MRF5S9070NR1 [NXP]

UHF BAND, Si, N-CHANNEL, RF POWER, MOSFET, TO-270AA, ROHS COMPLIANT, PLASTIC, CASE 1265-09, 2 PIN;
MRF5S9070NR1
型号: MRF5S9070NR1
厂家: NXP    NXP
描述:

UHF BAND, Si, N-CHANNEL, RF POWER, MOSFET, TO-270AA, ROHS COMPLIANT, PLASTIC, CASE 1265-09, 2 PIN

局域网 放大器 光电二极管 晶体管
文件: 总14页 (文件大小:600K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: MRF5S9070NR1  
Rev. 7, 6/2009  
Freescale Semiconductor  
Technical Data  
RF Power Field Effect Transistor  
N-Channel Enhancement-Mode Lateral MOSFET  
Designed for broadband commercial and industrial applications with  
frequencies up to 1000 MHz. The high gain and broadband performance of  
this device make it ideal for large-signal, common-source amplifier applica-  
tions in 26 volt base station equipment.  
MRF5S9070NR1  
Typical Single-Carrier N-CDMA Performance @ 880 MHz, VDD = 26 Volts,  
I
DQ = 600 mA, Pout = 14 Watts Avg., IS-95 CDMA (Pilot, Sync, Paging,  
880 MHz, 70 W, 26 V  
SINGLE N-CDMA  
LATERAL N-CHANNEL  
BROADBAND  
Traffic Codes 8 Through 13)  
Power Gain — 17.8 dB  
Drain Efficiency — 30%  
ACPR @ 750 kHz Offset — -47 dBc in 30 kHz Bandwidth  
RF POWER MOSFET  
Capable of Handling 10:1 VSWR, @ 26 Vdc, 880 MHz, 70 Watts CW  
Output Power  
Features  
Characterized with Series Equivalent Large-Signal Impedance Parameters  
Integrated ESD Protection  
200°C Capable Plastic Package  
N Suffix Indicates Lead-Free Terminations. RoHS Compliant.  
In Tape and Reel. R1 Suffix = 500 Units per 24 mm, 13 inch Reel.  
CASE 1265-09, STYLE 1  
TO-270-2  
PLASTIC  
Table 1. Maximum Ratings  
Rating  
Symbol  
Value  
Unit  
Vdc  
Vdc  
Drain-Source Voltage  
Gate-Source Voltage  
V
- 0.5, +68  
- 0.5, +15  
DSS  
V
GS  
Total Device Dissipation @ T = 25°C  
Derate above 25°C  
P
219  
1.25  
W
W/°C  
C
D
Storage Temperature Range  
Operating Junction Temperature  
T
- 65 to +150  
200  
°C  
°C  
stg  
T
J
Table 2. Thermal Characteristics  
(1,2)  
Characteristic  
Symbol  
Value  
Unit  
Thermal Resistance, Junction to Case  
Case Temperature 80°C, 70 W CW  
Case Temperature 78°C, 14 W CW  
R
θ
JC  
°C/W  
0.80  
0.93  
Table 3. ESD Protection Characteristics  
Test Methodology  
Class  
Human Body Model (per JESD22-A114)  
Machine Model (per EIA/JESD22-A115)  
Charge Device Model (per JESD22-C101)  
2 (Minimum)  
A (Minimum)  
IV (Minimum)  
Table 4. Moisture Sensitivity Level  
Test Methodology  
Rating  
Package Peak Temperature  
Unit  
Per JESD22-A113, IPC/JEDEC J-STD-020  
3
260  
°C  
1. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF  
calculators by product.  
2. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.  
Select Documentation/Application Notes - AN1955.  
© Freescale Semiconductor, Inc., 2006, 2009. All rights reserved.  
Table 5. Electrical Characteristics (T = 25°C unless otherwise noted)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Off Characteristics  
Zero Gate Voltage Drain Leakage Current  
I
I
I
10  
1
μAdc  
μAdc  
μAdc  
DSS  
DSS  
GSS  
