MW7IC2425NBR1 [NXP]

Lateral N-Channel RF Power MOSFET, 2450 MHz, 25 W CW, 28 V;
MW7IC2425NBR1
型号: MW7IC2425NBR1
厂家: NXP    NXP
描述:

Lateral N-Channel RF Power MOSFET, 2450 MHz, 25 W CW, 28 V

局域网 放大器 光电二极管 晶体管
文件: 总21页 (文件大小:925K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: MW7IC2425N  
Rev. 0, 3/2009  
Freescale Semiconductor  
Technical Data  
RF Power Field Effect Transistors  
MW7IC2425NR1  
MW7IC2425GNR1  
MW7IC2425NBR1  
N-Channel Enhancement-Mode Lateral MOSFETs  
Designed primarily for CW large-signal output and driver applications at  
2450 MHz. Devices are suitable for use in industrial, medical and scientific  
applications.  
Typical CW Performance: VDD = 28 Volts, IDQ1 = 55 mA, IDQ2 = 195 mA,  
Pout = 25 Watts CW, f = 2450 MHz  
Power Gain — 27.7 dB  
Power Added Efficiency — 43.8%  
Capable of Handling 10:1 VSWR, @ 28 Vdc, 2450 MHz, 25 Watts CW  
Output Power  
Features  
2450 MHz, 25 W CW, 28 V  
LATERAL N-CHANNEL  
RF POWER MOSFETs  
Qualified Up to a Maximum of 28 VDD Operation  
Integrated Quiescent Current Temperature Compensation with  
Enable/Disable Function (1)  
Integrated ESD Protection  
Excellent Thermal Stability  
CASE 1886-01  
TO-270 WB-16  
PLASTIC  
225°C Capable Plastic Package  
RoHS Compliant  
MW7IC2425NR1  
In Tape and Reel. R1 Suffix = 500 Units per 44 mm, 13 inch Reel.  
CASE 1887-01  
TO-270 WB-16 GULL  
PLASTIC  
MW7IC2425GNR1  
CASE 1329-09  
TO-272 WB-16  
PLASTIC  
MW7IC2425NBR1  
GND  
V
NC  
NC  
NC  
1
2
3
4
5
16  
15  
GND  
NC  
DS1  
V
DS1  
RF  
RF /V  
out DS2  
in  
RF  
6
14  
RF /V  
out DS2  
in  
7
8
9
10  
NC  
V
V
GS1  
GS2  
V
GS1  
V
GS2  
V
DS1  
Quiescent Current  
Temperature Compensation  
(1)  
13  
12  
NC  
GND  
V
GND  
DS1  
11  
(Top View)  
Note: Exposed backside of the package is  
the source terminal for the transistors.  
Figure 1. Functional Block Diagram  
Figure 2. Pin Connections  
1. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family and to AN1987, Quiescent Current Control  
for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1977 or AN1987.  
© Freescale Semiconductor, Inc., 2009. All rights reserved.  
Table 1. Maximum Ratings  
Rating  
Symbol  
Value  
-0.5, +65  
-0.5, +10  
32, +0  
- 65 to +150  
150  
Unit  
Vdc  
Vdc  
Vdc  
°C  
Drain-Source Voltage  
Gate-Source Voltage  
Operating Voltage  
V
DS  
V
GS  
V
DD  
Storage Temperature Range  
Case Operating Temperature  
Operating Junction Temperature  
Input Power  
T
stg  
T
°C  
C
(1,2)  
T
225  
°C  
J
P
20  
dBm  
in  
Table 2. Thermal Characteristics (In Freescale Narrowband Test Fixture)  
Characteristic  
(2,3)  
Symbol  
Value  
Unit  
Thermal Resistance, Junction to Case  
R
θ
JC  
°C/W  
(Case Temperature 80°C, P = 25 W CW)  
Stage 1, 28 Vdc, I  
Stage 2, 28 Vdc, I  
= 55 mA  
= 195 mA  
6.1  
1.2  
out  
DQ1  
DQ2  
Table 3. ESD Protection Characteristics  
Test Methodology  
Class  
Human Body Model (per JESD22-A114)  
Machine Model (per EIA/JESD22-A115)  
Charge Device Model (per JESD22-C101)  
1B (Minimum)  
A (Minimum)  
II (Minimum)  
