
E14  
B15  
C17  
C13  
A16  
C15  
C16  
E15  
B18  
C11  
B10  
O
O
O
MEMC_MA1  
O
MEMC_MA2  
O
MEMC_MA3  
O
MEMC_MA4  
O
MEMC_MA5  
O
MEMC_MA6  
O
MEMC_MA7  
O
MEMC_MA8  
O
MEMC_MA9  
O
MEMC_MA10  
MEMC_MA11  
MEMC_MA12  
MEMC_MA13  
MEMC_MA14  
MEMC_MWE  
MEMC_MRAS  
MEMC_MCAS  
O
O
O
O
O
O
O
O
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
66  
Table 62. MPC8313E TEPBGAII Pinout Listing (continued)  
Power  
Supply  
Signal  
Package Pin Number  
Pin Type  
Note  
MEMC_MCS0  
MEMC_MCS1  
MEMC_MCKE  
MEMC_MCK  
D10  
O
O
O
O
O
O
O
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
3
A10  
B14  
A13  
MEMC_MCK  
A14  
MEMC_MODT0  
MEMC_MODT1  
B23  
C23  
Local Bus Controller Interface  
LAD0  
LAD1  
LAD2  
LAD3  
LAD4  
LAD5  
LAD6  
LAD7  
LAD8  
LAD9  
LAD10  
LAD11  
LAD12  
LAD13  
LAD14  
LAD15  
LA16  
K25  
K24  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
LVDD  
LVDD  
LVDD  
LVDD  
LVDD  
LVDD  
LVDD  
LVDD  
LVDD  
LVDD  
LVDD  
LVDD  
LVDD  
LVDD  
LVDD  
LVDD  
LVDD  
LVDD  
LVDD  
LVDD  
LVDD  
LVDD  
LVDD  
LVDD  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
11  
K23  
K22  
J25  
J24  
J23  
J22  
H24  
F26  
G24  
F25  
E25  
F24  
G22  
F23  
AC25  
AC26  
AB22  
AB23  
AB24  
AB25  
AB26  
E22  
LA17  
O
LA18  
O
LA19  
O
LA20  
O
LA21  
O
LA22  
O
LA23  
O
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
67  
Table 62. MPC8313E TEPBGAII Pinout Listing (continued)  
Power  
Supply  
Signal  
Package Pin Number  
Pin Type  
Note  
LA24  
E23  
D22  
D23  
J26  
O
O
LVDD  
LVDD  
LVDD  
LVDD  
LVDD  
LVDD  
LVDD  
LVDD  
LVDD  
LVDD  
LVDD  
LVDD  
LVDD  
LVDD  
LVDD  
LVDD  
LVDD  
LVDD  
LVDD  
LVDD  
LVDD  
LVDD  
LVDD  
LVDD  
LVDD  
LVDD  
LVDD  
LVDD  
LVDD  
LVDD  
LVDD  
LVDD  
11  
11  
10  
10  
10  
10  
10  
10  
10  
11  
10  
2
LA25  
LCS0  
O
LCS1  
O
LCS2  
F22  
O
LCS3  
D26  
E24  
H26  
L22  
O
LWE0/LFWE  
O
LWE1  
O
LBCTL  
O
LALE/M1LALE/M2LALE  
LGPL0/LFCLE  
E26  
AA23  
AA24  
AA25  
AA26  
Y22  
E21  
H22  
G26  
AC24  
Y24  
Y26  
W22  
W24  
W26  
V22  
V23  
V24  
V25  
V26  
U22  
AD24  
L25  
O
O
LGPL1/LFALE  
O
LGPL2/LOE/LFRE  
LGPL3/LFWP  
O
O
LGPL4/LGTA/LUPWAIT/LFRB  
LGPL5  
I/O  
O
10  
11  
11  
8
LCLK0  
O
LCLK1  
O
LA0/GPIO0/MSRCID0  
LA1/GPIO1//MSRCID1  
LA2/GPIO2//MSRCID2  
LA3/GPIO3//MSRCID3  
LA4/GPIO4//MSRCID4  
LA5/GPIO5/MDVAL  
LA6/GPIO6  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
LA7/GPIO7/TSEC_1588_TRIG2  
LA8/GPIO13/TSEC_1588_ALARM1  
LA9/GPIO14/TSEC_1588_PP3  
LA10/TSEC_1588_CLK  
LA11/TSEC_1588_GCLK  
LA12/TSEC_1588_PP1  
LA13/TSEC_1588_PP2  
8
8
8
O
8
O
8
O
8
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
68  
Table 62. MPC8313E TEPBGAII Pinout Listing (continued)  
Power  
Supply  
Signal  
Package Pin Number  
Pin Type  
Note  
LA14/TSEC_1588_TRIG1  
LA15/TSEC_1588_ALARM2  
L24  
O
O
LVDD  
LVDD  
8
8
K26  
DUART  
UART_SOUT1/MSRCID0  
N2  
O
NVDD  
NVDD  
NVDD  
NVDD  
NVDD  
NVDD  
NVDD  
NVDD  
8
UART_SIN1/MSRCID1  
M5  
I/O  
I/O  
I/O  
O
UART_CTS1/GPIO8/MSRCID2  
UART_RTS1/GPIO9/MSRCID3  
UART_SOUT2/MSRCID4/TSEC_1588_CLK  
UART_SIN2/MDVAL/TSEC_1588_GCLK  
UART_CTS2/TSEC_1588_PP1  
UART_RTS2/TSEC_1588_PP2  
M1  
K1  
M3  
L1  
I/O  
I/O  
I/O  
8
L5  
8
L3  
8
I2C interface  
IIC1_SDA/CKSTOP_OUT/TSEC_1588_TRIG1  
IIC1_SCL/CKSTOP_IN/TSEC_1588_ALARM2  
IIC2_SDA/PMC_PWR_OK/GPIO10  
IIC2_SCL/GPIO11  
J4  
I/O  
I/O  
I/O  
I/O  
NVDD  
NVDD  
NVDD  
NVDD  
2, 8  
2, 8  
2
J2  
J3  
H5  
2
Interrupts  
MCP_OUT  
G5  
O
I
NVDD  
NVDD  
NVDD  
NVDD  
NVDD  
NVDD  
2
IRQ0/MCP_IN  
IRQ1  
K5  
K4  
I
IRQ2  
K2  
I
IRQ3/CKSTOP_OUT  
IRQ4/CKSTOP_IN/GPIO12  
K3  
I/O  
I/O  
J1  
Configuration  
CFG_CLKIN_DIV  
EXT_PWR_CTRL  
CFG_LBIU_MUX_EN  
D5  
I
O
I
NVDD  
NVDD  
NVDD  
J5  
R24  
JTAG  
E1  
TCK  
TDI  
I
I
NVDD  
NVDD  
NVDD  
4
E2  
TDO  
E3  
O
3
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
69  
Table 62. MPC8313E TEPBGAII Pinout Listing (continued)  
Power  
Supply  
Signal  
Package Pin Number  
Pin Type  
Note  
TMS  
E4  
I
I
NVDD  
NVDD  
4
4
TRST  
E5  
TEST  
F4  
TEST_MODE  
QUIESCE  
I
NVDD  
NVDD  
6
DEBUG  
F5  
O
System Control  
HRESET  
PORESET  
SRESET  
F2  
F3  
F1  
I/O  
NVDD  
NVDD  
NVDD  
1
I
I
Clocks  
SYS_CR_CLK_IN  
SYS_CR_CLK_OUT  
SYS_CLK_IN  
U26  
U25  
U23  
T26  
R26  
T22  
U24  
R22  
T24  
I
O
I
NVDD  
NVDD  
NVDD  
NVDD  
NVDD  
NVDD  
NVDD  
NVDD  
NVDD  
3
USB_CR_CLK_IN  
USB_CR_CLK_OUT  
USB_CLK_IN  
I
O
I
PCI_SYNC_OUT  
RTC_PIT_CLOCK  
PCI_SYNC_IN  
O
I
I
MISC  
PCI  
THERM0  
THERM1  
N1  
N3  
I
I
NVDD  
NVDD  
7
7
PCI_INTA  
PCI_RESET_OUT  
PCI_AD0  
AF7  
O
NVDD  
NVDD  
NVDD  
NVDD  
NVDD  
NVDD  
NVDD  
NVDD  
AB11  
AB20  
AF23  
AF22  
AB19  
AE22  
AF21  
O
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
PCI_AD1  
PCI_AD2  
PCI_AD3  
PCI_AD4  
PCI_AD5  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
70  
Table 62. MPC8313E TEPBGAII Pinout Listing (continued)  
Power  
Supply  
Signal  
Package Pin Number  
Pin Type  
Note  
PCI_AD6  
AD19  
AD20  
AC18  
AD18  
AB18  
AE19  
AB17  
AE18  
AD17  
AF19  
AB14  
AF15  
AD14  
AE14  
AF12  
AE11  
AD12  
AB13  
AF9  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NVDD  
NVDD  
NVDD  
NVDD  
NVDD  
NVDD  
NVDD  
NVDD  
NVDD  
NVDD  
NVDD  
NVDD  
NVDD  
NVDD  
NVDD  
NVDD  
NVDD  
NVDD  
NVDD  
NVDD  
NVDD  
NVDD  
NVDD  
NVDD  
NVDD  
NVDD  
NVDD  
NVDD  
NVDD  
NVDD  
NVDD  
NVDD  
5
PCI_AD7  
PCI_AD8  
PCI_AD9  
PCI_AD10  
PCI_AD11  
PCI_AD12  
PCI_AD13  
PCI_AD14  
PCI_AD15  
PCI_AD16  
PCI_AD17  
PCI_AD18  
PCI_AD19  
PCI_AD20  
PCI_AD21  
PCI_AD22  
PCI_AD23  
PCI_AD24  
PCI_AD25  
PCI_AD26  
PCI_AD27  
PCI_AD28  
PCI_AD29  
PCI_AD30  
PCI_AD31  
PCI_C/BE0  
PCI_C/BE1  
PCI_C/BE2  
PCI_C/BE3  
PCI_PAR  
AD11  
AE10  
AB12  
AD10  
AC10  
AF10  
AF8  
AC19  
AB15  
AF14  
AF11  
AD16  
AF16  
PCI_FRAME  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
71  
Table 62. MPC8313E TEPBGAII Pinout Listing (continued)  
Power  
Supply  
Signal  
Package Pin Number  
Pin Type  
Note  
PCI_TRDY  
AD13  
AC15  
AF13  
AC14  
AF20  
AE15  
AD15  
AB10  
AD9  
I/O  
I/O  
I/O  
I/O  
I
NVDD  
NVDD  
NVDD  
NVDD  
NVDD  
NVDD  
NVDD  
NVDD  
NVDD  
NVDD  
NVDD  
NVDD  
NVDD  
NVDD  
NVDD  
NVDD  
NVDD  
NVDD  
5
5
PCI_IRDY  
PCI_STOP  
5
PCI_DEVSEL  
PCI_IDSEL  
5
5
PCI_SERR  
I/O  
I/O  
I/O  
I
PCI_PERR  
5
PCI_REQ0  
5
PCI_REQ1/CPCI_HS_ES  
PCI_REQ2  
AD8  
I
PCI_GNT0  
AC11  
AE7  
I/O  
O
PCI_GNT1/CPCI_HS_LED  
PCI_GNT2/CPCI_HS_ENUM  
M66EN  
AD7  
O
AD21  
AF17  
AB16  
AF18  
AD22  
I
PCI_CLK0  
O
PCI_CLK1  
O
PCI_CLK2  
O
PCI_PME  
I/O  
ETSEC1/_USBULPI  
TSEC1_COL/USBDR_TXDRXD0  
AD2  
AC3  
AF3  
AE3  
AD3  
AC6  
AF4  
AB6  
AB5  
AD4  
AF5  
AE6  
AC7  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
LVDDB  
LVDDB  
LVDDB  
LVDDB  
LVDDB  
LVDDB  
LVDDB  
LVDDB  
LVDDB  
LVDDB  
LVDDB  
LVDDB  
LVDDB  
TSEC1_CRS/USBDR_TXDRXD1  
TSEC1_GTX_CLK/USBDR_TXDRXD2  
TSEC1_RX_CLK/USBDR_TXDRXD3  
TSEC1_RX_DV/USBDR_TXDRXD4  
TSEC1_RXD3/USBDR_TXDRXD5  
3, 12  
TSEC1_RXD2/USBDR_TXDRXD6  
TSEC1_RXD1/USBDR_TXDRXD7  
TSEC1_RXD0/USBDR_NXT/TSEC_1588_TRIG1  
TSEC1_RX_ER/USBDR_DIR/TSEC_1588_TRIG2  
TSEC1_TX_CLK/USBDR_CLK/TSEC_1588_CLK  
TSEC1_TXD3/TSEC_1588_GCLK  
I
I
O
TSEC1_TXD2/TSEC_1588_PP1  
O
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
72  
Table 62. MPC8313E TEPBGAII Pinout Listing (continued)  
Power  
Supply  
Signal  
Package Pin Number  
Pin Type  
Note  
TSEC1_TXD1/TSEC_1588_PP2  
TSEC1_TXD0/USBDR_STP/TSEC_1588_PP3  
TSEC1_TX_EN/TSEC_1588_ALARM1  
TSEC1_TX_ER/TSEC_1588_ALARM2  
TSEC1_GTX_CLK125  
AD6  
AD5  
AB7  
AB8  
AE1  
AF6  
AB9  
ETSEC2  
AB4  
AB3  
AC1  
AC2  
AA3  
Y5  
O
O
O
O
I
LVDDB  
LVDDB  
LVDDB  
LVDDB  
LVDDB  
NVDD  
NVDD  
TSEC1_MDC/LB_POR_CFG_BOOT_ECC_DIS  
TSEC1_MDIO  
O
I/O  
9, 11  
TSEC2_COL/GTM1_TIN4/GTM2_TIN3/GPIO15  
TSEC2_CRS/GTM1_TGATE4/GTM2_TGATE3/GPIO16  
TSEC2_GTX_CLK/GTM1_TOUT4/GTM2_TOUT3/GPIO17  
TSEC2_RX_CLK/GTM1_TIN2/GTM2_TIN1/GPIO18  
TSCE2_RX_DV/GTM1_TGATE2/GTM2_TGATE1/GPIO19  
TSEC2_RXD3/GPIO20  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
LVDDA  
LVDDA  
LVDDA  
LVDDA  
LVDDA  
LVDDA  
LVDDA  
LVDDA  
LVDDA  
LVDDA  
LVDDA  
LVDDA  
LVDDA  
LVDDA  
LVDDA  
LVDDA  
LVDDA  
12  
TSEC2_RXD2/GPIO21  
AA4  
AB2  
AA5  
AA2  
AB1  
W3  
TSEC2_RXD1/GPIO22  
TSEC2_RXD0/GPIO23  
TSEC2_RX_ER/GTM1_TOUT2/GTM2_TOUT1/GPIO24  
TSEC2_TX_CLK/GPIO25  
TSEC2_TXD3/CFG_RESET_SOURCE0  
TSEC2_TXD2/CFG_RESET_SOURCE1  
TSEC2_TXD1/CFG_RESET_SOURCE2  
TSEC2_TXD0/CFG_RESET_SOURCE3  
TSEC2_TX_EN/GPIO26  
Y1  
W5  
Y3  
AA1  
W1  
TSEC2_TX_ER/GPIO27  
SGMII PHY  
U3  
TXA  
TXA  
RXA  
RXA  
TXB  
TXB  
O
O
I
V3  
U1  
V1  
I
P4  
O
O
N4  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
73  
Table 62. MPC8313E TEPBGAII Pinout Listing (continued)  
Power  
Supply  
Signal  
Package Pin Number  
Pin Type  
Note  
RXB  
R1  
P1  
V5  
I
I
I
RXB  
SD_IMP_CAL_RX  
200  ±  
10% to  
GND  
SD_REF_CLK  
SD_REF_CLK  
SD_PLL_TPD  
SD_IMP_CAL_TX  
T5  
T4  
T2  
N5  
I
I
O
I
100  ±  
10% to  
GND  
SDAVDD  
R5  
R4  
R3  
I/O  
O
SD_PLL_TPA_ANA  
SDAVSS  
I/O  
USB PHY  
USB_DP  
P26  
N26  
P24  
L26  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
USB_DM  
USB_VBUS  
USB_TPA  
USB_RBIAS  
USB_PLL_PWR3  
USB_PLL_GND  
USB_PLL_PWR1  
USB_VSSA_BIAS  
USB_VDDA_BIAS  
USB_VSSA  
M24  
M26  
N24  
N25  
M25  
M22  
N22  
P22  
USB_VDDA  
GTM/USB  
USBDR_DRIVE_VBUS/GTM1_TIN1/GTM2_TIN2/LSRCID0  
AD23  
AE23  
I/O  
I/O  
NVDD  
NVDD  
USBDR_PWRFAULT/GTM1_TGATE1/GTM2_TGATE2/  
LSRCID1  
USBDR_PCTL0/GTM1_TOUT1/LSRCID2  
USBDR_PCTL1/LBC_PM_REF_10/LSRCID3  
AC22  
AB21  
O
O
NVDD  
NVDD  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
74  
Table 62. MPC8313E TEPBGAII Pinout Listing (continued)  
Power  
Supply  
Signal  
Package Pin Number  
Pin Type  
Note  
SPI  
H1  
H3  
SPIMOSI/GTM1_TIN3/GTM2_TIN4/GPIO28/LSRCID4  
I/O  
I/O  
NVDD  
NVDD  
SPIMISO/GTM1_TGATE3/GTM2_TGATE4/GPIO29/  
LDVAL  
SPICLK/GTM1_TOUT3/GPIO30  
SPISEL/GPIO31  
G1  
G3  
I/O  
I/O  
NVDD  
NVDD  
Power and Ground Supplies  
AVDD1  
F14  
Powerfore300core  
APLL  
(1.0 V)  
AVDD2  
GVDD  
P21  
Power for system  
APLL (1.0 V)  
A2,A3,A4,A24,A25,B3,  
B4,B5,B12,B13,B20,B21,  
B24,B25,B26,D1,D2,D8,  
D9,D16,D17  
Power for DDR1  
and DDR2 DRAM  
I/O voltage  
(1.8/2.5 V)  
LVDD  
D24,D25,G23,H23,R23,  
T23,W25,Y25,AA22,AC23  
Power for local bus  
(3.3 V)  
LVDDA  
LVDDB  
W2,Y2  
Power for eTSEC2  
(2.5 V, 3.3 V)  
AC8,AC9,AE4,AE5  
Power for eTSEC1/  
USB DR  
(2.5 V, 3.3 V)  
MVREF  
NVDD  
C14,D14  
Reference voltage  
signal for DDR  
G4,H4,L2,M2,AC16,AC17,  
AD25,AD26,AE12,AE13,  
AE20,AE21,AE24,AE25,  
AE26,AF24,AF25  
Standard I/O  
voltage (3.3 V)  
VDD  
K11,K12,K13,K14,K15,  
K16,L10,L17,M10,M17,  
N10,N17,U12,U13,  
Power for core (1.0  
V)  
VDDC  
F6,F10,F19,K6,K10,K17,  
Internal core logic  
K21,P6,P10,P17,R10,R17, constant power (1.0  
T10,T17,U10,U11,U14,  
U15,U16,U17,W6,W21,  
AA6,AA10,AA14,AA19  
V)  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
75  
Table 62. MPC8313E TEPBGAII Pinout Listing (continued)  
Power  
Supply  
Signal  
Package Pin Number  
Pin Type  
Note  
VSS  
B1,B2,B8,B9,B16,B17,C1,  
C2,C3,C4,C5,C24,C25,  
C26,D3,D4,D12,D13,D20,  
D21,F8,F11,F13,F16,F17,  
F21,G2,G25,H2,H6,H21,  
H25,L4,L6,L11,L12,L13,  
L14,L15,L16,L21,L23,M4,  
M11,M12,M13,M14,M15,  
M16,M23,N6,N11,N12,  
N13,N14,N15,N16,  
N21,N23,P11,P12,P13,  
P14,P15,P16,P23,P25,  
R11,R12,R13,R14,R15,  
R16,R25,T6,T11,T12,T13,  
T14,T15,T16,T21,T25,U5,  
U6,U21,W4,W23,Y4,Y23,  
AA8,AA11,AA13,AA16,  
AA17,AA21,AC4,AC5,  
AC12,AC13,AC20,AC21,  
AD1,AE2,AE8,AE9,AE16,  
AE17,AF2  
XCOREVDD  
T1,U2,V2  
Core power for  
SerDes  
transceivers (1.0 V)  
XCOREVSS  
XPADVDD  
P2,R2,T3  
P5,U4  
Pad power for  
SerDes  
transceivers (1.0 V)  
XPADVSS  
P3,V4  
Notes:  
1. This pin is an open drain signal. A weak pull-up resistor (1 k) should be placed on this pin to NVDD  
.
2. This pin is an open drain signal. A weak pull-up resistor (2–10 k) should be placed on this pin to NVDD  
.
3. This output is actively driven during reset rather than being three-stated during reset.  
4. These JTAG pins have weak internal pull-up P-FETs that are always enabled.  
5. This pin should have a weak pull up if the chip is in PCI host mode. Follow PCI specifications recommendation.  
6. This pin must always be tied to VSS  
.
7. Internal thermally sensitive resistor, resistor value varies linearly with temperature. Useful for determining the junction temperature.  
8. 1588 signals are available on these pins only in MPC8313 Rev 2.x or later.  
9. LB_POR_CFG_BOOT_ECC_DIS is available only in MPC8313 Rev 2.x or later.  
10.This pin has an internal pull-up.  
11.This pin has an internal pull-down.  
12.In MII mode, GTX_CLK should be pulled down by 300to VSS  
.
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
76  
20 Clocking  
This figure shows the internal distribution of clocks within the MPC8313E.  
MPC8313E  
e300c3 Core  
core_clk  
Core PLL  
x M1  
USB Mac  
USB PHY  
PLL  
To DDR  
Memory  
Controller  
mux  
csb_clk  
DDR  
DDR  
Memory  
Device  
MEMC_MCK  
MEMC_MCK  
Clock  
USB_CLK_IN  
Divider  
/2  
USB_CR_CLK_IN  
ddr_clk  
x L2  
Crystal  
Clock  
Unit  
System  
PLL  
lbc_clk  
/1,/2  
USB_CR_CLK_OUT  
/n  
Local Bus  
LCLK[0:1] Memory  
Device  
To Local Bus  
LBC  
Clock  
Divider  
csb_clk to Rest  
of the Device  
CFG_CLKIN_DIV  
PCI_CLK/  
PCI_SYNC_IN  
SYS_CLK_IN  
SYS_CR_CLK_IN  
1
0
PCI_SYNC_OUT  
Crystal  
PCI Clock  
Divider (2)  
SYS_CR_CLK_OUT  
3
PCI_CLK_OUT[0:2]  
GTX_CLK125  
125-MHz Source  
eTSEC  
Protocol  
RTC  
Converter  
Sys Ref  
RTC_CLK (32 kHz)  
1
2
Multiplication factor M = 1, 1.5, 2, 2.5, and 3. Value is decided by RCWLR[COREPLL].  
Multiplication factor L = 2, 3, 4, 5, and 6. Value is decided by RCWLR[SPMF].  
Figure 57. MPC8313E Clock Subsystem  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
77  
 
