NE5020 [NXP]

10-Bit mP-compatible D/A converter; 10位MP-兼容的D / A转换器
NE5020
型号: NE5020
厂家: NXP    NXP
描述:

10-Bit mP-compatible D/A converter
10位MP-兼容的D / A转换器

转换器
文件: 总10页 (文件大小:101K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Philips Semiconductors Linear Products  
Product specification  
10-Bit µP-compatible D/A converter  
NE5020  
DESCRIPTION  
PIN CONFIGURATION  
The NE5020 is a microprocessor-compatible monolithic 10-bit  
digital-to-analog converter subsystem. This device offers 10-bit  
resolution and ±0.1% accuracy and monotonicity guaranteed over  
full operating temperature range.  
F, N Packages  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
ANALOG GND  
AMP COMP  
DIGITAL GND  
DB0(LSB)  
Low loading latches, adjustable logic thresholds, and addressing  
capability allow the NE5020 to directly interface with most  
microprocessor- and logic-controlled systems.  
3
DB1  
DB2  
DB3  
SUM MODE  
4
V
CC+  
5
V
OUT  
6
DB4  
DB5  
V
The NE5020 contains internal voltage reference, DAC switches and  
resistor ladder. Also, the input buffer and output summing amplifier  
are included. In addition, the matched application resistors for  
scaling either unipolar or bipolar output values are included on a  
single monolithic chip.  
CC–  
7
BIPOLAR OFFSET R  
DB6  
8
+V  
–V  
IN  
IN  
REF  
REF  
DB7(MSB)  
9
10  
11  
12  
NC  
V
OUT  
REF  
V
ADJ  
REF  
LE  
The result is a near minimum component count 10-bit resolution  
DAC system.  
LE  
1
2
FEATURES  
10-bit resolution  
APPLICATIONS  
Guaranteed monotonicity over operating range  
±0.1% relative accuracy  
Precision 10-bit D/A converters  
10-bit analog-to-digital converters  
Programmable power supplies  
Test equipment  
Unipolar (0V to +10V) and bipolar (± 5V) output range  
Logic bus compatible  
5µs settling time  
Measurement instruments  
ORDERING INFORMATION  
DESCRIPTION  
TEMPERATURE RANGE  
0 to 70°C  
ORDER CODE  
NE5020F  
DWG #  
0588B  
0412A  
24-Pin Ceramic Dual In-Line Package (CERDIP)  
24-Pin Plastic Dual In-Line Package (DIP)  
0 to 70°C  
NE5020N  
757  
August 31, 1994  
853-0392 13721  
Philips Semiconductors Linear Products  
Product specification  
10-Bit µP-compatible D/A converter  
NE5020  
BLOCK DIAGRAM  
(11)  
DB9  
(10)  
DB8  
(9)  
DB7  
(8)  
DB6  
(4)  
DB2  
(3)  
DB1  
(2)  
DB0  
(7)  
DB5  
(6)  
DB4  
(5)  
DB3  
LSB  
MSB  
(13)  
(12)  
LE  
2
LE  
1
LATCHES AND  
SWITCH DRIVERS  
SUM  
(22)  
NODE  
R
(1) DIGITAL GND  
fb  
(21)  
(15)  
+V  
CC  
DAC OUTPUT CURRENT  
+
V
V
REF  
OUT  
(20)  
(23)  
OUT  
INT  
V
REF  
V
ADJ  
REF  
AMP  
COMP  
(14)  
+V  
DAC SWITCHES  
R
R
(24)  
REF  
ANALOG  
GND  
(17) REF  
IN  
R
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
0
BIP  
R
9
8
7
6
5
4
3
2
1
BIPOLAR  
OFFSET  
Q
(18)  
T
+
–V  
(16) REF  
IN  
R
–V  
CC  
(19)  
ABSOLUTE MAXIMUM RATINGS  
SYMBOL  
PARAMETER  
RATING  
18  
UNIT  
V
+
V
V
V
V
V
V
Positive supply voltage  
Negative supply voltage  
Logic input voltage  
CC  
CC  
IN  
-
-18  
V
0 to 18  
12  
V
Voltage at +V  
input  
V
REF IN  
REF ADJ  
SUM  
REF  
Voltage at V  
adjust  
0 to V  
12  
V
REF  
REF  
Voltage at sum node  
Short-circuit current to ground at V  
V
I
I
Continuous  
Continuous  
REFSC  
OUTSC  
REF OUT  
Short-circuit current to ground or either supply at V  
OUT  
1
P
D
Maximum power dissipation T =25°C, (still-air)  
A
F package  
2150  
2150  
mW  
mW  
°C  
N package  
T
A
Operating temperature range NE5020  
Storage temperature range  