(V = 68 Vdc, V = 0 Vdc)  
DS  
GS  
Zero Gate Voltage Drain Leakage Current  
(V = 26 Vdc, V = 0 Vdc)  
DS  
GS  
Gate-Source Leakage Current  
1
(V = 5 Vdc, V = 0 Vdc)  
GS  
DS  
On Characteristics  
Gate Threshold Voltage  
(V = 10 Vdc, I = 200 μA)  
V
V
2
2.7  
3.7  
4
Vdc  
Vdc  
Vdc  
S
GS(th)  
GS(Q)  
DS(on)  
DS  
D
Gate Quiescent Voltage  
(V = 26 Vdc, I = 600 mAdc)  
DS  
D
Drain-Source On-Voltage  
(V = 10 Vdc, I = 1.0 Adc)  
V
0.18  
4.7  
0.22  
GS  
D
Forward Transconductance  
(V = 10 Vdc, I = 4 Adc)  
g
fs  
DS  
D
Dynamic Characteristic  
Input Capacitance  
(V = 26 Vdc 30 mV(rms)ac @ 1 MHz, V = 0 Vdc)  
DS  
C
126  
34  
pF  
pF  
pF  
iss  
GS  
Output Capacitance  
(V = 26 Vdc 30 mV(rms)ac @ 1 MHz, V = 0 Vdc)  
DS  
C
oss  
GS  
Reverse Transfer Capacitance  
C
rss  
1.37  
(V = 26 Vdc 30 mV(rms)ac @ 1 MHz, V = 0 Vdc)  
DS  
GS  
Functional Tests (In Freescale Test Fixture, 50 ohm system) V = 26 Vdc, I  
= 600 mA, P = 14 W Avg., f = 880 MHz, Single-Carrier  
out  
DD  
DQ  
N-CDMA, 1.2288 MHz Channel Bandwidth Carrier. ACPR measured in 30 kHz Channel Bandwidth @ 750 kHz Offset. PAR = 9.8 dB @  
0.01% Probability on CCDF  
Power Gain  
G
17  
29  
17.8  
30  
dB  
%
ps  
Drain Efficiency  
η
D
Adjacent Channel Power Ratio  
Input Return Loss  
ACPR  
IRL  
-47  
-19  
-45  
-9  
dBc  
dB  
Typical GSM CW Performances (In Freescale GSM Test Fixture Optimized for 921-960 MHz, 50 οhm system) V = 26 Vdc, I = 400 mA,  
DD  
DQ  
P
= 60 W, f = 921-960 MHz  
out  
Power Gain  
G
16.4  
62  
dB  
%
ps  
Drain Efficiency  
Input Return Loss  
η
D
IRL  
-12  
68  
dB  
W
P
@ 1 dB Compression Point  
P1dB  
out  
(f = 940 MHz)  
Typical GSM EDGE Performances (In Freescale GSM EDGE Test Fixture Optimized for 921-960 MHz, 50 οhm system) V = 26 Vdc,  
DD  
I
= 400 mA, P = 25 W Avg., f = 921-960 MHz, GSM EDGE Signal  
out  
DQ  
Power Gain  
G
17  
44  
dB  
ps  
Drain Efficiency  
η
%
%
D
Error Vector Magnitude  
Spectral Regrowth at 400 kHz Offset  
Spectral Regrowth at 600 kHz Offset  
EVM  
SR1  
SR2  
1.5  
-62  
-78  
dBc  
dBc  
(continued)  
MRF5S9070NR1  
RF Device Data  
Freescale Semiconductor  
2
Table 5. Electrical Characteristics (T = 25°C unless otherwise noted) (continued)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Typical GSM CW Performances (In Freescale GSM Test Fixture Optimized for 865-895 MHz, 50 οhm system) V = 26 Vdc, I = 400 mA,  
DD  
DQ  
P
= 60 W, f = 865-895 MHz  
out  
Power Gain  
G
16.4  
59  
dB  
%
ps  
Drain Efficiency  
Input Return Loss  
η
D
IRL  
-15  
71  
dB  
W
P
@ 1 dB Compression Point  
P1dB  
out  
(f = 880 MHz)  
Typical GSM EDGE Performances (In Freescale GSM EDGE Test Fixture Optimized for 865-895 MHz, 50 οhm system) V = 26 Vdc,  
DD  
I
= 400 mA, P = 25 W Avg., f = 865-895 MHz, GSM EDGE Signal  
out  
DQ  
Power Gain  
G
17  
41  
dB  
%
ps  
Drain Efficiency  
η
D
Error Vector Magnitude  
Spectral Regrowth at 400 kHz Offset  
Spectral Regrowth at 600 kHz Offset  
EVM  
SR1  
SR2  
1.35  