 
The primary clock source for the MPC8313E can be one of two inputs, SYS_CLK_IN or PCI_CLK,  
depending on whether the device is configured in PCI host or PCI agent mode. When the device is  
configured as a PCI host device, SYS_CLK_IN is its primary input clock. SYS_CLK_IN feeds the PCI  
clock divider (2) and the multiplexors for PCI_SYNC_OUT and PCI_CLK_OUT. The  
CFG_CLKIN_DIV configuration input selects whether SYS_CLK_IN or SYS_CLK_IN/2 is driven out  
on the PCI_SYNC_OUT signal. The OCCR[PCICOEn] parameters select whether the PCI_SYNC_OUT  
is driven out on the PCI_CLK_OUTn signals.  
PCI_SYNC_OUT is connected externally to PCI_SYNC_IN to allow the internal clock subsystem to  
synchronize to the system PCI clocks. PCI_SYNC_OUT must be connected properly to PCI_SYNC_IN,  
with equal delay to all PCI agent devices in the system, to allow the device to function. When the device  
is configured as a PCI agent device, PCI_CLK is the primary input clock. When the device is configured  
as a PCI agent device the SYS_CLK_IN signal should be tied to VSS.  
As shown in Figure 57, the primary clock input (frequency) is multiplied up by the system phase-locked  
loop (PLL) and the clock unit to create the coherent system bus clock (csb_clk), the internal clock for the  
DDR controller (ddr_clk), and the internal clock for the local bus interface unit (lbc_clk).  
The csb_clk frequency is derived from a complex set of factors that can be simplified into the following  
equation:  
csb_clk = {PCI_SYNC_IN × (1 + ~CFG_CLKIN_DIV)} × SPMF  
In PCI host mode, PCI_SYNC_IN × (1 + ~CFG_CLKIN_DIV) is the SYS_CLK_IN frequency.  
The csb_clk serves as the clock input to the e300 core. A second PLL inside the e300 core multiplies up  
the csb_clk frequency to create the internal clock for the e300 core (core_clk). The system and core PLL  
multipliers are selected by the SPMF and COREPLL fields in the reset configuration word low (RCWL)  
which is loaded at power-on reset or by one of the hard-coded reset options. See Chapter 4, “Reset,  
Clocking, and Initialization,” in the MPC8313E PowerQUICC II Pro Integrated Processor Family  
Reference Manual, for more information on the clock subsystem.  
The internal ddr_clk frequency is determined by the following equation:  
ddr_clk = csb_clk × (1 + RCWL[DDRCM])  
Note that ddr_clk is not the external memory bus frequency; ddr_clk passes through the DDR clock divider  
(2) to create the differential DDR memory bus clock outputs (MCK and MCK). However, the data rate  
is the same frequency as ddr_clk.  
The internal lbc_clk frequency is determined by the following equation:  
lbc_clk = csb_clk × (1 + RCWL[LBCM])  
Note that lbc_clk is not the external local bus frequency; lbc_clk passes through the a LBC clock divider  
to create the external local bus clock outputs (LCLK[0:1]). The LBC clock divider ratio is controlled by  
LCRR[CLKDIV].  
In addition, some of the internal units may be required to be shut off or operate at lower frequency than  
the csb_clk frequency. Those units have a default clock ratio that can be configured by a memory mapped  
register after the device comes out of reset. Table 63 specifies which units have a configurable clock  
frequency.  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
78  
Freescale Semiconductor  
Table 63. Configurable Clock Units  
Default  
Frequency  
Unit  
Options  
TSEC1  
TSEC2  
csb_clk  
csb_clk  
csb_clk  
csb_clk  
csb_clk  
Off, csb_clk, csb_clk/2, csb_clk/3  
Off, csb_clk, csb_clk/2, csb_clk/3  
Off, csb_clk, csb_clk/2, csb_clk/3  
Off, csb_clk, csb_clk/2, csb_clk/3  
Off, csb_clk  
Security Core, I2C, SAP, TPR  
USB DR  
PCI and DMA complex  
This table provides the operating frequencies for the MPC8313E TEPBGAII under recommended  
operating conditions (see Table 2).  
Table 64. Operating Frequencies for TEPBGAII  
Maximum Operating  
Characteristic1  
Unit  
Frequency  
e300 core frequency (core_clk)  
Coherent system bus frequency (csb_clk)  
DDR1/2 memory bus frequency (MCK)2  
Local bus frequency (LCLKn)3  
PCI input frequency (SYS_CLK_IN or PCI_CLK)  
Note:  
333  
167  
167  
66  
MHz  
MHz  
MHz  
MHz  
MHz  
66  
1. The SYS_CLK_IN frequency, RCWL[SPMF], and RCWL[COREPLL] settings must be chosen  
such that the resulting csb_clk, MCK, LCLK[0:1], and core_clk frequencies do not exceed their  
respective maximum or minimum operating frequencies. The value of SCCR[ENCCM] and  
SCCR[USBDRCM] must be programmed such that the maximum internal operating frequency of  
the security core and USB modules do not exceed their respective value listed in this table.  
2. The DDR data rate is 2x the DDR memory bus frequency.  
3. The local bus frequency is 1/2, 1/4, or 1/8 of the lbc_clk frequency (depending on  
LCRR[CLKDIV]), which is in turn, 1x or 2x the csb_clk frequency (depending on RCWL[LBCM]).  
20.1 System PLL Configuration  
The system PLL is controlled by the RCWL[SPMF] parameter. This table shows the multiplication factor  
encodings for the system PLL.  
Table 65. System PLL Multiplication Factors  
System PLL  
RCWL[SPMF]  
Multiplication Factor  
0000  
0001  
0010  
0011  
Reserved  
Reserved  
2  
3  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
79  
 
