MPC8343EZQADDX [NXP]

32-BIT, 266MHz, MICROPROCESSOR, PBGA620, 29 X 29 MM, 2.46 MM HEIGHT, 1 MM PITCH, PLASTIC, BGA-620;
MPC8343EZQADDX
型号: MPC8343EZQADDX
厂家: NXP    NXP
描述:

32-BIT, 266MHz, MICROPROCESSOR, PBGA620, 29 X 29 MM, 2.46 MM HEIGHT, 1 MM PITCH, PLASTIC, BGA-620

文件: 总92页 (文件大小:987K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MPC8343EEC  
Rev. 6,11/2005  
Freescale Semiconductor  
Technical Data  
MPC8343E PowerQUICC™ II Pro  
Integrated Host Processor Hardware  
Specifications  
Contents  
The MPC8343E contains a PowerPC™ processor core with  
system logic required for networking, storage, and  
1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
2. Power Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 8  
general-purpose embedded applications. For functional  
3. Clock Input Timing . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
4. RESET Initialization . . . . . . . . . . . . . . . . . . . . . . . . . 11  
characteristics of the processor, refer to the MPC8349E  
PowerQUICC II™ Pro Integrated Host Processor  
Reference Manual, Rev. 1.  
5. DDR SDRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
6. DUART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
7. Ethernet: Three-Speed Ethernet, MII Management . 22  
8. USB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
To locate any published errata or updates for this document,  
contact your Freescale sales office.  
9. Local Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
10. JTAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
11. I2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
12. PCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
13. Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
14. GPIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
16. SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
17. Package and Pin Listings . . . . . . . . . . . . . . . . . . . . . 55  
18. Clocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
19. Thermal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
20. System Design Information . . . . . . . . . . . . . . . . . . . 82  
21. Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . 87  
22. Document Revision History . . . . . . . . . . . . . . . . . . . 91  
23. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . 91  
© Freescale Semiconductor, Inc., 2005. All rights reserved.  
Overview  
1 Overview  
This section provides a high-level overview of the MPC8343E features. Figure 1 shows the major  
functional units within the MPC8343E.  
e300 Core  
DUART  
Dual I2C  
DDR  
Timers  
GPIO  
Interrupt  
Controller  
32KB  
32KB  
I-Cache  
SDRAM  
Security  
Local Bus  
D-Cache  
Controller  
High-Speed  
USB 2.0  
10/100/1000  
Ethernet  
10/100/1000  
Ethernet  
SEQ  
PCI  
DMA  
Dual  
Role  
Figure 1. MPC8343E Block Diagram  
Major features of the MPC8343E are as follows:  
• Embedded PowerPC processor core; operates at up to 400 MHz  
— High-performance, superscalar processor core  
— Floating-point, integer, load/store, system register, and branch processing units  
— 32-Kbyte instruction cache, 32-Kbyte data cache  
— Lockable portion of L1 cache  
— Dynamic power management  
— Software-compatible with the other Freescale processor families that implement the PowerPC  
architecture  
DDR SDRAM memory controller  
— Programmable timing supporting DDR-1 SDRAM  
— 32-bit data interface, up to 333 MHz data rate  
— Four banks of memory, each up to 1 Gbyte  
— DRAM chip configurations from 64 Mbit to 1 Gbit with x8/x16 data ports  
— Full ECC support  
— Page mode support (up to 16 simultaneous open pages)  
— Contiguous or discontiguous memory mapping  
— Read-modify-write support  
— Sleep mode support for self refresh SDRAM  
— Supports auto refreshing  
MPC8343E PowerQUICC™ II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
2
Freescale Semiconductor  
Overview  
— On-the-fly power management using CKE  
— Registered DIMM support  
— 2.5-V SSTL2 compatible I/O  
Dual three-speed (10/100/1000) Ethernet controllers (TSECs)  
— Dual IEEE 802.3, 802.3u, 820.3x, 802.3z, 802.3 AC compliant controllers  
— Support for different Ethernet physical interfaces:  
– 1000 Mbps IEEE 802.3 RGMII, 802.3z RTBI, full-duplex  
– 10/100 Mbps IEEE 802.3 MII full- and half-duplex  
— Buffer descriptors are backwards compatible with MPC8260 and MPC860T 10/100  
programming models  
— 9.6-Kbyte jumbo frame support  
— RMON statistics support  
— Internal 2-Kbyte transmit and 2-Kbyte receive FIFO’s per TSEC module  
— MII management interface for control and status  
— Programmable CRC generation and checking  
PCI interface  
— PCI specification Revision 2.2 compatible  
— Data bus width:  
– 32-bit data PCI interface that operates at up to 66 MHz, or  
— PCI 3.3-V compatible  
— PCI host bridge capabilities  
— PCI agent mode supported on PCI interface  
— Support for PCI to memory and memory to PCI streaming  
— Memory prefetching of PCI read accesses and support for delayed read transactions  
— Support for posting of processor to PCI and PCI to memory writes  
— On-chip arbitration, supporting 5 masters on PCI  
— Support for accesses to all PCI address spaces  
— Parity supported  
— Selectable hardware-enforced coherency  
— Address translation units for address mapping between host and peripheral  
— Dual address cycle support when target  
— Internal configuration registers accessible from PCI  
Security engine is optimized to handle all the algorithms associated with IPSec, SSL/TLS, SRTP,  
802.11i, iSCSI, and IKE processing. The security engine contains four crypto-channels, a  
controller, and a set of crypto execution units (EUs). The execution units are:  
— Public key execution unit (PKEU) supporting the following:  
– RSA and Diffie-Hellman  
– Programmable field size up to 2048-bits  
MPC8343E PowerQUICC™ II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
Freescale Semiconductor  
3
Overview  
– Elliptic curve cryptography  
– F2m and F(p) modes  
– Programmable field size up to 511 bits  
— Data encryption standard execution unit (DEU)  
– DES, 3DES  
– Two key (K1, K2) or three key (K1, K2, K3)  
– ECB and CBC modes for both DES and 3DES  
— Advanced encryption standard unit (AESU)  
– Implements the Rinjdael symmetric key cipher  
– Key lengths of 128, 192, and 256 bits.Two key  
– ECB, CBC, CCM, and counter modes  
— ARC four execution unit (AFEU)  
– Implements a stream cipher compatible with the RC4 algorithm  
– 40- to 128-bit programmable key  
— Message digest execution unit (MDEU)  
– SHA with 160- or 256-bit message digest  
– MD5 with 128-bit message digest  
– HMAC with either algorithm  
— Random number generator (RNG)  
— Four crypto-channels, each supporting multi-command descriptor chains  
– Static and/or dynamic assignment of crypto-execution units via an integrated controller  
– Buffer size of 256 bytes for each execution unit, with flow control for large data sizes  
Universal serial bus (USB) dual role controller  
— Supports USB on-the-go mode, which includes both device and host functionality  
— Complies with USB specification Rev. 2.0  
— Supports operation as a stand-alone USB device  
– Supports one upstream facing port  
– Supports six programmable USB endpoints  
— Supports operation as a stand-alone USB host controller  
– Supports USB root hub with one downstream-facing port  
– Enhanced host controller interface (EHCI) compatible  
— Supports high-speed (480 Mbps), full-speed (12 Mbps), and low-speed (1.5 Mbps) operations  
— Supports external PHY with UTMI, serial and UTMI+ low-pin interface (ULPI)  
Local bus controller (LBC)  
— Multiplexed 32-bit address and data operating at up to 133 MHz  
— Four chip selects support four external slaves  
— Up to eight-beat burst transfers  
MPC8343E PowerQUICC™ II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
4
Freescale Semiconductor  
Overview  
— 32-, 16-, and 8-bit port sizes are controlled by an on-chip memory controller  
— Three protocol engines available on a per chip select basis:  
– General-purpose chip select machine (GPCM)  
– Three user programmable machines (UPMs)  
– Dedicated single data rate SDRAM controller  
— Parity support  
— Default boot ROM chip select with configurable bus width (8-, 16-, or 32-bit)  
Programmable interrupt controller (PIC)  
— Functional and programming compatibility with the MPC8260 interrupt controller  
— Support for 8 external and 35 internal discrete interrupt sources  
— Support for 1 external (optional) and 7 internal machine checkstop interrupt sources  
— Programmable highest priority request  
— Four groups of interrupts with programmable priority  
— External and internal interrupts directed to host processor  
— Redirects interrupts to external INTA pin when in core disable mode.  
— Unique vector number for each interrupt source  
2
Dual industry-standard I C interfaces  
— Two-wire interface  
— Multiple master support  
2
— Master or slave I C mode support  
— On-chip digital filtering rejects spikes on the bus  
2
— System initialization data is optionally loaded from I C-1 EPROM by boot sequencer  
embedded hardware  
DMA controller  
— Four independent virtual channels  
— Concurrent execution across multiple channels with programmable bandwidth control  
— All channels accessible by local core and remote PCI masters  
— Misaligned transfer capability  
— Data chaining and direct mode  
— Interrupt on completed segment and chain  
DUART  
— Two 4-wire interfaces (RxD, TxD, RTS, CTS)  
— Programming model compatible with the original 16450 UART and the PC16550D  
Serial peripheral interface (SPI)  
— Master or slave support  
General-purpose parallel I/O (GPIO)  
— parallel I/O pins multiplexed on various chip interfaces  
MPC8343E PowerQUICC™ II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
Freescale Semiconductor  
5
Overview  
System timers  
— Periodic interrupt timer  
— Real-time clock  
— Software watchdog timer  
— Eight general-purpose timers  
IEEE 1149.1 compliant, JTAG boundary scan  
Integrated PCI bus and SDRAM clock generation  
MPC8343E PowerQUICC™ II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
6
Freescale Semiconductor  
Overview  
MPC8343E PowerQUICC™ II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
Freescale Semiconductor  
7
Power Characteristics  
2 Power Characteristics  
The estimated typical power dissipation for this family of MPC8343E devices is shown in Table 1.  
1
Table 1. MPC8343E Power Dissipation  
Core  
Frequency  
(MHz)  
CSB  
Frequency  
(MHz)  
Typical at TJ  
= 65  
,
2
3
Typical  
Maximum 4  
Unit  
266  
400  
400  
266  
133  
266  
133  
200  
100  
1.3  
1.1  
1.5  
1.4  
1.5  
1.3  
1.6  
1.4  
1.9  
1.7  
1.8  
1.7  
1.8  
1.6  
2.1  
1.9  
2.0  
1.9  
W
W
W
W
W
W
PBGA  
1
2
The values do not include I/O supply power (OVDD, LVDD, GVDD) or AVDD. For IO power values, see Table 2.  
Typical power is based on a voltage of Vdd = 1.2 V, a junction temperature of TJ = 105 C, and a Dhrystone benchmark  
application.  
3
4
Thermal solutions will likely need to design to a value higher than typical power based on the end application, TA  
target, and I/O power.  
Maximum Power is based on a voltage of Vdd = 1.2 V, worst case process, a junction temperature of TJ = 105 C, and  
an artificial smoke test.  
Table 2 shows the typical I/O power dissipation for MPC8343E.  
Table 2. MPC8343 Typical I/O Power Dissipation  
Interface  
DDR I/O  
Parameter  
GVDD (2.5 V) OVDD (3.3 V) LVDD (3.3V) LVDD (2.5V) Unit  
Comments  
200 MHz, 3-bit  
266 MHz, 32-bit  
300 MHz, 32-bit  
333 MHz, 32-bit  
0.42  
0.5  
W
W
W
W
65% utilization  
2.5 V  
0.54  
0.58  
Rs = 20 Ω  
Rt = 50 Ω  
2 pair of clocks  
33 MHz, 32-bit  
66 MHz, 32-bit  
167 MHz, 32-bit  
133 MHz, 32-bit  
83 MHz, 32-bit  
66 MHz, 32-bit  
50 MHz, 32-bit  
0.04  
0.07  
0.34  
0.27  
0.17  
0.14  
0.11  
W
W
W
W
W
W
W
PCI I/O load = 30pf  
Local Bus I/O  
Load = 25 pf  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
Freescale Semiconductor  
8
Power Characteristics  
Comments  
Table 2. MPC8343 Typical I/O Power Dissipation (continued)  
Parameter GVDD (2.5 V) OVDD (3.3 V) LVDD (3.3V) LVDD (2.5V) Unit  
Interface  
MII  
Mutiply by number of  
interfaces used.  
0.01  
0.06  
W
W
W
W
W
W
TSEC I/O  
GMII or TBI  
RGMII or RTBI  
12 MHz  
Load = 25 pf  
0.04  
0.01  
0.2  
USB  
480 MHz  
0.01  
Other I/O  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
Freescale Semiconductor  
9
Clock Input Timing  
3 Clock Input Timing  
This section provides the clock input DC and AC electrical characteristics for the MPC8343E.  
3.1  
DC Electrical Characteristics  
Table 4 provides the clock input (CLKIN/PCI_SYNC_IN) DC timing specifications for the MPC8343E.  
Table 3. CLKIN DC Electrical Characteristics  
Parameter  
Condition  
Symbol  
Min  
Max  
Unit  
Input high voltage  
VIH  
VIL  
IIN  
2.7  
-0.3  
OVDD+0.3  
0.4  
V
V
Input low voltage  
CLKIN Input current  
PCI_SYNC_IN Input current  
0V VIN OVDD  
+/- 10  
+/- 10  
µA  
µA  
0V VIN 0.5V or  
IIN  
OVDD - 0.5V VIN OVDD  
PCI_SYNC_IN Input current  
0.5V VIN OVDD - 0.5V  
IIN  
+/- 50  
µA  
3.2  
AC Electrical Characteristics  
The primary clock source for the MPC8343E can be one of two inputs, CLKIN or PCI_CLK, depending  
on whether the device is configured in PCI host or PCI agent mode. Table 4 provides the clock input  
(CLKIN/PCI_CLK) AC timing specifications for the MPC8343E.  
Table 4. CLKIN AC Timing Specifications  
Parameter/Condition  
CLKIN/PCI_CLK frequency  
Symbol  
Min  
Typical  
Max  
Unit  
Notes  
fCLKIN  
tCLKIN  
15  
0.6  
40  
66  
MHz  
ns  
1
2
CLKIN/PCI_CLK cycle time  
CLKIN/PCI_CLK rise and fall time  
CLKIN/PCI_CLK duty cycle  
CLKIN/PCI_CLK jitter  
Notes:  
tKH, tKL  
1.0  
1.2  
ns  
tKHK CLKIN  
/t  
60  
%
3
+/- 150  
ps  
4, 5  
1. Caution: The system, core, USB, security, and TSEC must not exceed their respective maximum or minimum  
operating frequencies.  
2. Rise and fall times for CLKIN/PCI_CLK are measured at 0.4 V and 2.7 V.  
3. Timing is guaranteed by design and characterization.  
4. This represents the total input jitter—short term and long term—and is guaranteed by design.  
5. The CLKIN/PCI_CLK driver’s closed loop jitter bandwidth should be <500 kHz at -20 dB. The bandwidth must be set  
low to allow cascade-connected PLL-based devices to track CLKIN drivers with the specified jitter.  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
10  
Freescale Semiconductor  
RESET Initialization  
4 RESET Initialization  
This section describes the DC and AC electrical specifications for the reset initialization timing and  
electrical requirements of the MPC8343E.  
4.1  
RESET DC Electrical Characteristics  
Table 5 provides the DC electrical characteristics for the RESET pins of the MPC8343E.  
Table 5. RESET Pins DC Electrical Characteristics  
Characteristic  
Input high voltage  
Symbol  
Condition  
Min  
Max  
Unit  
VIH  
VIL  
2.0  
OVDD+0.3  
V
V
Input low voltage  
Input current  
-0.3  
0.8  
5
IIN  
µA  
V
Output high voltage  
Output low voltage  
Output low voltage  
Notes:  
VOH  
VOL  
IOH = –8.0 mA  
IOL = 8.0 mA  
2.4  
0.5  
0.4  
V
V
I
= 3.2 mA  
OL  
V
OL  
1. This table applies for pins PORESET, HRESET, SRESET and QUIESCE.  
2. HRESET and SRESET are open drain pins, thus VOH is not relevant for those pins.  
4.2  
RESET AC Electrical Characteristics  
Table 6 provides the reset initialization AC timing specifications of the MPC8343E.  
Table 6. RESET Initialization Timing Specifications  
Parameter/Condition  
Min  
Max  
Unit  
Notes  
Required assertion time of HRESET or SRESET  
(input) to activate reset flow  
32  
tPCI_SYNC_IN  
1
Required assertion time of PORESET with stable  
clock applied to CLKIN when the MPC8343E is in  
PCI host mode  
32  
32  
tCLKIN  
2
Required assertion time of PORESET with stable  
clock applied to PCI_SYNC_IN when the MPC8343E  
is in PCI agent mode  
tPCI_SYNC_IN  
1
HRESET/SRESET assertion (output)  
512  
16  
4
tPCI_SYNC_IN  
tPCI_SYNC_IN  
tCLKIN  
1
1
2
HRESET negation to SRESET negation (output)  
Input setup time for POR config signals  
(CFG_RESET_SOURCE[0:2] and  
CFG_CLKIN_DIV) with respect to negation of  
PORESET when the MPC8343E is in PCI host mode  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
Freescale Semiconductor  
11  
RESET Initialization  
Table 6. RESET Initialization Timing Specifications (continued)  
Input setup time for POR config signals  
4
tPCI_SYNC_IN  
1
(CFG_RESET_SOURCE[0:2] and  
CFG_CLKIN_DIV) with respect to negation of  
PORESET when the MPC8343E is in PCI agent  
mode  
Input hold time for POR config signals with respect to  
negation of HRESET  
0
1
4
ns  
ns  
Time for the MPC8343Eto turn offPOR config signals  
with respect to the assertion of HRESET  
3
Time for the MPC8343Eto turn onPOR config signals  
with respect to the negation of HRESET  
tPCI_SYNC_IN  
1, 3  
Notes:  
1. tPCI_SYNC_IN is the clock period of the input clock applied to PCI_SYNC_IN. When the MPC8343E is In PCI  
host mode the primary clock is applied to the CLKIN input, and PCI_SYNC_IN period depends on the value of  
CFG_CLKIN_DIV. See the MPC8349E Integrated Host Processor Reference Manual Rev. 0 for more details.  
2. tCLKIN is the clock period of the input clock applied to CLKIN. It is only valid when the MPC8343E is in PCI host  
mode. See the MPC8349E Integrated Host Processor Reference Manual Rev. 0 for more details.  
3. POR config signals consists of CFG_RESET_SOURCE[0:2] and CFG_CLKIN_DIV.  
Table 7 provides the PLL and DLL lock times.  
Table 7. PLL and DLL Lock Times  
Parameter/Condition  
Min  
Max  
Unit  
Notes  
PLL lock times  
DLL lock times  
Notes:  
100  
µs  
7680  
122,880  
csb_clk cycles  
1, 2  
1. DLL lock times are a function of the ratio between the output clock and the coherency system bus clock (csb_clk).  
A 2:1 ratio results in the minimum and an 8:1 ratio results in the maximum.  
2. The csb_clk is determined by the CLKIN and system PLL ratio. See Section 18, “Clocking,” for more information.  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
12  
Freescale Semiconductor  
RESET Initialization  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
Freescale Semiconductor  
13  
DDR SDRAM  
5 DDR SDRAM  
This section describes the DC and AC electrical specifications for the DDR SDRAM interface of the  
MPC8343E.  
5.1  
DDR SDRAM DC Electrical Characteristics  
Table 8 provides the recommended operating conditions for the DDR SDRAM component(s) of the  
MPC8343E.  
Table 8. DDR SDRAM DC Electrical Characteristics  
Parameter/Condition  
I/O supply voltage  
Symbol  
Min  
Max  
Unit  
Notes  
GVDD  
MVREF  
VTT  
2.375  
0.49 × GVDD  
MVREF – 0.04  
MVREF + 0.18  
–0.3  
2.625  
V
V
1
2
3
I/O reference voltage  
0.51 × GVDD  
I/O termination voltage  
Input high voltage  
MVREF + 0.04  
V
VIH  
GVDD + 0.3  
V
Input low voltage  
VIL  
MVREF – 0.18  
V
Output leakage current  
Output high current (VOUT = 1.95 V)  
Output low current (VOUT = 0.35 V)  
MVREF input leakage current  
Notes:  
IOZ  
–10  
10  
5
µA  
mA  
mA  
µA  
4
IOH  
–15.2  
IOL  
15.2  
IVREF  
1. GVDD is expected to be within 50 mV of the DRAM GVDD at all times.  