Table 4. Moisture Sensitivity Level  
Test Methodology  
Rating  
Package Peak Temperature  
Unit  
Per JESD22-A113, IPC/JEDEC J-STD-020  
3
260  
°C  
Table 5. Electrical Characteristics (T = 25°C unless otherwise noted)  
C
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Stage 1 - Off Characteristics  
Zero Gate Voltage Drain Leakage Current  
I
I
I
10  
1
μAdc  
μAdc  
μAdc  
DSS  
DSS  
GSS  
(V = 65 Vdc, V = 0 Vdc)  
DS  
GS  
Zero Gate Voltage Drain Leakage Current  
(V = 28 Vdc, V = 0 Vdc)  
DS  
GS  
Gate-Source Leakage Current  
(V = 1.5 Vdc, V = 0 Vdc)  
1
GS  
DS  
Stage 1 - On Characteristics  
Gate Threshold Voltage  
V
V
1.2  
1.9  
2.7  
2.7  
Vdc  
Vdc  
Vdc  
GS(th)  
GS(Q)  
GG(Q)  
(V = 10 Vdc, I = 20 μAdc)  
DS  
D
Gate Quiescent Voltage  
(V = 28 Vdc, I = 55 mA)  
(4)  
DS  
DQ1  
Fixture Gate Quiescent Voltage  
(V = 28 Vdc, I = 55 mAdc)  
V
10.3  
11.2  
12.6  
(4,5)  
DD  
DQ1  
1. Continuous use at maximum temperature will affect MTTF.  
2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF  
calculators by product.  
3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.  
Select Documentation/Application Notes - AN1955.  
4. Measured in Freescale Narrowband Test Fixture.  
5. See Appendix A for functional test measurements and test fixture.  
(continued)  
MW7IC2425NR1 MW7IC2425GNR1 MW7IC2425NBR1  
RF Device Data  
Freescale Semiconductor  
2
Table 5. Electrical Characteristics (T = 25°C unless otherwise noted) (continued)  
C
Characteristic  
Stage 2 - Off Characteristics  
Zero Gate Voltage Drain Leakage Current  
Symbol  
Min  
Typ  
Max  
Unit  
I
I
I
10  
1
μAdc  
μAdc  
μAdc  
DSS  
DSS  
GSS  
(V = 65 Vdc, V = 0 Vdc)  
DS  
GS  
Zero Gate Voltage Drain Leakage Current  
(V = 28 Vdc, V = 0 Vdc)  
DS  
GS  
Gate-Source Leakage Current  
(V = 1.5 Vdc, V = 0 Vdc)  
1
GS  
DS  
Stage 2 - On Characteristics  
Gate Threshold Voltage  
V
V
1.2  
1.9  
2.7  
2.7  
Vdc  
Vdc  
Vdc  
Vdc  
GS(th)  
GS(Q)  
GG(Q)  
DS(on)  
(V = 10 Vdc, I = 80 μAdc)  
DS  
D
Gate Quiescent Voltage  
(V = 28 Vdc, I = 195 mAdc)  
(1)  
DS  
DQ2  
Fixture Gate Quiescent Voltage  
(V = 28 Vdc, I = 195 mAdc)  
V
9.5  
0.15  
10.5  
0.47  
11.5  
0.8  
(1,2)  
DD  
DQ2  
Drain-Source On-Voltage  
(V = 10 Vdc, I = 800 mAdc)  
V
GS  
D
(3)  
Stage 2 - Dynamic Characteristics  
Output Capacitance  
C
oss  
111  
pF  
(V = 28 Vdc 30 mV(rms)ac @ 1 MHz, V = 0 Vdc)  
DS  
GS  
(4)  
(2)  
Narrowband Performance Specifications  
(In Freescale Narrowband Test Fixture, 50 ohm system) V = 28 Vdc, I  
= 55 mA,  
DD  
DQ1  
I
= 195 mA, P = 25 W CW, f = 2450 MHz  
DQ2  
out  
Power Gain  
G
25.5  
41.5  
27.7  
43.8  
-18  
30.5  
dB  
%
ps  
Power Added Efficiency  
PAE  
IRL  
Input Return Loss  
-10  
dB  
(2)  
Functional Tests  
(In Freescale Test Fixture, 50 ohm system) V = 28 Vdc, I  
= 77 mA, I  
= 275 mA, P = 4 W Avg., f = 2700 MHz,  
DD  
DQ1  
DQ2 out  
3
WiMAX, OFDM 802.16d, 64 QAM / , 4 Bursts, 10 MHz Channel Bandwidth, Input Signal PAR = 9.5 dB @ 0.01% Probability on CCDF. ACPR  
4
measured in 1 MHz Channel Bandwidth @ 8.5 MHz Offset.  
