MPC859TZP133A [NXP]

PowerQUICC, 32 Bit Power Architecture, 133MHz, Communications Processor, 0 to 95C;
MPC859TZP133A
型号: MPC859TZP133A
厂家: NXP    NXP
描述:

PowerQUICC, 32 Bit Power Architecture, 133MHz, Communications Processor, 0 to 95C

外围集成电路
文件: 总96页 (文件大小:1567K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MPC866EC  
Rev. 2, 2/2006  
Freescale Semiconductor  
Technical Data  
MPC866/MPC859  
Hardware Specifications  
Contents  
This document contains detailed information on power  
1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
2. Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
3. Maximum Tolerated Ratings . . . . . . . . . . . . . . . . . . . 8  
4. Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . 9  
5. Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
6. DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
7. Thermal Calculation and Measurement . . . . . . . . . . 12  
8. Power Supply and Power Sequencing . . . . . . . . . . . 15  
9. Layout Practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
10. Bus Signal Timing . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
11. IEEE 1149.1 Electrical Specifications . . . . . . . . . . . 46  
12. CPM Electrical Characteristics . . . . . . . . . . . . . . . . . 48  
13. UTOPIA AC Electrical Specifications . . . . . . . . . . . 72  
14. FEC Electrical Characteristics . . . . . . . . . . . . . . . . . 74  
15. Mechanical Data and Ordering Information . . . . . . . 78  
16. Document Revision History . . . . . . . . . . . . . . . . . . . 93  
considerations, DC/AC electrical characteristics, and AC timing  
specifications for the MPC866/859 family (refer to Table 1 for a  
list of devices). The MPC866P is the superset device of the  
MPC866/859 family.This document describes pertinent electrical  
and physical characteristics of the MPC8245. For functional  
characteristics of the processor, refer to the MPC866  
PowerQUICC Family Users Manual (MPC866UM/D).  
1 Overview  
The MPC866/859 is a derivative of Freescale’s MPC860  
PowerQUICC™ family of devices. It is a versatile single-chip  
integrated microprocessor and peripheral combination that can be  
used in a variety of controller applications and communications  
and networking systems. The MPC866/859/859DSL provides  
enhanced ATM functionality over that of other ATM-enabled  
members of the MPC860 family.  
© Freescale Semiconductor, Inc., 2006. All rights reserved.  
 
Features  
Table 1 shows the functionality supported by the members of the MPC866/859 family.  
2 Features  
Table 1. MPC866 Family Functionality  
Cache  
Ethernet  
Part  
SCC  
SMC  
Instruction  
Data  
10T  
10/100  
MPC866P  
16 Kbytes  
4 Kbytes  
16 Kbytes  
4 Kbytes  
4 Kbytes  
4 KBytes  
8 Kbytes  
4 Kbytes  
8 Kbytes  
4 Kbytes  
4 Kbytes  
4 Kbytes  
Up to 4  
1
1
1
1
1
1
4
4
1
1
2
2
2
2
MPC866T  
MPC859P  
MPC859T  
MPC859DSL  
Up to 4  
1
1
1
2
1
2
1
1
3
MPC852T  
2
1
1
On the MPC859DSL, the SCC (SCC1) is for ethernet only. Also, the MPC859DSL does not support the Time Slot  
Assigner (TSA).  
2
3
On the MPC859DSL, the SMC (SMC1) is for UART only.  
For more details on the MPC852T, please refer to the MPC852T Hardware Specifications.  
The following list summarizes the key MPC866/859 features:  
Embedded single-issue, 32-bit PowerPC™ core (implementing the PowerPC architecture) with  
thirty-two 32-bit general-purpose registers (GPRs)  
— The core performs branch prediction with conditional prefetch, without conditional execution  
— 4- or 8-Kbyte data cache and 4- or 16-Kbyte instruction cache (see Table 1)  
– 16-Kbyte instruction cache (MPC866P and MPC859P) is four-way, set-associative with 256 sets;  
4-Kbyte instruction cache (MPC866T, MPC859T, and MPC859DSL) is two-way, set-associative  
with 128 sets.  
– 8-Kbyte data cache (MPC866P and MPC859P) is two-way, set-associative with 256 sets; 4-Kbyte  
data cache(MPC866T, MPC859T, and MPC859DSL) is two-way, set-associative with 128 sets.  
– Cache coherency for both instruction and data caches is maintained on 128-bit (4-word) cache  
blocks  
– Caches are physically addressed, implement a least recently used (LRU) replacement algorithm, and  
are lockable on a cache block basis.  
— MMUs with 32-entry TLB, fully associative instruction and data TLBs  
— MMUs support multiple page sizes of 4, 16, and 512 Kbytes, and 8 Mbytes; 16 virtual address spaces  
and 16 protection groups.  
— Advanced on-chip-emulation debug mode  
The MPC866/859 provides enhanced ATM functionality over that of the MPC860SAR. The MPC866/859  
adds major new features available in 'enhanced SAR' (ESAR) mode, including the following:  
— Improved operation, administration, and maintenance (OAM) support  
— OAM performance monitoring (PM) support  
— Multiple APC priority levels available to support a range of traffic pace requirements  
MPC866/MPC859 Hardware Specifications, Rev. 2  
2
Freescale Semiconductor  
 
Features  
ATM port-to-port switching capability without the need for RAM-based microcode  
— Simultaneous MII (10/100Base-T) and UTOPIA (half-duplex) capability  
— Optional statistical cell counters per PHY  
— UTOPIA level 2 compliant interface with added FIFO buffering to reduce the total cell transmission  
time. (The earlier UTOPIA level 1 specification is also supported.)  
– Multi-PHY support on the MPC866, MPC859P, and MPC859T  
– Four PHY support on the MPC866/859  
2
— Parameter RAM for both SPI and I C can be relocated without RAM-based microcode  
— Supports full-duplex UTOPIA both master (ATM side) and slave (PHY side) operation using a 'split' bus  
— AAL2/VBR functionality is ROM-resident.  
Up to 32-bit data bus (dynamic bus sizing for 8, 16, and 32 bits)  
Thirty-two address lines  
Memory controller (eight banks)  
— Contains complete dynamic RAM (DRAM) controller  
— Each bank can be a chip select or RAS to support a DRAM bank  
— Up to 30 wait states programmable per memory bank  
— Glueless interface to page mode/EDO/SDRAM, SRAM, EPROMs, flash EPROMs, and other memory  
devices.  
— DRAM controller programmable to support most size and speed memory interfaces  
— Four CAS lines, four WE lines, and one OE line  
— Boot chip-select available at reset (options for 8-, 16-, or 32-bit memory)  
Variable block sizes (32 Kbytes–256 Mbytes)  
— Selectable write protection  
— On-chip bus arbitration logic  
General-purpose timers  
— Four 16-bit timers cascadable to be two 32-bit timers  
— Gate mode can enable/disable counting  
— Interrupt can be masked on reference match and event capture  
Fast Ethernet controller (FEC)  
— Simultaneous MII (10/100Base-T) and UTOPIA operation when using the UTOPIA multiplexed bus  
System integration unit (SIU)  
— Bus monitor  
— Software watchdog  
— Periodic interrupt timer (PIT)  
— Low-power stop mode  
— Clock synthesizer  
— Decrementer and time base from the PowerPC architecture  
— Reset controller  
— IEEE 1149.1 test access port (JTAG)  
MPC866/MPC859 Hardware Specifications, Rev. 2  
Freescale Semiconductor  
3
Features  
Interrupts  
— Seven external interrupt request (IRQ) lines  
— Twelve port pins with interrupt capability  
— The MPC866P and MPC866T have 23 internal interrupt sources; the MPC859P, MPC859T, and  
MPC859DSL have 20 internal interrupt sources.  
— Programmable priority between SCCs (MPC866P and MPC866T)  
— Programmable highest priority request  
Communications processor module (CPM)  
— RISC controller  
— Communication-specific commands (for example, GRACEFUL STOP TRANSMIT, ENTER HUNT MODE, and  
RESTART TRANSMIT)  
— Supports continuous mode transmission and reception on all serial channels  
— Up to 8-Kbytes of dual-port RAM  
— MPC866P and MPC866T have 16 serial DMA (SDMA) channels; MPC859P, MPC859T, and  
MPC859DSL have 10 serial DMA (SDMA) channels.  
— Three parallel I/O registers with open-drain capability  
Four baud rate generators  
— Independent (can be connected to any SCC or SMC)  
— Allow changes during operation  
— Autobaud support option  
MPC866P and MPC866T have four SCCs (serial communication controller); MPC859P, MPC859T, and  
MPC859DSL have one SCC; and SCC1 on MPC859DSL supports Ethernet only.  
— Serial ATM capability on all SCCs  
— Optional UTOPIA port on SCC4  
— Ethernet/IEEE 802.3 optional on SCC1–4, supporting full 10-Mbps operation  
— HDLC/SDLC  
— HDLC bus (implements an HDLC-based local area network (LAN))  
— Asynchronous HDLC to support PPP (point-to-point protocol)  
— AppleTalk  
— Universal asynchronous receiver transmitter (UART)  
— Synchronous UART  
— Serial infrared (IrDA)  
— Binary synchronous communication (BISYNC)  
— Totally transparent (bit streams)  
— Totally transparent (frame based with optional cyclic redundancy check (CRC)  
Two SMCs (serial management channels) (MPC859DSL has one SMC (SMC1) for UART.)  
— UART  
— Transparent  
— General circuit interface (GCI) controller  
— Can be connected to the time-division multiplexed (TDM) channels  
MPC866/MPC859 Hardware Specifications, Rev. 2  
4
Freescale Semiconductor  
Features  
One serial peripheral interface (SPI)  
— Supports master and slave modes  
— Supports multiple-master operation on the same bus  
2
One inter-integrated circuit (I C) port  
— Supports master and slave modes  
— Multiple-master environment support  
Time slot assigner (TSA) (MPC859DSL does not have TSA.)  
— Allows SCCs and SMCs to run in multiplexed and/or non-multiplexed operation  
— Supports T1, CEPT, PCM highway, ISDN basic rate, ISDN primary rate, user-defined  
— 1- or 8-bit resolution  
— Allows independent transmit and receive routing, frame synchronization, and clocking  
— Allows dynamic changes  
— On MPC866P and MPC866T, can be internally connected to six serial channels (four SCCs and two  
SMCs); on MPC859P and MPC859T, can be connected to three serial channels (one SCC and two  
SMCs).  
Parallel interface port (PIP)  
— Centronics interface support  
— Supports fast connection between compatible ports on MPC866/859 or MC68360  
PCMCIA interface  
— Master (socket) interface, compliant with PCI Local Bus Specification (Rev 2.1)  
— Supports one or two PCMCIA sockets whether ESAR functionality is enabled  
— Eight memory or I/O windows supported  
Debug interface  
— Eight comparators: four operate on instruction address, two operate on data address, and two operate on  
data.  
— Supports conditions: = < >  
— Each watchpoint can generate a breakpoint internally  
Normal high and normal low power modes to conserve power  
1.8 V core and 3.3 V I/O operation with 5-V TTL compatibility; refer to Table 6 for a listing of the 5-V  
tolerant pins.  
357-pin plastic ball grid array (PBGA) package  
Operation up to 133 MHz  
MPC866/MPC859 Hardware Specifications, Rev. 2  
Freescale Semiconductor  
5
Features  
The MPC866/859 is comprised of three modules that each use a 32-bit internal bus: MPC8xx core, system  
integration unit (SIU), and communication processor module (CPM). The MPC866P block diagram is shown in  
Figure 1. The MPC859P/859T/859DSL block diagram is shown in Figure 2.  
16-Kbyte  
Instruction Cache  
Instruction  
Bus  
System Interface Unit (SIU)  
Unified  
Bus  
Memory Controller  
Instruction MMU  
32-Entry ITLB  
Embedded  
MPC8xx  
Processor  
Core  
Internal  
Bus Interface Bus Interface  
Unit Unit  
External  
8-Kbyte  
Data Cache  
Load/Store  
Bus  
System Functions  
Data MMU  
32-Entry DTLB  
PCMCIA/ATA Interface  
Fast Ethernet  
Controller  
DMAs  
FIFOs  
4
Interrupt  
8-Kbyte  
16 Virtual  
Serial  
and  
Parallel I/O  
Timers Controllers Dual-Port RAM  
10/100  
Base-T  
Media Access  
Control  
4 Baud Rate  
Generators  
32-Bit RISC Controller  
and Program  
2
Independent  
DMA  
Channels  
ROM  
Parallel Interface Port  
and UTOPIA  
Timers  
MII  
2
SCC1  
SCC2  
SCC3  
SCC4  
SMC1  
SMC2  
SPI  
I C  
TimeSlotAssigner  
Serial Interface  
Figure 1. MPC866P Block Diagram  
MPC866/MPC859 Hardware Specifications, Rev. 2  
6
Freescale Semiconductor  
 
Features  
4-Kbyte  
Instruction  
Bus  
System Interface Unit (SIU)  
Instruction Cache  
Unified  
Bus  
Memory Controller  
Instruction MMU  
32-Entry ITLB  
Embedded  
MPC8xx  
Processor  
Core  
Internal  
Bus Interface Bus Interface  
Unit Unit  
External  
4-Kbyte  
Load/Store  
Bus  
Data Cache  
System Functions  
Data MMU  
32-Entry DTLB  
PCMCIA/ATA Interface  
Fast Ethernet  
Controller  
DMAs  
FIFOs  
4
Interrupt  
8-Kbyte  
10 Virtual  
Serial  
Parallel I/O  
Timers Controllers Dual-Port RAM  
and  
2
Independent  
DMA  
Channels  
10/100  
Base-T  
Media Access  
Control  
4 Baud Rate  
Generators  
32-Bit RISC Controller  
and Program  
ROM  
Parallel Interface Port  
and UTOPIA  
Timers  
MII  
2
SCC1  
SMC1  
SMC2*  
SPI  
I C  
TimeSlotAssigner*  
Serial Interface  
The MPC859P has a 16-Kbyte instruction cache and a 8-Kbyte data cache.  
* The MPC859DSL does not contain SMC2 nor the time slot assigner, and provides eight SDMA  
controllers.  
Figure 2. MPC859P/859T/MPC859DSL Block Diagram  
MPC866/MPC859 Hardware Specifications, Rev. 2  
Freescale Semiconductor  
7
Maximum Tolerated Ratings  
3 Maximum Tolerated Ratings  
This section provides the maximum tolerated voltage and temperature ranges for the MPC866/859. Table 2 shows  
the maximum tolerated ratings, and Table 3 shows the operating temperatures.  
Table 2. Maximum Tolerated Ratings  
Rating  
Symbol  
Value  
Unit  
1
Supply voltage  
VDDH  
– 0.3 to 4.0  
– 0.3 to 2.0  
– 0.3 to 2.0  
100  
V
V
VDDL  
VDDSYN  
V
Difference between VDDL to VDDSYN  
mV  
V
2
Input voltage  
Storage temperature range  
V
GND – 0.3 to VDDH  
–55 to +150  
in  
T
°C  
stg  
1
2
The power supply of the device must start its ramp from 0.0 V.  
Functional operating conditions are provided with the DC electrical specifications in Table 6. Absolute maximum  
ratings are stress ratings only; functional operation at the maxima is not guaranteed. Stress beyond those listed may  
affect device reliability or cause permanent damage to the device. See page 15.  
Caution: All inputs that tolerate 5 V cannot be more than 2.5 V greater than VDDH. This restriction applies to  
power-up and normal operation (that is, if the MPC866/859 is unpowered, a voltage greater than 2.5 V must not be  
applied to its inputs).  
Table 3. Operating Temperatures  
Rating  
Symbol  
Value  
Unit  
1
Temperature (standard)  
T
0
°C  
°C  
°C  
°C  
A(min)  
T
95  
j(max)  
Temperature (extended)  
T
–40  
100  
A(min)  
T
j(max)  
1
Minimum temperatures are guaranteed as ambient temperature, T . Maximum temperatures are guaranteed as  
A
junction temperature, T .  
j
This device contains circuitry protecting against damage due to high-static voltage or electrical fields; however, it  
is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages  
to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic  
voltage level (for example, either GND or V ).  
DD  
MPC866/MPC859 Hardware Specifications, Rev. 2  
8
Freescale Semiconductor  
 
 
Thermal Characteristics  
4 Thermal Characteristics  
Table 4 shows the thermal characteristics for the MPC866/859.  
Table 4. MPC866/859 Thermal Resistance Data  
Environment  
Single-layer board (1s)  
Rating  
Symbol  
Value  
Unit  
1
2
Junction-to-ambient  
Natural Convection  
R
37  
23  
30  
19  
13  
6
°C/W  
θJA  
3
3
3
Four-layer board (2s2p)  
Single-layer board (1s)  
Four-layer board (2s2p)  
R
θJMA  
Airflow (200 ft/min)  
R
R
θJMA  
θJMA  
4
Junction-to-board  
R
θJB  
θJC  
5
Junction-to-case  
R
6
Junction-to-package top  
Natural Convection  
Airflow (200 ft/min)  
Ψ
2
JT  
JT  
Ψ
2
1
Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board)  
temperature, ambient temperature, airflow, power dissipation of other components on the board, and board thermal  
resistance.  
2
3
4
Per SEMI G38-87 and JEDEC JESD51-2 with the single-layer board horizontal.  
Per JEDEC JESD51-6 with the board horizontal.  
Thermal resistance between the die and the printed-circuit board per JEDEC JESD51-8. Board temperature is  
measured on the top surface of the board near the package.  
5
Indicates the average thermal resistance between the die and the case top surface as measured by the cold plate  
method (MIL SPEC-883 Method 1012.1) with the cold plate temperature used for the case temperature. For exposed  
pad packages where the pad would be expected to be soldered, junction-to-case thermal resistance is a simulated  
value from the junction to the exposed pad without contact resistance.  
6
Thermal characterization parameter indicating the temperature difference between package top and junction  
temperature per JEDEC JESD51-2.  
MPC866/MPC859 Hardware Specifications, Rev. 2  
Freescale Semiconductor  
9
 