2. MVREF is expected to be equal to 0.5 × GVDD, and to track GVDD DC variations as measured at the receiver.  
Peak-to-peak noise on MVREF may not exceed 2% of the DC value.  
3. VTT is not applied directly to the device. It is the supply to which far end signal termination is made and is expected  
to be equal to MVREF. This rail should track variations in the DC level of MVREF  
.
4. Output leakage is measured with all outputs disabled, 0 V VOUT GVDD  
.
Table 9 provides the DDR capacitance.  
Table 9. DDR SDRAM Capacitance  
Parameter/Condition  
Symbol  
Min  
Max  
Unit  
Notes  
Input/output capacitance: DQ, DQS  
Delta input/output capacitance: DQ, DQS  
Note:  
CIO  
6
8
pF  
pF  
1
1
CDIO  
0.5  
1. This parameter is sampled. GVDD = 2.5 V 0.125 V, f = 1 MHz, TA = 25°C, VOUT = GVDD/2, VOUT (peak to peak) =  
0.2 V.  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
14  
Freescale Semiconductor  
DDR SDRAM  
5.2  
DDR SDRAM AC Electrical Characteristics  
This section provides the AC electrical characteristics for the DDR SDRAM interface.  
5.2.1  
DDR SDRAM Input AC Timing Specifications  
Table 10 provides the input AC timing specifications for the DDR SDRAM interface.  
Table 10. DDR SDRAM Input AC Timing Specifications  
At recommended operating conditions with GVDD of 2.5 V 5%.  
Parameter  
AC input low voltage  
Symbol  
Min  
Max  
Unit  
Notes  
VIL  
VIH  
MVREF + 0.31  
MVREF – 0.31  
GVDD + 0.3  
V
V
AC input high voltage  
MDQS—MDQ/MECC input skew per  
byte  
tDISKEW  
ps  
1
333 MHz  
750  
266 MHz  
1125  
Note:  
1. Maximum possible skew between a data strobe (MDQS[n]) and any corresponding bit of data (MDQ[8n + {0...7}] if  
0 <= n <= 7) or ECC (MECC[{0...7}] if n = 8).  
5.2.2  
DDR SDRAM Output AC Timing Specifications  
Table 11 and Table 12 provide the output AC timing specifications and measurement conditions for the  
DDR SDRAM interface.  
Table 11. DDR SDRAM Output AC Timing Specifications for Source Synchronous Mode  
At recommended operating conditions with GVDD of 2.5 V 5%.  
Parameter  
Symbol 1  
Min  
Max  
Unit  
Notes  
MCK[n] cycle time, (MCK[n]/MCK[n] crossing)  
Skew between any MCK to ADDR/CMD  
tMCK  
6
10  
ns  
ps  
2
3
tAOSKEW  
-1000  
-1100  
-1200  
200  
300  
400  
333 MHz  
266 MHz  
200 MHz  
ADDR/CMD output setup with respect to MCK tDDKHAS  
ns  
ns  
4
4
2.8  
3.45  
4.6  
333 MHz  
266 MHz  
200 MHz  
ADDR/CMD output hold with respect to MCK  
tDDKHAX  
2.0  
2.65  
3.8  
333 MHz  
266 MHz  
200 MHz  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
Freescale Semiconductor  
15  
DDR SDRAM  
Table 11. DDR SDRAM Output AC Timing Specifications for Source Synchronous Mode (continued)  
At recommended operating conditions with GVDD of 2.5 V 5%.  
Parameter  
Symbol 1  
Min  
Max  
Unit  
Notes  
MCS(n) output setup with respect to MCK  
tDDKHCS  
tDDKHCX  
tDDKHMH  
ns  
4
2.8  
3.45  
4.6  
333 MHz  
266 MHz  
200 MHz  
MCS(n) output hold with respect to MCK  
ns  
ns  
ps  
4
5
6
2.0  
2.65  
3.8  
333 MHz  
266 MHz  
200 MHz  
MCK to MDQS  
-0.9  
-1.1  
-1.2  
0.3  
0.5  
0.6  
333 MHz  
266 MHz  
200 MHz  
MDQ/MECC/MDM output setup with respect  
to MDQS  
tDDKHDS,  
tDDKLDS  
900  
900  
1200  
333 MHz  
266 MHz  
200 MHz  
MDQ/MECC/MDM output hold with respect to tDDKHDX,  
MDQS tDDKLDX  
ps  
6
900  
900  
1200  
333 MHz  
266 MHz  
200 MHz  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
Freescale Semiconductor  
16  
DDR SDRAM  
Table 11. DDR SDRAM Output AC Timing Specifications for Source Synchronous Mode (continued)  
At recommended operating conditions with GVDD of 2.5 V 5%.  
Parameter  
MDQS preamble start  
Symbol 1  
Min  
Max  
Unit  
Notes  
tDDKHMP -0.25 × tMCK – 0.9 -0.25 × tMCK +0.3  
tDDKLME -0.9 0.3  
ns  
ns  
7
7
MDQS epilogue end  
Notes:  
1.  
The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)  
(reference)(state) for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. Output hold time can  
be read as DDR timing (DD) from the rising or falling edge of the reference clock (KH or KL) until the output went  
invalid (AX or DX). For example, tDDKHAS symbolizes DDR timing (DD) for the time tMCK memory clock reference  
(K) goes from the high (H) state until outputs (A) are setup (S) or output valid time. Also, tDDKLDX symbolizes DDR  
timing (DD) for the time tMCK memory clock reference (K) goes low (L) until data outputs (D) are invalid (X) or data  
output hold time.  
2.  
3.  
All MCK/MCK referenced measurements are made from the crossing of the two signals 0.1 V.  
In the source synchronous mode, MCK/MCK can be shifted in 1/4 applied cycle increments through the Clock  
Control Register. For the skew measurements referenced for tAOSKEW it is assumed that the clock adjustment is set  
to align the address/command valid with the rising edge of MCK.  
4.  
ADDR/CMD includes all DDR SDRAM output signals except MCK/MCK, MCS, and MDQ/MECC/MDM/MDQS.  
For the ADDR/CMD setup and hold specifications, it is assumed that the Clock Control register is set to adjust the  
memory clocks by 1/2 applied cycle.  
5. Note that tDDKHMH follows the symbol conventions described in note 1. For example, tDDKHMH describes the DDR  
timing (DD) from the rising edge of the MCK(n) clock (KH) until the MDQS signal is valid (MH). tDDKHMH can be  
modified through control of the DQSS override bits in the TIMING_CFG_2 register. In source synchronous mode,  
this will typically be set to the same delay as the clock adjust in the CLK_CNTL register. The timing parameters listed  
in the table assume that these 2 parameters have been set to the same adjustment value. See the MPC8349E  
Integrated Host Processor Preliminary Reference Manual Rev.0 for a description and understanding of the  
timing modifications enabled by use of these bits.  
6.  
Determined by maximum possible skew between a data strobe (MDQS) and any corresponding bit of data  
(MDQ), ECC (MECC), or data mask (MDM). The data strobe should be centered inside of the data eye at the pins  
of the MPC8343E.  
7.  
All outputs are referenced to the rising edge of MCK(n) at the pins of the MPC8343E. Note that tDDKHMP follows  
the symbol conventions described in note 1.  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
Freescale Semiconductor  
17  
DDR SDRAM  
Figure 2 shows the DDR SDRAM output timing for address skew with respect to any MCK.  
MCK[n]  
MCK[n]  
tMCK  
tAOSKEWmax)  
ADDR/CMD  
ADDR/CMD  
CMD  
NOOP  
tAOSKEW(min)  
CMD  
NOOP  
Figure 2. Timing Diagram for tAOSKEW Measurement  
Figure 3 provides the AC test load for the DDR bus.  
Output  
GVDD/2  
Z0 = 50 Ω  
RL = 50 Ω  
Figure 3. DDR AC Test Load  
Table 12 shows the DDR SDRAM measurement conditions.  
Table 12. DDR SDRAM Measurement Conditions  
Symbol DDR  
Unit  
Notes  
VTH  
MVREF 0.31 V  
V
V
1
2
V
0.5 × GVDD  
OUT  
Notes:  
1. Data input threshold measurement point.  
2. Data output measurement point.  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
Freescale Semiconductor  
18  
DDR SDRAM  
Figure 4 shows the DDR SDRAM output timing diagram for source synchronous mode.  
MCK[n]  
MCK[n]  
tMCK  
tDDKHAS DDKHCS  
,t  
tDDKHAX DDKHCX  
,t  
ADDR/CMD  
Write A0  
tDDKHMP  
NOOP  
tDDKHMH  
MDQS[n]  
MDQ[x]  
tDDKHME  
tDDKHDS  
tDDKLDS  
D0  
D1  
tDDKLDX  
tDDKHDX  
Figure 4. DDR SDRAM Output Timing Diagram for Source Synchronous Mode  
Table 13 provides approximate delay information that can be expected for the address and command  
signals of the DDR controller for various loadings, which can be useful for a system utilizing the DLL.  
These numbers are the result of simulations for one topology. The delay numbers will strongly depend on  
the topology used. These delay numbers show the total delay for the address and command to arrive at the  
DRAM devices. The actual delay could be different than the delays seen in simulation, depending on the  
system topology. If a heavily loaded system is used, the DLL loop may need to be adjusted to meet setup  
requirements at the DRAM.  
Table 13. Expected Delays for Address/Command  
Load  
Delay  
Unit  
4 devices (12 pF)  
9 devices (27 pF)  
3.0  
3.6  
5.0  
5.2  
ns  
ns  
ns  
ns  
36 devices (108 pF) + 40 pF compensation capacitor  
36 devices (108 pF) + 80 pF compensation capacitor  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
Freescale Semiconductor  
19  
DUART  
6 DUART  
This section describes the DC and AC electrical specifications for the DUART interface of the  
MPC8343E.  
6.1  
DUART DC Electrical Characteristics  
Table 14 provides the DC electrical characteristics for the DUART interface of the MPC8343E.  
Table 14. DUART DC Electrical Characteristics  
Parameter  
Symbol  
Min  
Max  
Unit  
High-level input voltage  
Low-level input voltage  
VIH  
VIL  
IIN  
2
OVDD + 0.3  
0.8  
V
V
–0.3  
Input current  
+/- 5  
µA  
(0.8V VIN ≤ 2V)  
High-level output voltage,  
IOH = –100 µA  
VOH  
OVDD – 0.2  
V
V
Low-level output voltage,  
VOL  
0.2  
IOL = 100 µA  
Note:  
1. Note that the symbol VIN, in this case, represents the OVIN symbol referenced in  
Table 55 and Table 56.  
6.2  
DUART AC Electrical Specifications  
Table 15 provides the AC timing parameters for the DUART interface of the MPC8343E.  
Table 15. DUART AC Timing Specifications  
Parameter  
Value  
Unit  
Notes  
Minimum baud rate  
Maximum baud rate  
Oversample rate  
Notes:  
256  
> 1,000,000  
16  
baud  
baud  
1
2
1. Actual attainable baud rate will be limited by the latency of interrupt processing.  
2. The middle of a start bit is detected as the 8th sampled 0 after the 1-to-0 transition of the start bit. Subsequent bit  
values are sampled each 16th sample.  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
20  
Freescale Semiconductor  
DUART  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
Freescale Semiconductor  
21  
Ethernet: Three-Speed Ethernet, MII Management  
7 Ethernet: Three-Speed Ethernet, MII Management  
This section provides the AC and DC electrical characteristics for three-speed, 10/100/1000, and MII  
management.  
7.1  
Three-Speed Ethernet Controller (TSEC)  
(10/100/1000 Mbps)—MII/RGMII/RTBI Electrical Characteristics  
The electrical characteristics specified here apply to all the MII (media independent interface), RGMII  
(reduced gigabit media independent interface), and RTBI (reduced ten-bit interface) signals except MDIO  
(management data input/output) and MDC (management data clock). The MII interface is defined for  
3.3Vwhile the RGMII and RTBI interfaces can be operated at 3.3 or 2.5 V. The RGMII and RTBI interfaces  
follow the Hewlett-Packard reduced pin-count interface for Gigabit Ethernet Physical Layer Device  
Specification Version 1.2a (9/22/2000). The electrical characteristics for MDIO and MDC are specified in  
Section 7.3, “Ethernet Management Interface Electrical Characteristics.”  
7.1.1  
TSEC DC Electrical Characteristics  
All MII, RGMII, and RTBI drivers and receivers comply with the DC parametric attributes specified in  
Table 16 and Table 17. The potential applied to the input of a MII, RGMII, or RTBI receiver may exceed  
the potential of the receiver’s power supply. The RGMII and RTBI signals are based on a 2.5-V CMOS  
interface voltage as defined by JEDEC EIA/JESD8-5.  
Table 16. and MII DC Electrical Characteristics  
Parameter  
Symbol  
Conditions  
Min  
Max  
Unit  
2
Supply voltage 3.3 V  
Output high voltage  
Output low voltage  
Input high voltage  
Input low voltage  
Input high current  
Input low current  
Note:  
LVDD  
2.97  
2.40  
GND  
2.0  
3.63  
LVDD + 0.3  
0.50  
V
V
VOH  
VOL  
VIH  
VIL  
IIH  
IOH = –4.0 mA  
LVDD = Min  
IOL = 4.0 mA  
LVDD = Min  
V
LVDD + 0.3  
0.90  
V
–0.3  
V
VIN 1 = LVDD  
VIN 1 = GND  
40  
µA  
µA  
IIL  
–600  
1. The symbol VIN, in this case, represents the LVIN symbol referenced in Table 55 and Table 56.  
2. MII pins that are not needed for RGMII or RTBI operation are powered by OVDD supply.  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
22  
Freescale Semiconductor  
Ethernet: Three-Speed Ethernet, MII Management  
Table 17. RGMII/RTBI (When Operating at 2.5 V), DC Electrical Characteristics  
Parameters  
Symbol  
Conditions  
Min  
Max  
Unit  
Supply voltage 2.5 V  
Output high voltage  
Output low voltage  
Input high voltage  
Input low voltage  
Input high current  
Input low current  
Note:  
LVDD  
VOH  
VOL  
VIH  
VIL  
2.37  
2.00  
2.63  
LVDD + 0.3  
0.40  
V
V
IOH = –1.0 mA  
LVDD = Min  
LVDD = Min  
LVDD = Min  
LVDD =Min  
IOL = 1.0 mA  
GND – 0.3  
1.7  
V
LVDD + 0.3  
0.70  
V
–0.3  
V
IIH  
VIN 1 = LVDD  
VIN 1 = GND  
10  
µA  
µA  
IIL  
–15  
1. Note that the symbol VIN, in this case, represents the LVIN symbol referenced in Table 55and Table 56.  
7.2  
MII, RGMII, and RTBI AC Timing Specifications  
The AC timing specifications for MII, RGMII, and RTBI are presented in this section.  
7.2.1  
MII AC Timing Specifications  
This section describes the MII transmit and receive AC timing specifications.  
7.2.1.1  
MII Transmit AC Timing Specifications  
Table 18 provides the MII transmit AC timing specifications.  
Table 18. MII Transmit AC Timing Specifications  
At recommended operating conditions with LVDD / OVDD of 3.3 V 10%.  
Parameter/Condition  
Symbol 1  
Min  
Typ  
Max  
Unit  
TX_CLK clock period 10 Mbps  
TX_CLK clock period 100 Mbps  
tMTX  
tMTX  
400  
40  
5
ns  
ns  
%
TX_CLK duty cycle  
tMTXH/ MTX  
t
35  
1
65  
15  
4.0  
4.0  
TX_CLK to MII data TXD[3:0], TX_ER, TX_EN delay  
TX_CLK data clock rise VIL(min) to VIH(max)  
TX_CLK data clock fall VIH(max) to VIL(min)  
Note:  
tMTKHDX  
tMTXR  
tMTXF  
ns  
ns  
ns  
1.0  
1.0  
1. The symbols used for timing specifications herein follow the pattern of t(first two letters of functional block)(signal)(state)  
(reference)(state) for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example,  
tMTKHDX symbolizes MII transmit timing (MT) for the time tMTX clock reference (K) going high (H) until data outputs  
(D) are invalid (X). Note that, in general, the clock reference symbol representation is based on two to three letters  
representing the clock of a particular functional. For example, the subscript of tMTX represents the MII(M) transmit  
(TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
Freescale Semiconductor  
23  
Ethernet: Three-Speed Ethernet, MII Management  
Figure 5 shows the MII transmit AC timing diagram.  
tMTXR  
tMTX  
TX_CLK  
tMTXF  
tMTXH  
TXD[3:0]  
TX_EN  
TX_ER  
tMTKHDX  
Figure 5. MII Transmit AC Timing Diagram  
7.2.1.2  
MII Receive AC Timing Specifications  
Table 19 provides the MII receive AC timing specifications.  
Table 19. MII Receive AC Timing Specifications  
At recommended operating conditions with LVDD / OVDD of 3.3 V 10%.  
Parameter/Condition  
Symbol 1  
Min  
Typ  
Max  
Unit  
RX_CLK clock period 10 Mbps  
RX_CLK clock period 100 Mbps  
tMRX  
tMRX  
400  
40  
ns  
ns  
%
RX_CLK duty cycle  
tMRXH MRX  
/t  
35  
65  
RXD[3:0], RX_DV, RX_ER setup time to RX_CLK  
RXD[3:0], RX_DV, RX_ER hold time to RX_CLK  
RX_CLK clock rise VIL(min) to VIH(max)  
RX_CLK clock fall time VIH(max) to VIL(min)  
Note:  
tMRDVKH  
tMRDXKH  
tMRXR  
10.0  
10.0  
1.0  
1.0  
ns  
ns  
ns  
ns  
4.0  
4.0  
tMRXF  
1. The symbols used for timing specifications herein follow the pattern of t(first two letters of functional block)(signal)(state)  
(reference)(state) for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example,  
tMRDVKH symbolizes MII receive timing (MR) with respect to the time data input signals (D) reach the valid state (V)  
relative to the tMRX clock reference (K) going to the high (H) state or setup time. Also, tMRDXKL symbolizes MII  
receive timing (GR) with respect to the time data input signals (D) went invalid (X) relative to the tMRX clock reference  
(K) going to the low (L) state or hold time. Note that, in general, the clock reference symbol representation is based  
on three letters representing the clock of a particular functional. For example, the subscript of tMRX represents the  
MII (M) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise)  
or F (fall).  
Figure 6 provides the AC test load for TSEC.  
Output  
LVDD/2  
Z0 = 50 Ω  
RL = 50 Ω  
Figure 6. TSEC AC Test Load  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
Freescale Semiconductor  
24  
Ethernet: Three-Speed Ethernet, MII Management  
Figure 7 shows the MII receive AC timing diagram.  
tMRXR  
tMRX  
RX_CLK  
tMRXF  
Valid Data  
tMRXH  
RXD[3:0]  
RX_DV  
RX_ER  
tMRDVKH  
tMRDXKH  
Figure 7. MII Receive AC Timing Diagram  
7.2.2  
RGMII and RTBI AC Timing Specifications  
Table 20 presents the RGMII and RTBI AC timing specifications.  
Table 20. RGMII and RTBI AC Timing Specifications  
At recommended operating conditions with LVDD of 2.5 V 5%.  
Parameter/Condition  
Symbol 1  
Min  
Typ  
Max  
Unit  
Data to clock output skew (at transmitter)  
Data to clock input skew (at receiver) 2  
Clock cycle duration 3  
tSKRGT  
tSKRGT  
tRGT  
-0.5  
1.0  
7.2  
45  
40  
0.5  
2.8  
8.8  
55  
ns  
ns  
ns  
%
8.0  
50  
50  
Duty cycle for 1000Base-T 4, 5  
Duty cycle for 10BASE-T and 100BASE-TX 3, 5  
Rise time (20%–80%)  
tRGTH RGT  
tRGTH/tRGT  
tRGTR  
tRGTF  
/t  
60  
%
0.75  
0.75  
ns  
ns  
ns  
%
Fall time (20%–80%)  
6
GTX_CLK125 reference clock period  
GTX_CLK125 reference clock duty cycle  
Notes:  
tG12  
8.0  
tG125H G125  
/t  
47  
53  
1. Note that, in general, the clock reference symbol representation for this section is based on the symbols RGT to  
represent RGMII and RTBI timing. For example, the subscript of tRGT represents the TBI (T) receive (RX) clock.  
Note also that the notation for rise (R) and fall (F) times follows the clock symbol that is being represented. For  
symbols representing skews, the subscript is skew (SK) followed by the clock that is being skewed (RGT).  
2. This implies that PC board design will require clocks to be routed such that an additional trace delay of greater than  
1.5 ns will be added to the associated clock signal.  
3. For 10 and 100 Mbps, tRGT scales to 400 ns 40 ns and 40 ns 4 ns, respectively.  
4. Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet's clock  
domains as long as the minimum duty cycle is not violated and stretching occurs for no more than three tRGT of the  
lowest speed transitioned between.  
5. Duty cycle reference is LVdd/2.  
6. This symbol is used to represent the external GTX_CLK125 and does not follow the original symbol naming  
convention.  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
Freescale Semiconductor  
25  
Ethernet: Three-Speed Ethernet, MII Management  
Figure 8 shows the RBMII and RTBI AC timing and multiplexing diagrams.  
tRGT  
tRGTH  
GTX_CLK  
(At Transmitter)  
tSKRGT  
TXD[8:5][3:0]  
TXD[7:4][3:0]  
TXD[8:5]  
TXD[7:4]  
TXD[3:0]  
TXD[9]  
TXERR  
TXD[4]  
TXEN  
TX_CTL  
tSKRGT  
TX_CLK  
(At PHY)  
RXD[8:5][3:0]  
RXD[7:4][3:0]  
RXD[8:5]  
RXD[7:4]  
RXD[3:0]  
tSKRGT  
RXD[9]  
RXERR  
RXD[4]  
RXDV  
RX_CTL  
tSKRGT  
RX_CLK  
(At PHY)  
Figure 8. RGMII and RTBI AC Timing and Multiplexing Diagrams  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
Freescale Semiconductor  
26  
7.3  
Ethernet Management Interface Electrical Characteristics  