Power Gain  
G
25.5  
15  
28.5  
17  
30.5  
dB  
%
ps  
Power Added Efficiency  
PAE  
PAR  
ACPR  
IRL  
Output Peak-to-Average Ratio @ 0.01% Probability on CCDF  
Adjacent Channel Power Ratio  
Input Return Loss  
9
dB  
dBc  
dB  
-50  
-15  
-46  
-10  
1. Measured in Freescale Narrowband Test Fixture.  
2. See Appendix A for functional test fixture documentation.  
3. Part internally matched both on input and output.  
4. Measurement made with device in straight lead configuration before any lead forming operation is applied.  
MW7IC2425NR1 MW7IC2425GNR1 MW7IC2425NBR1  
RF Device Data  
Freescale Semiconductor  
3
V
V
D2  
B1  
DD1  
28 V  
C17  
C16  
C9  
C8  
C7  
C15  
C14  
C13  
NC  
1
2
3
4
5
DUT  
NC 16  
C12  
15  
NC  
NC  
NC  
NC  
Z13  
Z12 Z14  
RF  
INPUT  
RF  
OUTPUT  
Z1  
Z2  
Z3  
Z4  
Z5 Z6  
Z7  
Z8 Z9 Z10  
Z11  
14  
6
C11  
7
8
9
NC  
NC  
C4  
C10  
Quiescent Current  
Temperature  
Compensation  
C5  
C6  
NC  
NC  
13  
12  
10  
11  
C1  
V
G1  
C2  
C3  
R4  
R1  
R5  
R6  
V
G2  
R2  
R3  
Z1  
0.500x 0.027Microstrip  
0.075x 0.127Microstrip  
1.640x 0.027Microstrip  
0.100x 0.042Microstrip  
0.151x 0.268Microstrip  
0.025x 0.268x 0.056Taper  
0.100x 0.056Microstrip  
0.306x 0.056Microstrip  
Z9  
0.040x 0.061Microstrip  
0.020x 0.050Microstrip  
0.050x 0.050Microstrip  
0.050x 0.027Microstrip  
Z2  
Z3  
Z4  
Z5  
Z6  
Z7  
Z8  
Z10  
Z11  
Z12  
Z13* 0.338x 0.020Microstrip  
Z14  
PCB  
1.551x 0.027Microstrip  
Rogers R04350B, 0.0133, ε = 3.48  
r
* Line length includes microstrip bends  
Figure 3. MW7IC2425NR1(GNR1)(NBR1) Narrowband Test Circuit Schematic  
Table 6. MW7IC2425NR1(GNR1)(NBR1) Narrowband Test Circuit Component Designations and Values  
Part  
Description  
47 Ω, 100 MHz Short Ferrite Bead  
6.8 pF Chip Capacitors  
Part Number  
Manufacturer  
B1  
2743019447  
Fair-Rite  
C1, C4, C7, C12, C15  
C2, C5, C8, C13  
C3, C6, C9, C14  
C10  
ATC600S6R8CT250XT  
C0603C103J5RAC  
ATC  
10 nF Chip Capacitors  
Kemet  
Murata  
ATC  
1 μF, 50 V Chip Capacitors  
2.4 pF Chip Capacitor  
GRM32RR71H105KA01B  
ATC600S2R4BT250XT  
ATC600S3R3BT250XT  
GRM55DR61H106KA88B  
CRCW12061202FKEA  
CRCW12061001FKEA  
C11  
3.3 pF Chip Capacitor  
ATC  
C16, C17  
10 μF, 50 V Chip Capacitors  
12 KΩ, 1/4 W Chip Resistors  
1 KΩ, 1/4 W Chip Resistors  
Murata  
Vishay  
Vishay  
R1, R4  
R2, R3, R5, R6  
MW7IC2425NR1 MW7IC2425GNR1 MW7IC2425NBR1  
RF Device Data  
Freescale Semiconductor  
4
MW7IC2425N  
Rev. 1  
B1  
C16  
C12  
C15  
C14  
C17  
C9  
C13  
C8  
C7  
C4  
C5  
R6  
C11  
C10  
C1  
C2  
R4  
R5  
V
V
C6  
G1  
G2  
R2  
R1  
R3  
C3  
Figure 4. MW7IC2425NR1(GNR1)(NBR1) Narrowband Test Circuit Component Layout  
MW7IC2425NR1 MW7IC2425GNR1 MW7IC2425NBR1  
RF Device Data  
Freescale Semiconductor  
5
TYPICAL CHARACTERISTICS — NARROWBAND  
30  
29  
28  
27  
26  
25  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
Ideal  
P3dB = 44.9 dBm (30.9 W)  
40  
P1dB = 44.5 dBm (28.05 W)  
30  
20  
10  
0
Actual  
V
= 28 Vdc  
= 55 mA  
= 195 mA  
DD  
DQ1  
DQ2  
I
I