 
Table 65. System PLL Multiplication Factors (continued)  
System PLL  
RCWL[SPMF]  
Multiplication Factor  
0100  
0101  
4  
5  
0110  
6  
0111–1111  
Reserved  
Note:  
1. If RCWL[DDRCM] and RCWL[LBCM] are both cleared, the system  
PLL VCO frequency = (CSB frequency) × (System PLL VCO Divider).  
2. If either RCWL[DDRCM] or RCWL[LBCM] are set, the system PLL  
VCO frequency = 2 × (CSB frequency) × (System PLL VCO Divider).  
3. The VCO divider needs to be set properly so that the System PLL  
VCO frequency is in the range of 450–750 MHz  
As described in Section 20, “Clocking,” the LBCM, DDRCM, and SPMF parameters in the reset  
configuration word low and the CFG_CLKIN_DIV configuration input signal select the ratio between the  
primary clock input (SYS_CLK_IN or PCI_SYNC_IN) and the internal coherent system bus clock  
(csb_clk). This table shows the expected frequency values for the CSB frequency for select csb_clk to  
SYS_CLK_IN/PCI_SYNC_IN ratios.  
Table 66. CSB Frequency Options  
Input Clock Frequency (MHz)2  
CFG_CLKIN_DIV  
at Reset1  
csb_clk :Input  
SPMF  
24  
25  
33.33  
66.67  
Clock Ratio2  
csb_clk Frequency (MHz)  
High  
High  
High  
High  
High  
Low  
Low  
Low  
Low  
Low  
0010  
0011  
0100  
0101  
0110  
0010  
0011  
0100  
0101  
0110  
2:1  
3:1  
4:1  
5:1  
6:1  
2:1  
3:1  
4:11  
5:1  
6:1  
133  
100  
100  
125  
150  
133  
167  
120  
144  
133  
100  
133  
167  
100  
125  
150  
120  
144  
1
2
CFG_CLKIN_DIV select the ratio between SYS_CLK_IN and PCI_SYNC_OUT.  
SYS_CLK_IN is the input clock in host mode; PCI_CLK is the input clock in agent mode.  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
80  
Freescale Semiconductor  
20.2 Core PLL Configuration  
RCWL[COREPLL] selects the ratio between the internal coherent system bus clock (csb_clk) and the e300  
core clock (core_clk). This table shows the encodings for RCWL[COREPLL]. COREPLL values that are  
not listed in this table should be considered as reserved.  
NOTE  
Core VCO frequency = core frequency VCO divider. The VCO divider,  
which is determined by RCWLR[COREPLL], must be set properly so that  
the core VCO frequency is in the range of 400–800 MHz.  
Table 67. e300 Core PLL Configuration  
RCWL[COREPLL]  
core_clk : csb_clk Ratio1  
VCO Divider (VCOD)3  
0–1  
2–5  
6
nn  
0000  
0
PLL bypassed  
PLL bypassed  
(PLL off, csb_clk clocks core directly)  
(PLL off, csb_clk clocks core directly)  
11  
00  
01  
10  
00  
01  
10  
00  
01  
10  
00  
01  
10  
00  
01  
10  
nnnn  
0001  
0001  
0001  
0001  
0001  
0001  
0010  
0010  
0010  
0010  
0010  
0010  
0011  
0011  
0011  
n
0
0
0
1
1
1
0
0
0
1
1
1
0
0
0
n/a  
1:1  
n/a  
2
4
8
2
4
8
2
4
8
2
4
8
2
4
8
1:1  
1:1  
1.5:1  
1.5:1  
1.5:1  
2:1  
2:1  
2:1  
2.5:1  
2.5:1  
2.5:1  
3:1  
3:1  
3:1  
Note:  
1. For core_clk:csb_clk ratios of 2.5:1 and 3:1, the core_clk must not exceed its maximum operating frequency of 333 MHz.  
2. Core VCO frequency = core frequency VCO divider. Note that VCO divider has to be set properly so that the core VCO  
frequency is in the range of 400–800 MHz.  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
81  
 