0 to +70  
-65 to +150  
T
STG  
°C  
Lead soldering temperature  
(10 sec. max)  
T
SOLD  
300  
°C  
NOTES:  
1. Derate above 25°C at the following rates:  
F package at 17.2mW/°C  
N package at 17.2mW/°C  
758  
August 31, 1994  
Philips Semiconductors Linear Products  
Product specification  
10-Bit µP-compatible D/A converter  
NE5020  
DC ELECTRICAL CHARACTERISTICS  
1
V
+=+15V, V -=-15V, 0 T 70°C, unless otherwise specified. Typical values are specified at 25°C.  
CC  
CC  
A
LIMITS  
Typ  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
UNIT  
Max  
Min  
Resolution  
Monotonicity  
10  
10  
Bits  
Bits  
Relative accuracy  
±0.1  
%FS  
V
CC+  
V
CC-  
Positive supply voltage  
Negative supply voltage  
11.4  
-11.4  
15  
-15  
16.5  
-16.5  
V
V
V
IN(1)  
V
IN(0)  
Logic “1” input voltage  
Logic “0” input voltage  
Pin 1=0V  
Pin 1=0V  
V
V
2.0  
0.8  
I
I
Logic “1” input current  
Logic “0” input current  
Pin 1=0V, 2<V <18V  
0.1  
-2.0  
10  
-10  
µA  
µA  
IN(1)  
IN(0)  
IN  
Pin 1=0V, -5V<V <0.8V  
IN  
Unipolar mode, V  
=5.000V, all bits high,  
REF  
V
FS  
Full-scale output  
9.5  
10.5  
V
T =25°C  
A
+V  
Full-scale output  
Bipolar mode, V  
=5.000V, all bits high, T =25°C  
4.75  
5.25  
V
V
FS  
REF  
A
-V  
FS  
Negative full-scale  
Bipolar mode, V  
=5.000V, all bits low, T =25°C  
-5.25  
-4.75  
REF  
A
NOTES:  
1. Refer to Figure 1.  
759  
August 31, 1994  
Philips Semiconductors Linear Products  
Product specification  
10-Bit µP-compatible D/A converter  
NE5020  
DC ELECTRICAL CHARACTERISTICS (Continued)  
LIMITS  
Typ  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
Unipolar mode, V =5.000V, all bits low, T =25°C  
UNIT  
Max  
Min  
V
ZS  
Zero-scale output  
-30  
+30  
mV  
mA  
REF  
A
I
Output short-circuit current  
T =25°C  
±15  
0.001  
0.001  
20  
±40  
OS  
A
V =0V  
OUT  
PSR+  
Output power supply rejection (+)  
Output power supply rejection (-)  
Full-scale temperature coefficient  
V-=-15V, 13.5VV+16.5V, external  
=5.000V  
0.01  
0.01  
%FS/  
%VS  
(OUT)  
V
REF IN  
PSR-  
V+=15V, -13.5VV--16.5V, external  
%FS/  
%VS  
(OUT)  
V
=5.000V  
REF IN  
TC  
V
=5.000V  
ppmFS  
FS  
REF IN  
/°C  
TC  
Zero-scale temperature coefficient  
Reference output current  
5
ppmFS/°C  
mA  
ZS  
2
I
I
3
REF  
Reference short circuit current  
T =25°C  
A
15  
30  
mA  
REF SC  
V =0V  
REF OUT  
PSR+  
Reference power supply rejection  
(+)  
V-=-15V, 13.5VV+16.5V, I  
=1.0mA  
.003  
.003  
.01  
.01  
%VR/  
%VS  
REF  
REF  
PSR-  
Reference power supply rejection  
(-)  
V+=15V, -13.5VV-16.5V,  
%VR/  
%VS  
REF  
V
Reference voltage  
I
=1.0mA, T =25°C  
4.9  
5.0  
60  
5.25  
V
REF  
REF  
A
TC  
Reference voltage temperature co-  
efficient  
I
=1.0mA  
ppm/°C  
REF  
REF  
Z
DAC V  
input impedance  
I
=1.0mA  
5.0  
7
kΩ  
mA  
mA  
mW  
IN  
REF IN  
REF  
I
I
+
-
Positive supply current  
Negative supply current  
Power dissipation  
V
+=15V  
-=-15V  
14  
-15  
435  
CC  
CC  
CC  
V
-10  
255  
CC  
P
I
=1.0mA, V =±15V  
REF CC  
D
NOTES:  
1. Refer to Figure 1.  
2. For I  
greater than 3mA, an external buffer is required.  
REF OUT  
1
AC ELECTRICAL CHARACTERISTICS  
V
= +15V, T = 25°C.  
CC  
A
LIMITS  
SYMBOL  
PARAMETER  
Settling time  
TO  
FROM  
TEST CONDITIONS  
UNIT  
Min  
Typ  
5
Max  
2
t
±1/2LSB  
±1/2LSB  
Output  
Output  
Output  
Output  
Output  
LE  
Input  
Input  
Input  
Input  
Input  
LE  
All bits low-to-high  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SLH  