V
= 28 Vdc, I = 55 mA  
DQ1  
= 195 mA, f = 2450 MHz  
DD  
I
DQ2  
f = 2450 MHz  
1
10  
100  
13  
14  
15  
16  
17  
18  
19  
20  
P , INPUT POWER (dBm)  
in  
P
, OUTPUT POWER (WATTS) CW  
out  
Figure 5. Power Gain and Power Added Efficiency  
versus CW Output Power  
Figure 6. CW Output Power versus Input Power  
30  
50  
40  
29  
V
= 32 V  
D1  
28  
27  
26  
25  
30  
20  
30 V  
28 V  
V
= 28 Vdc  
= 55 mA  
= 195 mA  
D2  
10  
0
I
I
DQ1  
DQ2  
f = 2450 MHz  
0.1  
1
10  
100  
P
, OUTPUT POWER (WATTS) CW  
out  
Figure 7. Power Gain and Power Added Efficiency  
versus CW Output Power as a Function of VD1  
30  
29  
28  
27  
26  
25  
50  
28 V  
40  
30 V  
32 V  
30  
20  
10  
0
V
= 28 V  
D2  
30 V  
32 V  
V
= 28 Vdc  
= 55 mA  
= 195 mA  
D1  
I
I
DQ1  
DQ2  
f = 2450 MHz  
0.1  
1
10  
100  
P
, OUTPUT POWER (WATTS) CW  
out  
Figure 8. Power Gain and Power Added Efficiency  
versus CW Output Power as a Function of VD2  
MW7IC2425NR1 MW7IC2425GNR1 MW7IC2425NBR1  
RF Device Data  
Freescale Semiconductor  
6
TYPICAL CHARACTERISTICS — NARROWBAND  
30  
50  
I
varied from  
DQ1  
45 mA to 65 mA  
in 5 mA steps  
40  
29  
28  
27  
26  
25  
I
= 65 mA  
DQ1  
30  
20  
10  
0
60 mA  
55 mA  
45 mA  
50 mA  
V
= 28 Vdc  
= 195 mA  
f = 2450 MHz  
DD  
I
DQ2  
1
10  
100  
P
, OUTPUT POWER (WATTS) CW  
out  
Figure 9. Power Gain and Power Added Efficiency  
versus CW Output Power as a Function of IDQ1  
29  
28  
27  
26  
25  
50  
40  
30  
20  
10  
I
= 235 mA  
DQ2  
215 mA  
195 mA  
175 mA  
155 mA  
I
varied from  
DQ2  
155 mA to 235 mA  
in 20 mA steps  
V
= 28 Vdc  
= 55 mA  
f = 2450 MHz  
DD  
I
DQ1  
1
10  
100  
P
, OUTPUT POWER (WATTS) CW  
out  
Figure 10. Power Gain and Power Added Efficiency  
versus CW Output Power as a Function of IDQ2  
9
10  
10  
10  
8
1st Stage  
7
2nd Stage  
6
10  
10  
10  
5
4
90  
110  
130  
150  
170  
190  
210  
230  
250  
T , JUNCTION TEMPERATURE (°C)  
J
This above graph displays calculated MTTF in hours when the device  
is operated at V = 28 Vdc, P = 25 W CW, and PAE = 43.8%.  
DD  
out  
MTTF calculator available at http://www.freescale.com/rf. Select  
Software & Tools/Development Tools/Calculators to access MTTF  
calculators by product.  
Figure 11. MTTF versus Junction Temperature  
MW7IC2425NR1 MW7IC2425GNR1 MW7IC2425NBR1  
RF Device Data  
Freescale Semiconductor  
7
Z = 50 Ω  
o
Z
load  
Z
source  
f = 2450 MHz  
f = 2450 MHz  
V
= 28 Vdc, I  
= 55 mA, I  
= 195 mA, P = 25 W CW  
out  
DD  
DQ1  
DQ2  
f
Z
Z
load  
W
source  
W
MHz  
2450  
32 - j6.256  
6.2 - j1.17  
Z
Z
=
=
Test circuit impedance as measured from  
gate to ground.  
source  
load  
Test circuit impedance as measured from  
drain to ground.  
Output  
Matching  
Network  
Device  
Under  
Test  
Input  
Matching  
Network  
Z
Z
source  
load  
Figure 12. Series Equivalent Source and Load Impedance — Narrowband  
MW7IC2425NR1 MW7IC2425GNR1 MW7IC2425NBR1  
RF Device Data  
Freescale Semiconductor  
8
PACKAGE DIMENSIONS  
MW7IC2425NR1 MW7IC2425GNR1 MW7IC2425NBR1  
RF Device Data  