-66  
-81  
%
dBc  
dBc  
MRF5S9070NR1  
RF Device Data  
Freescale Semiconductor  
3
V
SUPPLY  
B2  
C18  
+
C20  
+
C19  
C21 R4  
L2  
V
C22  
BIAS  
B1  
R3  
R1  
C8  
C9 C10  
+
C7  
+
+
C11  
R2  
L1  
C12  
RF  
OUTPUT  
C5  
Z8  
Z10  
Z11  
C13  
Z12 Z13  
Z14  
C15  
Z15  
Z16  
RF  
INPUT  
Z1  
Z2  
Z3 Z4 Z5 Z6  
Z7  
C3  
Z9  
C6  
C14  
C16 C17  
C2  
C1  
C4  
DUT  
Z1  
Z2  
Z3  
Z4  
Z5  
Z6  
Z7  
Z8  
Z9  
0.140x 0.060Microstrip  
0.141x 0.060Microstrip  
0.280x 0.060Microstrip  
0.500x 0.100Microstrip  
0.530x 0.270Microstrip  
0.155x 0.270x 0.530Taper  
0.376x 0.530Microstrip  
0.116x 0.530Microstrip  
0.055x 0.530Microstrip  
Z10  
Z11  
Z12  
Z13  
Z14  
Z15  
Z16  
PCB  
0.245x 0.270Microstrip  
0.110x 0.270Microstrip  
0.055x 0.270Microstrip  
0.512x 0.060Microstrip  
0.106x 0.060Microstrip  
0.930x 0.060Microstrip  
0.365x 0.060Microstrip  
Taconic RF-35, 0.030, ε = 3.5  
r
Figure 1. MRF5S9070NR1 Test Circuit Schematic  
Table 6. MRF5S9070NR1 Test Circuit Component Designations and Values  
Part  
Description  
Small Ferrite Bead, Surface Mount  
Large Ferrite Bead, Surface Mount  
0.6-6.0 pF Variable Capacitor, Gigatrim  
16 pF Chip Capacitor  
Part Number  
Manufacturer  
Fair-Rite  
B1  
2743019447  
B2  
2743021447  
Fair-Rite  
Johanson  
ATC  
C1  
272715L  
C2  
ATC100B160JT500XT  
ATC100B7R5JT500XT  
272915L  
C3  
7.5 pF Chip Capacitor  
ATC  
C4, C16  
C5, C6  
C7, C8, C20  
0.8-8.0 pF Variable Capacitors, Gigatrim  
15 pF Chip Capacitors  
Johanson  
ATC  
ATC100B150JT500XT  
T491D106K035AT  
ATC700A561MT150XT  
ATC100B180JT500XT  
515D107M050BB6AE3  
ATC100B130JT500XT  
ATC100B0R7BT500XT  
ATC100B3R9JT500XT  
ATC100B180JT500XT  
ESMG630ELL471MK20S  
A04TJL  
10 μF, 35 V Tantalum Capacitors  
0.58 μF Chip Capacitors  
Kemet  
ATC  
C9, C19, C22  
C10, C18  
C11  
18 pF Chip Capacitors  
ATC  
100 μF, 50 V Electrolytic Capacitor  
13 pF Chip Capacitors  
Vishay  
ATC  
C12, C14  
C13  
0.7 pF Chip Capacitor  
ATC  
C15  
3.9 pF Chip Capacitor  
ATC  
C17  
22 pF Chip Capacitor  
ATC  
C21  
470 μF, 63 V Electrolytic Capacitor  
12.5 nH Surface Mount Inductors  
1 kW, 1/4 W Chip Resistor  
560 kW, 1/4 W Chip Resistor  
12 W, 1/4 W Chip Resistor  
27 W, 1/4 W Chip Resistor  
United Chemi-Con  
Coilcraft  
Vishay  
Vishay  
Vishay  
Vishay  
L1, L2  
R1  
CRCW12061001FKEA  
CRCW12065600FKEA  
CRCW120612R0FKEA  
CRCW120627R0FKEA  
R2  
R3  
R4  
MRF5S9070NR1  
RF Device Data  
Freescale Semiconductor  
4
C21  
C19  
C8  
B1  
V
DD  
R2  
C7  
B2  
R4  
R1  
C20  
C9  
V
R3  
GG  
C22  
C10  
C11  
C18  
C6  
C5  
L2  
C15  
L1  
C3  
C2  
C12  
C17  
C1  
C16  
C13 C14  
C4  
MRF5S9070N  
Rev 0  
Freescale has begun the transition of marking Printed Circuit Boards (PCBs) with the Freescale Semiconductor  
signature/logo. PCBs may have either Motorola or Freescale markings during the transition period. These changes will have  
no impact on form, fit or function of the current product.  