SHL  
PLH  
PHL  
PLSB  
PLH  
PHL  
S
3
t
Settling time  
All bits high-to-low  
All bits switched low-to-high  
5
2
t
t
t
t
t
t
t
t
Propagation delay  
Propagation delay  
Propagation delay  
Propagation delay  
Propagation delay  
Set-up time  
30  
3
All bits switched high-to-low  
150  
150  
300  
150  
2,3  
1 LSB change  
4
Low-to-high transition  
5
LE  
High-to-low transition  
1,6  
1,6  
1,6  
Input  
LE  
100  
50  
Hold time  
Input  
H
Latch enable pulse width  
150  
PW  
NOTES:  
1. Refer to Figure 2.  
2. See Figure 5.  
3. See Figure 6.  
4. See Figure 7.  
5. See Figure 8.  
6. See Figure 9.  
760  
August 31, 1994  
Philips Semiconductors Linear Products  
Product specification  
10-Bit µP-compatible D/A converter  
NE5020  
V
CC+  
0.47µF  
MSB  
LSB  
V
CC+  
LE2 LE1  
MSB  
LSB  
LE2 LE1  
0.47µF  
1110 9 8 7 6 5 4 3 2  
21  
DIG GND 1  
1110 9 8 7 6 5 4 3 2  
12  
21  
12  
13  
17  
5.000V  
DIG GND 1  
ANA GND  
24  
13  
ANA GND  
V
V
IN  
17  
15  
24  
REF  
REF  
15  
–V  
IN  
16  
20  
REF  
V
OUT  
5020  
OUTPUT  
–V  
IN  
16  
20  
14  
REF  
V
5020  
OUTPUT  
30pF  
OUT  
SUM  
14  
30pF  
5k  
OUT  
SUM  
22  
23  
22  
23  
AMP  
COMP  
5k  
AMP  
COMP  
19  
18  
100pF  
19  
18  
100pF  
0.1µF  
0.1µF  
V
CC–  
V
CC–  
Figure 1. DC Parametric Test Configuration  
Figure 2. AC Parametric Test Configuration  
V
CC+  
0.47µF  
MSB  
LSB  
LE2 LE1  
1110 9 8 7 6 5 4 3 2  
21  
12  
DIG GND 1  
13  
ANA GND  
V
V
V
IN  
17  
15  
24  
REF  
REF  
REF  
OUT  
ADJ  
–V  
IN  
16  
20  
REF  
V
5020  
10k  
10T  
OUTPUT  
30pF  
14  
OUT  
SUM  
80k  
22  
23  
5k  
AMP  
COMP  
FULL SCALE  
ADJUST  
19  
18  
100pF  
V
CC+  
20k  
0.1µF  
1M  
V
CC–  
ZERO SCALE  
ADJUST  
10T  
V
CC–  
Figure 3. Full-/Zero-Scale Adjust — Unipolar Output (0–10V)  
V
CC+  
MSB  
LSB  
LE2 LE1  
0.47µF  
11 10 9 8 7 6 5 4 3 2  
21  
12  
DIG GND 1  
13  
ANA GND  
V
V
V
IN  
17  
15  
24  
REF  
REF  
REF  
OUT  
ADJ  
–V  
IN  
16  
20  
REF  
V
5020  
10k  
10T  
OUTPUT  
5k  
30pF  
14  
OUT  
SUM  
80k  
22  
23  
AMP  
COMP  
BIP OFF  
18  
19  
100pF  
1M  
V
CC+  
0.1µF  
20k  
10T  
CC–  
V
CC–  
FULL SCALE  
ADJUST  
V
Figure 4. Bipolar Output Operation (–5 to +5V)  
761  
August 31, 1994  
Philips Semiconductors Linear Products  
Product specification  
10-Bit µP-compatible D/A converter  
NE5020  
DATA  
DATA  
t
SLH  
t
PHL  
10V  
1LSB  
LE  
t
PLH  
OUTPUT  
t
PHL  
10V  
0V  
LE = LOW  
OUTPUT  
0V  
Figure 5. Settling Time and Propagation Delay,  
Low-to-High Data  
Figure 8. Propagation Delay, Latch Enable to Output  
DATA  
t
MIN  
t
SHL  
LE  
t
PHL  
10V  
t
t
h
S
OUTPUT  
DATA  
0V  
1LSB  
LE = LOW  
Figure 6. Settling Time and Propagation Delay,  
High-to-Low Data  
Figure 9. Latch Enable Pulse Width, Setup and Hold Times  
DATA  
LE  
t
PLH  
10V  
OUTPUT  
0V  
Figure 7. Propagation Delay, Latch Enable to Output  
762  
August 31, 1994  
Philips Semiconductors Linear Products  
Product specification  
10-Bit µP-compatible D/A converter  
NE5020  
TTL,  
= +1.4V  
PMOS  
V = 0V  
TH  
V
= V  
+ 1.4V  
TH  
PIN1  
+15V CMOS, HTL, HNIL  
DTL V  
TH  
V
= +7.6V  
TH  
+15V  
+12V TO +15V  
NE5020  
9.1kΩ  
10kΩ  
IN4148  
PIN 1  
PIN 1  
0.1µF  
DIG GND (PIN 1)  
PIN 1  
6.2kΩ  
6.2V  
ZENER  
10kΩ  
–5V TO –10V  
NOTE: DO NOT EXCEED NEGATIVE  
LOGIC INPUT RANGE OF DAC  
+5V CMOS  
= +2.8V  
+10V CMOS  
10k ECL  
V
V
= +9.0V  
V
–1.29V  
TH  
TH  
+5V  
TH  
+10V  
1.3kΩ  
3.9kΩ  
6.2kΩ  
3.6kΩ  
PIN 1  