20.3 Example Clock Frequency Combinations  
This table shows several possible frequency combinations that can be selected based on the indicated input  
reference frequencies, with RCWLR[LBCM] = 0 and RCWLR[DDRCM] =1, such that the LBC operates  
with a frequency equal to the frequency of csb_clk and the DDR controller operates at twice the frequency  
of csb_clk.  
Table 68. System Clock Frequencies  
LBC(lbc_clk)  
e300 Core(core_clk)  
SYS_  
CSB  
DDR  
USB  
ref5  
CLK_IN/ SPMF1 VCOD2 VCO3  
PCI_CLK  
/2  
/4  
/8  
1  
1.5 2 2.5 3  
(csb_clk)4 (ddr_clk)  
25.0  
25.0  
33.3  
33.3  
48.0  
66.7  
6
5
5
4
3
2
2
2
2
2
2
2
600.0  
500.0  
666.0  
532.8  
576.0  
533.4  
150.0  
125.0  
166.5  
133.2  
144.0  
133.3  
300.0  
250.0  
333.0  
266.4  
288.0  
266.7  
37.5 18.8 Note6  
150.0 225 300 375  
62.5 31.25 15.6 Note 6 125.0 188 250 313 375  
41.63 20.8 Note 6 166.5 250 333  
66.6 33.3 16.7 Note 6 133.2 200 266 333 400  
36 18.0 48.0 144.0 216 288 360  
66.7 33.34 16.7 Note 6 133.3 200 267 333 400  
Note:  
1. System PLL multiplication factor.  
2. System PLL VCO divider.  
3. When considering operating frequencies, the valid core VCO operating range of 400–800 MHz must not be violated.  
4. Due to erratum eTSEC40, csb_clk frequencies of less than 133 MHz do not support gigabit Ethernet data rates. The core  
frequency must be 333 MHz for gigabit Ethernet operation. This erratum will be fixed in revision 2 silicon.  
5. Frequency of USB PLL input reference.  
6. USB reference clock must be supplied from a separate source as it must be 24 or 48 MHz, the USB reference must be  
supplied from a separate external source using USB_CLK_IN.  
21 Thermal  
This section describes the thermal specifications of the MPC8313E.  
21.1 Thermal Characteristics  
This table provides the package thermal characteristics for the 516, 27 27 mm TEPBGAII.  
Table 69. Package Thermal Characteristics for TEPBGAII  
Characteristic  
Board Type  
Symbol  
TEPBGA II  
Unit  
Note  
Junction-to-ambient natural convection  
Junction-to-ambient natural convection  
Junction-to-ambient (@200 ft/min)  
Junction-to-ambient (@200 ft/min)  
Junction-to-board  
Single layer board (1s)  
Four layer board (2s2p)  
Single layer board (1s)  
Four layer board (2s2p)  
RJA  
RJA  
25  
18  
20  
15  
10  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
1, 2  
1, 2, 3  
1, 3  
1, 3  
4
RJMA  
RJMA  
RJB  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
82  
Table 69. Package Thermal Characteristics for TEPBGAII (continued)  
Characteristic  
Junction-to-case  
Board Type  
Symbol  
TEPBGA II  
Unit  
Note  
RJC  
8
7
°C/W  
°C/W  
5
6
Junction-to-package top  
Natural convection  
JT  
Note:  
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board)  
temperature, ambient temperature, airflow, power dissipation of other components on the board, and board thermal resistance.  
2. Per JEDEC JESD51-2 with the single layer board horizontal. Board meets JESD51-9 specification.  
3. Per JEDEC JESD51-6 with the board horizontal.  
4. Thermal resistance between the die and the printed-circuit board per JEDEC JESD51-8. Board temperature is measured on  
the top surface of the board near the package.  
5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method  
1012.1).  
6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature  
per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.  
21.2 Thermal Management Information  
For the following sections, P = (V I ) + P , where P is the power dissipation of the I/O drivers.  
D
DD  
DD  
I/O  
I/O  
21.2.1 Estimation of Junction Temperature with Junction-to-Ambient  
Thermal Resistance  
An estimation of the chip junction temperature, T , can be obtained from the equation:  
J
T = T + (R  
P )  
D
J
A
JA  
where:  
T = junction temperature (C)  
J
T = ambient temperature for the package (C)  
A
R
= junction-to-ambient thermal resistance (C/W)  
JA  
P = power dissipation in the package (W)  
D
The junction-to-ambient thermal resistance is an industry standard value that provides a quick and easy  
estimation of thermal performance. As a general statement, the value obtained on a single layer board is  
appropriate for a tightly packed printed-circuit board. The value obtained on the board with the internal  
planes is usually appropriate if the board has low power dissipation and the components are well separated.  
Test cases have demonstrated that errors of a factor of two (in the quantity T – T ) are possible.  
J
A
21.2.2 Estimation of Junction Temperature with Junction-to-Board  
Thermal Resistance  
The thermal performance of a device cannot be adequately predicted from the junction-to-ambient thermal  
resistance. The thermal performance of any component is strongly dependent on the power dissipation of  
surrounding components. In addition, the ambient temperature varies widely within the application. For  
many natural convection and especially closed box applications, the board temperature at the perimeter  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
83  
(edge) of the package is approximately the same as the local air temperature near the device. Specifying  
the local ambient conditions explicitly as the board temperature provides a more precise description of the  
local ambient conditions that determine the temperature of the device.  
At a known board temperature, the junction temperature is estimated using the following equation:  
T = T + (R  
P )  
D
J
B
JB  
where:  
T = junction temperature (C)  
J
T = board temperature at the package perimeter (C)  
B
R
= junction-to-board thermal resistance (C/W) per JESD51–8  
JB  
P = power dissipation in the package (W)  
D
When the heat loss from the package case to the air can be ignored, acceptable predictions of junction  
temperature can be made. The application board should be similar to the thermal test condition: the  
component is soldered to a board with internal planes.  
21.2.3 Experimental Determination of Junction Temperature  
To determine the junction temperature of the device in the application after prototypes are available, the  
thermal characterization parameter () can be used to determine the junction temperature with a  
JT  
measurement of the temperature at the top center of the package case using the following equation:  
T = T + (P )  
J
T
JT  
D
where:  
T = junction temperature (C)  
J
T = thermocouple temperature on top of package (C)  
T
= thermal characterization parameter (C/W)  
JT  
P = power dissipation in the package (W)  
D
The thermal characterization parameter is measured per JESD51-2 specification using a 40 gauge type T  
thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so  
that the thermocouple junction rests on the package. A small amount of epoxy is placed over the  
thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire  
is placed flat against the package case to avoid measurement errors caused by cooling effects of the  
thermocouple wire.  
21.2.4 Heat Sinks and Junction-to-Case Thermal Resistance  
In some application environments, a heat sink is required to provide the necessary thermal management of  
the device. When a heat sink is used, the thermal resistance is expressed as the sum of a junction to case  
thermal resistance and a case to ambient thermal resistance:  
R
= R  
+ R  
JA  
JC CA  
where:  
R
R
R
= junction-to-ambient thermal resistance (C/W)  
= junction-to-case thermal resistance (C/W)  
= case-to- ambient thermal resistance (C/W)  
JA  
JC  
CA  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
84  
Freescale Semiconductor  
RJC is device related and cannot be influenced by the user. The user controls the thermal environment to  
change the case-to-ambient thermal resistance, RCA. For instance, the user can change the size of the heat  
sink, the airflow around the device, the interface material, the mounting arrangement on the printed-circuit  
board, or change the thermal dissipation on the printed-circuit board surrounding the device.  
To illustrate the thermal performance of the devices with heat sinks, the thermal performance has been  
simulated with a few commercially available heat sinks. The heat sink choice is determined by the  
application environment (temperature, airflow, adjacent component power dissipation) and the physical  
space available. Because there is not a standard application environment, a standard heat sink is not  
required.  
Table 70. Thermal Resistance for TEPBGAII with Heat Sink in Open Flow  
Thermal Resistance  
Heat Sink Assuming Thermal Grease  
Airflow  
(C/W)  
Wakefield 53 53 2.5 mm pin fin  
Natural convection  
0.5 m/s  
13.0  
10.6  
9.7  
1 m/s  
2 m/s  
9.2  
4 m/s  
8.9  
Aavid 35 31 23 mm pin fin  
Aavid 30 30 9.4 mm pin fin  
Aavid 43 41 16.5 mm pin fin  
Natural convection  
0.5 m/s  
14.4  
11.3  
10.5  
9.9  
1 m/s  
2 m/s  
4 m/s  
9.4  
Natural convection  
0.5 m/s  
16.5  
13.5  
12.1  
10.9  
10.0  
14.5  
11.7  
10.5  
9.7  
1 m/s  
2 m/s  
4 m/s  
Natural convection  
0.5 m/s  
1 m/s  
2 m/s  
4 m/s  
9.2  
Accurate thermal design requires thermal modeling of the application environment using computational  
fluid dynamics software which can model both the conduction cooling and the convection cooling of the  
air moving through the application. Simplified thermal models of the packages can be assembled using the  
junction-to-case and junction-to-board thermal resistances listed in Table 70. More detailed thermal  
models can be made available on request.  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
85  
 