Figure 2. MRF5S9070NR1 Test Circuit Component Layout  
MRF5S9070NR1  
RF Device Data  
Freescale Semiconductor  
5
TYPICAL CHARACTERISTICS  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
45  
40  
35  
30  
25  
G
ps  
η
D
V
= 26 Vdc, P = 14 W (Avg.), I = 600 mA  
out DQ  
DD  
Single−Carrier N−CDMA, IS−95  
(Pilot, Sync, Paging, Traffic Codes 8 through 13)  
−40  
−45  
−12  
−15  
−18  
−21  
−24  
−27  
−30  
IRL  
−50  
−55  
ACPR  
ALT  
−60  
−65  
−70  
8
860  
865  
870  
875  
880  
885  
890  
895  
900  
f, FREQUENCY (MHz)  
Figure 3. Class AB Broadband Performance  
20  
19  
18  
17  
16  
15  
−20  
V
= 26 Vdc  
DD  
−25  
−30  
f1 = 880 MHz, f2 = 880.1 MHz  
Two−Tone Measurements  
100 kHz Tone Spacing  
I
= 900 mA  
DQ  
750 mA  
600 mA  
−35  
−40  
I
= 900 mA  
DQ  
300 mA  
450 mA  
300 mA  
750 mA  
600 mA  
−45  
V
= 26 Vdc  
DD  
−50  
−55  
−60  
f1 = 880 MHz, f2 = 880.1 MHz  
Two−Tone Measurements  
100 kHz Tone Spacing  
450 mA  
1
1
10  
, OUTPUT POWER (WATTS) PEP  
100  
10  
P , OUTPUT POWER (WATTS) PEP  
out  
100  
P
out  
Figure 4. Two-Tone Power Gain versus  
Output Power  
Figure 5. Third Order Intermodulation Distortion  
versus Output Power  
20  
18  
16  
14  
12  
60  
40  
20  
0
−10  
V
= 26 Vdc, I = 600 mA  
DQ  
DD  
G
ps  
f1 = 880 MHz, f2 = 880.1 MHz  
Two−Tone Measurements  
−20  
−30  
(f1 + f2)/2 = Center Frequency of 880 MHz  
100 kHz Tone Spacing  
−40  
−50  
η
D
3rd Order  
V
= 26 Vdc, I = 600 mA  
DQ  
DD  
−60  
−70  
f1 = 880 MHz, f2 = 880.1 MHz  
Two−Tone Measurements,  
100 kHz Tone Spacing  
−20  
5th Order  
7th Order  
10  
8
−40  
−60  
IMD  
−80  
−90  
1
10  
100  
1
10  
100  
P
, OUTPUT POWER (WATTS) PEP  
out  
P
, OUTPUT POWER (WATTS) PEP  
out  
Figure 6. Power Gain, Drain Efficiency and  
IMD versus Output Power  
Figure 7. Intermodulation Distortion Products  
versus Output Power  
MRF5S9070NR1  
RF Device Data  
Freescale Semiconductor  
6
TYPICAL CHARACTERISTICS  
55  
54  
53  
52  
51  
50  
49  
48  
47  
20  
60  
40  
20  
0
Ideal  
G
ps  
18  
16  
14  
12  
P3dB = 49.78 dBm (94.97 W)  
η
D
P1dB = 49.11 dBm (81.54 W)  
V
= 26 Vdc, I = 600 mA, f = 880 MHz  
DQ  
Single−Carrier N−CDMA, IS−95  
DD  
−20  
(Pilot, Sync, Paging, Traffic Codes 8 through 13)  
Actual  
10  
8
−40  
−60  
−80  
ACPR  
ALT  
V
= 26 Vdc, I = 600 mA  
DQ  
DD  
Pulsed CW, 8 μsec (on), 1 msec (off)  
f = 880 MHz  
46  
45  
6
27  
28  
29  
30  
31  
32  
33  
34  
35  
36 37  
1
10  
P , INPUT POWER (dBm)  
in  
P
, OUTPUT POWER (WATTS) AVG.  
out  
Figure 8. Pulse CW Output Power versus  
Input Power  
Figure 9. N-CDMA ACPR, Power Gain and  
Drain Efficiency versus Output Power  
20  
70  
60  
50  
40  
30  
G
ps  
18  
16  
14  
12  
V
= 26 Vdc  
= 600 mA  
DD  
10  
8
20  
10  
I
DQ  
f = 880 MHz  
η
D
1
10  
, OUTPUT POWER (WATTS) CW  
100  
P
out  
Figure 10. Power Gain and Drain Efficiency  
versus CW Output Power  
9
10  
8
7
6
10  
10  
10  
90 100 110 120 130 140 150 160 170 180 190 200 210  