2N3904  
IN4148  
PIN 1  
PIN 1  
0.1µF  
3.6kΩ  
IN4148  
1kΩ  
Figure 10.  
10 details several bias schemes used to provide the proper  
threshold voltage levels for various logic families.  
CIRCUIT DESCRIPTION  
The NE5020 provides ten data latches, an internal voltage  
reference, application resistors, and a scaled output voltage in  
addition to the basic DAC components (see Block Diagram).  
To be compatible with a bus-oriented system, the DAC should  
respond in as short a period as possible to insure full utilization of  
the microprocessor, controller and I/O control lines. Figure 9 shows  
the typical timing requirements of the latch and data lines. This  
figure indicates that data on the data bus should be stable for at  
least 50ns after LE is changed to a high state.  
Latch Circuit  
Digital interface with the NE5020 is readily accomplished through  
the use of two latch enable ports (LE and LE ) and ten data input  
1
2
latches. LE controls the two most significant bits of data (DB9 and  
2
The independent LE (LE and LE ) lines allow for direct interface  
DB8) while LE controls the eight lesser significant bits (DB through  
1
2
1
7
from an 8-bit bus (see Figure 11). Data for the two MSBs is supplied  
DB ). Both the latch enable ports (LE) and the data inputs are  
0
and stored when LE is activated low and returned high according to  
static- and threshold-sensitive. When the latch enable ports (LE)  
are high (Logic ‘1’) the data inputs become very high impedances  
and essentially disappear from the data bus. Addressing the LE  
with a low static (Logic ‘0’), the latches become active and adapt the  
logic states present on the data bus. During this state, the output of  
the DAC will change to the value proportional to the data bus value.  
When the latch enable returns to a high state, the selected set of  
data inputs (i.e., depending on which LE goes high) ‘memorizes’ the  
data bus logic states and the output changes to the unique output  
value corresponding to the binary word in the latch.  
2
the NE5020 timing requirements. Then LE is activated low and the  
1
remaining eight LSBs of data are transferred into the DAC. With  
LE returning high, the loading of 10-bit data word from an 8-bit data  
1
bus is complete.  
Occasionally the analog output must change to its data value within  
one data address operation. This is no problem using the NE5020  
on a 16-bit bus or any other data bus with 10 or greater data bits.  
This can be accomplished from an 8-bit data bus by utilizing an  
external latch circuit to pre-load the two MSB data values. Figure 12  
shows the circuit configuration.  
The data inputs are inactive and high impedance (typically requiring  
–2µA for low (0.8V max) or 0.1µA for high (2.0V min) when the LE is  
high. Any changes on the data bus with LE high will have no effect  
on the DAC output.  
After pre-loading (via LE pre-load) the external latch with the two  
MSB values, LE is activated low and the eight LSBs and the two  
2
MSBs are concurrently loaded into the DAC in one address  
operation. This permits the DAC output to make its appropriate  
change at one time.  
The digital logic inputs (LE and DB) for the NE5020 utilize a  
differential input logic system with a threshold level of +1.4V with  
respect to the voltage level on the digital ground pin (Pin 1). Figure  
763  
August 31, 1994  
Philips Semiconductors Linear Products  
Product specification  
10-Bit µP-compatible D/A converter  
NE5020  