Power Dissipation  
5 Power Dissipation  
Table 5 shows power dissipation information. The modes are 1:1, where CPU and bus speeds are equal, and 2:1  
mode, where CPU frequency is twice the bus speed.  
Table 5. Power Dissipation (P )  
D
CPU  
Frequency  
1
2
Die Revision  
Bus Mode  
Typical  
Maximum  
Unit  
0
1:1  
2:1  
50 MHz  
66 MHz  
66 MHz  
80 MHz  
100 MHz  
133 MHz  
110  
150  
140  
170  
210  
260  
140  
180  
160  
200  
250  
320  
mW  
mW  
mW  
mW  
mW  
mW  
1
2
Typical power dissipation at VDDL and VDDSYN is at 1.8 V. and VDDH is at 3.3 V.  
Maximum power dissipation at VDDL and VDDSYN is at 1.9 V, and VDDH is at 3.465 V.  
NOTE  
Values in Table 5 represent VDDL based power dissipation and  
do not include I/O power dissipation over VDDH. I/O power  
dissipation varies widely by application due to buffer current,  
depending on external circuitry. The VDDSYN power  
dissipation is negligible.  
6 DC Characteristics  
Table 6 shows the DC electrical characteristics for the MPC866/859.  
Table 6. DC Electrical Specifications  
Characteristic  
Symbol  
VDDL (core)  
Min  
Max  
Unit  
Operating voltage  
1.7  
3.135  
1.7  
1.9  
3.465  
1.9  
V
V
VDDH (I/O)  
1
VDDSYN  
V
Difference between  
VDDL to VDDSYN  
100  
mV  
Input high voltage (all inputs except EXTAL and  
EXTCLK)  
VIH  
2.0  
3.465  
V
2
MPC866/MPC859 Hardware Specifications, Rev. 2  
10  
Freescale Semiconductor  
 
 
DC Characteristics  
Table 6. DC Electrical Specifications (continued)  
Characteristic Symbol  
Min  
Max  
Unit  
Input low voltage  
VIL  
GND  
0.7*(VDDH)  
0.8  
VDDH  
100  
V
V
EXTAL, EXTCLK input high voltage  
VIHC  
Input leakage current, Vin = 5.5V (except TMS, TRST,  
DSCK and DSDI pins) for 5 Volts Tolerant Pins  
I
I
I
µA  
in  
In  
In  
2
Input leakage current, Vin = VDDH (except TMS, TRST,  
DSCK, and DSDI)  
10  
10  
µA  
µA  
Input leakage current, Vin = 0 V (except TMS, TRST,  
DSCK and DSDI pins)  
3
Input capacitance  
C
20  
pF  
V
in  
Output high voltage, IOH = – 2.0 mA,  
except XTAL, and Open drain pins  
VOH  
2.4  
Output low voltage  
VOL  
0.5  
V
• IOL = 2.0 mA (CLKOUT)  
4
• IOL = 3.2 mA  
• IOL = 5.3 mA  
5
• IOL = 7.0 mA (TXD1/PA14, TXD2/PA12)  
• IOL = 8.9 mA (TS, TA, TEA, BI, BB, HRESET, SRESET)  
1
2
The difference between VDDL and VDDSYN can not be more than 100 m V.  
The signals PA[0:15], PB[14:31], PC[4:15], PD[3:15], TDI, TDO, TCK, TRST_B, TMS, MII_TXEN, MII_MDIO are 5 V  
tolerant.  
3
4
Input capacitance is periodically sampled.  
A(0:31), TSIZ0/REG, TSIZ1, D(0:31), DP(0:3)/IRQ(3:6), RD/WR, BURST, RSV/IRQ2,  
IP_B(0:1)/IWP(0:1)/VFLS(0:1), IP_B2/IOIS16_B/AT2, IP_B3/IWP2/VF2, IP_B4/LWP0/VF0, IP_B5/LWP1/VF1,  
IP_B6/DSDI/AT0, IP_B7/PTR/AT3, RXD1 /PA15, RXD2/PA13, L1TXDB/PA11, L1RXDB/PA10, L1TXDA/PA9,  
L1RXDA/PA8, TIN1/L1RCLKA/BRGO1/CLK1/PA7, BRGCLK1/TOUT1/CLK2/PA6,  
TIN2/L1TCLKA/BRGO2/CLK3/PA5, TOUT2/CLK4/PA4, TIN3/BRGO3/CLK5/PA3,  
BRGCLK2/L1RCLKB/TOUT3/CLK6/PA2, TIN4/BRGO4/CLK7/PA1, L1TCLKB/TOUT4/CLK8/PA0,  
REJCT1/SPISEL/PB31, SPICLK/PB30, SPIMOSI/PB29, BRGO4/SPIMISO/PB28, BRGO1/I2CSDA/PB27,  
BRGO2/I2CSCL/PB26, SMTXD1/PB25, SMRXD1/PB24, SMSYN1/SDACK1/PB23, SMSYN2/SDACK2/PB22,  
SMTXD2/L1CLKOB/PB21, SMRXD2/L1CLKOA/PB20, L1ST1/RTS1/PB19, L1ST2/RTS2/PB18,  
L1ST3/L1RQB/PB17, L1ST4/L1RQA/PB16, BRGO3/PB15, RSTRT1/PB14, L1ST1/RTS1/DREQ0/PC15,  
L1ST2/RTS2/DREQ1/PC14, L1ST3/L1RQB/PC13, L1ST4/L1RQA/PC12, CTS1/PC11, TGATE1/CD1/PC10,  
CTS2/PC9, TGATE2/CD2/PC8, CTS3/SDACK2/L1TSYNCB/PC7, CD3/L1RSYNCB/PC6,  
CTS4/SDACK1/L1TSYNCA/PC5, CD4/L1RSYNCA/PC4, PD15/L1TSYNCA, PD14/L1RSYNCA, PD13/L1TSYNCB,  
PD12/L1RSYNCB, PD11/RXD3, PD10/TXD3, PD9/RXD4, PD8/TXD4, PD5/REJECT2, PD6/RTS4, PD7/RTS3,  
PD4/REJECT3, PD3, MII_MDC, MII_TX_ER, MII_EN, MII_MDIO, MII_TXD[0:3].  
5
BDIP/GPL_B(5), BR, BG, FRZ/IRQ6, CS(0:5), CS(6)/CE(1)_B, CS(7)/CE(2)_B, WE0/BS_B0/IORD,  
WE1/BS_B1/IOWR, WE2/BS_B2/PCOE, WE3/BS_B3/PCWE, BS_A(0:3), GPL_A0/GPL_B0, OE/GPL_A1/GPL_B1,  
GPL_A(2:3)/GPL_B(2:3)/CS(2:3), UPWAITA/GPL_A4, UPWAITB/GPL_B4, GPL_A5, ALE_A, CE1_A, CE2_A,  
ALE_B/DSCK/AT1, OP(0:1), OP2/MODCK1/STS, OP3/MODCK2/DSDO, BADDR(28:30).  
MPC866/MPC859 Hardware Specifications, Rev. 2  
Freescale Semiconductor  
11  
Thermal Calculation and Measurement  
7 Thermal Calculation and Measurement  
For the following discussions, P = (VDDL x IDDL) + PI/O, where PI/O is the power dissipation of the I/O drivers.  
D
The VDDSYN power dissipation is negligible.  
7.1 Estimation with Junction-to-Ambient Thermal Resistance  
An estimation of the chip junction temperature, TJ, in °C can be obtained from the equation:  
T = T +(R  
x P )  
D
J
A
θJA  
where:  
T = ambient temperature (ºC)  
A
R
= package junction-to-ambient thermal resistance (ºC/W)  
θJA  
P = power dissipation in package  
D
The junction-to-ambient thermal resistance is an industry standard value that provides a quick and easy estimation  
of thermal performance. However, the answer is only an estimate; test cases have demonstrated that errors of a factor  
of two (in the quantity T -T ) are possible.  
J
A
7.2 Estimation with Junction-to-Case Thermal Resistance  
Historically, the thermal resistance has frequently been expressed as the sum of a junction-to-case thermal resistance  
and a case-to-ambient thermal resistance:  
R
= R  
+ R  
θJA  
θJC θCA  
where:  
R
= junction-to-ambient thermal resistance (ºC/W)  
= junction-to-case thermal resistance (ºC/W)  
= case-to-ambient thermal resistance (ºC/W)  
θJA  
θJC  
θCA  
R
R
R
is device related and cannot be influenced by the user. The user adjusts the thermal environment to affect the  
θJC  
case-to-ambient thermal resistance, R  
. For instance, the user can change the airflow around the device, add a  
θCA  
heat sink, change the mounting arrangement on the printed-circuit board, or change the thermal dissipation on the  
printed-circuit board surrounding the device. This thermal model is most useful for ceramic packages with heat sinks  
where some 90% of the heat flows through the case and the heat sink to the ambient environment. For most  
packages, a better model is required.  
7.3 Estimation with Junction-to-Board Thermal Resistance  
A simple package thermal model that has demonstrated reasonable accuracy (about 20%) is a two-resistor model  
consisting of a junction-to-board and a junction-to-case thermal resistance. The junction-to-case covers the situation  
where a heat sink is used or where a substantial amount of heat is dissipated from the top of the package. The  
junction-to-board thermal resistance describes the thermal performance when most of the heat is conducted to the  
printed-circuit board. It has been observed that the thermal performance of most plastic packages and especially  
PBGA packages is strongly dependent on the board temperature; see Figure 3.  
MPC866/MPC859 Hardware Specifications, Rev. 2  
12  
Freescale Semiconductor  
Thermal Calculation and Measurement  
Figure 3. Effect of Board Temperature Rise on Thermal Behavior  
If the board temperature is known, an estimate of the junction temperature in the environment can be made using  
the following equation:  
T = T +(R  
x P )  
D
J
B
θJB  
where:  
R
= junction-to-board thermal resistance (ºC/W)  
θJB  
T = board temperature ºC  
B
P = power dissipation in package  
D
If the board temperature is known and the heat loss from the package case to the air can be ignored, acceptable  
predictions of junction temperature can be made. For this method to work, the board and board mounting must be  
similar to the test board used to determine the junction-to-board thermal resistance, namely a 2s2p (board with a  
power and a ground plane) and vias attaching the thermal balls to the ground plane.  
7.4 Estimation Using Simulation  
When the board temperature is not known, a thermal simulation of the application is needed. The simple two-resistor  
model can be used with the thermal simulation of the application [2], or a more accurate and complex model of the  
package can be used in the thermal simulation.  
MPC866/MPC859 Hardware Specifications, Rev. 2  
Freescale Semiconductor  
13  
Thermal Calculation and Measurement  
7.5 Experimental Determination  
To determine the junction temperature of the device in the application after prototypes are available, the thermal  
characterization parameter (Ψ ) can be used to determine the junction temperature with a measurement of the  
JT  
temperature at the top center of the package case using the following equation:  
T = T +(Ψ x P )  
J
T
JT  
D
where:  
Ψ
= thermal characterization parameter  
JT  
T = thermocouple temperature on top of package  
T
P = power dissipation in package  
D
The thermal characterization parameter is measured per JESD51-2 specification published by JEDEC using a 40  
gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned  
so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple  
junction and over about 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the  
package case to avoid measurement errors caused by cooling effects of the thermocouple wire.  
7.6 References  
Semiconductor Equipment and Materials International(415) 964-5111  
805 East Middlefield Rd.  
Mountain View, CA 94043  
MIL-SPEC and EIA/JESD (JEDEC) specifications800-854-7179 or  
(Available from Global Engineering Documents)303-397-7956  
JEDEC Specifications http://www.jedec.org  
1. C.E. Triplett and B. Joiner, “An Experimental Characterization of a 272 PBGA Within an Automotive Engine  
Controller Module,” Proceedings of SemiTherm, San Diego, 1998, pp. 47-54.  
2. B. Joiner and V. Adams, “Measurement and Simulation of Junction to Board Thermal Resistance and Its  
Application in Thermal Modeling,” Proceedings of SemiTherm, San Diego, 1999, pp. 212-220.  
MPC866/MPC859 Hardware Specifications, Rev. 2  
14  
Freescale Semiconductor  
Power Supply and Power Sequencing  
8 Power Supply and Power Sequencing  
This section provides design considerations for the MPC866/859 power supply. The MPC866/859 has a core voltage  
(VDDL) and PLL voltage (VDDSYN) that operates at a lower voltage than the I/O voltage VDDH. The I/O section  
of the MPC866/859 is supplied with 3.3 V across VDDH and V (GND).  
SS  
Signals PA[0:15], PB[14:31], PC[4:15], PD[3:15], TDI, TDO, TCK, TRST_B, TMS, MII_TXEN, and MII_MDIO  
are 5-V tolerant. All inputs cannot be more than 2.5 V greater than VDDH. In addition, 5-V tolerant pins cannot  
exceed 5.5 V and the remaining input pins cannot exceed 3.465 V. This restriction applies to power up/down and  
normal operation.  
One consequence of multiple power supplies is that when power is initially applied the voltage rails ramp up at  
different rates. The rates depend on the nature of the power supply, the type of load on each power supply, and the  
manner in which different voltages are derived. The following restrictions apply:  
VDDL must not exceed VDDH during power up and power down.  
VDDL must not exceed 1.9 V and VDDH must not exceed 3.465 V.  
These cautions are necessary for the long term reliability of the part. If they are violated, the electrostatic discharge  
(ESD) protection diodes are forward-biased and excessive current can flow through these diodes. If the system  
power supply design does not control the voltage sequencing, the circuit shown in Figure 4 can be added to meet  
these requirements. The MUR420 Schottky diodes control the maximum potential difference between the external  
bus and core power supplies on powerup and the 1N5820 diodes regulate the maximum potential difference on  
powerdown.  
VDDH  
VDDL  
MUR420  
1N5820  
Figure 4. Example Voltage Sequencing Circuit  
9 Layout Practices  
Each V pin on the MPC866/859 should be provided with a low-impedance path to the board’s supply.  
DD  
Furthermore, each GND pin should be provided with a low-impedance path to ground. The power supply pins drive  
distinct groups of logic on chip. The V power supply should be bypassed to ground using at least four 0.1 µF  
DD  
bypass capacitors located as close as possible to the four sides of the package. Each board designed should be  
characterized and additional appropriate decoupling capacitors should be used if required. The capacitor leads and  
associated printed-circuit traces connecting to chip V and GND should be kept to less than 1/2” per capacitor lead.  
DD  
At a minimum, a four-layer board employing two inner layers as V and GND planes should be used.  
DD  
All output pins on the MPC866/859 have fast rise and fall times. Printed-circuit (PC) trace interconnection length  
should be minimized in order to minimize undershoot and reflections caused by these fast output switching times.  
MPC866/MPC859 Hardware Specifications, Rev. 2  
Freescale Semiconductor  
15  
 
Bus Signal Timing  
This recommendation particularly applies to the address and data buses. Maximum PC trace lengths of 6” are  
recommended. Capacitance calculations should consider all device loads as well as parasitic capacitances due to the  
PC traces. Attention to proper PCB layout and bypassing becomes especially critical in systems with higher  
capacitive loads because these loads create higher transient currents in the V and GND circuits. Pull up all unused  
DD  
inputs or signals that will be inputs during reset. Special care should be taken to minimize the noise levels on the  
PLL supply pins. For more information, please refer to Section 14.4.3, Clock Synthesizer Power (VDDSYN,  
VSSSYN, VSSSYN1), in the MPC866 Users Manual.  
10 Bus Signal Timing  
The maximum bus speed supported by the MPC866/859 is 66 MHz. Higher-speed parts must be operated in  
half-speed bus mode (for example, an MPC866/859 used at 100 MHz must be configured for a 50-MHz bus).  
Table 7 and Table 8 show the frequency ranges for standard part frequencies.  
Table 7. Frequency Ranges for Standard Part Frequencies (1:1 Bus Mode)  
Part Freq  
50 MHz  
66 MHz  
Min  
Max  
Min  
Max  
Core  
Bus  
40  
50  
40  
66.67  
40  
50  
40  
66.67  
Table 8. Frequency Ranges for Standard Part Frequencies (2:1 Bus Mode)  
50 MHz 66 MHz 100 MHz 133 MHz  
Part  
Freq  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Core  
40  
50  
40  
66.67  
40  
100  
40  
133.34  
Bus  
20  
25  
20  
33.33  
20  
50  
20  
66.67  
Table 9 shows the timings for the MPC866/859 at 33, 40, 50, and 66 MHz bus operation. The timing for the  
MPC866/859 bus shown in this table assumes a 50-pF load for maximum delays and a 0-pF load for minimum  
delays. CLKOUT assumes a 100-pF load maximum delay.  
Table 9. Bus Operation Timings  
33 MHz  
40 MHz  
50 MHz  
66 MHz  
Num  
Characteristic  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
B1 Bus Period (CLKOUT) See Table 7  
B1a EXTCLK to CLKOUT phase skew  
B1b CLKOUT frequency jitter peak-to-peak  
B1c Frequency jitter on EXTCLK  
– 2  
+2  
– 2  
+2  
– 2  
+2  
– 2  
+2  
ns  
ns  
ns  
%
1
1
1
1
0.50  
0.50  
0.50  
0.50  
MPC866/MPC859 Hardware Specifications, Rev. 2  
16  
Freescale Semiconductor  
 
 
 