Freescale Semiconductor  
9
MW7IC2425NR1 MW7IC2425GNR1 MW7IC2425NBR1  
RF Device Data  
Freescale Semiconductor  
10  
MW7IC2425NR1 MW7IC2425GNR1 MW7IC2425NBR1  
RF Device Data  
Freescale Semiconductor  
11  
MW7IC2425NR1 MW7IC2425GNR1 MW7IC2425NBR1  
RF Device Data  
Freescale Semiconductor  
12  
MW7IC2425NR1 MW7IC2425GNR1 MW7IC2425NBR1  
RF Device Data  
Freescale Semiconductor  
13  
MW7IC2425NR1 MW7IC2425GNR1 MW7IC2425NBR1  
RF Device Data  
Freescale Semiconductor  
14  
MW7IC2425NR1 MW7IC2425GNR1 MW7IC2425NBR1  
RF Device Data  
Freescale Semiconductor  
15  
MW7IC2425NR1 MW7IC2425GNR1 MW7IC2425NBR1  
RF Device Data  
Freescale Semiconductor  
16  
MW7IC2425NR1 MW7IC2425GNR1 MW7IC2425NBR1  
RF Device Data  
Freescale Semiconductor  
17  
PRODUCT DOCUMENTATION  
Refer to the following documents to aid your design process.  
Application Notes  
AN1907: Solder Reflow Attach Method for High Power RF Devices in Plastic Packages  
AN1955: Thermal Measurement Methodology of RF Power Amplifiers  
AN1977: Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family  
AN1987: Quiescent Current Control for the RF Integrated Circuit Device Family  
AN3263: Bolt Down Mounting Method for High Power RF Transistors and RFICs in Over-Molded Plastic Packages  
AN3789: Clamping of High Power RF Transistors and RFICs in Over-Molded Plastic Packages  
Engineering Bulletins  
EB212: Using Data Sheet Impedances for RF LDMOS Devices  
REVISION HISTORY  
The following table summarizes revisions to this document.  
Revision  
Date  
Description  
0
Mar. 2009  
Initial Release of Data Sheet  
MW7IC2425NR1 MW7IC2425GNR1 MW7IC2425NBR1  
RF Device Data  
Freescale Semiconductor  
18  
APPENDIX A  
MW7IC2425NR1/GNR1/NBR1 FUNCTIONAL TEST DATA, FIXTURE AND THERMAL DATA  
MW7IC2725N  
Rev. 1.3  
B1  
C16  
C17  
C15  
C9  
C2  
C8  
C7  
C14  
C13  
C12  
C4  
C5  
C1  
R6  
C11  
C10  
R4  
R1  
R5  
R2  
V
V
C6  
C3  
G1  
G2  
R3  
Z1  
Z2  
Z3  
Z4  
Z5  
Z6  
Z7  
Z8  
0.500x 0.027Microstrip  
0.075x 0.127Microstrip  
1.640x 0.027Microstrip  
0.100x 0.042Microstrip  
0.151x 0.268Microstrip  
0.025x 0.268x 0.056Taper  
0.050x 0.056Microstrip  
0.356x 0.056Microstrip  
Z9  
0.040x 0.061Microstrip  
0.020x 0.050Microstrip  
0.050x 0.050Microstrip  
0.050x 0.027Microstrip  
Z10  
Z11  
Z12  
Z13* 0.338x 0.020Microstrip  
Z14  
PCB  
1.551x 0.027Microstrip  
Rogers R04350B, 0.0133, ε = 3.48  
r
* Line length includes microstrip bends  
Figure 1. MW7IC2425NR1(GNR1)(NBR1) Test Circuit Component Layout  
Table 1. Electrical Characteristics (T = 25°C unless otherwise noted)  
C
Characteristic  
Symbol  
= 77 mA, I  
Min  
Typ  
Max  
Unit  
Functional Tests (In Freescale Test Fixture, 50 ohm system) V = 28 Vdc, I  
= 275 mA, P = 4 W Avg., f = 2700 MHz,  
DD  
DQ1  
DQ2  
out  
3
WiMAX, OFDM 802.16d, 64 QAM / , 4 Bursts, 10 MHz Channel Bandwidth, Input Signal PAR = 9.5 dB @ 0.01% Probability on CCDF. ACPR  
4
measured in 1 MHz Channel Bandwidth @ 8.5 MHz Offset.  
Power Gain  
G
25.5  
15  
28.5  
17  
30.5  
dB  
ps  
Power Added Efficiency  
PAE  