B0  
DATA BUS  
B6  
B7  
DB  
9
8
7
6
5
4
3
2
1
0
MSB  
LSB  
LATCHES  
LE  
2
LE  
LATCHES  
1
OUTPUT  
DAC  
Figure 11. NE5020 µP Interface 8-Bit Data Bus Example  
8-BIT DATA BUS  
+5V  
1
2
4
10  
13  
74LS74  
11  
12  
9
3
5
LE PRE-LOAD  
LE LOAD  
INVERTER  
11  
MSB  
10  
9
8
7
6
5
4
3
2
LSB  
12  
13  
20  
NE5020  
Figure 12. Pre-loading the 2 MSBs to Provide a Single-Step Output  
764  
August 31, 1994  
Philips Semiconductors Linear Products  
Product specification  
10-Bit µP-compatible D/A converter  
NE5020  
5k  
V
IN  
REF  
(17)  
+
I
5k  
REF  
To R-2R Ladder  
(16)  
BIPOLAR  
DAC  
AMP  
OFFSET (18)  
JUMPER FOR  
BIPOLAR OPERATION  
SUM  
NODE (22)  
V
CC  
(I )  
I
D REF  
5k  
I
D
DAC  
CURRENT  
+
FROM  
CURRENT  
SWITCHES  
OUTPUT  
AMP  
Figure 13. Bipolar Output  
2VREF  
RREF  
Reference Interface  
DB9  
2
DB8  
4
DB7  
8
ǒ
IOUT  
+
)
)
)
)
)
The NE5020 contains an internal bandgap voltage reference which  
is designed to have a very low temperature coefficient and excellent  
long-term stability characteristics.  
DB6  
DB5  
32  
DB3  
128  
DB4  
64  
)
)
)
)
16  
The internal bandgap reference (1.23V) is buffered and amplified to  
provide the 5V reference output. Providing a V  
allows trimming of the reference output. Utilization of the adjust  
DB0  
1024  
DB2  
256  
DB1  
512  
(Pin 14)  
REF ADJ  
circuit shown in Figure 15 performs not only V  
also full-scale output adjust. Notice that the V  
essentially the sum node of an op amp and is sensitive to excessive  
node capacitance. Any capacitance on the node can be minimized  
adjustment, but  
REF  
Because of the fixed internal compensation of the reference amp,  
the slew rate is limited to typically 0.7V/µs and source impedance at  
pin is  
REF ADJ  
the V  
greater than 5kshould be avoided to maintain  
REF INPUT  
stability.  
by placing the external resistors as close as possible to the V  
REF  
The –V  
pin is uncommitted to allow utilization of negative  
pin and observing good layout  
REF INPUT  
ADJ  
polarity reference voltages. In this mode +V  
and the negative reference is tied directly to the –V  
is grounded  
REF INPUT  
practices.  
REF INPUT  
contains a 5kresistor that matches a like resistor in the +V  
The V  
node can drive loads greater than the DAC V  
REF  
REF  
REF OUT  
to reduce voltage offset caused by op amp input bias currents.  
input requirements and can be used as an excellent system voltage  
reference. However, to minimize load effects on the DAC system  
accuracy, it is recommended that a buffer amplifier be used.  
INPUT  
Output Amplifier and Interface  
The NE5020 provides an on-chip output op amp to eliminate the  
need for additional external active circuits. Its two-stage design with  
feed-forward compensation allows it to slew at 15V/µs and settle to  
within ±1/2LSB in 5µs. These times are typical when driving the  
rated loads of R 5k and C 50pF with recommended values of  
Input Amplifier  
The DAC reference amplifier is a high gain internally-compensated  
op amp used to convert the input reference voltage to a precision  
bias current for the DAC ladder network.  
L
L
C
= 1nF and C = 30pF. Typical input offset voltages of 5mV  
FB  
FF  
The Block Diagram details the input reference amplifier and current  
ladder. The voltage-to-current converter of the DAC amp will  
and 50kopen-loop gain insure that an accurate current-to-voltage  
conversion is performed when using the on-chip R resistor. R  
is matched to R  