Bus Signal Timing  
Table 9. Bus Operation Timings (continued)  
33 MHz 40 MHz 50 MHz  
66 MHz  
Num  
Characteristic  
Unit  
ns  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
B1d CLKOUT phase jitter peak-to-peak  
4
4
4
4
for OSCLK 15 MHz  
CLKOUT phase jitter peak-to-peak  
for OSCLK < 15 MHz  
5
5
5
5
ns  
B2 CLKOUT pulse width low (MIN = 0.4 x 12.1  
B1, MAX = 0.6 x B1)  
18.2  
18.2  
10.0  
10.0  
15.0  
15.0  
8.0  
8.0  
12.0  
12.0  
6.1  
6.1  
9.1  
9.1  
ns  
ns  
B3 CLKOUT pulse width high (MIN = 0.4 x 12.1  
B1, MAX = 0.6 x B1)  
B4 CLKOUT rise time  
B5 CLKOUT fall time  
4.00  
4.00  
4.00  
4.00  
4.00  
4.00  
4.00  
4.00  
ns  
ns  
ns  
B7 CLKOUT to A(0:31), BADDR(28:30),  
RD/WR, BURST, D(0:31), DP(0:3)  
output hold (MIN = 0.25 x B1)  
7.60  
6.30  
5.00  
3.80  
B7a CLKOUT to TSIZ(0:1), REG, RSV,  
AT(0:3), BDIP, PTR output hold (MIN =  
0.25 x B1)  
7.60  
6.30  
6.30  
5.00  
5.00  
3.80  
3.80  
ns  
ns  
B7b CLKOUT to BR, BG, FRZ, VFLS(0:1), 7.60  
VF(0:2), IWP(0:2), LWP(0:1), STS  
output hold (MIN = 0.25 x B1)  
B8 CLKOUT to A(0:31), BADDR(28:30)  
RD/WR, BURST, D(0:31), DP(0:3),  
valid (MAX = 0.25 x B1 + 6.3)  
13.80  
13.80  
13.80  
12.50  
12.50  
12.50  
11.30  
11.30  
11.30  
10.00 ns  
10.00 ns  
10.00 ns  
B8a CLKOUT to TSIZ(0:1), REG, RSV,  
AT(0:3), BDIP, PTR valid (MAX = 0.25  
x B1 + 6.3)  
B8b CLKOUT to BR, BG, VFLS(0:1),  
VF(0:2), IWP(0:2), FRZ, LWP(0:1),  
4
STS valid (MAX = 0.25 x B1 + 6.3)  
B9 CLKOUT to A(0:31), BADDR(28:30),  
RD/WR, BURST, D(0:31), DP(0:3),  
TSIZ(0:1), REG, RSV, AT(0:3), PTR  
High-Z (MAX = 0.25 x B1 + 6.3)  
7.60 13.80 6.30 12.50 5.00 11.30 3.80 10.00 ns  
B11 CLKOUT to TS, BB assertion (MAX =  
0.25 x B1 + 6.0)  
7.60 13.60 6.30 12.30 5.00 11.00 3.80  
9.80  
9.80  
ns  
ns  
B11a CLKOUT to TA, BI assertion (when  
driven by the memory controller or  
2.50  
9.30  
2.50  
9.30  
2.50  
9.30  
2.50  
PCMCIA interface) (MAX = 0.00 x B1 +  
1
9.30 )  
B12 CLKOUT to TS, BB negation (MAX =  
0.25 x B1 + 4.8)  
7.60 12.30 6.30 11.00 5.00  
9.80  
3.80  
8.50  
ns  
MPC866/MPC859 Hardware Specifications, Rev. 2  
Freescale Semiconductor  
17  
Bus Signal Timing  
Table 9. Bus Operation Timings (continued)  
33 MHz 40 MHz 50 MHz  
66 MHz  
Num  
Characteristic  
Unit  
Min  
2.50  
Max  
Min  
2.50  
Max  
Min  
2.50  
Max  
Min  
2.50  
Max  
B12a CLKOUT to TA, BI negation (when  
driven by the memory controller or  
PCMCIA interface) (MAX = 0.00 x B1 +  
9.00)  
9.00  
9.00  
9.00  
9.00  
ns  
B13 CLKOUT to TS, BB High-Z (MIN = 0.25 7.60 21.60 6.30 20.30 5.00 19.00 3.80 14.00 ns  
x B1)  
B13a CLKOUT to TA, BI High-Z (when driven 2.50 15.00 2.50 15.00 2.50 15.00 2.50 15.00 ns  
by the memory controller or PCMCIA  
interface) (MIN = 0.00 x B1 + 2.5)  
B14 CLKOUT to TEA assertion (MAX =  
0.00 x B1 + 9.00)  
2.50  
9.00  
2.50  
9.00  
2.50  
9.00  
2.50  
9.00  
ns  
B15 CLKOUT to TEA High-Z (MIN = 0.00 x 2.50 15.00 2.50 15.00 2.50 15.00 2.50 15.00 ns  
B1 + 2.50)  
B16 TA, BI valid to CLKOUT (setup time)  
(MIN = 0.00 x B1 + 6.00)  
6.00  
6.00  
4.50  
4.00  
1.00  
6.00  
4.50  
4.00  
1.00  
6.00  
4.50  
4.00  
2.00  
ns  
ns  
ns  
ns  
B16a TEA, KR, RETRY, CR valid to CLKOUT 4.50  
(setup time) (MIN = 0.00 x B1 + 4.5)  
B16b BB, BG, BR, valid to CLKOUT (setup  
4.00  
2
time) (4 MIN = 0.00 x B1 + 0.00 )  
B17 CLKOUT to TA, TEA, BI, BB, BG, BR  
valid (hold time) (MIN = 0.00 x B1 +  
1.00  
3
1.00 )  
B17a CLKOUT to KR, RETRY, CR valid (hold 2.00  
time) (MIN = 0.00 x B1 + 2.00)  
2.00  
6.00  
2.00  
6.00  
2.00  
6.00  
ns  
ns  
B18 D(0:31), DP(0:3) valid to CLKOUT  
6.00  
1.00  
4.00  
2.00  
4
rising edge (setup time) (MIN = 0.00  
x B1 + 6.00)  
B19 CLKOUT rising edge to D(0:31),  
1.00  
4.00  
2.00  
1.00  
4.00  
2.00  
2.00  
4.00  
2.00  
ns  
ns  
ns  
4
DP(0:3) valid (hold time) (MIN = 0.00  
5
x B1 + 1.00 )  
B20 D(0:31), DP(0:3) valid to CLKOUT  
6
falling edge (setup time) (MIN = 0.00  
x B1 + 4.00)  
B21 CLKOUT falling edge to D(0:31),  
6
DP(0:3) valid (hold Time) (MIN = 0.00  
x B1 + 2.00)  
B22 CLKOUT rising edge to CS asserted  
GPCM ACS = 00 (MAX = 0.25 x B1 +  
6.3)  
7.60 13.80 6.30 12.50 5.00 11.30 3.80 10.00 ns  
B22a CLKOUT falling edge to CS asserted  
GPCM ACS = 10, TRLX = 0 (MAX =  
0.00 x B1 + 8.00)  
8.00  
8.00  
8.00  
8.00  
ns  
MPC866/MPC859 Hardware Specifications, Rev. 2  
18  
Freescale Semiconductor  
Bus Signal Timing  
Table 9. Bus Operation Timings (continued)  
33 MHz 40 MHz 50 MHz  
Min Max Min Max Min Max  
66 MHz  
Min Max  
Num  
Characteristic  
Unit  
B22b CLKOUT falling edge to CS asserted  
GPCM ACS = 11, TRLX = 0, EBDF = 0  
(MAX = 0.25 x B1 + 6.3)  
7.60 13.80 6.30 12.50 5.00 11.30 3.80 10.00 ns  
B22c CLKOUT falling edge to CS asserted  
GPCM ACS = 11, TRLX = 0, EBDF = 1  
(MAX = 0.375 x B1 + 6.6)  
10.90 18.00 10.90 16.00 7.00 14.10 5.20 12.30 ns  
B23 CLKOUT rising edge to CS negated  
GPCM read access, GPCM write  
access ACS = 00, TRLX = 0 & CSNT =  
0 (MAX = 0.00 x B1 + 8.00)  
2.00  
8.00  
2.00  
8.00  
2.00  
8.00  
2.00  
8.00  
ns  
B24 A(0:31) and BADDR(28:30) to CS  
asserted GPCM ACS = 10, TRLX = 0  
(MIN = 0.25 x B1 - 2.00)  
5.60  
4.30  
3.00  
8.00  
1.80  
5.60  
ns  
ns  
B24a A(0:31) and BADDR(28:30) to CS  
asserted GPCM ACS = 11, TRLX = 0  
(MIN = 0.50 x B1 - 2.00)  
13.20  
10.50  
B25 CLKOUT rising edge to OE, WE(0:3)  
asserted (MAX = 0.00 x B1 + 9.00)  
9.00  
9.00  
9.00  
9.00  
9.00  
9.00  
9.00  
9.00  
ns  
ns  
ns  
B26 CLKOUT rising edge to OE negated  
(MAX = 0.00 x B1 + 9.00)  
2.00  
35.90  
2.00  
29.30  
2.00  
23.00  
2.00  
16.90  
B27 A(0:31) and BADDR(28:30) to CS  
asserted GPCM ACS = 10, TRLX = 1  
(MIN = 1.25 x B1 - 2.00)  
B27a A(0:31) and BADDR(28:30) to CS  
asserted GPCM ACS = 11, TRLX = 1  
(MIN = 1.50 x B1 - 2.00)  
43.50  
35.50  
28.00  
20.70  
ns  
ns  
B28 CLKOUT rising edge to WE(0:3)  
negated GPCM write access CSNT =  
0 (MAX = 0.00 x B1 + 9.00)  
9.00  
9.00  
9.00  
9.00  
B28a CLKOUT falling edge to WE(0:3)  
negated GPCM write access TRLX =  
0,1, CSNT = 1, EBDF = 0 (MAX = 0.25  
x B1 + 6.80)  
7.60 14.30 6.30 13.00 5.00 11.80 3.80 10.50 ns  
B28b CLKOUT falling edge to CS negated  
GPCM write access TRLX = 0,1,  
14.30  
13.00  
11.80  
10.50 ns  
CSNT = 1, ACS = 10 or ACS = 11,  
EBDF = 0 (MAX = 0.25 x B1 + 6.80)  
B28c CLKOUT falling edge to WE(0:3)  
negated GPCM write access TRLX =  
0, CSNT = 1 write access TRLX = 0,1,  
CSNT = 1, EBDF = 1 (MAX = 0.375 x  
B1 + 6.6)  
10.90 18.00 10.90 18.00 7.00 14.30 5.20 12.30 ns  
MPC866/MPC859 Hardware Specifications, Rev. 2  
Freescale Semiconductor  
19  
Bus Signal Timing  
Table 9. Bus Operation Timings (continued)  
33 MHz 40 MHz 50 MHz  
66 MHz  
Num  
Characteristic  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
B28d CLKOUT falling edge to CS negated  
GPCM write access TRLX = 0,1,  
18.00  
18.00  
14.30  
12.30 ns  
CSNT = 1, ACS = 10, or ACS = 11,  
EBDF = 1 (MAX = 0.375 x B1 + 6.6)  
B29 WE(0:3) negated to D(0:31), DP(0:3)  
High-Z GPCM write access, CSNT = 0,  
EBDF = 0 (MIN = 0.25 x B1 - 2.00)  
5.60  
4.30  
3.00  
8.00  
1.80  
5.60  
ns  
ns  
B29a WE(0:3) negated to D(0:31), DP(0:3)  
High-Z GPCM write access, TRLX = 0,  
CSNT = 1, EBDF = 0 (MIN = 0.50 x B1  
– 2.00)  
13.20  
10.50  
B29b CS negated to D(0:31), DP(0:3), High  
Z GPCM write access, ACS = 00,  
TRLX = 0,1 & CSNT = 0 (MIN = 0.25 x  
B1– 2.00)  
5.60  
4.30  
10.50  
35.50  
35.50  
3.00  
3.00  
8.00  
1.80  
5.60  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
B29c CS negated to D(0:31), DP(0:3) High-Z 13.20  
GPCM write access, TRLX = 0, CSNT  
= 1, ACS = 10, or ACS = 11, EBDF = 0  
(MIN = 0.50 x B1 – 2.00)  
B29d WE(0:3) negated to D(0:31), DP(0:3)  
High-Z GPCM write access, TRLX = 1,  
CSNT = 1, EBDF = 0 (MIN = 1.50 x B1  
– 2.00)  
43.50  
28.00  
28.00  
1.10  
20.70  
20.70  
0.00  
B29e CS negated to D(0:31), DP(0:3) High-Z 43.50  
GPCM write access, TRLX = 1, CSNT  
= 1, ACS = 10, or ACS = 11, EBDF = 0  
(MIN = 1.50 x B1 – 2.00)  
B29f WE(0:3) negated to D(0:31), DP(0:3)  
High Z GPCM write access, TRLX = 0,  
CSNT = 1, EBDF = 1 (MIN = 0.375 x  
B1 – 6.30)  
5.00  
B29g CS negated to D(0:31), DP(0:3) High-Z 5.00  
GPCM write access, TRLX = 0, CSNT  
= 1 ACS = 10 or ACS = 11, EBDF = 1  
(MIN = 0.375 x B1 – 6.30)  
3.00  
1.10  
0.00  
B29h WE(0:3) negated to D(0:31), DP(0:3)  
High Z GPCM write access, TRLX = 1,  
CSNT = 1, EBDF = 1 (MIN = 0.375 x  
B1 – 3.30)  
38.40  
31.10  
31.10  
24.20  
24.20  
17.50  
17.50  
B29i CS negated to D(0:31), DP(0:3) High-Z 38.40  
GPCM write access, TRLX = 1, CSNT  
= 1, ACS = 10 or ACS = 11, EBDF = 1  
(MIN = 0.375 x B1 – 3.30)  
MPC866/MPC859 Hardware Specifications, Rev. 2  
20  
Freescale Semiconductor  
Bus Signal Timing  
Table 9. Bus Operation Timings (continued)  
33 MHz 40 MHz 50 MHz  
66 MHz  
Num  
Characteristic  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
B30 CS, WE(0:3) negated to A(0:31),  
BADDR(28:30) invalid GPCM write  
5.60  
4.30  
3.00  
1.80  
ns  
7
access (MIN = 0.25 x B1 – 2.00)  
B30a WE(0:3) negated to A(0:31),  
BADDR(28:30) invalid GPCM, write  
access, TRLX = 0, CSNT = 1, CS  
negated to A(0:31) invalid GPCM write  
access TRLX = 0, CSNT =1 ACS = 10,  
or ACS == 11, EBDF = 0 (MIN = 0.50 x  
B1 – 2.00)  
13.20  
10.50  
8.00  
5.60  
20.70  
2.70  
ns  
ns  
ns  
B30b WE(0:3) negated to A(0:31) invalid  
GPCM BADDR(28:30) invalid GPCM  
write access, TRLX = 1, CSNT = 1. CS  
negated to A(0:31) invalid GPCM write  
access TRLX = 1, CSNT = 1, ACS =  
10, or ACS == 11 EBDF = 0 (MIN =  
1.50 x B1 – 2.00)  
43.50  
35.50  
28.00  
B30c WE(0:3) negated to A(0:31),  
BADDR(28:30) invalid GPCM write  
access, TRLX = 0, CSNT = 1. CS  
negated to A(0:31) invalid GPCM write  
access, TRLX = 0, CSNT = 1 ACS =  
10, ACS == 11, EBDF = 1 (MIN = 0.375  
x B1 – 3.00)  
8.40  
6.40  
4.50  
B30d WE(0:3) negated to A(0:31),  
BADDR(28:30) invalid GPCM write  
access TRLX = 1, CSNT =1, CS  
negated to A(0:31) invalid GPCM write  
access TRLX = 1, CSNT = 1, ACS = 10  
or 11, EBDF = 1  
38.67  
1.50  
31.38  
1.50  
24.50  
1.50  
17.83  
1.50  
ns  
ns  
B31 CLKOUT falling edge to CS valid, as  
requested by control bit CST4 in the  
corresponding word in the UPM (MAX  
= 0.00 X B1 + 6.00)  
6.00  
6.00  
6.00  
6.00  
B31a CLKOUT falling edge to CS valid, as  
requested by control bit CST1 in the  
corresponding word in the UPM (MAX  
= 0.25 x B1 + 6.80)  
7.60 14.30 6.30 13.00 5.00 11.80 3.80 10.50 ns  
B31b CLKOUT rising edge to CS valid, as  
requested by control bit CST2 in the  
corresponding word in the UPM (MAX  
= 0.00 x B1 + 8.00)  
1.50  
8.00  
1.50  
8.00  
1.50  
8.00  
1.50  
8.00  
ns  
B31c CLKOUT rising edge to CS valid, as  
requested by control bit CST3 in the  
corresponding word in the UPM (MAX  
= 0.25 x B1 + 6.30)  
7.60 13.80 6.30 12.50 5.00 11.30 3.80 10.00 ns  
MPC866/MPC859 Hardware Specifications, Rev. 2  
Freescale Semiconductor  
21  
Bus Signal Timing  
Table 9. Bus Operation Timings (continued)  
33 MHz 40 MHz 50 MHz  
Min Max Min Max Min Max  
13.30 18.00 11.30 16.00 9.40 14.10 7.60 12.30 ns  
66 MHz  
Min Max  
Num  
Characteristic  
Unit  
B31d CLKOUT falling edge to CS valid, as  
requested by control bit CST1 in the  
corresponding word in the UPM EBDF  
= 1 (MAX = 0.375 x B1 + 6.6)  
B32 CLKOUT falling edge to BS valid, as  
requested by control bit BST4 in the  
corresponding word in the UPM (MAX  
= 0.00 x B1 + 6.00)  
1.50  
6.00  
1.50  
6.00  
1.50  
6.00  
1.50  
6.00  
ns  
B32a CLKOUT falling edge to BS valid, as  
requested by control bit BST1 in the  
corresponding word in the UPM, EBDF  
= 0 (MAX = 0.25 x B1 + 6.80)  
7.60 14.30 6.30 13.00 5.00 11.80 3.80 10.50 ns  
B32b CLKOUT rising edge to BS valid, as  
requested by control bit BST2 in the  
corresponding word in the UPM (MAX  
= 0.00 x B1 + 8.00)  
1.50  
8.00  
1.50  
8.00  
1.50  
8.00  
1.50  
8.00  
ns  
B32c CLKOUT rising edge to BS valid, as  
requested by control bit BST3 in the  
corresponding word in the UPM (MAX  
= 0.25 x B1 + 6.80)  
7.60 14.30 6.30 13.00 5.00 11.80 3.80 10.50 ns  
13.30 18.00 11.30 16.00 9.40 14.10 7.60 12.30 ns  
B32d CLKOUT falling edge to BS valid- as  
requested by control bit BST1 in the  
corresponding word in the UPM, EBDF  
= 1 (MAX = 0.375 x B1 + 6.60)  
B33 CLKOUT falling edge to GPL valid, as 1.50  
requested by control bit GxT4 in the  
corresponding word in the UPM (MAX  
= 0.00 x B1 + 6.00)  
6.00  
1.50  
6.00  
1.50  
6.00  
1.50  
6.00  
ns  
B33a CLKOUT rising edge to GPL valid, as  
requested by control bit GxT3 in the  
corresponding word in the UPM (MAX  
= 0.25 x B1 + 6.80)  
7.60 14.30 6.30 13.00 5.00 11.80 3.80 10.50 ns  
B34 A(0:31), BADDR(28:30), and D(0:31)  
to CS valid, as requested by control bit  
CST4 in the corresponding word in the  
UPM (MIN = 0.25 x B1 - 2.00)  
5.60  
13.20  
20.70  
4.30  
10.50  
16.70  
3.00  
8.00  
1.80  
5.60  
9.40  
ns  
ns  
ns  
B34a A(0:31), BADDR(28:30), and D(0:31)  
to CS valid, as requested by control bit  
CST1 in the corresponding word in the  
UPM (MIN = 0.50 x B1 – 2.00)  
B34b A(0:31), BADDR(28:30), and D(0:31)  
to CS valid, as requested by CST2 in  
the corresponding word in UPM (MIN =  
0.75 x B1 – 2.00)  
13.00  
MPC866/MPC859 Hardware Specifications, Rev. 2  
22  
Freescale Semiconductor  
Bus Signal Timing  
Table 9. Bus Operation Timings (continued)  
33 MHz 40 MHz 50 MHz  
66 MHz  
Num  
Characteristic  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
B35 A(0:31), BADDR(28:30) to CS valid, as 5.60  
requested by control bit BST4 in the  
corresponding word in the UPM (MIN =  
0.25 x B1 – 2.00)  
4.30  
10.50  
16.70  
4.30  
3.00  
1.80  
ns  
B35a A(0:31), BADDR(28:30), and D(0:31)  
to BS valid, as Requested by BST1 in  
the corresponding word in the UPM  
(MIN = 0.50 x B1 – 2.00)  
13.20  
20.70  
5.60  
8.00  
5.60  
9.40  
1.80  
ns  
ns  
ns  
B35b A(0:31), BADDR(28:30), and D(0:31)  
to BS valid, as requested by control bit  
BST2 in the corresponding word in the  
UPM (MIN = 0.75 x B1 – 2.00)  
13.00  
3.00  
B36 A(0:31), BADDR(28:30), and D(0:31)  
to GPL valid as requested by control bit  
GxT4 in the corresponding word in the  
UPM (MIN = 0.25 x B1 – 2.00)  
B37 UPWAIT valid to CLKOUT falling  
6.00  
1.00  
6.00  
1.00  
7.00  
7.00  
6.00  
1.00  
7.00  
7.00  
6.00  
1.00  
7.00  
7.00  
ns  
ns  
ns  
ns  
8
edge (MIN = 0.00 x B1 + 6.00)  
B38 CLKOUT falling edge to UPWAIT  
8
valid (MIN = 0.00 x B1 + 1.00)  
9
B39 AS valid to CLKOUT rising edge (MIN 7.00  
= 0.00 x B1 + 7.00)  
B40 A(0:31), TSIZ(0:1), RD/WR, BURST,  
valid to CLKOUT rising edge (MIN =  
0.00 x B1 + 7.00)  
7.00  
B41 TS valid to CLKOUT rising edge (setup 7.00  
time) (MIN = 0.00 x B1 + 7.00)  
7.00  
2.00  
7.00  
2.00  
7.00  
2.00  
ns  
ns  
ns  
B42 CLKOUT rising edge to TS valid (hold 2.00  
time) (MIN = 0.00 x B1 + 2.00)  
B43 AS negation to memory controller  
signals negation (MAX = TBD)  
TBD  
TBD  
TBD  
TBD  
1
2
For part speeds above 50 MHz, use 9.80 ns for B11a.  
The timing required for BR input is relevant when the MPC866/859 is selected to work with the internal bus arbiter.  
The timing for BG input is relevant when the MPC866/859 is selected to work with the external bus arbiter.  
3
4
For part speeds above 50 MHz, use 2 ns for B17.  
The D(0:31) and DP(0:3) input timings B18 and B19 refer to the rising edge of CLKOUT, in which the TA input signal  
is asserted.  
5
6
For part speeds above 50 MHz, use 2 ns for B19.  
The D(0:31) and DP(0:3) input timings B20 and B21 refer to the falling edge of CLKOUT. This timing is valid only for  
read accesses controlled by chip-selects under control of the UPM in the memory controller, for data beats, where  
DLT3 = 1 in the UPM RAM words. (This is only the case where data is latched on the falling edge of CLKOUT.)  
7
The timing B30 refers to CS when ACS = 00 and to WE(0:3) when CSNT = 0.  
MPC866/MPC859 Hardware Specifications, Rev. 2  
Freescale Semiconductor  
23  
Bus Signal Timing  
8
The signal UPWAIT is considered asynchronous to CLKOUT and synchronized internally. The timings specified in  
B37 and B38 are specified to enable the freeze of the UPM output signals as described in Figure 20.  
9
The AS signal is considered asynchronous to CLKOUT. The timing B39 is specified in order to allow the behavior  
specified in Figure 23.  
Figure 5 shows the control timing diagram.  
2.0 V  
2.0 V  
CLKOUT  
0.8 V  
0.8 V  
A
B
2.0 V  
0.8 V  
2.0 V  
0.8 V  
Outputs  
Outputs  
Inputs  
A
B
2.0 V  
0.8 V  
2.0 V  
0.8 V  
D
C
2.0 V  
0.8 V  
2.0 V  
0.8 V  
D
C
2.0 V  
0.8 V  
2.0 V  
0.8 V  
Inputs  
A
B
C
D
Maximum output delay specification  
Minimum output hold time  
Minimum input setup time specification  
Minimum input hold time specification  
Figure 5. Control Timing  
MPC866/MPC859 Hardware Specifications, Rev. 2  
24  
Freescale Semiconductor  
 