The electrical characteristics specified here apply to MII management interface signals MDIO  
(management data input/output) and MDC (management data clock). The electrical characteristics for  
GMII, RGMII, TBI and RTBI are specified in Section 7.1, “Three-Speed Ethernet Controller (TSEC)  
(10/100/1000 Mbps)—MII/RGMII/RTBI Electrical Characteristics.”  
7.3.1  
MII Management DC Electrical Characteristics  
The MDC and MDIO are defined to operate at a supply voltage of 2.5V or 3.3 V. The DC electrical  
characteristics for MDIO and MDC are provided in Table 21 and Table 22.  
Table 21. MII Management DC Electrical Characteristics when powered at 2.5V  
Parameter  
Symbol  
Conditions  
Min  
Max  
Unit  
Supply voltage (2.5 V)  
Output high voltage  
Output low voltage  
Input high voltage  
Input low voltage  
Input high current  
Input low current  
Note:  
LVDD  
VOH  
VOL  
VIH  
VIL  
2.37  
2.00  
2.63  
LVDD + 0.3  
0.40  
V
V
IOH = –1.0 mA  
LVDD = Min  
LVDD = Min  
LVDD = Min  
LVDD = Min  
IOL = 1.0 mA  
GND - 0.3  
1.7  
V
V
-0.3  
0.70  
V
IIH  
VIN 1 = LVDD  
VIN = LVDD  
10  
µA  
µA  
IIL  
-15  
1. Note that the symbol VIN, in this case, represents the LVIN symbol referenced in Table 55 and Table 56.  
Table 22. MII Management DC Electrical Characteristics when powered at 3.3V  
Parameter  
Symbol  
Conditions  
Min  
Max  
Unit  
Supply voltage (3.3 V)  
Output high voltage  
Output low voltage  
Input high voltage  
Input low voltage  
Input high current  
Input low current  
Note:  
LVDD  
VOH  
VOL  
VIH  
VIL  
2.97  
2.10  
GND  
2.00  
3.63  
LVDD + 0.3  
0.50  
V
V
IOH = –1.0 mA  
LVDD = Min  
LVDD = Min  
IOL = 1.0 mA  
V
V
0.80  
V
IIH  
LVDD = Max  
LVDD = Max  
VIN 1 = 2.1 V  
VIN = 0.5 V  
40  
µA  
µA  
IIL  
–600  
1. Note that the symbol VIN, in this case, represents the LVIN symbol referenced in Table 55 and Table 56.  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
Freescale Semiconductor  
27  
7.3.2  
MII Management AC Electrical Specifications  
Table 23 provides the MII management AC timing specifications.  
Table 23. MII Management AC Timing Specifications  
At recommended operating conditions with LVDD is 3.3 V 10% or 2.5 V 5%  
Parameter/Condition  
MDC frequency  
Symbol 1  
Min  
Typ  
Max  
Unit  
Notes  
fMDC  
tMDC  
32  
10  
5
2.5  
400  
70  
10  
10  
MHz  
ns  
2
MDC period  
MDC clock pulse width high  
MDC to MDIO delay  
MDIO to MDC setup time  
MDIO to MDC hold time  
MDC rise time  
tMDCH  
ns  
tMDKHDX  
tMDDVKH  
tMDDXKH  
tMDCR  
ns  
3
ns  
0
ns  
ns  
MDC fall time  
tMDHF  
ns  
Notes:  
1. The symbols used for timing specifications herein follow the pattern of t(first two letters of functional block)(signal)(state)  
(reference)(state) for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example,  
tMDKHDX symbolizes management data timing (MD) for the time tMDC from clock reference (K) high (H) until data  
outputs (D) are invalid (X) or data hold time. Also, tMDDVKH symbolizes management data timing (MD) with respect  
to the time data input signals (D) reach the valid state (V) relative to the tMDC clock reference (K) going to the high  
(H) state or setup time. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F  
(fall).  
2. This parameter is dependent on the csb_clk speed (that is, for a csb_clk of 267 MHz, the maximum frequency is  
8.3 MHz and the minimum frequency is 1.2 MHz; for a csb_clk of 375 MHz, the maximum frequency is 11.7 MHz  
and the minimum frequency is 1.7 MHz).  
3. This parameter is dependent on the csb_clk speed (that is, for a csb_clk of 267 MHz, the delay is 70 ns and for a  
csb_clk of 333 MHz, the delay is 58 ns).  
Figure 9 shows the MII management AC timing diagram.  
tMDCR  
tMDC  
MDC  
tMDCF  
tMDCH  
MDIO  
(Input)  
tMDDVKH  
tMDDXKH  
MDIO  
(Output)  
tMDKHDX  
Figure 9. MII Management Interface Timing Diagram  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
Freescale Semiconductor  
28  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
Freescale Semiconductor  
29  
USB  
8 USB  
This section provides the AC and DC electrical specifications for the USB interface of the MPC8343E.  
8.1  
USB DC Electrical Characteristics  
Table 24 provides the DC electrical characteristics for the USB interface.  
Table 24. USB DC Electrical Characteristics  
Parameter  
Symbol  
Min  
Max  
Unit  
High-level input voltage  
Low-level input voltage  
Input current  
VIH  
VIL  
2
–0.3  
OVDD + 0.3  
V
V
0.8  
5
IIN  
µA  
V
High-level output voltage,  
VOH  
OVDD – 0.2  
IOH = –100 µA  
Low-level output voltage,  
VOL  
0.2  
V
IOL = 100 µA  
Note:  
1. Note that the symbol VIN, in this case, represents the OVIN symbol referenced in  
Table 55 and Table 56.  
8.2  
USB AC Electrical Specifications  
Table 25 describes the general timing parameters of the USB interface of the MPC8343E.  
Table 25. USB General Timing Parameters  
Parameter  
usb clock cycle time  
Symbol 1  
Min  
Max  
Unit  
Notes  
tUSCK  
tUSIVKH  
tUSIXKH  
15  
4
ns  
ns  
ns  
Input setup to usb clock - all inputs  
input hold to usb clock - all inputs  
1
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
Freescale Semiconductor  
30  
USB  
Table 25. USB General Timing Parameters (continued)  
Parameter  
Symbol 1  
Min  
Max  
Unit  
Notes  
usb clock to output valid - all  
outputs  
tUSKHOV  
7
ns  
Output hold from usb clock - all  
outputs  
tUSKHOX  
2
ns  
Notes:  
1. The symbols used for timing specifications herein follow the pattern of t(First two letters of  
functional block)(signal)(state) (reference)(state) for inputs and t(First two letters of functional  
block)(reference)(state)(signal)(state) for outputs. For example, tUSIXKH symbolizes usb timing  
(US) for the input (I) to go invalid (X) with respect to the time the usb clock reference (K)  
goes high (H). Also, tUSKHOX symbolizes usb timing (US) for the usb clock reference (K)  
to go high (H), with respect to the output (O) going invalid (X) or output hold time.  
2. All timings are in reference to usb clock.  
3. All signals are measured from OVDD/2 of the rising edge of usb clock to 0.4 × OVDD of the  
signal in question for 3.3-V signaling levels.  
4. Input timings are measured at the pin.  
5. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be  
when the total current delivered through the component pin is less than or equal to the  
leakage current specification.  
Figure 10 and Figure 11 provide the AC test load and signals for the USB, respectively.  
OVDD/2  
Output  
Z0 = 50 Ω  
RL = 50 Ω  
Figure 10. USB AC Test Load  
USB0_CLK/USB1_CLK/DR_CLK  
Input Signals  
tUSIXKH  
tUSIVKH  
tUSKHOX  
tUSKHOV  
Output Signals:  
Figure 11. USB Signals  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
Freescale Semiconductor  
31  
Local Bus  
9 Local Bus  
This section describes the DC and AC electrical specifications for the local bus interface of the  
MPC8343E.  
9.1  
Local Bus DC Electrical Characteristics  
Table 26 provides the DC electrical characteristics for the local bus interface.  
Table 26. Local Bus DC Electrical Characteristics  
Parameter  
Symbol  
Min  
Max  
Unit  
High-level input voltage  
Low-level input voltage  
Input current  
VIH  
VIL  
2
–0.3  
OVDD + 0.3  
V
V
0.8  
5
IIN  
µA  
V
High-level output voltage,  
VOH  
OVDD – 0.2  
I
OH = –100 µA  
Low-level output voltage,  
VOL  
0.2  
V
IOL = 100 µA  
9.2  
Local Bus AC Electrical Specification  
Table 27 and Table 28 describe the general timing parameters of the local bus interface of the MPC8343E.  
Table 27. Local Bus General Timing Parameters—DLL on  
Parameter  
Symbol 1  
Min  
Max  
Unit  
Notes  
Local bus cycle time  
tLBK  
7.5  
1.5  
ns  
ns  
2
Input setup to local bus clock  
(except LUPWAIT)  
tLBIVKH1  
3, 4  
LUPWAIT input setup to local bus  
clock  
tLBIVKH2  
tLBIXKH1  
tLBIXKH2  
tLBOTOT1  
tLBOTOT2  
tLBOTOT3  
tLBKHLR  
1.7  
1.0  
1.0  
1.5  
3
4.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
3, 4  
3, 4  
3, 4  
5
Input hold from local bus clock  
(except LUPWAIT)  
LUPWAIT Input hold from local bus  
clock  
LALE output fall to LAD output  
transition (LATCH hold time)  
LALE output fall to LAD output  
transition (LATCH hold time)  
6
LALE output fall to LAD output  
transition (LATCH hold time)  
2.5  
7
Local bus clock to LALE rise  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
Freescale Semiconductor  
32  
Local Bus  
Table 27. Local Bus General Timing Parameters—DLL on (continued)  
Parameter  
Symbol 1  
Min  
Max  
Unit  
Notes  
Local bus clock to output valid  
(except LAD/LDP and LALE)  
tLBKHOV1  
4.5  
ns  
Local bus clock to data valid for  
LAD/LDP  
tLBKHOV2  
1
4.5  
4.5  
ns  
ns  
ns  
ns  
ns  
3
3
3
3
Local bus clock to address valid for tLBKHOV3  
LAD  
Output hold from local bus clock  
(except LAD/LDP and LALE)  
tLBKHOX1  
Output hold from local bus clock for tLBKHOX2  
LAD/LDP  
1
Local bus clock to output high  
impedance for LAD/LDP  
tLBKHOZ  
3.8  
Notes:  
1. The symbols used for timing specifications herein follow the pattern of t(First two letters of  
functional block)(signal)(state) (reference)(state) for inputs and t(First two letters of functional  
block)(reference)(state)(signal)(state) for outputs. For example, tLBIXKH1 symbolizes local bus  
timing (LB) for the input (I) to go invalid (X) with respect to the time the tLBK clock reference  
(K) goes high (H), in this case for clock one(1). Also, tLBKHOX symbolizes local bus timing  
(LB) for the tLBK clock reference (K) to go high (H), with respect to the output (O) going  
invalid (X) or output hold time.  
2. All timings are in reference to rising edge of LSYNC_IN.  
3. All signals are measured from OVDD/2 of the rising edge of LSYNC_IN to 0.4 × OVDD of  
the signal in question for 3.3-V signaling levels.  
4. Input timings are measured at the pin.  
5.tLBOTOT1 should be used when RCWH[LALE] is not set and when the load on LALE output  
pin is at least 10pF less than the load on LAD output pins.  
6.tLBOTOT2 should be used when RCWH[LALE] is set and when the load on LALE output pin  
is at least 10pF less than the load on LAD output pins.  
7.tLBOTOT3 should be used when RCWH[LALE] is set and when the load on LALE output pin  
equals to the load on LAD output pins.  
8. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be  
when the total current delivered through the component pin is less than or equal to the  
leakage current specification.  
Table 28. Local Bus General Timing Parameters—DLL bypass  
Parameter  
Symbol 1  
Min  
Max  
Unit  
Notes  
Local bus cycle time  
tLBK  
15  
7
ns  
ns  
ns  
ns  
2
Input setup to local bus clock  
Input hold from local bus clock  
tLBIVKH  
tLBIXKH  
tLBOTOT1  
3, 4  
3, 4  
5
1.0  
1.5  
LALE output fall to LAD output  
transition (LATCH hold time)  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
Freescale Semiconductor  
33  
Local Bus  
Table 28. Local Bus General Timing Parameters—DLL bypass (continued)  
Parameter  
Symbol 1  
Min  
Max  
Unit  
Notes  
LALE output fall to LAD output  
transition (LATCH hold time)  
tLBOTOT2  
3
ns  
6
LALE output fall to LAD output  
transition (LATCH hold time)  
tLBOTOT3  
2.5  
ns  
7
3
Local bus clock to output valid  
tLBKHOV  
tLBKHOZ  
3
4
ns  
ns  
Local bus clock to output high  
impedance for LAD/LDP  
Notes:  
1. The symbols used for timing specifications herein follow the pattern of t(First two letters of  
functional block)(signal)(state) (reference)(state) for inputs and t(First two letters of functional  
block)(reference)(state)(signal)(state) for outputs. For example, tLBIXKH1 symbolizes local bus  
timing (LB) for the input (I) to go invalid (X) with respect to the time the tLBK clock reference  
(K) goes high (H), in this case for clock one(1). Also, tLBKHOX symbolizes local bus timing  
(LB) for the tLBK clock reference (K) to go high (H), with respect to the output (O) going  
invalid (X) or output hold time.  
2. All timings are in reference to falling edge of LCLK0 (for all outputs and for LGTA and  
LUPWAIT inputs) or rising edge of LCLK0 (for all other inputs).  
3. All signals are measured from OVDD/2 of the rising/falling edge of LCLK0 to 0.4 × OVDD  
of the signal in question for 3.3-V signaling levels.  
4. Input timings are measured at the pin.  
5.tLBOTOT1 should be used when RCWH[LALE] is not set and when the load on LALE output  
pin is at least 10pF less than the load on LAD output pins.  
6.tLBOTOT2 should be used when RCWH[LALE] is set and when the load on LALE output pin  
is at least 10pF less than the load on LAD output pins.  
7.tLBOTOT3 should be used when RCWH[LALE] is set and when the load on LALE output pin  
equals to the load on LAD output pins.  
8. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be  
when the total current delivered through the component pin is less than or equal to the  
leakage current specification.  
9. DLL bypass mode is not recommended for use at frequencies above 66MHz.  
Figure 12 provides the AC test load for the local bus.  
OVDD/2  
Output  
Z0 = 50 Ω  
RL = 50 Ω  
Figure 12. Local Bus C Test Load  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
Freescale Semiconductor  
34  
Local Bus  
Figure 13 through Figure 18 show the local bus signals.  
LSYNC_IN  
tLBIXKH  
tLBIVKH  
Input Signals:  
LAD[0:31]/LDP[0:3]  
tLBIXKH  
tLBKHOX  
tLBKHOV  
tLBKHOV  
tLBKHOV  
tLBKHLR  
Output Signals:  
LSDA10/LSDWE/LSDRAS/  
LSDCAS/LSDDQM[0:3]  
LA[27:31]/LBCTL/LBCKE/LOE/  
tLBKHOZ  
tLBKHOX  
Output (Data) Signals:  
LAD[0:31]/LDP[0:3]  
tLBKHOZ  
tLBKHOX  
Output (Address) Signal:  
LAD[0:31]  
tLBOTOT  
LALE  
Figure 13. Local Bus Signals, Nonspecial Signals Only (DLL Enabled)  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
Freescale Semiconductor  
35  
Local Bus  
LCLK[n]  
tLBIXKH  
tLBIVKH  
Input Signals:  
LAD[0:31]/LDP[0:3]  
tLBIXKH  
tLBIVKH  
Input Signal:  
LGTA  
tLBIXKH  
tLBKHOV  
Output Signals:  
LSDA10/LSDWE/LSDRAS/  
LSDCAS/LSDDQM[0:3]  
LA[27:31]/LBCTL/LBCKE/LOE/  
tLBKHOZ  
tLBKHOV  
Output Signals:  
LAD[0:31]/LDP[0:3]  
tLBOTOT  
LALE  
Figure 14. Local Bus Signals, Nonspecial Signals Only (DLL Bypass Mode)  
LSYNC_IN  
T1  
T3  
tLBKHOZ1  
tLBKHOV1  
GPCM Mode Output Signals:  
LCS[0:3]/LWE  
tLBIXKH2  
tLBIVKH2  
UPM Mode Input Signal:  
LUPWAIT  
tLBIXKH1  
tLBIVKH1  
Input Signals:  
LAD[0:31]/LDP[0:3]  
tLBKHOZ1  
tLBKHOV1  
UPM Mode Output Signals:  
LCS[0:3]/LBS[0:3]/LGPL[0:5]  
Figure 15. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 2 (DLL Enabled)  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
36  
Freescale Semiconductor  
Local Bus  
LCLK  
T1  
T3  
tLBKHOZ  
tLBKHOV  
GPCM Mode Output Signals:  
LCS[0:3]/LWE  
tLBIXKH  
tLBIVKH  
UPM Mode Input Signal:  
LUPWAIT  
tLBIXKH  
tLBIVKH  
Input Signals:  
LAD[0:31]/LDP[0:3]  
(DLL Bypass Mode)  
tLBKHOZ  
tLBKHOV  
UPM Mode Output Signals:  
LCS[0:3]/LBS[0:3]/LGPL[0:5]  
Figure 16. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 2 (DLL Bypass Mode)  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
Freescale Semiconductor  
37  
Local Bus  
LCLK  
T1  
T2  
T3  
T4  
tLBKHOZ  
tLBKHOV  
GPCM Mode Output Signals:  
LCS[0:3]/LWE  
tLBIXKH  
tLBIVKH  
UPM Mode Input Signal:  
LUPWAIT  
tLBIXKH  
tLBIVKH  
Input Signals:  
LAD[0:31]/LDP[0:3]  
(DLL Bypass Mode)  
tLBKHOZ  
tLBKHOV  
UPM Mode Output Signals:  
LCS[0:3]/LBS[0:3]/LGPL[0:5]  
Figure 17. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 4 (DLL Bypass Mode)  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
38  
Freescale Semiconductor  
Local Bus  
LSYNC_IN  
T1  
T2  
T3  
T4  
tLBKHOZ1  
tLBKHOV1  
GPCM Mode Output Signals:  
LCS[0:3]/LWE  
tLBIXKH2  
tLBIVKH2  
UPM Mode Input Signal:  
LUPWAIT  
tLBIXKH1  
tLBIVKH1  
Input Signals:  
LAD[0:31]/LDP[0:3]  
tLBKHOZ1  
tLBKHOV1  
UPM Mode Output Signals:  
LCS[0:3]/LBS[0:3]/LGPL[0:5]  
Figure 18. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 4 (DLL Enabled)  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
Freescale Semiconductor  
39  
JTAG  
10 JTAG  
This section describes the DC and AC electrical specifications for the IEEE 1149.1 (JTAG) interface of  
the MPC8343E.  
10.1 JTAG DC Electrical Characteristics  
Table 29 provides the DC electrical characteristics for the IEEE 1149.1 (JTAG) interface of the  
MPC8343E.  
Table 29. JTAG interface DC Electrical Characteristics  
Characteristic  
Input high voltage  
Symbol  
Condition  
Min  
Max  
Unit  
VIH  
VIL  
2.5  
OVDD+0.3  
V
V
Input low voltage  
Input current  
-0.3  
0.8  
5
IIN  
µA  
V
Output high voltage  
Output low voltage  
Output low voltage  
VOH  
VOL  
IOH = –8.0 mA  
IOL = 8.0 mA  
2.4  
0.5  
0.4  
V
V
I
= 3.2 mA  
OL  
V
OL  
10.2 JTAG AC Timing Specifications  
This section describes the AC electrical specifications for the IEEE 1149.1 (JTAG) interface of the  
MPC8343E.  
Table 30 provides the JTAG AC timing specifications as defined in Figure 20 through Figure 23.  
1
Table 30. JTAG AC Timing Specifications (Independent of CLKIN)  
At recommended operating conditions (see Table 56).  
Parameter  
Symbol 2  
Min  
Max  
Unit  
Notes  
JTAG external clock frequency of operation  
JTAG external clock cycle time  
JTAG external clock pulse width measured at 1.4 V  
JTAG external clock rise and fall times  
TRST assert time  
fJTG  
t JTG  
0
33.3  
MHz  
ns  
30  
15  
0
tJTKHKL  
tJTGR & tJTGF  
tTRST  
ns  
2
ns  
25  
ns  
3
4
Input setup times:  
ns  
tJTDVKH  
tJTIVKH  
4
4
Boundary-scan data  
TMS, TDI  
Input hold times:  
ns  
ns  
tJTDXKH  
tJTIXKH  
10  
10  
4
5
Boundary-scan data  
TMS, TDI  
Valid times:  
tJTKLDV  
tJTKLOV  
2
2
11  
11  
Boundary-scan data  
TDO  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
Freescale Semiconductor  
40  
JTAG  
1
Table 30. JTAG AC Timing Specifications (Independent of CLKIN) (continued)  
At recommended operating conditions (see Table 56).  
Parameter  
Symbol 2  
Min  
Max  
Unit  
Notes  
Output hold times:  
ns  
tJTKLDX  
tJTKLOX  
2
2
5
Boundary-scan data  
TDO  
JTAG external clock to output high impedance:  
Boundary-scan data  
TDO  
ns  
tJTKLDZ  
tJTKLOZ  
2
2
19  
9
5, 6  
Notes:  
1. All outputs are measured from the midpoint voltage of the falling/rising edge of tTCLK to the midpoint of the signal  
in question. The output timings are measured at the pins. All output timings assume a purely resistive 50-load  
(see Figure 19). Time-of-flight delays must be added for trace lengths, vias, and connectors in the system.  
2. The symbols used for timing specifications herein follow the pattern of t(first two letters of functional block)(signal)(state)  
(reference)(state) for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example,  
tJTDVKH symbolizes JTAG device timing (JT) with respect to the time data input signals (D) reaching the valid state  
(V) relative to the tJTG clock reference (K) going to the high (H) state or setup time. Also, tJTDXKH symbolizes JTAG  
timing (JT) with respect to the time data input signals (D) went invalid (X) relative to the tJTG clock reference (K)  
going to the high (H) state. Note that, in general, the clock reference symbol representation is based on three letters  
representing the clock of a particular functional. For rise and fall times, the latter convention is used with the  