Heat sink Vendors include the following list:  
Aavid Thermalloy  
603-224-9988  
408-749-7601  
818-842-7277  
408-436-8770  
80 Commercial St.  
Concord, NH 03301  
Internet: www.aavidthermalloy.com  
Alpha Novatech  
473 Sapena Ct. #12  
Santa Clara, CA 95054  
Internet: www.alphanovatech.com  
International Electronic Research Corporation (IERC)  
413 North Moss St.  
Burbank, CA 91502  
Internet: www.ctscorp.com  
Millennium Electronics (MEI)  
Loroco Sites  
671 East Brokaw Road  
San Jose, CA 95112  
Internet: www.mei-thermal.com  
Tyco Electronics  
800-522-6752  
603-635-2800  
Chip Coolers™  
P.O. Box 3668  
Harrisburg, PA 17105  
Internet: www.chipcoolers.com  
Wakefield Engineering  
33 Bridge St.  
Pelham, NH 03076  
Internet: www.wakefield.com  
Interface material vendors include the following:  
Chomerics, Inc.  
781-935-4850  
800-248-2481  
77 Dragon Ct.  
Woburn, MA 01801  
Internet: www.chomerics.com  
Dow-Corning Corporation  
Corporate Center  
PO BOX 994  
Midland, MI 48686-0994  
Internet: www.dowcorning.com  
Shin-Etsu MicroSi, Inc.  
10028 S. 51st St.  
888-642-7674  
800-347-4572  
Phoenix, AZ 85044  
Internet: www.microsi.com  
The Bergquist Company  
18930 West 78th St.  
Chanhassen, MN 55317  
Internet: www.bergquistcompany.com  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
86  
21.3 Heat Sink Attachment  
When attaching heat sinks to these devices, an interface material is required. The best method is to use  
thermal grease and a spring clip. The spring clip should connect to the printed-circuit board, either to the  
board itself, to hooks soldered to the board, or to a plastic stiffener. Avoid attachment forces which would  
lift the edge of the package or peel the package from the board. Such peeling forces reduce the solder joint  
lifetime of the package. Recommended maximum force on the top of the package is 10 lb (4.5 kg) force.  
If an adhesive attachment is planned, the adhesive should be intended for attachment to painted or plastic  
surfaces and its performance verified under the application requirements.  
21.3.1 Experimental Determination of the Junction Temperature with a  
Heat Sink  
When heat sink is used, the junction temperature is determined from a thermocouple inserted at the  
interface between the case of the package and the interface material. A clearance slot or hole is normally  
required in the heat sink. Minimizing the size of the clearance is important to minimize the change in  
thermal performance caused by removing part of the thermal interface to the heat sink. Because of the  
experimental difficulties with this technique, many engineers measure the heat sink temperature and then  
back calculate the case temperature using a separate measurement of the thermal resistance of the  
interface. From this case temperature, the junction temperature is determined from the junction to case  
thermal resistance.  
T = T + (Rx P )  
J
C
JC  
D
where:  
T = junction temperature (C)  
J
T = case temperature of the package  
C
R= junction-to-case thermal resistance  
JC  
P = power dissipation  
D
22 System Design Information  
This section provides electrical and thermal design recommendations for successful application of the  
MPC8313E SYS_CLK_IN  
22.1 System Clocking  
The MPC8313E includes three PLLs.  
1. The platform PLL (AV  
) generates the platform clock from the externally supplied  
DD2  
SYS_CLK_IN input in PCI host mode or SYS_CLK_IN/PCI_SYNC_IN in PCI agent mode. The  
frequency ratio between the platform and SYS_CLK_IN is selected using the platform PLL ratio  
configuration bits as described in Section 20.1, “System PLL Configuration.”  
2. The e300 core PLL (AV  
) generates the core clock as a slave to the platform clock. The  
DD1  
frequency ratio between the e300 core clock and the platform clock is selected using the e300  
PLL ratio configuration bits as described in Section 20.2, “Core PLL Configuration.”  
3. There is a PLL for the SerDes block.  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
87  
22.2 PLL Power Supply Filtering  
Each of the PLLs listed above is provided with power through independent power supply pins (AV  
,
DD1  
AV  
, and SDAV , respectively). The AV level should always be equivalent to V , and preferably  
DD2  
DD DD DD  
these voltages are derived directly from V through a low frequency filter scheme such as the following.  
DD  
There are a number of ways to reliably provide power to the PLLs, but the recommended solution is to  
provide independent filter circuits as illustrated in Figure 58, one to each of the five AV pins. By  
DD  
providing independent filters to each PLL the opportunity to cause noise injection from one PLL to the  
other is reduced.  
This circuit is intended to filter noise in the PLLs resonant frequency range from a 500 kHz to 10 MHz  
range. It should be built with surface mount capacitors with minimum effective series inductance (ESL).  
Consistent with the recommendations of Dr. Howard Johnson in High Speed Digital Design: A Handbook  
of Black Magic (Prentice Hall, 1993), multiple small capacitors of equal value are recommended over a  
single large value capacitor.  
Each circuit should be placed as close as possible to the specific AV pin being supplied to minimize  
DD  
noise coupled from nearby circuits. It should be possible to route directly from the capacitors to the AV  
pin, which is on the periphery of package, without the inductance of vias.  
DD  
This figure shows the PLL power supply filter circuits.  
10  
VDD  
AVDD1 and AVDD2  
2.2 µF  
2.2 µF  
Low ESL Surface Mount Capacitors  
Figure 58. PLL Power Supply Filter Circuit  
The SDAV signal provides power for the analog portions of the SerDes PLL. To ensure stability of the  
DD  
internal clock, the power supplied to the PLL is filtered using a circuit like the one shown in Figure 59.  
For maximum effectiveness, the filter circuit should be placed as closely as possible to the SDAV ball  
DD  
to ensure it filters out as much noise as possible. The ground connection should be near the SDAV ball.  
DD  
The 0.003-µF capacitor is closest to the ball, followed by the two 2.2-µF capacitors, and finally the 1-  
resistor to the board supply plane. The capacitors are connected from traces from SDAV to the ground  
DD  
plane. Use ceramic chip capacitors with the highest possible self-resonant frequency. All traces should be  
kept short, wide, and direct.  
1.0  
SDAVDD  
SDAVSS  
XCOREVDD  
2.2 µF1  
2.2 µF1  
0.003 µF  
Note:  
1. An 0805 sized capacitor is recommended for system initial bring-up.  
Figure 59. SerDes PLL Power Supply Filter Circuit  
Note the following:  
SDAV should be a filtered version of XCOREV  
.
DD  
DD  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
88  
 