Bus Signal Timing  
Figure 6 shows the timing for the external clock.  
CLKOUT  
B1  
B1  
B3  
B2  
B4  
B5  
Figure 6. External Clock Timing  
Figure 7 shows the timing for the synchronous output signals.  
CLKOUT  
B8  
B7  
B9  
B9  
Output  
Signals  
B8a  
B8b  
B7a  
B7b  
Output  
Signals  
Output  
Signals  
Figure 7. Synchronous Output Signals Timing  
MPC866/MPC859 Hardware Specifications, Rev. 2  
Freescale Semiconductor  
25  
 
 
Bus Signal Timing  
Figure 8 shows the timing for the synchronous active pull-up and open-drain output signals.  
CLKOUT  
B13  
B11  
B12  
B12a  
B15  
TS, BB  
TA, BI  
TEA  
B13a  
B11a  
B14  
Figure 8. Synchronous Active Pull-Up Resistor and Open-Drain Output Signals Timing  
Figure 9 shows the timing for the synchronous input signals.  
CLKOUT  
B16  
B17  
TA, BI  
B16a  
B17a  
TEA, KR,  
RETRY, CR  
B16b  
B17  
BB, BG, BR  
Figure 9. Synchronous Input Signals Timing  
MPC866/MPC859 Hardware Specifications, Rev. 2  
26  
Freescale Semiconductor  
 
 
Bus Signal Timing  
Figure 10 shows normal case timing for input data. It also applies to normal read accesses under the control of the  
UPM in the memory controller.  
CLKOUT  
B16  
B17  
TA  
B18  
B19  
D[0:31],  
DP[0:3]  
Figure 10. Input Data Timing in Normal Case  
Figure 11 shows the timing for the input data controlled by the UPM for data beats where DLT3 = 1 in the UPM  
RAM words. (This is only the case where data is latched on the falling edge of CLKOUT.)  
CLKOUT  
TA  
B20  
B21  
D[0:31],  
DP[0:3]  
Figure 11. Input Data Timing when Controlled by UPM in the Memory Controller and DLT3 = 1  
MPC866/MPC859 Hardware Specifications, Rev. 2  
Freescale Semiconductor  
27  
 
 
Bus Signal Timing  
Figure 12 through Figure 15 show the timing for the external bus read controlled by various GPCM factors.  
CLKOUT  
B11  
B8  
B12  
TS  
A[0:31]  
CSx  
B22  
B23  
B25  
B26  
B19  
OE  
B28  
WE[0:3]  
B18  
D[0:31],  
DP[0:3]  
Figure 12. External Bus Read Timing (GPCM Controlled—ACS = 00)  
MPC866/MPC859 Hardware Specifications, Rev. 2  
28  
Freescale Semiconductor  
 
Bus Signal Timing  
CLKOUT  
TS  
B11  
B8  
B12  
A[0:31]  
CSx  
B23  
B22a  
B24  
B25  
B26  
B19  
OE  
B18  
D[0:31],  
DP[0:3]  
Figure 13. External Bus Read Timing (GPCM Controlled—TRLX = 0 or 1, ACS = 10)  
CLKOUT  
TS  
B11  
B8  
B12  
B22b  
B22c  
A[0:31]  
CSx  
B23  
B24a  
B25  
B26  
B19  
OE  
B18  
D[0:31],  
DP[0:3]  
Figure 14. External Bus Read Timing (GPCM Controlled—TRLX = 0 or 1, ACS = 11)  
MPC866/MPC859 Hardware Specifications, Rev. 2  
Freescale Semiconductor  
29  
Bus Signal Timing  
CLKOUT  
B11  
B12  
TS  
A[0:31]  
CSx  
B8  
B23  
B22a  
B27  
B26  
B19  
OE  
B27a  
B22b B22c  
B18  
D[0:31],  
DP[0:3]  
Figure 15. External Bus Read Timing (GPCM Controlled—TRLX = 0 or 1, ACS = 10, ACS = 11)  
MPC866/MPC859 Hardware Specifications, Rev. 2  
30  
Freescale Semiconductor  
Bus Signal Timing  
Figure 16 through Figure 18 show the timing for the external bus write controlled by various GPCM factors.  
CLKOUT  
TS  
B11  
B8  
B12  
B30  
A[0:31]  
CSx  
B22  
B23  
B25  
B28  
WE[0:3]  
OE  
B26  
B29b  
B29  
B8  
B9  
D[0:31],  
DP[0:3]  
Figure 16. External Bus Write Timing (GPCM Controlled—TRLX = 0 or 1, CSNT = 0)  
MPC866/MPC859 Hardware Specifications, Rev. 2  
Freescale Semiconductor  
31  
 
Bus Signal Timing  
CLKOUT  
TS  
B11  
B8  
B12  
B30a B30c  
B23  
A[0:31]  
CSx  
B22  
B28b B28d  
B25  
B29c B29g  
WE[0:3]  
OE  
B26  
B29a B29f  
B28a B28c  
B8  
B9  
D[0:31],  
DP[0:3]  
Figure 17. External Bus Write Timing (GPCM Controlled—TRLX = 0, CSNT = 1)  
MPC866/MPC859 Hardware Specifications, Rev. 2  
32  
Freescale Semiconductor  
Bus Signal Timing  
CLKOUT  
TS  
B11  
B12  
B8  
B30b B30d  
A[0:31]  
CSx  
B22  
B28b B28d  
B23  
B25  
B29e B29i  
B29d B29h  
WE[0:3]  
OE  
B26  
B29b  
B8  
B28a B28c  
B9  
D[0:31],  
DP[0:3]  
Figure 18. External Bus Write Timing (GPCM Controlled—TRLX = 1, CSNT = 1)  
MPC866/MPC859 Hardware Specifications, Rev. 2  
Freescale Semiconductor  
33  
Bus Signal Timing  
Figure 19 shows the timing for the external bus controlled by the UPM.  
CLKOUT  
B8  
A[0:31]  
B31a  
B31d  
B31c  
B31  
B31b  
CSx  
B34  
B34a  
B34b  
B32a B32d  
B32c  
B33a  
B32  
B32b  
BS_A[0:3],  
BS_B[0:3]  
B35 B36  
B35b  
B35a  
B33  
GPL_A[0:5],  
GPL_B[0:5]  
Figure 19. External Bus Timing (UPM Controlled Signals)  
MPC866/MPC859 Hardware Specifications, Rev. 2  
34  
Freescale Semiconductor  
 
Bus Signal Timing  
Figure 20 shows the timing for the asynchronous asserted UPWAIT signal controlled by the UPM.  
CLKOUT  
UPWAIT  
CSx  
B37  
B38  
BS_A[0:3],  
BS_B[0:3]  
GPL_A[0:5],  
GPL_B[0:5]  
Figure 20. Asynchronous UPWAIT Asserted Detection in UPM Handled Cycles Timing  
Figure 21 shows the timing for the asynchronous negated UPWAIT signal controlled by the UPM.  
CLKOUT  
B37  
UPWAIT  
B38  
CSx  
BS_A[0:3],  
BS_B[0:3]  
GPL_A[0:5],  
GPL_B[0:5]  
Figure 21. Asynchronous UPWAIT Negated Detection in UPM Handled Cycles Timing  
MPC866/MPC859 Hardware Specifications, Rev. 2  
Freescale Semiconductor  
35  
 
 
Bus Signal Timing  
Figure 22 shows the timing for the synchronous external master access controlled by the GPCM.  
CLKOUT  
B41  
B40  
B42  
TS  
A[0:31],  
TSIZ[0:1],  
R/W, BURST  
B22  
CSx  
Figure 22. Synchronous External Master Access Timing (GPCM Handled ACS = 00)  
MPC866/MPC859 Hardware Specifications, Rev. 2  
36  
Freescale Semiconductor  
 
Bus Signal Timing  
Figure 23 shows the timing for the asynchronous external master memory access controlled by the GPCM.  
CLKOUT  
AS  
B39  
B40  
A[0:31],  
TSIZ[0:1],  
R/W  
B22  
CSx  
Figure 23. Asynchronous External Master Memory Access Timing (GPCM Controlled—ACS = 00)  
Figure 24 shows the timing for the asynchronous external master control signals negation.  
AS  
B43  
CSx, WE[0:3],  
OE, GPLx,  
BS[0:3]  
Figure 24. Asynchronous External Master—Control Signals Negation Timing  
Table 10 shows the interrupt timing for the MPC866/859.  
Table 10. Interrupt Timing  
All Frequencies  
1
Num  
Characteristic  
Unit  
Min  
Max  
I39 IRQx valid to CLKOUT rising edge (setup time)  
I40 IRQx hold time after CLKOUT  
I41 IRQx pulse width low  
6.00  
2.00  
3.00  
3.00  
ns  
ns  
ns  
ns  
I42 IRQx pulse width high  
I43 IRQx edge-to-edge time  
4xT  
CLOCKOUT  
1
The timings I39 and I40 describe the testing conditions under which the IRQ lines are tested when being defined as  
level sensitive. The IRQ lines are synchronized internally and do not have to be asserted or negated with reference  
to the CLKOUT.  
The timings I41, I42, and I43 are specified to allow the correct function of the IRQ lines detection circuitry, and has  
no direct relation with the total system interrupt latency that the MPC866/859 is able to support.  
MPC866/MPC859 Hardware Specifications, Rev. 2  
Freescale Semiconductor  
37  
 
 
 
Bus Signal Timing  
Figure 25 shows the interrupt detection timing for the external level-sensitive lines.  
CLKOUT  
I39  
I40  
IRQx  
Figure 25. Interrupt Detection Timing for External Level Sensitive Lines  
Figure 26 shows the interrupt detection timing for the external edge-sensitive lines.  
CLKOUT  
I41  
I42  
IRQx  
I43  
I43  
Figure 26. Interrupt Detection Timing for External Edge Sensitive Lines  
Table 11 shows the PCMCIA timing for the MPC866/859.  
Table 11. PCMCIA Timing  
33 MHz  
40 MHz  
50 MHz  
66 MHz  
Num  
Characteristic  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
A(0:31), REG valid to PCMCIA  
P44 Strobe asserted (MIN = 0.75 x B1  
– 2.00)  
20.70  
16.70  
13.00  
9.40  
ns  
1
A(0:31), REG valid to ALE  
negation (MIN = 1.00 x B1 – 2.00)  
28.30  
23.00  
6.30  
7.30  
6.30  
6.30  
18.00  
5.00  
6.00  
5.00  
5.00  
13.20  
3.80  
4.80  
3.80  
3.80  
ns  
P45  
P46  
P47  
P48  
P49  
1
CLKOUT to REG valid (MAX = 0.25 7.60  
x B1 + 8.00)  
15.60  
14.30  
13.00  
11.80 ns  
CLKOUT to REG invalid (MIN =  
0.25 x B1 + 1.00)  
8.60  
7.60  
7.60  
ns  
CLKOUT to CE1, CE2 asserted  
(MAX = 0.25 x B1 + 8.00)  
15.60  
15.60  
14.30  
14.30  
13.00  
13.00  
11.80 ns  
11.80 ns  
CLKOUT to CE1, CE2 negated  
(MAX = 0.25 x B1 + 8.00)  
MPC866/MPC859 Hardware Specifications, Rev. 2  
38  
Freescale Semiconductor  
 
 
 