PAR  
ACPR  
IRL  
%
dB  
Output Peak-to-Average Ratio @ 0.01% Probability on CCDF  
Adjacent Channel Power Ratio  
Input Return Loss  
9
-50  
-15  
-46  
-10  
dBc  
dB  
(continued)  
MW7IC2425NR1 MW7IC2425GNR1 MW7IC2425NBR1  
RF Device Data  
Freescale Semiconductor  
19  
APPENDIX A  
MW7IC2425NR1/GNR1/NBR1 FUNCTIONAL TEST DATA, FIXTURE AND THERMAL DATA (continued)  
Table 1. Electrical Characteristics (T = 25°C unless otherwise noted) (continued)  
C
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Stage 1 - On Characteristics  
Gate Quiescent Voltage  
V
2.7  
Vdc  
Vdc  
GS(Q)  
(V = 28 Vdc, I  
= 77 mA)  
DS  
DQ1  
Fixture Gate Quiescent Voltage  
(V = 28 Vdc, I = 77 mAdc, Measured in Functional Test)  
V
12.5  
15.8  
19.5  
GG(Q)  
DD  
DQ1  
Stage 2 - On Characteristics  
Gate Quiescent Voltage  
V
11  
2.7  
14  
Vdc  
Vdc  
GS(Q)  
(V = 28 Vdc, I  
= 275 mAdc)  
DS  
DQ2  
Fixture Gate Quiescent Voltage  
(V = 28 Vdc, I = 275 mAdc, Measured in Functional Test)  
V
18  
GG(Q)  
DD  
DQ2  
Table 2. Thermal Characteristics  
Characteristic  
Symbol  
Value  
Unit  
Thermal Resistance, Junction to Case  
R
θ
JC  
°C/W  
(Case Temperature 81°C, P = 25 W CW)  
Stage 1, 28 Vdc, I  
Stage 2, 28 Vdc, I  
= 77 mA  
= 275 mA  
5.5  
1.3  
out  
DQ1  
DQ2  
MW7IC2425NR1 MW7IC2425GNR1 MW7IC2425NBR1  
RF Device Data  
Freescale Semiconductor  
20  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
1-800-521-6274 or +1-480-768-2130  
www.freescale.com/support  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of  
any product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do  
vary in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
Beijing 100022  
China  
+86 10 5879 8000  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Semiconductor was negligent regarding the design or manufacture of the part.  
Denver, Colorado 80217  
Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
Freescale Semiconductor, Inc. 2009. All rights reserved.  
1-800-441-2447 or +1-303-675-2140  
Fax: +1-303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Document Number: MW7IC2425N  
Rev. 0,3/2009

相关型号:

MW7IC2425NR1

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs
FREESCALE

MW7IC2725GNR1

RF LDMOS Wideband Integrated Power Amplifiers
FREESCALE

MW7IC2725NBR1

RF LDMOS Wideband Integrated Power Amplifiers
FREESCALE

MW7IC2725NR1

RF LDMOS Wideband Integrated Power Amplifiers
FREESCALE

MW7IC2725NR1_10

RF LDMOS Wideband Integrated Power Amplifiers
FREESCALE

MW7IC2750GNR1

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs
FREESCALE

MW7IC2750NBR1

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs
FREESCALE

MW7IC2750NR1

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs
FREESCALE

MW7IC2750NR1_10

RF LDMOS Wideband Integrated Power Amplifiers
FREESCALE

MW7IC2750NR1_11

RF LDMOS Wideband Integrated Power Amplifier Capable of Handling 10:1 VSWR
FREESCALE

MW7IC3825GNR1

RF LDMOS Wideband Integrated Power Amplifiers
FREESCALE

MW7IC3825NBR1

RF LDMOS Wideband Integrated Power Amplifiers
FREESCALE