 
 
Output signals on the SerDes interface are fed from the XPADV power plane. Input signals and  
DD  
sensitive transceiver analog circuits are on the XCOREV supply.  
DD  
Power: XPADV consumes less than 300 mW; XCOREV + SDAV consumes less than  
DD  
DD  
DD  
750 mW.  
22.3 Decoupling Recommendations  
Due to large address and data buses, and high operating frequencies, the device can generate transient  
power surges and high frequency noise in its power supply, especially while driving large capacitive loads.  
This noise must be prevented from reaching other components in the MPC8313E system, and the  
MPC8313E itself requires a clean, tightly regulated source of power. Therefore, it is recommended that  
the system designer place at least one decoupling capacitor at each V , NV , GV , LV , LV ,  
DD  
DD  
DD  
DD  
DDA  
and LV  
pin of the device. These decoupling capacitors should receive their power from separate V  
,
DD  
DDB  
NV , GV , LV , LV  
, LV  
, and VSS power planes in the PCB, utilizing short traces to  
DD  
DD  
DD  
DDA  
DDB  
minimize inductance. Capacitors may be placed directly under the device using a standard escape pattern.  
Others may surround the part.  
These capacitors should have a value of 0.01 or 0.1 µF. Only ceramic SMT (surface mount technology)  
capacitors should be used to minimize lead inductance, preferably 0402 or 0603 sizes.  
In addition, it is recommended that there be several bulk storage capacitors distributed around the PCB,  
feeding the V , NV , GV , LV , LV  
, and LV  
planes, to enable quick recharging of the  
DD  
DD  
DD  
DD  
DDA  
DDB  
smaller chip capacitors. These bulk capacitors should have a low ESR (equivalent series resistance) rating  
to ensure the quick response time necessary. They should also be connected to the power and ground  
planes through two vias to minimize inductance. Suggested bulk capacitors—100 to 330 µF (AVX TPS  
tantalum or Sanyo OSCON). However, customers should work directly with their power regulator vendor  
for best values and types of bulk capacitors.  
22.4 SerDes Block Power Supply Decoupling Recommendations  
The SerDes block requires a clean, tightly regulated source of power (XCOREV and XPADV ) to  
DD  
DD  
ensure low jitter on transmit and reliable recovery of data in the receiver. An appropriate decoupling  
scheme is outlined below.  
Only SMT capacitors should be used to minimize inductance. Connections from all capacitors to power  
and ground should be done with multiple vias to further reduce inductance.  
First, the board should have at least 10 10-nF SMT ceramic chip capacitors as close as possible  
to the supply balls of the device. Where the board has blind vias, these capacitors should be placed  
directly below the chip supply and ground connections. Where the board does not have blind vias,  
these capacitors should be placed in a ring around the device as close to the supply and ground  
connections as possible.  
Second, there should be a 1-µF ceramic chip capacitor from each SerDes supply (XCOREV and  
DD  
XPADV ) to the board ground plane on each side of the device. This should be done for all  
DD  
SerDes supplies.  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
89  
Third, between the device and any SerDes voltage regulator there should be a 10-µF, low  
equivalent series resistance (ESR) SMT tantalum chip capacitor and a 100-µF, low ESR SMT  
tantalum chip capacitor. This should be done for all SerDes supplies.  
22.5 Connection Recommendations  
To ensure reliable operation, it is highly recommended to connect unused inputs to an appropriate signal  
level. Unused active low inputs should be tied to NV , GV , LV , LV  
, or LV  
as required.  
DD  
DD  
DD  
DDA  
DDB  
Unused active high inputs should be connected to V . All NC (no-connect) signals must remain  
SS  
unconnected.  
Power and ground connections must be made to all external V , NV , GV , LV , LV  
, LV  
,
DD  
DD  
DD  
DD  
DDA  
DDB  
and V pins of the device.  
SS  
22.6 Output Buffer DC Impedance  
The MPC8313E drivers are characterized over process, voltage, and temperature. For all buses, the driver  
2
is a push-pull single-ended driver type (open drain for I C).  
To measure Z for the single-ended drivers, an external resistor is connected from the chip pad to NV  
0
DD  
or V . Then, the value of each resistor is varied until the pad voltage is NV /2 (see Figure 60). The  
SS  
DD  
output impedance is the average of two components, the resistances of the pull-up and pull-down devices.  
When data is held high, SW1 is closed (SW2 is open), and R is trimmed until the voltage at the pad equals  
P
NV /2. R then becomes the resistance of the pull-up devices. R and R are designed to be close to each  
DD  
P
P
N
other in value. Then, Z = (R + R )/2.  
0
P
N
NVDD  
RN  
SW2  
SW1  
Pad  
Data  
RP  
VSS  
Figure 60. Driver Impedance Measurement  
The value of this resistance and the strength of the driver’s current source can be found by making two  
measurements. First, the output voltage is measured while driving logic 1 without an external differential  
termination resistor. The measured voltage is V = R  
while driving logic 1 with an external precision differential termination resistor of value R . The  
I  
. Second, the output voltage is measured  
1
source  
source  
term  
measured voltage is V = (1/(1/R + 1/R )) I  
. Solving for the output impedance gives R  
=
2
1
2
source  
source  
R
(V /V – 1). The drive current is then I  
= V /R  
.
term  
1
2
source  
1
source  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
90  
 
This table summarizes the signal impedance targets. The driver impedance are targeted at minimum V  
,
DD  
nominal NV , 105C.  
DD  
Table 71. Impedance Characteristics  
Local Bus, Ethernet,  
PCI Signals  
(Not Including PCI  
Output Clocks)  
PCI Output Clocks  
(Including  
PCI_SYNC_OUT)  
DUART, Control,  
Configuration, Power  
Management  
Impedance  
DDR DRAM Symbol  
Unit  
R
R
42 Target  
42 Target  
NA  
25 Target  
25 Target  
NA  
42 Target  
42 Target  
NA  
20 Target  
20 Target  
NA  
Z0  
Z0  
N
P
Differential  
ZDIFF  
Note: Nominal supply voltages. See Table 1, TJ = 105 C.  
22.7 Configuration Pin Muxing  
The MPC8313E provides the user with power-on configuration options which can be set through the use  
of external pull-up or pull-down resistors of 4.7 kon certain output pins (see customer visible  
configuration pins). These pins are generally used as output only pins in normal operation.  
While HRESET is asserted however, these pins are treated as inputs. The value presented on these pins  
while HRESET is asserted, is latched when PORESET deasserts, at which time the input receiver is  
disabled and the I/O circuit takes on its normal function. Careful board layout with stubless connections  
to these pull-up/pull-down resistors coupled with the large value of the pull-up/pull-down resistor should  
minimize the disruption of signal quality or speed for output pins thus configured.  
22.8 Pull-Up Resistor Requirements  
The MPC8313E requires high resistance pull-up resistors (10 kis recommended) on open drain type pins  
2
including I C, and IPIC (integrated programmable interrupt controller).  
Correct operation of the JTAG interface requires configuration of a group of system control pins as  
demonstrated in Figure 61. Care must be taken to ensure that these pins are maintained at a valid deasserted  
state under normal operating conditions because most have asynchronous behavior and spurious assertion,  
which give unpredictable results.  
Refer to the PCI 2.2 Specification, for all pull-ups required for PCI.  
22.9 JTAG Configuration Signals  
Boundary scan testing is enabled through the JTAG interface signals. The TRST signal is optional in  
IEEE 1149.1, but is provided on any Freescale devices that are built on Power Architecture technology.  
The device requires TRST to be asserted during reset conditions to ensure the JTAG boundary logic does  
not interfere with normal chip operation. While it is possible to force the TAP controller to the reset state  
using only the TCK and TMS signals, systems generally assert TRST during power-on reset. Because the  
JTAG interface is also used for accessing the common on-chip processor (COP) function, simply tying  
TRST to PORESET is not practical.  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
91  
The COP function of these processors allows a remote computer system (typically, a PC with dedicated  
hardware and debugging software) to access and control the internal operations of the processor. The COP  
interface connects primarily through the JTAG port of the processor, with some additional status  
monitoring signals. The COP port requires the ability to independently assert TRST without causing  
PORESET. If the target system has independent reset sources, such as voltage monitors, watchdog timers,  
power supply failures, or push-button switches, then the COP reset signals must be merged into these  
signals with logic.  
The arrangement shown in Figure 61 allows the COP to independently assert HRESET or TRST, while  
ensuring that the target can drive HRESET as well. If the JTAG interface and COP header are not used,  
TRST should be tied to PORESET so that it is asserted when the system reset signal (PORESET) is  
asserted.  
The COP header shown in Figure 61 adds many benefits—breakpoints, watchpoints, register and memory  
examination/modification, and other standard debugger features are possible through this interface—and  
can be as inexpensive as an unpopulated footprint for a header to be added when needed.  
The COP interface has a standard header for connection to the target system, based on the 0.025"  
square-post, 0.100" centered header assembly (often called a Berg header).  
There is no standardized way to number the COP header shown in Figure 61; consequently, many different  
pin numbers have been observed from emulator vendors. Some are numbered top-to-bottom then  
left-to-right, while others use left-to-right then top-to-bottom, while still others number the pins counter  
clockwise from pin 1 (as with an IC). Regardless of the numbering, the signal placement recommended in  
Figure 61 is common to all known emulators.  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
92  
Freescale Semiconductor  
PORESET  
SRESET  
HRESET  
PORESET  
From Target  
Board Sources  
(if any)  
SRESET  
HRESET  
10 k  
HRESET  
NVDD  
NVDD  
13  
11  
SRESET  
10 k  
10 k  
10 k  
NVDD  
NVDD  
TRST  
TRST  
4
2
4
1
3
2 k  
VDD_SENSE  
6 1  
5
NVDD  
5
6
NC  
7
8
CHKSTP_OUT  
CHKSTP_OUT  
NVDD  
15  
10 k  
9
10  
12  
11  
10 k  
14 2  
NVDD  
CHKSTP_IN  
TMS  
KEY  
No pin  
13  
15  
CHKSTP_IN  
TMS  
8
9
1
3
16  
TDO  
TDI  
COP Connector  
Physical Pin Out  
TDO  
TDI  
TCK  
7
2
TCK  
NC  
NC  
NC  
10  
12  
16  
Notes:  
1. Some systems require power to be fed from the application board into the debugger repeater card  
via the COP header. In this case the resistor value for VDD_SENSE should be around 20 .  
2. Key location; pin 14 is not physically present on the COP header.  
Figure 61. JTAG Interface Connection  
23 Ordering Information  
Ordering information for the parts fully covered by this specification document is provided in  
Section 23.1, “Part Numbers Fully Addressed by this Document.”  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
93  
23.1 Part Numbers Fully Addressed by this Document  
This table provides the Freescale part numbering nomenclature for the MPC8313E. Note that the  
individual part numbers correspond to a maximum processor core frequency. For available frequencies,  
contact your local Freescale sales office. In addition to the processor frequency, the part numbering scheme  
also includes an application modifier which may specify special application conditions. Each part number  
also contains a revision code which refers to the die mask revision number.  
Table 72. Part Numbering Nomenclature  
MPC nnnn  
pp  
aa  
a
x
e
t
Product  
Code  
Part  
Identifier  
Encryption  
Acceleration  
Temperature  
Range 3  
e300 core  
DDR  
Frequency  
Revision  
Level  
Package 1, 4  
Frequency 2  
MPC  
8313  
Blank = Not  
included  
Blank = 0to 105C ZQ = PB  
C= –40to 105C TEPBGAII  
AD = 266 MHz D = 266 MHz Blank = 1.0  
AF = 333 MHz F = 333 MHz A = 2.0  
E = included  
VR = PB free AG = 400 MHz  
TEPBGAII  
B = 2.1  
C = 2.2  
Note:  
1. See Section 19, “Package and Pin Listings,for more information on available package types.  
2. Processor core frequencies supported by parts addressed by this specification only. Not all parts described in this  
specification support all core frequencies. Additionally, parts addressed by Part Number Specifications may support other  
maximum core frequencies.  
3. Contact local Freescale office on availability of parts with C temperature range.  
4. ZQ package was available for Rev 1.0. For Rev 2.x, only VR package is available.  
23.2 Part Marking  
Parts are marked as shown in this figure.  
MPCnnnnetppaaar  
core/ddr MHz  
ATWLYYWW  
CCCCC  
MMMMM YWWLAZ  
TePBGA  
Notes:  
MPCnnnnetppaar is the orderable part number.  
ATWLYYWW is the standard assembly, test, year, and work week codes.  
CCCCC is the country code.  
MMMMM is the mask number.  
Figure 62. Part Marking for TEPBGAII Device  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
94  
Freescale Semiconductor  
 