Bus Signal Timing  
Table 11. PCMCIA Timing (continued)  
33 MHz 40 MHz  
50 MHz  
66 MHz  
Num  
Characteristic  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
CLKOUT to PCOE, IORD, PCWE,  
11.00  
11.00  
11.00  
11.00 ns  
P50 IOWR assert time (MAX = 0.00 x  
B1 + 11.00)  
CLKOUT to PCOE, IORD, PCWE,  
P51 IOWR negate time (MAX = 0.00 x  
B1 + 11.00)  
2.00  
11.00  
2.00  
11.00  
2.00  
11.00  
2.00  
11.00 ns  
CLKOUT to ALE assert time (MAX  
= 0.25 x B1 + 6.30)  
7.60  
13.80  
15.60  
6.30  
12.50  
14.30  
5.00  
11.30  
13.00  
3.80  
10.00 ns  
11.80 ns  
P52  
CLKOUT to ALE negate time (MAX  
= 0.25 x B1 + 8.00)  
P53  
PCWE, IOWR negated to D(0:31)  
5.60  
8.00  
4.30  
8.00  
3.00  
8.00  
1.80  
8.00  
ns  
ns  
P54  
1
invalid (MIN = 0.25 x B1 – 2.00)  
WAITA and WAITB valid to  
1
P55 CLKOUT rising edge (MIN = 0.00  
x B1 + 8.00)  
CLKOUT rising edge to WAITA and 2.00  
P56 WAITB invalid (MIN = 0.00 x B1 +  
2.00  
2.00  
2.00  
ns  
1
2.00)  
1
PSST = 1. Otherwise, add PSST times cycle time.  
PSHT = 0. Otherwise, add PSHT times cycle time.  
These synchronous timings define when the WAITx signals are detected in order to freeze (or relieve) the PCMCIA  
current cycle. The WAITx assertion will be effective only if it is detected 2 cycles before the PSL timer expiration. See  
PCMCIA Interface in the MPC866 PowerQUICC User’s Manual.  
MPC866/MPC859 Hardware Specifications, Rev. 2  
Freescale Semiconductor  
39  
Bus Signal Timing  
Figure 27 shows the PCMCIA access cycle timing for the external bus read.  
CLKOUT  
TS  
P44  
A[0:31]  
P46  
P48  
P45  
P47  
P49  
P51  
P52  
REG  
CE1/CE2  
PCOE, IORD  
ALE  
P50  
P53  
P52  
B18  
B19  
D[0:31]  
Figure 27. PCMCIA Access Cycles Timing External Bus Read  
MPC866/MPC859 Hardware Specifications, Rev. 2  
40  
Freescale Semiconductor  
 
Bus Signal Timing  
Figure 28 shows the PCMCIA access cycle timing for the external bus write.  
CLKOUT  
TS  
P44  
A[0:31]  
P46  
P48  
P45  
P47  
P49  
P51  
P52  
B9  
REG  
CE1/CE2  
PCWE, IOWR  
ALE  
P50  
P53  
B8  
P54  
P52  
D[0:31]  
Figure 28. PCMCIA Access Cycles Timing External Bus Write  
Figure 29 shows the PCMCIA WAIT signals detection timing.  
CLKOUT  
P55  
P56  
WAITx  
Figure 29. PCMCIA WAIT Signals Detection Timing  
MPC866/MPC859 Hardware Specifications, Rev. 2  
Freescale Semiconductor  
41  
 
 
Bus Signal Timing  
Table 12 shows the PCMCIA port timing for the MPC866/859.  
Table 12. PCMCIA Port Timing  
33 MHz 40 MHz  
50 MHz  
66 MHz  
Num  
Characteristic  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
CLKOUT to OPx, valid (MAX = 0.00 x B1  
+ 19.00)  
19.00  
19.00  
19.00  
19.00 ns  
P57  
P58  
P59  
P60  
1
HRESET negated to OPx drive (MIN = 25.70  
0.75 x B1 + 3.00)  
21.70  
5.00  
1.00  
18.00  
5.00  
1.00  
14.40  
5.00  
1.00  
ns  
ns  
ns  
IP_Xx valid to CLKOUT rising edge (MIN 5.00  
= 0.00 x B1 + 5.00)  
CLKOUT rising edge to IP_Xx invalid  
(MIN = 0.00 x B1 + 1.00)  
1.00  
1
OP2 and OP3 only.  
Figure 30 shows the PCMCIA output port timing for the MPC866/859.  
CLKOUT  
P57  
Output  
Signals  
HRESET  
P58  
OP2, OP3  
Figure 30. PCMCIA Output Port Timing  
Figure 31 shows the PCMCIA output port timing for the MPC866/859.  
CLKOUT  
P59  
P60  
Input  
Signals  
Figure 31. PCMCIA Input Port Timing  
MPC866/MPC859 Hardware Specifications, Rev. 2  
42  
Freescale Semiconductor  
 
 
 
Bus Signal Timing  
Table 13 shows the debug port timing for the MPC866/859.  
Table 13. Debug Port Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
D61 DSCK cycle time  
3xT  
CLOCKOUT  
D62 DSCK clock pulse width  
D63 DSCK rise and fall times  
D64 DSDI input data setup time  
D65 DSDI data hold time  
1.25xT  
CLOCKOUT  
0.00  
8.00  
5.00  
0.00  
0.00  
3.00  
ns  
ns  
ns  
ns  
ns  
D66 DSCK low to DSDO data valid  
D67 DSCK low to DSDO invalid  
15.00  
2.00  
Figure 32 shows the input timing for the debug port clock.  
DSCK  
D61  
D61  
D62  
D62  
D63  
D63  
Figure 32. Debug Port Clock Input Timing  
Figure 33 shows the timing for the debug port.  
DSCK  
D64  
D65  
DSDI  
D66  
D67  
DSDO  
Figure 33. Debug Port Timings  
MPC866/MPC859 Hardware Specifications, Rev. 2  
Freescale Semiconductor  
43  
 
 
 
Bus Signal Timing  
Table 14 shows the reset timing for the MPC866/859.  
Table 14. Reset Timing  
33 MHz 40 MHz  
Min Max Min Max  
50 MHz  
Min Max  
66 MHz  
Min Max  
Num  
Characteristic  
Unit  
CLKOUT to HRESET high impedance  
(MAX = 0.00 x B1 + 20.00)  
20.00  
20.00  
20.00 —  
20.00 —  
20.00 —  
20.00 —  
20.00 ns  
20.00 ns  
R69  
R70  
CLKOUT to SRESET high impedance  
(MAX = 0.00 x B1 + 20.00)  
RSTCONF pulse width (MIN = 17.00 x 515.20 —  
B1)  
425.00 —  
340.00 —  
257.60 —  
ns  
R71  
R72  
ns  
Configuration data to HRESET rising  
504.50 —  
425.00 —  
350.00 —  
277.30 —  
R73 edge setup time (MIN = 15.00 x B1 +  
50.00)  
Configuration data to RSTCONF rising 350.00 —  
R74 edge setup time (MIN = 0.00 x B1 +  
350.00)  
350.00 —  
350.00 —  
350.00 —  
ns  
ns  
ns  
Configuration data hold time after  
R75 RSTCONF negation (MIN = 0.00 x B1 +  
0.00)  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
0.00  
Configuration data hold time after  
R76 HRESET negation (MIN = 0.00 x B1 +  
0.00)  
HRESET and RSTCONF asserted to  
R77 data out drive (MAX = 0.00 x B1 +  
25.00)  
25.00  
25.00 —  
25.00 —  
25.00 ns  
RSTCONF negated to data out high  
R78  
25.00  
25.00  
25.00 —  
25.00 —  
25.00 —  
25.00 —  
25.00 ns  
25.00 ns  
impedance (MAX = 0.00 x B1 + 25.00)  
CLKOUT of last rising edge before chip  
R79 three-states HRESET to data out high  
impedance (MAX = 0.00 x B1 + 25.00)  
R80 DSDI, DSCK setup (MIN = 3.00 x B1)  
90.90  
75.00  
0.00  
60.00  
0.00  
45.50  
0.00  
ns  
ns  
DSDI, DSCK hold time (MIN = 0.00 x B1 0.00  
+ 0.00)  
R81  
SRESET negated to CLKOUT rising  
242.40 —  
200.00 —  
160.00 —  
121.20 —  
ns  
R82 edge for DSDI and DSCK sample (MIN  
= 8.00 x B1)  
MPC866/MPC859 Hardware Specifications, Rev. 2  
44  
Freescale Semiconductor  
 
Bus Signal Timing  
Figure 34 shows the reset timing for the data bus configuration.  
HRESET  
R71  
R76  
RSTCONF  
R73  
R74  
R75  
D[0:31] (IN)  
Figure 34. Reset Timing—Configuration from Data Bus  
Figure 35 shows the reset timing for the data bus weak drive during configuration.  
CLKOUT  
R69  
HRESET  
R79  
RSTCONF  
R77  
R78  
D[0:31] (OUT)  
(Weak)  
Figure 35. Reset Timing—Data Bus Weak Drive During Configuration  
MPC866/MPC859 Hardware Specifications, Rev. 2  
Freescale Semiconductor  
45  
 
 
IEEE 1149.1 Electrical Specifications  
Figure 36 shows the reset timing for the debug port configuration.  
CLKOUT  
R70  
R82  
R80  
SRESET  
R80  
R81  
R81  
DSCK, DSDI  
Figure 36. Reset Timing—Debug Port Configuration  
11 IEEE 1149.1 Electrical Specifications  
Table 15 shows the JTAG timings for the MPC866/859 shown in Figure 37 through Figure 40.  
Table 15. JTAG Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
J82  
TCK cycle time  
100.00  
40.00  
0.00  
5.00  
25.00  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
J83  
J84  
J85  
J86  
J87  
J88  
J89  
J90  
J91  
J92  
J93  
J94  
J95  
J96  
TCK clock pulse width measured at 1.5 V  
TCK rise and fall times  
10.00  
TMS, TDI data setup time  
TMS, TDI data hold time  
TCK low to TDO data valid  
27.00  
TCK low to TDO data invalid  
0.00  
TCK low to TDO high impedance  
TRST assert time  
20.00  
100.00  
40.00  
TRST setup time to TCK low  
TCK falling edge to output valid  
TCK falling edge to output valid out of high impedance  
TCK falling edge to output high impedance  
Boundary scan input valid to TCK rising edge  
TCK rising edge to boundary scan input invalid  
50.00  
50.00  
50.00  
50.00  
50.00  
MPC866/MPC859 Hardware Specifications, Rev. 2  
46  
Freescale Semiconductor  
 
 
IEEE 1149.1 Electrical Specifications  
TCK  
J82  
J83  
J82  
J83  
J84  
J84  
Figure 37. JTAG Test Clock Input Timing  
TCK  
J85  
J86  
TMS, TDI  
J87  
J88  
J89  
TDO  
Figure 38. JTAG Test Access Port Timing Diagram  
TCK  
J91  
J90  
TRST  
Figure 39. JTAG TRST Timing Diagram  
MPC866/MPC859 Hardware Specifications, Rev. 2  
Freescale Semiconductor  
47  
CPM Electrical Characteristics  
TCK  
J92  
J93  
J94  
Output  
Signals  
Output  
Signals  
J95  
J96  
Output  
Signals  
Figure 40. Boundary Scan (JTAG) Timing Diagram  
12 CPM Electrical Characteristics  
This section provides the AC and DC electrical specifications for the communications processor module (CPM) of  
the MPC866/859.  
12.1 PIP/PIO AC Electrical Specifications  
Table 16 shows the PIP/PIO AC timings as shown in Figure 41 through Figure 45.  
Table 16. PIP/PIO Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
Data-in setup time to STBI low  
0
2.5 – t3  
1.5  
2
ns  
clk  
clk  
ns  
clk  
clk  
clk  
clk  
ns  
ns  
ns  
1
Data-In hold time to STBI high  
STBI pulse width  
STBO pulse width  
1 clk – 5ns  
Data-out setup time to STBO low  
Data-out hold time from STBO high  
STBI low to STBO low (Rx interlock)  
STBI low to STBO high (Tx interlock)  
Data-in setup time to clock high  
Data-in hold time from clock high  
Clock low to data-out valid (CPU writes data, control, or direction)  
2
5
2
25  
15  
7.5  
1
t3 = Specification 23  
MPC866/MPC859 Hardware Specifications, Rev. 2  
48  
Freescale Semiconductor  
 
CPM Electrical Characteristics  
DATA-IN  
STBI  
21  
22  
23  
27  
24  
STBO  
Figure 41. PIP Rx (Interlock Mode) Timing Diagram  
DATA-OUT  
25  
26  
24  
STBO  
(Output)  
28  
23  
STBI  
(Input)  
Figure 42. PIP Tx (Interlock Mode) Timing Diagram  
DATA-IN  
21  
22  
23  
24  
STBI  
(Input)  
STBO  
(Output)  
Figure 43. PIP Rx (Pulse Mode) Timing Diagram  
MPC866/MPC859 Hardware Specifications, Rev. 2  
Freescale Semiconductor  
49  
CPM Electrical Characteristics  
DATA-OUT  
25  
26  
24  
23  
STBO  
(Output)  
STBI  
(Input)  
Figure 44. PIP TX (Pulse Mode) Timing Diagram  
CLKO  
DATA-IN  
29  
30  
31  
DATA-OUT  
Figure 45. Parallel I/O Data-In/Data-Out Timing Diagram  
12.2 Port C Interrupt AC Electrical Specifications  
Table 17 shows timings for port C interrupts.  
Table 17. Port C Interrupt Timing  
33.34 MHz  
Num  
Characteristic  
Unit  
Min  
Max  
35  
36  
Port C interrupt pulse width low (edge-triggered mode)  
Port C interrupt minimum time between active edges  
55  
55  
ns  
ns  
Figure 46 shows the port C interrupt detection timing.  
MPC866/MPC859 Hardware Specifications, Rev. 2  
50  
Freescale Semiconductor  
 
CPM Electrical Characteristics  
36  
Port C  
(Input)  
35  
Figure 46. Port C Interrupt Detection Timing  
12.3 IDMA Controller AC Electrical Specifications  
Table 18 shows the IDMA controller timings as shown in Figure 47 through Figure 50.  
Table 18. IDMA Controller Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
40  
41  
42  
43  
44  
45  
46  
DREQ setup time to clock high  
7
3
12  
12  
20  
15  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DREQ hold time from clock high  
SDACK assertion delay from clock high  
SDACK negation delay from clock low  
7
SDACK negation delay from TA low  
SDACK negation delay from clock high  
TA assertion to falling edge of the clock setup time (applies to external TA)  
CLKO  
(Output)  
41  
40  
DREQ  
(Input)  
Figure 47. IDMA External Requests Timing Diagram  
MPC866/MPC859 Hardware Specifications, Rev. 2  
Freescale Semiconductor  
51  
 
 
CPM Electrical Characteristics  
CLKO  
(Output)  
TS  
(Output)  
R/W  
(Output)  
42  
43  
DATA  
46  
TA  
(Input)  
SDACK  
Figure 48. SDACK Timing Diagram—Peripheral Write, Externally-Generated TA  
CLKO  
(Output)  
TS  
(Output)  
R/W  
(Output)  
42  
44  
DATA  
TA  
(Output)  
SDACK  
Figure 49. SDACK Timing Diagram—Peripheral Write, Internally-Generated TA  
MPC866/MPC859 Hardware Specifications, Rev. 2  
52  
Freescale Semiconductor  
CPM Electrical Characteristics  
CLKO  
(Output)  
TS  
(Output)  
R/W  
(Output)  
42  
45  
DATA  
TA  
(Output)  
SDACK  
Figure 50. SDACK Timing Diagram—Peripheral Read, Internally-Generated TA  
12.4 Baud Rate Generator AC Electrical Specifications  
Table 19 shows the baud rate generator timings as shown in Figure 51.  
Table 19. Baud Rate Generator Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
50  
51  
52  
BRGO rise and fall time  
BRGO duty cycle  
BRGO cycle  
40  
40  
10  
60  
ns  
%
ns  
50  
50  
BRGOX  
51  
51  
52  
Figure 51. Baud Rate Generator Timing Diagram  
MPC866/MPC859 Hardware Specifications, Rev. 2  
Freescale Semiconductor  
53  
 
 
CPM Electrical Characteristics  
12.5 Timer AC Electrical Specifications  
Table 20 shows the general-purpose timer timings as shown in Figure 52.  
Table 20. Timer Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
61  
62  
63  
64  
65  
TIN/TGATE rise and fall time  
TIN/TGATE low time  
10  
1
25  
ns  
clk  
clk  
clk  
ns  
TIN/TGATE high time  
TIN/TGATE cycle time  
CLKO low to TOUT valid  
2
3
3
CLKO  
60  
61  
63  
62  
TIN/TGATE  
(Input)  
61  
64  
65  
TOUT  
(Output)  
Figure 52. CPM General-Purpose Timers Timing Diagram  
12.6 Serial Interface AC Electrical Specifications  
Table 21 shows the serial interface timings as shown in Figure 53 through Figure 57.  
Table 21. SI Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
1, 2  
70  
71  
L1RCLK, L1TCLK frequency (DSC = 0)  
L1RCLK, L1TCLK width low (DSC = 0)  
L1RCLK, L1TCLK width high (DSC = 0)  
SYNCCLK/2.5  
MHz  
ns  
2
P + 10  
P + 10  
3
71a  
72  
ns  
L1TXD, L1ST(1–4), L1RQ, L1CLKO rise/fall time  
15.00  
ns  
73  
L1RSYNC, L1TSYNC valid to L1CLK edge (SYNC  
setup time)  
20.00  
ns  
MPC866/MPC859 Hardware Specifications, Rev. 2  
54  
Freescale Semiconductor  
 
 
 