T , JUNCTION TEMPERATURE (°C)  
J
2
This above graph displays calculated MTTF in hours x ampere  
drain current. Life tests at elevated temperatures have correlated to  
better than 10% of the theoretical prediction for metal failure. Divide  
2
MTTF factor by I for MTTF in a particular application.  
D
Figure 11. MTTF Factor versus Junction Temperature  
MRF5S9070NR1  
RF Device Data  
Freescale Semiconductor  
7
N-CDMA TEST SIGNAL  
100  
10  
−10  
−20  
−30  
1.2288 MHz  
Channel BW  
.
.
.
.
.
.
.
. .  
..  
. .  
... .. . .  
.. ..  
.
.. . .. ..  
.
. .  
.
.
. .  
. . . .  
.
.
.
.
. .  
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
1
.
−40  
−50  
−60  
−70  
−80  
.
.
.
.
.
.
.
.
.
.
.
.
−ALT1 in 30 kHz  
Integrated BW  
+ALT1 in 30 kHz  
Integrated BW  
.
.
.
0.1  
0.01  
.
.
.
..  
.
.
.
.
.
.
IS−95 CDMA (Pilot, Sync, Paging, Traffic Codes 8  
Through 13) 1.2288 MHz Channel Bandwidth  
Carriers. ACPR Measured in 30 kHz Bandwidth @  
750 kHz Offset. ALT1 Measured in 30 kHz  
Bandwidth @ 1.98 MHz Offset. PAR = 9.8 dB @  
0.01% Probability on CCDF.  
..  
.
.
. .  
.
.
. .  
. ..  
. . .  
.
. .  
.
.
.
..  
.. ..  
. . .  
. .  
... .  
. .  
.
.
.
. ..  
. ..  
.
.
.
.
..  
.
...  
.
.
.
.
.
.
..  
.
.
.
.
.
.
.
.
.
..  
. .  
. .  
.
.
..  
.
.
.
.
.
..  
.
.
.
.
.
.
..  
.
.
. .  
..  
.
.
.
.
.
.
.
.
.
..  
.
.
.
..  
.
.
.
.
.
..  
.
.
..  
..  
.
.
.
...  
..  
.
.
.
.
..  
.
.
.
.
.
. .  
.
..  
..  
..  
.
.. .  
.
.
.
..  
.
.
..  
.
..  
0.001  
...  
.
..  
.. .  
.
..  
.
−ACPR in 30 kHz +ACPR in 30 kHz  
Integrated BW Integrated BW  
.
.
. .  
. .  
.
..  
..  
.
. .  
.
.
.
.....  
. ..  
.
.
. . .  
..  
. .  
.
.
.
. ..  
. .  
. ..  
.
. .  
. .  
.. .  
..  
.
.
...  
.
.
..  
.
.
.
.
. .  
.
..  
....  
.
.
.
.
.
.
.
.
.
.
.
.
..  
−90 .  
. .  
.
0.0001  
0
2
4
6
8
10  
−100  
PEAK−TO−AVERAGE (dB)  
−110  
−3.6 −2.9 −2.2 −1.5 −0.7  
Figure 12. Single-Carrier CCDF N-CDMA  
0
0.7 1.5  
2.2 2.9 3.6  
f, FREQUENCY (MHz)  
Figure 13. Single-Carrier N-CDMA Spectrum  
MRF5S9070NR1  
RF Device Data  
Freescale Semiconductor  
8
Z = 2 Ω  
o
f = 895 MHz  
f = 895 MHz  
Z
source  
f = 865 MHz  
Z
load  
f = 865 MHz  
V
= 26 Vdc, I = 600 mA, P = 14 W Avg.  
DQ out  
DD  
f
Z
Z
load  
source  
MHz  
Ω
Ω
865  
875  
885  
0.7 + j0.4  
0.7 + j0.5  
0.6 + j0.5  
2.1 + j0.6  
2.0 + j0.7  
1.8 + j0.8  
895  
0.5 + j0.5  
1.8 + j0.9  
Z
Z
=
Test circuit impedance as measured from  
gate to ground.  
source  
=
Test circuit impedance as measured  
from drain to ground.  
load  
Output  
Matching  
Network  
Device  
Under  
Test  
Input  
Matching  
Network  
Z
Z
source  
load  
Figure 14. Series Equivalent Source and Load Impedance  
MRF5S9070NR1  
RF Device Data  
Freescale Semiconductor  
9
PACKAGE DIMENSIONS  
MRF5S9070NR1  
RF Device Data  
Freescale Semiconductor  
10  
MRF5S9070NR1  
RF Device Data  
Freescale Semiconductor  
11  
MRF5S9070NR1  
RF Device Data  
Freescale Semiconductor  
12  
PRODUCT DOCUMENTATION, TOOLS AND SOFTWARE  