24 Revision History  
This table summarizes a revision history for this document.  
Table 73. Document Revision History  
Substantive Change(s)  
Rev.  
Number  
Date  
4
11/2011  
• In Table 2, added following notes:  
Note 3: Min temperature is specified with TA; Max temperature is specified with TJ  
Note 4: All Power rails must be connected and power applied to the MPC8313 even if the IP  
interfaces are not used.  
Note 5: All I/O pins should be interfaced with peripherals operating at same voltage level.  
Note 6: This voltage is the input to the filter discussed in Section 22.2, “PLL Power Supply Filtering.”  
and not necessarily the voltage at the AVDD pin, which may be reduced from VDD by the filter  
• Decoupled PCI_CLK and SYS_CLK_IN rise and fall times in Table 8. Relaxed maximum rise/fall time  
of SYS_CLK_IN to 4ns.  
• Added a note in Table 27 stating “The frequency of RX_CLK should not exceed the TX_CLK by more  
than 300 ppm."  
• In Table 30:  
Changed max value of tskrgt in “Data to clock input skew (at receiver)” row from 2.8 to 2.6.  
Added Note 7, stating that, “The frequency of RX_CLK should not exceed the GTX_CLK125 by  
more than 300 ppm.”  
• Added a note stating “eTSEC should be interfaced with peripheral operating at same voltage level” in  
Section 8.1.1, “TSEC DC Electrical Characteristics.”  
• TSEC1_MDC and TSEC_MDIO are powered at 3.3V by NVDD. Replaced LVDDA/LVDDB with NVDD  
and removed instances of 2.5V at several places in Section 8.5, “Ethernet Management Interface  
Electrical Characteristics.”  
• In Table 43, changed min/max values of tCLK_TOL from 0.05 to 0.005.  
• In Table 62:  
Added Note 2 for LGPL4 in showing LGPL4 as open-drain.  
Removed Note 2 from TSEC1_MDIO.  
Added Note 10: This pin has an internal pull-up.  
Added Note 11: This pin has an internal pull-down.  
Added Note 12: “In MII mode, GTX_CLK should be pulled down by 300 to VSS” to  
TSEC1_GTX_CLK and TSEC2_GTX_CLK.  
• In Section 19.1, “Package Parameters for the MPC8313E TEPBGAII,replaced "5.5 Sn/0.5 Cu/4 Ag"  
with "Sn/3.5 Ag."  
• Added foot note 3 in Table 65 stating “The VCO divider needs to be set properly so that the System  
PLL VCO frequency is in the range of 450–750 MHz.”  
• In Table 72:  
Added AD = 266 and D = 266.  
Added “C = 2.2” in “Revision level” column.  
Added Note 4.  
• Changed resitor from 1.0 to 10 in Figure 58.  
• Replaced LCCR with LCRR throughout.  
• Added high-speed to USB Phy description.  
3
01/2009  
12/2008  
12/2008  
Table 72, in column aa, changed to AG = 400 MHz.  
2.2  
2.1  
• Made cross-references active for sections, figures, and tables.  
• Added Figure 2, after Table 2 and renumbered the following figures.  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
95  
Table 73. Document Revision History (continued)  
Substantive Change(s)  
Rev.  
Number  
Date  
2
10/2008  
• Added Note “The information in this document is accurate for revision 1.0, and 2.x and later. See  
Section 24.1, “Part Numbers Fully Addressed by this Document,before Section 1, “Overview.”  
• Added part numbering details for all the silicon revisions in Table 74.  
• Changed VIH from 2.7 V to 2.4 V in Table 7.  
• Added a row for VIH level for Rev 2.x or later in Table 45.  
• Added a column for maximum power dissipation in low power mode for Rev 2.x or later silicon in  
Table 6.  
• Added a column for Power Nos for Rev 2.x or later silicon and added a row for 400 MHz in Table 4.  
• Removed footnote, “These are preliminary estimates.from Table 4.  
• Added Table 21 for DDR AC Specs on Rev 2.x or later silicon.  
• Added Section 9, “High-Speed Serial Interfaces (HSSI).”  
• Added LFWE, LFCLE, LFALE, LOE, LFRE, LFWP, LGTA, LUPWAIT, and LFRB in Table 63.  
• In Table 39, added note 2: “This parameter is dependent on the csb_clk speed. (The MIIMCFG[Mgmt  
Clock Select] field determines the clock frequency of the Mgmt Clock EC_MDC.)”  
• Removed mentions of SGMII (SGMII has separate specs) from Section 8.1, “Enhanced Three-Speed  
Ethernet Controller (eTSEC) (10/100/1000 Mbps)—MII/RMII/RGMII/SGMII/RTBI Electrical  
Characteristics.”  
• Corrected Section 8.1, “Enhanced Three-Speed Ethernet Controller (eTSEC)  
(10/100/1000 Mbps)—MII/RMII/RGMII/SGMII/RTBI Electrical Characteristics,to state that  
RGMII/RTBI interfaces only operate at 2.5 V, not 3.3 V.  
• Added ZQ package to ordering information In Table 74 and Section 19.1, “Package Parameters for the  
MPC8313E TEPBGAII” (applicable to both silicon rev. 1.0 and 2.1)  
• Removed footnotes 5 and 6 from Table 1 (left over when the PCI undershoot/overshoot voltages and  
maximum AC waveforms were removed from Section 2.1.2, “Power Supply Voltage Specification”).  
• Removed SD_PLL_TPD (T2) and SD_PLL_TPA_ANA (R4) from Table 63.  
• Added Section 8.3, “SGMII Interface Electrical Characteristics.Removed Section 8.5.3 SGMII DC  
Electrical Characteristics.  
• Removed “HRESET negation to SRESET negation (output)” spec and changed “HRESET/SRESET  
assertion (output)” spec to “HRESET assertion (output)” in Table 10.  
• Clarified POR configuration signal specs to “Time for the device to turn off POR configuration signal  
drivers with respect to the assertion of HRESET” and “Time for the device to turn on POR configuration  
signal drivers with respect to the negation of HRESET” in Table 10.  
• Added Section 24.2, “Part Marking,and Figure 62.  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
96  
Freescale Semiconductor  
Table 73. Document Revision History (continued)  
Substantive Change(s)  
Rev.  
Number  
Date  
1
3/2008  
• Replaced OVDD with NVDD everywhere  
• Added XCOREVDD and XPADVDD to Table 1  
• Moved VDD and VDDC to the top of the table before SerDes supplies in Table 2  
• In Table 2 split DDR row into two from total current requirement of 425 mA. One for DDR1 (131 mA)  
and other for DDR2 (140 mA).  
• In Table 2 corrected current requirement numbers for NVDD from 27 mA to 74 mA, LVDD from 60 mA to  
16 mA, LVDDA from 85 mA to 22 mA and LVDDB from 85 mA to 44 mA.  
• In Table 2 corrected Vdd and Vddc current requirements from 560 mA and 454 mA to 469 and 377 mA,  
respectively. Corrected Avdd1 and Avdd2 current requirements from 10 mA to 2–3 mA, and  
XCOREVDD from 100 mA to 170 mA.  
• In Table 2, added row stating junction temperature range of 0 to 105°C. Added footnote 2 stating GPIO  
pins may operate from 2.5-V supply as well when configured for different functionality.  
• In Section 2.1.2, “Power Supply Voltage Specification,added a note describing the purpose of Table 2.  
• In Section 3, “Power Characteristics,added a note describing the purpose of Table 5.  
• Rewrote Section 2.2, “Power Sequencing,and added Figure 3.  
• In Table 4, added “but do include core, USB PLL, and a portion of SerDes digital power...to Note 1.  
• In Table 4 corrected “Typical power” to “Maximum power” in note 2 and added a note for Typical Power.  
• In Table 4 removed 266-MHz row as 266-MHz core parts are not offered.  
• In Table 5, moved Local bus typical power dissipation under LVdd.  
• Added Table 6 to show the low power mode power dissipation for D3warm mode.  
• In Table 8 corrected SYS_CLK_IN frequency range from 25–66 MHz to 24–66.67 MHz.  
• Added Section 8.4, “eTSEC IEEE 1588 AC Specifications”  
• In Table 42 changed minimum value of USB input hold tUSIXKH from 0 to 1ns  
• Added Table 43 and Table 44 showing USB clock in specifications  
• In Table 46, added rows for tLALEHOV, tLALETOT1, LALETOT2,  
t
and tLALETOT3 parameters. Added  
Figure 40.  
• In Table 50, removed row for rise time (tI2CR). Removed minimum value of tI2CF. Added note 5 stating  
that the device does not follow the I2C-BUS Specifications version 2.1 regarding the tI2CF AC  
parameter.  
• In Table 56, added a note stating: “This specification only applies to GPIO pins that are operating from  
a 3.3-V supply. See Table 63 for the power supply listed for the individual GPIO signal.” [  
• Added Table 57 to show DC characteristics for GPIO pins supplied by a 2.5-V supply. Same as eTSEC  
DC characteristics when operating at 2.5 V.  
• In Section 20, “Clocking,corrected the sentence “When the device is configured as a PCI agent  
device, PCI_SYNC_IN is the primary input clock.to state “When the device is configured as a PCI  
agent device, PCI_CLK is the primary input clock.”  
• Added “Value is decided by RCWLR[COREPLL]” to note 1 of Figure 57  
• Added paragraph and Figure 59 to Section 22.2, “PLL Power Supply Filtering.”  
• Added Section 22.4, “SerDes Block Power Supply Decoupling Recommendations  
• Removed the two figures on PCI undershoot/overshoot voltages and maximum AC waveforms from  
Section 2.1.2, “Power Supply Voltage Specification,”  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
97  
Table 73. Document Revision History (continued)  
Substantive Change(s)  
Rev.  
Number  
Date  
1
3/2008  
• In Table 63, added LBC_PM_REF_10 & LSRCID3 as muxed with USBDR_PCTL1  
• In Table 63, added LSRCID2 as muxed with USBDR_PCTL0  
• In Table 63, added LSRCID1 as muxed with USBDR_PWRFAULT  
• In Table 63, added LSRCID0 as muxed with USBDR_DRIVE_VBUS  
• In Table 63, moved T1, U2,& V2 from VDD to XCOREVDD.  
• In Table 63, moved P2, R2, & T3 from VSS to XCOREVSS.  
• In Table 63, moved P5, & U4 from VDD to XPADVDD.  
• In Table 63, moved P3, & V4 from VSS to XPADVSS.  
• In Table 63, removed “Double with pad” for AVDD1 and AVDD2 and moved AVDD1 and AVDD2 to Power  
and Ground Supplies section  
• In Table 63, added impedance control requirements for SD_IMP_CAL_TX (100 ohms to GND) and  
SD_IMP_CAL_RX (200 ohms to GND).  
• In Table 63, updated muxing in pinout to show new options for selecting IEEE 1588 functionality. Added  
footnote 8  
• In Table 63, updated muxing in pinout to show new LBC ECC boot enable control muxed with  
eTSEC1_MDC  
• Added pin type information for power supplies.  
• Removed N1 and N3 from Vss section of Table 63. Added Therm0 and Therm1 (N1 and N3,  
respectively). Added note 7 to state: “Internal thermally sensitive resistor, resistor value varies linearly  
with temperature. Useful for determining the junction temperature.”  
• In Table 65 corrected maximum frequency of Local Bus Frequency from “33–66” to 66 MHz  
• In Table 65 corrected maximum frequency of PCI from “24–66” to 66 MHz  
• Added “which is determined by RCWLR[COREPLL],to the note in Section 20.2, “Core PLL  
Configuration” about the VCO divider.  
• Added “(VCOD)” next to VCO divider column in Table 68. Added footnote stating that core_clk  
frequency must not exceed its maximum, so 2.5:1 and 3:1 core_clk:csb_clk ratios are invalid for certain  
csb_clk values.  
• In Table 69, notes were confusing. Added note 3 for VCO column, note 4 for CSB (csb_clk) column,  
note 5 for USB ref column, and note 6 to replace “Note 1”. Clarified note 4 to explain erratum eTSEC40.  
• In Table 69, updated note 6 to specify USB reference clock frequencies limited to 24 and 48 for rev. 2  
silicon.  
• Replaced Table 71 “Thermal Resistance for TEPBGAII with Heat Sink in Open Flow”.  
• Removed last row of Table 19.  
• Removed 200 MHz rows from Table 21 and Table 5.  
• Changed VIH minimum spec from 2.0 to 2.1 for clock, PIC, JTAG, SPI, and reset pins in Table 9,  
Table 47, Table 54, Table 59, and Table 61.  
• Added Figure 4 showing the DDR input timing diagram.  
In Table 19, removed “MDM” from the “MDQS-MDQ/MECC/MDM” text under the Parameter  
column for the tCISKEW parameter. MDM is an output signal and should be removed from  
the input AC timing spec table (tCISKEW).  
• Added “and power” to rows 2 and 3 in Table 10  
• Added the sentence “Once both the power supplies...and PORESET to Section 2.2, “Power  
Sequencing,and Figure 3.  
• In Figure 35, corrected “USB0_CLK/USB1_CLK/DR_CLK” with “USBDR_CLK”  
• In Table 42, clarified that AC specs are for ULPI only.  
0
6/2007  
Initial release.  
MPC8313E PowerQUICC II Pro Processor Hardware Specifications, Rev. 4  
98  
Freescale Semiconductor  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
1-800-521-6274 or  
+1-480-768-2130  
www.freescale.com/support  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of  
any product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters which may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do  
vary in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals” must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku  
Tokyo 153-0064  
Japan  
0120 191014 or  
+81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
Beijing 100022  
China  
+86 10 5879 8000  
support.asia@freescale.com  
Semiconductor was negligent regarding the design or manufacture of the part.  
For Literature Requests Only:  
Freescale Semiconductor  
Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
1-800 441-2447 or  
Freescale and the Freescale logo are trademarks of Freescale  
Semiconductor, Inc. Reg. U.S. Pat. & Tm. Off. QorIQ is a trademark of  
Freescale Semiconductor, Inc. All other product or service names are the  
property of their respective owners. The Power Architecture and Power.org  
word marks and the Power and Power.org logos and related marks are  
trademarks and service marks licensed by Power.org. RapidIO is a  
registered trademark of the RapidIO Trade Association. IEEE 1588 and  
1149.1 are registered trademarks of the Institute of Electrical and  
Electronics Engineers, Inc. (IEEE). This product is not endorsed or  
approved by the IEEE.  
+1-303-675-2140  
Fax: +1-303-675-2150  
LDCForFreescaleSemiconductor  
@hibbertgroup.com  
© 2007–2011 Freescale Semiconductor, Inc.  
Document Number: MPC8313EEC  
Rev. 4  
11/2011  