CPM Electrical Characteristics  
Table 21. SI Timing (continued)  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
74  
L1CLK edge to L1RSYNC, L1TSYNC, invalid  
(SYNC hold time)  
35.00  
ns  
75  
76  
L1RSYNC, L1TSYNC rise/fall time  
15.00  
ns  
ns  
L1RXD valid to L1CLK edge (L1RXD setup time)  
L1CLK edge to L1RXD invalid (L1RXD hold time)  
17.00  
13.00  
10.00  
10.00  
10.00  
10.00  
10.00  
0.00  
77  
ns  
4
78  
L1CLK edge to L1ST(1–4) valid  
45.00  
ns  
78A  
79  
L1SYNC valid to L1ST(1–4) valid  
L1CLK edge to L1ST(1–4) invalid  
L1CLK edge to L1TXD valid  
45.00  
ns  
45.00  
ns  
80  
55.00  
ns  
4
80A  
81  
L1TSYNC valid to L1TXD valid  
55.00  
ns  
L1CLK edge to L1TXD high impedance  
L1RCLK, L1TCLK frequency (DSC =1)  
L1RCLK, L1TCLK width low (DSC =1)  
42.00  
ns  
82  
16.00 or SYNCCLK/2  
MHz  
ns  
83  
P + 10  
P + 10  
3
83a  
84  
L1RCLK, L1TCLK width high (DSC = 1)  
ns  
L1CLK edge to L1CLKO valid (DSC = 1)  
30.00  
ns  
4
85  
L1RQ valid before falling edge of L1TSYNC  
1.00  
L1TCLK  
ns  
2
86  
L1GR setup time  
42.00  
42.00  
87  
L1GR hold time  
ns  
88  
L1CLK edge to L1SYNC valid (FSD = 00) CNT =  
0000, BYT = 0, DSC = 0)  
0.00  
ns  
1
2
3
4
The ratio SyncCLK/L1RCLK must be greater than 2.5/1.  
These specs are valid for IDL mode only.  
Where P = 1/CLKOUT. Thus, for a 25-MHz CLKO1 rate, P = 40 ns.  
These strobes and TxD on the first bit of the frame become valid after L1CLK edge or L1SYNC, whichever is later.  
MPC866/MPC859 Hardware Specifications, Rev. 2  
Freescale Semiconductor  
55  
CPM Electrical Characteristics  
L1RCLK  
(FE=0, CE=0)  
(Input)  
71  
70  
71a  
72  
L1RCLK  
(FE=1, CE=1)  
(Input)  
RFSD=1  
75  
74  
L1RSYNC  
(Input)  
73  
77  
L1RXD  
(Input)  
BIT0  
76  
78  
79  
L1ST(4-1)  
(Output)  
Figure 53. SI Receive Timing Diagram with Normal Clocking (DSC = 0)  
MPC866/MPC859 Hardware Specifications, Rev. 2  
56  
Freescale Semiconductor  
CPM Electrical Characteristics  
L1RCLK  
(FE=1, CE=1)  
(Input)  
72  
83a  
82  
L1RCLK  
(FE=0, CE=0)  
(Input)  
RFSD=1  
75  
L1RSYNC  
(Input)  
73  
74  
77  
L1RXD  
(Input)  
BIT0  
76  
78  
79  
L1ST(4-1)  
(Output)  
84  
L1CLKO  
(Output)  
Figure 54. SI Receive Timing with Double-Speed Clocking (DSC = 1)  
MPC866/MPC859 Hardware Specifications, Rev. 2  
Freescale Semiconductor  
57  
CPM Electrical Characteristics  
L1TCLK  
(FE=0, CE=0)  
(Input)  
71  
70  
72  
L1TCLK  
(FE=1, CE=1)  
(Input)  
73  
TFSD=0  
75  
74  
L1TSYNC  
(Input)  
80a  
BIT0  
80  
81  
L1TXD  
(Output)  
79  
78  
L1ST(4-1)  
(Output)  
Figure 55. SI Transmit Timing Diagram (DSC = 0)  
MPC866/MPC859 Hardware Specifications, Rev. 2  
58  
Freescale Semiconductor  
CPM Electrical Characteristics  
L1RCLK  
(FE=0, CE=0)  
(Input)  
72  
83a  
82  
L1RCLK  
(FE=1, CE=1)  
(Input)  
TFSD=0  
75  
L1RSYNC  
(Input)  
73  
74  
81  
L1TXD  
(Output)  
BIT0  
80  
78a  
79  
L1ST(4-1)  
(Output)  
78  
84  
L1CLKO  
(Output)  
Figure 56. SI Transmit Timing with Double Speed Clocking (DSC = 1)  
MPC866/MPC859 Hardware Specifications, Rev. 2  
Freescale Semiconductor  
59  
CPM Electrical Characteristics  
Figure 57. IDL Timing  
MPC866/MPC859 Hardware Specifications, Rev. 2  
60  
Freescale Semiconductor  
CPM Electrical Characteristics  
12.7 SCC in NMSI Mode Electrical Specifications  
Table 22 shows the NMSI external clock timings.  
Table 22. NMSI External Clock Timings  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
1
100  
101  
102  
103  
104  
105  
106  
107  
108  
RCLK1 and TCLK1 width high  
1/SYNCCLK  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RCLK1 and TCLK1 width low  
1/SYNCCLK +5  
RCLK1 and TCLK1 rise/fall time  
15.00  
50.00  
50.00  
TXD1 active delay (from TCLK1 falling edge)  
RTS1 active/inactive delay (from TCLK1 falling edge)  
CTS1 setup time to TCLK1 rising edge  
RXD1 setup time to RCLK1 rising edge  
0.00  
0.00  
5.00  
5.00  
5.00  
5.00  
2
RXD1 hold time from RCLK1 rising edge  
CD1 setup time to RCLK1 rising edge  
1
2
The ratios SyncCLK/RCLK1 and SyncCLK/TCLK1 must be greater than or equal to 2.25/1.  
Also applies to CD and CTS hold time when they are used as an external sync signal.  
Table 23 shows the NMSI internal clock timings.  
Table 23. NMSI Internal Clock Timings  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
1
100  
102  
103  
104  
105  
106  
107  
108  
RCLK1 and TCLK1 frequency  
0.00  
SYNCCLK/3  
MHz  
ns  
RCLK1 and TCLK1 rise/fall time  
30.00  
30.00  
TXD1 active delay (from TCLK1 falling edge)  
RTS1 active/inactive delay (from TCLK1 falling edge)  
CTS1 setup time to TCLK1 rising edge  
RXD1 setup time to RCLK1 rising edge  
0.00  
0.00  
40.00  
40.00  
0.00  
40.00  
ns  
ns  
ns  
ns  
2
RXD1 hold time from RCLK1 rising edge  
ns  
CD1 setup time to RCLK1 rising edge  
ns  
1
2
The ratios SyncCLK/RCLK1 and SyncCLK/TCLK1 must be greater or equal to 3/1.  
Also applies to CD and CTS hold time when they are used as an external sync signals.  
MPC866/MPC859 Hardware Specifications, Rev. 2  
Freescale Semiconductor  
61  
 
 
CPM Electrical Characteristics  
Figure 58 through Figure 60 show the NMSI timings.  
RCLK1  
102  
102  
101  
106  
100  
RxD1  
(Input)  
107  
108  
CD1  
(Input)  
107  
CD1  
(SYNC Input)  
Figure 58. SCC NMSI Receive Timing Diagram  
TCLK1  
102  
102  
101  
100  
TxD1  
(Output)  
103  
105  
RTS1  
(Output)  
104  
104  
CTS1  
(Input)  
107  
CTS1  
(SYNC Input)  
Figure 59. SCC NMSI Transmit Timing Diagram  
MPC866/MPC859 Hardware Specifications, Rev. 2  
62  
Freescale Semiconductor  
 
CPM Electrical Characteristics  
TCLK1  
102  
102  
101  
100  
TxD1  
(Output)  
103  
RTS1  
(Output)  
104  
107  
104  
105  
CTS1  
(Echo Input)  
Figure 60. HDLC Bus Timing Diagram  
12.8 Ethernet Electrical Specifications  
Table 24 shows the Ethernet timings as shown in Figure 61 through Figure 65.  
Table 24. Ethernet Timing  
All Frequencies  
Unit  
Num  
Characteristic  
Min  
Max  
120 CLSN width high  
121 RCLK1 rise/fall time  
122 RCLK1 width low  
123 RCLK1 clock period  
124 RXD1 setup time  
125 RXD1 hold time  
40  
15  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
40  
80  
20  
5
1
120  
126 RENA active delay (from RCLK1 rising edge of the last data bit)  
127 RENA width low  
10  
100  
128 TCLK1 rise/fall time  
15  
129 TCLK1 width low  
40  
99  
1
130 TCLK1 clock period  
101  
50  
50  
50  
131 TXD1 active delay (from TCLK1 rising edge)  
132 TXD1 inactive delay (from TCLK1 rising edge)  
133 TENA active delay (from TCLK1 rising edge)  
6.5  
10  
MPC866/MPC859 Hardware Specifications, Rev. 2  
Freescale Semiconductor  
63  
 
CPM Electrical Characteristics  
Table 24. Ethernet Timing (continued)  
Characteristic  
All Frequencies  
Num  
Unit  
Min  
Max  
134 TENA inactive delay (from TCLK1 rising edge)  
135 RSTRT active delay (from TCLK1 falling edge)  
136 RSTRT inactive delay (from TCLK1 falling edge)  
137 REJECT width low  
10  
10  
10  
1
50  
50  
50  
ns  
ns  
ns  
CLK  
ns  
2
138 CLKO1 low to SDACK asserted  
20  
20  
2
139 CLKO1 low to SDACK negated  
ns  
1
2
The ratios SyncCLK/RCLK1 and SyncCLK/TCLK1 must be greater or equal to 2/1.  
SDACK is asserted whenever the SDMA writes the incoming frame DA into memory.  
CLSN(CTS1)  
(Input)  
120  
Figure 61. Ethernet Collision Timing Diagram  
RCLK1  
121  
121  
124  
123  
Last Bit  
RxD1  
(Input)  
125  
126  
127  
RENA(CD1)  
(Input)  
Figure 62. Ethernet Receive Timing Diagram  
MPC866/MPC859 Hardware Specifications, Rev. 2  
64  
Freescale Semiconductor  
CPM Electrical Characteristics  
TCLK1  
128  
128  
129  
131  
121  
TxD1  
(Output)  
132  
133  
134  
TENA(RTS1)  
(Input)  
RENA(CD1)  
(Input)  
Notes:  
1. Transmit clock invert (TCI) bit in GSMR is set.  
2. If RENA is deasserted before TENA, or RENA is not asserted at all during transmit, then the  
CSL bit is set in the buffer descriptor at the end of the frame transmission.  
Figure 63. Ethernet Transmit Timing Diagram  
RCLK1  
RxD1  
(Input)  
0
1
1
BIT1  
125  
BIT2  
136  
Start Frame Delimiter  
RSTRT  
(Output)  
Figure 64. CAM Interface Receive Start Timing Diagram  
REJECT  
137  
Figure 65. CAM Interface REJECT Timing Diagram  
12.9 SMC Transparent AC Electrical Specifications  
Table 25 shows the SMC transparent timings as shown in Figure 66.  
MPC866/MPC859 Hardware Specifications, Rev. 2  
Freescale Semiconductor  
65  
CPM Electrical Characteristics  
Table 25. SMC Transparent Timing  
Characteristic  
All Frequencies  
Num  
Unit  
Min  
Max  
1
150  
151  
151A  
152  
153  
154  
155  
SMCLK clock period  
SMCLK width low  
SMCLK width high  
SMCLK rise/fall time  
100  
50  
50  
15  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SMTXD active delay (from SMCLK falling edge)  
SMRXD/SMSYNC setup time  
10  
20  
5
RXD1/SMSYNC hold time  
1
Sync CLK must be at least twice as fast as SMCLK.  
SMCLK  
152  
152  
151  
151A  
150  
SMTXD  
(Output)  
NOTE 1  
154  
153  
155  
SMSYNC  
154  
155  
SMRXD  
(Input)  
NOTE:  
1. This delay is equal to an integer number of character-length clocks.  
Figure 66. SMC Transparent Timing Diagram  
MPC866/MPC859 Hardware Specifications, Rev. 2  
66  
Freescale Semiconductor  
CPM Electrical Characteristics  
12.10SPI Master AC Electrical Specifications  
Table 26 shows the SPI master timings as shown in Figure 67 and Figure 68.  
Table 26. SPI Master Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
160  
161  
162  
163  
164  
165  
166  
167  
MASTER cycle time  
4
2
1024  
512  
t
t
cyc  
cyc  
MASTER clock (SCK) high or low time  
MASTER data setup time (inputs)  
Master data hold time (inputs)  
Master data valid (after SCK edge)  
Master data hold time (outputs)  
Rise time output  
15  
0
ns  
ns  
ns  
ns  
ns  
ns  
0
10  
15  
Fall time output  
15  
SPICLK  
(CI=0)  
(Output)  
161  
163  
167  
166  
166  
167  
161  
160  
SPICLK  
(CI=1)  
(Output)  
162  
SPIMISO  
(Input)  
msb  
167  
Data  
165  
lsb  
msb  
164  
166  
SPIMOSI  
(Output)  
msb  
Data  
lsb  
msb  
Figure 67. SPI Master (CP = 0) Timing Diagram  
MPC866/MPC859 Hardware Specifications, Rev. 2  
Freescale Semiconductor  
67  
 
 
CPM Electrical Characteristics  
SPICLK  
(CI=0)  
(Output)  
161  
167  
166  
166  
167  
161  
160  
SPICLK  
(CI=1)  
(Output)  
163  
162  
SPIMISO  
(Input)  
msb  
167  
Data  
165  
lsb  
msb  
164  
166  
SPIMOSI  
(Output)  
msb  
Data  
lsb  
msb  
Figure 68. SPI Master (CP = 1) Timing Diagram  
12.11SPI Slave AC Electrical Specifications  
Table 27 shows the SPI slave timings as shown in Figure 69 and Figure 70.  
Table 27. SPI Slave Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
170  
171  
172  
173  
174  
175  
176  
177  
Slave cycle time  
2
50  
t
cyc  
Slave enable lead time  
Slave enable lag time  
15  
15  
1
ns  
ns  
Slave clock (SPICLK) high or low time  
Slave sequential transfer delay (does not require deselect)  
Slave data setup time (inputs)  
t
cyc  
cyc  
1
t
20  
20  
ns  
ns  
ns  
Slave data hold time (inputs)  
Slave access time  
MPC866/MPC859 Hardware Specifications, Rev. 2  
68  
Freescale Semiconductor  
 
CPM Electrical Characteristics  
SPISEL  
(Input)  
172  
171  
174  
SPICLK  
(CI=0)  
(Input)  
173  
182  
181  
173  
170  
SPICLK  
(CI=1)  
(Input)  
177  
181  
182  
180  
178  
Undef  
SPIMISO  
(Output)  
msb  
176  
Data  
lsb  
msb  
msb  
175  
179  
181 182  
lsb  
SPIMOSI  
(Input)  
msb  
Data  
Figure 69. SPI Slave (CP = 0) Timing Diagram  
MPC866/MPC859 Hardware Specifications, Rev. 2  
Freescale Semiconductor  
69  
CPM Electrical Characteristics  
SPISEL  
(Input)  
172  
174  
171  
170  
SPICLK  
(CI=0)  
(Input)  
173  
182  
181  
173  
181  
SPICLK  
(CI=1)  
(Input)  
177  
182  
180  
178  
SPIMISO  
(Output)  
msb  
msb  
msb  
Undef  
175  
Data  
lsb  
179  
176  
181 182  
Data  
SPIMOSI  
(Input)  
msb  
lsb  
Figure 70. SPI Slave (CP = 1) Timing Diagram  
12.12I2C AC Electrical Specifications  
MPC866/MPC859 Hardware Specifications, Rev. 2  
70  
Freescale Semiconductor  
CPM Electrical Characteristics  
2
Table 28 shows the I C (SCL < 100 kHz) timings.  
2
Table 28. I C Timing (SCL < 100 kHz)  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
200  
200  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
SCL clock frequency (slave)  
SCL clock frequency (master)  
0
100  
100  
kHz  
kHz  
μs  
μs  
μs  
μs  
μs  
μs  
ns  
1
1.5  
4.7  
4.7  
4.0  
4.7  
4.0  
0
Bus free time between transmissions  
Low period of SCL  
High period of SCL  
Start condition setup time  
Start condition hold time  
Data hold time  
Data setup time  
250  
SDL/SCL rise time  
1
μs  
ns  
SDL/SCL fall time  
300  
Stop condition setup time  
4.7  
μs  
1
SCL frequency is given by SCL = BRGCLK_frequency / ((BRG register + 3) * pre_scaler * 2).  
The ratio SyncClk/(BRGCLK/pre_scaler) must be greater or equal to 4/1.  
2
Table 29 shows the I C (SCL > 100 kHz) timings.  
2
Table 29. I C Timing (SCL > 100 kHz)  
All Frequencies  
Num  
Characteristic  
Expression  
Unit  
Min  
Max  
200  
200  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
SCL clock frequency (slave)  
SCL clock frequency (master)  
fSCL  
fSCL  
0
BRGCLK/48  
Hz  
Hz  
s
1
BRGCLK/16512  
1/(2.2 * fSCL)  
1/(2.2 * fSCL)  
1/(2.2 * fSCL)  
1/(2.2 * fSCL)  
1/(2.2 * fSCL)  
0
BRGCLK/48  
Bus free time between transmissions  
Low period of SCL  
s
High period of SCL  
s
Start condition setup time  
Start condition hold time  
Data hold time  
s
s
s
Data setup time  
1/(40 * fSCL)  
s
SDL/SCL rise time  
1/(10 * fSCL)  
1/(33 * fSCL)  
s
SDL/SCL fall time  
s
Stop condition setup time  
1/2(2.2 * fSCL)  
s
1
SCL frequency is given by SCL = BrgClk_frequency / ((BRG register + 3) * pre_scaler * 2).  
The ratio SyncClk/(Brg_Clk/pre_scaler) must be greater or equal to 4/1.  
MPC866/MPC859 Hardware Specifications, Rev. 2  
Freescale Semiconductor  
71  
 