operating conditions. The diode shown from ground to sum node  
prevents the DAC current switches from saturating the op amp  
during large signal transitions which would otherwise increase the  
settling time.  
FB  
FB  
generate a 1mA reference current through QR with a 5V V  
. This  
REF  
and R  
to maintain accurate voltage gain over  
REF  
BIP  
current sets the input bias to the ladder network. Data bit 9  
(DB9)(Q9), when turned on, will mirror this current and will  
contribute 1mA to the output. DB8 (Q8) will contribute 1/2 of that  
value or 0.5mA, and so on. These current values act as current  
sinks and will add at the sum node to produce a DAC ladder to sum  
node function of:  
The output op amp also incorporates output short circuit protection  
for both positive and negative excursions. During this fault condition  
I
will limit at ±15mA typical. Recovery from this condition to  
OUT  
rated accuracy will be determined by duration of short-circuit and die  
temperature stabilization.  
765  
August 31, 1994  
Philips Semiconductors Linear Products  
Product specification  
10-Bit µP-compatible D/A converter  
NE5020  
R
V
= 20K, 10T POTENTIOMETER  
–V  
1
CC  
CC  
R
= 1MΩ  
2
(22)  
SUM  
NODE  
(OPTIONAL)  
5k  
DAC  
CURRENT OUTPUT  
(20)  
V
C
OUT  
FF  
+
AMP  
COMP  
(23)  
5k  
(24)  
C
C
Figure 14. Zero-Scale Adjustment  
INT  
REF  
+
V
OUT  
(15)  
REF  
V
OUT  
REF  
15k  
5k  
R
= 80k  
V
ADJ  
3
REF  
R
3
= 10k  
(14)  
10T POT  
Figure 15. Reference Adjust Circuit  
potentiometer R until V  
equals 0.000V in the unipolar mode or  
OUT  
Bipolar Output Voltage  
1
–5.000V in the bipolar mode (see bipolar section accomplishes this  
trim.  
The NE5020 includes a thermally matched resistor, R , to offset  
the output voltage by 5V to obtain –5V to +5V output voltage range  
operation. This is accomplished by shorting Pins 18 and 22 (see  
BIP  
Full-Scale Adjustment  
A recommended full-scale adjustment circuit, when using the  
internal voltage reference, is shown in Figure 15. Potentiometer R  
Figure 13). This connection produces a current equal to (V  
REFIN –  
) ÷ R  
(1mA nominal), which is injected into the sum  
node. Since full-scale current out is approximately 2mA  
(1.9980mA), (2mA – 1mA)5k= 5V will appear at the output. For  
zero DAC output currents, 1mA is still injected into sum node and  
= –(5k) (1mA) = –5V. Zero-scale adjust and full-scale adjust  
are performed as described below, noting that full-scale voltage is  
now approximately +5V. Zero-scale adjust may be used to trim  
SUM NODE  
BIP  
3
is adjusted until V  
equals 9.99023V. In many applications where  
OUT  
the absolute accuracy of full-scale is of low importance when  
compared to the other system accuracy factors this adjustment  
circuit is optional.  
V
OUT  
As resistors R , R , and R  
REF FB  
shown in the Block Diagram are  
BIP  
V
OUT  
= 0.00 with the MSB high or V  
= –5.0V with all bits off.  
OUT  
integrated in close proximity, they match and track in value closely  
over wide ambient temperature variations. Typical matching is less  
than ±0.3% which implies that typical full-scale (or gain) error is less  
than ±0.3% of ideal full-scale value.  
Zero-Scale Adjustment  
The method of trimming the small offset error that may exist when all  
data bits are low is  
shown in Figure 14. The trim is the result of injecting a current from  
resistor R that counteracts the error current. Adjusting  
2
766  
August 31, 1994  