appropriate letter: R (rise) or F (fall).  
3. TRST is an asynchronous level sensitive signal. The setup time is for test purposes only.  
4. Non-JTAG signal input timing with respect to tTCLK  
.
5. Non-JTAG signal output timing with respect to tTCLK  
.
6. Guaranteed by design and characterization.  
Figure 19 provides the AC test load for TDO and the boundary-scan outputs of the MPC8343E.  
Z0 = 50 Ω  
Output  
OVDD/2  
RL = 50 Ω  
Figure 19. AC Test Load for the JTAG Interface  
Figure 20 provides the JTAG clock input timing diagram.  
JTAG  
External Clock  
VM  
tJTKHKL  
VM  
VM  
tJTGR  
tJTGF  
tJTG  
VM = Midpoint Voltage (OV /2)  
DD  
Figure 20. JTAG Clock Input Timing Diagram  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
Freescale Semiconductor  
41  
JTAG  
Figure 21 provides the TRST timing diagram.  
TRST  
VM  
VM  
tTRST  
VM = Midpoint Voltage (OV /2)  
DD  
Figure 21. TRST Timing Diagram  
Figure 22 provides the boundary-scan timing diagram.  
JTAG  
VM  
VM  
External Clock  
tJTDVKH  
tJTDXKH  
Boundary  
Data Inputs  
Input  
Data Valid  
tJTKLDV  
tJTKLDX  
Boundary  
Data Outputs  
Output Data Valid  
tJTKLDZ  
Output Data Valid  
Boundary  
Data Outputs  
VM = Midpoint Voltage (OV /2)  
DD  
Figure 22. Boundary-Scan Timing Diagram  
Figure 23 provides the test access port timing diagram.  
JTAG  
VM  
VM  
External Clock  
tJTIVKH  
tJTIXKH  
Input  
Data Valid  
TDI, TMS  
tJTKLOV  
tJTKLOX  
TDO  
Output Data Valid  
tJTKLOZ  
TDO  
Output Data Valid  
VM = Midpoint Voltage (OV /2)  
DD  
Figure 23. Test Access Port Timing Diagram  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
Freescale Semiconductor  
42  
JTAG  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
Freescale Semiconductor  
43  
I2C  
11 I2C  
2
This section describes the DC and AC electrical characteristics for the I C interface of the MPC8343E.  
2
11.1 I C DC Electrical Characteristics  
Table 31 provides the DC electrical characteristics for the I C interface of the MPC8343E.  
2
2
Table 31. I C DC Electrical Characteristics  
At recommended operating conditions with OVDD of 3.3 V 10%.  
Parameter  
Input high voltage level  
Symbol  
Min  
Max  
Unit  
Notes  
VIH  
VIL  
0.7 × OVDD  
OVDD+ 0.3  
0.3 × OVDD  
0.2 × OVDD  
250  
V
V
Input low voltage level  
Low level output voltage  
–0.3  
0
VOL  
V
1
2
Output fall time from VIH(min) to VIL(max) with a  
bus capacitance from 10 to 400 pF  
t
20 + 0.1 × CB  
ns  
I2KLKV  
Pulse width of spikes which must be suppressed  
by the input filter  
tI2KHKL  
0
50  
10  
10  
ns  
µA  
pF  
3
4
Input current each I/O pin (input voltage is  
between 0.1 × OVDD and 0.9 × OVDD(max)  
II  
–10  
Capacitance for each I/O pin  
CI  
Notes:  
1. Output voltage (open drain or open collector) condition = 3 mA sink current.  
2. CB = capacitance of one bus line in pF.  
3. Refer to the MPC8349E Integrated Host Processor Reference Manual Rev.0 for information on the digital filter used.  
4. I/O pins will obstruct the SDA and SCL lines if OVDD is switched off.  
2
11.2 I C AC Electrical Specifications  
2
Table 32 provides the AC timing parameters for the I C interface of the MPC8343E. Note that all values  
refer to V (min) and V (max) levels (see Table 31).  
IH  
IL  
2
Table 32. I C AC Electrical Specifications  
Parameter  
Symbol 1  
Min  
Max  
Unit  
SCL clock frequency  
fI2C  
tI2CL  
0
400  
kHz  
µs  
Low period of the SCL clock  
1.3  
0.6  
0.6  
0.6  
High period of the SCL clock  
tI2CH  
µs  
Setup time for a repeated START condition  
tI2SVKH  
tI2SXKL  
µs  
Hold time (repeated) START condition (after this period, the  
first clock pulse is generated)  
µs  
Data setup time  
tI2DVKH  
100  
ns  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
Freescale Semiconductor  
44  
I2C  
2
Table 32. I C AC Electrical Specifications (continued)  
Parameter  
Symbol 1  
Min  
Max  
Unit  
Data hold time:  
tI2DXKL  
µs  
CBUS compatible masters  
I2C bus devices  
0 2  
0.9 3  
4
4
Rise time of both SDA and SCL signals  
Fall time of both SDA and SCL signals  
Set-up time for STOP condition  
tI2CR  
20 + 0.1 Cb  
20 + 0.1 Cb  
0.6  
300  
300  
ns  
ns  
µs  
µs  
V
t
I2CF  
t
I2PVKH  
Bus free time between a STOP and START condition  
tI2KHDX  
VNL  
1.3  
Noise margin at the LOW level for each connected device  
(including hysteresis)  
0.1 × OVDD  
Noise margin at the HIGH level for each connected device  
(including hysteresis)  
VNH  
0.2 × OVDD  
V
Notes:  
1. The symbols used for timing specifications herein follow the pattern of t(first two letters of functional block)(signal)(state)  
(reference)(state) for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tI2DVKH  
symbolizes I2C timing (I2) with respect to the time data input signals (D) reach the valid state (V) relative to the tI2C  
clock reference (K) going to the high (H) state or setup time. Also, tI2SXKL symbolizes I2C timing (I2) for the time that  
the data with respect to the start condition (S) went invalid (X) relative to the tI2C clock reference (K) going to the low  
(L) state or hold time. Also, tI2PVKH symbolizes I2C timing (I2) for the time that the data with respect to the stop  
condition (P) reaching the valid state (V) relative to the tI2C clock reference (K) going to the high (H) state or setup  
time. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).  
2. MPC8343E provides a hold time of at least 300 ns for the SDA signal (referred to the VIHmin of the SCL signal) to  
bridge the undefined region of the falling edge of SCL.  
3. The maximum tI2DVKH has only to be met if the device does not stretch the LOW period (tI2CL) of the SCL signal.  
4. CB = capacitance of one bus line in pF.  
2
Figure 24 provides the AC test load for the I C.  
Output  
OVDD/2  
Z0 = 50 Ω  
RL = 50 Ω  
2
Figure 24. I C AC Test Load  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
Freescale Semiconductor  
45  
I2C  
2
Figure 25 shows the AC timing diagram for the I C bus.  
SDA  
tI2CF  
tI2CL  
tI2DVKH  
tI2KHKL  
tI2CF  
tI2SXKL  
tI2CR  
SCL  
tI2SXKL  
tI2CH  
tI2SVKH  
tI2PVKH  
tI2DXKL  
S
Sr  
P
S
2
Figure 25. I C Bus AC Timing Diagram  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
Freescale Semiconductor  
46  
PCI  
12 PCI  
This section describes the DC and AC electrical specifications for the PCI bus of the MPC8343E.  
12.1 PCI DC Electrical Characteristics  
Table 33 provides the DC electrical characteristics for the PCI interface of the MPC8343E.  
1
Table 33. PCI DC Electrical Characteristics  
Parameter  
Symbol  
Test Condition  
Min  
Max  
Unit  
High-level input voltage  
Low-level input voltage  
Input current  
VIH  
VIL  
VOUT VOH (min) or  
VOUT VOL (max)  
2
–0.3  
OVDD + 0.3  
V
V
0.8  
5
IIN  
VIN 2 = 0 V or VIN = VDD  
µA  
V
High-level output voltage  
VOH  
OVDD = min,  
OVDD – 0.2  
IOH = –100 µA  
Low-level output voltage  
VOL  
OVDD = min,  
0.2  
V
IOL = 100 µA  
Notes:  
1. Note that the symbol VIN, in this case, represents the OVIN symbol referenced in Table 55 and Table 56.  
12.2 PCI AC Electrical Specifications  
This section describes the general AC timing parameters of the PCI bus of the MPC8343E. Note that the  
PCI_CLK or PCI_SYNC_IN signal is used as the PCI input clock depending on whether the MPC8343E  
is configured as a host or agent device. Table 34 provides the PCI AC timing specifications at 66 MHz.  
6
Table 34. PCI AC Timing Specifications at 66 MHz  
Parameter  
Clock to output valid  
Symbol 1  
Min  
Max  
Unit  
Notes  
t
1
6.0  
ns  
ns  
ns  
2
2
PCKHOV  
Output hold from Clock  
t
PCKHOX  
Clock to output high impedance  
tPCKHOZ  
14  
2, 3  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
Freescale Semiconductor  
47  
PCI  
6
Table 34. PCI AC Timing Specifications at 66 MHz (continued)  
Parameter  
Symbol 1  
Min  
Max  
Unit  
Notes  
Input setup to Clock  
tPCIVKH  
tPCIXKH  
3.0  
0
ns  
ns  
2, 4  
2, 4  
Input hold from Clock  
Notes:  
1. Note that the symbols used for timing specifications herein follow the pattern of t(first two letters of functional  
block)(signal)(state) (reference)(state) for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For  
example, tPCIVKH symbolizes PCI timing (PC) with respect to the time the input signals (I) reach the valid state (V)  
relative to the PCI_SYNC_IN clock, tSYS, reference (K) going to the high (H) state or setup time. Also, tPCRHFV  
symbolizes PCI timing (PC) with respect to the time hard reset (R) went high (H) relative to the frame signal (F) going  
to the valid (V) state.  
2. See the timing measurement conditions in the PCI 2.2 Local Bus Specifications.  
3. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current  
delivered through the component pin is less than or equal to the leakage current specification.  
4. Input timings are measured at the pin.  
6. PCI timing depends on M66EN and the ratio between PCI1/PCI2. Refer to User Manual, PCI chapter, description  
of M66EN paragraph.  
Table 35 provides the PCI AC timing specifications at 33 MHz.  
Table 35. PCI AC Timing Specifications at 33 MHz  
Parameter  
Clock to output valid  
Symbol 1  
Min  
Max  
Unit  
Notes  
t
2
11  
14  
ns  
ns  
ns  
ns  
ns  
2
PCKHOV  
Output hold from Clock  
Clock to output high impedance  
Input setup to Clock  
Input hold from Clock  
Notes:  
2
t
PCKHOX  
tPCKHOZ  
tPCIVKH  
tPCIXKH  
3.0  
0
2, 3  
2, 4  
2, 4  
1. Note that the symbols used for timing specifications herein follow the pattern of t(first two letters of functional  
block)(signal)(state) (reference)(state) for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For  
example, tPCIVKH symbolizes PCI timing (PC) with respect to the time the input signals (I) reach the valid state (V)  
relative to the PCI_SYNC_IN clock, tSYS, reference (K) going to the high (H) state or setup time. Also, tPCRHFV  
symbolizes PCI timing (PC) with respect to the time hard reset (R) went high (H) relative to the frame signal (F) going  
to the valid (V) state.  
2. See the timing measurement conditions in the PCI 2.2 Local Bus Specifications.  
3. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current  
delivered through the component pin is less than or equal to the leakage current specification.  
4. Input timings are measured at the pin.  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
48  
Freescale Semiconductor  
PCI  
Figure 26 provides the AC test load for PCI.  
OVDD/2  
Output  
Z0 = 50 Ω  
RL = 50 Ω  
Figure 26. PCI AC Test Load  
Figure 27 shows the PCI input AC timing diagram.  
CLK  
tPCIVKH  
tPCIXKH  
Input  
Figure 27. PCI Input AC Timing Diagram  
Figure 28 shows the PCI output AC timing diagram.  
CLK  
tPCKHOV  
tPCKHOX  
Output Delay  
tPCKHOZ  
High-Impedance  
Output  
Figure 28. PCI Output AC Timing Diagram  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
Freescale Semiconductor  
49  
Timers  
13 Timers  
This section describes the DC and AC electrical specifications for the Timers of the MPC8343E.  
13.1 Timers DC Electrical Characteristics  
Table 36 provides the DC electrical characteristics for the MPC8343E Timers pins, including TIN, TOUT,  
TGATE and RTC_CLK.  
Table 36. Timers DC Electrical Characteristics  
Characteristic  
Input high voltage  
Symbol  
Condition  
Min  
Max  
Unit  
VIH  
VIL  
2.0  
OVDD+0.3  
V
V
Input low voltage  
Input current  
-0.3  
0.8  
5
IIN  
µA  
V
Output high voltage  
Output low voltage  
Output low voltage  
VOH  
VOL  
IOH = –8.0 mA  
IOL = 8.0 mA  
2.4  
0.5  
0.4  
V
V
I
= 3.2 mA  
OL  
V
OL  
13.2 Timers AC Timing Specifications  
Table 37 provides the Timers input and output AC timing specifications.  
1
Table 37. Timers Input AC Timing Specifications  
Characteristic  
Symbol 2  
Min  
Unit  
ns  
Timers inputs—minimum pulse width  
Notes:  
tTIWID  
20  
1. Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of CLKIN.  
Timings are measured at the pin.  
2.Timers inputs and outputs are asynchronous to any visible clock. Timers outputs should be synchronized before use  
by any external synchronous logic. Timers inputs are required to be valid for at least tTIWID ns to ensure proper  
operation.  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
50  
Freescale Semiconductor  
GPIO  
14 GPIO  
This section describes the DC and AC electrical specifications for the GPIO of the MPC8343E.  
14.1 GPIO DC Electrical Characteristics  
Table 38 provides the DC electrical characteristics for the MPC8343E GPIO.  
Table 38. GPIO DC Electrical Characteristics  
Characteristic  
Input high voltage  
Symbol  
Condition  
Min  
Max  
Unit  
VIH  
VIL  
2.0  
OVDD+0.3  
V
V
Input low voltage  
Input current  
-0.3  
0.8  
5
IIN  
µA  
V
Output high voltage  
Output low voltage  
Output low voltage  
VOH  
VOL  
IOH = –8.0 mA  
IOL = 8.0 mA  
2.4  
0.5  
0.4  
V
V
I
= 3.2 mA  
OL  
V
OL  
14.2 GPIO AC Timing Specifications  
Table 39 provides the GPIO input and output AC timing specifications.  
1
Table 39. GPIO Input AC Timing Specifications  
Characteristic  
Symbol 2  
Min  
Unit  
ns  
GPIO inputs—minimum pulse width  
Notes:  
tPIWID  
20  
1. Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of CLKIN.  
Timings are measured at the pin.  
2.GPIO inputs and outputs are asynchronous to any visible clock. GPIO outputs should be synchronized before use  
by any external synchronous logic. GPIO inputs are required to be valid for at least tPIWID ns to ensure proper  
operation.  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
Freescale Semiconductor  
51  
IPIC  
15 IPIC  
This section describes the DC and AC electrical specifications for the external interrupt pins of the  
MPC8343E.  
15.1 IPIC DC Electrical Characteristics  
Table 40 provides the DC electrical characteristics for the external interrupt pins of the MPC8343E.  
Table 40. IPIC DC Electrical Characteristics  
Characteristic  
Input high voltage  
Symbol  
Condition  
Min  
Max  
Unit  
VIH  
VIL  
IIN  
2.0  
OVDD+0.3  
V
V
Input low voltage  
Input current  
-0.3  
0.8  
5
µA  
V
Output low voltage  
Output low voltage  
Notes:  
VOL  
IOL = 8.0 mA  
0.5  
0.4  
V
I
= 3.2 mA  
OL  
V
OL  
1. This table applies for pins IRQ[0:7], IRQ_OUT and MCP_OUT.  
2. IRQ_OUT and MCP_OUT are open drain pins, thus VOH is not relevant for those pins.  
15.2 IPIC AC Timing Specifications  
Table 41 provides the IPIC input and output AC timing specifications.  
1
Table 41. IPIC Input AC Timing Specifications  
Characteristic  
Symbol 2  
Min  
Unit  
ns  
IPIC inputs—minimum pulse width  
Notes:  
tPICWID  
20  
1. Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of CLKIN.  
Timings are measured at the pin.  
2.IPIC inputs and outputs are asynchronous to any visible clock. IPIC outputs should be synchronized before use by  
any external synchronous logic. IPIC inputs are required to be valid for at least tPICWID ns to ensure proper operation  
when working in edge triggered mode.  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
52  
Freescale Semiconductor  
SPI  
16 SPI  
This section describes the DC and AC electrical specifications for the SPI of the MPC8343E.  
16.1 SPI DC Electrical Characteristics  
Table 42 provides the DC electrical characteristics for the MPC8343E SPI.  
Table 42. SPI DC Electrical Characteristics  
Characteristic  
Input high voltage  
Symbol  
Condition  
Min  
Max  
Unit  
VIH  
VIL  
2.0  
OVDD+0.3  
V
V
Input low voltage  
Input current  
-0.3  
0.8  
5
IIN  
µA  
V
Output high voltage  
Output low voltage  
Output low voltage  
VOH  
VOL  
IOH = –8.0 mA  
IOL = 8.0 mA  
2.4  
0.5  
0.4  
V
V
I
= 3.2 mA  
OL  
V
OL  
16.2 SPI AC Timing Specifications  
Table 43 and provide the SPI input and output AC timing specifications.  
1
Table 43. SPI AC Timing Specifications  
Characteristic  
Symbol 2  
Min  
Max  
Unit  
SPI outputs valid—Master mode (internal clock) delay  
SPI outputs hold—Master mode (internal clock) delay  
SPI outputs valid—Slave mode (external clock) delay  
SPI outputs hold—Slave mode (external clock) delay  
SPI inputs—Master mode (internal clock input setup time  
SPI inputs—Master mode (internal clock input hold time  
SPI inputs—Slave mode (external clock) input setup time  
SPI inputs—Slave mode (external clock) input hold time  
Notes:  
tNIKHOV  
tNIKHOX  
tNEKHOV  
tNEKHOX  
tNIIVKH  
6
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.5  
8
2
4
0
4
2
tNIIXKH  
tNEIVKH  
tNEIXKH  
1. Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal.  
Timings are measured at the pin.  
2. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)  
(reference)(state) for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example,  
tNIKHOX symbolizes the internal timing (NI) for the time SPICLK clock reference (K) goes to the high state (H) until  
outputs (O) are invalid (X).  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
Freescale Semiconductor  
53  
SPI  
Figure 29 provides the AC test load for the SPI.  
OVDD/2  
Output  
Z0 = 50 Ω  
RL = 50 Ω  
Figure 29. SPI AC Test Load  
Figure 30 through Figure 31 represent the AC timing from Table 43. Note that although the specifications  
generally reference the rising edge of the clock, these AC timing diagrams also apply when the falling edge  
is the active edge.  
Figure 30 shows the SPI timing in Slave mode (external clock).  
SPICLK (input)  
tNEIXKH  
tNEIVKH  
Input Signals:  
SPIMOSI  
(See Note)  
tNEKHOX  
Output Signals:  
SPIMISO  
(See Note)  
Note: The clock edge is selectable on SPI.  
Figure 30. SPI AC Timing in Slave mode (External Clock) Diagram  
Figure 31 shows the SPI timing in Master mode (internal clock).  
SPICLK (output)  
tNIIXKH  
tNIIVKH  
Input Signals:  
SPIMISO  
(See Note)  
tNIKHOX  
Output Signals:  
SPIMOSI  
(See Note)  
Note: The clock edge is selectable on SPI.  
Figure 31. SPI AC Timing in Master mode (Internal Clock) Diagram  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
54  
Freescale Semiconductor  
Package and Pin Listings  
17 Package and Pin Listings  
This section details package parameters, pin assignments, and dimensions. The MPC8343E is available in  
a plastic ball grid array (PBGA), see Section 17.1, “Package Parameters for the MPC8343E PBGA,”and  
Section 17.2, “Mechanical Dimensions of the MPC8343E PBGA,” on the PBGA.  
17.1 Package Parameters for the MPC8343E PBGA  
The package parameters are as provided in the following list. The package type is 29 mm × 29 mm, 620  
Plastic ball grid array (PBGA).  
Package outline  
29 mm × 29 mm  
Interconnects  
620  
Pitch  
1.00 mm  
Module height (maximum)  
Module height (typical)  
Module height (minimum)  
Solder Balls  
2.46 mm  
2.23 mm  
2.00 mm  
62 Sn/36 Pb/2 Ag (ZQ package)  
95.5 Sn/0.5 Cu/4Ag (VR package)  
0.60 mm  
Ball diameter (typical)  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
Freescale Semiconductor  
55  
Package and Pin Listings  
17.2 Mechanical Dimensions of the MPC8343E PBGA  
Figure 32 the mechanical dimensions and bottom surface nomenclature of the MPC8343E, 620-PBGA  
package.  
Figure 32. Mechanical Dimensions and Bottom Surface Nomenclature of the MPC8343E PBGA  
NOTE  
1. All dimensions in millimeters  
2. Dimensioning and tolerancing per ASME Y14. 5M-1994  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