 
UTOPIA AC Electrical Specifications  
2
Figure 71 shows the I C bus timing.  
SDA  
202  
203  
204  
208  
205  
207  
SCL  
206  
209  
210  
211  
2
Figure 71. I C Bus Timing Diagram  
13 UTOPIA AC Electrical Specifications  
Table 30 through Table 32 show the AC electrical specifications for the UTOPIA interface.  
Table 30. UTOPIA Master (Muxed Mode) Electrical Specifications  
Num  
Signal Characteristic  
Direction  
Min  
Max  
Unit  
U1  
UtpClk rise/fall time (Internal clock option)  
Output  
50  
2
4
ns  
%
Duty cycle  
Frequency  
50  
33  
16  
MHz  
ns  
U2  
UTPB, SOC, RxEnb, TxEnb, RxAddr, and TxAddr-active  
delay (and PHREQ and PHSEL active delay in MPHY mode)  
Output  
U3  
U4  
UTPB, SOC, Rxclav and Txclav setup time  
UTPB, SOC, Rxclav and Txclav hold time  
Input  
Input  
4
1
ns  
ns  
Table 31. UTOPIA Master (Split Bus Mode) Electrical Specifications  
Num  
Signal Characteristic  
Direction  
Min  
Max  
Unit  
U1  
UtpClk rise/fall time (Internal clock option)  
Output  
50  
2
4
ns  
%
Duty cycle  
Frequency  
50  
33  
16  
MHz  
ns  
U2  
UTPB, SOC, RxEnb, TxEnb, RxAddr and TxAddr active  
delay (PHREQ and PHSEL active delay in MPHY mode)  
Output  
U3  
U4  
UTPB_Aux, SOC_Aux, Rxclav, and Txclav setup time  
UTPB_Aux, SOC_Aux, Rxclav, and Txclav hold time  
Input  
Input  
4
1
ns  
ns  
MPC866/MPC859 Hardware Specifications, Rev. 2  
72  
Freescale Semiconductor  
 
 
UTOPIA AC Electrical Specifications  
Table 32. UTOPIA Slave (Split Bus Mode) Electrical Specifications  
Num  
Signal Characteristic  
Direction  
Min  
Max  
Unit  
U1  
UtpClk rise/fall time (external clock option)  
Duty cycle  
Input  
40  
2
4
ns  
%
60  
33  
16  
Frequency  
MHz  
ns  
U2  
U3  
UTPB, SOC, Rxclav and Txclav active delay  
Output  
Input  
UTPB_AUX, SOC_Aux, RxEnb, TxEnb, RxAddr, and TxAddr  
setup time  
4
ns  
U4  
UTPB_AUX, SOC_Aux, RxEnb, TxEnb, RxAddr, and TxAddr  
hold time  
Input  
1
ns  
Figure 72 shows signal timings during UTOPIA receive operations.  
U1  
U1  
UtpClk  
U2  
PHREQn  
U3  
U4  
RxClav  
RxEnb  
HighZ at MPHY  
HighZ at MPHY  
U2  
UTPB  
SOC  
U3  
U4  
Figure 72. UTOPIA Receive Timing  
MPC866/MPC859 Hardware Specifications, Rev. 2  
Freescale Semiconductor  
73  
 
FEC Electrical Characteristics  
Figure 73 shows signal timings during UTOPIA transmit operations.  
U1  
U1  
UtpClk  
U2  
PHSELn  
TxClav  
U3  
U4  
HighZ at MPHY  
High-Z at MPHY  
U2  
TxEnb  
UTPB  
SOC  
U2  
Figure 73. UTOPIA Transmit Timing  
14 FEC Electrical Characteristics  
This section provides the AC electrical specifications for the fast Ethernet controller (FEC). Note that the timing  
specifications for the MII signals are independent of system clock frequency (part speed designation). Also, MII  
signals use TTL signal levels compatible with devices operating at either 5.0 or 3.3 V.  
14.1 MII Receive Signal Timing (MII_RXD [3:0], MII_RX_DV,  
MII_RX_ER, MII_RX_CLK)  
The receiver functions correctly up to a MII_RX_CLK maximum frequency of 25 MHz + 1%. There is no minimum  
frequency requirement. In addition, the processor clock frequency must exceed the MII_RX_CLK frequency – 1%.  
Table 33 shows the timings for MII receive signal.  
Table 33. MII Receive Signal Timing  
Num  
Characteristic  
Min  
Max  
Unit  
M1  
M2  
M3  
M4  
MII_RXD[3:0], MII_RX_DV, MII_RX_ER to MII_RX_CLK setup  
MII_RX_CLK to MII_RXD[3:0], MII_RX_DV, MII_RX_ER hold  
MII_RX_CLK pulse width high  
5
ns  
5
ns  
35%  
35%  
65%  
65%  
MII_RX_CLK period  
MII_RX_CLK period  
MII_RX_CLK pulse width low  
Figure 74 shows the timings for MII receive signal.  
MPC866/MPC859 Hardware Specifications, Rev. 2  
74  
Freescale Semiconductor  
 
 
FEC Electrical Characteristics  
M3  
MII_RX_CLK (input)  
M4  
MII_RXD[3:0] (inputs)  
MII_RX_DV  
MII_RX_ER  
M1  
M2  
Figure 74. MII Receive Signal Timing Diagram  
14.2 MII Transmit Signal Timing (MII_TXD[3:0], MII_TX_EN,  
MII_TX_ER, MII_TX_CLK)  
The transmitter functions correctly up to a MII_TX_CLK maximum frequency of 25 MHz +1%. There is no  
minimum frequency requirement. In addition, the processor clock frequency must exceed the MII_TX_CLK  
frequency - 1%.  
Table 34 shows information on the MII transmit signal timing.  
Table 34. MII Transmit Signal Timing  
Num  
Characteristic  
Min  
Max  
Unit  
M5  
MII_TX_CLK to MII_TXD[3:0], MII_TX_EN, MII_TX_ER  
invalid  
5
ns  
M6  
MII_TX_CLK to MII_TXD[3:0], MII_TX_EN, MII_TX_ER  
valid  
25  
M7  
M8  
MII_TX_CLK pulse width high  
MII_TX_CLK pulse width low  
35%  
35%  
65%  
65%  
MII_TX_CLK period  
MII_TX_CLK period  
MPC866/MPC859 Hardware Specifications, Rev. 2  
Freescale Semiconductor  
75  
 
FEC Electrical Characteristics  
Figure 75 shows the MII transmit signal timing diagram.  
M7  
MII_TX_CLK (input)  
M5  
M8  
MII_TXD[3:0] (outputs)  
MII_TX_EN  
MII_TX_ER  
M6  
Figure 75. MII Transmit Signal Timing Diagram  
14.3 MII Async Inputs Signal Timing (MII_CRS, MII_COL)  
Table 35 shows the timing for on the MII async inputs signal.  
Table 35. MII Async Inputs Signal Timing  
Num  
Characteristic  
Min  
Max  
Unit  
M9  
MII_CRS, MII_COL minimum pulse width  
1.5  
MII_TX_CLK period  
Figure 76 shows the MII asynchronous inputs signal timing diagram.  
MII_CRS, MII_COL  
M9  
Figure 76. MII Async Inputs Timing Diagram  
14.4 MII Serial Management Channel Timing (MII_MDIO, MII_MDC)  
Table 36 shows the timing for the MII serial management channel signal. The FEC functions correctly with a  
maximum MDC frequency in excess of 2.5 MHz. The exact upper bound is under investigation.  
Table 36. MII Serial Management Channel Timing  
Num  
Characteristic  
Min  
Max  
Unit  
M10  
MII_MDC falling edge to MII_MDIO output invalid (minimum  
propagation delay)  
0
ns  
M11  
M12  
MII_MDC falling edge to MII_MDIO output valid (maximum  
propagation delay)  
25  
ns  
ns  
MII_MDIO (input) to MII_MDC rising edge setup  
10  
MPC866/MPC859 Hardware Specifications, Rev. 2  
76  
Freescale Semiconductor  
 
 
 
 
FEC Electrical Characteristics  
Table 36. MII Serial Management Channel Timing  
Num  
Characteristic  
Min  
Max  
Unit  
M13  
M14  
M15  
MII_MDIO (input) to MII_MDC rising edge hold  
MII_MDC pulse width high  
0
ns  
40%  
40%  
60%  
60%  
MII_MDC period  
MII_MDC period  
MII_MDC pulse width low  
Figure 77 shows the MII serial management channel timing diagram.  
M14  
MM15  
MII_MDC (output)  
MII_MDIO (output)  
M10  
M11  
MII_MDIO (input)  
M12  
M13  
Figure 77. MII Serial Management Channel Timing Diagram  
MPC866/MPC859 Hardware Specifications, Rev. 2  
Freescale Semiconductor  
77  
 
Mechanical Data and Ordering Information  
15 Mechanical Data and Ordering Information  
Table 37 shows information on the MPC866/859 derivative devices.  
Table 37. MPC866/859 Derivatives  
Number  
of  
SCCs  
Cache Size  
Ethernet  
Support  
Multi-Channel  
HDLC Support  
Device  
ATM Support  
1
Instruction  
Data  
MPC866T  
MPC866P  
MPC859T  
4
4
10/100 Mbps  
10/100 Mbps  
10/100 Mbps  
10/100 Mbps  
Yes  
Yes  
Yes  
No  
Yes  
4 Kbyte  
16 Kbyte  
4 Kbyte  
4 Kbyte  
4 Kbytes  
8 Kbytes  
4 Kbytes  
4 Kbytes  
Yes  
Yes  
1 (SCC1)  
MPC859DSL 1 (SCC1)  
Up to 4 addresses  
1
Serial communications controller (SCC).  
Table 38 identifies the packages and operating frequencies orderable for the MPC866/859 derivative devices.  
Table 38. MPC866/859 Package/Frequency Orderable  
Package Type  
Plastic ball grid array  
(ZP suffix)  
Non lead free  
Temperature (Tj)  
Frequency (MHz)  
Order Number  
0° to 95°C  
50  
66  
MPC859DSLZP50A  
MPC859DSLZP66A  
100  
MPC859PZP100A  
MPC859TZP100A  
MPC866PZP100A  
MPC866TZP100A  
133  
MPC859PZP133A  
MPC859TZP133A  
MPC866PZP133A  
MPC866TZP133A  
Plastic ball grid array  
(CZP suffix)  
Non lead free  
–40° to 100°C  
50  
66  
MPC859DSLCZP50A  
MPC859DSLCZP66A  
100  
MPC859PCZP100A  
MPC859TCZP100A  
MPC866PCZP100A  
MPC866TCZP100A  
MPC866/MPC859 Hardware Specifications, Rev. 2  
78  
Freescale Semiconductor  
 
 
Mechanical Data and Ordering Information  
Table 38. MPC866/859 Package/Frequency Orderable (continued)  
Plastic ball grid array  
(VR suffix)  
Lead free  
0° to 95°C  
50  
66  
MPC859DSLVR50A  
MPC859DSLVR66A  
100  
MPC859PVR100A  
MPC859TVR100A  
MPC866PVR100A  
MPC866TVR100A  
133  
MPC859PVR133A  
MPC859TVR133A  
MPC866PVR133A  
MPC866TVR133A  
Plastic ball grid array  
(CVR suffix)  
Lead free  
–40° to 100°C  
50  
66  
MPC859DSLCVR50A  
MPC859DSLCVR66A  
100  
MPC859PCVR100A  
MPC859TCVR100A  
MPC866PCVR100A  
MPC866TCVR100A  
MPC866/MPC859 Hardware Specifications, Rev. 2  
Freescale Semiconductor  
79  
Mechanical Data and Ordering Information  
15.1 Pin Assignments  
Figure 78 shows the top view pinout of the PBGA package. For additional information, see the MPC866  
PowerQUICC Family Users Manual.  
NOTE: This is the top view of the device.  
W
V
U
T
PD10 PD8  
PD14 PD13 PD9  
PA0 PB14 PD15  
PD3  
IRQ7 D0  
D4  
D1  
D2  
D3  
D5  
VDDL  
D20  
D6  
D7  
D29  
DP1  
DP2 CLKOUT IPA3  
VSSSYN1  
N/C  
PD6 M_Tx_EN IRQ0 D13  
D27  
D10  
D14  
D18  
D24  
D28  
DP3  
DP0  
PD4  
PD5 IRQ1  
D8  
D23  
D17  
D11  
D9  
D16  
D15  
D19  
D22  
D21  
D25  
D26  
D31  
D30 IPA5 IPA4 IPA2  
IPA6 IPA0 IPA1 IPA7  
N/C VSSSYN  
N/C VDDSYN  
PA1  
PC6  
PC5 PC4 PD11  
PA2 PB15 PD12  
PD7 VDDH D12  
VDDH  
R
P
N
M
L
VDDH  
WAIT_B WAIT_A  
VDDL RSTCONF  
VDDL  
PORESET  
SRESET  
PA4 PB17 PA3 VDDL  
PB19 PA5 PB18 PB16  
GND  
GND  
XTAL  
TEXP  
HRESET  
EXTCLK EXTAL  
PA7  
PC8  
PA6  
PC7  
BADDR28  
MODCK2  
OP0  
BADDR29 VDDL  
OP1 MODCK1  
PB22 PC9  
PA8 PB20  
AS  
K
J
PC10 PA9 PB23 PB21  
PC11 PB24 PA10 PB25  
GND  
BADDR30 IPB6 ALEA IRQ4  
IPB5 IPB1 IPB2 ALEB  
M_COL IRQ2 IPB0 IPB7  
H
G
F
VDDL M_MDIO TDI  
TCK  
TRST TMS TDO PA11  
PB26 PC12 PA12 VDDL  
PB27 PC13 PA13 PB29  
PB28 PC14 PA14 PC15  
BR  
VDDL  
CS3  
IRQ6 IPB4 IPB3  
GND  
GND  
TS  
BI  
IRQ3 BURST  
VDDH  
VDDH  
CS6  
E
D
C
B
A
BG  
BB  
A8  
A9  
N/C  
A12  
A13  
N/C  
A16  
A17  
A15  
A20  
A21  
A19  
A24  
A23  
A25  
A18 BSA0 GPLA0 N/C  
CS2 GPLA5 BDIP TEA  
PB30 PA15 PB31  
A3  
A6  
A26 TSIZ1 BSA1 WE0 GPLA1 GPLA3 CS7  
CS0  
TA GPLA4  
A0  
19  
A1  
A4  
A10  
A22 TSIZ0 BSA3 M_CRS WE2 GPLA2 CS5 CE1A WR GPLB4  
A2  
18  
A5  
17  
A7  
16  
A11  
15  
A14  
14  
A27  
13  
A29  
12  
A30  
11  
A28  
10  
A31 VDDL BSA2 WE1 WE3 CS4 CE2A CS1  
9
8
7
6
5
4
3
2
1
Figure 78. Pinout of the PBGA Package  
MPC866/MPC859 Hardware Specifications, Rev. 2  
80  
Freescale Semiconductor  
 
Mechanical Data and Ordering Information  
Table 39 contains a list of the MPC866 input and output signals and shows multiplexing and pin assignments.  
Table 39. Pin Assignments  
Name  
Pin Number  
Type  
Bidirectional  
A[0:31]  
B19, B18, A18, C16, B17, A17, B16, A16, D15, C15, B15, A15,  
C14, B14, A14, D12, C13, B13, D9, D11, C12, B12, B10, B11, C11, Three-state  
D10, C10, A13, A10, A12, A11, A9  
TSIZ0  
REG  
B9  
Bidirectional  
Three-state  
TSIZ1  
RD/WR  
BURST  
BDIP  
C9  
B2  
F1  
D2  
Bidirectional  
Three-state  
Bidirectional  
Three-state  
Bidirectional  
Three-state  
Output  
GPL_B5  
TS  
F3  
C2  
Bidirectional  
Active Pull-up  
TA  
Bidirectional  
Active Pull-up  
TEA  
BI  
D1  
E3  
Open-drain  
Bidirectional  
Active Pull-up  
IRQ2  
RSV  
H3  
K1  
Bidirectional  
Three-state  
IRQ4  
Bidirectional  
Three-state  
KR  
RETRY  
SPKROUT  
CR  
F2  
Input  
IRQ3  
D[0:31]  
W14, W12, W11, W10, W13, W9, W7, W6, U13, T11, V11, U11,  
T13, V13, V10, T10, U10, T12, V9, U9, V8, U8, T9, U12, V7, T8,  
U7, V12, V6, W5, U6, T7  
Bidirectional  
Three-state  
DP0  
V3  
V5  
W4  
V4  
Bidirectional  
Three-state  
IRQ3  
DP1  
Bidirectional  
Three-state  
IRQ4  
DP2  
Bidirectional  
Three-state  
IRQ5  
DP3  
Bidirectional  
Three-state  
IRQ6  
MPC866/MPC859 Hardware Specifications, Rev. 2  
Freescale Semiconductor  
81  
 