相关型号:

NE50200K+/-1%

Fixed Resistor, Metal Film, 0.25W, 200000ohm, 200V, 1% +/-Tol, -25,25ppm/Cel
VISHAY

NE5020F

10-Bit mP-compatible D/A converter
NXP

NE5020N

10-Bit mP-compatible D/A converter
NXP

NE502AF

IC DATACOM, MANCHESTER ENCODER/DECODER, CDIP24, HERMETIC SEALED, CERDIP-24, Network Interface
NXP

NE502AF

Network Interface, ECL, CDIP24,
PHILIPS

NE502AF

Manchester Encoder/Decoder, ECL, CDIP24,
YAGEO

NE502N

IC ACTIVE DELAY LINE, PDIP16, Delay Line
NXP

NE5030

IC LATCH BASED PRPHL DRVR, CDIP18, Peripheral Driver
NXP

NE5034F

IC 1-CH 8-BIT SUCCESSIVE APPROXIMATION ADC, PARALLEL ACCESS, CDIP18, CERDIP-18, Analog to Digital Converter
NXP

NE5034F

A/D Converter, 8-Bit, 1 Func, Bipolar, CDIP18,
PHILIPS

NE5034FSIIA

A/D Converter, 8-Bit, 1 Func, Bipolar, CDIP18
PHILIPS

NE5034FSIIB

A/D Converter, 8-Bit, 1 Func, Bipolar, CDIP18
PHILIPS