56  
Freescale Semiconductor  
Package and Pin Listings  
3. Maximum solder ball diameter measured parallel to datum A  
Datum A, the seating plane, is determined by the spherical crowns of the solder balls.  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
Freescale Semiconductor  
57  
17.3 Pinout Listings  
Table 44 provides the pin-out listing for the MPC8343E, 620 PBGA package.  
Table 44. MPC8343E (PBGA) Pinout Listing  
Power  
Supply  
Signal  
Package Pin Number  
PCI  
Pin Type  
Notes  
PCI1_INTA/IRQ_OUT  
PCI1_RESET_OUT  
PCI1_AD[31:0]  
D20  
B21  
O
O
OVDD  
OVDD  
OVDD  
2
E19, D17, A16, A18, B17, B16, D16, B18,  
E17, E16, A15, C16, D15, D14, C14, A12,  
D12, B11, C11, E12, A10, C10, A9, E11,  
E10, B9, B8, D9, A8, C9, D8, C8  
I/O  
PCI1_C/BE[3:0]  
PCI1_PAR  
A17, A14, A11, B10  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
D13  
PCI1_FRAME  
PCI1_TRDY  
B14  
5
5
5
5
5
A13  
PCI1_IRDY  
E13  
PCI1_STOP  
C13  
PCI1_DEVSEL  
PCI1_IDSEL  
B13  
C17  
PCI1_SERR  
C12  
I/O  
I/O  
I/O  
I
5
5
PCI1_PERR  
B12  
PCI1_REQ[0]  
A21  
PCI1_REQ[1]/CPCI1_HS_ES  
PCI1_REQ[2:4]  
PCI1_GNT0  
C19  
C18, A19, E20  
B20  
I
I/O  
O
PCI1_GNT1/CPCI1_HS_LED  
C20  
PCI1_GNT2/CPCI1_HS_ENUM B19  
O
PCI1_GNT[3:4]  
M66EN  
A20, E18  
L26  
O
I
DDR SDRAM Memory Interface  
MDQ[0:31]  
AC25, AD27, AD25, AH27, AE28, AD26,  
AD24, AF27, AF25, AF28, AH24, AG26,  
AE25, AG25, AH26, AH25, AG22, AH22,  
AE21, AD19, AE22, AF23, AE19, AG20,  
AG19, AD17, AE16, AF16, AF18, AG18,  
AH17, AH16  
I/O  
GVDD  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
Freescale Semiconductor  
58  
Table 44. MPC8343E (PBGA) Pinout Listing (continued)  
Power  
Supply  
Signal  
Package Pin Number  
Pin Type  
Notes  
MECC[0:4]/MSRCID[0:4]  
MECC[5]/MDVAL  
MECC[6:7]  
AG13, AE14, AH12, AH10, AE15  
AH14  
I/O  
I/O  
I/O  
O
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
AE13, AH11  
MDM[0:3]  
AG28, AG24, AF20, AG17  
AG12  
MDM[8]  
O
MDQS[0:3]  
MDQS[8]  
AE27, AE26, AE20, AH18  
AH13  
I/O  
I/O  
O
MBA[0:1]  
AF10, AF11  
MA[0:14]  
AF13, AF15, AG16, AD16, AF17, AH20,  
AH19, AH21, AD18, AG21, AD13, AF21,  
AF22, AE1, AA5  
O
MWE  
AD10  
O
O
O
O
O
O
O
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
MRAS  
AF7  
MCAS  
AG6  
MCS[0:3]  
MCKE[0:1]  
MCK[0:3]  
MCK[0:3]  
AE7, AH7, AH4, AF2  
AG23, AH23  
3
AH15, AE24, AE2, AF14  
AG15, AD23, AE3, AG14  
Local Bus Controller Interface  
LAD[0:31]  
T4, T5, T1, R2, R3, T2, R1, R4, P1, P2, P3,  
P4, N1, N4, N2, N3, M1, M2, M3, N5, M4,  
L1, L2, L3, K1, M5, K2, K3, J1, J2, L5, J3  
I/O  
OVDD  
LDP[0]/CKSTOP_OUT  
LDP[1]/CKSTOP_IN  
LDP[2]  
H1  
I/O  
I/O  
I/O  
I/O  
O
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
K5  
H2  
LDP[3]  
G1  
LA[27:31]  
J4, H3, G2, F1, G3  
J5, H4, F2, E1  
F3, G4, D1, E2  
LCS[0:3]  
O
LWE[0:3]/LSDDQM[0:3]/  
LBS[0:3]  
O
LBCTL  
H5  
E3  
F4  
O
O
OVDD  
OVDD  
OVDD  
LALE  
LGPL0/LSDA10/  
I/O  
cfg_reset_source0  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
Freescale Semiconductor  
59  
Table 44. MPC8343E (PBGA) Pinout Listing (continued)  
Power  
Supply  
Signal  
LGPL1/LSDWE/  
Package Pin Number  
Pin Type  
Notes  
D2  
C1  
I/O  
OVDD  
OVDD  
cfg_reset_source1  
LGPL2/  
O
LSDRAS/LOE  
LGPL3/LSDCAS/  
cfg_reset_source2  
C2  
I/O  
OVDD  
LGPL4/LGTA/LUPWAIT/LPBSE C3  
I/O  
I/O  
O
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
LGPL5/cfg_clkin_div  
LCKE  
B3  
E4  
LCLK[0:2]  
D4, A3, C4  
O
LSYNC_OUT  
LSYNC_IN  
U3  
Y2  
O
I
General Purpose I/O Timers  
GPIO1[0]/  
GTM1_TIN1/  
GTM2_TIN2  
D27  
E26  
I/O  
I/O  
OVDD  
OVDD  
GPIO1[1]/  
GTM1_TGATE1/  
GTM2_TGATE2  
GPIO1[2]/  
GTM1_TOUT1  
D28  
G25  
I/O  
I/O  
OVDD  
OVDD  
GPIO1[3]/  
GTM1_TIN2/  
GTM2_TIN1  
GPIO1[4]/  
GTM1_TGATE2/  
GTM2_TGATE1  
J24  
F26  
E27  
E28  
H25  
I/O  
I/O  
I/O  
I/O  
I/O  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
GPIO1[5]/  
GTM1_TOUT2/  
GTM2_TOUT1  
GPIO1[6]/  
GTM1_TIN3/  
GTM2_TIN4  
GPIO1[7]/  
GTM1_TGATE3/  
GTM2_TGATE4  
GPIO1[8]/  
GTM1_TOUT3  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
Freescale Semiconductor  
60  
Table 44. MPC8343E (PBGA) Pinout Listing (continued)  
Power  
Supply  
Signal  
Package Pin Number  
Pin Type  
Notes  
GPIO1[9]/  
GTM1_TIN4/  
GTM2_TIN3  
F27  
K24  
G26  
I/O  
OVDD  
OVDD  
OVDD  
GPIO1[10]/  
GTM1_TGATE4/  
GTM2_TGATE3  
I/O  
I/O  
GPIO1[11]/  
GTM1_TOUT4/  
GTM2_TOUT3  
USB  
DR_D0_ENABLEN  
DR_D1_SER_TXD  
DR_D2_VMO_SE0  
DR_D3_SPEED  
C28  
F25  
B28  
C27  
D26  
E25  
C26  
D25  
B26  
E24  
A27  
C25  
A26  
B25  
A25  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
DR_D4_DP  
DR_D5_DM  
DR_D6_SER_RCV  
DR_D7_DRVVBUS  
DR_SESS_VLD_NXT  
DR_XCVR_SEL_DPPULLUP  
DR_STP_SUSPEND  
DR_RX_ERROR_PWRFAULT  
DR_TX_VALID_PCTL0  
DR_TX_VALIDH_PCTL1  
DR_CLK  
I/O  
O
I
O
O
I
Programmable Interrupt Controller  
MCP_OUT  
E8  
O
OVDD  
OVDD  
OVDD  
OVDD  
2
IRQ0/MCP_IN/GPIO2[12]  
IRQ[1:5]/GPIO2[13:17]  
J28  
I/O  
I/O  
I/O  
K25, J25, H26, L24, G27  
G28  
IRQ[6]/GPIO2[18]/  
CKSTOP_OUT  
IRQ[7]/GPIO2[19]/  
CKSTOP_IN  
J26  
I/O  
OVDD  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
Freescale Semiconductor  
61  
Table 44. MPC8343E (PBGA) Pinout Listing (continued)  
Power  
Supply  
Signal  
Package Pin Number  
Pin Type  
Notes  
Ethernet Management Interface  
EC_MDC  
EC_MDIO  
Y24  
Y25  
O
LVDD1  
LVDD1  
I/O  
2
Gigabit Reference Clock  
EC_GTX_CLK125  
Y26  
I
LVDD1  
Three-Speed Ethernet Controller (Gigabit Ethernet 1)  
TSEC1_COL/GPIO2[20]  
TSEC1_CRS/GPIO2[21]  
TSEC1_GTX_CLK  
TSEC1_RX_CLK  
M26  
I/O  
OVDD  
LVDD1  
LVDD1  
LVDD1  
LVDD1  
OVDD  
LVDD1  
OVDD  
LVDD1  
LVDD1  
OVDD  
U25  
I/O  
O
I
V24  
3
U26  
TSEC1_RX_DV  
U24  
I
TSEC1_RX_ER/GPIO2[26]  
TSEC1_RXD[3:0]  
L28  
I/O  
I
W26, W24, Y28, Y27  
TSEC1_TX_CLK  
N25  
I
TSEC1_TXD[3:0]  
V28, V27, V26, W28  
O
O
I/O  
TSEC1_TX_EN  
W27  
N24  
TSEC1_TX_ER/GPIO2[31]  
Three-Speed Ethernet Controller (Gigabit Ethernet 2)  
TSEC2_COL/GPIO1[21]  
TSEC2_CRS/GPIO1[22]  
TSEC2_GTX_CLK  
P28  
I/O  
OVDD  
LVDD2  
LVDD2  
LVDD2  
LVDD2  
LVDD2  
OVDD  
LVDD2  
OVDD  
LVDD2  
OVDD  
AC28  
AC27  
AB25  
AC26  
I/O  
O
TSEC2_RX_CLK  
I
TSEC2_RX_DV/GPIO1[23]  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TSEC2_RXD[3:0]/GPIO1[13:16] AA25, AA26, AA27, AA28  
TSEC2_RX_ER/GPIO1[25] R25  
TSEC2_TXD[3:0]/GPIO1[17:20] AB26, AB27, AA24, AB28  
TSEC2_TX_ER/GPIO1[24]  
TSEC2_TX_EN/GPIO1[12]  
TSEC2_TX_CLK/GPIO1[30]  
R27  
AD28  
R26  
3
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
Freescale Semiconductor  
62  
Table 44. MPC8343E (PBGA) Pinout Listing (continued)  
Power  
Supply  
Signal  
Package Pin Number  
DUART  
Pin Type  
Notes  
UART_SOUT[1:2]/  
MSRCID[0:1]/LSRCID[0:1]  
B4, A4  
D5, C5  
B5  
O
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
UART_SIN[1:2]/  
MSRCID[2:3]/LSRCID[2:3]  
I/O  
I/O  
I/O  
O
UART_CTS[1]/  
MSRCID4/LSRCID4  
UART_CTS[2]/  
MDVAL/ LDVAL  
A5  
UART_RTS[1:2]  
D6, C6  
I2C interface  
IIC1_SDA  
IIC1_SCL  
IIC2_SDA  
IIC2_SCL  
E5  
A6  
B6  
E7  
I/O  
I/O  
I/O  
I/O  
OVDD  
OVDD  
OVDD  
OVDD  
2
2
2
2
SPI  
SPIMOSI  
SPIMISO  
SPICLK  
SPISEL  
D7  
C7  
B7  
A7  
I/O  
I/O  
I/O  
I
OVDD  
OVDD  
OVDD  
OVDD  
Clocks  
PCI_CLK_OUT[0:4]  
PCI_SYNC_IN/PCI_CLOCK  
PCI_SYNC_OUT  
RTC/PIT_CLOCK  
CLKIN  
Y1, W3, W2, W1, V3  
O
I
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
U4  
U5  
E9  
W5  
O
I
3
I
JTAG  
TCK  
TDI  
H27  
H28  
M24  
J27  
I
I
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
4
3
4
4
TDO  
TMS  
TRST  
O
I
K26  
I
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
Freescale Semiconductor  
63  
Table 44. MPC8343E (PBGA) Pinout Listing (continued)  
Power  
Supply  
Signal  
Package Pin Number  
Test  
Pin Type  
Notes  
TEST  
F28  
T3  
I
I
OVDD  
OVDD  
6
7
TEST_SEL  
PMC  
QUIESCE  
K27  
O
OVDD  
System Control  
PORESET  
HRESET  
SRESET  
K28  
M25  
L27  
I
OVDD  
OVDD  
OVDD  
I/O  
I/O  
1
2
Thermal Management  
THERM0  
B15  
I
9
Power and Ground Signals  
AVDD  
AVDD  
1
2
C15  
U1  
Power for e300  
PLL (1.2 V)  
AVDD  
AVDD  
1
2
Power for  
system PLL  
(1.2 V)  
AVDD3  
AF9  
U2  
Power for DDR  
DLL (1.2 V)  
AVDD  
AVDD  
3
4
AVDD  
GND  
4
Power for LBIU  
DLL (1.2 V)  
A2, B1, B2, D10, D18, E6, E14, E22, F9,  
F12, F15, F18, F21, F24, G5, H6, J23, L4,  
L6, L12, L13, L14, L15, L16, L17, M11, M12,  
M13, M14, M15, M16, M17, M18, M23, N11,  
N12, N13, N14, N15, N16, N17, N18, P6,  
P11, P12, P13, P14, P15, P16, P17, P18,  
P24, R5, R23, R11, R12, R13, R14, R15,  
R16, R17, R18, T11, T12, T13, T14, T15,  
T16, T17, T18, U6, U11, U12, U13, U14,  
U15, U16, U17, U18, V12, V13, V14, V15,  
V16, V17, V23, V25, W4, Y6, AA23, AB24,  
AC5, AC8, AC11, AC14, AC17, AC20, AD9,  
AD15, AD21, AE12, AE18, AF3, AF26  
GVDD  
U9, V9, W10, W19, Y11, Y12, Y14, Y15,  
Y17, Y18, AA6, AB5, AC9, AC12, AC15,  
AC18, AC21, AC24, AD6, AD8, AD14,  
AD20, AE5, AE11, AE17, AG2, AG27  
Power for DDR  
DRAM I/O  
Voltage  
GVDD  
(2.5 V)  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
Freescale Semiconductor  
64  
Table 44. MPC8343E (PBGA) Pinout Listing (continued)  
Power  
Supply  
Signal  
Package Pin Number  
Pin Type  
Notes  
LVDD1  
U20, W25  
Power for  
Three Speed  
Ethernet #1  
and for  
LVDD1  
Ethernet  
Management  
Interface I/O  
(2.5V, 3.3V)  
LVDD2  
V20, Y23  
Power for  
Three Speed  
Ethernet#2I/O  
(2.5V, 3.3V)  
LVDD2  
VDD  
J11, J12, J15, K10, K11, K12, K13, K14,  
K15, K16, K17, K18, K19, L10, L11, L18,  
L19, M10, M19, N10, N19, P9, P10, P19,  
R10, R19, R20, T10, T19, U10, U19, V10,  
V11, V18, V19, W11, W12, W13, W14, W15,  
W16, W17, W18  
Power for Core  
(1.2 V)  
VDD  
OVDD  
B27, D3, D11, D19, E15, E23, F5, F8, F11,  
PCI, 10/100  
OVDD  
F14, F17, F20, G24, H23, H24, J6, J14, J17, Ethernet, and  
J18, K4, L9, L20, L23, L25, M6, M9, M20,  
P5, P20, P23, R6, R9, R24, U23, V4, V6  
other Standard  
(3.3 V)  
MVREF1  
MVREF2  
AF19  
I
I
DDR  
Reference  
Voltage  
AE10  
DDR  
Reference  
Voltage  
No Connection  
NC  
A22, A23, A24, B22, B23, B24, C21, C22,  
C23, C24, D21, D22, D23, D24, E21, M27,  
M28, N26, N27, N28, P25, P26, P27, R28,  
T24, T25, T26, T27, T28, U27, U28, Y3, Y4,  
Y5, AA1, AA2, AA3, AA4, AB1, AB2, AB3,  
AB4, AC1, AC2, AC3, AC4, AD1, AD2, AD3,  
AD5, AD7, AD11, AD12, AE4, AE6, AE8,  
AE9, AE23, AF1, AF5, AF6, AF8, AF24,  
AG1, AG3, AG4, AG7, AG8, AG9, AG10,  
AH2, AH3, AH5, AH8, AH9, V5, V2, V1  
Pins Reserved for future DDR2  
(they should be left unconnected for MPC8343)  
ODT[0:3]  
MBA[2]  
AG5, AD4, AH6, AF4  
AD22  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
Freescale Semiconductor  
65  
Table 44. MPC8343E (PBGA) Pinout Listing (continued)  
Power  
Supply  
Signal  
Package Pin Number  
Pin Type  
Notes  
SPARE1  
SPARE2  
Notes:  
AF12  
AG11  
8
6
1. This pin is an open drain signal. A weak pull-up resistor (1 k) should be placed on this pin to OVDD  
2. This pin is an open drain signal. A weak pull-up resistor (2–10 k) should be placed on this pin to OVDD  
3. This output is actively driven during reset rather than being three-stated during reset.  
4. These JTAG pins have weak internal pull-up P-FETs that are always enabled.  
.
5.This pin should have a weak pull up if the chip is in PCI host mode. Follow PCI specifications recommendation.  
6. This pin must be always be tied to GND  
7. This pin must always be pulled up to OVDD  
8. This pin must always be left no connected  
9. Thermal sensitive resistor.  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
66  
Freescale Semiconductor  
Clocking  
18 Clocking  
Figure 33 shows the internal distribution of clocks within the MPC8343E.  
MPC8343E  
e300 core  
core_clk  
Core PLL  
csb_clk  
to DDR  
memory  
controller  
4
4
DDR  
DDR  
Memory  
Device  
MCK[0:3]  
MCK[0:3]  
Clock  
Div  
/2  
ddr_clk  
lbiu_clk  
Clock  
Unit  
System PLL  
/n  
LCLK[0:2]  
to local bus  
memory  
Local Bus  
Memory  
Device  
LBIU  
DLL  
LSYNC_OUT  
LSYNC_IN  
controller  
csb_clk to rest  
of the device  
PCI_CLK/  
PCI_SYNC_IN  
CFG_CLKIN_DIV  
CLKIN  
PCI_SYNC_OUT  
PCI Clock  
Divider  
5
PCI_CLK_OUT[0:4]  
Figure 33. MPC8343E Clock Subsystem  
The primary clock source for the MPC8343E can be one of two inputs, CLKIN or PCI_CLK, depending  
on whether the device is configured in PCI host or PCI agent mode. When the MPC8343E is configured  
as a PCI host device, CLKIN is its primary input clock. CLKIN feeds the PCI clock divider (÷2) and the  
multiplexors for PCI_SYNC_OUT and PCI_CLK_OUT. The CFG_CLKIN_DIV configuration input  
selects whether CLKIN or CLKIN/2 is driven out on the PCI_SYNC_OUT signal. The OCCR[PCICDn]  
parameters select whether CLKIN or CLKIN/2 is driven out on the PCI_CLK_OUTn signals.  
PCI_SYNC_OUT is connected externally to PCI_SYNC_IN to allow the internal clock subsystem to  
synchronize to the system PCI clocks. PCI_SYNC_OUT must be connected properly to PCI_SYNC_IN,  
with equal delay to all PCI agent devices in the system, to allow the MPC8343E to function. When the  
MPC8343E is configured as a PCI agent device, PCI_CLK is the primary input clock. When the  
MPC8343E is configured as a PCI agent device the CLKIN signal should be tied to GND.  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
Freescale Semiconductor  
67  
Clocking  
As shown in Figure 33, the primary clock input (frequency) is multiplied up by the system phase-locked  
loop (PLL) and the clock unit to create the coherent system bus clock (csb_clk), the internal clock for the  
DDR controller (ddr_clk), and the internal clock for the local bus interface unit (lbiu_clk).  
The csb_clk frequency is derived from a complex set of factors that can be simplified into the following  
equation:  
csb_clk = {PCI_SYNC_IN × (1 + CFG_CLKIN_DIV)} × SPMF  
In PCI host mode, PCI_SYNC_IN × (1 + CFG_CLKIN_DIV) is the CLKIN frequency.  
The csb_clk serves as the clock input to the e300 core. A second PLL inside the e300 core multiplies up  
the csb_clk frequency to create the internal clock for the e300 core (core_clk). The system and core PLL  
multipliers are selected by the SPMF and COREPLL fields in the reset configuration word low (RCWL)  
which is loaded at power-on reset or by one of the hard-coded reset options. See Chapter 4, “Reset,  
Clocking, and Initialization,” in the MPC8349E Reference Manual for more information on the clock  
subsystem.  
The internal ddr_clk frequency is determined by the following equation:  
ddr_clk = csb_clk × (1 + RCWL[DDRCM]  
Note that ddr_clk is not the external memory bus frequency; ddr_clk passes through the DDR clock divider  
(÷2) to create the differential DDR memory bus clock outputs (MCK and MCK). However, the data rate  
is the same frequency as ddr_clk.  
The internal lbiu_clk frequency is determined by the following equation:  
lbiu_clk = csb_clk × (1 + RCWL[LBIUCM]  
Note that lbiu_clk is not the external local bus frequency; lbiu_clk passes through the a LBIU clock divider  
to create the external local bus clock outputs (LSYNC_OUT and LCLK[0:2]). The LBIU clock divider  
ratio is controlled by LCCR[CLKDIV].  
In addition, some of the internal units may be required to be shut off or operate at lower frequency than  
the csb_clk frequency. Those units have a default clock ratio that can be configured by a memory mapped  
register after the device comes out of reset. Table 45 specifies which units have a configurable clock  
frequency.  
Table 45. Configurable Clock Units  
Default  
Frequency  
Unit  
Options  
TSEC2, I2C1  
Security Core  
csb_clk/3  
csb_clk/3  
csb_clk  
Off, csb_clk, csb_clk/2, csb_clk/3  
Off, csb_clk, csb_clk/2, csb_clk/3  
Off, csb_clk  
PCI and DMA complex  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
Freescale Semiconductor  
68  
Table 45 provides the operating frequencies for the MPC8343E PBGA under recommended operating  
conditions (see).  
Table 45. Operating Frequencies for PBGA  
1
Characteristic  
266 MHz  
333 MHz  
400 MHz  
Unit  
e300 core frequency (core_clk)  
200–266  
200–333  
100–333  
200–400  
MHz  
MHz  
Coherent system bus frequency  
(csb_clk)  
DDR memory bus frequency  
100–166.67  
16.67–133  
MHz  
MHz  
2
(MCLK)  
Local bus frequency  
3
(LCLKn)  
PCI input frequency (CLKIN or  
PCI_CLK)  
25–66  
133  
MHz  
MHz  
MHz  
Security core maximum internal  
operating frequency  
USB_DR, USB_MPH maximum  
internal operating frequency  
133  
1
The CLKIN frequency, RCWL[SPMF], and RCWL[COREPLL] settings must be chosen such that the  
resulting ccb_clk, MCLK, LCLK[0:2], and core_clk frequencies do not exceed their respective maximum  
or minimum operating frequencies. The value of SCCR[ENCCM], SCCR[USBDRCM]and  
SCCR[USBMPHCM] must be programmed such that the maximum internal operating frequency of the  
Security core and USB modules will not exceed their respective value listed in this table.  
2
3
The DDR data rate is 2x the DDR memory bus frequency.  
The local bus frequency is 1/2, 1/4, or 1/8 of the lbiu_clk frequency (depending on LCCR[CLKDIV]) which  
is in turn 1x or 2x the ccb_clk frequency (depending on RCWL[LBIUCM]).  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
Freescale Semiconductor  
69  
17.4 System PLL Configuration  
The system PLL is controlled by the RCWL[SPMF] parameter. Table 46 shows the multiplication factor  
encodings for the system PLL.  
Table 46. System PLL Multiplication Factors  
System PLL Multiplication  
RCWL[SPMF]  
Factor  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
× 16  
Reserved  
× 2  
× 3  
× 4  
× 5  
× 6  
× 7  
× 8  
× 9  
× 10  
× 11  
× 12  
× 13  
× 14  
× 15  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
Freescale Semiconductor  
70  
Clocking  
As described in Section 18, “Clocking,” The LBIUCM, DDRCM, and SPMF parameters in the reset  
configuration word low and the CFG_CLKIN_DIV configuration input signal select the ratio between the  
primary clock input (CLKIN or PCI_CLK) and the internal coherent system bus clock (csb_clk). Table 48  
and Table 49 shows the expected frequency values for the CSB frequency for select csb_clk to  
CLKIN/PCI_SYNC_IN ratios.  
Table 48. CSB Frequency Options for host mode  
Input Clock Frequency (MHz)2  
csb_clk :  
CFG_CLKIN_DIV  
SPMF  
Input Clock  
16.67  
25  
33.33  
66.67  
at reset 1  
2
Ratio  
csb_clk Frequency (MHz)  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
High  
High  
High  
High  
High  
High  
High  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
0000  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
2 : 1  
3 : 1  
4 : 1  
5 : 1  
6 : 1  
7 : 1  
8 : 1  
9 : 1  
10 : 1  
11 : 1  
12 : 1  
13 : 1  
14 : 1  
15 : 1  
16 : 1  
2 : 1  
3 : 1  
4 : 1  
5 : 1  
6 : 1  
7 : 1  
8 : 1  
133  
200  
266  
333  
100  
100  
125  
150  
175  
200  
225  
250  
275  
300  
325  
133  
166  
200  
233  
266  
300  
333  
100  
116  
133  
150  
166  
183  
200  
216  
233  
250  
266  
133  
200  
266  
333  
100  
133  
166  
200  
233  
1
2
CFG_CLKIN_DIV select the ratio between CLKIN and PCI_SYNC_OUT.  
CLKIN is the input clock in host mode; PCI_CLK is the input clock in agent mode.  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
Freescale Semiconductor  