Refer to the following documents to aid your design process.  
Application Notes  
AN1907: Solder Reflow Attach Method for High Power RF Devices in Plastic Packages  
AN1955: Thermal Measurement Methodology of RF Power Amplifiers  
AN3263: Bolt Down Mounting Method for High Power RF Transistors and RFICs in Over-Molded Plastic Packages  
AN3789: Clamping of High Power RF Transistors and RFICs in Over-Molded Plastic Packages  
Engineering Bulletins  
EB212: Using Data Sheet Impedances for RF LDMOS Devices  
Software  
Electromigration MTTF Calculator  
RF High Power Model  
For Software and Tools, do a Part Number search at http://www.freescale.com, and select the “Part Number” link. Go to the  
Software & Tools tab on the part’s Product Summary page to download the respective tool.  
REVISION HISTORY  
The following table summarizes revisions to this document.  
Revision  
Date  
Description  
7
June 2009  
Replaced Case Outline 1265-08 with 1265-09, Issue K, p. 1, 10-12. Corrected cross hatch pattern in  
bottom view and changed its dimensions (D2 and E3) to minimum value on source contact (D2 changed  
from Min-Max .290-.320 to .290 Min; E3 changed from Min-Max .150-.180 to .150 Min). Added JEDEC  
Standard Package Number.  
Modified data sheet to reflect MSL rating change from 1 to 3 as a result of the standardization of packing  
process as described in Product and Process Change Notification number, PCN13516, p. 1  
Updated Part Numbers in Table 6, Component Designations and Values, to RoHS compliant part  
numbers, p. 4  
Added AN3789, Clamping of High Power RF Transistors and RFICs in Over-Molded Plastic Packages to  
Product Documentation, Application Notes, p. 13  
Added Electromigration MTTF Calculator and RF High Power Model availability to Product Software, p. 13  
MRF5S9070NR1  
RF Device Data  
Freescale Semiconductor  
13  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
1-800-521-6274 or +1-480-768-2130  
www.freescale.com/support  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of  
any product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do  
vary in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
Beijing 100022  
China  
+86 10 5879 8000  
support.asia@freescale.com  
Semiconductor was negligent regarding the design or manufacture of the part.  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
1-800-441-2447 or +1-303-675-2140  
Fax: +1-303-675-2150  
Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
Freescale Semiconductor, Inc. 2006, 2009. All rights reserved.  
LDCForFreescaleSemiconductor@hibbertgroup.com  
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical  
characteristics of their non-RoHS-compliant and/or non-Pb-free counterparts. For further  
information, see http://www.freescale.com or contact your Freescale sales representative.  
For information on Freescale’s Environmental Products program, go to http://www.freescale.com/epp.  
Document Number: MRF5S9070NR1  
Rev. 7, 6/2009  