Mechanical Data and Ordering Information  
Table 39. Pin Assignments (continued)  
Pin Number  
Name  
Type  
Bidirectional  
BR  
BG  
BB  
G4  
E2  
E1  
Bidirectional  
Bidirectional  
Active Pull-up  
FRZ  
G3  
Bidirectional  
IRQ6  
IRQ0  
IRQ1  
V14  
U14  
W15  
Input  
Input  
Input  
M_TX_CLK  
IRQ7  
CS[0:5]  
C3, A2, D4, E4, A4, B4  
D5  
Output  
Output  
CS6  
CE1_B  
CS7  
C4  
C7  
Output  
Output  
CE2_B  
WE0  
BS_B0  
IORD  
WE1  
A6  
B6  
A5  
Output  
Output  
Output  
BS_B1  
IOWR  
WE2  
BS_B2  
PCOE  
WE3  
BS_B3  
PCWE  
BS_A[0:3]  
D8, C8, A7, B8  
D7  
Output  
Output  
GPL_A0  
GPL_B0  
OE  
C6  
Output  
GPL_A1  
GPL_B1  
GPL_A[2:3]  
GPL_B[2:3]  
CS[2–3]  
B5, C5  
C1  
Output  
UPWAITA  
GPL_A4  
Bidirectional  
MPC866/MPC859 Hardware Specifications, Rev. 2  
82  
Freescale Semiconductor  
Mechanical Data and Ordering Information  
Table 39. Pin Assignments (continued)  
Name  
UPWAITB  
Pin Number  
Type  
Bidirectional  
B1  
GPL_B4  
GPL_A5  
PORESET  
RSTCONF  
HRESET  
SRESET  
XTAL  
D3  
R2  
P3  
N4  
P2  
P1  
N1  
W3  
N2  
N3  
K2  
Output  
Input  
Input  
Open-drain  
Open-drain  
Analog Output  
Analog Input (3.3V only)  
Output  
EXTAL  
CLKOUT  
EXTCLK  
TEXP  
Input (3.3V only)  
Output  
ALE_A  
Output  
MII-TXD1  
CE1_A  
B3  
A3  
R3  
Output  
Output  
Input  
MII-TXD2  
CE2_A  
MII-TXD3  
WAIT_A  
2
SOC_Split  
WAIT_B  
R4  
T5  
Input  
Input  
IP_A0  
2
2
UTPB_Split0  
MII-RXD3  
IP_A1  
T4  
U3  
Input  
Input  
UTPB_Split1  
MII-RXD2  
IP_A2  
IOIS16_A  
UTPB_Split2  
MII-RXD1  
2
2
2
IP_A3  
W2  
U4  
Input  
Input  
UTPB_Split3  
MII-RXD0  
IP_A4  
UTPB_Split4  
MII-RXCLK  
MPC866/MPC859 Hardware Specifications, Rev. 2  
Freescale Semiconductor  
83  
Mechanical Data and Ordering Information  
Table 39. Pin Assignments (continued)  
Name  
Pin Number  
Type  
IP_A5  
U5  
T6  
Input  
Input  
Input  
2
UTPB_Split5  
MII-RXERR  
IP_A6  
2
UTPB_Split6  
MII-TXERR  
IP_A7  
T3  
2
UTPB_Split7  
MII-RXDV  
ALE_B  
J1  
Bidirectional  
Three-state  
DSCK/AT1  
IP_B[0:1]  
IWP[0:1]  
VFLS[0:1]  
H2, J3  
Bidirectional  
IP_B2  
IOIS16_B  
AT2  
J2  
Bidirectional  
Three-state  
IP_B3  
IWP2  
VF2  
G1  
G2  
J4  
Bidirectional  
Bidirectional  
Bidirectional  
IP_B4  
LWP0  
VF0  
IP_B5  
LWP1  
VF1  
IP_B6  
DSDI  
AT0  
K3  
H1  
L4  
Bidirectional  
Three-state  
IP_B7  
PTR  
AT3  
Bidirectional  
Three-state  
OP0  
Bidirectional  
MII-TXD0  
2
UtpClk_Split  
OP1  
L2  
L1  
Output  
OP2  
Bidirectional  
MODCK1  
STS  
MPC866/MPC859 Hardware Specifications, Rev. 2  
84  
Freescale Semiconductor  
Mechanical Data and Ordering Information  
Table 39. Pin Assignments (continued)  
Name  
Pin Number  
Type  
Bidirectional  
OP3  
M4  
K4  
MODCK2  
DSDO  
BADDR30  
REG  
Output  
BADDR[28:29]  
AS  
M3, M2  
L3  
Output  
Input  
PA15  
RXD1  
RXD4  
C18  
Bidirectional  
PA14  
TXD1  
TXD4  
D17  
Bidirectional  
(Optional: Open-drain)  
PA13  
E17  
F17  
G16  
Bidirectional  
RXD2  
PA12  
TXD2  
Bidirectional  
(Optional: Open-drain)  
PA11  
Bidirectional  
(Optional: Open-drain)  
L1TXDB  
RXD3  
PA10  
J17  
Bidirectional  
(Optional: Open-drain)  
L1RXDB  
TXD3  
PA9  
K18  
Bidirectional  
(Optional: Open-drain)  
L1TXDA  
RXD4  
PA8  
L17  
Bidirectional  
(Optional: Open-drain)  
L1RXDA  
TXD4  
PA7  
M19  
Bidirectional  
CLK1  
L1RCLKA  
BRGO1  
TIN1  
PA6  
M17  
Bidirectional  
CLK2  
TOUT1  
MPC866/MPC859 Hardware Specifications, Rev. 2  
Freescale Semiconductor  
85  
Mechanical Data and Ordering Information  
Table 39. Pin Assignments (continued)  
Name  
Pin Number  
Type  
Bidirectional  
PA5  
N18  
CLK3  
L1TCLKA  
BRGO2  
TIN2  
PA4  
P19  
P17  
Bidirectional  
Bidirectional  
CLK4  
TOUT2  
PA3  
CLK5  
BRGO3  
TIN3  
PA2  
R18  
T19  
U19  
Bidirectional  
Bidirectional  
Bidirectional  
CLK6  
TOUT3  
L1RCLKB  
PA1  
CLK7  
BRGO4  
TIN4  
PA0  
CLK8  
TOUT4  
L1TCLKB  
PB31  
C17  
C19  
Bidirectional  
(Optional: Open-drain)  
SPISEL  
REJECT1  
PB30  
Bidirectional  
(Optional: Open-drain)  
SPICLK  
RSTRT2  
PB29  
E16  
D19  
Bidirectional  
(Optional: Open-drain)  
SPIMOSI  
PB28  
Bidirectional  
(Optional: Open-drain)  
SPIMISO  
BRGO4  
PB27  
E19  
F19  
Bidirectional  
(Optional: Open-drain)  
I2CSDA  
BRGO1  
PB26  
Bidirectional  
(Optional: Open-drain)  
I2CSCL  
BRGO2  
MPC866/MPC859 Hardware Specifications, Rev. 2  
86  
Freescale Semiconductor  
Mechanical Data and Ordering Information  
Table 39. Pin Assignments (continued)  
Name  
Pin Number  
Type  
Bidirectional  
PB25  
J16  
J18  
K17  
2
(Optional: Open-drain)  
RXADDR3  
SMTXD1  
PB24  
Bidirectional  
(Optional: Open-drain)  
2
TXADDR3  
SMRXD1  
PB23  
Bidirectional  
(Optional: Open-drain)  
2
TXADDR2  
SDACK1  
SMSYN1  
PB22  
L19  
K16  
Bidirectional  
(Optional: Open-drain)  
2
TXADDR4  
SDACK2  
SMSYN2  
PB21  
Bidirectional  
(Optional: Open-drain)  
SMTXD2  
L1CLKOB  
1
PHSEL1  
2
TXADDR1  
PB20  
L16  
Bidirectional  
(Optional: Open-drain)  
SMRXD2  
L1CLKOA  
1
PHSEL0  
2
TXADDR0  
PB19  
RTS1  
L1ST1  
N19  
N17  
Bidirectional  
(Optional: Open-drain)  
PB18  
Bidirectional  
(Optional: Open-drain)  
2
RXADDR4  
RTS2  
L1ST2  
PB17  
P18  
Bidirectional  
(Optional: Open-drain)  
L1RQb  
L1ST3  
RTS3  
1
PHREQ1  
2
RXADDR1  
MPC866/MPC859 Hardware Specifications, Rev. 2  
Freescale Semiconductor  
87  
Mechanical Data and Ordering Information  
Table 39. Pin Assignments (continued)  
Name  
Pin Number  
Type  
PB16  
N16  
Bidirectional  
(Optional: Open-drain)  
L1RQa  
L1ST4  
RTS4  
1
PHREQ0  
2
RXADDR0  
PB15  
R17  
Bidirectional  
BRGO3  
TxClav  
RxClav  
PB14  
U18  
D16  
Bidirectional  
Bidirectional  
2
RXADDR2  
RSTRT1  
PC15  
DREQ0  
RTS1  
L1ST1  
RxClav  
TxClav  
PC14  
D18  
E18  
F18  
Bidirectional  
Bidirectional  
Bidirectional  
DREQ1  
RTS2  
L1ST2  
PC13  
L1RQb  
L1ST3  
RTS3  
PC12  
L1RQa  
L1ST4  
RTS4  
PC11  
CTS1  
J19  
Bidirectional  
Bidirectional  
PC10  
K19  
CD1  
TGATE1  
PC9  
L18  
Bidirectional  
Bidirectional  
CTS2  
PC8  
M18  
CD2  
TGATE2  
MPC866/MPC859 Hardware Specifications, Rev. 2  
88  
Freescale Semiconductor  
Mechanical Data and Ordering Information  
Table 39. Pin Assignments (continued)  
Name  
Pin Number  
Type  
Bidirectional  
PC7  
M16  
CTS3  
L1TSYNCB  
SDACK2  
PC6  
R19  
T18  
Bidirectional  
Bidirectional  
CD3  
L1RSYNCB  
PC5  
CTS4  
L1TSYNCA  
SDACK1  
PC4  
T17  
U17  
Bidirectional  
Bidirectional  
CD4  
L1RSYNCA  
PD15  
L1TSYNCA  
MII-RXD3  
UTPB0  
PD14  
V19  
V18  
R16  
T16  
W18  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
L1RSYNCA  
MII-RXD2  
UTPB1  
PD13  
L1TSYNCB  
MII-RXD1  
UTPB2  
PD12  
L1RSYNCB  
MII-MDC  
UTPB3  
PD11  
RXD3  
MII-TXERR  
RXENB  
PD10  
TXD3  
MII-RXD0  
TXENB  
MPC866/MPC859 Hardware Specifications, Rev. 2  
Freescale Semiconductor  
89  
Mechanical Data and Ordering Information  
Table 39. Pin Assignments (continued)  
Name  
Pin Number  
Type  
Bidirectional  
PD9  
V17  
W17  
T15  
V16  
U15  
U16  
W16  
RXD4  
MII-TXD0  
UTPCLK  
PD8  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
TXD4  
MII-MDC  
MII-RXCLK  
PD7  
RTS3  
MII-RXERR  
UTPB4  
PD6  
RTS4  
MII-RXDV  
UTPB5  
PD5  
REJECT2  
MII-TXD3  
UTPB6  
PD4  
REJECT3  
MII-TXD2  
UTPB7  
PD3  
REJECT4  
MII-TXD1  
SOC  
TMS  
G18  
H17  
Input  
Input  
TDI  
DSDI  
TCK  
H16  
Input  
DSCK  
TRST  
G19  
G17  
Input  
TDO  
Output  
DSDO  
MII_CRS  
MII_MDIO  
MII_TXEN  
B7  
Input  
H18  
V15  
Bidirectional  
Output  
MPC866/MPC859 Hardware Specifications, Rev. 2  
90  
Freescale Semiconductor  
Mechanical Data and Ordering Information  
Table 39. Pin Assignments (continued)  
Pin Number  
Name  
MII_COL  
Type  
H4  
V1  
Input  
VSSSYN1  
PLL analog VDD and  
GND  
VSSSYN  
VDDSYN  
GND  
U1  
T1  
Power  
Power  
Power  
F6, F7, F8, F9, F10, F11, F12, F13, F14, G6, G7, G8, G9, G10,  
G11, G12, G13, G14, H6, H7, H8, H9, H10, H11, H12, H13, H14,  
J6, J7, J8, J9, J10, J11, J12, J13, J14, K6, K7, K8, K9, K10, K11,  
K12, K13, K14, L6, L7, L8, L9, L10, L11, L12, L13, L14, M6, M7,  
M8, M9, M10, M11, M12, M13, M14, N6, N7, N8, N9, N10, N11,  
N12, N13, N14, P6, P7, P8, P9, P10, P11, P12, P13, P14  
VDDL  
VDDH  
A8, M1, W8, H19, F4, F16, P4, P16, R1  
Power  
Power  
E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, F5, F15, G5,  
G15, H5, H15, J5, J15, K5, K15, L5, L15, M5, M15, N5, N15, P5,  
P15, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15, T14  
N/C  
D6, D13, D14, U2, V2, T2  
No-connect  
1
2
Classic SAR mode only  
ESAR mode only  
MPC866/MPC859 Hardware Specifications, Rev. 2  
Freescale Semiconductor  
91  
Mechanical Data and Ordering Information  
15.2 Mechanical Dimensions of the PBGA Package  
For more information on the printed-circuit board layout of the PBGA package, including thermal via design and  
suggested pad layout, please refer to Plastic Ball Grid Array Application Note (order number: AN1231/D) available  
from your local Freescale sales office. Figure 79 shows the mechanical dimensions of the PBGA package.  
Note: Solder sphere composition for MPC866XZP, MPC859PZP, MPC859DSLZP, and MPC859TZP  
is 62%Sn 36%Pb 2%Ag  
Figure 79. Mechanical Dimensions and Bottom Surface Nomenclature of the PBGA Package  
MPC866/MPC859 Hardware Specifications, Rev. 2  
92  
Freescale Semiconductor  
 
Document Revision History  
16 Document Revision History  
Table 40 lists significant changes between revisions of this document.  
Table 40. Document Revision History  
Revision  
Number  
Date  
Substantive Changes  
0
1
5/2002  
11/2002  
4/2003  
Initial revision  
Added the 5-V tolerant pins, new package dimensions, and other changes.  
1.1  
Added the Spec. B1d and changed spec. B1a. Added the Note Solder sphere  
composition for MPC866XZP, MPC859DSLZP, and MPC859TZP is 62%Sn 36%Pb  
2%Ag to Figure 15-79.  
1.2  
1.3  
1.4  
4/2003  
5/2003  
Added the MPC859P.  
Changed the SPI Master Timing Specs. 162 and 164.  
7-8/2003  
• Added TxClav and RxClav to PB15 and PC15. Changed B28a through B28d and  
B29b to show that TRLX can be 0 or 1.  
• Added nontechnical reformatting.  
1.5  
2
3/14/2005  
2/10/2006  
• Updated document template.  
• Updated orderable parts table.  
MPC866/MPC859 Hardware Specifications, Rev. 2  
Freescale Semiconductor  
93  
 
Document Revision History  
THIS PAGE INTENTIONALLY LEFT BLANK  
MPC866/MPC859 Hardware Specifications, Rev. 2  
94  
Freescale Semiconductor  
Document Revision History  
THIS PAGE INTENTIONALLY LEFT BLANK  
MPC866/MPC859 Hardware Specifications, Rev. 2  
Freescale Semiconductor  
95  
How to Reach Us:  
Home Page:  
www.freescale.com  
email:  
support@freescale.com  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor  
Technical Information Center, CH370  
1300 N. Alma School Road  
Chandler, Arizona 85224  
(800) 521-6274  
Information in this document is provided solely to enable system and software implementers to  
use Freescale Semiconductor products. There are no express or implied copyright licenses  
granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the  
information in this document.  
480-768-2130  
support@freescale.com  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
support@freescale.com  
Freescale Semiconductor reserves the right to make changes without further notice to any  
products herein. Freescale Semiconductor makes no warranty, representation or guarantee  
regarding the suitability of its products for any particular purpose, nor does Freescale  
Semiconductor assume any liability arising out of the application or use of any product or circuit,  
and specifically disclaims any and all liability, including without limitation consequential or  
incidental damages. “Typical” parameters which may be provided in Freescale Semiconductor  
data sheets and/or specifications can and do vary in different applications and actual performance  
may vary over time. All operating parameters, including “Typicals” must be validated for each  
customer application by customer’s technical experts. Freescale Semiconductor does not convey  
any license under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for surgical  
implant into the body, or other applications intended to support or sustain life, or for any other  
application in which the failure of the Freescale Semiconductor product could create a situation  
where personal injury or death may occur. Should Buyer purchase or use Freescale  
Semiconductor products for any such unintended or unauthorized application, Buyer shall  
indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable  
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated  
with such unintended or unauthorized use, even if such claim alleges that Freescale  
Semiconductor was negligent regarding the design or manufacture of the part.  
Japan:  
Freescale Semiconductor Japan Ltd.  
Technical Information Center  
3-20-1, Minami-Azabu, Minato-ku  
Tokyo 106-0047 Japan  
0120 191014  
+81 3 3440 3569  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
Tai Po Industrial Estate,  
Tai Po, N.T., Hong Kong  
+800 2666 8080  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor  
Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
(800) 441-2447  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. The  
described product contains a PowerPC processor core. The PowerPC name is a trademark of IBM  
Corp. and used under license. All other product or service names are the property of their  
respective owners.  
© Freescale Semiconductor, Inc. 2006.  
303-675-2140  
Fax: 303-675-2150  
LDCForFreescaleSemiconductor@  
hibbertgroup.com  
MPC866EC  
Rev. 2  
2/2006  

相关型号:

MPC860

Family Hardware Specifications
MOTOROLA

MPC860

Hardware Specifications
FREESCALE

MPC860DCZP25

32-BIT, 25MHz, RISC PROCESSOR, PBGA357, PLASTIC, BGA-357
MOTOROLA

MPC860DCZP40

RISC Microprocessor, 32-Bit, 40MHz, CMOS, PBGA357, PLASTIC, BGA-357
MOTOROLA

MPC860DE

Family Hardware Specifications
MOTOROLA

MPC860DE

Hardware Specifications
FREESCALE

MPC860DECVR50D4

32-BIT, 50MHz, RISC PROCESSOR, PBGA357, 25 X 25 MM, 1.27 MM PITCH, LEAD FREE, PLASTIC, BGA-357
NXP

MPC860DECVR80D4

MPC860DECVR80D4
NXP

MPC860DECZQ50D4

Hardware Specifications
FREESCALE

MPC860DECZQ50D4

PowerQUICC, 32 Bit Power Architecture SoC, 50MHz, CPM, ENET, HDLC, PCMCIA, -40 to 95C
NXP

MPC860DECZQ80D4

MPC860DECZQ80D4
NXP

MPC860DEVR50D4R2

RISC Microprocessor
NXP