71  
Clocking  
Table 49. CSB Frequency Options for Agent Mode  
Input Clock Frequency (MHz)2  
csb_clk :  
CFG_CLKIN_DIV  
at reset 1  
SPMF  
Input Clock  
16.67  
25  
33.33  
66.67  
2
Ratio  
csb_clk Frequency (MHz)  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
high  
High  
High  
High  
High  
High  
High  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
0000  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
2 : 1  
3 : 1  
133  
200  
266  
333  
100  
4 : 1  
100  
125  
150  
175  
200  
225  
250  
275  
300  
325  
133  
166  
200  
233  
266  
300  
333  
5 : 1  
6 : 1  
100  
116  
133  
150  
166  
183  
200  
216  
233  
250  
266  
7 : 1  
8 : 1  
9 : 1  
10 : 1  
11 : 1  
12 : 1  
13 : 1  
14 : 1  
15 : 1  
16 : 1  
4 : 1  
100  
150  
200  
250  
300  
133  
200  
266  
333  
266  
6 : 1  
100  
133  
166  
200  
233  
266  
8 : 1  
10 : 1  
12 : 1  
14 : 1  
16 : 1  
1
2
CFG_CLKIN_DIV doubles csb_clk if set high.  
CLKIN is the input clock in host mode; PCI_CLK is the input clock in agent mode.  
18.2 Core PLL Configuration  
RCWL[COREPLL] selects the ratio between the internal coherent system bus clock (csb_clk) and the e300  
core clock (core_clk). Table 50 shows the encodings for RCWL[COREPLL]. COREPLL values that are  
not listed in Table 50 should be considered as reserved.  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
72  
Freescale Semiconductor  
Clocking  
NOTE  
Core VCO frequency = Core frequency × VCO divider  
VCO divider has to be set properly so that the core VCO frequency is in the  
range of 800–1800 MHz.  
Table 50. e300 Core PLL Configuration  
RCWL[COREPLL]  
core_clk : csb_clk Ratio  
VCO divider 1  
0-1  
nn  
2-5  
6
0000  
n
PLL bypassed  
PLL bypassed  
(PLL off, csb_clk clocks  
core directly)  
(PLL off, csb_clk clocks  
core directly)  
00  
01  
10  
11  
00  
01  
10  
11  
00  
01  
10  
11  
00  
01  
10  
11  
00  
01  
10  
11  
0001  
0001  
0001  
0001  
0001  
0001  
0001  
0001  
0010  
0010  
0010  
0010  
0010  
0010  
0010  
0010  
0011  
0011  
0011  
0011  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1:1  
2
4
8
8
2
4
8
8
2
4
8
8
2
4
8
8
2
4
8
8
1:1  
1:1  
1:1  
1.5:1  
1.5:1  
1.5:1  
1.5:1  
2:1  
2:1  
2:1  
2:1  
2.5:1  
2.5:1  
2.5:1  
2.5:1  
3:1  
3:1  
3:1  
3:1  
1
Core VCO frequency = Core frequency × VCO divider. Note that VCO divider  
has  
to be set properly so that the core VCO frequency is in the range of 800–1800 MHz.  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
Freescale Semiconductor  
73  
Clocking  
18.3 Suggested PLL Configurations  
Table 51 shows suggested PLL configurations for 33 MHz and 66 MHz input clocks, when  
CFG_CLKIN_DIV is low at reset.  
Table 51. Suggested PLL Configurations  
Ref  
No.  
RCWL  
266 MHz Device  
333 MHz Device  
400 MHz Device  
1
Input  
Clock  
Freq  
Input  
Input  
CSB  
Freq  
(MHz)  
Core  
Freq  
(MHz)  
CSB  
Freq  
(MHz)  
Core  
Freq  
(MHz)  
CSB  
Freq  
(MHz)  
Core  
Freq  
(MHz)  
CORE  
PLL  
Clock  
Freq  
Clock  
Freq  
SPMF  
2
2
2
(MHz)  
(MHz)  
(MHz)  
33 MHz CLKIN/PCI_CLK Options  
343  
324  
423  
622  
523  
424  
822  
326  
623  
922  
425  
524  
A22  
723  
604  
624  
0011  
0011  
0100  
0110  
0101  
0100  
1000  
0011  
0110  
1001  
0100  
0101  
1010  
0111  
0110  
0110  
1000011  
0100100  
0100011  
0100010  
0100011  
0100100  
0100010  
0100110  
0100011  
0100010  
0100101  
0100100  
0100010  
0100011  
0000100  
0100100  
33  
33  
33  
33  
33  
33  
33  
100  
100  
133  
200  
166  
133  
266  
150  
200  
200  
200  
250  
266  
266  
33  
33  
33  
33  
33  
33  
33  
33  
33  
33  
33  
33  
33  
100  
100  
133  
200  
166  
133  
266  
100  
200  
300  
133  
166  
333  
150  
200  
200  
200  
250  
266  
266  
300  
300  
300  
333  
333  
333  
33  
33  
33  
33  
33  
33  
33  
33  
33  
33  
33  
33  
33  
33  
33  
33  
100  
100  
133  
200  
166  
133  
266  
100  
200  
300  
133  
166  
333  
233  
200  
200  
150  
200  
200  
200  
250  
266  
266  
300  
300  
300  
333  
333  
333  
350  
400  
400  
66 MHz CLKIN/PCI_CLK Options  
242  
322  
224  
422  
323  
223  
522  
304  
324  
403  
423  
0010  
0011  
0010  
0100  
0011  
0010  
0101  
0011  
0011  
0100  
0100  
1000010  
0100010  
0100100  
0100010  
0100011  
0100101  
0100010  
0000100  
0100100  
0000011  
0100011  
66  
66  
66  
66  
133  
200  
133  
266  
133  
200  
266  
266  
66  
66  
66  
66  
66  
66  
66  
133  
200  
133  
266  
200  
133  
333  
133  
200  
266  
266  
300  
333  
333  
66  
66  
66  
66  
66  
66  
66  
66  
66  
66  
66  
133  
200  
133  
266  
200  
133  
333  
200  
200  
266  
266  
133  
200  
266  
266  
300  
333  
333  
400  
400  
400  
400  
1
2
The PLL configuration reference number is the hexadecimal representation of RCWL, bits 4-15 associated with the SPMF  
and COREPLL settings given in the table.  
The input clock is CLKIN for PCI host mode or PCI_CLK for PCI agent mode.  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
74  
Freescale Semiconductor  
Thermal  
19 Thermal  
This section describes the thermal specifications of the MPC8343E.  
19.1 Thermal Characteristics  
.Table 52 provides the package thermal characteristics for the 620 29x29 mm PBGA of the MPC8343E  
Table 52. Package Thermal Characteristics for PBGA  
Characteristic  
Symbol  
Value  
Unit  
Notes  
Junction-to-ambient Natural Convection on single layer board (1s)  
Junction-to-ambient Natural Convection on four layer board (2s2p)  
Junction-to-ambient (@200 ft/min) on single layer board (1s)  
Junction-to-ambient (@ 200 ft/min) on four layer board (2s2p)  
Junction-to-board thermal  
RθJA  
RθJMA  
RθJMA  
RθJMA  
RθJB  
21  
15  
17  
12  
6
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
1, 2  
1, 3  
1, 3  
1, 3  
4
Junction-to-case thermal  
RθJC  
5
5
Junction-to-Package Natural Convection on Top  
ψJT  
5
6
Notes  
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site  
(board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board  
thermal resistance.  
2. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.  
3. Per JEDEC JESD51-6 with the board horizontal.  
4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is  
measured on the top surface of the board near the package.  
5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883  
Method 1012.1).  
6. Thermal characterization parameter indicating the temperature difference between package top and the junction  
temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter  
is written as Psi-JT.  
19.2 Thermal Management Information  
For the following sections, P = (V X I ) + P where P is the power dissipation of the I/O drivers.  
D
DD  
DD  
I/O  
I/O  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
Freescale Semiconductor  
75  
Thermal  
19.2.1 Estimation of Junction Temperature with Junction-to-Ambient  
Thermal Resistance  
An estimation of the chip junction temperature, T , can be obtained from the equation:  
J
TJ = TA + (RθJA × PD)  
where:  
TA = ambient temperature for the package (°C)  
RθJA = junction to ambient thermal resistance (°C/W)  
PD = power dissipation in the package (W)  
The junction to ambient thermal resistance is an industry standard value that provides a quick and easy  
estimation of thermal performance. As a general statement, the value obtained on a single layer board is  
appropriate for a tightly packed printed circuit board. The value obtained on the board with the internal  
planes is usually appropriate if the board has low power dissipation and the components are well separated.  
Test cases have demonstrated that errors of a factor of two (in the quantity T - T ) are possible.  
J
A
19.2.2 Estimation of Junction Temperature with Junction-to-Board  
Thermal Resistance  
The thermal performance of a device cannot be adequately predicted from the junction to ambient thermal  
resistance. The thermal performance of any component is strongly dependent on the power dissipation of  
surrounding components. In addition, the ambient temperature varies widely within the application. For  
many natural convection and especially closed box applications, the board temperature at the perimeter  
(edge) of the package will be approximately the same as the local air temperature near the device.  
Specifying the local ambient conditions explicitly as the board temperature provides a more precise  
description of the local ambient conditions that determine the temperature of the device.  
At a known board temperature, the junction temperature is estimated using the following equation:  
TJ = TA + (RθJA × PD)  
where:  
TA = ambient temperature for the package (°C)  
RθJA = junction to ambient thermal resistance (°C/W)  
PD = power dissipation in the package (W)  
When the heat loss from the package case to the air can be ignored, acceptable predictions of junction  
temperature can be made. The application board should be similar to the thermal test condition: the  
component is soldered to a board with internal planes.  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
76  
Freescale Semiconductor  
Thermal  
19.2.3 Experimental Determination of Junction Temperature  
To determine the junction temperature of the device in the application after prototypes are available, the  
Thermal Characterization Parameter (Ψ ) can be used to determine the junction temperature with a  
JT  
measurement of the temperature at the top center of the package case using the following equation:  
TJ = TT + (ΨJT × PD)  
where:  
TT = thermocouple temperature on top of package (°C)  
ΨJT = junction to ambient thermal resistance (°C/W)  
PD = power dissipation in the package (W)  
The thermal characterization parameter is measured per JESD51-2 specification using a 40 gauge type T  
thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so  
that the thermocouple junction rests on the package. A small amount of epoxy is placed over the  
thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire  
is placed flat against the package case to avoid measurement errors caused by cooling effects of the  
thermocouple wire.  
19.2.4 Heat Sinks and Junction-to-Case Thermal Resistance  
In some application environments, a heat sink will be required to provide the necessary thermal  
management of the device. When a heat sink is used, the thermal resistance is expressed as the sum of a  
junction to case thermal resistance and a case to ambient thermal resistance:  
RθJA = RθJC + RθCA  
where:  
RθJA = junction to ambient thermal resistance (°C/W)  
RθJC = junction to case thermal resistance (°C/W)  
RθCA = case to ambient thermal resistance (°C/W)  
Rθ is device related and cannot be influenced by the user. The user controls the thermal environment to  
JC  
change the case to ambient thermal resistance, Rθ . For instance, the user can change the size of the heat  
CA  
sink, the air flow around the device, the interface material, the mounting arrangement on printed circuit  
board, or change the thermal dissipation on the printed circuit board surrounding the device.  
To illustrate the thermal performance of the devices with heat sinks, the thermal performance has been  
simulated with a few commercially available heat sinks. The heat sink choice is determined by the  
application environment (temperature, air flow, adjacent component power dissipation) and the physical  
space available. Because there is not a standard application environment, a standard heat sink is not  
required.  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
Freescale Semiconductor  
77  
Thermal  
Table 53 showsheat sinks and junction-to-case thermal resistance for PBGA of the MPC8343E.  
Table 53. Heat Sinks and Junction-to-Case Thermal Resistance MPC8343E (PBGA)  
29x29 mm PBGA  
Heat Sink Assuming Thermal Grease  
Air Flow  
Junction-to-Ambient  
Thermal Resistance  
AAVID 30x30x9.4 mm Pin Fin  
AAVID 30x30x9.4 mm Pin Fin  
Natural Convection  
1 m/s  
13.5  
9.6  
AAVID 30x30x9.4 mm Pin Fin  
2 m/s  
8.8  
AAVID 31x35x23 mm Pin Fin  
Natural Convection  
1 m/s  
11.3  
8.1  
AAVID 31x35x23 mm Pin Fin  
AAVID 31x35x23 mm Pin Fin  
2 m/s  
7.5  
Wakefield, 53x53x25 mm Pin Fin  
Natural Convection  
1 m/s  
9.1  
Wakefield, 53x53x25 mm Pin Fin  
7.1  
Wakefield, 53x53x25 mm Pin Fin  
2 m/s  
6.5  
MEI, 75x85x12 no adjacent board, extrusion  
MEI, 75x85x12 no adjacent board, extrusion  
MEI, 75x85x12 no adjacent board, extrusion  
MEI, 75x85x12 mm, adjacent board, 40 mm Side bypass  
Natural Convection  
1 m/s  
10.1  
7.7  
2 m/s  
6.6  
1 m/s  
6.9  
Accurate thermal design requires thermal modeling of the application environment using computational  
fluid dynamics software which can model both the conduction cooling and the convection cooling of the  
air moving through the application. Simplified thermal models of the packages can be assembled using the  
junction-to-case and junction-to-board thermal resistances listed in the thermal resistance table. More  
detailed thermal models can be made available on request.  
Heat sink vendors include the following list:  
Aavid Thermalloy  
80 Commercial St.  
Concord, NH 03301  
Internet: www.aavidthermalloy.com  
603-224-9988  
408-567-8082  
Alpha Novatech  
473 Sapena Ct. #12  
Santa Clara, CA 95054  
Internet: www.alphanovatech.com  
International Electronic Research Corporation (IERC)  
413 North Moss St.  
818-842-7277  
Burbank, CA 91502  
Internet: www.ctscorp.com  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
Freescale Semiconductor  
78  
Thermal  
Millennium Electronics (MEI)  
Loroco Sites  
671 East Brokaw Road  
San Jose, CA 95112  
408-436-8770  
800-522-2800  
603-635-5102  
Internet: www.mei-thermal.com  
Tyco Electronics  
Chip Coolers™  
P.O. Box 3668  
Harrisburg, PA 17105-3668  
Internet: www.chipcoolers.com  
Wakefield Engineering  
33 Bridge St.  
Pelham, NH 03076  
Internet: www.wakefield.com  
Interface material vendors include the following:  
Chomerics, Inc.  
77 Dragon Ct.  
Woburn, MA 01801  
Internet: www.chomerics.com  
781-935-4850  
800-248-2481  
Dow-Corning Corporation  
Dow-Corning Electronic Materials  
P.O. Box 994  
Midland, MI 48686-0997  
Internet: www.dowcorning.com  
Shin-Etsu MicroSi, Inc.  
10028 S. 51st St.  
Phoenix, AZ 85044  
888-642-7674  
800-347-4572  
Internet: www.microsi.com  
The Bergquist Company  
18930 West 78th St.  
Chanhassen, MN 55317  
Internet: www.bergquistcompany.com  
19.3 Heat Sink Attachment  
When attaching heat sinks to these devices, an interface material is required. The best method is to use  
thermal grease and a spring clip. The spring clip should connect to the printed circuit board, either to the  
board itself, to hooks soldered to the board, or to a plastic stiffener. Avoid attachment forces which would  
lift the edge of the package or peel the package from the board. Such peeling forces reduce the solder joint  
lifetime of the package. Recommended maximum force on the top of the package is 10 lb force (4.5 kg  
force). If an adhesive attachment is planned, the adhesive should be intended for attachment to painted  
or plastic surfaces and its performance verified under the application requirements.  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
Freescale Semiconductor  
79  
Thermal  
19.3.1 Experimental Determination of the Junction Temperature with a  
Heat Sink  
When heat sink is used, the junction temperature is determined from a thermocouple inserted at the  
interface between the case of the package and the interface material. A clearance slot or hole is normally  
required in the heat sink. Minimizing the size of the clearance is important to minimize the change in  
thermal performance caused by removing part of the thermal interface to the heat sink. Because of the  
experimental difficulties with this technique, many engineers measure the heat sink temperature and then  
back calculate the case temperature using a separate measurement of the thermal resistance of the  
interface. From this case temperature, the junction temperature is determined from the junction to case  
thermal resistance.  
TJ = TC + (RθJA × PD)  
where:  
TC = case temperature of the package (°C)  
RθJC = junction to case thermal resistance (°C/W)  
PD = power dissipation (W)  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
80  
Freescale Semiconductor  
Thermal  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
Freescale Semiconductor  
81  
System Design Information  
20 System Design Information  
This section provides electrical and thermal design recommendations for successful application of the  
MPC8343E.  
20.1 System Clocking  
The MPC8343E includes two PLLs.  
1. The platform PLL (AV 1) generates the platform clock from the externally supplied CLKIN  
DD  
input. The frequency ratio between the platform and CLKIN is selected using the platform PLL  
ratio configuration bits as described in Section 18.1, “System PLL Configuration.”  
2. The e300 Core PLL (AV 2) generates the core clock as a slave to the platform clock. The  
DD  
frequency ratio between the e300 core clock and the platform clock is selected using the e300  
PLL ratio configuration bits as described in Section , “.”  
20.2 PLL Power Supply Filtering  
Each of the PLLs listed above is provided with power through independent power supply pins  
(AV 1,AV 2 respectively). The AV level should always be equivalent to V , and preferably these  
DD  
DD  
DD  
DD  
voltages will be derived directly from V through a low frequency filter scheme such as the following.  
DD  
There are a number of ways to reliably provide power to the PLLs, but the recommended solution is to  
provide five independent filter circuits as illustrated in Figure 34, one to each of the five AV pins. By  
DD  
providing independent filters to each PLL the opportunity to cause noise injection from one PLL to the  
other is reduced.  
This circuit is intended to filter noise in the PLLs resonant frequency range from a 500 kHz to 10 MHz  
range. It should be built with surface mount capacitors with minimum Effective Series Inductance (ESL).  
Consistent with the recommendations of Dr. Howard Johnson in High Speed Digital Design: A Handbook  
of Black Magic (Prentice Hall, 1993), multiple small capacitors of equal value are recommended over a  
single large value capacitor.  
Each circuit should be placed as close as possible to the specific AV pin being supplied to minimize  
DD  
noise coupled from nearby circuits. It should be possible to route directly from the capacitors to the AV  
pin, which is on the periphery of package, without the inductance of vias.  
DD  
Figure 34 shows the PLL power supply filter circuit.  
10 Ω  
VDD  
AVDD (or L2AVDD)  
2.2 µF  
2.2 µF  
Low ESL Surface Mount Capacitors  
GND  
Figure 34. PLL Power Supply Filter Circuit  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
Freescale Semiconductor  
82  
System Design Information  
20.3 Decoupling Recommendations  
Due to large address and data buses, and high operating frequencies, the MPC8343E can generate transient  
power surges and high frequency noise in its power supply, especially while driving large capacitive loads.  