相关型号:

MRF5S9080NBR1,528

RF Power Field-Effect Transistor
NXP

MRF5S9080NR1

RF Power Field Effect Transistors
FREESCALE

MRF5S9100MBR1

N-Channel Enhancement-Mode Lateral MOSFETs
FREESCALE

MRF5S9100MR1

N-Channel Enhancement-Mode Lateral MOSFETs
FREESCALE

MRF5S9100NBR1

N-Channel Enhancement-Mode Lateral MOSFETs
FREESCALE

MRF5S9100NR1

N-Channel Enhancement-Mode Lateral MOSFETs
FREESCALE

MRF5S9101MBR1

RF Power Field Effect Transistors
FREESCALE

MRF5S9101MBR1

RF Power Field-Effect Transistor, 1-Element, Ultra High Frequency Band, Silicon, N-Channel, Metal-oxide Semiconductor FET, TO-272, PLASTIC, CASE 1484-02, 4 PIN
MOTOROLA

MRF5S9101MR1

RF Power Field Effect Transistors
FREESCALE

MRF5S9101MR1

UHF BAND, Si, N-CHANNEL, RF POWER, MOSFET, TO-270AA, PLASTIC, CASE 1486-03, 4 PIN
MOTOROLA

MRF5S9101NBR1

RF Power Field Effect Transistors
FREESCALE

MRF5S9101NBR1

RF Power Field-Effect Transistor, 1-Element, Ultra High Frequency Band, Silicon, N-Channel, Metal-oxide Semiconductor FET, TO-272, PLASTIC, CASE 1484-02, 4 PIN
MOTOROLA