相关型号:

MPC8313CVRGDD

PowerQUICC™ II Pro Processor Hardware Specifications
FREESCALE

MPC8313CVRGDDA

PowerQUICC™ II Pro Processor Hardware Specifications
FREESCALE

MPC8313CVRGDDB

PowerQUICC™ II Pro Processor Hardware Specifications
FREESCALE

MPC8313CVRGDF

PowerQUICC™ II Pro Processor Hardware Specifications
FREESCALE

MPC8313CVRGDFA

PowerQUICC™ II Pro Processor Hardware Specifications
FREESCALE

MPC8313CVRGDFB

PowerQUICC™ II Pro Processor Hardware Specifications
FREESCALE

MPC8313CZQAFD

PowerQUICC™ II Pro Processor Hardware Specifications
FREESCALE

MPC8313CZQAFDA

PowerQUICC™ II Pro Processor Hardware Specifications
FREESCALE

MPC8313CZQAFDB

PowerQUICC™ II Pro Processor Hardware Specifications
FREESCALE

MPC8313CZQAFF

PowerQUICC™ II Pro Processor Hardware Specifications
FREESCALE

MPC8313CZQAFFA

PowerQUICC™ II Pro Processor Hardware Specifications
FREESCALE

MPC8313CZQAFFA

32-BIT, 333MHz, MICROPROCESSOR, PBGA516, 27 X 27 MM, 2.25 MM HEIGHT, 1 MM PITCH, TEPBGAII-516
NXP