This noise must be prevented from reaching other components in the MPC8343E system, and the  
MPC8343E itself requires a clean, tightly regulated source of power. Therefore, it is recommended that  
the system designer place at least one decoupling capacitor at each V , OV , GV , and LV pins  
DD  
DD  
DD  
DD  
of the MPC8343E. These decoupling capacitors should receive their power from separate V , OV  
,
DD  
DD  
GV , LV , and GND power planes in the PCB, utilizing short traces to minimize inductance.  
DD  
DD  
Capacitors may be placed directly under the device using a standard escape pattern. Others may surround  
the part.  
These capacitors should have a value of 0.01 or 0.1 µF. Only ceramic SMT (surface mount technology)  
capacitors should be used to minimize lead inductance, preferably 0402 or 0603 sizes.  
In addition, it is recommended that there be several bulk storage capacitors distributed around the PCB,  
feeding the V , OV , GV , and LV planes, to enable quick recharging of the smaller chip  
DD  
DD  
DD  
DD  
capacitors. These bulk capacitors should have a low ESR (equivalent series resistance) rating to ensure the  
quick response time necessary. They should also be connected to the power and ground planes through two  
vias to minimize inductance. Suggested bulk capacitors—100–330 µF (AVX TPS tantalum or Sanyo  
OSCON).  
20.4 Connection Recommendations  
To ensure reliable operation, it is highly recommended to connect unused inputs to an appropriate signal  
level. Unused active low inputs should be tied to OV , GV , or LV as required. Unused active high  
DD  
DD  
DD  
inputs should be connected to GND. All NC (no-connect) signals must remain unconnected.  
Power and ground connections must be made to all external V , GV , LV , OV , and GND pins of  
DD  
DD  
DD  
DD  
the MPC8343E.  
20.5 Output Buffer DC Impedance  
The MPC8343E drivers are characterized over process, voltage, and temperature. For all buses, the driver  
2
is a push-pull single-ended driver type (open drain for I C).  
To measure Z for the single-ended drivers, an external resistor is connected from the chip pad to OV  
0
DD  
or GND. Then, the value of each resistor is varied until the pad voltage is OV /2 (see Figure 35). The  
DD  
output impedance is the average of two components, the resistances of the pull-up and pull-down devices.  
When data is held high, SW1 is closed (SW2 is open) and R is trimmed until the voltage at the pad equals  
P
OV /2. R then becomes the resistance of the pull-up devices. R and R are designed to be close to each  
DD  
P
P
N
other in value. Then, Z = (R + R )/2.  
0
P
N
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
Freescale Semiconductor  
83  
System Design Information  
OVDD  
RN  
SW2  
SW1  
Pad  
Data  
RP  
OGND  
Figure 35. Driver Impedance Measurement  
The value of this resistance and the strength of the driver’s current source can be found by making two  
measurements. First, the output voltage is measured while driving logic 1 without an external differential  
termination resistor. The measured voltage is V = R  
while driving logic 1 with an external precision differential termination resistor of value R . The  
× I  
. Second, the output voltage is measured  
1
source  
source  
term  
measured voltage is V = 1/(1/R + 1/R )) × I  
. Solving for the output impedance gives R  
= R  
2
1
2
source  
source term  
× (V /V – 1). The drive current is then I  
= V /R  
.
1
2
source  
1
source  
Table 54 summarizes the signal impedance targets. The driver impedance are targeted at minimum V  
,
DD  
nominal OV , 105°C.  
DD  
Table 54. Impedance Characteristics  
Local Bus, Ethernet,  
PCI Signals  
(not including PCI  
output clocks)  
PCI Output Clocks  
(including  
PCI_SYNC_OUT)  
DUART, Control,  
Configuration, Power  
Management  
Impedance  
DDR DRAM Symbol  
Unit  
R
R
42 Target  
42 Target  
NA  
25 Target  
25 Target  
NA  
42 Target  
42 Target  
NA  
20 Target  
20 Target  
NA  
Z0  
Z0  
N
P
Differential  
ZDIFF  
Note: Nominal supply voltages. See Table 55, Tj = 105°C.  
20.6 Configuration Pin Muxing  
The MPC8343E provides the user with power-on configuration options which can be set through the use  
of external pull-up or pull-down resistors of 4.7 kon certain output pins (see customer visible  
configuration pins). These pins are generally used as output only pins in normal operation.  
While HRESET is asserted however, these pins are treated as inputs. The value presented on these pins  
while HRESET is asserted, is latched when HRESET deasserts, at which time the input receiver is disabled  
and the I/O circuit takes on its normal function. Careful board layout with stubless connections to these  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
84  
Freescale Semiconductor  
System Design Information  
pull-up/pull-down resistors coupled with the large value of the pull-up/pull-down resistor should minimize  
the disruption of signal quality or speed for output pins thus configured.  
20.7 Pull-Up Resistor Requirements  
The MPC8343E requires high resistance pull-up resistors (10 kis recommended) on open drain type pins  
2
including I C pins, Ethernet Management MDIO pin and EPIC interrupt pins.  
Correct operation of the JTAG interface requires configuration of a group of system control pins as  
demonstrated in Figure 36. Care must be taken to ensure that these pins are maintained at a valid deasserted  
state under normal operating conditions as most have asynchronous behavior and spurious assertion will  
give unpredictable results.  
Refer to the PCI 2.2 specification for all pull-ups required for PCI.  
20.8 JTAG Configuration Signals  
Boundary scan testing is enabled through the JTAG interface signals. The TRST signal is optional in the  
IEEE 1149.1 specification, but is provided on all processors that implement the PowerPC architecture. The  
MPC8343E requires TRST to be asserted during reset conditions to ensure the JTAG boundary logic does  
not interfere with normal chip operation. While it is possible to force the TAP controller to the reset state  
using only the TCK and TMS signals, generally systems will assert TRST during power-on reset. Because  
the JTAG interface is also used for accessing the common on-chip processor (COP) function, simply tying  
TRST to PORESET is not practical.  
The COP function of these processors allows a remote computer system (typically, a PC with dedicated  
hardware and debugging software) to access and control the internal operations of the processor. The COP  
interface connects primarily through the JTAG port of the processor, with some additional status  
monitoring signals. The COP port requires the ability to independently assert TRST without causing  
PORESET. If the target system has independent reset sources, such as voltage monitors, watchdog timers,  
power supply failures, or push-button switches, then the COP reset signals must be merged into these  
signals with logic.  
The arrangement shown in Figure 36 allows the COP to independently assert HRESET or TRST, while  
ensuring that the target can drive HRESET as well. If the JTAG interface and COP header will not be used,  
TRST should be tied to PORESET so that it is asserted when the system reset signal (PORESET) is  
asserted.  
The COP header shown Figure 36 in adds many benefits—breakpoints, watchpoints, register and memory  
examination/modification, and other standard debugger features are possible through this interface—and  
can be as inexpensive as an unpopulated footprint for a header to be added when needed.  
The COP interface has a standard header for connection to the target system, based on the 0.025"  
square-post, 0.100" centered header assembly (often called a Berg header).  
There is no standardized way to number the COP header shown in Figure 36; consequently, many different  
pin numbers have been observed from emulator vendors. Some are numbered top-to-bottom then  
left-to-right, while others use left-to-right then top-to-bottom, while still others number the pins counter  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
Freescale Semiconductor  
85  
System Design Information  
clockwise from pin 1 (as with an IC). Regardless of the numbering, the signal placement recommended in  
Figure 36 is common to all known emulators.  
PORESET  
PORESET  
From Target  
Board Sources  
(if any)  
SRESET  
HRESET  
SRESET  
HRESET  
10 kΩ  
HRESET  
OVDD  
OVDD  
13  
11  
SRESET  
10 kΩ  
10 kΩ  
10 kΩ  
OVDD  
OVDD  
TRST  
TRST  
4
2
4
1
3
2 kΩ  
VDD_SENSE  
6 1  
5
OVDD  
5
6
NC  
7
8
CHKSTP_OUT  
CHKSTP_OUT  
OVDD  
15  
10 kΩ  
9
10  
12  
11  
10 kΩ  
14 2  
OVDD  
CHKSTP_IN  
TMS  
KEY  
No pin  
13  
15  
CHKSTP_IN  
TMS  
8
9
1
3
16  
TDO  
TDI  
COP Connector  
Physical Pin Out  
TDO  
TDI  
TCK  
7
2
TCK  
NC  
NC  
10  
12  
16  
NC  
Notes:  
1. Some systems require power to be fed from the application board into the debugger repeater card  
via the COP header. In this case the resistor value for VDD_SENSE should be around 20.  
2. Key location; pin 14 is not physically present on the COP header.  
Figure 36. JTAG Interface Connection  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
86  
Freescale Semiconductor  
Electrical Characteristics  
21 Electrical Characteristics  
This section provides the AC and DC electrical specifications and thermal charaistics for the MPC8343E.  
The MPC8343E is currently targeted to these specifications. Some of these specifications are independent  
of the I/O cell, but are included for a more complete reference. These are not purely I/O buffer design  
specifications.  
21.1 Overall DC Electrical Characteristics  
This section covers the ratings, conditions, and other characteristics.  
21.1.1 Absolute Maximum Ratings  
Table 55 provides the absolute maximum ratings.  
1
Table 55. Absolute Maximum Ratings  
Characteristic  
Symbol  
Max Value  
Unit  
Notes  
Core supply voltage  
PLL supply voltage  
VDD  
AVDD  
GVDD  
LVDD  
OVDD  
–0.3 to 1.32  
–0.3 to 1.32  
–0.3 to 3.63  
–0.3 to 3.63  
–0.3 to 3.63  
V
V
V
V
V
DDR DRAM I/O voltage  
Three-speed Ethernet I/O, MII management voltage  
PCI, local bus, DUART, system control and power  
management, I2C, and JTAG I/O voltage  
Input voltage  
DDR DRAM signals  
MVIN  
MVREF  
LVIN  
–0.3 to (GVDD + 0.3)  
–0.3 to (GVDD + 0.3)  
–0.3 to (LVDD + 0.3)  
–0.3 to (OVDD + 0.3)  
V
V
V
V
2, 5  
2, 5  
4, 5  
3, 5  
DDR DRAM reference  
Three-speed Ethernet signals  
Local bus, DUART, CLKIN,  
system control and power  
management, I2C, and JTAG  
signals  
OVIN  
PCI  
OVIN  
–0.3 to (OVDD + 0.3)  
V
6
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
Freescale Semiconductor  
87  
Electrical Characteristics  
1
Table 55. Absolute Maximum Ratings (continued)  
Characteristic  
Symbol  
Max Value  
–55 to 150  
Unit  
Notes  
Storage temperature range  
TSTG  
°C  
Notes:  
1. Functional and tested operating conditions are given in Table 56. Absolute maximum ratings are stress ratings only,  
and functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device  
reliability or cause permanent damage to the device.  
2. Caution: MVIN must not exceed GVDD by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms  
during power-on reset and power-down sequences.  
3. Caution: OVIN must not exceed OVDD by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms  
during power-on reset and power-down sequences.  
4. Caution: LVIN must not exceed LVDD by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during  
power-on reset and power-down sequences.  
5. (M,L,O)VIN and MVREF may overshoot/undershoot to a voltage and for a maximum duration as shown in Figure 37.  
6. OVIN on the PCI interface may overshoot/undershoot according to the PCI Electrical Specification for 3.3-V  
operation, as shown in Figure 3.  
21.1.2 Power Supply Voltage Specification  
Table 56 provides the recommended operating conditions for the MPC8343E. Note that the values in  
Table 56 are the recommended and tested operating conditions. Proper device operation outside of these  
conditions is not guaranteed.  
Table 56. Recommended Operating Conditions  
Recommended  
Characteristic  
Symbol  
Unit  
Notes  
Value  
Core supply voltage  
PLL supply voltage  
VDD  
1.2 V 60 mV  
1.2 V 60 mV  
2.5 V 125 mV  
V
V
V
V
1
1
AVDD  
GVDD  
LVDD1  
DDR DRAM I/O supply voltage  
Three-speed Ethernet I/O supply voltage  
3.3 V 330 mV  
2.5 V 125 mV  
Three-speed Ethernet I/O supply voltage  
LVDD2  
OVDD  
3.3 V 330 mV  
2.5 V 125 mV  
V
V
PCI, local bus, DUART, system control and power  
management, I2C, and JTAG I/O voltage  
3.3 V 330 mV  
Notes:  
1. GVDD, LVDD, OVDD, AVDD, and VDD must track each other and must vary in the same direction—either in the  
positive or negative direction.  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
88  
Freescale Semiconductor  
Electrical Characteristics  
Figure 37 shows the undershoot and overshoot voltages at the interfaces of the MPC8343E.  
G/L/OVDD + 20%  
G/L/OVDD + 5%  
G/L/OVDD  
VIH  
GND  
GND – 0.3 V  
VIL  
GND – 0.7 V  
Not to Exceed 10%  
1
of tinterface  
Note:  
1. Note that tinterface refers to the clock period associated with the bus clock interface.  
Figure 37. Overshoot/Undershoot Voltage for GV /OV /LV  
DD  
DD  
DD  
Figure 38 shows the undershoot and overshoot voltage of the PCI interface of the MPC8343E for the 3.3-V  
signals, respectively.  
11 ns  
(Min)  
+7.1 V  
Overvoltage  
Waveform  
7.1 V p-to-p  
(Min)  
0 V  
4 ns  
(Max)  
4 ns  
(Max)  
62.5 ns  
+3.6 V  
Undervoltage  
Waveform  
7.1 V p-to-p  
(Min)  
–3.5 V  
Figure 38. Maximum AC Waveforms on PCI interface for 3.3-V Signaling  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
Freescale Semiconductor  
89  
Electrical Characteristics  
21.1.3 Output Driver Characteristics  
Table 57 provides information on the characteristics of the output driver strengths. The values are  
preliminary estimates.  
Table 57. Output Drive Capability  
Output Impedance  
Supply  
Voltage  
Driver Type  
()  
Local bus interface utilities signals  
PCI signals (not including PCI output clocks)  
PCI output clocks (including PCI_SYNC_OUT)  
DDR signal  
42  
25  
42  
20  
42  
42  
42  
OVDD = 3.3 V  
GVDD = 2.5 V  
LVDD = 2.5/3.3 V  
OVDD = 3.3 V  
TSEC/10/100 signals  
DUART, system control, I2C, JTAG  
GPIO signals  
OVDD = 3.3 V,  
LVDD = 2.5/3.3 V  
21.2 Power Sequencing  
MPC8343E does not require the core supply voltage and IO supply voltages to be applied in any particular  
order. Note that during the power ramp up, before the power supplies are stable, there might be a period  
of time that IO pins are actively driven. After the power is stable, as long as PORESET is asserted, most  
IO pins are tri-stated. In order to minimize the time that IO pins being actively driven, it is recommended  
to apply core voltage before IO voltage and assert PORESET before the power supplies fully ramp up.  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
90  
Freescale Semiconductor  
Document Revision History  
22 Document Revision History  
Table 58 provides a revision history of this document.  
Table 58. Document Revision History  
Revision  
Date  
Substantive Change(s)  
6
11/2005  
Updated values in Table 51, “ Suggested PLL Configurations.”  
Updated values in Table 46, “ Operating Frequencies for PBGA.”  
5
4
3
10/2005  
9/2005  
8/2005  
Changed classification of document to “Technical Data.”  
Added Table 2, "MPC8343E Typical I/O Power Dissipation."  
Table 1: Updated values for power dissipation that were TBD in Revision 2.  
Table 44: Deleted package pin number AD22 from NC signal row.  
2
1
5/2005  
4/2005  
Table 1: Typical values for power dissipation are changed to "TBD".  
Table 1: Addition of note 1  
Table 44: Addition of Therm0 (B15)  
0
4/2005  
23 Ordering Information  
Ordering information for the parts fully covered by this specification document is provided in  
Section 23.1, “Part Numbers Fully Addressed by this Document.”  
23.1 Part Numbers Fully Addressed by this Document  
Table 59 provides the Freescale part numbering nomenclature for the MPC8343E. Note that the individual  
part numbers correspond to a maximum processor core frequency. For available frequencies, contact your  
local Freescale sales office. In addition to the processor frequency, the part numbering scheme also  
includes an application modifier which may specify special application conditions. Each part number also  
contains a revision code which refers to the die mask revision number.  
Table 59. Part Numbering Nomenclature  
MPC nnnn  
pp  
aa  
a
r
e
t
1
Product  
Code Identifier  
Part  
Encryption  
Acceleration  
Temperature  
Range  
Processor  
Frequency  
Platform  
Frequency  
Revision  
Level  
2
Package  
3
MPC  
8343  
Blank = Not  
included  
Blank = 0 to  
105°C  
C= -40 to 105°C  
ZQ = PBGA  
e300 core  
speed  
AD =266  
AG = 400  
D = 266  
Contactlocal  
Freescale  
sales office  
VR = PB Free  
PBGA  
E = included  
Notes:  
1. For temperature range = C, processor frequency is limited to "TBD" with a platform frequency of "TBD".  
2. See Section 1.13, “Package and Pin Listings” for more information on available package types.  
3. Processor core frequencies supported by parts addressed by this specification only. Not all parts described in this  
specification support all core frequencies. Additionally, parts addressed by Part Number Specifications may support other  
maximum core frequencies.  
MPC8343E PowerQUICC II Pro Integrated Host Processor Hardware Specifications, Rev. 6  
Freescale Semiconductor  
91  
How to Reach Us:  
Home Page:  
www.freescale.com  
email:  
support@freescale.com  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor  
Technical Information Center, CH370  
1300 N. Alma School Road  
Chandler, Arizona 85224  
(800) 521-6274  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
480-768-2130  
support@freescale.com  
Europe, Middle East, and Africa:  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of  
any product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters which may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do  
vary in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals” must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
support@freescale.com  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku  
Tokyo 153-0064, Japan  
0120 191014  
+81 2666 8080  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
Tai Po Industrial Estate,  
Tai Po, N.T., Hong Kong  
+800 2666 8080  
support.asia@freescale.com  
Semiconductor was negligent regarding the design or manufacture of the part.  
For Literature Requests Only:  
Freescale Semiconductor  
Literature Distribution Center  
P.O. Box 5405  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
The described product contains a PowerPC processor core. The PowerPC name is a  
trademark of IBM Corp. and used under license. All other product or service names are  
the property of their respective owners.  
Denver, Colorado 80217  
(800) 441-2447  
303-675-2140  
© Freescale Semiconductor, Inc., 2005.  
Fax: 303-675-2150  
LDCForFreescaleSemiconductor  
@hibbertgroup.com  
Document Number: MPC8343EEC  
Rev. 6  
11/2005  

相关型号:

MPC8343EZQAGDB

MPC8343EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications
FREESCALE

MPC8343VRADDB

MPC8343EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications
FREESCALE

MPC8343VRADDB

PowerQUICC, 32 Bit Power Arch SoC, 266MHz, DDR1/2, PCI, 1GbE, USB, 0 to 105C, Rev 2
NXP

MPC8343VRAGDB

MPC8343EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications
FREESCALE

MPC8343ZQADDB

MPC8343EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications
FREESCALE

MPC8343ZQADDB

32-BIT, 266MHz, MICROPROCESSOR, PBGA620, 29 X 29 MM, 2.46 MM HEIGHT, 1 MM PITCH, PLASTIC, BGA-620
NXP

MPC8343ZQADDX

32-BIT, 266MHz, MICROPROCESSOR, PBGA620
NXP

MPC8343ZQAGDB

MPC8343EA PowerQUICC II Pro Integrated Host Processor Hardware Specifications
FREESCALE

MPC8343ZQAGDB

32-BIT, 400MHz, MICROPROCESSOR, PBGA620, 29 X 29 MM, 2.46 MM HEIGHT, 1 MM PITCH, PLASTIC, BGA-620
NXP

MPC8343ZQAGDX

32-BIT, 400MHz, MICROPROCESSOR, PBGA620, 29 X 29 MM, 2.46 MM HEIGHT, 1 MM PITCH, PLASTIC, BGA-620
NXP

MPC8347

Integrated Host Processor Hardware Specifications
FREESCALE

MPC8347A

Integrated Host Processor Hardware Specifications
FREESCALE